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1.1 Introduction

Timing predictability is extremely important for hard real-time embedded systems employed in application

domains such as automotive electronics and avionics. Schedulability analysis techniques can guarantee

the satisfiability of timing constraints for systems consisting of multiple concurrent tasks. One of the key

inputs required for the schedulability analysis is the worst-case execution time (WCET) of each of the

tasks. WCET of a task on a target processor is defined as its maximum execution time across all possible

inputs.

Figure 1.1a and Figure 1.2a show the variation in execution time of a quick sort program on a

simple and complex processor, respectively. The program sorts a five-element array. The figures show the

distribution of execution time (in processor cycles) for all possible permutations of the array elements

as inputs. The maximum execution time across all the inputs is the WCET of the program. This simple

example illustrates the inherent difficulty of finding the WCET value:

1-1
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FIGURE 1.1 Distribution of time and energy for different inputs of an application on a simple processor.

� Clearly, executing the program for all possible inputs so as to bound its WCET is not feasible. The

problem would be trivial if the worst-case input of a program is known a priori. Unfortunately, for

most programs the worst-case input is unknown and cannot be derived easily.
� Second, the complexity of current micro-architectures implies that the WCET is heavily influenced

by the target processor. This is evident from comparing Figure 1.1a with Figure 1.2a. Therefore, the

timing effects of micro-architectural components have to be accurately accounted for.

Static analysis methods estimate a bound on the WCET. These analysis techniques are conservative

in nature. That is, when in doubt, the analysis assumes the worst-case behavior to guarantee the safety

of the estimated value. This may lead to overestimation in some cases. Thus, the goal of static anal-

ysis methods is to estimate a safe and tight WCET value. Figure 1.3 explains the notion of safety and

tightness in the context of static WCET analysis. The figure shows the variation in execution time of

a task. The actual WCET is the maximum possible execution time of the program. The static analysis

method generates the estimated WCET value such that estimated WCET ≥ actual WCET. The difference

between the estimated and the actual WCET is the overestimation and determines how tight the estima-

tion is. Note that the static analysis methods guarantee that the estimated WCET value can never be less

than the actual WCET value. Of course, for a complex task running on a complex processor, the actual

WCET value is unknown. Instead, simulation or execution of the program with a subset of possible in-

puts generates the observed WCET, where observed WCET ≤ actual WCET. In other words, the observed

WCET value is not safe, in the sense that it cannot be used to provide absolute timing guarantees for

safety-critical systems. A notion related to WCET is the BCET (best-case execution time), which represents

the minimum execution time across all possible inputs. In this chapter, we will focus on static analysis



Worst-Case Execution Time and Energy Analysis 1-3

16

14

12

10

N
u

m
b

er
 o

f 
In

p
u

ts

8

6

2

4

0
2690 2700 2710 2720

Execution Time (cycles)

2730 2740 2750

(a)

14

12

N
u

m
b

er
 o

f 
In

p
u

ts 10

8

6

4

2

0
1060 1080 1100 1120 1140

Energy (× 10 nJ)

1160 1180 1200

(b)

FIGURE 1.2 Distribution of time and energy for different inputs of the same application on a complex processor.

techniques to estimate the WCET. However, the same analysis methods can be easily extended to estimate

the BCET.

Apart from timing, the proliferation of battery-operated embedded devices has made energy consump-

tion one of the key design constraints. Increasingly, mobile devices are demanding improved functionality

and higher performance. Unfortunately, the evolution of battery technology has not been able to keep

up with performance requirements. Therefore, designers of mission-critical systems, operating on limited

battery life, have to ensure that both the timing and the energy constraints are satisfied under all possible
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FIGURE 1.3 Definition of observed, actual, and estimated WCET.
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scenarios. The battery should never drain out before a task completes its execution. This concern leads to

the related problem of estimating the worst-case energy consumption of a task running on a processor for

all possible inputs. Unlike WCET, estimating the worst-case energy remains largely unexplored even though

it is considered highly important [86], especially for mobile devices. Figure 1.1b and Figure 1.2b show

the variation in energy consumption of the quick sort program on a simple and complex processor,

respectively.

A natural question that may arise is the possibility of using the WCET path to compute a bound on the

worst-case energy consumption. As energy = average power × execution time, this may seem like a viable

solution and one that can exploit the extensive research in WCET analysis in a direct fashion. Unfortunately,

the path corresponding to the WCET may not coincide with the path consuming maximum energy. This

is made apparent by comparing the distribution of execution time and energy for the same program and

processor pair as shown in Figure 1.1 and Figure 1.2. There are a large number of input pairs 〈I1, I2〉 in this

program, where time(I1) < time(I2), but energy(I1) > energy(I2). This happens as the energy consumed

because of the switching activity in the circuit need not necessarily have a correlation with the execution

time. Thus, the input that leads to WCET may not be identical to the input that leads to the worst-case

energy.

The execution time or energy is affected by the path taken through the program and the underlying

micro-architecture. Consequently, static analysis for worst-case execution time or energy typically consists

of three phases. The first phase is the program path analysis to identify loop bounds and infeasible flows

through the program. The second phase is the architectural modeling to determine the effect of pipeline,

cache, branch prediction, and other components on the execution time (energy). The last phase, estimation,

finds an upper bound on the execution time (energy) of the program given the results of the flow analysis

and the architectural modeling.

Recently, there has been some work on measurement-based timing analysis [6, 17, 92]. This line of work

is mainly targeted toward soft real-time systems, such as multimedia applications, that can afford to miss

the deadline once in a while. In other words, these application domains do not require absolute timing

guarantees. Measurement-based timing analysis methods execute or simulate the program on the target

processor for a subset of all possible inputs. They derive the maximum observed execution time (see the

definition in Figure 1.3) or the distribution of execution time from these measurements. Measurement-

based performance analysis is quite useful for soft real-time applications, but they may underestimate the

WCET, which is not acceptable in the context of safety-critical, hard real-time applications. In this article,

we only focus on static analysis techniques that provide safe bounds on WCET and worst-case energy.

The analysis methods assume uninterrupted program execution on a single processor. Furthermore, the

program being analyzed should be free from unbounded loops, unbounded recursion, and dynamic

function calls [67].

The rest of the chapter is organized as follows. We proceed with programming-language-level WCET

analysis in the next section. This is followed by micro-architectural modeling in Section 1.3. We present a

static analysis technique to estimate worst-case energy bound in Section 1.4. A brief description of existing

WCET analysis tools appears in Section 1.5, followed by conclusions.

1.2 Programming-Language-Level WCET Analysis

We now proceed to discuss static analysis methods for estimating the WCET of a program. For WCET

analysis of a program, the first issue that needs to be determined is the program representation on which

the analysis will work. Earlier works [73] have used the syntax tree where the (nonleaf) nodes correspond

to programming-language-level control structures. The leaves correspond to basic blocks — maximal

fragments of code that do not involve any control transfer. Subsequently, almost all work on WCET

analysis has used the control flow graph. The nodes of a control flow graph (CFG) correspond to basic

blocks, and the edges correspond to control transfer between basic blocks. When we construct the CFG of a

program, a separate copy of the CFG of a function f is created for every distinct call site of f in the program
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FIGURE 1.4 (a) A code fragment. (b) Control flow graph of the code fragment. (c) Syntax tree of the code fragment.

such that each call transfers control to its corresponding copy of CFG. This is how interprocedural analysis

will be handled. Figure 1.4 shows a small code fragment as well as its syntax tree and control flow graph

representations.

One important issue needs to be clarified in this regard. The control flow graph of a program can be

either at the source code level or at the assembly code level. The difference between the two comes from

the compiler optimizations. Our program-level analysis needs to be hooked up with micro-architectural

modeling, which accurately estimates the execution time of each instruction while considering the timing

effects of underlying microarchitectural features. Hence we always consider the assembly-code-level CFG.

However, while showing our examples, we will show CFG at the source code level for ease of exposition.

1.2.1 WCET Calculation

We explain WCET analysis methods in a top-down fashion. Consequently, at the very beginning, we

present WCET calculation — how to combine the execution time estimates of program fragments to get

the execution time estimate of a program. We assume that the loop bounds (i.e., the maximum number

of iterations for a loop) are known for every program loop; in Section 1.2.2 we outline some methods to

estimate loop bounds.

In the following, we outline the three main categories of WCET calculation methods. The path-based

and integer linear programming methods operate on the program’s control flow graph, while the tree-based

methods operate on the program’s syntax tree.

1.2.1.1 Tree-Based Methods

One of the earliest works on software timing analysis was the work on timing schema [73]. The technique

proceeds essentially by a bottom-up pass of the syntax tree. During the traversal, it associates an execution

time estimate for each node of the tree. The execution time estimate for a node is obtained from the

execution time estimates of its children, by applying the rules in the schema. The schema prescribes
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rules — one for each control structure of the programming language. Thus, rules corresponding to a

sequence of statements, if-then-else and while-loop constructs, can be described as follows.

� Time(S1; S2 ) = Time(S1) + Time(S2)
� Time(if (B) { S1 } else { S2} ) = Time(B) + max(Time(S1), Time(S2))
� Time (while (B) { S1} ) = (n + 1)*Time(B) + n*Time(S1)

Here, n is the loop bound. Clearly, S1, S2 can be complicated code fragments whose execution time

estimates need to obtained by applying the schema rules for the control structures appearing in S1, S2.

Extensions of the timing schema approach to consider micro-architectural modeling will be discussed in

Section 1.3.5.

The biggest advantage of the timing schema approach is its simplicity. It provides an efficient compo-

sitional method for estimating the WCET of a program by combining the WCET of its constituent code

fragments. Let us consider the following schematic code fragment P g m. For simplicity of exposition, we

will assume that all assignments and condition evaluations take one time unit.

i = 0; while (i<100) {if ( B’) S1 else S2; i++; }

If Time(S1) > Time(S2), by using the rule for if-then-else statements in the timing schema we get

Time(if (B') S1 else S2 ) = Time(B' ) + Time(S1) = 1 + Time(S1)

Now, applying the rule for while-loops in the timing schema, we get the following. The loop bound in this

case is 100.

Time(while (i<100) {if(B') S1 else S2 }) = 101 ∗ Time(i < 100)+

100 ∗ Time(if (B') S1 else S2 )

= 101 ∗ 1 + 100 ∗ (1 + Time(S1))

= 201 + 100 ∗ Time(S1)

Finally, using the rule for sequential composition in the timing schema we get

Time(P g m) = Time(i = 0) + Time(while (i<100) {if (B') S1 else S2 })

= 1 + 201 + 100 ∗ Time(S1) = 202 + 100 ∗ Time(S1)

The above derivation shows the working of the timing schema. It also exposes one of its major weaknesses.

In the timing schema, the timing rules for a program statement are local to the statement; they do not

consider the context with which the statement is arrived at. Thus, in the preceding we estimated the

maximum execution time of if ( B’) S1 else S2 by taking the execution time for evaluating B
and the time for executing S1 (since time for executing S1 is greater than the time for executing S2).

As a result, since the if-then-else statement was inside a loop, our maximum execution time estimate for

the loop considered the situation where S1 is executed in every loop iteration (i.e., the condition B’ is

evaluated to true in every loop iteration).

However, in reality S1 may be executed in very few loop iterations for any input; if Time(S1) is

significantly greater than Time(S2), the result returned by timing schema will be a gross overestimate.

More importantly, it is difficult to extend or augment the timing schema approach so that it can return

tighter estimates in such situations. In other words, even if the user can provide the information that “it is

infeasible to execute S1 in every loop iteration of the preceding program fragment P g m,” it is difficult to

exploit such information in the timing schema approach. Difficulty in exploiting infeasible program flows

information (for returning tighter WCET estimates) remains one of the major weaknesses of the timing

schema. We will revisit this issue in Section 1.2.2.

1.2.1.2 Path-Based Methods

The path-based methods perform WCET calculation of a program P via a longest-path search over the

control flow graph of P . The loop bounds are used to prevent unbounded unrolling of the loops. The
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biggest disadvantage of this method is its complexity, as in the worst-case it may amount to enumeration

of all program paths that respect the loop bounds. The advantage comes from its ability to handle various

kinds of flow information; hence, infeasible path information can be easily integrated with path-based

WCET calculation methods.

One approach for restricting the complexity of longest-path searches is to perform symbolic state

exploration (as opposed to an explicit path search). Indeed, it is possible to cast the path-based searches

for WCET calculation as a (symbolic) model checking problem [56]. However, because model checking

is a verification method [13], it requires a temporal property to verify. Thus, to solve WCET analysis

using model-checking-based verification, one needs to guess possible WCET estimates and verify that

these estimates are indeed WCET estimates. This makes model-checking-based approaches difficult to use

(see [94] for more discussion on this topic). The work of Schuele and Schneider [72] employs a symbolic

exploration of the program’s underlying transition system for finding the longest path, without resorting

to checking of a temporal property. Moreover, they [72] observe that for finding the WCET there is no

need to (even symbolically) maintain data variables that do not affect the program’s control flow; these

variables are identified via program slicing. This leads to overall complexity reduction of the longest-path

search involved in WCET calculation.

A popular path-based WCET calculation approach is to employ an explicit longest-path search, but

over a fragment of the control flow graph [31, 76, 79]. Many of these approaches operate on an acyclic

fragment of the control flow graph. Path enumeration (often via a breadth-first search) is employed to

find the longest path within the acyclic fragment. This could be achieved by a weighted longest-path

algorithm (the weights being the execution times of the basic blocks) to find the longest sequence of basic

blocks in the control flow graph for a program fragment. The longest-path algorithm can be obtained by

a variation of Djikstra’s shortest-path algorithm [76]. The longest paths obtained in acyclic control flow

graph fragments are then combined with the loop bounds to yield the program’s WCET. The path-based

approaches can readily exploit any known infeasible flow information. In these methods, the explicit path

search is pruned whenever a known infeasible path pattern is encountered.

1.2.1.3 Integer Linear Programming (ILP)

ILP combines the advantages of the tree and path-based approaches. It allows (limited) integration of

infeasible path information while (often) being much less expensive than the path-based approaches.

Many existing WCET tools such as aiT [1] and Chronos [44] employ ILP for WCET calculation.

The ILP approach operates on the program’s control flow graph. Each basic block B in the control flow

graph is associated with an integer variable NB , denoting the total execution count of basic block B . The

program’s WCET is then given by the (linear) objective function

maximize
∑

B∈B

NB ∗ c B

where B is the set of basic blocks of the program, and c B is a constant denoting the WCET estimate of

basic block B . The linear constraints on NB are developed from the flow equations based on the control

flow graph. Thus, for basic block B ,

∑

B ′→B

E B ′→B = NB =
∑

B→B ′′

E B→B ′′

where E B ′→B (E B→B ′′ ) is an ILP variable denoting the number of times control flows through the control

flow graph edge B ′ → B (B → B ′′). Additional linear constraints are also provided to capture loop

bounds and any known infeasible path information.

In the example of Figure 1.4, the control flow equations are given as follows. We use the numbering of

the basic blocks 1 to 8 shown in Figure 1.4. Let us examine a few of the control flow equations. For basic

block 1, there are no incoming edges, but there is only one outgoing edge 1 → 2. This accounts for the

constraint N1 = E 1→2; that is, the number of executions of basic block 1 is equal to the number of flows
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from basic block 1 to basic block 2. In other words, whenever basic block 1 is executed, control flows from

basic block 1 to basic block 2. Furthermore, since basic block 1 is the entry node, it is executed exactly

once; this is captured by the constraint N1 = 1. Now, let us look at the constraints for basic block 2; the

inflows to this basic block are the edges 1 → 2 and 7 → 2 and the outflows are the edges 2 → 3 and

2 → 8. This means that whenever block 2 is executed, control must have flown in via either the edge

1 → 2 or the edge 7 → 2; this accounts for the constraint E 1→2 + E 7→2 = N2. Furthermore, whenever

block 2 is executed, control must flow out via the edge 2 → 3 or the edge 2 → 8. This accounts for the

constraint N2 = E 2→3 + E 2→8. The inflow/outflow constraints for the other basic blocks are obtained in

a similar fashion. The full set of inflow/outflow constraints for Figure 1.4 are shown in the following.

N1 = 1 = E 1→2

E 1→2 + E 7→2 = N2 = E 2→3 + E 2→8

E 2→3 = N3 = E 3→4 + E 3→5

E 3→4 = N4 = E 4→5

E 4→5 + E 3→5 = N5 = E 5→6 + E 5→7

E 5→6 = N6 = E 6→7

E 6→7 + E 5→7 = N7 = E 7→2

E 2→8 = N8 = 1

The execution time of the program is given by the following linear function in Ni variables (c i is a

constant denoting the WCET of basic block i).

8
∑

i=1

Ni ∗ c i

Now, if we ask the ILP solver to maximize this objective function subject to the inflow/outflow constraints,

it will not succeed in producing a time bound for the program. This is because the only loop in the program

has not been bounded. The loop bound information itself must be provided as linear constraints. In this

case, since Figure 1.4 has only one loop, this accounts for the constraint

E 7→2 ≤ 10

Using this loop bound, the ILP solver can produce a WCET bound for the program. Of course, the WCET

bound can be tightened by providing additional linear constraints capturing infeasible path information;

the flow constraints by default assume that all paths in the control flow graph are feasible. It is worthwhile

to note that the ILP solver is capable of only utilizing the loop bound information and other infeasible path

information that is provided to it as linear constraints. Inferring the loop bounds and various infeasible

path patterns is a completely different problem that we will discuss next.

Before moving on to infeasible path detection, we note that tight execution time estimates for basic

blocks (the constants c i appearing in the ILP objective function) are obtained by micro-architectural

modeling techniques described in Section 1.3. Indeed, this is how the micro-architectural modeling and

program path analysis hook up in most existing WCET estimation tools. The program path analysis is done

by an ILP solver; infeasible path and loop bound information are integrated with the help of additional

linear constraints. The objective function of the ILP contains the WCET estimates of basic blocks as

constants. These estimates are provided by micro-architectural modeling, which considers cache, pipeline,

and branch prediction behavior to tightly estimate the maximum possible execution time of a basic block

B (where B is executed in any possible hardware state and/or control flow context).
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1.2.2 Infeasible Path Detection and Exploitation

In the preceding, we have described WCET calculation methods without considering that certain sequences

of program fragments may be infeasible, that is, not executed on any program input. Our WCET calculation

methods only considered the loop bounds to determine a program’s WCET estimate. In reality, the WCET

calculation needs to consider (and exploit) other information about infeasible program paths. Moreover,

the loop bounds also need to be estimated through an off-line analysis. Before proceeding further, we

define the notion of an infeasible path.

Definition 1.1
Given a program P , let BP be the set of basic blocks of P . Then, an infeasible path of P is a sequence of basic

blocks σ over the alphabet BP , such that σ does not appear in the execution trace corresponding to any input

of P .

Clearly, knowledge of infeasible path patterns can tighten WCET estimates. This is simply because the

longest path determined by our favorite WCET calculation method may be an infeasible one. Our goal is

to efficiently detect and exploit infeasible path information for WCET analysis. The general problem of

infeasible path detection is NP-complete [2]. Consequently, any approach toward infeasible path detection

is an underapproximation — any path determined to be infeasible is indeed infeasible, but not vice versa.

It is important to note that the infeasible path information is often given at the level of source code,

whereas the WCET calculation is often performed at the assembly-code-level control flow graph. Because

of compiler optimizations, the control flow graph at the assembly code level is not the same as the control

flow graph at the source code level. Consequently, infeasible path information that is (automatically)

inferred or provided (by the user) at the source code level needs to be converted to a lower level within a

WCET estimation tool. This transformation of flow information can be automated and integrated with

the compilation process, as demonstrated in [40].

In the following, we discuss methods for infeasible path detection. Exploitation of infeasible path in-

formation will involve augmenting the WCET calculation methods we discussed earlier. At this stage, it

is important to note that infeasible path detection typically involves a smart path search in the program’s

control flow graph. Therefore, if our WCET calculation proceeds by path-based methods, it is difficult to

separate the infeasible path detection and exploitation. In fact, for many path-based methods, the WCET

detection and exploitation will be fused into a single step. Consequently, we discuss infeasible path detec-

tion methods and along with it exploitation of these in path-based WCET calculation. Later on, we also

discuss how the other two WCET calculation approaches (tree-based methods and ILP-based methods)

can be augmented to exploit infeasible path information. We note here that the problem of infeasible path

detection is a very general one and has implications outside WCET analysis. In the following, we only

capture some works as representatives of the different approaches to solving the problem of infeasible path

detection.

1.2.2.1 Data Flow Analysis

One of the most common approaches for infeasible path detection is by adapting data flow analysis [21, 27].

In this analysis, each control location in the program is associated with an environment. An environment

is a mapping of program variables to values, where each program variable is mapped to a set of values,

instead of a single value. The environment of a control location L captures all the possible values that the

program variables may assume at L ; it captures variable valuations for all possible visits to L . Thus, if x is

an integer variable, and at line 70 of the program, the environment at line 70 maps x to [0.5], this means

that x is guaranteed to assume an integer value between 0 and 5 when line 70 is visited. An infeasible path

is detected when a variable is mapped to the empty set of values at a control location.

Approaches based on data flow analysis are often useful for finding a wide variety of infeasible paths

and loop bounds. However, the environments computed at a control location may be too approximate. It

is important to note that the environment computed at a control location C L is essentially an invariant
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property — a property that holds for every visit to C L . To explain this point, consider the example program

in Figure 1.4a. Data flow analysis methods will infer that in line E of the program sum ∈ [0..20], that is,

0 ≤ sum≤ 20. Hence we can infer that execution of lines E, F in Figure 1.4a constitutes an infeasible path.

However, by simply keeping track of all possible variable values at each control location we cannot directly

infer that line D of Figure 1.4a cannot be executed in consecutive iterations of the loop.

1.2.2.2 Constraint Propagation Methods

The above problem is caused by the merger of environments at any control flow merge point in the

control flow graph. The search in data flow analysis is not truly path sensitive — at any control loca-

tion C L we construct the environment for C L from the environments of all the control locations from

which there is an incoming control flow to C L . One way to solve this problem is to perform constraint

propagation [7, 71] (or value propagation as in [53]) along paths via symbolic execution. Here, instead of

assigning possible values to program variables (as in flow analysis), each input variable is given a special

value: unknown. Thus, if nothing is known about a variable x , we simply represent it as x . The opera-

tions on program variables will then have to deal with these symbolic representations of variables. The

search then accumulates constraints on x and detects infeasible paths whenever the constraint store be-

comes unsatisfiable. In the program of Figure 1.4a, by traversing lines C,D we accumulate the constraint

i % 2 
= 0. In the subsequent iteration, we accumulate the constraint i+1 % 2 
= 0. Note that via sym-

bolic execution we know that the current value of i is one greater than the value in the previous iteration,

so the constraint i+1 % 2 
= 0. We now need to show that the constraint i % 2 
= 0 ∧ i+1 % 2 
= 0
is unsatisfiable in order to show that line D in Figure 1.4a cannot be visited in subsequent loop iterations.

This will require the help of external constraint solvers or theorem provers such as Simplify [74]. Whether

the constraint in question can be solved automatically by the external prover, of course, depends on the

prover having appropriate decision procedures to reason about the operators appearing in the constraint

(such as the addition [+] and remainder [%] operators appearing in the constraint i % 2 
= 0 ∧ i+
1 % 2 
= 0).

The preceding example shows the plus and minus points of using path-sensitive searches for infeasible

path detection. The advantage of using such searches is the precision with which we can detect infeasible

program paths. The difficulty in using full-fledged path-sensitive searches (such as model checking) is, of

course, the huge number of program paths to consider.1

In summary, even though path-sensitive searches are more accurate, they suffer from a huge complexity.

Indeed, this has been acknowledged in [53], which accommodates specific heuristics to perform path

merging. Consequently, using path-sensitive searches for infeasible path detection does not scale up to

large programs. Data flow analysis methods fare better in this regard since they perform merging at control

flow merge points in the control flow graph. However, even data flow analysis methods can lead to full-

fledged loop unrolling if a variable gets new values in every iteration of a loop (e.g., consider the program

while (...) { i++ } ).

1.2.2.3 Heuristic Methods

To avoid the cost of loop unrolling, the WCET community has studied techniques that operate on the acyclic

graphs representing the control flow of a single loop iteration [31, 76, 79]. These techniques do not detect

or exploit infeasible paths that span across multiple loop iterations. The basic idea is to find the weighted

longest path in any loop iteration and multiply its cost with the loop bound. Again, the complication

arises from the presence of infeasible paths even within a loop iteration. The work of Stappert et al. [76]

finds the longest path π in a loop iteration and checks whether it is feasible; if π is infeasible, it employs

1Furthermore, the data variables of a program typically come from unbounded domains such as integers. Thus,

use of a finite-state search method such as model checking will have to either employ data abstractions to construct

a finite-state transition system corresponding to a program or work on symbolic state representations representing

infinite domains (possibly as constraints), thereby risking nontermination of the search.
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graph-theoretic methods to remove π from the control flow graph of the loop. The longest-path calculation

is then run again on the modified graph. This process is repeated until a feasible longest path is found.

Clearly, this method can be expensive if the feasible paths in a loop have relatively low execution times.

To address this gap, the recent work of Suhendra et al. [79] has proposed a more “infeasible path aware”

search of the control flow graph corresponding to a loop body. In this work, the infeasible path detection

and exploitation proceeds in two separate steps. In the first step, the work computes “conflict pairs,” that is,

incompatible (branch, branch) or (assignment, branch) pairs. For example, let us consider the following

code fragment, possibly representing the body of a loop.

1 if (x > 3)
2 z = z + 1;
3 else
4 x = 1;
5 if (x < 2)
6 z = z/2;
7 else
8 z = z -1;

Clearly, the assignment at line 4 conflicts with the branch at line 5 evaluating to false. Similarly, the branch

at line 1 evaluating to true conflicts with the branch at line 5 evaluating to true. Such conflicting pairs are

detected in a traversal of the control flow directed acyclic graph (DAG) corresponding to the loop body.

Subsequently, we traverse the control flow DAG of the loop body from sink to source, always keeping

track of the heaviest path. However, if any assignment or branch decision appearing in the heaviest path

is involved in a conflict pair, we also keep track of the next heaviest path that is not involved in such a pair.

Consequently, we may need to keep track of more than one path at certain points during the traversal;

however, redundant tracked paths are removed as soon as conflicts (as defined in the conflict pairs) are

resolved during the traversal. This produces a path-based WCET calculation method that detects and

exploits infeasible path patterns and still avoids expensive path enumeration or backtracking.

We note that to scale up infeasible path detection and exploitation to large programs, the notion of

pairwise conflicts is important. Clearly, this will not allow us to detect that the following is an infeasible

path:

x = 1; y = x; if (y > 2) {...

However, using pairwise conflicts allows us to avoid full-fledged data flow analysis in WCET calculation.

The work of Healy and Whalley [31] was the first to use pairwise conflicts for infeasible path detection and

exploitation. Apart from pairwise conflicts, this work also detects iteration-based constraints, that is, the

behavior of individual branches across loop iterations. Thus, if we have the following program fragment,

the technique of Healy and Whalley [31] will infer that the branch inside the loop is true only for the

iterations 0..24.

for (i = 0; i < 100; i++) {
if (i < 25)

{ S1; }
else { S2; }

}

If the time taken to execute S1 is larger than the time taken to execute S2, we can estimate the cost

of the loop to be 25 ∗ Time(S1) + 75 ∗ Time(S2). Note that in the absence of a framework for using

iteration-based constraints, we would have returned the cost of the loop as 100 ∗ Time(S1).

In principle, it is possible to combine the efficient control flow graph traversal in [79] with the framework

in [31], which combines branch constraints as well as iteration-based constraints. This can result in a path-

based WCET calculation that performs powerful infeasible path detection [31] and efficient infeasible path

exploitation [79].
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for (i = 1; i <= 100; i++) {
for (j = i; j <= 100; j++) {

...

FIGURE 1.5 A nonrectangular loop nest.

1.2.2.4 Loop Bound Inferencing

An important part of infeasible path detection and exploitation is inferencing and usage of loop bounds.

Without sophisticated inference of loop bounds, the WCET estimates can be vastly inflated. To see this

point, we only need to examine a nested loop of the form shown in Figure 1.5. Here, a naive method will

put the loop bound of the inner loop as 100 ∗ 100 = 10, 000, which is a gross overestimate over the actual

bound of 1 + 2 + . . . + 100 = 5050.

Initial work on loop bounds relied on the programmer to provide manual annotations [61]. These

annotations are then used in the WCET calculation. However, giving loop bound annotations is in general

an error-prone process. Subsequent work has integrated automated loop bound inferencing as part of

infeasible path detection [21]. The work of Liu and Gomez [52] exploits the program structure for

high-level languages (such as functional languages) to infer loop bounds. In this work, from the recursive

structure of the functions in a functional program, a cost function is constructed automatically. Solving this

cost-bound function can then yield bounds on loop executions (often modeled as recursion in functional

programs). However, if the program is recursive (as is common for functional programs), the cost bound

function is also recursive and does not yield a closed-form solution straightaway. Consequently, this

technique [52] (a) performs symbolic evaluation of the cost-bound function using knowledge of program

inputs and then (b) transforms the symbolically evaluated function to simplify its recursive structure.

This produces the program’s loop bounds. The technique is implemented for a subset of the functional

language Scheme.2

For imperative programs, the work of Healy et al. [30] presents a comprehensive study for inferring

loop bounds of various kinds of loops. It handles loops with multiple exits by automatically identifying

the conditional branches within a loop body that may affect the number of loop iterations. Subsequently,

for each of these branches the range of loop iterations where they can appear is detected; this information

is used to compute the loop bounds. Moreover, the work of Healy et al. [30] also presents techniques for

automatically inferring bounds on loops where loop exit/entry conditions depend on values of program

variables. As an example, let us consider the nonrectangular loop nest shown in Figure 1.5. The technique

of Healy et al. [30] will automatically extract the following expression for the bound on the number of

executions of the inner loop.

Ninner =

100
∑

i=1

100
∑

j=i

1 =

100
∑

i=1

(

100
∑

j=1

1 −

i−1
∑

j=1

1

)

=

100
∑

i=1

(100 − (i − 1))

We can then employ techniques for solving summations to obtain Ninner .

1.2.2.5 Exploiting Infeasible Path Information in Tree-Based WCET Calculation

So far, we have outlined various methods for detecting infeasible paths in a program’s control flow graph.

These methods work by traversing the control flow graph and are closer to the path-based methods.

2Dealing loops as recursive procedures has also been studied in [55] but in a completely different context. This

work uses context-sensitive interprocedural analysis to separate out the cache behavior of different executions of the

recursive procedure corresponding to a loop, thereby distinguishing, for instance, the cache behavior of the first loop

iteration from the remaining loop iterations.
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If the WCET calculation is performed by other methods (tree based or ILP), how do we even integrate

the infeasible path information into the calculation? In other words, if infeasible path patterns have been

detected, how do we let tree-based or ILP-based WCET calculation exploit these patterns to obtain tighter

WCET bounds? We first discuss this issue for tree-based methods and then for ILP methods.

One simple way to exploit infeasible path information is to partition the set of program inputs. For each

input partition, the program is partially evaluated to remove the statements that are never executed (for

inputs in that partition). Timing schema is applied to this partially evaluated program to get its WCET. This

process is repeated for every input partition, thereby yielding a WCET estimate for each input partition.

The program’s WCET is set to the maximum of the WCETs for all the input partitions. To see the benefit

of this approach, consider the following schematic program with a boolean input b.

If Stmt1 : if (b == 0) { S1; } else {S2; }
If Stmt2 : if (b == 1) { S3; } else {S4; }

Assume that

Time(S1) > Time(S2) and Time(S3) > Time(S4)

Then using the rules of timing schema we have the following. For convenience, we call the first (second)

if statement in the preceding schematic program fragment If Stmt1 (If Stmt2).

Time(If Stmt1) = Time(b == 0) + Time(S1)

Time(If Stmt2) = Time(b == 1) + Time(S3)

Time(If Stmt1; If Stmt2) = Time(If Stmt1) + Time(If Stmt2) =

Time(b == 0) + Time(b == 1) + Time(S1) + Time(S3)

We now consider the execution time for the two possible inputs and take their maximum. Let us now

consider the program for input b = 0. Since statements S1 and S4 are executed, we have:

Time(If Stmt1; If Stmt2)b=0 = Time(b == 0) + Time(b == 1) + Time(S1) + Time(S4)

Similarly, S2 and S3 are executed for b = 1 . Thus,

Time(If Stmt1; If Stmt2)b=1 = Time(b == 0) + Time(b == 1) + Time(S2) + Time(S3)

The execution time estimate is set to the maximum of Time(If Stmt1; If Stmt2)b=0 and Time(If Stmt1;

If Stmt2)b=1. Both of these quantities are lower than the estimate computed by using the default timing

schema rules. Thus, by taking the maximum of these two quantities we will get a tighter estimate than by

applying the vanilla timing schema rules.

Partitioning the program inputs and obtaining the WCET for each input partition is a very simple, yet

powerful, idea. Even though it has been employed for execution time analysis and energy optimization

in the context of timing schema [24, 25], we can plug this idea into other WCET calculation methods

as well. The practical difficulty in employing this idea is, of course, computing the input partitions in

general. In particular, Gheorghita et al. [25] mention the suitability of the input partitioning approach for

multimedia applications performing video and audio decoding and encoding; in these applications there

are different computations for different types of input frames being decoded and encoded. However, in

general, it is difficult to partition the input space of a program so that inputs with similar execution time

estimates get grouped to the same partition. As an example, consider the insertion sort program where

the input space consists of the different possible ordering of the input elements in the input array. Thus,

in an n-element input array, the input space consists of the different possible permutations of the array

element (the permutation a[1], a[3], a[2] denoting the ordering a[1] < a[3] < a[2]). First, getting such a

partitioning will involve an expensive symbolic execution of the sorting program. Furthermore, even after
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i = 0 B1

i < 100 B2

a[i] < 0 B3

S1B4 B5

B6i++

S2

FIGURE 1.6 Example control flow graph.

we obtain the partitioning we still have too many input partitions to work with (the number of partitions

for the sorting program is the number of permutations, that is, n!). In the worst case, each program input

is in a different partition, so the WCET estimation will reduce to exhaustive simulation.

A general approach for exploiting infeasible path information in tree-based WCET calculation has been

presented in [61]. In this work, the set of all paths in the control flow graph (taking into account the loop

bounds) is described as a regular expression. This is always possible since the set of paths in the control flow

graph (taking into account the loop bounds) is finite. Furthermore, all of the infeasible path information

given by the user is also converted to regular expressions. Let Paths be the set of all paths in the control

flow graph and let I1, I2 be certain infeasible path information (expressed as a regular expression). We can

then safely describe the set of feasible paths as Paths ∩ (¬I1) ∩ (¬I2); this is also a regular expression since

regular languages are closed under negation and intersection. Timing schema now needs to be employed

in these paths, which leads to a practical difficulty. To explain this point, consider the following simple

program fragment.

for (i=0; i <100; i++) {
if (a[i] < 0) { S1; }
else { S2; }

}

We can draw the control flow graph of this program and present the set of paths in the control flow graph

(see Figure 1.6) as a regular expression over basic block occurrences. Thus, the set of paths in the control

flow graph fragment of Figure 1.6 is

B1(B2B3B4B6 + B2B3B5B6)100

Now, suppose we want to feed the information that the block B4 is executed at least in one iteration. If

a[i] is an input array, this information can come from our knowledge of the program input. Alternatively,

if a[i] was constructed via some computation prior to the loop, this information can come from our

understanding of infeasible program paths. In either case, the information can be encoded as the regular

expression ¬B1(B2B3B5B6)∗ = �∗ B4�∗, where � = {B1, B2, B3, B4, B5, B6} is the set of all basic

blocks. The set of paths that the WCET analysis should consider is now given by

B1(B2B3B4B6 + B2B3B5B6)100 ∩ �∗ B4�∗
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The timing schema approach will now remove the intersection by unrolling the loop as follows.

B1(B2B3B4B6)(B2B3B4B6 + B2B3B5B6)99∪

B1(B2B3B4B6 + B2B3B5B6)(B2B3B4B6)(B2B3B4B6 + B2B3B5B6)98∪

B1(B2B3B4B6 + B2B3B5B6)2(B2B3B4B6)(B2B3B4B6 + B2B3B5B6)97 ∪ . . .

For each of these sets of paths (whose union we represent above) we can employ the conventional timing

schema approach. However, there are 100 sets to consider because of unrolling a loop with 100 iterations.

This is what makes the exploitation of infeasible paths difficult in the timing schema approach.

1.2.2.6 Exploiting Infeasible Path Information in ILP-Based WCET Calculation

Finally, we discuss how infeasible path information can be exploited in the ILP-based approach for WCET

calculation. As mentioned earlier, the ILP-based approach is the most widely employed WCET calculation

approach in state-of-the-art WCET estimation tools. The ILP approach reduces the WCET calculation to a

problem of optimizing a linear objective function. The objective function represents the execution time of

the program, which is maximized subject to flow constraints (in the control flow graph) and loop bound

constraints. Note that the variables in the ILP problem correspond to execution counts of control flow

graph nodes (i.e., basic blocks and edges).

Clearly, integrating infeasible path information will involve encoding knowledge of infeasible program

paths as additional linear constraints [49, 68]. Introducing such constraints will make the WCET estimate

(returned by the ILP solver) tighter. The description of infeasible path information as linear constraints

has been discussed in several works. Park proposes an information description language (IDL) for describ-

ing infeasible path information [62]. This language provides convenient primitives for describing path

information through annotations such as samepath(A,C), where A, C can be lines in the program. This

essentially means than whenever A is executed, C is executed and vice versa (note that A, C can be executed

many times, as they may lie inside a loop). In terms of execution count constraints, such information can

be easily encoded as NBA
= NBC

, where BA and BC are the basic blocks containing A, C , and NBA
and

NBC
are the number of executions of BA and BC .

Recent work [e.g., 20] provides a systematic way of encoding path constraints as linear constraints on

execution counts of control flow graph nodes and edges. In this work, the program’s behavior is described

in terms of “scopes”; scope boundaries are defined by loop or function call entry and exit. Within each

scope, the work provides a systematic syntax for providing path information in terms of linear constraints.

For example, let us consider the control flow graph schematic denoting two if-then-else statements

within a loop shown in Figure 1.7. The path information is now given in terms of each/all iterations of

the scope (which in this case is the only loop in Figure 1.7). Thus, if we want to give the information that

blocks B2 and B6 are always executed together (which is equivalent to using the samepath annotation

described earlier) we can state it as NB2
= NB6

. On the other hand, if we want to give the information that

B2 and B6 are never executed together (in any iteration of the loop), this gets converted to the following

format

for each iteration NB2
+ NB6

≤ 1

Incorporating the number of loop iterations in the above constraints, one can obtain the linear constraint

NB2
+ NB6

≤ 100 (assuming that the loop bound is 100). This constraint is then fed to the ILP solver

along with the flow constraints and loop bounds (and any other path information).

In conclusion, we note that the ILP formulation for WCET calculation relies on aggregate execution

counts of basic blocks. As any infeasible path information involves sequences of basic blocks, the encoding

of infeasible path information as linear constraints over aggregate execution counts can lose information

(e.g., it is possible to satisfy NB2
+ NB6

≤ 100 in a loop with 100 iterations even if B2 and B6 are executed

together in certain iterations). However, encoding infeasible path information as linear constraints provides

a safe and effective way of ruling out a wide variety of infeasible program flows. Consequently, in most

existing WCET estimation tools, ILP is the preferred method for WCET calculation.
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B1
B1, B2, B4, B6 may be an infeasible path, to
be represented as a linear constraint.

B2 B3

B4

B5 B6

B7

FIGURE 1.7 A control flow graph fragment for illustrating infeasible path representation.

1.3 Micro-Architectural Modeling

The execution time of a basic block B in a program executing on a particular processor depends on (a) the

number of instructions in B , (b) the execution cycles per instruction in B , and (c) the clock period of the

processor. Let a basic block B contain the sequence of instructions 〈I1, I2, . . . , IN〉. For a simple micro-

controller (e.g., TI MSP430), the execution latency of any instruction type is a constant. Let latency(Ii )

be a constant denoting the execution cycles of instruction Ii . Then the execution time of the basic block

B can be expressed as

time(B) =

(

N
∑

i=1

latency(Ii )

)

× period (1.1)

where period is the clock period of the processor. Thus, for a simple micro-controller, the execution

time of a basic block is also a constant and is trivial to compute. For this reason, initial work on timing

analysis [67, 73] concentrated mostly on program path analysis and ignored the processor architecture.

However, the increasing computational demand of the embedded systems led to the deployment of

processors with complex micro-architectural features. These processors employ aggressive pipelining,

caching, branch prediction, and other features [33] at the architectural level to enhance performance.

While the increasing architectural complexity significantly improves the average-case performance of an

application, it leads to a high degree of timing unpredictability. The execution cycle latency(Ii ) of an

instruction Ii in Equation 1.1 is no longer a constant; instead it depends on the execution context of the

instruction. For example, in the presence of a cache, the execution time of an instruction depends on

whether the processor encounters a cache hit or a cache misses while fetching the instruction from the

memory hierarchy. Moreover, the large difference between the cache hit and miss latency implies that

assuming all memory accesses to be cache misses will lead to overly pessimistic timing estimates. Any

effective estimation technique should obtain a safe but tight bound on the number of cache misses.
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FIGURE 1.8 The IBM PowerPC 440 CPU Pipeline.

1.3.1 Sources of Timing Unpredictability

We first proceed to investigate the sources of timing unpredictability in a modern processor architecture

and their implications for timing analysis. Let us use the IBM PowerPC (PPC) 440 embedded core [34]

for illustration purposes. The PPC 440 is a 32-bit RISC CPU core optimized for embedded applications. It

integrates a superscalar seven-stage pipeline, with support for out-of-order issue of two instructions per

clock to multiple execution units, separate instruction and data caches, and dynamic branch prediction.

Figure 1.8 shows the PPC 440 CPU pipeline. The instruction fetch stage (IFTH) reads a cache line

(two instructions) into the instruction buffer. The predecode stage (PDCD) partially decodes at most two

instructions per cycle. At this stage, the processor employs a combination of static and dynamic branch

prediction for conditional branches. The four-entry decode queue accepts up to two instructions per cycle

from the predecode stage and completes the decoding. The decode queue always maintains the instructions

in program order. An instruction waits in the decode queue until its input operands are ready and the

corresponding execution pipeline is available. Up to two instructions can exit the decode queue per cycle

and are issued to the register access (RACC) stage. Instruction can be issued out-of-order from the decode

queue. After register access, the instructions proceed to the execution pipelines. The PPC 440 contains

three execution pipelines: a load/store pipe, a simple integer pipe, and a complex integer pipe. The first

execute stage (AGEN/EXE1) completes simple arithmetics and generates load/store addresses. The second

execute stage (CRD/EXE2) performs data cache access and completes complex operations. The write back

(WB) stage writes back the results into the register file.

Ideally, the PPC 440 pipeline has a throughput of two instructions per cycle. That is, the effective

latency of each individual instruction is 0.5 clock cycle. Unfortunately, most programs encounter multiple

pipeline hazards during execution that introduce bubbles in the pipeline and thereby reduce the instruction

throughput:

Cache miss: Any instruction may encounter a miss in the instruction cache (IFTH stage) and the

load/store instructions may encounter a miss in the data cache (CRD/EXE2 stage). The execution

of the instruction gets delayed by the cache miss latency.

Data dependency: Data dependency among the instructions may introduce pipeline bubbles. An in-

struction I dependent on another instruction J for its input operand has to wait in the decode

queue until J produces the result.
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Control dependency: Control transfer instructions such as conditional branches introduce control

dependency in the program. Conditional branch instructions cause pipeline stalls, as the processor

does not know which way to go until the branch is resolved. To avoid this delay, dynamic branch

prediction in the PPC 440 core predicts the outcome of the conditional branch and then fetches

and executes the instructions along the predicted path. If the prediction is correct, the execution

proceeds without any delay. However, in the event of a misprediction, the pipeline is flushed and a

branch misprediction penalty is incurred.

Resource contention: The issue of an instruction from the decode queue depends on the availabil-

ity of the corresponding execution pipeline. For example, if we have two consecutive load/store

instructions in the decode queue, then only one of them can be issued in any cycle.

Pipeline hazards have significant impact on the timing predictability of a program. Moreover, certain

functional units may have variable latency, which is input dependent. For example, the PPC 440 core can

be complemented by a floating point unit (FPU) for applications that need hardware support for floating

point operations [16]. In that case, the latency of an operation can be data dependent. For example, to

mitigate the long latency of the floating point divide (19 cycles for single precision), the PPC 440 FPU

employs an iterative algorithm that stops when the remainder is zero or the required target precision has

been reached. A similar approach is employed for integer divides in some processors. In general, any unit

that complies with the IEEE floating point standard [35] introduces several sources for variable latency

(e.g., normalized versus denormalized numbers, exceptions, multi-path adders, etc.).

A static analyzer has to take into account the timing effect of these various architectural features to

derive a safe and tight bound on the execution time. This, by itself, is a difficult problem.

1.3.2 Timing Anomaly

The analysis problem becomes even more challenging because of the interaction among the different

architectural components. These interactions lead to counterintuitive timing behaviors that essentially

preclude any compositional analysis technique to model the components independently.

Timing anomaly is a term introduced to define the counterintuitive timing behavior [54]. Let us assume

a sequence of instructions executing on an architecture starting with an initial processor state. The latency

of the first instruction is modified by an amount �t. Let �C be the resulting change in the total execution

time of the instruction sequence.

Definition 1.2
A timing anomaly is a situation where one the following cases becomes true:

� �t > 0 results in (�C > �t) or (�C < 0)
� �t < 0 results in (�C < �t) or (�C > 0)

From the perspective of WCET analysis, the cases of concern are the following: (a) The (local) worst-case

latency of an instruction does not correspond to the (global) WCET of the program (e.g., �t > 0 results

in �C < 0), and (b) the increase in the global execution time exceeds the increase in the local instruction

latency (e.g., �t > 0 results in �C > �t). Most analysis techniques implicitly assume that the worst-case

latency of an instruction will lead to safe WCET estimates. For example, if the cache state is unknown, it

is common to assume a cache miss for an instruction. Unfortunately, in the presence of a timing anomaly,

assuming a cache miss may lead to underestimation.

1.3.2.1 Examples

An example where the local worst case does not correspond to the global worst case is illustrated in

Figure 1.9. In this example, instructions A, E execute on functional unit 1 (FU1), which has variable

latency. Instructions B, C, and D execute on FU2, which has a fixed latency. The arrows on the time

line show when each instruction becomes ready and starts waiting for the functional unit. The processor
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FIGURE 1.9 An example of timing anomaly.

allows out-of-order issue of the ready instructions to the functional units. The dependencies among the

instructions are shown in the figure. In the first scenario, instruction A has a shorter latency, but the

schedule leads to longer total execution time, as it cannot exploit any parallelism. In the second scenario,

A has longer latency, preventing B from starting execution earlier (B is dependent on A). However, this

delay opens up the opportunity for D to start execution earlier. This in turn allows E (which is dependent

on D) to execute in parallel with B and C. The increased parallelism results in shorter overall execution

time for the second scenario even though A has longer latency.

The second example illustrates that the increase in the global execution time may exceed the increase

in the local instruction latency. In the PPC 440 pipeline, the branch prediction can indirectly affect

instruction cache performance. As the processor caches instructions along the mispredicted path, the

instruction cache content changes. This is called wrong-path instructions prefetching [63] and can have

both constructive and destructive effects on the cache performance. Analyzing each feature individually

fails to model this interference and therefore risks missing out on corner cases where branch misprediction

introduces additional cache misses.

This is illustrated in Figure 1.10 with an example control flow graph. For simplicity of exposition, let

us assume an instruction cache with four lines (blocks) where each basic block maps to a cache block

(in reality, a basic block may get mapped to multiple cache blocks or may occupy only part of a cache

block). Basic block B1 maps to the first cache block, B4 maps to the third cache block, and B2 and B3

both map to the second cache block (so they can replace each other). Suppose the execution sequence is

B1 B2 B4 B1 B2 B4 B1 B2 B4. . . . That is, the conditional branch at the end of B1 is always taken; however,

it is always mispredicted. The conditional branch at the end of B4, on the other hand, is always correctly

predicted. If we do not take branch prediction into account, any analysis technique will conclude a cache

hit for all the basic blocks for all the iterations except for the first iteration (which encounters cold misses).

Unfortunately, this may lead to underestimation in the presence of branch prediction. The cache state

before the prediction at B1 is shown in Figure 1.10. The branch is mispredicted, leading to instruction

fetch along B3. Basic block B3 incurs a cache miss and replaces B2. When the branch is resolved, however,

B2 is fetched into the instruction cache after another cache miss. This will result in two additional cache

misses per loop iteration. In this case, the total increase in execution time exceeds the branch misprediction

penalty because of the additional cache misses. Clearly, separate analysis of instruction caches and branch

prediction cannot detect these additional cache misses.

Interested readers can refer to [54] for additional examples of timing anomalies based on a simplified

PPC 440 architecture. In particular, [54] presents examples where (a) a cache hit results in worst-case
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FIGURE 1.10 Interference between instruction cache and branch prediction.

timing, (b) a cache miss penalty can be higher than expected, and (c) the impact of a timing anomaly on

WCET may not be bounded. The third situation is the most damaging, as a small delay at the beginning of

execution may contribute an arbitrarily high penalty to the overall execution time through a domino effect.

Identifying the existence and potential sources of a timing anomaly in a processor architecture remains

a hard problem. Lundqvist and Stenström [54] claimed that no timing anomalies can occur if a processor

contains only in-order resources, but Wenzel et al. [91] constructed an example of a timing anomaly in

an in-order superscalar processor with multiple functional units serving an overlapping set of instruction

types. A model-checking-based automated timing anomaly identification method has been proposed [18]

for a simplified processor. However, the scalability of this method for complex processors is not obvious.

1.3.2.2 Implications

Timing anomalies have serious implications for static WCET analysis. First, the anomaly caused by schedul-

ing (as shown in Figure 1.9) implies that one has to examine all possible schedules of a code fragment to

estimate the longest execution time. A sequence of n instructions, where each instruction can have k possi-

ble latency values, generates kn schedules. Any static analysis technique that examines all possible schedules

will have prohibitive computational complexity. On the other hand, most existing analysis methods rely

on making safe local decisions at the instruction level and hence run the risk of underestimation.

Second, many analysis techniques adopt a compositional approach to keep the complexity of the mod-

eling architecture under control [29, 81]. These approaches model the timing effects of the different

architectural features in separation. Counterintuitive timing interference among the different features

(e.g., cache and branch prediction in Figure 1.10 or cache and pipeline) may render the compositional

approaches invalid. For example, Healy et al. [29] performed cache analysis followed by pipeline analysis.

Whenever a memory block cannot be classified as a cache hit or miss, it is assumed to be a cache miss. This

is a conservative decision in the context of cache modeling and works perfectly for the in-order processor

pipeline modeled in that work. However, if it is extended to out-of-order pipeline modeling, the cache hit

may instead result in worst-case timing, and the decision will not be safe.

Lundqvist and Stenström [54] propose a program modification method that enforces timing predictabil-

ity and thereby simplifies the analysis. For example, any variable latency instruction can be preceded and
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succeeded by “synchronization” instructions to force serialization. Similarly, synchronization instructions

and/or software-based cache prefetching can be introduced at program path merging points to ensure

identical processor states, but this approach has a potentially high performance overhead and requires

special hardware support.

An architectural approach to avoid complex analysis due to timing anomalies has been presented in [3].

An application is divided into multiple subtasks with checkpoints to monitor the progress. The checkpoints

are inserted based on a timing analysis of a simple processor pipeline (e.g., no out-of-order execution,

branch prediction, etc.). The application executes on a complex pipeline unless a subtask fails to complete

before its checkpoint (which is rare). At this point, the pipeline is reconfigured to the simple mode so that

the unfinished subtasks can complete in a timely fashion. However, this approach requires changes to the

underlying processor micro-architecture.

1.3.3 Overview of Modeling Techniques

The micro-architectural modeling techniques can be broadly divided into two groups:

� Separated approaches
� Integrated approaches

The separated approaches work on the control flow graph, estimating the WCET of each basic block by

using micro-architectural modeling. These WCET estimates are then fed to the WCET calculation method.

Thus, if the WCET calculation proceeds by ILP, only the constants in the ILP problem corresponding to

the WCET of the basic blocks are obtained via micro-architectural modeling.

In contrast, the integrated approaches work by augmenting a WCET calculation method with micro-

architectural modeling. In the following we see at least two such examples — an augmented ILP modeling

method (to capture the timing behavior of caching and branch prediction) and an augmented timing

schema approach that incorporates cache/pipeline modeling. Subsequently, we will discuss two examples

of separated approaches, one of them using abstract interpretation for the micro-architectural modeling

and the other one using a customized fixed-point analysis over the time intervals at which events (changing

pipeline state) can occur. In both examples of the separated approach, the program path analysis proceeds

by ILP.

In addition, there exist static analysis methods based on symbolic execution of the program [53]. This is

an integrated method that extends cycle-accurate architectural simulation to perform symbolic execution

with partially known operand values. The downside of this approach is the slow simulation speed that can

lead to long analysis time.

1.3.4 Integrated Approach Based on ILP

An ILP-based path analysis technique has been described in Section 1.2. Here we present ILP-based

modeling of micro-architectural components. In particular, we will focus on ILP-based instruction cache

modeling proposed in [50] and dynamic branch prediction modeling proposed in [45]. We will also look

at modeling the interaction between the instruction cache and the branch prediction [45] to capture the

wrong-path instruction prefetching effect discussed earlier (see Figure 1.10).

The main advantage of ILP-based WCET analysis is the integration of path analysis and micro-

architectural modeling. Identifying the WCET path is clearly dependent on the timing of each individual

basic block, which is determined by the architectural modeling. On the other hand, behavior of instruction

cache and branch prediction depends heavily on the current path. In other words, unlike pipeline, timing

effects of cache and branch prediction cannot be modeled in a localized manner. ILP-based WCET analysis

techniques provide an elegant solution to this problem of cyclic dependency between path analysis and

architectural modeling. The obvious drawback of this method is the long solution time as the modeling

complexity increases.
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1.3.4.1 Instruction Cache Modeling

Caches are fast on-chip memories that are used to store frequently accessed instructions and data from main

memory. Caches are managed under hardware control and are completely transparent to the programmer.

Most modern processors employ separate instruction and data caches.

1.3.4.1.1 Cache Terminology

When the processor accesses an address, the address is first looked up in the cache. If the address is present

in the cache, then the access is a cache hit and the content is returned to the processor. If the address is not

present in the cache, then the access is a cache miss and the content is loaded from the next level of the

memory hierarchy. This new content may replace some old content in the cache. The dynamic nature of

the cache implies that it is difficult to statically identify cache hits and misses for an application. Indeed,

this is the main problem in deploying caches in real-time systems.

The unit of transfer between different levels of memory hierarchy is called the block or line. A cache is

divided into a number of sets. Let S be the associativity of a cache of size M. Then each cache set contains

S cache lines. Alternatively, the cache has S ways. For a direct-mapped cache, S = 1. Further, let B be the

cache line size. Then the cache contains N = M
S×B

sets. A memory block Blk can be mapped to only one

cache set given by (Blk modulo N).

1.3.4.1.2 Modeling

Li and Malik [50] first model direct-mapped instruction caches. This was later extended to set-associative

instruction caches. For simplicity, we will assume a direct-mapped instruction cache here. The starting

point of this modeling is again the control flow graph of the program. A basic block Bi is partitioned into

ni l-blocks denoted as Bi.1, Bi.2, . . . , Bi.ni
. A line-block, or l-block, is a sequence of code in a basic block

that belongs to the same instruction cache line. Figure 1.11A shows how the basic blocks are partitioned

into l-blocks. This example assumes a direct-mapped instruction cache with only two cache lines.

Let cmi. j be the total cache misses for l-block Bi. j , and cmp be the constant denoting the cache miss

penalty. The total execution time of the program is

Time =

N
∑

i=1

(costi × vi +

ni
∑

j=1

cmp × cmi. j ) (1.2)

where costi is the execution time of Bi , assuming a perfect instruction cache, and vi denotes the number

of times Bi is executed. This is the objective function for the ILP formulation that needs to be maximized.

The cache constraints are the linear expressions that bound the feasible values of cmi. j . These constraints

are generated by constructing a cache conflict graph G c for each cache line c . The nodes of G c are the
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FIGURE 1.11 l-blocks and cache conflict graph.
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l-blocks mapped to cache line c . An edge Bi. j → Bu.v exists in G c if there exists a path in the control flow

graph such that control flows from Bi. j to Bu.v without going through any other l-block mapped to c . In

other words, there is an edge between l-blocks Bi. j to Bu.v if Bi. j can be present in the cache when control

reaches Bu.v . Figure 1.11b shows the cache conflict graph corresponding to cache line 0 for the control

flow graph in Figure 1.11a mapped to a cache with two lines.

Let ri. j→u.v be the execution count of the edge between l-blocks Bi. j and Bu.v in a cache conflict graph.

Now the execution count of l-block Bi. j equals the execution count of basic block Bi . Also, at each node

of the cache conflict graph, the inflow equals the outflow and both equal the execution count of the node.

Therefore,

vi =
∑

u.v

ri. j→u.v =
∑

u.v

ru.v→i. j (1.3)

The cache miss count cmi. j equals the inflow from conflicting l-blocks in the cache conflict graph. Any

two l-blocks mapped to the same cache block are conflicting if they have different address tags. Two l-blocks

mapped to the same cache block do not conflict when the basic block boundary is not aligned with the

cache block boundary. For example, l-blocks B1,2 and B2,1 in Figure 1.11a occupy partial cache blocks and

have the same address tags. They do not conflict with each other. Thus, we have

cmi. j =
∑

u.v
Bu.v conflicts Bi. j

ru.v→i. j (1.4)

1.3.4.2 Dynamic Branch Prediction Modeling

Modern processors employ branch prediction to avoid performance loss due to control dependency [33].

Branch prediction schemes can be broadly categorized as static and dynamic. In the static scheme, a branch

is predicted in the same direction every time it is executed. Though simple, static schemes are much less

accurate than dynamic schemes.

1.3.4.2.1 Branch Terminology

Dynamic schemes predict a branch depending on the execution history. They use a 2n entry branch

prediction table to store past branch outcomes. When the processor encounters a conditional branch

instruction, this prediction table is looked up using some index, and the indexed entry is used as prediction.

When the branch is resolved, the entry is updated with the actual outcome. In practice, two-bit saturating

counters are often used for prediction.

Different branch prediction schemes differ in how they compute an n-bit index to access this table. In

case of simplest prediction scheme, the index is n lower-order bits of the branch address. More complex

schemes use a single shift register called a branch history register (BHR) to record the outcomes of the n

most recent branches called history π . The prediction table is looked up either using the BHR directly or

exclusive or (XOR)-ed with the branch address. Considering the outcome of the neighboring branches

exploits the correlation among consecutive branch outcomes.

Engblom [19] investigated the impact of dynamic branch prediction on the predicability of real-time

systems. His experiments on a number of commercial processors indicate that dynamic branch prediction

leads to high degree of execution time variation even for simple loops. In some cases, executing more

iterations of a loop takes less time than executing fewer iterations. These results reaffirm the need to model

branch prediction for WCET analysis.

1.3.4.2.2 Modeling

Li et al. [45] model dynamic branch predictors through ILP. The modeling is quite general and can

be parameterized with respect to various prediction schemes. Modeling of dynamic branch prediction

is somewhat similar to cache modeling. This is because they both use arrays (branch prediction table

and cache) to maintain information. However, two crucial differences make branch prediction modeling

significantly harder. First, a given branch instruction may use different entries of the prediction table
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at different points of execution (depending on the outcome of previous branches). However, an l-block

always maps to the same cache block. Second, the flow of control between two conflicting l-blocks always

implies a cache miss, but the flow of control between two branch instructions mapped to the same entry

in the prediction table may lead to correct or incorrect prediction depending on the outcome of the two

branches.

To model branch prediction, the objective function given in Equation 1.2 is modified to the following:

Time =

N
∑

i=1

(costi ∗ vi + bmp ∗ bmi ) (1.5)

where bmp is a constant denoting the penalty for a single branch misprediction, and bmi is the number

of times the branch in Bi is mispredicted. The constraints now need to bound feasible values of bmi . For

simplicity, let us assume that the branch prediction table is looked up using the history π as the index.

First, a terminating least-fixed-point analysis on the control flow graph identifies the possible values of

history π for each conditional branch. The flow constraints model the change in history along the control

flow graph and thereby derive the upper bound on bmπ
i — the execution count of the conditional branch

at the end of basic block Bi with history π . Next, a structure similar to a cache conflict graph is used to

bound the quantity pπ
i→ j denoting the number of times control flows from Bi to B j such that the π th

entry of the prediction table is used for branch prediction at Bi and B j and is never accessed in between.

Finally, the constraints on the number of mispredictions are derived by observing the branch outcomes

for consecutive accesses to the same prediction table entry as defined by pπ
i→ j .

1.3.4.3 Interaction between Cache and Branch Prediction

Cache and branch prediction cannot be modeled individually because of the wrong-path instruction

prefetching effect (see Figure 1.10). An integrated modeling of these two components through ILP to

capture the interaction has been proposed in [45]. First, the objective function is modified to include the

timing effect of cache misses as well as branch prediction.

Time =

N
∑

i=1

(costi ∗ vi + bmp ∗ bmi +

ni
∑

j=1

cmp × cmi. j ) (1.6)

If we assume that the processor allows only one unresolved branch at any time during execution, then

the number of branch mispredictions bmi is not affected by instruction cache. However, the values of the

number of cache misses cmi. j may change because of the instruction fetches along the mispredicted path.

The timing effects due to these additional instruction fetches can be categorized as follows:

� An l-block Bi. j misses during normal execution since it is displaced by another conflicting l-block

Bu.v during speculative execution (destructive effect).
� An l-block Bi. j hits during normal execution, since it is prefetched during speculative execution

(constructive effect).
� A pending cache miss of Bi. j during speculative execution along the wrong path causes the processor

to stall when the branch is resolved. How long the stall lasts depends on the portion of cache miss

penalty that is masked by the branch misprediction penalty. If the speculative fetching is completely

masked by the branch penalty, then there is no delay incurred.

Both the constructive and destructive effects of branch prediction on cache are modeled by modifying

the cache conflict graph. The modification adds nodes to the cache conflict graph corresponding to the

l-blocks fetched along the mispredicted path. Edges are added among the additional nodes as well as

between the additional nodes and the normal nodes depending on the control flow during misprediction.

The third factor (delay due to incomplete cache miss when the branch is resolved) is taken care of by

introducing an additional delay term in Equation 1.6.
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1.3.4.4 Data Cache and Pipeline

So far we have discussed instruction cache and branch prediction modeling using ILP. Data caches are

harder to model than instruction caches, as the exact memory addresses accessed by load/store instructions

may not be known. A simulation-based analysis technique for data caches has been proposed in [50]. A

program is broken into smaller fragments where each fragment has only one execution path. For example,

even though there are many possible execution paths in a JPEG decompression algorithm, the execution

paths of each computational kernel such as inverse discrete cosine transform (DCT), color transformation,

and so on are simple. Each code fragment can therefore be simulated to determine the number of data

cache hits and misses. These numbers can be plugged into the ILP framework to estimate the WCET of

the whole program. For the processor pipeline, [50] again simulates the execution of a basic block starting

with an empty pipeline state. The pipeline state at the end of execution of a basic block is matched against

the instructions in subsequent basic blocks to determine the additional pipeline stalls during the overlap.

These pipeline stalls are added up to the execution time of the basic block. It should be obvious that this

style of modeling for data cache and pipeline may lead to underestimation in the presence of a timing

anomaly.

Finally, Ottosson and Sjödin [60] propose a constraint-based WCET estimation technique that extends

the ILP-based modeling. This technique takes the context, that is, the history, of execution into account.

Each edge in the control flow graph now corresponds to multiple variables each representing a particular

program path. This allows accurate representation of the state of the cache and pipeline before a basic

block is executed. A constraint-based modeling propagates the cache states across basic blocks.

1.3.5 Integrated Approach Based on Timing Schema

As mentioned in Section 1.2, one of the original works on software timing analysis was based on timing

schema [73]. In the original work, each node of the syntax tree is associated with a simple time bound.

This simple timing information is not sufficient to accurately model the timing variations due to pipeline

hazards, caches, and branch prediction. The timing schema approach has been extended to model a

pipeline, instruction cache, and data cache in [51].

1.3.5.1 Pipeline Modeling

The execution time of a program construct depends on the preceding and succeeding instructions on a

pipelined processor. A single time bound cannot model this timing variation. Instead a set of reservation

tables associated with each program construct represents the timing information corresponding to different

execution paths. A pruning strategy is used to eliminate the execution paths (and their corresponding

reservation tables) that can never become the worst-case execution path of the program construct. The

remaining set of reservation tables is called the worst-case timing abstraction (WCTA) of the program

construct.

The reservation table represents the state of the pipeline at the beginning and end of execution of

the program construct. This helps analyze the pipelined execution overlap among consecutive program

constructs. The rows of the reservation table represent the pipeline stages and the columns represent time.

Each entry in the reservation table specifies whether the corresponding pipeline stage is in use at the given

time slot. The execution time of a reservation table is equal to its number of columns. Figure 1.12 shows

a reservation table corresponding to a simple five-stage pipeline.

The rules corresponding to the sequence of statements and if-then-else and while-loop constructs can

be extended as follows. The rule for a sequence of statements S: S1; S2 is given by

W(S) = W(S1) ⊕ W(S2)

where W(S) , W(S1) , and W(S2) are the WCTAs of S, S1, and S2, respectively. The operator ⊕ is

defined as

W1 ⊕ W2 = {w1 ⊕ w2|w1 ∈ W1, w2 ∈ W2}
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FIGURE 1.12 Reservation table.

where w1 and w2 are reservation tables, and ⊕ represents the concatenation of two reservation tables

following the pipelined execution model. Similarly, the timing schema rule for S: if (exp) then
S1 else S2 is given by

W(S) = (W(exp) ⊕ (W(S1) ∪ W(S2))

where ∪ is the set union operation. Finally, the rule for the construct S: while (exp) S1 is

given by

W(S) =

(

N
⊕

i=1

(W(exp) ⊕ W(S1))

)

⊕ W(exp)

where Nis the loop bound. In all the cases, a reservation table wcan be eliminated from the WCTA W if it can

be guaranteed that wwill never lead to the WCET of the program. For example, if the worst-case scenario

(zero overlap with neighboring instructions) involving w ∈ W is shorter than the best-case scenario (com-

plete overlap with neighboring instructions) involving w ′ ∈ W, then w can be safely eliminated from W.

1.3.5.2 Instruction Cache Modeling

To model the instruction cache, the WCTA is extended to maintain the cache state information for a

program construct. The main observation is that some of the memory accesses can be resolved locally

(within the program construct) as cache hit/miss. Each reservation table should therefore include (a) the

first reference to each cache block as its hit or miss depends on the cache content prior to the program

construct (first reference) and (b) the last reference to each cache block (last reference). The latter affects

the timing of the successor program construct(s).

The timing rules are structurally identical to the pipeline modeling, but the semantics of the ⊕ operator

is modified. Let us assume a direct-mapped instruction cache. Then w1 ⊕ w2 inherits for a cache block c

the first reference of w1 except when w1 does not have any access to c . In that case, w1 ⊕ w2 inherits the

first reference of w2. Similarly, for a cache block c , w1 ⊕ w2 inherits the last reference of w2 except when

w2 does not have a last reference to c . In this case, the last reference to c is inherited from w1. Finally, the

number of additional cache hits for w2 can be determined by comparing the first references of w2 with

the last references of w1. The execution time of w1 ⊕ w2 can be determined by taking into account the

pipelined execution across w1, w2 and the additional cache hits. As before, a pruning strategy is employed

to safely eliminate WCTA elements that can never contribute to the WCET path of the program.

1.3.5.3 Data Cache Modeling

Timing analysis of the data cache is similar to that of the instruction cache. The major difficulty, however,

is that the addresses of some data references may not be known at compile time. A global data flow

analysis [38] is employed to resolve the data references of load/store instructions as much as possible. A

conservative approach is then proposed [38] where two cache miss penalties are assumed for each data

reference whose memory address cannot be determined at compile time. The data reference is then ignored
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in the rest of the analysis. The first penalty accounts for the cache miss possibility of the data reference. The

second penalty covers for the possibility that the data reference may replace some memory block (from

the cache) that is considered as cache hit in the analysis. Finally, data dependence analysis is utilized to

minimize the WCET overestimation resulting from the conservative assumption of two cache misses per

unknown reference.

1.3.6 Separated Approach Based on Abstract Interpretation

ILP-based WCET analysis methods can model the architectural components and their interaction in an

accurate fashion, thereby yielding tight estimates. However, ILP solution time may increase considerably

with complex architectural features. To circumvent this problem, Theiling et al. [82] have proposed a

separated approach where abstract interpretation is employed for micro-architectural modeling followed

by ILP for path analysis. As there is a dependency between the two steps, micro-architectural modeling has

to produce conservative estimates to ensure safety of the result. This overestimation is offset by significantly

faster analysis time.

Abstract interpretation [15] is a theory for formally constructing conservative approximations of the

semantics of a programming language. A concrete application of abstract interpretation is in static program

analysis where a program’s computations are performed using abstract values in place of concrete values.

Abstract interpretation is used in WCET analysis to approximate the “collecting semantics” at a program

point. The collecting semantics gives the set of all program states (cache, pipeline, etc.) for a given program

point. In general, the collecting semantics is not computable. In abstract interpretation, the goal is to

produce an abstract semantics which is less precise but effectively computable. The computation of the

abstract semantics involves solving a system of recursive equations/constraints. Given a program, we can

associate a variable [[ p]] to denote the abstract semantics at program point p. Clearly, [[ p]] will depend

on the abstract semantics of program points preceding p. Since programs have loops, this will lead to a

system of recursive constraints. The system of recursive constraints can be iteratively solved via fixed-point

computation. Termination of the fixed-point computation is guaranteed only if (a) the domain of abstract

values (which is used to define the abstract program semantics) is free from infinite ascending chains and

(b) the iterative estimates of [[ p]] grow montonically. The latter is ensured if the semantic functions in the

abstract domain, which show the effect of the programming language constructs in the abstract domain

and are used to iteratively estimate [[p]], are monotonic.

Once the fixed-point computation terminates, for every program point p, we obtain a stable estimate

for [[ p]] — the abstract semantics at p. This is an overapproximation of all the concrete states with which p

could be reached in program executions. Thus, for cache behavior modeling, [[p]] could be used to denote

an overapproximation of the set of concrete cache states with which program point p could be reached

in program executions. This abstract semantics is then used to conservatively derive the WCET bounds

for the individual basic blocks. Finally, the WCET estimates of basic blocks are combined with ILP-based

path analysis to estimate the WCET of the entire program.

1.3.6.1 Cache Modeling

To illustrate AI-based cache modeling, we will assume a fully associative cache with a set of cache lines

L = {l1, . . . , ln} and least recently used replacement policy. Let {s1, . . . , sm} denote the set of memory

blocks. The absence of any memory block in a cache line is indicated by a new element I ; thus, S =

{s1, . . . , sm} ∪ {I }.

Let us first define the concrete semantics.

Definition 1.3
A concrete cache state is a function c : L → S.

If c(lx ) = s for a concrete cache state c , then there are x − 1 elements (c(l1), . . . , c(lx−1)) that are more

recently used than s . In other words, x is the relative age of s . Cc denotes the set of all concrete cache states.
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Definition 1.4
A cache update functionU : Cc × S → Cc describes the new cache state for a given cache state and a referenced

memory block.

Let s = c(lx ) be the referenced memory block. The cache update function shifts the memory blocks

c(l1), . . . , c(lx−1), which have been more recently used than s , by one position to the next cache line. If s

was not in the cache, then all the memory blocks are shifted by one position, and the least recently used

memory block is evicted from the cache state (if the cache was full). Finally, the update function puts the

referenced memory block s in the first position l1.

The abstract semantics defines the abstract cache states, the abstract cache update function, and the

join function.

Definition 1.5
An abstract cache state ĉ : L → 2S maps cache lines to sets of memory blocks.

Let Ĉ denote the set of all abstract cache states. The abstract cache update function Û : Ĉ × S �→ Ĉ

is a straightforward extension of the function U (which works on concrete cache states) to abstract cache

states.

Furthermore, at control flow merge points, join functions are used to combined the abstract cache

states. That is, join functions approximate the collecting semantics depending on program analysis.

Definition 1.6
A join function Ĵ : Ĉ × Ĉ �→ Ĉ combines two abstract cache states.

Since L is finite and S is finite, clearly the domain of abstract cache states is finite and hence free

from any infinite ascending chains. Furthermore, the update and join functions Û and Ĵ are monotonic.

This ensures termination of a fixed-point computation-based analysis over the above-mentioned abstract

domain. We now discuss two such analysis methods.

The program analysis mainly consists of must analysis and may analysis. The must analysis determines

the set of memory blocks that are always in the cache at a given program point. The may analysis deter-

mines the memory blocks that may be in the cache at a given program point. The may analysis can be

used to determine the memory blocks that are guaranteed to be absent in the cache at a given program

point.

The must analysis uses abstract cache states with upper bounds on the ages of the memory blocks in

the concrete cache states. That is, if s ∈ ĉ(lx ), then s is guaranteed to be in the cache for at least the next

n − x memory references (n is the number of cache lines). Therefore, the join function of two abstract

cache states ĉ1 and ĉ2 puts a memory block s in the new cache state if and only if s is present in both ĉ1

and ĉ2. The new age of s is the maximum of its ages in ĉ1 and ĉ2. Figure 1.13 shows an example of the join

function for must and may analysis.

The may analysis uses abstract cache states with lower bounds on the ages of the memory blocks.

Therefore, the join function of two abstract cache states ĉ1 and ĉ2 puts a memory block s in the new cache

state if s is present in either ĉ1 or ĉ2 or both. The new age of s is the minimum of its ages in ĉ1 and ĉ2.

At a program point, if a memory block s is present in the abstract cache state after must analysis, then

a memory reference to s will result in a cache hit (always hit). Similarly, if a memory block s is absent in

the abstract cache state after may analysis, then a memory reference to s will result in a cache miss (always

miss). The other memory references cannot be classified as hit or miss. To improve the accuracy, a further

persistence analysis can identify memory blocks for which the first reference may result in either hit or

miss, but the remaining references will be hits.

These categorization of memory references is used to define the WCET for each basic block. To improve

the accuracy, the WCET of a basic block is determined under different calling contexts. Thus, the objective
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FIGURE 1.13 Join for must and may analysis.

function can be defined as

Time =

N
∑

i=1

∑

x∈τ (Bi )

(

costx
i × vi

x
)

(1.7)

where τ (Bi ) denotes the set of all calling contexts for basic block Bi . The bounds on execution counts v x
i

can be derived by ILP-based path analysis.

An extension for data cache modeling using abstract interpretation has been proposed in [23]. The basic

idea is to extend the cache update function such that it can handle cases where not all addresses referenced

by a basic block are known.

Another technique for categorizing cache access references into always hit, always miss, first miss, and

first hit has been proposed by the group at Florida State University [4, 57, 93]. They perform categorization

through static cache simulation, which is essentially an interprocedural data flow analysis. This catego-

rization is subsequently used during pipeline analysis [29]. Pipeline analysis proceeds by determining the

total number of cycles required to execute each path, where a path consists of all the instructions that

can be executed during a single iteration of a loop. The data hazards and the structural hazards across

paths are determined by maintaining the first and last use of each pipeline stage and register within a path.

As mentioned before, this separation of cache analysis from the pipeline analysis may not be safe in the

presence of a timing anomaly.

1.3.6.2 Pipeline Modeling

To model a pipeline with abstract interpretation [41], concrete execution on a concrete pipeline can be

viewed as applying a function. This function takes as input a concrete pipeline state s and a sequence

of instructions in a basic block b. It produces a sequence of execution states, called a trace, and a final

concrete state when executing b. The length of the trace determines the number of cycles the execution takes.

The concept of trace is similar to the reservation table described in the context of timing-schema-based

analysis.

However, in the presence of incomplete information, such as nonclassified cache accesses, the concrete

execution is not feasible. Therefore, pipeline analysis employs an abstract execution of the sequence of

instructions in a basic block starting with an abstract pipeline state ŝ [41]. This modeling defines an

abstract pipeline state as a set of concrete pipeline states, and pipeline states with identical timing behavior

are grouped together. Now, suppose that in an abstract pipeline state ŝ an event occurs that changes the

pipeline states, such as the issue/execution of an instruction I in a basic block. If the latency of this event

can be statically determined, ŝ has only one successor state. However, if the latency of I ’s execution cannot

be statically determined, a pipeline state will have several successor states resulting from the execution

of I corresponding to the various possible latencies of I (thereby causing state space explosion). In this
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way, reachable pipeline states within a basic block will be enumerated (while grouping together states with

identical timing behavior) in order to determine the basic block’s WCET.

For a processor without a timing anomaly [41], the abstract execution can be employed to each ba-

sic block starting with the empty pipeline state. The abstract execution exploits the memory reference

categorization (obtained through cache modeling) to determine memory access delays during pipeline

execution. Therefore, abstract execution of a basic block should happen under different contexts. In the

presence of a timing anomaly, cache and pipeline analysis cannot be separated [32]. Hence the abstract

states now consist of pairs of abstract pipeline states and abstract cache states. Moreover, the final abstract

states of a basic block will be passed on to the successor basic block(s) as initial states. Clearly, this can lead

to an exponential number of abstract states for complex processor pipelines.

1.3.6.3 Branch Prediction Modeling

Colin and Puaut [14] propose abstract-interpretation-based branch prediction modeling. They assume

that the branch prediction table (see Section 1.3.4.2.1) is indexed using the address of the conditional

branch instruction. This prediction scheme is simpler and hence easier to model than the BHR-based

predictors modeled using ILP [45]. Colin and Puaut use the term branch target buffer (BTB) instead of

prediction table, as it stores the target address in addition to the branch history. Moreover, each entry in

the BTB is tagged with the address of the conditional branch instruction whose history and target address

are stored in that entry. When a conditional branch is encountered, if its address is in the BTB, then it is

predicted based on the history stored in the BTB. Otherwise, the default prediction of the branch not taken

is used. The BTB is quite similar to instruction cache and indeed can be organized as direct-mapped or

s-way set associative caches.

The abstract execution defines the abstract buffer state (ABS) corresponding to the BTB. Each basic

block Bi is associated with two ABS: AB S in
i and AB Sout

i , representing the BTB state before and after Bi ’s

execution. An ABS indicates for each BTB entry which conditional branch instructions can be in the BTB

at that time. At program merge points, a set union operation is carried out. Thus,

AB S in
i =

⊎

B j ∈ Pred Bi

AB Sout
j

where PredB(i) is the set of basic blocks preceding Bi in the control flow graph. Assuming a set-associative

BTB, the union operator ⊎ is defined as follows:

AB Si ⊎ AB S j = ∀x∀y AB Si [x , y] ∪ AB S j [x , y]

where AB Si [s , k] is a set containing all the branch instructions that could be in the yth entry of the set x .

AB Sout
i is derived from AB S in

i by taking into account the conditional branch instruction in Bi .

Given AB S in
i , the conditional branch instruction can be classified as history predicted if it is present in

the BTB and default predicted otherwise. However, a history-predicted instruction does not necessarily

lead to correct prediction. Similarly, a default-predicted instruction does not always lead to misprediction.

This is taken into account by considering the behavior of the conditional branch instruction. For example,

a history-predicted loop instruction is always correctly predicted except for loop exit.

The modeling in [14] was later extended to more complex branch predictors such as bimodal and global-

history branch prediction schemes [5, 11]. The semantic context of a branch instruction in the source code

is taken into account to classify a branch as easy to predict or hard to predict. Easy-to-predict branches

are analyzed, while conservative misprediction penalties are assumed for hard-to-predict branches. The

downside of these techniques is that they make a restrictive assumption of each branch instruction mapping

to a different branch table entry (i.e., no aliasing).
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1.3.7 A Separated Approach That Avoids State Enumeration

The implication of a timing anomaly (see Section 1.3.2) is that all possible schedules of instructions have

to be considered to estimate the WCET of even a basic block. Moreover, all possible processor states at

the end of the preceding and succeeding basic blocks have to be considered during the analysis of a basic

block. This can result in state space explosion for analysis techniques, such as abstract-interpretation-based

modeling, that are fairly efficient otherwise [83].

A novel modeling technique [46] obtains safe and tight estimates for processors with timing anomalies

without enumerating all possible executions corresponding to variable latency instructions (owing to

cache miss, branch misprediction, and variable latency functional units). In particular, [46] models a

fairly complex out-of-order superscalar pipeline with instruction cache and branch prediction. First, the

problem is formulated as an execution graph capturing data dependencies, resource contentions, and degree

of superscalarity — the major factors dictating instruction executions. Next, based on the execution graph,

the estimation algorithm starts with very coarse yet safe timing estimates for each node of the execution

graph and iteratively refines the estimates until a fixed point is reached.

1.3.7.1 Execution Graph

Figure 1.14 shows an example of an execution graph. This graph is constructed from a basic block with five

instructions as shown in Figure 1.14a; we assume that the degree of superscalarity is 2. The processor has

five pipeline stages: fetch (IF ), decode (ID ), execute (EX), write back (WB), and commit (CM). A decoded

instruction is stored in the re-order buffer. It is issued (possibly out of order) to the corresponding

functional unit for execution when the operands are ready and the functional unit is available.

Let CodeB = I1 . . . In represent the sequence of instructions in a basic block B . Then each node v

in the corresponding execution graph is represented by a tuple: an instruction identifier and a pipeline

stage denoted as stage(instruction id). For example, the node v = IF(Ii ) represents the fetch stage of the

instruction Ii . Each node in the execution graph is associated with the latency of the corresponding pipeline

stage. For a node u with variable latency min latu ∼ max latu , the node is annotated with an interval

[min latu , max latu]. As some resources (e.g., floating point multiplier) in modern processors are fully

pipelined, such resources are annotated with initiation intervals. The initiation interval of a resource is

defined as the number of cycles that must elapse between issuing two instructions to that resource. For

example, a fully pipelined floating point multiplier can have a latency of six clock cycles and an initiation

interval of one clock cycle. For a nonpipelined resource, the initiation interval is the same as latency. Also,

if there exist multiple copies of the same resource (e.g., two arithmetic logical units (ALUs)), then one

needs to define the multiplicity of that resource.

IF(I1)I1: mult r6 r10 4

IF(I2)I2: mult r1 r10 r1

IF(I3)I3: sub r6 r6 r2

IF(I4)I4: mult r4 r8 r4

IF(I5)I5: add r1 r1 r4

(a) Code Example (b) Execution Graph
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FIGURE 1.14 A basic block and its execution graph. The solid directed edges represent dependencies and the dashed

undirected edges represent contention relations. From Li et al. [46] c© 2006 Springer.
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The dependence relation from node u to node v in the execution graph denotes that v can start execution

only after u has completed execution; this is indicated by a solid directed edge from u to v in the execution

graph. The analysis models the following dependencies:

� Dependencies among pipeline stages of the same instruction.
� Dependencies due to finite-sized buffers and queues such as I-buffer or ROB. For example, assuming

a four-entry I-buffer, there will be no entry available for IF(Ii+4) before the completion of ID(Ii )

(which removes Ii from the I-buffer). Therefore, there should be a dependence edge ID(Ii ) →

IF(Ii+4).
� Dependencies due to in-order execution in IF , ID , and CMpipeline stages. For example, in a scalar

processor (i.e., degree of superscalarity = 1) there will be dependence edges IF(Ii ) → IF(Ii+1)

because IF(Ii+1) can only start after IF(Ii ) completes. For a superscalar processor with n-way fetch

(i.e., degree of superscalarity = n), there are dependence edges IF(Ii ) → IF(Ii+n). This captures

the fact that Ii+n cannot be fetched in the same cycle as Ii .
� Data dependencies among instructions. If instruction Ii produces a result that is used by instruction

I j , then there should be a dependence edge WB(Ii ) → EX(I j ).

Apart from the dependence relation among the nodes in an execution graph (denoted by solid edges),

there also exist contention relations among the execution graph nodes. Contention relations model struc-

tural hazards in the pipeline. A contention relation exists between two nodes u and v if they can delay

each other by contending for a resource, for example, functional unit or register write port. The con-

tention between u and v is shown as an undirected dashed edge in the execution graph. A contention

relation makes it possible for an instruction later in the program order to delay the execution of an earlier

instruction.

Finally, a parallelism relation is defined to model superscalarity, for example, multiple issues and multiple

decodes. Two nodes u and v participate in a parallelism relation iff (a) nodes u and v denote the same

pipeline stage (call it s tg ) of two different instructions Ii and I j and (b) instructions Ii and I j can start

execution of this pipeline stage s tg in parallel.

1.3.7.2 Problem Definition

Let B be a basic block consisting of a sequence of instructions CodeB = I1 . . . In. Estimating the WCET of

B can be formulated as finding the maximum (latest) completion time of the node CM(In), assuming that

IF(I1) starts at time zero. Note that this problem is not equivalent to finding the longest path from IF(I1)

to CM(In) in B ’s execution graph (taking the maximum latency of each pipeline stage). The execution

time of a path in the execution graph is not a summation of the latencies of the individual nodes for two

reasons:

� The total time spent in making the transition from ID(Ii ) to EX(Ii ) is dependent on the contentions

from other ready instructions.
� The initiation time of a node is computed as the max of the completion times of its immedi-

ate predecessors in the execution graph. This models the effect of dependencies, including data

dependencies.

1.3.7.3 Estimation Algorithm

The timing effects of the dependencies are accounted for by using a modified longest-path algorithm that

traverses the nodes in topologically sorted order. This topological traversal ensures that when a node is

visited, the completion times of all its predecessors are known. To model the effect of resource contentions,

the algorithms conservatively estimate an upper bound on the delay due to contentions for a functional

unit by other instructions. A single pass of the modified longest-path algorithm computes loose bounds

on the lifetime of each node. These bounds are used to identify nodes with disjoint lifetimes. These
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FIGURE 1.15 An example prologue. From Li et al. [46] c© 2006 Springer.

nodes are not allowed to contend in the next pass of the longest-path search to get tighter bounds. These

two steps repeat until there is no change in the bounds. Termination is guaranteed for the following

reasons:

� The algorithm starts with all pairs of instructions in the contention relation (i.e., every instruction

can delay every other instruction).
� At every step of the fixed-point computation, pairs are removed from this set — those instruction

pairs that are shown to be separated in time.

As the number of instructions in a basic block is finite, the number of pairs initially in the contention

relation is also finite. Furthermore, the algorithm removes at least one pair in every step of the fixed-point

computation, so the fixed-point computation must terminate in finitely many iterations; if the number

of instructions in the basic block being estimated is n, the number of fixed-point iterations is bounded

by n2.

1.3.7.3.1 Basic Block Context

In the presence of a timing anomaly, a basic block cannot be analyzed in isolation by assuming an empty

pipeline at the beginning. The instructions before (after) a basic block B that directly affect the execution

time of B constitute the contexts of B and are called the prologue (epilogue) of B . As processor buffer

sizes are finite, the prologue and epilogue contain finite number of instructions. Of course, a basic block

B may have multiple prologues and epilogues corresponding to the different paths along which B can be

entered or exited. To capture the effects of contexts, the analysis technique constructs execution graphs

corresponding to all possible combinations of prologues and epilogues. Each execution graph consists of

three parts: the prologue, the basic block itself (called the body), and the epilogue.

The executions of two or more successive basic blocks have some overlap due to pipelined execution. The

overlap δ between a basic block B and its preceding basic block B ′ is the period during which instructions

from both the basic blocks are in the pipeline, that is,

δ = t
finish
CM(I0) − t

ready
IF(I1) (1.8)

where I0 is the last instruction of block B ′ (predecessor) and I1 is the first instruction of block B . To avoid

duplicating the overlap in time estimates of successive basic blocks, the execution time tB of a basic block

B is defined as the interval from the time when the instruction immediately preceding B has finished
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committing to the time when B ’s last instruction has finished committing, that is,

tB = t
finish
CM(In) − t

finish
CM(I0) (1.9)

where I0 is the instruction immediately prior to B and In is the last instruction of B .

The execution time for basic block B is estimated with respect to (w.r.t.) the time at which the first

instruction I1 of B is fetched, i.e., t
ready
IF(I1) = 0. Thus,

tB = t
finish
CM(In) − δ (1.10)

tB can be conservatively estimated by finding the largest value of t
finish
CM(In) and the smallest value of δ.

1.3.7.3.2 Overall Pipeline Analysis

The execution time estimate tB of a basic block B is obtained for a specific prologue and a specific epilogue of

B . A basic block B in general has multiple choices of prologues and epilogues. Thus, B ’s execution time is

estimated under all possible combinations of prologues and epilogues. The maximum of these estimates

is used as B ’s WCET c B . Let P and E be the set of prologues and epilogues for B .

c B = max
p∈P , e∈E

(tB with prologue p and epilogue e)

c B is used in defining the WCET of the program as the following objective function:

maximize
∑

B∈B

NB ∗ c B

The quantity NB denotes the execution count of basic block B and is a variable. B is the set of all basic

blocks in the program. This objective function is maximized over the constraints on NB given by ILP-based

path analysis.

1.3.7.4 Integrating Cache and Branch Prediction Analysis

The basic idea is to define different scenarios for a basic block corresponding to cache miss and branch

misprediction. If these scenarios are defined suitably, then we can estimate a constant that bounds the

execution time of a basic block corresponding to each scenario. Finally, the execution frequencies of these

scenarios are defined as ILP variables and are bounded by additional linear constraints.

Scenarios corresponding to cache misses are defined as follows. Given a cache configuration, a basic

block BB can be partitioned into a fixed number of memory blocks, with instructions in each memory

block being mapped to the same cache block (cache accesses of instructions other than the first one in a

memory block are always hits). A cache scenario of BB is defined as a mapping of hit or miss to each of

the memory blocks of BB. The memory blocks are categorized into always hit, always miss, or unknown,

using abstract interpretation-based modeling (see Section 1.3.6.1). The upper bounds on the execution

time of BB are computed w.r.t. each of the possible cache scenarios. For the first instructions in memory

blocks with unknown categorization, the latency of the fetch stage is assumed to be [1, penal ty] where

penal ty is the cache miss penalty.

Similarly, the scenarios for branch prediction are defined as the two branch outcomes (correct prediction

and misprediction) corresponding to each of the predecessor basic blocks. The execution time of the basic

block is estimated w.r.t. both the scenarios by adding nodes corresponding to the wrong-path instructions

to the execution graph of a basic block.

Considering the possible cache scenarios and correct or wrong prediction of the preceding branch for

a basic block, the ILP objective function denoting a program’s WCET is now written as follows.

Maximize T =

N
∑

i=1

∑

j→i

∑

ω∈	i

tc ,ω
j→i ∗ E c ,ω

j→i + tm,ω
j→i ∗ E m,ω

j→i (1.11)
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TABLE 1.1 Accuracy and analysis time of WCET estimation technique [46]

Benchmark WCET (cycles) Analysis time (sec)

Estimated Observed Ratio ILP formulation ILP solution

adpcm 139,346 227,134 1.32 3.41 9.90

dhry 275,177 436,610 1.53 1.84 0.10

fdct 15,006 16,956 1.13 0.08 0.01

fft 944,397 1,146,474 1.14 0.44 0.01

fir 77,004 101,333 1.26 0.79 0.31

ludcmp 17,617 23,818 1.28 0.43 0.12

matsum 62,138 62,734 1.01 0.07 0.01

minver 14,221 21,315 1.33 1.28 0.98

qurt 4,114 6,464 1.45 0.85 0.62

whet 760,010 950,818 1.14 1.24 0.01

where tc ,ω
j→i is the WCET of Bi executed under the following context: (a) Bi is reached from a preceding

block B j , (b) the branch prediction at the end of B j is correct or B j does not have a conditional branch,

and (c) Bi is executed under a cache scenario ω ∈ 	i . 	i is the set of all cache scenarios of block Bi . The

bounds on number of scenarios with correct and mispredicted branch instructions are obtained using

ILP-based analysis [45] (see Section 1.3.4.2).

Finally, to extend the above approach for modeling data caches, one can adapt the approach of [69].

This work augments the cache miss equation framework of Ghosh et al. [26] to generate accurate hit and

miss patterns corresponding to memory references at different loop levels.

1.3.7.5 Accuracy and Scalability

To give the readers a feel of the accuracy and scalability of the WCET analysis techniques, we present in

Table 1.1 the experimental results from [46]. The processor configuration used here is fairly sophisticated:

a 2-way superscalar out-of-order pipeline with 5 stages containing a 4-entry instruction fetch buffer, an

8-entry re-order buffer, 2 ALUs, variable latency multiplication and floating point units, and 1 load/store

unit; perfect data cache; gshare branch predictor with a 128-entry branch history table; a 1-KB 2-way set

associative instruction cache with 16 sets, 32 bytes line size, and 30 cycles cache miss penalty. The analysis

was run on a 3-GHz Pentium IV PC with 2 GB main memory.

Table 1.1 presents the estimated WCET obtained through static analysis and the observed WCET ob-

tained via simulation (see Figure 1.3 for the terminology). The estimated WCET is quite close to the

observed WCET. Also, the total estimation time (ILP formulation + ILP solving) is less than 15 seconds

for all the benchmarks.

1.4 Worst-Case Energy Estimation

In this section, we present a static analysis technique to estimate safe and tight bounds for the worst-case

energy consumption of a program on a particular processor. The presentation in this section is based

on [36].

Traditional power simulators, such as Wattch [9] and SimplePower [96], perform cycle-by-cycle power

estimation and then add them up to obtain total energy consumption. Clearly, we cannot use cycle-

accurate estimation to compute the worst-case energy bound, as it would essentially require us to simulate

all possible scenarios (which is too expensive). The other method [75, 88] is to use fixed per-instruction

energy but it fails to capture the effects of cache miss and branch prediction. Instead, worst-case energy

analysis is based on the key observation that the energy consumption of a program can be separated out

into the following time-dependent and time-independent components:
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Instruction-specific energy: The energy that can be attributed to a particular instruction (e.g., energy

consumed as a result of the execution of the instruction in the ALU, cache miss, etc.). Instruction-

specific energy does not have any relation with the execution time.

Pipeline-specific energy: The energy consumed in the various hardware components (clock network

power, leakage power, switch-off power, etc.) that cannot be attributed to any particular instruction.

Pipeline-specific energy is roughly proportional to the execution time.

Thus, cycle-accurate simulation is avoided by estimating the two energy components separately. Pipeline-

specific energy estimation can exploit the knowledge of WCET. However, switch-off power and clock

network power make the energy analysis much more involved — we cannot simply multiply the WCET

by a constant power factor. Moreover, cache misses and overlap among basic blocks due to pipelining and

branch prediction add significant complexity to the analysis.

1.4.1 Background

Power and energy are terms that are often used interchangeably as long as the context is clear. For battery

life, however, the important metric is energy rather than power. The energy consumption of a task running

on a processor is defined as Energy = P × t, where P is the average power and t is the execution time.

Energy is measured in Joules, whereas power is measured in Watts (Joules/second). Power consumption

consists of two main components: dynamic power and leakage power P = Pdynamic + Pleakage.

Dynamic power is caused by the charging and discharging of the capacitive load on each gate’s output

due to switching activity. It is defined as Pdynamic = 1
2

AV 2
ddCf , where A is the switching activity, Vdd is the

supply voltage, C is the capacitance, and f is the clock frequency. For a given processor architecture, Vdd

and f are constants. The capacitance value for each component of the processor can be derived through

register-capacitor (RC)-equivalent circuit modeling [9].

Switching activity A is dependent on the particular program being executed. For circuits that charge

and discharge every cycle, such as double-ended array bitlines, an activity factor of 1.0 can be used.

However, for other circuits (e.g., single-ended bitlines, internal cells of decoders, pipeline latches, etc.), an

accurate estimation of the activity factor requires examination of the actual data values. It is difficult, if

not impossible, to estimate the activity factors through static analysis. Therefore, an activity factor of 1.0

(i.e., maximum switching) is assumed conservatively for each active processor component.

Modern processors employ clock gating to save power. This involves switching off clock signals to the

idle components so they do not consume dynamic power in the unused cycles. Jayaseelan et al. [36] model

three different clock gating styles. For simplicity, let us assume a realistic gating style where idle units and

ports dissipate 10% of the peak power. A multi-ported structure consumes power proportional to the

number of ports accessed in a given cycle. The power consumed in the idle cycles is referred to as switch-off

power.

A clock distribution network consumes a significant fraction of the total energy. Without clock gating,

clock power is independent of the characteristics of the applications. However, clock gating results in power

savings in the clock distribution network. Whenever the components in a portion of the chip are idle, the

clock network in that portion of the chip can be disabled, reducing clock power.

Leakage power captures the power lost from the leakage current irrespective of switching activity. The

analysis uses the leakage power model proposed in [98]: Pleakage = Vdd × N × kd × Ileakage, where Vdd

is the supply voltage and N is the number of transistors. Ileakage is a constant specifying the leakage

current corresponding to a particular process technology. kd is an empirically determined design parameter

obtained through SPICE simulation corresponding to a particular device.

1.4.2 Analysis Technique

The starting point of the analysis is the control flow graph of the program. The first step of the analysis

estimates an upper bound on the energy consumption of each basic block. Once these bounds are known,

the worst-case energy of the entire program can be estimated through path analysis.
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1.4.2.1 Energy Estimation for a Basic Block

The goal here is to estimate a tight upper bound on the total energy consumption ener g yBB of a basic

block BB through static analysis. From the discussion in Section 1.4.1,

energyBB = dynamicBB + switchoff BB

+ leakageBB + clockBB (1.12)

where dynamicBB is the instruction-specific energy component, that is, the energy consumed as a result

of switching activity as an instruction goes through the pipeline stages. switchoff BB, leakageBB, and clockBB

are defined as the energy consumed as a result of the switch-off power, leakage power, and clock power,

respectively, during wcetBB, where wcetBB is the WCET of the basic block BB. The WCET (wcetBB) is

estimated using the static analysis techniques. Now we describe how to define bounds for each energy

component.

1.4.2.1.1 Dynamic Energy

The instruction-specific energy of a basic block is the dynamic power consumed as a result of the switching

activity generated by the instructions in that basic block.

dynamicBB =
∑

instr ∈ BB

dynamicinstr (1.13)

where dynamicinstr is the dynamic power consumed by an instruction instr. Now, let us analyze the energy

consumed by an instruction as it travels through the pipeline:

1. Fetch and decode: The energy consumed here is due to fetch, decode, and instruction cache access.

This stage needs feedback from cache analysis.

2. Register access: The energy consumed for the register file access because of reads/writes can vary

from one class of instructions to another. The energy consumption in the register file for an

instruction is proportional to the number of register operands.

3. Branch prediction: The energy consumption in this stage needs feedback from branch prediction

modeling.

4. Wakeup logic: When an operation produces a result, the wakeup logic is responsible for making

the dependent instructions ready, and the result is written onto the result bus. An instruction places

the tag of the result on the wakeup logic and the actual result on the result bus exactly once, and

the corresponding energy can be easily accounted for. The enery consumed in the wakeup logic is

proportional to the number of output operands.

5. Selection logic: Selection logic is interesting from the point of view of energy consumption. The

selection logic is responsible for selecting an instruction to execute from a pool of ready instructions.

Unlike the other components discussed earlier, an instruction may access the selection logic more

than once. This is because an instruction can request a specific functional unit and the request might

not be granted, in which case it makes a request in the next cycle. However, we cannot accurately

determine the number of times an instruction would access the selection logic. Therefore, it is

conservatively assumed that the selection logic is accessed every cycle.

6. Functional units: The energy consumed by an instruction in the execution stage depends on the

functional unit it uses and its latency. For variable latency instructions, one can safely assume the

maximum energy consumption. The energy consumption for load/store units depends on data

cache modeling.

Now, Equation 1.13, corresponding to dynamic energy consumed in a basic block BB, is redefined as

dynamicBB = selection powercycle × wcetBB

+
∑

instr ∈ BB

dynamicinstr (1.14)
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where selection powercycle is a constant defining the power consumed in the selection logic per cycle. wcetBB

is the WCET of BB. Note that dynamicinstr is redefined as the power consumed by instr in all the pipeline

stages except for selection logic.

As mentioned before, pipeline-specific energy consists of three components: switch-off energy, clock

energy, and leakage energy. All three energy components are influenced by the execution time of the basic

block.

1.4.2.1.2 Switch-off Energy

The switch-off energy refers to the power consumed in an idle unit when it is disabled through clock

gating. Let accessBB(C ) be the total number of accesses to a component C by the instructions in basic block

BB. Let ports(C ) be the maximum number of allowed accesses/ports for component C per cycle. Then,

switch-off energy for component C in basic block BB is

switchoff BB(C ) =

(

wcetBB − accessBB(C)
ports(C)

)

× full powercycle(C ) × 10% (1.15)

where full powercycle(C) is the full power consumption per cycle for component C . The switch-off energy

corresponding to a basic block can now be defined as

switchoff BB =
∑

C∈components

switchoff BB(C ) (1.16)

where components is the set of all hardware components.

1.4.2.1.3 Clock Network Energy

To estimate the energy consumed in the clock network, clock gating should be taken into account.

clockBB = non gated clockBB ×

(

circuitBB

non gated circuitBB

)

(1.17)

where non gated clockBB is the clock energy without gating and can be defined as

non gated clockBB = clock powercycle × wcetBB (1.18)

where clock powercycle is the peak power consumed per cycle in the clock network. circuitBB is defined

as the power consumed in all the components except clock network in the presence of clock gating.

That is,

circuitBB = dynamicBB + switchoff BB + leakageBB (1.19)

non gated circuitBB, however, is the power consumed in all the components except clock network in the

absence of clock gating. It is simply defined as

non gated circuitBB = circuit powercycle × wcetBB (1.20)

circuit powercycle is a constant defining the peak dynamic plus leakage power per cycle excluding the clock

network.

1.4.2.1.4 Leakage Energy

The leakage energy is simply defined as leakageBB = Pleakage × wcetBB, where Pleakage is the power lost

per processor cycle from the leakage current regardless of the circuit activity. This quantity, as defined in

Section 1.4.1, is a constant given a processor architecture. wcetBB is, as usual, the WCET of BB.
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FIGURE 1.16 Illustration of overlap.

1.4.2.2 Estimation for the Whole Program

Given the energy bounds for the basic blocks, we can now estimate the worst-case energy consumption

of a program using an ILP formulation. The ILP formulation is similar to the one originally proposed

by Li and Malik [50] to estimate the WCET of a program. The execution times of the basic blocks are

replaced with the corresponding energy consumptions. Let energyBi
be the upper bound on the energy

consumption of a basic block Bi . Then the total energy consumption of the program is given by

Total energy =

N
∑

i=1

energyBi
× count Bi

(1.21)

where the summation is taken over all the basic blocks in the program. The worst-case energy consumption

of the program can be derived by maximizing the objective function under the flow constraints through

an ILP solver.

1.4.2.3 Basic Block Context

A major difficulty in estimating the worst-case energy arises from the overlapped execution of basic blocks.

Let us illustrate the problem with a simple example. Figure 1.16 shows a small portion of the control flow

graph. Suppose we are interested in estimating the energy bound for basic block BB. The annotation for

each basic block indicates the maximum execution count. This is just to show that the execution counts of

overlapped basic blocks can be different. As the objective function (defined by Equation 1.21) multiplies

each energyBB with its execution count countBB, we cannot arbitrarily transfer energy between overlapping

basic blocks. Clearly, instruction-specific energy of BB should be estimated based on only the energy

consumption of its instructions. However, we cannot take such a simplistic view for pipeline-specific

energy. Pipeline-specific energy depends critically on wcetBB.

If we define wcetBB without considering the overlap, that is, wcetBB = t5 − t2, then it results in excessive

overestimation of the pipeline-specific energy values as the time intervals t3 − t2 and t5 − t4 are accounted

for multiple times. To avoid this, we can redefine the execution time of BB as the time difference between

the completion of execution of the predecessor (B1 in our example) and the completion of execution of

BB, that is, wcetBB = t5 − t3. Of course, if BB has multiple predecessors, then we need to estimate wcetBB

for each predecessor and then take the maximum value among them.

This definition of execution time, however, cannot be used to estimate the pipeline-specific energy of

BB in a straightforward fashion. This is because switch-off energy and thus clock network energy depend

on the idle cycles for hardware ports/units. As we are looking for worst-case energy, we need to estimate an

upper bound on idle cycles. Idle cycle estimation (see Equation 1.15) requires an estimate of accessBB(C ),

which is defined as the total number of accesses to a component C by the instructions in basic block BB.

Now, with the new definition of wcetBB as the interval t5 − t3, not all these accesses fall within wcetBB,

and we run the risk of underestimating idle cycles. To avoid this problem, accessBB(C ) in Equation 1.15 is
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FIGURE 1.17 Illustration of branch misprediction.

replaced with accessWCETBB

BB (C), which is defined as the total number of accesses to a component C by the

instructions in basic block BB that are guaranteed to occur within wcetBB.

The number of accesses according to this new definition is estimated during the WCET analysis of a basic

block. The energy estimation techniques use the execution-graph-based WCET analysis technique [46]

discussed in Section 1.3.7. Let t3 be the latest commit time of the last instruction of the predecessor node

B1 and let t5 be the earliest commit time of the last instruction of BB. Then, for each pipeline stage of the

different instructions in BB, the algorithm checks whether its earliest or latest start time falls within the

interval t5 − t3. If the answer is yes, then the accesses corresponding to that pipeline stage are guaranteed

to occur within wcetBB and are included in accessWCETBB

BB (C ). The pipeline-specific energy is now estimated

w.r.t. each of BB’s predecessors, and the maximum value is taken.

1.4.2.4 Integrating Cache and Branch Prediction Analysis

Integration of cache and branch prediction modeling is similar to the method described in the context

of execution-graph-based WCET analysis (Section 1.3.7). For each cache scenario, the analysis adds the

dynamic energy due to cache misses defined as

mem energyω
BB = missωBB × access energy (1.22)

where mem energyω
BB is the main memory energy for BB corresponding to cache scenario ω, missωBB is the

number of cache misses in BB corresponding to cache scenario ω, and access energy is a constant defining

the energy consumption per main memory access.

The additional instruction-specific energy due to the execution of speculative instructions is estimated

as follows. Let BB be a basic block with BB′ as the predecessor (see Figure 1.17). If there is a misprediction

for the control flow BB′ → BB, then instructions along the basic block BX will be fetched and executed.

The executions along this mispredicted path will continue till the commit of the branch in BB′. Let t3 be

the latest commit time of the mispredicted branch in BB′. For each of the pipeline stages of the instructions

along the mispredicted path (i.e., BX), the algorithm checks if its earliest start time is before t3. If the

answer is yes, then the dynamic energy for that pipeline stage is added to the branch misprediction energy

of BB. In this fashion, the worst-case energy of a basic block BB corresponding to all possible scenarios

can be estimated, where a scenario consists of a preceding basic block BB′ and correct/wrong prediction

of the conditional branch in BB′ and the cache scenario of BB.

1.4.3 Accuracy and Scalability

To give the readers a feel of the accuracy and scalability of the worst-case energy estimation technique, we

present in Table 1.2 the experimental results from [36]. The processor configuration used here is as follows:

an out-of-order pipeline with five stages containing a 4-entry instruction fetch buffer, an 8-entry re-order

buffer, an ALU, variable latency multiplication and floating point units, and a load/store unit; perfect data

cache; a gshare branch predictor with a 16-entry branch prediction table; a 4-KB 4-way set associative

instruction cache, 32 bytes line size, and a 10-cycle cache miss penalty; 600 MHz clock frequency; and a

supply voltage of 2.5 V.
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TABLE 1.2 Accuracy and analysis time of worst-case energy estimation technique

Benchmark Worst-case energy (μJ ) Analysis time (sec)

Estimated Observed Ratio ILP formulation ILP solution

isort 596.93 525.88 1.14 2.88 0.15

fft 13631.21 10260.86 1.33 1.11 0.25

fdct 121.65 105.57 1.15 0.41 0.05

ludcmp 139.75 119.33 1.17 1.37 0.19

matsum 1397.72 1154.31 1.21 0.18 0.01

minver 90.95 80.80 1.13 2.44 1.8

bsearch 3.81 3.07 1.24 0.20 0.01

des 715.58 643.75 1.11 1.37 1.31

matmult 212.94 166.88 1.28 0.15 0.01

qsort 49.84 43.73 1.14 0.85 0.08

qurt 21.95 17.65 1.24 2.14 1.16

Table 1.2 presents the estimated worst-case energy obtained through static analysis and the observed

worst-case energy obtained via simulation (Wattch simulator). The estimated values are quite close to the

observed values. Moreover, the analysis is quite fast. It takes only 0.15 ∼ 2.88 seconds to formulate the

ILP problems for the benchmark programs. The ILP solver (CPLEX) is even faster and completes in under

1.8 seconds for all the benchmarks. All the experiments have been performed on a Pentium IV 1.3 GHz

PC with 1 GB of memory.

1.5 Existing WCET Analysis Tools

There are some commercial and research prototype tools for WCET analysis. We discuss them in this

section. The most well known and extensively used commercial WCET analyzer is the aiT tool [1] from

AbsInt Angewandte Informatik. aiT takes in a code snippet in executable form and computes its WCET. The

analyzer uses a two-phased approach where micro-architectural modeling is performed first followed by

path analysis. It employs abstract interpretation for cache/pipeline analysis and estimates an upper bound

on the execution time of each basic block. These execution time bounds of basic blocks are then combined

using ILP to estimate the WCET of the entire program. Versions of aiT are available for various platforms

including Motorola PowerPC, Motorola ColdFire, ARM, and so on. The aiT tool is not open-source; so

the user cannot change the analyzer code to model timing effects of new processor platforms. The main

strength of the aiT tool is its detailed modeling of complex micro-architectures. It is probably the only

WCET estimation tool to have a full modeling of the processor micro-architecture for a complex real-life

processor like Motorola ColdFire [22] and Motorola PowerPC [32].

Another commercial WCET analyzer is the Bound-T tool [87], which also takes in binary executable

programs. It concentrates mainly on program path analysis and does not model cache, complex pipeline,

or branch prediction. In path analysis, an important focus of the tool is inferring loop bounds, for which it

extensively uses the well-known Omega-calculator [66]. Bound-T has been targeted toward Intel 8051 series

micro-controllers, Analog Devices ADSP-21020 DSP, and ATMEL ERC32 SPARC V7-based platforms. Like

aiT, Bound-T is not open-source.

The Chronos WCET analyzer [44] incorporates timing models of different micro-architectural features

present in modern processors. In particular, it models both in-order and out-of-order pipelines, instruc-

tion caches, dynamic branch prediction, and their interactions. The modeling of different architectural

features is parameterizable. Chronos is a completely open-source distribution especially suited to the

needs of the research community. This allows the researcher to modify and extend the tool for his or her

individual needs. Current state-of-the-art WCET analyzers, such as aiT [1], are commercial tools that do

not provide the source code. Unlike other WCET analyzers, Chronos is not targeted toward one or more

commercial embedded processors. Instead, it is built on top of the freely available SimpleScalar simulator

infrastructure. SimpleScalar is a widely popular cycle-accurate architectural simulator that allows the user
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to model a variety of processor platforms in software [10]. Chronos targets its analyzer to processor mod-

els supported by SimpleScalar. This choice of platform ensures that the user does not need to purchase

a particular embedded platform and its associated compiler, debugger, and other tools (which are often

fairly expensive) to conduct research in WCET analysis using Chronos. Also, the flexibility of SimpleScalar

enables development and verification of modeling a variety of micro-architectural features for WCET anal-

ysis. Thus, Chronos provides a low-overhead, zero-cost, and flexible infrastructure for WCET research.

However, it does not support as detailed micro-architectural modeling as is supported by the commercial

aiT analyzer; in particular, certain processor features such as data cache are not modeled in Chronos.

Among the research prototypes, HEPTANE [64] is an open-source WCET analyzer. HEPTANE models

in-order pipeline, instruction cache, and branch prediction, but it does not include any automated program

flow analysis. Symta/P [77] is another research prototype that estimates WCET for C programs. It models

caches and simple pipelines but does not support modeling of complex micro-architectural features such as

out-of-order pipelines and branch prediction. Cinderella [48] is an ILP-based research prototype developed

at Princeton University. The main distinguishing feature of this tool is that it performs both program path

analysis and micro-architectural modeling by solving an ILP problem. However, this formulation makes

the tool less scalable because the ILP solving time does not always scale up for complex micro-architectures.

Also, Cinderella mostly concentrates on program path analysis and cache modeling; it does not analyze

timing effects of complex pipelines and branch prediction. The SWEET analyzer from Paderborn, Uppsala,

and Malarden Universities focuses mostly on program flow analysis and does not model complex micro-

architectures (such as out-of-order pipelines). The program flow analysis proceeds by abstract execution

where variable values are abstracted to intervals. However, the abstraction in the flow analysis is limited to

data values; the control flow is not abstracted. Consequently, abstract execution in the SWEET tool [27]

may resort to a complete unrolling of the program loops.

In addition to the above-mentioned tools, several other research groups have developed their own in-

house timing analysis prototypes incorporating certain novel features. One notable effort is by the research

group at Florida State University. Their work involves sophisticated flow analysis for inferring infeasible

path patterns and loop bounds [31] — features that are not commonly present in many WCET analyzers.

However, the tool is currently not available for use or download; it is an in-house research effort.

1.6 Conclusions

In this chapter, we have primarily discussed software timing and energy analysis of an isolated task executing

on a target processor without interruption. This is an important problem and forms the building blocks

of more complicated performance analysis techniques. As we have seen, the main steps of software timing

and energy analysis are (a) program path analysis and (b) micro-architectural modeling. We have also

discussed a number of analysis methods that either perform an integrated analysis of the two steps or

separate the two steps. It has been observed that integrated analysis methods are not scalable to large

programs [94], and hence separated approaches for timing analysis may have a better chance of being

integrated into compilers. Finally, we outline here some possible future research directions.

1.6.1 Integration with Schedulability Analysis

The timing and energy analysis methods discussed in this chapter assume uninterrupted execution of a

program. In reality, a program (or “task,” using the terminology of the real-time systems community) may

get preempted because of interrupts. The major impact of task preemption is on the performance of the

instruction and data caches. Let Tl be a lower-priority task that gets preempted by a higher-priority task

Th . When Tl resumes execution, some of its cache blocks have been replaced by Th . Clearly, if the WCET

analysis does not anticipate this preemption, the resulting timing guarantee will not be safe. Cache-related

preemption delay [42, 58] analysis derives an upper bound on the number of additional cache misses per

preemption. This information is integrated in the schedulability analysis [37] to derive the maximum

number of possible preemptions and their effect on the worst-case cache performance.
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1.6.2 System-Level Analysis

In a system-on-chip device consisting of multiple processing elements (typically on a bus), a system-wide

performance analysis has to be built on top of task-level execution time analysis [70, 85]. Integrating the

timing effects of shared bus and complex controllers in the WCET analysis is quite involved. In a recent work,

Tanimoto et al. [80] model the shared bus on a system-on-chip device by defining bus scenario as represent-

ing a set of possible execution sequences of tasks and bus transfers. They use the definition of bus scenario to

automatically derive the deadline and period for each task starting with high-level real-time requirements.

1.6.3 Retargetable WCET Analysis

Retargetability is one of the major issues that needs to be resolved for WCET analysis tools to gain wider

acceptability in industry [12]. Developing a complex WCET analyzer for a new platform requires extensive

manual effort. Unfortunately, the presence of a large number of platforms available for embedded software

development implies that we cannot ignore this problem. The other related problem is the correctness

of the abstract processor models used in static timing analysis. The manual abstraction process cannot

guarantee the correctness of the models. These two problems can be solved if the static timing analyzer

can be generated (semi-)automatically from a formal description of the processor.

One possibility in this direction is to start with the processor specification in some architecture de-

scription language (ADL). ADLs precisely describe the instruction-set architecture as well as the micro-

architecture of a given processor platform. Certain architectural features are highly parameterizable and

hence easy to retarget from a WCET analysis point of view, but other features such as out-of-order pipelines

are not easily parameterizable. Li et al. [47] propose an approach to automatically generate static WCET

analyzers starting from ADL descriptions for complex processor pipelines. On the other end of the spec-

trum, we can start with processor specification in hardware description languages (HDLs) such as Verilog

or VHDL. The timing models have to be obtained from this HDL specification via simplification and

abstraction. Thesing [84] takes this approach for timing models of a system controller. It remains to be

seen whether this method scales to complex processor pipelines.

1.6.4 Time-Predictable System Design

The increasing complexity of systems and software leads to reduced timing predictability, which in turn

creates serious difficulties for static analysis techniques [86]. An alternative is to design systems and software

that are inherently more predictable in terms of timing without incurring significant performance loss.

The Virtual Simple Architecture (VISA) approach [3] counters the timing anomaly problem in complex

processor pipelines by augmenting the processor micro-architecture with a simpler pipeline. Proposals

for predictable memory hierarchy include cache locking [65, 89], cache partitioning [39, 95], as well as

replacing cache with scratchpad memory [78, 90] such that WCET analysis is simplified. At the software

level, the work in [28, 59] discusses code transformations to reduce the number of program paths considered

for WCET analysis. Moreover, Gustafsson et al. [28] also propose WCET-oriented programming to produce

code with a very simple control structure that avoids input-data-dependent control flow decisions as far

as possible.

1.6.5 WCET-Centric Compiler Optimizations

Traditional compiler optimization techniques guided by profile information focus on improving the

average-case performance of a program. In contrast, the metric of importance to real-time systems is the

worst-case execution time. Compiler techniques to reduce the WCET of a program have started to receive

attention very recently. WCET-centric optimizations are more challenging, as the worst-case path changes

as optimizations are applied.

Lee et al. [43] have developed a code generation method for dual-instruction-set ARM processors

to simultaneously reduce the WCET and code size. They use a full ARM instruction set along the WCET

path to achieve faster execution and at the same time use reduced Thumb instructions along the noncritical

paths to reduce code size. Bodin and Puaut [8] designed a customized static branch prediction scheme
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for reducing a program’s WCET. Zhao et al. [99] present a code positioning and transformation method

to avoid the penalties associated with conditional and unconditional jumps by placing the basic blocks

on WCET paths in contiguous positions whenever possible. Suhendra et al. [78] propose WCET-directed

optimal and near-optimal variable allocation strategies to scratchpad memory. Finally, Yu and Mitra [97]

exploit application-specific extensions to the base instruction set of a processor for reducing the WCET

of real-time tasks. Clearly, there are many other contexts where WCET-guided compiler optimization can

play a critical role.
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Abstract

In this chapter, we discuss static analysis of the security of a system. First, we give a brief background on

what types of static analysis are feasible in principle and then move on to what is practical. We next discuss

static analysis of buffer overflow and mobile code, followed by access control. Finally, we discuss static

analysis of information flow expressed in a language that has been annotated with flow policies.

2.1 Introduction

Analyzing a program for security holes is an important part of the current computing landscape, as security

has not been an essential ingredient in a program’s design for quite some time. With the critical importance

of a secure program becoming clearer in the recent past, designs based on explicit security policies are

likely to gain prominence.

Static analysis of a program is one technique to detect security holes. Compared to monitoring an execu-

tion at runtime (which may not have the required coverage), a static analysis — even if incomplete because

of loss of precision — potentially gives an analysis on all runs possible instead of just the ones seen so far.

However, security analysis of an arbitrary program is extremely hard. First, what security means is often

unspecified or underspecified. The definition is either too strict and cannot cope with the “commonsense”

requirement or too broad and not useful. For example, one definition of security involves the notion of

“noninterference” [24]. If it is very strict, even cryptoanalytically strong encryption and decryption does
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not qualify as secure, as there is information flow from encrypted text to plain text [59]. If it is not very

strict, by definition, some flows are not captured that are important in some context for achieving security

and hence, again, not secure. For example, if electromagnetic emissions are not taken into account, the

key may be easily compromised [50]. A model of what security means is needed, and this is by no means

an easy task [8]. Schneider [28] has a very general definition: a security policy defines a binary partition of

all (computable) sets of executions — those that satisfy and those that do not. This is general enough to

cover access control policies (a program’s behavior on an arbitrary individual execution for an arbitrary

finite period), availability policies (behavior on an arbitrary individual execution over an infinite period),

and information flow (behavior in terms of the set of all executions).

Second, the diagonalization trick is possible, and many analyses are undecidable. For example, there are

undecidable results with respect to viruses and malicious logic [16]: it is undecidable whether an arbitrary

program contains a computer virus. Similarly, viruses exist for which no error-free detection algorithm

exists.

Recently, there have been some interesting results on computability classes for enforcement mecha-

nisms [28] with respect to execution monitors, program rewriting, and static analysis. Execution monitors

intervene whenever execution of an untrusted program is about to violate the security policy being en-

forced. They are typically used in operating systems using structures such as access control lists or used

when executing interpreted languages by runtime type checking. It is possible to rewrite a binary so that

every access to memory goes through a monitor. While this can introduce overhead, optimization tech-

niques can be used to reduce the overhead. In many cases, the test can be determined to be not necessary

and removed by static analysis. For example, if a reference to a memory address m has already been checked,

it may not be necessary for a later occurrence.

Program rewriting modifies the untrusted program before execution to make it incapable of violating

the security policy. An execution monitor can be viewed as a special case of program rewriting, but Hamlen

et al. [28] point out certain subtle cases. Consider a security policy that makes halting a program illegal;

an execution monitor cannot enforce this policy by halting, as this would be illegal! There are also classes

of policies in certain models of execution monitors that cannot be enforced by any program rewriter.

As is to be expected, the class of statically enforceable policies is the class of recursively decidable

properties of programs (class �0 of the arithmetic hierarchy): a static analysis has to be necessarily total

(i.e., terminate) and return safe or unsafe. If precise analysis is not possible, we can relax the requirement

by being conservative in what it returns (i.e., tolerate false positives). Execution monitors are the class of

co-recursively enumerable languages (class �1 of the arithmetic hierarchy).1

A system’s security is specified by its security policy (such as access control or information flow model)

and implemented by mechanisms such as physical separation or cryptography.2 Consider access control. An

access control system guards access to resources, whereas an information flow model classifies information

to prevent disclosure. Access control is a component of security policy, while cryptography is one technical

mechanism to effect the security policy. Systems have employed basic access control since timesharing

systems began (1960) (e.g., Multics, Unix). Simple access control models for such “stand-alone” machines

assumed the universe of users known, resulting in the scale of the model being “small.” A set of access

control moves can unintentionally leak a right (i.e., give access when it should not). If it is possible to analyze

the system and ensure that such a result is not possible, the system can be said to be secure, but theoretical

models inspired by these systems (the most well known being the Harrison, Ruzzo, Ullman [HRU] model)

showed “surprising” undecidability results [29], chiefly resulting from the unlimited number of subjects

and objects possible. Technically, in this model, it is undecidable whether a given state of a given protection

1A security policy P is co-recursively enumerable if there exists a Turing machine M that takes an arbitrary execution

monitor E M as an input and rejects it in finite time if ∼ P (E M); otherwise M(E M) loops forever.
2While cryptography has rightfully been a significant component in the design of large-scale systems, its relation

to security policy, especially its complementarity, has not often been brought out in full. “If you think cryptography is

the solution to your problem, you don’t know what your problem is” (Roger Needham).
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system is safe for a given generic right. However, the need for automated analysis of policies was small in

the past, as the scale of the systems was small.

Information flow analysis, in contrast to access control, concerns itself with the downstream use of

information once obtained after proper access control. Carelessness in not ensuring proper flow models

has resulted recently in the encryption system in HD-DVD and BluRay disks to be compromised (the key

protecting movie content is available in memory).3

Overt models of information flow specify the policy concerning how data should be used explicitly,

whereas covert models use “signalling” of information through “covert” channels such as timing, elec-

tromagnetic emissions, and so on. Note that the security weakness in the recent HD-DVD case is due to

improper overt information flow. Research on some overt models of information flow such as Bell and

LaPadula’s [6] was initiated in the 1960s, inspired by the classification of secrets in the military. Since oper-

ating systems are the inspiration for work in this area, models of secure operating systems were developed

such as C2 and B2 [57]. Work on covert information flow progressed in the 1970s. However, the work on

covert models of information flow in proprietary operating systems (e.g., DG-UNIX) was expensive and

too late, so late that it could not be used on the by then obsolescent hardware. Showing that Trojan horses

did not use covert channels to compromise information was found to be “ultimately unachievable” [27].

Currently, there is a considerable interest in studying overt models of information flow, as the extensive

use of distributed systems and recent work with widely available operating systems such as SELinux and

OpenSolaris have expanded the scope of research. The scale of the model has become “large,” with the

need for automated analysis of policies being high.

Access control and information flow policies can both be statically analyzed, with varying effectiveness

depending on the problem. Abstract interpretation, slicing, and many other compiler techniques can also

be used in conjunction. Most of the static analyses induce a constraint system that needs to be solved to see

if security is violated. For example, in one buffer overflow analysis [23], if there is a solution to a constraint

system, then there is an attack. In another analysis in language-based security, nonexistence of a solution

to the constraints is an indication of a possible leak of information.

However, static analysis is not possible in many cases [43] and has not yet been used on large pieces

of software. Hence, exhaustive checking using model checking [14] is increasingly being used when one

wants to gain confidence about a piece of code. In this chapter, we consider model checking as a form of

static analysis. We will discuss access control on the Internet that uses model checking (Section 2.4.4). We

will also discuss this approach in the context of Security-Enhanced Linux (SELinux) where we check if a

large application has been given only sufficient rights to get its job done [31].

In spite of the many difficulties in analyzing the security of a system, policy frameworks such as access

control and information flow analysis and mechanisms such as cryptography have been used to make

systems “secure.” However, for any such composite solution, we need to trust certain entities in the system

such as the compiler, the BIOS, the (Java) runtime system, the hardware, digital certificates, and so on —

essentially the “chain of trust” problem. That this is a tricky problem has been shown in an interesting

way by Ken Thompson [53]; we will discuss it below. Hence, we need a “small” trusted computing base

(TCB): all protection mechanisms within a system (hardware, software, firmware) for enforcing security

policies.

In the past (early 1960s), operating systems were small and compilers larger in comparison. The TCB

could justifiably be the operating system, even if uncomfortably larger than one wished. In today’s context,

the compilers need not be as large as current operating systems (for example, Linux kernel or Windows is

many millions of lines of code), and a TCB could profitably be the compiler. Hence, a compiler analysis of

security is meaningful nowadays and likely to be the only way large systems (often a distributed system)

can be crafted in the future. Using a top-level security policy, it may be possible to automatically partition

the program so that the resulting distributed system is secure by design [60].

3The compromise of the security system DeCSS in DVDs was due to cryptanalysis, but in the case of HD-DVD it

was simply improper information flow.
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To illustrate the effectiveness of static security analysis, we first discuss a case where static analysis fails

completely (Ken Thomson’s Trojan horse). We then outline some results on the problem of detecting

viruses and then discuss a case study in which static analysis can in principle be very hard (equivalent to

cryptanalysis in general) but is actually much simpler because of a critical implementation error. We will

also briefly touch upon obfuscation that exploits difficulty of analysis.

We then discuss static analysis of buffer overflows, loading of mobile code, and access control and

information flow, illustrating the latter using Jif [35] language on a realistic problem. We conclude with

likely future directions in this area of research.

2.1.1 A Dramatic Failure of Static Analysis: Ken Thompson’s Trojan Horse

Some techniques to defeat static analysis can be deeply effective; we summarize Ken Thompson’s ingenious

Trojan horse trick [53] in a compiler that uses self-reproduction, self-learning, and self-application. We

follow his exposition closely.

First, self-reproduction is possible; for example, one can construct a self-reproducing program such

as ((lambda x. (list x x)) (lambda x. (list x x))) . Second, it is possible to teach

a compiler (written in its own language) to compile new features (the art of bootstrapping a compiler):

this makes self-learning possible. We again give Ken Thompson’s example to illustrate this. Let us say

that a lexer knows about '\n' (newline) but not '\v' (vertical tab). How does one teach it to compile

'\v' also? Let the initial source be:

c=next();
if (c !='\\') return(c);
c=next();
if (c !='\\') return('\\')
if (c ='n') return('\n')

Adding to the compiler source

if (c ='v') return('\v') //error

and using previous compiler binary does not work, as that binary does not know about '\v' . However,

the following works:

if (c ='v') return(11)

Now a new binary (from the new source using the old compiler binary) knows about '\v' in a portable

way. Now we can use it to compile the previously uncompilable statement:

if (c ='v') return('\v')

The compiler has “learned.” Now, we can introduce a Trojan horse into the login program that has a

backdoor to allow a special access to log in as any user:

compile(char *s) {(* compiler main that accepts s as input (a program)*)
if match(s, "pattern_login") {

(* "Trojan" compile for a login program in the system*)
compile("bug_login"); return

}
... (* normal compile *)

}

However, this is easily detectable (by examining the source). To make this not possible, we can add a second

Trojan horse aimed at the compiler:
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if match(s, "pattern_compiler") {
(* "Trojan" compile for a compiler program in the system*)
compile("bug_compiler"); return

}

Now we can code a self-reproducing program that reintroduces both Trojan horses into the compiler

with a learning phase where the buggy compiler binary with two Trojan horses now reinserts it into any

new compiler binary compiled from a clean source! The detailed scheme is as follows: first a clean compiler

binary (A) is built from a clean compiler source (S). Next, as part of the learning phase, a modified compiler

source (S′) can be built that incorporates the bugs. The logic in S′ looks at the source code of any program

submitted for compilation and, say by pattern matching, decides whether a program submitted is a login

or a compiler program. If it decides that it is one of these special programs, it reproduces4 one or more

Trojan horses (as necessary) when presented with a clean source. Let the program S′ be compiled with A.

We have a new binary A′ that reinserts the two Trojans on any clean source!

The virus exists in the binary but not in the source. This is not possible to discern unless the history of

the system (the sequence of compilations and alterations) is kept in mind. Static analysis fails spectacularly!

2.1.2 Detecting Viruses

As discussed earlier, the virus detection problem is undecidable. A successful virus encapsulates itself so

that it cannot be detected — the opposite of “self-identifying data.” For example, a very clever virus would

put logic in I/O routines so that any read of suspected portions of a disk returns the original “correct”

information! A polymorphic virus inserts “random” data to vary the signature. More effectively, it can

create a random encryption key to encrypt the rest of the virus and store the key with the virus.

2.1.2.1 Cohen’s Results

Cohen’s impossibility result states that it is impossible for a program to perfectly demarcate a line, en-

closing all and only those programs that are infected with some virus: no algorithm can properly de-

tect all possible viruses [16]: ∀Alg .∃Virus.Alg does not detect Virus. For any candidate computer virus

detection algorithm A, there is a program p(pgm) : if A(pgm) then exit; else spread .

Here, spread means behave like a virus. We can diagonalize this by setting pgm=p and a contradiction

follows immediately as p spreads iff not A(p) .

Similarly, Chess and White [11] show there exists a virus that no algorithm perfectly detects, i.e., one

with no false positives: ∃Virus.∀Alg .Alg does not detect Virus. Also, there exists a virus that no algorithm

loosely detects, i.e., claims to find the virus but is infected with some other virus: ∃Virus.∀Alg .Alg does not

loosely-detect Virus. In other words, there exist viruses for which, even with the virus analyzed completely,

no program detects only that virus with no false positives. Further, another Chess and White’s impossibility

result states that there is no program to classify programs (only those) with a virus V and not include any

program without any virus.

Furthermore, there are interesting results concerning polymorphic viruses: these viruses generate a set

of other viruses that are not identical to themselves but are related in some way (for example, are able to

reproduce the next one in sequence). If the size of this set is greater than 1, call the set of viruses generated

the viral set S.

An algorithm A detects a set of viruses S iff for every program p, A(p) terminates and returns TRUE

iff p is infected with some virus V in S. If W is a polyvirus, for any candidate W-detection algorithm C ,

there is a program s (pgm) that is an instance of W:

4It is easiest to do so in the binary being produced as the compiled output.
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if subroutine_one(pgm) then exit, else {
replace text of subroutine_one with a random program;
spread; exit; }

subroutine_one: return C(argument)

This can be diagonalized by pgm=s, resulting in a contradiction: if C(s) true exit; other-
wise polyvirus .

Hence, it is clear that static analysis has serious limits.

2.1.3 A Case Study for Static Analysis: GSM Security Hole

We will now attempt to situate static analysis with other analyses, using the partitioning attack [50] on GSM

hashing on a particular implementation as an example. GSM uses the COMP128 algorithm for encryption.

A 16B (128b) key of subscriber (available with the base station along with a 16B challenge from the base

station is used to construct a 12B (96b) hash. The first 32b is sent as a response to the challenge, and the

remaining 64b is used as the session key. The critical issue is that there should be no leakage of the key

in any of the outputs this includes any electromagnetic (EM) leakages during the computation of the hash.

The formula for computation of the hash it has a butterfly structure) is as follows:

//X is 32B (16B key || 16B challenge)
//Tj[r] is a lookuptable of 8-j bits value with r rows:
//alg uses T0[512], T1[256], T2[128], T3[64], T4[32]
for j=0..4

for k=0..2^j -1
for l=0..2^(4-j) -1

m=l+k*2^(5-j)
n=m+2^(4-j)
y=(X[m]+2*X[n]) mod 2^(9-j)
z=(2*X[m]+X[n]) mod 2^(9-j)
X[m]=Tj[y]
X[n]=Tj[z]

If we expand y in the expression for X[m] , we have

X[m]=Tj[(X[m]+2*X[n]) mod 2^(9-j)]

A simple-minded flow analysis will show that there is direct dependence of the EM leakage on the

key; hence, this is not information flow secure. However, cryptographers, using the right “confusion” and

“diffusion” operators such as the above code, have shown that the inverse can be very difficult to compute.

Hence, even if very simple static analysis clearly points out the flow dependence of the EM leakage on

the key, it is not good enough to crack the key. However, even if the mapping is cryptanalytically strong,

“implementation” bugs can often give away the key. An attack is possible if one does not adhere to the

following principle [50] of statistical independence (or more accurately noninterference, which will be

discussed later): relevant bits of all intermediate cycles and their values should be statistically independent of

the inputs, outputs, and sensitive information.

Normally, those bits that emit high EM are good candidates for analysis. One set of candidates are the

array and index values, as they need to be amplified electrically for addressing memory. They are therefore

EM sensitive, whereas other internal values may not be so.

Because of the violation of this principle, a cryptographically strong algorithm may have an implemen-

tation that leaks secrets. For example, many implementations use 8b microprocessors, as COMP128 is

optimized for them, so the actual implementation for T0 is two tables, T00 and T01 (each 256 entries):
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//X is 32B (16B key || 16B challenge)
//Tj[r] is a lookuptable of 8-j bits value with r rows:
//alg uses T0[512], T1[256], T2[128], T3[64], T4[32]
for j=0..4

for k=0..2^j -1
for l=0..2^(4-j) -1

m=l+k*2^(5-j)
n=m+2^(4-j)
y=(X[m]+2*X[n]) mod 2^(9-j)
z=(2*X[m]+X[n]) mod 2^(9-j)
if (y<256) X[m]=Tj0[y] else Tj1[y-256] // old: X[m]=Tj[y]
if (z<256) X[m]=Tj0[z] else Tj1[z-256] // old: X[n]=Tj[z]

If the number of intermediate lookups from tables T00 or T01 have statistical significance, then

because of the linearity of the index y with respect to Rfor the first round, some information can be gleaned

about the key. The technique of differential cryptanalysis is based on such observations. In addition, if it

is possible to know when access changes from one table (say, T00) to another (T01) by changing R, then

the Rvalue where it changes is given by K + 2*R=256, from which X, the first byte of the GSM key, can be

determined.

In general, we basically have a set of constraints, such as

0 ≤ x + 2y1 ≤ 127

128 ≤ x + 2y2 ≤ 256

where y1 and y2 are two close values that map the index into different arrays (T0 or T1).5

If there is a solution to these Diophantine equations, then we have an attack. Otherwise, no. Since the

cryptographic confusion and diffusion operations determine the difficulty (especially with devices such as

S-boxes in DES), in general the problem is equivalent to the cryptanalysis problem. However, if we assume

that the confusion and diffusion operations are linear in subkey and other parameters (as in COMP128),

we just need to solve a set of linear Diophantine equations [39].

What we can learn from the above is the following: we need to identify EM-sensitive variables. Other

values can be “declassified”; even if we do not take any precautions, we can assume they cannot be observed

from an EM perspective. We need to check the flow dependence of the EM-sensitive variables (i.e., externally

visible) on secrets that need to be safeguarded.

Recently, work has been done that implies that success or failure of branch prediction presents

observable events that can be used to crack encryption keys.

The above suggests the following problems for study:

� Automatic downgrading of “insensitive” variables
� Determination of the minimal declassification to achieve desired flow properties

2.1.4 Obfuscation

Given that static analyses are often hard, some applications use them to good effect. An example is the new

area of “obfuscation” of code so that it cannot be reverse-engineered easily. Obfuscation is the attempt

to make code “unreadable” or “unintelligible” in the hope that it cannot be used by competitors. This is

effected by performing semantic-preserving transformations so that automatic static analysis can reveal

nothing useful. In one instance, control flow is intentionally altered so that it is difficult to understand or

5In general, l ≤ f (a , b) ≤ u, . . . , with f being an affine function for tractability.
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use it by making sure that any analysis that can help in unravelling code is computationally intractable (for

example, PSPACE-hard or NP-hard). Another example is intentionally introducing aliases, as certain alias

analysis problems are known to be hard (if not undecidable), especially in the interprocedural context.

Since it has been shown that obfuscation is, in general, impossible [4], static analysis in principle could be

adopted to undo obfuscation unless it is computationally hard.

2.2 Static Analysis of Buffer Overflows

Since the advent of the Morris worm in 1988, buffer overflow techniques to compromise systems have

been widely used. Most recently, the SQL slammer worm in 2003, using a small UDP packet (376B),

compromised 90% of all target machines worldwide in less than 10 minutes.

Since buffer overflow on a stack can be avoided, for example, by preventing the return address from

being overwritten by the “malicious” input string, array bounds checking the input parameters by the

callee is one technique. Because of the cost of this check, it is useful to explore compile time approaches

that eliminate the check through program analysis. Wagner et al. [56] use static analysis (integer range

analysis), but it has false positives due to imprecision in pointer analysis, interprocedural analysis, and so

on and a lack of information on dynamically allocated sizes.

CCured [46] uses static analysis to insert runtime checks to create a type-safe version of C program.

CCured classifies C pointers into SAFE, SEQ, or WILD pointers. SAFE pointers require only a null check.

SEQ pointers require a bounds check, as these are involved in pointer arithmetic, but the pointed object is

known statically, while WILD ones require a bounds check as well as a runtime check, as it is not known

what type of objects they point to at runtime. For such dynamically typed pointers, we cannot rely on the

static type; instead, we need, for example, runtime tags to differentiate pointers from nonpointers.

Ganapathy et al. [23] solve linear programming problems arising out of modeling C string programs

as linear programs to identify buffer overruns. Constraints result from buffer declarations, assignments,

and function call/returns. C source is first analyzed by a tool that builds a program-dependence graph

for each procedure, an interprocedural CFG, ASTs for expressions, along with points-to and side-effect

information. A constraint generator then generates four constraints for each pointer to a buffer (between

max/min buffer allocation and max/min buffer index used), four constraints on each index assignment

(between previous and new values as well as for the highest and lowest values), two for each buffer

declaration, and so on. A taint analysis next attempts to identify and remove any uninitialized constraint

variables to make it easy for the constraint solvers.

Using LP solvers, the best possible estimate of the number of bytes used and allocated for each buffer

in any execution is computed. Based on these values, buffer overruns are inferred. Some false positives

are possible because of the flow-insensitive approach followed; these have to be manually resolved. Since

infeasible linear programs are possible, they use an algorithm to identify irreducibly inconsistent sets.

After such sets of constraints are removed, further processing is done before solvers are employed. This

approach also employs techniques to make program analysis context sensitive.

Engler et al. [19] use a “metacompilation” (MC) approach to catch potential security holes. For ex-

ample, any use of “untrusted input”6 could be a potential security hole. Since a compiler potentially has

information about such input variables, a compiler can statically infer some of the problematic uses and

flag them. To avoid hardwiring some of these inferences, the MC approach allows implementers to add

rules to the compiler in the form of high-level system-specific checkers. Jaeger et al. [31] use a similar

approach to make SELinux aware of two trust levels to make information flow analysis possible; as of now,

it is not possible. We will discuss this further in Section 2.4.3.

6Examples in the Linux kernel code are system call parameters, routines that copy data from user space, and network

data.
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2.3 Static Analysis of Safety of Mobile Code

The importance of safe executable code embedded in web pages (such as Javascript), applications (as

macros in spreadsheets), OS kernel (such as drivers, packet filters [44], and profilers such as DTrace [51]),

cell phones, and smartcards is increasing every day. With unsafe code (especially one that is a Trojan), it is

possible to get elevated privileges that can ultimately compromise the system. Recently, Google Desktop

search [47] could be used to compromise a machine (to make all of its local files available outside, for

example) in the presence of a malicious Java applet, as Java allows an applet to connect to its originating

host.

The most simple model is the “naive” sandbox model where there are restrictions such as limited access

to the local file system for the code, but this is often too restrictive. A better sandbox model is that of

executing the code in a virtual machine implemented either as an OS abstraction or as a software isolation

layer and using emulation. In the latter solution, the safety property of the programming language and

the access checks in the software isolation layer are used to guarantee security.

Since object-oriented (OO) languages such as Java and C# have been designed for making possible

“secure” applets, we will consider OO languages here. Checking whether a method has access permissions

may not be local. Once we use a programming language with function calls, the call stack has information on

the current calling sequence. Depending on this path, a method may or may not have the permissions. Stack

inspection can be carried out to protect the callee from the caller by ensuring that the untrusted caller has the

right credentials to call a higher-privileged or trusted callee. However, it does not protect the caller from the

callee in the case of callback or event-based systems. We need to compute the intersection of permissions of

all methods invoked per thread and base access based on this intersection. This protects in both directions.

Static analysis can be carried out to check security loopholes introduced by extensibility in OO languages.

Such holes can be introduced through subclassing that overrides methods that check for corner cases

important for security. We can detect potential security holes by using a combination of model checking

and abstract interpretation: First, compute all the possible execution histories; pushdown systems can be

used for representation. Next, use temporal logic to express properties of interest (for example, a method

from an applet cannot call a method from another applet). If necessary, use abstract interpretation and

model checking to check properties of interest.

Another approach is that of the proof-carrying code (PCC). Here, mobile code is accompanied by a

proof that the code follows the security policy. As a detailed description of the above approaches for the

safety of mobile code is given in the first edition of this book [36], we will not discuss it here further.

2.4 Static Analysis of Access Control Policies

Lampson [38] introduced access control as a mapping from {entity, resource, op} to {permit, deny} (as

commonly used in operating systems). Later models have introduced structure for entities such as roles

(“role-based access control”) and introduced a noop to handle the ability to model access control modularly

by allowing multiple rules to fire: {role, resource, op} to {permit, deny, noop}. Another significant

advance is access control with anonymous entities: the subject of trust management, which we discuss in

Section 2.4.4.

Starting from the early simple notion, theoretical analysis in the HRU system [29] of access control has

the following primitives:

� Create subject s : creates a new row, column in the access control matrix (ACM)
� Create object o: creates a new column in the ACM
� Destroy subject s : deletes a row, column from the ACM
� Destroy object o: deletes a column from the ACM
� Enter r into A[s , o]: adds r rights for subject s over object o
� Delete r from A[s , o]: removes r rights from subject s over object o
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Adding a generic right r where there was not one is “leaking.” If a system S, beginning in initial state s 0,

cannot leak right r , it is safe with respect to the right r . With the above primitives, there is no algorithm

for determining whether a protection system S with initial state s 0 is safe with respect to a generic right r .

A Turing machine can be simulated by the access control system by the use of the infinite two-dimensional

access control matrix to simulate the infinite Turing tape, using the conditions to check the presence of a

right to simulate whether a symbol on the Turing tape exists, adding certain rights to keep track of where

the end of the corresponding tape is, and so on.

Take grant models [7], in contradistinction to HRU models, are decidable in linear time [7]. Instead

of generic analysis, specific graph models of granting and deleting privileges and so on are used. Koch

et al. [37] have proposed an approach in which safety is decidable in their graphical model if each graph

rule either deletes or adds graph structure but not both. However, the configuration graph is fixed.

Recently, work has been done on understanding and comparing the complexity of discretionary access

control (DAC) (Graham–Denning) and HRU models in terms of state transition systems [42]. HRU

systems have been shown to be not as expressive as DAC. In the Graham–Denning model, if a subject

is deleted, the objects owned are atomically transferred to its parent. In a highly available access control

system, however, there is usually more than one parent (a DAG structure rather than a tree), and we need

to decide how the “orphaned” objects are to be shared. We need to specify further models (for example,

dynamic separation of duty). If a subject is the active entity or leader, further modeling is necessary. The

simplest model usually assumes a fixed static alternate leader, but this is inappropriate in many critical

designs. The difficulty in handling a more general model is that leader election also requires resources that

are subject to access control, but for any access control reconfiguration to take place, authentications and

authorizations have to be frozen for a short duration until the reconfiguration is complete. Since leader

election itself requires access control decisions, as it requires network, storage, and other resources, we

need a special mechanism to keep these outside the purview of the freeze of the access control system. The

modeling thus becomes extremely complex. This is an area for investigation.

2.4.1 Case Studies

2.4.1.1 Firewalls

Firewalls are one widely known access control mechanism. A firewall examines each packet that passes

through the entry point of a network and decides whether to accept the packet and allow it to proceed

or to discard the packet. A firewall is usually designed as a sequence of rules; each rule is of the form

<pred> → <decision>, where <pred> is a boolean expression over the different fields of a packet, and

the <decision> is either accept or discard. Designing the sequence of rules for a firewall is not an easy task,

as it needs to be consistent, complete, and compact. Consistency means the rules are ordered correctly,

completeness means every packet satisfies at least one rule in the firewall, and compactness means the

firewall has no redundant rules. Gouda and Liu [25] have examined the use of “firewall decision diagrams”

for automated analysis and present polynomial algorithms for achieving the above desirable goals.

2.4.1.2 Setuid Analysis

The access control mechanism in Unix-based systems is based critically on the setuid mechanism. This is

known to be a source of many privilege escalation attacks if this feature is not used correctly. Since there are

many variations of setuid in different Unix versions, the correctness of a particular application using this

mechanism is difficult to establish across multiple Unix versions. Static analysis of an application along

with the model of the setuid mechanism is one attempt at checking the correctness of an application.

Chen et al. [10] developed a formal model of transitions of the user IDs involved in the setuid mechanism

as a finite-state automaton (FSA) and developed techniques for automatic construction of such models.

The resulting FSAs are used to uncover problematic uses of the Unix API for uid-setting system calls, to

identify differences in the semantics of these calls among various Unix systems, to detect inconsistency in

the handling of user IDs within an OS kernel, and to check the proper usage of these calls in programs
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automatically. As a Unix-based system maintains per-process state (e.g., the real, effective, and saved

uids) to track privilege levels, a suitably abstracted FSA (by mapping all user IDs into a single “nonroot”

composite ID) can be devised to maintain all such relevant information per state. Each uid-setting system

call then leads to a number of possible transitions; FSA transitions are labeled with system calls. Let this

FSA be called the setuid-FSA. The application program can also be suitably abstracted and modeled as an

FSA (the program FSA) that represents each program point as a state and each statement as a transition.

By composing the program FSA with the setuid-FSA, we get a composite FSA. Each state in the composite

FSA is a pair of one state from the setuid-FSA (representing a unique combination of the values in the real

uid, effective uid, and saved uid) and one state from the program FSA (representing a program point).

Using this composite FSA, questions such as the following can be answered:

� Can the setuid system call fail? This is possible if an error state in the setuid-FSA part in a composite

state can be reached.
� Can the program fail to drop the privilege? This is possible if a composite state can be reached that

has a privileged setuid-FSA state, but the program state should be unprivileged at that program

point.
� Which parts of an application run at elevated privileges? By examining all the reachable composite

states, this question can be answered easily.

2.4.2 Dynamic Access Control

Recent models of access control are declarative, using rules that encode the traditional matrix model. An

access request is evaluated using the rules to decide whether access is to be provided or not. It also helps

to separate access control policies from business logic.

Dougherty et al. [18] use Datalog to specify access control policies. At any point in the evolution of the

system, facts (“ground terms”) interact with the policies (“datalog rules”); the resulting set of deductions

is a fixpoint that can be used to answer queries whether an access is to be allowed or not. In many systems,

there is also a temporal component to access control decisions. Once an event happens (e.g., a paper

is assigned to reviewer), certain accesses get revoked (e.g., the reviewer cannot see the reviews of other

reviewers of the same paper until he has submitted his own) or allowed. We can therefore construct a

transition system with edges being events that have a bearing on the access control decisions. The goal of

analysis is now either safety or availability (a form of liveness): namely, is there some accessible state in

the dynamic access model that satisfies some boolean expression over policy facts? These questions can

be answered efficiently, as any fixed Datalog query can be computed in polynomial time in the size of

the database, and the result of any fixed conjunctive query over a database Q can be computed in space

O(log| Q |) [18, 54].

Analysis of access control by abstract interpretation is another approach. Given a language for access

control, we can model leakage of a right as an abstract interpretation problem. Consider a simple language

with assignments, conditionals, and sequence (“;”). If A is a user, let [A, stmt]s represent whether A can

execute stmt in state s . Let r (q ,A)s mean that A can read q in state s and w( p,A)s means A can write p

in state s . Then we have the following interpretation:

[A, p = q]s = r (q ,A)s and w(p,A)s

[A, if c then p else q]s = r (c ,A)s and ((c and [A,p]s ) or (not c and [A,q]s ))

[A, (a ; b)]s = [A, a]s and [A, b]s ′

where s ′ is the new state after executing a .

Here, A can be a set of users also. Next, if [A, prog](startstate) = 1, then A can execute prog. The access

control problem now becomes: Is there a program P that A can execute and that computes the value of

some‚ forbidden‚ value and writes it to a location that A can access? With HRU-type models, the set of

programs to be examined is essentially unbounded, and we have undecidability. However, if we restrict

the programs to be finite, decidability is possible.
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It is also possible to model dynamic access control by other methods such as using pushdown sys-

tems [34], graph grammars [5], but we will only discuss the access control problem on the Internet that

can be modeled using pushdown systems.

2.4.3 Retrofitting Simple MAC Models for SELinux

Since SELinux is easily available, we will use it as an example for discussing access control. In the past, the

lack of such operating systems made research difficult; they were either classified or very expensive.

Any machine hosting some services on the net should not get totally compromised if there is a break-in.

Can we isolate the breach to those services and not let it affect the rest of the system? It is possible to do

so if we can use mandatory access policies (MACs) rather than the standard DACs. In a MAC the system

decides how you share your objects, whereas in a DAC you can decide how you share your objects. A

break-in into a DAC system has the potential to usurp the entire machine, whereas in a MAC system the

kernel or the system still validates each access according to a policy loaded beforehand.

For example, in some recent Linux systems (e.g., Fedora Core 5/6, which is based on SELinux) that employ

MAC, there is a “targeted” policy where every access to a resource is allowed implicitly, but deny rules can be

used to prevent accesses. By default, most processes run in an “unconfined” domain, but certain daemons

or processes7 (targeted ones) run in “locked-down” domains after starting out as unconfined. If cracker

breaks into apache and gets a shell account, it can run only with the privileges of the locked-down daemon,

and the rest of the system is usually safe. The rest of the system is not safe only if there is a way to effect

a transition into the unconfined domain. With the more stringent “strict policy,” also available in Fedora

Core 5/6, that implicitly denies everything and “allow” rules are used to enable accesses, it is even more

difficult.

Every subject (process) and object (e.g., file, socket, IPC object, etc.) has a security context that is

interpreted only by a security server. Policy enforcement code typically handles security identifiers (SIDs);

SIDs are nonpersistent and local identifiers. SELinux implements a combination of:

� Type enforcement and (optional) multilevel security: Typed models have been shown to be more

tractable for analysis. Type enforcement requires that the type of domains and objects be respected

when making transitions to other domains or when acting on objects of a certain type. It also offers

some preliminary support for models that have information at different levels of security. The bulk

of the rules in most policies in SELinux are for type enforcement.
� Role-based access control (RBAC): Roles for processes. Specifies domains that can be entered by

each role and specifies roles that are authorized for each user with an initial domain associated with

each user role. It has the ease of management of RBAC with fine granularity of type enforcement.

The security policy is specified through a set of configuration files.

Overt flows transfer data directly; these are often high bandwidth and easily controllable by a policy.

Covert flows are indirect (e.g., file existence or CPU usage); these are often low bandwidth and difficult to

control in SELinux. Examples of overt flows are:

� Direct information flow: For example, allow subject t object t:file write . Here,

the domain subject t is being given the permission to write to a file of type object t .
� Transitive information flow: For example, allow subject a t object t:file write;

allow subject b t object t:file read . Here, one domain is writing to an object

of type file that is being read by another domain.

7httpd, dhcpd, mailman, mysqld, named, nscd, ntpd, portmap, postgresql, squid, syslogd, winbind, and snmpd.
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However, one downside is that very fine level control is needed. Every major component such as NFS

or X needs extensive work on what permissions need to be given before it can do its job. As the default

assumption is “deny,” there could be as many as 30,000 allow rules. There is a critical need for automated

analysis. If the rules are too lax, we can have a security problem. If we have too few rules (too strict),

a program can fail at runtime, as it does not have enough permissions to carry out its job. Just as in

software testing, we need to do code coverage analysis. In the simplest case, without alias analysis or

interprocedural analysis, it is possible to look at the static code and decide what objects are needed to be

accessed. Assuming that all the paths are possible, one can use abstract interpretation or program slicing

to determine the needed rules. However, these rules will necessarily be conservative. Without proper alias

analysis in the presence of aliasing, we will have to be even more imprecise; similar is the case in the context

of interprocedural analysis.

Ganapathy et al. [22] discuss automated authorization policy enforcement for user-space servers and

the Linux kernel. Here, legacy code is retrofitted with calls to a reference monitor that checks permissions

before granting access (MAC). For example, information “cut” from a sensitive window in an X server

should not be allowed to be “pasted” into an ordinary one. Since manual placing of these calls is error

prone, an automated analysis based on program analysis is useful. First, security-sensitive operations to

be checked (“MACed”) are identified. Next, for each such operation, the code-level constructs that must

be executed are identified by a static analysis as a conjunction of several code-level patterns in terms of

their ASTs. Next, locations where these constructs are potentially performed have to be located and, where

possible, the “subject” and “object” identified. Next the server or kernel is instrumented with calls to a

reference monitor with subject, object, and op triple as the argument, with a jump to the normal code on

success or with call to a code that handles the failure case.

We now discuss the static analysis for automatic placement of authorization hooks, given, for example,

the kernel code and the reference monitor code [21]. Assuming no recursion, the call graph of the reference

monitor code is constructed. For each node in the call graph, a summary is produced. A summary of a

function is the set of (pred, op) pairs that denotes the condition under which op can be authorized by

the function. For computing the summary, a flow and context-sensitive analysis is used that propagates

a predicate through the statements of the function. For example, at a conditional statement with q as the

condition, the “if” part is analyzed with pred∧q , and the “then” part by pred∧¬q . At a call site, each pair in

the summary of the function is substituted with the actuals of the call, and the propagation of the predicate

continues. When it terminates, we have a set of pairs as summary. Another static analysis on the kernel

source recovers the set of conceptual operations that may be performed by each kernel function. This is done

by searching for combinations of code patterns in each kernel function. For each kernel function, it then

searches through a set of idioms for these code patterns to determine if the function performs a conceptual

operation; an idiom is a rule that relates a combination of code patterns to conceptual operations.

Once the summary of each function h in the reference monitor code and the set of conceptual operations

(S) for each kernel function k is available, finding the set of functions hi in the monitor code that guards

k reduces to finding a cover for the set S using the summary of functions hi .

Another tractable approach is for a less granular model but finer than non-MAC systems. For example,

it is typically the case in a large system that there are definitely forbidden accesses and allowable accesses

but also many “gray” areas. “Conflicting access control subspaces” [32] result if assignments of permissions

and constraints that prohibit access to a subject or a role conflict. Analyzing these conflicts and resolving

them, an iterative procedure, will result in a workable model.

2.4.4 Model Checking Access Control on the Internet: Trust Management

Access control is based on identity. However, on the Internet, there is usually no relationship between

requestor and provider prior to request (though cookies are one mechanism used). When users are

unknown, we need third-party input so that trust, delegation, and public keys can be negotiated. With
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public key cryptography, it becomes possible to deal with anonymous users as long as they have a public

key: authentication/authorization is now possible with models such as SPKI/SDSI (simple public key

infrastructure/simple distributed security infrastructure) [15] or trust management. An issuer authorizes

specific permissions to specific principals; these credentials can be signed by the issuer to avoid tampering.

We can now have credentials (optionally with delegation) with the assumption that locally generated

public keys do not collide with other locally generated public keys elsewhere. This allows us to exploit

local namespaces: any local resource controlled by a principal can be given access permissions to others by

signing this grant of permission using the public key.

We can now combine access control and cryptography into a larger framework with logics for

authentication/authorization and access control. For example, an authorization certificate (K, S, D, T, V)

in SPKI/SDSI can be viewed as an ACL entry, where keys or principals represented by the subject S are

given permission, by a principal with public key K, to access a “local” resource T in the domain of the

principal with public key K. Here, T is the set of authorizations (operations permitted on T), D is the

delegation control (whether S can in turn give permissions to others), and V is the duration during which

the certificate is valid.

Name certificates define the names available in an issuer’s local namespace, whereas authorization

certificates grant authorizations or delegate the ability to grant authorizations. A certificate chain provides

proof that a client’s public key is one of the keys that has been authorized to access a given resource

either directly or transitively, via one or more name definition or authorization delegation steps. A set

of SPKI/SDSI name and authorization certificates defines a pushdown system [34], and one can “model

check” many of the properties in polynomial time. Queries in SPKI/SDSI [15] can be as follows:

� Authorized access: Given resource R and principal K, is K authorized to access R? Given resource

R and name N (not necessarily a principal), is N authorized to access R? Given resource R, what

names (not necessarily principals) are authorized to access R?
� Shared access: For two given resources R1 and R2, what principals can access both R1 and R2? For

two given principals K1 and K2, what resources can be accessed by both K1 and K2?
� Compromisation assessment: Due (solely) to the presence of maliciously or accidentally issued

certificate set C0 ⊂ C, what resources could principal K have gained access to? What principals

could have gained access to resource R?
� Expiration vulnerability: If certificate set C0 ⊂ C expires, what resources will principal K be pre-

vented from accessing? What principals will be excluded from accessing resource R?
� Universally guarded access: Is it the case that all authorizations that can be issued for a given resource

R must involve a cert signed by principal K? Is it the case that all authorizations that grant a given

principal K0 access to some resource must involve a cert signed by K?

Other models of trust management such as RBAC-based trust management (RT) [41] are also possible.

The following rules are available in the base model RT[]:

� Simple member: A.r → D. A asserts that D is a member of A’s r role.
� Simple inclusion: A.r → B .r 1. This is delegation from A to B.

The model RT[∩] adds to RT[] the following intersection inclusion rule: A.r → B1.r 1 and B2.r 2. This

adds partial delegations from A to B1 and to B2. The model RT[⇐] adds to RT[] the following linking

inclusion rule: A.r → A.r 1.r 2. This adds delegation from A to all the members of the role A.r 1. RT[∩, ⇐]

is all of the above four rules. The kinds of questions we would like to ask are:

� Simple safety (existential): Does a principal have access to some resource in some reachable state?
� Simple availability: In every state, does some principal have access to some resource?
� Bounded safety: In every state, is the number of principals that have access to some resource

bounded?
� Liveness (existential): Is there a reachable state in which no principal has access to a given resource?
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� Mutual exclusion: In every reachable state, are two given properties (or two given resources) mu-

tually exclusive (i.e., no principal has both properties [or access to both resources] at the same

time)?
� Containment: In every reachable state, does every principal that has one property (e.g., has access

to a resource) also have another property (e.g., is an employee)? Containment can express safety

or availability (e.g., by interchanging the two example properties in the previous sentence).

The complexity of queries such as simple safety, simple availability, bounded safety, liveness, and mutual

exclusion analysis for RT[∩, ⇐] is decidable in poly time in size of state. For containment analysis [41],

it is P for RT[], coNP-complete for RT[∩], PSPACE-complete for RT[⇐], and decidable in coNEXP for

RT[∩, ⇐].

However, permission-based trust management cannot easily authorize principals with a certain property.

For example [41], to give a 20% discount to students of a particular institute, the bookstore can delegate

discount permission to the institute key. The institute has to delegate its key to each student with respect to

“bookstore” context; this can be too much burden on the institute. Alternatively, the institute can create a

new group key for students and delegate it to each student key, but this requires that the institute create a key

for each meaningful group; this is also too much burden. One answer to this problem is an attribute-based

approach, which combines RBAC and trust management.

The requirements in an attribute-based system [40] are decentralization, provision of delegation of

attribute authority, inference, attribute-based delegation of attribute authority, conjunction of attributes,

attributes with fields (expiry, age, etc.) with the desirable features of expressive power, declarative semantics,

and tractable compliance checking. Logic programming languages such as Prolog or, better, Datalog can

be used for a delegation logic for ABAC: this combines logic programming with delegation and possibly

with monotonic or nonmonotonic reasoning. With delegation depth and complex principals such as k out

of n (static/dynamic) thresholds, many more realistic situations can be addressed.

Related to the idea of attribute-based access control and to allow for better interoperability across

administrative boundaries of large systems, an interesting approach is the use of proof-carrying authenti-

cation [2]. An access is allowed if a proof can be constructed for an arbitrary access predicate by locating

and using pieces of the security policy that have been distributed across arbitrary hosts. It has been imple-

mented as modules that extend a standard web server and web browser to use proof-carrying authorization

to control access to web pages. The web browser generates proofs mechanically by iteratively fetching proof

components until a proof can be constructed. They provide for iterative authorization, by which a server

can require a browser to prove a series of challenges.

2.5 Language-Based Security

As discussed earlier, current operating systems are much bigger than current compilers, so it is worthwhile

to make the compiler part of the TCB rather than an OS. If it is possible to express security policies using a

programming language that can be statically analyzed, a compiler as part of a TCB makes eminent sense.

The main goal of language-based security is to check the noninterference property, that is, to detect all

possible leakages of some sensitive information through computation, timing channels, termination chan-

nels, I/O channels, and so on. However, the noninterference property is too restrictive to express security

policies, since many programs do leak some information. For example, sensitive data after encryption can

be leaked to the outside world, which is agreeable with respect to security as long as the encryption is

effective. Hence, the noninterference property has to be relaxed by some mechanisms like declassification.

Note that static approaches cannot quantify the leakage of information, as the focus is on whether a

program violated some desired property with respect to information flow. It is possible to use a dynamic ap-

proach that quantifies the amount of information leaked by a program as the entropy of the program’s out-

puts as a distribution over the possible values of the secret inputs, with the public inputs held constant [43].

Noninterference has an entropy of 0. Such a quantitative approach will often be more useful and flexible

than a strict static analysis approach, except that analysis has to be repeated multiple times for coverage.
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One approach to static analysis for language-based security has been to use type inference techniques,

which we discuss next.

2.5.1 The Type-Based Approach

Type systems establish safety properties (invariants) that hold throughout the program, whereas nonin-

terference requires that two programs give the same output in spite of different input values for their “low”

values. Hence, a noninterference proof can be viewed as a bisimulation. For simpler languages (discussed

below), a direct proof is possible, but for languages with advanced features such as concurrency and dy-

namic memory allocation, noninterference proofs are more complex. Before we proceed to discuss the

type-based approach, we will briefly describe the lattice model of information flow.

The lattice model of information flow started with the work of Bell and LaPadula [6] and Denning

and Denning [17]. Every program variable has a static security class (or label); the security label of each

variable can be global (as in early work) or local for each owner, as in the decentralized label model (DLM)

developed for Java in Jif [45].

If x and y are variables, and there is (direct) information flow from x to y, it is permissible iff the

label of x is less than that of y. Indirect flows arise from control flow such as if (y=1) then x=1
else x=2 . If the label of x ≤ the label of y, some information of y flows into x (based on whether x is

1 or 2) and should be disallowed. Similarly, if (y=z) then x=1 else w=2 , the lub of the levels

of y and z should be ≤ g lb of the levels of x and w . To handle this situation, we can assign a label to the

program counter (pc). In the above example, we can assign the label of the lub to pc just after evaluating

the condition; the condition now that needs to be satisfied is that both the arms of the if should have at

least the same level as the pc .

Dynamic labels are also possible. A method may take parameters, and the label of the parameter itself

could be an another formal. In addition, array elements could have different labels based on index, and

hence an expression could have a dynamic label based on the runtime value of its index.

Checking that the static label of an expression is at least as restrictive as the dynamic label of any value it

might produce is now one goal of analysis (preferably static). Similarly, in the absence of declassification,

we need to check that the static label of a value is at least as restrictive as the dynamic label of any value

that might affect it. Because of the limitations of analysis, static checking may need to use conservative

approximations for tractability.

Denning and Denning proposed program certification as a lattice-based static analysis method [17] to

verify secure information flow. However, soundness of the analysis was not addressed. Later work such

as that of Volpano and colleagues [55] showed that a program is secure if it is “typable,” with the “types”

being labels from a security lattice. Upward flows are handled through subtyping. In addition to checking

correctness of flows, it is possible to use type inference to reduce the need to annotate the security levels

by the programmer. Type inference computes the type of any expression or program. By introducing type

variables, a program can be checked if it can be typed by solving the constraint equations (inequalities)

induced by the program. In general, simple type inference is equivalent to first-order unification, whereas

in the context of dependent types it is equivalent to higher-order unification.

For example, consider a simple imperative language with the following syntax [55]:

(phrases) p:: = e | c
(expr) e:: = x | l | n | e arith e' | e relop e'
(cmds) c::= e:=e' | c; c' | if e then c else c' |

while e do c | let var x:=e in c

Here, l denotes locations (i.e., program counter values), n integers, x variables, and c constants. The

types in this system are types of variables, locations, expressions, and commands; these are given by one

of the partially ordered security labels of the security system. A cmdhas a type tcmd only if it is guaranteed
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that every assignment in cmd is made to a variable whose security class is t or higher. The type system for

security analysis is as follows (L and T are location and type environments, respectively):

L ; T ⊢ n : t An integer constant can be typed

L ; T ⊢ x : t if T(x) = t

L ; T ⊢ l : t if L (l) = t

L ; T ⊢ e : t L ; T ⊢ e ′ : t

L ; T ⊢ e relop e ′ : t

L ; T ⊢ x : t L ; T ⊢ e ′ : t

L ; T ⊢ x := e : tcmd

L ; T ⊢ c : tcmd L ; T ⊢ c ′ : tcmd

L ; T ⊢ c ; c ′ : tcmd

L ; T ⊢ e : t L ; T ⊢ c : t L ; T ⊢ c ′ : t

L ; T ⊢ i f e then c else c ′ : t

L ; T ⊢ e : t L ; T ⊢ c : t

L ; T ⊢ while e do c : t

Consider the rules for assignment above. In order for information to flow from e ′ to e , both have to

be at the same security level. However, upward flow is allowed, for secrecy, for example, if e is at a higher

level and e ′ is at a lower level. This is handled by extending the partial order by subtyping and coercion:

the low level (derived type) is smaller (for secrecy) in this extended order than the high level (base type).

Note that the extended relation has to be contravariant in the types of commands tcmd .

It can be proved [55] that if an expression e can be given a type t in the above type system, then, for

secrecy, only variables at level t or lower in e will have their contents read when e is evaluated (no read

up). For integrity, every variable in e stores information at integrity level t. If a command has the property

that every assignment within c is made to a variable whose security class is at least t, then the confinement

property for secrecy says that no variable below level t is updated in c (no write down). For integrity, every

variable assigned in c can be updated by a type t variable.

Soundness of the type system induces the noninterference property, that is, a high value cannot influence

any lower value (or information does not leak from high values to low values).

Smith and Volpano [53] have studied information flow in multithreaded programs. The above type

system does not guarantee noninterference; however, by restricting the label of all the while-loops and its

guards to low, the property is restored. Abadi has modeled encryption as declassification [1] and presented

the resulting type system.

Myers and colleagues have developed static checking for DLM-based Jif language [12, 16], while Pottier

and colleagues [49] have developed OCaml-based FlowCAML. We discuss the Jif approach in some detail.

2.5.2 Java Information Flow (Jif) Language

Jif is a Java-based information flow programming language that adds static analysis of information flow

for improved security assurance. Jif is mainly based on static type checking. Jif also performs some runtime

information flow checks.

Jif is based on decentralized labels. A label in Jif defines the security level, represented by a set of

policy expressions separated by semicolons. A policy expression {owner : reader1, reader2, . . .} means the

principal owner wants to allow labeled information to flow to at most the principal’s readeri . Unlike the
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MAC model, these labels contain fine-grained policies, which have an advantage of being able to represent

decentralized access control. These labels are called decentralized labels because they enforce security on

behalf of the owning principals, not on behalf of an implicitly centralized policy specifier. The policy

{o1 : r1, r2; o2 : r2, r3} specifies that both o1 and o2 own the information with each allowing either r1, r2 or

r2, r3, respectively. For integrity, another notation is adopted.

Information can flow from label L 1 to label L 2 only if L 1 ⊑ L 2 (i.e., L 1 is less restrictive than L 2),

where ⊑ defines a preorder on labels in which the equivalence classes form a join semilattice. To label

an expression (such as w + x), a join operator is defined as the lub of the labels of the operands, as it

has to have a secrecy as strong as any of them. In the context of control flow, such as if cond then
x=... else x=... , we also need the join operator. To handle implicit flows through control flow,

each program visible location is given an implicit label.

A principal hierarchy allows one principal to actfor another. This helps in simplifying the policy state-

ments in terms of representation of groups or roles. For example, suppose principal Alice actsfor Adm and

principal Bob actsfor Adm; thus, in the following code whatever value Adm has is also readable by Alice

and Bob.

void examplePrincipalHierarchy() {

int {Alice:} a;
int {Bob:} b;
int {Adm:} c = 10;
a = c; /* is valid stmt */
b = c; /* is valid stmt */

}

The declassification mechanism gives the programmer an explicit escape hatch for releasing information

whenever necessary. The declassification is basically carried out by relaxing the policies of some labels by

principals having sufficient authority. For example,

void exampleDeclassification() where authority (Alice) {

int {Alice:} x;
int {Alice:Bob} y;
int {Bob:} a;
int {Bob:Alice} b;

/*Here PC has label {}*/
if (x > 10) {

/*Here PC has label {Alice:}*/
declassify(y = 25, {Alice:Bob});

/*stmt ``y = 25" is declassified from {Alice:} to {Alice:Bob}*/
/*valid because has Alice's authority*/

}

/*Here PC has again the label {}*/
b = declassify(a, {Bob:Alice});
/*invalid because doesn't have Bob's authority*/

}

Jif has label polymorphism. This allows the expression of code that is generic with respect to the security

class of the data it manipulates. For example,

void exampleLP(int {Alice:;Bob: }i) {

...
/*Assures a security level upto {Alice:;Bob:}*/

}
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To the above function (which assures a security level up to {Alice:;Bob:}) one can pass any integer variable

having one of the following labels:

� {}
� {Alice:Bob}
� {Alice:}
� {Bob:}
� {Alice:;Bob:}

Jif has automatic label inference. This makes it unnecessary to write many type-annotations. For example,

suppose the following function is called (which can only be called from a program point with label at most

{Alice:;Bob:}) from a valid program point; “a” will get a default label of {Alice:;Bob:}.

void exampleALI {Alice:;Bob:}(int i) {

int a;
/* Default label of `` a"' is {Alice:;Bob:}*/

}

Runtime label checking and first-class label values in Jif make it possible to discover and define new

policies at runtime. Runtime checks are statically checked to ensure that information is not leaked by the

success or failure of the runtime check itself. Jif provides a mechanism for comparing runtime labels and

also a mechanism for comparing runtime principals. For example,

void m(int {Alice:pr} i, principal {} pr) {

int {Alice:Bob} x;
if (Bob actsfor pr) {

x = i;
/* OK, since {Alice:pr} <= {Alice:Bob}*/

}

else {

x = 0;
}

}

void n(int {*lbl} i, label {} lbl) {

int {Alice:} x;
if (lbl <= new label {Alice:}) {

x = i;
/* OK, since {*lbl} <= {Alice:Bob}*/

}

else {

x = 0;
}

}

Note that in the above function n(. . . ), *lbl represents an actual label held by the variable lbl, whereas

just lbl inside a label represents the label of the variable lbl (i.e., {} here).

Labels and principals can be used as first-class values represented at runtime. These dynamic labels and

principals can be used in the specification of other labels and used as the parameters of parameterized

classes. Thus, Jif ’s type system has dependent types. For example,
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class C [label L] { ... }

...
void m() {

final label lb = new label {Alice: Bob};
int {*lb; Bob:} x = 4;
C[lb] foo = null;

/*Here `` lb" acts as first-class label*/
C[{*lb}] bar = foo;

}

Note that, unlike in Java, method arguments in Jif are always implicitly final. Some of the limitations of

Jif are that there is no support for Java Threads, nested classes, initializer blocks, or native methods.

Interaction of Jif with existing Java classes is possible by generating Jif signatures for the interface

corresponding to these Java classes.

2.5.3 A Case Study: VSR

The context of this section8 is the security of archival storage. The central objective usually is to guarantee

the availability, integrity, and secrecy of a piece of data at the same time. Availability is usually achieved

through redundancy, which reduces secrecy (it is sufficient for the adversary to get one copy of the secret).

Although the requirements of availability and secrecy seem to be in conflict, an information-theoretic

secret sharing protocol was proposed by Shamir in 1979 [51], but this algorithm does not provide data

integrity. Loss of shares can be tolerated up to a threshold but not to arbitrary modifications of shares.

A series of improvements have therefore been proposed over time to build secret sharing protocols

resistant to many kinds of attacks. The first one takes into account the data-integrity requirement and

leads to verifiable secret sharing (VSS) algorithms [20, 48]. The next step is to take into account mobile

adversaries that can corrupt any number of parties given sufficient time. It is difficult to limit the number of

corrupted parties on the large timescales over which archival systems are expected to operate. An adversary

can corrupt a party, but redistribution can make that party whole again (in practice, this happens, for

example, following a system re-installation). Mobile adversaries can be tackled by means of proactive

secret sharing (PSS), wherein redistributions are performed periodically. In one approach, the secret is

reconstructed and then redistributed. However, this causes extra vulnerability at the node of reconstruction.

Therefore, another approach, redistribution without reconstruction, is used [33]. A combination of VSS

and PSS is verifiable secret redistribution (VSR); one such protocol is proposed in [58]. In [26] we proposed

an improvement of this protocol, relaxing some of the requirements.

Modeling the above protocol using Jif can help us understand the potential and the difficulties of Jif

static analysis. We now discuss the design of a simplified VSR [58] protocol:

� Global values: This class contains the following variables that are used for generation and verifica-

tion of shares and subshares during reconstruction and redistribution phases.

(m,n): m is the threshold number of servers required for reconstruction of a secret, and n is

the total number of servers to which shares are distributed.

p: The prime used for Z p ; r is the prime used for Zr .

g: The Diffie–Hellman exponentiator.

KeyID: Unique for each secret across all clients.

ClientID: ID of the owner of the secret.

� Secret: This class contains secret’s value (i.e., the secret itself), the polynomial used for distribution

of shares, N[] — the array of server IDs to which the shares are distributed.

8This is joint work with a former student, S. Roopesh.
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� Points2D: This class contains two values x and f(x), where f is the polynomial used for generating

the shares (or subshares). It is used by Lagrangian interpolator to reconstruct the secret (or shares

from subshares).
� Share: This class contains an immutable original share value (used to check whether shares are

uncorrupted or not) and a redistributing polynomial (used for redistribution of this share to a new

access structure).
� SubShare: This is the same as the Share class, except that the share value actually contains a subshare

value and no redistributing polynomial.
� SubShareBox: This class keeps track of the subshares from a set of valid servers (i.e., B[] servers)

in the redistribution phase. This is maintained by all servers belonging to the new (m′,n′)-access

structure to which new shares are redistributed.
� Client: This class contains zero or more secrets and is responsible for initial distribution of shares

and reconstruction of secrets from valid sets of servers.
� Server: This class maintains zero or more shares from different clients and is responsible for

redistribution of shares after the client (who is the owner of the secret corresponding to this share)

has approved the redistribution.
� Node: Each node contains two units, one Client and the other Server (having the same IDs as

this node). On message reception from the reliable communication (group communication system

[GCS]) interface GCSInterface, this node extracts the information inside the message and gives it

to either the client or the server, based on the message type.
� GCSInterface: This communication interface class is responsible for acting as an interface between

underlying reliable messaging systems (e.g., the Ensemble GCS [30] system), user requests, and

Client and Server.
� UserCommand (Thread): This handles three types of commands from the user:

Distribution of the user’s secret S to (m,n)-access structure

Redistribution from (m,n)-access structure to (m′,n′)-access structure

Reconstruction of secret S

� SendMessage (Thread): This class packetizes the messages (from Node) (depends on the commu-

nication interface), then either sends or multicasts these packets to the destination node(s).
� Attacker: This class is responsible for attacking the servers, getting their shares, and corrupting all

their valid shares (i.e., changing the y values in the Points2D class to arbitrary values). This class

also keeps all valid shares it got by attacking the servers. It also reconstructs all possible secrets from

the shares collected. Without loss of generality, we assume that at most one attacker can be running

in the whole system.
� AttackerNode: This is similar to Node, but instead of Client and Server instances, it contains only

one instance of the Attacker class.
� AttackerGCSInterface: Similar to the GCSInterface class.
� AttackerUserCommand: This handles two types of commands from the attacker:

Attack server Si

Construct all possible secrets from collected valid shares

We do not dwell on some internal bookkeeping details during redistribution and reconstruction phases.

Figure 2.1 gives the three phases of the simplified VSR protocol. The distribution and reconstruction phases

almost remain the same. Only the redistribution phase is slightly modified, where the client acts as the

manager of the redistribution process. The following additional assumptions are also made:

� There are no “Abort” or “Commit” messages from servers.
� In the redistribution phase, the client, who is the owner of the secret corresponding to this redistri-

bution process, will send the “commit” messages instead of the redistributing servers.
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FIGURE 2.1 Simplified VSR protocol.

� Attacker is restricted to only attacking the servers and thereby getting all the original shares, which

are held by the servers, and corrupting them.
� There are no “reply and DoS attacks” messages.

2.5.3.1 Jif Analysis of Simplified VSR

In this section, we discuss an attempt to do a Jif analysis on a simplified VSR implementation and its

difficulties. As shown in Figure 2.2, every Node (including the AttackerNode) runs with “root” authority

(who is above all and can actfor all principals). Every message from and out of the network will have an

empty label (as we rely on underlying Java Ensemble for cryptographically perfect end-to-end and multicast

communication). The root (i.e., Node) receives the message from the network. Based on the message type,
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FIGURE 2.2 Jif analysis on VSR.

root will appropriately (classify or) declassify the contents of the message and handles them by giving

them to either the client or server. Similarly, all outgoing messages from Client/Server to communication

network would be properly declassified.

First, the communication interface (Java Ensemble) uses some native methods to contact ensemble-

server.9 To do asynchronous communication we use threads in our VSR implementation. Since Jif does

not support Java Threads and native methods, Jif analysis cannot be done at this level. Hence, we have to

restrict the Jif analysis above the communication layer.10

Next, let us proceed to do static analysis on the remaining part using the Jif compiler. Consider the

Attacker Node (see Figure 2.2). The attacker node (running with root authority) classifies all content going

to the principal Attacker with the label-{Attacker :}. If the attacker has compromised some server, it would

get all the valid shares belonging to that server. Hence, all shares of a compromised server output from the

communication interface (GCS) go to the attacker node first. Since it is running with root authority and

sees that shares are semi-sensitive, it (de)classifies these shares to {Server:}. For these shares to be read by

the attacker, the following property should hold: {Server:} ⊑ {Attacker:}.

However, since the Attacker principal does not actsfor this Server (principal), the above relation does

not hold, so the attacker cannot read the shares. The Jif compiler detected this as an error. However, if we

add an actsfor relation from Attacker (principal) to this Server (principal) (i.e., Attacker actsfor Server), it

could read the shares. In this case, the Jif compiler does not report any error, implying that the information

flow from {Server:} to {Attacker:} is valid (since {Server:} ⊑ {Attacker:} condition holds).

VSR has a threshold property: if the number of shares (or subshares) is more than the threshold, the

secret can be reconstituted. This implies that any computation knowing less than the threshold number

of shares cannot interfere with any computation that has access to more than this threshold. We need a

threshold set noninterference property. This implies that we can at most declassify less than any set of a

threshold number of shares. Since such notions are not expressible in Jif, even if mathematically proved

as in [58], more powerful dependent-type systems have to be used in the analysis. Since modern type

inference is based on explicit constraint generation and solving, it is possible to model the threshold

property through constraints, but solving such constraints will have a high complexity. Fundamentally,

we have to express the property that any combination of subshares less than the threshold number cannot

9ensemble-server is a daemon serving group communication.
10Because of this separation, we encounter a problem with the Jif analysis even if we want to abstract out the lower

GCS layer. Some of the classes (such as the Message class) are common to both upper and lower layers, but they are

compiled by two different compilers (Jif and Java) that turn out to have incompatible .class files for the common classes.
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interfere (given that the number of subshares available is more than this number); either every case has

to be discharged separately or symmetry arguments have to be used. Approaches such as model checking

(possibly augmented with symmetry-based techniques) are indicated.

There is also a difficulty in Jif in labeling each array element with different values. In the Client class,

there is a function that calculates and returns the shares of a secret. Its skeleton code is as follows:

1 Share[] getShares(int[] ServerID) {

2 Share {Client:}[] {Client:} shares = new Share {Client:}[] {Client:};
3 int n = ServerIDs.length;
4 for (int i = 0 ; i < n ; i++) {

5 shares[i] = {Client:ServerServerID[i]} polynomial(ServerID[i]);
6 }

7 return shares;
8 }

In line 2, “shares” is an array of type “Share” with a label of {Client:} for both array variable and individual

elements of this array. Line 5 calculates different shares for different servers based on ServerIDs and assigns

a different label of {Client: ServerServerID[i]} for each of these shares. However, Jif does not allow for different

labels for different elements of an array; it only allows a common label for all elements of an array. If this is

possible, we should ensure that accessing some array element does not itself leak some information about

the index value.

There are currently many other difficulties in using Jif to do analysis such as the need to recode a program

in Jif. The basic problem is the (post hoc) analysis after an algorithm has already been designed. What is

likely to be more useful11 is an explicit security policy before the code is developed [60] and then use of

Jif or a similar language to express and check these properties where possible. McCamant and Ernst [43]

argue that Jif-type static analysis is still relatively rare and no “large” programs have yet been ported to Jif

or FlowCaml. They instead use a fine-grained dynamic bit-tracking analysis to measure the information

revealed during a particular execution.

2.6 Future Work

Current frameworks such as Jif have not been sufficiently developed. We foresee the following evolution:

� The analysis in Section 2.5.1 assumed that typing can reveal interesting properties. This needs to

be extended to a more general static analysis that deals with values in addition to types as well as

when the language is extended to include arrays and so on. Essentially, the analysis should be able

to handle array types with affine index functions. This goes beyond the analysis possible with type

analysis.
� Incorporate pointers and heaps in the analysis. Use dataflow analysis on lattices but with complex

lattice values (such as regular expressions, etc.) or use shape analysis techniques.
� Integrate static analysis (such as abstract interpretation and compiler dataflow analysis) with model

checking to answer questions such as: What is the least/most privilege a variable should have to satisfy

some constraint? This may be coupled with techniques such as counterexample guided abstraction

refinement [13]. This, however, requires considerable machinery. Consider, for example, a fully

developed system such as the SLAM software model checking [3]. It uses counterexample-driven

11In the verification area, it is increasingly becoming clear that checking the correctness of finished code is an order

of magnitude more difficult than intervening in the early phases of the design.
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abstraction of software through “boolean” programs (or abstracted programs) using model creation

(c2bp), model checking (bebop), and model refinement (newton). SLAM builds on the OCaml

programming language and uses dataflow and pointer analysis, predicate abstraction and symbolic

model checking, and tools such as CUDD, a SAT solver, and an SMT theorem prover [3]. Many

such analyses have to be developed for static analysis of security properties.
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3.1 Introduction

Embedded systems are computing platforms that are used inside a product whose main function is different

than general-purpose computing. Cell phones and multipoint fuel injection systems in cars are examples

of embedded systems. Embedded systems are characterized by application-specific and multidimensional

design constraints. While decreasing time to market and the need for frequent upgrades are pushing

embedded system designs toward programmable implementations, these stringent requirements demand

that designs be highly customized. To customize embedded systems, standard design features of general-

purpose processors are often omitted, and several new features are introduced in embedded systems to

meet all the design constraints simultaneously.

Consequently, software development for embedded systems has become a very challenging task. Tra-

ditionally humans used to code for embedded systems directly in assembly language, but now with the

software content reaching multimillion lines of code and increasing at the rate of 100 times every decade,

compilers have the onus of generating code for embedded systems. With embedded system designs still

being manually customized, compilers have a dual responsibility: first to exploit the novel architectural

features in the embedded systems, and second to avoid the loss due to missing standard architectural

features. Existing compiler technology falls tragically short of these goals.

3-1
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While the task of the compiler is challenging in embedded systems, it has been shown time and again

that whenever possible, a compiler can have a very significant impact on the power, performance, and

so on of the embedded system. Given that the compiler can have a very significant impact on the design

constraints of embedded systems. Consequently, it is only logical to include the compiler during the design

of the embedded system. Existing embedded system design techniques do not include the compiler during

the design space exploration. While it is possible to use ad hoc methods to include the compiler’s effects

during the design of a processor, a systematic methodology to perform compiler-aware embedded systems

design is needed. Such design techniques are called compiler-aided design techniques.

This chapter introduces our compiler-in-the-loop (CIL) design methodology, which systematically in-

cludes compiler effects to design embedded processors. The core capability in this methodology is a design

space exploration (DSE) compiler. A DSE compiler is different from a normal compiler in that a DSE com-

piler has heuristics that are parameterized on the architectural parameters of the processor architecture.

While typical compilers are built for one microarchitecture, a DSE compiler can generate good-quality

code for a range of architectures. A DSE compiler takes the architecture description of the processor as an

input, along with the application source code, and generates an optimized executable of the application

for the architecture described.

The rest of the chapter is organized as follows. In Section 3.2, we describe our whole approach of using

a compiler for processor design. In particular, we attempt to design the popular architectural feature, in

embedded processors, called horizontally partitioned cache (HPC), using our CIL design methodology.

Processors with HPC have two caches at the same level of memory hierarchy, and wisely partitioning the

data between the two caches can achieve significant energy savings. Since there is no existing effective

compiler technique to achieve energy reduction using HPCs, in Section 3.4, we first develop a compiler

technique to partition data for HPC architectures to achieve energy reduction. The compilation technique

is generic, in the sense that it is not for specific HPC parameters but works well across HPC parameters.

Being armed with a parametric compilation technique for HPCs, Section 3.5 embarks upon the quest

designs an embedded processor by choosing the HPC parameters using inputs from the compiler.

Finally, Section 3.6 summarizes this chapter.

3.2 Compiler-Aided Design of Embedded Systems

The fundamental difference between an embedded system and a general-purpose computer system is in

the usage of the system. An embedded system is very application specific. Typically a set of applications

are installed on an embedded system, and the embedded system continues to execute those applications

throughout its lifetime, while general-purpose computing systems are designed to be much more flexible to

allow and enable rapid evolution in the application set. For example, the multipoint fuel injection systems

in automobiles are controlled by embedded systems, which are manufactured and installed when the car

is made. Throughout the life of the car, the embedded system performs no other task than controlling

the multipoint fuel injection into the engine. In contrast, a general-purpose computer performs a variety

of tasks that change very frequently. We continuously install new games, word processing software, text

editing software, movie players, simulation tools, and so on, on our desktop PCs. With the popularity

of automatic updating features in PCs, upgrading has become more frequent than ever before. It is the

application-specific nature of embedded systems that allows us to perform more aggressive optimizations

through customization.

3.2.1 Design Constraints on Embedded Systems

Most design constraints on the embedded systems come from the environment in which the embedded

system will operate. Embedded systems are characterized by application-specific, stringent, and multidi-

mensional design constraints:

Application-specific design constraints: The design constraints on embedded systems differ widely;

they are very application specific. For instance, the embedded system used in interplanetary



Compiler-Aided Design of Embedded Computers 3-3

surveillance apparatus needs to be very robust and should be able to operate in a much wider

range of temperatures than the embedded system used to control an mp3 player.

Multidimensional design constraints: Unlike general-purpose computer systems, embedded systems

have constraints in multiple design dimensions: power, performance, cost, weight, and even form.

A new constraint for handheld devices is the thickness of handheld electronic devices. Vendors only

want to develop sleek designs in mp3 players and cell phones.

Stringent design constraints: The constraints on embedded systems are much more stringent than on

general-purpose computers. For instance, a handheld has much tighter constraint on weight of the

system than a desktop system. This comes from the portability requirements of handhelds such as

mp3 players. While people want to carry their mp3 players everywhere with them, desktops are not

supposed to be moved very often. Thus, even if a desktop weighs a pound more, it does not matter

much, while in an mp3 player every once matters.

3.2.2 Highly Customized Designs of Embedded Systems

Owing to the increasing market pressures of short time to market and frequent upgrading, embedded

system designers want to implement their embedded systems using programmable components, which

provide faster and easier development and upgrades through software. The stringent, multidimensional,

and application-specific constraints on embedded systems force the embedded systems to be highly cus-

tomized to be able to meet all the design constraints simultaneously. The programmable component in

the embedded system (or the embedded processor) is designed very much like general-purpose processors

but is more specialized and customized to the application domain. For example, even though register

renaming increases performance in processors by avoiding false data dependencies, embedded processors

may not be able to employ it because of the high power consumption and the complexity of the logic.

Therefore, embedded processors might deploy a “trimmed-down” or “light-weight” version of register

renaming, which provides the best compromise on the important design parameters.

In addition, designers often implement irregular design features, which are not common in general-

purpose processors but may lead to significant improvements in some design parameters for the relevant

set of applications. For example, several cryptography application processors come with hardware acceler-

ators that implement the complex cryptography algorithm in the hardware. By doing so, the cryptography

applications can be made faster and consume less power but may not have any noticeable impact on nor-

mal applications. Embedded processor architectures often have such application-specific “idiosyncratic”

architectural features.

Last, some design features that are present in general-purpose processors may be entirely missing in

embedded processors. For example, support for prefetching is now a standard feature in general-purpose

processors, but it may consume too much energy and require too much extra hardware to be appropriate

in an embedded processor.

To summarize, embedded systems are characterized by application-specific, multidimensional, and strin-

gent constraints, which result in the embedded system designs being highly customized to meet all the

design constraints simultaneously.

3.2.3 Compilers for Embedded Systems

High levels of customization and the presence of idiosyncratic design features in embedded processors

create unique challenges for their compilers. This leaves the compiler for the embedded processor in a very

tough spot. Compilation techniques for general-purpose processors may not be suitable for embedded

processors for several reasons, some of which are listed below:

Different ISA: Typically, embedded processors have different instruction set architectures (ISAs) than

general-purpose processors. While IA32 and PowerPC are the most popular ISAs in the general-

purpose processors, ARM and MIPS are the most popular instruction sets in embedded processors.



3-4 The Compiler Design Handbook: Optimizations and Machine Code Generation

The primary reason for the difference in ISAs is that embedded processors are often built from

the ground up to optimize for their design constraints. For instance, the ARM instruction set has

been designed to reduce the code size. The code footprint of an application compiled in ARM

instructions is very small.

Differentoptimizationgoals: Even if compilers can be modified to compile for a different instruction set,

the optimization goals of the compilers for general-purpose processors and embedded processors

are different. Most general-purpose compiler technology aims toward high performance and less

compile time. However, for many embedded systems, energy consumption and code size may very

important goals. For battery-operated handheld devices energy consumption is very important

and, due to the limited amount of RAM size in the embedded system, the code size may be very

important. In addition, for most embedded systems compile time may not be an issue, since the

applications are compiled on a server—somewhere other than the embedded system—and only

the binaries are loaded on the embedded system to execute as efficiently as possible.

Limited compiler technology: Even though techniques may be present to exploit the regular design

features in general-purpose processors, compiler technology to exploit the “customized” version

of the architectural technique may be absent. For example, predication is a standard architectural

feature employed in most high-end processors. In predication, the execution of each instruction

is conditional on the value of a bit in the processor state register, called the condition bit. The

condition bit can be set by some instructions. Predication allows a dynamic decision about whether

to execute an instruction. However, because of the architectural overhead of implementing pred-

ication, sometimes very limited support for predication is deployed in embedded processors. For

example, in the Starcore architecture [36], there is no condition bit, there is just a special conditional

move instruction (e.g., cond move R1 R2, R3 R4), whose semantics are: if (R1 > 0) move R1 R3,

else move R1 R4. To achieve the same effect as predication, the computations should be performed

locally, and then the conditional instruction can be used to dynamically decide to commit the result

or not. In such cases, the existing techniques and heuristics developed for predication do not work.

New techniques have to be developed to exploit this “flavor” of predication in the architecture.

The first challenge in developing compilers for embedded processors is therefore to enhance the

compiler technology to exploit novel and idiosyncratic architectural features present in embedded

processors.

Avoid penalty due to missing design features: Several embedded systems simply omit some archi-

tectural features that are common in general-purpose processors. For example, the support for

prefetching may be absent in an embedded processor. In such cases, the challenge is to minimize

the power and performance loss resulting from the missing architectural feature.

To summarize, code generation for embedded processors is extremely challenging because of their

nonregular architectures and their stringent multidimensional constraints.

3.2.4 Compiler-Assisted Embedded System Design

While code generation for embedded systems is extremely challenging, a good compiler for an embedded

system can significantly improve the power, performance, etc. of the embedded system. For example, a

compiler technique to support partial predication can achieve almost the same performance as complete

predication [13]. Compiler-aided prefetching in embedded systems with minimal support for prefetching

can be almost as effective as a complete hardware solution [37].

3.2.4.1 Compiler as a CAD Tool

Given the significance of the compiler on processor power and performance, it is only logical that the

compiler must play an important role in embedded processor design. To be able to use compilers to
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design processors, the key capability required is an architecture-sensitive compiler, or what we call a DSE

compiler. It should be noted here that the DSE compiler we use and need here is conceptually different than

a normal compiler. As depicted in Figure 3.1, a normal compiler is for a specific processor; it takes the source

code of the application and generates code that is as fast as possible, as low-power consuming as possible,

and so on for that specific processor. A DSE compiler is more generic; it is for a range of architectures.

A DSE compiler takes the source code of the application, and the processor architecture description as

input, and generates code for the processor described. The main difference between a normal compiler

and a DSE compiler is in the heuristics used. The heuristics deployed in a traditional compiler may not

have a large degree of parameterization. For example, the register allocator in the compiler for a machine

that has 32 registers needs to be efficient in allocating just 32 registers, while a DSE compiler should be

able to efficiently register allocate using any number of registers. One example is that the instruction

scheduling heuristic of a DSE compiler will be parameterized on the processor pipeline description, while

in a normal compiler, it can be fixed. Another example is the register allocation heuristic in the compiler.

The register allocation algorithm in a compiler for a machine that has 32 registers needs to be efficient

in allocating just 32 registers, while a DSE compiler should be able to efficiently register allocate using

any number of registers. No doubt, all compilers have some degree of parameterizations that allow some

degree of compiler code reuse when developing a compiler for a different architecture. DSE compilers have

an extremely high degree of parametrization and allow large-scale compiler code reuse.

Additionally, while a normal compiler can have ad hoc heuristics to generate code, a DSE compiler

needs to truthfully and accurately model the architecture and have compilation heuristics that are param-

eterized on the architecture model. For example, simple scheduling rules are often used to generate code

for a particular bypass configuration. The scheduling rules, for example, a dependent load instruction

should always be separated by two or more cycles after the add instruction, work for the specific bypass

configuration. A DSE compiler will have to model the processor pipeline and bypasses as a graph or a

grammar and generate code that selects instructions that form a path in the pipeline or a legitimate word

in the grammar.

The DSE compiler gets the processor description in Architecture Description Language (ADL). While

there is a significant body of research in developing ADLs[1, 4, 5, 8, 9, 20, 21, 38] to serve as golden specifica-

tion for simulation, verification, synthesis, and so on, here we need an ADL that can describe the processor

at an abstraction that the compiler needs. We use the EXPRESSION ADL [10, 25] to parameterize our

DSE compiler that we call EXPRESS [13].

3.2.4.2 Traditional Design Space Exploration

Figure 3.2 models the traditional design methodology for exploring processor architectures. In the tra-

ditional approach, the application is compiled once to generate an executable. The executable is then
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simulated over various architectures to choose the best architecture. We call such traditional design method-

ology simulation-only (SO) DSE. The SO DSE of embedded systems does not incorporate compiler effects

in the embedded processor design. However, the compiler effects on the eventual power and performance

characteristics can be incorporated in embedded processor design in an ad hoc manner in the existing

methodology. For example, the hand-generated code can be used to reflect the code the actual compiler

will eventually generate. This hand-generated code can be used to evaluate the architecture. However, such

a scheme may be erroneous and result in suboptimal design decisions. A systematic way to incorporate

compiler hints while designing the embedded processor is needed.

3.2.4.3 Compiler-in-the-Loop Exploration

Figure 3.3 describes our proposed CIL schema for DSE. In this scheme, for each architectural variation,

the application is compiled (using the DSE compiler), and the executable is simulated on a simulator of

the architectural variation. Thus, the evaluation of the architecture incorporates the compiler effects in a

systematic manner. The overhead CIL DSE is the extra compilation time during each exploration step, but

that is insignificant relative to the simulation time.

We have developed various novel compilation techniques to exploit architectural features present in

embedded processors and demonstrate the need and usefulness of CIL DSE at several abstractions of

processor design, as shown in Figure 3.4: at the processor instruction set design abstraction, at the processor

pipeline design abstraction, at the memory design abstraction, and at the processor memory interaction

abstraction.

At the processor pipeline design abstraction, we developed a novel compilation technique for generating

code for processors with partial bypassing. Partial bypassing is a popular microarchitectural feature present

in embedded systems because although full bypassing is the best for performance, it may have significant

area, power, and wiring complexity overheads. However, partial bypassing in processors poses a challenge

for compilers, as no techniques accurately detect pipeline hazards in partially bypassed processors. Our

operation-table-based modeling of the processor allows us to accurately detect all kinds of pipeline hazards

and generates up to 20% better performing code than a bypass-insensitive compiler [23, 32, 34].

Compiler

Processor
Description

ADL

Application Executable Simulator Report

FIGURE 3.3 Compiler-in-the-loop design space exploration.
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During processor design, the decision to add or remove a bypass is typically made by designer’s intu-

ition or SO DSE. However, since the compiler has significant impact on the code generated for a bypass

configuration, the SO DSE may be significantly inaccurate. The comparison of our CIL with SO DSE

demonstrates that not only do these two explorations result in significantly different evaluations of each

bypass configuration, but they also exhibit different trends for the goodness of bypass configurations.

Consequently, the traditional SO DSE can result in suboptimal design decisions, justifying the need and

usefulness of our CIL DSE of bypasses in embedded systems [26, 31].

At the instruction set design abstraction, we first develop a novel compilation technique to generate code

to exploit reduced bit-width instruction set architectures (rISAs). rISA is a popular architectural feature in

which the processor supports two instruction sets. The first instruction set is composed of instructions that

are 32 bits wide, and the second is a narrow instruction set composed of 16-bit-wide instructions. rISAs

were originally conceived to reduce the code size of the application. If the application can be expressed

in the narrow instructions only, then up to 50% code compression can be achieved. However, since the

narrow instructions are only 16 bits wide, they implement limited functionality and can access only a

small subset of the architectural registers. Our register pressure heuristic consistently achieves 35% code

compression as compared to 14% achieved by existing techniques [12, 30].

In addition, we find out that the code compression achieved is very sensitive on the narrow instruction

set chosen and the compiler. Therefore, during processor design, the narrow instruction set should be

designed very carefully. We employ our CIL DSE technique to design the narrow instruction set. We find

that correctly designing the narrow instruction set can double the achievable code compression [9, 29].

At the processor pipeline–memory interface design abstraction, we first develop a compilation technique

to aggregate the processor activity and therefore reduce the power consumption when the processor is

stalled. Fast and high-bandwidth memory buses, although best for performance, can have very high

costs, energy consumption, and design complexity. As a result, embedded processors often employ slow

buses. Reducing the speed of the memory bus increases the time a processor is stalled. Since the energy

consumption of the processor is lower in the stalled state, the power consumption of the processor decreases.

However, there is further scope for power reduction of the processor by switching the processor to IDLE

state while it is stalled. However, switching the state of the processor takes 180 processor cycles in the

Intel XScale, while the largest stall duration observed in the qsort benchmark of the MiBench suite is less

than 100 processor cycles. Therefore, it is not possible to switch the processor to a low-power IDLE state

during naturally occurring stalls during the application execution. Our technique aggregates the memory

stalls of a processor into a large enough stall so that the processor can be switched to the low-power IDLE

state. Our technique is able to aggregate up to 50,000 stall cycles, and by switching the processor to the

low-power IDLE state, the power consumption of the processor can be reduced by up to 18% [33].

There is a significant difference in the processor power consumption between the SO DSE and CIL

DSE. SO DSE can significantly overestimate the processor power consumption for a given memory bus
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configuration. This bolsters the need and usefulness of including compiler effects during the exploration

and therefore highlights the need for CIL DSE.

This chapter uses a very simple architectural feature called horizontally partitioned caches (HPCs) to

demonstrate the need and usefulness of CIL exploration design methodology. HPC is a popular memory

architectural feature present in embedded systems in which the processors have multiple (typically two)

caches at the same level of memory hierarchy. Wisely partitioning data between the caches can result in

performance and energy improvements. However, existing techniques target performance improvements

and achieve energy reduction only as a by-product. First we will develop energy-oriented data partitioning

techniques to achieve high degrees of energy reduction, with a minimal hit on performance [35], and

then we show that compared to SO DSE of HPC configurations, CIL DSE results in discovering HPC

configurations that result in significantly less energy consumption.

3.3 Horizontally Partitioned Cache

Caches are one of the major contributors of not only system power and performance, but also of the

embedded processor area and cost. In the Intel XScale [17], caches comprise approximately 90% of

the transistor count and 60% of the area and consume approximately 15% of the processor power [3].

As a result, several hardware, software, and cooperative techniques have been proposed to improve the

effectiveness of caches.

Horizontally partitioned caches are one such feature. HPCs were originally proposed in 1995 by Gonzalez

et al. [6] for performance improvement. HPCs are a popular microarchitectural feature and have been

deployed in several current processors such as the popular Intel StrongArm [16] and the Intel XScale [17].

However, compiler techniques to exploit them are still in their nascent stages.

A horizontally partitioned cache architecture maintains multiple caches at the same level of hierarchy,

but each memory address is mapped to exactly one cache. For example, the Intel XScale contains two

data caches, a 32KB main cache and a 2KB mini-cache. Each virtual page can be mapped to either of the

data caches, depending on the attributes in the page table entry in the data memory management unit.

Henceforth in this paper we will call the additional cache the mini-cache and the original cache the main

cache.

The original idea behind such cache organization is the observation that array accesses in loops often

have low temporal locality. Each value of an array is used for a while and then not used for a long

time. Such array accesses sweep the cache and evict the existing data (like frequently accessed stack

data) out of the cache. The problem is worse for high-associativity caches that typically employ first-

in-first-out page replacement policy. Mapping such array accesses to the small mini-cache reduces the

pollution in the main cache and prevents thrashing, leading to performance improvements. Thus, a

horizontally partitioned cache is a simple, yet powerful, architectural feature to improve performance.

Consequently, most existing approaches for partitioning data between the horizontally partitioned caches

aim at improving performance.

In addition to performance improvement, horizontally partitioned caches also result in a reduction in

the energy consumption due to two effects. First, reduction in the total number of misses results in reduced

energy consumption. Second, since the size of the mini-cache is typically small, the energy consumed per

access in the mini-cache is less than that in the large main cache. Therefore, diverting some memory

accesses to the mini-cache leads to a decrease in the total energy consumption. Note that the first effect

is in line with the performance goal and was therefore targeted by traditional performance improvement

optimizations. However, the second effect is orthogonal to performance improvement. Therefore, energy

reduction by the second effect was not considered by traditional performance-oriented techniques. As we

show in this paper, the second effect (of a smaller mini-cache) can lead to energy improvements even in the

presence of slight performance degradation. Note that this is where the goals of performance improvement

and energy improvement diverge.
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3.4 Compiler for Horizontally Partitioned Cache

3.4.1 HPC Compiler Framework

The problem of energy optimization for HPCs can be translated into a data partitioning problem. The

data memory that the program accesses is divided into pages, and each page can be independently and

exclusively mapped to exactly one of the caches. The compiler’s job is then to find the mapping of the data

memory pages to the caches that leads to minimum energy consumption.

As shown in Figure 3.5, we first compile the application and generate the executable. The page access

information extractor calculates the number of times each page is accessed during the execution of the

program. Then it sorts the pages in decreasing order of accesses to the pages. The complexity of simulation

used to compute the number of accesses to each page and sorting the pages is O[n + m log(m)], where n

is the number of data memory accesses, and m is the number of pages accessed by the application.

The data partitioning heuristic finds the best mapping of pages to the caches that minimizes the energy

consumption of the target embedded platform. The data partitioning heuristic can be tuned to obtain

the best-performing, or minimal energy, data partition by changing the cost function performance/energy

estimator.

The executable together with the page mapping are then loaded by the operating system of the target

platform for optimized execution of the application.

3.4.2 Experimental Framework

We have developed a framework to evaluate data partitioning algorithms to optimize the memory latency

or the memory subsystem energy consumption of applications. We have modified sim-safe simulator from

the SimpleScalar toolset [2] to obtain the number of accesses to each data memory page. This implements

our page access information extractor in Figure 3.5. To estimate the performance/energy of an application

for a given mapping of data memory pages to the main cache and the mini-cache, we have developed

performance and energy models of the memory subsystem of a popular PDA, the HP iPAQ h4300 [14].

Figure 3.6 shows the memory subsystem of the iPAQ that we have modeled. The iPAQ uses the Intel

PXA255 processor [15] with the XScale core [17], which has a 32KB main cache and 2KB mini-cache.

PXA255 also has an on-chip memory controller that communicates with PC100-compatible SDRAMs
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via an off-chip bus. We have modeled the low-power 32MB Micron MT48V8M32LF [24] SDRAM as the

off-chip memory. Since the iPAQ has 64MB of memory, we have modeled two SDRAMs.

We use the memory latency as the performance metric. We estimate the memory latency as (Am +

AM) + M P × (Mm + MM), where Am and AM are the number of accesses, and Mm and MM are the

number of misses in the mini-cache and the main cache, respectively. We obtain these numbers using the

sim-cache simulator [2], modified to model HPCs. The miss penalty M P was estimated as 25 processor

cycles, taking into account the processor frequency (400 MHz), the memory bus frequency (100 MHz),

the SDRAM access latency in power-down mode (6 memory cycles), and the memory controller delay

(1 processor cycle).

We use the memory subsystem energy consumption as the energy metric. Our estimate of memory

energy consumption has three components: energy consumed by the caches, energy consumed by off-chip

busses, and energy consumed by the main memory (SDRAMs). We compute the energy consumed in the

caches using the access and miss statistics from the modified sim-cache results. The energy consumed

per access for each of the caches is computed using eCACTI [23]. Compared to CACTI [28], eCACTI

provides better energy estimates for high-associativity caches, since it models sense-amps more accurately

and scales device widths according to the capacitive loads. We have used linear extrapolation on cache size

to estimate energy consumption of the mini-cache, since neither CACTI nor eCACTI model caches with

less than eight sets.

We use the Printed Circuit Board (PCB) and layout recommendations of the PXA255 and Intel 440MX

chipset [18, 16] and the relation between Zo , Co , and ǫr [19] to compute the the energy consumed by the

external memory bus in a read/write burst as shown in Table 3.1.

We used the parameters shown in Table 3.2 from the MICRON MT48V8M32LF SDRAM to compute the

energy consumed by the SDRAM per read/write burst operation (cache line read/write), shown in Table 3.2.

We perform our experiments on applications from the MiBench suite [7] and an implementation of

the H.263 encoder [22]. To compile our benchmarks we used GCC with all optimizations turned on.

TABLE 3.1 External Memory Bus Parameters

Input pin capacitance 3.5 pF

Input/output pin capacitance 5 pF

Bus wire length 2.6 in.

PCB characterisitc impedance, Zo 60 �

Relative permitivity of PCB dielectric, ǫr 4.4

Capacitance per unit length, Co 2.34 pF/in.

Capacitance per trace 6.17 pF

Bus energy per burst 9.46 nJ
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TABLE 3.2 SDRAM Energy Parameters

SDRAM current Idd 100 mA

SDRAM supply voltage Vdd 2.5 V

Memory bus frequency fmem 100 MHz

Number of memory cycles/burst Ncyc 13

SDRAM energy per read/write burst E mbst 32.5 nJ

3.4.3 Simple Greedy Heuristics Work Well for Energy Optimization

In this section, we develop and explore several data partitioning heuristics with the aim of reducing the

memory subsystem energy consumption.

3.4.3.1 Scope of Energy Reduction

To study the maximum scope of energy reduction achievable by page partitioning, we try all possible page

partitions and estimate their energy consumption. Figure 3.7 plots the maximum energy reduction that we

achieved by exhaustive exploration of all possible page mappings. We find the page partition that results in

the minimum energy consumption by the memory subsystem and plot the reduction obtained compared

to the case when all the pages are mapped to the main cache. Since the number of page partitions possible

is exponential on the number of pages accessed by the application, it was not possible to complete the

simulations for all the benchmarks. Exhaustive exploration was possible only for the first five benchmarks.

The plot shows that compared to the case when all pages are mapped to the main cache, the scope of energy

reduction is 55% on this set of benchmarks.

Encouraged by the effectiveness of page mapping, we developed several heuristics to partition the pages

and see if it is possible to achieve high degrees of energy reduction using much faster techniques.

3.4.3.2 Complex Page Partitioning Heuristic: OM2N

The first technique we developed and examined is the heuristic OM2N, which is a greedy heuristic with

one level of backtracking. Figure 3.8 describes the OM2N heuristic. Initially, M (list of pages mapped to the

main cache) and m (list of pages mapped to the mini-cache) are empty. All the pages are initially undecided
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FIGURE 3.7 Maximum scope of energy reduction possible by page mapping.
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Heuristic OM2N(Pages P)

01: M = φ , m = φ , U = P

02: while (U �= φ)

03: p = U.pop()

04: M1 = M + p, m1 = m, U 1 = U

05: while (U 1 �= φ)

06: p′ = U 1.pop()

07: cost1′ = evaluatePartitionCost(M1 + p′, m1)

08: cost2′ = evaluatePartitionCost(M1, m1 + p′)

09: if (cost1′ ≤ cost2′) M1+ = p′ else m1+ = p′

10: endwhile

11: M2 = M, m2 = m + p, U 2 = U

12: while (U 2 �= φ)

13: p′ = U 2.pop()

14: cost1′ = evaluatePartitionCost(M2 + p′, m2)

15: cost2′ = evaluatePartitionCost(M2, m2 + p′)

16: if (cost1′ ≤ cost2′) M2+ = p′ else m2+ = p′

17: endwhile

18: cost1 = evaluatePartitionCost(M1, m1)

19: cost2 = evaluatePartitionCost(M2, m2)

20: if (cost1 ≤ cost2) M+ = p else m+ = p

21: endwhile

22: return M, m

FIGURE 3.8 Heuristic OM2N.

and are in U (line 01). U is a list containing pages sorted in decreasing order of accesses. The heuristic

picks the first page in U and tries both the mappings of this page — first to the main cache (line 04) and

then to the mini-cache (line 11). In lines 05 to 10, after mapping the first page to the main cache, the while

loop tries to map each of the remaining pages one by one into the main cache (line 07) and the mini-cache

(line 08) and keeps the best solution. Similarly, it tries to find the best page partition in lines 12 to 17 after

assuming that the first page is mapped to the mini-cache and remembers the best solution. In lines 18 to

20 it evaluates the energy reduction achieved by the two assumptions. The algorithm finally decides on

the mapping of the first page in line 20 by mapping the first page into the cache that leads to lesser energy

consumption.

The function evaluatePartitionCost(M, m) uses simulation to estimate the performance or the energy

consumption of a given partition. The simulation complexity, and therefore the complexity of the function

evaluatePartitionCost(M, m), is O(N). In each iteration of the topmost while loop in lines 02 to 21, the

mapping of one page is decided. Thus, the topmost while loop in lines 02 to 21 is executed at most M times.

In each iteration of the while loop, the two while loops in lines 05 to 10 and lines 12 to 17 are executed.

Each of these while loops may call the function evaluatePartitionCost(M, m) at most M times. Thus, the

time complexity of heuristic OM2N is O(M2 N).

Figure 3.9 plots the energy reduction achieved by the minimum energy page partition found by our

heuristic OM2N compared to the energy consumption when all the pages are mapped to the main cache.

The main observation from Figure 3.9 is that the minimum energy achieved by the exhaustive and the

OM2N is almost the same. On average, OM2N can achieve a 52% reduction in memory subsystem energy

consumption.

3.4.3.3 Simple Page Partitioning Heuristic: OMN

Encouraged by the fact the algorithm of complexity O(M2 N) can discover page mappings that result in

near-optimal energy reductions, we tried to develop simpler and faster algorithms to partition the pages.

Figure 3.10 is a greedy approach for solving the data partitioning problem. The heuristic picks the first
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Energy Reduction Achieved by OPT and OM2N
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FIGURE 3.9 Energy reduction achieved by OM2N.

page in U and evaluates the cost of the partition when the page is mapped to the main cache (line 04)

and when it is mapped to the mini-cache (line 05). The heuristic finally maps a page to the partition that

results in minimum cost (line 06). There is only one while loop in this algorithm (lines 02 to 07), and

in each step it decides upon the mapping of one page. Thus, it performs at most M simulations, each of

complexity O(N). Thus, the complexity of this heuristic OMN is O(MN).

The leftmost bars in Figure 3.11 plot the energy reduction achieved by the minimum energy page

partition found by our heuristic OMN compared to the energy consumption when all the pages are

mapped to the main cache. On average, OMN can discover page mappings that result in a 50% reduction

in memory subsystem energy consumption.

3.4.3.4 Very Simple Page Partitioning Heuristic: ON

Figure 3.12 shows a very simple single-step heuristic. If we define k = mini−cache size
page size

, then the first k pages

with the maximum number of accesses are mapped to the mini-cache, and the rest are mapped to the main

cache. This partition aims to achieve energy reduction while making sure there is no performance loss (for

high-associativity mini-caches). Note that for this heuristic we do not need to sort the list of all the pages.

Only k pages with the highest number of accesses are required. If the number of pages is m, then the time

complexity of selecting the k pages with highest accesses is O(km). Thus, the complexity of the heuristic

is only O(n + km), which can be approximated to O(n), since both k and m are very small compared to n.

Heuristic OMN(Pages P)

01: M = φ , m = φ , U = P

02: while (U �= φ)

03: p = U.pop()

04: cost1 = evaluatePartitionCost(M + p, m)

05: cost2 = evaluatePartitionCost(M, m + p)

06: if (cost1 ≤ cost2) M+ = p else m+ = p

07: endwhile

08: return M, m

FIGURE 3.10 Heuristic OMN.
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Energy Reduction Achieved by OPT, OM2N, and OMN
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FIGURE 3.11 Energy reduction achieved by OMN.

Figure 3.13 plots the energy reduction achieved by the minimum energy page partition found by our

heuristic OMN compared to the energy consumption when all the pages are mapped to the main cache.

On average, OMN can discover page mappings that result in a 5% reduction in memory subsystem energy

consumption.

The leftmost bars in Figure 3.13 plot the energy reduction obtained by the lowest-energy-consuming

page partition discovered by the ON heuristic compared to when all the pages are mapped to the main

cache. Figure 3.13 shows that ON could not obtain as impressive results as the previous more complex

heuristics. On average, the ON heuristic achieves only a 35% energy reduction in memory subsystem

energy consumption.

3.4.3.5 Goodness of Page Partitioning Heuristics

We define the goodness of a heuristic as the energy reduction achieved by it compared to the maxi-

mum energy reduction that is possible, that is,
(E Main−E alg )

(E Main−E best )
, where E Main is the energy consumption when

all the pages are mapped to the main cache, E alg is the energy consumption of the best energy parti-

tion the heuristic found, and E best is the energy consumption of the best energy partition. Figure 3.14

plots the goodness of the ON and OMN heuristic in obtaining energy reduction. For the last seven

benchmarks for which we could not perform the optimal search. We assume the partition found by the

heuristic OM2N is the best energy partition. The graph shows that the OMN heuristic could obtain on

average 97% of the possible energy reduction, while ON could achieve on average 64% of the possible

Heuristic ON(Pages P)

01: M = φ , m = φ

02: for (i = 0; i < mini−cache size
page size

; i + +)

03: m+ = U.pop()

05: endFor

06: M = U

07: return M, m

FIGURE 3.12 Heuristic ON.
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Energy Reduction Achieved by OPT, OM2N, OMN, and ON ON
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FIGURE 3.13 Energy reduction achieved by ON.

energy reduction. It is important to note that the GCC compiler for XScale does not exploit the mini-cache

at all. The ON heuristic provides a simple yet effective way to exploit the mini-cache without incurring

any performance penalty (for a high-associativity mini-cache).

3.4.4 Optimizing for Energy Is Different Than Optimizing for Performance

This experiment investigates the difference in optimizing for energy and optimizing for performance. We

find the partition that results in the least memory latency and the partition that results in the least energy

consumption. Figure 3.15a plots E br −E be

E be
, where E br is the memory subsystem energy consumption of the
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FIGURE 3.14 Goodness of heuristics.
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FIGURE 3.15 Optimizing for energy is better than optimizing for performance. (a) Increase in runtime, when we

choose the best. energy partition instead of the best performance partition. (b) Decrease in energy consumption, when

we choose the best energy partition instead of the best performance partition.

partition that results in the least memory latency, and E be is the memory subsystem energy consumption by

the partition that results in the least memory subsystem energy consumption. For the first five benchmarks

(susan to gsm dec), the number of pages in the footprint were small, so we could explore all the partitions.

For the last seven benchmarks (jpeg to dijkstra), we took the partition found by the OM2N heuristic as

the best partition, as OM2N gives close-to-optimal results in cases when we were able to search optimally.

The graph essentially plots the increase in energy if you choose the best performance partition as your

design point. The increase in energy consumption is up to 130% and on average is 58% for this set of

benchmarks.
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Figure 3.15b plots Rbe −Rbr

Rbe
, where Rbe is the memory latency (in cycles) of the best energy partition, and

Rbr is the memory latency of the best-performing partition. This graph shows the increase in memory

latency when you choose the best energy partition compared to using the best performance partition. The

increase in memory latency is on average 1.7% and is 5.8% in the worst case for this set of benchmarks. Thus,

choosing the best energy partition results in significant energy savings at a minimal loss in performance.

3.5 Compiler-in-the-Loop HPC Design

So far we have seen that HPC is a very effective microarchitectural technique to reduce the energy con-

sumption of the processor. The energy savings achieved are very sensitive to the HPC configuration; that

is, if we change the HPC configuration, the page partitioning should also change.

In the traditional DSE techniques, for example, SO DSE, the binary and the page mapping are kept the

same, and the binary with the page mapping is executed on different HPC configurations. This strategy

is not useful for HPC DSE, since it does not make sense to use the same page mapping after changing the

HPC parameters. Clearly, the HPC parameters should be explored with the CIL during the exploration.

To evaluate HPC parameters, the page mapping should be set to the given HPC configuration.

Our CIL DSE framework to explore HPC parameters is depicted in Figure 3.16. The CIL DSE framework

is centered around a textual description of the processor. For our purposes, the processor description

contains information about (a) HPC parameters, (b) the memory subsystem energy models, and (c) the

processor and memory delay models.

We use the OMN page partitioning heuristic and generate a binary executable along with the page

mapping. The page mapping specifies to which cache (main or mini) each data memory page is mapped.

The compiler is tuned to generate page mappings that lead to the minimum memory subsystem energy

consumption. The executable and the page mapping are both fed into a simulator that estimates the

runtime and the energy consumption of the memory subsystem.

The Design Space Walker performs HPC design space exploration by updating the HPC design parame-

ters in the processor description. The mini-cache, which is configured by Design Space Walker, is specified

using two attributes: the mini-cache size and the mini-cache associativity. For our experiments, we vary

cache size from 256 bytes to 32 KB, in exponents of 2. We explore the whole range of mini-cache associa-

tivities, that is, from direct mapped to fully associative. We do not model the mini-cache configurations

HPC 
Compiler 

Application 

Executable 

Simulator 

Design Space 
Walker 

Page Mapping 

Report 

Runtime 
Energy 

Processor
Description

Energy Model 

Delay Model 

mini-cache
params

FIGURE 3.16 Compiler-in-the-loop methodology to explore the design space of HPCs.
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ExhaustiveExploration()

01: minEnergy = MAX ENERGY

02: foreach (c ∈ C )

03: energy = estimateEnergy(c)

04: if (energy < minEnergy)

05: minEnergy = energy

06: endIf

07: endFor

08: return minEnergy

FIGURE 3.17 Exhaustive exploration algorithm.

for which eCACTI [23] does not have a power model. We set the cache line size to be 32 bytes, as in the

Intel XScale architecture. In total we explore 33 mini-cache configurations for each benchmark.

3.5.1 Exhaustive Exploration

We first present experiments to estimate the importance of exploration of HPCs. To this end, we perform

exhaustive CIL exploration of HPC design space and find the minimum-energy HPC design parameters.

Figure 3.17 describes the exhaustive exploration algorithm. The algorithm estimates the energy consump-

tion for each mini-cache configuration (line 02) and keeps track of the minimum energy. The function

estimate energy estimates the energy consumption for a given mini-cache size and associativity.

Figure 3.18 compares the energy consumption of the memory subsystem with three cache designs. The

leftmost bar represents the energy consumed by the memory subsystem when the system has only a 32KB
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FIGURE 3.18 Energy savings achieved by exploration.
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TABLE 3.3 Optimal Mini-cache Parameters

Benchmark Mini-cache Parameters

adpcm dec 8K, direct mapped

adpcm enc 4K, 2-way

dijkstra 8K, 2-way

blowfish dec 16K, 2-way

blowfish enc 16K, 2-way

gsm dec 2K, direct mapped

gsm enc 2K, direct mapped

h263 8K, 2-way

jpeg 16K, 2-way

lame 8K, 2-way

susan 2K, 4-way

main cache (no mini-cache is present.) The middle bar shows the energy consumed when there is a 2KB

mini-cache in parallel with the 32KB cache, and the application is compiled to achieve minimum energy.

The rightmost bar represents the energy consumed by the memory subsystem, when the mini-cache

parameters (size and associativity) are chosen using exhaustive CIL exploration. All the energy values are

normalized to the case when there is a 2KB mini-cache (the Intel XScale configuration). The last set of

bars is the average over the applications.

We make two important observations from this graph. The first is that HPC is very effective in reducing

the memory subsystem energy consumption. Compared to not using any mini-cache, using a default mini-

cache (the default mini-cache is 2KB, 32-way set associative) leads to an average of a 2 times reduction in

the energy consumption of the memory subsystem. The second important observation is that the energy

reduction obtained using HPCs is very sensitive to the mini-cache parameters. Exhaustive CIL exploration

of the mini-cache DSE to find the minimum-energy mini-cache results in an additional 80% energy

reduction, thus reducing the energy consumption to just 20% of the case with a 2KB mini-cache.

Furthermore, the performance of the energy-optimal HPC configuration is very close to the performance

of the best-performing HPC configuration. The performance degradation was no more than 5% and was

2% on average. Therefore, energy-optimal HPC configuration achieves high energy reductions at minimal

performance cost. Table 3.3 shows the energy-optimal mini-cache configuration for each benchmark. The

table suggests that low-associativity mini-caches are good candidates to achieve low-energy solutions.

3.5.2 HPC CIL DSE Heuristics

We have demonstrated that CIL DSE of HPC design parameters is very useful and important to achieve

significant energy savings. However, since the mini-cache design space is very large, exhaustive exploration

may consume a lot of time. In this section we explore heuristics for effective and efficient HPC DSE.

3.5.2.1 Greedy Exploration

The first heuristic we develop for HPC CIL DSE is a pure greedy algorithm, outlined in Figure 3.19. The

greedy algorithm first greedily finds the cache size (lines 02 to 04) and then greedily finds the associativity

(lines 05 to 07). The function betterNewConfiguration tells whether the new mini-cache parameters result

in lower energy consumption than the old mini-cache parameters.

Figure 3.20 plots the energy consumption when the mini-cache configuration is chosen by the greedy

algorithm compared to when using the default 32KB main cache and 2KB mini-cache configuration. The

plot shows that for most applications, greedy exploration is able to achieve good results, but for blowfish

and susan, the greedy exploration is unable to achieve any energy reduction; in fact, the solution it has

found consumes even more energy than the base configuration. However, on average, the greedy CIL HPC

DSE can reduce the energy consumption of the memory subsystem by 50%.
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GreedyExploration()

01: size = MIN SIZE, assoc = MIN ASSOC

// greedily find the size

02: while (betterNewConf (size × 2, assoc, size, assoc))

03: size = size × 2

04: endWhile

// greedily find the assoc

05: while (betterNewConf (size, assoc × 2, size, assoc))

06: assoc = assoc × 2

07: endWhile

08: return estimateEnergy(size, assoc)

betterNewConf(size′, assoc′, size, assoc)

01: if (!existsCacheConfig(size′, assoc′))

02: return false

03: energy = estimateEnergy(size, assoc)

04: energy′ = estimateEnergy(size′, assoc′)

05: return (energy′ < energy)

FIGURE 3.19 Greedy exploration.
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FIGURE 3.20 Energy reduction achieved by the greedy exploration.
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HybridExploration()

01: size = MIN SIZE, assoc = MIN ASSOC

// greedily find the size

02: while (betterNewConf (size × 4, assoc, size, assoc))

03: size = size × 4

04: endWhile

// search in the neighborhood

05: done = false

06: while (!done)

07: if (betterNewConf (size × 2, assoc, size, assoc))

08: size = size × 2

09: else if (betterNewConf (size, assoc × 2, size, assoc))

10: assoc = assoc × 2

11: else if (betterNewConf (size ÷ 2, assoc, size, assoc))

12: size = size ÷ 2

13: else if (betterNewConf (size ÷ 2, assoc ÷ 2, size, assoc))

14: size = size ÷ 2, assoc = assoc ÷ 2

15: else if (betterNewConf (size ÷ 2, assoc × 2, size, assoc))

16: size = size ÷ 2, assoc = assoc × 2

17: else

18: done = true

19: endWhile

08: return estimateEnergy(size, assoc)

FIGURE 3.21 Hybrid exploration.

3.5.2.2 Hybrid Exploration

To achieve energy consumption close to the optimal configurations, we developed a hybrid algorithm,

outlined in Figure 3.21. The hybrid algorithm first greedily searches for the optimal mini-cache size (lines

02 to 04). Note, however, that it tries every alternate mini-cache size. The hybrid algorithm tries mini-

cache sizes in exponents of 4, rather than 2 (line 03). Once it has found the optimal mini-cache size, it

explores exhaustively in the size-associativity neighborhood (lines 07 to 15) to find a better size-associativity

configuration.

The middle bar in Figure 3.22 plots the energy consumption of the optimal configuration compared

to the energy consumption when the XScale default 32-way, 2K mini-cache is used and compares the

energy reductions achieved with the greedy and exhaustive explorations. The graph shows that the hybrid

exploration can always find the optimal HPC configuration for our set of benchmarks.

3.5.2.3 Energy Reduction and Exploration Time Trade-Off

There is a clear trade-off between the energy reductions achieved by the exploration algorithms and the

time required for the exploration. The rightmost bar in Figure 3.23 plots the time (in hours) required

to explore the design space using the exhaustive algorithm. Although the exhaustive algorithm is able to

discover extremely low energy solutions, it may take tens of hours to perform the exploration. The leftmost

bar in Figure 3.23 plots the time that greedy exploration requires to explore the design space of the mini-

cache. Although the greedy algorithm reduces the exploration time on average by a factor of 5 times, the

energy consumption is on average 2 times more than what is achieved by the optimal algorithm.
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FIGURE 3.22 Relative energy reduction achieved by exploration algorithms.
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FIGURE 3.23 Exploration time of exploration algorithms.
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Finally, the middle bar in Figure 3.23 plots the time required to find the mini-cache configuration when

using the hybrid algorithm. Our hybrid algorithm is able to find the optimal mini-cache configuration in

all of our benchmarks, while it takes about 3 times less time than the optimal algorithm. Thus, we believe

the hybrid exploration is a very effective and efficient exploration technique.

3.5.3 Importance of Compiler-in-the-Loop DSE

Our next set of experiments show that although SO DSE can also find HPC configurations with less

memory subsystem energy consumption, it does not do as well as CIL DSE. To this end, we performed

SO DSE of HPC design parameters. We compile once for the 32KB/2KB (i.e., the original XScale cache

configuration) to obtain an executable and the minimum energy page mapping. While keeping these

two the same, we explored all the HPC configurations to find the HPC design parameters that minimize

the memory subsystem energy consumption. Figure 3.24 plots the the energy consumption of the HPC

configuration found by the SO DSE (middle bar) and CIL DSE (right bar) and the original Intel XScale

HPC configuration (left bar) for each benchmark. The rightmost set of bars represents the average over

all the benchmarks. All the energy consumption values are normalized to energy consumption of the

32KB/2KB configuration.

It should be noted that the overhead of compilation time in CIL DSE is negligible, because simulation

times are several orders of magnitude more than compilation times. The important observation to make

from this graph is that although even SO DSE can find HPC configurations that result in, on average,

a 57% memory subsystem energy reduction, CIL DSE is much more effective and can uncover HPC

configurations that result in a 70% reduction in the memory subsystem energy reduction.
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FIGURE 3.24 CIL versus SO exploration.
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3.6 Summary

Embedded systems are characterized by stringent, application-specific, multidimensional constraints on

their designs. These constraints, along with the shrinking time to market and frequent upgrade needs of

embedded systems, are responsible for programmable embedded systems that are highly customized. While

code generation for these highly customized embedded systems is a challenge, it is also very rewarding in

the sense that an architecture-sensitive compilation technique can have significant impact on the system

power, performance, and so on. Given the importance of the compiler on the system design parameters,

it is reasonable for the compiler to take part in designing the embedded system. While it is possible to use

ad hoc methods to include the compiler effects while designing an embedded system, a systematic method-

ology to design embedded processors is needed. This chapter introduced the CIL design methodology,

which systematically includes the compiler in the embedded system DSE. Our methodology requires an

architecture-sensitive compiler. To evaluate a design point in the embedded system design space, the ap-

plication code is first compiled for the embedded system design and is then executed on the embedded

system model to estimate the various design parameters (e.g., power, performance, etc.). Owing to the

lack of compiler technology for embedded systems, most often, first an architecture-sensitive compilation

technique needs to be developed, and only then can it be used for CIL design of the embedded processor.

In the chapter we first developed a compilation technique for HPCs, which can result in a 50% reduc-

tion in the energy consumption of the memory subsystem. When we use this compilation technique in

our CIL approach, we can come up with HPC parameters that result in an 80% reduction in the energy

consumption by the memory subsystem, demonstrating the need and usefulness of our approach.
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Abstract

Profiling techniques have greatly advanced in recent years. Extensive amounts of dynamic information can

be collected (e.g., control flow, address and data values, data, and control dependences), and sophisticated

dynamic analysis techniques can be employed to assist in improving the performance and reliability of

software. In this chapter we describe a novel representation called whole execution traces that can hold

a vast amount of dynamic information in a form that provides easy access to this information during

dynamic analysis. We demonstrate the use of this representation in locating faulty code in programs

through dynamic-slicing- and dynamic-matching-based analysis of dynamic information generated by

failing runs of faulty programs.

4.1 Introduction

Program profiles have been analyzed to identify program characteristics that researchers have then

exploited to guide the design of superior compilers and architectures. Because of the large amounts

of dynamic information generated during a program execution, techniques for space-efficient represen-

tation and time-efficient analysis of the information are needed. To limit the memory required to store

different types of profiles, lossless compression techniques for several different types of profiles have been

developed. Compressed representations of control flow traces can be found in [15, 30]. These profiles can

be analyzed for the presence of hot program paths or traces [15] that have been exploited for performing

path-sensitive optimization and prediction techniques [3, 9, 11, 21]. Value profiles have been compressed

using value predictors [4] and used to perform code specialization, data compression, and value encoding

[5, 16, 20, 31]. Address profiles have also been compressed [6] and used for identifying hot data streams that

4-1



4-2 The Compiler Design Handbook: Optimizations and Machine Code Generation

exhibit data locality, which can help in finding cache-conscious data layouts and developing data prefetch-

ing mechanisms [7, 13, 17]. Dependence profiles have been compressed in [27] and used for computating

dynamic slices [27], studying the characteristics of performance-degrading instructions [32], and studying

instruction isomorphism [18]. More recently, program profiles are being used as a basis for the debugging

of programs. In particular, profiles generated from failing runs of faulty programs are being used to help

locate the faulty code in the program.

In this chapter a unified representation, which we call whole execution traces (WETs), is described, and

its use in assisting faulty code in a program is demonstrated. WETs provide an ability to relate different

types of profiles (e.g., for a given execution of a statement, one can easily find the control flow path, data

dependences, values, and addresses involved). For ease of analysis of profile information, WET is con-

structed by labeling a static program representation with profile information such that relevant and related

profile information can be directly accessed by analysis algorithms as they traverse the representation. An

effective compression strategy has been developed to reduce the memory needed to store WETs.

The remainder of this chapter is organized as follows. In Section 4.2 we introduce the WET represen-

tation. We describe the uncompressed form of WETs in detail and then briefly outline the compression

strategy used to greatly reduce its memory needs. In Section 4.3 we show how the WETs of failing runs

can be analyzed to locate faulty code. Conclusions are given in Section 4.4.

4.2 Whole Execution Traces

WET for a program execution is a comprehensive set of profile data that captures the complete functional

execution history of a program run. It includes the following dynamic information:

Control flow profile: The control flow profile captures the complete control flow path taken during a

single program run.

Value profile: This profile captures the values that are computed and referenced by each executed

statement. Values may correspond to data values or addresses.

Dependence profile: The dependence profile captures the information about data and control depen-

dences exercised during a program run. A data dependence represents the flow of a value from the

statement that defines it to the statement that uses it as an operand. A control dependence between

two statements indicates that the execution of a statement depends on the branch outcome of a

predicate in another statement.

The above information tells what statements were executed and in what order (control flow profile),

what operands and addresses were referenced as well as what results were produced during each statement

execution (value profile), and the statement executions on which a given statement execution is data and

control dependent (dependence profile).

4.2.1 Timestamped WET Representation

WET is essentially a static representation of the program that is labeled with dynamic profile information.

This organization provides direct access to all of the relevant profile information associated with every

execution instance of every statement. A statement in WET can correspond to a source-level statement,

intermediate-level statement, or machine instruction.

To represent profile information of every execution instance of every statement, it is clearly necessary

to distinguish between execution instances of statements. The WET representation distinguishes between

execution instances of a statement by assigning unique timestamps to them [30]. To generate the timestamps

a time counter is maintained that is initialized to one and each time a basic block is executed, the current

value of time is assigned as a timestamp to the current execution instances of all the statements within

the basic block, and then time is incremented by one. Timestamps assigned in this fashion essentially

remember the ordering of all statements executed during a program execution. The notion of timestamps

is the key to representing and accessing the dynamic information contained in WET.
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The WET is essentially a labeled graph, whose form is described next. A label associated with a node or an

edge in this graph is an ordered sequence where each element in the sequence represents a subset of profile

information associated with an execution instance of a node or edge. The relative ordering of elements

in the sequence corresponds to the relative ordering of the execution instances. For ease of presentation

it is assumed that each basic block contains one statement, that is, there is one-to-one correspondence

between statements and basic blocks. Next we describe the labels used by WET to represent the various

kinds of profile information.

4.2.1.1 Whole Control Flow Trace

The whole control flow trace is essentially a sequence of basic block ids that captures the precise order in

which they were executed during a program run. Note that the same basic block will appear multiple times

in this sequence if it is executed multiple times during a program run. Now let us see how the control flow

trace can be represented by appropriately labeling the basic blocks or nodes of the static control flow graph

by timestamps.

When a basic block is executed, the timestamp generated for the basic block execution is added as a

label to the node representing the basic block. This process is repeated for the entire program execution.

The consequence of this process is that eventually each node n in the control flow graph is labeled with

a sequence of timestamp values (t0, t1, t2, · · ·) where node n was executed at each time value ti . Consider

the example program and the corresponding control flow graph shown in Figure 4.1. Figure 4.2 shows

the representation of the control flow trace corresponding to a program run. The control flow trace for a

program run on the given inputs is first given. This trace is essentially a sequence of basic block ids. The

subscripts of the basic block ids in the control flow trace represent the corresponding timestamp values.

As shown in the control flow graph, each node is labeled with a sequence of timestamps corresponding

to its executions during the program run. For example, node 8 is labeled as (7, 11, 15) because node 8 is

executed three times during the program run at timestamp values of 7, 11, and 15.

A[0]=A[1]=0;1.    A[0]=A[1]=0;

2.    if (C1>0)

3.          A[0]=10;

4.    if (C2>0)

5.          A[1]=20;

6.    sum=i=0;

7.    p=&A[0];

8.    while (i<2) {

9.          sum=sum+*p;

10.        p=p+1;

11.        i=i+1;

12.  }

13.  print (sum)

A[0]=10;

A[1]=20;

sum=i=0;

p=&A[0];

p=p+1;

i=i+1;

print (sum);

while (i<2)

sum=sum+*p;

if (C1>0)

if (C2>0)

FIGURE 4.1 Example program.
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1. A[0]=A[1]=0;

With input C1=1 and C2=0, the execution trace is:
11 22 33 44 65 76 87 98 109 1110 811 912 1013 1114 815 1316 

[1]

2. if (C1>0) [2]

3. A[0]=10; [3]

4. if (C2>0) [4]

5. A[1]=20;

6. sum=i=0;

7. p=&A[0];

[5]

[6]

8. while (i<2) [7,11,15]

10. p=p+1; [9,13]

11. i=i+1; [10,14]

13. print (sum); [16]

9. sum=sum+*p; [8,12]

FIGURE 4.2 Timestamped control flow representation.

Let’s see how the above timestamped representation captures the complete control flow trace. The path

taken by the program can be generated from a labeled control flow graph using the combination of static

control flow edges and the sequences of timestamps associated with nodes. If a node n is labeled with

timestamp value t, the node that is executed next must be the static control flow successor of n that is

labeled with timestamp value t + 1. Using this observation, the complete path or part of the program path

starting at any execution point can be easily generated.

4.2.1.2 Whole Value Trace

The whole value trace captures all values and addresses computed and referenced by executed statements.

Instrumentation code must be introduced for each instruction in the program to collect the value trace for

a program run. To represent the control flow trace, with each statement, we already associate a sequence of

timestamps (t0, t1, t2, · · ·) corresponding to the statement execution instances. To represent the value trace,

we also associate a sequence of values (v0, v1, v2, · · ·) with the statement. These are the values computed

by the statement’s execution instances. Hence, there is one-to-one correspondence between the sequence

of timestamps and the sequence of values.

Two points are worth noting here. First, by capturing values as stated above, we are actually capturing

both values and addresses, as some instructions compute data values while others compute addresses.

Second, with each statement, we only associate the result values computed by that statement. We do not

explicitly associate the values used as operands by the statement. This is because we can access the operand

values by traversing the data dependence edges and then retrieving the values from the value traces of

statements that produce these values.

Now let us illustrate the above representation by giving the value traces for the program run considered in

Figure 4.2. The sequence of values produced by each statement for this program run is shown in Figure 4.3.

For example, statement 11 is executed twice and produces values 1 and 2 during these executions.
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1. A[0]=A[1]=0; [0]

2. if (C1>0) [True]

3. A[0]=10; [10]

4. if (C2>0) [False]

5. A[1]=20;

6. sum=i=0;

7. p=&A[0];

[0]

[A]

8. while (i<2) [True, True, False]

10. p=p+1; [A+1,A+2]

11. i=i+1; [1,2]

13. print (sum); [10]

9. sum=sum+*p; [10,10]

FIGURE 4.3 Value trace representation.

4.2.1.3 Whole Dependence Trace

A dependence occurs between a pair of statements; one is the source of the dependence and the other is the

destination. Dependence is represented by an edge from the source to the destination in the static control

flow graph. There are two types of dependences:

Static data dependence: A statement d is statically data dependent upon statement s if a value computed

by statement s may be used as an operand by statement d in some program execution.

Static control dependence: A statement d is statically control dependent upon a predicate s if the

outcome of predicate s can directly determine whether d is executed in some program execution.

The whole data and control dependence trace captures the dynamic occurrences of all static data and

control dependences during a program run. A static edge from the source of a dependence to its destination

is labeled with dynamic information to capture each dynamic occurrence of a static dependence during

the program run. The dynamic information essentially identifies the execution instances of the source

and destination statements involved in a dynamic dependence. Since execution instances of statements

are identified by their timestamps, each dynamic dependence is represented by a pair of timestamps that

identify the execution instances of statements involved in the dynamic dependence. If a static dependence

edge s → d is exercised multiple times during a program run, it will be labeled by a sequence of timestamp

pairs ([t0
s , t0

d ], [t1
s , t1

d ], · · ·) corresponding to multiple occurrences of the dynamic dependence observed

during the program run.

Let us briefly discuss how dynamic dependences are identified during a program run. To identify dynamic

data dependences, we need to further process the address trace. For each memory address the execution

instance of an instruction that was responsible for the latest write to the address is remembered. When an

execution instance of an instruction uses the value at an address, a dynamic data dependence is established

between the execution instance of the instruction that performed the latest write to the address and the

execution instance of the instruction that used the value at the address. Dynamic control dependences

are also identified. An execution instance of an instruction is dynamically control dependent upon the

execution instance of the predicate that caused the execution of the instruction. By first computing the static
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1. A[0]=A[1]=0;

2. if (C1>0)

3. A[0]=10;

[(2,3)]

4. if (C2>0)

5. A[1]=20;

6. sum=i=0;

7. p=&A[0];

[(7,11)(11,15)]

[(7,9)(11,13)]

8. while (i<2)

[(7,10)(11,14)]
10. p=p+1;

11. i=i+1;

13. print (sum);

9. sum=sum+*p;
[(7,8)(11,12)]

FIGURE 4.4 Timestamped control dependence trace representation.

control predecessors of an instruction, and then detecting which one of these was the last to execute prior to

a given execution of the instruction from the control flow trace, dynamic control dependences are identified.

Now let us illustrate the above representation by giving the dynamic data and control dependences for

the program run considered in Figure 4.2. First let’s consider the dynamic control dependences shown in

Figure 4.4. The control dependence edges in this program include 2 → 3, 4 → 5, 8 → 9, 8 → 10, and

8 → 11. These edges are labeled with timestamp pairs. The edge 2 → 3 is labeled with ([2, 3]) because

this dependence is exercised only once and the timestamps of the execution instances involved are 2 and

3. The edge 4 → 5 is not labeled because it is not exercised in the program run. However, edge 8 → 9

is labeled with ([7, 8], [11, 12]), indicating that this edge is exercised twice. The timestamps in each pair

identify the execution instances of statements involved in the dynamic dependences.

Next let us consider the dynamic data dependence edges shown in Figure 4.5. The darker edges cor-

respond to static data dependence edges that are labeled with sequences of timestamp pairs that capture

dynamic instances of data dependences encountered during the program run. For example, edge 11 → 8

shows the flow of the value of variable i from its definition in statement 11 to its use in statement 8. This

edge is labeled ([10, 11], [14, 15]) because it is exercised twice in the program run. The timestamps in each

pair identify the execution instances of statements involved in the dynamic dependences.

4.2.2 Compressing Whole Execution Traces

Because of the large amount of information contained in WETs, the storage needed to hold the WETs is

very large. In this section we briefly outline a two-tier compression strategy for greatly reducing the space

requirements.

The first tier of our compression strategy focuses on developing separate compression techniques for

each of the three key types of information labeling the WET graph: (a) timestamps labeling the nodes,

(b) values labeling the nodes, and (c) timestamp pairs labeling the dependence edges. Let us briefly consider

these compression techniques:

Timestamps labeling the nodes: The total number of timestamps generated is equal to the number of

basic block executions, and each of the timestamps labels exactly one basic block. We can reduce the



Whole Execution Traces and Their Use in Debugging 4-7

1. A[0]=A[1]=0;

2. if (C1>0)

3. A[0]=10;

4. if (C2>0)

5. A[1]=20;

6. sum=i=0;

7. p=&A[0];

[(1,8)]

[(5,8)]

[(6,9)]

[(10,11)(14,15)]

8. while (i<2)

[(12,16)]

10. p=p+1;

11. i=i+1;

13. print (sum);

9. sum=sum+*p;

[(5,7)]

[(5,10)]

[(10,14)]

[(9,13)]

[(6,8)]

[(10,14)]

[(9,12)]

[(8,12)]

FIGURE 4.5 Timestamped data dependence trace representation.

space taken up by the timestamp node labels as follows. Instead of having nodes that correspond

to basic blocks, we create a WET in which nodes can correspond to Ball Larus paths [2] that are

composed of multiple basic blocks. Since a unique timestamp value is generated to identify the

execution of a node, now fewer timestamps will be generated. In other words, when a Ball Larus path

is executed, all nodes in the path share the same timestamp. By reducing the number of timestamps,

we save space without having any negative impact on the traversal of WET to extract the control

flow trace.

Values labeling the nodes: It is well known that subcomputations within a program are often performed

multiple times on the same operand values. This observation is the basis for widely studied tech-

niques for reuse-based redundancy removal [18]. This observation can be exploited in devising a

compression scheme for sequence of values associated with statements belonging to a node in the

WET. The list of values associated with a statement is transformed such that only a list of unique

values produced by it is maintained along with a pattern from which the exact list of values can

be generated from the list of unique values. The pattern is often shared across many statements.

The above technique yields compression because by storing the pattern only once, we are able to

eliminate all repetitions of values in value sequences associated with all statements.

Timestamp pairs labeling the dependence edges: Each dependence edge is labeled with a sequence

of timestamp pairs. Next we describe how the space taken by these sequences can be reduced.

Our discussion focuses on data dependences; however, similar solutions exist for handling control

dependence edges [27]. To describe how timestamp pairs can be reduced, we divide the data

dependences into two categories: edges that are local to a Ball Larus path and edges that are nonlocal

as they cross Ball Larus path boundaries.

Let us consider a node n that contains a pair of statements s1 and s2 such that a local data dependence

edge exists due to flow of values from s1 to s2. For every timestamp pair (ts1
, ts2

) labeling the edge, it is

definitely the case that ts1
= ts2

. In addition, if s2 always receives the involved operand value from s1,

then we do not need to label this edge with timestamp pairs. This is because the timestamp pairs that

label the edge can be inferred from the labels of node n. If node n is labeled with timestamp tn, under
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TABLE 4.1 WET Sizes

Stmts. Executed Orig. WET Comp. WET Orig./

Benchmark Input (Millions) (MB) (MB) Comp.

099.go training 685.28 10369.32 574.65 18.04

126.gcc ref/insn-emit.i 364.80 5237.89 89.03 58.84

130.li ref 739.84 10399.06 203.01 51.22

164.gzip training 650.46 9687.88 537.72 18.02

181.mcf testing 715.16 10541.86 416.21 25.33

197.parser training 615.49 8729.88 188.39 46.34

255.vortex training/lendian 609.45 8747.64 104.59 83.63

256.bzip2 training 751.26 11921.19 220.70 54.02

300.twolf training 690.39 10666.19 646.93 16.49

Avg. n/a 646.90 9588.99 331.25 41.33

the above conditions, the data dependence edge must be labeled with the timestamp pair < tn, tn >. It

should be noted that by creating nodes corresponding to Ball Larus paths, opportunities for elimination

of timestamp pair labels increase greatly. This is because many nonlocal edges get converted to local edges.

Let us consider nonlocal edges next. Often multiple data dependence edges are introduced between a

pair of nodes. It is further often the case that these edges have identical labels. In this case we can save space

by creating a representation for a group of edges and save a single copy of the labels.

For the second-tier compression we view the information labeling the WET as consisting of streams of

values arising from the following sources: (a) a sequence of < t, v > pairs labeling a node gives rise to

two streams, one corresponding to the timestamps (ts) and the other corresponding to the values (vs),

and (b) a sequence of < ts1
, ts2

> pairs labeling a dependence edge also gives rise to two streams, one

corresponding to the first timestamps (ts1
s) and the other corresponding to the second timestamps (ts2

s).

Each of the above streams is compressed using a value-prediction-based algorithm [28].

Table 4.1 lists the benchmarks considered and the lengths of the program runs, which vary from

365 and 751 million intermediate-level statements. WETs could not be collected for complete runs for

most benchmarks even though we tried using Trimaran-provided inputs with shorter runs. The effect

of our two-tier compression strategy is summarized in Table 4.1. While the average size of the original

uncompressed WETs (Orig. WET) is 9589 megabytes, after compression their size (Comp. WET) is reduced

to 331 megabytes, which represents a compression ratio (Orig./Comp.) of 41. Therefore, on average, our

approach enables saving of the whole execution trace corresponding to a program run of 647 million

intermediate statements using 331 megabytes of storage.

4.3 Using WET in Debugging

In this section we consider two debugging scenarios and demonstrate how WET-based analysis can be

employed to assist in fault location in both scenarios. In the first scenario we have a program that fails to

produce the correct output for a given input, and it is our goal to assist the programmer in locating the

faulty code. In the second scenario we are given two versions of a program that should behave the same

but do not do so on a given input, and our goal is to help the programmer locate the point at which the

behavior of the two versions diverges. The programmer can then use this information to correct one of

the versions.

4.3.1 Dynamic Program Slicing

Let us consider the following scenario for fault location. Given a failed run of a program, our goal is to

identify a fault candidate set, that is, a small subset of program statements that includes the faulty code

whose execution caused the program to fail. Thus, we assume that the fact that the program has failed is

known because either the program crashed or it produced an output that the user has determined to be
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incorrect. Moreover, this failure is due to execution of faulty code and not due to other reasons (e.g., faulty

environment variable setting).

The statements executed during the failing run can constitute a first conservative approximation of

the fault candidate set. However, since the user has to examine the fault candidate set manually to locate

faulty code, smaller fault candidate sets are desirable. Next we describe a number of dynamic-slicing-based

techniques that can be used to produce a smaller fault candidate set than the one that includes all executed

statements.

4.3.1.1 Backward Dynamic Slicing

Consider a failing run that produces an incorrect output value or crashes because of dereferencing of an

illegal memory address. The incorrect output value or the illegal address value is now known to be related

to faulty code executed during this failed run. It should be noted that identification of an incorrect output

value will require help from the user unless the correct output for the test input being considered is already

available to us. The fault candidate set is constructed by computing the backward dynamic slice starting at

the incorrect output value or illegal address value. The backward dynamic slice of a value at a point in the

execution includes all those executed statements that effect the computation of that value [1, 14]. In other

words, statements that directly or indirectly influence the computation of faulty value through chains of

dynamic data and/or control dependences are included in the backward dynamic slices. Thus, the backward

reachable subgraph forms the backward dynamic slice, and all statements that appear at least once in the

reachable subgraph are contained in the backward dynamic slice. During debugging, both the statements

in the dynamic slice and the dependence edges that connect them provide useful clues to the failure cause.

We illustrate the benefit of backward dynamic slicing with an example of a bug that causes a heap overflow

error. In this program, a heap buffer is not allocated to be wide enough, which causes an overflow. The

code corresponding to the error is shown in Figure 4.6. The heap array A allocated at line 10 overflows

at line 51, causing the program to crash. Therefore, the dynamic slice is computed starting at the address

of A[i] that causes the segmentation fault. Since the computation of the address involves A[] and i, both

statements at lines 10 and 50 are included in the dynamic slice. By examining statements at lines 10 and

50, the cause of the failure becomes evident to the programmer. It is easy to see that although a count

entries have been allocated at line 10, b count entries are accessed according to the loop bounds of the for

statement at line 50. This is the cause of the heap overflow at line 51. The main benefit of using dynamic

slicing is that it focuses the attention of the programmer on the two relevant lines of code (10 and 50),

enabling the fault to be located.

We studied the execution times of computing backward dynamic slices using WETs. The results of this

study are presented in Figure 4.7. In this graph each point corresponds to the average dynamic slicing time

for 25 slices. For each benchmark 25 new slices are computed after an execution interval of 15 million

statements. These slices correspond to 25 distinct memory references. Following each execution interval

slices are computed for memory addresses that had been defined since the last execution interval. This

was done to avoid repeated computation of the same slices during the experiment. The increase in slicing

times is linear with respect to the number of statements executed. More importantly, the slicing times are

very promising. For 9 out of 10 benchmarks the average slicing time for 25 slices computed at the end of

the run is below 18 seconds. The only exception is 300.twolf , for which the average slicing time at the

. . .

10. A = (int *) malloc(a count * sizeof(int));

. . .

50. for (i=0; i < b count; i++)

51. A[i] = NULL;

. . .

FIGURE 4.6 Understanding a heap overflow bug using backward slice.
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FIGURE 4.7 Dynamic slicing times using WETs.

end of the program run is roughly 36 seconds. We noted that the compression algorithm did not reduce

the graph size for this program as much as many of the other benchmarks. Finally, at earlier points during

program runs the slicing times are even lower.

4.3.1.2 Forward Dynamic Slicing

Zeller introduced the term delta debugging [22] for the process of determining the causes of program

behavior by looking at the differences (the deltas) between the old and new configurations of the programs.

Hildebrandt and Zeller [10, 23] then applied the delta debugging approach to simplify and isolate the

failure-inducing input difference. The basic idea of delta debugging is as follows. Given two program runs

rs and r f corresponding to the inputs Is and I f , respectively, such that the program fails in run r f and

completes execution successfully in run rs , the delta debugging algorithm can be used to systematically

produce a pair of inputs I ′
s and I ′

f with a minimal difference such that the program fails for I ′
f and executes

successfully for I ′
s . The difference between these two inputs isolates the failure-inducing difference part

of the input. These inputs are such that their values play a critical role in distinguishing a successful run

from a failing run.

Since the minimal failure-inducing input difference leads to the execution of faulty code and hence

causes the program to fail, we can identify a fault candidate set by computing a forward dynamic slice

starting at this input. In other words, all statements that are influenced by the input value directly or

indirectly through a chain of data or control dependences are included in the fault candidate set. Thus,

now we have a means for producing a new type of dynamic slice that also represents a fault candidate set.

We recognized the role of forward dynamic slices in fault location for the first time in [8].

Let us illustrate the use of forward dynamic slicing using the program in Figure 4.8. In this program if

the length of the input is longer than 1,024, the writes to Buffer[i] at line 6 overflow the buffer corrupting

the pointer stored in CorruptPointer. As a result, when we attempt to execute the free at line 9, the program

crashes.

Let us assume that to test the above program we picked the following two inputs: the first input is
′aaaaa′, which is a successful input, and the second input is ′a < repeated 2000 times >′, which is a failing

input because the length is larger than 1,024. After applying the s ddmin algorithm in [23] on them, we

have two new inputs: the new successful input is ′a < repeated 1024 times >′ and the new failing input is
′a < repeated 1025 times >′. The failure-inducing input difference between them is the last character ′a ′

in the new failed input.

Now we compute the forward dynamic slice of 1,025th ′a ′ in the failing input. The resulting dynamic

slice consists of a data dependence chain originating at statement INPUT[i] at line 5, leading to the write to
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1. char * CorruptPointer;

2. char Buffer[1024];

3. CorruptPointer = (char *) malloc( . . . );

4. i = 0;

5. while (INPUT[i]) {

6. Buffer[i] = INPUT[i];

7. i++;

8. }

9. free(CorruptPointer);

FIGURE 4.8 Understanding a buffer overflow bug using a forward slice.

Buffer[i] at line 6, and then leading to the statement free(CorruptPointer) at line 9. When the programmer

examines this data dependence chain, it becomes quite clear that there is an unexpected data dependence

from Buffer[i] at line 6 to free(CorruptPointer) at line 9. Therefore, the programmer can conclude that

Buffer[i] has overflowed. This is the best result one can expect from a fault location algorithm. This is

because, other than the input statement, the forward dynamic slice captures exactly two statements. These

are the two statements between which the spurious data dependence was established, and hence they must

be minimally present in the fault candidate set.

4.3.1.3 Bidirectional Dynamic Slicing

Given an erroneous run of the program, the objective of this method is to explicitly force the control flow

of the program along an alternate path at a critical branch predicate such that the program produces the

correct output. The basic idea of this approach is inspired by the following observation. Given an input on

which the execution of a program fails, a common approach to debugging is to run the program on this

input again, interrupt the execution at certain points to make changes to the program state, and then see

the impact of changes on the continued execution. If we can discover the changes to the program state that

cause the program to terminate correctly, we obtain a good idea of the error that otherwise was causing the

program to fail. However, automating the search of state changes is prohibitively expensive and difficult to

realize because the search space of potential state changes is extremely large (e.g., even possible changes for

the value of a single variable are enormous if the type of the variable is integer or float). However, changing

the outcomes of predicate instances greatly reduces the state search space since a branch predicate has only

two possible outcomes: true or false. Therefore, we note that through forced switching of the outcomes of

some predicate instances at runtime, it may be possible to cause the program to produce correct results.

Having identified a critical predicate instance, we compute a fault candidate set as the bidirectional

dynamic slice of the critical predicate instance. This bidirectional dynamic slice is essentially the union of

the backward dynamic slice and the forward dynamic slice of the critical predicate instance. Intuitively,

the reason the slice must include both the backward and forward dynamic slice is as follows. Consider the

situation in which the effect of executing faulty code is to cause the predicate to evaluate incorrectly. In this

case the backward dynamic slice of the critical predicate instance will capture the faulty code. However, it

is possible that by changing the outcome of the critical predicate instance we avoid the execution of faulty

code, and hence the program terminates normally. In this case the forward dynamic slice of the critical

predicate instance will capture the faulty code. Therefore, the faulty code will be in either the backward

dynamic slice or the forward dynamic slice. We recognized the role of bidirectional dynamic slices in fault

location for the first time in [26], where more details on identification of the critical predicate instance

can also be found.

Next we present an example to illustrate the need for bidirectional dynamic slices. We consider a simple

program shown in Figure 4.9 that sums up the elements of an array (A[1] + A[2] + · · · + A[N]). While

this is the correct version of the program, next we will create three faulty versions of this program. In each

of these versions the critical predicate instance can be found. However, the difference in these versions
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1. Start = 1;

2. End = N;

3. Sum = 0;

4. i = Start;

5. while (i <= End) {

6. Sum = Sum + A[i];

7. i = i + 1;

8. }

9. print(Sum);

FIGURE 4.9 Correct version: Sum = A[1] + A[2] + · · · + A[N].

is where in the bidirectional dynamic slice the faulty code is present, that is, the critical predicate, the

backward dynamic slice of the critical predicate, and the forward dynamic slice of the critical predicate:

Fault in the critical predicate: Figure 4.10 shows a faulty version of the program from Figure 4.9. In

this faulty version, the error in the predicate of the while loop results in the loop executing for

one fewer iterations. As a result, the value of A[N] is not added to Sum, producing an incorrect

output. The critical predicate instance identified for this program run is the last execution instance

of the while loop predicate. This is because if the outcome of the last execution instance of the while

loop predicate is switched from false to true, the loop iterates for another iteration and the output

produced by the program becomes correct. Given this information, the programmer can ascertain

that the error is in the while loop predicate, and it can be corrected by modifying the relational

operator from < to <=.

Fault in the backward dynamic slice of the critical predicate instance: In the previous faulty version,

the critical predicate identified was itself faulty. Next we show that in a slightly altered version of the

faulty version, the fault is not present in the critical predicate but rather in the backward dynamic

slice of the critical predicate. Figure 4.11 shows this faulty version. The fault is in the initialization

of End at line 3, and this causes the while loop to execute for one fewer iterations. Again, the value of

A[N] is not added to Sum, producing an incorrect output. The critical predicate instance identified

for this program run is the last execution instance of the while loop predicate. This is because if the

outcome of the last execution instance of the while loop predicate is switched from false to true,

the loop iterates for another iteration and the output produced by the program becomes correct.

However, in this situation the programmer must examine the backward dynamic slice of the critical

predicate to locate the faulty initialization of End at line 3.

Fault in the forward dynamic slice of the critical predicate instance: Finally, we show a faulty version

in which the faulty code is present in the forward dynamic slice of the critical predicate instance.

Figure 4.12 shows this faulty version. The fault is at line 6, where reference to A[i + 1] should be

1. Start = 1;

2. End = N;

3. Sum = 0;

4. i = Start;

5. while (i < End) { – faulty statement

6. Sum = Sum + A[i];

7. i = i + 1;

8. }

9. print(Sum);

FIGURE 4.10 Fault in the critical predicate.
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1. Start = 1;

2. End = N-1; – faulty statement

3. Sum = 0;

4. i = Start;

5. while (i <= End) {

6. Sum = Sum + A[i];

7. i = i + 1;

8. }

9. print(Sum);

FIGURE 4.11 Fault in backward dynamic slice of critical predicate instance.

replaced by reference to A[i]. When this faulty version is executed, let us consider the situation

in which when the last loop iteration is executed, the reference to A[N + 1] at line 6 causes the

program to produce a segmentation fault. The most recent execution instance of the while loop

predicate is evaluated to true. However, if we switch this evaluation to false, the loop executes for

one fewer iterations, causing the program crash to disappear. Note that the output produced is still

incorrect because the value of A[1] is not added to Sum. However, since the program no longer

crashes, the programmer can analyze the program execution to understand why the program crash is

avoided. By examining the forward dynamic slice of the critical predicate instance, the programmer

can identify the statements, which when not executed avoid the program crash. This leads to the

identification of reference to A[i + 1] as the fault.

In the above discussion we have demonstrated that once the critical predicate instance is found, the

fault may be present in the critical predicate, its backward dynamic slice, or its forward dynamic slice. Of

course, the programmer does not know beforehand where the fault is. Therefore, the programmer must

examine the critical predicate, the statements in the backward dynamic slice, and the statements in the

forward dynamic slice one by one until the faulty statement is found.

4.3.1.4 Pruning Dynamic Slices

In the preceding discussion we have shown three types of dynamic slices that represent reduce fault

candidate sets. In this section we describe two additional techniques for further pruning the sizes of the

fault candidate sets:

Coarse-grained pruning: When multiple estimates of fault candidate sets are found using backward,

forward, and bidirectional dynamic slices, we can obtain a potentially smaller fault candidate set

by intersecting the three slices. We refer to this simple approach as the coarse-grained pruning

approach. In [24] we demonstrate the benefits of this approach by applying it to a collection of real

bugs reported by users. The results are very encouraging, as in many cases the fault candidate set

contains only a handful of statements.

1. Start = 0;

2. End = N;

3. Sum = 0;

4. i = Start;

5. while (i <= End) {

6. Sum = Sum + A[i+1]; – faulty statement

7. i = i + 1;

8. }

9. print(Sum);

FIGURE 4.12 Fault in forward dynamic slice of critical predicate instance.
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Fine-grained pruning: In general, it is not always possible to compute fault candidate sets using back-

ward, forward, and bidirectional dynamic slices. For example, if we fail to identify a minimal

failure-inducing input difference and a critical predicate instance, then we cannot compute the

forward and bidirectional dynamic slices. As a result, coarse-grained pruning cannot be applied. To

perform pruning in such situations we developed a fine-grained pruning technique that reduces the

fault candidate set size by eliminating statements in the backward dynamic slice that are expected

not to be faulty.

The fine-grained pruning approach is based upon value profiles of executed statements. The main idea

behind this approach is to exploit correct outputs produced during a program run before an incorrect

output is produced or the program terminates abnormally. The executed statements and their value profiles

are examined to find likely correct statements in the backward slice. These statements are such that if they

are altered, they will definitely cause at least one correct output produced during the program run to

change. All statements that fall in this category are marked as likely correct and thus pruned from the

backward dynamic slice. The detailed algorithm can be found in [25] along with experimental data that

show that this pruning approach is highly effective in reducing the size of the fault candidate set. It should be

noted that this fine-grained pruning technique makes use of both dependence and value traces contained

in the WET.

4.3.2 Dynamic Matching of Program Versions

Now we consider a scenario in which we have two versions of a program such that the second version

has been derived through application of transformations to the first version. When the two versions are

executed on an input, it is found that while the first version runs correctly, the second version does not.

In such a situation it is useful to find out the execution point at which the dynamic behavior of the two

versions deviates, since this gives us a clue to the cause of differing behaviors.

The above scenario arises in the context of optimizing compilers. Although compile-time optimizations

are important for improving the performance of programs, applications are typically developed with the

optimizer turned off. Once the program has been sufficiently tested, it is optimized prior to its deployment.

However, the optimized program may fail to execute correctly on an input even though the unoptimized

program ran successfully on that input. In this situation the fault may have been introduced by the optimizer

through the application of an unsafe optimization, or a fault present in the original program may have

been exposed by the optimizations. Determining the source and cause of the fault is therefore important.

In [12] a technique called comparison checking was proposed to address the above problem. A compar-

ison checker executes the optimized and unoptimized programs and continuously compares the results

produced by corresponding instruction executions from the two versions. At the earliest point during ex-

ecution at which the results differ, they are reported to the programmer, who can use this information

to isolate the cause of the faulty behavior. It should be noted that not every instruction in one version

has a corresponding instruction in the other version because optimizations such as reassociation may

lead to instructions that compute different intermediate results. While the above approach can be used

to test optimized code thoroughly and assist in locating a fault if one exists, it has one major drawback.

For the comparison checker to know which instruction executions in the two versions correspond to each

other, the compiler writer must write extra code that determines mappings between execution instances

of instructions in the two program versions. Not only do we need to develop a mapping for each kind of

optimization to capture the effect of that optimization, but we must also be able to compose the map-

pings for different optimizations to produce the mapping between the unoptimized and fully optimized

code. The above task is not only difficult and time consuming, but it must be performed each time a new

optimization is added to the compiler.

We have developed a WET-based approach for automatically generating the mappings. The basic idea

behind our approach is to run the two versions of the programs and regularly compare their execution

histories. The goal of this comparison is to find matches between the execution history of each instruction

in the optimized code with execution histories of one or more instructions in the unoptimized code.
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If execution histories match closely, it is extremely likely that they are indeed the corresponding instructions

in the two program versions. At each point when executions of the programs are interrupted, their histories

are compared with each other. Following the determination of matches, we determine if faulty behavior

has already manifested itself, and accordingly potential causes of faulty behavior are reported to the user

for inspection. For example, instructions in the optimized program that have been executed numerous

times but do not match anything in the unoptimized code can be reported to the user for examination. In

addition, instructions that matched each other in an earlier part of execution but later did not match can

be reported to the user. This is because the later phase of execution may represent instruction executions

after faulty behavior manifests itself. The user can then inspect these instructions to locate the fault(s).

The key problem we must solve to implement the above approach is to develop a matching process that

is highly accurate. We have designed a WET-based matching algorithm that consists of the following two

steps: signature matching and structure matching. A signature of an instruction is defined in terms of the

frequency distributions of the result values produced by the instruction and the addresses referenced by the

instruction. If signatures of two instructions are consistent with each other, we consider them to tentatively

match. In this second step we match the structures of the data dependence graphs produced by the two

versions. Two instructions from the two versions are considered to match if there was a tentative signature

match between them and the instructions that provided their operands also matched with each other.

In the Trimaran system [19] we generated two versions of very long instructional word (VLIW) machine

code supported under the Trimaran system by generating an unoptimized and an optimized version of

programs. We ran the two versions on the same input and collected their detailed whole execution traces.

The execution histories of corresponding functions were then matched. We found that our matching

algorithm was highly accurate and produced the matches in seconds [29]. To study the effectiveness of

matching for comparison checking as discussed above, we created another version of the optimized code

by manually injecting an error in the optimized code. We plotted the number of distinct instructions for

which no match was found as a fraction of distinct executed instructions over time in two situations:

when the optimized program had no error and when it contained an error. The resulting plot is shown

in Figure 4.13. The points in the graph are also annotated with the actual number of instructions in the

optimized code for which no match was found. The interval during which an error point is encountered

during execution is marked in the figure.

Compared to the optimized program without error, the number of unmatched instructions increases

sharply after the error interval point is encountered. The increase is quite sharp — from 3 to 35%. When

we look at the actual number of instructions reported immediately before and after the execution interval

during which the error is first encountered, the number reported increases by an order of magnitude.
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By examining the instructions in the order they are executed, erroneous instructions can be quickly isolated.

Other unmatched instructions are merely dependent upon the instructions that are the root causes of the

errors. Out of the over 2,000 unmatched instructions at the end of the second interval, we only need to

examine the first 15 unmatched instructions in temporal order to find an erroneous instruction.

4.4 Concluding Remarks

The emphasis of earlier research on profiling techniques was separately studying single types of profiles

(control flow, address, value, or dependence) and capturing only a subset of profile information of a

given kind (e.g., hot control flow paths, hot data streams). However, recent advances in profiling enable

us to simultaneously capture and compactly represent complete profiles of all types. In this chapter we

described the WET representation that simultaneously captures complete profile information of several

types of profile data. We demonstrated how such rich profiling data can serve as the basis of powerful

dynamic analysis techniques. In particular, we described how dynamic slicing and dynamic matching

can be performed efficiently and used to greatly assist a programmer in locating faulty code under two

debugging scenarios.
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5.1 Introduction

Since the advent of microprocessors, the clock speeds of CPUs have increased at an exponential rate. While

the speed at which off-chip memory can be accessed has also increased exponentially, it has not increased

at the same rate. A memory hierarchy is used to bridge this gap between the speeds of the CPU and the

memory. In a memory hierarchy, the off-chip main memory is at the bottom. Above it, one or more levels

of memory reside. Each level is faster than the level below it but stores a smaller amount of data. Sometimes

registers are considered to be the topmost level of this hierarchy.

There are two ways in which the intermediate levels of this hierarchy can be organized.

The most popular approach, used in most general-purpose processors, is to use cache memory. A cache

contains some frequently accessed subset of the data in the main memory. When the processor

wants to access a piece of data, it first checks the topmost level of the hierarchy and goes down until

5-1
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the data sought is found. Most current processors have either two or three levels of caches on top

of the main memory. Typically, the hardware controls which subset of state of one level is stored in

a higher level. In a cache-based memory hierarchy, the average time to access a data item depends

upon the probability of finding the data at each level of the hierarchy.

Embedded systems use scratch pad memory in their memory subsystems. Scratch pads are smaller and

faster addressable memory spaces. The compiler or the programmer directs where each data item

should reside.

In this chapter, we restrict our attention to cache-based memory hierarchies. This chapter discusses

compiler transformations that reduce the average access latency of accessing data and instructions from

memory. The average latency of accesses can be reduced in several ways. The first approach is to reduce

the number of cache misses. There are three types of cache misses. Cold misses are the misses that are

seen when a data item is accessed for the first time in the program and hence is not found in the cache.

Capacity misses are caused when the current working set of the program is greater than the size of the

cache. Conflict misses happen when more than one data item maps to the same cache line, thereby evicting

some data in the current working set from the cache, but the current working set itself fits within the

cache. The second approach is to reduce the average number of cycles needed to service a cache miss.

The optimizations discussed later in this chapter reduce the average access latency by reducing the cache

misses, by minimizing the access latency on a miss, or by a combination of both.

In many processor architectures, the compiler cannot explicitly specify which data items should be placed

at each level of the memory hierarchy. Even in architectures that support such directives, the hardware still

maintains primary control. In either case, the compiler performs various transformations to reduce the

access latency:

1. Code restructuring optimizations: The order in which data items are accessed highly influences

which set of data items are available in a given level of cache hierarchy at any given time. In

many cases, the compiler can restructure the code to change the order in which data items are

accessed without altering the semantics of the program. Optimizations in this category include

loop interchange, loop blocking or tiling, loop skewing, loop fusion, and loop fission.

2. Prefetching optimizations: Some architectures do provide support in the instruction set that

allows the compiler some explicit control of what data should be in a particular level of the hierarchy.

This is typically in the form of prefetch instructions. As the name suggests, a prefetch instruction

allows a data item to be brought into the upper levels of the hierarchy before the data is actually

used by the program. By suitably inserting such prefetch instructions in the code, the compiler can

decrease the average data access latency.

3. Data layout optimizations: All data items in a program have to be mapped to addresses in the

virtual address space. The mapping function is often irrelevant to the correctness of the program,

as long as two different items are with overlapping lifetimes not mapped to overlapping address

ranges. However, this can have an effect on which level of the hierarchy a data item is found and

hence on the execution time. Optimizations in this category include structure splitting, structure

peeling, and stack, heap, and global data object layout.

4. Code layout optimizations: The compiler has even more freedom in mapping instructions to

address ranges. Code layout optimizations use this freedom to ensure that most of the code is

found in the topmost level of the instruction cache.

While the compiler can optimize for the memory hierarchies in many ways, it also faces some significant

challenges. The first challenge is in analyzing and understanding memory access patterns of applications.

While significant progress has been made in developing better memory analyses, there remain many cases

where the compiler has little knowledge of the memory behavior of applications. In particular, irregular

access patterns such as traversals of linked data structures still thwart memory optimization efforts on the

part of modern compilers. Indeed, most of the optimizations for memory performance are designed to

handle regular access patterns such as strided array references. The next challenge comes from the fact
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that many optimizations for memory hierarchies are highly machine dependent. Incorrect assumptions

about the underlying memory hierarchy often reduce the benefits of these optimizations and may even

degrade the performance. An optimization that targets a cache with a line size of 64 bytes may not be

suitable for processors with a cache line size of 128 bytes. Thus, the compiler needs to model the memory

hierarchy as accurately as possible. This is a challenge given the complex memory subsystem found in

modern processors. In Intel’s Itanium®, for example, the miss latency of first-level and second-level caches

depends upon on factors such as the occupancy of the queue that contains the requests to the second-

level cache. Despite these difficulties, memory optimizations are worthwhile, given how much memory

behavior dictates overall program performance.

The rest of this chapter is organized as follows. Section 5.2 provides some background on the notion of

dependence within loops and on locality analysis that is needed to understand some of the optimizations.

Sections 5.3, 5.4, and 5.5 discuss some code restructuring optimizations. Section 5.6 deals with data

prefetching, and data layout optimizations are discussed in Section 5.7. Optimizations for the instruction

cache are covered in Section 5.8. Section 5.9 briefly summarizes the optimizations and discusses some

future directions, and Section 5.10 discusses references to various works in this area.

5.2 Background

Code restructuring and data prefetching optimizations typically depend on at least partial regularity in

data access patterns. Accesses to arrays within loops are often subscripted by loop indices, resulting in

very regular patterns. As a result, most of these techniques operate at the granularity of loops. Hence,

we first present some theory on loops that will be used in subsequent sections. A different approach to

understanding loop accesses by using the domain of Z-polyhedra to model the loop iteration space is

discussed by Rajopadhye et al. [24].

5.2.1 Dependence in Loops

Any compiler transformation has to preserve the semantics of the original code. This is ensured by preserv-

ing all true dependences in the original code. Traditional definitions of dependence between instructions

are highly imprecise when applied to loops. For example, consider the loop in Figure 5.1 that computes the

row sums of a matrix. By the traditional definition of true dependence, the statement row sum[i]+=
matrix[i][j] in the inner loop has a true dependence on itself, but this is an imprecise statement

since this is true only for statements within the same inner loop. In other words, row sum[i+1] does

not depend on row sum[i] , and both can be computed in parallel. This shows the need for a more

precise definition of dependence within a loop. While a detailed discussion of loop dependence is beyond

the scope of this chapter, we briefly discuss loop dependence theory and refer readers to Kennedy and

Allen [13].

An important drawback of the traditional definition of dependences when applied to loops is that they

do not have any notion of loop iteration. As the above example suggests, if a statement is qualified by its

loop iteration, the dependence definitions will be more precise. The following definitions help precisely

specify a loop iteration:

for (i=0; i< m; i++){
for(j = 0; j< n; j++){

row_sum[i] += matrix[i][j]
}

}

FIGURE 5.1 Matrix row sum computation.
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Normalized iteration number: If a loop index I has a lower bound of L and a step size of S, then the

normalized iteration number of an iteration is given by I−L
S

+ 1.

Iteration vector: An iteration vector of a loop nest is a vector of integers representing loop iterations

in which the value of the kth component denotes the normalized iteration number of the kth

outermost loop. As an example, for the loop shown above, the iteration vector i = (1, 2) denotes

the second iteration of the j loop within the first iteration of the i loop.

Using iteration vectors, we can define statement instances. A statement instance S(i) denotes the state-

ment S executed on the iteration specified by the iteration vector i. Defining the dependence relations on

statement instances, rather than just on the statements, makes the dependence definitions precise. Thus,

if S denotes the statement row sum[i] += matrix[i][j] , then there is true dependence between

S(i, j1) and S(i, j2), where j1 < j2 <= n. In general, there can be a dependence between two statement in-

stances S1(i1) and S2(i2) only if the statement S2 is dependent on S1 and the iteration vector i1 is lexicograph-

ically less than or equal to i2. To specify dependence between statement instances, we define two vectors:

Dependence distance vector: If there is a dependence from statement Si in iteration i to statement

S j in iteration j, then the dependence distance vector d(i, j) is a vector of integers defined as

d(i, j) = j-i.

Dependence direction vector: If d(i, j) is a dependence distance vector, then the corresponding direction

vector D(i, j) is defined as

D(i, j ) = (D(i, j )0, D(i, j )1, . . . D(i, j )n), where,

D(i, j )k =

⎧

⎪

⎨

⎪

⎩

<, if d(i, j )k > 0

=, if d(i, j )k = 0

>, if d(i, j )k < 0

In any valid dependence, the leftmost non = component of the direction vector must be <. The loop

transformations described in this chapter are known as reordering transformations. A reordering transfor-

mation is one that does not add or remove statements from a loop nest and only reorders the execution

of the statements that are already in the loop. Since reordering transformations do not add or remove

statements, they do not add or remove any new dependences. A reordering transformation is valid if it

preserves all existing dependences in the loop.

5.2.2 Reuse and Locality

Most compiler optimizations for memory hierarchies rely on the fact that programs reuse the same data

repeatedly. There are two types of data reuse:

Temporal reuse: When a program accesses a memory location more than once, it exhibits temporal

reuse.

Spatial reuse: When a program accesses multiple memory locations within the same cache line, it

exhibits spatial reuse.

These reuses can be due to the same reference or a group of data references. In the former case, the reuse

is known as self reuse, and in the latter case, it is known as group reuse. In the loop

// even_sum and odd_sum are global variables

for (i=0; i<m; i+=2){
even_sum += a[i];
odd_sum += a[i+1];

}



Optimizations for Memory Hierarchies 5-5

even sum and odd sum exhibit self-temporal reuse. The references to a[i] and a[i+1] show

self-spatial reuse individually and exhibit group-spatial reuse together.

Data reuse is beneficial since a reused data item is likely to be found in the caches and hence incur a low

average access latency. If the caches are infinitely large, then all reused data would be found in the cache,

but since the cache sizes are finite, a data object Din the cache may be replaced by some other data between

two uses of D.

5.2.3 Quantifying Reuse and Locality

The compiler must be able to quantify reuse and locality in order to exploit them. Reuse resulting from

array accesses in loops whose subscripts are affine functions of the loop indices can be modeled using

linear algebra. Consider an n-dimensional array X accessed inside a loop nest N = (L 1, L 2, . . . L m) m

loops. Let the loop indices be represented by an n × 1 matrix i . Then each access to X can be represented

as X[Ai + C], where A is an m × n matrix that applies a linear transformation on i , and C is an m × 1

constant vector. For example, an access X[0][i-j] in a loop nest with two loops, whose indices are i
and j , is represented as X[Ai + C], where

A =

(

0 0

1 −1

)

, i =

(

i

j

)

, and C =

(

0

0

)

This access exhibits self-temporal reuse if it accesses the same memory location in two iterations of

the loop. If, in iterations i1 and i2, the reference to X accesses the same location, then Ai1 + C must be

equal to Ai2 + C . Let d = i1 − i2. The vector d is known as the reuse distance vector. If a non-null value

of d satisfyies the equation A × d = 0, then the reference exhibits self-temporal reuse. In other words,

if the kernel of the vector space given by A is non-null, then the reference exhibits self-temporal reuse.

For the above example, there is a non-null d satisfying the equation since A ×
(

k
k

)

=
(

0
0

)

. This implies

that the location accessed in iteration (i1, j1) is also accessed in iteration (i1 + k, j1 + k) for any value

of k. Group-temporal reuse is identified in a similar manner. If two references Ai1 + C1 and Ai2 + C2

to the same array in iterations i1 and i2, respectively, access the same location, then Ai1 + C1 must be

equal to Ai2 + C2. In other words, if a non-null d satisfies A × d = (C1 − C2), the pair of references

exhibit group-temporal reuse. If an entry of the d vector is 0, then the corresponding loop carries temporal

reuse. The amount of reuse is given by the product of the iteration count of those loops that have a 0

entry in d .

An access exhibits self-spatial reuse if two references access different locations that are in the same cache

line. We define the term contiguous dimension to mean the dimension of the array along which two adjacent

elements of the array are in adjacent locations in memory. In this chapter, all the code examples are in C,

where arrays are arranged in row-major order and hence the nth dimension of an n-dimensional array is

the contiguous dimension. For simplicity, it is assumed that two references exhibit self-spatial reuse only

if they have the same subscripts in all dimensions except the contiguous dimension. This means the first

test for spatial reuse is similar to that of temporal reuse ignoring the contiguous dimension subscript. The

second test is to ensure that the subscripts of the last contiguous dimension differ by a value that is less

than the cache line size. Given an access X[Ai + C ], the entries of the last row of matrix A are coefficients

of the affine function used as a subscript in the contiguous dimension. We define a new matrix As that

is obtained by setting all the columns in the last row of A to 0. If the kernel of As is non-null and the

subscripts of the contiguous dimension differ by a value less than the cache line size, then the reference

exhibits self-spatial reuse. Similarly, group-spatial reuse is present between two references Ai1 + C1 and

Ai2 +C2 if there is a solution to As ×d = (C1 −C2). Let i c1, i c2, . . . i ck denote the iteration counts of loops

that carry temporal reuse in all but the contiguous dimension. Let s be the stride along the contiguous

dimension and cls be the cache line size. Then, the total spatial reuse is given by
∏

i i c i × cls
s

.

As described earlier, reuse does not always translate to locality. The term data footprint of a loop

invocation refers to the total amount of data accessed by an invocation of the loop. It is difficult to exactly

determine the size of data accessed by a set of loops, so it is estimated based on factors such as estimated
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iteration count. The term localized iteration space [21] refers to the subspace of the iteration space whose

data footprint is smaller than the cache size. Reuse translates into locality only if the intersection of the

reuse distance vector space with the localized iteration vector space is not empty.

5.3 Loop Interchange

Loop interchange changes the order of loops in a perfect loop nest to improve spatial locality. Consider

the loop in Figure 5.2. This loop adds two m × n matrices. Since multidimensional arrays in C are stored

in row-major order, two consecutive accesses to the same array are spaced far apart in memory. If all the

three matrices do not completely fit within the cache, every access to a, b, and c will miss in the cache,

but a compiler can transform the loop into the following equivalent loop:

for (i=0; i< m; i++){
for(j = 0; j< n; j++){

c[i][j] = a[i][j] + b[i][j];
}

}

The above loop is semantically equivalent to the first loop but results in fewer conflict misses.

As this example illustrates, the order of nesting may be unimportant for correctness and yet may have

a significant impact on the performance. The goal of loop interchange is to find a suitable nesting order

that reduces memory access latency while retaining the semantics of the original loop. Loop interchange

comes under a category of optimizations known as unimodular transformations. A loop transformation is

called unimodular if it transforms the dependences in a loop by multiplying it with a matrix, whose deter-

minant has a value of either −1 or 1. Other unimodular transformations include loop reversal, skewing,

and so on.

5.3.1 Legality of Loop Interchange

It is legal to apply loop interchange on a loop nest if and only if all dependences in the original loop

are preserved after the interchange. Whether an interchange preserves dependence can be determined

by looking at the direction vectors of the dependences after interchange. Consider a loop nest N =

(L 1, L 2, . . . L n). Let D(i, j) be the direction vector of a dependence in this loop nest. If the order of loops

in the loop nest is permuted by some transformation, then the direction vector corresponding to the

dependence in the permuted loop nest can be obtained by permuting the entries of D(i, j). To understand

this, consider the iteration vectors i and j corresponding to the source and sink of the dependence. A

permutation of the loop nest results in a corresponding permutation of the components of i and j . This

permutes the distance vector d(i, j) and hence the direction vector D(i, j). To determine whether N can

be permuted to N ′ = (L i1
, L i2

, . . . L in
), the same permutation is applied to the direction vectors of all

dependences, and the resultant direction vectors are checked for validity.

for (j=0; j< n; j++){
for(i = 0; i< m; i++){

c[i][j] = a[i][j] + b[i][j];
}

}

FIGURE 5.2 A suboptimal loop ordering.
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As an example, consider the loop

for(i=1; i<m; i++){
for(j=1; j<n; j++){

a[i][j] = a[i][j-1] + a[i-1][j+1];
}

}

This loop nest has two dependences:

� Dependence from a[i][j-1] to a[i][j] , represented by the distance vector (0, 1) and the

direction vector (=, <)
� Dependence from a[i-1][j+1] to a[i][j] , represented by the distance vector (1, −1) and

the direction vector (<, >)

Loop interchange would permute a direction vector by swapping its two components. While the direction

vector (=, <) remains valid after this permutation, the vector (<, >) gets transformed to (>, <), which is

an invalid direction vector. Hence, the loop nest above cannot be interchanged.

5.3.2 Dependent Loop Indices

Even if interchange does not violate any dependence, merely swapping the loops may not be possible if the

loop indices are dependent on one another. For example, the loop in Figure 5.1 can be rewritten as

for (j=0; j<n; j++){
for(i=j; i<j+m; i++){

row_sum[i-j] += matrix[i-j][j];
}

}

Except for the change in the bounds of the inner loop index, the loop is semantically identical to the one in

Figure 5.1. It has the same dependence vectors, so it must be legal to interchange the loops. However, since

the inner loop index is dependent on the outer loop index, the two loops cannot simply be swapped. The

indices of the loops need to be adjusted after interchange. This can be done by noting that loop interchange

transposes the iteration space of the loop. Figure 5.3 shows the iterations of the original loop for n = 3 and

m = 4. In Figure 5.4, the iteration space is transposed. This corresponds to the following interchanged

loop.

for(i=0; i < m+n-1 ; i++){
for(j=max(0, i-m+1); j < min(n, i+1); j++){

row_sum[i-j] += matrix[i-j][j];
}

}

5.3.3 Profitability of Loop Interchange

Even if loop interchange can be performed on a loop nest, it is not always profitable to do so. In the

example shown in Figure 5.2, it is obvious that traversing the matrices first along the rows and then along

the columns is optimal, but when the loop body accesses multiple arrays, each of the accesses may prefer

a different loop order. For example, in the following loop,
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j = 0 j = 2j = 1

i = 0

i = 2

i = 3

i = 4

i = 5

i = 1

FIGURE 5.3 Iteration space before interchange.

for (j=0; j<m; j++){
for(i=0; i<n; i++){

sum += (matrix[i][j]*row[j]);
}

}

the loop order is suboptimal for accesses to the matrix array. However, this is the best loop order

to access the row array. In this loop nest, the element row[j] shows self-temporal reuse between the

iterations of the inner loop. Hence, it needs to be accessed just once per iteration of the outer loop. If the

loops are interchanged, this array is accessed once per iteration of the inner loop. If the size of the row
array is much larger than the size of the cache, then there is no reuse across outer loop iterations.

For this loop nest:

� Number of misses to matrix = n × m
� Number of misses to row = n

cls
� Total number of misses = n × m + n

cls

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

j = 1

j = 0

j = 2

FIGURE 5.4 Iteration space after interchange.
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If the loops are interchanged, then

� Number of misses to matrix = n×m
cls

� Number of misses to row = m×n
cls

� Total number of misses = 2 × n×m
cls

In the above equations, cls denotes the size of the cache line in terms of elements of the two arrays. From

this set of equations, it is clear that the interchanged loop is better only when the cache line can hold more

than two elements of the two arrays.

5.3.4 A Loop Permutation Algorithm

In theory, one could similarly determine the right order for any given loop nest, but when the maximum

depth of a perfect loop nest is n, the number of possible loop orderings is n!, and computing the total

number of misses for those n! loops is prohibitive for a large value of n. Instead, we can use some simple

set of heuristics to determine an order that is likely to be profitable.

The algorithm in Figure 5.5 computes a good order of loops for the given loop nest N. For every loop in

N, it computes cache misses(L), which is the estimated number of cache misses when the loop L is made

the inner loop. To compute cache misses(L), the algorithm first computes a set. Each element of this set

is either a single array reference or a group of array references that have group reuse. For instance, in the

following loop,

for (i=0; i<N; i++)
sum += A[i] + A[i+1];

Input: Loop nest N = (L 1, L 2, . . . , L n)

Output: Good loop order N ′ = (L g1
, L g2

, . . . , L gn
)

for every loop L i in N do

cache misses(L i ) = 0

RGSet = { reuse groups in N }

for every access group RG in RGSet do

A = leading reference in RG

if index of L i is not in A’s subscripts then

cache misses(L i , A) = 1

else

if stride(A, L i ) > cls then

cache misses(L i , A) = # iterations of L i

else

cache misses(L i , A) = # iterations of L i * stride(A,L i )
cls

end if

for L j in N, L i �= L j do

cache misses(L i ,A) *= # iterations of L j

end for

end if

cache misses(L i ) += cache misses(L i , A)

end for

end for

N′ = {L i in N sorted by cache misses(L i )}

FIGURE 5.5 An algorithm to obtain a good permutation of a loop nest.
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array references A[i] and A[i+1] belong to the same reuse group. Only the leading array reference in a

reuse group is used for calculating cache misses. If a reference does not have L i in the subscripts, its cost

is considered as 1. This is because such a reference will correspond to the same memory location for all

iterations of L i and will therefore miss only once during the first access. If a reference has the index of L i in

one of its subscripts, the stride of the reference is first computed. stride(A, L i ) is defined as the difference

in address in accesses of A in two consecutive iterations of L i , where the i th component of the iteration

vector differs by 1. As an example, stride(X[i][ j ], i) is 256 in the following code:

char X[128][128];
for (i=0; i<128; i+=2){

for(j=0; j<128; j++){
sum += X[i][j];

}
}

If the stride is greater than the cache line size, then every reference to A will miss in the cache, so

cache misses is incremented by the number of iterations of L i . If the stride is less than cache line size, then

only one in every cls
stride

accesses will miss in the cache. Hence, the number of iterations of L i is divided

by cls
stride

and added to cache misses(L i ). Then, for each reference, cache misses(L i ) is multiplied by the

iteration counts of other loops whose indices are used as some subscript of A. Finally, the cache misses for

all references are added together.

After cache misses(L i ) for each loop L i is computed, the loops are sorted by cache misses in descending

order, and this is to obtain a good loop order. In other words, the loop with the lowest estimated cache

misses is a good candidate for the innermost loop, the loop with the next lowest cache misses is a good

candidate for the next innermost loop, and so on.

To see how this algorithm works, it is applied to the loop

double matrix[m][n], row[m];
for (j=0; j<n; j++){

for(i=0; i<m; i++){
sum += (matrix[i][j]*row[j]);

}
}

Let L i denote the loop with induction variable i and L j denote the loop with induction variable j. For

the loop nest with i as the induction variable:

1. cache misses(L i , row) = n, since i is not a subscript in row .

2. cache misses(L i , matrix) = m∗n. Here we assume that n is a large enough number so that

stride(n, L i ) is greater than the cache line size.

3. cache misses(L i ) = n + n∗m.

For the loop L j :

1. cache misses(L j , row) = m∗n∗sizeof(double)/cls

2. cache misses(L j , matrix) = m∗n∗sizeof(double)/cls

3. cache misses(L j ) = 2∗m∗n∗sizeof(double)/cls

If the cache line can hold at least two double s, cache misses(L j ) is less than cache misses(L i ), and

therefore L j is the candidate for the inner loop position.

While the algorithm in Figure 5.5 determines a good loop order in terms of profitability, it is not

necessarily a valid order, as some of the original dependences may be violated in the new order. The order

produced by the algorithm is therefore used as a guide to obtain a good legal order. This can be done in

the following manner:
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1. Pick the best candidate for the outermost loop among the loops that are not yet in the best legal

order.

2. Assign it to the outermost legal position in the best legal order.

3. Repeat steps 1 and 2 until all loops are assigned a place in the best legal order.

Kennedy and Allen [13] show why the resulting order is always a legal order.

5.4 Loop Blocking

A very common operation in many scientific computations is matrix multiplication. The code shown

below is a simple implementation of the basic matrix multiplication algorithm.

double a[m1][n1], b[n1][n2], c[m1][n2];
for (i=0; i<m1; i++){

for(j=0; j<n2; j++){
c[i][j] = 0;
for (k=0; k < n1; k++){

c[i][j] += a[i][k]*b[k][j];
}

}
}

This code has a lot of data reuse. For instance, every row of matrix a is used to compute n2 different

elements of the product matrix c . However, this reuse does not translate to locality if the matrices do not

fit in the cache. If the matrices do not fit in the cache, the loop also suffers from capacity misses that are

not eliminated by loop interchange. In this case, the following transformed loop improves locality:

for(i=0; i<m1; i++){
for(j=0; j<n2; j++){

c[i][j]=0;
}

}
for(i1=0; i1<m1; i1 += block_size){

for(j1=0; j1<n2; j1 += block_size){
for(k1=0; k1<n1; k1 += block_size){

for (i=i1; i<min(m1, i1+block_size); i++){
for(j=j1; j<min(n2, j1+block_size); j++){

for (k=k1; k < min(n1, k1+block_size); k++){
c[i][j] += a[i][k]*b[k][j];

}
}

}
}

}
}

First the initialization of the matrix c is separated out from the rest of the loop. Then, a transformation

known as blocking or tiling is applied. If the value of block size is chosen carefully, the reuse in

the innermost three loops translates to locality. Figures 5.6 and 5.7 show the iteration space of a two-

dimensional loop nest before and after blocking. In this example, the original iteration space has been

covered by using four nonoverlapping rectangular tiles or blocks. In general, the tiles can take the shape of

a parallelepiped for an n-dimensional iteration space. A detailed discussion of tiling shapes can be found

in Rajopadhye [24].
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j

i

FIGURE 5.6 Iteration space before blocking.

The basic transformation used in blocking is called strip-mine and interchange. Strip mining transforms

a loop into two nested loops, with the inner loop iterating over a small strip of the original loop and the

outer loop iterating across strips. Strip mining the innermost loop in the matrix multiplication example

results in the following loop nest:

for (i=0; i<m1; i++){
for(j=0; j<n2; j++){

for (k1=0; k1 < n1; k1 += block_size){
for (k=k1; k < min(n1, k1+block_size); k++){

c[i][j] += a[i][k]*b[k][j];
}

}
}

}

Assuming block size is smaller than n1 , the innermost loop now executes fewer iterations than

before, and there is a new loop with index k1 . After strip mining, the loop with index k1 is interchanged

with the two outer loops, resulting in blocking along one dimension:

for (k1=0; k1 < n1; k1 += block_size){
for (i=0; i<m1; i++){

for(j=0; j<n2; j++){
for (k=k1; k < min(n1, k1+block_size); k++){

c[i][j] += a[i][k]*b[k][j];
}

}
}

}

j

i

FIGURE 5.7 Iteration space after blocking.
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Doing strip-mine and interchange on the i and j loops also results in the blocked matrix multiplication

code shown earlier. An alternative approach to understand blocking in terms of clustering and tiling

matrices is discussed by Rajopadhye [24].

5.4.1 Legality of Strip-Mine and Interchange

Let L k be a loop which is to be strip mined into an outer loop L ′
k and an inner loop L ′′

k . Let L j be the loop

with which the loop L ′′
k is to be interchanged. Strip mining L k is always a legal transformation since it does

not alter any of the existing dependences and only relabels the iteration space of the loop. Thus, the legality

of blocking depends on the legality of the interchange of L ′
k and L j , but determining the legality of this

interchange requires strip mining L k , which necessitates the recomputation of the direction vectors of all

the dependences. A faster alternative is to test the legality of interchanging L j with L k instead. While the

legality of this interchange ensures the correctness of blocking, this test is conservative and may prevent

valid strip-mine and interchange in some cases [13].

5.4.2 Profitability of Strip-Mine and Interchange

We now discuss the conditions under which strip-mine and interchange transformation is profitable,

given the strip sizes, which determine the block size. For a discussion of optimal block sizes refer to

Rajopadhye [24] (Chapter 15 in this text).

Given a loop nest N = (L 1, L 2 . . . L n), a loop L k and another loop L j , where L k is nested within L j ,

the profitability of strip mining L k and interchanging the by-strip loop with L j depends on the following:

� The reuse carried by L j

� The data footprint of all inner loops of L k

� The cost of strip mining L k

The goal of strip mining L k and interchanging the by-strip loop with L j is to ensure that reuse carried

by L j is translated into locality. For this to happen, L j must carry reuse between its iterations. This can

happen under any of the following circumstances:

� There is some dependence carried by L j . If L j carries some dependence, it means an iteration of

L j reuses a location accessed by some earlier iteration of L j .
� There is an array index that does not have the index of L j in any of its subscripts.
� The index of L j is used as a subscript in the contiguous dimension, resulting in spatial reuse.

The data footprint of L j must be larger than the cache size, as otherwise the reuse carried by L j lies

within the localized iteration space. The data footprint of L k must also be larger than the cache size, as

otherwise it is sufficient to strip-mine some other loop between L j and L k . Finally, the benefits of reuse

must still outweigh the cost of strip mining L k . Strip mining can cause a performance penalty in two ways:

� If the strips are not aligned to cache line boundaries, it would reduce the spatial locality of array

accesses that have the index of L k as the subscript in the contiguous dimension.
� Every dependence carried by the loop L k shows decreased temporal locality.

Typically, the cost of doing strip-mine and interchange is small and is often outweighed by the benefits.

5.4.3 Blocking with Skewing

In loop nests where interchange violates dependences, loop skewing can be applied first to enable loop

interchange. Consider the loop iteration shown in Figure 5.8. The outer loop of this nest is indexed by i,

and the inner loop by j. Even if it is profitable, the diagonal edges from iteration vector (i, j) to (i + 1, j − 1)
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j

i

(0,1) (0,4)

(3,1) (3,4)

FIGURE 5.8 Dependences before skewing.

prevent loop interchange, but the same loop can be transformed to the one in Figure 5.9, which allows

loop interchange. This transformation is known as loop skewing.

Given two loops, the inner loop can be skewed with respect to the outer loop by adding the outer

loop index to the inner loop index. Consider a dependence with direction vector (<, >). This pair of

loops does not permit loop interchange. Consider two iteration vectors (i1, j1) and (i2, j2), which are the

source and target, respectively, of the dependence. Let (d1, d2) be the distance vector corresponding to

this dependence, where (d1, d2) = (i1 − i2, j1 − j2). The goal is to transform this distance vector into

(d1, d2 + f × d1), where f × d1 >= |d2|, so that the direction vector becomes either (<, <) or (<, =),

which permits loop interchange. This can be achieved by multiplying the outer loop index and adding the

product to the inner loop index. Thus, the two iteration vectors become (i1, j1 + f.i1) and (i2, j2 + f.i2),

and the distance vector becomes (i1 − i2, j1 − j2 + f.(i1 − i2)), which is equal to (d1, d2 + f.d1).

The loop shown in Figure 5.8 applies an averaging filter m times on an array as shown below:

for (i=0; i<m; i++){
for(j=1; j<n-1; j++){

a[j] = (a[j-1]+a[j]+a[j+1])/3;
}

}

The dependences in this loop are characterized by three dependence distance vectors (0, 1), (1, 0), and

(1, −1), which are depicted in Figure 5.8, for the case where m takes a value of 4 and n takes a value of 6.

While the j loop can be strip mined into two loops with induction variables j1 and j, the j1 loop cannot

be interchanged with the i loop because of the dependence represented by (−1, 1). We skew the inner j

j

i

(0,1)

(3,7)

FIGURE 5.9 Dependences after skewing.
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loop with respect to the outer i loop. Since a distance vector of (1, 0) allows interchange, the value of f is

chosen as 1. Figure 5.9 shows the dependences in the loop after applying skewing. This corresponds to the

following loop:

for(i=0; i<m; i++){
for(j=i+1; j<i+n-1; j++){

a[j-i] = (a[j-i-1]+a[j-i]+a[j-i+1])/3;
}

}

Strip mining the loop with index j results in the following code:

for(i=0; i<m; i++){
for(j1=i+1; j1<i+n-1; j1+=block_size){

for(j=j1; j<min(i+n-1, j1+block_size); j++){
a[j-i] = (a[j-i-1]+a[j-i]+a[j-i+1])/3;

}
}

}

The outer two loops can now be interchanged after suitably adjusting the bounds. This results in the

tiled loop:

for(j1=1; j1< m+n-2; j1+= block_size){
for(i=max(0, j1-n+2); i< min(j1, m-1); i++){

for(j=j1; j<min(i+n-1, j1+block_size); j++){
a[j-i] = (a[j-i-1]+a[j-i]+a[j-i+1])/3;

}
}

}

5.5 Other Loop Transformations

5.5.1 Loop Fusion

When there is reuse of data across two independent loops, the loops can be fused together, provided their

indices are compatible. For example, the following set of loops:

max = a[0];
for(i=1; i<N; i++){

if (a[i] > max)
max = a[i];

}
min = a[0];
for(i=1; i<N; i++){

if (a[i] < min)
min = a[i];

}

can be fused together into a single loop:



5-16 The Compiler Design Handbook: Optimizations and Machine Code Generation

max = a[0];
min = a[0];
for(i=1; i<N; i++){

if (a[i] > max)
max = a[i];

if (a[i] < min)
min = a[i];

}

If the value of N is large enough that the array does not fit in the cache, the original loop suffers from

conflict misses that are minimized by the fused loop. Loop fusion is often combined with loop alignment.

Two loops may have compatible loop indices, but the bounds may be different. For example, if the first

loop computes the maximum of all N elements and the second loop computes the minimum of only the

first N/2 elements, the indices have to be aligned. This is done by first splitting the max loop into two, one

iterating over the first N/2 elements and the other over the rest of the elements. Then the loop computing

the minimum can be fused with the first portion of the loop computing the maximum.

5.5.2 Loop Fission

Loop fission or loop distribution is a transformation that does the opposite of loop fusion by transforming

a loop into multiple loops such that the the body of the original loop is distributed across those loops. To

determine whether the body can be distributed, the program dependence graph (PDG) of the loop body

is constructed first. Different strongly connected components of the PDG can be distributed into different

loops, but all nodes in the same strongly connected component have to be in the same loop. For example,

the following loop,

for (i=0; i<n; i++){
a[i] = a[i-1]+b[i-1];
b[i] = k*a[i];
c[i] = c[i-1]+1;

}

can be distributed into

for (i=0; i<n; i++){
a[i] = a[i-1]+b[i-1];
b[i] = k*a[i];

}

for (i=0; i<n; i++){
c[i] = c[i-1]+1;

}

since the statement c[i] = c[i-1]+1 is independent of the other two statements, which are dependent

on each other. Loop fission reduces the memory footprint of the original loop. This is likely to reduce the

capacity misses in the original loop.

5.6 Data Prefetching

Data prefetching differs from the other loop optimizations discussed above in some significant aspects:

� Instead of transforming the data access pattern of the original code, prefetching introduces

additional code that attempts to bring in the cache lines that are likely to be accessed in the

near future.
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� Data prefetching can reduce all three types of misses. Even when it is unable to avoid a miss, it can

reduce the time to service that miss.
� While the techniques described above are applicable only for arrays, data prefetching is a much

more general technique.
� Prefetching requires some form of hardware support.

Consider the simple loop

for (i=0; i<N; i++){
sum = sum + A[i];

}

This loop computes the sum of the elements of the array A. The cache misses to the array A are all cold

misses. To avoid these misses, prefetching code is inserted in the loop to bring into the cache an element

that is required some pd iterations later:

for (i=0; i<N; i++){
prefetch(A[i+pd]);
sum = sum + A[i];

}

The value pd above is referred to as the prefetch distance, which specifies the number of iterations

between the prefetching of a data element and its actual access. If the value of pd is carefully chosen, then

on most iterations of the loop, the array element that is accessed in that iteration would already be available

in the cache, thereby minimizing cold and capacity misses.

5.6.1 Hardware Support

In the above example, we have shown prefetch as a function routine. In practice, prefetch corre-

sponds to some machine instruction. The simplest option is to use the load instruction to do the prefetch.

By loading the value to some unused register or a register hardwired to a particular value and making sure

the instruction is not removed by dead code elimination, the array element is brought into the cache. While

this has the advantage of requiring no additional support in the instruction set architecture (ISA), this

approach has some major limitations. First, the load instructions have to be nonblocking. A load instruction

is nonblocking if the load miss does not stall other instructions in the pipeline that are independent of the

load. If the load blocks the pipeline, the prefetches themselves would suffer cache misses and block the

pipeline, defeating the very purpose of prefetching. This is not an issue in most modern general-purpose

processors, where load instructions are nonblocking. The second, and major, limitation is that since exe-

cuting loads can cause exceptions, prefetches might introduce new exceptions in the transformed code that

were not there in the original code. For instance, the code example shown earlier might cause an exception

when it tries to access an array element beyond the length of the array. This can be avoided by making sure

an address is prefetched only if it is guaranteed not to cause an exception, but this would severely limit

the applicability of prefetching. To avoid such issues, some processors have special prefetch instructions

in their instruction set architecture. These instructions do not block the pipeline and silently ignore any

exceptions that are raised during their execution. Moreover, they typically do not use any destination

register, thereby improving the register usage in code regions with high register pressure.

5.6.2 Profitability of Prefetching

Introducing data prefetching does not affect the correctness of a program, except for the possibility of

spurious exceptions discussed above. When there is suitable ISA support to prevent such exceptions, the

compiler has to consider only the profitability aspect when inserting prefetches. For a prefetch instruction

to be profitable, it has to satisfy two important criteria: accuracy and timeliness.
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Accuracy refers to the fact that a prefetched cache line is actually accessed later by the program. Prefetches

may be inaccurate because of the compiler’s inability to determine runtime control flow. Consider the

following loop:

for (i=0; i<N; i++){
if (A[foo(i)] > 100)

sum = sum+B[i];
}

A prefetch for the array B inserted at iteration i is accurate only if the element B[i+pd] is accessed

later, but this depends on A[foo(i+pd)] , and it may not always be safe to compute foo(i+pd) .

Even if it is safe to do so, the cost of invoking foo may far outweigh the potential benefits of prefetching,

forcing the compiler to insert prefetches unconditionally for every future iteration. As will be described

later, prefetching of a loop traversing a recursive data structure could also be inaccurate. The accuracy

of a prefetch is important because useless prefetches might evict useful data — data that will definitely

be accessed in the future — from the cache line and increase the memory traffic, thereby degrading the

performance.

Accuracy alone does not guarantee that a prefetch is beneficial. If we set the value of pd to be 0, then we

can guarantee that the prefetch is accurate by issuing it right before the access, but this obviously does not

result in any benefit. A prefetch is timely if it is issued at the right time, so that, when the access happens, it

finds the data in the cache. The prefetch distance determines the timeliness of a prefetch for a given loop.

Let h be the average schedule height of a loop iteration and pd be the prefetch distance. Then the number

of cycles separating the prefetch and the actual access is roughly pd ∗h. This value must be greater than the

access latency without prefetch for the access to be a hit in the L1 cache. At the same time, if this value is too

high, the probability of the prefetched cache line being displaced subsequently, before the actual access,

increases, thereby reducing the benefits of the prefetch. Thus, determining the right prefetch distance for

a given loop is a crucial step in prefetching implementations.

A third factor that determines the benefits of prefetching is the overhead involved in prefetching. The

following example shows how the prefetching overhead could negate the benefits of prefetching. Consider

the code fragment

char c[MAX];
for(i=0; i<MAX; i++){

prefetch(c[i+pd]);
sum += c[i];

}

This code is the same as the example shown earlier, except that it sums up an array of char s. Assume

that this code is executed on a machine with an issue width of 1, and the size of the L1 cache line is 64

bytes. Let c be the number of cycles required to service a cache miss. Under this scenario,

Number of cache misses in the absence of prefetching =
⌈

MAX
64

⌉

Prefetching overhead = MAX cycles

Even if all the misses are prefetched,

Cycles saved by prefetching =
⌈

MAX
64

⌉

× c

For prefetching to be beneficial,

⌈

MAX

64

⌉

× c > MAX

⇒ c > 64
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Input: Loop nest N
Output: Loop nest Nwith prefetches inserted if profitable

perform locality analysis

identify leading references

for every leading reference lref do

pred(lref) = compute prefetch predicate(lref)

end for

decompose loops based on pred(lref)

schedule prefetches

FIGURE 5.10 A loop prefetching algorithm.

If the miss latency for this access without prefetching is <64 cycles, then the overhead of prefetching

outweighs its benefits. In such cases, optimizations such as loop splitting or loop unrolling can make

prefetching still be profitable. If the value of MAX is determined, either statically or using profiling, to be

a large number, unrolling the loop 64 times will make prefetching profitable. After unrolling, only one

prefetch is issued per iteration of the unrolled loop, and hence the prefetching overhead reduces to MAX
64

cycles. For prefetching to be beneficial in this unrolled loop,

⌈

MAX

64

⌉

× c >
MAX

64
(5.1)

⇒ c > 1 (5.2)

Thus, as long as the cost of a cache miss is more than one cycle, prefetching will be beneficial.

5.6.3 Prefetching Affine Array Accesses

Figure 5.10 outlines an algorithm by Mowry et al. [21] that issues prefetches for array accesses within a

loop.

The prefetching algorithm consists of the following steps:

1. Perform locality analysis. The first step of the algorithm is to obtain reuse distance vectors and

intersect them with the localized iteration space to determine the locality exhibited by the accesses

in the loop.

2. Identify accesses requiring prefetches. All accesses exhibiting self-reuse are candidates for prefetch-

ing. When accesses exhibit group reuse, only one of the accesses needs to be prefetched. Among

references that exhibit group reuse, the one that is executed first is called the leading reference. It is

sufficient to prefetch only the leading reference of each group.

3. Compute prefetch predicates. When a reference has spatial locality, multiple instances of that

reference access the same cache line, so only one of them needs to be prefetched. To identify this,

every instance of an access is associated with a prefetch predicate. An instance of a reference is

prefetched only if the predicate associated with it is 1. Since all references are affine array accesses,

the predicates are some functions of the loop indices. As an example, consider the following loop

nest:

for (i=0; i<m; i++){
sum[0] += a[i];

}

Assuming that the arrays are aligned to cache line boundaries, the prefetch predicate for sum is

(i==0) and for a is (a mod n)==0 , where n is the number of elements of a in a cache line.
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4. Perform loop decomposition. One way to ensure that a prefetch is inserted only when the predicate

is true is to use a conditional statement based on the prefetch predicate or, if the architecture

supports it, use predicate registers to guard the execution of the prefetch. This requires computing

the predicate during every iteration of the loop, which takes some cycles, and issuing the prefetch on

every iteration, which takes up issue slots. Since the prefetch predicates are well-defined functions

of the loop indices, a better approach is to decompose the loop into sections such that all iterations

in a particular section either satisfy the predicate or do not satisfy the predicate. The code above,

with respect to the reference to array a, satisfies the predicate in iterations 0, n, 2n, and so on and

does not satisfy the predicates in the rest of the iterations. There are many ways to decompose the

loops into such sections. If a prefetch is required only during the first iteration of a loop, then the

first iteration can be peeled out of the loop and the prefetch inserted only in the peeled portion. If

the prefetch is required once in every n iterations, the loop can be unrolled n times so that in the

unrolled iteration space, every iteration satisfies the predicate. However, depending on the unroll

factor and the size of the loop body, unrolling might degrade the instruction cache behavior. In

those cases, the original iterations that do not satisfy the prefetching predicate can be rerolled back.

For instance, if the loop above is transformed into

for (i=0; i<m; i+=n){
sum[0] += a[i];
for(i1 = i+1; i1 < min(m, i+n); i1++){

sum[0] += a[i1];
}

}

all iterations of the inner loop do not satisfy the predicate, while all iterations of the outer loop

satisfy the predicate. This process is known as loop splitting. This is performed for all distinct prefetch

predicates.

5. Schedule the prefetches. A prefetch has to be timely to be effective. If cyclesmiss denotes the cache

miss penalty in terms of cycles, then the prefetch has to be inserted that many cycles before the

reference to completely eliminate the miss penalty. This can be achieved by software pipelining the

loop, assuming that the latency of the prefetch instruction is cyclesmiss. This will have the effect of

moving the prefetch instruction
cyclesmiss

cyclesloop
iterations ahead of the corresponding access in the software

pipelined loop.

Certain architecture-specific features can also be used to enhance the last two steps above. For example,

the Intel Itanium® architecture has a feature known as rotating registers. This allows registers used in a loop

body to be efficiently renamed after every iteration of a counted loop such that the same register name

used in the code refers to two different physical registers in two consecutive iterations of the loop. The use

of rotating registers to produce better prefetching code is discussed in [8].

5.6.4 Prefetching Other Accesses

Programs often contain other references that are predictable. These include:

� Arrays with subscripts that are not affine functions of the loop indices but still show some pre-

dictability of memory accesses
� Traversal of a recursive data structure such as a linked list, where all the nodes in the list are allocated

together and hence are placed contiguously
� Traversal of a recursive data structure allocated using a custom allocator that allocates objects of

similar size or type together

A compiler cannot statically identify and prefetch such accesses and usually relies on some form of

runtime profiling to analyze these accesses. A technique known as stride profiling [35] is often used to identify

such patterns. The goal of stride profiling is to find whether the addresses produced by a static load/store
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instruction exhibit any exploitable pattern. Let a1, a2, a3 . . . an, an+1 denote the addresses generated by a

static load/store instruction. Then s1 = a2 − a1, s2 = a3 − a2, . . . sn = an+1 − an denote the access strides.

An instruction is said to be strongly single strided if most of the s i s are equal to some S. In other words,

there is some S such that

∑n

1
(s i ==S)

n
is close to 1. This profiled stride S is used in computing the prefetch

predicate and scheduling of the prefetch. Some instructions may not have a single dominant stride but still

show regularity. For instance, a long sequence of s i may all be equal to S1, followed by a long sequence of s i

being all equal to S2, and so on. In other words, an access has a particular stride in one phase, followed by a

different stride in the next phase, and so on. Such accesses are called strongly multi-strided. The following

example illustrates how a strongly multi-strided access can be prefetched:

while (ptr != NULL){
sum += *ptr;
ptr = ptr->next;

}

If ptr is found to be strongly multi-strided, it can be prefetched as follows:

while (ptr != NULL){
sum += *ptr;
stride = ptr - prev;
prefetch(ptr+k*stride);
prev = ptr;
ptr = ptr->next;

}

The loop contains code to dynamically calculate the stride. Assuming that phases with a particular

stride last for a long time, the current observed stride is used to prefetch the pointer that is likely to be

accessed k iterations later. Since the overhead of this prefetching is high, it must be employed judiciously

after considering factors such as the iteration count of the loop, the average access latency of the load that

is prefetched, and the length of the phases with a single stride.

Another type of access that is useful to prefetch is indirect access. In the code fragment

for (i=0; i<n; i++){
box[i]->area = box[i]->length * box[i]->breadth;

}

the references to the array box can be prefetched. However, the references to area , length , and

breadth may cause a large number of cache misses if the pointers stored in the box array do not point to

contiguous memory locations. Profile-based prefetching techniques are also not helpful in this case. The

solution is to perform indirect prefetching. After applying indirect prefetching, the loop would look like

for (i=0; i<n; i++){
temp = box[i+pd];
prefetch(temp);
box[i]->area = box[i]->length * box[i]->breadth;

}

The pointer that would be dereferenced pd iterations later is loaded into a temporary variable, and a

prefetch is issued for that address. The new loop requires a prefetch to box[i+pd] , as otherwise the load

to temp could result in stalls that may negate any benefits from indirect prefetching.
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5.7 Data Layout Transformations

The techniques discussed so far transform the code accessing the data so as to decrease the memory access

latency. An orthogonal approach to reduce memory access latency is to transform the layout of data in

memory. For example, if two pieces of data are always accessed close to each other, the spatial locality

can be improved by placing those two pieces of data in the same cache line. Data layout transformations

are a class of optimization techniques that optimize the layout of data to improve spatial locality. These

transformations can be done either within a single aggregate data type or across data objects.

5.7.1 Field Layout

The fields of a record type can be classified as hot or cold depending on their access counts. It is often

beneficial to group hot fields together and separate them from cold fields to improve cache utilization.

Consider the following record definition:

struct S1 {
char hot[4];
char cold[60];

};
S1 s1[512];

Each instance of S1 occupies a single cache line, and the entire array s1 occupies 512 cache lines. The

total size of this array is well above the size of L1 cache in most processors, but only 4 bytes of the above

record type are used frequently. If the struct consists of only the field hot , then the entire array fits

within an L1 cache.

Structure splitting involves separating a set of fields in a record type into a new type and inserting a

pointer to this new type in the original record type. Thus, the above struct can be transformed to:

struct S1_cold {
char cold[60];

};

struct S1 {
char hot[4];
struct S1_cold *cold_link;

};

S1 s1[512];

After the transformation, the array s1 fits in L1 cache of most processors. While this increases the cost

of accessing cold , as it requires one more indirection, this does not hurt much because it is accessed

infrequently. However, even this cost can be eliminated for the struct defined above, by transforming

S1, as follows:

struct S1_cold {
char cold[60];

};

struct S1_hot {
char hot[4];

};
S1_hot s1_hot[512];
S1_cold s1_cold[512];
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The above transformation is referred to as structure peeling. While peeling is always better than splitting

in terms of access costs, it is sometimes difficult to peel a record type. For instance, if a record type has

pointers to itself, then peeling becomes difficult.

While merely grouping the hot fields together is often useful, this method suffers from performance

penalties when the size of the record is large. As an example, consider the following record definition and

some code fragments that use the record:

struct S2 {
char hot1[32];
char hot2[32];
char not_so_hot[32];

};

struct S2 s2[128];
...
for (i = 0; i<128; i++) // Invoked N times

x += foo (s2[i].hot1);
...
for (i = 0; i<128; i++) // Invoked N times

x += foo(s2[i].hot2);
...
for (i = 0; i<128; i++) // Invoked N/10 times

sum3 += foobar(s2[i].not_so_hot) + foo(s2[i].hot1);
...

The fields hot1 and hot2 are more frequently accessed than not so hot , but not so hot is

always accessed immediately before hot1 . Hence placing not so hot together with hot1 improves

spatial locality and reduces the misses to hot1 . This fact is captured by the notion of reference affinity. Two

fields have a high reference affinity if they are often accessed close to each other. In the above example, we

have considered accesses within the same loop as affine. One could also consider other code granularities

such as basic block, procedure, arbitrary loop nest, and so on.

Structure splitting, peeling, and re-layout involve the following steps:

1. Determine if it is safe to split a record type. Some examples of the unsafe behaviors include:

(a) Implicit assumptions on offset of fields. This typically involves taking the address of a field

within the record.

(b) Pointers passed to external routines or library calls. This can be detected using pointer escape

analysis.

(c) Casting from or to the record type under consideration. Casting from type A to type B
implicitly assumes a particular relative ordering of the fields in both A and B.

If a record type is subjected to any of the above, it is deemed unsafe to transform.

2. Classify the fields of a record type as hot or cold. This involves computing the dynamic access counts

of the structure fields. This can be done either using static heuristics or using profiling. Then fields

whose access counts are above a certain threshold are labeled as hot and the other fields are labeled

as cold.

3. Move the cold fields to a separate record and insert a pointer to this cold record type in the original

type.

4. Determine an ordering of the hot fields based on the reference affinity between them. This involves

the following steps:

(a) Compute reference affinity between all pairs of fields using some heuristic.

(b) Group together fields that have high affinity between them.
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5.7.2 Data Object Layout

Data object layout attempts to improve the layout of data objects in stack, heap, or global data space. Some

of the techniques for field layout are applicable to data object layout as well. For instance, the local variables

in a function can be treated as fields of a record, and techniques for field layout can be applied. Similarly,

all global variables can likewise be considered as fields of a single record type.

However, additional aspects of the data object layout problem add to its complexity. One such aspect is

the issue of cache line conflicts. Two distinct cache lines containing two different data objects may conflict

in the cache. If those two data objects are accessed together frequently, a large number of conflict misses

may result. Conflicts are usually not an issue in field layout because the size of structures rarely exceeds

the size of the cache, while global, stack, and heap data exceed the cache size more often.

Heap layout is usually more challenging because the objects are allocated dynamically. Placing a particu-

lar object at some predetermined position relative to some other object in the heap requires the cooperation

of the memory allocator. Thus, all heap layout techniques focus on customized memory allocation that

uses runtime profiles to guide allocation. The compiler has little role to play in most of these techniques.

A different approach to customized memory allocation, known as pool allocation, has been proposed

by Lattner and Adve[14]. Pool allocation identifies the data structure instances used in the program. The

allocator then tries to allocate each data structure instance in its own pool. Consider the following code

example:

struct list;
struct tree;
struct linked_list{

int n;
struct linked_list *next;

};
struct tree{

int n;
struct tree *left;
struct tree *right;

};
struct linked_list *l1, *l2;
struct tree *t;
...

Assume that after the necessary dynamic allocations, the pointer l1 points to the head of a linked list,

l2 points to the head of a different linked list, and t points to the root of a binary tree. The memory for

each of these three distinct data structure instances in the program would be allocated in three distinct

pools. Thus, if a single data structure instance is traversed repeatedly without accessing the other instances,

the cache will not be polluted by unused data, thereby improving the cache utilization. The drawback to

this technique is that it does not profile the code to identify the access patterns and hence may cause severe

performance degradation when two instances, such as l1 and l2 above, are concurrently accessed.

5.8 Optimizations for Instruction Caches

Modern processors issue multiple instructions per clock cycle. To efficiently utilize this ability to issue

multiple instructions per cycle, the memory system must be able to supply the processor with instructions

at a high rate. This requires that the miss rate of instructions in the instruction cache be very low. Several

compiler optimizations have been proposed to decrease the access latency for instructions in the instruction

cache.
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FIGURE 5.11 Control flow graph.

5.8.1 Code Layout in Procedures

A procedure consists of a set of basic blocks. The mapping from the basic blocks to the virtual address

space can have a big impact on the instruction cache performance. Consider the section of control flow

graph in Figure 5.11 that corresponds to an if-then-else statement. The numbers on the edges denote the

frequency of execution of the edges. Thus, most of the time, the basic block B3 is executed after B1, and

B2 is seldom executed. It is not desirable to place B2 after B1, as that could fill the cache line containing

B1 with infrequently used code. The code layout algorithms use profile data to guide the mapping of basic

blocks to the address space.

Figure 5.12 shows an algorithm proposed by Pettis and Hansen [22] to do profile-guided basic block

layout. The algorithm sorts the edges of the control flow graph by the frequency of execution. Initially,

every basic block is assumed to be in a chain containing just itself. A chain is simply a straight line path

Input: control flow graph CFG of procedure P

Output: relative order of basic blocks

sort edges of the CFG by edge weight in descending order

for every edge E in the sorted list do

B1 = Src(E)

B2 = Dest(E)

if B1 and B2 are not part of any chains then

form a chain B1-B2

else if if B1 is the tail of a chain C1 and B2 is the head of a chain C2 then

append C2 to C1

end if

end for

break cycles in CFG and perform a topological sort

for every node B of CFG in topological sort order do

C = chain containing B

if basic blocks in C are not laid out then

lay out basic blocks of C in order

end if

end for

FIGURE 5.12 Code layout algorithm.
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in the control flow graph. The algorithm tries to merge the chains into longer chains by looking at each

edge, starting from the one with the highest frequency. If the source of the edge is the tail node of a

chain and the destination is the head node of a chain, the chains are merged. This process continues

until all edges are processed. Then the algorithm does a topological sort of the control flow graph after

breaking cycles. The chains corresponding to the nodes in the topological order are laid out consecutively

in memory.

5.8.2 Procedure Splitting

While the above algorithm separates hot blocks from cold blocks within a procedure, a poor instruction

cache performance still might result. To see this, consider a program with two procedures P1 and P2. Let

the hot basic blocks in each procedure occupy one cache line and the cold basic blocks occupy one cache

line. If the size of the cache is two cache lines, using the layout produced by the previous algorithm might

result in the hot blocks of the two procedures getting mapped to the same cache line, producing a large

number of cache misses.

A simple solution to this problem is to place the hot basic blocks of different procedures close to each

other. In the above example, this will avoid conflict between the hot basic blocks of the two procedures.

Procedure splitting [22] is a technique that splits a procedure into hot and cold sections. Hot sections of

all the procedures are placed together, and the cold sections are placed far apart from the hot sections.

If the size of the entire program exceeds the cache size, while the hot sections alone fit within the cache,

then procedure splitting will result in the cache being occupied by hot code for a large fraction of time.

This results in very few misses during the execution of the hot code, resulting in considerable performance

improvement.

Procedure splitting simply classifies the basic blocks as hot or cold based on some threshold and moves

the cold basic blocks to a distant memory location. For processors that require a special instruction to

jump beyond a particular distance, all branches that conditionally jump to a cold basic block are redirected

to a stub code, which jumps to the actual cold basic block. Thus, the transitions between hot and cold

regions have to be minimal, as they require two control transfer instructions including the costlier special

jump instruction.

5.8.3 Cache Line Coloring

Another technique known to improve placement of blocks across procedures is cache line coloring [9].

Cache line coloring attempts to place procedures that call each other in such a way that they do not map

to the same set of cache blocks.

Consider the following code fragment:

void foo(){
bar();
...

}
int foobar(){

for (i=0; i<n; i++)
foo();

...
}

The procedure foobar contains a loop in which foo is called and foo calls bar. The procedures

foo and bar must not map to the same cache line, as that will result in a large number of misses. If it

is assumed that the size of the hot code blocks in the program exceeds the size of the instruction cache,



Optimizations for Memory Hierarchies 5-27

procedure splitting might still result in the code blocks of foo and bar being mapped to the same set of

cache lines.

The input to cache line coloring is the call graph of a program with weighted undirected edges, where the

weight on the edge connecting P1 and P2 denotes the number of times P1 calls P2 or vice versa. The nodes

are labeled with the number of cache lines required for that procedure. The output of the technique is a

mapping between procedures to a set of cache lines. The algorithm tries to minimize the cache line conflicts

between nodes that are connected by edges with high edge weights. The edges in the call graph are first

sorted by their weights, and each edge is processed in the descending order of weights. If both the nodes

connecting an edge have not been assigned to any cache lines, they are assigned nonconflicting cache lines.

If one of the nodes is unassigned, the algorithm tries to assign nonconflicting cache lines to the unassigned

node without changing the assignment of the other node. If nonconflicting colors cannot be found, it is

assigned a cache line close to the other node. If both nodes have already been assigned cache lines, the

technique tries to reassign colors to one of them based on several heuristics, which try to minimize the

edge weight of edges connected to conflicting nodes.

The main drawback of this technique is that it only considers one level of the call depth. If there is a

long call chain, the technique does not attempt to minimize conflicts between nodes in this chain that are

adjacent to each other. In addition, the technique assumes that the sizes of procedures are multiples of

cache line sizes, which may result in holes between procedures.

5.9 Summary and Future Directions

The various optimizations for memory hierarchies described in this chapter are essential components of

optimizing compilers targeting modern architectures. While no single technique is a silver bullet for bridg-

ing the processor–memory performance gap, many of these optimizations complement each other, and

their combination helps a wide range of applications. Table 5.1 summarizes how each of the optimizations

achieve improved memory performance.

While these optimizations were motivated by the widening performance gap between the processor

and the main memory, the recent trend of stagnant processor clock frequencies may narrow this gap.

However, the stagnation of clock frequencies is accompanied by another trend — the prevalence of chip

multiprocessors (CMPs). CMPs pose a new set of challenges to memory performance and increase the

importance of compiler-based memory optimizations. Compiler techniques need to focus on multi-

threaded applications, as more applications will become multi-threaded to exploit the parallelism offered

by CMPs. Compilers also have to efficiently deal with the changes in the memory hierarchy that may have

some levels of private caches and some level of caches that are shared among the different cores. The locality

in the shared levels of the hierarchy for an application is influenced by applications that are running in the

other cores of the CMP.

TABLE 5.1 Classification of optimizations for memory hierarchies

Optimization Performance improvement

Loop interchange Fewer conflict misses

Loop blocking Fewer capacity misses

Loop fusion Fewer capacity misses

Loop fission Fewer conflict misses

Data prefetching Fewer cold, capacity, and conflict misses

Misses partially hidden

Data layout Fewer conflict misses, improved cache utilization

Instruction cache optimizations Fewer conflict misses, improved cache utilization
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5.10 References

The work of Abu-Sufah et al. [1] was among the first to look at compiler transformations to improve mem-

ory locality. Allen and Kennedy [3] proposed the technique of automatic loop interchange. Loop tiling was

proposed by Wolfe [32, 33], who also proposed loop skewing [31]. Several enhancements to tiling including

tiling at the register level [11], tiling for imperfectly nested loops [2], and other improvements [12, 27]

have been proposed in the literature. Wolf and Lam [29, 30] proposed techniques for combining various

unimodular transformations and tiling to improve locality. Detailed discussion of various loop restruc-

turing techniques can be found in textbooks written by Kennedy and Allen [13] and Wolfe [34] and in the

dissertations of Porterfield [23] and Wolf [28].

Software prefetching was first proposed by Callahan et al. [5] and Mowry et al. [19–21]. Machine-

specific enhancements to software prefetching have been proposed by Santhanam et al. [26] and Doshi

et al. [8]. Luk and Mowry [15] proposed some compiler techniques to prefetch recursive data structures

that may not have a strided access pattern. Saavedra-Barrera et al. [25] discuss the combined effects of

unimodular transformations, tiling, and software prefetching. Mcintosh [17] discusses various compiler-

based prefetching strategies and evaluates them.

Hundt et al. [10] developed an automatic compiler technique for structure layout optimizations. Calder

et al. [4] and Chilimbi et al. [6, 7] proposed techniques for data object layout that require some level of

programmer intervention or library support. Mcintosh et al. [18] describe an interprocedural optimiza-

tion technique for placement of global values. Lattner and Adve [14] developed compiler analysis and

transformation for pool allocation based on the types of data objects.

McFarling [16] first proposed optimizations targeting instruction cache performances. He gave results

on optimal performance under certain assumptions. Pettis and Hansen [22] proposed several profile-

guided code positioning techniques including basic block ordering, basic block layout, and procedure

splitting. Hashemi et al. [9] proposed the coloring-based approach to minimize cache line conflicts in

instruction caches.
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This chapter provides a comprehensive discussion of various garbage collection methods. The goal of

this chapter is to highlight fundamental concepts rather than cover all the details. After introducing the

underlying issues in garbage collection, the basic methods of garbage collection are described. This is

followed by their generational, incremental, and concurrent versions.

6.1 Introduction

This section examines the need for garbage collection and introduces the basic concepts related to garbage

collection. It also establishes several metrics on the basis of which garbage collectors are evaluated and

identifies the distinguishing features of garbage collectors.

6.1.1 The Need for Garbage Collection

A program in execution needs memory to store the data manipulated by it. The data is named by variables

in the program. Memory is allocated in various ways that differ from each other in their answers to the

following questions: At what point of time is a variable bound to a chunk of memory, and how long does

the binding last?

6-1
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In the earliest form of memory allocation, called static allocation, the binding is established at compile

time and does not change throughout the program execution. In the case of stack allocation, the binding

is created during the invocation of the function that has the variable in its scope and lasts for the lifetime

of the function. In heap allocation, the binding is created explicitly by executing a statement that allocates

a chunk of memory and explicitly binds an access expression to it. An access expression is a generalization

of a variable and denotes an address. In its general form, it is a reference or a pointer variable followed

by a sequence of field names. One of the ways in which the binding can be undone is by disposing of the

activation record that contains the pointer beginning the access expression. Then the access expression

ceases to have any meaning. The other way is to execute an assignment statement that will bind the access

expression to a different memory chunk.

After a binding is changed, the chunk of memory may be inaccessible. An important issue here is the

reclamation of such unreachable memory. The reclaimed memory can be subsequently allocated to a

different access expression. This is especially important in the cases of stack and heap allocation because it

is not possible to place a bound on the memory requirement under these allocation policies. In the case of

stack allocation, reclamation takes place at the end of a function invocation by adjusting the stack pointer.

This reflects the fact that the space occupied by the local variables of the function is now free. This space

is then allocated to the variables of the next function invoked.

In the case of heap allocation, reclamation is easy if it is done explicitly through a deallocation statement.

However, a misjudgment by the programmer in inserting such a statement may lead to a reachable memory

cell being reclaimed. To free the programmer from concerns of memory management, it is important to

use an automatic tool that can detect unreachable memory and reclaim it. In the context of heap allocation,

an unreachable memory chunk is called garbage, and a tool that detects and collects garbage is called a

garbage collector. The executing program whose memory requirements are being serviced by the garbage

collector is called the mutator.

Most garbage collectors base their collection on reachability; that is, they collect memory that cannot be

reached by the program in the rest of the execution. However, one can also have memory that is reachable

but not live, that is, memory that will not be accessed in further execution of the program. A garbage

collector working on the basis of liveness instead of reachability may collect more garbage. Since it is

difficult to detect memory that is not live, most collectors approximate liveness by reachability. We shall

use the terms reachable and unreachable instead of the terms live and dead, which are more popular in

garbage collection literature.

Following normal conventions, we shall identify a memory chunk with its contents, which we shall call

an object from now on. All further discussion will be in terms of objects. For example, the phrase “pointer

pointing to an object” will refer to a variable holding the address of the memory chunk containing the

object. Similarly, “an object is garbage collected” will mean the memory chunk occupied by the object is

garbage collected.

The concepts discussed above are illustrated through a program that creates the graph shown in

Figure 6.1b. This graph is represented as the adjacency list shown in Figure 6.1c. The stack and heap

configurations are shown in Figure 6.1d. If the node with label 4 is deleted from the graph by deleting

the pointers from B to E and G to I and changing the pointer from B to D to point to G, then the objects

E, D, F, and I become unreachable. The space occupied by these objects could be reclaimed by a garbage

collector and used for further allocation. The pointers in the stack area, static area, and address registers

form the entry points from where all the reachable objects in a heap can be accessed by the program. This

set of pointers is called the root set. Starting from the root set, if we trace the objects and their connectivity,

the resulting graph is called a reachability graph.

6.1.2 Features of Garbage Collection Methods

Most garbage collection methods can be distinguished by the following features that offer various design

choices:
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void CreateGraph(void)
{ int source, target;
  Graph * graph;
  source = NIL;
  while ((target = readNextNode()) != NIL)
  { if (source == NIL);/* This is the first node */
        graph = createGraph(target);
     else
     { if (!nodeInGraph (graph, target))
            insertNode (graph, target);
            updateSuccList (graph, source, target);
     }
     source = target;
  }
}
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(a) A program to construct a subgraph corresponding
    to a path by reading the path as a list of nodes

FIGURE 6.1 Motivating example.

� Tracing vs. nontracing collectors: Tracing1 collectors traverse the data of the mutator and treat

the left out objects as unreachable. In the case of nontracing collection, the reachability information

is explicitly recorded during mutator execution. This information is encoded within the objects

themselves. A nontracing collector updates the reachability information of an object only when

the object is manipulated. Thus, it has a local view of the reachability graph. In contrast, a tracing

collector traverses the entire reachable data structure in memory. This requires knowledge of the

root set, which contains the entry points of the data structures used by the mutator. After tracing,

a garbage collector may either directly collect garbage cells or preserve reachable cells, thereby

collecting garbage indirectly. The process of preserving reachable cells is also called scavenging.
� Moving vs. nonmoving collectors: When garbage is reclaimed for allocation, a moving collector

reorganizes reachable data to reduce fragmentation and to increase locality. For example, reachable

objects are moved toward one end of the memory, freeing the rest of the memory for allocation.

The contiguous grouping of reachable data is called compaction. Since some objects may remain

reachable for a long time, they may be repeatedly moved across partitions. This problem is alleviated

by maintaining objects of different ages in separate partitions, so that partitions containing long-

lived objects are not garbage collected frequently.

1When memory is traversed by following the links of a data structure, it is called tracing. In contrast, scanning is the

traversal of contiguous memory by following addresses sequentially.
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� Exhaustive collectors vs. collectors with interleaved detection and collection: Once garbage col-

lection starts in an exhaustive collector, control is not returned to the mutator until all objects

detected as garbage are collected. As a consequence, exhaustive collection methods may be consid-

ered disruptive. Often, collectors are used in situations where long pauses due to garbage collection

are considered unacceptable. In such situations, collection is interleaved with mutator execution;

that is, the mutator may resume execution before the entire garbage is collected. In incremental

collectors the interleaving is within a single thread of execution, whereas in concurrent collectors

the mutator and the collector run concurrently as separate threads. Reference counting, which is

also incremental, attempts to reduce pause times by disallowing accumulation of large amounts

of garbage. This is done by invoking the collector as soon as garbage is created. This is different

from all other methods that perform garbage collection only when an allocation request cannot

be fulfilled. In effect, reference counting performs garbage collection continuously on very small

amounts of data.

6.1.3 Effectiveness of Garbage Collection

The effectiveness of garbage collection can be assessed in terms of the following:

� Space overheads: Space is required by garbage collectors to maintain information of various kinds.

Most collectors require objects to carry information about types and sizes of objects and tags

to distinguish pointer fields from nonpointer fields. Some garbage collection methods such as

reference counting require reachability information to be encoded within objects. Moving garbage

collection methods (Section 6.1.2) have an overhead of keeping some free space to allow movement

of data for compaction, and generational collectors (Section 6.4) have to maintain information

regarding intergenerational pointers.
� Time overheads: A garbage collector may incur the following time overheads:

CPU time: This is the actual time spent in garbage collection activity. It also includes the

costs of recording old to new generation pointers in generational collectors and various syn-

chronization costs in incremental and concurrent collectors (Section 6.5). The mutator may

also have to bear some cost of garbage collection. For example, in incremental collectors, the

mutator has to execute some additional code in the form of write-barriers and read-barriers.

Overheads due to virtual memory: This is the time required to service cache misses or page

faults. Cache misses and page faults can effect the execution of the garbage collector as well

as the mutator.

� Pause times: The performance of garbage collectors is also judged by the lengths of pauses noticed

by users. Minimizing pause times to make them imperceptible to users is a key design goal of

garbage collection methods. Real-time garbage collectors are even required to offer a guarantee on

the upper bound on the lengths of pauses.

6.1.4 The Pragmatics of Garbage Collection

Garbage collectors need to cooperate with not only the compiler that is used to produce the executable

version of the mutator but also the underlying operating system. A garbage collector provides an interface

between the operating system (or the virtual machine) and the user program for allocation and deallo-

cation of heap memory. All other interactions between the operating system and user programs remain

unchanged. Typically, a garbage collector seeks a large chunk of memory from the operating system and

services all allocation requests by the mutator.

Garbage collectors also need to have information about the sizes of the objects, the layout of fields

within the objects, and whether each field is a pointer. In languages with flow-sensitive and dynamically

checked types such as Lisp or Smalltalk, the field of an object can contain both a pointer and a nonpointer

at different times during execution. For such languages, each field must be tagged. At any time during
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execution, this tag identifies whether a field contains a pointer. Other information such as size and layout

must also be encoded explicitly within objects.

For languages with flow-insensitive, statically checked types such as Java and Haskell, each object is

equipped with a header that has complete information about the object. This header remains unchanged

throughout the execution of the program. Tags identifying pointer fields are not necessary. With close

cooperation between the compiler and the garbage collector, even the header information can be eliminated.

If the garbage collector can be made aware of the types in the mutator, and if the types of the stack variables

are known during a collection, then complete information about every object in the heap required for

garbage collection can be deduced. However, this detection entails runtime overheads, so explicit headers

are preferred.

In some methods, type information is not associated with a single object, but with a page containing

objects of the same type. Thus, every page constituting the heap has associated type information. In these

methods, every pointer access is processed to find the page containing the pointed object, and the type

information associated with it is used for garbage collection.2

The real challenge is to design garbage collectors that work in environments in which the compiler

is oblivious of the collector and objects do not carry the runtime type information that is required for

garbage collection. The Boehm–Demers–Weiser collector [13, 16] is an example of such a collector. These

garbage collectors resort to conservative pointer-finding, that is, they regard anything that can possibly be

a pointer as a pointer. While this strategy may also preserve memory cells that are actually garbage, it is

safe for nonmoving collectors. In a moving collector, this technique may result in overwriting an integer

by a pointer value during compaction.

Another issue where a garbage collector needs to cooperate with the compiler is in deciding when

garbage collection can be performed. Among the possible alternatives, the restrictive strategy is called

safe-points gc [62], where the compiler designates certain program points as safe for garbage collection.

It is ensured that such points occur frequently during execution. The advantage is that in the rest of the

program, the compiler is free to perform optimizations of the kind that can make garbage collection unsafe.

The unrestricted strategy is called any-time gc, where the compiler ensures that garbage collection can be

performed any time without affecting the working of the mutator.

In the context of object-oriented languages, objects may represent resources other than heap memory.

For example, objects may represent file handles, graphics contexts, network connections, and so on. When

such objects are reclaimed, procedures to release the resources must be invoked. The action taken by these

procedures is called finalization. The mutator registers such finalizable objects with the garbage collector.

During tracing, if a finalizable object is marked as reachable, it is scavenged as any other object. Otherwise

the procedure for finalization is invoked before reclamation.

6.1.5 Locality of Program Execution

This section defines the concepts related to the effect of memory hierarchy on garbage collection and

mutator execution. Every page fault or cache miss during the execution of a program extracts a performance

penalty. A program has good locality if the number of page faults or cache misses for a given number of

memory accesses is small. There are two notions of locality:

� Temporal locality: Temporal locality captures the intuitive idea of clustering in time. If a program

has good temporal locality, a data item that has been referenced in the immediate past has a high

probability of being referenced in the immediate future.
� Spatial locality: Spatial locality captures clustering in space. In a program with good spatial locality,

a data item located physically near an item that has been referenced in the immediate past has a

high probability of being referenced in the immediate future. An example of data items that are

physically close is adjacent nodes in a graph.

2This technique is called BIBOP (big bag of pages).
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If a program has good temporal locality, then, in the best case, the pages containing all the data items

referred may be in the main memory, and there may be no page fault. Even if there is a page fault, a

recency-based policy for eviction such as least recently used (LRU) works well if the program has good

temporal locality. Spatial locality suggests which pages could be loaded together to reduce the number of

page faults. Fetch or prefetch policies that bring in pages containing physically adjacent items along with

the item requested appeal to spatial locality. In the context of garbage collection, it is desirable that the

collector has good locality. Furthermore, the mutator should have good locality even if its data is moved

around by the collector. Indeed, some authors [14, 43] suggest that an appropriately designed garbage

collector could even improve the locality of the mutator.

6.2 Basic Methods of Garbage Collection

In this section, we describe the early collectors called reference counting and mark-sweep. Both these

collectors were designed for Lisp implementations around 1960. We also describe the mark-compact

method, which is a later refinement of mark-sweep incorporating compaction.

6.2.1 Reference Counting-Based Collectors

The reference counting method [26, 37] stores in each object a count of the number of pointers pointing

to the object. Each pointer assignment also involves manipulation of these counts. When a new object is

allocated, the count is initialized to 1. Let pointers p and q hold the addresses of objects A and B before

the assignment p = q. When the assignment is executed, both p and q point to B. These assignments are

executed through the garbage collector, which decrements the reference count of A by 1 and increments

the reference count of B by 1. If the reference count of an object becomes 0, the object is detected as garbage

and the space occupied by it is added to a list of free cells. If the reclaimed object contains pointers to

other objects, then the reference counts of these objects are also decremented. Clearly, this method is

incremental, nontracing, and nonmoving.

This method requires additional space for storing reference counts and additional time for manipulating

these counts. In particular, most pointer assignments require two counts to be adjusted rather than one.

The limitations of this method are:

� The objects that are a part of a cyclic data structure continue to have nonzero counts even if they

are unreachable. Thus, cyclic data structures cannot be garbage collected.
� A chain of reclamations increases pause times, affecting the almost-real-time behavior of the method.

Several variants of reference counting have been proposed to reduce its overheads and overcome its

limitations. The space overheads can be overcome by using reference counts saturating at small values.

When the maximum value is reached, the counts are neither decremented nor incremented. Such objects

can then be garbage collected by a tracing method and their counts reset to 0. By resorting to a tracing

method, this approach also overcomes the limitation of not being able to garbage collect cyclic data

structures. In the extreme form of this method, one-bit counts can be used. The bit value, in combination

with an incoming pointer, captures three states of an object, as illustrated in Figure 6.2. There are variations

of this approach in which the bit is stored in the objects themselves [68], or as a tag within pointers [57].

The latter has the advantage that the cell pointed to by a pointer need not be read during garbage collection.

This may improve the cache and paging behavior of the mutator.

While most approaches use mark-sweep collectors for garbage collecting shared objects with saturated

counts, some use mark-compact collectors [66] or even copying collectors [67]. A further variation tries

to extend the range of single bit counts to accurately determine up to two or more pointers over short

program fragments [47].

The time overheads can be reduced by deferred reference counting [27]. This method avoids adjusting the

counts for objects pointed to by parameters and local variables. This is done on the basis that the counts

of such objects will eventually have to be decremented at the end of the procedure. For these objects, the
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FIGURE 6.2 A single bit reference count captures three states of an object.

counts indicate the number of global pointers only. They may be pointed to by local pointers even when

their counts have reduced to zero. Such objects are added to a zero count table (ZCT). If an object that is

already in a ZCT is assigned to a global pointer during mutator execution, its count is incremented and it

is removed from the ZCT. To collect those objects in the ZCT that are actually unreachable, the following

procedure is applied periodically: All objects that are directly pointed to by the stack are marked. The

unmarked objects in the ZCT are freed, and the marked objects are unmarked.

The Brownbridge–Salkild [18, 48] variant of reference counting tries to perform garbage collection in

the presence of cyclic data structures. In this method, all pointers are characterized as either weak or strong,

based on the following invariant properties:

� Every reachable object is reachable from the root set through a chain of strong pointers.
� There is no cycle consisting only of strong pointers.

For every object, separate counts of the number of incoming strong pointers and weak pointers are

maintained. These are called strong reference count (SRC) and weak reference count (WRC). If the SRC of

an object becomes 0, it indicates the possibility that the object may be unreachable. In the examples in

Figure 6.3, weak pointers are shown as dotted arrows.

A pointer assigned to point to a newly created object is characterized as strong. This makes the new

object reachable through a chain of strong pointers, satisfying the first invariant. Moreover, since this

pointer cannot create a cycle, the second invariant is also satisfied. Similarly a pointer assigned to point to

an old object is characterized as a weak pointer. It is easy to verify that as a result of this characterization,

both the invariants are satisfied. In both cases, the WRC and SRC of the relevant objects are suitably

updated.

Root Set

O A B

CD

×

Root Set

O A B

CD

×

Root Set

O A B

CD

×

(a) Unreachable Cycle (b) Cycle Reachable from a
       Strong External Pointer

(c) Cycle Reachable from a
      Weak External Pointer

FIGURE 6.3 Different possibilities in Brownbridge–Salkild algorithm. The reference counts of an object are found

by simply counting the incoming pointers.
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The critical operation is the removal of a pointer pointing to an object, for instance, O. If this is a weak

pointer, then WRC(O) is decreased by 1. However, if this is a strong pointer whose removal brings both

WRC(O) and SRC(O) down to 0, then O is unreachable and can be reclaimed. The most critical case is when

as a result of removing the pointer, O is pointed to by weak pointers only. The different possibilities are:

1. O may be a part of an unreachable cycle. This is illustrated in Figure 6.3a. Because of the two

invariants, in this situation only the last pointer in the cycle (from D to O) can be a weak pointer.

This situation is detected by a traversal starting with and ending at O. The entire cycle is then

reclaimed.

2. O may be part of a reachable cycle, but the external pointer to this cycle points to some other object

belonging to the cycle as shown in Figure 6.3b.3 This situation is detected by a traversal starting at

O and ending at B, whose SRC is more than 1. To satisfy the first invariant, the weak pointer D to O

is made strong. However, to satisfy the second invariant, the pointer from A to B is made weak.

3. O is reachable but not in a cycle. The action taken is the same as the action in the previous case

except that the weakening of the cycle-closing pointer is not required.

The algorithm wrongly detects the cycle in Figure 6.3c as being unreachable, because it relies on the

external pointer being strong. Salkild [48] suggests a remedy in which the pointer from A to B is made

weak and the pointers from the root to B and D to O are made strong. Furthermore, just as it was done for

the object O, a traversal from B is started to ensure that the invariants are satisfied. However, the result-

ing algorithm does not terminate in some cases [45]. The termination issue was addressed by Pepels et

al. [45], but the algorithm that results is complex and inefficient [37]. Axford [5] avoids the problem by

assuming that every cycle has a unique entry. This assumption may not be restrictive in certain situations.

Implementations of functional programming languages, for example, involve construction of such graphs.

6.2.2 Mark-Sweep Collectors

The reference-counting method has space and time overheads of maintaining counts. In addition, it has the

limitation of not being directly able to reclaim cyclic data structures. The space overheads can be reduced

by using one-bit counts, and the overheads of maintaining counts at each pointer update can be eliminated

by tracing the reachability graph starting from root variables. Conceptually, this results in the mark-sweep

method [41]. In this method, detection consists of a marking phase in which, starting with root variables,

the data structures created by the mutator are traced, and the objects that are reached are marked. Thus,

the method requires a bit for each object. Collection consists of a sweeping phase in which the entire heap is

scanned sequentially, and the garbage is collected by adding the unmarked objects to a free list. Detection

and collection are not interleaved — sweeping should begin only after the completion of marking. During

tracing, the mutator’s execution is suspended, at least until marking is over. Therefore, this is an exhaustive

method. Since reclamation adds the garbage cells to the free list in situ, this is a nonmoving collection.

The space overheads of the mark-sweep method are not high except that explicit recursion may cause

stack overflows. Additionally, if the memory residency of data is high (i.e., a large part of data remains

reachable and very little garbage is created), this method may have to be called very frequently with very little

progress in mutator execution between consecutive runs of the collector. This will reduce the effectiveness

of the collection still further, as the mutator will not have the opportunity to make a significant number

of objects unreachable. This repeated and ineffective execution of the garbage collector is called thrashing.

Since this method is disruptive, thrashing is particularly undesirable.

The time overheads of the mark-sweep method are:

� If an object is reachable, its mark bit must be set. If mark bits are allocated in objects, setting the

mark bit dirties the page containing the object. During eviction, the operating system must write

this page back to the disk. This affects the virtual memory performance of the collector.

3This situation is possible only if B is also a part of another cycle. This is not shown in the figure.
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� Although the effort required for detection is proportional to the size of reachable data, collection

requires the entire heap to be traversed.
� If tracing is performed using recursive functions, the overheads of function calls can be significant.

The nonmoving nature of this method causes two problems. The first problem is that the collected

memory may be fragmented. Therefore, if allocation requests are made for objects of different sizes, it

becomes necessary to find a good fit for each object to prevent further fragmentation. This can be time

consuming. Moreover, requests for large objects may fail even if the total available memory exceeds the

size requested. Second, because of noncontiguous free space, closely related objects may be separated

during allocation. This may affect the locality of the mutator. These limitations are reduced by compacting

the space occupied by reachable objects. The resulting moving collector is called mark-compact and is

described in Section 6.2.3.

Some of the overheads of the mark-sweep method can be reduced as described below:

� The adverse effect on the virtual memory performance due to distributed mark bits can be alleviated

by storing the mark bits in a bitmap [16]. Then no page other than the bitmap page needs to be

written back during detection. However, the efficiency of this technique requires that the mapping

between the bit position and the address that it corresponds to be simple. Furthermore, it is desirable

that the bitmap be memory resident. This may require special support from the operating system.
� The effect of traversing the entire heap during collection can be somewhat mitigated by prefetching

pages, thanks to a predictable order of traversal. It is also possible to perform lazy collection by

distributing it over several allocation requests in the mutator [13, 35, 72]. Thus, after marking

is over, any allocation request is served with the explicit involvement of the sweeping phase. The

sweeping phase ensures that allocation is performed only from the area that has already been swept.

Since the mutator cannot access garbage cells, sweeping is unaffected. Allocation of unswept cells

is prohibited, so there is no fear of freshly allocated (and hence unmarked) objects being collected

as garbage.
� The overheads of recursive function calls can be reduced by replacing recursion with iteration and

by explicit management of the stack required for traversal [11]. Effectively, the stack of activation

records is replaced by a stack of marked nodes. Since the amount of data on the stack reduces, both

space and time are saved. However, the marking stack may still be deep and require a substantial

amount of memory. An elegant solution to the problem of large size of stack is the Deutsch–Schorr–

Waite pointer reversal algorithm [31, 50, 58], illustrated in Figure 6.4. This algorithm traverses the

heap in depth-first order and simulates the stack of nodes in the heap itself. The stack top is available

through the curr pointer. The deeper nodes can be accessed through a chain of reversed pointers

reachable through the prev pointer. There is no pointer between the top element and the element

below it. There are three phases of the traversal:

• When the traversal advances on an edge X → Y, X is the stack top. Its forward pointer to Y

is reversed and made to point to the first element of the chain of reversed pointers reachable

through prev. prev is then made to point to X, and a new stack top is created by making curr

point to Y.

• When the traversal switches from the left child Y of X to its right child Z, Y is the stack top and X

is the previous element. Since the forward pointer in X should now be restored to Y, the reversed

pointer in X is copied from its left field to the right field. Z is held in curr, the new top.

• When the traversal retreats from Y to X, Y is the stack top and X is the previous element. The

forward pointer from X to Y should now be restored. Hence, curr is made to point to X, and the

reversed pointer in X is replaced by a forward pointer to Y.

� This method has been extended to general n-nary nodes [58] by storing an additional field con-

taining the number of children of a node.
� While the pointer reversal algorithm saves on additional stack space, it requires enough extra bits

in each object to store the number of its children. These bits are used to decide the next step
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FIGURE 6.4 Depth-first traversal using Deutsch–Schorr–Waite pointer reversal algorithm.

during traversal. Further, unlike the methods that use a stack, every step in this method requires

manipulation of three pointers. Hence, this method turns out to be considerably worse in terms of

time than the method that maintains an explicit stack of nodes.

6.2.3 Mark-Compact Collectors

Mark-compact is a moving collection technique. It detects reachable objects by tracing data structures,

marks objects that are reachable, and then rearranges the reachable objects so that they occupy a contiguous

area in the heap. This also makes the free area contiguous. Though the method avoids fragmentation, it

may affect locality if the relative order of reachable objects (in terms of addresses) is not preserved.

The compaction may be performed either by “folding” the heap so that reachable objects from one end

of the heap are copied into the free cells at the other end or by “sliding” all reachable objects to one side,

thereby squeezing out the free cells. The folding-based method was developed by Edwards [39, 49]. It is

illustrated in Figure 6.5. In the first pass of this method, reachable objects are marked. In the second pass,

two pointers are used to scan reachable objects and free cells. The free pointer points to free cells at one

end of the heap, and the live pointer points to reachable objects at the other end. The reachable objects

at one end are copied into the free cells at the other. For each object relocated, a forwarding address is

recorded in the original space occupied by the object. The two pointers are advanced toward each other.

The free pointer is advanced until the next free cell is reached, and the live pointer is advanced until the next

reachable object is reached. The process is repeated until the two pointers meet. Finally, in a single pass,

the reachable objects are scanned and pointers are updated by copying the forwarding addresses recorded

in the first pass.

Free Live

FIGURE 6.5 Two pointer algorithm “folds” the heap memory by relocating reachable objects (indicated by cross-

hatching) from one end of the heap into free cells at the other end of the heap.
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FIGURE 6.6 Marking followed by three passes of the Lisp 2 algorithm of compaction.

This method does not directly work for variable-sized data. One solution to this problem is to divide the

heap into different regions, each region occupying data of a certain size. Another alternative is to allocate

variable-sized data in a variable number of fixed-sized chunks [10].

An additional limitation of the two-pointer method is that it disturbs the relative order of the objects,

thereby disturbing locality. Sliding algorithms relocate all objects starting from one end. They allow for

variable-sized data by first calculating the new position of each reachable object. This is also the forwarding

address of the object. Two additional passes are required, the first for updating the pointers in the reachable

objects to reflect the forwarding addresses and the other for relocating the objects to their new addresses.

The Lisp 2 algorithm [22, 23, 25] uses an additional pointer space in each memory cell to store the

forwarding address. As illustrated in Figure 6.6, after the marking phase is over, the first pass of compaction

computes and places the forwarding addresses in each cell. Let the new address of A be denoted by A′.

This is placed in A as its forwarding address. In the second pass, all the pointers are updated by their

corresponding forwarding addresses. For example, since A points to D, A is made to point to D′. The

objects are relocated in the third pass. Note that this movement of objects does not affect the pointers

contained, as they move along with the objects. For example, A continues to point to D. Although we have

shown all objects of the same size, this method handles variable sizes also.

The main disadvantage of the Lisp 2 algorithm is the space overhead for storing forwarding addresses in

the objects. Instead, it is possible to collect the forwarding addresses in a separate table and view the sliding

of reachable objects as the relocation performed by a relocating loader while loading a program. The main

difference between the two is that a sliding compactor has to deal with a much larger number of entities

that need relocation. The relocation table [25, 32] can be created in the first free location discovered. As

reachable objects are moved, this table must be slid to the other end of the heap. Since the table should

remain sorted, sliding may require special care.

Jonker’s algorithm [38] uses a completely different approach based on threading all parents of an

object [30]. In the first pass, all reachable objects are marked. In the second pass, the heap is scanned, and

when an object is reached, its new address is calculated. Simultaneously, its parents that have already been

visited and have been remembered through a thread of pointers are updated to point to the new location

of the object. However, if some parents of this object are discovered later in the scan, they are threaded

back to the object. In the third pass, all objects are moved to their new locations, and parents in the thread

are updated to point to the new location.

The threading performed in the second pass is illustrated in Figure 6.7. When object A is visited, it is

discovered to be a parent of D, and D does not have any threaded back pointer. Hence, the data of D is

copied in A, thereby making a place for a pointer to A in D. Then B is scanned, the data of its child C is

copied in B, and a threading pointer to B is stored in C. Whenever a reachable object is visited, its new

address is calculated. When C is visited, its parent node B is reached via the threaded pointer. This allows

the data in C to be restored, and the pointer in B is made to point to C′. Note that C is not moved to C′

in this pass. Since C has a child D that has a threaded pointer, it is traversed, and the node reached (A) is

the node to which C is made to point, whereas D is made to point to C. When D is scanned, all its parents



6-12 The Compiler Design Handbook: Optimizations and Machine Code Generation

A w

B x

C y

D z

Á
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FIGURE 6.7 A trace of the threading used by Jonker’s compactor. Objects are scanned in the order A, B, C, D, and

E. C and D represent the addresses where X will be moved after compaction.

(A and C) are available through the thread. They are made to point to the new address D′, and the data in

D, which is available in the last parent in the thread (A), is restored in D.

Note that D may have a parent that may be visited after D is scanned. In such a case a backward thread

is created in the second pass (after the situation in Figure 6.7f), which chains such parents of D. If the

algorithm could update the pointers in the objects reachable through the forward thread of D (i.e., objects

that were scanned before D was reached), why can it not do the same for the objects included in the

backward thread? The answer is that to save space, the algorithm does not record the new addresses of the

objects. The new address D′ is calculated only when D is reached. At this point, its parents, which are

reachable through the forward thread, can be updated to point to D′. However, when a parent is included

in the backward thread, there is no record of the fact that the new address of D is D′. Hence, these parents

can be updated in a subsequent pass only. In the third pass, all reachable objects are be moved to their new

locations by scanning the heap and calculating the new addresses. Simultaneously, the remaining parents

are also updated.

Jonker’s method also does not require objects to be of the same size. However, it requires the data to be

large enough to be overwritten by a pointer and some way of distinguishing between data and pointers.

Its main drawback is that it has the overheads of threading and unthreading pointers.

6.3 Copying Collectors

Similar to mark-compact collectors, copying collectors are also tracing collectors that scavenge and compact

reachable objects. However, instead of using the same space for both allocation and compaction, copying

collectors use a separate empty space for compaction. This makes compaction easy, since the marked data

is just laid contiguously starting from one end of this empty space. Tracing and copying in a copying

collector requires a single traversal over all reachable objects. The earliest copying collector with both

semi-spaces in memory was proposed by Fenichel and Yochelson [29].4 However, their formulation of the

tracing traversal was recursive and thus consumed stack space. The first practical copying collector was

suggested by Cheney [20]. Cheney’s formulation is nonrecursive and uses a part of the space taken by the

copied objects as a replacement for the stack.

6.3.1 Cheney’s Copying Collector

The copying collector divides the heap into two semi-spaces. The mutator uses just one of the two semi-

spaces between consecutive garbage collections. The semi-spaces are traditionally called FromSpace and

ToSpace because the garbage collector scavenges reachable data from FromSpace and copies them to ToSpace.

4An earlier copying collector proposed by Minsky [43] had one of the semi-spaces on disk.
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FIGURE 6.8 Heap configuration during program execution. The two spaces are flipped prior to garbage collection.

Assume that the program is running and using memory from ToSpace as shown in Figure 6.8. Also

assume that there is a single variable in the root set pointing to the object labeled A. When ToSpace

becomes full, a request for memory by the mutator triggers a garbage collection. At this point, the roles

of the two spaces are reversed — ToSpace becomes the new FromSpace and FromSpace becomes the new

ToSpace. This action is known in the garbage collection literature as a flip. Two pointers, scan and free, are

set to the beginning of ToSpace. FromSpace is now scavenged by starting from each pointer in the root set,

collecting all reachable data, and copying them in ToSpace. This is explained with the example shown in

Figure 6.9.

Starting at the lowest address A′, the object A is first copied into ToSpace. We shall use A′ to refer to both

the copied object and its address. To redirect future references to A to the copied object, the forwarding

address A′ is recorded in the first field of A. The pointer free is moved to the first free address after the

object A′. During garbage collection, scan and free are positioned in such a manner that copied objects

whose children have also been copied occur between the beginning of ToSpace and scan. Similarly, the

objects that have been copied but all of whose children have not been copied occur between scan and free.

The configuration after A has been copied is shown in Figure 6.9a.

Now the pointers in the fields of A′ are used to copy the objects B and C at B′ and C′. The forwarding

addresses are recorded in B and C, and scan and free are moved to the first addresses after A′ and C′. Now

the processing of A is complete. The objects that have been processed completely, in this case A′, have been

shaded black in the figure. In contrast, B′ and C′ are gray since their children have not been copied yet.

These are copied next, using the pointer fields of B′ and C′. When E is reached a second time from the object

C′, the forwarding address indicates that E does not have to be copied, and only the forwarding address

is copied into C′. The final configuration is indicated in Figure 6.9d. When scan catches up with free, it

indicates that the entire reachable data starting from the root set has been copied. The control is passed

to the mutator, and subsequent allocations are done from ToSpace starting at the location pointed to by

free. Since the mutator is stopped until the current round of garbage collection is over, copying collectors

in this form are also called stop-and-copy collectors.

6.3.2 Performance of Copying Collectors

We shall first look at the CPU cost of garbage collection using copying collectors. Recollect that the CPU

cost only considers the time expended by the CPU and does not take into account the time required

for servicing cache misses and page faults. The CPU cost of collection and allocation is low. There is

no marking and consequently no bit manipulation as in the case of mark-sweep and mark-compact

algorithms. Since copied objects occupy memory from one end of a contiguous address space, they are
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B B́ C Ć
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FIGURE 6.9 Snapshots of heap during garbage collection.

automatically compacted. A copying collector thus enjoys all the benefits of compaction — there are no

free lists to be maintained for allocation and, since there is no fragmentation, it is not required to find a

good fit for variable-sized objects.

One can define the efficiency of a garbage collector as the average cost of scavenging a single object.

Appel [1] has argued that increasing the size of the memory results in an increase in the efficiency of the

copying collector. If we assume that the number of reachable objects at every garbage collection is roughly

the same, then the cost of garbage collection is constant and does not increase with the size of the heap. This

is borne out in Appel’s experiments. However, increasing the heap size results in fewer garbage collections.

Thus, the efficiency of a copying collector increases with an increase in memory size.

The CPU cost of memory allocation is very low. It merely consists of checking whether there is enough

memory in ToSpace and then advancing the free pointer to reflect the allocation. The check for sufficiency

of memory can be eliminated by having a write-protected page at the end of ToSpace [1]. The resulting
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page fault raises an exception that is handled by the collector code. After collection, program control is

handed back to the instruction that caused the page fault.

Since the copying collector collects reachable objects, there is a situation that can cause a possible rise

in CPU costs. If an object is long-living, it gets copied from one semi-space to the other for a large number

of garbage collection cycles. A solution is to identify objects that have survived a certain number of cycles

and copy them into a separate long-living area. This area is garbage collected through an alternate scheme

such as mark-sweep instead of copying collection. However, the objects in the long-living area may have

pointers back to the main heap. Such pointers have to be treated as root set pointers while collecting the

main heap. A generalization of this scheme is to keep objects in separate spaces according to their ages.

These spaces are called generations, and the scheme is called generational garbage collection (Section 6.4).

6.3.3 Locality Issues

The memory in Appel’s argument [1] refers to physical memory. The argument may not hold for virtual

memory because, beyond a certain point, the advantages of increasing the heap size will be nullified by

the number of page faults. In general, if the system on which the mutator and the collector are running

has a hierarchy of memories, then their performance will be affected by their locality. Poor locality will

show up in the form of page faults or cache misses. Page faults can be very costly. Servicing a page fault can

cost up to a million cycles.

Some of the locality issues associated with garbage collection that have been identified by Wilson [62]

are:

� Locality of the collector itself
� Effects of the collection process on the locality of the mutator

During tracing, all reachable data will be touched very few times, most often only once. Similarly, while

copying, the ToSpace versions of the objects will be touched only once. Thus, the copying collector has

little temporal locality — there are no repeated touches to the same object. However, copying collectors

may show significant spatial locality. The tracing process successively touches closely linked objects, and

such objects may be laid out closely in memory (see discussion below). Similarly, copying lays out the

copied objects successively in ToSpace.

Studies by Hayes [33] have shown that objects created by programs show considerable spatial locality;

that is, objects closely related in a data structure are also created and therefore reside close to each other

in memory. A problem with copying collectors is that while copying, they alter the original layout of the

data created by the mutator, thus degrading its spatial locality. To improve the locality of the mutator,

several copying strategies have been tried. Moon [43] has shown that depth-first copying results in better

spatial locality for the mutator than breadth-first copying. Since Cheney’s collector copies objects in a

breadth-first manner, Moon has suggested a copying strategy called approximately depth-first, which is a

modification of the strategy in Cheney’s collector. In this strategy, the last partially filled page in ToSpace

is selected for scanning. Stamos [53, 54] and Blau [12] have shown that both breadth-first and depth-first

copying result in better locality than random copying.

According to Wilson [62], the feature of a copying collector that has the most effect on the temporal

locality of both the mutator and the collector is the alternate reuse of memory among two large semi-

spaces. The size of the semi-spaces cannot be reduced beyond a point, since it will result in frequent

collections during which long-living objects will be repeatedly copied from one semi-space to another.

Furthermore, because of the alternate use of the semi-spaces, the next page in ToSpace that will be accessed

during either copying or allocation is likely to be among the least recently used and will probably result

in a page fault. As a contrast, consider a scheme in which allocation is done from a single space, which we

shall call the creation space. When this space is full, objects are scavenged into a separate space called the

old space, and the creation space can be used once again for allocation. The old space is garbage collected

infrequently by a noncopying scheme. The locality of such a system will be much better than a copying

collector, especially if the creation space is small in size. However, there is the danger that short-living
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objects may be scavenged into the old area and die soon after but continue to be resident and occupy heap

space for a long time.

Thus, to improve locality of the system, there is a need to distinguish between short-living and long-

living objects. The short-living objects should be allocated in an address space that is of relatively small

size. Because of frequent reuse, this space will remain resident in physical memory, resulting in fewer page

faults. This forms the basis for generational garbage collectors.

6.4 Generational Collectors

There is a mismatch between the demographic behavior of objects and the strategy employed by tracing

collectors. If all objects are collected with the same frequency, objects that survive a number of collections

will be repeatedly traced. This represents unremunerative work for the garbage collector. Baker [8] has

expressed the cost per allocated object of a garbage collection as the mark/cons5 ratio, which should be

as low as possible. Generational collectors [40, 43, 59] decrease the mark/cons ratio by putting objects of

different lifetimes in separate collection spaces.

The basis of the generational collectors is the weak generational hypothesis, which states that younger

objects have a shorter life expectancy than older objects. This hypothesis seems to be true in practice [33, 56].

Generational collectors take advantage of this by having more than one collection space, which are collected

at varying frequencies. The youngest collection space is collected most often. Objects that survive the

youngest collection for a certain amount of time are promoted to an older generation, which is collected

less often. The object continues in the older generation for some time before it either dies and is garbage

collected or is promoted to the next generation. Thus, to recover the same amount of garbage as a

nongenerational garbage collector, the generational collector incurs fewer tracing and copying costs.

The central idea of generational garbage collection is to collect different generations at different fre-

quencies. The weak generational hypothesis only makes it profitable to collect younger generations more

frequently than older generations. As a theoretical exercise, Baker [8] has considered a model of life ex-

pectancy of objects in which the fraction of objects expected to survive a period t is given by 2−t/τ , where

τ is a constant. In this exponential decay model, the life expectancy of an object does not depend on its

age. Using this model, it has been shown [24, 33, 56] that older generations will have fewer survivors than

young ones, so it will be profitable to collect older generations more frequently than younger generations.

In summary, the advantages of the generational scheme are the following:

� Because of the decreased mark/cons ratio, the time taken by the generational collector over the

entire program execution is smaller.
� Since the younger generation has fewer survivors, its collection is faster and the pauses experienced

by the mutator are shorter.
� The size of each generation is made considerably smaller than the next. Thus, the size of the

youngest generation is quite small. Since most of the activities of the collector are limited to the

youngest generation, the locality of the collector and possibly the mutator is improved. Indeed,

some authors [64] think this is the real reason for the effectiveness of generational collectors.

6.4.1 The Basic Design

We shall consider a generational extension of a copying collector with two generations. Generalization to

more than two generations does not pose any additional conceptual problems. Assume that the state of

ToSpace after two rounds of garbage collection is as shown in Figure 6.10. We shall assume for now that

each object has an extra field to record its age in terms of the number of collections it has survived.

5cons has its origins in the language Lisp, where it is used for allocating a new object. In the context of a copying

collector, mark will also include the cost of copying.
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After an object has survived a certain number of collections called the tenuring threshold (three in this

case), it is considered to be a long-living object. It is now promoted to a separate space called the old

generation space; the earlier space is called the young generation space. Since the number of survivors in

the young generation is low, the older generation will fill up slowly and will be collected less often than

the younger generation. In general, there will be a number of generations of increasing ages and with

decreasing frequencies of collection. A collection of the young generation is called a minor collection, while

that of an old generation is called a major collection.

Figure 6.11 shows the state of ToSpace of both generations after tenuring. The objects B and D, which

have survived three collections, are now tenured into the older generation, while the object G has been

collected away. The tenuring ages of the remaining objects in the younger generation have been updated.

In addition, the mutator has allocated a new object H, and the sole pointer pointing to H is from B. Note

that the tenuring ages of the objects in the oldest generation are irrelevant.

We now mention the issues that could arise in a generational scheme. Some of these issues are later

described in detail.

� The size of the younger generation and the tenuring threshold together determine how quickly an

object will be promoted. The effectiveness of generational collection depends on whether objects

are promoted at the right time. A delay in promoting a long-lived object causes the object to be

copied repeatedly during minor collections. However, a short-lived object promoted to the older

generation prematurely may become unreachable soon after promotion. Since older generations

are collected infrequently, such an object may continue to occupy heap space for a long time.

Worse still, objects in the younger generation that are pointed to solely by such objects will also be

considered to be reachable and will be repeatedly copied from one semi-space to another during

minor collections.
� The size of the younger generation also affects the length of the pause during a minor collection and

the localities of the collector and the mutator. A smaller size results in shorter pauses and improved

locality.
� The number of generations is also important for generational collectors. The reason for having

several generations is that if a short-lived object survives a collection and then becomes unreachable,

ToSpace

Young Generation Old Generation

ToSpace

Root Set 

A 1 B -

C 2 D -

E 2 F 2

H 0

FIGURE 6.11 Young and old generations.
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there is still the possibility that its space will be recovered soon enough in a major collection. The

strong generational hypothesis [24, 33, 59] says that even among generations containing long-lived

objects, the relatively younger generations have fewer survivors than older generations. While this

might justify the use of several generations, the strong generational hypothesis itself is more an

article of faith and is not supported by empirical data [37]. Thus, while there have been collectors

with as many as seven generations [19], most generational collectors have two to three generations.
� The recording of the age of objects is another concern. The example described above seems to

suggest that an extra field is added to each object to record its age. This is expensive and almost

never done. Instead, objects whose ages are close are approximated to the same age. There is a trade-

off between expending space to record ages precisely and risking repeated copying or premature

promotion of objects due to approximate recording.
� The final issue is that of intergenerational pointers. As can be seen in Figure 6.11, the object

H is reachable only through the older generation. To prevent reclamation of H during a minor

collection, the pointer from B to H has to be considered as a root set pointer. Pointers can become

intergenerational during promotion (D to A) or be created by the mutator through an assignment

(B to H). Intergenerational pointers from the older to the younger generation have to be recorded.

However, if we collect the young generation whenever the old generation is collected, then the

young-to-old pointers do not have to be recorded during creation, because they will be identified

during the minor collection.

6.4.2 Tenuring Policy

The tenuring threshold can either be decided a priori or be dynamically decided during garbage collection.

In the first case, the tenuring policy is called fixed, and in the second, adaptive.

6.4.2.1 Fixed Tenuring

The main issue here is to decide the tenuring threshold a priori. For a given environment in which the

garbage collector has to operate, the lifetime behavior of objects suggests a tenuring threshold. The original

SML/NJ collector [2] had a tenuring threshold of one, since only about 2% of the objects survived a minor

collection. However, Wilson and Moher [65] have studied the lifetime behavior of objects in Smalltalk

and Lisp systems. They have found that, of the objects allocated at a certain time, the fraction that survive

subsequent collections has the characteristics shown in Figure 6.12. The figure shows that a tenure threshold

of one will lead to premature tenuring, as there are many survivors (the entire hatched region) after the first

scavenge. However, few (the cross-hatched region) survive the second scavenge, and a tenure threshold of

two is more appropriate.6

6.4.2.2 Adaptive Tenuring

A fine interplay occurs between the size of the new generation, the tenure threshold, and the number

of generations on one hand and pause times and effective utilization of the heap space on the other.

As a way of changing the tenuring policy dynamically, Zorn [72] has argued against having fixed-sized

semi-spaces. If the birth rate of objects becomes more than the death rate, each collection results in a

high number of survivors, and collections become frequent. In such situations, instead of waiting for the

semi-space to be full, a better policy is to trigger collections only if the volume of data allocated since

the last collection reaches a certain threshold and to grow the heap otherwise. This amortizes the cost of

the garbage collection.

6In fact, Wilson and Moher’s collector has provisions for tuning the tenure threshold to a value between one

and two.
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FIGURE 6.12 Fraction of objects surviving subsequent scavenges. (Reproduced with the permission of ACM.)

Ungar and Jackson [60, 61] have extensively studied the garbage collector of a Smalltalk-80 system.

Their main goal was to reduce pause times to acceptably low levels. They have identified the limitations

of fixed tenuring threshold due to dynamic variations in the lifetime behavior of objects. In particular, if

a large number of objects are younger than the threshold, pauses will be long. Furthermore, if very few

objects are being scavenged, there is no need to tenure any object, but a fixed-threshold policy will still

tenure objects that are old. Since pause times are related to the volume of data surviving a collection,7 they

suggest that the volume of data surviving should decide the tenuring threshold in the next collection:

� If the volume of surviving data is less than a predetermined value, the pause time in the next

collection is judged to be acceptable, and the tenuring threshold is set to infinity, so that there is no

tenuring in the next collection.
� If the volume of surviving data is greater than the predetermined value, then the tenuring threshold

is adjusted to tenure enough objects to bring down the volume of surviving data to acceptable

levels. The value of the new tenuring threshold is decided using a table that records the volume of

surviving data of each age. This table is updated at each collection.

Other tenuring policies that bring an already tenured object back to the younger generation have also

been considered [9].

6.4.3 Recording Ages of Objects

A generational collector has to keep track of the ages of objects to decide when to promote them to the

next generation. However, maintaining the ages of individual objects is costly in terms of both space and

time. Therefore, age is recorded for groups of objects whose ages are close to each other. The generational

7For various reasons, the method is actually based not on the number of objects, but on the space consumed by

these objects.
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space that an object is currently residing in gives an indication of its age. We now discuss how the heap

can be organized into different generational spaces to achieve different tenuring thresholds.

In the simplest case, a generation can have only one space (instead of two semi-spaces) called creation

space. During garbage collection, objects can be promoted en masse to the next generation, thus obviating

the need of a ToSpace. An advantage of this method is that the creation space is fully used between

consecutive collections. Therefore, this method shows better locality than methods that use only one of

two semi-spaces at a time. While en masse promotion also has the problem of premature tenuring, it can

be alleviated by having more than one generation.

An improvement over this method developed by Ungar [59] is to have a creation space and an aging

space that consists of two semi-spaces. At garbage collection time, the creation space and the currently

used semi-space of the aging space are scavenged into the other semi-space. This solves the problem of

premature tenuring, since a prematurely tenured object can still be collected in the aging space. However,

it has the problem of long-living objects being repeatedly garbage collected.

The methods discussed so far have a tenure threshold of one. We can also have a tenure threshold of more

than one. In Shaw’s method [51], the younger generation consists of a number of buckets. Each bucket

is garbage collected with the same frequency. After a predetermined number of collections, survivors of

a bucket are promoted to the next bucket, and the oldest bucket is promoted to the next generation. For

example, if the number of buckets and the number of collections per bucket are both two, the method

guarantees that an object survives at least three collections (at least one in the first bucket and two in the

second) before it is promoted to the old generation. By choosing the number of collections appropriately,

the collector can be tuned to a particular lifetime characteristic of objects.

Wilson and Moher [65] have combined the single semi-space of Ungar’s method with Shaw’s greater-

than-one tenuring threshold. In their method, the younger generation consists of a creation space and an

aging space made up of two semi-spaces. There is also an old generation. At every collection, survivors

of the creation space are promoted to the ToSpace of the aging space, and the survivors of FromSpace in

the aging space are promoted to the old generation. Thus, the method in this form has an effective tenure

threshold of two.

The method incorporates a modification of what has been described before, to adjust the tenure thres-

hold to a value between one and two. Instead of promoting all the survivors of the creation space to the

aging space, only objects below a certain age are transferred. The rest of the objects are directly promoted

to the old generation. Detecting all objects below a threshold age is possible because objects are allocated

sequentially in the creation space. The threshold gives a handle to tune the tenure threshold to a value

between one and two.

6.4.4 Recording of Intergenerational Pointers

It is important to record intergenerational pointers from the old to the young generation. An object in

the young generation may only be reachable through an object in the old generation. In such a situation,

the young generation object should be detected as being reachable through the intergenerational pointer

during a minor collection.

Intergenerational pointers can be discovered by explicitly scanning the older generation during a minor

collection. However, this is expensive, and most methods use a write-barrier instead. A write-barrier is a

fragment of code that is added to the mutator around pointer assignments. This code checks whether the

assignment will create an intergenerational pointer and, if it does, records this information. The issues

that arise in handling intergenerational pointers are:

� The overhead to the mutator due to the write-barrier.
� The space overhead for recording the intergenerational pointer.
� The overhead to the collector during scavenge time.

Fortunately, the number of intergenerational pointer stores is a small fraction of the total number of

instructions. Of all pointer stores, the stores to registers and the stack can be ignored. The initializing stores
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FIGURE 6.13 Entry tables.

(for example, to cons cells in Lisp) can be ignored because they cannot introduce old-to-young generation

pointers. The number of old-to-young generation pointer assignments in Lisp or ML that have to be trapped

through write-barriers have been estimated as being about 1% of the total number of instructions [37].

However, if each write-barrier consists of 10 instructions, the mutator execution time increases by 10%.

While static analysis techniques have been suggested to reduce the number of barriers required [71], there

is still a need to optimize recording of intergenerational pointers. We now describe some of the methods

used to record intergenerational pointers.

6.4.4.1 Entry Tables

This technique was used as a part of the first generational collector by Lieberman and Hewitt [40]. The

method uses a table, called the entry table, for each generation except the oldest. If the execution of the

mutator results in the potential creation of an old-to-new pointer, then the object in the old generation is

made to point instead to a new slot in the entry table for the young generation. The slot contents, in turn,

are made to point to the original destination, the object in the younger generation. The scheme for two

generations is illustrated in Figure 6.13.

During a collection of the younger generation, the entry table of this generation also forms a part of

the root set. Collection under this method is fast; the only cause of inefficiency is possible duplication

of pointers from the entry table to the same object. This makes the cost of scanning the entry table

proportional to the number of assignments creating intergenerational pointers. However, the mutator

may be slowed down considerably, because an original reference from an old object to a new object now

involves an indirection through the entry table.

6.4.4.2 Remembered Sets

Unlike entry tables, in this method [59] the old object containing the intergenerational pointer is itself

recorded. This is shown in Figure 6.14. Each object has a bit in the header indicating whether it is in the

ToSpace

Young Generation Old Generation

ToSpace
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C - D 1

E - F -

H -

Remembered Set

FIGURE 6.14 Remembered set.
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remembered set. When an intergenerational pointer is stored in an old object, the object is recorded in the

remembered set if the bit in its header is not already set. These objects in the remembered set are treated

as part of the root set during a minor collection.

The cost at collection time is proportional to the number of intergenerational pointers and not to the

number of stores. However, all the fields of a remembered object have to be scanned. If the object is large,

this represents a substantial overhead. The added cost to the mutator is high, since every pointer store

involves a checking of whether the pointer is intergenerational and whether the header bit of the object in

which the pointer is being stored is set.

Appel’s SML/NJ collector [2] has a fast implementation of the remembered set. The remembered set

records every pointer store, including those to objects that are already present in the remembered set, and

stores of pointers from new generations to old generations. At collection time, the irrelevant pointers in

the remembered set are filtered out. This strategy is effective for a language such as ML in which most

of the stores are initializing stores and there are very few old-to-young intergenerational pointers. This

also works well for collectors that perform en masse promotion. After the en masse promotion, the entire

remembered set is cleared.

Approximating the recording of intergenerational pointers results in less overhead for the mutator, but

the collector’s overhead increases because it has to filter out the wrong kind of pointers. Hudson and

Diwan [34] extend Appel’s idea by storing intergenerational pointer information at two levels. During

mutator execution, addresses of objects that may have intergenerational pointers are quickly recorded

in a sequential buffer without any checks. To avoid checking for overflow at every write, the buffer has a

write-protected page at the end. During garbage collection, the information in the buffer is transferred to

the remembered set after filtering. For example, duplicate entries in the sequential buffer are filtered out

by implementing the remembered set as a hash table.

The techniques discussed above mark individual objects. The next few techniques described approximate

object marking at larger levels of granularity.

6.4.4.3 Page Marking

Instead of recording individual objects that contain intergenerational pointers, this technique records

pages that contain intergenerational pointers. In its simplest form, one can have a bit for every virtual page.

Whenever an intergenerational pointer is stored in a page, the event is trapped and the bit corresponding

to the page is set. During collection of a younger generation, every page whose bit is set is scanned for the

presence of an intergenerational pointer from an older generation to this generation.

The problem with the approach in this form is that pages that have been swapped out may be brought

in and then searched to discover that they do not contain intergenerational pointers to the generation

concerned. The cost of such an eventuality is very high, so a bitmap is maintained for every swapped out

page. This bitmap contains a bit for every generation. Whenever a page is swapped out, it is scanned, and

if a generation has a pointer from this page, the corresponding bit is set. During a collection of the i th

generation, a swapped out page is brought in only if the i th bit of the bitmap of the page is set.

The Ephemeral Garbage Collector [43] built for the Lisp implementation on top of the Symbolics 3600

machine employed this scheme with minor variations. The garbage collector was aided by the specialized

hardware of this machine:

� The write-barrier was implemented in hardware.
� The page size was small, and the presence of an intergenerational pointer was detected by hard-

ware [52]. Therefore, pages could be scanned very quickly.
� The machine had a tagged architecture that allowed the hardware to differentiate between words

containing pointers and words containing nonpointers. Because of this, one could scan without

taking into account object boundaries and yet not run the risk of interpreting a pointer field as a

nonpointer field. This also added to the speed of scanning.
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6.4.4.4 Card Marking

Unlike page marking, this technique is designed to work on stock hardware. The memory is divided into

cards. The size of the cards is appropriately chosen. If the card is too big, the cost of scanning is large. If

the card size is small, the number of cards is large, and the per-card information to be maintained also

becomes large. In the design described [52], the card size was 256 words. Thus, the granularity of object

marking in this technique is between page marking and word marking.

The card marking scheme works much like the page marking scheme. There is a primary card-mark

table that contains a bit for every card. The bit records whether a pointer has been stored in the card. There

is also a secondary card mark table that contains a bitmap for every card. The i th bit of this bitmap records

whether the card contains a pointer to an object in the i th generation.

During the execution of the mutator, if a pointer is stored in a card, the primary card-mark of the card

is set. Garbage collection now proceeds as follows: Suppose the i th generation is being garbage collected.

Every card whose bitmap in the secondary card-mark table has the i th bit set is scanned. This involves

checking each word to determine whether it contains a pointer to the generation being garbage collected

and, in that case, treating the pointer as a root set pointer and performing a scavenging. After a scan, if

a card contains a pointer to a younger generation, the secondary card-mark table for that generation is

reset. The bit in the primary card-mark table is cleared for the card.

Next, the cards whose bits in the primary card-mark table are set are scanned. These are the cards that

did not have any pointers to the generation being collected at the end of the last collection but have had

a pointer stored during the last round of mutator execution. These cards are also scanned in the manner

described above. At the end of this, the scavenging of the current generation is complete. Clearly, the

information in the card-mark tables of the cards in the generation being collected are now meaningless,

so they are cleared.

Scanning a card in software requires a solution to the following problem. The header contains the

information distinguishing pointer from nonpointer fields. Since a card could begin in the middle of an

object, the pointer information of the remaining part of the object is not available. The solution in [52]

was to maintain information to determine the nearest preceding card that starts with an object header.

Starting with this object, the sequence of objects is followed until the object whose fields begin the current

card is reached. This object header is examined to determine whether the words beginning the card are

pointers.

6.5 Incremental and Concurrent Collectors

In some applications large pauses cannot be tolerated. Such applications are mostly interactive and

in some instances rely on a guarantee of a bound on the length of pauses. While running such ap-

plications, it may not be possible to allow the associated garbage collector to run until the end of a

round of collection. Hence, one has to use garbage collectors that are incremental, that is, collectors in

which a single round of garbage collection is interspersed with mutator execution. The reference count-

ing method described earlier is, in its natural form, incremental. However, reference counting has its

own limitations of not being able to handle cycles naturally and of uneven distribution of pause times

(Section 6.2.1). Therefore, it becomes necessary to think of incremental versions of other kinds of garbage

collectors.

A garbage collector is said to be incremental if garbage collection is interleaved with mutator execution in

a single thread of execution. It is said to be concurrent if the collector and the mutator can run concurrently

on multiple threads. In effect, this means the interleaving between the collector and the mutator is well

defined in the case of incremental collectors and arbitrary in the case of concurrent collectors. Finally, a

garbage collector is said to be real-time if it can guarantee a bound on the length of pauses.

The central issue with incremental collectors is that because of the interleaving of mutator and collector,

their views of the reachability graph may be different. Instead of trying to make the two views identical,

the collector’s view of the reachability graph is made an overapproximation of the mutator’s view. Thus,
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FIGURE 6.15 Situation in which a reachable object can be wrongly reclaimed.

the collector may conservatively preserve an object that is unreachable. However, it will never discard an

object that is reachable.

In the context of incremental and concurrent collectors, Dijkstra et al. [28] have introduced a tricolor

abstraction for indicating the state of tracing of objects. We used this coloring scheme for explaining copying

collectors in Figure 6.9. In this scheme, a black object indicates that the collector has traced the object,

as well as all its immediate descendants. A gray object indicates that the collector has traced the object

but not its descendants. Finally, a white object indicates that the object has not been traced at all. Some

incremental collectors explicitly maintain the color of objects. More often, the tricolor abstraction is used

as a conceptual mechanism to reason about properties of collectors. It is used in soundness arguments to

show that the collector does not wrongly claim any reachable object and in monotonicity arguments to

prove the termination of tracing.

Consider the following example, which illustrates conditions under which an incremental or concurrent

collector could go wrong. Figure 6.15a shows the state of tracing in the reachability graph recorded by the

collector. Assume that the mutator now makes the changes shown in Figure 6.15b. In particular, the link

from B to E is severed, and the link from A to C is made to point to E. Since A continues to be labeled

black, it will be assumed by the collector that its descendants have been traced. Since there is no path from

a gray object to E, it will never be traced and consequently will be collected as garbage. This illustrates the

following necessary and sufficient conditions for the garbage collector to fail to preserve a reachable white

object O:

� A black object directly points to O.
� There is no path from any gray object to O.

An incremental garbage collector ensures safety by trying to prevent either of the two conditions. This is

done by the use of barriers. A barrier is an extra fragment of code that is wrapped around certain critical

mutator actions. In the incremental versions of nonmoving collectors, a barrier is wrapped around pointer

stores, while for moving collectors, it is wrapped around pointer reads. We first discuss the algorithms that

use write-barriers.

6.5.1 Incremental and Concurrent Nonmoving Collectors

We first discuss incremental mark-sweep algorithms. In the case of mark-sweep algorithms, the tricolor

abstraction during tracing is to be interpreted as follows. Objects with incoming pointers from the mark

stack are considered gray. Black objects are those whose children are either black or gray. The rest of the

objects are white. Thus, for an object, its mark bit and the presence of an incoming pointer from stack can

together be considered as an implicit coding of its color.

There are two kinds of incremental mark-sweep techniques which use the write-barrier in different ways.

These are the snapshot-at-beginning and incremental update techniques. Snapshot-at-beginning techniques

ensure correctness by preventing the second condition, whereas incremental update techniques ensure

correctness by preventing the first condition.
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FIGURE 6.16 The need of scanning root set as an atomic action.

6.5.1.1 Snapshot-at-Beginning

We describe a well-known technique proposed by Yuasa [69]. The name snapshot-at-beginning derives

from the fact that the reachability graph at the beginning of a collection phase is retained in spite of

mutator interference. This algorithm prevents the second condition as follows: During a collection phase,

if the mutator tries to change8 a pointer to a white object, a write-barrier is invoked and the pointer is

pushed on the mark-stack. For example, in Figure 6.15a, when the pointer from B is changed from E to

C, it is first pushed on the mark-stack before the mutator is allowed to continue its normal actions. Since

objects pointed by the mark stack will be taken out and traced later by the collector, they will not be lost.

Also, every newly allocated object during the collection phase is colored black by setting its mark bit.

The collection starts with a scanning of the root set as an atomic action. The reason scanning needs to

be atomic is shown in Figure 6.16. Assume that scanning is incremental, the portion of the root set that

has already been scanned is shown in black in Figure 6.16a. If the mutator now takes over and makes the

changes as shown in Figure 6.16b, the object D, which is pointed from an already scanned stack slot, will

not be marked. Though reachable, the cell will be collected away. The cell could have been preserved if a

write-barrier had been used for stack entries. However, this would have resulted in a prohibitively large

overhead. The method developed by Yuasa et al. [70] suggests a possible solution to this problem.

The snapshot-at-beginning algorithm is conservative. In Figure 6.15, if the only pointer to E had been

from B, then changing this pointer would have resulted in E becoming garbage. However, the pointer to

E would have still been recorded on the mark stack and prevented E from being collected in this round.

In fact, all the objects that become unreachable during a round of collection will be collected only during

the next round. Also note that while snapshot-at-beginning algorithm prevents the second condition, they

may allow the first condition to arise. For example, the scenario in Figure 6.15b is allowed.

6.5.1.2 Incremental Update Methods

Incremental update methods ensure correctness by preventing any pointer to a white object from being

stored in a black object. Dijkstra et al.’s method [28] conservatively approximates this idea by using a

write-barrier to trap the store of a pointer to a white object in an object of any color. The white object is

colored gray and thus cannot be garbage collected. Because of the store of the pointer to E in A as shown

in Figure 6.15b, the object E will be colored gray. This is shown in Figure 6.17a.

Steele’s [55] write-barrier, however, changes the color of the object into which the pointer to the white

object was being stored to gray. In Figure 6.17b, object A turns from black to gray. Since this object, which

was originally black, has now turned gray, there will be a second round of tracing starting with this object.

During this tracing the white object will be marked and thus not be collected.

After changing the color of E to gray under Dijkstra’s method, even if the mutator deletes the pointer

from A to E, making E unreachable, it will not be reclaimed during this collection. Under Steele’s method,

8A change includes deletion.
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FIGURE 6.17 Write-barriers.

however, if the mutator deletes the pointer from A to E while E is still white, it will be reclaimed in the current

round of garbage collection. Thus, Dijkstra’s method is more conservative than Steele’s method. Note that

both these methods assume a fixed root set, unlike the Doligez–Leroy–Gonthier method (Section 6.5.2).

Moreover, in both these collectors, the mutator and the collector are largely independent. Therefore, they

can be viewed as concurrent collectors.

The collectors described so far are incremental or concurrent versions of mark-sweep. We now describe

a different kind of incremental nonmoving collector.

6.5.1.3 Baker’s Treadmill Noncopying Collector

Many of the drawbacks of copying collectors arise because objects are copied from one semi-space to

another. As a result of copying, read-barriers, which are costly, have to be used in incremental versions of

copying collectors. The noncopying collector suggested by Baker [7] retains the major advantage of copying

collectors, that is, the collection effort is proportional to the number of reachable objects. Additionally,

since it does not move objects, there are no forwarding pointers, and there is only one version of an object.

Thus, the mutator does not have to be protected from the changes brought about by the collector, as

happens in moving collectors (see Section 6.5.2).

Any incremental tracing collector has to distinguish between four sets of objects: black objects, gray

objects, white objects, and free objects. New objects are allocated by the mutator from the set of free objects.

The incremental versions of mark-sweep and copying collectors maintain and identify these sets as shown

in Figure 6.18.

As shown in Figure 6.19, Baker’s noncopying collector explicitly maintains the four sets by chaining

them in a circular doubly linked list. Within the list, the sets are demarcated by the four pointers bottom,

top, scan, and allocate. Free objects are hatched. As explained below, this method only needs to distinguish

between white and nonwhite objects, and a single bit is sufficient for this purpose. The other colors are

merely conceptual and have been used for purposes of exposition.

When the mutator allocates a new object, the allocate pointer is advanced clockwise and the allocated

object is colored black. The method is practical only when all objects are of the same size. The mutator

Mark-sweep Copying

White objects Mark bit of the object is clear
and object is not in stack

Object is in FromSpace

Black objects Mark bit of the object is set and
and the object is not in stack

Object is between one end of ToSpace
and the scan pointer

Gray objects Mark bit of object is set
and object is in stack

Object is between scan and free
pointers in ToSpace

Free objects Object is in free list Object is at the other end of ToSpace

FIGURE 6.18 Identification of objects of different colors.
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FIGURE 6.19 Baker’s treadmill noncopying collector.

can also interfere with the collector by storing a pointer to a white object in a black object. Though Baker

suggests the use of a read-barrier, it is enough to use a write-barrier to trap such writes and convert the

white object to a gray object. The collector scans by repeatedly selecting the gray object next to the scan

pointer. If a child of this object is black or gray, then nothing is done. If it is white, it is unlinked from its

place and linked at the beginning of the region of gray objects. This is the only step that requires explicit

color information. An object is colored black after all its children are processed.

When scan meets top, the current collection round is complete. At this point there are just black and

white objects, and the roles of the two spaces between the bottom and the top pointers are reversed by

swapping the two pointers. The black segment can now be seen as white and the white segment as the

hatched segment consisting of free objects.

This method avoids the use of a read-barrier. Furthermore, such nonmoving collectors can work in

noncooperative environments such as compilers that do not identify pointer variables [36, 62]. Baker also

claims that the space required for the extra links is compensated for small objects by the absence of a

mark stack or separate FromSpace and ToSpace versions of reachable objects. For large objects, the space

required by the noncopying collector compares favorably with noncopying versions, and the time required

for unlinking and linking is also significantly less than for copying the object.

The main problem with this method is regarding allocation of new objects when the sizes of objects are

different. Then the allocation process has to search the free memory region for a chunk of memory that

fits the object size. Wilson and Johnstone [63] suggest a variation of the method where the free memory

region consists of a number of lists of objects segregated by their sizes. An object of a certain size is quickly

approximated to the list of the right size, and a chunk of free memory is allocated from the list.

6.5.2 Incremental and Concurrent Moving Collectors

We have seen that in a mark-sweep collector, changes made by the mutator can affect the collector’s view

of the reachability graph. A moving collector has an additional concern — the collector actions can also

affect the mutator’s view of the reachability graph. In the context of a copying collector, for example, when

the mutator tries to read the field of an object, the object may be just a copy in FromSpace, and the field

may contain a forwarding address to the actual object that has been copied into ToSpace. Thus, even read
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actions of the mutator should be trapped to ensure the validity of the data that is read. We now look at the

better-known incremental moving collectors.

6.5.2.1 Baker’s Copying Method

Like Cheney’s method, Baker’s copying method [6] also consists of two semi-spaces — FromSpace and

ToSpace. Garbage collection begins with flipping the two semi-spaces, following which reachable objects

are copied from FromSpace to ToSpace. However, since the collector can be interrupted by the mutator

before collection is over, the space from which new cells are to be allocated by the mutator is an issue. If

objects are copied at one end of ToSpace, allocation is done at the other end as shown in Figure 6.20.

Correctness is ensured by using read-barriers to trap the mutator when it tries to read objects through

pointers. The read-barrier checks whether the object that is being read through the pointer has already

been copied into ToSpace. In this case, the forwarding address stored in the object is returned. Otherwise,

the object is copied into ToSpace in the manner of a Cheney collector, and the address at which it is copied

is returned. In effect, if the mutator tries to read a white object, it is made gray.9 Thus, the mutator is

protected from the changes made by the collector, since it only reads the ToSpace version of any object.

The collector is also protected from the mutator. Since the mutator cannot read a pointer to a white object,

it cannot store such a pointer in a black object. Thus, the second condition is prevented, and the collector

does not mistakenly collect a reachable object.

Another issue has to be handled by Baker’s copying collector. Since the mutator may interrupt the

collector, the mutator may run out of space for allocation before collection is completed. The system then

comes to a standstill. To prevent such a situation, the amount of work done by the collector is tied to the

amount of allocation of new space. Whenever new space is allocated by the mutator, control is transferred

to the collector. The collector does a predetermined amount of copying and scanning and passes control

back to the mutator.

Baker’s method is conservative. Objects allocated during a collection round are assumed to be black

and are not collected, even if they die during the current round. Similarly, an object that has already been

traversed will not be collected during the current round of collection, even if it is made unreachable after

the traversal.

One of the drawbacks of Baker’s method is the cost of the read-barrier, in terms of both space and time.

Zorn [73] reports that pointer reads from about 15% of the total number of instructions. Inlining the

read-barrier would cause the mutator code size to become unacceptably large. Zorn also reports a 20%

time overhead for read-barriers implemented in software.

6.5.2.2 Brooks’ Variation of Baker’s Copying Method

Brooks [17] introduced a write-barrier variation of Baker’s scheme. The idea is to eliminate the check in

Baker’s read-barrier that determines whether an object needs to be forwarded to ToSpace. In this method,

every object comes armed with an indirection pointer. If a FromSpace object has already been copied,

the indirection pointer points to the ToSpace version as usual; otherwise the indirection pointer points to

9For the interpretation of colors in a copying collector, refer to Figure 6.18.
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itself. Thus, the method does unconditional single-level dereferencing, which, on average, is assumed to

be cheaper than checking. The indirection can also be regarded as a simpler form of read-barrier.

Unlike Baker’s method, Brooks’ method allows the mutator to see both white and gray objects. To ensure

correctness of the collector, the method uses a write-barrier to detect the setting of a black-to-white pointer

and moves the white object to ToSpace. This is similar to the snapshot-at-beginning algorithms.

6.5.2.3 Appel--Ellis--Li Collector

Without hardware support, Baker’s copying method is very inefficient. Moreover, it is inherently se-

quential. The Appel–Ellis–Li [3] collector is efficient and concurrent. Instead of using a read-barrier to

trap access of individual objects through pointers, the method uses virtual-memory page protection to

detect access of pages in FromSpace. The method makes use of the fact that most operating systems

provide two modes of execution — user mode and kernel mode. Page protection applies only to user

mode.

The ToSpace is organized as in Baker’s copying collector. The only difference is that the page occupied by

a gray object is write protected. When the mutator tries to access a gray object, a trap is raised. In response

to this, the collector runs a thread in the kernel mode, scans the entire page, and converts every gray object

in the page to a black object by bringing its children into ToSpace. The write protection of the page is

removed after scanning. The mutator and the collector then run concurrently, with the collector scanning

pages containing gray objects. Since the mutator does not see a pointer to a white object, it cannot store

one in a black object. Thus, safety of garbage collection is ensured. New objects are allocated at the other

end of ToSpace.

Thus, the virtual memory hardware forms an efficient medium-grained synchronization between the

collector and the mutator. One of the reasons for the large latency in Baker’s collector was that following a

flip, the root set, which could be very large, was scanned atomically. The Appel–Ellis–Li collector, however,

write protects the root set and then scans it incrementally, thus decreasing the latency. However, it has

been claimed [38, 65] that both Baker’s and the Appel–Ellis–Li collector fail to provide the bounds on

latency that are required of real-time collectors.

The methods described earlier restrict mutator access to ToSpace objects only. The replication methods,

however, do quite the opposite. They restrict the mutator access to FromSpace objects. The collector

replicates the latest version of FromSpace objects into ToSpace. When this replication is complete, FromSpace

is discarded and the mutator switches over to ToSpace.

6.5.2.4 Nettles’ Replicating Collector

In this method [44], collection starts by copying objects into ToSpace, but the root set continues to point

to the objects in FromSpace. For the mutator to be able to execute by seeing FromSpace objects only,

forwarding of objects by the collector must be nondestructive, that is, the forwarding address must not

overwrite the data in the object as in a normal copying collector. This is done by having a separate space

in the object for the forwarding address. Therefore, until the FromSpace objects are discarded at the end

of the collection, the mutator sees a correct and updated view of the reachability graph.

If the mutator changes an object after it is copied, its ToSpace version has to be updated. To do this,

a write-barrier is used to log all mutator changes during collection. The collector periodically uses the

mutator log to update the ToSpace objects. Since the updated objects could be pointing to new objects in

FromSpace, they are rescanned so that the new objects are also copied. At the end of the collection phase,

the root set is updated to point directly to ToSpace objects. As in other incremental methods, the amount

of work done during each incremental round of collection is linked to the amount of allocation of new

cells during the previous mutator round. This ensures that the mutator does not run out of memory before

copying is complete.

Nettles’ collector can also be made concurrent. Notice that one of the ways in which the collector and

mutator may interfere with each other is that an object that is being read by the collector can be written

by the mutator. However, this write will appear in the mutator log and will be updated in the future to

its correct value. Thus, the mutator and the collector are largely independent. However synchronizations
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FIGURE 6.21 Outline of the Doligez–Leroy–Gonthier collector. Each mutator thread also includes a collector for the

local heap.

are required around the accesses of the mutator log and the root set, since they are written by both the

mutator and the collector.

Trapping each mutator write and updating ToSpace objects through the mutator log is expensive.

Therefore, the method is effective for functional or near-functional languages, in which the number of

mutator writes are very few.

6.5.2.5 The Doligez--Leroy--Gonthier Collector

This is a near-real-time concurrent garbage collector for Concurrent Caml Light. The collector is shown

in Figure 6.21. Each mutator thread has a local heap, which is also its young generation space. A shared

heap forms a common old generation space for all threads. Every mutator thread also includes a fast

asynchronous copying collector to collect its young generation. The shared heap is collected using a

mark-sweep collector activated as a concurrent thread.

Each thread allocates immutable objects in its local heap and mutable objects in the shared heap.

Distinguishing immutable and mutable objects is easy in Caml because they have different types. When

the local heap of a thread becomes full, the mutator is stopped and a copying collector scavenges survivors

in the local heap into the shared heap. It is ensured that there are no pointers from the shared heap to

the local heaps or from one local heap to another. If an assignment causes an object in the shared heap to

point to an object O in the local heap, then O and all objects in the local heap reachable from O are copied

to the shared heap. Thus, the local root set of a thread is enough to scavenge the local heap.

The Doligez–Leroy–Gonthier collector uses a variant of Dijkstra’s method. It performs minor collections

along with a major collection. A fundamental assumption in the design of the collector is that a thread can

track its own root set only. Therefore, the global collector thread does not have access to any root variable.

Hence, it requests each mutator to shade objects directly reachable from its roots as gray. Following this,

the collector repeatedly scans and marks the local heaps and global heaps, as long as there are gray objects

in the heaps. At the beginning of the sweep phase, there are no gray objects — only black and white ones.

The sweep phase returns the white objects to a free list and converts the black objects to white. This ends

a round of garbage collection.

If an object is newly allocated by the mutator, it is colored black as usual. To prevent black objects from

pointing to white ones, when the mutator changes a pointer from A to B to A to C, the object C is marked

as in Dijkstra’s method. Where this method differs from Dijkstra’s method is that because of the absence

of the assumption of a fixed root set, the object B also has to be marked. The reason for this is shown in

Figure 6.22. Let us say a marking request by the collector has resulted in the marking of A and C. Now the
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FIGURE 6.22 Old objects need to be marked during a change of pointer.

mutator expands its root set by writing the value in the first field of A to a register and then changes the

pointer from A to point to C. The old object B will remain white and will be incorrectly reclaimed.

Most incremental copying collectors copy an object as an atomic action. If the object is large, this can

result in large pauses. Ungar and Jackson [61] suggest ways to avoid copying large objects by separating

the objects into a short header and a body. The header is treated like any other object, whereas the body

is allocated space in a separate large object area. Very often, such large objects are strings and bitmaps of

images and do not contain pointers. In such cases, the problem of handling intergenerational pointers also

does not arise.

6.6 Conclusions

We have reviewed some basic garbage collection strategies along with their generational and incremental

versions. Zorn’s [74] empirical studies with the Boehm–Weiser collector have shown that, in some aspects,

the performance of programs with even a basic collector such as mark-sweep is comparable to that

of programs with explicit memory management. For example, the CPU costs of execution under the

Boehm–Weiser collector are often comparable to and sometimes better than the costs of execution under

explicitly managed memory. However, their memory requirements are high. One of the reasons for this is

the conservative nature of the Boehm–Weiser collector. The page and cache faults are also higher compared

to programs with explicit memory management.

An important shortcoming of the basic collectors is their large pause times. This is a serious concern in

interactive and multimedia applications. Both incremental and generational techniques reduce pause times.

Generational collectors also result in better locality of references. Zorn [72] has found the time overheads of

generational collection over explicit memory management to be within 20%. While generational collectors

seem to perform well on the whole, our review suggests that the choice of a collector is highly dependent

on the context of its usage.

We now describe the directions of current work on garbage collection. Some of these developments are

attempts to improve existing ideas, while others are new developments.

� Garbage collection in uncooperative environments: Garbage collectors that do not depend on

information from the compiler are useful, because they can be made to work with already exist-

ing systems without modifications. However, because of incomplete information, these collectors

have to be conservative and therefore preserve significant amounts of garbage. Thus, their mem-

ory requirement is higher than that of collectors that work in more cooperative environments.

Boehm [13, 15] describes methods that increase precision by avoiding misidentification of pointers.
� Parallel garbage collection: One of the ways of using a multiprocessor environment effectively is

to use a concurrent collector, that is, a collector that consists of several mutator threads running

concurrently with a single collector thread. However, even in such configurations, the collector

may become a bottleneck. To increase the throughput of the collector, it should be parallelized and

run on more than one thread. It is not difficult to identify collector activities that can be done in
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parallel. Tracing, for example, is easily parallelizable. However, the challenges are in load balancing

and minimizing synchronization overheads. Attanasio et al. [4] have evaluated the performance of

five parallel garbage collectors. Most of the collectors scale linearly up to eight processors, showing

the effectiveness of parallelization.
� Distributed garbage collection: An interesting extension of basic garbage collection is to distribute

it across multiple networked computers. Just as distributed systems allow transparent placement and

invocation of local and remote objects, the idea behind distributed garbage collectors is transparent

management of object spaces. One of the difficulties is to provide a consistent view of object

references that keep changing in different local spaces. The distributed collector should also be able

to tolerate failures of the components of the distributed system and the communication links. The

challenge is to build a scalable and fault-tolerant system overcoming these difficulties. Plainfosse

and Shapiro [46] have surveyed different techniques for distributed systems.
� Cache-conscious garbage collectors: Modern architectures organize their memory in a hierarchy

of increasing access speeds. Since the fastest of these is the cache, it is necessary that the garbage

collector and the mutator find most of the data in the cache. The penalty of a cache miss runs

into hundreds of cycles. Chilimbi and Larus [21] show how a generational collector can be used

to organize the data layout to improve the cache behavior of the mutator. Boehm [14], however,

suggests methods of improving the cache behavior of the collector itself.
� Garbage collection for persistent object stores: Objects are called persistent when they outlive the

execution of the program that created them. Typically, such objects are written into nonvolatile

memory such as disks by tedious and error-prone input–output routines. Persistent object stores are

a natural extension of the memory hierarchy to include such nonvolatile memory. Thus, persistent

objects can be written into and read from nonvolatile memory in a transparent manner, as if such

memory were part of the memory hierarchy. This also means that persistent object stores have to

be garbage collected periodically; otherwise they tend to accumulate unreclaimed garbage.

On the whole, garbage collection is an extremely successful technology. Implementations of almost all

declarative languages have been accompanied by garbage collectors, as have implementations of Smalltalk

and scripting languages such as Perl, Ruby, and Python. Furthermore, even implementations of procedural

languages such as C and C++, which do not have automatic memory management as a part of their language

definitions, are being supported by external garbage collectors. In the modern era, the Java Virtual Machine

and the .NET common language runtime, the virtual machines for Java and C#, both support garbage

collectors. It is expected that the future will see more programming environments where garbage collectors

will free programmers from concerns of memory management.
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7.1 Introduction

The demands of modern society on computing technology are very severe. Its productivity is closely

linked to availability of inexpensive and energy-efficient computing devices. While battery technology is

developing at a slow pace, the demands of sophisticated mobile computing systems that require to be

powered for several hours by batteries without recharging them require novel techniques to be devised to

utilize the available energy efficiently. Similarly, large data centers that support complex Web searches and

online purchases house thousands of servers that guzzle power. Any energy saved by the microprocessors

will lower electricity bills. Under these circumstances, it is no surprise that modern microprocessor design

considers energy efficiency as a first-class design constraint [31].

Apart from the above extremely important reasons, there are other technical reasons for consider-

ing power dissipation seriously. According to Pollack [35], the power densities in microprocessors are

rapidly approaching that of a nuclear reactor. High power dissipation produces excessive heat and lowers

reliability and lifetimes of chips. It increases production cost due to complex cooling and packaging

requirements, impacts our environment, and may endanger the human body.

There are many ways to save power and energy in a computing system. Some are hardware-based and the

others are software-based techniques. The major subsystems of a computing system that can benefit from

power- and energy-aware designs are the disk, the memory, the CPU, and the communication subsystems.

Energy-saving schemes could be built into the hardware, the operating system, or the device drivers or

inserted by the compiler into the application program itself. Various proposals have been made to reduce

7-1
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power consumption from both the micro-architecture community as well as the compiler community.

As in performance-oriented optimizations, both techniques follow a similar process of analyzing and

understanding the program’s behavior, either empirically or analytically, converting this behavior into

requirements and mapping these requirements onto the processor’s capabilities, thus enabling the program

to run with more power efficiency. Even though the two techniques have a similar goal and a similar process,

they adopt different approaches to achieve it. The difference is due to the levels at which they analyze the

program and, more importantly, how the analysis information is related to power consumption. Micro-

architectural techniques normally use simple program properties within a narrow window of time, such as

usage of a function unit or cache line in the last few cycles. Compiler techniques consider global program

properties, such as profile information, data flow analysis information, and so on and therefore can do

better in several cases.

A compiler writer’s interpretation of the program behavior from the point of view of power consump-

tion is different from that of a person designing a compiler that would produce time-efficient code. This

involves mapping program properties such as resource usage, memory accesses, maximum Instruction

Level Parallelism (ILP), availability of slack, and so on onto a power model and estimating the power

consumption. This requires a very intricate and detailed analysis. For example, from the memory perspec-

tive, once the sequence of blocks being accessed is analyzed, designing a fast prefetching algorithm is not

sufficient. The requirement to control power consumption brings a need to understand information such

as at what rate the prefetching should be done, because this value directly impacts the power consumption.

Even though analysis at such a detailed level is not feasible at the micro-architecture level, controlling

power consumption dynamically using the first hand knowledge available at runtime is possible in this

case and is quite attractive in certain cases. Using the performance counters in Intel processors for dynamic

voltage scaling in just-in-time compilers, as in Section 7.3.4, is such an example.

This chapter discusses a few energy-saving optimizations that can be implemented in a compiler. The

discussion will be limited to CPU and memory subsystems. The major advantage of using the compilation

approach is that the techniques can be automated. It should be emphasized here that hardware-based and

operating system–based techniques increase the effectiveness of the compiler optimizations.

The chapter begins with a brief discussion of power models used in compilers [8, 17, 24], followed

by a discussion of the various optimization techniques. Among the major optimization techniques that

an energy-aware compiler can implement, dynamic voltage scaling of the CPU [21, 52, 53], instruction

scheduling for leakage energy reduction [46], and scratchpad memory allocation [2, 41] are the most important

ones, and sufficient attention will be paid to these techniques in this chapter. For a more extensive discussion

on power models, the reader is referred to [7, 8, 11, 12, 17, 23, 26, 31, 35, 47, 50]. Other techniques for

dynamic voltage scaling are discussed in [3, 36, 38, 45]. Additional instruction scheduling techniques are

reported in [27, 32–34, 37, 51, 54–56]. A variety of other scratchpad allocation strategies are available in

[1, 5, 16, 28, 48].

Apart from the optimizations discussed in this chapter, other compiler optimization techniques for

saving energy have been reported in the literature. Allocation of variables to memory banks is discussed

in [6, 13–15, 19, 25, 29, 42], and compiler-controlled cache management is discussed in [39, 57, 58].

7.2 Power and Energy Models

It is essential to understand the models for power and energy consumption in CMOS chips in order to

design any energy-saving optimization in compilers or operating systems. Since energy is the product of

power and time, it may seem that optimizing one will automatically optimize the other. This is not true.

For example, the power consumed by a computer system can be reduced by halving the clock frequency,

but if the computer takes twice as long to complete the same task, the total energy consumed may not

be lower. Energy optimization seems more important in mobile systems because it makes the battery run

longer. Servers, however, need power optimization so that instantaneous power consumption and hence

temperature are within limits, with energy consumption taking the back seat.



Energy-Aware Compiler Optimizations 7-3

Several simple equations that govern the behavior of power dissipation in a CMOS device, as supply

voltage and/or frequency are varied, are well known in the literature [8, 17, 24]. Three of these equations

are presented below. The relation governing frequency is

f ∝ (V − Vth)α
/V (7.1)

where V is the device’s supply voltage, Vth is its threshold or switching voltage, f is its operating frequency,

and α is a technology-dependent constant, which has been experimentally determined to be about 1.3. As

voltage is reduced to the level of Vth, f decreases to zero. This equation can be approximated by a linear

relationship:

Vn = β + (1 − β) ∗ fn (7.2)

where Vn = V/Vmax, fn = f/ fmax, and β = 0.3 for today’s technology. Vmax and fmax are the maximum

possible device supply voltage and operating frequency, respectively. Substituting for β in Equation 7.2,

assuming V >> Vth, Vmax >> Vth, and simplifying, Equation 7.2 becomes

f = kV (7.3)

where k = fmax/Vmax is a constant within the operating range of voltage and frequency. Power dissipation

in a device is given by

Pdevice =
1

2
C V Vswinga f + IleakageV + Ishort V (7.4)

where Pdevice is the power dissipation of the device, C is the output capacitance, a is the activity factor

(0 < a < 1), Vswing is the voltage swing across C , Ileakage is the leakage current in the device, and Ishort is

the average short-circuit current when the device switches, short-circuiting the drain and the source. The

three terms in Equation 7.4 correspond to switching power loss (dynamic power loss), leakage power loss,

and short-circuit power loss, respectively. With today’s technology, switching power loss is the dominating

term in Equation 7.4, Vswing ≈ V . Assuming C to be the average over all devices in the chip, and summing

over all the blocks on the chip, an equation for Pchip, the power dissipation of the chip, is obtained:

Pchip =
1

2

∑

all blocks i

C V 2
i ai fi (7.5)

Making a first-order approximation that ai = 1, fi and Vi are the same for all the blocks i on the chip,

and using Equation 7.3, Equation 7.5 simplifies to

Pchip = Kv V 3
= K f f 3 (7.6)

where Kv and K f are constants. Equation 7.6 is the so-called cube root rule. It is clear from Equation 7.6

that changing the chip voltage or frequency is one of the most effective and powerful methods of reducing

dynamic power and energy consumption. Leakage power and energy loss cannot be reduced by dynamic

voltage scaling, but can be controlled by voltage gating of function units, memory, and cache. Short-circuit

power loss cannot be controlled by software, but only by superior VLSI technology.

7.3 Dynamic Voltage Scaling (DVS)

It is well known that Dynamic Random Access Memory (DRAM) is slower than the CPU by at least a factor

of 3. Caches are used to offset this incompatibility. However, in the case of programs that use memory

heavily and whose data do not fit into the cache, the CPU stalls to let memory catch up and to ensure that

data dependencies are honored. It is easy to come to the conclusion that the CPU can use a lower clock

frequency in certain parts of the program that are memory bound and thereby save power and energy.
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Memory
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Tmem

Noverlap

f

CPU
Operation

CPU Slack Time = Tmem − Toverlap

Execution
Time

= Toverlap

Nnon-overlap

f
= Tnon-overlap

FIGURE 7.1 Illustration of CPU slack time.

This may increase the execution time of the program if not done carefully. Figure 7.1 (adapted from [52])

helps illustrate the concept of DVS more clearly.

The basic assumption here is that the memory is asynchronous, has a clock and power supply that is

independent of the CPU, and is much slower than the CPU. Therefore, the CPU stalls in memory-bound

applications, and CPU slack time can identified as shown in Figure 7.1. In Figure 7.1, Tmem is the time for

memory operations, f is the CPU clock frequency, Noverlap is the number of cycles of CPU operation that

can be overlapped with the memory operation without requiring the result of memory operations, and

Nnonoverlap is the number of cycles of CPU operation that require the result of pending memory operations.

The CPU is idle in the CPU slack time period. Therefore, it is possible to reduce the operating voltage and

frequency of the CPU in the overlap region such that Toverlap stretches and reduces the CPU slack time

close to zero. The CPU voltage and frequency may have to be changed again for the nonoverlap region so

that there is no performance penalty.

DVS is a hardware-based technique that allows a CPU to change its operating voltage (and thereby

frequency) using a program instruction. Currently a number of processors from Intel, AMD, Transmeta, TI,

and so on used in laptops and handheld devices provide this facility. Voltage-frequency settings are available

as a set of pairs of discrete values, with a particular voltage setting tied to a fixed frequency. Furthermore,

switching from the current voltage-frequency setting to a new one requires time equivalent to approximately

100 memory transactions (typically, 20 μs). A good DVS algorithm should consider all these factors.

Program analysis can be used to determine when to change the current CPU voltage-frequency setting

and which setting to use, so that considerable savings in energy can be obtained with not much impact on

performance. Such analysis uses program profile information and other program properties to make these

decisions. Compiler analysis is only one of the ways in which DVS can be implemented. Interval-based,

intertask, and intratask approaches are the other techniques, and a survey of these techniques is found

in [47]. The next two sections (7.3.1 and 7.3.3) contain descriptions of a region-based algorithm [21] and

an integer-linear-programming–based algorithm [53], respectively, both of which can be incorporated

into a compiler. Both these algorithms are static in nature and cannot be used in dynamic compilers.

A DVS algorithm suitable for use in dynamic compilers [52] is presented in Section 7.3.4.

7.3.1 Region-Based Compiler Algorithm for DVS

This algorithm works well only with memory-bound programs. It partitions a given program into two

regions, one of them running at (Vmax, fmax), the maximum voltage-frequency pair for the CPU, and the

other running at a lower voltage-frequency pair, for instance, (V, f ). The constraints on this partitioning
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process are on the overall performance and the size of the region running at (V, f ). Formally, the problem

can be stated as follows.

min
R, f

{W f · τ (R, f ) + W fmax
· τ (P − R, fmax) + Wtrans · 2 · n(R)} (7.7)

subject to

τ (R, f ) + τ (P − R, fmax) + τtrans · 2 · n(R) ≤ (1 + r ) · τ (P , fmax) (7.8)

and

τ (R, fmax)/τ (P , fmax) ≥ ρ (7.9)

where

P : Given program

R: Region within P that is to be found

P − R: Part of P , leaving out R

fmax: Maximum frequency of operation of the CPU

f : Operating frequency of region R

W fmax
: Power dissipation of the whole system at frequency fmax

W f : Power dissipation of the whole system at frequency f

Wtrans: Power dissipation during a single voltage-frequency switch

τ (R, f ): Total execution time of region R running at frequency f

τ (P − R, fmax): Total execution time of region P − R running at frequency fmax

τ (P , fmax): Total execution time of program P running at frequency fmax

τtrans: Performance (time) overhead during a single voltage-frequency switch

n(R): Number of times region R is executed

r : Percentage of performance loss (due to DVS) that is tolerated

ρ: Compiler design parameter, controlling the size of R

In words, the problem statement can be explained thus. Given a program P , carve out a region R from

it and find a frequency f , such that when R is run at the frequency f and the rest of the program, P − R, is

run at the frequency fmax, the total energy usage is minimized, and the total execution time, including the

switching overhead, is not increased more than r % of the original execution time (P running at fmax). The

structure of the region R and its determination are explained in Section 7.3.2. It suffices to say at this point

that R is a single-entry, single-exit program structure. It is necessary to put a lower bound on the size of

region R (see Equation 7.9), to ensure that the execution time of region R is more than the time overhead

of a single voltage-frequency switch. This is controlled by the factor ρ and can be set by experimentation.

Its value is usually 0.2 to 0.3.

After the region R is found, the compiler introduces two DVS calls, one just before entry into R, to

change the frequency to f , and another just after exit from R, to change the frequency back to fmax.

7.3.2 Finding Regions

A program region R is a single-entry and single-exit program structure. Loop nests, function and procedure

call sites, procedures and functions, sequences of statements, or even the whole program, can all be

considered as regions. This definition ensures that all the top-level statements inside a region are executed

the same number of times. This in turn implies that the number of times the program executes DVS

calls (voltage-frequency change settings) is precisely 2 · N(R). Regions are classified as basic regions and

composite regions. Tightly nested loops, and call sites of functions and procedures, are basic regions.

Composite regions are formed from basic regions by the rules of composition given in Figure 7.2. Any

other type of statement, such as an assignment (with no function call in it) or an if-then-else (with no
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if-then-else statement:

R: if () R1; else R2

τ (R, f ) = τ (R1, f ) + τ (R2, f )

n(R) = n(R1) + n(R2)

Either one of R1 or R2 is definitely executed; hence addition

Loop structure with imperfect nesting:

R: for () R1

τ (R, f ) = τ (R1, f )

n(R) is obtained by profiling

τ (R1, f ) takes care of the count of the for-loop as well

While-loop is similar to the above for-loop

Function call site:

R: F ()

τ (R, f ) = τ (F , f ) · n(R)/n(F )

n(R) is obtained by profiling

Sequence of regions:

R: {R1; R2; · · · Rn}

τ (R, f ) =
∑

1≤i≤n

τ (Ri , f )

n(R1) = n(R2) = · · · = n(Rn)

Function:

F : < type o f F > F () R

τ (F , f ) = τ (R, f )

n(F ) =
∑

Ri i s a call s i te to F ()

n(Ri )

FIGURE 7.2 Rules for combining basic regions to form composite regions. Syntax of constructs is as in the language C.

call site or loop within), is treated as a part of the region following it. An example of regions is given in

Figure 7.3.

In Figure 7.3, C1, C2, C3, L2, L3 (together with L4), L5, and L6 (together with L7) are all basic regions.

S1 is treated as a part of the region L1. Region L1 is treated as a composite region consisting of regions C2

and L2. Similarly, I1 consists of L3-L4 and C3; F1 consists of C1, S1-L1, and I1; F2 consists of L5; and F3

consists of L6.

The DVS algorithm consists of the following steps:

1. Identify the basic and composite regions in the source code. An abstract syntax tree (AST) repre-

sentation of the source code will be useful here.

2. Instrument the source code by inserting book-keeping code at the beginning of each region (basic

and composite). This book-keeping code is in the form of a system call that takes an index for

the region R, for which it carries out book-keeping. At the time of profiling, it counts n(R) for

each basic region R and for imperfect loops as shown in Figure 7.2. It also records τ (R, f ) for a

loop-nest basic region during profiling.

3. Profile the instrumented code and compute n(R) and τ (R, f ) for basic regions and a few other

regions, for all the frequencies, f , that are permitted in the target system. The power dissipation

of the system should be measured either with a digital power meter as in [21] or with a simulator

such as Wattch [8]. Suitable values for τtrans and Wtrans must be chosen ([21] used values of 20 μs

and 0 W, respectively, for these two quantities).

4. Compute n(R) and τ (R, f ) for the composite regions using the rules shown in Figure 7.2. This

step requires interprocedural analysis. A call graph is needed along with the AST. Only regions at
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F1: main(){

C1: init();

S1: i=1; y=10;

L1: while (i<100){

C2: x=func1();

L2: for(int j=0; j<M; j++) { · · · }

I1: if(x>y)

L3: for(int j=0; j<N; j++)

L4: for(int k=0; k<P; k++) {· · ·}

C3: else y=func1();

}

}

F2: void init(){

L5: for(int i=0; i<20; i++){· · ·}

}

F3: int func1(){

L6: while(a>b)

L7: for(int j=100; j>5; j−−){· · ·}

}

FIGURE 7.3 An example of regions.

the same level of nesting can be considered for composition. For example, C1 cannot be composed

with C2, and L2 cannot be composed with L3.

5. Solve the minimization problem stated in Equation 7.7 by considering all possible candidate regions

(basic and composite), which can be considered as R and P − R, and find R and f . This step

requires the values of r and ρ to be specified ([21] used values of 5 and 20%, respectively, for these

two quantities).

6. Insert DVS calls at the entry and exit points of the region R to change the voltage and frequency.

For example, in Figure 7.3, if region L3-L4 is chosen as R during the minimization phase, and f is

the associated frequency, L3-L4 will operate at f , and the rest of the program will operate at fmax.

To facilitate this, a DVS call is inserted just before the region L3-L4 to change the frequency to f

(since the program would have started to execute with the frequency fmax), and another DVS call

is inserted just after the region L3-L4 to change the frequency back to fmax.

7.3.2.1 An Example for Region Computation

Only one of the many regions in a program can be active at any time. Code instrumentation can be

implemented through a system call that carries a region identifier as a parameter. For each execution, this

system call increments n(R) once for its parameter region R (as per Figure 7.2). Thus, n(R) accumulates

the required count of the number of times the region R is executed. This system call also records the time

taken to execute basic loop-nest regions. This is done by recording the value of a high-precision timer

in τ (R, f ) for the basic loop-nest region R and updating it once another such system call for a different

region is executed.

For example, in Figure 7.4, once the execution of the instrumentation code for the region L2 has begun,

τ (L2, f ) records the timer value at that time. As soon as the instrumentation code for region L3-L4 has

begun, not only is the timer value recorded for L3-L4, but τ (L2, f ) is updated with the difference in timer

values (current value and old value in τ [L2, f ]). This difference is the time spent in the execution of

region L2. The basic assumption here is that straight line code that is executed only once consumes much

less time than loops and hence can be either neglected or assigned a small constant value as its time of
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F1: main(){

instrumentation code for C1

C1: init();

instrumentation code for S1-L1

S1: i=1; y=10;

L1: while (i<100){

instrumentation code for C2

C2: x=func1();

instrumentation code for L2

L2: for(int j=0; j<M; j++) { · · · }

I1: if(x>y)

instrumentation code for L3-L4

L3: for(int j=0; j<N; j++)

L4: for(int k=0; k<P; k++) {· · ·}

instrumentation code for C3

C3: else y=func1();

}

}

F2: void init(){

instrumentation code for L5

L5: for(int i=0; i<20; i++){· · ·}

}

F3: int func1(){

instrumentation code for L6-L7

L6: while(a>b)

L7: for(int j=100; j>5; j−−){· · ·}

}

FIGURE 7.4 An example of code instrumentation for regions.

execution. Recursive functions are handled correctly by the above procedure. n(R) gets incremented for

each call (as in a loop), and timer value will get updated correctly on termination of the recursive call. The

final recorded value of τ (R, f ) will be the time of execution of the call that terminates recursion, even

though its intermediate values are not meaningful. All the vaues are averaged over several sets of inputs

(as is usual in profiling).

After the profiling operation is complete, n(R) and τ (R, f ) for all the composite regions are computed

using the equations shown in Figure 7.2. Sample values of n(R) and τ (R, f ) for the regions in Figure 7.3

are shown in Figure 7.5. The computations are carried out during a traversal of the call graph in reverse

topological order. The members of a mutually recursive set of functions can be traversed in any order. The

ASTs of each function and procedure are traversed in a bottom-up fashion. The entire set of operations

is repeated for the various frequencies available in the target system. Examples of computing n(R) and

τ (R, f ) are provided in Figure 7.6 (for some of the entries in Figure 7.5).

7.3.3 Integer Linear Program--Based Compiler Algorithm for DVS

Section 7.3.1 described a DVS algorithm that minimizes total energy consumption. It uses a clever region

composition heuristic, which works very well in practice. It also uses coarse-grain profiling (at the level

of loop nests and function calls) to enable accurate power and time measurements during executions of
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R (basic) n(R) τ(R, f)

C1 1+ 30

C2 99+ 262.8

C3 14+ 37.2

L2 99+ 8+

L3-L4 85+ 200+

L5 1+ 30+

L6-L7 113+ 300+

R (composite) n(R) τ(R, f)

S1-L1 1+ 508

I1 99 237.2

F2=init 1 30

F3=func1 113 300

F1=main 1 538

FIGURE 7.5 Sample values of n(R) and τ (R, f ) for the regions in Figure 7.3. Numbers flagged with + indicate

profiled values.

basic regions. It is also possible to use an energy simulator such as Wattch [9] to perform cycle-accurate

simulation to get these figures for the purposes of DVS. However, such simulations do not consider

power dissipation in the complete computer system. They consider only the CPU and memory and leave

out input–output (I/O) controllers, disks, and so on from the simulation. The figures obtained from such

simulations are still useful in performing DVS, since present-day I/O controllers and disks are power-aware

and minimize power dissipation independently on their own.

The advantage in using such simulators to get the execution time and energy dissipation figures is that

these figures can be obtained at a very fine grain level (for example, basic blocks). Therefore, it is possible

to perform DVS in a better fashion with finer control. However, at this grain size, voltage transition time

and energy become significant when compared to the power dissipation and time consumption figures

for basic blocks and cannot be ignored. Trying all possible region combinations by enumerating them as

in Section 7.3.1 can be extremely time consuming when the number of regions is very large (as is the case

when a region is a basic block). In such cases, the problem of DVS can also be formulated using mixed

integer linear programming (MILP) to produce better results [36, 53]. MILP formulations produce optimal

results, and their accuracy is limited only by the accuracy of profiling and the time available to solve the

problem. Several commercial packages such as CPLEX (from ILOG) are available to solve MILP problems,

and these produce results in a very reasonable amount of time. An MILP formulation of the DVS problem

adapted from [53] is presented in Section 7.3.3.1.

τ (F 2, f ) = τ (L5, f ) = 30

n(F 2) = 1 (only one call site)

τ (F 3, f ) = τ (L6 − L7, f ) = 300

n(F 3) = n(C2) + n(C3) = 99 + 14 = 113

τ (C1, f ) = τ (F 2, f ) · n(C1)/n(F 2) = 30 × 1/1 = 30

τ (C2, f ) = τ (F 3, f ) · n(C2)/n(F 3) = 300 × 99/113 = 262.8

τ (C3, f ) = τ (F 3, f ) · n(C3)/n(F 3) = 300 × 14/113 = 37.2

τ (S1 − L1, f ) = τ (C2, f ) + τ (L2, f ) + τ (I 1, f ) = 262.8 + 8 + 237.2 = 508

τ (I 1, f ) = τ (L3 − L4, f ) + τ (C3, f ) = 200 + 37.2 = 237.2

n(I 1) = n(L3 − L4) + n(C3) = 85 + 14 = 99

τ (F 1, f ) = τ (C1, f ) + τ (S1 − L1, f ) = 30 + 508 = 538

n(F 1) = 1 (main is called only once)

FIGURE 7.6 Examples of computing τ (R, f ) and n(R) for the values shown in Figure 7.5.
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A
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D

E

FIGURE 7.7 Control flow graph and DVS call placement.

7.3.3.1 An MILP Formulation of the DVS Problem

This algorithm requires the control flow graph of the program along with profiling information on the

number of times each edge is executed. The energy consumption and execution time for each basic block

are also needed. The algorithm places DVS calls to change the voltage along chosen edges, rather than at

the beginning and end of regions. Consider Figure 7.7. Depending on the execution time of the blocks and

the criticality of paths, the voltage setting for block E may depend on the edge through which it is entered,

viz., CE or DE. It uses a similar target architectural model as the algorithm in Section 7.3.1.

Burd and Broderson [10] have given precise equations to account for the transition time and energy for

a transition from voltage Vi to voltage Vj . The larger the voltage change, the larger are the transition time

and energy values.

τtrans =
2 · C

Imax

· |Vi − Vj | (7.10)

E trans = (1 − η) · C ·
∣

∣V 2
i − V 2

j

∣

∣ (7.11)

where

τtrans: Time for transition from voltage Vi to Vj

E trans: Energy consumed in transition from voltage Vi to Vj

C : Voltage regulator capacitance

Imax: Maximum allowed output current of the voltage regulator

Typical values are C = 10 μF, τtrans = 12 μs, and, E trans = 1.2 μJ for a voltage change from Vi = 1.3 V,

to Vj = 0.7 V. The optimization problem can be stated as follows.

Minimize

r
∑

i=1

r
∑

j=1

v
∑

k=1

ni j E j ks i j k +

r
∑

p=1

r
∑

i=1

r
∑

j=1

n pi j epi j Ce (7.12)

subject to the constraints

r
∑

i=1

r
∑

j=1

v
∑

k=1

ni j Tj ks i j k +

r
∑

p=1

r
∑

i=1

r
∑

j=1

n pi j tpi j Ct ≤ (1 + α)τ (7.13)

v
∑

k=1

s i j k = 1 (7.14)
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Basic Block p

Basic Block j

npij
nij
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FIGURE 7.8 Edge graph to illustrate definitions in MILP formulation of DVS.

−epij ≤
v

∑

k=1

(

spikV 2
k − s ijkV 2

k

)

≤ epij (7.15)

−tpij ≤
v

∑

k=1

(spikVk − s ijkVk) ≤ tpij (7.16)

where (see Figure 7.8 for illustrations)

r : Number of regions in the program (i.e., basic blocks)

v : Number of available levels of voltage change

nij: Number of times region j is entered through edge (i, j )

E jk: Energy consumed by region j at voltage level k

epij: Transition energy consumed by a voltage change (if any) when passing from edge ( p, i) to (i, j )

during execution

Tjk: Time for execution of region j at voltage level k

tpij: Transition time for a voltage change (if any) when passing from edge ( p, i) to (i, j ) during execution

s ijk: 0-1 integer variable; s ijk = 1 if a DVS call sets the voltage level along edge (i, j ) to k; otherwise 0

npij: Number of times region i is entered through edge ( p, i) and exited through edge (i, j )

Ce : Equals C · (1 − η), a constant for a given voltage regulator

Ct : Equals 2·C
Imax

, a constant for a given voltage regulator

τ : Time of execution of the whole program at maximum permitted voltage with no DVS

α: Tolerance in reduction of performance (time)

Vk : Supply voltage at voltage level k

The two terms in the objective function in Equation 7.12 correspond to the total energy consumed

by all the regions in the program and the total energy cost for voltage level changes, respectively. Sim-

ilarly, the two terms on the left side of the inequality in Equation 7.13 represent the total execution

time of the regions and the total time for voltage transitions, respectively. The variables epij and tpij

have been introduced in the constraints to eliminate the absolute value terms that would otherwise
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be introduced into the function to be minimized, viz., Equation 7.12. It must be noted that the vari-

ables spik and s ijk can have a value of 1 for at most one value of k (by definition). After finding the

values of variables s ijk for all the edges (i, j ) in the control flow graph, a pass over the control flow

graph inserts appropriate DVS calls on the edges by breaking the edge and introducing the instruc-

tion in between. More details are available in [53]. It is not yet known whether the MILP-based DVS

scheme offers substantial improvement over the region-based scheme presented earlier in real-life

applications.

7.3.4 DVS Algorithm for a Dynamic Compiler

The two DVS algorithms presented in Sections 7.3.1 and 7.3.3 are both static. They do not adapt to different

program conditions, such as different input sets, or different target machine parameters. For example,

the memory requirements of several programs go up as the input size increases [52]. This results in more

cache misses and more memory boundedness for programs and more opportunities for DVS to change

over the CPU to a much lower voltage and save more energy. In other words, for smaller input sizes,

the program may have to run at a higher voltage compared to that for larger input sizes, so as to have

acceptable performance penalties due to DVS. Similarly, machines with more cache memory and/or with

faster DRAM will have fewer opportunities for DVS compared to machines with less cache and/or slower

memory. Such variations cannot be accommodated with a static DVS scheme that inserts DVS calls into

code at compile time, but can be handled by dynamic compilers [18] very well.

A dynamic compiler is a much more generalized software system than a just-in-time compiler. It

recompiles, modifies, and optimizes parts or all of a program as it runs. It refers to techniques for runtime

generation of executable code. A dynamic compiler uses runtime information of a program to exploit

optimization opportunities not available to a static compiler. Two good examples are loop unrolling based

on runtime information regarding loop limits and optimizations performed across dynamic binding. It

also presents a good opportunity to enable legacy executable code produced using outdated compiler

technology and currently running on outdated hardware to run on present-day hardware with good

speedup. The most important disadvantage of a dynamic compiler is that all the time spent in carrying

out optimizations is added to the execution time. Hence, all optimizations and transformations must be

very lightweight in nature.

A DVS scheme built into a dynamic compiler measures the slack available because of the difference

in the speed of memory and CPU and makes decisions regarding DVS. Such measurements are made

based on the frequency of execution of code regions and whether the regions are memory bound. They

use the hardware performance counters (HPCs) available in several modern-day processors and very

little computation to estimate the slack. Such a scheme, based on [52], is explained in the next few

sections.

7.3.4.1 An Overview of the Scheme

The first step in the DVS algorithm is to identify the so-called hot regions. Since it is profitable to optimize

only long-running code, loops and functions qualify as code regions to be monitored for hotness. The

lightweight profiling mechanisms available in dynamic compilers can be used for this purpose [18]. No

code regions will be hot at program start time. Once hot regions are identified, the usual optimizations

of the dynamic compiler are applied on them, and segments of test code to collect runtime information

from HPCs, such as the number of memory bus transactions, are inserted at the entry and exit points of

a hot region. After collecting sufficient information, the DVS decision algorithm decides the appropriate

voltage/frequency setting for the hot region, removes the test code, and inserts the required DVS code at

the entry and exit points of the hot region. While permitting multiple DVS regions may sound natural in

a dynamic compilation framework, permitting nested DVS regions may increase the overheads beyond

the permitted limit. Furthermore, if a region changes its hotness, then the applied DVS will have to be

changed after a reevaluation.
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7.3.4.2 The DVS Decision Algorithm

As in any DVS scheme, the assumptions made in Section 7.3 hold here, and the terminology of Figure 7.1

will be used in this section. A new term, relative CPU slack time, can be defined as

relative CPU slack time =
Tmem − Toverlap

Ttotal

(7.17)

where Ttotal is defined as Tmem + Tnonoverlap. If β f is the new CPU frequency, (1 − β) is the reduction

in frequency. It can be observed from Figure 7.1 that the larger the CPU slack time (and relative CPU

slack time), the larger is the frequency reduction (i.e., [1 − β]) that can be achieved. If η is the tolerated

performance loss, then

(1 − β) = c0 · η ·

(

Tmem

Ttotal

−
Toverlap

Ttotal

)

(7.18)

where c0 is a constant. Simplifying Equation 7.18, an equation for β is obtained:

β = 1 − c1

Tmem

Ttotal

+ c2

Toverlap

Ttotal

(7.19)

The second and third terms in Equation 7.19 can be expressed using information available in HPC events.

Tmem

Ttotal

≃ k1

#mem bus transactions

#μops retired
(7.20)

Toverlap

Ttotal

≃ k2

#FP INT instructions

#μops retired
(7.21)

For an x86 processor, the quantities in Equations 7.20 and 7.21 are directly available through HPC

events, and hence β in Equation 7.19 is inexpensive to compute. More details regarding HPC events and

performance monitoring are available in [22, 40, 52]. However, this method may not be very accurate

in practice. More precise computation of β in Equation 7.19 enables better DVS but will perhaps be

more expensive in time and may affect performance considerably. According to [52], DVS in a dynamic

compilation environment may offer more than two times the energy savings compared to DVS in a static

compilation environment.

7.4 Optimizations for Leakage Energy Reduction

Power consumption in processor cores has become an important concern in architectural design as well in

compiler construction. In older technologies, as indicated in Equation 7.4 and the associated discussion,

dynamic energy dissipation was the dominating factor. The leakage energy consumption corresponding

to the inactive state of the circuits was negligible. This assumption will no longer hold in the near future.

Static energy dissipation results from leakage current (see Equation 7.4), which in turn is very sensitive

to increases in threshold voltage, Vt . As integrated circuit technology improves and scales to smaller

dimensions, supply voltages are reduced, and this in turn decreases Vt . With the threshold voltages reaching

low values, the leakage energy is estimated to be on par with the dynamic switching energy in all the units

of the processor, with the forthcoming 70-nm technology. Studies show that with the technology trend,

leakage power consumption is going to increase linearly, whereas dynamic power consumption is going

to remain almost constant [42], the former thereby constituting a significant portion of the total power

consumption. In the literature, the terms static energy and leakage energy are used interchangeably, and

they will be used similarly in this chapter. Leakage power consumption can be reduced if the number of idle

cycles is increased. This can be done automatically by circuit-level switching techniques or by explicitely
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Power
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High Power

Te–Transition Energy
Td–Transition Delay
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Td Cycles
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FIGURE 7.9 Behavior of a functional unit. This shows the transition from a high-power mode to a low-power mode.

gating the supply voltage of devices or function units through program instructions, thereby placing the

function units in low-power mode. Static power consumption in low-power mode is negligible compared

to that in the active mode of the unit.

7.4.1 Transition-Aware Scheduling

Figure 7.9 shows the behavior of a unit with a circuit-level switching technique. In [17, 20, 43] it is shown

that transition energy, depending on the controlling technique, varies between 1 and 10% of the active

energy. Moreover, the transition delay ranges from 3 to 30 cycles in 70-nm technology [20, 43]. The greater

the transition delay, the greater is the performance penalty, but a smaller transition delay (sharp transition)

requires more transition energy. If the transition delay is critical and is made very small, the transition

energy loss can be up to 50% of the dynamic energy consumption. The break-even time period is calculated

as the minimum time that a circuit should be in the idle state so that the energy overhead of transition is

nullified. The break-even time is estimated to be anywhere between 10 and 30 cycles.

If the number of transitions between active and idle modes can be reduced, the saved transition delay can

be added to the idle period of the functional unit. This reduces the frequent discharging and charging of

the capacitance in the circuits of functional units, thereby reducing the power consumed due to transitions

as well. It also increases the chances of the function unit staying in an idle period or in an active period

continuously for longer durations, thus using the resources more efficiently, from both the performance and

power point of view. Circuit-level switching techniques on their own do not take any program parameters

into account and hence can cause a certain amount of performance impact too. Transition-aware scheduling

[46], an instruction scheduling technique, can aid such hardware mechanisms by reordering instructions

such that the function units that are in active mode can continue to be in active mode, and once they

become idle, they remain so for several cycles. The number of transitions of the function units from active

to low power and vice versa is reduced by this intelligent scheduling. This reduction not only saves power,

but also improves performance. The presentation in the next few sections is based on [46].

7.4.1.1 An Example

Let us take the code segment in Figure 7.10, possibly generated by a traditional scheduler. The figure also

shows how different functional units, ALU, MUL, and memory Read Ports (RP) are used. It must be noted

that the functional unit usage in each line is the cumulative demand of the previous instruction(s) and the

current instruction. The load instruction scheduled in the cycle i will use an ALU in the first cycle and a

read port RP in the next cycle. The initial stages of the pipeline that are common to all the instructions

are not modeled. A switch from 1 to 0 and 0 to 1 indicates a transition from the active mode to the idle

mode and vice versa, respectively. The add instruction scheduled in the i +1 cycle and the mul instruction

scheduled in i +2 force a transition in the ALU. Figure 7.11 shows how to rearrange these instructions such
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Cycle Instruction ALU MUL RP

i ld r1, 10[r2] 1 0 0
i+1 add r1,r1,r4 1 0 1
i+2 mul r3,r1,r3 0 1 0
i+3 ld r5,10[r2] 1 0 0
i+4 add r4,r1,0x04 1 0 1
i+5 mul r4,r1,r4 0 1 0
i+6 add r1,r5,r3 1 0 0

FIGURE 7.10 This is a valid schedule generated by a traditional scheduler.

that the number of transitions decreases and the continuous idle period in each functional unit increases.

The schedule in Figure 7.11 has been generated by a transition-aware scheduler. The heuristics adopted

by a traditional scheduler suit well if the aim is to just avoid stalls and improve the total execution time.

However, in addition to these requirements, the new transition-aware scheduler schedules instructions

that use the same set of functional units.

7.4.1.2 Dynamic Resource Usage

Figures 7.12 and 7.13 show plots of continuous idle periods (Y-axis) in ALU with and without transition-

aware scheduling applied. The figures are the snapshots of the continuous idle periods in a window of

100,000 transitions (X-axis). The total number of execution cycles with and without optimization differ

by only 0.6%. This indicates that in the window that has been captured, both programs are executing

almost the same part of the program. Short durations and fewer idle cycles are observed in Figure 7.12.

The behavior has been transformed, for the same number of transitions, into longer and more numerous

continous idle cycles after applying the optimization, as shown in Figure 7.13. This indicates that there is

an opportunity to create extra idle periods in functional units.

7.4.1.3 The Target Machine Architecture

The different functional units considered to be a part of the target machine are ALU, MUL, FPU, and a

memory port. Single-issue processors, such as most of the present-day embedded processors, and a single

instance of each functional unit, are assumed. These units are exposed to the compiler through a machine

description of the target machine. The other units, which are implicitly affected by accessing these units, are

the write buffer, the memory buses, and the buses that connect MAC and FPU co-processors. A transition

from active to idle mode can take place if there is an idle period of more than one cycle. The reverse transition

from idle to active mode takes place when the unit is accessed for use. Both transitions are handled by

the hardware. The reason for a functional unit being idle can be a cache miss, a branch misprediction,

functional unit unavailability being ahead of it, or a dependent instruction being blocked in the pipeline.

The machine description associates an instruction with a set of functional units and the time for which

each functional unit is used. Thus, an instruction can access any subset of these components during any

cycle of its operation in the pipeline. A transition-aware scheduler is a modified form of the standard

Cycle Instruction ALU MUL RP

i ld r1, 10[r2] 1 0 0
i+1 ld r5,10[r2] 1 0 1
i+2 add r1,r1,r4 1 0 1
i+3 add r4,r1,0x04 1 0 0
i+4 add r1,r5,r4 1 0 0
i+5 mul r3,r1,r3 0 1 0
i+6 mul r4,r1,r4 0 1 0

FIGURE 7.11 Scheduling instructions with a transition-aware scheduler.
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FIGURE 7.12 A snapshot of continuous idle periods (Y-axis) without transition-aware scheduling. Note the short

and small number of continuous idle periods (sparse).
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FIGURE 7.13 A snapshot of continuous idle periods (Y-axis) with transition-aware scheduling. Note the long and

large number of continuous idle periods (dense).
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automaton-based instruction scheduler [4] that, while scheduling a basic block, schedules instructions

that use similar resources together, so that the resources need not be switched on and off frequently.

7.4.1.4 The Energy Model

An energy model aiming to capture the total power consumption in functional units should take into

consideration the following parameters:

1. Number of active cycles and idle cycles of different functional units

2. Static idle energy, transition energy, and dynamic energy that vary with the circuit-level control

techniques used

3. The number of transitions in the functional unit

In addition to functional units, the energy leakage in the read ports and write ports of the data cache can

be modeled, and their usage information can be provided to the compiler. The power model appropriate

to this discussion is derived from [17]. The model estimates the energy dissipation using different policies

of a circuit-level leakage reduction scheme with various design- and technology-dependent constants. The

model captures the dynamic behavior of a functional unit through the state of each functional unit and

the changes in the access pattern of the unit. Energy dissipations in the various states of a functional unit,

viz., E total, E dynamic, E leakage, E transition, and E sleep, are given by the following equations:

E total = E dynamic + E leakage + E transition + E sleep (7.22)

E dynamic = Nactive(α + (1 − D)p) (7.23)

E leakage = (Nactive · D + Nuncontr idle)(α · s · p + (1 − α) p) (7.24)

E transition = Ntransitions

(

(1 − α) +
E sl signal

E active

)

(7.25)

E sleep = Nsleep · s · p (7.26)

N = Nactual + Nsleep + Ntransitions (7.27)

where

N: Total number of cycles in which the unit is used.

Nactive: Number of cycles in which the unit is in active mode.

Nuncont idle: Number of cycles in which the unit is in active mode but idle.

Ntransitions: Number of transitions of the unit.

Nsleep: Number of cycles in which the unit is in low-power sleep mode.

α: Activity factor; that is, the fraction of cells discharged in the functional unit. This factor is dependent

on the application.

D: Duty cycle of the clock.

p: Leakage energy factor; fraction of static leakage in active but idle mode to the static leakage in the

active mode.

s : Leakage energy factor; fraction of the energy dissipated in sleep mode to the static leakage in active

but idle mode.

E sl signal: Energy consumed in putting a unit into sleep mode.

E active: Energy consumed in the active mode.

The parameters p, s , E sleep, and E active are dependent on the technology and design of the logic. Typical

values for the various parameters are α = 0.25 − 0.75, p = 0.05, s = 0.01, and E sleep/E active = 0.001.

With a value of 1, Nuncontr idle can be ignored when compared to (Nactive · D). More discussion on this topic

is available in [17].
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Input:A Basic block in the form of a data
dependency graph
Output: Scheduled sequence of instructions

begin
init(Readylist);schedtime=0;
while(!all insns in BB have been scheduled)

do
Global=GetGlobal (PresentState)

while (!ReadyList)
do

for(each element in ReadyList)
do

op=Element of ReadyList;
Closeness=Close(op,Global);
ChangePriority(op,Closeness);

done
insn=ChooseInsn(ReadyList)

if(insn)
ScheduleInstruction(schedtime,insn)

schedtime=schedtime+1;
update(Readylist);

done
done

end

FIGURE 7.14 The list scheduler is modified to incorporate the information of global resource usage and compute

the closeness of an instruction with respect to the global usage.

7.4.1.5 The Scheduling Algorithm

The list scheduling algorithm for basic blocks achieves reduction in the number of transitions in functional

units. The modified problem of the scheduling can be stated as follows:

Given an instruction sequence as a data dependence graph and the resource usage information

in the form of bit vectors (resource reservation tables), minimize the number of bit transitions

across the usage vectors of the scheduled instruction sequence generated.

The algorithm shown in Figure 7.14 provides a mechanism for fetching the global resource usage vector

by querying the scheduling automaton [4] that is constructed from the machine description provided.

Then it computes the “closeness” between the vectors and assigns priorities to each instruction. The ready

list is sorted based on the priorities of the instructions. The scheduler uses the scheduling automaton

to choose suitable instructions (no resource conflicts), one at a time from the ready list, and schedules

them in successive time slots. If no operation is ready, then no-ops are introduced until some instruction

becomes ready. The scheduler tries to avoid introducing no-ops as in a traditional scheduler.

7.4.1.6 Global Resource Usage Vector

An important part of the algorithm is to obtain the global resource usage vector (GRV), which contains

information on the usage of each of the functional units during the present scheduling cycle. Some

instructions scheduled in the previous cycles continue to consume different resources during the current

cycle, thus changing the global usage in every cycle. To obtain this vector, the pipeline description model that

is used to detect structural hazards during scheduling has been modified. The pipeline description model

can be in any form, viz., a global resource reservation table or an automaton-based model. An automaton
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FIGURE 7.15 A scheduling automaton.

model has been used here. This model implicitly captures the global resource usage that is needed during

the construction of the automaton, and this reduces the scheduling time. It is also easy to specify new

resources other than function units that are used by a traditional scheduler. For example, memory port

has been added as another resource component. The number of states increases with the addition of

new components to the description. Every state has a GRV, and it is updated during the building of the

automaton. The modified algorithm to build the automaton is described in the paragraph below.

The two-column matrix in each state is the resource usage matrix in that state (for two cycles). The

first column of this matrix is the GRV for the current cycle. Since our machine model is a single-issue

model, each state is a cycle-advancing state, so the second column is inspected for any resource conflicts

while deciding which instruction arcs to add to the state during the automaton building process. If there

are no conflicts, the state matrix is shifted left by one column and OR-ed with the reservation table of an

instruction to generate the matrix for the new state. The rest of the procedure is the same as in [4]. Figure

7.15 shows a snapshot of an automaton to model a pipeline. The figure shows three instruction classes

i1, i2, and i3, with their reservation tables and the automaton built using these classes.

7.4.1.7 Closeness Heuristic

The next part of the algorithm calculates the closeness between the instructions in the ready list and the

GRV. Each instruction class is associated with a resource usage vector (RUV). The RUV is a weighted

vector in which each element corresponds to the number of cycles for which a particular unit is used by

an instruction in the associated class. It is computed by summing up all the entries in each row of the

reservation table for the corresponding instruction. For example, in Figure 7.15, the RUVs are i1: 100,

i2: 020, i3: 101. The closeness of the RUVs of two instructions x and y indicates the number of transitions

that may occur if the instructions x and y are scheduled in consecutive cycles. During every iteration of the

scheduling process, the GRV is OR-ed with the RUV of the last scheduled instruction. In this operation,

a bit version of an RUV (BRUV) that contains 1’s for its nonzero elements is used. By OR-ing the two
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vectors, the GRV, and the BRUV, the current as well as the future usage of the last scheduled instruction

can be captured.

Let two vectors be < i1, i2, i3 > and < j1, j2, j3 >. The closeness heuristic is based on the Euclidean

distance between these two vectors, which is calculated as
√

(i1 − j1)2 + (i2 − j2)2 + (i3 − j3)2. The

Euclidean distance between a GRV and an RRV gives an estimate of how close these two vectors are. If

this value for an instruction in the ready list is minimal, then that instruction needs to be scheduled

as early as possible because it will cause fewer transitions. In a traditional scheduler, the priority that is

defined for each instruction before scheduling is computed using the maximum length of the path from

the instruction node to a leaf in the dependence graph. In this algorithm, an additional priority, the power

consumption priority, which depends on the closeness factor, is introduced. The lower the closeness value

of an instruction in the ready list is, the higher its priority will be. The ready list is first sorted based on

the power consumption priority and then on the dependence chain length priority.

7.4.1.8 A Detailed Example

Consider the data dependence graph (DDG) shown in Figure 7.16. The nodes are annotated with the

instruction id and the functional units they use. alu,mp means the instruction accesses the ALU in the

first cycle and the memory port in the second cycle. mul*2 means the multiplication unit, MUL, is used

for two cycles. The issue latency is therefore two cycles in each of these two cases. A single-cycle latency

is assumed for both alu and memory port. The weight on an edge indicates the latency in producing the

result. The scheduler output is given in Figure 7.17. The second column indicates the dependence chain

priority. The last column indicates the closeness values for the instructions in the ready list in the same

order as they appear in the eighth column.

With a traditional list scheduler, instruction C gets a higher priority than E because of its dependence

chain length, thereby scheduling C earlier than E, but when the closeness heuristic is used, E gets a higher

priority than C, and thus E gets scheduled earlier and is closer to A and B. Similarly, D and E get scheduled,

in that order (after C), with the traditional heuristic, whereas with the closeness criterion, instructions C,

D, and G are scheduled in that order. If the GRV is observed (shown in the sixth and ninth columns), it can

alu,mp alu,mp

alu,mp

alu,mp

alu,mp

mul*2

mul*2

alu

2 2 2

2
22

2

1

1

1 2

1

I

J

GF

E

BA

C D

H
alu

alu

FIGURE 7.16 An example DDG.
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Insn Priority Cycle Insn List GRV Insn List GRV Closeness

A 5 i A B,E 100 A B,E 100 0,0

B 5 i+1 B C,E 101 B E,C 101 0.1

C 4 i+2 C D,E 101 E C,D 101 1, √3
D 4 i+3 D E 010 C D 101 √3
E 2 i+4 E F 110 D 010
F 3 i+5 F H,G 100 G 010 0
G 1 i+6 H G,I 100 G F 010 √2
H 2 i+7 I G,J 100 F H 110 0
I 1 i+8 G J 010 H I 100 1
J 0 i+10 J 110 I J 100 0

i+11 001 J 101
i+12 001 101

FIGURE 7.17 Scheduler output using traditional heuristics and closeness heuristics.

be seen that the continuous idle cycles of ALU, MP, and MUL have increased. The number of transitions

in ALU and MUL has been reduced from four to two, and in the memory port from five to three. However,

with the closeness heuristic there is a no-op in the sequence after D (in column 7). This is because no

other instructions in the ready list can be scheduled at that point in time. This is the performance penalty

(execution cycles) that is paid when the closeness heuristic is used. However, simulation studies show that

this impact is not so significant when compared to the power consumption benefits.

Experimental results and more details are available in [46]. Modifications to the above scheme and

application to clustered VLIW architectures are described in [30, 31].

7.5 Compile-Time Allocation for Scratchpad Memory

It is well known that off-chip memory is the slowest and most energy consuming type of memory in the

memory hierarchy. Cache memories are much smaller than off-chip main memories and are much faster.

They are used to keep frequently used code blocks or variables and thereby reduce the number of main

memory accesses. Caches are well known and are used in most processors. Caches have a tag memory to

store valid addresses and extra hardware for a fast comparison of addresses with the contents of tag memory.

These are needed to detect hits and misses, but they consume energy continuously since comparisons are

made during each memory access. Caches integrate very well with software and are transparent to the

software in their operation. This has made caches very popular with hardware designers. However, cache

hits and misses bring a certain amount of nondeterminism to the execution time and its estimation. Most

worst-case execution time (WCET) estimation software ignores the presence of caches and regards the time

of execution of each instruction assuming a cache miss. WCET estimation in the presence of cache is a hot

research topic [30].

Scratchpad memories have been proposed not only to make WCET estimation more accurate, but

also to reduce the energy consumption in memory hierarchies. Scratchpad memories are as fast as cache

memories but do not have the tag memory and address comparison hardware. Therefore, they consume

less energy than caches but require the services of a compiler or the programmer to fill it with code and/or

variables. Letting programmers handle scratchpad memories is not desirable since the allocation can

become quite complex and may lead to inefficient allocation and possible program errors. Compile-time

algorithms based on integer linear programming have been proposed for scratchpad memory allocation.

The discussion in the sections that follow is based on such algorithms described in [2, 41, 44, 49].

7.5.1 The Static Allocation Algorithm

A typical embedded system contains several types of memories, and each type has its own advantages

and disadvantages. Cache, on-chip scratchpad Static Random Access Memory (SRAM), off-chip SRAM,
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on-chip DRAM, off-chip DRAM, ROM, and external flash memory are among the most common ones.

The speeds of these memories decrease approximately in the same order as mentioned above. It is possible

to consider the entire memory hierarchy in the allocation algorithm, but for clarity, only off-chip DRAM

and on-chip scratchpad SRAM are considered here. Avissar et al. [2] present such an extension.

The allocation algorithm should consider the energy benefits obtained by placing frequently accessed

data variables and frequently executed code segments in the scratchpad. The size of scratchpad memory

is much smaller than that of main memory and therefore cannot accommodate all the variables and

code segments. Therefore, it is necessary to profile the program for which scratchpad allocation is to

be performed and determine the counts of execution of basic blocks and the number of accesses to each

variable. While entire functions and basic blocks are both considered as program memory object candidates

for scratchpad allocation, individual scalar and nonscalar global variables are considered as data memory

object candidates for the same purpose. Local variables (stack variables) and dynamically allocated objects

are not considered for allocation on scratchpad. The allocation is purely static, and there is no dynamic

reloading of objects. These extensions are discussed in the literature suggested in Section 7.1. The following

discussion considers the savings or gain in energy consumption obtained by allocating an object to the

scratchpad. For example, if E m and E s are the energy consumptions for a data access to the main memory

and scratchpad, respectively, (E m − E s ) is the savings in energy.

7.5.1.1 Energy Savings for a Complete Function

It is assumed that functions are single-entry, single-exit entities. Therefore, moving the complete code

for a function into scratchpad requires changing none of the instructions in the function body or the

corresponding function calls. The savings or gain in energy consumption of a function f can be computed

using the following equation:

E g ( f ) =
∑

i

ni · E
g
instr−fetch (7.28)

where

E g ( f ): Gain in energy consumed by the function f

n
f
i : Number of times instruction i in the function f is executed

E
g
instr−fetch: Gain in energy consumed for a single instruction fetch

n
f
i can be computed easily using profiling information for basic blocks.

7.5.1.2 Energy Savings for a Basic Block

Similarly, the energy consumed by a single basic block can also be computed. When a basic block is moved

to scratchpad, jump instructions to jump from a basic block in regular memory to the basic block in

scratchpad and perhaps back are required. These constitute an extra overhead and can be expensive in the

presence of small basic blocks. It is preferrable to move consecutive basic blocks to minimize the overhead.

The gain in energy consumption of a basic block b can be computed using the following equation:

E g (b) = Ib · nb · E
g
instr−fetch − J b · E

g
jump (7.29)

where

E g (b): Gain in energy consumed by the basic block b

nb : Number of times the basic block b is executed (from profiling)

Ib : Number of instructions in the basic block b

E
g
instr−fetch: Gain in energy consumed for a single instruction fetch

J b : Number of jumps from main memory to block b in scratchpad or vice versa

E
g
jump: Energy consumed for a single jump instruction
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7.5.1.3 Energy Savings for Data Memory Objects

Each global scalar and nonscalar variable is considered a data memory object. Local variables are not

considered here. The number of times a global variable v is accessed (including both reads and writes)

and the total energy consumed by all the accesses are computed as follows.

nv =
∑

b

refb(v) · nb (7.30)

E g (v) = nv · E
g
ls (7.31)

where

nv : Total number of accesses to variable v

refb(v): Number of static references to variable v in basic block b

nb : Number of times the basic block b is executed (from profiling)

E g (v): Total gain in energy consumed due to variable v

E
g
ls : Average gain in energy consumed by a memory access (read or write)

7.5.1.4 The Integer Linear Programming Formulation

Maximize

E
g
total =

∑

f ∈F

x( f ) · E g ( f ) +
∑

b∈B

x(b) · E g (b) +
∑

v∈V

x(v) · E g (v) (7.32)

where F , B , and V are the total number of functions, basic blocks, and global variables, in the program,

respectively. x(i) is the integer programming 0-1 variable, taking a value of 1 if the object i (function, basic

block, or variable) is allocated to the scratchpad, and 0 otherwise. The size constraint can be stated as

∑

f ∈F

x( f ) · size( f ) +
∑

b∈B

x(b) · size(b) +
∑

v∈V

x(v) · size(v) ≤ scratchpadsize (7.33)

where size(i) is the size of object i . The size of a basic block includes the size of the jump instruction as

well. Minor optimizations to this scheme to avoid counting jumps to consecutive basic blocks that are

both moved scratchpad are described in [41].

7.6 Conclusions and Future Directions

This chapter considered a few energy-saving compiler optimizations in detail. Dynamic voltage scaling,

which reduces the dynamic energy consumption in processors, was formulated as a minimization prob-

lem, and transition-aware scheduling, which reduces leakage energy consumption, was formulated as an

instruction scheduling problem. Scratchpad memories, which are an alternative to cache memories in

embedded processors, require the compiler to perform the allocation of code and data objects onto them,

and this problem was formulated as an integer linear programming problem.

The last word on energy-aware compiler optimizations has hardly been said. The processors used in

sensor networks and other embedded systems need aggressive energy optimizations. No professional

compilers incorporate all the energy-aware optimizations such as DVS, instruction scheduling, memory

bank allocation, scratchpad allocation, cache management, and communication reduction (in clusters),

and building such a compiler is an interesting research project. Furthermore, the interaction of various

energy-saving optimizations with performance-improving optimizations has not been studied thoroughly.

Integration of optmizations possible at the operating system level into a compiler framework and design

of a programming framework to develop power- and energy-aware applications would be other research

possibilities. In addition, innovations in architecture are introducing novel features into hardware to
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save power and energy, and future compilers would be challenged to use such features effectively. The

problem of reducing power consumption can be more effectively solved by designing hybrid algorithms that

combine micro-architectural techniques and compiler techniques such that they complement each other.

For example, rather than controlling cache configurations dynamically, the same can be achieved through

annotations inserted into programs after a compiler analysis. This would reduce the burden on the hardware

at runtime.
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8.1 Introduction

In computer science, the word optimize refers to the process of modifying to achieve maximum efficiency in

storage capacity or time or cost. True to their name, optimizing compilers transform computer programs into

semantically equivalent programs with the objective of maximizing performance. The transformation is

achieved using a set of optimizations. Each optimization usually consists of an analysis component that

identifies specific performance anomalies and a transformation component that eliminates the anomalies

via a series of code transformations.

Despite significant advances in compilation techniques and numerous compiler optimizations that

have been proposed over the years, the goal of building optimizing compilers that deliver optimal or

even near-optimal performance1 is far from being achieved. For instance, it has been observed that

performance of compiler-generated code falls far short of hand-optimized code in certain application

domains [1]. One might argue that the superiority of hand-optimized code is due to domain knowledge

or special insights into the functioning of code that programmers may have, which allows them to make

1Refer to Appendix A for a formal description of the notion of optimality in program compilation.
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program/hardware-specific transformations. Even if we discount such transformations, optimizing com-

pilers have been shown to fall short in several other ways. For instance, recent research has shown that

the sequence in which compiler optimizations are applied to a program has a significant bearing on its

execution time and that the performance of the default optimization sequence in most compilers is far

below that of the best program-specific optimization sequence [2]. It has also been observed that most

programs perform better if some of the optimizations are disabled [3, 4]. These observations suggest that

compilers may not be exploiting the power of existing optimizations to the fullest.

In this chapter, we examine the reasons behind these apparent shortcomings of compilers. Not surpris-

ingly, we find that compilers are replete with inherently hard problems and complex interactions between

optimizations that are difficult for compiler writers to comprehend. We show that the key to solving these

problems and building high-performance compilers lies in adaptability, that is, the ability to reconfigure

parts of the compiler to the requirements of the program being compiled and the target platform. We

discuss how statistical and machine learning techniques can help address some of the complex issues that

arise in building adaptive compilers. In particular, we show that problems such as identifying compiler

interactions, design of efficient heuristics, finding program-specific optimization sequences, and selection

of program-specific optimization flags can be formulated as problems in learning and statistical inference,

and near-optimal solutions to these problems can be found efficiently and automatically. This automated

approach greatly simplifies the design of performance-critical components of an optimizing compiler,

letting compiler writers focus on other important aspects such as correctness and retargetability.

8.1.1 Motivation

Let us start by examining some of the reasons compilers fail to deliver optimal performance.

8.1.1.1 Inherently Hard Problems

Compiler optimizations are the source of some of the hardest and most challenging problems in computer

science. This is specially the case with architecture-dependent optimizations such as register allocation,

instruction scheduling, and data layout. Since finding optimal solutions to these problems is provably

hard, compiler writers are forced to develop heuristics to find approximate solutions to these problems.

Consider register allocation, for instance. It has been shown that optimal register allocation can be reduced

to the problem of determining whether a graph can be k-colored [5] (refer to [6] for details). Therefore, a

coloring-based register allocator uses heuristics to select variables for spilling when the interference graph

cannot be k-colored (where k is the number of unallocated registers). For some compiler optimizations,

heuristics can be designed to guarantee solutions that are within a constant factor of the optimal solution,

but more often than not, heuristics are designed for the average case, and there are no guarantees of how

well the heuristics perform for a given program and target platform.

8.1.1.2 Interactions between Optimizations

It is well known that most compiler optimizations interact, that is, the effect of any given optimization on the

performance may depend on the presence or absence of other optimizations in the compilation sequence.

Furthermore, the nature of the interaction may also depend on the order in which the optimizations are

applied. For example, loop unrolling is known to interact with global common subexpression elimination,

in other words, (GCSE). This implies that, the benefits of unrolling depend on whether GCSE is applied

and on the order in which unrolling and GCSE are applied.

Interactions between optimizations can be positive or negative. A positive interaction usually occurs

when one optimization enables or creates opportunities for another optimization. Negative interactions

occur when one optimization restricts the applicability of another optimization. A good example of a

negative interaction is the one between register allocation and instruction scheduling, which we discuss

in detail later in this section.

Apart from interacting with other optimizations, compiler optimizations also interact with the hardware.

This is inherently true for architecture-dependent optimizations such as loop optimizations, prefetch-

ing, basic block reordering, and instruction scheduling. Despite years of research, the nature of these
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interactions is only partially understood. Consequently, few interactions are taken into account while

designing optimizations.

8.1.1.3 Multiple Objective Functions

As if optimizing programs for performance was not hard enough, modern compilers are routinely ex-

pected to generate code that is simultaneously optimized for multiple objective functions. For example,

in embedded systems such as mobile devices or sensor networks, the compiler must satisfy additional

constraints on metrics such as code size and power consumption. In several cases, some of the objective

functions may be at odds with each other, that is, optimizations that improve the quality of code with

respect to one objective function may adversely influence the other. Designing optimizations that meet

these stringent requirements is a complex task.

8.1.2 Classical Solutions

Having examined some of the problems that plague optimizing compilers, let us review some of the

strategies that existing compiler implementations use to deal with these problems. We primarily focus on

techniques that deal with interactions between compiler optimizations and interactions with the architec-

ture. The general strategy adopted by compiler writers can be summarized as follows:

� Identify and characterize specific interactions: The presence of interactions is usually detected by

manually inspecting the semantics of optimizations and architectural specifications. Alternatively,

some simple interactions can be automatically detected if the compiler writer is willing to specify

the semantics of optimizations in specification languages such as Gospel [7–9].
� Adapt the optimizations involved: Compiler optimizations may require restructuring if they are

involved in strong interactions. In the simplest of cases, the heuristics that drive the optimization

are changed to deal with the interaction [10, 11]. In other cases, two or more optimizations may be

combined and performed together [12–15].

We illustrate this process using two specific instances, namely, the interaction between instruction

scheduling and register allocation, and the interactions between various loop transformations and the

hardware.

8.1.2.1 Interaction between Instruction Scheduling and Register Allocation

Instruction scheduling is a compiler optimization that rearranges instructions in a given code sequence

with the goal of reducing the execution latency of the sequence. If sufficient parallelism is available in

the code sequence, instruction scheduling can hide functional unit latencies, memory latencies, and other

delays such as pipeline interlocks. However, a deeper analysis of the effects of instruction scheduling shows

the presence of a complex interaction with register allocation [14]. The nature of this interaction depends

on the order in which scheduling and register allocation are performed. If scheduling is performed before

register allocation (known as the prepass strategy), the scheduler can utilize full parallelism in the code

sequence and generate a compact schedule by interleaving the execution of independent instructions.

However, in this process, the scheduler can potentially increase the maximum number of live variables and

cause the register allocator to generate more spill code. If register allocation is performed before scheduling

(known as the postpass strategy), the scheduler may not see the full parallelism available in code because of

false dependencies induced by the reuse of registers. This may limit the extent to which the scheduler can

reorder instructions and result in a suboptimal schedule with unnecessary stalls. The following example

illustrates this interaction.

8.1.2.2 Example

Consider the code snippet shown in Figure 8.1 (adapted from [14]). The figure also shows the intermediate

code before register allocation and scheduling and the corresponding dependence graph. Assume that the

architecture has two registers, r 1 and r 2. Figure 8.2 shows the schedule and live ranges of virtual variables

if instruction scheduling is performed before register allocation. For this code sequence, the scheduler
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z = x[i]
tmp = x[i+1+n]
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i1

i4
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i1: v1 = addr(x) + I
i2: v2 = load @(v1)
i3: z  = v2
i4: v3 = v1 + 1
i5: v4 = load n
i6: v5 = load @(v3+v4)

Data Dependence Graph

FIGURE 8.1 Example illustrating the interaction between instruction scheduling and register allocation.

generates an optimal schedule that executes in six cycles with no stalls. The scheduler hides latencies of

the loads i2 and i5 by separating them from their respective uses. Although this schedule is optimal, the

separation of dependent instructions causes an increase in the number of simultaneously live ranges. In

this case, the register allocator is forced to spill one of the variables because there are three live ranges at

cycles 3 and 4 and only two registers available for allocation.

Now consider the scenario where register allocation is performed before scheduling. The live ranges

seen by the allocator are shown in Figure 8.3. Observe that at no time in this code sequence are more than

two variables live, and the register allocator is able to allocate registers to all variables (v1 → r 1, v2 →
r 2, v3 → r 2, v4 → r 1) without spilling. However, the false dependencies introduced because of the reuse

of registers (both r 1 and r 2) limit the parallelism seen by the scheduler. Consequently, the scheduler is

unable to hide load latencies and is forced to introduce stalls in the final schedule, which now runs into

eight cycles.

Both these scenarios illustrate the presence of a negative interaction between instruction scheduling

and register allocation, irrespective of the order in which the optimizations are applied. An interaction

with similar characteristics also occurs between partial redundancy elimination (PRE) and register allo-

cation [9, 16]. More precisely, the code-hoisting step in PRE might increase the live ranges of variables

involved in the redundant expression, resulting in increased register pressure and possible spilling.

Once an interaction is identified, the optimizations involved in the interaction may be reformulated

to ensure that the interaction does not result in suboptimal code. Several such formulations for register

allocation and instruction scheduling have been proposed. While the specific details may vary, the formu-

lations seek to make the optimizations aware of their influence on each other. This is achieved indirectly

by introducing some means of communication between the optimizations [9, 17] or directly by integrat-

ing the optimizations into a single pass [18]. For instance, Motwani et al. [14] formulate the combined

scheduling and register allocation as a single optimization problem, show that the combined problem is

NP-hard but approximable, and propose a combined parameterized heuristic that can be used to weigh

the conflicting considerations of register pressure and parallelism.

Interestingly, while most of these formulations have been proposed for in-order, VLIW processors,

it has been observed that for out-of-order (OoO) superscalar processors, register pressure is often a

greater concern than exploiting parallelism and creating better schedules [19, 20]. This is due to several

features supported by OoO processors such as register renaming, which eliminates false dependencies

1 i1: v1 = addr (x) + I
2 i2: v2 = load @(v1)
3 i5: v4 = load n
4 i3: z  = v2
5 i4: v3 = v1 + 1
6 i6: v5 = load @(v3+v4)

v1 v2

v3

v4

FIGURE 8.2 The schedule generated by a prepass scheduler and the live ranges of virtual registers.
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i1: v1 = addr(x) + I
i2: v2 = load @(v1)
i3: z  = v2
i4: v3 = v1 + 1
i5: v4 = load n
i6: v5 = load @(v3+v4)

1
2
3
4
5
6
7
8

i1:
i2:

i3:
i4:
i5:

i6:

r1
r2

z
r2
r1

r1

=
=

=
=
=

=

addr(x) + I
load @(r1)
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v1 v2

v3 v4

FIGURE 8.3 The live ranges seen by the register allocator and the schedule generated by the postpass scheduler.

introduced by register reuse, and dynamic scheduling with large instruction windows and speculation,

which allow out-of-order processors to exploit instruction-level parallelism across large code sequences.

Consequently, formulations that assign a higher weight to the register allocator (e.g., postpass strategy) are

likely to perform better on OoO processors. This observation shows that interactions may involve more

optimizations than anticipated (hardware optimizations in this case) and may be more complex than what

meets the eye. Therefore, it is critical for compiler writers to characterize these interactions in their entirety

and ensure that all factors that can influence the nature of the interactions are accounted for. The absence

of a comprehensive characterization may lead to wrong conclusions and adversely affect performance.

8.1.2.3 Interactions between Loop Transformations and Caches

High-level loop transformations such as unrolling, tiling, fission, fusion, and interchange have individually

proved to be some of the most effective compiler optimizations, especially in loop-dominated scientific,

media, and graphics programs. Apart from exposing instruction-level parallelism, reducing loop overheads,

and increasing functional-unit utilization, these transformations are especially useful in improving the

loop’s memory behavior. The potential of these optimizations is best illustrated using an example (adapted

from [15]). Consider the MATLAB code in Listing 8.1, which contains a simple loop that multiplies the

matrix b with an array c and stores the results in an array a .

Listing 8.1: MATLAB code for multiplying an array with a matrix

% a, c are arrays of size 1000

% b is a matrix of size 1000x1000

for i =1:1000,

for j =1:1000,

a( i ) = a( i ) + b(i , j )∗c( i )

end

end

If the matrix b were stored in column major order (which is the case in MATLAB), the accesses to the

elements of matrix b would incur a cache miss in each iteration of the loop (because the matrix is accessed

row-wise). Loop interchange [21] can be used to avoid this performance anomaly. Assuming a cache block

size of 32 bytes, the interchanged loop shown in Listing 8.2 incurs a cache miss once every four iterations.

Listing 8.2: Source code after loop interchange has been applied

for j =1:1000,

for i =1:1000,

a( i ) = a( i ) + b(i , j )∗c( i )

end

end

However, this transformation comes at a cost. In the original loop, the computation in each iteration

can be expressed using one mutliply-and-add instruction (supported on several current processors such

as the PowerPC and Itanium), whereas in the transformed loop, two extra loads (for elements of arrays a

and c) and an extra store (to array a) are required in the inner loop. Depending on the cache miss latency,
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loop interchange may either improve or hurt performance. Hence, cache latency must be factored into the

heuristic that evaluates the benefit of loop interchange.

This interaction with cache latency is just one of the many interactions that affect loop interchange.

In general, loop transformations are known to interact strongly with each other. Consider the loop in

Listing 8.3, which is obtained after applying loop unrolling and interchange to the loop in the previous

example. Unrolling this loop amortizes the cost of the extra load and store instructions inserted because of

loop interchange. Elements of arrays a and c are now loaded once in every iteration of the inner loop, and

their values are reused across four computations. This version of the loop enjoys the benefits of interchange

(i.e., reduced cache misses) while minimizing the runtime cost of additional instructions. This example

shows that loop unrolling can interact positively with loop interchange, assuming that other side effects

of unrolling, such as the increase in code size and register pressure, are ignored.

Listing 8.3: Source code after loop unrolling and interchange has been applied

for j =1:1000:4,

for i =1:1000,

a( i ) = a( i ) + b(i , j )∗c( i )

a( i ) = a( i ) + b(i , j+1)∗c(i)

a( i ) = a( i ) + b(i , j+2)∗c(i)

a( i ) = a( i ) + b(i , j+3)∗c(i)

end

end

The story about interactions in loop transformations does not quite end here. In our example, we only

considered the effect of the transformations on the cache. The transformations may affect other aspects

of code such as register pressure, functional unit utilization, and code size. Adding other transformations

such as loop tiling, fission, and fusion to the mix further complicates matters. Finding the right sequence

in which to apply these transformations and selecting the right parameters for each transformation are

difficult tasks, and a method that determines the most effective loop optimization strategy for any given

program and platform continues to elude researchers.

Several researchers have explored the possibility of combining two or more loop transformations

[15, 22, 23] to deal with interactions. Wolf et al. [15] propose an algorithm that combines several loop

transformations. The goal of their algorithm is to find a loop transformation strategy (combination of the

order in which loop transformations are applied and the manner in which each transformation is used)

that exploits positive interactions between these transformations. Since the number of potential loop

transformation strategies is large, their approach uses heuristics to narrow the search space. Within this

space, each strategy is evaluated using simple static cost models for caches, registers, and computational re-

sources. Interestingly, their experimental evaluation shows that the combined analysis and transformation

results in significant gains over a baseline implementation for a number of programs, with one exception,

where the combined analysis performs significantly worse. In this program, some of the loops generated

by the combined loop transformations were too complex for the software prefetching optimization to

analyze. Hence, no prefetch instructions are generated, leading to a significant performance loss. This

observation illustrates the complexity of identifying interactions in compilers and the pitfalls of ignoring

key interactions while designing optimizations.

8.1.2.4 Discussion

Our discussion in this section can be summarized as follows. We find that hard problems and complex

interactions are pervasive in compilers. More importantly, solutions to these problems are dependent

on the program and the intricacies of the target platform. A solution that is best for one program or

platform is not necessarily the best for the other. This leads us to the conclusion that compilers must be

flexible enough to adapt to the requirements of specific programs and hardware configurations. Aspects

of compilation such as the compilation sequence and optimization heuristics must be adaptable by design

if high performance is to be achieved.
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FIGURE 8.4 The structure of a typical optimizing compiler.

8.2 Adaptive Compilers

Let us first review the structure of existing optimizing compilers and see how they fare in terms of flexibility

and adaptability. Figure 8.4 illustrates the architecture of a typical optimizing compiler. The back-end of

the compiler consists of a set of optimizations or phases. These phases are applied to an intermediate

representation of the program in a predetermined sequence, irrespective of the program being optimized.

Each phase is almost always designed independently, and interactions between optimizations are often

ignored. Coarse models of the underlying hardware are sometimes employed to guide optimizations, with

the aim of reducing the influence of negative interactions between the optimizations and the hardware. It

is easy to see that the structure of a modern optimizing compiler is more or less rigid. This lack of flexibility

is one of the key reasons that optimizing compilers fail to deliver optimal performance.

In light of these shortcomings of conventional compilers, many in the compiler community have

favored the idea of building compilers that adapt to the program and the hardware [24]. Although the

idea of an adaptive compiler sounds compelling, several concerns need to be addressed before an actual

implementation can be envisaged. For example, what are the necessary building blocks of an adaptive

compiler? How is the compiler structured? What are the compile time requirements of the compiler? What

performance guarantees can the compiler make? In the rest of this section, we attempt to answer some of

these questions.

Figure 8.5 illustrates the proposed architecture of an adaptive compiler [24]. This architecture dif-

fers from the traditional compiler on several counts. An adaptive compiler consists of some form an

adaptation unit, which controls the entire optimization process. The adaption unit uses a combination of

Program Profile
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Code Compiler

Front-end
Adaptation

Unit

Architecture
Description

Binary
Hardware

Compilation Strategies

IR

FIGURE 8.5 The architecture of an adaptive optimizing compiler.
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program analysis and abstract architecture descriptions to evaluate different compilation strategies and

select a strategy that is best suited to the program and a target platform. More precisely, the adaption unit

selects (a) a custom compilation sequence and (b) custom heuristics for each optimization. Additionally,

the adaptation unit may use a representative program profile provided by the programmer to tune the

compilation strategy to the program and a specific class of inputs. This can be seen as an advanced form

of profile-guided optimization that involves restructuring the compiler itself. Once a compilation strategy

is chosen, compilation proceeds as normal and an optimized binary is generated. We now outline some of

the challenges that must be addressed by any implementation that adheres to this conceptual design:

1. Identify and characterize compiler interactions and design synergetic optimization phases.

2. Design an adaptation unit that can automatically:

• Explore the space of compilation sequences and determine the best compilation sequence for

a given program and architecture. This is known as the phase ordering problem.

• For each optimization in the compilation sequence that is driven by a heuristic, select the

best heuristic for the given program and platform. We refer to this problem as one of heuristic

selection.

In the rest of this chapter, we consider these problems in detail. In addition, we consider the problem

of selecting the best compiler optimization flags and parameters for a given program. Optimization flag

selection is relevent for conventional compilers where the phase ordering is fixed but the compiler allows

user control over individual optimization flags and parameters. We show how some of these hard problems

are naturally expressed as problems in inference and learning, and well-known statistical and machine

learning techniques can be employed to find effective solutions to these problems automatically.

8.3 Characterizing Compiler Interactions

We have already seen that compiler interactions play a crucial role in determining the eventual performance

of a compiler. Understanding these interactions is critical to problems such as phase ordering and the

design of interaction-sensitive compiler optimizations and heuristics. Traditionally, the task identifying

and characterizing key interactions has been performed manually by compiler writers and researchers.

Given a set of compiler optimizations, compiler writers are expected to analyze the optimizations and

determine if (a) two or more optimizations interact and (b) any of the optimizations interact with the

architecture. However, the manual nature of this task leaves open the possibility of oversights. It is possible

that the compiler writer may have misread or even overlooked some important interactions. We have already

seen an example of an unexpected and complex interaction register allocation, instruction scheduling,

and OoO processors that are usually overlooked by compiler writers [20]. The following example further

illustrates this possibility.

Function inlining is a transformation that replaces the call-site with the body of the callee. The trans-

formation also replaces the formal arguments in the callee with the actual arguments. This optimization

reduces the overheads of the call by eliminating the need for setting up a stack frame and allows the callee

to be optimized in the context of the caller. However, inlining leads to an increase in code size and a possible

increase in register pressure. It is therefore natural to expect inlining to interact positively with classical

optimizations such as common subexpression elimination, PRE, and so on and interact negatively with

register allocation and the instruction cache. Hence, virtually all optimizing compilers use heuristics to

limit the amount of code growth due to inlining, and some compilers also consider the impact on register

pressure before making inlining decisions. However, it was recently shown [4] that on OoO superscalar

processors, inlining interacts negatively with the size of the reorder buffer. In other words, the efficacy

of inlining is reduced on OoO superscalar processors with large reorder buffers. If this interaction is not

considered by the inlining heuristic, excessive inlining may result, which may even hurt performance.
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The reasons behind this interaction are easily understood. Modern OoO processors with branch pre-

diction and large reorder buffers are capable of predicting targets of call-sites and fetching instructions

across call-sites. This enables the processor to exploit parallelism across call boundaries and hide the la-

tency of instructions that set up the call stack. It would be unfair to expect compiler writers to detect,

characterize, and model these intricate interactions. In fact, the difficulty of this task can only increase

with the increasing number of compiler optimizations and the complexity of modern processors.

To address these problems, we require a method that automatically detects and quantifies the degree

of interactions between any given set of optimizations. It turns out that the problem of detecting and

quantifying interactions is not unique to compiler optimizations. Interactions between components exist

in most natural and artificial systems. Consequently, there exist a number of automatic techniques to study

and quantify interactions. One such class of techniques, known as empirical regression models, has been

well studied in the statistical and machine learning literature and has found widespread use. In the rest

of this section, we describe various regression modeling techniques and evaluate the applicability of these

techniques to compiler optimizations.

8.3.1 Empirical Regression Models

Regression modeling refers to a class of methods used for building black box models of systems. Say we are

given a system defined by a set of input parameters and an output variable (also known as the response).

Assume that the system is described by some mathematical function, which represents the relationship

between the inputs and the response. In regression modeling, we want to find an approximation of this

function solely by observing the response of the system for different inputs.

Let us state this notion formally. We are given a system S with n input parameters {xi | 1 ≤ i ≤ n} and

a response variable y. We are also given a set of observations {(X1, y1), (X2, y2), . . . , (Xm, ym)}, where each

Xi is an n-dimensional vector and represents an assignment of values to the input parameters, and yi is

the response of the system for the input Xi . Also assume that the system is characterized by the following

equation:

y = f (x1, x2, . . . , xn)

In regression modeling, we use the observations to learn a function f̂ that satisfactorily approximates f .

Formally,

y = f (X) = f̂ (X) + ǫ

where ǫ represents the approximation error. One can think of regression modeling as the process of

searching for a function that best explains the observations. However, since there are infinitely many

functions, the search for the closest approximation may never terminate. Regression modeling techniques

restrict the search space by making some assumptions about the structure and form of the approximation

function f̂ . We now describe two techniques, linear regression models [25] and multivariate adaptive

regression splines (MARS) [26], that are commonly used for building regression models.

8.3.1.1 Linear Regression Models

Linear regression models are the simplest and perhaps the most commonly used regression modeling

tools. In linear modeling, we want to find the closest linear approximation of the relationship between

the inputs and the response. In the simplest case, we assume that the approximation function f̂ takes the

following form:

y = β0 +

n
∑

i=1

βi xi + ǫ

Here, the approximation function is a weighted sum of the input parameters plus a constant and the

approximation error. The unknown weights {βi | 1 ≤ i ≤ n} are known as partial regression coefficients.

These coefficients represent the expected change in the response per unit change in the corresponding



8-10 The Compiler Design Handbook: Optimizations and Machine Code Generation

input. In situations where we anticipate the presence of interactions between input variables, we can extend

linear models to incorporate interactions. For example, the following equation represents a linear model

for a system with two input parameters and an interaction term.

y = β0 + β1x1 + β2x2 + β12x1x2 + ǫ

For generality, we can also represent this model as follows:

y = β0 + β1x1 + β2x2 + β3x3 + ǫ

where x3 = x1x2 is an interaction term. Similarly, linear models can be extended to model interactions

between three or more variables. In general, a complete linear model for a system with n input variables

has 2n terms and 2n + 1 unknown partial regression coefficients, the values for which must be determined

from the observations.

8.3.1.1.1 Building Linear Models

Because of their simplicity, building linear models from a set of observations is relatively straightforward.

Let {(X1, y1), (X2, y2), . . . , (Xm, ym)} be a given set of observations. Let us assume that we are interested

in building a linear model of the form shown in Equation 8.1.

y = β0 +

k
∑

i=1

βi xi + ǫ (8.1)

Here, the model consists of k terms. Each term xi represents an input variable or an interaction between

two or more input variables. We now wish to determine the values of the partial regression coefficients that

minimize the approximation error. First, we substitute the m observations in Equation 8.1 and represent

the resulting m equations in a matrix form as follows:

y = Xβ + ǫ (8.2)

Here, the vector y = {y1, y2, . . . , ym} is a vector of responses from the observations, the matrix X =

{X1; X2; . . . ; Xm} represents the set of inputs (also known as the design or model matrix), and β is a

vector representing the unknown partial regression coefficients. Since there are many solutions to this

set of equations, a unique solution is obtained by defining an error metric and finding partial regression

coefficients that minimize the specified error metric. For instance, the sum of squares error defined as

follows is a commonly used error metric.

S S E =

n
∑

i=1

(yi − f̂ (xi ))2 (8.3)

This metric is the cumulative sum of squared differences between the observed response values and the

values predicted by the linear model. Partial regression coefficients that minimize this metric are easily

computed as follows:

β̂ = (X′X)−1X′y (8.4)

For obvious reasons, this estimate of the partial regression coefficients is known as the least squares estimate.

These values of β̂ can be substituted in Equation 8.1 to obtain the linear model f̂ (X).

8.3.1.1.1.1 Example

The utility of linear models in analyzing performance of complex systems is best illustrated using an

example. Consider the well-known matrix multiplication program shown in Listing 8.4. If the cumulative

size of the matrices a , b, and c is large, the working set of the program may not fit into the cache, causing

cache misses. Loop tiling is a loop transformation that increases the efficiency of loops by partitioning the

loops working set into smaller chunks or blocks such that each block stays in the cache while it is being

used. Listing 8.5 shows the same program after tiling has been performed.
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Listing 8.4: Matrix multiply

1 float a[SIZE][SIZE], b[SIZE][SIZE], c[SIZE][SIZE];

2 for( i=0; i < SIZE; i++)

3 for( j=0; i < SIZE; j++)

4 for(k=0; k < SIZE; k++)

5 c[ i ][ j ] = c[ i ][ j ] + a[ i ][k] x b[k][ j ];

Listing 8.5: Matrix multiply after loop tiling has been applied

1 float a[SIZE][SIZE], b[SIZE][SIZE], c[SIZE][SIZE];

2 for( ii =0; ii < SIZE; ii = ii + BLOCK)

3 for( jj =0; jj < SIZE; jj = jj + BLOCK)

4 for(kk=0; kk < SIZE; kk = kk + BLOCK)

5 for( i = 0; i < MIN(SIZE, ii + BLOCK − 1); i++)

6 for( j = 0; j < MIN(SIZE, jj + BLOCK − 1); j++)

7 for(k = 0; k < MIN(SIZE, kk + BLOCK −1); k++)

8 c[ i ][ j ] = c[ i ][ j ] + a[ i ][k] ∗ b[k][ j ];

Deciding the best blocking factor for arbitrary loops is hard because it requires reasoning about the size

of the loop’s working set and knowledge about the target platform’s cache size hierarchy. An idea of how

critical this decision is can be gauged from Figure 8.6a, which shows the variation in execution time (in

seconds) of this program (SIZE = 1,024, measured using a cycle accurate simulator) for various blocking

factors ranging from 8 to 128 and L1 data cache sizes ranging from 8 to 128KB. The plot shows that small

blocking factors are preferable, irrespective of the cache size. A sharp increase in execution time is observed

for high blocking factors, especially on platforms with small caches.

Based on these observations, we can build a linear model that approximately represents the relationship

between the execution time of the program, the blocking factor, and the cache size. Equation 8.5 repre-

sents the linear model we obtain. The model suggests that the blocking factor has a higher influence on

performance than the size of the data cache. As expected, the high value of the coefficient associated with

the product terms indicates the presence of a strong interaction between the blocking factor and the cache

size. The signs of the coefficients also reveal that increasing the blocking factor hurts performance, whereas

the converse is true for the cache size. The sign of the interaction coefficient suggests that performance

improves if both the blocking factor and cache size are increased together.

ŷ = 6.20 + 4.46 ∗ blocking f ac tor (8.5)

− 1.79 ∗ cache s i ze

− 1.85 ∗ blocking f ac tor ∗ cache s i ze

Figure 8.6b graphically illustrates the execution time predicted by the model. Although the linear model

does not exactly fit all observations (especially the performance variations for large blocking factors and

small cache sizes), it captures the overall performance trends.

Apart from the model itself, most linear modeling tools also provide as output a number of statistics that

estimate the accuracy of the linear model. These include the mean squared error, R2 statistic, and residu-

als [25]. If these statistics suggest that the linear model is not a reasonable approximation of the underlying

system (because of nonlinear variations), other modeling techniques such as MARS may be employed.

8.3.1.2 Multivariate Adaptive Regression Splines (MARS)

MARS [26] belongs to a class of recursive-partitioning-based regression techniques that use a divide-and-

conquer strategy to find functions that approximate arbitrarily complex relationships. Instead of attempting

to find one global function that explains the response (like linear models), MARS recursively partitions the
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FIGURE 8.6 (a) Variation in execution time of matrix multiply for different blocking factors and L1 data cache sizes.

(b) A linear model for the execution time of matrix multiply with blocking factor and L1 data cache size as input

parameters. The linear model captures the high-level trends in execution time but is unable to capture sharp, nonlinear

variations in the space defined by small cache sizes and high blocking factors.

domain of input variables into disjoint regions until the response in each region can be accurately described

using simple functions. The final MARS model is simply a linear combination of these functions.

Let us formally state the basic ideas behind MARS models. Assume that the input variables {xi | 1 ≤ i ≤

n} ∈ D, where the domain D defines the input space. The MARS algorithm starts by considering the whole

domain as one region and uses a simple function (typically a simple spline function [26]) to model the

response in the region. If this simple model is not accurate enough (results in a high approximation error),
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the algorithm partitions the current region (D) into two disjoint regions, for example, R1 and R2, along

the axis of one of the input variables. It then tries to model the regions R1 and R2 using simple functions.

This process repeats until the response in each region {Ri |1 ≤ i ≤ m} can be adequately modeled using

simple functions. If Bm(x) denotes the function the describes the response in region Rm, then the overall

model is represented as

if x ∈ Rm, then f̂ (x) = w0 + wm Bm(x) (8.6)

Here, the functions Bm are known as the basis functions and wm are the regression coefficients. The model

can also be represented as

f̂ (x) = w0 +

M
∑

m=1

wm Bm(x)Im(x) (8.7)

where Im(x) is an indicator function that assumes a value 1 if x ∈ Rm and 0 otherwise.

The key aspect of the MARS algorithm is that all parameters of the model, that is, the regions Rm,

unknown parameters of the basis functions Bm, and the regression coefficients wm, are determined using

experimental data. Furthermore, a MARS model (Equation 8.7) can be rewritten in a form in which the

terms corresponding to input variables and their interactions are associated with their own coefficients

(much like Equation 8.1). Because of these features, models produced by MARS are not only more accurate

than simple linear models but are also interpretable (partial regression coefficients obtained using the

MARS model also indicate the influence of the corresponding term on the response).

8.3.1.3 Case Study: Detecting Interactions in the gcc Compiler

Vaswani et al. [4] consider the problem of identifying interactions in the gcc compiler using regression

models. The system they model (Figure 8.7) is a combination of the compiler and the target platform. The

compiler is parameterized by a set of optimization flags (one for each optimization) that control whether

the corresponding optimization is applied. Also included as inputs are the settings on heuristics such as

the maximum unroll factor and the maximum code growth due to function inlining. The platform is

modeled as a generic OoO superscalar processor parameterized by a micro-architectural configuration,

which includes variables such as the issue width, reorder buffer size, cache sizes, memory latency, branch

predictor configuration, and the number of functional units.

The modeling technique proceeds as follows. For each program/input pair, a set of observations is

collected at carefully selected points in the input space. Each observation is a pair (Xi , yi ), where the input

vector Xi is an assignment of values to compiler optimization flags, heuristics, and the micro-architectural

parameters. Each yi is the execution time (in cycles) of the program generated using the flag and heuristic

settings specified by Xi and executed on a target machine whose configuration is specified by the micro-

architectural parameter settings in Xi . The execution time is measured using a detailed cycle-accurate

Optimizing
Compiler

Target
Platform

Execution
Time

Program Input

Binary

Settings of Heuristics

Source
Program

Compiler
Optimization

Flags

Micro-architectural
Parameters

FIGURE 8.7 Components and parameters of the system considered for regression modeling.



8-14 The Compiler Design Handbook: Optimizations and Machine Code Generation

processor simulator. A MARS model is built based on these observations. The model relates the execution

time of the program to the optimization flags, heuristics, micro-architectural parameters, and interactions

between these variables. The partial regression coefficients of these models tell us how significant each of

these variables and their interactions are.

An analysis of the regression coefficients obtained for a set of benchmark programs yields some inter-

esting insights. The coefficients reveal that performance is by far determined by the micro-architectural

configuration and that conventional compiler optimizations have a relatively smaller role to play. Among

compiler optimizations, function inlining and omitting the frame pointer are found to be the most effective

across benchmarks. More importantly, the model identifies several interesting positive and negative inter-

actions. For instance, the reorder buffer size, a parameter that is hard to analytically model and hence is

ignored by most static modeling techniques, interacts negatively with function inlining but positively with

the maximum unroll factor heuristic. The latter interaction, coupled with the observation that increasing

the maximum unroll factor tends to hurt performance, suggests that loops should be aggressively unrolled

on machines with larger reorder buffers. These important insights into the inner workings of compiler

optimizations would have been hard to derive without the assistance of empirical models.

8.4 Heuristic Selection

It is common for a compiler optimization to find itself in situations where it must choose from one of

the several ways it can affect a code transformation (which may include the option of not affecting the

transformation). Ideally, we would like a model of the system that accurately computes the costs and benefits

of applying each transformation. The compiler would then be able to evaluate each of the options and

pick the optimal transformation to apply. However, this approach is generally not feasible for two reasons.

(a) The number of possible transformations may be too large to enumerate. (b) Building models that

accurately compute the costs and benefits of transformations on modern platforms is difficult. For these

reasons, compiler optimizations are forced to rely on heuristics to guide decision making. Optimizations

may use heuristics to narrow the space of transformations to evaluate and estimate the costs and benefits

of each transformation. In essence, heuristics make compiler optimizations tractable at the cost of optimal

decision making.

This leads us to the following important question: How do we design good heuristics? This question has

plagued compiler writers for several years. The difficulty in designing good heuristics is best illustrated by

an example. Consider function inlining and the problem of determining whether to inline a given call-site.

The costs and benefits of inlining depend on a host of factors including:

� Static parameters such as the function sizes (both caller and callee), number and type of arguments,

depth in the call tree, available parallelism, dependence relationships, etc.
� The target platform configuration, which includes parameters such as issue width, cache sizes,

reorder buffer size, number of functional units, branch predictor configuration, etc.
� Other optimizations in the compilation sequence that may interact with inlining

Our goal is to derive an inlining heuristic that considers all these factors and determines whether the call-

site in question should be inlined. We require that the heuristic make the right decisions across different

programs and different target platforms. Designing such a heuristic is a challenge. Not surprisingly, the

approach taken by compiler writers is one of trial and error. Compiler writers are usually adept at identifying

program features that should be considered in the heuristic; deriving the heuristic itself is, however, based

on experience and repeated experiments.

In this section, we consider the problem of automatically deriving good heuristics. It has been shown

that in many cases, heuristic selection can be reduced to well-known problems in machine learning such

as supervised classification [27, 28], function approximation [29, 30], and function selection [31]. The key

idea behind the learning-based approach is to consider a heuristic as a function that takes as input various

factors that influence the effectiveness of an optimization and outputs a metric that reflects the goodness



Statistical and Machine Learning Techniques in Compiler Design 8-15

of each candidate transformation. This reduction from heuristics to functions enables the use of standard

machine learning techniques such as support vector machines (SVMs) [32] and genetic programming [33]

to automatically learn heuristics using training data generated by running a set of representative programs

on the target platform. We illustrate this approach with two specific examples, namely, the problem

of determining the best unroll factors for loops and a more general problem of learning good priority

functions for optimizations such as function inlining and instruction scheduling.

8.4.1 Deciding Best Loop Unroll Factors

Loop unrolling is a loop transformation that replicates the body of a loop several times. Listing 8.3 shows

an unrolled version of the loop in Listing 8.1. Loop unrolling reduces the overheads of instructions that

check for loop termination. Other important benefits of unrolling include (a) the increase in integer linear

programming (ILP) that may help generate better schedules, (b) positive interactions with classical opti-

mizations and other loop transformations [15], and (c) exposing regular memory access patterns [34, 35].

However, loop unrolling has several undesired side effects such as increase in code size and register pressure,

which can neutralize the benefits of unrolling and even hurt performance. The task of a compiler writer

is to design a heuristic function that considers these factors and determines if a loop should be unrolled

and the best unroll factor for the loop.

Monsifrot et al. [27] proposed the use of supervised classification to infer unroll heuristic functions

for a given target platform. Their approach focuses on the problem of finding a heuristic that determines

if a given loop should be unrolled. Stephenson and Amarasinghe [28] extended this approach to find

heuristics that predict the best unroll factor for a loop. Before discussing these approaches, we introduce

some of the basic concepts of supervised classification.

8.4.1.1 Supervised Classification

Consider a set of objects, each characterized by a finite number of measurable quantities or features.

Also assume that there exists an equivalence relation that partitions these objects into a finite number of

equivalence classes. Supervised classification [32] is a machine learning technique that automatically finds

an approximation to this equivalence relation from training data. The training data consists of a subset

of the objects (represented using feature vectors), each associated with an equivalence class (represented

using class labels). If the approximate equivalence relation inferred from the training data resembles the

actual relation, it will classify “unseen” objects (objects not part of the training data) correctly with high

probability. This approximate relation can then be used as a proxy for the actual equivalence relation.

8.4.1.2 Loop Unrolling and Supervised Classification

Let us formulate the problem of finding loop unrolling heuristics for a given target platform in the

supervised classification framework. Consider loops as the objects of interest and assume that there exists

an equivalence relation that partitions all loops into equivalence classes such that two loops L 1 and L 2

belong to the same equivalence class if they have the same best loop unroll factor. Since this equivalence

relation is unknown, we use supervised classification to learn an approximate relation, which will be our

unrolling heuristic. In other words, if the heuristic we learn is a close approximation of the unknown

equivalence relation, the result of classifying an unseen loop using this heuristic is likely to give the best

unroll factor for that loop.

The procedure for using supervised classification to find the best loop unrolling heuristic consists of

the following steps:

Feature extraction: Identify a set of static loop features that are likely to determine the costs and

benefits of loop unrolling. Stepehenson and Amarasinghe [28] propose to use 38 loop features in

their classification scheme; a subset of these 38 features is listed in Table 8.1.

Generating training data: The training data consist of pairs {(L i , ui ) | 1 ≤ i ≤ n}, where L i is the

feature vector and ui is the best unroll factor for loop i . The training data is generated by first
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TABLE 8.1 Subset of loop features considered for

supervised classification

Loop characteristics

Loop nest level

Number of operands

Number of operations

Number of floating point operations

Number of memory operations

Number of branches

Instruction fan-in in DAG

Live range size

Critical path length

Known trip count

Number of parallel computations in loop

The min. memory to memory loop carried dependency

The language (C or Fortran)

Number of indirect references in loop body

The max dependence height of computations

selecting a set of benchmark programs. The compiler then identifies loops in these programs and

statically analyzes the loop bodies to generate feature vectors. Finding the best unroll factor for each

loop in the training programs is also relatively straightforward. For each loop in the training data

set, the execution time of the loop is measured on the target platform for all unroll factors (below a

reasonable upper bound), and the loop is labeled with the unroll factor that results in the smallest

execution time. This assignment partitions the training data into as many classes as the number of

unroll factors considered for evaluation.

Feature selection: Based on the training data, feature selection techniques [32] such as mutual infor-

mation score and greedy feature selection are used to reduce the dimensionality of the feature space.

These techniques identify and eliminate redundant features and only retain the most informative

ones. Using smaller feature vectors for training is recommended, both for accuracy and efficiency

reasons.

Select a classification technique: The choice of the classification technique is typically governed by

factors such as accuracy, efficiency, and interpretability. Monsifrot et al. [27] use decision trees [36]

for classification for their efficiency and interpretability. A decision-tree-based approach recursively

partitions the feature space into regions, much like MARS. The nodes of the decision tree are simple

conditions over one or more features, which can be easily read and interpreted by compiler writers.

However, Stephenson and Amarasinghe [28] prefer more accurate but less interpretable methods

such as nearest-neighbor classification and support vector machines.

The result of this exercise is an unrolling heuristic customized for a given target platform. Stephenson

and Amarasinghe [28] found that the heuristic learned using supervised classification outperforms a

highly tuned, manually developed heuristic in several cases, and unlike the manual heuristic that took

several years to develop, the classifier-based heuristic was obtained in a matter of days, including the time

to generate the training data. Interestingly, they also found that the loop unroll factors suggested by the

classifier for unseen loops are almost always the same as the optimal unroll factors obtained using an

oracle.

8.4.2 Learning Priority Functions

In several optimizations, compiler heuristics are structured as priority functions [31, 37]. A priority

function is used when a compiler must choose one from among several code transformations it can

effect. The priority function considers several program characteristics and assigns a weight to each
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candidate transformation, which reflects the potential gains of applying the transformation. The nature

and importance of priority functions is best illustrated using examples:

� Function inlining: Inlining a function at a call-site can improve performance by eliminating the

overheads of setting up a stack frame and by allowing the callee’s code to be optimized in the

context of the caller. However, unconstrained inlining and the resulting increase in code size and

register pressure can adversely affect performance. Therefore, it is not uncommon for compilers to

control the increase in code size using a tunable threshold. Given this threshold, inliners typically

use a priority function to choose the most profitable call-sites in the program. An example priority

function is shown below.

P (c) =
(level(c) + 1) ∗ largestSize

size(c)
(8.8)

Here c refers to a callee function being considered for inlining, level(c) is the call depth of the callee,

size(c) is the size of the callee (typically measured in the number of IR (intermediate) instructions),

largestSize represents the size of the largest function in the program, and P (c) is the priority value

assigned to the callee c . This priority function assigns a higher priority to callees that have relatively

small code size and are deeper in the call-graph.
� List scheduling: A list scheduler first creates a dependence graph of instructions in the optimization

unit (typically a basic block). In each subsequent step, the scheduler identifies a set of ready instruc-

tions, that is, instructions whose input dependencies have been resolved and micro-architectural

constraints (such as the availability of functional units) have been satisfied. The scheduler then

selects one of the ready instructions for scheduling. The selection is typcially based on a priority

function, which estimates the potential benefit of scheduling each of the ready instructions next.

Equation 8.9 shows a typical list scheduling priority function P (i) for instruction i that prioritizes

instructions that head long-latency dependence chains. Here, latency(i) is the estimated latency of

the instruction (in cycles).

P (i) = latency(i) : if i is independent

maxi depends on j latency(i) + P ( j ) : otherwise (8.9)

These two examples are by no means exhaustive; priority functions are integral to several other opti-

mizations such as register allocation [10, 38], hyperblock formation [39, 40], software pipelining [11], and

data prefetching [31, 41]. It has been shown that priority functions play a critical role in determining the

eventual effectiveness of an optimization.

Unfortunately, effective priority functions are hard to engineer. In the absence of a systematic process for

deriving good priority functions, compiler writers manually design and evaluate priority functions via ad

hoc experimentation. For some optimizations, priority functions may be found using an approach based

on supervised learning (Section 8.4.1). However, for optimizations like instruction scheduling and register

allocation, where the difference in execution time between good and bad individual choices may not be

discernible, supervised learning may not be the best alternative (although efforts along those lines have

been made [29]). Stephenson et al. [31] propose an alternate and rather interesting approach to solving

this problem. They show that effective priority functions may be found using an unsupervised learning

technique known as genetic programming [33]. In this formulation, the best priority function is found by

searching through the space of priority functions and evaluating each candidate function by executing one

or more representative programs on the target platform and measuring the execution time. Let us try to un-

derstand how genetic programming can search this potentially infinite space automatically and efficiently.

8.4.2.1 Genetic Programming

Genetic programming (GP) [33] is a machine learning technique that attempts to find a program that

optimally solves a given problem by mimicking the evolutionary behavior of a natural population. Just as

a population consists of a set of individuals, a GP population consists of a set of programs, represented
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FIGURE 8.8 The sequence of operations in a genetic programming-based algorithm.

using parse trees. Each program is also associated with a fitness function, which is an estimate of how

well the program solves the given problem. GP algorithms start with an initial population of programs

(usually randomly generated). Each step in the algorithm (illustrated in Figure 8.8) corresponds to a

generation in the evolutionary process of the natural population. During each generation, programs evolve

via mechanisms analogous to natural selection, reproduction (cross-over), and mutation amongst others,

while following the principle of survival of the fittest. In a mechanism analogous to natural selection, a

predetermined number of programs are randomly chosen to die in each generation. The probability of a

program being selected for dying is inversely proportional to its fitness. Hence, programs that are relatively

fitter (i.e., solve the problem better) are more likely to survive and remain a part of the population after

selection. In cross-over, a predetermined number of offsprings are produced by a cross-over of random

individuals in the current population. Again, the likelihood of a program being chosen for cross-over

is proportional to its fitness. This strategy ensures that features of good programs survive through the

generations, while features that cause programs to perform poorly die out. Programs may also mutate

by randomly changing into other programs. Mutation ensures that an algorithm does not get stuck with

locally optimal programs and that the algorithm eventually finds the globally optimal program for the

given problem. The algorithm usually terminates when the number of generations reaches a user-specified

limit. At this point, the fittest function in the current population is returned as the best solution.

8.4.2.2 Priority Functions and GP

Priority functions can be thought of as programs that assign weights to code transformations. We now

outline a GP-based technique [31] that exploits this correspondence between priority functions and

programs and finds effective priority functions for a given target platform. The technique relies on genetic

programming for searching through the space of priority functions. To use GP, we must resolve the

following issues: (a) identify the set of program features to be included in the priority function, (b) decide

how priority functions can be represented, (c) define the space of valid priority functions that the genetic

algorithm is allowed to explore, (d) define a fitness function, and (e) define evolutionary operations over

priority functions. Let’s take a closer look at each of these tasks:

Feature extraction: Given an optimization, we must first identify a set of measurable code characteristics

that are likely to influence the costs and benefits of the optimization. This task is similar to the

feature extraction procedure discussed in Section 8.4.1.
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FIGURE 8.9 Parse tree representation of the inlining priority function.

Representing priority functions: Priority functions can be represented using parse trees [33]. For exam-

ple, Figure 8.9 shows the parse tree corresponding to the inlining priority function (Equation 8.8).

The inner nodes of the parse tree are operations, and the leaves correspond to features.

Priority function space: The priority function space represents all functions that GP is allowed to

generate and explore. A function space is defined by the set of operators that may be used to

generate expressions. A simple set of operators over real-valued and boolean-valued features used

by Stephenson et al. [31] are listed in Table 8.2. In general, a larger number of operators allows

the GP to explore a larger function space and enhances the GP’s ability to express good priority

functions. However, allowing a larger number of operators may adversely affect the time taken by

GP to converge to a locally optimal priority function.

Fitness functions: We require a fitness function that estimates a priority function’s ability to recognize

and prioritize profitable transformations over unprofitable ones. One way of assessing the fitness

of a priority function is to build the function into the optimization, compile a set of benchmark

programs, run the programs on the target platform, and measure the total execution time. The best

priority function obtained by GP using this fitness function will be tuned for the class of applications

that the benchmarks represent. Alternatively, if the goal is to obtain a customized fitness function

for a given program (and perhaps a given input), the execution time of that program on the target

platform may be used as the fitness value. The latter can also be seen as a profile-driven optimization.

Evolutionary operations: As shown in Figure 8.8, the GP uses one or more evolutionary operations

during each generation to evolve the population. We define these operations over parse trees.

Figure 8.10 shows the priority functions that may be produced after a cross-over is performed

between two priority functions. Here, two subtrees of the parents are randomly selected and swapped

to produce new individuals. Similarly, mutation may be defined as an operation in which a subtree

of an individual is randomly selected and replaced with another randomly generated expression

(Figure 8.11).

TABLE 8.2 Real-valued and Boolean-valued operators used for

constructing priority functions

Real-valued operators

Real1 + Real2

Real1 − Real2

Real1 × Real2

Real1/Real2 if Real2 �= 0, 0 otherwise√
Real1

Real1 : if Bool1

Real2 : if not Bool1

const Real1

Boolean-valued operators

Bool1 and Bool2

Bool1 or Bool2

not Bool1

Real1 < Real2

Real1 > Real2

Real1 = Real2

const Bool1
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FIGURE 8.10 Figure illustrating the cross-over operation. If the subtrees rooted at gray-color-nodes in expressions

(a) and (b) are selected for cross-over and swapped, one of the resulting offspring is shown in (c). If the subtrees rooted

at the blue-colored nodes are chosen and swapped, the offspring shown in (d) may result.

Once the problem of finding an effective priority function is reduced to the GP framework, one of the

many GP implementations may be used. The result of running a GP over the program feature space is a

parse tree, which can be embedded in a compiler and used as a priority function.

8.4.2.3 Implementation Issues

Having established the connection between priority functions and GP, we can use one of the many readily

available GP implementations to find effective priority functions. However, depending on the optimization

at hand and the GP implementation used, one or more of the following implementation issues may

arise.



Statistical and Machine Learning Techniques in Compiler Design 8-21

/

size×

+ has loop?

1level

FIGURE 8.11 Priority function produced after mutating the function in Figure 8.10(a). The subtree rooted at node

largestSize has been replaced with a randomly generated subtree representing the expression has loop?.

First, note that expressions created via the evolutionary operations are not bounded in size. If left to

its own devices, GP may create arbitrarily large expressions. However, if one assumes that Occam’s razor

holds and most priority functions are likely to be simple, a GP implementation may place some form of

external bounds on the size of the expressions. For instance, larger priority functions could be penalized

by using the function size in computing the expression’s fitness. Such a fitness function would ensure that

large expressions are not likely to survive unless they are significantly better. Stephenson et al. [31] use a

simpler version of this strategy.

The efficacy and running time of genetic programming has been shown to depend significantly on the

degree to which each evolutionary operator is applied. Most GP implementations take input parameters

such as the population size, number of generations, number of expressions replaced in each generation,

mutation rate, and so on. Policies like elitism, which ensures that the fittest member of each generation

is not replaced, may also be used. Finding the best values for these parameters will usually require some

experimentation. Finally, note that in the specific instance of finding priority functions, the running time

of the GP is dominated by the time spent in evaluating the fitness of priority functions in each generation.

This comprises the time spent in compiling the benchmark program(s) using each priority function

and executing the program(s) on the target platform. However, this process can be entirely automated,

eliminating the manual search process that compiler writers currently employ.

8.5 Phase Ordering

In discussions leading up this section, we observed that the nature of interactions between optimizations

depends on the program being compiled and the order of applying the optimizations. We also observed that

applying optimizations in the right order is likely to yield significant benefits. These observations naturally

lead us to the problem of finding the sequence of applying optimizations that results in “optimal” code.

This problem, also known as the phase ordering problem, has intrigued researchers for several years.

The complex nature of the phase ordering problem has been recognized for several years. Although

few in number, attempts have been made to analytically infer phase orderings for specific classes of

optimizations. For instance, Whitfield and Soffa [7, 8] proposed a framework for specifying optimizations.

The formal specifications are used to automatically identify potential interactions, which in turn could be

used to select local phase orderings. Long and Fursin [42] consider the special class of iteration reordering

loop transformations and show that the phase ordering problem for this class of optimizations can be

transformed to one of searching over a polyhedral space. These methods are unfortunately restricted to a

select set of optimizations, restricting their use in practice.

Because of these limitations of analytical methods, researchers have tended to favor empirical techniques

such as iterative compilation [43] for finding effective solutions to the phase ordering problem. Unlike ana-

lytical methods, empirical techniques [2, 44–48] evaluate different phase orderings by executing programs

on the target platform. Since each phase ordering is evaluated based on its execution time on the target

platform, all intricacies of the hardware are automatically accounted for, eliminating the need for complex
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hardware models. Hence, the empirical approach produces high-quality phase orderings, tuned for a given

program(s) and target platform. However, empirical methods are inherently associated with significantly

high compilation costs. The compilation time, which now includes the time spent compiling programs

with each phase ordering and executing the programs on the target platform, depends on the number of

phase orderings evaluated before a satisfactory solution is found. This in turn depends on the technique

used to search the phase ordering space and the characteristics of the space itself. In the rest of this section,

we take a closer look at these two aspects vital to the feasibility of empirical approaches.

8.5.1 Characterizing Phase Ordering Space

The phase ordering space is a discrete space consisting of all possible phase orderings. This space is

obviously infinite because each optimization may be occur infinitely many times in a phase ordering.2

For the purpose of characterizing and searching, it is usual practice to restrict the space by imposing

constraints, such as imposing an upper bound on the length of the phase orderings. However, even a

constrained phase ordering space can be huge if a nontrivial number of optimizations are considered. A

compiler with 16 optimizations and a maximum length of 10 results in a space of 1610 phase orderings [2].

Therefore, most studies that characterize phase orderings are limited to a much smaller phase ordering

space.

Interestingly, Kulkarni et al. [50, 51] consider the problem of finding optimal phase orderings for

individual procedures. Their studies show that for simple procedures and a typical set of optimizations,

the effective phase ordering space is finite in practice. They argue that for most procedures, the phase

ordering space can be reduced to a finite set of phase orderings such that each phase ordering in the

original infinite space is functionally equivalent (i.e., produces the same optimized procedure) to at least

one phase ordering in the finite set. If a finite phase ordering space does exist, an exhaustive characterization

and search may be possible [52].

We now discuss conclusions from two separate attempts at characterizing the phase ordering space [2, 52].

These conclusions are critical to our understanding of the phase ordering space and to the design of efficient

search techniques employed for finding the optimal phase ordering.

Almagor et al. [2] experimentally characterized a 10-of-5 space (sequences of length 5 drawn from 10

optimizations) with close to 10 million points for a set of small programs. The programs were compiled for

each of these 10 million points, and the number of instructions executed was used as the fitness metric. Two

points in this space are said to be adjacent if the Hamming distance between them is 1. An analysis of the

results shows that the phase ordering space is all but smooth. The surface of the fitness metric in this space

resembles a heavily cracked glacier. The surface does not reveal any relationships or correlations between

the optimizations. Also, the difference between the best- and the worst-performing phase ordering was

sometimes found to be 100% or larger. This confirms the importance of finding the right phase ordering

for programs. A more detailed analysis of the surface reveals the existence of several local minima (all

adjacent phase orderings perform worse) and at times several global minima. Furthermore, the distance

between a randomly chosen point in the space and the closest local minima tends to be small (a Hamming

distance of 16 or less in most cases). This property was shown to hold for a larger 10-of-16 phase ordering

space as well. However, the analysis also finds that both good and bad local minima exist. In other words,

some of the local minima are fairly close to the global optimal (within 5%), wheres other local minima

are farther away (20% or more). Furthermore, the distribution of the local minima in space is heavily

dependent on the program and the set of transformations considered. These observations suggest that

simple search techniques like hill climbing [53] may reach a local minima in a small number of steps and

better solutions may be obtained using adaptive techniques like genetic algorithms [54].

While Almagor et al. [2] characterized spaces with a fixed phase ordering length, Kulkarni et al. [52]

evaluated phase ordering spaces without a bound on the length. Their study reveals a correlation between

2Touati and Barthou [49] formalize this notion and prove that the phase ordering problem is undecidable in general.



Statistical and Machine Learning Techniques in Compiler Design 8-23

the length of the phase orderings and performance. They observe that as the length of the phase orderings

considered increases, the average difference between the local minima for that length and the global

minima decreases. However, increasing the length beyond a threshold does not result in proportional

benefits. Since searching in spaces with longer phase orderings is expensive, efficient search algorithms

must strike a balance between the time taken for searching and the quality of the search results.

8.5.2 Search Techniques

We now describe two general search techniques that have been shown to be very effective in finding

close-to-optimal phase orderings:

Hill climbing: Hill climbing [53] is a simple search technique that attempts to find a local optimum of

a function over a discrete space. There are several versions of this search technique. In the simplest

version of hill climbing, the search starts at an initial point (usually randomly selected) and in each

subsequent step moves to a neighboring point with a better fitness value (lower execution time in

our case). The search terminates at a point where no neighboring point has a better fitness value,

that is, a locally optimal point is reached. In steepest descent hill climbing, the algorithm evaluates

the fitness of all neighboring points and moves to the point with the best fitness value. An impatient

version of steepest descent restricts the number of neighbors it evaluates before making a decision to

move. The version of hill climbing commonly used for finding effective phase orderings is random

research hill climbing. Here, one of the basic versions of hill climbing is performed multiple times

with different randomly selected initial points. Most studies [2, 52] indicate that random research

hill climbing finds phase orderings that are very close to the global optimum within a small number

of steps. This result follows from some of the characteristics of the search space.

Genetic algorithms: A genetic algorithm (GA) [54] is a search technique that belongs to the class

of evolutionary algorithms. GAs are a generalized form of GP. In GAs, the input space is an

abstract representation called chromosomes of possible solutions. Traditionally, the solutions or

chromosomes are represented as binary strings. However, many other representations of the solution

space are also possible. Furthermore, evolutionary operators such as cross-over and mutation are

also defined over chromosomes. Much like GPs, the randomness in the evolutionary operators

ensures that the GA does not get stuck in locally optimal solutions and reaches the global optimal

if run for a sufficient number of generations. In our problem, a phase ordering naturally maps to

the notion of a chromosome and is easily represented as a string over the alphabet of compiler

optimizations. Cooper et al. [44] first proposed the use of GAs for finding phase orderings that

reduce the size of optimized code. Kulkarni et al. [52] show that GAs are very effective in finding

phase orderings close to the global optimum within a reasonable number of generations. They also

find that the maximum length of the phase orderings considered is an important parameter in the

performance of the GA. As the length of the phase ordering is increased, the difference between the

GA solution and the global optimum decreases.

8.5.3 Focused Search Techniques

The search techniques discussed above address the problem of finding good phase orderings automatically.

However, the techniques have found limited use in practice because of the large amounts of time they

incur in finding good phase orderings. Even with the most efficient search techniques, finding an effective

phase ordering could take several hours, if not days [47, 48]. For instance, Kulkarni et al. [47] reported

that finding phase orderings for a jpeg implementation using a conventional genetic algorithm requires

over 20 hours. Similarly, Agakov et al. [48] found that over 100 phase ordering evaluations are required

to find a locally optimal phase ordering using random search. The search time is dominated by the time

spent in compiling and evaluating each phase ordering. While this effort may be justified in some settings,

faster searching algorithms are essential for a wider acceptance and use of compilers that adapt phase

orderings.
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FIGURE 8.12 Graphical illustration of a phase ordering space. The shaded areas represent near-optimal phase

orderings for two programs.

There are several ways of improving the efficiency of the search process. For instance, Cooper et al. [55]

proposed methods for reducing the amount of time spent in evaluating each phase ordering. The speed of

searching could also be improved by caching the results of phase orderings as they are evaluated and reusing

the results from the cache when a redundant phase ordering is detected. A phase ordering is said to be

redundant if (a) it is syntactically the same as a phase ordering that has previously been searched and

evaluated or (b) it is functionally equivalent to the previously evaluated phase orderings. This may happen

because of the presence of dormant optimizations or two different phase orderings producing the same

code or two phase orderings producing equivalent code [47]. An orthogonal approach is to reduce the

number of phase orderings considered for evaluation by focusing the search techniques to regions of

the phase ordering space where the optimal points are more likely to occur [45, 47, 48]. For illustrative

purposes, let us consider a focused search technique based on predictive modeling [48].

8.5.3.1 Focused Search Using Predictive Models

The search techniques we have discussed so far are generic techniques that do not require any prior

knowledge of the programs or optimizations under consideration. As a result, these techniques apply to a

wide variety of programs and optimizations. However, the generic nature of these techniques comes at the

cost of increased search times. This is because in the absence of any prior information about the nature

of the search space, generic search techniques must start by considering all phase orderings as potential

candidates and slowly narrow down the search to regions of the phase ordering space that yield the most

benefit.

In light of this shortcoming, researchers have considered the possibility of using more specialized

search techniques for increasing the efficiency of the search process. Agakov et al. [48] propose one such

specialized search technique based on machine learning. The technique relies on the assumption that

“similar” programs are likely to respond in a similar fashion to different phase orderings. In other words,

a phase ordering that is beneficial for one program is likely to be beneficial for all similar programs. This

assumption also implies that the best phase orderings for similar programs are likely to occur in the same

regions of the phase ordering space. Therefore, if the regions that contain effective phase orderings for one

program are known a priori, the process of finding the best phase orderings for similar programs can be

speeded up by biasing the search toward these regions.

Figure 8.12 illustrates the basis of this search technique graphically. Consider a set Ŵ of m optimizations

{o1, . . . , om}. The bounded area in Figure 8.12 represents a constrained phase ordering space in which

each phase ordering is a sequence s1s2 . . . sn of length n, where each s i ∈ Ŵ. To simplify the visualization,
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the phase ordering space is flattened out into two dimensions. The x-axis represents the first half of the

sequence s1s2 . . . sn/2, and the y-axis represents the second half sn/2 . . . sn. The figure also shows regions

(shaded with plain gray) that contain phase orderings that result in a significant speedup for program a

and other regions (shaded in hatched gray) that benefit program b. The best phase orderings for another

program c similar to b are more likely to be found in regions that benefit b.

We now describe the search technique in more detail. The proposed methodology involves an offline

training step, in which a mapping between a set of training programs and regions of the phase ordering

space that yield significant benefits is learned. Then, given a new program, the technique finds the closest

program in the training set and initiates a conventional search from regions that are known to benefit the

closest training program. Let us take a closer look at each of these steps.

8.5.3.1.1 Offline Training

In this offline step, we want to learn a mapping between a set of training programs and regions in the phase

ordering space that yield significant performance benefits for these programs. There are several ways of

learning such a mapping. In the simplest of strategies, we could run the training programs for a randomly

selected set of phase orderings and associate each training program with its own best phase ordering(s).

Then an effective phase ordering for a new program may be found simply by finding a program in the

training set that is most similar to the new program, evaluating its best phase ordering(s) and picking

the best ordering among them. While this focused search technique is extremely quick, it constrains the

search space to a very small set of phase orderings. As a result, it lacks the ability to generalize beyond the

set of programs in the training data set and may not yield the best phase orderings for sufficiently different

programs.

Let us now consider an alternate strategy that generalizes to a larger class of programs while retaining

much of the performance advantages of the previous strategy. The key to the alternate approach lies in

realizing that the previous strategy assigns an equal, nonzero probability to phase orderings that were

effective for the most similar program in the training set and a probability of 0 to all other phase orderings.

In the alternate approach, we try to assign high probabilities to phase orderings that were effective for the

program in the training set and progressively lower (nonzero) probabilities to other phase orderings. In

effect, such a probability assignment ensures that given a new program, the search procedure evaluates

phase orderings that were beneficial for similar programs in the training set and hence are more likely to

benefit the new program, before evaluating other phase orderings.

We are now left with the task of assigning probabilities to phase orderings for each of the programs in

the training data set. Ideally, the probability assigned to each phase ordering should reflect the likelihood

of the phase ordering being effective for similar programs. There are several ways to compute such an

assignment. For instance, if we assume that the individual optimizations are independent, each phase

ordering could be assigned a probability equal to the product of the probabilities of the optimizations in

that sequence being effective (Equation 8.10).

P (s1s2 . . . sn) =

n
∏

i=1

P (s i ) (8.10)

Here, P (s i ) is the probability that the optimization s i occurs in effective phase orderings. This probability

is easily computed by running the training program for a randomly generated set of phase orderings and

counting the number of times the optimization appears in an effective phase ordering. Here, an effective

phase ordering is defined as a phase ordering that achieves at least a certain fraction of the performance

achieved by the best phase ordering.

This simple method of assigning probabilities to phase orderings ignores the presence of interactions. As

we have already seen, interactions between optimizations are pervasive. For example, some optimizations

are most effective in the presence of other optimizations. In such scenarios, a simple product of the

individual probabilities is not a good measure of the effectiveness of the phase ordering. To account for
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TABLE 8.3 Some of the features used

to classify programs

Features

loop nest depth

are loop bounds constant?

number of array references within loops

number of load/store instructions in loops

number of integer variables in loops

number of floating point variables in loops

number of call instructions in loops

number of branch instructions in loops

interactions between optimizations, phase orderings can be modeled as Markov chains [56]. A Markov

chain for phase orderings is defined as follows:

P (s1s2 . . . sn) = P (s1)

n
∏

i=2

P (s i | s i−1) (8.11)

This richer characterization of phase orderings assumes that the effectiveness of an optimization depends

only on the previous optimization in the phase ordering. Since this model accounts for some of the

interactions between optimizations, the resulting probability assignment more accurately reflects the

potential benefits of phase orderings. Consequently, a search guided by this model is likely to find effective

phase orderings quickly.

8.5.3.1.2 Program Classification

The focused search technique we have discussed hinges on the notion of similarity of programs. Given

a new program, we want to identify a program in the training set that responds in the same fashion to

changes in phase orderings. This problem can be cast as an unsupervised classification problem. Here, each

program is represented using a set of measurable features that characterize the way the program responds

to different phase orderings. We first collect the feature vectors of all training programs. Given the feature

vector of a new program, any unsupervised classification technique like nearest neighbors can be used to

find the program most similar to the new program. The subset of features used by Agakov et al. is listed in

Table 8.3; a detailed listing can be found elsewhere [48].

8.5.3.1.3 Focused Search

After identifying the training program most similar to the given program, we drive one of the many

conventional search techniques using the probability model associated with the training program. For

instance, in random search, phase orderings are selected based on the probability model of the training

program instead of the original method of selecting phase orderings at random. In case of a GA, the initial

population of phase orderings is selected using the probability model of the training program instead of

a randomly generated set of phase orderings.

The focused search technique we have discussed has shown a lot of promise [48]. These techniques arrive

at the best phase orderings using a fraction of the number of evaluations incurred by the corresponding

conventional search techniques. However, just like other learning techniques, it has been found that the

effectiveness of focused search depends on the quality and the amount of training data, which in this

case equates to the number of different programs included in the training data and the number of phase

orderings evaluated for learning the probability models. The latter is especially important if we use richer

models such as Markov chains. Here, the number of unknown probabilities that must be learned from

training data is O(m2), where m is the number of optimizations. It has been found that the simpler

product of probabilities model may outperform Markov chains if the amount of training data available is

not sufficient to accurately learn all the unknown probabilities in the chain.
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8.6 Optimization Flags and Parameter Selection

The selection of optimization flags is probably the only form of (manual) adaptation built into a conven-

tional compiler. Most compilers allow users to choose their own optimization settings by providing flags that

can be used to enable or disable optimizations individually. However, developers and compilation tools

rarely exercise this option and rely on the default settings instead (typically the -Ox settings, where x is the

level of optimization). Recent research has shown that the use of default settings often leads to suboptimal

performance [3, 4]. This is because compiler writers usually choose the default settings based on the average

performance measured over a number of benchmark programs on a limited number of platforms. There-

fore, these settings are not guaranteed to deliver the best performance for a given program on a given target

platform. For instance, it is not uncommon for some of the aggressive optimizations like loop unrolling to be

turned off by default [57] because the optimization was found to hurt average performance, probably due

to negative interactions and/or ineffective heuristics. These optimizations are not used (unless explicitly

turned on by the user), even when the program being compiled may have benefited from the optimizations.

Ideally, we would like the compiler to automatically select the best set of optimization flags for each

program, probably by performing a cost-benefit analysis based on an accurate model of all optimizations

and the target platform. Such analysis is beyond the capabilities of existing analytical modeling techniques.

As an alternate approach, researchers have proposed a number of automatic techniques based on statis-

tics and machine learning to address this problem [3, 4, 58, 59]. Let us consider the technique based on

inferential statistics [3] in some detail.

8.6.1 Optimization Flag Selection Using Inferential Statistics

In this approach, compiler optimizations are considered as factors that influence the performance of the

given program. We design a set of experiments to test whether each of the factors has a significant positive

effect on performance. Here, each experiment involves measuring the execution time of the program

compiled using one of the 2k possible settings of the optimization flags. For the moment, assume that we

are interested in determining whether one of the optimizations A is effective for the program. We can

design a set of experiments G , which can be split into two equal groups G 0 and G 1 with N experiments

each. The group G 0 consists of experiments in which the optimization A is turned off, and G 1 consists

of experiments where A is turned on. All other optimization flags are randomly selected. A statistical test

known as the Mann–Whitney test [60] can be used to analyze the data collected by measuring the execution

times of the given program for each of these experiments and determine whether the optimization A is

effective. Informally, the test is based on the observation that if optimization A is effective, the performance

of experiments in group G 1 should be better than the performance of experiments in group G 0. Note that

simply comparing the average execution times of experiments in G 0 with the average of experiments in

G 1 may lead to false conclusions because this comparison does not take the variance into account.

The Mann–Whitney test works as follows. The test ranks each of the experiments in G based on the

measured execution time. The experiment with the smallest execution time is assigned rank 1, and the

experiment with the highest time is assigned rank 2N. Then the test computes statistics S0 and S1, where S0

and S1 are the sums of ranks of all experiments in groups G 0 and G 1, respectively. Consider the statistic S1.

This statistic can have a minimum value (1+2+· · ·+ N) and a maximum value ([N +1]+· · ·+2N). The

first value occurs when all the experiments in group G 1 have execution times smaller than the experiments

in group G 0, and the second values occurs in the opposite case. It can be shown that if the optimization

A is not effective for the program, the statistic S1 is normally distributed with mean

μ =
N(N + 1)

2
(8.12)

and standard deviation

σ =

√

N2(2N + 1)

12
(8.13)
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Since the statistic S1 is normally distributed, one can use ordinary statistics to determine the probability of

a specific value of S1 as originating from this distribution. If this probability is small (less than a threshold,

typically 5%), we can conclude that the optimization A is effective for the program.

So far, we have discussed the scenario where we are interested in testing for the significance of one

optimization. Although this test can be independently repeated for each optimization, it would require

a large number of experiments. An experimental design technique known as orthogonal arrays [61] may

be used to design a single set of experiments that can be reused for all optimizations. Using orthogonal

arrays, Haneda et al. [3] show that a set of 48 experiments is sufficient to select the best optimization flag

settings for 23 optimizations in gcc.

Several other techniques may be employed to select optimization flags. For instance, Cavazos et al. [58]

use logistic regression [62] for selecting method-specific optimization flags for compilation in a Java

runtime system. Vaswani et al. [4] use neural network models to select both optimization flags and

optimization parameters and find that performance can be improved by as much as 20% by using program-

specific optimization settings. Cavazos and O’Boyle [59] propose the use of regression models to select

optimization flags from data obtained using hardware performance counters. It is important to note that

these techniques are statisitcally rigorous, completely automatic, and require no prior knowledge of the

optimizations involved.

8.7 Conclusions

Optimizing compilers were originally conceived as tools that would free programmers from the burden

of manually optimizing and tuning programs for performance, allowing them to focus on writing correct

and modular code instead. It is therefore ironic that compiler writers find themselves in a similar situation

today. Writing high-performance optimizing compilers is becoming an increasingly difficult and tedious

task because of the sheer number and nature of compiler optimizations, complex interactions, multiple

(often conflicting) objective functions, and the complexity of modern hardware. Therefore, tools and

techniques that automatically address these concerns and allow compiler writers to focus on the task of

writing correct and retargetable optimizations are desirable.

In this chapter, we observe that the key to high performance lies in flexible and adaptable compilation

strategies, a feature missing in conventional compilers. Through a series of examples, we show that effective

compilation strategies can be automatically learned using statistical and machine learning techniques. In

this model of compilation (illustrated in Figure 8.13), the compiler learns a mapping between different

Source
Code Compiler

Front-end

IR Adaptation
Unit

Program Profile

Binary
Hardware

Compilation Strategies

FIGURE 8.13 An adaptive compilation model that uses feedback from the target platform to search and evaluate

compilation strategies.
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types of programs and effective compilation strategies, which includes aspects such as phase ordering,

optimization flags, and heuristics. The learning process is based entirely on experimental data collected

by observing the behavior of compiler optimizations for a set of representative programs on the target

platform. Note that this model of adaptive compilation differs slightly from the model shown in Figure 8.5

in the use of an architecture description for driving optimizations. Researchers have preferred using the

target platform as the hardware model rather than relying on an abstract model of the hardware. This is a

direct consequence of the fact that existing techniques for modeling the hardware [9] are not accurate or

flexible enough to drive adaptation. The design of techniques that can quickly and accurately predict the

performance implications of compiler optimizations continues to be an area of active research.

This black-box approach to the design of compiler optimizations has several advantages over traditional

analytical approaches. The approach does not rely on a compiler writer’s knowledge of the optimizations or

on the availability of detailed hardware models; the approach is targeted at complex systems like compilers

where human understanding is often limited. For instance, empirical modeling techniques offer insights

into the inner workings of compiler optimizations that are hard to infer otherwise. Furthermore, some

statistical and learning techniques often find optimal or close-to-optimal solutions to hard problems.

Finally, the empirical approach also automates tedious tasks such as heuristic selection, often resulting in

significant savings in design and development time.

We conclude our discussion with a brief mention of some of the shortcomings of statistical and machine

learning techniques. First, these techniques rely on the availability of adequate training data, which must be

collected by executing programs on the target platform or via simulation. This results in a significant, often

intolerable increase in compilation time. Consequently, the use of learning-based adaptive compilation

techniques has been restricted to environments such as embedded systems, where large compilation times

are acceptable. Second, most learning techniques are heavily parameterized and cannot be used out of

the box. For instance, the efficiency of a GA relies heavily on a number of tunable parameters such as the

initial population size, the fraction of population selected for mutation and cross-over, and the maximum

number of generations the GA is allowed to run. Tuning these parameters often requires a certain amount

of trial and error. Addressing these shortcomings is critical for the feasibility and wider acceptability of

adaptive compilers.

Appendix A: Optimality in Program Compilation

In the absolute sense, a program Pabs is said to be optimal if there exists no semantically equivalent program

P ′ that executes faster than Pabs for any input of the program. Therefore, given an arbitrary program, we

would ideally like an optimizing compiler to generate the corresponding optimal program. It turns out

that this notion of optimality is only of theoretical interest and cannot be realized in practice. In fact, there

are simple programs for which an equivalent optimal program does not exist [63]. For instance, consider

programs that contain loops with branches conditioned on input variables. The execution paths of these

programs clearly depend on the input data. For such programs, one requires the notion of an unbounded

speculative window to express or execute an equivalent optimal program.

Since this notion of optimality is not practical, it is relaxed by restricting our reasoning to the performance

of the program on a given input [49]. Formally, a program PI can be considered optimal if there exists no

semantically equivalent program P ′ that executes faster for a given input I . Note that although optimality

is defined in terms of the program’s performance over a specific input, the optimal program is still

required to execute correctly for all other inputs. It turns out that even this notion of optimality is hard

to achieve because it requires reasoning over a large (potentially infinite) number of possible compiler

optimizations (those that exist or may exist in the future). Therefore, it makes practical sense to restrict

the notion of optimality to a given set of compiler optimizations. Thus, from the perspective of program

compilation, a program PMI is considered optimal [49] if there exists no semantically equivalent program

that executes faster than PMI for a given input data set I , and PMI is obtained using compiler optimizations

from some finite set M.
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9.1 Introduction

This chapter is about the convergence of type systems and static analysis. Historically, these two approaches

to reasoning about programs have had different purposes. Type systems are developed to catch common

kinds of programming errors early in the software development cycle. In contrast, static analyses were

developed to automatically optimize the code generated by a compiler. The two fields also have different

theoretical foundations: type systems are typically formalized as logical inference systems [61], while static

analyses are typically formalized as abstract program executions [20, 46].

Recently, however, there has been a convergence of the objectives and techniques underlying type systems

and static analysis [42, 55, 57, 58]. On the one hand, static analysis is increasingly being used for program

understanding and error detection, rather than purely for code optimization. For example, the LCLint

tool [30] uses static analysis to detect null-pointer dereferences and other common errors in C programs,

and it relies on type-system-like program annotations for efficiency and precision. As another example,

the Error Detection via Scalable Program Analysis (ESP) tool [21] uses static analysis to detect violations

of Application Programming Interface (API) usage protocols, for example, that a file can only be read or

written after it has been opened.

On the other hand, type systems have become a mature and widely accepted technology. Programmers

write most new software in languages such as C [45], C++ [29], Java [39], and C# [49], which all feature

varying degrees of static type checking. For example, the Java type system guarantees that if a program

calls a method on some object, at runtime the object will actually have a method of that name, expecting

the proper number and kind of arguments. Types are also used in the intermediate languages of compilers

and even in assembly languages [51], such as the typed assembly language for x86 called TALx86 [50].

With this success, researchers have been motivated to explore the potential to extend traditional type

systems to detect a variety of interesting classes of program errors. This exploration has shown type systems

to be a robust approach to static reasoning about programs and their properties. For example, type systems

have been used recently to ensure the safety of manual memory management (e.g., [40, 53, 65]), to track and

9-1



9-2 The Compiler Design Handbook: Optimizations and Machine Code Generation

restrict the aliasing relationships among pointers (e.g., [1, 11, 17, 31]), and to ensure the proper interaction

of threads in concurrent programs (e.g., [9, 32, 33]).

These new uses of type systems have brought type systems closer to the domain of static analysis, in

terms of both objectives and techniques. For example, reasoning about aliasing is traditionally done via a

static analysis to compute the set of may-aliases, rather than via a type system. As another example, some

sophisticated uses of type systems have required making types flow sensitive [23, 37], whereby the type of

an expression can change at each program point (e.g., a file’s type might denote that the file is open at one

point but closed at another point). This style of type system has a natural relationship to traditional static

analysis, where the set of “flow facts” can change at each program point.

In this chapter, we describe two type systems that have a strong relationship to static analysis. Each of the

type systems is a refinement of an existing and well-understood type system: the first refines a subset of the

Java type system, while the second refines a system of simple types for the lambda calculus. The refinements

are done via annotations that refine existing types to specify and check finer-grained properties. Many of

the sophisticated type systems mentioned above can be viewed as refinements of existing types and type

systems. Such type systems are examples of type-based analyses [56]; that is, they assume and leverage the

existing type system and they provide information only for programs that type check with the existing

type system.

In the following section we describe a type system that ensures a strong form of encapsulation in object-

oriented languages. Namely, the analysis guarantees that an object of a class declared confined will never

dynamically escape the class’s scope. Object confinement goes well beyond the guarantees of traditional

privacy modifiers such as protected and private , and it bears a strong relationship to standard static

analyses.

Language designers cannot anticipate all of the refinements that will be useful for programmers or all

of the ways in which these refinements can be used to practically check programs. Therefore, it is desirable

to provide a framework that allows programmers to easily augment a language’s type system with new

refinements of interest for their applications. In Section 9.3 we describe a representative framework of

this kind, supporting programmer-defined type qualifiers. A type qualifier is a simple but useful kind of

type refinement consisting solely of an uninterpreted “tag.” For example, C’s const qualifier refines an

existing type to further indicate that values of this type are not modifiable, and a nonnull qualifier could

refine a pointer type to further indicate that pointers of this type are never null.

9.2 Types for Confinement

In this section we will use types to ensure that an object cannot escape the scope of its class. Our presentation

is based on results from three papers on confined types [8, 41, 72].

9.2.1 Background

Object-oriented languages such as Java provide a way of protecting the name of a field but not the contents

of a field. Consider the following example.

package p;

public class Table {
private Bucket[] buckets;
public Object[] get(Object key) { return buckets; }

}

class Bucket {
Bucket next;
Object key, val;

}
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The hash table class Table is a public class that uses a package-scoped class Bucket as part of its

implementation. The programmer has declared the field buckets to be private and intends the hash-

table-bucket objects to be internal data structures that should not escape the scope of the Bucket class.

The declaration of Bucket as packaged scoped ensures that the Bucket class is not visible outside the

package p. However, even the combination of a private field and a package-scoped class does not prevent

Bucket objects from being accessible outside the scope of the Bucket class. To see why, notice that

the public get method in class Table has body return buckets; that provides an array of bucket

objects to any client, including clients outside the package p. Any client can now update the array and

thereby change the behavior of the hash table.

The example shows how an object reference can leak out of a package. Such leakage is a problem because

(a) the object may represent private information such as a private key and (b) code outside the package may

update the object, making it more difficult for programmers to reason about the program. The problem

stems from a combination of aliasing and side effects. Aliasing occurs when an object is accessible through

different access paths. In the above example, code outside the package can access bucket objects and update

them.

How can we ensure that an object cannot escape the scope of its class? We will briefly discuss how one

can solve the problem using static analysis and then proceed to show a type-based solution.

9.2.2 Static Analysis

Static analysis can be used to determine whether an object can escape the scope of its class. We will explain

a whole-program analysis, that is, an approach that requires access to all the code in the application and

its libraries.

Assuming that we have the whole program, let U be the set of class names in the program. The basic

idea is to statically compute, for each expression e in the program, a subset of U that conservatively ap-

proximates the possible values of e . We will call that set the flow set for e . For example, if the flow set

for e is the set {A, B , C }, that means the expression e will evaluate to either an A-object, a B-object, or

a C -object. Notice that we allow the set to be a conservative approximation; for example, e might never

evaluate to a C -object. All we require is that if e evaluates to an X-object, then X is a member of the flow

set for e .

Researchers have published many approaches to statically computing flow sets for expressions in object-

oriented programs; see, for example, [2, 22, 59, 64, 67] for some prominent and efficient whole-program

analyses. For the purposes of this discussion, all we rely on is that flow sets can be computed statically.

Once we have computed flow sets, for each package-scoped class C we can determine whether C ever

appears in the flow set for an expression outside the package of C . For each class that never appears in flow

sets outside its package, we know its objects do not escape its package in this particular program.

The whole-program-analysis approach has several drawbacks:

Bug finding after the program is done: The approach finds bugs after the whole program is done.

While that is useful, we would like to help the programmer find bugs while he or she is writing the

program.

No enforcement of discipline: The static analysis does not enforce any discipline on the programmer. A

programmer can write crazy code, and the static analysis may then simply report that every object

can escape the scope of its class. While that should be a red flag for the programmer, we would like

to help the programmer determine which lines of code to fix to avoid some of the problems.

Fragility: The static analysis tends to be sensitive to small changes in the program text. For one version

of a program, a static analysis may find no problems with escaping objects, and then after a few

lines of changes, suddenly the static analysis finds problems all over the place. We would like to help

the programmer build software in a modular way such that changes in one part of the program do

not affect other parts of the program.

The type-based approach in the next section has none of these three drawbacks.



9-4 The Compiler Design Handbook: Optimizations and Machine Code Generation

The static-analysis approach in this section is one among many static analyses that solve the same or

similar problems. For example, researchers have published powerful escape analyses [5–7, 27] some of

which can be adapted to the problem we consider in this chapter.

9.2.3 Confined Types

We can use types to ensure that an object cannot escape the scope of its class. We will show an approach

for Java that extends Java with the notions of confined type and anonymous method. The idea is that if we

declare a class to be confined, the type system will enforce rules that ensure that an object of the class

cannot escape the scope of the class. If a program type checks in the extended type system, an object cannot

escape the scope of its class.

Confinement can be enforced using two sets of constraints. The first set of constraints, confinement

rules, applies to the classes defined in the same package as the confined class. These rules track values of

confined types and ensure that they are neither exposed in public members nor widened to nonconfined

types. The second kind of constraints, anonymity rules, applies to methods inherited by the confined

classes, potentially including library code, and ensures that these methods do not leak a reference to the

distinguished variable this , which may refer to an object of confined type.

We will discuss the confinement and anonymity rules next and later show how to formalize the rules

and integrate them into the Java type system.

9.2.3.1 Confinement Rules

The following confinement rules must hold for all classes of a package containing confined types.

� C1: A confined type must not appear in the type of a public (or protected) field or the return type

of a public (or protected) method.
� C2: A confined type must not be public.
� C3: Methods invoked on an expression of confined type must either be defined in a confined class

or be anonymous.
� C4: Subtypes of a confined type must be confined.
� C5: Confined types can be widened only to other confined types.
� C6: Overriding must preserve anonymity of methods.

Rule C1 prevents exposure of confined types in the public interface of the package, as client code could

break confinement by accessing values of confined types through a type’s public interface. RuleC2 is needed

to ensure that client code cannot instantiate a confined class. It also prevents client code from declaring

field or variables of confined types. The latter restriction is needed so that code in a confining package

will not mistakenly assign objects of confined types to the fields or variables outside that package. Rule

C3 ensures that methods invoked on an object enforce confinement. In the case of methods defined in the

confining package, this ensues from the other confinement rules. Inherited methods defined in another

package do not have access to any confined fields, since those are package scoped (rule C1). However,

an inherited method of confined class may leak the this reference, which is implicitly widened to the

method’s declaring class. To prevent this, rule C3 requires these methods to be anonymous (as explained

below). Rule C4 prevents the declaration of a public subclass of a confined type. This prevents spoofing

leaks, where a public subtype defined outside of the confined package is used to access private fields [18].

Rule C5 prevents code within confining packages from assigning values of confined types to fields or

variables of public types. Finally, rule C6 allows us to statically verify the anonymity of the methods that

are invoked on expressions of confined types.

9.2.3.2 Anonymity Rule

The anonymity rule applies to inherited methods that may reside in classes outside of the enclosing

package. This rule prevents a method from leaking the this reference. A method is anonymous if it has

the following property.
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� A1: The this reference is used only to select fields and as the receiver in the invocation of other

anonymous methods.

This prevents an inherited method from storing or returning this as well as using it as an argument

to a call. Selecting a field is always safe, as it cannot break confinement because only the fields visible in

the current class can be accessed. Method invocation (on this ) is restricted to other methods that are

anonymous as well. Note that we check this constraint assuming the static type of this , and rule C6

ensures that the actual method invoked on this will also be anonymous. Thus, rule C6 ensures that the

anonymity of a method is independent of the result of method lookup.

Rule C6 could be weakened to apply only to methods inherited by confined classes. For instance, if an

anonymous method m of class A is overridden in both class B and C, and B is extended by a confined class

while C is not, then the method m in B must be anonymous while m of C need not be. The reason is that the

method m of C will never be invoked on confined objects, so there is no need for it to be anonymous.

9.2.3.3 Confined Featherweight Java

Confined Featherweight Java (ConfinedFJ) is a minimal core calculus for modeling confinement for a

Java-like object-oriented language. ConfinedFJ extends Featherweight Java (FJ), which was designed by

Igarashi et al. [43] to model the Java type system. It is a core calculus, as it limits itself to a subset of the Java

language with the following five basic expressions: object construction, method invocation, field access,

casts, and local variable access. This spartan setting has proved appealing to researchers. ConfinedFJ stays

true to the spirit of FJ. The surface differences lie in the presence of class- and method-level visibility

annotations. In ConfinedFJ, classes can be declared to be either public or confined, and methods can

optionally be declared as anonymous. One further difference is that ConfinedFJ class names are pairs of

identifiers bundling a package name and a class name just as in Java.

9.2.3.4 Syntax

Let metavariable L range over class declarations, C, D, E range over a denumerable set of class identifiers,

K, M range over constructor and method declarations, respectively, and f and x range over field names and

variables (including parameters and the pseudo-variable this), respectively. Lete, d range over expressions

and u, v, w range over values.

We adopt FJ notational idiosyncrasies and use an overbar to represent a finite (possibly empty)

sequence. We write f to denote the sequence f1, . . . , fn and similarly for e and v. We write C f to

denote C1 f1, . . . Cn fn, C <: D to denote C1 <: D1, . . . , Cn <: Dn, and finally this.f = f to denote

this.f1 = f1, . . . , this.fn = fn.

The syntax of ConfinedFJ is given in Figure 9.1. An expression e can be either one of a variable x

(including this), a field access e.f, a method invocation e.m(e), a cast (C) e, or an object new C(e). Since

ConfinedFJ has a call-by-value semantics, it is expedient to add a special syntactic form for fully evaluated

objects, denoted new C(v).

Class identifiers are pairs p.q such that p and q range over denumerable disjoint sets of names. For

ConfinedFJ class name p.q, p is interpreted as a package name and q as a class name. In ConfinedFJ, class

identifiers are fully qualified. For a class identifier C, packof (C) denotes the identifier’s package prefix, so,

for example, the value of packof (p.O) is p.

C ::= p.q

L ::= [public|conf] class C ⊳ D {C f; K M }

K ::= C(C f) {super(f); this.f = f; }

M ::= [anon] C m(C x) {returne; }

e ::= x | e.f | e.m(e) | (C) e | new C(e)

v ::= new C(v)

FIGURE 9.1 ConfinedFJ: Syntax.
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Each class declaration is annotated with one of the visibility modifiers public, conf, or none; a public

class is declared by public class C ⊳ D {. . .}, a package-scoped, confined class is conf class C ⊳ D{. . .},

and a package-scoped, nonconfined class is class C ⊳ D{. . .}. Methods can be annotated with the optional

anon modifier to denote anonymity.

We will not formalize the dynamic semantics of ConfinedFJ (for full details, see [75]). We assume a

class table CT that stores the definitions of all classes of the ConfinedFJ program such that CT(C) is the

definition of class C. The subtyping relation C <: D denotes that class C is a subtype of class D; <: is the

smallest reflexive and transitive class ordering that has the property that if C extends D, then C <: D. Every

class is a subtype of l.Object . The function fields(C) returns the list of all fields of the class C including

inherited ones; methods(C) returns the list of all methods in the class C; mdef (m) returns the identifier of

defining class for the method m.

9.2.3.5 Type Rules

Figure 9.2 defines relations used in the static semantics. The predicate conf (C) holds if the class table maps

C to a class declared as confined. Similarly, the predicate public(C) holds if the class table maps C to a

class declared as public. The function mtype(m, C) yields the type signature of a method. The predicate

override(m, C, D) holds if m is a valid, anonymity-preserving redefinition of an inherited method or if this is

the method’s original definition. Class visibility, written visible(C, D), states that a class C is visible from D

if C is public or if both classes are in the same package.

The safe subtyping relation, written C � D, is a confinement-preserving restriction of the subtyping

relation <:. A class C is a safe subtype of D if C is a subtype of D and either C is public or D is confined. This

relation is used in the typing rules to prevent widening a confined type to a public type; confinement-

preserving widening requires safe subtyping to hold. The type system further constrains subtyping by

enforcing that all subclasses of a confined class must belong to the same package (see the T-CLASS rule and

the definition of visibility in Figure 9.4). Notice that safe subtyping is reflexive and transitive.

Figure 9.3 defines constraints imposed on anonymous methods. A method m is anonymous in class

C, written anon(m, C), if its declaration is annotated with the anon modifier. The following syntactic

restrictions are imposed on the body of an anonymous method. An expression e is anonymous in class C,

written anon(e, C), if the pseudo-variable this is used solely for field selection and anonymous method

invocation. (C) e is anonymous if e is anonymous. new C(e) and e.m(e) are anonymous if e �= this and

Confined types, type visibility, and safe subtyping:

C T(C) = conf class C⊳ D{. . .}

con f (C)

public (C)

visible (C, D)

packof (C) = packof (D)

visible(C, D)

C <: D conf (C) ⇒ conf (D)

C ≺ D

Method type lookup:

mdef (m, C) = D [anon] B m(B x {returne; } ∈ methods (D)

mtype (m, C) = B → B

Valid method overriding:

either mis not defined in Dor any of its parents, or

mtype (M, C) = C → C0 mtype (m, D) = C → C0 (anon(m, D) ⇒ anon (m, C))

override (m, C, D)

FIGURE 9.2 ConfinedFJ: Auxiliary definitions.
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Anonymous method:

mdef (m, C0) = C′
0 anon C m (C x {. . .} ∈ methods (C′

0)

anon(m, C0)

Anonymity constraints:

anon (e, C)

anon ((C′) e, C)

anon (e, C)

anon (new C′ (e), C)

x �= this

anon (x, C)

anon (e, C)

anon (e, f, C)

anon (e, C) anon (e, C)

anon (e.m(e), C)

anon(this.f, C)

anon(m, C) anon (e, C)

anon (this.m(e), C)

FIGURE 9.3 ConfinedFJ: Syntactic anonymity constraints.

e, e are anonymous. With the exception of this all variables are anonymous. this.f is always anonymous,

and this.m(e) is anonymous in C if m is anonymous in C and e is anonymous. We write anon(e, C) to

denote that all expressions in e are anonymous.

9.2.3.6 Expression Typing Rules

The typing rules for ConfinedFJ are given in Figure 9.4, where type judgments have the form Ŵ ⊢ e : C,

in which Ŵ is an environment that maps variables to their types. The main difference with FJ is that these

rules disallow unsafe widening of types. This is captured by conditions of the form C � D that enforce

safe subtyping:

� Rules T-VAR and T-FIELD are standard.
� Rule T-NEW prevents instantiating an object if any of the object’s fields with a public type is given a

confined argument. That is, for fields with declared types D and argument types C, relation C � D

must hold. By definition of Ci � Di, if Ci is confined, then Di is confined as well.
� Rule T-INVK prevents widening of confined arguments to public parameters by enforcing safe

subtyping of argument types with respect to parameter types. To prevent implicit widening of the

receiver, we consider two cases. Assume that the receiver has type C0 and the method m is defined

in D0; then it must be the case either that C0 is a safe subtype of D0 or that m has been declared

anonymous in D0.
� Rule T-UCAST prevents casting a confined type to a public type. Notice that a down cast preserves

confinement because by rule T-CLASS a confined class can only have confined subclasses.

9.2.3.7 Typing Rules for Methods and Classes

Figure 9.4 also gives rules for typing methods and classes:

� Rule T-METHOD places the following constraints on a method m defined in class C0 with body e.

The type D of e must be a safe subtype of the method’s declared type C. The method must preserve

anonymity declarations. If m is declared anonymous, emust comply with the corresponding restric-

tions. The most interesting constraint is the visibility enforced on the body by Ŵ ⊢ visible(e, C0),

which is defined recursively over the structure of terms. It ensures that the types of all subexpres-

sions of e are visible from the defining class C0. In particular, the method parameters used in the

method body e must have types visible in C0.
� Rule T-CLASS requires that if class C extends D, then D must be visible in C, and if D is confined, then

so is C. Rule T-CLASS allows the fields of a class C to have types not visible in C, but the constraint

of Ŵ ⊢ visible(e, C) in rule T-METHOD prohibits the method of C from accessing such fields.
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Expression typing:

Ŵ ⊢ x : Ŵ (x) (T-VAR)

Ŵ ⊢ e : C fields (C) = (C f)

T ⊢ e.f1 : Ci
(T-FIELD)

Ŵ ⊢ e : C0 Ŵ ⊢ e : C mtype (m, C0) = D → C C≺ D

mdef (m, C0) = D0 (C0 � D0∨ anon(m, D0))

Ŵ ⊢ e.m(e) : C
(T-INVK )

fields(C) = (D f) Ŵ ⊢ e : C C ≺ D

Ŵ ⊢ new C(e) : C
(T-NEW)

Ŵ ⊢ e : D conf (D) ⇒ conf (C)

Ŵ ⊢ (C) e : C
(T-UCAST)

Method typing:

x : C, this : C0 ⊢ e : D D� C override (m, C0, D0)
x : C, this : C0 ⊢ visible (e, C0) (anon(m, C0) ⇒ anon(e, C0))

[anon] C m(C x) {returne; } OK IN C0⊳D0
(T-METHOD)

Class typing:

fields(D) = (D g) K = C (D g, C f) {super (g); this.f = f; }
visible (D, C) (conf (D) ⇒ conf (C)) M OK IN C⊳D

[public|conf] class C ⊳ D {C f; K M } OK
(T-CLASS)

Static expression visibility:

visible (Ŵ (x), C)

Ŵ ⊢ visible (x, C)

Ŵ ⊢ e.fi : C′ visible (C′, C) Ŵ ⊢ visible (e, C)

Ŵ ⊢ visible (e.fi, C)

visible (C′, C) Ŵ ⊢ visible (e, C)

Ŵ ⊢ visible ((C′) e, C)

visible (C′, C) ∀i, Ŵ ⊢ visible (ei , C )

Ŵ ⊢ visible (new C′ (e), C)

Ŵ ⊢ e.m(e) : C′ visible(C′, C) Ŵ ⊢ visible (e, C) ∀i, Ŵ ⊢ visible (ei, C)

Ŵ ⊢ visible (e.m)(e), C)

FIGURE 9.4 ConfinedFJ: Typing rules.

The class table CT is well-typed if all classes in CT are well-typed. For the rest of this paper, we assume

CT to be well-typed.

9.2.3.8 Relation to the Informal Rules

We now relate the confinement and anonymity rules with the ConfinedFJ type system. The effect of rule

C1, which limits the visibility of fields if their type is confined, is obtained as a side effect of the visibility

constraint as it prevents code defined in another package from accessing a confined field. ConfinedFJ

could be extended with a field and method access modifier without significantly changing the type system.

The expression typing rules enforce confinement rules C3 and C5 by ensuring that methods invoked on

an object of confined type are either anonymous or defined in a confined class and that widening is

confinement preserving. Rule C2 uses access modifiers to limit the use of confined types, and the same

effect is achieved by the visibility constraint Ŵ ⊢ visible(e, C) on the expression part of T-METHOD. Rule
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C4, which states that subclassing is confinement preserving, is enforced by T-CLASS. Rule C6, which states

that overriding is anonymity preserving, is enforced by T-METHOD. Finally, the anonymity constraint of

rule A1 is obtained by the anon predicate in the antecedent of T-METHOD.

9.2.3.9 Two ConfinedFJ Examples

Consider the following stripped-down version of a hash table class written in ConfinedFJ. The hash table

is represented by a class p.Table defined in some package p that holds a single bucket of class p.Buck .

The bucket can be obtained by calling the method get() on a table, and the bucket’s data can then be

obtained by calling getData() . In this example, buckets are confined, but they extend a public class

p.Cell . The interface of p.Table.get() specifies that the method’s return type is p.Cell ; this

is valid, as that class is public. In this example a factory class, named p.Factory , is needed to create

instances of p.Table . because the table’s constructor expects a bucket and since buckets are confined,

they cannot be instantiated outside of their defining package.

class p.Table ⊳ l.Object {

p.Buck buck;

Table(p.Buck buck) { super(); this.buck = buck; }

p.Cell get() { return this.buck; }
}

class p.Cell ⊳ l.Object {

l.Object data;

l.Object getData() { return this.data; }
}

conf class p.Buck ⊳ p.Cell {

p.Buck() { super(); }
}

class p.Factory ⊳ l.Object {

p.Factory() { super(); } }

p.Table table() { return new p.Table( new p.Buck() ); }
}

This program does not preserve confinement as the body of the p.Table.get() method returns an

instance of a confined class in violation of the widening rule. The breach can be exhibited by constructing

a class o.Breach in package o that creates a new table and retrieves its bucket.

class o.Breach ⊳ l.Object {

l.Object main () { return new p.Factory().table().get(); }
}

The expression new o.Breach().main() eventually evaluates to new p.Buck() , exposing

the confined class to code defined in another package. This example is not typable in the ConfinedFJ type

system. The method p.Table.get() does not type-check because rule T-METHOD requires the type

of the expression returned by the method to be a safe subtype of the method’s declared return type. The

expression has the confined type p.Buck , while the declared return type is the public type p.Cell .
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In another prototypical breach of confinement, consider the following situation in which the confined

class p.Self extends a Broken parent class that resides in package o. Assume further that the class

inherits its parent’s code for the reveal() method.

conf class p.Self ⊳ o.Broken {

p.Self() { super(); }
}

class p.Main ⊳ l.Object {

p.Main() { super(); }

l.Object get() { return new p.Self().reveal(); }
}

Inspection of this code does not reveal any breach of confinement, but if we widen the scope of our analysis

to the o.Broken class, we may see

class o.Broken ⊳ l.Object {

o.Broken() { super(); }

l.Object reveal() { return this; }
}

Invoking reveal() on an instance of p.Self will return a reference to the object itself. This does not

type-check because the invocation of reveal() in p.Main.get() violates the rule T-INVK (because

the non-anonymous method reveal() , inherited from a public class o.broken , is invoked on an

object of a confined type p.Self ). The method reveal() cannot be declared anonymous, as the

method returns this directly.

9.2.3.10 Type Soundness

Zhao et al. [72] presented a small-step operational semantics of ConfinedFJ, which is a computation-step

relation P → P ′ on program states P , P ′. They define that a program state satisfies confinement if every

object is in the scope of its defining class. They proceed to prove the following type soundness result (for

a version of ConfinedFJ without downcast).

Theorem (confinement) [72]: If P is well-typed, satisfies confinement, and P →∗ P ′, then P ′ satisfies

confinement.

The confinement theorem states that a well-typed program that initially satisfies confinement preserves

confinement. Intuitively, this means that during the execution of a well-typed program, all the objects

that are accessed within the body of a method are visible from the method’s defining package. The only

exception is for anonymous methods, as they may have access to this , which can evaluate to an instance

of a class confined in another package, and if this occurs the use of this is restricted to be a receiver

object.

Confined types have none of the three drawbacks of whole-program static analysis: we can type-check

fragments of code well before the entire program is done, the type system enforces a discipline that can

help make many types confined, and a change to a line of code only affects types locally.

9.2.3.11 Confinement Inference

Every type-correct FJ program can be transformed into a type-correct ConfinedFJ program by putting all

the classes into the same package. Conversely, every type-correct ConfinedFJ program can be transformed
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into a type-correct Java program by removing all occurrences of the modifiers conf and anon. (The original

version of FJ does not have packages.)

The modifiers conf and anon can help enforce more discipline than Java does. If we begin with a

program in FJ extended with packages and want to enforce the stricter discipline of ConfinedFJ, we face

what we call the confinement inference problem.

The confinement inference problem: Given a Java program, find a subset of the package-

scoped classes that we can make confined and find a subset of the methods that we can make

anonymous.

The confinement inference problem has a trivial solution: make no classes confined and make no method

anonymous. In practice we may want the largest subsets we can get.

Grothoff et al. [41] studied confinement inference for a variant of the confinement and anonymity

rules in this chapter. They used a constraint-based program analysis to infer confinement and method

anonymity. Their constraint-based analysis proceeds in two steps: (a) generate a system of constraints from

program text and then (b) solve the constraint system. The constraints are of the following six forms:

A ::= not-anon(methodId)

T ::= not-conf(classId)

C ::= A | T | T ⇒ A | A ⇒ A | A ⇒ T | T ⇒ T

A constraint not-anon(methodId) asserts that the method methodId is not anonymous; similarly,

not-conf(classId) asserts that the class classId is not confined. The remaining four forms of constraints

denote logical implications. For example, not-anon(A.m() ) ⇒ not-conf(C) is read “if method min class

A is not anonymous, then class Cwill not be confined.”

From each expression in a program, we generate one or more constraints. For example, for a type

cast expression (C) e for which the static Java type of e is D, we generate the constraint not-conf(C) ⇒

not-conf(D), which represents the condition from the T-UCAST rule that conf (D) ⇒ conf (C).

All the constraints are ground Horn clauses. The solution procedure computes the set of clauses

not-conf(classId ) that are either immediate facts or derivable via logical implication. This compu-

tation can be done in linear time [28] in the number of constraints, which, in turn, is linear in the size of

the program.

A solution represents a set of classes that cannot be confined and a set of methods that are not anonymous.

The complements of those sets represent a maximal solution to the confinement inference problem.

Grothoff et al. [41] presented an implementation of their constraint-based analysis. They gathered a

suite of 46,000 Java classes and analyzed them for confinement. The average time to analyze a class file is less

than 8 milliseconds. The results show that, without any change to the source, 24% of the package-scoped

classes (exactly 3,804 classes, or 8% of all classes) are confined. Furthermore, they found that by using

generic container types, the number of confined types could be increased by close to 1,000 additional

classes. Finally, with appropriate tool support to tighten access modifiers, the number of confined classes

can be well over 14,500 (or over 29% of all classes) for that same benchmark suite.

9.2.4 Related Work on Alias Control

The type-based approach in this chapter is one among many type-based approaches that solve the same

or similar problems. For example, a popular approach is to use a notion of ownership type [1, 3, 4, 9,

10, 11, 16, 19, 26, 52, 62] for controlling aliasing. The basic idea of ownership types is to use the concept

of domination on the dynamic object graph. (In a graph with a starting vertex s , a vertex u dominates

another vertex v if every path from s to v must pass through u.) In a dynamic object graph, we may have

an object we think of as owning several representation objects. The goal of ownership types is to ensure

that the owner object dominates the representation objects. The dominance relation guarantees that the
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only way we can access a representation object is via the owner. An ownership type system has type rules

that are quite different than the rules for confined types.

9.3 Type Qualifiers

In this section we will use types to allow programmers to easily specify and check desired properties of their

applications. This is achieved by allowing programmers to introduce new qualifiers that refine existing

types. For example, the type nonzero int is a refinement of the type int that intuitively denotes the

subset of integers other than zero.

9.3.1 Background

Static type systems are useful for catching common programming errors early in the software development

cycle. For example, type systems can ensure that an integer is never accidentally used as a string and that

a function is always passed the right number and kinds of arguments. Unfortunately, language designers

cannot anticipate all of the program errors that programmers will want to statically detect, nor can they

anticipate all of the practical ways in which such errors can be detected.

As a simple example, while most type systems in mainstream programming languages can distinguish

integers from strings and ensure that each kind of data is used in appropriate ways, these type systems

typically cannot distinguish positive from negative integers. Such an ability would enable stronger assur-

ances about a program, for example, that it never attempts to take the square root of a negative number.

As another example, most type systems cannot distinguish between data that originated from one source

and data that originated from a different source within the program. Such an ability could be useful to

track a form of value flow, for example, to ensure that a string that was originally input from the user is

treated as tainted and therefore given restricted capabilities (e.g., such a string should be disallowed as the

format-string argument to C’s printf function, since a bad format string can cause program crashes

and worse).

Without static checking for these and other kinds of errors, programmers have little recourse. They can

use assert statements, which catch errors, but only as they occur in a running system. They can specify

desired program properties in comments, which are useful documentation but need have no relation to

the actual program behavior. In the worst case, programmers simply leave the desired program properties

completely implicit, making these properties easy to misunderstand or forget entirely.

9.3.2 Static Analysis

Static analysis could be used to ensure desired program properties and thereby guarantee the absence of

classes of program errors. Indeed, generic techniques exist for performing static analyses of programs (e.g.,

[20, 46]), which could be applied to the properties of interest to programmers. As with confinement, one

standard approach is to compute a flow set for each expression e in the program, which conservatively

overapproximates the possible values of e . However, instead of using class names as the elements of a flow

set, each static analysis defines its own domain of flow facts.

For example, to track positive and negative integers, a static analysis could use a domain of signs [20],

consisting of the three elements +, 0, and − with the obvious interpretations. If the flow set computed

for an expression e contains only the element +, we can be sure that e will evaluate to a positive integer.

In our format-string example, a static analysis could use a domain consisting of the elements tainted
and untainted , representing, respectively, data that do and do not come from the user. If the flow set

computed for an expression e contains only the element untainted , we can be sure that e does not

come from the user.

While this approach is general, it suffers from the drawbacks discussed in Section 9.2.2. First, whole-

program analysis is typically required for precision, so errors are only caught once the entire program

has been implemented. Second, the static analysis is descriptive, reporting the properties that are true of
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τ ::= int |τ → τ

e ::= n |e1 + e2|x|λx : τ.e|e1e2

FIGURE 9.5 The syntax of the simply typed lambda calculus.

a given program, rather than prescriptive, providing a discipline to help programmers achieve the desired

properties. Finally, the results of a static analysis can be sensitive to small changes in the program.

The type-based approach described next is less precise than some static analyses but has none of the

above drawbacks.

9.3.3 A Type System for Qualifiers

We now develop a type system that supports programmer-defined type qualifiers. After a brief review of

the simply typed lambda calculus, types are augmented with user-defined tags and language support for

tag checking. A notion of subtyping for tagged types provides a natural form of type qualifiers. Finally,

more expressiveness is achieved by allowing users to provide specialized typing rules for qualifier checking.

9.3.3.1 Simply Typed Lambda Calculus

We assume familiarity with the simply typed lambda calculus and briefly review the portions that are

relevant for the rest of the section. Many other sources contain fuller descriptions of the simply typed

lambda calculus, for example, the text by Pierce [61].

Figure 9.5 shows the syntax for the simply typed lambda calculus augmented with integers and integer

addition. The metavariable τ ranges over types, and e ranges over expressions. The syntax τ1 → τ2

denotes the type of functions with argument type τ1 and result type τ2. The metavariable n ranges over

integer constants, and x ranges over variable names. The syntax λx : τ.e represents a function with formal

parameter x (of type τ ) and body e , and the syntax e1e2 represents application of the function expression

e1 to the actual argument e2.

Figure 9.6 presents static typechecking rules for the simply typed lambda calculus. The rules define a

judgment of the form Ŵ ⊢ e : τ . The metavariable Ŵ ranges over type environments, which are finite

mappings from variables to types. Informally, the judgment Ŵ ⊢ e : τ says that expression e is well-typed

with type τ under the assumption that free variables in e have the types associated with them in Ŵ. The

rules in Figure 9.6 are completely standard.

Static type-checking enforces a notion of well-formedness on programs at compile time, thereby pre-

venting some common kinds of runtime errors. For example, the rules in Figure 9.6 ensure that a well-typed

expression (with no free variables) will never attempt to add an integer to a function at runtime. A type sys-

tem’s notion of well-formedness is formalized by a type soundness theorem, which specifies the properties

Ŵ ⊢ e : τ

Ŵ ⊢ n : int (T-INT)

Ŵ ⊢ e1 : int Ŵ ⊢ e2 : int

Ŵ ⊢ e1 + e2 : int
(T-PLUS)

Ŵ(x) = τ

Ŵ ⊢ x : τ
(T-VAR)

Ŵ, x : τ1 ⊢ e : τ2

Ŵ ⊢ λx : τ1.e : τ1 → τ2

(T-ABS)

Ŵ ⊢ e1 : τ2 → τ Ŵ ⊢ e2 : τ2

Ŵ ⊢ e1e2 : τ
(T-APP)

FIGURE 9.6 Static type-checking for the simply typed lambda calculus.
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τ ::= q ν

ν ::= int|τ → τ

e ::= . . . |annot(e , q) | assert (e , q)

FIGURE 9.7 Adding user-defined tags to the syntax.

of well-typed programs. Intuitively, type soundness for the simply typed lambda calculus says that the

evaluation of well-typed expressions will not “get stuck,” which happens when an operation is attempted

with operand values of the wrong types.

A type soundness theorem relies on a formalization of a language’s evaluation semantics. There are many

styles of formally specifying language semantics and of proving type soundness, and common practice

today is well described by others [61, 68]. These topics are beyond the scope of this chapter.

9.3.3.2 Tag Checking

One way to allow programmers to easily extend their type system is to augment the syntax for types

with a notion of programmer-defined type tags (or simply tags). The new syntax of types is shown in

Figure 9.7. The metavariable q ranges over an infinite set of programmer-definable type tags. Each type

is now augmented with a tag. For example, positive int could be a type, where positive is a

programmer-defined tag denoting positive integers. Function types include a top-level tag as well as tags

for the argument and result types.

For programmers to convey the intent of a type tag, the language is augmented with two new expression

forms, as shown in Figure 9.7. Our presentation follows that of Foster et al. [35, 36]. The expression

annot (e , q) evaluates e and tags the resulting value with q . For example, if the expression e evaluates to

a string input by the user, one can use the expression annot( e, tainted) to declare the intention to

consider e ’s value as tainted [54, 63]. The expression assert (e , q) evaluates e and checks that the resulting

value is tagged with q . For example, the expression assert( e, untainted) ensures that e ’s value

does not originate from the user and is therefore an appropriate format-string argument to printf . A

failed assert causes the program to terminate erroneously.

Just as our base type system in Figure 9.6 statically tracks the type of each expression, so does our

augmented type system, using the augmented syntax of types. The rules are shown in Figure 9.8. For

simplicity, the rules are set up so that each runtime value created during the program’s execution will have

Ŵ ⊢ e : ν

Ŵ ⊢ n : int (Q-INT)

Ŵ ⊢ e1 : q1 int Ŵ ⊢ e2 : q2 int

Ŵ ⊢ e1 + e2 : int
(Q-PLUS)

Ŵ, x : τ1 ⊢ e : τ2

Ŵ ⊢ λx : τ1.e : τ1 → τ2

(Q-ABS)

Ŵ ⊢ e : τ

Ŵ(x) = τ

Ŵ ⊢ x : τ
(Q-VAR)

Ŵ ⊢ e1 : τ2 → τ Ŵ ⊢ e2 : τ2

Ŵ ⊢ e1e2 : τ
(Q-APP)

Ŵ ⊢ e : ν

Ŵ ⊢ annot (e , q) : q ν
(Q-ANNOT)

Ŵ ⊢ e : q ν

Ŵ ⊢ assert (e , q) : q ν
(Q-ASSERT)

FIGURE 9.8 Adding user-defined tags to the type system.
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exactly one tag (a conceptually untagged value can be modeled by tagging it with a distinguished notag
tag). This invariant is achieved via two interrelated typing judgments. The judgment Ŵ ⊢ e : ν determines

an untagged type for a given expression. This judgment is only defined for constructor expressions, which

are expressions that dynamically create new values. The judgment Ŵ ⊢ e : τ is the top-level type-checking

judgment. It is defined for all other kinds of expressions. The Q-ANNOT rule provides a bridge between the

two judgments, requiring each constructor expression to be tagged in order to be given a complete type τ .

Intuitively, the type system conservatively ensures that if Ŵ ⊢ e : q ν holds, the value of e at run

time will be tagged with q . The rules for annot (e , q) and assert (e , q) are straightforward: Q-ANNOT

includes q as the tag on the type of e , while Q-ASSERT requires that e ’s type already includes the tag q . The

rest of the rules are unchanged from the original simply typed lambda calculus, except that the premises

of Q-PLUS allow for the tags on the types of the operands. Nonetheless, these unchanged rules have exactly

the desired effect. For example, Q-APP requires the actual argument’s type in a function application to

match the formal argument type, thereby ensuring that the function only ever receives values tagged with

the expected tag.

Together the rules in Figure 9.8 provide a simple form of value-flow analysis, statically ensuring that

values of a given tag will flow at runtime only to places where values of that tag are expected. For example,

a programmer can define a square-root function of the form

λx : positive int .e

and the type system guarantees that only values explicitly tagged as positive will be passed to the func-

tion. As another example, the programmer can statically detect possible division-by-zero errors by replacing

each divisor expression e (assuming our language included integer division) with the expressionassert (e ,

nonzero ). Finally, the type of the following function has type tainted int →untainted int
which ensures that although the function accepts a tainted integer as an argument, this integer does not

flow to the return value:

λx : tainted int .annot (0, untainted )

However, the following function, which returns the given tainted argument, is forced to record this fact in

its type, tainted int →tainted int :

λx : tainted int .x

9.3.3.2.1 Type Soundness

The notion of type soundness in the presence of tags is a natural extension of that of the simply typed

lambda calculus. Type soundness still ensures that well-typed expressions will not get stuck, but the notion

of stuckness now includes failed assert s. This definition of stuckness formalizes the idea that tagged

values will only flow where they are expected. Type soundness can be proven using standard techniques.

9.3.3.2.2 Tag Inference

It is possible to consider tag inference for our language. Constructor expressions are no longer explicitly

annotated via annot , and formal argument types no longer include tags. Tag inference automatically

determines the tag of each constructor expression and the tags on each formal argument or determines

that the program cannot be typed. Programmers still must employ assert explicitly to specify constraints

on where values of particular tags are expected.

As with confinement inference, a constraint-based program analysis can be used for tag inference.

Conceptually, each subexpression in the program is given its own tag variable, and the analysis then

generates equality constraints based on each kind of expression. For example, in a function application,

the tag of the actual argument is constrained to match the tag of the formal argument type. The simple

equality constraints generated by tag inference can be solved in linear time [60, 66]. Furthermore, if the

constraints have a solution, there exists a principal solution, which is more general than every other solution.

Intuitively, this is the solution that produces the largest number of tags.
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For example, consider the following function:

λx : int .λy : int .assert (x , tainted )

One possible typing for the function gives both x and y the type tainted int . However, a more

precise typing gives y’s type a fresh tag qy , since the function’s constraints do not require it to have the tag

tainted . This new typing encodes that fact as well as the fact that x and y flow to disjoint places in the

program. Finally, the following program generates constraints that have no solution, since x is required

to be both tainted and untainted :

(λx : int .assert (x , tainted )) assert (e , untainted )

9.3.3.3 Qualifier Checking

While the type system in the previous subsection allows programmers to specify and check new properties

of interest via tags, its expressiveness is limited because tags are completely uninterpreted. For example,

the type system does not “know” the intent of tags such as positive , nonzero , tainted , and

untainted ; it only knows that these tags are not equivalent to one another. However, tags often have

natural relationships to one another. For example, intuitively it should be safe to pass a positive int
where a nonzero int is expected, since a positive integer is also nonzero. Similarly, we may want to

allow untainted data to be passed where tainted data is expected, since allowing that cannot cause tainted

data to be improperly used. The type system of the previous section does not permit such flexibility.

Foster et al. observed that this expressiveness can be naturally achieved by allowing programmers to

specify a partial order ⊑ on type tags [35, 36]. Intuitively, if q1 ⊑ q2, then q1 denotes a stronger constraint

than q2. The programmer can now declare positive ⊑ nonzero and, similarly, untainted ⊑

tainted , where untainted denotes the set of values that are definitely untainted, and tainted now

denotes the set of values that are possibly tainted. The programmer-defined partial order naturally induces

a subtyping relation among tagged types. For example, given the above partial order, positive int
would be considered a subtype of nonzero int , which therefore allows a value of the former type to

be passed where a value of the latter type is expected.

With this added expressiveness, type tags can be considered full-fledged type qualifiers. For example, a

canonical example of a type qualifier is C’s const annotation, which indicates that the associated value

can be initialized but not later updated. C allows a value of type int* to be passed where a (const
int)* is expected. This is safe because it simply imposes an extra constraint on the given pointer value,

namely, that its contents are never updated. However, a value of type (const int)* cannot safely be

passed where an int* is expected, since this would allow the pointer value’s const ness to be forgotten,

allowing its contents to be modified. Another useful example qualifier is nonnull for pointers, whereby

it is safe to pass a nonnull pointer where an arbitrary pointer is expected, but not vice versa.

Figure 9.9 shows the extension of the rules in the previous subsection to support qualifiers, adapted

from [36]. Q-SUB is a subsumption rule, which allows an expression’s type to be promoted to any supertype.

τ ≤ τ
′

q ⊑ q ′

qint ≤ q ′int
(S-INT)

q ⊑ q ′
τ

′
1 ≤ τ1 τ2 ≤ τ

′
2

q(τ1 → τ2) ≤ q ′(τ ′
1 → τ

′
2)

(S-FUN)

Ŵ ⊢ e : τ

Ŵ ⊢ e : τ
′

τ
′ ≤ τ

Ŵ ⊢ e : τ
(Q-SUB)

FIGURE 9.9 Adding subtyping to the type system.
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The subtyping relation ≤ depends on the partial order ⊑ among qualifiers in a straightforward way. As

usual, subtyping is contravariant on function argument types for soundness [13].

As an example of this type system in action, consider an expression e of type positive int .

Assuming that the programmer specifies positive ⊑ nonzero , then by S-INT we have positive
int ≤ nonzero int and by Q-SUB e we have nonzero int . Therefore, by the Q-App rule from

Figure 9.8, e may be passed to a function expecting an argument of type nonzero int .

As an aside, the addition of subtyping makes our formal system expressive enough to encode multiple

qualifiers per type. For example, to encode a type like untainted positive int , one can define

a new qualifier, untainted positive , along with the partial-order untainted positive ⊑

untainted and untainted positive ⊑ positive . Then the subtyping and subsumption rules

allow an untainted positive value to be treated as being both untainted and positive , as

desired.

As before, type soundness says that the type system guarantees that all assert s will succeed at runtime,

where the runtime assertion check now requires a value’s associated qualifier to be “less than” the specified

qualifier, according to the declared partial order. The type soundness proof again uses standard techniques.

It is also possible to generalize tag inference to support qualifier inference. The approach is similar to

that described above, although the generated constraints are now subtype constraints instead of equality

constraints.

Foster’s thesis discusses type soundness and qualifier inference in detail [34]. It also discusses CQUAL, an

implementation of programmer-defined type qualifiers that adapts the described theory to the C language.

CQUAL has been used successfully for a variety of applications, including inference of const ness [36],

detection of format-string vulnerabilities [63], detection of user/kernel pointer errors [44], validation of

the placement of authorization hooks in the Linux kernel [71], and the removal of sensitive information

from crash reports [12].

9.3.3.4 Qualifier-Specific Typing Rules

The ⊑ partial order allows programmers to specify more information about each qualifier, making the

overall type system more flexible. However, most of the intent of a qualifier must still be conveyed indirectly

via annot s, which is tedious and error prone. For example, the programmer must use annot to explicitly

annotate each constructor expression that evaluates to a positive integer as being positive , or else it

will not be considered as such by the type system. Therefore, the programmer has the burden of manually

figuring out which expressions are positive and which are not. Furthermore, if the programmer accidentally

annotates an expression such as -34 + 5 as positive , the type system will happily allow this expression

to be passed to a square-root function expecting a positive int , even though that will likely cause a

runtime error.

Qualifier inference avoids the need for explicit annotations using annot . However, qualifier inference

simply determines which expressions must be treated as positive to satisfy a program’s assert s.

There is no guarantee that these expressions actually evaluate to positive integers, and many expressions

that do evaluate to positive integers will not be found to be positive by the inferencer.

To address the burden and fragility of qualifier annotations, we consider an alternate approach to

expressing a qualifier’s intent. Instead of relying on program annotations, we require qualifier designers to

specify a programming discipline for each qualifier, which indicates when an expression may be given that

qualifier. For example, a programming discipline for positive might say that all positive constants can

be considered positive and that an expression of the form e1 + e2 can be considered positive if

each operand expression can itself be considered positive according to the discipline. In this way, the

discipline declaratively expresses the fact that 34 + 5 can be considered positive , while -34 + 5
cannot.

The approach described is used by the Clarity framework for programmer-defined type qualifiers in

C [14]. Clarity provides a declarative language for specifying programming disciplines. For example,

Figure 9.10 shows how the discipline informally described above for positive would be specified in

Clarity. The figure declares a new qualifier named positive , which refines the type int . It then uses
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qualifier positive(int Expr E)
case E of

dec1 int Const C:
C, where C>0

| dec1 int Expr E1, E2:
E1 + E2, where positive(E1) && positive(E2)

FIGURE 9.10 A programming discipline for positive in Clarity.

pattern matching to specify two ways in which an expression E can be given the qualifier positive .

The Clarity framework includes an extensible type-checker, which employs user-defined disciplines to

automatically type-check programs.

Formally, consider the type system consisting of the rules in Figures 9.8 and 9.9. We remove all the

rules of the form Ŵ ⊢ e : ν, which perform type-checking on constructor expressions, and we remove

the annot expression form along with its type-checking rule Q-ANNOT. When a programmer introduces

a new qualifier, he or she must also augment the type system with new inference rules indicating the

conditions under which each constructor expression may be given this qualifier. For example, the rules in

Figure 9.10 are formally represented by adding the following two rules to the type system:

n > 0

Ŵ ⊢ n : positive int
[P-INT]

Ŵ ⊢ e1 : positive int Ŵ ⊢ e2 : positive int

Ŵ ⊢ e1 + e2 : positive int
(P-PLUS)

Assuming that the programmer also declares positive ⊑ nonzero , the subtyping and subsumption

rules in Figure 9.9 allow the above rules to be used to give the qualifier nonzero to an expression as well.

Not all qualifiers have natural rules associated with them. For example, the programming disciplines

associated with qualifiers such as tainted and untainted could be program dependent and/or quite

complicated. Therefore, in practice both the Clarity and CQUAL approaches are useful.

9.3.3.4.1 Type Soundness

A type soundness theorem analogous to that for traditional type qualifiers, which guarantees that assert s

succeed at runtime, can be proven in this setting. In addition, it is possible to prove a stronger notion

of type soundness. Clarity allows the programmer to optionally specify the set of values associated with

a particular qualifier. For example, the programmer could associate the set of positive integers with the

positive qualifier. Given this information, type soundness says that a well-typed expression with the

qualifier positive will evaluate to a member of the specified set.

To ensure this form of type soundness, Clarity generates one proof obligation per programmer-defined

rule. For example, the second rule for positive above requires proving that the sum of two integers

greater than zero is also an integer greater than zero. Clarity discharges proof obligations automatically

using off-the-shelf decision procedures [25], but in general these may need to be manually proven by the

qualifier designer.

This form of type soundness validates the programmer-defined rules. For example, if the second rule

for positive above were erroneously defined for subtraction rather than addition, the error would be

caught because the associated proof obligation is not valid: the difference between two positive integers is

not necessarily positive. In this way, programmers obtain a measure of confidence that their qualifiers and

associated inference rules are behaving as intended.

9.3.3.4.2 Qualifier Inference

Qualifier inference is also possible in this setting and is implemented in Clarity, allowing the qualifiers

for variables to be inferred rather than declared by the programmer. Similar to qualifier inference in the
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previous subsection, a set of subtype constraints is generated and solved. However, handling programmer-

defined inference rules requires a form of conditional subtype constraints to be solved [15].

9.3.4 Related Work on Type Refinements

Work on refinement types for the ML language allows programmers to create subtypes of data type defini-

tions [38], each denoting a subset of the values of the data type. For example, a standard list data type could

be refined to define a type of nonempty lists. The language for specifying these refinements is analogous

to the language for programmer-defined inference rules in Clarity.

Other work has shown how to make refinement types and type qualifiers flow sensitive [23, 24, 37, 47],

which allows the refinement of an expression to change over time. For example, a file pointer could have

the qualifier closed upon creation and the qualifier open after it has been opened. In this way, type

refinements can be used to track temporal protocols, for example, that a file must be opened before it can

be read or written.

Finally, others have explored type refinements through the notion of dependent types [48], in which

types can depend on program expressions. An instance of this approach is Dependent ML [69, 70], which

allows types to be refined through their dependence on linear arithmetic expressions. For example, the

type int list(5) represents integer lists of length 5, and a function that adds an element to an integer

list would be declared to have the argument type int list(n) for some integer n and to return a

value of type int list(n+1) . These kinds of refinements are targeted at qualitatively different kinds

of program properties from those targeted by type qualifiers.
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10.1 Introduction

The term dynamic compilation refers to techniques for runtime generation of executable code. The idea of

compiling parts or all the application code while the program is executing challenges our intuition about

overheads involved in such an endeavor, yet recently a number of approaches have evolved that effectively

manage this challenging task.

The ability to dynamically adapt executing code addresses many of the existing problems with tra-

ditional static compilation approaches. One such problem is the difficulty for a static compiler to fully

exploit the performance potential of advanced architectures. In the drive for greater performance, today’s

microprocessors provide capabilities for the compiler to take on a greater role in performance delivery,

ranging from predicated and speculative execution (e.g., for the Intel Itanium processor) to various power

consumption control models. To exploit these architectural features, the static compiler usually has to rely

on profile information about the dynamic execution behavior of a program. However, collecting valid

execution profiles ahead of time may not always be feasible or practical. Moreover, the risk of performance

degradation that may result from missing or outdated profile information is high.

Current trends in software technology create additional obstacles to static compilation. These are exem-

plified by the widespread use of object-oriented programming languages and the trend toward shipping

software binaries as collections of dynamically linked libraries instead of monolithic binaries. Unfortu-

nately, the increased degree of runtime binding can seriously limit the effectiveness of traditional static

compiler optimization, because static compilers operate on the statically bound scope of the program.

Finally, the emerging Internet and mobile communications marketplace creates the need for the compiler

to produce portable code that can efficiently execute on a variety of machines. In an environment of

networked devices, where code can be downloaded and executed on the fly, static compilation at the

target device is usually not an option. However, if static compilers can only be used to generate platform-

independent intermediate code, their role as a performance delivery vehicle becomes questionable.

10-1
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This chapter discusses dynamic compilation, a radically different approach to compilation that ad-

dresses and overcomes many of the preceding challenges to effective software implementation. Dynamic

compilation extends our traditional notion of compilation and code generation by adding a new dynamic

stage to the classical pipeline of compiling, linking, and loading code. The extended dynamic compilation

pipeline is depicted in Figure 10.1.

A dynamic compiler can take advantage of runtime information to exploit optimization opportuni-

ties not available to a static compiler. For example, it can customize the running program according to

information about actual program values or actual control flow. Optimization may be performed across

dynamic binding, such as optimization across dynamically linked libraries. Dynamic compilation avoids

the limitations of profile-based approaches by directly utilizing runtime information. Furthermore, with a

dynamic compiler, the same code region can be optimized multiple times should its execution environment

change. Another unique opportunity of dynamic compilation is the potential to speed up the execution

of legacy code that was produced using outdated compilation and optimization technology.

Dynamic compilation provides an important vehicle to efficiently implement the “write-once-run-

anywhere” execution paradigm that has recently gained a lot of popularity with the Java programming

language [22]. In this paradigm, the code image is encoded in a mobile platform-independent format

(e.g., Java bytecode). Final code generation that produces native code takes place at runtime as part of the

dynamic compilation stage.

In addition to addressing static compilation obstacles, the presence of a dynamic compilation stage can

create entirely new opportunities that go beyond code compilation. Dynamic compilation can be used to

transparently migrate software from one architecture to a different host architecture. Such a translation is

achieved by dynamically retargeting the loaded nonnative guest image to the host machine native format.

Even for machines within the same architectural family, a dynamic compiler may be used to upgrade

software to exploit additional features of the newer generation.

As indicated in Figure 10.1, the dynamic compilation stage may also include a feedback loop. With

such a feedback loop, dynamic information, including the dynamically compiled code itself, may be saved

at runtime to be restored and utilized in future runs of the program. For example, the FX!32 system for

emulating x86 code on an Alpha platform [27] saves runtime information about executed code, which

is then used to produce translations offline that can be incorporated in future runs of the program. It

should be noted that FX!32 is not strictly a dynamic compilation system, in that translations are produced

between executions of the program instead of online during execution.

Along with its numerous opportunities, dynamic compilation also introduces a unique set of chal-

lenges. One such challenge is to amortize the dynamic compilation overhead. If dynamic compilation is

sequentially interleaved with program execution, the dynamic compilation time directly contributes to

the overall execution time of the program. Such interleaving greatly changes the cost-benefit compilation

trade-off that we have grown accustomed to in static compilation. Although in a static compiler increased

optimization effort usually results in higher performance, increasing the dynamic compilation time may

actually diminish some or all of the performance improvements that were gained by the optimization in

the first place. If dynamic compilation takes place in parallel with program execution on a multiprocessor

system, the dynamic compilation overhead is less important, because the dynamic compiler cannot di-

rectly slow down the program. It does, however, divert resources that could have been devoted to execution.

Moreover, long dynamic compilation times can still adversely affect performance. Spending too much time
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on compilation can delay the employment of the dynamically compiled code and diminish the benefits.

To maximize the benefits, dynamic compilation time should therefore always be kept to a minimum.

To address the heightened pressure for minimizing overhead, dynamic compilers often follow an adaptive

approach [23]. Initially, the code is optimized with little or no optimization. Aggressive optimizations are

considered only later, when more evidence has been found that added optimization effort is likely to be of

use.

A dynamic compilation stage, if not designed carefully, can also significantly increase the space require-

ment for running a program. Controlling additional space requirements is crucial in environments where

code size is important, such as embedded or mobile systems. The total space requirements of execution

with a dynamic compiler include not only the loaded input image but also the dynamic compiler itself,

plus the dynamically compiled code. Thus, care must be taken to control both the footprint of the dynamic

compiler and the size of the currently maintained dynamically compiled code.

10.2 Approaches to Dynamic Compilation

A number of approaches to dynamic compilation have been developed. These approaches differ in several

aspects, including the degree of transparency, the extent and scope of dynamic compilation, and the

assumed encoding format of the loaded image. On the highest level, dynamic compilation systems can

be divided into transparent and nontransparent systems. In a transparent system, the remainder of the

compilation pipeline is oblivious to the fact that a dynamic compilation stage has been added. The

executable produced by the linker and loader is not specially prepared for dynamic optimization, and

it may execute with or without a dynamic compilation stage. Figure 10.2 shows a classification of the

various approaches to transparent and nontransparent dynamic compilation.

Transparent dynamic compilation systems can further be divided into systems that operate on binary

executable code (binary dynamic compilation) and systems that operate on an intermediate platform-

independent encoding (just-in-time [JIT] compilation). A binary dynamic compiler starts out with a

loaded fully executable binary. In one scenario, the binary dynamic compiler recompiles the binary code

to incorporate native-to-native optimizing transformations. These recompilation systems are also referred

to as dynamic optimizers [3, 5, 7, 15, 36]. During recompilation, the binary is optimized by customizing

the code with respect to specific runtime control and data flow values. In dynamic binary translation, the
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loaded input binary is in a nonnative format, and dynamic compilation is used to retarget the code to a

different host architecture [19, 35, 39]. The dynamic code translation may also include optimization.

JIT compilers present a different class of transparent dynamic compilers [11, 12, 18, 28, 29]. The input to

a JIT compiler is not a native program binary; instead, it is code in an intermediate, platform-independent

representation that targets a virtual machine. The JIT compiler serves as an enhancement to the virtual

machine to produce native code by compiling the intermediate input program at runtime, instead of

executing it in an interpreter. Typically, semantic information is attached to the code, such as symbol

tables or constant pools, which facilitates the compilation.

The alternative to transparent dynamic compilation is the nontransparent approach, which integrates the

dynamic compilation stage explicitly within the earlier compilation stages. The static compiler cooperates

with the dynamic compiler by delaying certain parts of the compilation to runtime, if their compilation

can benefit from runtime values. A dynamic compilation agent is compiled (i.e., hardwired) into the

executable to fill and link in a prepared code template for the delayed compilation region. Typically, the

programmer indicates adequate candidate regions for dynamic compilation via annotations or compiler

directives. Several techniques have been developed to perform runtime specialization of a program in this

manner [9, 23, 31, 33].

Runtime specialization techniques are tightly integrated with the static compiler, whereas transparent

dynamic compilation techniques are generally independent of the static compiler. However, transparent

dynamic compilation can still benefit from information that the static compiler passes down. Semantic

information, such as a symbol table, is an example of compiler information that is beneficial for dynamic

compilation. If the static compiler is made aware of the dynamic compilation stage, more targeted infor-

mation may be communicated to the dynamic compiler in the form of code annotations to the binary [30].

The remainder of this chapter discusses the various dynamic compilation approaches shown in

Figure 10.2. We first discuss transparent binary dynamic optimization as a representative dynamic com-

pilation system. We discuss the mechanics of dynamic optimization systems and their major components,

along with their specific opportunities and challenges. We then discuss systems in each of the remaining

dynamic compilation classes and point out their unique characteristics.

Also, a number of hardware approaches are available to dynamically manipulate the code of a running

program, such as the hardware in out-of-order superscalar processors or hardware dynamic optimization

in trace cache processors [21]. However, in this chapter, we limit the discussion to software dynamic

compilation.

10.3 Transparent Binary Dynamic Optimization

A number of binary dynamic compilation systems have been developed that operate as an optional dynamic

stage [3, 5, 7, 15, 35]. An important characteristic of these systems is that they take full control of the

execution of the program. Recall that in the transparent approach, the input program is not specially

prepared for dynamic compilation. Therefore, if the dynamic compiler does not maintain full control

over the execution, the program may escape and simply continue executing natively, effectively bypassing

dynamic compilation altogether. The dynamic compiler can afford to relinquish control only if it can

guarantee that it will regain control later, for example, via a timer interrupt.

Binary dynamic compilation systems share the general architecture shown in Figure 10.3. Input to the

dynamic compiler is the loaded application image as produced by the compiler and linker. Two main

components of a dynamic compiler are the compiled code cache that holds the dynamically compiled code

fragments and the dynamic compilation engine. At any point in time, execution takes place either in the

dynamic compilation engine or in the compiled code cache. Correspondingly, the dynamic compilation

engine maintains two distinct execution contexts: the context of the dynamic compilation engine itself

and the context of the application code.

Execution of the loaded image starts under control of the dynamic compilation engine. The dynamic

compiler determines the address of the next instruction to execute. It then consults a lookup table to

determine whether a dynamically compiled code fragment starting at that address already exists in the
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code cache. If so, a context switch is performed to load the application context and to continue execution

in the compiled code cache until a code cache miss occurs. A code cache miss indicates that no compiled

fragment exists for the next instruction. The cache miss triggers a context switch to reload the dynamic

compiler’s context and reenter the dynamic compilation engine.

The dynamic compiler decides whether a new fragment should be compiled starting at the next address.

If so, a code fragment is constructed based on certain fragment selection policies, which are discussed in

the next section. The fragment may optionally be optimized and linked with other previously compiled

fragments before it is emitted into the compiled code cache.

The dynamic compilation engine may include an instruction interpreter component. With an interpreter

component, the dynamic compiler can choose to delay the compilation of a fragment and instead interpret

the code until it has executed a number of times. During interpretation, the dynamic compiler can profile

the code to focus its compilation efforts on only the most profitable code fragments [4]. Without an

interpreter, every portion of the program that is executed during the current run can be compiled into the

compiled code cache.

Figure 10.3 shows a code transfer arrow from the compiled code cache to the fragment selection

component. This arrow indicates that the dynamic compiler may choose to select new code fragments

from previously created code in the compiled code cache. Such fragment reformation may be performed

to improve fragment shape and extent. For example, several existing code fragments may be combined

to form a single new fragment. The dynamic compiler may also reselect an existing fragment for more

aggressive optimization. Reoptimization of a fragment may be indicated if profiling of the compiled code

reveals that it is a hot (i.e., frequently executing) fragment.

In the following sections, we discuss the major components of the dynamic compiler in detail: frag-

ment selection, fragment optimization, fragment linking, management of the compiled code cache, and

exception handling.

10.3.1 Fragment Selection

The fragment selector proceeds by extracting code regions and passing them to the fragment optimizer for

optimization and eventual placement in the compiled code cache. The arrangement of the extracted code
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regions in the compiled code cache leads to a new code layout, which has the potential of improving the

performance of dynamically compiled code. Furthermore, by passing isolated code regions to the optimizer,

the fragment selector dictates the scope and kind of runtime optimization that may be performed. Thus,

the goal of fragment selection is twofold: to produce an improved code layout and to expose dynamic

optimization opportunities.

New optimization opportunities or improvements in code layout are unlikely if the fragment selector

merely copies static regions from the loaded image into the code cache. Regions such as basic blocks or

entire procedures are among the static regions of the original program and have been already exposed

to, and possibly optimized by, the static compiler. New optimization opportunities are more likely to be

found in the dynamic scope of the executing program. Thus, it is crucial to incorporate dynamic control

flow into the selected code regions.

Because of the availability of dynamic information, the fragment selector has an advantage over a static

compiler in selecting the most beneficial regions to optimize. At the same time, the fragment selector

is more limited because high-level semantic information about code constructs is no longer available.

For example, without information about procedure boundaries and the layout of switch statements, it is

generally impossible to discover the complete control flow of a procedure body in a loaded binary image.

In the presence of these limitations, the units of code commonly used in a binary dynamic compilation

system are a partial execution trace, or trace for short BD [4, 7]. A trace is a dynamic sequence of

consecutively executing basic blocks. The sequence may not be contiguous in memory; it may even be

interprocedural, spanning several procedure boundaries, including dynamically linked modules. Thus,

traces are likely to offer opportunities for improved code layout and optimization. Furthermore, traces do

not need to be computed; they can be inferred simply by observing the runtime behavior of the program.

Figure 10.4 illustrates the effects of selecting dynamic execution traces. The graph in Figure 10.4a shows

a control flow graph representation of a trace, consisting of blocks A, B, C, D, and E that form a loop

containing a procedure call. The graph in Figure 10.4b shows the same trace in a possible noncontiguous

memory layout of the original loaded program image. The graph in Figure 10.4c shows a possible improved

layout of the looping trace in the compiled code cache as a contiguous straight-line sequence of blocks.

The straight-line layout reduces branching during execution and offers better code locality for the loop.

10.3.1.1 Adaptive Fragment Selection

The dynamic compiler may select fragments of varying shapes. It may also stage the fragment selection in

a progressive fashion. For example, the fragment selector may initially select only basic block fragments.

Larger composite fragments, such as traces, are selected as secondary fragments by stringing together

frequently executing block fragments [4]. Progressively larger regions, such as tree regions, may then be

constructed by combining individual traces [19]. Building composite code regions can result in poten-

tially large amounts of code duplication because code that is common across several composite regions
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is replicated in each region. Uncontrolled code duplication can quickly result in excessive cache size re-

quirements, the so-called code explosion problem. Thus, a dynamic compiler has to employ some form

of execution profiling to limit composite region construction to only the (potentially) most profitable

candidates.

10.3.1.2 Online Profiling

Profiling the execution behavior of the loaded code image to identify the most frequently executing regions

is an integral part of dynamic compilation. Information about the hot spots in the code is used in fragment

selection and for managing the compiled code cache space. Hot spots must be detected online as they

are becoming hot, which is in contrast to conventional profiling techniques that operate offline and do

not establish relative execution frequencies until after execution. Furthermore, to be of use in a dynamic

compiler, the profiling techniques must have very low space and time overheads.

A number of offline profiling techniques have been developed for use in feedback systems, such as profile-

based optimization. A separate profile run of the program is conducted to accumulate profile information

that is then fed back to the compiler. Two major approaches to offline profiling are statistical PC sampling

and binary instrumentation for the purpose of branch or path profiling. Statistical PC sampling [1, 10, 40]

is an inexpensive technique for identifying hot code blocks by recording program counter hits. Although

PC sampling is efficient for detecting individual hot blocks, it provides little help in finding larger hot code

regions. One could construct a hot trace by stringing together the hottest code blocks. However, such a

trace may never execute from start to finish because the individual blocks may have been hot along disjoint

execution paths. The problem is that individually collected branch frequencies do not account for branch

correlations, which occur if the outcome of one branch can influence the outcome of a subsequent branch.

Another problem with statistical PC sampling is that it introduces nondeterminism into the dynamic

compilation process. Nondeterministic behavior is undesirable because it greatly complicates development

and debugging of the dynamic compiler.

Profiling techniques based on binary instrumentation record information at every execution instance.

They are more costly than statistical sampling, but can also provide more fine-grained frequency infor-

mation. Like statistical sampling, branch profiling techniques suffer the same problem of not adequately

addressing branch correlations. Path-profiling techniques overcome the correlation problem by directly

determining hot traces in the program [6]. The program binary is instrumented to collect entire path (i.e.,

trace) frequency information at runtime in an efficient manner.

A dynamic compiler could adopt these techniques by inserting instrumentation in first-level code

fragments to build larger composite secondary fragments. The drawback of adapting offline techniques is

the large amount of profile information that is collected and the overhead required to process it. Existing

dynamic compilation systems have employed more efficient, but also more approximate, profiling schemes

that collect a small amount of profiling information, either during interpretation [5] or by instrumenting

first-level fragments [19]. Ephemeral instrumentation is a hybrid profiling technique [37] based on the

ability to efficiently enable and disable instrumentation code.

10.3.1.3 Online Profiling in the Dynamo System

As an example of a profiling scheme used in a dynamic compiler, we consider the next executing tail

(NET) scheme used in the Dynamo system [16]. The objective of the NET scheme is to significantly reduce

profiling overhead while still providing effective hot path predictions. A path is divided into a path head

(i.e., the path starting point) and a path tail, which is the remainder of the path following the starting point.

For example, in path ABCDE in Figure 10.4a, block A is the path head and BCDE is the path tail. The NET

scheme reduces profiling cost by using speculation to predict path tails, while maintaining full profiling

support to predict hot path heads. The rationale behind this scheme is that a hot path head indicates that

the program is currently executing in a hot region, and the next executing path tail is likely to be part of

that region.

Accordingly, execution counts are maintained only for potential path heads, which are the targets of

backward taken branches or the targets of cache exiting branches. For example, in Figure 10.4a, one
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profiling count is maintained for the entire loop at the single path head at the start of block A. Once the

counter at block A has exceeded a certain threshold, the next executing path is selected as the hot path for

the loop.

10.3.2 Fragment Optimization

After a fragment has been selected, it is translated into a self-contained location-independent intermediate

representation (IR). The IR of a fragment serves as a temporary vehicle to transform the original instruction

stream into an optimized form and to prepare it for placement and layout in the compiled code cache.

To enable fast translation between the binary code and the IR, the abstraction level of the IR is kept close

to the binary instruction level. Abstraction is introduced only when needed, such as to provide location

independence through symbolic labels and to facilitate code motion and code transformations through

the use of virtual registers.

After the fragment is translated into its intermediate form, it can be passed to the optimizer. A dynamic

optimizer is not intended to duplicate or replace conventional static compiler optimization. On the con-

trary, a dynamic optimizer can complement a static compiler by exploiting optimization opportunities

that present themselves only at runtime, such as value-based optimization or optimization across the

boundaries of dynamically linked libraries. The dynamic optimizer can also apply path-specific optimiza-

tion that would be too expensive to apply indiscriminately over all paths during static compilation. On

a given path, any number of standard compiler optimizations may be performed, such as constant and

copy propagation, dead code elimination, value numbering, and redundancy elimination [4, 15]. However,

unlike in static compiler optimization, the optimization algorithm must be optimized for efficiency instead

of generality and power. A traditional static optimizer performs an initial analysis phase over the code to

collect all necessary data flow information that is followed by the actual optimization phase. The cost of

performing multiple passes over the code is likely to be prohibitive in a runtime setting. Thus, a dynamic

optimizer typically combines analysis and optimization into a single pass over the code [4]. During the

combined pass all necessary data flow information is gathered on demand and discarded immediately if it

is no longer relevant for current optimization [17].

10.3.2.1 Control Specialization

The dynamic compiler implicitly performs a form of control specialization of the code by producing

a new layout of the running program inside the compiled code cache. Control specialization describes

optimizations whose benefits are based on the execution taking specific control paths. Another example of

control specialization is code sinking [4], also referred to as hot–cold optimization [13]. The objective of

code sinking is to move instructions from the main fragment execution path into fragment exits to reduce

the number of instructions executed on the path. An instruction can be sunk into a fragment exit block

if it is not live within the fragment. Although an instruction appears dead on the fragment, it cannot be

removed entirely because it is not known whether it is also dead after exiting the fragment.

An example of code sinking is illustrated in Figure 10.5. The assignment X: = Y in the first block in

fragment 1 is not live within fragment 1 because it is overwritten by the read instruction in the next block.

To avoid useless execution of the assignment when control remains within fragment 1, the assignment can

be moved out of the fragment and into a so-called compensation block at every fragment exit at which the

assigned variable may still be live, as shown in Figure 10.5i. Once the exit block is linked to a target fragment

(fragment 2 in Figure 10.5) the code inside the target fragment can be inspected to determine whether

the moved assignment becomes dead after linking. If it does, the moved assignment in the compensation

block can safely be removed, as shown in Figure 10.5ii.

Another optimization is prefetching, which involves the placement of prefetch instructions along

execution paths prior to the actual usage of the respective data to improve the memory behavior of

the dynamically compiled code. If the dynamic compiler can monitor data cache latency, it can easily

identify candidates for prefetching. A suitable placement of the corresponding prefetch instructions can

be determined by consulting collected profile information.
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10.3.2.2 Value Specialization

Value specialization refers to an optimization that customizes the code according to specific runtime values

of selected specialization variables. The specialization of a code fragment proceeds like a general form of

constant propagation and attempts to simplify the code as much as possible.

Unless it can be established for certain that the specialization variable is always constant, the execution

of the specialized code must be guarded by a runtime test. To handle specialization variables that take

on multiple values at runtime, the same region of code may be specialized multiple times. Several tech-

niques, such as polymorphic in-line caches [25], have been developed to efficiently select among multiple

specialization versions at runtime.

A number of runtime techniques have been developed that automatically specialize code at runtime,

given a specification of the specialization variables [9, 23, 31]. In code generated from object-oriented

languages, virtual method calls can be specialized for a common receiver class [25]. In principle, any code re-

gion can be specialized with respect to any number of values. For example, traces may be specialized accord-

ing to the entry values of certain registers. In the most extreme case, one can specialize individual instruc-

tions, such as complex floating point instructions, with respect to selected fixed-input register values [34].

The major challenge in value specialization is to decide when and what to specialize. Overspecialization

of the code can quickly result in code explosion and may severely degrade performance. In techniques

that specialize entire functions, the programmer typically indicates the functions to specialize through

code annotations prior to execution [9, 23]. Once the specialization regions are determined, the dynamic

specializer monitors the respective register values at runtime to trigger the specialization. Runtime special-

ization is the primary optimization technique employed by nontransparent dynamic compilation systems.

We revisit runtime specialization in the context of nontransparent dynamic compilation in Section 10.6.

10.3.2.3 Binary Optimization

The tasks of code optimization and transformation are complicated by having to operate on executable

binary code instead of a higher-level intermediate format. The input code to the dynamic optimizer has

previously been exposed to register allocation and possibly also to static optimization. Valuable semantic

information that is usually incorporated into compilation and optimization, such as type information

and information about high-level constructs (i.e., data structures), is no longer available and is generally

difficult to reconstruct.

An example of an optimization that is relatively easy to perform on intermediate code but difficult on

the binary level is procedure inlining. To completely inline a procedure body, the dynamic compiler has to
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reverse engineer the implemented calling convention and stack frame layout. Doing this may be difficult,

if not impossible, in the presence of memory references that cannot be disambiguated from stack frame

references. Thus, the dynamic optimizer may not be able to recognize and entirely eliminate instructions

for stack frame allocation and deallocation or instructions that implement caller and callee register saves

and restores.

The limitations that result from operating on binary code can be partially lifted by making certain

assumptions about compiler conventions. For example, assumptions about certain calling or register

usage conventions help in the procedure inlining problem. Also, if it can be assumed that the stack is only

accessed via a dedicated stack pointer register, stack references can be disambiguated from other memory

references. Enhanced memory disambiguation may then in turn enable more aggressive optimization.

10.3.3 Fragment Linking

Fragment linking is the mechanism by which control is transferred among fragments without exiting

the compiled code cache. An important performance benefit of linking is the elimination of unnecessary

context switches that are needed to exit and reenter the code cache.

The fragment-linking mechanism may be implemented via exit stubs that are initially inserted at every

fragment exiting branch, as illustrated in Figure 10.6. Prior to linking, the exit stubs direct control to the

context switch routine to transfer control back to the dynamic compilation engine. If a target fragment

for the original exit branch already exists in the code cache, the dynamic compiler can patch the exiting

branch to jump directly to its target inside the cache. For example, in Figure 10.6, the branches A to E

and G to A have been directly linked, leaving their original exit stubs inactive. To patch exiting branches,

some information about the branch must be communicated to the dynamic compiler. For example, to

determine the target fragment of a link, the dynamic compiler must know the original target address of

the exiting branch. This kind of branch information may be stored in a link record data structure, and a

pointer to it can be embedded in the exit stub associated with the branch [4].

The linking of an indirect computed branch is more complicated. If the fragment selector has collected

a preferred target for the indirect branch, it can be inlined directly into the fragment code. The indirect

target is inlined by converting the indirect branch into a conditional branch that tests whether the current

target is equal to the preferred target. If the test succeeds, control falls through to the preferred target inside

the fragment. Otherwise, control can be directed to a special lookup routine that is permanently resident

in the compiled code cache. This routine implements a lookup to determine whether a fragment for the

indirect branch target is currently resident in the cache. If so, control can be directed to the target fragment

without having to exit the code cache [4].

Although its advantages are obvious, linking also has some disadvantages that need to be kept in balance

when designing the linker. For example, linking complicates the effective management of the code cache,
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which may require the periodic removal or relocation of individual fragments. The removal of a fragment

may be necessary to make room for new fragments, and fragment relocation may be needed to periodically

defragment the code cache. Linking complicates both the removal and relocation of individual fragments

because all incoming fragment links have to be unlinked first. Another problem with linking is that it

makes it more difficult to limit the latency of asynchronous exception handling. Asynchronous exceptions

arise from events such as keyboard interrupts and timer expiration. Exception handling is discussed in

more detail in Section 10.3.5.

Linking may be performed on either a demand basis or a preemptive basis. With on-demand linking,

fragments are initially placed in the cache with all their exiting branches targeting an exit stub. Individ-

ual links are inserted as needed each time control exits the compiled code cache via an exit stub. With

preemptive linking, all possible links are established when a fragment is first placed in the code cache.

Preemptive linking may result in unnecessary work when links are introduced that are never executed.

On the other hand, demand-based linking causes additional context switches and interruptions of cache

execution each time a delayed link is established.

10.3.4 Code Cache Management

The code cache holds the dynamically compiled code and may be organized as one large contiguous area

of memory, or it may be divided into a set of smaller partitions. Managing the cache space is a crucial task

in the dynamic compilation system. Space consumption is primarily controlled by a cache allocation and

deallocation strategy. However, it can also be influenced by the fragment selection strategy. Cache space

requirements increase with the amount of code duplication among the fragments. In the most conservative

case, the dynamic compiler selects only basic block fragments, which avoids code duplication altogether.

However, the code quality and layout in the cache is likely to be unimproved over the original binary.

A dynamic compiler may use an adaptive strategy that permits unlimited duplication if sufficient space

is available but moves toward shorter, more conservatively selected fragments as the available space in

the cache diminishes. Even with an adaptive strategy, the cache may eventually run out of space, and the

deallocation of code fragments may be necessary to make room for future fragments.

10.3.4.1 Fragment Deallocation

A fragment deallocation strategy is characterized by three parameters: the granularity, the timing, and

the replacement policy that triggers deallocation. The granularity of fragment deallocation may range

from an individual fragment deallocation to an entire cache flush. Various performance tradeoffs are to

be considered in choosing the deallocation granularity. Individual fragment deallocation is costly in the

presence of linking because each fragment exit and entry has to be individually unlinked. To reduce the

frequency of cache management events, one might choose to deallocate a group of fragments at a time.

A complete flush of one of the cache partitions is considerably cheaper because individual exit and entry

links do not have to be processed. Moreover, complete flushing does not incur fragmentation problems.

However, uncontrolled flushing may result in loss of useful code fragments that may be costly to reacquire.

The timing of a deallocation can be demand or preemptive based. A demand-based deallocation occurs

simply in reaction to an out-of-space condition of the cache space. A preemptive strategy is used in the

Dynamo system for cache flushing [4]. The idea is to time a cache flush so that the likelihood of losing

valuable cache contents is minimized. The Dynamo system triggers a cache flush when it detects a phase

change in the program behavior. When a new program phase is entered, a new working set of fragments

is built, and it is likely that most of the previously active code fragments are no longer relevant. Dynamo

predicts phase changes by monitoring the fragment creation rate. A phase change is signaled if a sudden

increase in the creation rate is detected.

Finally, the cache manager has to implement a replacement policy. A replacement policy is particularly

important if individual fragments are deallocated. However, even if an entire cache partition is flushed,

a decision has to be made as to which partition to free. The cache manager can borrow simple common
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replacement policies from memory paging systems, such as first-in, first-out (FIFO) or least recently used

(LRU). Alternatively, more advanced garbage collection strategies, such as generational garbage collection

strategies, can be adopted to manage the dynamic compilation cache.

Besides space allocation and deallocation, an important code cache service is the fast lookup of fragments

that are currently resident in the code cache. Fragment lookups are needed throughout the dynamic

compilation system and even during the execution of cached code fragments when it is necessary to look

up an indirect branch target. Thus, fast implementation of fragment lookups, for example, via hash tables,

is crucial.

10.3.4.2 Multiple Threads

The presence of multithreading can greatly complicate the cache manager. Most of the complication from

multithreading can simply be avoided by using thread-private caches. With thread-private caches, each

thread uses its own compiled code cache, and no dynamically compiled code is shared among threads.

However, the lack of code sharing with thread-private caches has several disadvantages. The total code

cache size requirements are increased by the need to replicate thread-shared code in each private cache.

Besides additional space requirements, the lack of code sharing can also cause redundant work to be carried

out when the same thread-shared code is repeatedly compiled.

To implement shared code caches, every code cache access that deletes or adds fragment code must

be synchronized. Operating systems usually provide support for thread synchronization. To what extent

threads actually share code and, correspondingly, to what extent shared code caches are beneficial are

highly dependent on the application behavior.

Another requirement for handling multiple threads is the provision of thread-private state. Storage for

thread-private state is needed for various tasks in the dynamic compiler. For example, during fragment

selection a buffer is needed to hold the currently collected fragment code. This buffer must be thread

private to avoid corrupting the fragment because multiple threads may be simultaneously in the process

of creating fragments.

10.3.5 Handling Exceptions

The occurrence of exceptions while executing in the compiled code cache creates a difficult issue for a

dynamic compiler. This is true for both user-level exceptions, such as those defined in the Java language,

and system-level exceptions, such as memory faults. An exception has to be serviced as if the original

program is executing natively. To ensure proper exception handling, the dynamic compiler has to intercept

all exceptions delivered to the program. Otherwise, the appropriate exception handler may be directly

invoked, and the dynamic compiler may lose control over the program. Losing control implies that the

program has escaped and can run natively for the remainder of the execution.

The original program may have installed an exception handler that examines or even modifies the

execution state passed to it. In binary dynamic compilation, the execution state includes the contents

of machine registers and the program counter. In JIT compilation, the execution state depends on the

underlying virtual machine. For example, in Java, the execution state includes the contents of the Java

runtime stack.

If an exception is raised when control is inside the compiled code cache, the execution state may

not correspond to any valid state in the original program. The exception handler may fail or operate

inadequately when an execution state has been passed to it that was in some way modified through dynamic

compilation. The situation is further complicated if the dynamic compiler has performed optimizations

on the dynamically compiled code.

Exceptions can be classified as asynchronous or synchronous. Synchronous exceptions are associated

with a specific faulting instruction and must be handled immediately before execution can proceed.

Examples of synchronous exceptions are memory or hardware faults. Asynchronous exceptions do not
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require immediate handling, and their processing can be delayed. Examples of asynchronous exceptions

include external interrupts (e.g., keyboard interrupts) and timer expiration.

A dynamic compiler can deal with asynchronous exceptions by delaying their handling until a safe

execution point is reached. A safe point describes a state at which the precise execution state of the original

program is known. In the absence of dynamic code optimization, a safe point is usually reached when

control is inside the dynamic compilation engine. When control exits the code cache, the original execution

state is saved by the context switch routine prior to reentering the dynamic compilation engine. Thus, the

saved context state can be restored before executing the exception handler.

If control resides inside the code cache at the time of the exception, the dynamic compiler can delay

handling the exception until the next code cache exit. Because the handling of the exception must not be

delayed indefinitely, the dynamic compiler may have to force a code cache exit. To force a cache exit, the

fragment that has control at the time of the exception is identified, and all its exit branches are unlinked.

Unlinking the exit branches prevents control from spinning within the code cache for an arbitrarily long

period of time before the dynamic compiler can process the pending exception.

10.3.5.1 Deoptimization

Unfortunately, postponing the handling of an exception until a safe point is reached is not an option

for synchronous exceptions. Synchronous exceptions must be handled immediately, even if control is at a

point in the compiled code cache. The original execution state must be recovered as if the original program

had executed unmodified. Thus, at the very least, the program counter address, currently a cache address,

has to be set to its corresponding address in the original code image.

The situation is more complicated if the dynamic compiler has applied optimizations that change the

execution state. This includes optimizations that eliminate code, remap registers, or reorder instructions.

In Java JIT compilation, this also includes the promotion of Java stack locations to machine registers.

To reestablish the original execution state, the fragment code has to be deoptimized. This problem of

deoptimization is similar to one that arises with debugging optimized code, where the original unoptimized

user state has to be presented to the programmer when a break point is reached.

Deoptimization techniques for runtime compilation have previously been discussed for JIT compilation

[26] and binary translation [24]. Each optimization requires its own deoptimization strategy, and not all

optimizations are deoptimizable. For example, the reordering of two memory load operations cannot be

undone once the reordered earlier load has executed and raised an exception. To deoptimize a transforma-

tion, such as dead code elimination, several approaches can be followed. The dynamic compiler can store

sufficient information at every optimization point in the dynamically compiled code. When an exception

arises, the stored information is consulted to determine the compensation code that is needed to undo the

optimization and reproduce the original execution state. For dead code elimination, the compensation

code may be as simple as executing the eliminated instruction. Although this approach enables fast state

recovery at exception time, it can require substantial storage for deoptimization information.

An alternative approach, which is better suited if exceptions are rare events, is to retrieve the necessary

deoptimization information by recompiling the fragment at exception time. During the initial dynamic

compilation of a fragment, no deoptimization information is stored. This information is recorded only

during a recompilation that takes place in response to an exception.

It may not always be feasible to determine and store appropriate deoptimization information, for

example, for optimizations that exploit specific register values. To be exception-safe and to faithfully

reproduce original program behavior, a dynamic compiler may have to suppress optimizations that cannot

be deoptimized if an exception were to arise.

10.3.6 Challenges

The previous sections have discussed some of the challenges in designing a dynamic optimization system.

A number of other difficult issues still must be dealt with in specific scenarios.



10-14 The Compiler Design Handbook: Optimizations and Machine Code Generation

10.3.6.1 Self-Modifying and Self-Referential Code

One such issue is the presence of self-modifying or self-referential code. For example, self-referential code

may be inserted for a program to compute a check sum on its binary image. To ensure that self-referential

behavior is preserved, the loaded program image should remain untouched, which is the case if the dynamic

compiler follows the design illustrated in Figure 10.3.

Self-modifying code is more difficult to handle properly. The major difficulty lies in the detection of code

modification. Once code modification has been detected, the proper reaction is to invalidate all fragments

currently resident in the cache that contain copies of the modified code. Architectural support can make

the detection of self-modifying code easy. If the underlying machine architecture provides page–write

protection, the pages that hold the loaded program image can simply be write protected. A page protection

violation can then indicate the occurrence of code modification and can trigger the corresponding fragment

invalidations in the compiled code cache. Without such architectural support, every store to memory must

be intercepted to test for self-modifying stores.

10.3.6.2 Transparency

A truly transparent dynamic compilation system can handle any loaded executable. Thus, to qualify

as transparent a dynamic compiler must not assume special preparation of the binary, such as explicit

relinking or recompilation with dynamic compilation code. To operate fully transparently, a dynamic

compiler should be able to handle even legacy code. In a more restrictive setting, a dynamic compiler may

be allowed to make certain assumptions about the loaded code. For example, an assumption may be made

that the loaded program was generated by a compiler that obeys certain software conventions. Another

assumption could be that it is equipped with symbol table information or stack unwinding information,

each of which may provide additional insights into the code that can be valuable during optimization.

10.3.6.3 Reliability

Reliability and robustness present another set of challenges. If the dynamic compiler acts as an optional

transparent runtime stage, robust operation is of even greater importance than in static compilation stages.

Ideally, the dynamic compilation system should reach hardware levels of robustness, though it is not clear

how this can be achieved with a piece of software.

10.3.6.4 Real-Time Constraints

Handling real-time constraints in a dynamic compiler has not been sufficiently studied. The execution

speed of a program that runs under the control of a dynamic compiler may experience large variations.

Initially, when the code cache is nearly empty, dynamic compilation overhead is high and execution progress

is correspondingly slow. Over time, as a program working set materializes in the code cache, the dynamic

compilation overhead diminishes and execution speed picks up. In general, performance progress is highly

unpredictable because it depends on the code reuse rate of the program. Thus, it is not clear how any kind

of real-time guarantees can be provided if the program is dynamically compiled.

10.4 Dynamic Binary Translation

The previous sections have described dynamic compilation in the context of code transformation for

performance optimization. Another motivation for employing a dynamic compiler is software migration.

In this case, the loaded image is native to a guest architecture that is different from the host architecture,

which runs the dynamic compiler. The binary translation model of dynamic compilation is illustrated in

Figure 10.7. Caching instruction set simulators [8] and dynamic binary translation systems [19, 35, 39]

are examples of systems that use dynamic compilation to translate nonnative guest code to a native host

architecture.

An interesting aspect of dynamic binary translation is achieving separation of the running software

from the underlying hardware. In principle, a dynamic compiler can provide a software implementation
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of an arbitrary guest architecture. With the dynamic compilation layer acting as a bridge, software and

hardware may evolve independently. Architectural advances can be hidden and remain transparent to the

user. This potential of dynamic binary translation has recently been commercially exploited by Transmeta’s

code morphing software [14] and Transitive’s emulation software layer [38].

The high-level design of a dynamic compiler, if used for binary translation, remains the same as illustrated

in Figure 10.3, with the addition of a translation module. This additional module translates fragments

selected from guest architecture code into fragments for the host architecture, as illustrated in Figure 10.8.

To produce a translation from one native code format to another, the dynamic compiler may choose

to first translate the guest architecture code into an intermediate format and then generate the final host

architecture instructions. Going through an intermediate format is especially helpful if the differences in

host and guest architecture are large. To facilitate the translation of instructions, it is useful to establish a

fixed mapping between guest and host architecture resources, such as machine registers [19].

Although the functionality of the major components in the dynamic compilation stage, such as fragment

selection and code cache management, is similar to the case of native dynamic optimization, a number of

important challenges are unique to binary translation.

If the binary translation system translates code not only across different architectures but also across

different operating systems, it is called full system translation. The Daisy binary translation system that

translates from code for the PowerPC under IBM’s UNIX system, AIX, to a customized very long instruction

word (VLIW) architecture is an example of full system translation [19]. Full system translation may be

further complicated by the presence of a virtual address space in the guest system. The entire virtual memory

address translation mechanism has to be faithfully emulated during the translation, which includes the

handling of such events as page faults. Furthermore, low-level boot code sequences must also be translated.

Building a dynamic compiler for full system translation requires in-depth knowledge of both the guest

and host architectures and operating systems.

10.5 Just-in-Time Compilation

JIT compilation refers to the runtime compilation of intermediate virtual machine code. Thus, unlike

binary dynamic compilation, the process does not start out with already compiled executable code. JIT

compilation was introduced for Smalltalk-80 [18] but has recently been widely popularized with the

introduction of the Java programming language and its intermediate bytecode format [22].

The virtual machine environment for a loaded intermediate program is illustrated in Figure 10.9. As

in binary dynamic compilation, the virtual machine includes a compilation module and a compiled code

cache. Another core component of the virtual machine is the runtime system that provides various system

services that are needed for the execution of the code. The loaded intermediate code image is inherently

Select
Fragment

Translate Optimize Link
Emit into

Code Cache

FIGURE 10.8 Dynamic translation pipeline.
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tied to, and does not execute outside, the virtual machine. Virtual machines are an attractive model to

implement a “write-once-run-anywhere” programming paradigm. The program is statically compiled to

the virtual machine language. In principle, the same statically compiled program may run on any hardware

environment, as long as the environment provides an appropriate virtual machine. During execution in

the virtual machine, the program may be further (JIT) compiled to the particular underlying machine

architecture. A virtual machine with a JIT compiler may or may not include a virtual machine language

interpreter.

JIT compilation and binary dynamic compilation share a number of important characteristics. In both

cases, the management of the compiled code cache is crucial. Just like a binary dynamic compiler, the JIT

compiler may employ profiling to stage the compilation and optimization effort into several modes, from

a quick base compilation mode with no optimization to an aggressively optimized mode.

Some important differences between JIT and binary dynamic compilation are due to the different levels

of abstraction in their input. To facilitate execution in the virtual machine, the intermediate code is typically

equipped with semantic information, such as symbol tables or constant pools. A JIT compiler can take

advantage of the available semantic information. Thus, JIT compilation more closely resembles the process

of static compilation than does binary recompilation.

The virtual machine code that the JIT compiler operates on is typically location independent, and

information about program components, such as procedures or methods, is available. In contrast, binary

dynamic compilers operate on fully linked binary code and usually face a code recovery problem. To

recognize control flow, code layout decisions that were made when producing the binary have to be reverse

engineered, and full code recovery is in general not possible. Because of the code recovery problem, binary

dynamic compilers are more limited in their choice of compilation unit. They typically choose simple code

units, such as straight-line code blocks, traces, or tree-shaped regions. JIT compilers, on the other hand,

can recognize higher-level code constructs and global control flow. They typically choose whole methods

or procedures as the compilation unit, just as a static compiler would do. However, recently it has been

recognized that there are other advantages to considering compilation units at a different granularity than

whole procedures, such as reduced compiled code sizes [2].

The availability of semantic information in a JIT compiler also allows for a larger optimization repertoire.

Except for overhead concerns, a JIT compiler is just as capable of optimizing the code as a static compiler.

JIT compilers can even go beyond the capabilities of a static compiler by taking advantage of dynamic

information about the code. In contrast, a binary dynamic optimizer is more constrained by the low-level

representation and the lack of a global view of the program. The aliasing problem is worse in binary dynamic

compilation because the higher-level-type information that may help disambiguate memory references is

not available. Furthermore, the lack of a global view of the program forces the binary dynamic compiler

to make worst-case assumptions at entry and exit points of the currently processed code fragment, which

may preclude otherwise safe optimizations.

The differences in JIT compilation and binary dynamic compilation are summarized in Table 10.1. A

JIT compiler is clearly more able to produce highly optimized code than a binary compiler. However,
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TABLE 10.1 Differences in JIT Compilation and Binary Dynamic Compilation

JIT Compilation Dynamic Binary Compilation

Semantic information available Lack of semantic information

Full code recovery Limited code recovery; limited choice in compilation unit

Full optimization repertoire Limited optimization potential

consider a scenario where the objective is not code quality but compilation speed. Under these conditions,

it is no longer clear that the JIT compiler has an advantage. A number of compilation and code generation

decisions, such as register allocation and instruction selection, have already been made in the binary code

and can often be reused during dynamic compilation. For example, binary translators typically construct

a fixed mapping between guest and host system machine registers. Consider the situation where the guest

architecture has fewer registers, for instance, 32, than the host architecture, for instance, 64, so that the

32 guest registers can be mapped to the first 32 host registers. When translating an instruction opcode,

op1,op2, the translator can use the fixed mapping to directly translate the operands from guest to host

machine registers. In this fashion, the translator can produce code with globally allocated registers without

any analysis, simply by reusing register allocation decisions from the guest code.

In contrast, a JIT compiler that operates on intermediated code has to perform a potentially costly global

analysis to achieve the same level of register allocation. Thus, what appears to be a limitation may prove

to have its virtues depending on the compilation scenario.

10.6 Nontransparent Approach: Runtime Specialization

A common characteristic among the dynamic compilation systems discussed so far is transparency. The

dynamic compiler operates in complete independence from static compilation stages and does not make

assumptions about, or require changes to, the static compiler.

A different, nontransparent approach to dynamic compilation has been followed by staged runtime

specialization techniques [9, 31, 33]. The objective of these techniques is to prepare for dynamic compilation

as much as possible at static compilation time. One type of optimization that has been supported in this

fashion is value-specific code specialization. Code specialization is an optimization that produces an

optimized version by customizing the code to specific values of selected specialization variables.

Consider the code example shown in Figure 10.10. Figure 10.5i shows a dot product function that is

called from within a loop in the main program, such that two parameters are fixed (n = 3 and row = [5,

0, 3]) and only a third parameter (col) may still vary. A more efficient implementation can be achieved by

specializing the dot function for the two fixed parameters. The resulting function spec doc, which retains

only the one varying parameter, is shown in Figure 10.10ii.

In principle, functions that are specialized at runtime, such as spec dot, could be produced in a JIT

compiler. However, code specialization requires extensive analysis and is too costly to be performed fully

at runtime. If the functions and the parameters for specialization are fixed at compile time, the static

compiler can prepare the runtime specialization and perform all the required code analyses. Based on the

analysis results, the compiler constructs code templates for the specialized procedure. The code templates

for spec dot are shown in Figure 10.11ii in C notation. The templates may be parameterized with respect

to missing runtime values. Parameterized templates contain holes that are filled in at runtime with the

respective values. For example, template T2 in Figure 10.11ii contains two holes for the runtime parameters

row[0]. . . row[2] (hole h1) and the values 0, . . . , (n−1)(hole h2).

By moving most of the work to static compile time, the runtime overhead is reduced to initialization

and linking of the prepared code templates. In the example from Figure 10.10, the program is statically

compiled so that in place of the call to routine dot, a call to a specialized dynamic code generation agent is

inserted. The specialized code generation agent for the example from Figure 10.10, make spec dot, is shown

in Figure 10.11i. When invoked at runtime, the specialized dynamic compiler looks up the appropriate
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dot (inf n, int row[ ], int
col [ ])
{

int i, sum;
sum = 0;

for (i = 0; i<n; i++)
sum + = row (i)* col (i);

return sum;
}

main ( ) {
read (&n, row);
. . .
while (. . .) {

/* n=3, row = {5, 0, 3 } */
dot (n, row, col);
. . .

}
}

spec dot (int col [ ]) {
int sum = 0;
sum += 5* col [0];
sum += 3* col [2];
return sum;

}

main {} {
read (&n, row);
make spec dot (n,

row);
. . .
while ( . . . ) {

spec dot (col);
. . .

}
}

(i) (ii)

FIGURE 10.10 Code specialization example. A dot–product function before (i) and after (ii) specialization.

code templates for spec dot, fills in the holes for parameters n and row with their runtime values, and

patches the original main routine to link in the new specialized code.

The required compiler support renders these runtime specialization techniques less flexible than trans-

parent dynamic compilation systems. The kind, scope, and timing of dynamic code generation are fixed at

compile time and hardwired into the code. Furthermore, runtime code specialization techniques usually

require programmer assistance to choose the specialization regions and variables (e.g., via code annotations

or compiler directives). Because overspecialization can easily result in code explosion and performance

degradation, the selection of beneficial specialization candidates is likely to follow an interactive approach,

make spec dot (int n, int ro w [ ] ) {
buf = alloc ( ); /* allocate buffer space for spec dot */

copy temp (buf, T1); /* copy template T1 into buffer */
for (i=0; i<n; i++) {

copy temp (buf, T2); /* copy template T2 */
fill hole (buf, h1, row [i]); /* fill hole h1 in T2 */
fill hole (buf, h2, i); /* file hole h2 in T2 */

}
copy temp (buf, T3); /* copy template T3 */
return buf;

}
(i)

Template T1: spec dot (int col []) { int sum = 0;
Template T2: sum += {hole h1} * col [ {hole h2}];

Template T3: return sum; }
(ii)

FIGURE 10.11 Runtime code generation function (i) and code templates (ii) for specializing function dot from

Figure 10.10.



Dynamic Compilation 10-19

where the programmer explores various specialization opportunities. Recently, a system has been devel-

oped toward automating the placement of compiler directives for dynamic code specialization [32].

The preceding techniques for runtime specialization are classified as declarative. Based on the program-

mer declaration, templates are produced automatically by the static compiler. An alternative approach is

imperative code specialization. In an imperative approach, the programmer explicitly encodes the run-

time templates. C is an extension of the C languages that allows the programmer to specify dynamic code

templates [33]. The static compiler compiles these programmer specifications into code templates that are

initiated at runtime in a similar way to the declarative approach. Imperative runtime specialization is more

general because it can support a broader range of runtime code generation techniques. However, it also

requires deeper programmer involvement and is more error prone, because of the difficulty of specifying

the dynamic code templates.

10.7 Summary

Dynamic compilation is a growing research field fueled by the desire to go beyond the traditional com-

pilation model that views a compiled binary as a static immutable object. The ability to manipulate and

transform code at runtime provides the necessary instruments to implement novel execution services.

This chapter discussed the mechanisms of dynamic compilation systems in the context of two applica-

tions: dynamic performance optimization and transparent software migration. However, the capabilities

of dynamic compilation systems can go further and enable such services as dynamic decompression and

decryption or the implementation of security policies and safety checks.

Dynamic compilation should not be viewed as a technique that competes with static compilation.

Dynamic compilation complements static compilation, and together they make it possible to move toward

a truly write-once-run-anywhere paradigm of software implementation.

Although dynamic compilation research has advanced substantially in recent years, numerous challenges

remain. Little progress has been made in providing effective development and debugging support for

dynamic compilation systems. Developing and debugging a dynamic compilation system is particularly

difficult because the source of program bugs may be inside transient dynamically generated code. Break

points cannot be placed in code that has not yet materialized, and symbolic debugging of dynamically

generated code is not an option. The lack of effective debugging support is one of the reasons the engineering

of dynamic compilation systems is such a difficult task. Another area that needs further attention is code

validation. Techniques are needed to assess the correctness of dynamically generated code. Unless dynamic

compilation systems can guarantee high levels of robustness, they are not likely to achieve widespread

adoption.

This chapter surveys and discusses the major approaches to dynamic compilation with a focus on

transparent binary dynamic compilation. For more information on the dynamic compilation systems that

have been discussed, we encourage the reader to explore the sources cited in the References section.
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11.1 Introduction

The emergence of the static single assignment (SSA) form as an important intermediate representation

for compilers has resulted in considerable research in algorithms to compute this form efficiently. The

SSA representation is an example of a sparse representation where definition sites are directly associated

with use sites. Analysis of sparse representations has the advantage of being able to directly access points

where relevant data flow information is available. Therefore, one can profitably use this property in im-

proving algorithms for optimizations carried out on older, more traditional intermediate representations.

1Presently at Bell Laboratories, Bangalore.
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Read A, B , C

if (A > B)

if (A > C) max = A

else max = C

else if (B > C) max = B

else max = C

Print max

FIGURE 11.1 Program in non-SSA form.

In this chapter we present the original construction [18], some recent improvements [19, 51], and

applications to some specific optimizations. We discuss conditional constant propagation [44, 45, 55],

global value numbering [4, 10, 16, 44, 45], and partial redundancy elimination [33, 38, 43–45, 48]. Sev-

eral other algorithms for optimizations such as dead code elimination [6, 18, 44], strength reduction

[17, 20, 34, 36, 44, 46, 58], array bound check elimination [6, 7, 27, 39], and liveness analysis [5] on sparse

representations have not been included because of space constraints.

Section 11.2 discusses the SSA form and its construction. Some variants of the SSA form proposed by

Briggs et al. [9] are described in Section 11.3. Section 11.4 contains a detailed presentation of conditional

constant propagation algorithms on the the SSA representation. This is followed by a description of value-

numbering algorithms in Section 11.5 and partial redundancy elimination algorithms in Section 11.6.

Some issues involved in back translation of the SSA form to executable form are discussed in Section 11.7.

Section 11.8 concludes this chapter with a discussion. We assume that the reader is familiar with the notion

of control flow graphs, basic blocks, paths, and so forth. These definitions are available in [3, 6, 18, 44].

11.2 The Static Single Assignment Form

A program is in SSA form if each of its variables has exactly one definition, which implies that each use

of a variable is reached by exactly one definition. The control flow remains the same as in a traditional

(non-SSA) program. A special merge operator, denoted φ, is used for the selection of values in join nodes.

The SSA form is usually augmented with use–definition and/or definition–use chains in its data structure

representation to facilitate design of faster algorithms.

Figures 11.1 and 11.4 show two non-SSA form programs, Figures 11.2 and 11.5 show their SSA forms,

and Figures 11.3 and 11.6 show the flowcharts of the SSA form.

The program in Figure 11.1 is not in SSA form because there are several assignments to the variable

max. In the program in Figure 11.2 (with the accompanying flowchart in Figure 11.6), each assignment

is made to a different variable, maxi . The variable max5 is assigned the correct value by the φ-function,

which takes the value maxi , if the control reaches it via the i th incoming branch from left to right.

The φ-functions in the two blocks B1 and B5 in Figure 11.6 are meant to choose the appropriate value

based on the control flow. For example, the φ-assignment to RSR5 in the block B5 in Figure 11.6 selects

one of RSR3, RSR2, or RSR4 based on the execution following the arc B2 → B5, B3 → B5, or B4 → B5,

respectively.

Read A, B , C

if (A > B)

if (A > C) max1 = A

else max2 = C

else if (B > C) max3 = B

else max4 = C

max5 = φ(max1, max2, max3, max4)

Print max5

FIGURE 11.2 Program of Figure 11.1 in SSA form.
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Start

A > B
T

TF FT

F

A > C

Stop

B > C

Read
A, B, C

Print
max5

max5 = φ(max1, max2, max3, max4)

max1 = A max2 = C max3 = B max4 = C

FIGURE 11.3 Flowchart of program in Figure 11.2.

Usually, compilers construct a control flow graph representation of a program first and then convert it to

SSA form. The conversion process involves the introduction of statements with assignment to φ-functions

in several join nodes and renaming of variables that are targets of more than one definition. Of course, the

usages of such variables will also be changed appropriately. Not every join node needs a φ-function for

every variable in the program. Algorithms for the suitable placement of φ-functions to ensure a minimal

SSA form are described in the next section.

A reader unfamiliar with the SSA form may wonder about the role of φ-functions in the final machine

code of the program. Since there is no direct translation of a φ-function to machine code, a copy instruction

needs to be inserted at the end of each predecessor block of the block containing a φ-function. This

introduces some inefficiency into machine code, which can be compensated for, to some extent, by good

register allocation [18]. Carrying out dead code elimination before φ-conversion is also required to remove

redundant assignment statements.

Read A; LSR = 1; RSR = A; LSR = (LSR + RSR)/2;

Repeat

T = SR ∗ SR;

if (T > A) RSR = SR

else if (T < A) LSR = SR

else begin LSR = SR; RSR = SR; end

SR = (LSR + RSR)/2;

until (LSR �= RSR)

Print SR

FIGURE 11.4 Another program in non-SSA form.
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Read A; LSR1 = 1; RSR1 = A; SR1 = (LSR1 + RSR1)/2;

Repeat

LSR2 = φ(LSR5, LSR1);

RSR2 = φ(RSR5, RSR1);

SR2 = φ(SR3, SR1);

T = SR2 ∗ SR2;

if (T > A) RSR3 = SR2

else if (T < A) LSR3 = SR2

else begin LSR4 = SR2; RSR4 = SR2; end

LSR5 = φ(LSR2, LSR3, LSR4);

RSR5 = φ(RSR3, RSR2, RSR4);

SR3 = (LSR5 + RSR5)/2;

until (LSR5 �= RSR5)

Print SR3

FIGURE 11.5 Program in Figure 11.4 in SSA form.

T < A 

T > A 
T F 

F T 

Print SR3 

Stop 

T F 

B2 

B3 
B4 

Start 

Read A 

LSR1 = 1; RSR1 = A 

SR1 = (LSR1 + RSR1)/2 

RSR2 = φ(RSR5, RSR1) 

T = SR2 *SR2 

SR2 = φ(SR3, SR1) 

LSR2 = φ(LSR5, LSR1) 

RSR3 = SR2 

LSR3 = SR2 LSR4 = SR2

RSR4 = SR2

LSR5 ! = RSR5 

LSR5 = φ(LSR2, LSR3, LSR4) 

RSR5 = φ(RSR3, RSR2, RSR4) 

SR3 = (LSR5 + RSR5)/2 

B1 

B5 

FIGURE 11.6 Flowchart of program in Figure 11.5.
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Start

A > B

A > C

Stop

B > C

Read
A, B, C

max1 = A
t = max1

max2 = C
t = max2

max3 = B
t = max3

max5 = t
Print max5

max4 = C
t = max4

FIGURE 11.7 φ-Conversion on program in Figure 11.3.

Figure 11.7 shows a simple example of the effect of φ-conversion. During register allocation, the same

register would be assigned to t, max1, max2, max3, max4, and max5, and thereby copying is eliminated.

11.2.1 Construction of the SSA Form

We now discuss the construction of an SSA form from a flow graph. We consider only scalars and refer

the reader to [18, 35] for details on how structures, pointers, and arrays are handled. Our presentation is

based on the material in [18].

11.2.1.1 Conditions on the SSA Form

After a program has been translated to SSA form, the new form should satisfy the following conditions for

every variable v in the original program:

1. If two paths from nodes with a definition of v converge at a node p, then p contains a trivial

φ-function of the form v = φ(v , v , . . . , v), with the number of arguments equal to the in-degree

of v .

2. Each appearance of v in the original program or a φ-function in the new program has been replaced

by a new variable vi , leaving the new program in SSA form.

3. Any use of a variable v along any control path in the original program and the corresponding use

of vi in the new program yield the same value for both v and vi .

Condition 1 above is recursive. It implies that φ-assignments introduced by the translation procedure

will also qualify as assignments to v , and this in turn may lead to introduction of more φ-assignments at

other nodes.

11.2.1.2 The Join Set and φ-Nodes

Given a set S of flow graph nodes, we define the set JOIN(S) of nodes from the flow graph to be the set

of all nodes n, such that there are at least two nonnull paths in the flow graph that start at two distinct

nodes in S and converge at n. The iterated join set, JOIN+(S) is the limit of the monotonic nondecreasing
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Start 

i = 0; 
read n 

n <>  1 

even(n) print i 

n = n/2 n = 3*n + 1 Stop 

i = i + 1 

B1 

B2 

B3 B4 

B5 B6 

N Y 

Y N 

Start 

B1 

B2 

B3 B4 

B5 B6 B7 Stop 

{} 

{} 

{} 

{} {} 

{B7} {B7} {B2} 

{} 

Flow Graph 

Dominator Tree with Dominance Frontier

B7 

FIGURE 11.8 Example flow graph for SSA form construction.

sequence of sets of nodes

JOIN(1)(S) = JOIN(S)

JOIN(i+1)(S) = JOIN(S ∪ JOIN(i)(S))

If S is defined to be the set of assignment nodes for a variable v , then JOIN+(S) is precisely the set

of flow graph nodes, where φ-functions are needed (for v). See [18] for proofs. The set JOIN+(S) is

termed the iterated dominance frontier, DF+(S), which can be computed efficiently in a manner to be

described shortly.

11.2.1.3 Dominator Tree

Given two nodes x and y in a flow graph, x dominates y if x appears in all paths from the Start node to y.

The node x strictly dominates y if x dominates y and x �= y. x is the immediate dominator of y (denoted

idom[y]) if x is the closest strict dominator of y. A dominator tree shows all the immediate dominator

relationships. Figure 11.8 shows a flow graph and its dominator tree. Dominator trees can be constructed

in time almost linear in the number of edges of a flow graph [42] (see [29] for a linear time but more

complicated algorithm).

11.2.1.4 Dominance Frontier

For a flow graph node x , the set of all flow graph nodes y, such that x dominates a predecessor of y but

does not strictly dominate y, is called the dominance frontier of x and is denoted by DF(x). The following

redefinition of DF(x) makes it simple to compute in linear time.

DF(x) = DFlocal(x) ∪
⋃

z ∈ children(x)

DFup(z)

DFlocal(x) = {y ∈ successor(x) | idom(y) �= x}

DFup(x) = {y ∈ D F (x) | idom(y) �= parent(x)}
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function dominance frontier(n) // n is a node in the dominator tree

begin

for all children c of n in the dominator tree do

dominance frontier(n.c);

end for

DF(n) = ∅;

// DFlocal computation

for all successors of n in the flow graph do

if (idom(s ) �= n) then DF(n) = DF(n) ∪ {s };

end for

// DFup computation

for all children c of n in the dominator tree do

for all p ∈ DF(c) do

if (idom( p) �= n) then DF(n) = DF(n) ∪ {p};

end for

end for

end

FIGURE 11.9 Dominance frontier computation.

Here, children(x) and parent(x) are defined over the dominator tree and successor(x) is defined over

the flow graph. The algorithm in Figure 11.9 computes the dominance frontier based on the definitions

given above. It is called on the root of the dominator tree, and the tree is traversed in postorder. Figure 11.8

shows the DF sets as annotations on the nodes of the dominator tree.

We now extend the definition of DF to act on sets and define the iterated dominance frontier on lines

similar to JOIN+(S).

DF(S) = ∪x ∈ SDF(x)

DF(1)(S) = DF(S)

DF(i+1)(S) = DF(S ∪ DF(i)(S))

For each variable v , the set of flow graph nodes that need φ-functions is DF+(S), where S is the set

of nodes containing assignments to v . We do not construct DF+(S) explicitly. It is computed implicitly

during the placement of φ-functions.

11.2.1.5 Minimal SSA Form Construction

There are three steps in the construction of the minimal SSA form:

1. Compute DF sets for each node of the flow graph using the algorithm in Figure 11.9.

2. Place trivial φ-functions for each variable in the nodes of the flow graph using the algorithm in

Figure 11.10.

3. Rename variables using the algorithm in Figure 11.11.

The function place-phi-function(v) is called once for each variable v . It can be made more efficient by

using integer flags instead of boolean flags as described in [18]. Our presentation uses boolean flags to

make the algorithm simpler to understand.

The renaming algorithm in Figure 11.11 performs a top-down traversal of the dominator tree. It

maintains a version stack V , whose top element is always the version to be used for a variable usage

encountered (in the appropriate range, of course). A counter v is used to generate a new version number.

It is possible to use a separate stack for each variable as in [18], so as to reduce the overheads a bit. However,

we believe our presentation is simpler to comprehend.
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function Place-phi-function(v) // v is a variable

// This function is executed once for each variable in the flow graph

begin

// has-phi(B) is true if a φ-function has already

// been placed in B

// processed(B) is true if B has already been processed once

// for variable v

for all nodes B in the flow graph do

has-phi(B) = false; processed(B) = false;

end for

W = ∅; // W is the work list

// Assignment-nodes(v) is the set of nodes containing

// statements assigning to v

for all nodes B ∈ Assignment-nodes(v) do

processed(B) = true; Add(W, B);

end for

while W �= ∅ do

begin

B = Remove(W);

for all nodes y ∈ DF(B) do

if (not has-phi(y)) then

begin

place < v = φ(v , v , ..., v) > in y;

has-phi(y) = true;

if (not processed(y)) then

begin processed(y) = true; Add(W, y); end

end

end for

end

end

FIGURE 11.10 Minimal SSA construction.

Let us trace the steps of the SSA construction algorithm with the help of the example in Figure 11.12. Let

us concentrate on the variable n. Blocks B1, B5, and B6 have assignments to n. (Read n is also considered

as an assignment.) The dominance frontier of B1 being null, no φ-function is introduced while processing

it. A φ-function is introduced for n in B7 while processing B5 (this will not be repeated while processing

B6). B2 gets a φ-function for n when B7 is handled.

Let us now understand how different instances of n are renamed. The instruction read n in B1 becomes

read n0 while processing B1. At the same time, the second parameter of the φ-function for n in block B2

is changed to n0. Processing B2 in the top-down order results in changing the statement n = φ(n, n0) to

n1 = φ(n, n0), and the new version number 1 is pushed onto the version stack V . This results in changing

the comparisons n �= 1 to n1 �= 1 in block B2 and even(n) to even(n1) in block B3. The expressions n/2

in block B5 and 3 ∗ n + 1 in block B6 also change to n1/2 and 3 ∗ n1 + 1, respectively. A new version of n,

viz., n2 (or n3, respectively) is created while processing the assignment in block B5 (or B6, respectively).

The version number 2 (or 3, respectively) is pushed onto V . This results in changing the parameters of

the φ-function in block B7 as shown in Figure 11.12. After finishing with B5 (or B6, respectively), V is

popped to remove 2 (or 3, respectively), before processing B7. A new version n4 is created while processing

the φ-statement in B7, which in turn changes the first parameter of the φ-function for n in block B2, from

n to n4. V is then popped and recursion unwinds. The variable i is treated in a similar manner.
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function Rename-variables(x , B) // x is a variable and B is a block

begin

ve = Top(V); // V is the version stack of x

for all statements s ∈ B do

if s is a non-φ statement then

replace all uses of x in the R H S(s ) with Top(V);

if s defines x then

begin

replace x with xv in its definition; push xv onto V ;

// xv is the renamed version of x in this definition

v = v + 1; // v is the version number counter

end

end for

for all successors s of B in the flow graph do

j = predecessor index of B with respect to s

for all φ-functions f in s which define x do

replace the j th operand of f with Top(V);

end for

end for

for all children c of B in the dominator tree do

Rename-variables(x , c);

end for

repeat Pop(V); until (Top(V) == ve);

end

begin // calling program

for all variables x in the flow graph do

V = ∅; v = 1; push 0 onto V ; // end-of-stack marker

Rename-variables(x , Start);

end for

end

FIGURE 11.11 Renaming variables.

11.2.1.6 Complexity of SSA Graph Construction

We define R, the size of a flow graph, as follows.

R = max{N f , E f , A, M},

where

N f is the number of nodes in the flow graph.

E f is the number of edges in the flow graph.

A is the number of assignments in the flow graph.

M is the number of uses of variables in the flow graph.

The construction of the dominance frontier and the SSA form in theory take O(R2) and O(R3) time,

respectively. However, according to [18], measurements on programs show that the size of dominance

frontiers in practice is small, and hence the entire construction, including the construction of dominance

frontiers, has complexity O(R) in practice.
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Start

even (n1) print i1

Stopn2 = n1/2

B1

B4

B6n3 = 3 *n1 + 1

n4 = φ(n2, n3)
 i2 = i1 + 1

B7

B2

B3

B5

i0 = 0
read n0

i1 = φ(i2, i0)
n1 = φ(n4, n0)

n1 <> 1

FIGURE 11.12 SSA form construction for the flow graph in Figure 11.8.

11.2.1.7 A Note on the Size of SSA Graphs

An SSA form is usually augmented with links from every unique definition of a variable to its uses

(corresponding to d-u information). Some algorithms need SSA forms augmented with links that go

from every use of a variable to its unique definition (corresponding to u-d information). If there are n

definitions in a program, and each of these could reach n uses, then both d-u and u-d chains will have

O(n2) links. However, an SSA graph with d-u or u-d information will have only O(n) links because of the

factoring carried out by φ-functions. This is illustrated in Figures 11.13 and 11.14. In Figure 11.13, the

d-u chain of each definition of i contains all three uses of i in the second switch statement. However, in

Figure 11.14, because of the factoring introduced by the φ-function, each definition reaches only one use.

switch( j )

case 1: i=10; break;

case 2: i=20; break;

case 3: i=30; break;

end

switch(k)

case 1: x = i ∗ 3 + 5; break;

case 2: y = i ∗ 6 + 15; break;

case 3: z = i ∗ 9 + 25; break;

end

FIGURE 11.13 Program in non-SSA form.
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switch( j )

case 1: i1=10; break;

case 2: i2=20; break;

case 3: i3=30; break;

end

i4 = φ(i1, i2, i3);

switch(k)

case 1: x = i4 ∗ 3 + 5; break;

case 2: y = i4 ∗ 6 + 15; break;

case 3: z = i4 ∗ 9 + 25; break;

end

FIGURE 11.14 Program in Figure 11.13 in SSA form.

The renaming algorithm of Figure 11.11 can be augmented to establish d-u and u-d links. This requires

every statement to be a separate node in the flow graph. It also requires keeping a pointer to the node

defining a variable on the version stack along with the name of the variable. The rest of the process is

simple.

The SSA form increases the number of variables. If there are n variables in a program and each of these

has k definitions, then the SSA form would have nk variables to take care of the nk definitions. It may not

be possible to map these nk variables back to n variables during machine code generation because of code

movements that could have taken place as a result of optimization.

11.2.2 A Linear Time Algorithm for Placing φ-Nodes

In this section, we describe a simple linear time algorithm for computing φ-nodes developed by Sreedhar

and Gao [51]. This algorithm is based on a new data structure, called the DJ-graph, which is basically the

dominator tree augmented with edges called “join” edges, which may lead to nodes where data flow infor-

mation is merged. Cytron’s original algorithm [18] for computing φ-nodes precomputes the dominance

frontier for every node in the flow graph. In some cases this precomputation takes time quadratic in the

number of nodes of the flow graph. For example, consider the “ladder graph” shown in Figure 11.15a. To

compute DF(2), we use the expression

DF(2) = DFup(4) ∪ {3}

Computing the set DFup(4) involves first computing DF(4) and then selecting those nodes in DF(4) that

are not dominated by node 2 and thus require time linear in the size of DF(4). Similarly, computing DF(4)

requires time linear in the size of DF(6):

DF(4) = DFup(6) ∪ {5}

DF(6) = DFup(8) ∪ {7}

DF(8) = {9}

Every step in the dominance frontier computation adds a new node to the dominance frontier (DFlocal)

and examines all the nodes in the dominance frontier of the node(s) it immediately dominates. In general,

a ladder graph with n nodes, computing the dominance frontier for a node placed similarly to node 2

above, takes time

1 + 2 + · · · +
n

2
= O(n2)



11-12 The Compiler Design Handbook: Optimizations and Machine Code Generation

7

2

0 1

3

4 5

6

8 9

10

(a) “Ladder” graph

D-edge

0

1 2 5 7

4

6

3 9

10

8

J-edge

(b) DJ-graph

FIGURE 11.15 The “ladder” graph and its DJ-graph.

However, as can be seen from Table 11.1, the maximum number of φ-nodes required for this ladder

graph (for a single variable) is linear in the number of nodes of the graph. While the example above

may seem contrived, there are examples of nested repeat-until loops for which the dominance frontier

computation takes quadratic time [18]. In the following section, we will see a data structure called the

DJ-graph that is used to compute the iterated dominance frontier without precomputing the dominance

frontier of every node.

11.2.2.1 The DJ-Graph and Its Properties

The DJ-graph is a directed graph whose nodes are the nodes of the control flow graph. There are two

kinds of edges between the nodes, called the D-edges (dominator edges) and J-edges (join edges). The

construction of the DJ-graph is performed in two steps:
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TABLE 11.1 Dominance

frontiers for the “ladder”

graph shown in Figure 11.15

n DF(n)

0 {}
1 {3}
2 {3,5,7,9}
3 {5}
4 {5,7,9}
5 {7}
6 {7,9}
7 {9}
8 {9}
9 {}
10 {}

1. Build the dominator tree of the control flow graph. The edges in the dominator tree constitute the

D-edges of the DJ-graph.

2. Add the J-edges to the dominator tree to obtain the complete DJ-graph. A J-edge is an edge x → y

from the control flow graph such that x does not strictly dominate y. In other words, y is a control

flow join point and x is a predecessor of y. The time complexity of adding the J-edges to the

DJ-graph from the control flow graph is O(E), where E is the number of edges in the control flow

graph.

The total time for constructing the DJ-graph is linear in the size of the control flow graph since the

dominator tree can be contructed in linear time [29]. The DJ-graph for the ladder graph of Figure 11.15a

is shown in Figure 11.15b. The solid edges represent the D-edges, while dotted ones represent J-edges. Any

DJ-graph has the following three key properties:

1. The number of edges in the DJ-graph is less than the total number of nodes and edges in the

corresponding control flow graph. This can be shown as

Number of edges in DJ-graph = |D-edges| + |J-edges|

≤ N f − 1 + E f

< N f + E f

2. If a node y has to be in the DF(x), then there should be a J-edge from some node z ∈ SubTree(x)

to y. Subtree(x) is subtree rooted at x in the dominator tree and hence is the set of all the nodes

dominated by x .

Proof: Let z be any node in SubTree(x) and y ∈ DF(x). Suppose there exists no J-edge z → y.

Case 1: There is a D-edge z → y. Then (x dom z ∧ z dom y) ⇒ (x dom y) ⇒ [y /∈ DF(x)], giving

a contradiction.

Case 2: There is no D-edge z → y. Since y ∈ DF(x), x dominates a predecessor of y but does

not strictly dominate y. Let pred(y) be z. Since (x dom z), [z ∈ Subtree(x)]. Now there

are two cases: (a) (z dom y) ⇒ (x sdom y) ⇒ y /∈ DF(x), giving a contradiction, and

(b) (z !dom y). By definition of a J-edge, there should exist a J-edge from z to y.

Thus to compute DF(x), we do not need to look beyond those nodes y, which are connected

by means of a J-edge to a node z in the SubTree(x).

3. Let W be the set of nodes y such that there exists a J-edge from a node z ∈ SubTree(x) to y.

The DF(x) is composed of exactly those set of those nodes y ∈ W such that level(y) ≤ level(x).

The level of a node is the depth of the node in the dominator tree with the level of root being defined

as 0.
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For every z ∈ SubTree(x)

if ((z → y is a J-edge) ∧ (level(y) ≤ level(x)))

DF(x) = DF(x) ∪ {y}

FIGURE 11.16 Computing the dominance frontier of single node x .

Proof: Let w ∈ W and z → w be a J-edge. There are two cases to consider with respect to the

levels of w and x :
Case 1: level(w) ≤ level(x). Now [z ∈ pred(w)] and (x dom z). Also [level(w) ≤ level(x)] ⇒ (x

!sdom w). From this, it follows that x dominates a predecessor of w and does not strictly

dominate w . Hence w ∈ DF(x).

Case 2: level(w) > level(x). Now there are two possibilities: (a) [w ∈ SubTree(x)] ⇒ (x sdom w)

⇒ [w /∈ DF(x)]. (b) [w /∈ SubTree(x)]. Let u = idom(w) . Now since level(w) > level(x),

level(u) ≥ level(x) ⇒ (u !dom x) . This means there exists a path (in the flow graph) from

start node to w through x and z that does not pass through u, which implies (u !dom w),

which is a contradiction. Thus, [w ∈ SubTree(x)], which reduces to case 1.

11.2.2.2 Dominance Frontier of a Single Node Using a DJ-Graph

The algorithm shown in Figure 11.16 computes DF(x) for a given node x . It directly follows from properties

2 and 3 where two conditions are checked for every node in the SubTree(x) to determine membership in

DF(x). For example, to compute DF(2), only the join edges 8 → 9, 6 → 7, 4 → 5, and 2 → 3 are considered.

Since the heads of all these J-edges are at the same level as 2, DF(2) = {3, 5, 7, 9}.

To compute the dominance frontier of a set of nodes, we can call the above algorithm for every node in

the set and take the union of the resulting dominance frontiers. However, this could result in redundant

computation and lead to quadratic behavior. For example, to compute DF({4, 2}), since DF({4, 2}) = DF(4)

∪ DF(2), we can compute DF(4) and DF(2) individually and take their union. Assume we call DF(4) first

and then DF(2). While computing DF(2), we would visit the subtree rooted at node 4 again, even though

it has been processed by the first call to DF(4). To prevent this reprocessing, the nodes have to be properly

ordered by their levels, and state has to be maintained about the visits that have already been made.

11.2.2.3 Dominance Frontier for a Set of Nodes Nα

The algorithm given in Figures 11.17, 11.18, and 11.19 computes the dominance frontier of a set of nodes

Nα . The algorithm is based on two observations:

1. Before computing DF(x), if the DF(z) for some node z ∈ SubTree(x) has already been computed,

it is not recomputed while finding DF(x).

Compute IDF(Nα)

For every x ∈ Nα ,

next(x) = DAT[level(x)]

DAT[level(x)] = x

endfor

while ( x = Next Bottom Up Node() != NULL )

CurrentRoot = x

Mark x as visited

Top Down Visit(x)

endwhile

FIGURE 11.17 Dominance frontier computation of set of nodes Nα .
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Top Down Visit(x)

For each y which is a successor of x in the DJ-graph

if (x → y) is a J-edge

if ( level(y) ≤ level(x) )

if (φ has not been placed at y )

Place a φ at y

IDF = IDF ∪ {y}

if (y /∈ Nα)

next(y) = DAT[level(y)]

DAT[level(y)] = y

endif

endif

endif

else

if (y has not been marked as visited)

Mark y as visited

Top Down Visit(y)

endif

endif

endfor

FIGURE 11.18 Dominance frontier computation of set of nodes Nα .

2. To compute DF(x), we need to look at only those J-edges z → y, where z ∈ SubTree(x) and

level(y) ≤ level(x).

Let the set of nodes for which the dominance frontier needs to computed be Nα . The algorithm can be

summarized by the following sequence of steps:

1. It orders the set of nodes in Nα in bottom-up fashion based on their level numbers in the dominator

tree. It uses this ordering to call the dominance frontier computation (described in step 2). A direct

access table (DAT), indexed by level numbers, is used to maintain this ordering. It allows for dynamic

updates when new nodes are added to the iterated dominance frontier while making sure the newly

added nodes do not violate the bottom-up processing of nodes.

2. During the computation of DF(x), the nodes in SubTree(x) are visited top-down (using the

D-edges), without processing those nodes that are marked, that is, those that have already been

visited, thus avoiding entire subtrees that have been processed once.

3. During the top-down visit, the J-edges are used to identify the nodes to be added to the iterated

dominance frontier (IDF) (based on their level numbers). These new nodes are added to the DAT

if not already present. These nodes along with remaining nodes in the DAT then carry forward the

recursion.

4. No node is added more than once to any list of bottom-up ordered nodes maintained in the DAT.

The algorithm never processes a D-edge or a J-edge more than once. Also, each node is inserted and

removed from the DAT not more than once. Thus, it takes time linear in the size of the DJ-graph:

Time complexity = O(NDJ + E DJ)

= O(N f + E DJ)

= O(N f + E f ) (by Property 1 of DJ-graph)

= O(E )
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Next Bottom Up Node()

if (DAT[CurrentLevel] != NULL)

x = DAT[CurrentLevel]

DAT[CurrentLevel]=next(x)

return x

endif

for i = CurrentLeveldownto1 do

if (DAT[i]! = NULL)

CurrentLevel = i

x = DAT[i]

DAT[i] = next(x)

return x

endif

endfor

FIGURE 11.19 Dominance frontier computation of set of nodes Nα .

The algorithm thus runs in time linear in the number of edges of the control flow graph. The key to

this linear time complexity is the direct access table. Each element of the table is a linked list that contains

nodes that are at the same level (the corresponding index into the table). Insertion and deletion of a node

from the DAT take constant time.

An application of the above algorithm on the DJ-graph of Figure 11.15b for Nα = {0, 2} is traced in

Figure 11.20. It shows the direct access table at various points in the algorithm. Initially, the two nodes are

inserted into DAT and aligned in bottom-up order. A call to Top Down Visit(2) is placed that first examines

the J-edge 2 → 3, adds 3 to the iterated dominance frontier IDF and to DAT. It goes on to examine edges

4 → 5, 6 → 7, and 8 → 9 while adding 5, 7, and 9 to IDF and DAT. Note that this top-down traversal

visits the D-edges of SubTree(2) exactly once. The process is then carried out with Top Down Visit(9),

Top Down Visit(7), and Top Down Visit(5), none of them contributing anything more to IDF. The final

call to Top Down Visit(0) does not visit the subtrees rooted at 2, 3, 5, 7, and 9 since they have already

been visited once. This avoids the recomputation that leads to quadratic behavior in Cytron’s algorithm.

The J-edges correspond to the DFlocal relation used in Cytron’s dominance frontier computation. In the

DJ-graph, the DFlocal relation is explicitly represented with join edges that help in getting a linear time

algorithm for placing φ-nodes.

The algorithms for φ-function placement seen in this section were recursive in nature. Das and Ramakr-

ishna [19] proposed an efficient iterative algorithm for φ-function computation based on the computation

of merge set of the nodes in the control flow graph [8]. The merge set of a node n is the set of nodes where

φ-functions may have to be placed if a variable definition is placed in n. The algorithm precomputes the

merge set for every node in the control flow graph and later uses them for actual φ-function placement.

The merge sets are computed using the DJ-graph structure. This algorithm is especially advantageous

when the basic blocks are very dense, that is, when they have a lot of variable definitions. The earlier

approaches to finding φ-functions computed the φ-points for every variable definition. This implies that

if two or more variable definitions are in the same basic block, although the φ-function placement may

be at the same location, it is still recomputed. However, in the new approach, the φ-function is computed

with respect to a basic block instead of a variable definition. Once the merge sets have been precom-

puted, to find the nodes at which a φ-function has to be placed because of variable definitions in a set of

nodes Nα , it is sufficient to take the union of merge sets of nodes in Nα . Details of the algorithm can be

found in [19].
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FIGURE 11.20 Trace of DAT during IDF computation of Nα = {0, 2}.

11.3 Variants of the SSA Form

The dominance frontier algorithm developed by Cytron et al. [18], called the “minimal” SSA form, can

insert a φ-function for a variable at a program flow point where the variable is not live; that is, it can insert

a φ-function at a point even if the corresponding variable is not used later in the program.

Consider the example program skeleton shown in Figure 11.21a. Of the three variables x, y, and z

defined and used in the program, x is defined and used wholly in blocks B1 and B2; y is defined in blocks

B1 and B2 and used only in blocks B3 and B4; z is defined in blocks B1 and B2 and used only in block B5.

As shown in Figure 11.21b, the minimal SSA form would insert a φ for both x and y in B5 even though

they are no longer used after B5.

11.3.1 Pruned SSA

Choi et al. [12] proposed a variant form of SSA called pruned SSA. In this form, once the dominance

frontiers have been computed, a live variable analysis is done to find the set of variables that are live at the

entry of a basic block. Pruned SSA would then insert a φ-function for a variable v in a basic block b only

if v is live at the entry of b. The pruned SSA form for the example program of Figure 11.21a is shown in

Figure 11.22a. While pruned SSA may insert fewer φ-functions than minimal SSA, it is expensive because

of the need for a global data flow analysis.
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z

(a) Original program

y1 y2

B1 B2

B4

φ(x1, x2)

φ(y1, y2)

φ(z1, z2)
B5

B3

x1
...
x1

y1 ...
z1
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x2

y2 ...
z2

x3

y3

z3
z3

(b) SSA form of program

FIGURE 11.21 Example program and its minimal SSA form.

11.3.2 Semi-Pruned SSA

Briggs et al. [9] suggested another variant of SSA called semi-pruned SSA based on the observation that

many temporary variables have very short lifetimes, that is, they are defined and used only within a single

basic block. These variables would not require φ-functions at the join points. Semi-pruned SSA computes

that set of variables that are live on entry to some basic block. These variables are named non-locals, that

is, those that have definitions outside the current basic block. Semi-pruned SSA computes the iterated

dominance frontier only for the definitions in non-locals. Thus, the number of φ-functions inserted

would be between that for minimal and pruned SSA. The cost of computing non-locals is less than that

of a full-blown live-variable analysis since it does not involve any iteration or elimination. Figure 11.23

gives the algorithm for computing non-locals. The semi-pruned SSA form for the example program of

Figure 11.21a is shown in Figure 11.22b. Since x is not live at the entry of any of the blocks (it is defined

and used wholly within B1 and B2), a φ is not placed at B5 for x , whereas a φ is placed for y, as it is live

across a basic block.

Briggs et al. [9] also noted that different SSA-based optimizations may require different flavors of SSA.

For example, the extra φ-functions of minimal SSA may help value numbering discover congruences that

are usually not found in their absence [18]. However, if SSA is used for finding live ranges during register
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FIGURE 11.22 Pruned and semi-pruned SSA forms. (a) Pruned SSA form for example in Figure 11.21(a).

(b) Semi-pruned SSA form for example in Figure 11.21(a).

allocation, pruned and semi-pruned SSA forms are more useful since the extra φ can cause the lifetime of

its argument variables to be extended unnecessarily. Results of constant propagation are not affected by

any specific flavor of SSA.

We next discuss some optimizations that can be carried out on the SSA form.

Compute Non Locals

For every block B

killed = φ

For each instruction v ← x op y in B

if x /∈ killed then

non locals ← non locals ∪ {x}
if y /∈ killed then

non locals ← non locals ∪ {y}
killed ← killed ∪ {v}

FIGURE 11.23 Algorithm for computing the “non-locals” set.
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11.4 Conditional Constant Propagation

Constant propagation is a well-known compiler optimization during which variables that can be deter-

mined to contain only constant values at runtime in all possible executions of the program are discovered.

These values are propagated throughout the program, and expressions whose operands can be determined

to be only constants are also discovered and evaluated. In effect, there is a symbolic execution of the

program with the limited purpose of discovering constant values. The following examples help explain

the intricacies of constant propagation.

The simplest case is that of straight line code without any branches, as in a basic block. This re-

quires only one pass through the code, with forward substitutions and no iteration. However, such a

one-pass strategy cannot discover constants in conditionals and loops. For such cases we need to carry

out data flow analysis involving work-lists and iterations. A simple algorithm of this kind adds succes-

sor nodes to the work-list as symbolic execution proceeds. Nodes are removed one at a time from the

work-list and executed. If the new value at a node is different from the old value, all the successors of

the node are added to the work-list. The algorithm stops when the work-list becomes empty. Such an

algorithm can catch constants in programs such as program A but not in programs such as program B in

Figure 11.24.

Conditional constant propagation handles programs such as program B in Figure 11.24 by evaluating

all conditional branches with only constant operands. This uses a work-list of edges (instead of nodes)

from the flow graph. Furthermore, neither successor edge of a branch node is added to the work-list when

the branch condition evaluates to a constant value (true or false); only the relevant successor (true or false)

is added.

Conditional constant propagation algorithms on SSA graphs are faster and more efficient than the

ones on flow graphs. They find at least as many constants as the algorithms on flow graphs (even with

d-u chains, this efficiency cannot be achieved with flow graphs; see [55]). In the following sections, we

illustrate the conditional constant propagation algorithms on flow graphs by means of an example and

follow it up with a detailed explanation of the algorithm on SSA graphs. Our description is based on

the algorithms presented in [55]. We assume that each node contains exactly one instruction and that

expressions at nodes can contain at most one operator and two operands (except for φ-functions). The

graphs are supposed to contain N nodes, E f flow edges, E s SSA edges (corresponding to d-u information),

and V variables.

FIGURE 11.24 Limitations of various CP algorithms.
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False True ...c1 c2 c3

FIGURE 11.25 The lattice of constants.

any ⊓ ⊤ = any
any ⊓ ⊥ = ⊥

Ci ⊓ C j = ⊥, if i �= j

Ci ⊓ C j = Ci , if i = j

FIGURE 11.26 The meet operator.

11.4.1 The Lattice of Constants

The infinite lattice of constants used in the constant propagation algorithms is a flat lattice as shown in

Figure 11.25. ⊤ stands for an as yet undetermined constant, ⊥ for a nonconstant, and Ci for a constant

value. The meet operator ⊓ is defined as in Figure 11.26. The symbol any stands for any lattice value in

Figure 11.26.

11.4.2 The CCP Algorithm: Flow Graph Version

All variables are supposed to be used only after they are defined and are initialized by the Conditional

Constant Propagation (CCP) algorithm to ⊤ at every node. This is a special feature of the Wegman–Zadeck

algorithm, which enables it to find more constants than other algorithms (in programs with loops). For

details of this effect, the reader is referred to [55]. Each node is supposed to have two lattice cells per

variable, one to store the incoming value and the other to store the computed value (exit value). There are

also two lattice cells at each node to store the old and new values of the expression. All the edges going

out of the start node are initially put on the work-list and marked as executable. The algorithm does not

process any edges that are not so marked. A marked edge is removed from the work-list, and the node at

the target end of the edge is symbolically executed. This execution involves computing the lattice value of

all variables (not just the assigned variable). The incoming value of a variable x at a node y is computed

as the meet of the exit values of x at the preceding nodes of y, and the values are stored in the incoming

lattice cells of the respective variables at the node.

Now the expression at the node is evaluated according to the rules given in Figure 11.28. If the node

contains an assignment statement, and if the new value of the expression is lower (in lattice value) than

the existing value of the assignment target variable, then all outgoing edges of the node are marked as

executable and added to the work-list. The new value is also stored in the exit lattice cell of the assignment

target variable.

If the node contains a branch condition, and if the new value of the expression is lower than its existing

value, then one of the following two actions is taken. If the new value is ⊥, both the successor edges

of the node are marked and added to the work-list. If the new value is a constant (true or false), only

the corresponding successor edge is marked and added to the work-list. This step enables elimination of

unreachable code. The new value of the expression is also stored in a lattice cell at the node.
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OUT = {a = 30, b = 20, d = 30}

d = a 

a = 30

if (b == 20)

b = 20

a = 10

Executable

Executable

OUT = {a = 10, b = 20, d = T} 
Executable

IN = {a = T, b = T, d = T}

OUT = {a = 10, b = 20, d = T} 

IN = {a = 10, b = 20, d = T} 

IN = {a = 10, b = 20, d = T} 

1

2

3

4

OUT = {a = 30, b = 20, d = T} 

IN = {a = 30, b = 20, d = T} 

FIGURE 11.27 Example illustrating CCP on the flow graph.

In both these cases, note that no action is taken if the value of the expression does not change from

one visit to the next. There is also a copying of all incoming lattice cells apart from the target variable of

the assignment to their exit cells to enable the successor nodes to pick up values of variables. Figure 11.27

gives the trace of this algorithm on the example seen earlier in Figure 11.24. All edges except 2 → 4 are

marked executable. This helps in determining that d is always assigned a value of 30 and helps eliminate

the if statement.

However, this algorithm is too slow in practice and hence is not used as it is in any compiler. It is used

with d-u information that helps in eliminating most of the lattice cell copy operations. The major source

of inefficiency is that it uses the flow graph edges for both propagation of values and tracking reachable

code. The SSA-based algorithm does this more efficiently because it uses different types of edges for each

task. We present this version now.

val(a op b) = ⊥, if either or both of a and b is ⊥

= Ci op C j , if val(a) and val(b) are constants, Ci and C j , respectively

= ⊤, otherwise

Special rules for ∨ and ∧

any stands for an element of {true,false,⊥, ⊤}
These rules indicate that if one of the operands is known in the

shown cases, then the other operand is irrelevant

any ∨ true = true

true ∨ any = true

any ∧ false = false

false ∧ any = false

FIGURE 11.28 Expression evaluation.



The Static Single Assignment Form 11-23

// G = (N ,E f ,Es ) is the SSA graph, with flow edges and SSA edges,

// and V is the set of variables used in the SSA graph

begin

Flowpile = {(Start → n) | (Start → n) ∈ E f };
SSApile = ∅;

for all e ∈ E f do e.executable = false; end for

v .cell is the lattice cell associated with the variable v

for all v ∈ V do v .cell = ⊤; end for

// y.oldval and y.newval store the lattice values of expressions at node y

for all y ∈ N do

y.oldval = ⊤; y.newval = ⊤;

end for

while (Flowpile �= ∅) or (SSApile �= ∅) do

begin

if (Flowpile �= ∅) then

begin

(x , y) = remove(Flowpile);

if (not (x , y).executable) then

begin

(x , y).executable = true;

if (φ-pr es ent(y)) then visit-φ(y)

else if (first-time-visit(y)) then visit-expr(y);

// visit-expr is called on y only on the first visit

// to y through a flow edge; subsequently, it is called

// on y on visits through SSA edges only

if (flow-outdegree(y) == 1) then

// Only one successor flow edge for y

Flowpile = Flowpile ∪ {(y, z) | (y, z) ∈ E f };
end

// if the edge is already marked, then do nothing

end

FIGURE 11.29 CCP algorithm with SSA graphs.

11.4.3 The CCP Algorithm: SSA Version

SSA forms along with extra edges (SSA edges) corresponding to d-u information enable efficient algorithms

for constant propagation of the flow graph. We add an edge from every definition to each of its uses in

the SSA form. The new algorithm uses both flow graph and SSA edges and maintains two work-lists, one

for each. Flow graph edges are used to keep track of reachable code, and SSA edges help in propagation of

values. Flow graph edges are added to the flow work-list whenever a branch node is symbolically executed

or whenever an assignment node has a single successor (all this is subject to value changes as before). SSA

edges coming out of a node are added to the SSA work-list whenever there is a change in the value of the

assigned variable at the node. This ensures that all uses of a definition are processed whenever a definition

changes its lattice value. This algorithm needs only one lattice cell per variable (globally, not on a per

node basis) and two lattice cells per node to store expression values. Conditional expressions at branch

nodes are handled as before. However, at any join node, the meet operation considers only those prede-

cessors that are marked executable. The SSA-based algorithm is presented in Figures 11.29, 11.30, 11.31,

and 11.32.
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if (SSApile �= ∅) then

begin

(x , y) = remove(SSApile);

if (φ-present(y)) then visit-φ(y)

else if (alr eady-visited(y)) then visit-expr(y);

// A false returned by alr eady-visited implies that y

// is not yet reachable through flow edges

end

end // Both piles are empty

end

function φ-present(y) // y ∈ N
begin

if y is a φ-node then return true

else return false

end

function visit-φ(y) // y ∈ N
begin

y.newval = ⊤;

// ‖y.instruction.inputs‖ is the number of parameters of the φ-instruction at node y

for i = 1 to ‖y.instruction.inputs‖ do

Let pi be the i th predecessor of y ;

if ((pi , y).executable) then

begin

Let ai = y.instruction.inputs[i];

// ai is the i th input and ai .cell is the lattice cell associated with that variable

y.newval = y.newval ⊓ ai .cell ;

end

end for

if (y.newval < y.instruction.output.cell) then

begin

y.instruction.output.cell = y.newval;

SSApile = SSApile ∪ {(y, z) | (y, z) ∈ Es };
end

end

FIGURE 11.30 CCP algorithm with SSA graphs cont’d.

11.4.3.1 An Example

Consider program C in Figure 11.24. The flow graph and the SSA graph for this program are shown in

and Figures 11.33 and 11.34. It is clear that at node B5, a cannot be determined to be a constant by the

CCP algorithm using a flow graph because of the two definitions of a reaching B5. The problem is due

to the meet operation executed at B5 using both its predecessors while determining the lattice value of

a . This problem is avoided by the CCP algorithm using the SSA graph. It uses only those predecessors

that have edges to the current node marked as executable. In this example, only C4 would be considered

while performing the meet operation to compute the new value for a3, because the other edge (C3, C5) is

not marked executable. As shown in Figure 11.24, the SSA version of the algorithm determines a3 to be a

constant (of the same value as a2), and assigns its value to d .
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function visit-expr(y) // y ∈ N
begin

Let input1 = y.instruction.inputs[1];

Let input2 = y.instruction.inputs[2];

if (input1.cell == ⊥ or input2.cell == ⊥) then

y.newval = ⊥

else if (input1.cell == ⊤ or input2.cell == ⊤) then

y.newval = ⊤

else // evaluate expression at y as in Figure 11.20

y.newval = evaluate(y);

It is easy to handle instructions with one operand

if y is an assignment node then

if (y.newval < y.instruction.output.cell) then

begin

y.instruction.output.cell = y.newval;

SSApile = SSApile ∪ {(y, z) | (y, z) ∈ Es };
end

else if y is a branch node then

begin

if (y.newval < y.oldval) then

begin

y.oldval = y.newval;

switch(y.newval)

case ⊥: // Both true and false branches are equally likely

Flowpile = Flowpile ∪ {(y, z) | (y, z) ∈ E f };
case true: Flowpile = Flowpile ∪ {(y, z) | (y, z) ∈ E f and

(y, z) is the true branch edge at y };
case false: Flowpile = Flowpile ∪ {(y, z) | (y, z) ∈ E f and

(y, z) is the false branch edge at y };
end switch

end

end

end

FIGURE 11.31 CCP algorithm with SSA graphs cont’d.

11.4.3.2 Asymptotic Complexity

Each SSA edge will be examined at least once and at most twice because the lattice value of each variable

can be lowered only twice. Each flow graph edge will be examined only once. During a visit to a node,

all operations take constant time. As before, the time for adding an edge (either flow or SSA) to a pile

is charged to the edge removal operation. Thus, the total time taken by the algorithm is O(E f + E s ).

Theoretically, E s can be as large as O(max{E f , N})2 [18], and thus, this algorithm can become O(E f
2).

However, in practice, E s is usually O(max{E f , N}), so the time for constant propagation with the SSA

graph is practically linear in the size of the program (max{E f , N}).

11.5 Value Numbering

Value numbering is one of the oldest and still a very effective technique that is used for performing several

optimizations in compilers [3, 4, 10, 15, 16, 46, 49]. The central idea of this method is to assign numbers

(called value numbers) to expressions in such a way that two expressions receive the same number if
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function first-time-visit(y) // y ∈ N
// This function is called when processing a flow graph edge

begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y) | (x , y)∈ E f }
if e.executable is true for more than one edge e

then return false else return true

end for

// At least one in-coming edge will have executable true

// because the edge through which node y is entered is

// marked as executable before calling this function

end

function already-visited(y) // y ∈ N
// This function is called when processing an SSA edge

begin // Check in-coming flow graph edges of y

for all e ∈ {(x , y) | (x , y)∈ E f }
if e.executable is true for at least one edge e

then return true else return false

end for

end

FIGURE 11.32 CCP algorithm with SSA graphs cont’d.
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b = 20

b == 20
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d = a

Stop

FIGURE 11.33 Flow graph of program C in Figure 11.24.

the compiler can prove that they are equal for all possible program inputs. This technique is useful in

finding redundant computations and folding constants. Even though it was originally proposed as a local

optimization technique applicable to basic blocks, it can be modified to operate globally. We assume that

expressions in basic blocks have at most one operator (except for φ-functions in SSA forms). There are

two principal techniques to prove equivalence of expressions: hashing and partitioning.
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Start 

no 

yes 

a3 = φ(a2, a1) 
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C1 
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C4 

C6 

C7 

C5 

a1 = 10 

b == 20 
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a2 = 30 

Stop 

d = a3 

Solid edges are
flow edges
Dashed edges are
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FIGURE 11.34 SSA graph of program C in Figure 11.24.

The hashing scheme is simple and easy to understand. It uses a hashing function that combines the

operator and the value numbers of operands of an expression (assume non-φ, for the present) contained in

the instruction and produces a unique value number for the expression. If this number is already contained

in the hash table, the name corresponding to this existing value number refers to an earlier computation

in the block. This name holds the same value as the expression for all inputs, so the expression can be

replaced by the name. Any operator with known constant values is evaluated, and the resulting constant

value is used to replace any subsequent references. It is easy to adapt this algorithm to apply commutativity

and simple algebraic identities without increasing its complexity.

The partitioning method operates on SSA forms and uses the technique of Deterministic Finite Automa-

ton (DFA) minimization [1] to partition the values into congruence classes. Two expressions or computa-

tions are congruent to each other if their operators are identical and their operands are congruent to each

other. Two constants are congruent to each other if their values are the same. Two variables are congruent

to each other if the computations defining them are congruent to each other. The process starts by putting

all expressions with the same operator into the same class and then refining the classes based on the equiv-

alence of operands. The partitioning-based technique is described in [4, 10, 14, 45]. Partitioning-based

methods are global techniques that operate on the whole SSA graph, unlike hash-based methods. We

provide a sample of the partitioning method through an example (see Figures 11.35 and 11.36).

The initial and final value partitions are as shown in Figure 11.35. To begin with, variables that have

been assigned constants with the same value are put in the same partition (P1 and P5), and so are

variables assigned expressions with the same operator (P3). φ-instructions of the same block are also

bundled together (P2 and P4). Now we start examining instructions in each partition pairwise and split

the partition if the operands of the instructions are not in the same partition. For example, we split

P3 into Q3 and Q4, because x2 + 2 is not equivalent to x2 + 3 (constants 2 and 3 are not equivalent).

The partitioning technique splits partitions only when necessary, whereas the hashing technique com-

bines partitions whenever equivalence is found. Continuing the example, we do not split x2 and y2 into
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FIGURE 11.35 Initial and final value partitions for the SSA graph in Figure 11.36

Start

x2 = φ(x4, x1, x3)
y2 = φ(y4, y1, y3)

x4 = φ(x5, x6)
y4 = φ(y3, y6)

x5 = x2 + 2
y5 = y2 + 2

x6 = x2 + 3
y6 = y2 + 3

x3 = 6
y3 = 6

x1 = 4
y1 = 4

Stop

B2

B1

B3 B4

B5

B6

FIGURE 11.36 SSA graph for value numbering with the partitioning technique.

different classes because their corresponding inputs, viz., (x1, y1), (x3, y3), and (x4, y4), belong to identical

equivalent classes, P1, P5, and P4, respectively. A similar argument holds for x4 and y4 as well. After

partitioning, this information may be used for several optimizations such as common subexpression

elimination, invariant code motion, and so on as explained in [4].

Even though there are programs on which partitioning is more effective than hashing (and vice-versa),

partitioning is not as effective as hashing on real-life programs [10]. Hashing is the method of choice for

most compilers. We informally describe the local hashing-based value numbering on basic blocks in the

next section and then go on to describe the global algorithm on SSA graphs in detail in the following

sections. Our presentation is based on the techniques described in [10, 15, 45, 46].

11.5.1 Hashing-Based Value Numbering: Basic Block Version

We briefly describe the data structures used in the basic block version of value numbering using hashing and

illustrate the algorithm with an example. The basic block version uses three tables: HashTable, ValnumTable,

and NameTable. HashTable is indexed using the output of a hashing function that takes an expression (with
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Value Number 

Expression Value Number 

Constant Value 

ValnumTable entry 
(indexed by name hash value) 

Name 

 Name List Constflag 

NameTable entry
(indexed by value number)

HashTable entry 
(indexed by expression hash value) 

FIGURE 11.37 Data structures for value numbering with basic blocks.

value numbers of its operands replacing the operands themselves) as a parameter. It stores expressions

and their value numbers. ValnumTable is indexed using another hashing function that takes a variable

name (a string) as a parameter. It stores variable names and their value numbers. NameTable is indexed

using a value number, and it stores the variable names (a list) corresponding to this value number and the

constant value associated with this variable, if any, indicated by the field Constflag. The first name in the

name list always corresponds to the first definition for the corresponding value number. A counter is used

to generate new value numbers by simple incrementing. The array B, of size n, stores the n instructions of

a basic block. Any good hashing scheme presented in books on data structures and algorithms can be used

for the hashing functions [2, 53]. The data structures used in value numbering are shown in Figure 11.37.

We illustrate the hashing algorithm on flow graphs by means of an example. Source-level language

statements and the corresponding intermediate code in the form of quadruples are shown in Figure 11.38,

along with the final transformed code. Let us run through the instructions in the basic block one at a time

and observe how value numbering works on them. Processing the first instruction, a = 10, results in a

being entered into ValnumTable and NameTable with a value number of, for instance, 1, along with its

constant value. When handling instruction 2, a is looked up in the ValnumTable, and its constant value

is fetched from NameTable. Constant folding results in b getting a constant value of 40. The name b is

entered into ValnumTable and NameTable with a new value number of, for instance, 2, and its constant

value of 40.

HLL Program Quadruples before Quadruples after
Value Numbering Value Numbering

a = 10 1. a = 10 1. a = 10
b = 4∗a 2. b = 4∗a 2. b = 40
c = i∗ j +b 3. t1 = i∗ j 3. t1 = i∗ j
d = 15∗a∗ c 4. c = t1+b 4. c = t1+40
e = i 5. t2 = 15∗a 5. t2 = 150
c = e∗ j + i∗a 6. d = t2∗ c 6. d = 150∗ c

7. e = i 7. e = i
8. t3 = e∗ j 8. t3 = i∗ j
9. t4 = i∗a 9. t4 = i∗10

10. c = t3+ t4 10. c = t1+ t4
(Instructions 5 and 8
can be deleted)

FIGURE 11.38 Example of value numbering.
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HashTable

Expression Value Number

i * j 5

t1 + 40 6

150 * c 8

i * 10 9

t1 + t4 10

ValNumTable

Name Value Number

a 1

b 2

i 3

j 4

t1 5

c 10

t2 7

d 8

e 3

t3 5

t4 9

FIGURE 11.39 The HashTable and ValNumTable for the example in Figure 11.38.

The names i and j are entered into the two tables with new value numbers when processing instruction

3. The expression i ∗ j is searched in HashTable (with the value numbers of i and j used during hashing).

Since it is not found there, it is entered into HashTable with a new value number. The name t1 is also entered

into ValnumTable and NameTable with the same value number. The constant value of b, viz., 40, replaces

b in instruction 4 and is inserted into HashTable with a new value number, and c enters the tables with

this value number. Instructions 5, 6, and 7 are processed in a similar way. The name t2 becomes a constant

of value 150, and this value of 150 replaces t2 in instruction 6. During the processing of instruction 8,

e is replaced by i , and the expression i ∗ j is found in HashTable. NameTable gives the name of the first

definition corresponding to it as t1. Therefore, t1 replaces t3 in instruction 10. Contents of the three tables

are shown in Figures 11.39 and 11.40. Instructions 5 and 8 can be deleted, since the holding variables, t2

and t3, have already been replaced by 150 and t1, respectively, in instructions referencing them.

11.5.2 Value Numbering with Hashing and SSA Forms

In this section, we describe the value numbering algorithm on the SSA form of a program using hashing.

The local value numbering algorithm for basic blocks can be applied on the SSA form of a program to

obtain a global value numbering algorithm. We use a reverse postorder over the SSA flow graph to guide

traversals over the dominator tree. One of the reasons for choosing a reverse postorder over the SSA flow

graph is to ensure that all the predecessors of a block are processed before the block is processed (this

is obviously not possible in the presence of loops, and the effect of loops will be explained later). The

dominator tree for a flow graph is shown in Figure 11.43, along with a depth-first tree for the same flow

NameTable

Name ConstantValue Constant Flag

a 10 T

b 40 T

e, i

j

t3, t1

t2 150 T

d

c

FIGURE 11.40 The NameTable for the example in Figure 11.38.
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function SSA Value Numbering(B) // B is a basic block

begin

scope = new HashTable Scope

Push scope onto the Scope Stack

for i = 1 to n // n = number of statements in B

begin

Let s be the statement at B[i]

if s is an assignment of the form x = y op z in B

expr = ValNum(y) op ValNum(z)

// Apply algebraic laws here to simplify expr

v = Hash(expr) // Apply the hash function to expr

if Present Hash(v)

w = Get Defining Var(v)

Insert ValNum(x, v, w)

Remove s from B

else

Insert ValNum(x, v, x)

Insert Hash(expr, v, x)

endif

endif

if s is an assignment of the form x = y in B

w = Get Replacing Var(y)

v = ValNum(y)

Insert ValNum(x, v, w)

endif

if s is φ-function of the form x ← φ(y1, y2, ...)

if s is meaningless

Insert ValNum(x, ValNum(y1), y1)

Remove s from B

else if s is redundant

Let w be the defining variable of the earlier non-redundant φ

Insert ValNum(x, ValNum(w), w)

Remove s from B

else

v = Hash(φ(y1, y2, ...))

Insert ValNum(x, v, x)

Insert Hash(φ(y1, y2, ...), v, x)

endif

endif

endfor

for i = 1 to | succ(B) |

Let Ci be a successor of B at index i

Update the φ function inputs in Ci

endfor

// Note that in the following for loop, the recursive calls on

// the children of B are performed in reverse postorder

for i = 1 to | Children(B) | in the Dominator Tree

Let Ci be a child of B at index i

SSA Value Numbering(Ci )

endfor

Pop the top of the Scope Stack

end

FIGURE 11.41 Value numbering with SSA form.



11-32 The Compiler Design Handbook: Optimizations and Machine Code Generation

function ValNum(x)

Returns the Value Number corresponding to variable x from the ValumTable

function Hash(expr)

Applies the hashing function on expr and returns the result

function Present Hash(v)

Returns true is an entry indexed by v exists in Hashtable else returns false

function Get Defining Var(v)

Returns the defining variable corresponding to an entry indexed by v in HashTable

function Insert Valnum(x, v, y)

Inserts an entry in ValnumTable at index given by value number v for variable x

and sets the replacing variable as y

function Insert Hash(expr, v, x)

Inserts an entry in Hashtable at index given by value number v for an expression expr

and sets the defining variable as x

function Get Replacing Var(v)

Returns the replacing variable corresponding to an entry indexed by v in Valnumtable

FIGURE 11.42 Value numbering with SSA form cont’d.

graph and traversal orders on these. The algorithm requires a scoped HashTable similar to one used in the

processing of symbol tables for lexically scoped languages. The scope of the tables extends along the paths

in the dominator tree. Every time a basic block is visited during the traversal of the dominator tree, new

table entries corresponding to the block’s scope are added to the table. These entries are removed when

a basic block has completed processing. The SSA form used here does not need any additional edges in

the form of u-d or d-u information. The structure of the tables used in this algorithm is shown in

Figure 11.44.

The SSA form introduces some specialties in instruction processing. There will be no “hanging

expressions” (expressions not attached to any variable), because no definition is killed in the SSA form.

Stop 

B1 

Start 

B6 

B5 

B4 

B2 B3 

Start 

B1 

B2 B3 

B4 

B5 

B6 Stop 

Start 

B1 

B2 B3 B4 

B5 

Stop B6 

Flow Graph Depth-first Tree 
(DFST) 

Dominator Tree 

Postorder on DFST: B6, Stop, B5, B4, B2, B3, B1, Start 
Reverse postorder on DFST: Start, B1, B3, B2, B4, B5, Stop, B6 
Visit order on dominator tree is same as reverse postorder 

FIGURE 11.43 Flowchart, DFST, and dominator tree.
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φ-function

Expression Value Number
Defining
Variable

Constant Value
Variable

Name
Value Number

Replacing
Variable

ValnumTable
(indexed by name hash value)

HashTable entry
(indexed by expression hash value)

FIGURE 11.44 Data structures for value numbering with SSA forms.

This also means there is no need to restore any old entries in tables when the processing of a block is

completed. It is enough if the new entries are deleted. This reduces the overheads in managing scoped

tables. We do not need the NameTable here. The SSA names of the variables themselves can be used as

value numbers.

A computation C (e.g., of the form a = b op c) becomes redundant if b op c has already been computed in

one of the nodes dominating the node containing C . If the defining variable of the dominating computation

is x , then C can be deleted, and all occurrences of a can be replaced by x . This is recorded in the ValnumTable

by entering a and the value number of x into it and setting the field replacing-variable to x . From now

on, whenever an expression involving a is to be processed, we search for a in the ValnumTable and get

its replacing-variable field (which contains x). This replaces a in the expression being processed. While

processing an instruction of the form p = q , we take the replacing-variable of q (e.g., r ) and enter it along

with p in the ValnumTable. This ensures that any future references of p are also replaced by r .

We maintain a global ValnumTable and a scoped HashTable as before, but over the dominator tree

(ValnumTable is not scoped). For example, in Figure 11.43, a computation in block B5 can be replaced by

a computation in block B1 or B4, since the tables for B1, B4, and B5 will be together while processing B5.

It is possible that no such previous computations are found in the HashTable, in which case we generate a

new value number and store the expression in the computation along with the new value number in the

HashTable. The defining variable of the computation is also stored in the global ValnumTable along with

the new value number. A global table is needed for ValnumTable while processing φ-instructions.

Processing φ-instructions is slightly more complicated. A φ-instruction receives inputs from several

variables along different predecessors of a block. The inputs need not be defined in the immediate prede-

cessors or dominators of the current block. They may be defined in any block that has a control path to

the current block. For example, in Figure 11.45, while processing block B9, we need definitions of a2, a6,

and so on, which are not in the same scope as B9 (over the dominator tree). However, each incoming arc

corresponds to exactly one input parameter of the φ-instruction. This global nature of inputs requires a

global ValnumTable, containing all the variable names in the SSA graph.

During the processing of a φ-instruction, it is possible that one or more of its inputs are not yet defined

because the corresponding definitions reach the block through back arcs. Such entries will not be found

in the ValnumTable. In such a case, we simply assign a new value number to the φ-expression and record

the defining variable of the φ-instruction along with this new value number in the global ValnumTable.

The φ-expression is also stored with the new value number in the scoped HashTable. It may not be out

of place to mention here that value numbering based on partitioning can handle some of the cases where

definitions reach through back arcs. For details, refer to [10, 45] and the example discussed later in this

section.

If all the input variables are found in the global ValnumTable, then we first replace the inputs of the

φ-instruction by the entries found in the ValnumTable and then go on to check whether the φ-expression

is either meaningless or redundant. If neither of these is true, a new value number is generated, and the

simplified φ-expression and its defining variable are entered into the tables as explained before.
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a1 = u1 + v1

b1 = u2 + v2

a4 = u1 + v1

a3 = u3 + v3
a2 = u2 + v2

b2 = u3 + v3

a6 = u1 + v1

a5 = φ(a4, a1)

b5 = u2 + v2

B1

B2

B4 B5 B6

B3

B7

B8

B9

b3 = a2

Start

Stop

b4  = φ(a2, a6, b5)
b6 = φ(b1, a1, b1)

FIGURE 11.45 Example of value numbering with SSA forms.

A φ-expression is meaningless if all its inputs are identical. In such a case, the corresponding

φ-instruction can be deleted, and all occurrences of the defining variable of the φ-instruction can be

replaced by the input parameter. This is recorded in the global ValnumTable along with the value number

of the input parameter. For example, the instruction u = φ(a , b, c) may become u = φ(x , x , x) if a , b, and

c are all equivalent to x , as determined from the entries in ValnumTable. In such a case, we delete the

instruction and record u in ValnumTable along with x and its value number, so that future occurrences of

u can be replaced by x .

A φ-expression is redundant if there is another φ-expression in the same basic block with exactly the

same parameters. Note that we cannot use another φ-expression from a dominating block here because

the control conditions for the blocks may be different. For example, the blocks B1 and B4 in Figure 11.43

may have the same φ-expression, but they may yield different values at runtime depending on the control

flow. HashTable can be used to check the redundancy of a φ-expression in the block. If a φ-expression is

indeed redundant, then the corresponding φ-instruction can be deleted and all occurrences of the defining

variable in the redundant φ-instruction can be replaced by the earlier nonredundant one. This information

is recorded in the tables. The complete algorithm is shown in Figures 11.41 and 11.42.

Figures 11.45 and 11.46 show an SSA graph before and after value numbering. Figure 11.47 shows the

dominator tree and a reverse postorder for the same SSA graph. Block B8 has a meaningless φ-instruction,

and block B9 has a redundant φ-instruction. Instructions such as a2 = b1 in block B2 can perhaps

be deleted but are shown in Figure 11.46 to explain the functioning of the algorithm. The SSA graph in

Figure 11.45 has not been obtained by translation from a flow graph; it has been constructed to demonstrate

the features of the algorithm.

As another example, consider the SSA graph shown in Figure 11.36. Hashing-based techniques discover

fewer equivalences as shown below.

{x1, y1}, {x3, y3}, {x2}, {x4}, {x5}, {x6}, {y2}, {y4}, {y5}, {y6}
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a2 = b1

b2 = u3 + v3

a4 = a1
a6 = a1

a5 = a1

b3 = b1
b5 = b1

B1

B2

B4 B5 B6

B3

B7

B8

B9

Stop

Start

a1 = u1 + v1

b1 = u2 + v2

a3 = u3 + v3

b4 = φ(b1, a1, b1)

FIGURE 11.46 Example of value numbering with SSA forms cont’d.

This is partly because of the back arcs. x2 and y2 will always be assigned different value numbers, because

the values of x3, x4, y3, and y4 reach the block B2 through back edges, and their corresponding instructions

would not have been processed (present in blocks B5 and B6) while block B2 was being processed. x5 and

y5 are not assigned the same value number because x2 and y2 do not have the same value number. The

same is true of x6 and y6.

B1

B2 B3 B9

B4 B5 B8 B6 B7

Start

Stop

Reverse postorder on the SSA graph that is used with
the dominator tree above:

Start, B1, B3, B7, B6, B2, B5, B4, B8, B9, Stop

FIGURE 11.47 Dominator tree and reverse postorder for Figure 11.45.
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11.6 Partial Redundancy Elimination

Partial redundancy elimination (PRE) is a powerful compiler optimization that subsumes global common

subexpression elimination and loop-invariant code motion and can be modified to perform additional

code improvements such as strength reduction as well. PRE was originally proposed by Morel and Renvoise

[43]. They showed that elimination of redundant computations and the moving of invariant computations

out of loops can be combined by solving a more general problem, that is, the elimination of computations

performed twice on a given execution path. Such computations were termed partially redundant. PRE per-

forms insertions and deletions of computations on a flow graph in such a way that after the transformation,

each path, in general, contains fewer occurrences of such computations than before. Most compilers today

perform PRE. It is regarded as one of the most important optimizations, and it has generated substantial

interest in the research community [13, 20–24, 33, 34, 36–38, 45, 46, 48].

In spite of its benefits, Morel and Renvoise’s algorithm has some shortcomings. It is not optimal in the

sense that it does not eliminate all partial redundancies that exist in a program, and it performs redundant

code motion. It involves performing bidirectional data flow analysis, which, some claim, is in general more

complex than unidirectional analysis [38]. Knoop et al. decomposed the bidirectional structure of the PRE

algorithm into a sequence of unidirectional analyses and proposed an optimal solution to the problem

with no redundant code motion [37, 38].

In this section, we informally describe a simple algorithm for partial redundancy elimination for a

program not in the SSA form [48]. It is based on well-known concepts, namely, availability, anticipa-

bility, partial availability, and partial anticipability. The algorithm is computationally and lifetime op-

timal. Its essential feature is the integration of the notion of safety into the definition of partial avail-

ability and partial anticipability. It requires four unidirectional bit vector analyses. A special feature of

this algorithm is that it does not require edge-splitting transformation to be done before application of

the algorithm.

An informal description of the idea behind the algorithm follows. We say an expression is available at

a point if it has been computed along all paths reaching this point with no changes to its operands since

the computation. An expression is said to be anticipable at a point if every path from this point has a

computation of that expression with no changes to its operands in between. Partial availability and partial

anticipability are weaker properties with the requirement of a computation along “at least one path” as

against “all paths” in the case of availability and anticipability.

We say a point is safe for an expression if it is either available or anticipable at that point. Safe partial

availability (anticipability) at a point differs from partial availability (anticipability) in that it requires

all points on the path along which the computation is partially available (anticipable) to be safe. In the

example given in Figure 11.48, partial availability at the entry of node 4 is true, but safe partial availability

at that point is false, because the entry and exit points of node 3 are not safe. In Figure 11.49, safe partial

availability at the entry of node 4 is true. We say a computation is safe partially redundant in a node if it is

locally anticipable and is safe partially available at the entry of the node. In Figure 11.49, the computation

in node 4 is safe partially redundant.

The basis of the algorithm is to identify safe partially redundant computations and make them totally

redundant by the insertion of new computations at proper points. The totally redundant computations

after the insertions are then replaced. If a + b is the expression of interest, then by insertion we mean

insertion of the computation h = a + b, where h is a new variable; replacement means substitution of a

computation, such as x = a + b, by x = h.

Given a control flow graph, we compute availability, anticipability, safety, safe partial availability, and

safe partial anticipability at the entry and exit points of all the nodes in the graph. We then mark all points

that satisfy both safe partial availability and safe partial anticipability. Now we note that the points of

insertion for the transformation are the entry points of all nodes containing the computation whose exit

point is marked but whose entry point is not, as well as all edges whose heads are marked but whose tails

are not. We also note that replacement points are the nodes containing the computation whose entry or

exit point is marked.
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FIGURE 11.48 Node 4: a + b not safe partially available.
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FIGURE 11.49 Node 4: a + b is safe partially redundant.

x = a + b

y = a + b
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FIGURE 11.50 Before PRE.

Alternatively, if we consider the paths formed by connecting all the adjacent points that are marked, we

observe that the points of insertion are the nodes corresponding to the starting points of such paths and

the edges that enter junction nodes on these paths. The computations to be replaced are the ones appearing

on these paths. For the example in Figure 11.50, small circles correspond to marked points. Based on the

above observation, we see that node 1 and edge (2, 3) are the points of insertion, and nodes 1 and 4 are

the points of replacement. The graph after the transformation is shown in Figure 11.51.
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h = a + b
x = h

h = a + b

FIGURE 11.51 After PRE.

In the next section, we will describe in detail an algorithm for performing PRE on the SSA form of a

program [33].

11.6.1 Partial Redundancy Elimination on the SSA Form

Most optimizations that use the SSA form are based on variables and do not act on program expressions.

In this section, we describe SSAPRE [33], an algorithm for performing PRE based entirely on the SSA

form. In the absence of SSAPRE, to do PRE on any program in SSA form, the program first needs to

be translated out of SSA, and then a traditional bit-vector-based PRE is performed on the program and

the result back-converted into SSA form to continue performing other SSA-based optimizations. SSAPRE

avoids this conversion back and forth between SSA and non-SSA forms.

A distinctive feature of any SSA-based optimization is that it does not require an iterative data flow anal-

ysis, unlike traditional optimizations that operate on the control flow graph. This is because information

can be represented only at those points where it changes in the SSA graph and hence can be propagated

faster. Also, SSA-based optimizations do not need to distinguish between global and local versions of

problems (inter- and intra-basic block), which is necessary in case of bit-vector problems on the control

flow graph. Both these features are present in SSAPRE.

The main challenge in performing PRE on the SSA form is to identify expressions that may have different

instances of variables as operands but that are potentially redundant. For example, consider the example

in Figure 11.52. Although a3 +b1 seems to be computationally different from a1 +b1, it is actually partially

redundant with respect to a1 + b1.

a3      φ(a1, a2)

a2 ...

a3 + b1

a1 + b1

FIGURE 11.52 Partially redundant expressions having different SSA variable instances.
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11.6.2 The SSAPRE Algorithm

The SSAPRE algorithm works by representing the computation of an expression exp by a hypothetical

temporary h, for instance, the redundancy class variable (RCV). A definition of exp corresponds to a store

of exp into h. The use of exp corresponds to a load from h. It then applies the analysis of PRE on the

SSA form of h to introduce full redundancies. Finally, compiler temporaries are introduced to remove

these redundancies by saving expressions into temporaries and reusing them. The program in its final

representation will be in SSA form.

The algorithm assumes that all the critical edges in the control flow graph have been split. A critical

edge is an edge from a node with more than one successor (for instance, a) to a node with more than one

predecessor (for instance, b). Usually these edges are points that act as bottlenecks for code hoisting (out

of nodes like b). By splitting this edge (and inserting a node, for instance, c , on this edge), code can still

be hoisted out of b and placed at the new node c , thereby eliminating a partial redundancy.

The SSAPRE algorithm is performed in six steps. Before applying these six steps, it performs a single

pass on the SSA program to identify lexically identical expressions. These are expressions whose operators

and operands are the same, ignoring the SSA versions. For example, a3 + b1 and a1 + b2 are lexically

identical. The algorithm uses a �-operator similar to φ of SSA computation for representing the merge of

the redundancy class variables.

The first two steps of the algorithm correspond to the SSA computation algorithm of [18], the only

difference being that here both these steps work on the expressions (i.e., the RCVs) instead of the original

variables of the program. The steps involved in SSAPRE, in order, are:

1. �-insertion: Inserts a �-operator for the RCVs at specific merge points in the program. The �

insertions are not necessarily minimal.

2. Rename: Gives SSA versions to the occurrences of RCVs in the program. After this step, all occur-

rences of an expression a +b represented by the same SSA version of RCV compute the same value.

It also renames the operands of the �-function. Some �-operands correspond to paths along which

a + b does not occur but that are merge points for operands of the expression. These operands

are represented by ⊥. After this step, the SSA graph is very dense because of introduction of RCV

instances and their corresponding �-operators.

3. Down-safety: Identifies �s that are down-safe, that is, �-blocks at which the expression a + b

represented by RCV h is fully anticipable. This is done by a backward analysis on the SSA graph.

4. WillBeAvail: Identifies �s at which the expression a + b is available assuming PRE insertions will

be performed on appropriate incoming edges to the �-block.

5. Finalize: Uses the results of the previous step to insert computations of a +b into h on an incoming

edge to the �-block to ensure a +b is available at �. It then links up uses of h to the definitions that

have been newly inserted. Finally, it removes extraneous �s and gets the SSA form of h in minimal

form.

6. Code Motion: Introduces real temporaries to eliminate redundant computations of a+b by walking

over the SSA graph of h, introducing the store of a + b into t and giving each t its unique SSA

version. The �s for h are translated into φ for the temporaries.

Figure 11.53 shows the candidate SSA program that we will use to illustrate the application of the

SSAPRE algorithm. The final result after application of SSAPRE on this program is shown in Figure 11.58,

below. In the following subsections, we give a detailed description of each of the six steps. Before the

algorithm begins, it assumes that the critical edges have already been split and that the dominance tree

and dominance frontier relations have been computed.

11.6.2.1 Φ-Insertion

A � for an expression is required whenever two different values of an expression merge at a common point

in the program. There are two different conditions for the placement of �:
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FIGURE 11.53 Example program for application of SSAPRE.

� Wherever an expression exp occurs, a � has to be inserted at its iterated dominance frontier. This

is similar to a definition for h, its RCV.
� Wherever there is a φ for a variable that is an operand of exp, a corresponding � has to be placed

there. This is because a φ indicates a changed value of exp reaching the block because of different

values of the operand along its incoming edges. Also, a � is inserted only if exp is used after that

(i.e., it is not dead). This may require precomputation of points of last use for exp using a dead

variable analysis.

The �s are placed by a single pass through the program, during which both the IDF of the nodes where

exp is defined and the IDF of the definition points of variables that are operands of exp (with RCV h) are

taken into account. Figure 11.54 shows the program after �-insertion. Here h is the RCV for the expression

a + b. The �s placed in nodes 10 and 11 are due to these nodes being in the IDF of nodes 5 and 6, where

the expression a + b is defined, while the � placed in node 12 is due to the presence of φ for a in that

node, which is an operand in a + b. A �-operator is not inserted at node 15 since the expression is dead

at this node.
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FIGURE 11.54 Program after � insertion.

11.6.2.2 Rename

The rename step assigns SSA versions to the RCV h. After this step, the SSA instances of h have two

properties:

1. Identical SSA instances of h represent identical expression values for the expression exp that the

RCV represents.

2. A control flow path with two different instances of h has to cross either an assignment to an

operand of exp or a � of h.

Renaming is achieved by a preorder traversal on the dominator tree, similar to the scalar SSA variable

renaming step [18]. Here a renaming stack for every expression exp is maintained along with the renaming

stack for each variable at the same time. Entries are popped off the expression stack when backing out of

the current basic block. At every block, three kinds of expressions can be encountered:

1. Real occurrences, that is, exp’s that were present in the original program.

2. Operators � inserted in the insertion step.

3. Operands of a �-operator.
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FIGURE 11.55 SSA graph of program after rename.

When an expression occurrence q is encountered:

� If q = h is the result of the �-function, a new version is assigned to h.
� In case of a real occurrence q = exp, the versions of occurrence of every variable v in exp on the

top of v ’s stack are compared with the corresponding version of v on the top of exp’s stack:

• If there is a match for all such vs in exp, q = exp is assigned the same version as the version exp

on the top of exp’s stack.

• If there is a mismatch for at least one variable v , assign a new version to exp (i.e., the corresponding

RCV).

� In case of a �-operand, the same process of trying to match the versions of the variables on the

top of renaming stacks of the variables and the expression is carried out. The only difference here

is that if there is a mismatch, a special version ⊥ is assigned to the �-operand. This indicates that

there is no valid computation of exp along that incoming edge.

Every time a new version is assigned, it is pushed onto the expression renaming stack. After the preorder

traversal is completed, all dead �s are eliminated.

Figure 11.55 shows the SSA graph of the program after the renaming step. The results of all the

�-operators in nodes 10, 11, 12, 13, and 14 get new SSA versions since the � might represent a merge point

where two or more instances of a +b meet. The two real occurrences of a +b in nodes 3 and 6 get assigned
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the same SSA version for h since there is no change in either of the operands between the two nodes. One

of the �-operands for the � in node 10 is assigned the ⊥ element since there is no valid instance of a + b

along the corresponding incoming edge. The same holds for both operands of the � in node 12.

11.6.2.3 Down-Safety

Whenever an expression is inserted at a program point, it has to be down-safe, that is, it should not

introduce a new computation along a path on which it was not originally present. In SSAPRE, the expression

insertions are required only at the�-operands. Since there are no critical edges, down-safety at a�-operand

is equivalent to down-safety at the � itself [33]. A �-block is not down safe if:

1. There is a path to exit from the �-block along which the � result is not used.

2. There is a path to exit from the �-block along which the only use of � is as an operand of another

� that itself is not down-safe.

Down-safety is computed as follows:

1. Initially, all �s from which there is a path to exit, along which the � result is not used, are marked

as not down-safe. The remaining �s are marked as down-safe. This can be done during the rename

step itself. (When the exit block is reached during the pre-order traversal, the instance of exp on top

of the expression stack is examined. If it is a �, then that � is marked as not down-safe.) Also, all

�-operands that are real occurrences are marked with the flag has real use (this can also be done

during the rename step [33]). The rest of the �-operands are either ⊥ or are � themselves.

2. All �s from which there is a path to exit, along which the only use of the � is as an operand of

another � that itself is not down-safe, are marked as not down-safe. This is achieved by backward

propagation along the use-def edges of the SSA graph: if the operand of a � (which is already

marked as not down-safe) is not a real occurrence and not a ⊥, then the operand (which is a �) is

marked as not down-safe, and this procedure recursed.

Figure 11.56 shows the result of the down-safety step on the SSA graph of the candidate program. The

only node marked as not being down-safe is 10 since there is a direct path from 10 to the exit where h2,

the result of the �, is not used. The rest of the �s are marked as down-safe.

11.6.2.4 WillBeAvail

This step has two forward propagation passes, performed one after the other, to compute the set of points

where an expression exp can be inserted to make the partially redundant expression fully redundant.

The first pass computes a predicate called can be avail: At the end of this computation, all �s for which

can be avail is true are: (a) those that are down-safe for insertion of exp along with (b) those that are

not down-safe but where exp is fully available. The first pass begins with the set of �-nodes that are not

down-safe and for which one of the operands is ⊥. It sets the can be avail of such �s to false. It then

forward propagates this value along the chain of def-use edges to all �s for which the former � is an

operand (excluding edges along which has real use is set to true). Once such �s are found, the operand

corresponding to the former � is set to ⊥, the can be avail of this � is set to false, and the procedure

recursed.

The second pass computes a predicate called later: �-nodes at which later is true belong to the set of

�s beyond which insertions cannot be postponed without introducing a new unnecessary redundancy. It

works within the region computed by the first pass. Initially, later is set to true wherever can be avail is

true. This pass then assigns a false value for �s with at least one operand with has real use set to true and

forward propagates this value to other �-nodes similar to can be avail.

At the end of the two passes, the will be avail predicate is computed:

will be avail = can be avail ∧ ¬later

The can be avail portion of the predicate represents the computational optimality condition of PRE,

while the later predicate represents the lifetime optimality criterion.



11-44 The Compiler Design Handbook: Optimizations and Machine Code Generation

later = 0 
wba = 0 

cba = 0 
dsafe = 0 

later = 1 
wba = 0

cba = 1 
dsafe = 1 

later = 0 
wba = 1

cba = 1 
dsafe = 1 

later = 0 
wba = 1 

cba = 1 
dsafe = 1 

later = 0 
wba = 1 

cba = 1 
dsafe = 1 

1 

3 4 

6 7 

15 

14 

17 

12 

8 9 

2 

5

16 

h6 Φ(h2, h4, h7) 

a4 φ(a2, a3) 

a6 φ(a5, a4) 

φ(a6, a1) 

a6 + b1 [h7] 

13 

10 

11 

h7 Φ(h6, h5) 

a1 

b1 

a1 + b1[h3] 

a1 + b1[h3] 

a1 + b1[h1] 

h2 Φ(h1,   ) 

a5 

h4 Φ(h3, h3) a2 a3 

h5 Φ( , ) 

FIGURE 11.56 SSA graph of program after down-safe and WillBeAvail computations.

At the end of this phase, the insertion points are computed. These insertion points are indicated by a

predicate called insert. Insertions are done for �-operands that satisfy insert, that is, along the predecessor

edge corresponding to the �-operand. The predicate insert holds for a �-operand if:

1. will be avail(�) = true and

2. (� operand =⊥) ∨ (has real use [�-operand] = false ∧ operand is defined by a � that does not

satisfy will be avail)

Figure 11.56 shows the values of can be avail and later computed for the different �-nodes in the SSA

graph. The points of insertion are shown in Figure 11.57 indicated by the predicate insert being set to true.

11.6.2.5 Finalize

The finalize phase transforms the program with RCVs into a valid SSA form that is suitable for insertions

of expressions and in which no �-operand is a ⊥. This phase does the following:

� For every real occurrence of an expression exp, finalize decides whether it should be computed

and stored into a temporary t (saved) or whether it should be reloaded from an already saved

temporary t.
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FIGURE 11.57 SSA graph of program after finalize.

� For every � for which will be avail is true, an insertion of exp is performed on every incoming

edge that corresponds to a �-operand at which the exp is not available (whose insert flag has been

set to true).
� All the �s for which will be avail is true become φs of the temporary t of the SSA form. The other

�s for which will be avail is false are not a part of the SSA form for t.
� All extraneous �s are removed.

The finalize phase performs a preorder traversal on the dominator tree of the control flow graph. It

maintains a table AvailDef indexed by the SSA subscript of the RCV hx . The entry AvailDef [x] points to

the defining occurrence of the expression expi . This can either be a real occurrence of the expression exp

or a � for which will be avail is true.

During the preorder traversal, three kinds of expressions may be visited:

� �: If the will be avail flag has not been set, the � is ignored and is not a part of the final SSA form.

Otherwise, AvailTable[x] is set to this � where hx is the left hand side (lhs) variable of the �.
� Real occurrence of expi : Assuming expi is represented by the RCV hx , if AvailTable[x] is set to ⊥ or

some expression that does not dominate expi , then AvailTable[x] is set to expi . Otherwise, the save

flag of entry pointed to by AvailTable[x] and the reload flag of expi is set to true.
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FIGURE 11.58 Program after the code motion phase.

� Operand of a � that is in a successor block: Three cases arise depending on the flags will be avail

of � and the insert flag of the �-operand:

• If the will be avail of the � is set to false, nothing is done.

• If the will be avail of the � is set to true and the insert flag of the �-operand is set to true, a

computation of expi is inserted at the exit of the current block.

• If the will be avail of the � is set to true and the insert flag of the �-operand is set to false, the

save flag of the entry pointed to by AvailTable[x] is set to true and the �-operand is updated to

refer to that entry.

The extraneous �s do not affect the correctness of the algorithm but do consume some space. The

minimization of �s thus improves the efficiency of SSA-based optimizations that are done after SSAPRE.

Removal of extraneous �s involves one more pass over the program [33].

Figure 11.57 shows the program after the finalize phase along with the reload and save flags.

11.6.2.6 Code Motion

The final phase of the SSAPRE algorithm is code motion. It involves introducing the temporary t to

eliminate redundant computations. It is done by the following steps:
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� At a real occurrence of an expression exp, if the save flag is set, the result of the computation is

stored into a new version of the temporary t. However, if the reload flag is set, the computation of

exp is replaced by a use of the current version of t.
� At an inserted occurrence of expression, the value of the inserted computation is stored into a new

version of t.
� At a �, a corresponding φ is generated for t.

The final result of the algorithm after application of all six steps is given in Figure 11.58. The partially

redundant computations of a +b from nodes 6 and 14 have been replaced by loads from a saved temporary.

11.7 Translation from SSA Form to Executable Form

Once optimizations have been performed on the SSA form, the SSA form of code has to be converted back

to the executable form, replacing the hypothetical φ-functions by commonly implemented instructions.

One way of removing the φ-functions while still preserving program semantics is to insert a copy state-

ment at the end of each predecessor block of the φ-node, corresponding to each φ-node’s argument.

Figure 11.59b shows the result of copy insertion applied to the SSA program of Figure 11.59a.

An optimization that is frequently used to reduce the number of SSA variable instances is copy folding.

It is usually coupled with the SSA renaming step. At a copy or assign statement y ← x , instead of pushing

the new version of y (for instance, yi ) onto the renaming stack of y, copy folding can be achieved by

pushing the current version of x (for instance, x j ) onto the renaming stack of y. This step would make

sure that subsequent uses of yi are directly replaced by x j since they would see x j on the top of y’s stack

instead of yi . Figure 11.60 illustrates the effect of copy folding y with x .

Copy folding can result in the live ranges of different instances of a variable to overlap with each other.

In the example shown in Figure 11.60, the live ranges of x2 get extended because of copy folding and

now interfere with the live range of x3. Briggs et al. [9] point out two problems that might arise in the

back-translated code when the original algorithm of inserting copies for back-translation is performed in

the presence of copy folding.

x2 φ(x0, x1)

x0 ... x1 ...

... x2

(a)

x1
x2 x1

...

...

x0
x2 x0

...

x2

(b)

FIGURE 11.59 Back-translation and copy insertion. (a) Candidate program for back-translation. (b) Result of back-

translation using copy insertion.
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x2 φ(x1, x3)
x3 x2 + 1

if p then

return y

y x

if p then

x x + 1

x1 1x 1

return x2

FIGURE 11.60 Copy folding during SSA renaming.

11.7.1 The Lost Copy Problem

This problem is illustrated in Figure 11.61a, which shows the result of back-translation of the program in

Figure 11.60. A naive insertion of copy instructions in the predecessor blocks results in a lost copy. For

program correctness, the value of x2 should be returned before it is overwritten by x3 in the last iteration.

The main cause of this problem is the use of x2 beyond the scope of the φ-function that defined it. It can

be solved by splitting the critical edge as shown in Figure 11.62 or by saving x2 into a temporary t before

it is overwritten by x3 and then replacing all subsequent references to x2 by t (Figure 11.61b).

if p then

x2 x1

x2 x3

x1 1

x3 x2 + 1

return x2

(a)

x2 x1

x1 1

if p then

x2 x3

t x2

x3 x2 + 1

return t

(b)

FIGURE 11.61 Lost copy problem and a solution. (a) The lost copy problem. (b) Solving the lost copy problem by

introduction of a temporary solution.
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if p then

return x2

x2 x1

x1 1

x3 x2 + 1
x2 x3

FIGURE 11.62 Solving the lost copy problem by critical edge splitting.

11.7.2 The Swap Problem

Another problem that arises when back-translation is performed on SSA code that has been copy folded is

called the swap problem. For example, when copy folding is done during SSA conversion on the program

snippet shown in Figure 11.63a, it results in the code shown in Figure 11.63b. In the translated code, there

is now a cyclic dependency between the results of φ-nodes; each of a2 and b2 is used as an argument to

the φ-function that defines the other variable. A naive back-translation would result in the code shown

in Figure 11.64a. This code is incorrect since on the first iteration a2 is overwritten by b2 when actually it

if p then

... a

a 1
b 1

x a
a b
b x

(a)

if p then

b1 1

a1 1

b2 φ(b1, a2)

a2 φ(a1, b2)

... a2

(b)

FIGURE 11.63 The swap problem. (a) Program to illustrate the swap problem. (b) Program segment after SSA

conversion with copy folding.
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if p then

b1 ...
a1 ...

a2
b2

a1
b1

a2

b2

b2

b1

... a2

(a)

if p then

b1 ...
a1 ...

a2
b2

a1
b1

a2

b2

t

t b2
a2

... a2

(b)

FIGURE 11.64 The swap problem. (a) Result of naive translation by inserting copy instructions. (b) One solution to

the swap problem.

should have been assigned the value of a1. One way of solving of this problem is by splitting the critical

edge and using a temporary as shown in Figure 11.64b.

Briggs et al. give an algorithm for translation of SSA back to normal code without splitting the critical

edge. More details can be found in [9].

11.8 Discussion and Conclusions

In this chapter, we have discussed in detail several algorithms on the traditional flow graph and on the

static single assignment form. These algorithms demonstrate how the features of SSA graphs such as

φ-functions, single assignment to variables, and SSA edges (corresponding to d-u information) facilitate

faster operation of algorithms for some global optimizations. For example, conditional constant propaga-

tion operates much faster on SSA graphs and discovers at least the same set of constants as the algorithm

on the flow graph. In the case of value numbering, the SSA version is not only faster and simpler, but

also global, because of the single assignment property. For partial redundancy elimination the benefits

stem from enabling PRE to be seamlessly integrated into a global optimizer that uses SSA as its internal

representation.

As a consequence of its practical advantages, several well-known compilers have adopted the SSA form

for code optimizations. The latest version of the GNU compiler collection (GCC) uses a form of SSA
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based on its internal tree intermediate representation, called the Tree SSA [47]. Tree SSA is designed to be

language and target machine independent so that high-level transformations that cannot be performed

over the register transfer language (GCC’s low-level representation) can be easily done.

The Jalapeno virtual machine for Java, now known as Jikes RVM (Research Virtual Machine), is

another compiler that uses the SSA form [11]. It makes use of a variant of SSA for carrying out

optimizations on object fields and arrays, called the heap array SSA [26]. Some optimizations that are

performed are intraprocedural flow-sensitive optimizations, anticipatory SSAPRE [54], conditional con-

stant propagation for scalars and arrays, global value numbering, redundant load elimination, and dead

store elimination [26].

The SUIF 2 Compiler System [57] constructs the SSA form using the techniques of [9]. It provides

options to construct semi-pruned, minimal, or pruned SSA forms and construct use-def and def-use

chains [32]. The relevant optimizations that are supported include eliminating copy instructions and

useless φ-nodes and dead code elimination [44].

Investigations on whether optimizations can be combined on the lines of [14] and on alternative

SSA forms [31, 56] on which more optimization algorithms can operate are needed. The issue of using

dependence information in SSA forms also arises while tackling parallelization transformations. Knobe

and Sarkar [35] discuss the array SSA form and its use in parallelization. Lapowski and Hendren [40]

extend SSA to pointers. Hasti and Horwitz [30] show that SSA helps convert flow-insensitive analysis to

flow-sensitive analysis. Concurrent SSA has been addressed by Srinivisan et al. [52], Lee et al. [41], and

Novillo et al. [47].

The static single information (SSI) form is a recently proposed extension of SSA [5] that has yet

to be widely adopted by the static analysis community. Some comparisons of SSI and SSA have been

presented in [50] along with algorithms for some analyses. Applications of SSA to compiler back-end

problems such as register allocation and code generation have been attempted. Hack et al. [28] use the

SSA form for register allocation, and Eckstein et al. [25] use SSA graphs for instruction selection. Thus,

back-end problems also can be profitably addressed using SSA.
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12.1 Introduction

Pointers and heap-allocated storage are features of all modern imperative programming languages. How-

ever, they are ignored in most formal treatments of the semantics of imperative programming languages

because their inclusion complicates the semantics of assignment statements: an assignment through a

pointer variable (or through a pointer-valued component of a record) may have far-reaching side effects.

Works that have treated the semantics of pointers include [5, 42, 43, 45].

These far-reaching side effects also make program dependence analysis harder, because they make it

difficult to compute the aliasing relationships among different pointer expressions in a program. Having

less precise program dependence information decreases the opportunities for automatic parallelization

and for instruction scheduling.

The usage of pointers is error prone. Dereferencing NULL pointers and accessing previously deallocated

storage are two common programming mistakes. The usage of pointers in programs is thus an obstacle for

program understanding, debugging, and optimization. These activities need answers to many questions

about the structure of the heap contents and the pointer variables pointing into the heap.

By shapes, we mean descriptors of heap contents. Shape analysis is a generic term denoting static

program-analysis techniques that attempt to determine properties of the heap contents relevant for the

applications mentioned above.

12.1.1 Structure of the Chapter

Section 12.2 lists a number of questions about the contents of the heap. Figure 12.1 presents a program

that will be used as a running example, which inserts an element into a singly linked list. Section 12.2.3

shows how shape analysis would answer the questions about the heap contents produced by this program.

Section 12.3 then informally presents a parametric shape-analysis framework along the lines of [58], which

provides a generative way to design and implement shape-analysis algorithms. The “shape semantics” —

plus some additional properties that individual storage elements may or may not possess — are specified in

logic, and the shape-analysis algorithm is automatically generated from such a specification. Section 12.4

shows how the informal treatment from Section 12.3 can be made precise by basing it on predicate logic.

In particular, it is shown how a 2-valued interpretation and a 3-valued interpretation of the same set of

/* list.h */
typedef struct node {

struct node *n;
int data;

} *List;
(a)

/ * insert.c */
#include ''list.h''
void insert (List x, int d) {

List y, t, e;
assert(acyclic list (x) && x != NULL);
y = x;
while (y->n ! = NULL && ...) {

y = y->n;
}
t = malloc( );
t->data = d;
e = y->n;
t->n = e;
y->n = t;

}
(b)

FIGURE 12.1 (a) Declaration of a linked-list data type in C. (b) A C function that searches a list pointed to by

parameter x , and splices in a new element.
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formulas can be used to define the concrete and abstract semantics, respectively, of pointer-manipulating

statements. Section 12.5 lists some applications of shape analysis. Section 12.6 briefly describes several

extensions of the shape-analysis framework that have been investigated. Section 12.7 discusses related

work. Section 12.8 presents some conclusions.

12.2 Questions about the Heap Contents

Shape analysis has a somewhat constrained view of programs. It is not concerned with numeric or string

values that programs compute, but exclusively with the linked data structures they build in the heap and

the pointers into the heap from the stack, from global memory, or from cells in the heap.5 We will therefore

use the term execution state to mean the set of cells in the heap, the connections between them (via pointer

components of heap cells), and the values of pointer variables in the store.

12.2.1 Traditional Compiler Analyses

We list some questions about execution states that a compiler might ask at points in a program, together

with (potential) actions enabled by the respective answers:

NULL pointers: Does a pointer variable or a pointer component of a heap cell contain NULL at the

entry to a statement that dereferences the pointer or component?

Yes (for every state): Issue an error message.

No (for every state): Eliminate a check for NULL.

Maybe: Warn about the potential NULL dereference.

Alias: Do two pointer expressions reference the same heap cell?

Yes (for every state): Trigger a prefetch to improve cache performance, predict a cache hit

to improve cache-behavior prediction, or increase the sets of uses and definitions for an

improved liveness analysis.

No (for every state): Disambiguate memory references and improve program dependence in-

formation [11, 55].6

Sharing: Is a heap cell shared?7

Yes (for some state): Warn about explicit deallocation, because the memory manager may run

into an inconsistent state.

No (for every state): Explicitly deallocate the heap cell when the last pointer to it ceases to exist.

Reachability: Is a heap cell reachable from a specific variable or from any pointer variable?

Yes (for every state): Use this information for program verification.

No (for every state): Insert code at compile time that collects unreachable cells at runtime.

Disjointness: Do two data structures pointed to by two distinct pointer variables ever have common

elements?

No (for every state): Distribute disjoint data structures and their computations to different

processors [24].

5However, the shape-analysis techniques presented in Sections 12.3 and 12.4 can be extended to account for both

numeric values and heap-allocated objects. See Section 12.6.4 and [20, 21, 28].
6The answer “yes (for some state)” indicates the case of a may-alias. This answer prevents reordering or parallelizing

transformations from being applied.
7Later in the chapter, the sharing property that is formalized indicates whether a cell is “heap-shared,” that is, pointed

to by two or more pointer components of heap cells. Sharing due to two pointer variables or one pointer variable and

one heap cell component pointing to the same heap cell is also deducible from the results of shape analysis.
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Cyclicity: Is a heap cell part of a cycle?

No (for every state): Perform garbage collection of data structures by reference counting. Process

all elements in an acyclic linked list in a doall–parallel fashion.

Memory leak: Does a procedure or a program leave behind unreachable heap cells when it returns?

Yes (in some state): Issue a warning.

The questions in this list are ones for which several traditional compiler analyses have been designed,

motivated by the goal of improving optimization and parallelization methods. The may-alias-analysis

problem, which seeks to find out whether the answer to the alias question is “yes (in some state)” is of

particular importance in compiling. The goal of providing better may-alias information was the motivation

for our work that grew into shape analysis.

Alias, sharing, and disjointness properties are related but different. To appreciate the difference, it suffices

to see that they are defined on different domains and used in different types of compiler tasks. Alias relations

concern pairs of pointer expressions; they are relevant for disambiguating memory references. Sharing

properties concern the organization of neighboring heap cells; they are relevant for compile-time memory

management. Disjointness relations concern pairs of data structures; they are relevant for determining

whether traversals of two data structures can be parallelized. The relations between these properties are as

follows:

Disjointness-aliasing: Two data structures D1 and D2 are disjoint in every state if there exist no two

pointer expressions e1, referring to D1, and e2, referring to D2, that may be aliased in any state.

Disjointness-sharing: If two data structures D1 and D2 are not disjoint in some state, at least one of

the common elements of D1 and D2 is shared in this state.

Aliasing-sharing: If two different pointer expressions e1 and e2 reference the same heap cell in some

state, then this cell or one of its “predecessors” must be shared in this state. However, the opposite

need not hold because not all heap cells are necessarily reachable from a variable.

Some of the other questions in the list given earlier concern memory-cleanness properties [14], for

example, no NULL-dereferences, no deallocation of shared cells, and no memory leaks.

12.2.1.1 Memory Disambiguation

Many compiler transformations and their enabling analyses are based on information about the inde-

pendence of program statements. Such information is used extensively in compiler optimizations, auto-

matic program parallelizations, code scheduling for instruction-level parallel machines, and in software-

engineering tools such as code slicers. The concept of program dependence is based on the notions of

definition and use of resources. Such analyses can be performed at the source-language level, where resources

are mostly program variables, as well as at the machine-language level, where resources are registers, mem-

ory cells, status flags, and so on. For source-level analysis, these notions have been generalized from scalar

variables to array components. Definitions and uses, in the form of indexed array names, now denote re-

sources that are subsections of an array. Definitions and uses, which were uniquely determining resources

in the case of scalar variables, turn into potential definitions (respectively uses) of sets of resources. Using

these sets in the computation of dependences may induce spurious dependences. Many alias tests have

been developed to ascertain whether two sets of potentially referenced resources are actually disjoint, that

is, whether two given references to the same array never access the same element [66].

The same is overdue for references to the heap through pointer expressions. However, pointer expressions

may refer to an unbounded amount of storage that is located in the heap. Appropriate analyses of pointer

expressions should find information about:

Must-aliases: Two pointer expressions refer to the same heap cell on all executions that reach a given

program point.

May-aliases: Two pointer expressions may refer to the same heap cell on an execution that reaches a

given program point.
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Approaches that attempt to identify may-aliases and must-aliases have traditionally used path expres-

sions [27]. In Section 12.5.1 we provide a new approach based on shape analysis, which yields very precise

results.

12.2.2 Analyzing Programs for Shapes

Several of the properties listed above can be combined to formulate more complex properties of heap

contents:

Shape: What is the “shape” of (some part of) the contents of the heap? Shapes (or, more precisely,

shape descriptors) characterize data structures. A shape descriptor could indicate whether the heap

contains a singly linked list, potentially with (or definitely without) a cycle, a doubly linked list, a

binary tree, and so on. The need to track many of the properties listed above, for example, sharing,

cyclicity, reachability, and disjointness, is an important aspect of many shape-analysis algorithms.

Shape analysis can be understood as an extended type analysis; its results can be used as an aid in

program understanding and debugging [13].

Nonstructural properties: In addition to the shape of some portions of the contents of the heap, what

properties hold among the value components of a data structure? These combined properties can

be used to prove the partial correctness of programs [35].

History properties: These track where a heap cell was allocated and what kinds of operations have been

performed on it. This kind of information can be used to identify dependences between points in

the program (see Section 12.5.2).

12.2.2.1 Shape Descriptors and Data Structures

We claimed above that shape descriptors can characterize data structures. The constituents of shape

descriptors that can be used to characterize a data structure include:

i. Root pointer variables, that is, information about which pointer variables point from the stack or

from the static memory area into a data structure stored in the heap

ii. The types of the data-structure elements and, in particular, which fields hold pointers

iii. Connectivity properties, such as:

Whether all elements of the data structure are reachable from a root pointer variable

Whether any data-structure elements are shared

Whether there are cycles in the data structure

Whether an element v pointed to by a “forward” pointer of another element v ′ has its “backward”

pointer pointing to v ′

iv. Other properties, for instance, whether an element of an ordered list is in the correct position

Each data structure can be characterized by a certain set of such properties.

Most semantics track the values of pointer variables and pointer-valued fields using a pair of functions,

often called the environment and the store. Constituents i and ii above are parts of any such semantics;

consequently, we refer to them as core properties.

Connectivity and other properties, such as those mentioned in iii and iv, are usually not explicitly part

of the semantics of pointers in a language but instead are properties derived from this core semantics. They

are essential ingredients in program verification, however, as well as in our approach to shape analysis of

programs. Noncore properties will be called instrumentation properties (for reasons that will become clear

shortly).

Let us start by taking a Platonic view, namely that ideas exist without regard to their physical realization.

Concepts such as “is shared,” “lies on a cycle,” and “is reachable” can be defined either in graph-theoretic

terms, using properties of paths, or in terms of the programming-language concept of pointers. The

definitions of these concepts can be stated in a way that is independent of any particular data structure;

for instance:
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Example 12.1

A heap cell is heap-shared if it is the target of two pointers — either from two different heap cells or from

two different pointer components of the same heap cell.

Data structures can now be characterized using sets of such properties, where “data structure” is still

independent of a particular implementation; for instance:

Example 12.2

An acyclic singly linked list is a set of objects, each with one pointer field. The objects are reachable from a

root pointer either directly or by following pointer fields. No object lies on a cycle, that is, is reachable from

itself by following pointer fields.

To address the problem of verifying or analyzing a particular program that uses a certain data structure,

we have to leave the Platonic realm and formulate shape invariants in terms of the pointer variables and

data-type declarations from that program.

Example 12.3

Figure 12.1a, above, shows the declaration of a linked-list data type in C, and Figure 12.1b shows a C

program that searches a list and splices a new element into the list. The characterization of an acyclic singly

linked list in terms of the properties “is reachable from a root pointer” and “lies on a cycle” can now be

specialized for that data-type declaration and that program as follows:

� “Is reachable from a root pointer” means “is reachable from x , or is reachable from y , or is reachable

from t , or is reachable from e.”
� “Lies on a cycle” means “is reachable from itself following one or more n-fields.”

This chapter deals with analyses that attempt to determine the shapes of all data structures in the heap.

To obtain shape descriptors, these analyses track many of the properties that have been discussed above.

Looking at things in the other direction, however, once such shape descriptors have been obtained, answers

to many of the above questions can merely be “read off” of the shape descriptors.

12.2.3 Answers as Given by Shape Analysis

This section discusses the results obtained by analyzing insert using a particular shape-analysis algo-

rithm designed to analyze programs that manipulate singly linked lists. In this case, the analysis of insert
has been carried out under the assumption that the inputs to insert are a nonempty, acyclic singly linked

list and an integer. The former requirement is captured by the shape descriptors shown in Figure 12.2,

which are provided as input to the shape-analysis algorithm.

x x
n

u uu0

(a) (b)

rx,n rx,n rx,n

n

FIGURE 12.2 Shape descriptors that describe the input to insert . (a) Represents acyclic lists of length at least 2.

(b) Represents acyclic lists of length 1.
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FIGURE 12.3 The eight shape graphs that arise at the beginning of the while-loop body in the program of

Figure 12.1.

The shape-analysis algorithm produces information for each program point that describes the lists that

can arise there. At the entry to the while-loop body some of the properties are:

� Pointer variables x and y point into the same list: x always points to the head; y points to either

the head of the x-list or some tail of the x-list.
� All other pointer variables of the program have the value NULL.
� The list is acyclic.
� No memory leaks occur.

In addition, the information obtained by the shape-analysis algorithm shows that no attempt to deref-

erence a NULL-valued pointer is ever made. Figure 12.3 shows the eight shape graphs produced by the

analysis for the program point at the entry to the loop body.

Each shape graph represents a set of concrete memory configurations. In insert , the loop body is

executed when the argument list is of length 2 or greater, and it advances variable y along the list that is

pointed to by x . The shape-analysis algorithm is able to discover eight shape graphs that represent all such

memory configurations. The graphs represent lists of various lengths, with various numbers of list cells

between the list cells pointed to by x and y : Figure 12.3a and 12.3b represent lists in which x and y point

to the same list cell; Figure 12.3c and 12.3d represent lists in which x and y point to list cells that are one

apart; Figure 12.3e and 12.3f represent lists in which x and y point to list cells that are two apart; Figure

12.3g and 12.3h represent lists in which x and y point to list cells that are three or more apart.
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Heap cells and their properties in the represented heaps can be read off from a shape graph in the

following way:

� The name p represents pointer variable p. For instance, two of the pointer variables of program

insert , namely x and y , appear in the shape graphs in Figures 12.2 and 12.3. The absence of

the name p in a shape graph means that, in the stores represented by the shape graph, program

variable p definitely has the value NULL. In Figure 12.3a, the absence of the name t means that t
definitely has the value NULL in the stores that the shape graph represents.

� Circles stand for abstract nodes. A solid circle stands for an abstract node that represents exactly

one heap cell. In Figure 12.2b, the circle u represents the one cell of an input list of length 1. Solid

circles could be viewed as abstract nodes with the property “uniquely representing.” (This is the

complement of the “summary” property sm that is introduced later on.)
� A dotted circle stands for an abstract node that may represent one or more heap cells; in

Figure 12.2a, the dotted circle u represents the cells in the tail of the input list.
� A solid edge labeled c between abstract nodes m and m′ represents the fact that the c-field of the

heap cell represented by m points to the heap cell represented by m′. Figure 12.3a indicates that the

n-field of the first list cell points to the second list cell.
� A dotted edge labeled c between abstract nodes m and m′ tells us that the c-field of one of the heap

cells represented by m may point to one of the heap cells represented by m′. When m and m′ are

the same abstract nodes, this edge may or may not represent a cycle. In Figure 12.3b, the dotted

self-cycle on the dotted circle represents n-fields of heap cells represented by this abstract node

possibly pointing to other heap cells represented by the dotted circle. Additional information about

noncyclicity (see below) implies that, in this case, the dotted self-cycle does not represent a cycle in

the heap.
� A unary property q that holds for all heap cells represented by an abstract node is represented

in the graph by having a solid arrow from the property name q to that node. (These names are

typically subscripted, such as rx ,n or cn.) For example, the property “reachable-from-x-via-n,”

denoted in the graph by rx ,n, means that the heap cells represented by the corresponding abstract

nodes are (transitively) reachable from pointer variable x via n-fields. Both nodes in Figure 12.3b

are the targets of a solid edge from an instance of property name rx ,n. This means the concrete cell

represented by the first abstract node and all concrete cells represented by the second abstract node

are reachable from x via n-fields.
� A dotted arrow from a property name p to an abstract node represents the fact that p may be true

for some of the heap cells represented by the abstract node and may be false for others. The absence

of an arrow from p to an abstract node means that none of the represented heap cells has property

p. (Examples with dotted edges are given in Section 12.3.4.)

In summary, the shape graphs portray information of three kinds:

� Solid, meaning “always holds” for properties (including “uniquely representing”)
� Absent, meaning “never holds” for properties
� Dotted, meaning “don’t know” for properties (including “uniquely representing”)

Shape analysis associates sets of shape graphs with each program point. They describe (a superset of) all

the execution states that can occur whenever execution reaches that program point. To determine whether

a property always (ever) holds at a given program point, we must check that it holds for all (some) of the

shape graphs for that point.

With this interpretation in mind, all of the claims about the properties of the heap contents at the entry

to the while-loop body listed at the beginning of this subsection can be checked by verifying that they hold

for all of the graphs shown in Figure 12.3.
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12.3 Shape Analysis

The example program insert works for lists of arbitrary lengths. However, as described in the preceding

section (at least for one program point), the description of the lists that occur during execution is finite. As

shown in Figure 12.3, eight shape graphs are sufficient to describe all of the execution states that occur at

the entry of the loop body in insert . This is a general requirement for shape analysis. Although the data

structures that a program builds or manipulates are in general of unbounded size, the shape descriptors,

manipulated by a shape-analysis algorithm, have to have bounded size.

This representation of the heap contents has to be conservative in the sense that whoever asks for

properties of the heap contents — for example, a compiler, a debugger, or a program-understanding

system — receives a reliable answer. The claim that “pointer variable p or pointer field p->c never has

the value NULL at this program point” may only be made if this is indeed the case for all executions of the

program and all program paths leading to the program point. It may still be the case that in no program

execution p (respectively p->c ) will be NULL at this point but that the analysis will be unable to derive

this information. In the field of program analysis, we say that program analysis is allowed to (only) err on

the safe side.

In short, shape analysis computes for a given program and each point in the program:

a finite, conservative representation of the heap-allocated data structures that could arise when

a path to this program point is executed.

12.3.1 Summarization

The constraint that we must work with a bounded representation implies a loss of information about the

heap contents. Size information, such as the lengths of lists or the depths of trees, will in general be lost.

However, structural information may also be lost because of the chosen representation. Thus, a part of

the execution state (or some of its properties) is exactly represented, and some part of the execution state

(or some of its properties) is only approximately represented. The process leading to the latter is called

summarization. Summarization intuitively means the following:

� Some heap cells will lose their identity, that is, will be represented together with other heap cells by

one abstract node.
� The connectivity among those jointly represented heap cells will be represented conservatively; that

is, each pointer in the heap will be represented, but several such pointers (or the absence of such

pointers) may be represented jointly.
� Properties of these heap cells will also be represented conservatively. This means the following:

• A property that holds for all (for none of the) summarized cells will be found to hold (not to

hold) for their summary node.

• A property that holds for some but not all of the summarized cells will have the value “don’t

know” for the summary node.

12.3.2 Parametric Shape Analysis

Shape analysis is a generic term representing a whole class of algorithms of varying power and complexity

that try to answer questions about the structure of heap-allocated storage. In our setting, a particular

shape-analysis algorithm is determined by a set of properties that heap cells may have and by relations that

may or may not hold between heap cells.

First, there are the aforementioned core properties, for example, the “pointed-to-by- p” property

for each program pointer variable p, and the property “connected-through-c ,” which pairs of heap

cells (l1, l2) possess if the c-field of l1 points to l2 (see Table 12.1). These properties are part of any

pointer semantics. The core properties in the particular shape analysis of the insert program are
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TABLE 12.1 Predicates used for representing the

stores manipulated by programs that use the List
data-type declaration from Figure 12.1(a)

Predicate Intended Meaning

q(v) Does pointer variable q point to cells v?

n(v1, v2) Does the n-field of v1 point to v2?

“pointed-to-by-x ,” denoted by x , “pointed-to-by-y ,” denoted by y, “pointed-to-by-t ,” denoted by t,

“pointed-to-by-e,” denoted by e , and “connected-through-n,” denoted by n(·, ·).

The instrumentation properties [58], denoted by I , together with the core properties determine what the

analysis is capable of observing. These are expressed in terms of the core properties. Our example analysis

is designed to identify properties of programs that manipulate acyclic singly linked lists. Reachability

properties from specific pointer variables have the effect of keeping disjoint sublists summarized separately.

This is particularly important when analyzing a program in which two pointers are advanced along disjoint

sublists.

Therefore, the instrumentation properties in our example analysis are “is-on-an-n-cycle,” denoted by

cn, “reachable-from-x-via-n,” denoted by rx ,n, “reachable-from-y-via-n,” denoted by r y,n, and “reachable-

from-t -via-n,” denoted by rt,n. For technical reasons, a property that is part of every shape analysis is

“summary,” denoted by sm(·).

12.3.3 Abstraction Functions

The abstraction function of a particular shape analysis is determined by a distinguished subset of the set

of all unary properties, the so-called abstraction properties, A. Given a set A of abstraction properties,

the corresponding abstraction function will be called A-abstraction function (and the act of applying it,

A-abstraction). If the set W = I −A is not empty, that is, if there are instrumentation predicates that are

not used as abstraction predicates, we will call the abstraction A-abstraction with W .

The principle of abstraction is that heap cells that have the same definite values for the abstraction

properties are summarized to the same abstract node. Thus, if we view the set of abstraction properties as

our means of observing the contents of the heap, the heap cells summarized by one summary node have

no observable difference.

All concrete heap cells represented by the same abstract heap cells agree on their abstraction properties;

that is, either they all have these abstraction properties, or none of them have them. Thus, summary

nodes inherit the values of the abstraction properties from the nodes they represent. For nonabstraction

properties, their values are computed in the following way: if all summarized cells agree on this property —

that is, they have the same value — the summary node receives this value. If not all summarized cells agree

on a property, their summary node will receive the value “don’t know.” The values of binary properties are

computed the same way.

From what has been said above, it is clear that there is a need for three values: two definite values,

representing 0 (false) and 1 (true), and an additional value, 1/2, representing uncertainty. This abstraction

process is called truth-blurring embedding (see also Section 12.4.4).

Example 12.4

The shape graphs in Figure 12.2 and the ones in Figure 12.3 are obtained using the {x , y, t, e , rx ,n, r y,n, rt,n,

re ,n, cn}-abstraction function. In Figure 12.2a, all the cells in the tail of an input list of length at least 2 are

summarized by the abstract node u, because they all have the property rx ,n and do not have the properties

x , y, t, e , r y,n, rt,n, re ,n, and cn. The abstract node u0 represents exactly one cell — the first cell of the input

list. It has the properties x and rx ,n and none of the other properties.

Now consider how the value of the property n is computed for the summary node u. The different list

cells that are summarized by u do not have the same values for n, because at any one time a pointer field
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FIGURE 12.4 Concrete lists pointed to by x of length ≤4.

may point to at most one heap cell. Thus, the connected-by-n-field properties of the resulting summary

nodes have the value 1/2.

12.3.4 Designing a Shape Abstraction

This section presents a sequence of example shape abstractions to demonstrate how the precision of a

shape abstraction can be changed by changing the properties used — both abstraction and nonabstraction

properties. Here precision refers to the set of concrete heap structures that each abstract shape descriptor

represents; a more precise shape descriptor represents a smaller set of concrete structures. One abstraction

is more precise than another if it yields more precise shape descriptors. All examples treat singly linked

lists of the type declared in Figure 12.1. The core properties are x , later also y, and n.

Example 12.5

Consider the case of {x}-abstraction; that is, the only abstraction property is x . Figure 12.4 depicts four

lists of length 1 to 4 pointed to by x and the empty list. Figure 12.5 shows the shape graphs obtained by

applying {x}-abstraction to the concrete lists of Figure 12.4. In addition to the lists of length 3 and 4 from

Figure 12.4 (i.e., S
♮
3 and S

♮
4), the shape graph S3 also represents:

� The acyclic lists of length 5, 6, and so on that are pointed to by x
� The cyclic lists of length 3 or more that are pointed to by x , such that the backpointer is not to the

head of the list, but to the second, third, or later element

Thus, S3 is a finite shape graph that captures an infinite set of (possibly cyclic) concrete lists. The example

shows that a “weak” abstraction may lose valuable information: even when only acyclic lists are abstracted,

the result of the abstraction is a shape graph that also represents cyclic lists.

Name Graphical Representation

S0

S1 x u1

S2 x u1
n u

S3 x u1
n u

n

FIGURE 12.5 Shape graphs that are obtained by applying {x}-abstraction to the concrete lists that appear in

Figure 12.4.
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Name Graphical Representation
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n
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n
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FIGURE 12.6 The shape graphs that are obtained by applying {x}-abstraction with {cn} to acyclic lists (top) and

cyclic lists (bottom).

Example 12.6

The next example uses {x}-abstraction with {cn}; that is, it is uses cyclicity properties in addition to the

abstraction property x . Figure 12.6 shows two shape graphs: Sacyclic, the result of applying this abstraction

to acyclic lists, and Scyclic, the result of applying it to cyclic lists. Although Sacyclic, which is obtained by {x}-

abstraction with {cn}, looks just like S3 in Figure 12.5, which is obtained just by {x}-abstraction (without

{cn}), Sacyclic describes a smaller set of lists than S3, namely only acyclic lists of length at least 3. The absence

of a cn-arrow to u1 expresses the fact that none of the heap cells summarized by u1 lie on a cycle.

In contrast, Scyclic describes lists in which the heap cells represented both by u1 and by u definitely lie

on a cycle. These are lists in which the last list element has a backpointer to the head of the list.

Example 12.7

This example shows what it means to make an instrumentation property an abstraction property. {x , cn}-

abstraction and {x}-abstraction with {cn} are applied to cyclic lists, that is, lists that have a backpointer

into the middle of the list. Figure 12.7 shows how the additional abstraction property cn causes there to

be two different summary nodes.

Instrumentation properties that track information about reachability from pointer variables are partic-

ularly important for avoiding a loss of precision, because they permit the abstract representations of data

structures — and different parts of the same data structure — that are disjoint in the concrete world to

be kept separate [57, p. 38]. A reachability property rq ,n(v) captures whether a heap cell v is (transitively)

reachable from pointer variable q along n-fields.

Example 12.8

The power of reachability information is illustrated in our next example. Figures 12.8 and 12.9 show how

a concrete list in which x points to the head and y points into the middle is mapped to two different shape

graphs, depending on whether {x , y, rx ,n, r y,n}-abstraction or just {x , y}-abstraction is used.

x n

n

n

n

cn

x n

n

cn

(a) (b)

FIGURE 12.7 (a) {x , cn}-abstraction and (b) {x}-abstraction with {cn}. The two abstractions have been applied to a

list of length at least 5, with a backpointer into the middle of the list. The ≥5 elements of the lists represented by shape

graph (a) are distributed as follows: at least three of them form the acyclic prefix of the list, and at least two of them

form the cycle.
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u1x

Name Graphical Representation

n n n n nu2

y

u3 u4 u5 u6S6

FIGURE 12.8 A concrete list pointed to by x , where y points into the middle of the list.
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Graphical Representation

rx,n rx,n  y, rx,n, ry,n rx,n, ry,n

FIGURE 12.9 The shape graphs that are obtained by applying {x , y, rx ,n , r y,n}-abstraction and {x , y}-abstraction,

respectively, to the list S
♮
6 from Figure 12.8.

Note that the situation depicted in Figure 12.8 occurs in insert as y is advanced down the list; the

reachability abstraction properties play a crucial role in developing a shape-analysis algorithm that is

capable of obtaining precise shape information for insert .

12.4 An Overview of a Shape-Analysis Framework

This section provides an overview of the formal underpinnings of the shape-analysis framework presented

in [58]. The framework is parametric; that is, it can be instantiated in different ways to create a variety of

specific shape-analysis algorithms. The framework is based on 3-valued logic. In this paper, the presentation

is at a semi-technical level; for a more detailed treatment of this material, as well as several elaborations

on the ideas covered here, the reader should refer to [58].

To be able to perform shape analysis, the following concepts need to be formalized:

� An encoding (or representation) of stores, so that we can talk precisely about store elements and

the relationships among them.
� A language in which to state properties that store elements may or may not possess.
� A way to extract the properties of stores and store elements.
� A definition of the concrete semantics of the programming language, in particular, one that makes

it possible to track how properties change as the execution of a program statement changes the

store.
� A technique for creating abstractions of stores so that abstract interpretation can be applied.

In our approach, the formalization of each of these concepts is based on predicate logic.

12.4.1 Representing Stores via 2-Valued and 3-Valued Logical Structures

To represent stores, we work with what logicians call logical structures. A logical structure is associated with

a vocabulary of predicate symbols (with given arities). So far we have talked about properties of different
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classes, that is, core, instrumentation, and abstraction properties. Properties in our specification language,

predicate logic, correspond to predicates.

Each logical structure S, denoted by 〈U S , ιS〉, has a universe of individuals U S . In a 2-valued logical

structure, ιS maps each arity-k predicate symbol p and possible k-tuple of individuals (u1, . . . , uk), where

ui ∈ U S , to the value 0 or 1 (i.e., false and true, respectively). In a 3-valued logical structure, ιS maps p

and (u1, . . . , uk) to the value 0, 1, or 1/2 (i.e., false, true, and unknown, respectively).

2-valued logical structures will be used to encode concrete stores; 3-valued logical structures will be used

to encode abstract stores; members of these two families of structures will be related by “truth-blurring

embeddings” (explained in Section 12.4.4).

2-valued logical structures are used to encode concrete stores as follows: individuals represent memory

locations in the heap; pointers from the stack into the heap are represented by unary “pointed-to-by-

variable-q” predicates; and pointer-valued fields of data structures are represented by binary predicates.

Example 12.9

Table 12.1 lists the predicates used for representing the stores manipulated by programs that use the

List data-type declaration from Figure 12.1a. In the case of insert , the unary predicates x , y, t, and

e correspond to the program variables x , y , t , and e, respectively. The binary predicate n corresponds to

the n-fields of List elements.

Figure 12.10 illustrates the 2-valued logical structures that represent lists of length ≤4 that are pointed

to by program variable x . Column 3 of Figure 12.10 gives a graphical rendering of these 2-valued logical

structures; note that these graphs are identical to those depicted in Figure 12.4:

� Individuals of the universe are represented by circles with names inside.
� A unary predicate p is represented in the graph by having a solid arrow from the predicate name

p to node u for each individual u for which ι( p)(u) = 1 and no arrow from predicate name p to

node u′ for each individual u′ for which ι(p)(u′) = 0. (If ι(p) is 0 for all individuals, the predicate

name p will not be shown.)
� A binary predicate q is represented in the graph by a solid arrow labeled q between each pair of

individuals ui and u j for which ι(q)(ui , u j ) = 1 and no arrow between pairs u′
i and u′

j for which

ι(q)(u′
i , u′

j ) = 0.

Name Logical Structure

unary preds. binary preds.

unary preds. binary preds.

unary preds. binary preds.

unary preds. binary preds.

unary preds. binary preds.

indiv. x y t e n

x xy t e n u1 u1

x u1 u2
n

x u1 u2
n u3

n

x u1 u2
n u3

n u4
n

x y t e n u1 u2

u1 u11 0 0 0 0

u1
u2

u1
u2

1 0 0 0
0 0 0 0

0 1
0 0

indiv.

indiv.

x y t e n u1 u2 u3
u1
u2
u3

1 0 0 0
0 0 0 0
0 0 0

u1
u2
u3

0 1 0
0 0 1
0 0 00

indiv.

x y t e n u1 u2 u3
u1
u2
u3

1 0 0 0
0 0 0 0
0 0 0

u1
u2
u3

0 1 0
0 0 1
0 0 00

u4 0 0 0 u4 0 0 0

u4

0
0
1
00

indiv.

Graphical Representation

S0

S1

S2

S3

S4

FIGURE 12.10 The 2-valued logical structures that represent lists of length ≤4.
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Thus, in structure S
♮
2, pointer variable x points to individual u1, whose n-field points to individual u2. The

n-field of u2 does not point to any individual (i.e., u2 represents a heap cell whose n-field has the value

NULL).

12.4.2 Extraction of Store Properties

2-valued structures offer a systematic way to answer questions about properties of the concrete stores they

encode. For example, consider the formula

ϕis(v)
def
= ∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 
= v2 (12.1)

which expresses the “is-shared” property. Do two or more different heap cells point to heap cell v via

their n-fields? For instance, ϕis(v) evaluates to 0 in S
♮
2 for the assignment [v �→ u2], because there is

no assignment of the form [v1 �→ ui , v2 �→ u j ] such that ιS
♮

2 (n)(ui , u2), ιS
♮

2 (n)(u j , u2), and ui 
= u j

all hold.

As a second example, consider the formula

ϕcn
(v)

def
= n+(v , v) (12.2)

which expresses the property of whether a heap cell v appears on a directed n-cycle. Here n+ denotes

the transitive closure of the n-relation. Formula ϕcn
(v) evaluates to 0 in S

♮
2 for the assignment [v �→ u2],

because the transitive closure of the relation ιS
♮

2 (n) does not contain the pair (u2, u2).

The preceding discussion can be summarized as the following principle:

Observation 12.1 (Property-Extraction Principle). By encoding stores as logical structures, questions

about properties of stores can be answered by evaluating formulas. The property holds or does not hold,

depending on whether the formula evaluates to 1 or 0, respectively, in the logical structure.

The language in which queries are posed is standard first-order logic with a transitive-closure operator.

The notion of evaluating a formula ϕ in logical structure S with respect to assignment Z (where Z assigns

individuals to the free variables of ϕ) is completely standard (e.g., see [17, 58]). We use the notation

[[ϕ]]S
2 (Z) to denote the value of ϕ in S with respect to Z.

12.4.3 Expressing the Semantics of Program Statements

Our tool for expressing the semantics of program statements is also based on evaluating formulas:

Observation 12.2 (Expressing the Semantics of Statements via Logical Formulas). Suppose that σ is

a store that arises before statement st, that σ ′ is the store that arises after st is evaluated on σ , and that S is the

logical structure that encodes σ . A collection of predicate-update formulas — one for each predicate p in

the vocabulary of S — allows one to obtain the structure S ′ that encodes σ ′. When evaluated in structure S,

the predicate-update formula for a predicate p indicates what the value of p should be in S ′.

In other words, the set of predicate-update formulas captures the concrete semantics of st.

This process is illustrated in Figure 12.11 for the statement y = y->n , where the initial structure S♮
a

represents a list of length 4 that is pointed to by both x and y . Figure 12.11 shows the predicate-update

formulas for the five predicates of the vocabulary used in conjunction with insert : x , y, t, e , and n; the

symbols x ′, y ′, t ′, e ′, and n′ denote the values of the corresponding predicates in the structure that arises

after execution of y = y->n . Predicates x ′, t ′, e ′, and n′ are unchanged in value by y = y->n . The

predicate-update formula y ′(v) = ∃v1 : y(v1) ∧ n(v1, v) expresses the advancement of program variable

y down the list.
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unary preds. binary preds.

x u1 u2
n

y

u3
n u4

n

x y t e
u1
u2
u3

1 0 0 0
0 1 0 0
0 0 0 0

u4 0 0 0 0

u1n u2 u3 u4
u1
u2
u3

0 1 0 0
0 0 1 0
0 0 0 1

u4 0 0 0 0

indiv.

unary preds.

Structure
Before

Statement

Structure
After

Predicate
Update
Formulae

binary preds.

x u1

Sa

u2
n

y

y = y –>n

x´(v) = x(v)
y´(v) =    v1

t´(v) =  t(v)
e´(v) = e(v)

: y(v1)    n(v1, v)

n´(v1, v2) = n(v1, v2)

u3
n u4

n

x y t e
u1
u2
u3

1 1 0 0
0 0 0 0
0 0 0 0

u4 0 0 0 0

u1n u2 u3 u4

u1
u2
u3

0 1 0 0
0 0 1 0
0 0 0 1

u4 0 0 0 0

indiv.

Sb

FIGURE 12.11 The given predicate-update formulas express a transformation on logical structures that corresponds

to the semantics of y = y->n .

12.4.4 Abstraction via Truth-Blurring Embeddings

The abstract stores used for shape analysis are 3-valued logical structures that, by the construction discussed

below, are a priori of bounded size. In general, each 3-valued logical structure corresponds to a (possibly

infinite) set of 2-valued logical structures. Members of these two families of structures are related by

truth-blurring embeddings.

The principle behind truth-blurring embedding is illustrated in Figure 12.12, which shows how

2-valued structure S♮
a is abstracted to 3-valued structure Sa when we use {x , y, t, e}-abstraction.

Abstraction is driven by the values of the “vector” of unary predicate values that each individual u has —

that is, for S♮
a , by the values ι(x)(u), ι(y)(u), ι(t)(u), and ι(e)(u) — and, in particular, by the equivalence

unary preds. binary preds.
unary preds. binary preds.

abstracts
to

x
x

u1
u1

u1

u1

u2

u2

u2

u3

u3

u3

u4

u4

u4

y
y

Sa

Sa

n n n
n

n

indiv.
indiv.

x y t e
x y t e sm

n
u1

u1

u234

u234

u234

u234

n
1 1 0

000

0

0

000 0

000 0

u1

u2

u3

u4

0 1 0

100

0
u1 1 1 0 0 0 0

0 0 0 0 0
0

000 1

000 0

1/2 1/2

1/2

FIGURE 12.12 The abstraction of 2-valued structure S
♮
a to 3-valued structure Sa when we use {x , y, t, e}-abstraction.

The boxes in the tables of unary predicates indicate how individuals are grouped into equivalence classes; the boxes in

the tables for predicate n indicate how the quotient of n with respect to these equivalence classes is performed.
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TABLE 12.2 Kleene’s 3-valued interpretation of the

propositional operators

∧ 0 1 1/2 ∨ 0 1 1/2 ¬

0 0 0 0 0 0 1 1/2 0 1

1 0 1 1/2 1 1 1 1 1 0

1/2 0 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2

classes formed from the individuals that have the same vector for their unary predicate values. In S♮
a , there

are two such equivalence classes: (a) {u1}, for which x , y, t, and e are 1, 1, 0, and 0, respectively, and

(b) {u2, u3, u4}, for which x , y, t, and e are all 0. (The boxes in the table of unary predicates for S♮
a show

how individuals of S♮
a are grouped into two equivalence classes.)

All members of such equivalence classes are mapped to the same individual of the 3-valued structure.

Thus, all members of {u2, u3, u4} from S♮
a are mapped to the same individual in Sa , called u234;8 similarly,

all members of {u1} from S♮
a are mapped to the same individual in Sa , called u1.

For each non-unary predicate of the 2-valued structure, the corresponding predicate in the 3-valued

structure is formed by a truth-blurring quotient. For instance:

� In S♮
a , ιS

♮
a (n) evaluates to 0 for the only pair of individuals in {u1}× {u1}. Therefore, in Sa the value

of ιSa (n)(u1, u1) is 0.
� In S♮

a , ιS
♮
a (n) evaluates to 0 for all pairs from {u2, u3, u4} × {u1}. Therefore, in Sa the value of

ιSa (n)(u234, u1) is 0.
� In S♮

a , ιS
♮
a (n) evaluates to 0 for two of the pairs from {u1} × {u2, u3, u4} (i.e., ιS

♮
a (n)(u1, u3) = 0

and ιS
♮
a (n)(u1, u4) = 0), whereas ιS

♮
a (n) evaluates to 1 for the other pair (i.e., ιS

♮
a (n)(u1, u2) = 1);

therefore, in Sa the value of ιSa (n)(u1, u234) is 1/2.
� In S♮

a , ιS
♮
a (n) evaluates to 0 for some pairs from {u2, u3, u4} × {u2, u3, u4} (e.g., ιS

♮
a (n)(u2, u4) = 0),

whereas ιS
♮
a (n) evaluates to 1 for other pairs (e.g., ιS

♮
a (n)(u2, u3) = 1); therefore, in Sa the value of

ιSa (n)(u234, u234) is 1/2.

In Figure 12.12, the boxes in the tables for predicate n indicate these four groupings of values.

An additional unary predicate, called sm (standing for “summary”), is added to the 3-valued structure

to capture whether individuals of the 3-valued structure represent more than one concrete individual. For

instance, ιSa (sm)(u1) = 0 because u1 in Sa represents a single individual of S♮
a . However, u234 represents

three individuals of S♮
a . For technical reasons, sm can be 0 or 1/2, but never 1; therefore, ιSa (sm)(u234) = 1/2.

12.4.5 Conservative Extraction of Store Properties

Questions about properties of 3-valued structures can be answered by evaluating formulas using Kleene’s

semantics of 3-valued logic (see [58]). The value of a formula is obtained in almost exactly the same

way that it is obtained in ordinary 2-valued logic, except that the propositional operators are given the

interpretations shown in Table 12.2. (The evaluation rules for ∃, ∀, and transitive closure are adjusted

accordingly; that is, ∃ and ∀ are treated as indexed-∨ and indexed-∧ operators, respectively.) We use

the notation [[ϕ]]S
3 (Z) to denote the value of ϕ in 3-valued logical structure S with respect to 3-valued

assignment Z.

We define a partial order ⊑ on truth values to reflect their degree of definiteness (or information content):

l1 ⊑ l2 denotes that l1 is at least as definite as l2.

8The reader should bear in mind that the names of individuals are completely arbitrary. u234 could have been called

u17 or u99 and so on; in particular, the subscript “234” is used here only to remind the reader that, in this example,

u234 of Sa is the individual that represents {u2, u3, u4} of S
♮
a . (In many subsequent examples, u234 will be named u.)
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u1 u1

x y t e nsmS0

S1

S2

S3

1 0 0 0 0 0 1

u11 0 0 0 0 0

u 0 0 u 0 00 0 0

indiv.

x y t e n u1

u1

smindiv.

x y t e n uu1smindiv.

unary preds.

u1 1 0 0 0 0

u 0 0 0 0 1/2

x y t e smindiv.

unary preds.

binary preds.

u1 0 1/2

u 0 1/2

n uu1

binary preds.

binary preds.

binary preds.

unary preds.

unary preds.

Name Logical Structure Graphical Representation

x u1

x u1

un

x u1 un

n

FIGURE 12.13 The 3-valued logical structures that are obtained by applying truth-blurring embedding to the

2-valued structures that appear in Figure 12.10.

Definition 12.1 (Information Order). For l1, l2 ∈ {0, 1/2, 1}, we define the information order on

truth values as follows: l1 ⊑ l2 if l1 = l2 or l2 = 1/2. The symbol ⊔ denotes the least-upper-bound operation

with respect to ⊑:

⊔ 0 1/2 1

0 0 1/2 1/2

1/2 1/2 1/2 1/2

1 1/2 1/2 1

The 3-valued semantics is monotonic in the information order (see Table 12.2).

In [58] the embedding theorem states that the 3-valued Kleene interpretation in S of every formula is

consistent with (i.e., ⊒) the formula’s 2-valued interpretation in every concrete store S♮ that S represents.

Consequently, questions about properties of stores can be answered by evaluating formulas using Kleene’s

semantics of 3-valued logic:

� If a formula evaluates to 1, then the formula holds in every store represented by the 3-valued

structure S.
� If a formula evaluates to 0, then the formula does not hold in any store represented by S.
� If a formula evaluates to 1/2, then we do not know if this formula holds in all stores, does not hold

in any store, or holds in some stores and does not hold in some other stores represented by S.

Consider the formula ϕcn
(v) defined in Equation 12.2. (Does heap cell v appear on a directed cycle of

n-fields?) Formula ϕcn
(v) evaluates to 0 in structure S3 from Figure 12.13 for the assignment [v �→ u1],

because n+(u1, u1) evaluates to 0 in Kleene’s semantics.

Formula ϕcn
(v) evaluates to 1/2 in S3 for the assignment [v �→ u], because ιS3 (n)(u, u) = 1/2, and thus

n+(u, u) evaluates to 1/2 in Kleene’s semantics. Because of this, we do not know whether S3 represents a

concrete store that has a cycle; this uncertainty implies that (the tail of) the list pointed to by x might be

cyclic.

In many situations, however, we are interested in analyzing the behavior of a program under the

assumption, for example, that the program’s input is an acyclic list. If an abstraction is not capable of

expressing the distinction between cyclic and acyclic lists, an analysis algorithm based on that abstraction

will usually be able to recover only very imprecise information about the actions of the program.
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For this reason, we are interested in having our parametric framework support abstractions in which, for

instance, the acyclic lists are distinguished from the cyclic lists. Our framework supports such distinctions

by using instrumentation predicates.

The preceding discussion illustrates the following principle:

Observation 12.3 (Instrumentation Principle). Suppose that S is a 3-valued structure that represents

the 2-valued structure S♮. By explicitly “storing” in S the values that a formula ϕ has in S♮, it is sometimes

possible to extract more precise information from S than can be obtained just by evaluating ϕ in S.

In our experience, we have found three kinds of instrumentation predicates to be useful:

� Nullary predicates record Boolean information (and are similar to the “predicates” in predicate

abstraction [3, 22]). For example, to distinguish between cyclic and acyclic lists, we can define an

instrumentation predicate c0 by the formula

ϕc0

def
= ∃v : n+(v , v) (12.3)

which expresses the property that some heap cell v lies on a directed n-cycle. Thus, when ιS (c0) is 0,

we know that S does not represent any memory configurations that contain cyclic data structures.
� Unary instrumentation predicates record information for unbounded sets of objects. Examples of

some unary instrumentation predicates are given in Section 12.3.4. Notice that the unary cyclicity

predicate cn (defined by an open formula [see Equation 12.2]) allows finer distinctions than are

possible with the nullary cyclicity predicate (defined by a closed formula [see Equation 12.3]).

Unary cyclicity predicate cn records information about the cyclicity properties of individual nodes —

namely, cn(v) records whether node v lies on a cycle; nullary cyclicity predicate c0 records a property

of the heap as a whole — namely, whether the heap contains any cycle.
� Binary instrumentation predicates record relationships between unbounded sets of objects. For

example, the instrumentation predicate t[n](v1, v2)
def
=n+(v1, v2) records the existence of n-paths

from v1 to v2.

Moreover, instrumentation predicates that are unary can also be used as abstraction predicates.

In Section 12.3.4, we saw how it is possible to change the shape abstraction in use by changing the set of

instrumentation predicates in use and/or by changing which unary instrumentation predicates are used as

abstraction predicates. By using the right collection of instrumentation predicates and abstraction predi-

cates, shape-analysis algorithms can be created that, in many cases, determine precise shape information

for programs that manipulate several (possibly cyclic) data structures simultaneously. The information

obtained is more precise than that obtained from previous work on shape analysis.

In Section 12.5, several other instrumentation predicates are introduced that augment shape descriptors

with auxiliary information that permits flow-dependence information to be read off from the results of

shape analysis.

12.4.6 Abstract Interpretation of Program Statements

The goal of a shape-analysis algorithm is to associate with each vertex v of control-flow graph G , a finite set

of 3-valued structures that “describes” all of the 2-valued structures that can arise at v (and possibly more).

The abstract semantics can be expressed as the least fixed point (in terms of set inclusion) of a system of

equations over variables that correspond to vertices in the program. The right-hand side of each equation

is a transformer that represents the abstract semantics for an individual statement in the program.

The most complex issue we face is the definition of the abstract semantics of program statements. This

abstract semantics has to (a) be conservative, that is, must account for every possible runtime situation,

and (b) should not yield too many “unknown” values.
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The fact that the concrete semantics of statements can be expressed via logical formulas (Observa-

tion 12.2), together with the fact that the evaluation of a formula ϕ in a 3-valued structure S is guar-

anteed to be safe with respect to the evaluation of ϕ in any 2-valued structure that S represents (the

embedding theorem), means that one abstract semantics falls out automatically from the concrete se-

mantics. One merely has to evaluate the predicate-update formulas of the concrete semantics on 3-valued

structures.

Observation 12.4 (Reinterpretation Principle). Evaluation of the predicate-update formulas for a state-

ment st in 2-valued logic captures the transfer function for st of the concrete semantics. Evaluation of the same

formulas in 3-valued logic captures a sound transfer function for st of the abstract semantics.

If st is a statement, [[st]]3 denotes the transformation on 3-valued structures that is defined by evaluating

in 3-valued logic the predicate-update formulas that represent the concrete semantics of st.

Figure 12.14 combines Figures 12.11 and 12.12 (see column 2 and row 1, respectively, of Figure 12.14).

Column 4 of Figure 12.14 illustrates how the predicate-update formulas that express the concrete seman-

tics for y = y->n also express a transformation on 3-valued logical structures — that is, an abstract

semantics — that is safe with respect to the concrete semantics (cf. S♮
a → S

♮

b versus Sa → Sb).9

As we will see, this approach has a number of good properties:

� Because the number of elements in the 3-valued structures that we work with is bounded, the

abstract-interpretation process always terminates.
� The embedding theorem implies that the results obtained are conservative.
� By defining appropriate instrumentation predicates, it is possible to emulate some previous shape-

analysis algorithms (e.g., [8, 25, 30, 33]).10

Unfortunately, there is also bad news: the method described above and illustrated in Figure 12.14 can

be very imprecise. For instance, the statement y = y->n illustrated in Figure 12.14 sets y to the value of

y->n ; that is, it makes y point to the next element in the list. In the abstract semantics, the evaluation in

structure Sa of the predicate-update formula y ′(v) = ∃v1 : y(v1) ∧ n(v1, v) causes ιSb (y)(u234) to be set to

1/2. When ∃v1 : y(v1)∧n(v1, v) is evaluated in Sa , we have ιSa (y)(u1)∧ ιSa (n)(u1, u234) = 1∧1/2 = 1/2.

9The abstraction of S
♮

b , as described in Section 12.4.4, is Sc . Figure 12.14 illustrates that in the abstract semantics

we also work with structures that are even further “blurred.” We say that Sc embeds into Sb ; u1 in Sc maps to u1 in

Sb ; u2 and u34 in Sc both map to u234 in Sb ; the n predicate of Sb is the truth-blurring quotient of n in Sc under

this mapping.

Our notion of the 2-valued structures that a 3-valued structure represents is based on this more general notion of

embedding [58]. Note that in Figure 12.13, S2 can be embedded into S3; thus, structure S3 also represents the acyclic

lists of length 2 that are pointed to by x .
10The discussion above ignores the fact that for every statement and condition in the program, we also need to

define how to update each instrumentation predicate p. That is, if p is defined by ϕp , an update formula is needed for

transformation [[st]]3(S) to produce an appropriate set of values for predicate p.

The simplest way is to reevaluate ϕp on the core predicates produced by [[st]]3(S). In practice, however, this

approach does not work very well because information will be lost under abstraction. As observed elsewhere [58],

when working in 3-valued logic, Observation 12.3 implies that it is usually possible to retain more precision by

defining a special instrumentation-predicate maintenance formula, μp,st(v1, . . . , vk), and evaluating μp,st(v1, . . . , vk) in

structure S.

In [37, 50] algorithms are given that create an alternative predicate-maintenance formula μp,st for p ∈ I in terms

of two finite-differencing operators, denoted by �
−
st [·] and �

+
st [·], which capture the negative and positive changes,

respectively, that execution of statement st induces in an instrumentation predicate’s value. The formula μp,st is created

by combining p with �
−
st [ϕp] and �

+
st [ϕp] as follows: μp,st = p ? ¬�−

st [ϕp] : �+
st [ϕp].



Shape Analysis and Applications 12-21

u
n

ar
y 

p
re

d
s.

 

S
tr

u
ct

u
re

 
B

ef
o

re
 

S
ta

te
m

en
t 

S
tr

u
ct

u
re

 
A

ft
er

 

P
re

d
ic

at
e 

U
p

d
at

e 
F

o
rm

u
la

e 

b
in

ar
y 

p
re

d
s.

 

x
 

u
1

 

S
a

 

u
2

 
n

 

y 

y 
=

 y
–

>
n

 

x
´(

v)
 =

 x
(v

) 
y´

(v
) 

=
   

v 1
 

t´
(v

) 
=

  t
(v

) 
e´

(v
) 

=
 t

( v
) 

: y
(v

1
) 

n
(v

1
, v

) 

n
´(

v 1
, v

2
) 

=
 n

(v
1
, v

2
) 

u
3

 
n

 
u

4
 

n
 

x
 

y 
t 

e 
u

1
 

u
2

 
u

3
 

1
 

1
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

u
4

 
0

 
0

 
0

 
0

 

u
1

 
n

 
u

2
 

u
3

 
u

4
 

u
1

 
u

2
 

u
3

 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

u
4

 
0

 
0

 
0

 
0

 

in
d

iv
. 

u
n

ar
y 

p
re

d
s.

 
b

in
ar

y 
p

re
d

s.
 

x
 

y 
t 

e 
u

1
 

u
2

 
u

3
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

0
 

0
 

u
4

 
0

 
0

 
0

 
0

 

u
1

 
n

 
u

2
 

u
3

 
u

4
 

u
1

 
u

2
 

u
3

 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

0
 

0
 

0
 

0
 

1
 

u
4

 
0

 
0

 
0

 
0

 

in
d

iv
. 

y 
=

 y
–

>
n

 

x
´(

v)
 =

 x
(v

) 
y´

(v
) 

=
   

 v
1

 
t´

(v
) 

=
  t

(v
) 

e´
(v

) 
=

 t
( v

) 

: y
(v

1
) 

n
(v

1
, v

) 

n
´(

v 1
, v

2
) 

=
 n

(v
1
, v

2
) 

x
u

1
 

S

u
2

 
n

y

u
3

n
u

4
n

 

x
y 

t 
e

u
1

 
u

2
 

u
3

 

1
1

 
0

 
0

0
0

 
0

 
0

0
0

 
0

 
0

u
4

 
0

0
 

0
 

0

u
1

 
n

u
2

 
u

3
u

4
 

u
1

u
2

u
3

0
1

0
 

0
0

0
1

 
0

0
0

0
 

1
u

4
0

0
0

 
0

in
d

iv
. 

x
 

u
1

 

S
b

 

u
2

 
n

 

y 

u
3

 
n

 
u

4
 

n
 

u
n

ar
y 

p
re

d
s.

 
b

in
ar

y 
p

re
d

s.
 

x
 

y 
t 

e 
u

1
 

u
2

 
u

3
4

 

1
 

0
 

0
 

0
 

ab
st

ra
ct

s 
to

 

ab
st

ra
ct

s 
to

 

em
b

ed
s 

in
to

 
0

 
1

 
0

 
0

 
0

 
0

 
0

 
0

 

sm
 

0
 

0
 

1
/2

 

u
1

 
n

 
u

2
 

u
3

4
 

u
1

 
u

2
 

u
3

4
 

0
 

1
 

0
 

0
 

0
 

1
/2

 
0

 
0

 
1

/2
 

in
d

iv
. 

x
 

u
1

 

S
c 

u
2

 
n

 

y 

u
3

4
 

n
 

n
 

x
 

u
1

 

S
b

 

u
2

3
4

 
n

 

y n
 

x
 

u
1

 

S
a

 

u
2

3
4

 
n

 

y 

n
 

u
n

ar
y 

p
re

d
s.

 
b

in
ar

y 
p

re
d

s.
 

x
 

y 
t 

e 
u

1
 

u
2

3
4

 

1
 

0
 

0
 

0
 

0
 

1
/2

 
0

 
0

 

sm
 

0
 

1
/2

 

u
1

 
n

 
u

2
3

4
 

u
1

 
u

2
3

4
 

0
 

1
/2

 
0

 
1

/2
 

in
d

iv
. 

u
n

ar
y 

p
re

d
s.

 
b

in
ar

y 
p

re
d

s.
 

x
 

y 
t 

e 
u

1
 

u
2

3
4

 

1
 

1
 

0
 

0
 

0
 

0
 

0
 

0
 

sm
 

0
 

1
/2

 

u
1

 
n

 
u

2
3

4
 

u
1

 
u

2
3

4
 

0
 

1
/2

 
0

 
1

/2
 

in
d

iv
. 

F
IG

U
R

E
1

2
.1

4
C

o
m

m
u

ta
ti

ve
d

ia
gr

am
th

at
il

lu
st

ra
te

s
th

e
re

la
ti

o
n

sh
ip

s
am

o
n

g
(i

)
th

e
tr

an
sf

o
rm

at
io

n
o

n
2

-v
al

u
ed

st
ru

ct
u

re
s

(d
efi

n
ed

b
y

p
re

d
ic

at
e-

u
p

d
at

e
fo

rm
u

la
s)

th
at

re
p

re
se

n
ts

th
e

co
n

cr
et

e
se

m
an

ti
cs

fo
r

y
=

y-
>

n
,(

ii
)

ab
st

ra
ct

io
n

,a
n

d
(i

ii
)

th
e

tr
an

sf
o

rm
at

io
n

o
n

3
-v

al
u

ed
st

ru
ct

u
re

s
(d

efi
n

ed
b

y
th

e
sa

m
e

p
re

d
ic

at
e-

u
p

d
at

e
fo

rm
u

la
s)

th
at

re
p

re
se

n
ts

th
e

si
m

p
le

ab
st

ra
ct

se
m

an
ti

cs
fo

r
y

=
y-

>
n

o
b

ta
in

ed
vi

a
th

e
re

in
te

rp
re

ta
ti

o
n

p
ri

n
ci

p
le

(O
b

se
rv

at
io

n
1

2
.4

).
(I

n
th

is
ex

am
p

le
,{

x
,y

,t
,e

}-
ab

st
ra

ct
io

n
is

u
se

d
.)



12-22 The Compiler Design Handbook: Optimizations and Machine Code Generation

u1 

rx,n, ry,n rx,n, ry,n 

u x, y 

Sa 

Input 
Structure 

Update
Formulas

Output 
Structure 

n 

n 

u1 

rx,n ry,n, rx,n 

u x 

Sb 

st0 
y 

y 

n 

(v) 

n 

st0 rn,y 
(v) 

v1 : y(v1)    n(v1, v) ry,n(v) (cn(v) y(v)) 

u1 un 

n

FIGURE 12.15 An application of the simplified abstract transformer for statement st0: y = y->n in insert .

Consequently, all we can surmise after the execution of y = y->n is that y may point to one of the heap

cells that summary node u234 represents (see Sb).

In contrast, the truth-blurring embedding of S
♮

b is Sc ; thus, column 4 and row 4 of Figure 12.14 show

that the abstract semantics obtained via Observation 12.4 can lead to a structure that is not as precise as

what the abstract domain is capable of representing (cf. structures Sc and Sb).

As mentioned in Example 12.8, the use of reachability information is very important for retaining

precision during shape analysis. However, even this mechanism is not sufficiently powerful to fix the

problem. The same problem still occurs even if we use {x , y, t, e , is, rx ,n, r y,n, rt,n, re ,n}-abstraction with

{cn}. Figure 12.15 shows the result of applying the abstract semantics of the statement st0 : y = y->n
to structure Sa — one of the 3-valued structures that arises in the analysis of insert just before y is

advanced down the list by statement st0. Similar to what was illustrated in Figure 12.14, the resulting

structure Sb shown in Figure 12.15 is not as precise as what the abstract domain is capable of representing.

For instance, Sb does not contain a node that is definitely pointed to by y .

This imprecision leads to problems when a destructive update is performed. In particular, the first

column in Table 12.3 shows what happens when the abstract transformers for the five statements that

follow the search loop in insert are applied to Sb . Because y(v) evaluates to 1/2 for the summary node,

we eventually reach the situation shown in the fourth row of structures, in which y, e , rx , r y , re , rt , and

is are all 1/2 for the summary node. As a result, with the approach that has been described thus far, the

abstract transformer for y->n = t sets the value of cn for the summary node to 1/2. Consequently, the

analysis fails to determine that the structure returned by insert is an acyclic list.

In contrast, the analysis that uses the techniques described in the remainder of this section is able to

determine that at the end of insert the following properties always hold: (a) x points to an acyclic list

that has no shared elements, (b) y points into the tail of the x-list, and (c) the value of e and y->n are

equal.

It is worthwhile to note that the precision problem becomes even more acute for shape-analysis algo-

rithms that, like [8], do not explicitly track reachability properties. The reason is that, without reachability,

Sb represents situations in which y points to an element that is not even part of the x-list.

12.4.6.1 Mechanisms for an Improved Abstract Semantics

The remainder of this section describes the main ideas behind two mechanisms that provide a more precise

way of defining the abstract semantics of program statements. In particular, these mechanisms are able to

“materialize” new nonsummary nodes from summary nodes as data structures are traversed. As we will

see, these improvements allow us to determine more precise shape descriptors for the data structures that

arise in the insert program.

In formulating an improved approach, our goal is to retain the property that the transformer for a

program statement falls out automatically from the predicate-update formulas of the concrete semantics

and the predicate-update formulas supplied for the instrumentation predicates. Thus, the main idea
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TABLE 12.3 Selective applications of the abstract transformers using the one-stage and the

multi-stage approaches, for the statements in insert that come after the search loop. (For brevity,

rz is used in place of rz,n for all variables z , and node names are not shown.)

behind the improved approach is to decompose the transformer for st into a composition of several

functions, as depicted in Figure 12.16 and explained below, each of which falls out automatically from the

predicate-update formulas of the concrete semantics and the predicate-update formulas supplied for the

instrumentation predicates:

� The operation focus refines 3-valued structures so that the formulas that define the meaning of st

evaluate to definite values. The focus operation thus brings these formulas “into focus.”
� The simple abstract meaning function for statement st, [[st]]3, is then applied.
� The operation coerce converts a 3-valued structure into a more precise 3-valued structure by

removing certain kinds of inconsistencies.

(The 10 structures referred to in Figure 12.16 are depicted in Figure 12.17. Figure 12.17 will be used to

explain the improved mechanisms that are presented in Sections 12.4.6.2 and 12.4.6.3.)

It is worth noting that both focus and coerce are semantic-reduction operations (a concept originally

introduced in [12]). That is, they convert a set of 3-valued structures into a more precise set of 3-valued

structures that describe the same set of stores. This property, together with the correctness of the struc-

ture transformer [[st]]3, guarantees that the overall multi-stage semantics is correct. In the context of a
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FIGURE 12.16 One-stage vs. multi-stage abstract semantics for statement st0 : y = y->n .

parametric framework for abstract interpretation, semantic reductions are valuable because they allow the

transformers of the abstract semantics to be defined in the modular fashion shown in Figure 12.16.

12.4.6.2 The Focus Operation

The operation focusF generates a set of structures on which a given set of formulas F have definite values

for all assignments. (This operation will be denoted by focus when F is clear from the context or when we

are referring to a focus operation for F in the generic sense.) The focus formulas used in shape analysis

are determined from the left-hand side (as an L-value) and right-hand side (as an R-value) of each kind

of statement in the programming language. These are illustrated in the following example.

Example 12.10

For the statement st0: y = y->n in procedure insert , we focus on the formula

ϕ0(v)
def
= ∃v1 : y(v1) ∧ n(v1, v) (12.4)
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FIGURE 12.17 The first application of the improved transformer for statement st0: y = y->n in insert .
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which corresponds to the R-value of the right-hand side of st0 (the heap cell pointed to by y->n ). The

upper part of Figure 12.17 illustrates the application of focus{ϕ0}
(Sa ), where Sa is the structure shown in

Figure 12.15 that occurs in insert just before the first application of statement st0: y = y->n . This

results in three structures: Sa , f,0, Sa , f,1, and Sa , f,2:

� In Sa , f,0, [[ϕ0]]
Sa , f,0

3 ([v �→ u]) equals 0. This structure represents a situation in which the concrete

list that x and y point to has only one element, but the store also contains garbage cells, represented

by summary node u. (As we will see later, this structure is inconsistent because of the values of the

rx ,n and r y,n instrumentation predicates and will be eliminated from consideration by coerce.)
� In Sa , f,1, [[ϕ0]]

Sa , f,1

3 ([v �→ u]) equals 1. This covers the case where the list that x and y point to has

exactly two elements. For all of the concrete cells that summary node u represents, ϕ0 must evaluate

to 1, so u must represent just a single list node.
� In Sa , f,2, [[ϕ0]]

Sa , f,2

3 ([v �→ u.0]) equals 0 and [[ϕ0]]
Sa , f,2

3 ([v �→ u.1]) equals 1. This covers the case

where the list that x and y point to is a list of three or more elements. For all of the concrete cells that

u.0 represents, ϕ0 must evaluate to 0, and for all of the cells that u.1 represents, ϕ0 must evaluate

to 1. This case captures the essence of node materialization as described in [57]: individual u is

bifurcated into two individuals.

The structures shown in Figure 12.17 are constructed by focus{ϕ0}
(Sa ) by considering the reasons why

[[ϕ0]]
Sa

3 (Z) evaluates to 1/2 for various assignments Z. In some cases, [[ϕ0]]
Sa

3 (Z) already has a defi-

nite value; for instance, [[ϕ0]]
Sa

3 ([v �→ u1]) equals 0, and therefore ϕ0 is already in focus at u1. In con-

trast, [[ϕ0]]
Sa

3 ([v �→ u]) equals 1/2. We can construct three (maximal) structures S from Sa in which

[[ϕ0]]S
3 ([v �→ u]) has a definite value:

� Sa , f,0, in which ιSa , f,0 (n)(u1, u) is set to 0, and thus [[ϕ0]]
Sa , f,0

3 ([v �→ u]) equals 0.
� Sa , f,1, in which ιSa , f,1 (n)(u1, u) is set to 1, and thus [[ϕ0]]

Sa , f,1

3 ([v �→ u]) equals 1.
� Sa , f,2, in which u has been bifurcated into two different individuals, u.0 and u.1. In Sa , f,2, ιSa , f,2 (n)

(u1, u.0) is set to 0, and thus [[ϕ0]]
Sa , f,2

3 ([v �→ u.0]) equals 0, whereas ιSa , f,2 (n)(u1, u.1) is set to 1,

and thus [[ϕ0]]
Sa , f,2

3 ([v �→ u.1]) equals 1.

An algorithm for focus that is based on these ideas is given in [58].

The greater the number of formulas on which we focus, the greater the number of distinctions that

the shape-analysis algorithm can make, leading to improved precision. However, using a larger number

of focus formulas can increase the number of structures that arise, thereby increasing the cost of analysis.

Our preliminary experience indicates that in shape analysis there is a simple way to define the formulas on

which to focus that guarantees that the number of structures generated grows only by a constant factor.

The main idea is that in a statement of the form lhs = rhs, we only focus on formulas that define the

heap cells for the L-value of lhs and the R-value of rhs. Focusing on L-values and R-values ensures that the

application of the abstract transformer does not set to 1/2 the entries of core predicates that correspond to

pointer variables and fields that are updated by the statement. This approach extends naturally to program

conditions and to statements that manipulate multiple L-values and R-values.

For our simplified language and type List , the target formulas on which to focus can be defined as

shown in Table 12.4. Let us examine a few of the cases from Table 12.4:

� For the statement x = NULL, the set of target formulas is the empty set because neither the lhs

L-value nor the rhs R-value is a heap cell.
� For the statement x = t->n , the set of target formulas is the singleton set {∃v1 : t(v1) ∧ n(v1, v)}

because the lhs L-value cannot be a heap cell, and the rhs R-value is the cell pointed to by t->n .
� For the statement x->n = t , the set of target formulas is the set {x(v), t(v)} because the lhs

L-value is the heap cell pointed to by x , and the rhs R-value is the heap cell pointed to by t .
� For the condition x == t , the set of target formulas is the set {x(v), t(v)}; the R-values of the two

sides of the conditional expression are the heap cells pointed to by x and t .
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TABLE 12.4 The target formulas for focus, for statements

and conditions of a program that uses type List

st Focus Formulae

x = NULL ∅

x = t {t(v)}

x = t->n {∃v1 : t(v1) ∧ n(v1, v)}
x->n = t {x(v), t(v)}
x = malloc() ∅

x == NULL {x(v)}

x != NULL {x(v)}

x == t {x(v), t(v)}

x != t {x(v), t(v)}

UninterpretedCondition ∅

12.4.6.3 The Coerce Operation

The operation coerce converts a 3-valued structure into a more precise 3-valued structure by removing

certain kinds of inconsistencies. The need for coerce can be motivated by the following example:

Example 12.11

After focus, the simple transformer [[st]]3 is applied to each of the structures produced. For instance, in

Example 12.10, [[st0]]3 is applied to structures Sa , f,0, Sa , f,1, and Sa , f,2 to obtain structures Sa ,o,0, Sa ,o,1, and

Sa ,o,2, respectively (see Figure 12.17).

However, this process can produce structures that are not as precise as we would like. The intuitive

reason for this state of affairs is that there can be interdependences between different properties stored in a

structure, and these interdependences are not necessarily incorporated in the definitions of the predicate-

update formulas. In particular, consider structure Sa ,o,2. In this structure, the n-field of u.0 can point to

u.1, which suggests that y may be pointing to a heap-shared cell. However, this is incompatible with the

fact that ι(is)(u.1) = 0 (i.e., u.1 cannot represent a heap-shared cell) and the fact that ι(n)(u1, u.1) = 1

(i.e., it is known that u.1 definitely has an incoming n-edge from a cell other than u.0).

Also, the structure Sa ,o,0 describes an impossible situation: ι(r y,n)(u) = 1 and yet u is not reachable —

or even potentially reachable — from a heap cell that is pointed to by y .

The coerce mechanism is a systematic method that captures interdependences among the properties

stored in 3-valued structures; coerce removes indefinite values that violate certain consistency rules, thereby

“sharpening” the structures that arise during shape analysis. This remedies the imprecision illustrated in

Example 12.11. In particular, when the sharpening process is applied to structure Sa ,o,2 from Figure 12.17,

the structure that results is Sb,2. In this case, the sharpening process discovers that (a) two of the n-edges

with value 1/2 can be removed from Sa ,o,2 and (b) individual u.1 can only ever represent a single individual

in each of the structures that Sa ,o,2 represents, and hence u.1 should not be labeled as a summary node.

These facts are not something that the mechanisms that have been described in earlier sections are capable

of discovering. Also, the structure Sa ,o,0 is discarded by the sharpening process.

The sharpening mechanism that coerce provides is crucial to the success of the improved shape-analysis

framework because it allows a more accurate job of materialization to be performed than would otherwise

be possible. For instance, note how the sharpened structure, Sb,2, clearly represents an unshared list of

length 3 or more that is pointed to by x and whose second element is pointed to by y . In fact, in the domain

of {x , y, t, e , is, rx ,n, r y,n, rt,n, re ,n}-abstraction with {cn}, Sb,2 is the most precise representation possible for

the family of unshared lists of length 3 or more that are pointed to by x and whose second element is

pointed to by y . Without the sharpening mechanism, instantiations of the framework would rarely be
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able to determine such things as “The data structure being manipulated by a certain list-manipulation

program is actually a list.”

The coerce operation is based on the observation that 3-valued structures obey certain consistency

rules that are a consequence of truth-blurring embedding. These consistency rules can be formalized as

a system of “compatibility constraints.” Moreover, the constraint system can be obtained automatically

from formulas that express certain global invariants on concrete stores.

Example 12.12

Consider a 2-valued structure S♮ that can be embedded in a 3-valued structure S, and suppose that the

formula ϕis for “inferring” whether an individual u is shared evaluates to 1 in S (i.e., [[ϕis(v)]]S
3 ([v �→ u]) =

1). By the embedding theorem, ιS♮

(is)(u♮) must be 1 for any individual u♮ ∈ U S♮

that the embedding

function maps to u.

Now consider a structure S ′ that is equal to S except that ιS ′

(is)(u) is 1/2. S♮ can also be embedded in

S ′. However, the embedding of S♮ in S is a “better” embedding — one that preserves more definite values.

This has operational significance: it is needlessly imprecise to work with structure S ′ in which ιS ′

(is)(u)

has the value 1/2; instead, we should discard S ′ and work with S. In general, the “stored predicate” is

should be at least as precise as its inferred value; consequently, if it happens that ϕis evaluates to a definite

value (1 or 0) in a 3-valued structure, we can sharpen the stored predicate is.

Similar reasoning allows us to determine, in some cases, that a structure is inconsistent. In Sa ,o,0, for

instance, ϕr y,n
(u) = 0, whereas the value stored in S for r y,n, namely ιSa ,o,0 (r y,n)(u), is 1; consequently, Sa ,o,0

is a 3-valued structure that does not represent any concrete structures at all. Structure Sa ,o,0 can therefore

be eliminated from further consideration by the shape-analysis algorithm.

This reasoning applies to all instrumentation predicates, not just is and r y,n, and to both of the definite

values, 0 and 1.

The reasoning used in Example 12.12 can be summarized as the following principle:

Observation 12.5 (The Sharpening Principle). In any structure S, the value stored for ιS ( p)(u1, . . . , uk)

should be at least as precise as the value of p’s defining formula, ϕp , evaluated at u1, . . . , uk (i.e., [[ϕp]]S
3 ([v1 �→

u1, . . . , vk �→ uk])). Furthermore, if ιS ( p)(u1, . . . , uk) has a definite value and ϕp evaluates to an incompa-

rable definite value, then S is a 3-valued structure that does not represent any concrete structures at all.

This observation can be formalized in terms of compatibility constraints, defined as follows:

Definition 12.2 A compatibility constraint is a term of the form ϕ1⊲ϕ2, where ϕ1 is an arbitrary

3-valued formula, and ϕ2 is either an atomic formula or the negation of an atomic formula over distinct

logical variables. We say that a 3-valued structure S and an assignment Z satisfy ϕ1⊲ϕ2 if, whenever Z is an

assignment such that [[ϕ1]]S
3 (Z) = 1, we also have [[ϕ2]]S

3 (Z) = 1. (If [[ϕ1]]S
3 (Z) equals 0 or 1/2, S and Z

satisfy ϕ1⊲ϕ2, regardless of the value of [[ϕ2]]S
3 (Z).)

The compatibility constraint that captures the reasoning used in Example 12.12 is ϕis(v) ⊲ is(v). That

is, when ϕis evaluates to 1 at u, then is must evaluate to 1 at u to satisfy the constraint. The compatibility

constraint used to capture the similar case of sharpening ι(is)(u) from 1/2 to 0 is ¬ϕis(v) ⊲¬is(v).

Compatibility constraints can be generated automatically from formulas that express certain global

invariants on concrete stores. We call such formulas compatibility formulas. There are two sources of

compatibility formulas:

� The formulas that define the instrumentation predicates
� Additional formulas that formalize the properties of stores that are compatible with the semantics

of C (i.e., with our encoding of C stores as 2-valued logical structures)
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The following definition supplies a way to convert formulas into compatibility constraints:

Definition 12.3 Let ϕ be a closed formula and a be an atomic formula such that (a) a contains no

repetitions of logical variables, and (b) a 
≡ sm(v). Then the compatibility constraint generated from ϕ is

defined as follows:

ϕ1 ⊲ a if ϕ ≡ ∀v1, . . . vk : (ϕ1 ⇒ a) (12.5)

ϕ1 ⊲ ¬a if ϕ ≡ ∀v1, . . . vk : (ϕ1 ⇒ ¬a) (12.6)

The intuition behind Equations 12.5 and 12.6 is that for an atomic predicate, a truth-blurring embedding

is forced to yield 1/2 only in cases in which a evaluates to 1 on one tuple of values for v1, . . . , vk but evaluates

to 0 on a different tuple of values. In this case, the left-hand side will evaluate to 1/2 as well.

Our first source of compatibility formulas is the set of formulas that define the instrumentation pred-

icates. For every instrumentation predicate p ∈ I defined by a formula ϕp(v1, . . . , vk), we generate a

compatibility formula of the following form:

∀v1, . . . , vk : ϕp(v1, . . . , vk) ⇔ p(v1, . . . , vk) (12.7)

So that we can apply Definition 12.3, this is then broken into two implications:

∀v1, . . . , vk : ϕp(v1, . . . , vk) ⇒ p(v1, . . . , vk) (12.8)

∀v1, . . . , vk : ¬ϕp(v1, . . . , vk) ⇒ ¬p(v1, . . . , vk) (12.9)

For instance, for each program variable x , we have the defining formula of instrumentation predicate rx ,n:

ϕrx ,n
(v)

def
=x(v) ∨ ∃v1 : x(v1) ∧ n+(v1, v) (12.10)

and thus

∀v : x(v) ∨ ∃v1 : x(v1) ∧ n+(v1, v) ⇔ rx ,n(v) (12.11)

which is then broken into

∀v : x(v) ∨ ∃v1 : x(v1) ∧ n+(v1, v) ⇒ rx ,n(v) (12.12)

∀v : ¬(x(v) ∨ ∃v1 : x(v1) ∧ n+(v1, v)) ⇒ ¬rx ,n(v) (12.13)

We then use Definition 12.3 to generate the following compatibility constraints:

x(v) ∨ ∃v1 : x(v1) ∧ n+(v1, v) ⊲rx ,n(v) (12.14)

¬(x(v) ∨ ∃v1 : x(v1) ∧ n+(v1, v)) ⊲¬rx ,n(v) (12.15)

The constraint-generation rules defined in Definition 12.3 generate interesting constraints only for cer-

tain specific syntactic forms, namely implications with exactly one (possibly negated) predicate symbol on

the right-hand side. Thus, when we generate compatibility constraints from formulas written as implica-

tions (such as Equations 12.12 and 12.13 and those in Table 12.5), the set of constraints generated depends

on the form in which the compatibility formulas are written. However, not all of the many equivalent forms

possible for a given compatibility formula lead to useful constraints. For instance, when Definition 12.3 is

applied to the formula ∀v1, . . . vk : (ϕ1 ⇒ a), it generates the constraint ϕ1 ⊲ a ; however, Definition 12.3

does not generate a constraint for the equivalent formula ∀v1, . . . vk : (¬ϕ1 ∨ a).

This phenomenon can prevent an instantiation of the shape-analysis framework from having a suitable

compatibility constraint at its disposal that would otherwise allow it to sharpen or discard a structure that

arises during the analysis — and hence can lead to a shape-analysis algorithm that is more conservative

than we would like.
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TABLE 12.5 The formulas listed above the line are compatibility

formulas for structures that represent a store of a C program that

operates on values of the type List defined in Figure 12.1(a). The

corresponding compatibility constraints are listed below the line.

¬∃v : sm(v) (12.22)

for each x ∈ P Var, ∀v1, v2 : x(v1) ∧ x(v2) ⇒ v1 = v2 (12.23)

∀v1, v2 : (∃v3 : n(v3, v1) ∧ n(v3, v2)) ⇒ v1 = v2 (12.24)

(∃v : sm(v)) ⊲ 0 (12.25)

for each x ∈ P Var, x(v1) ∧ x(v2) ⊲ v1 = v2 (12.26)

(∃v3 : n(v3, v1) ∧ n(v3, v2)) ⊲ v1 = v2 (12.27)

The way around this difficulty is to augment the constraint-generation process to generate constraints

for some of the logical consequences of each compatibility formula:

Example 12.13

The defining formula for instrumentation predicate is is

ϕis(v)
def
= ∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 
= v2 (12.16)

We obtain the following formula from Equation 12.16:

∀v : (∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 
= v2) ⇔ is(v) (12.17)

which is broken into the two formulas

∀v : (∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 
= v2) ⇒ is(v) (12.18)

∀v : ¬(∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 
= v2) ⇒ ¬is(v) (12.19)

By rewriting the implication in Equation 12.18 as a disjunction and then applying De Morgan’s laws, we

have

∀v , v1, v2 : ¬n(v1, v) ∨ ¬n(v2, v) ∨ v1 = v2 ∨ is(v) (12.20)

One of the logical consequences of Equation 12.20 is

∀v , v2 : (∃v1 : n(v1, v) ∧ v1 
= v2 ∧ ¬is(v)) ⇒ ¬n(v2, v) (12.21)

from which we obtain the following compatibility constraint:

(∃v1 : n(v1, v) ∧ v1 
= v2 ∧ ¬is(v)) ⊲¬n(v2, v) (12.22)

(In addition to Equation 12.22, we obtain a number of other compatibility constraints from other logical

consequences of Equation 12.20 [58].)

As we will see shortly, Equation 12.22 allows a more accurate job of materialization to be performed than

would otherwise be possible: When is(u) is 0 and one incoming n-edge to u is 1, to satisfy Equation 12.22

a second incoming n-edge to u cannot have the value 1/2. It must have the value 0; that is, the latter

edge cannot exist (cf. Examples 12.11 and 12.15). This allows edges to be removed (safely) that a more

naive materialization process would retain (cf. structures Sa ,o,2 and Sb,2 in Figure 12.17), and permits

the improved shape-analysis algorithm to generate more precise structures for insert than the ones

generated by the simple shape-analysis algorithm sketched at the beginning of Section 12.4.6.
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12.4.6.3.1 Compatibility Constraints from Hygiene Conditions

Our second source of compatibility formulas stems from the fact that not all structures S♮ ∈ STRUCT[P]

represent stores that are compatible with the semantics of C. For example, stores have the property that

each pointer variable points to at most one element in heap-allocated storage.

Example 12.14

The set of formulas listed above the line in Table 12.5 is a set of compatibility formulas that must be

satisfied for a structure to represent a store of a C program that operates on values of the type List
defined in Figure 12.1a. Equation 12.23 captures the condition that concrete stores never contain any

summary nodes. Equation 12.24 captures the fact that every program variable points to at most one list

element. Equation 12.25 captures a similar property of the n-fields of List structures: whenever the n-

field of a list element is non-NULL, it points to at most one list element. The corresponding compatibility

constraints generated according to Definition 12.3 are listed below the line.

12.4.6.3.2 An Example of Coerce in Action

We are now ready to show how the coerce operation uses these compatibility constraints to either sharpen

or discard a 3-valued logical structure. The coerce operation is a constraint-satisfaction procedure that

repeatedly searches a structure S for assignments Z that fail to satisfy ϕ1 ⊲ ϕ2 (i.e., [[ϕ1]]S
3 (Z) = 1 but

[[ϕ2]]S
3 (Z) 
= 1). This is used to improve the precision of shape analysis by (a) sharpening the values of

predicates stored in S when the constraint violation is repairable, and (b) eliminating S from further

consideration when the constraint violation is irreparable. (An algorithm for this process is given in [58].)

Example 12.15

The application of coerce to the structures Sa ,o,0, Sa ,o,1, and Sa ,o,2 yields Sb,1 and Sb,2, as shown in the bottom

block of Figure 12.17:

� The structure Sa ,o,0 is discarded because the violation of Equation 12.15 is irreparable.
� The structure Sb,1 was obtained from Sa ,o,1 by removing incompatibilities as follows:

• Consider the assignment [v �→ u, v1 �→ u1, v2 �→ u]. Because ι(n)(u1, u) = 1, u1 
= u, and

ι(is)(u) = 0, Equation 12.22 implies that ι(n)(u, u) must equal 0. Thus, in Sb,1 the (indefinite)

n-edge from u to u has been removed.

• Consider the assignment [v1 �→ u, v2 �→ u]. Because ι(y)(u) = 1, Equation 12.28 implies that

[[v1 = v2]]
Sb,1

3 ([v1 �→ u, v2 �→ u]) must equal 1, which in turn means that ιSb,1 (sm)(u) must equal

0. Thus, in Sb,1 u is no longer a summary node.

� The structure Sb,2 was obtained from Sa ,o,2 by removing incompatibilities as follows:

• Consider the assignment [v �→ u.1, v1 �→ u1, v2 �→ u.0]. Because ι(n)(u1, u.1) = 1, u1 
= u.0,

and ι(is)(u.1) = 0, Equation 12.22 implies that ιSb,2 (n)(u.0, u.1) must equal 0. Thus, in Sb,2 the

(indefinite) n-edge from u.0 to u.1 has been removed.

• Consider the assignment [v �→ u.1, v1 �→ u1, v2 �→ u.1]. Because ι(n)(u1, u.1) = 1, u1 
= u.1,

and ι(is)(u.1) = 0, Equation 12.22 implies that ιSb,2 (n)(u.1, u.1) must equal 0. Thus, in Sb,2 the

(indefinite) n-edge from u.1 to u.1 has been removed.

• Consider the assignment [v1 �→ u.1, v2 �→ u.1]. Because ι(y)(u.1) = 1, Equation 12.28 implies

that [[v1 = v2]]
Sb,2

3 ([v1 �→ u.1, v2 �→ u.1]) must equal 1, which in turn means that ιSb,2 (sm)(u.1)

must equal 0. Thus, in Sb,2 u.1 is no longer a summary node.

Important differences between the structures Sb,1 and Sb,2 result from applying the multi-stage abstract

transformer for statement st0 : y = y->n , compared with the structure Sb that results from applying

the one-stage abstract transformer (see Figure 12.15). For instance, y points to a summary node in Sb ,

whereas y does not point to a summary node in either Sb,1 or Sb,2; as noted earlier, in the domain of

{x , y, t, e , is, rx ,n, r y,n, rt,n, re ,n}-abstraction with {cn}, Sb,2 is the most precise representation possible for
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TABLE 12.6 The structures that occur before and after successive applications of the

multi-stage abstract transformer for the statement y = y->n during the abstract

interpretation of insert . (For brevity, node names are shown.)

the family of unshared lists of length 3 or more that are pointed to by x and whose second element is

pointed to by y .

Example 12.16

Table 12.6 shows the 3-valued structures that occur before and after applications of the abstract transformer

for the statement y = y->n during the abstract interpretation of insert .

The material in Table 12.3 that appears under the heading “Multi-Stage” shows the application of the

abstract transformers for the five statements that follow the search loop in insert to Sb,1 and Sb,2. For
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space reasons, we do not show the abstract execution of these statements on the other structures shown in

Table 12.6; however, the analysis is able to determine that at the end of insert the following properties

always hold: (a) x points to an acyclic list that has no shared elements, (b) y points into the tail of the x–list,

and (c) the value of e and y->n are equal. The identification of the latter condition is rather remarkable:

the analysis is capable of showing that e and y->n are must-aliases at the end of insert (see also

Section 12.5.1).

12.5 Applications

The algorithm sketched in Section 12.4 produces a set of 3-valued structures for each program point

pt. This set provides a conservative representation, that is, it describes a superset of the set of concrete

stores that can possibly occur in any execution of the program that ends at pt. Therefore, questions about

the stores at pt can be answered (conservatively) by posing queries against the set of 3-valued structures

that the shape-analysis algorithm associates with pt. The answers to these questions can be utilized in an

optimizing compiler, as explained in Section 12.2. Furthermore, the fact that the shape-analysis framework

is based on logic allows queries to be specified in a uniform way using logical formulas.

In this section, we discuss several kinds of questions. Section 12.5.1 discusses how instantiations of the

parametric shape-analysis framework that have been described in previous sections can be applied to the

problem of identifying may- and must-aliases. Section 12.5.2 shows that the shape-analysis framework

can be instantiated to produce flow-dependence information for programs that manipulate linked data

structures. Finally, Section 12.5.3 sketches some other applications for the results of shape analysis.

12.5.1 Identifying May- and Must-Aliases

We say that two pointer access paths, e1 and e2, are may-aliases at a program point pt if there exists an

execution sequence ending at pt that produces a store in which both e1 and e2 point to the same heap cell.

We say that e1 and e2 are must-aliases at pt if, for every execution sequence ending at pt, e1 and e2 point

to the same heap cell.11

Consider the access paths e1 ≡ x-> f1-> · · ·-> fn and e2 ≡ x-> g1-> · · ·-> gm. To extract aliasing

information, we use the formula

al[e1, e2]
def
=

∃v0, . . . , vn, w0, . . . , wm : x(v0) ∧ f1(v0, v1) ∧ · · · ∧ fn(vn−1, vn)

∧ y(w0) ∧ g1(w0, w1) ∧ · · · ∧ gm(wm−1, wm)

∧ vn = wm

(12.23)

If Equation 12.23 evaluates to 0 in every 3-valued structure that the shape-analysis algorithm associates

with program point pt, we know that e1 and e2 are not may-aliases at pt. Similarly, when al[e1, e2] evaluates

to 1 in every such structure, we know that e1 and e2 are must-aliases at pt. In all other cases, e1 and e2 are

considered may-aliases.

Note that in some cases, al[e1, e2] may evaluate to 1/2, in which case e1 and e2 are considered may-aliases;

this is a conservative result.

The answer can sometimes be improved by first applying focus with Equation 12.23. This will produce

a set of structures in which al[e1, e2] does not evaluate to an indefinite value. Finally, one can run coerce

on the 3-valued structures produced by focus to eliminate infeasible 3-valued structures.

Example 12.17

Consider the 3-valued structure at the bottom right corner of Table 12.3. The formula al[y->n->n ,e]

evaluates to 1 in this structure and in all of the other structures arising after y->n = t ; thus, y->n->n

11Variants of these definitions can be defined that account for the case when e1 or e2 has the value NULL.
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int y;

q = (List) malloc();
p = q;

q = (List) malloc();
p = q;
t = p;

l1: p–>data = 5;
l1.5:
l2: y = q–>data;

l1: p–>data = 5;
l1.5: t–>data = 7;
l2: y = q–>data;

(a) (b) (c)

List p, q;

int y;

List p, q, t;

q = (List) malloc();
p = q;

l1: p–>data = 5;
l1.5: p = (List) malloc();
l2: y = q–>data;

int y;

List p, q;

FIGURE 12.18 A motivating example to demonstrate the differences between may-aliases and flow dependences.

and e are must-aliases at this point. Also, al[e->n ,y->n ] evaluates to 0 in this structure and in all of the

other structures; thus, e->n and y->n are not may-aliases.

However, the formula al[e->n->n ,e->n ] evaluates to 1/2 in this structure. If we focus on the al[e-
>n->n ,e->n ] formula, we obtain several structures; in one of them, e->n points to a nonsummary

node that has a definite n-edge to itself. This structure is eliminated by coerce. In all of the remaining

structures, the formula al[e->n->n ,e->n ] evaluates to 0, which shows that e->n->n and e->n are

not may-aliases.

12.5.2 Constructing Program Dependences

This section shows how to use information obtained from shape analysis to construct program dependence

graphs [19, 31, 46]. To see why the problem of computing flow dependences is nontrivial, consider the

example program fragments shown in Figure 12.18. A formal definition of flow dependence is given in

Definition 12.4; for the purposes of this discussion, a statement lb depends on la if the value written to a

resource in la is directly used at lb, that is, without intervening writes to this resource.

A naive (and unsafe) criterion that one might use to identify flow dependences in Figure 12.18a would be

to say that l2 depends on l1 if p and q can refer to the same location at l2 (i.e., if p and q are may-aliases at

l2). In Figure 12.18a, this would correctly identify the flow dependence from l1 to l2. The naive criterion

sometimes identifies more flow dependences than we might like. In Figure 12.18b it would say there is

a flow dependence from l1 to l2, even though l1.5 overwrites the location that p points to. The naive

criterion is unsafe because it may miss dependences. In Figure 12.18c, there is a flow dependence from l1

to l2; this would be missed because statement l1.5 overwrites p, and thus p and q are never may-aliases

at l2.

One safe way to identify dependences in a program that uses heap-allocated storage is to introduce an ab-

stract variable for each allocation site, use the results of a flow-insensitive points-to analysis [1, 18, 23, 61, 62]

to determine a safe approximation of the variables that are possibly defined and possibly used at each pro-

gram point, and then use a traditional algorithm for reaching definitions (where each allocation site is

treated as a use of its associated variable).

In this section, we utilize the parametric shape-analysis framework to define an alternative, and much

more precise, algorithm. This algorithm is based on an idea developed by Horwitz et al. [25].12 They

introduced an augmented semantics for the programming language; in addition to all of the normal

12An alternative approach would have been to use the Ross–Sagiv construction [56], which reduces the problem

of computing program dependences to the problem of computing may-aliases, and then to apply the method of

Section 12.5.1. The method presented in this section is a more direct construction for identifying program dependences

and thereby provides a better demonstration of the utility of the parametric shape-analysis framework for this problem.
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l1 

l2 

l3 

l4 

l5 

l6 

l7 

l8 

l9 

l10 

l11 

l12 

l13 

void Append() 
List head, tail, temp; 

head = (List) malloc(); 
scanf(“%c”, &head–>data);

scanf(“%c”,  &temp–>data);

printf(“%c”, tail–>data);

head–>n = NULL; 

temp–>n = NULL; 
tail–>n = temp; 
tail = tail–>n; 
goto l5; 

printf(“%c”, head–>data);

tail = head; 

temp = (List) malloc(); 

if (tail–>data == ‘x’) goto l12; 

l1: 

l2: 
l3: 
l4: 
l5: 
l6: 
l7: 
l8: 
l9: 
l10: 
l11: 
l12: 
l13:   

FIGURE 12.19 A program that builds a list by appending elements to tail, and its flow-dependence graph.

aspects of the language’s semantics, the augmented semantics also records information about the history

of resource usage — in this case, “last-write” information — for each location in the store. As we will see,

it is natural to record this extra information using additional core predicates. As discussed in more detail

below, this instantiation of the shape-analysis framework creates an algorithm from which conservative

dependence information can then be extracted.

The resulting algorithm is the most precise algorithm known for identifying the data dependences

of programs that manipulate heap-allocated storage. In addition, it does not need the artificial concept

of introducing an abstract variable for each allocation site. For example, Figure 12.19 shows a program

that builds a list by destructively appending elements to tail, together with a graph that shows the flow

dependences that the algorithm identifies.

The rest of this subsection is organized as follows: Dependences are discussed in Section 12.5.2.1.

Predicates for recording history information are introduced in Section 12.5.2.2, which also illustrates the

results obtained via this dependence-analysis method.

12.5.2.1 Program Dependences

Program dependences can be grouped into flow dependences (def-use), output dependences (def-def),

and anti-dependences (use-def) [19, 31]. In this section, we focus on flow dependences between program

statements. Other types can be handled in a similar fashion.

We allow programs to explicitly modify the store via assignments through pointers. Because of this, we

phrase the definition of flow dependence in terms of memory locations rather than program variables [25].

Definition 12.4 (Flow Dependence). Consider labeled statements li : sti and lj : stj. We say that

li has a flow dependence on lj if there is an execution path along which stj writes into a memory location,

loc, that sti reads, and there is no intervening write into loc.

Example 12.18

In the program fragment shown in Figure 12.18b, statement l2 does not depend on l1 because statement

l2 reads from a location that is last written at statement l1.5. In Figure 12.18c, l1.5 does not interrupt the

dependence between l2 and l1 because it does not write into a location that is read by l2.
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TABLE 12.7 Predicates for recording history information

Predicate Intended Meaning

lst w v[l , z] Program variable z was last written into

by the statement at label l .

lst w f [l , n](v) The n-field of list element v was last written into

by the statement at label l .

lst w f [l , d](v) The data -field of list element v was last written into

by the statement at label l .

Example 12.19

Consider the program and graph of flow dependences shown in Figure 12.19. Notice that l12 is flow

dependent only on l1 and l2, while l13 is flow dependent on l2, l4, l7, and l10. This information could

be used by a slicing tool to determine that the loop need not be executed in order to print head->data
in l12, or by an instruction scheduler to reschedule l12 to be executed any time after l2. Also, l3, l8, and

l11 have no statements that are dependent on them, making them candidates for elimination.

Thus, even in this simple example, knowing the flow dependences would allow several code transfor-

mations.

12.5.2.2 Recording History Using Predicates

Table 12.7 shows the predicates that are introduced to implement the augmented semantics à la Horwitz

et al. [25]. As indicated in the column labeled “Intended Meaning,” the intention is that these predicates

will record the label of the program statement that last writes into a given memory location.

The predicate lst w v[l , z] is similar to the one used in reaching-definitions analysis; it records that

program variable z was last written into by the statement at label l . The other two predicates record, for

each field of each list element, which statement last wrote into that location.

Table 12.8 shows the predicate-update formulas for recording which statement last wrote into a location.

The definitions given in Table 12.8 would be used to augment the instantiation of the shape-analysis

TABLE 12.8 Predicate-update formulae for recording last-write information. Here rhs
denotes an arbitrary expression.

Statement Cond. Predicate

l1: x = rhs ϕst
lst w v[l1 ,x]

= 1

l 
≡ l1 ϕst
lst w v[l ,x]

= 0

l 
≡ l1, z 
≡ x ϕst
lst w v[l ,z]

= lst w v[l , z]

ϕst
lst w f [l ,n]

(v) = lst w f [l , n](v)

ϕst
lst w f [l ,d]

(v) = lst w f [l , d](v)

l1: x->n = rhs ϕst
lst w v[l ,z]

= lst w v[l , z]

ϕst
lst w f [l1 ,n]

(v) = (lst w f [l1, n](v) ∧ ¬x(v)) ∨ x(v)

l 
≡ l1 ϕst
lst w f [l ,n]

(v) = lst w f [l , n](v) ∧ ¬x(v)

ϕst
lst w f [l ,d]

(v) = lst w f [l , d](v)

l1: x->data =rhs ϕst
lst w v[l ,z]

= lst w v[l , z]

ϕst
lst w f [l ,n]

(v) = lst w f [l , n](v)

ϕst
lst w f [l1 ,d]

(v) = lst w f [l1, d](v) ∧ ¬x(v)) ∨ x(v)

l 
≡ l1 ϕst
lst w f [l ,d]

(v) = lst w f [l , d](v) ∧ ¬x(v)
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TABLE 12.9 Formulas that use the last-write information in the

structures associated with statement at l2 to identify flow dependences

from statement l1. (In this table, c stands for any constant.)

Statement Formula

l2: x = NULL 0

l2: x = malloc() 0

l2: x = y lst w v[l1, y]

l2: x = y->n lst w v[l1, y] ∨ ∃v : y(v) ∧ lst w f [l1, n](v)

l2: x = y->data lst w v[l1, y] ∨ ∃v : y(v) ∧ lst w f [l1, d](v)

l2: x->f = NULL lst w v[l1, x]

l2: x->f = y lst w v[l1, x] ∨ lst w v[l1, y]

l2: x->data = c lst w v[l1, x]

head

lst_w_ f [l2, d], 
lst_w_ f [l9, n] 

lst_w_ f [l7, d], 
lst_w_ f [l9, n] 

lst_w_ f [l7, d], 

lst_w_ v [l1, head]

lst_w_ v [l6, temp] 
lst_w_ v [l10, tail] 

lst_w_ f [l8, n] 

rhead,n 

n n 
n 

rhead,n 

temp, tail,
rhead,n, rtemp,n,

rtail,n

FIGURE 12.20 The most complex structure that the analysis yields at l12.

framework that was described in Section 12.4. When the shape-analysis algorithm that we obtain in this

way is applied to a program, it produces a set of 3-valued structures for each program point. Then, for

each statement l2, to determine whether there is a flow dependence from l1 to l2, each of the structures

associated with l2 is checked by evaluating the formulas from the appropriate line of Table 12.9.13 These

formulas use the last-write information in the structures associated with l2 to determine whether there

is flow dependence from a statement l1. The idea behind Table 12.9 is that for each location accessed in

the evaluation of l2’s left-hand side (as an L-value) and l2’s right-hand side (as an R-value), we need to

check which statement last wrote into that location. If the formula is potentially satisfied by some 3-valued

structure at l2, there is a flow dependence from l1 to l2.

Example 12.20

Figure 12.20 shows one of the 3-valued structures that occurs at l12 when the program shown in Figure 12.19

is analyzed. (Three other structures arise at l12; these correspond to simpler configurations of memory

than the one depicted.) The formula lst w v[l2, head] ∨ ∃v : head(v) ∧ lst w f [l2, d](v) evaluates to 1,

which indicates that l12 depends on l2.

In contrast, the formula lst w v[l7, head] ∨ ∃v : head(v) ∧ lst w f [l7, d](v) evaluates to 0 (in this

structure and in all of the other structures that arise at l12). This allows us to conclude that l12 does not

depend on l7.

13It is straightforward to provide similar formulas to extract flow dependences from the structures that the shape-

analysis algorithm associates with program conditions.
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12.5.3 Other Applications

12.5.3.1 Cleanness of Programs That Manipulate Linked Lists

Java programs are more predictable than C programs because the language assures that certain types of

error conditions will be trapped, such as NULL-dereference errors. However, most Java compilers and Java

Virtual Machine (JVM) implementations check these conditions at runtime, which slows the program

down and does not provide any feedback to the programmer at compile time. In [14], it is shown how

shape analysis can be used to detect the absence (and presence) of NULLdereferences and memory leaks

in many C programs. It is also shown there that shape analysis yields much more precise information than

what is obtained by a flow-sensitive points-to analysis, such as the one developed in [15]. If such methods

could be implemented in Java compilers and/or a JVM, some runtime checks could be avoided.

12.5.3.2 Correctness of Sorting Implementations

In [35] a shape-analysis abstraction is developed to analyze programs that sort linked lists. It is shown

that the analysis is precise enough to discover that (correct versions of) bubble-sort and insertion-sort

procedures always produce correctly sorted lists as outputs and that the invariant “is-sorted” is maintained

by list-manipulation operations such as merge. In addition, it is shown that when the analysis is applied to

erroneous versions of bubble-sort and insertion-sort procedures, it is able to discover the error. In [37, 38]

a novel abstraction-refinement method is defined, based on inductive logic programming, and successfully

used to derive abstractions automatically that establish the partial correctness of several sorting algorithms.

The derived abstractions are also used to establish that the algorithms possess additional properties, such

as stability and antistability.

12.5.3.3 Conformance to API Specifications

[48] shows how to verify that client programs using a library conform to the library’s API specifications.

In particular, an analysis is provided for verifying the absence of concurrent-modification exceptions in

Java programs that use Java collections and iterators. In [68] separation and heterogeneous abstraction

are used to scale the verification algorithms and to allow verification of larger programs that use libraries

such as the Java Database Connectivity (JDBC) API.

12.5.3.4 Checking Multithreaded Systems

In [67] it is shown how to apply 3-valued logic to the problem of checking properties of multithreaded

systems. In particular, [67] addresses the problem of state-space exploration for languages, such as Java, that

allow (a) dynamic creation and destruction of an unbounded number of threads, (b) dynamic allocation

and freeing of an unbounded number of storage cells from the heap, and (c) destructive updating of

structure fields. This combination of features creates considerable difficulties for any method that tries to

check program properties.

In this chapter, the problem of program analysis is expressed as a problem of annotating a control-flow

graph with sets of 3-valued structures; in contrast, the analysis algorithm given in [67] builds and explores

a 3-valued transition system on-the-fly.

In [67] problems (a) and (b) are handled essentially via the techniques developed in this chapter;

problem (c) is addressed by reducing it to problem (b). Threads are modeled by individuals, which are

abstracted using truth-blurring embedding — in this case, with respect to the collection of unary thread

properties that hold for a given thread. This naming scheme automatically discovers commonalities in the

state space, but without relying on explicitly supplied symmetry properties, as in, for example, [10, 16].

Unary core predicates are used to represent the program counter of each thread object; focus implements

the interleaving of threads. The analysis described in [67] is capable of proving the absence of deadlock in

a dining-philosophers program that permits there to be an unbounded number of philosophers.

In [70] this approach was applied to verify partial correctness of concurrent-queue implementations.

In [69] the above approach was extended to provide a general framework for proving temporal properties

of programs by representing program traces as logical structures. A more efficient technique for proving
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local temporal properties is presented in [60] and applied to compile-time garbage collection in Javacard

programs. (While the aforementioned technique was developed as a verification technique, it can also be

utilized to reduce synchronization overhead, e.g., [64].)

12.6 Extensions

The approach to shape analysis presented in this chapter has been implemented by T. Lev-Ami in a system

called TVLA (three-valued-logic analyzer) [34, 36]. TVLA provides a language in which the user can specify

(a) an operational semantics (via predicates and predicate-update formulas), (b) a control-flow graph for

a program, and (c) a set of 3-valued structures that describe the program’s input. Using this specification,

TVLA builds the corresponding equation system and finds its least fixed point.

The experience gained from building TVLA led to a number of improvements to, and extensions of, the

methods described in this chapter (and in [58]). The enhancements that TVLA incorporates include:

� The ability to declare that certain binary predicates specify functional properties.
� The ability to specify that structures should be stored only at nodes of the control-flow graph that

are targets of backedges.
� An enhanced version of coerce that incorporates some methods that are similar in flavor to relational-

database query-optimization techniques (cf. [63]).
� An enhanced focus algorithm that generalizes the methods of Section 12.4.6.2 to handle focusing on

arbitrary formulas.14 In addition, this version of focus takes advantage of the properties of predicates

that are specified to be functions.
� The ability to specify criteria for merging together structures associated with a program point. This

feature is motivated by the idea that when the number of structures that arise at a given program

point is too large, it may be better to create a smaller number of structures that represent at least

the same set of 2-valued structures. In particular, nullary predicates (i.e., predicates of 0-arity) are

used to specify which structures are to be merged together. For example, for linked lists, the “x-is-

not-null” predicate, defined by the formula nn[x]() = ∃v : x(v), discriminates between structures

in which x points to a list element, and structures in which it does not. By using nn[x]() as the

criterion for whether to merge structures, the structures in which x is NULLare kept separate from

those in which x points to an allocated memory cell.

Further details about these features can be found in [34].

The remainder of this section describes several other extensions of our parametric logic-based analysis

framework that have been investigated; many of these extensions have also been incorporated into TVLA.

12.6.1 Interprocedural Analysis

Several papers have investigated interprocedural shape analysis. In [53] procedures are handled by explic-

itly representing stacks of activation records as linked lists, allowing rather precise analysis of (possibly

recursive) procedures. In [29] procedures are handled by automatically creating summaries of their be-

havior. Abstractions of two-vocabulary structures are used to capture an over-approximation of the relation

that describes the transformation effected by a procedure. In [52] a new concrete semantics for programs

that manipulate heap-allocated storage is presented, which only passes “local” heaps to procedures. A

simplified version of this semantics is used in [54] to perform more modular summarization by only

representing reachable parts of the heap.

14The enhanced focus algorithm may not always succeed.
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12.6.2 Computing Intersections of Abstractions

Arnold et al. [2] considers the problem of computing the intersection (meet) of heap abstractions, namely

the greatest lower bound of two sets of 3-valued structures. This problem turns out to have many appli-

cations in program analysis, such as interpreting program conditions, refining abstract configurations,

reasoning about procedures [29], and proving temporal properties of heap-manipulating programs, either

via greatest-fixed-point approximation over trace semantics or in a staged manner over the collecting se-

mantics. [2] describes a constructive formulation of meet that is based on finding certain relations between

abstract heap objects. The enumeration of those relations is reduced to finding constrained matchings

over bipartite graphs.

12.6.3 Efficient Heap Abstractions and Representations

Manevich et al. [39] addresses the problem of space consumption in first-order state representations by

describing and evaluating two new representation techniques for logical structures. One technique uses

ordered binary decision diagrams (OBDDs) [7]; the other uses a variant of a functional map data structure

[44, 51]. The results show that both the OBDD and functional implementations reduce space consumption

in TVLA by a factor of 4 to 10 relative to the original TVLA state representation, without compromising

analysis time.

Manevich et al. [40] present a new heap abstraction that works by merging shape descriptors according

to a partial isomorphism similarity criterion, resulting in a partially disjunctive abstraction. There it is also

shown that on the existing TVLA examples, the abstract interpretation using this abstraction is drastically

faster than the powerset heap abstraction, practically without a significant loss of precision.

Manevich et al. [41] provide a family of simple abstractions for potentially cyclic linked lists. In particular,

it provides a relatively efficient predicate abstraction that allows verification of programs that manipulate

potentially cyclic linked lists.

12.6.4 Abstracting Numeric Values

In this chapter, we ignore numeric values in programs, so the analysis would be imprecise for programs that

perform numeric computations. [20] presents a generic solution for combining abstractions of numeric

values and heap-allocated storage. This solution has been integrated into a version of TVLA. In [21] a new

abstraction of numeric values is presented, which like canonical abstraction, tracks correlations between

aggregates and not just indices. For example, it can identify loops that perform array-kills (i.e., assign

values to an entire array). In [28] this approach has been generalized to define a family of abstractions (for

relations as well as numeric quantities) that is more precise than pure canonical abstraction and allows

the basic idea from [20] to be applied more widely.

12.6.5 Abstraction Refinement

The model-checking community has had much success with the notion of automatic abstraction refinement,

in which an analyzer is started with a crude abstraction, and the results of analysis runs that fail to establish

a definite answer (about whether the property of interest does or does not hold) are used as feedback about

how the abstraction should be refined [4, 9, 32]. However, the abstract domains used in shape analysis

are based on first-order logic, whereas model-checking tools that use abstraction refinement are based on

predicate-abstraction domains [3, 22].

Abstraction-refinement methods suitable for use with shape-analysis domains were investigated in

[37, 38]. The methods are based on inductive logic programming [47], which is a machine-learning

technique for identifying general rules from a set of observed instances. In [37, 38] this was used to identify

appropriate formulas that define new instrumentation relations (and thereby change the abstraction

in use).
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12.7 Related Work

The shape-analysis problem was first investigated by Reynolds [49], who studied it in the context of a

Lisp-like language with no destructive updating. Reynolds treated the problem as one of simplifying a

collection of set equations. A similar shape-analysis problem, but for an imperative language support-

ing nondestructive manipulation of heap-allocated objects, was formulated independently by Jones and

Muchnick, who treated the problem as one of solving (i.e., finding the least fixed point of) a collection of

equations using regular tree grammars [30].

Jones and Muchnick [30] also began the study of shape analysis for languages with destructive updating.

To handle such languages, they formulated an analysis method that associates program points with sets

of finite shape-graphs.15 To guarantee that the analysis terminates for programs containing loops, the

Jones–Muchnick approach limits the length of acyclic selector paths by some chosen parameter k. All

nodes beyond the “k-horizon” are clustered into a summary node. The Jones–Muchnick formulation has

two drawbacks:

� The analysis yields poor results for programs that manipulate cons-cells beyond the k-horizon.

For example, in the list-reversal program of Figure 12.1, little useful information is obtained. The

analysis algorithm must model what happens when the program is applied to lists of length greater

than k. However, the tail of such a list is treated conservatively, as an arbitrary, and possibly cyclic,

data structure.
� The analysis may be extremely costly because the number of possible shape-graphs is doubly

exponential in k.

In addition to Jones and Muchnick’s work, k-limiting has also been used in a number of subsequent papers

(e.g., Horwitz et al. [25]).

Another well-known shape-analysis algorithm, developed by Chase et al. [8], is based on the following

ideas:

� Sharing information, in the form of abstract heap reference counts (0, 1, and ∞), is used to

characterize shape-graphs that represent list structures.16

� Several heuristics are introduced to allow several shape-nodes to be maintained for each allocation

site.
� For an assignment to x->n , when the shape-node that x points to represents only concrete elements

that will definitely be overwritten, the n-field of the shape-node that x points to can be overwritten

(a so-called strong update).

The Chase–Wegman–Zadeck algorithm is able to identify list-preservation properties in some cases; for

instance, it can determine that a program that appends a list to a list preserves “listness.” However, as noted

in [8], allocation-site information alone is insufficient to determine interesting facts in many programs.

For example, it cannot determine that “listness” is preserved for either the list-insert program or a list-

reversal program that uses destructive-update operations. In particular, in the list-reversal program, the

Chase–Wegman–Zadeck algorithm reports that a possibly cyclic structure may arise, and that the two lists

used by the program might share cells in common (when in fact the two lists are always disjoint).

The parametric framework presented in this paper can be instantiated to implement the Chase–

Wegman–Zadeck algorithm, as well as other shape-analysis algorithms. Furthermore, in Section 12.5.2,

we presented a new algorithm for computing flow dependences using our parametric approach.

For additional discussion of related work, the reader is referred to [57, 58].

15In this section, we use the term shape-graph in the generic sense, meaning any finite graph structure used to

approximate the shapes of runtime data structures.
16The idea of augmenting shape-graphs with sharing information also appears in the earlier work of Jones and

Muchnick [30].
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12.8 Conclusions

Many of the classical data-flow-analysis algorithms use bit vectors to represent the characteristic functions

of set-valued data-flow values. This corresponds to a logical interpretation (in the abstract semantics) that

uses two values. It is definite on one of the bit values and conservative on the other. That is, either “false”

means “false” and “true” means “may be true/may be false,” or “true” means “true” and “false” means

“may be true/may be false.” Many other static-analysis algorithms have a similar character.

Most static analyses have such a one-sided bias; exceptions include data-flow analyses that simultaneously

track “may” and “must” information, for example, [6, 59].

The material presented in this chapter shows that while indefiniteness is inherent (i.e., a static analysis

is unable, in general, to give a definite answer), one-sidedness is not. By basing the abstract semantics on

3-valued logic, definite truth and definite falseness can both be tracked, with the third value, 1/2, capturing

indefiniteness.

This outlook provides some insight into the true nature of the values that arise in other work on static

analysis:

� A one-sided analysis that is precise with respect to “false” and conservative with respect to “true”

is really a 3-valued analysis over 0, 1, and 1/2 that conflates 1 and 1/2 (and uses “true” in place

of 1/2).
� Likewise, an analysis that is precise with respect to “true” and conservative with respect to “false”

is really a 3-valued analysis over 0, 1, and 1/2 that conflates 0 and 1/2 (and uses “false” in place

of 1/2).

In contrast, the analyses developed in this chapter are unbiased: They are precise with respect to both 0

and 1 and use 1/2 to capture indefiniteness. Other work that uses 3-valued logic to develop unbiased

analyses includes [26].

We hope the ideas presented in this chapter (and the TVLA system, which embodies these ideas) will

help readers implement new static-analysis algorithms that identify interesting properties of programs

that make use of heap-allocated data structures.
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13.1 Introduction

This chapter introduces optimization techniques appropriate for object-oriented languages. The topics

covered include object and class layout, method invocation, efficient runtime-type checks, devirtualization

with type analysis techniques, and escape analyses. Object allocation and garbage collection techniques

are also very important for the efficiency of object-oriented programming languages. However, because of

their complexity and limited space, this important topic must unfortunately be omitted. A good reference

is the book by Jones and Lins [18].

Optimization issues relevant to a variety of programming languages, including C++, Java, Eiffel,

Smalltalk, and Theta, are discussed. However, to ensure consistent treatment, all examples have been

converted to Java syntax. When necessary, some liberties with Java syntax, such as true multiple inheri-

tance, have been made.

13-1
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FIGURE 13.1 Single inheritance layout.

13.2 Object Layout and Method Invocation

The memory layout of an object and how the layout supports dynamic dispatch are crucial factors in

the performance of object-oriented programming languages. For single inheritance there are only a few

efficient techniques: dispatch using a virtual dispatch table and direct calling guarded by a type test. For

multiple inheritance many techniques with different compromises are available: embedding superclasses,

trampolines, and table compression.

13.2.1 Single Inheritance

In the case of single inheritance, the layout of a superclass is a prefix of the layout of the subclass.

Figure 13.1 shows the layouts of an example class and subclass. Access to instance variables requires

just one load or store instruction. Adding new instance variables in subclasses is simple.

Invocation of virtual methods can be implemented by a method pointer table (virtual function table,

vtbl). Each object contains a pointer to the virtual method table. The vtbl of a subclass is an extension of

the superclass. If the implementation of a method of the superclass is used by the subclass, the pointer

in the vtbl of the subclass is the same as the pointer in the superclass.

Figure 13.2 shows the virtual tables for the classes Point and ColorPnt defined as follows:

class Point {
int x, y;
void move(int x, int y) {...}
void draw() {...}
}

class ColorPnt extends Point {
int color;
void draw() {...}
void setcolor(int c) {...}
}
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FIGURE 13.2 Single inheritance layout with virtual method table.
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Each method is assigned a fixed offset in the virtual method table. Method invocation is just three

machine code instructions (two load instructions and one indirect jump):

LD vtblptr,(obj) ; load vtbl pointer
LD mptr,method(vtblptr) ; load method pointer
JSR (mptr) ; call method

Dynamic dispatching using a virtual method table has the advantage that it is fast and executes in

constant time. It is possible to both add new methods and override old ones. One extra word of memory

is needed for every object. On modern architectures, load instructions and indirect jumps are expensive.

Therefore, Rose [25] suggested fat dispatch tables, where the method code is directly placed in the virtual

method table eliminating one indirection. The problem with fat dispatch tables is that the offsets for

different method implementations must be the same. Either memory is wasted or large methods must

branch to overflow code.

13.2.2 Multiple Inheritance

While designing multiple inheritance for C++, Stroustrup also proposed different implementation strate-

gies [29]. Extending the superclasses as in single inheritance does not work anymore. The fields of

the superclass are embedded as a contiguous block. Figure 13.3 demonstrates embedding for the class

ColorPnt , which is defined as follows:

class Point {
int x, y;
}

class Colored {
int color;
}

class ColorPnt extends Point, Colored {}

Embedding allows fast access to instance variables exactly as in single inheritance. The object pointer is

adjusted to the embedded object whenever explicit or implicit pointer casting occurs (assignments, type

casts, parameter and result passing). Pointer adjustment has to be suppressed for casts of null pointers:

Colored col;
Colorpoint cp;
col = cp; // col=cp; if (cp!=null) col=(Colored)((int*)cp+2)

In C++ the pointer adjustments break if type casts outside the class hierarchy are used (e.g., casting

to void* ). Garbage collection becomes more complex because pointers also point into the middle of

objects.

Dynamic dispatching also can be solved for embedding. For every superclass, virtual method tables have

to be created, and multiple vtbl pointers are included in the object. A problem occurs with implicit casts
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from the actual receiver to the formal receiver. The caller does not know the type of the formal receiver

in the callee, and the callee does not know the type of the actual receiver of the caller. Therefore, this

type information has to be stored as an adjustment offset in the virtual method table. Given the following

definition for the class ColorPnt , the virtual tables are organized as shown in Figure 13.4.

class Point {
int x, y;
void move(int x, int y) {...}
void draw() {...}
}

class Colored {
int color;
void setcolor(int c) {...}
}

class ColorPnt extends Point, Colored {
void draw() {...}
}

Method invocation now requires four to five machine instructions, depending on the computer

architecture:

LD vtblptr,(obj) ; load vtbl pointer
LD mptr,method_ptr(vtblptr) ; load method pointer
LD off,method_off(vtblptr) ; load adjustment offset
ADD obj,off,obj ; adjust receiver
JSR (mptr) ; call method

This overhead in table space and program code is even necessary when multiple inheritance is not used.

Furthermore, adjustments to the remaining parameters and the result are not possible. A solution that

eliminates much of the overhead is to insert a small piece of code called a trampoline that performs the

pointer adjustments and then jumps to the original method. The advantages are a smaller table (no storing

of an offset) and fast method invocation when multiple inheritance is not used (the same dispatch code as
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in single inheritance). In the example of Figure 13.4, the setcolorptr method pointer in the virtual

method table of Colorpoint would point to code that adds three to the receiver before jumping to the

code of method setcolor :

ADD obj,3,obj ; adjust receiver
BR setcolor ; call method

When instance variables of common superclasses need to be shared, the offset of each such variable has

to be stored in the virtual method table. Each access to a shared variable then incurs an additional penalty

of loading and adding the appropriate offset.

13.2.3 Bidirectional Object Layout

The programming language Theta [21], like Java, uses single inheritance with multiple subtyping. For

this language, Myers proposed a bidirectional object layout and showed how the bidirectional layout rules

can be extended to support true multiple implementation inheritance [22]. The idea behind bidirectional

layout is that data structures can be extended in two directions and information can be shared in a way that

leads to less indirection and smaller memory usage. Both the object and virtual method table extend in

both directions. The object contains the instance variable fields, the pointer to the object’s virtual method

table, with and, at negative offsets of, the pointer to the interface method tables. The method dispatch

tables also extend in both directions. The superclass information fields are in the middle of the tables, and

subclass fields are at both ends of the tables. Figure 13.5 shows the object and method table layout scheme.

The key to the efficiency of the bidirectional layout is the merging of interface and class headers.

Determining an optimal layout is not feasible; therefore, a heuristic is used. The details of the algorithm

can be found in the original article by Myers [22].

Given classes C1 and C2 defined as follows, the bidirectional layout scheme would be as shown in

Figure 13.6.

interface A { interface B extends A {
int a1() {...} int b1() {...}
int a2() {...} }
}

class C1 implements A { class C2 implements B {
int v1; int v2;
int a1() {...} int a2() {...}
int a2() {...} int b1() {...}
int c1() {...} int c2() {...}
} }

As Figure 13.6 shows, the bidirectional layout reduces object and vtbl sizes. No additional dispatch

headers and method tables are needed.
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In a large C++ library with 426 classes, bidirectional layout only needs additional dispatch headers in 27

classes with a maximum of 4 dispatch headers compared with 54 classes with more than 7 dispatch headers.

Zibin and Gil [34] describe a space optimal two-dimensional bidirectional object layout scheme for

languages that support multiple inheritance. Their scheme has similarities to the work of Myers (above)

and Pugh and Weddell [23]. Instead of using pointer adjustments as presented in Section 13.2.2, the fields

of an object are accessed using an additional indirection. The fields are organized in a set of bidirectional

layers. In the canonical format, all layers are accessed via the layer dispatch table, which contains pointers

to all layers. In the compact format, the first layer is accessed directly. The first layer contains a pointer to

the layer dispatch table. Here the dispatch table contains offsets to the layers, which makes it possible to

share the same dispatch table for all objects of the same type. Experiments show that the field access

efficiency is always better than with the standard C++ layout model.

13.2.4 Dispatch Table Compression

Invoking a method in an object-oriented language requires looking up the address of the block of code that

implements that method and passing control to it. In some cases, the lookup may be performed at compile

time. Perhaps there is only one implementation of the method in the class and its subclasses; perhaps

the language has provided a declaration that forces the call to be nonvirtual; perhaps the compiler has

performed a static analysis that can determine that a unique implementation is always called at a particular

call site. In other cases, a runtime lookup is required.

In principle, the lookup can be implemented as indexing a two-dimensional table. Each method name

in the program can be given a number, and each class in the program can be given a number. Then the

method call:

result = obj.m(a1,a2);

can be implemented by these three actions:

� Fetch a pointer to the appropriate row of the dispatch table from the obj object.
� Index the dispatch table row with the method number.
� Transfer control to the address obtained.

Note that if two classes C1 and C2 are not related by an ancestor relationship or do not have a subclass in

common (because of multiple inheritance), and if the language is strongly typed (as with C++ and Java),

then the numbers assigned to the methods of C1do not have to be disjoint from the numbers used for the

methods of C2.

The standard implementation of method dispatch in a strongly typed language such as C++ using

a virtual table (vtbl) may be seen to be equivalent. Each virtual table implements one row of the two-

dimensional dispatch table.
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The size of the dispatch table (or of all the virtual tables summed together) can be appreciable.

As reported in [31], the dispatch table for the ObjectWorks Smalltalk class library would require

approximately 16 MB if no compression were to be performed. In this library, there are 776 classes

and 5,325 selectors (i.e., method names).

For a statically typed language, virtual tables provide an effective way to compress the dispatch table

because all entries in each virtual table are used. For a dynamically typed language, such as Smalltalk,

any object can in principle be invoked with any method name. Most methods are not implemented, and

therefore most entries in the dispatch table can be filled in with the address of the “not implemented”

error reporting routine. The table for dynamically typed languages therefore tends to be quite sparse, and

that is a property that can be exploited to achieve table compression.

A second property possessed by the dispatch tables for both statically and dynamically typed languages

is that many rows tend to be similar. When a subclass is defined, only some of the methods in the parent

class are normally redefined. Therefore, the rows for these two classes would have identical entries for all

except the few redefined methods.

Both properties are also possessed by LR parser tables, and there has been considerable research into

compressing such tables. A comprehensive survey of parse table compression is provided by Dencker et al.

[12]. It should not be surprising that two of the most effective techniques for compressing static dispatch

tables have also been used for parse table compression.

13.2.4.1 Virtual Tables

Virtual tables provide an effective implementation of the dispatch table for statically typed languages.

Because methods can be numbered compactly for each class hierarchy to leave no unused entries in each

virtual table, a good degree of compression is automatically obtained. For the ObjectWorks example used

in [31], if virtual tables could be used (they cannot), the total size of the dispatch tables would be reduced

from 16 MB to 868 KB.

13.2.4.2 Selector Coloring Compression

This is a compression method based on graph coloring. Two rows of the dispatch table can be merged if no

column contains different method addresses for the two classes. (An unimplemented method corresponds

to an empty entry in the table.) The graph is constructed with one node per class, and an edge connects

two nodes if the corresponding classes provide different implementations for the same method name. A

heuristic algorithm may then be used to assign colors to the nodes so that no two adjacent nodes have

the same color, and the minimal number of distinct colors is used. (Heuristics must be used in practice

because graph coloring is an NP-complete problem.) Each color corresponds to the index for a row in the

compressed table.

Note: A second graph coloring pass may be used to combine columns of the table.

Implementation of the method invocation code does not need to change from that given earlier. Each

object contains a reference to a possibly shared row of the dispatch table. However, if two classes C1 and

C2 share the same row and C1 implements method m whereas C2 does not, then the code for m should

begin with a check that the control was reached via dispatching on an object of type C1. This extra check

is the performance penalty for using table compression.

For the ObjectWorks example, the size of the dispatch table would be reduced from 16 to 1.15 MB. Of

course, an increase occurs in code size to implement the checks that verify the correct class of the object.

That increase is estimated as close to 400 KB for the ObjectWorks library.

13.2.4.3 Row Displacement Compression

The idea is to combine all the rows of the dispatch table into a single very large vector. If the rows are

simply placed one after the other, this is exactly equivalent to using the two-dimensional table. However,

it is possible to have two or more rows overlapping in memory as long as an entry in one row corresponds

to empty entries in the other rows.
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A simply greedy algorithm works well when constructing the vector. The first row is placed at the

beginning of the vector; then the second row is aligned on top of the first row and tested to see if a

conflicting entry exists. If there is a conflict, the row is shifted one position to the right and the test is

repeated and so on until a nonconflicting alignment is found.

Implementation of the method invocation code is again unchanged. As before, a test to verify the class of

the current object must be placed at the beginning of any method that can be accessed via more than one row

of the dispatch table. For the ObjectWorks example, the size of the dispatch table would be reduced from

16 MB to 819 KB, with the same 400 KB penalty for implementing checks in methods to verify the class.

13.2.4.4 Partitioning

It is pointed out in [31] that good compression combined with fast access code can be achieved by breaking

dispatch tables into pieces. If two classes have the same implementations for 50 methods, for instance,

and different implementations for just 5 methods, we could have a single shared dispatch table for the

common methods plus two separate but small tables for the 5 methods where implementations differ. The

partitioning approach generalizes this insight by allowing any number of partitions to be created.

For each method, the compiler must predetermine its partition number within the owning class and

its offset within a partition table. The method lookup code requires indexing the class top-level table with

the method partition number to obtain a pointer to the partition table and then indexing that partition

table with the method offset.

To keep the access code as efficient as possible, the partitioning should be regular. That is, each class

must have the same number of partitions, and all partitions accessed via the same offset in each class table

must have the same size.

The partitioning approach advocated by Vitek and Horspool proceeds in three steps [31]. First, the

compiler divides the method selectors into two sets: one set contains the conflict selectors that are imple-

mented by two classes unrelated by inheritance, and the other set contains all other method selectors. Two

separate dispatch tables are created for the two sets of methods.

Second, two columns in a table may be combined if no two classes provide different implementations

for the two methods. Merging columns may be performed using graph coloring heuristics to achieve the

best results.

Third, and finally, the two tables are divided into equal-sized partitions, and any two partitions that

are discovered to have identical contents are shared. It is possible to use two partition sizes for splitting

the two tables. Although a clever reordering of the columns might increase the opportunities for partition

table sharing, good results are achieved without that extra work.

Vitek and Horspool report that a partition size of 14 entries gave good results with the ObjectWorks

library [31]. The total size of all the tables came to 221 KB for the library, with a penalty for increased code

size of less than 300 KB.

13.2.5 Java Class Layout and Method Invocation

Java and the programming language Theta do not implement multiple inheritance, but implement single

inheritance with multiple subtyping. This important difference makes object layout and method dispatch

more efficient. Although the bidirectional layout was designed for a language with multiple subtyping, it

has the problem that more than one vtbl pointer has to be included in objects. The CACAO JIT compiler

[19] moves the dispatch header of the bidirectional layout into the class information with negative offsets

from the vtbl. For each implemented interface a distinct interface vtbl exists. Unimplemented interfaces

are represented by null pointers. An example of the layout used by CACAO is shown in Figure 13.7.

To call a virtual method, two memory access instructions are necessary (load the class pointer, load

the method pointer) followed by the call instruction. Calling an interface method needs an additional

indirection.

In the faster scheme, we store interface methods in an additional table at negative offsets from the

vtbl, as shown in Figure 13.8. Segregating the interface virtual function table keeps the standard virtual
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function table small and allows interface methods to be called with just two memory accesses. The memory

consumption of virtual function tables containing interface and class methods would be number of

(classes + interfaces) × number of distinct methods. The memory consumption of the interface tables

is only number of classes that implement interfaces × number of interface methods. Coloring can be used to

reduce the number of distinct offsets for interface methods further but complicates dynamic class loading,

leading to renumbering and code patching.

The Jalapeno virtual machine (VM) implements an interface method invocation similar to the fast class

descriptor layout of CACAO; however, instead of coloring, hashing of the method indices is used [4]. The

table for the interface method pointers is allocated with a fixed size much smaller than the number of

interface methods. When two method indices hash to the same offset, a conflict resolving stub is called

instead of the interface methods directly. For conflict resolution the stub is passed to the method index

in a scratch register as additional argument. An interface method invocation can be executed with the

following four machine instructions:

LD vtblptr,(obj) ; load vtbl pointer
LD mptr,hash(method_ptr)(vtblptr) ; load method pointer
MV mindex,idreg ; load method index
JSR (mptr) ; call method (or conflict stub)

The number of machine instructions is the same as in the compact class descriptor layout of CACAO,

but the indirection is eliminated, which reduces the number of cycles needed for the execution of this
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FIGURE 13.8 CACAO object and fast class descriptor layout.
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instruction sequence on a pipelined architecture. Compared with the old interface method invocation

in the Jalapeno VM, which searched the superclass hierarchy for a matching method signature, the new

method yields runtimes that range from a 1% reduction in speed to a 51% speedup.

13.2.6 Dispatch without Virtual Method Tables

Virtual method tables are the most common way to implement dynamic dispatch. Despite the use of

branch target caches and similar techniques, indirect branches are expensive on modern architectures.

The SmallEiffel compiler [33] uses a technique similar to polymorphic inline caches [16]. The indirect

branch is replaced by a binary search for the type of the receiver and a direct branch to the method or the

inlined code of the method.

Usually an object contains a pointer to the class information and the virtual method table. SmallEiffel

replaces the pointer by an integer representing the type of the object. This type identifier is used in a

dispatch function that searches for the type of the receiver. SmallEiffel uses a binary search, but a linear

search weighted by the frequency of the receiver type would also be possible. The dispatch functions are

shared between calls with the same statically determined set of concrete types. Assuming that the type

identifiers TA, TB, TC, and TD are sorted by increasing number, the dispatch code for calling x.f is:

if id x ≤ TB then
if id x ≤ TA then f A(x)
else f B(x)

else if id x ≤ TC then f C(x)
else f D(x)

Obviously, the method calls are inlined when the code is reasonably small. An empirical evaluation showed

that for a method invocation with three concrete types, dispatching with binary search is between 10 and

48% faster than dispatching with a virtual method table. For a megamorphic call with 50 concrete types,

the performance of the two dispatch techniques is about the same. Dispatch without virtual method calls

cannot be used easily in a language with dynamic class loading (e.g., Java). Either the code has to be patched

at runtime, or some escape mechanism is necessary.

13.3 Fast Type Inclusion Tests

In a statically typed language, an assignment may require a runtime test to verify correctness. For example,

if class B is a subclass of A, the assignment to b in the following Java code:

A a = new B();
... // intervening code omitted
B b = a;

needs validation to ensure that a holds a value of type B (or some subclass of B) instead of type A. Usually

that validation can be a runtime test.

Java also has an explicit instanceof test to check whether an object has the same type or is a subtype

of a given type. Other object-oriented languages have similar tests. Static analysis is not very effective in

eliminating these tests [13]. Therefore, efficient runtime type checking is very important.

The obvious implementation of a type inclusion test is for a representation of the class hierarchy graph

to be held in memory and that graph to be traversed, searching to see whether one node is an ancestor of

the other node. The traversal is straightforward to implement for a language with single inheritance and

less so for multiple inheritance. However, the defect with this approach is that the execution time of the test

increases with the depth of the class hierarchy. Small improvements are possible if one or two supertypes

are cached [28].
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13.3.1 Binary Matrix Implementation

Given two types,c1 andc2, it is straightforward to precompute a binary matrix that is indexed by numbers

associated with the two types BM[c1, c2] to determine whether one type is a subtype of the other.

Accessing an entry in the binary matrix requires only a few machine instructions, but the matrix can be

inconveniently large, perhaps hundreds of kilobytes in size. Compaction of the binary matrix is possible,

but that makes the access code more complicated.

13.3.2 Cohen’s Algorithm

Cohen [10] adapted the notion of a display table (used for finding frames in block structured programming

languages). Cohen’s idea applies to languages with single inheritance, so that the class hierarchy graph is

a tree.

Each type has a unique type identifier, tid, which is simply a number. A runtime data structure records

the complete path of each type to the root of the class as a vector of type identifiers. The tid in, for instance,

position three of that vector would identify the ancestor at level 3 in the class hierarchy.

If the compiler has to implement the test:

if (obj instanceof C) ...

then the level and type identifier for class Care both constants, C level and C tid , determined by the

compiler. The steps needed to implement the test are simply

level := obj.level;
if level < C_level then

result := false
else

result := (obj.display[C_level] = C_tid)

Cohen’s algorithm is easy to implement, requires constant time for lookups, and uses little storage.

However, it works only for single inheritance hierarchies. Extending the algorithm to work with multiple

inheritance hierarchies is not trivial.

13.3.3 Relative Numbering

A well-known algorithm for testing whether one node is an ancestor of another in a tree works by associating

a pair of integers with each node. An example tree and the numbering are shown in Figure 13.9.

To test whether node n1 is a descendant of n2 (or equal), the test is implemented as

n1.left ≤ n2.left and n1.right ≥ n2.right

where the two numbers associated with a node are named left and right.

{1,4}

{3,4}

{4,4}{3,3}{1,1}

{1,2}

E

A

D

B C

F

FIGURE 13.9 Relative numbering for a hierarchy.
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The scheme is simple and efficient. It is probably the method of choice for implementing the subtype

test for single inheritance hierarchies. Extension of the idea to multiple inheritance hierarchies was a long

time coming, but has now been achieved by Gil and Zibin. Their scheme is known as PQ-encoding [14]

and is explained in a following section.

13.3.4 Hierarchical Encoding

With hierarchical encoding, a bit vector is associated with each type. Each bit vector implements a compact

set of integers. The test of whether type t1 is a subclass of t2 is implemented as the subset test t2.vector
⊆ t1.vector . The approach works with multiple inheritance hierarchies.

A simple way to implement the bit vectors is to number all the nodes in the class hierarchy graph. The

bit vector for node n represents the set of all the integers associated with n and the ancestors of n. That

yields correct but unnecessarily large vectors.

Caseau [8], Aı̈t-Kaci et al. [3], and Krall et al. [20] provide algorithms for constructing much smaller bit

vectors. The algorithms are, however, computationally expensive and would need to be reexecuted after

even a small change to the class hierarchy.

13.3.5 More Algorithms

Vitek et al. [32] describe three more type test algorithms that they call packed encoding, bit-packed encoding,

and compact encoding. All three perform worse than hierarchical encoding if the total size of the data tables

is used as the only criterion. However, these algorithms are much faster and are therefore more suitable

for an environment where the class hierarchy may be dynamically updated, as with Java or Smalltalk, for

example.

13.3.6 Partitioning the Class Hierarchy

Because type tests for trees are more (space) efficient than type tests for direct acyclic graphs (DAGs), a

possible solution is to split a DAG into a tree part and the remaining graph. For languages with single

inheritance and multiple subtyping, this partitioning of the class hierarchy is already done in the language

itself.

CACAO uses a subtype test based on relative numbering for classes and a kind of matrix implementation

for interfaces. Two numbers low and high are stored for each class in the class hierarchy. A depth-first

traversal of the hierarchy increments a counter for each class and assigns the counter to the low field when

the class is first encountered and assigns the counter to the high field when the traversal leaves the class. In

languages with dynamic class loading, a renumbering of the hierarchy is needed whenever a class is added.

A class sub is a subtype of another class super if super.low ≤ sub.low ≤ super.high. Because a range check is

implemented more efficiently by an unsigned comparison, CACAO stores the difference between the low

and high values and compares it against the difference between the low values of both classes. The code

for instanceof looks similar to:

return( unsigned)(sub->vftbl->baseval - super->vftbl->baseval)
<= ( unsigned)(super->vftbl->diffval);

Figure 13.10 shows an example hierarchy using baseval and diffval pairs. For leaf nodes in the

class hierarchy the diffval is 0, which results in a faster test (a simple comparison of the baseval
fields of the sub- and superclass). In general, a just-in-time (JIT) compiler can generate the faster test only

for final classes. An ahead-of-time (AOT) compiler or a JIT compiler that does patching of the already

generated machine code may also replace both the baseval and the diffval of the superclass by a

constant. Currently, CACAO uses constants only when dynamic class loading is not used.

CACAO stores an interface table at negative offsets from the virtual method table (as seen in

Figure 13.7). This table is needed for the invocation of interface methods. The same table is also used
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FIGURE 13.10 Relative numbering with baseval and diffval pairs.

by the subtype test for interfaces. If the table is empty for the index of the superclass, the subtype test fails.

The code for instanceof looks similar to

return (sub->vftbl->interfacetable[-super->index] != NULL);

Both subtype tests can be implemented by just a few machine code instructions without using branches

that are expensive on modern processors.

13.3.7 PQ-Encoding

An observation made by Gil and Zibin [14] is that a minor generalization to the relative numbering scheme

enables it to handle many multiple inheritance hierarchies. The example from their paper is shown in

Figure 13.11. In this hierarchy, class C has two parents, A and B, and so on.

Each class in the hierarchy has three associated integers: L, R, and id. The L and R numbers represent a

range [L, R], analogous to the relative numbering scheme. If we wish to test whether class C1 is a subtype

of class C2, we would perform the following test:

C1.id ≥ C2.L and C1.id ≤ C2.R

Like the relative numbering scheme, this test requires a small fixed number of instructions.

Unfortunately, it is not always possible to find L, R, and id numbers that work for an arbitrary multiple

inheritance hierarchy. However, Gil and Zibin recognized that the PQ-encoding scheme could be used for

most nodes in the hierarchy and that the exceptional cases would be relatively uncommon. Their solution

solves the problem as a number of slices. The first slice is a PQ-encoding solution, like that shown in

Figure 13.11, where as many nodes as possible in the hierarchy are handled. The second slice is another

PQ-encoding solution that handles as many nodes as possible of those that were not handled by the

first slice, and so on. The number of slices needed for even the most complicated multiple inheritance

hierarchies found in practice is small.
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FIGURE 13.11 PQ-encoding for a multiple inheritance hierarchy.
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FIGURE 13.12 A two-slice PQ-encoding for a multiple inheritance hierarchy.

Figure 13.12 shows a one-node addition to the previous hierarchy, which makes it impossible to find a

correct PQ-encoding.

The PQ-encoding solution for this hierarchy requires two slices. Each class in the hierarchy now has

three integers plus a list of integers associated with it. The first two integers, L and R, represent a range as

before. The third integer, S, represents the slice to which that class belongs. Finally, ids is a list of integers,

providing an id number for each slice. The test to determine whether class C1 is a subclass of C2 can now

be implemented as follows:

C1.ids[C2.S] ≥ C2.L and C1.ids[C2.S] ≤ C2.R

In this code, C2.S specifies the slice to which node C2 belongs; then the expression C1.ids[C2.S]
gives the id number for node C1 in that slice.

As Gil and Zibin admit, their algorithm for constructing the slices and determining the L, R, and id

numbers in each slice is not incremental. If the hierarchy changes because of dynamic class loading, it is

necessary to rerun the algorithm from scratch. However, the same is true of most of the type inclusion test

implementations described in this chapter. The major advantage of the multislice PQ-encoding scheme is

that it requires the least amount of data compared to all the other approaches, while being a (very fast)

constant-time test.

13.4 Devirtualization

Devirtualization is a technique to reduce the overhead of virtual method invocation in object-oriented

languages. The aim of this technique is to statically determine which methods can be invoked by virtual

method calls. If exactly one method is resolved for a method call, the method can be inlined or the virtual

method call can be replaced by a static method call. The analyses necessary for devirtualization also improve

the accuracy of the call graph and the accuracy of subsequent interprocedural analyses. We first discuss

different type analysis algorithms, comparing their precision and complexity. Then different solutions for

devirtualization of extensible class hierarchies and similar problems are presented.

13.4.1 Class Hierarchy Analysis

The simplest devirtualization technique is class hierarchy analysis (CHA), which determines the class

hierarchy used in a program. A Java class file contains information about all referenced classes. This

information can be used to create a conservative approximation of the class hierarchy. The approximation

is formed by computing the transitive closure of all classes referenced by the class containing the main

method. A more accurate hierarchy can be constructed by computing the call graph [11]. CHA uses the

declared types for the receiver of a virtual method call for determining all possible receivers.
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FIGURE 13.13 Class hierarchy and call graph.

As an example, Figure 13.13 shows the class hierarchy and call graph that correspond to the following

fragment of Java code:

class A extends Object {
void m1() {...}
void m2() {...}
}

class B extends A {
void m1() {...}
}

class C extends A {
void m1() {...}
public static void main(...) {

A a = new A();
B b = new B();

a.m1(); b.m1(); b.m2();
}

}

Informally, CHA collects all methods in the call graph in a work list of methods. This work list is initialized

with the main method. To this work list is added every method that is inherited by a subtype of the

declared type of a virtual method call in the body of each method in the work list. The algorithm given in

Figure 13.14 gives the computation of the class hierarchy and call graph in more detail.

13.4.2 Rapid Type Analysis

A more accurate class hierarchy and call graph can be computed if the type of the receiver can be determined

more precisely than the declared type specifies. Rapid type analysis (RTA) uses the fact that a method m
of a class c can be invoked only if an object of type c is created during the execution of a program [5, 6].

RTA refines the class hierarchy by only including classes for which objects can be created at runtime. The

pessimistic algorithm includes all classes in the class hierarchy for which instantiations occur in methods

of the call graph from CHA.

The optimistic algorithm initially assumes that no methods besides main are called and that no objects

are instantiated. It traverses the call graph, initially ignoring virtual calls (only marking them in a class
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/* Notation:
main -- the main method in a program
x ( ) -- call of static method x
type (x) -- the declared type of the expression x
x. y () -- call of virtual method y in expression x
subtype (x) -- x and all classes which are subtypes of x
method (x, y) -- the method y which is defined for class x

*/
callgraph := main
hierarchy := { }
for each m in callgraph do

for each ms tat ( ) occurring in m do

if ms tat not in callgraph then

add ms tat to callgraph

for each e.mvir ( ) occurring in m do

for each c in subtype ( type ( e)) do

mde f := method ( c , mvir )

if mde f not in callgraph then

add mde f to callgraph

add c to hierarchy

FIGURE 13.14 Class hierarchy analysis.

mapping as a potential call) and following static calls only. When the instantiation of an object is found

during the analysis, all virtual methods of the corresponding class that were left out previously are then

traversed as well. The live part of the call graph and the set of instantiated classes grow interleaved as the

algorithm proceeds.

Figure 13.15 shows the rapid type analysis algorithm.

13.4.3 Other Fast Precise-Type Analysis Algorithms

Tip and Palsberg [30] evaluated different algorithms that are more precise but are on average only a factor

of five slower than RTA. The different type analysis algorithms differ primarily in the number of sets of

types used. RTA uses one set for the whole program. 0-Control flow analysis (CFA) [15, 26] uses one set per

expression. k–l-CFA makes separate analyses for k levels of method invocations and uses more than one set

per expression. These algorithms have high computational complexity and only work for small programs.

Therefore, Tip and Palsberg evaluated the design space between RTA and 0-CFA [30] by proposing and

comparing three analysis algorithms which they name XTA, MTA, and FTA.

XTA uses a distinct set for each field and method of a class, fast type analysis (FTA) uses one set for all

fields and a distinct set for every method of a class, and MTA uses one set for all methods and a distinct set

for every field of a class. Arrays are modeled as classes with one instance field. All algorithms use iterative

propagation-based flow analysis to compute the results. Three work lists are associated with each method

or field that keeps track of processed types. New types are propagated to the method or field in the current

iteration and can be propagated onward in the next iteration. Current types can be propagated onward in

the current iteration. Processed types have been propagated onward in previous iterations.

Tip and Palsberg efficiently implemented the type sets using a combination of array-based and hash-

based data structures to allow efficient membership tests, element additions, and iterations over all elements

[30]. Type inclusion is implemented by relative numbering. These techniques are necessary because the

type sets are filtered by the types of fields, method parameters, and method return types. Additionally,

type casts restricting return types are used for filtering.
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/* Notation:
main -- the main method in a program
new x -- instantiation of an object of class x
marked (x) -- marked methods of class x
x ( ) -- call of static method x
type (x) -- the declared type of the expression x
x.y ( ) -- call of virtual method y in expression x
subtype (x) -- x and all classes which are subtypes of x
method (x, y) -- the method y which is defined for class x
mark (m, x) -- mark method m in class x

*/
callgraph := main

hierarchy := { }
for each m in callgraph do

for each new c occurring in m do

if c not in hierarchy then

add c to hierarchy

for each mmar k in marked (c) do

add mmar k to callgraph

for each ms tat () occurring in m do

if ms tat not in callgraph then

add ms tat to callgraph

for each e.mvir ( ) occurring in body ( m) do

for each c in subtype ( type ( e)) do

mde f : = method c, mvir )

if mde f not in callgraph then

if c not in hierarchy then

mark ( mde f , c)

else

add mdef do callgraph

FIGURE 13.15 Rapid type analysis.

All these algorithms are more precise than RTA. On the range of Java benchmark programs (benchmark

code only), MTA computes call graphs with 0.6% fewer methods and 1.6% fewer edges than RTA. FTA

computes call graphs with 1.4% fewer methods and 6.6% fewer edges than RTA. XTA computes call

graphs with 1.6% fewer methods and 7.2% fewer edges than RTA. All algorithms are about five times as

slow as RTA. Therefore, XTA has the best precision and performance trade-off of the three algorithms

compared.

13.4.4 Variable Type Analysis

RTA is imprecise because every type that is instantiated somewhere in the program and is a subtype of

the declared type can be the receiver of a method invocation. Variable type analysis (VTA) is more precise

because it computes reaching type information, taking into consideration chains of assignments between

instantiations and method invocations [27], but it does ignore type casts. It is a flow-insensitive algorithm

that avoids iterations over the program. The analysis works by constructing a directed type propagation

graph where nodes represent variables and edges represent assignments. Reaching type information is

initialized by object instantiations and propagated along the edges of the type propagation graph.
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The type propagation graph is constructed from the classes and methods contained in the conservative

call graph. For every class c and for every field f of c that has a reference type, a node c.f is created.

Additionally for every method c .m and:

� For every formal parameter p (including this) of c.m that has a reference type, create a node c.m.p.
� For every local variable l of c.m that has a reference type, create a node c.m.l.
� If c.m returns a reference type, create a node c.m.ret.

After the nodes are created, for every assignment of reference types an edge is added to the graph. As-

signments are either explicit assignments of local variables or object fields or assignments resulting from

passing of parameters or returning a reference value. Native methods are handled by summarizing their

effects on the analysis.

To avoid alias analysis, all variable references and all their aliases are represented by exactly one node.

In Java, locals and parameters cannot be aliased. All instances of a field of a class are represented by one

node. Arrays can introduce aliasing. Different variables can point to the same array. Therefore, if both

sides of an assignment are of type Object or if at least one side is an array type, edges in both directions

are added.

Type propagation is accomplished in two phases. The first phase detects strongly connected components

in the type propagation graph. All nodes of a strongly connected component are collapsed into one

supernode. The type of this supernode is the union of the types of all its subnodes. The remaining graph is

a DAG. Types are propagated in a topological order where a node is processed after all its predecessors have

been processed. The complexity of both strongly connected component detection and type propagation

is linear in the maximum of the number of edges and nodes. The most expensive operation is the union

of type sets.

The algorithm does no killing of types on casts or declared types. An algorithm using declared type

information would be more precise, but collapsing of strongly connected components would not be pos-

sible anymore. Impossible types are filtered after type propagation has been finished. Over the set of

Java benchmarks (the benchmark code only), VTA computes call graphs with 0.1 to 6.6% fewer meth-

ods and 1.1 to 18% fewer edges than RTA. For the set of Java applications (including the libraries),

VTA computes call graphs with 2.1 to 20% fewer methods and 7.7 to 27% fewer edges than RTA.

The implementation is untuned and written in Java. The performance numbers indicate that the al-

gorithm scales linearly with the size of the program (54 sec for 27,570 instructions, 102 sec for 55,468

instructions).

13.4.5 Cartesian Product Algorithm

Agesen [2] developed a type analysis algorithm called the Cartesian product algorithm (CPA), in which a

method is analyzed separately for every combination of argument types (Cartesian product of the argument

types). For example, a method with two arguments, where the first argument can be of type Int and Long
and the second argument can be of type Float and Double , can result in four different analyses with

argument types (Int, Float) , (Long, Float) , (Int, Double) , and (Long, Double) .

For better precision, CPA computes the needed analyses lazily. Only argument type combinations that

occur during program analysis are analyzed. The return type of a method is the union of the return types

of the different analyses for a specific method invocation.

CPA is precise in the sense that it can analyze arbitrary deep call chains without loss of precision. CPA

is efficient, because redundant analysis is avoided. However, megamorphic call sites, where the method

has many arguments and an argument has a high number of different types, can lead to long analysis

times. Therefore, Agesen restricted the number of different types for an argument and combined the

analyses if the number exceeded a small constant. The bounded CPA scales well for bigger programs

too.
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13.4.6 Comparisons and Related Work

Grove et al. investigated the precision and complexity of a set of type analysis algorithms [15]. They

implemented a framework where different algorithms can be evaluated. They evaluated RTA, the bounded

CPA, and different levels of k–l-CFA. CPA gives more accuracy than 0-CFA with reasonable computation

times. The higher levels of k–l-CFA cannot be used for large applications.

CHA and RTA have the same time complexity, but RTA always produces more accurate results. The

results for XTA and VTA cannot be compared directly, since different programs are used for benchmarking,

and the implementation of VTA was not done for performance. It can be estimated that the running time

for the algorithms will be similar, but VTA may produce more accurate results. 0-CFA is more accurate

than the other algorithms at slightly higher analysis costs.

Qian and Hendren [24] did a limit study and compared dynamic CHA and VTA with an ideal type

analysis based on efficient call graph profiling using the Jikes Research Virtual Machine (JikesRVM) as a

testbed. The ideal type analysis logs the call targets of each virtual method call during the first benchmark

run and determines all monomorphic method invocations. The logged information is used in subsequent

benchmark runs to compare the inlining results of other analyses against the ideal one.

Qian and Hendren developed a common dynamic type analysis framework for method inlining in the

JikesRVM. The framework supports speculative inlining with invalidations. Since the framework is written

in Java, the data structures impose more work on the garbage collector. VTA analysis increases the live

data by 60% for the javac benchmark program.

Already the simple CHA comes close to the ideal type analysis for virtual method calls but misses some

inlining opportunities for interface calls. Dynamic VTA is as effective as the ideal type analysis for interface

calls, leading to speedups between 0.6 and 2.1% over CHA.

13.4.7 Inlining and Devirtualization Techniques

Ishizaki et al. [17] point out that straightforward devirtualization may have little effect on the perfor-

mance of Java programs. Because Java is strongly typed, a vtbl can be used for dispatching. Devirtual-

izing simply removes the lookup in the vtbl, and that is not significant compared with the other costs

of calling a method. Significant performance gains only arise if the devirtualized method is inlined at

the call site; many opportunities for devirtualization are lost in any case because Java has dynamic class

loading.

Ishizaki et al. [17] propose a technique based on code patching that allows methods to be inlined and

inlining to be removed if dynamic class loading subsequently requires the method call to be implemented

by the normal vtbl dispatching again. Their code patching technique avoids any need to recompile the code

of the caller.

An example can make the idea clear. Suppose that the program to be compiled contains the following

Java statements:

i = i + 1;
obj.meth(i,j);
j = j-1;

The compiler would normally generate the following pattern of code for those statements:

// code fo r i = i + 1
// code to load arguments i and j
// dispatch code to lookup address of method meth
// ... and pass obj and arguments to that method
// code fo r j = j-1
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Now suppose analysis of the program shows that only one possible implementation of method meth can

be invoked at this call site. If the body of that method is reasonably small, it can be inlined. The generated

code corresponds to the following pattern:

// code fo r i = i + 1
// inlined code for method meth parameterized
// ... by the arguments obj, i, and j

L2: // code fo r j = j - 1

... // much omitted code

L1: // code to load arguments i and j
// dispatch code to lookup address of method meth
// ... and pass arguments and obj to that method
goto L2;

Label L1 is not reached with this version of the code.

Now suppose dynamic class loading causes an alternative implementation of method meth to be loaded.

The runtime environment now uninlines the method call by patching the code. It overwrites the first word

of the inlined method with a branch instruction, so that the patched code corresponds to the following

pattern:

// code fo r i = i + 1
goto L1
// remainder of code of inlined method, which
// is now unreachable.

L2: // code fo r j = j - 1

... // much omitted code

L1: // code to load arguments i and j
// dispatch code to lookup address of method meth
// ... and pass arguments and obj to that method
goto L2;

This patched code contains two more branches than the original unoptimized program and would

therefore run more slowly; it also contains unreachable code that incurs a modest space penalty. The

assumption is that dynamic class loading is rare and that methods rarely need to be uninlined.

Experiments with a JIT compiler showed that the number of dynamic method calls is reduced by 9 to

97% on their test suite. The effect on execution speed ranged from a small 1% worsening of performance

to an impressive 133% improvement in performance, with a geometric mean speedup of 16%.

Ishizaki et al. [17] also point out that a similar technique is applicable to a method invoked via an

interface. If only one class implements an interface class, we can generate code that assumes this class is

actually used and we can inline methods of that class that are not overridden by any of its subclasses. If the

assumption is later broken by dynamically loading a new class that also implements the interface or that

overrides the method, we can patch the code to revert to the original full scheme of looking up the class

and looking up the method.

13.5 Escape Analysis

In general, instances of classes are dynamically allocated. Storage for these instances is normally allocated on

the heap. In a language such as C++, where the programmer is responsible for allocating and deallocating
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memory for objects on the heap, the program should free the memory for a class instance when it is no

longer needed. Other languages, such as Java, provide automatic garbage collection. At periodic intervals,

the garbage collector is invoked to perform the computationally intensive task of tracing through the

references between objects and determining which objects can no longer be referenced. The storage for

these objects is reclaimed.

The goal of escape analysis is to determine which objects have lifetimes that do not stretch outside the

lifetime of their immediately enclosing scopes. The storage for such objects can be safely allocated as part

of the current stack frame; that is, their storage can be allocated on the runtime stack. (For C programmers

who use the gcc C compiler, the transformation is equivalent to replacing a use of the malloc function

with the alloca function.) This optimization is valuable for Java programs. The transformation also

improves the data locality of the program and, depending on the computer cache, can significantly reduce

execution time.

Another benefit of escape analysis is that objects with lifetimes that are confined to within a single scope

cannot be shared between two threads. Therefore, any synchronization actions for these objects can be

eliminated. Escape analysis does not capture all possibilities for synchronization removal, however. If this

is deemed to be an important optimization, a separate analysis to uncover unnecessary synchronization

operations should be performed.

Algorithms for escape analysis are based on abstract interpretation techniques [1]. Different algorithms

make different trade-offs between the precision of the analysis and the length of time the analysis takes.

The better the precision, the more opportunities for optimization that should be found.

The reported speedup of Java programs can range up to 44% [7], but that figure includes savings due to

synchronization removal and due to inlining of small methods. (Blanchet [7] reports an average speedup

of 21% in his experiments.) Inlining significantly increases the number of opportunities for finding objects

that do not escape from their enclosing scope, especially because many methods allocate a new object that

is returned as the result of the method call.

13.5.1 Escape Analysis by Abstract Interpretation

A prototype implementation of escape analysis was included in the IBM High Performance Compiler for

Java. This implementation is based on straightforward abstract interpretation techniques and has been

selected for presentation in this text because it is relatively easy to understand. Further details of the

algorithm may be found in the paper published by Choi et al. [9].

The approach of Choi et al. [9] attempts to determine two properties for each allocated object—whether

the object escapes from a method (i.e., from the scope where it is allocated), and whether the object escapes

from the thread that created it. It is possible that an object escapes the method but does not escape from

the thread, and thus synchronization code may be removed. The converse is not possible; if an object does

not escape a method, then it cannot escape its thread. The analysis therefore uses the very simple lattice

of three values shown in Figure 13.16. If analysis determines that an object status is NoEscape, the object

definitely does not escape from its method or from its thread; if the status is ArgScape, the object may

escape from a method via its arguments but definitely does not escape the thread; finally, GlobalEscape

means the object may escape from both the method and the thread.

The two versions of the analysis are a fast flow-insensitive version that yields imprecise results and a slower

flow-sensitive version that gives better results. Imprecise means the analysis can be overly conservative,

reporting many objects as having GlobalEscape status when a more accurate analysis might have shown

the status as one of the other two possibilities, or reporting ArgEscape instead of NoEscape. Imprecision in

this manner does not cause incorrect optimizations to be made; some opportunities for optimization can

simply be missed. We give only the more precise flow-sensitive version of the analysis in this chapter.

13.5.1.1 Connection Graphs

As its name suggests, abstract interpretation involves interpretive execution of the program. With this

form of execution, the contents of variables (or fields of classes when analyzing a Java program) are
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FIGURE 13.16 Lattice elements for escape analysis.

tracked. However, we do not attempt to determine the contents of the variables for normal execution of

the program—we would of course simply execute the program to do that. To perform escape analysis,

we are interested only in following an object O from its point of allocation, knowing which variables

reference O and which other objects are referenced by O fields. The abstraction implied in the name

abstract interpretation is to abstract out just the referencing information, using a graph structure where

nodes represent variables and objects and directed edges represent object references and containment of

fields inside objects. Choi et al. [9] call this graph a connection graph.

A sample connection graph is shown in Figure 13.17; it shows the program state after executing the

code:

A a = new A(); // line L1
a.b1 = new B(); // line L2
a.b2 = a.b1;

where we assume that the only fields of ACare b1 and b2 , and BChas only fields with intrinsic types (i.e.,

the types int and char ).

The notational conventions used in the connection graph are as follows. A circle node represents a

variable (i.e., a field of a class or a formal parameter of a method); a square node represents an object

instance. An edge from a circle to a square represents a reference; an edge from a square to a circle

represents ownership of fields.

The graph shown in Figure 13.17 on the left is a simplification of that used by Choi et al. [9]. Their more

complicated graph structure has two kinds of edges. An edge drawn as a dotted arrow is called a deferred

edge. When there is an assignment from copies of one object reference to another, which copies an object

reference from one variable to another, such as

p = q; // p and q have class types

then the effect of the assignment is shown as a deferred edge from the node for p to the node for q. In

Figure 13.17, the graph on the right uses a deferred edge to show the effect of an assignment from one

variable to another.

a

Simple Version

b1 b2

L1

L2

a

Using Deferred Edges

b1 b2

L1

L2

FIGURE 13.17 Sample connection graph.
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FIGURE 13.18 Effect of bypass operation.

Each node in a connection graph has an associated escape state, chosen from the three possibilities given

in Figure 13.16. If a connection graph has been constructed for a method M and if O is an object node in

M, then if O can be reached from any node in the graph whose escape state is other than NoEscape, then

O may escape from M. A similar property holds for objects escaping from a thread.

13.5.1.2 Intraprocedural Abstract Interpretation

The abstract interpretation is performed on a low-level version of the code where only one action at a time

is performed. The Java bytecode is adequate for this purpose, as are other intermediate representation

formats used in a typical compiler. Assuming that the code has been suitably simplified, abstract inter-

pretation of the code within a method steps through the code and performs an action appropriate for

each low-level operation. This interpretive execution involves following control flow edges, as explained

in more detail later.

The actions for assignment statements and instantiations of new object instances are shown next. Each

action involves an update to the connection graph. An assignment to a variable p kills any value that the

variable previously had. The kill part of an assignment to p is implemented by an update to the connection

graph that is called ByPass(p). The ByPass(p) operation redirects or removes deferred edges as illustrated in

Figure 13.18. Note also that compound operations, such as p.a.b.c , are assumed to be decomposed into

simpler steps that dereference only one level at a time. The bytecode form of the program automatically

possesses this property:

p = new C(); // line L

If the connection graph does not already contain an object node labeled L, one is created and added to

the graph. If the node needs to be created, then nodes for the fields of C that have nonintrinsic types are

also created and are connected by edges pointing from the object node. Any outgoing edges from the node

for p are deleted by applying the ByPass(p) operation, and then a new edge from p to the object node for

L is added:

p=q;

The ByPass(p) operation is applied to the graph. Then a new deferred edge from p to q is created:

p.f=q;

If p does not point to any object nodes in the connection graph, a new object node (with the appropriate

fields for the datatype of p) is created and an edge from p to the new object node is added to the graph.

(Choi et al. [9] call this new object node a phantom node. Two reasons phantom nodes may arise are (a)

the original program may contain an error and p would actually be null, referencing no object, when this

statement is reached and (b) p may reference an object outside the current method—and that situation

can be covered by the interprocedural analysis.) Then, for each object node that is connected to p by an

edge, an assignment to the f field of that object is performed. That assignment is implemented by adding

a deferred edge from the f node to the q node. Note that no ByPass operation is performed (to kill the
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previous value of f ) because there is not necessarily a unique object that p references, and we cannot

therefore be sure that the assignment kills all previous values for f :

p = q.f;

As before, if q does not point at any object nodes, a phantom node is created, and an edge from q to

the new node is added to the graph. Then ByPass(p) is applied, and deferred edges are added from p to all

the f nodes that q is connected to by field edges.

In principle, a different connection graph represents the state of the program at each statement in

the method. Thus, when the abstract interpretation action modifies the graph, it is modifying a copy of

the graph. When analyzing a sequence of statements in a basic block, the analysis proceeds sequentially

through the statements in order. At a point where control flow diverges, such as at a conditional statement,

each successor statement of the conditional is analyzed using a separate copy of the connection graph. At a

point where two or more control paths converge, the connection graphs from each predecessor statement

are merged.

A small example is given to make the process clearer. Suppose the code inside some method is as follows,

with the declarations of classes A, B1, and B2 omitted:

A a = new A(); // line L1
if (i > 0)

a.f1 = new B1(); // line L3
else

a.f1 = new B2(); // line L5
a.f2 = a.f1; // line L6

The connection graphs that are constructed by the abstract interpretation actions are shown in

Figure 13.19. Diagram 1 in the figure shows the state after executing line L1; diagrams 2 and 3 show

a

f1 f 2

L1 a

f1 f2

L1

L3

1. 2.

4. a

f1 f 2

L1

L3 L5

3. a

f1 f2

L1

L5

5. a

f1 f2

L1

L3 L5

FIGURE 13.19 Sequence of connection graphs.
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n

After One Iteration After Two or More
Iterations

L3head

next
n

FIGURE 13.20 Connection graph for a loop.

the states after lines L3 and L5, respectively. Note that diagrams 2 and 3 are obtained by applying the

effects of lines L3 and L5 to the state in diagram 1. After the if statement, the two control flow paths merge;

the graph in diagram 4 is the result of merging diagrams 2 and 3. Finally, diagram 5 shows the effect of

applying line L6.

If the program contains a loop, abstract interpretation is performed repeatedly until the connection

graphs converge. Convergence is guaranteed because the maximum number of nodes in the graph is a finite

number that is proportional to the number of occurrences of new in the source code, and the number of

edges that can be added between the nodes is also finite. If, for example, the source code to be analyzed is

Node head = null;
for( int cnt = 0; cnt < 1000; cnt++ ) {

Node n = new Node(); // Line L3
n.next = head;
n.data = cnt;
head = n;

}

then analysis gives the connection graphs shown in Figure 13.20. After analyzing the loop body once, the

graph has the structure shown on the left; after analyzing a second time, the graph has converged to the

diagram on the right. Even though the actual program allocates 1,000 instances of the Node class, only

one new operation is in the code, and therefore only one object node is in the graph. The fact that one

graph node represents 1,000 objects in the program is one of the approximations inherent in the graph

structure invented by Choi et al. [9].

13.5.1.3 Interprocedural Abstract Interpretation

A call to a method M is equivalent to copying the actual parameters (i.e., the arguments are passed in

the method call) to the formal parameters, then executing the body of M, and finally copying any value

returned by Mas its result back to the caller. If Mhas already been analyzed intraprocedurally following the

approach described earlier, the effect of Mcan be summarized with a connection graph. That summary

information eliminates the need to reanalyze Mfor each call site in the program.

It is necessary to analyze each method in the reverse of the order implied by the call graph. If method A
may call methods B and C, then B and C should be analyzed before A. Recursive edges in the call graph

are ignored when determining the order. Java has virtual method calls. At a method call site where it

is not known which method implementation is invoked, the analysis must assume that all the possible

implementations are called, combining the effects from all the possibilities. The interprocedural analysis

iterates over all the methods in the call graph until the results converge. The extra actions needed to create

the summary information for a method Mfollow:

Entry to a methodM: If Mhas n−1 formal parameters, fi, . . . fn, then n object nodes a1 . . . an are created.

These correspond to the actual parameters (or arguments). The extra parameter corresponds to the

implicit this parameter. Because Java has call-by-value semantics, an implicit assignment exists
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from each actual parameter to the corresponding formal parameter at method invocation. These

assignments are modeled by creating a deferred edge from fi to ai for each parameter. The escape

state initially associated with an fi node is NoEscape, and the state initially associated with an ai node

is ArgEscape. By having created the first object nodes for the parameters, the body of the method is

analyzed using the approach described for intraprocedural analysis.

Exit from method M: A return statement is processed by creating a dummy variable named return,

to which the returned result is assigned. If there are multiple return statements in the method,

the different result values are merged into the connection graph by adding deferred edges from the

return node to the different results.

When the whole method body has been processed, the connection graph that was created after the

return statement represents the summary information for the method. In particular, after the ByPass

function has been used to eliminate all deferred edges, the connection graph can be partitioned into three

subgraphs:

Global escape nodes: All nodes that are reachable from a node whose associated state is GlobalEscape

are themselves nodes that are considered to be global escape nodes and form the first subgraph.

The nodes initially marked as GlobalEscape are the static fields of any classes and instances of any

class that implements the Runnable interface.

Argument escape nodes: All nodes reachable from a mode whose associated state is ArgEscape, but are

not reachable from a Global Escape node, are in the second subgraph. The nodes initially marked

as ArgEscape are the argument nodes a1 . . . an.

No escape nodes: All other nodes in the connection graph form the third subgraph and have NoEscape

status.

All objects created within a method Mand that have the NoEscape status after the three subgraphs are

determined can be safely allocated on the stack. The third subgraph represents the summary information

for the method because it shows which objects can be reached via the arguments passed to the method.

The part that remains to be covered is how to process a method call when it is encountered in the body of

the method analyzed.

Suppose that while analyzing some method m1, we reach a method call:

result = obj.m2(p1,p2);

and that we have previously analyzed method m2in the class to which obj belongs. The analysis algorithm

creates three formal parameter nodes â1, â2, and â3 and processes three assignments:

â1 = obj; â2 = p1; â3 = p2;

The nodes â1 . . . correspond to the argument nodes a1 . . . in the connection graph that summarizes

method m2, whereas the values obj , p1 , and p2 are nodes within the connection graph constructed for

method m1.

The summary connection graph for m2 is used like a macro. Connections from a1 . . . are copied,

becoming edge connections from obj . Field nodes that are children of object values that ai nodes reference

are matched against field nodes that are children of the obj , p1 , and p2 nodes and so on recursively.

During this process, many of the phantom nodes that were introduced into the connection graph of m2
can be matched against nodes of m1. The algorithm for matching and duplicating the nodes and edges is

omitted for space reasons.

One more issue needs to be covered. If the method call graph contains cycles, as occurs in the presence

of direct or indirect recursion, then it appears to be necessary to use a method summary connection graph

before it has been created. For this situation, a special bottom graph is used in place of the connection

graph for the unanalyzed method. The bottom graph represents a worst-case (or conservative) scenario

for escape of objects from any method in the program. The bottom graph has one node for every class. A

points-to edge is from the node for class C1 to the node for class C2 if C1 contains a field of type C2; a
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deferred edge is from the node for C1 to the node for C2 if C2 is a subtype of C1. This graph can be used

to make a conservative estimate for the escape of objects passed to a method by matching the argument

types against the nodes in the bottom graph.

13.5.2 Other Approaches

Blanchet [7] developed a different analysis technique. His approach also uses abstract interpretation, but

three significant differences exist.

First, the Java bytecode is directly interpreted so that an abstract representation of the values on the Java

runtime stack is managed. During abstract interpretation, each bytecode operation has an effect on that

representation of the stack.

Second, information is propagated both forward and backward. Forward propagation occurs when

instructions are analyzed following the normal flow of control — as in the approach of Choi et al. [9].

Backward propagation is performed by interpretively executing the bytecode instructions along the reverse

of control flow paths. The reverse execution mode has, of course, different semantics for the abstract

meaning of each instruction (e.g., an instruction that pushes a value when interpreted forward becomes

one that pops a value when analyzed backward). The combination of forward and backward analysis passes

enables much more precise results to be obtained, especially when used in conjunction with the program

analyzed containing no errors. (This is a common assumption for code optimization.)

Third, Blanchet [7] uses a quite different domain of values to represent escape of objects. He represents

each class type by an integer, which is the context for what may escape from an instance of that class. His

abstract values are equations (or context transformers) that map from the contexts of the arguments and

result of a method to the escape contexts of concrete values. Instead of manipulating a collection of graphs,

like Choi et al. [9], Blanchet [7] manipulates sets of equations.

No comparison has been made between the approaches of Choi et al. and Blanchet. Blanchet states

that the Choi et al. analysis is more time consuming, and that is almost certainly true. Blanchet also claims

bigger speedups for his set of sample programs, but Blanchet also performs extensive inlining of small

methods.

13.6 Conclusion

We presented the most important optimizations for object-oriented programming languages that should

give language implementors good choices for their work. Method invocation can be efficiently solved by

different kinds of dispatch tables and inlining. Inlining and specialization greatly improve the performance

but need precise and efficient type analysis algorithms. Escape analysis computes the information necessary

to allocate objects on the runtime stack.

References

1. S. Abramsky and C. Hankin. 1987. Abstract interpretation of declarative languages. New York: Ellis

Horwood.

2. O. Agesen. 1995. The Cartesian product algorithm: Simple and precise type inference of parametric

polymorphism. In ECOOP ’95 — Object-Oriented Programming, 9th European Conference, ed. W. G.

Olthoff, 2–26. Lecture Notes in Computer Science, Vol. 952. New York: Springer-Verlag.

3. H. Aı̈t-Kaci, R. Boyer, P. Lincoln, and R. Nasr. 1989. Efficient implementation of lattice operations.

ACM Trans. Program. Lang. Syst. 11(1):115–46.

4. B. Alpern, A. Cocchi, D. Grove, and D. Lieber. 2001. Efficient dispatch of Java interface methods.

In HPCN ’01: Java in High Performance Computing, ed. V. Getov and G. K. Thiruvathukal, 621–28.

Lecture Notes in Computer Science, Vol. 2110. New York: Springer-Verlag.

5. D. F. Bacon. 1997. Fast and effective optimization of statically typed object-oriented languages.

Ph.D. thesis, University of California, Berkeley.



13-28 The Compiler Design Handbook: Optimizations and Machine Code Generation

6. D. F. Bacon and P. F. Sweeney. 1996. Fast static analysis of C++ virtual function calls. In Conference

on Object-Oriented Programming Systems, Languages & Applications (OOPSLA ’96), 324–41. New

York: ACM Press.

7. B. Blanchet. 2000. Escape analysis for object oriented languages: Application to java. In Proceedings

of OOPSLA ’99, 20–34. New York: ACM Press.

8. Y. Caseau. 1993. Efficient handling of multiple inheritance hierarchies. In Proceedings of OOPSLA

’93, 271–87. New York: ACM Press.

9. J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff. 2003. Stack allocation and

synchronization optimizations for Java using escape analysis. ACM Trans. Program. Lang. Syst.

25(6):876–910.

10. N. J. Cohen. 1991. Type-extension type tests can be performed in constant time. ACM Trans. Program.

Lang. Syst. 13(4):626–29.

11. J. Dean, D. Grove, and C. Chambers. 1995. Optimization of object-oriented programs using static

class hierarchy analysis. In Proceedings of the 9th European Conference on Object-Oriented Program-

ming (ECOOP ’95), 77–101. Lecture Notes in Computer Science, Vol. 952. New York: Springer-Verlag.

12. P. Dencker, K. Dürre, and J. Heuft. 1984. Optimization of parser tables for portable compilers. ACM

Trans. Program. Lang. Syst. 6(4):546–72.

13. S. Gehmawat, K. H. Randall, and D. J. Scales. 2000. Field analysis: getting useful and low-cost

inter-procedural information. In Conference on Programming Language Design and Implementation,

334–44. New York: ACM Press.

14. J. Gil and Y. Zibin. 2005. Efficient subtyping tests with PQ-encoding. ACM Trans. Program. Lang.

Syst. 27(5):819–56.

15. D. Grove, G. DeFouw, J. Dean, and C. Chambers. 1997. Call graph construction in object-oriented

languages. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages and Applications (OOPSLA-97), 108–24. New York: ACM Press.

16. U. Hölzle, C. Chambers, and D. Ungar. 1991. Optimizing dynamically-typed object-oriented pro-

gramming languages with polymorphic inline caches. In Proceedings of the European Conference on

Object-Oriented Programming (ECOOP ’91), 21–38. Lecture Notes in Computer Science, Vol. 512.

New York: Springer-Verlag.

17. K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. 2000. A study of devirtualization

techniques for a JavaTM just-in-time compiler. In Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages and Application (OOPSLA-00), 294–310. New York: ACM Press.

18. R. Jones and R. Lins. 1996. Garbage collection. New York: John Wiley & Sons.

19. A. Krall and R. Grafi. 1997. CACAO — A 64 bit JavaVM just-in-time compiler. Concurrency Practice

Exper. 9(11):1017–30.

20. A. Krall, J. Vitek, and N. Horspool. 1997. Near optimal hierarchical encoding of types. In 11th

European Conference on Object Oriented Programming (ECOOP ’97), ed. M. Aksit and S. Matsuoka,

128–45. Lecture Notes in Computer Science, Vol. 1241. New York: Springer-Verlag.

21. B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and A. C. Myers. 1995. Theta

reference manual. In Technical Report Programming Methodology Group Memo 88. Laboratory for

Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

22. A. C. Myers. 1995. Bidirectional object layout for separate compilation. In OOPSLA ’95 Conference

Proceedings: Object-Oriented Programming Systems, Languages, and Applications, 124–39. New York:

ACM Press.

23. W. Pugh and G. Weddell. 1990. Two-directional record layout for multiple inheritance. In Proceedings

of the ACM SIGPLAN ’90 Conference on Programming Language Design and Implementation (PLDI

’90), 85–91. New York: ACM Press.

24. F. Qian and L. J. Hendren. 2005. A study in type analysis for speculative method inlining in a

JIT environment. In Proceedings of International Conference on Compiler Construction (CC 2005),

255–70, Lecture Notes in Computer Science, Vol. 3443. New York: Springer-Verlag.



Optimizations for Object-Oriented Languages 13-29

25. J. R. Rose. 1991. Fast dispatch mechanisms for stock hardware. In OOPSLA ’88: Object-Oriented

Programming Systems, Languages and Applications: Conference Proceedings, ed. N. Meyrowitz, 27–35.

New York: ACM Press.

26. O. Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. thesis, Carnegie-Mellon

University, Pittsburgh, PA.

27. V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and C. Godin. 2000.

Practical virtual method call resolution for Java. In Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages and Application (OOPSLA-00), 264–80. New York: ACM Press.

28. T. Suganuma, T. Ogasawara, M. T. Yasuekeuchi, M. Kawahito, K. Ishizaki, and H. Komatsuatani.

2000. Overview of the IBM Java just-in-time compiler. IBM Syst. J. 39(1):175–93.

29. B. Stroustrup. 1989. Multiple inheritance for C++. Comput. Syst. 2(4):367–95.

30. F. Tip and J. Palsberg. 2000. Scalable propagation-based call graph construction algorithms. In

Proceedings of the Conference on Object-Oriented Programming Systems, Languages and Application

(OOPSLA-00), 281–93. New York: ACM Press.

31. J. Vitek and R. N. Horspool. 1996. Compact dispatch tables for dynamically typed object oriented

languages. In Proceedings of International Conference on Compiler Construction (CC ’96), 307–25,

Lecture Notes in Computer Science, Vol. 1060. New York: Springer-Verlag.

32. J. Vitek, N. Horspool, and A. Krall. 1997. Efficient type inclusion tests. In Conference on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA ’97), ed. T. Bloom, 142–57.

New York: ACM Press.

33. O. Zendra, D. Colnet, and S. Collin. 1997. Efficient dynamic dispatch without virtual function

tables: The Small Eiffel compiler. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA-97), 125–41. New York: ACM Press.

34. Y. Zibin and J. Gil. 2002. Fast algorithm for creating space efficient dispatching tables with

application to multi-dispatching. In Proceedings of the 17th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages and Applications (OOPSLA-02), 142–60.

New York: ACM Press.





14
Program Slicing

G. B. Mund
Department of Computer Science and

Engineering,

Kalinga Institute of Industrial

Technology, Bhubaneswar, India,

mundgb@yahoo.com

Rajib Mall
Department of Computer Science and

Engineering,

Indian Institute of Technology,

Kharagpur, India,

rajib@cse.iitkgp.ernet.in

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-1
Static and Dynamic Slicing • Backward and Forward Slicing
• Organization of the Chapter

14.2 Applications of Program Slicing . . . . . . . . . . . . . . . . . . . . . . .14-3
Debugging • Software Maintenance and Testing • Program

Integration • Functional Cohesion-Metric Computation
• Parallelization • Other Applications of Program Slicing

14.3 Some Basic Concepts and Definitions . . . . . . . . . . . . . . . . . .14-5
Intermediate Program Representation • Precision and

Correctness of Slices

14.4 Basic Slicing Algorithms: An Overview . . . . . . . . . . . . . . . . .14-11
Slicing Using Data Flow Analysis • Slicing Using

Graph-Reachability Analysis • Slicing in the Presence of

Composite Data Types and Pointers • Slicing of Unstructured

Programs

14.5 Slicing of Concurrent and Distributed Programs: An
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-18
Nondeterminism • Process Interaction • A Coding View
• Interaction via Shared Variables • Interaction by Message

Passing • Concurrency at the Operating System Level • Slicing

Concurrent and Distributed Programs

14.6 Parallelization of Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-23
Parallel Slicing of Sequential Programs • Parallel Slicing of

Concurrent Programs

14.7 Slicing of Object-Oriented Programs . . . . . . . . . . . . . . . . . .14-25
Static Slicing of Object-Oriented Programs • Dynamic Slicing

of Object-Oriented Programs

14.8 Slicing of Concurrent and Distributed Object-Oriented
Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-27
Static Slicing • Dynamic Slicing

14.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-28

14.1 Introduction

Program slicing is a program analysis technique. It can be used to extract the statements of a program that

are relevant to a given computation. The concept of program slicing was introduced by Weiser [1–3]. A

program can be sliced with respect to a slicing criterion. A slicing criterion is a pair <p, V>, where p is a

program point of interest and V is a subset of the program’s variables. If we attach integer labels to all the

statements of a program, a program point of interest could be an integer i representing the label associated

with a statement of the program. A slice of a program P with respect to a slicing criterion <s , V > is the

14-1
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int i, sum, prd;
1. read(i);
2. prd = 1;
3. sum = 0;
4. while(i<10);
5. sum=sum+i;
6. prd = prd * i;
7. i = i + 1;
8. write(sum);
9. write(prd);

FIGURE 14.1 An example program.

set of all the statements of the program P that might affect the slicing criterion for every possible input to the

program. The program slicing technique introduced by Weiser [1–3] is now called static backward slicing.

It is static in the sense that the slice is independent of the input values to the program. It is backward

because the control flow of the program is considered in reverse while constructing the slice.

14.1.1 Static and Dynamic Slicing

Static slicing techniques perform analysis of a static intermediate representation of the source code to

derive slices. The source code of the program is analyzed and slices are computed that hold well for all

possible input values [3]. A static slice contains all the statements that may affect the value of a variable

at a program point for every possible input. Therefore, we need to make conservative assumptions that

often lead to relatively larger slices. That is, a static slice may contain some statements that might not be

executed during an actual run of the program.

Korel and Laski [4] introduced the concept of dynamic program slicing. Dynamic slicing makes use of

the information about a particular execution of a program. A dynamic slice with respect to a slicing criterion

<p, V>, for a particular execution, contains statements that affect the slicing criterion in the particular

execution. Therefore, dynamic slices are usually smaller than static slices and are more useful in interactive

applications such as program debugging and testing. A comprehensive survey on the existing dynamic

program slicing algorithms is reported in Korel and Rilling [5].

Consider the example program given in Figure 14.1. The static slice with respect to the slicing criterion

<8, sum> is {1, 3, 4, 5, 7}. Consider a particular execution of the program with the input value i = 15.

The dynamic slice with respect to the slicing criterion <8, sum> for the particular execution of the program

is {3}.

14.1.2 Backward and Forward Slicing

A backward slice contains all parts of the program that might directly or indirectly affect the slicing

criterion. Thus, a static backward slice provides the answer to the question: Which statements affect the

slicing criterion?

A forward slice with respect to a slicing criterion <p, V> contains all parts of the program that might

be affected by the variables in V used or defined at the program point p [6]. A forward slice provides

the answer to the question: Which statements will be affected by the slicing criterion? Unless otherwise

specified, we consider backward slices throughout the discussion in this chapter.

14.1.3 Organization of the Chapter

The remainder of this chapter is organized as follows. In Section 14.2, we discuss the applications of pro-

gram slicing. In Section 14.3, we discuss some basic concepts, notations, and terminologies associated with

intermediate representations of sequential programs. Section 14.4 presents some basic slicing algorithms

for sequential programs. Section 14.5 deals with intermediate representations and slicing of concurrent
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and distributed programs. In Section 14.6, we discuss parallel slicing of sequential and concurrent pro-

grams. In Section 14.7, we discuss intermediate representations and slicing of object-oriented programs. In

Section 14.8, we discuss slicing of concurrent and distributed object-oriented programs. We present our

conclusions in Section 14.9.

14.2 Applications of Program Slicing

The program slicing technique was originally developed to realize automated static code decomposi-

tion tools. The primary objective of those tools was to aid program debugging [1–3]. From this modest

beginning, program slicing techniques have now ramified into a powerful set of tools for use in such

diverse applications as program understanding, program verification, debugging, software maintenance

and testing, functional cohesion metric computation, dead code elimination, reverse engineering, paral-

lelization of sequential programs, software portability analysis, reusable component generation, program

integration, tuning of compilers, compiler optimization, determining uninitialized variables, Y2K prob-

lems, and so on [7–65]. Excellent surveys of existing slicing algorithms and their applications are reported

in [5, 41, 44, 63, 64, 66, 67]. In the following, we briefly discuss some of these applications of program

slicing.

14.2.1 Debugging

Realization of automated tools to help effective program debugging was the original motivation for the

development of the static slicing technique. In his doctoral thesis, Weiser provided experimental evidence

that programmers unconsciously use a mental form of slicing during program debugging [1]. Locating a

bug can be a difficult task when one is confronted with a large program. In such cases, program slicing

is useful because it can enable one to ignore many statements while attempting to localize the bug. If a

program computes an erroneous value for a variable x , only those statements in its slice would contain

the bug; all statements not in the slice can safely be ignored.

The control and data dependences existing in a program are determined during slice computation. A

program slicer integrated into a symbolic debugger can help in visualizing control and data dependences.

Variants of the basic program slicing technique have been developed to further assist the programmer

during debugging; program dicing [10] identifies statements that are likely to contain bugs by using

information that some variables fail some tests while others pass all tests at some program point. Consider

a slice with respect to an incorrectly computed variable at a particular statement. Now consider a correctly

computed variable at some program point. The bug is likely to be associated with the slice on the incorrectly

computed variable minus the slice on the correctly computed variable. This dicing heuristic can be used

iteratively to locate a program bug. Several slices may be combined with each other in different ways. The

intersection of two slices contains all statements that lead to an error in both test cases. The union of two

slices contains all statements that lead to an error in at least one of the test cases. The symmetric difference

of two slices contains all statements that lead to an error in exactly one of the test cases.

Another variant of program slicing is program chopping [68, 69]. It identifies statements that lie between

two points a and b in the program and are affected by a change at a . Debugging in such a situation should

be focused only on statements between a and b that transmit the change of a to b.

14.2.2 Software Maintenance and Testing

Software maintainers often have to perform regression testing, that is, retesting a software product after

any modifications are carried out to ensure that no new bugs have been introduced [59]. Even after a

small change, extensive tests may be necessary, requiring running of many test cases. Suppose a program

modification requires only changing a statement that defines a variable x at a program point p. If the

forward slice with respect to the slicing criterion <p, x> is disjoint from the coverage of a regression test
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t, then it is not necessary to rerun the test t. Let us consider another situation. Suppose a coverage tool

reveals that a use of variable x at some program point p has not been tested. What input data is required

to cover p? The answer to this question can be provided by examining the backward slice with respect to

the slicing criterion <p, x>. Work has also been reported concerning testing incrementally through an

application of program slicing [27]. These applications are discussed in detail in [47, 70].

Software testers have to locate the parts of code that might affect a safety-critical computation and to

ascertain its proper functioning throughout the system. Program slicing techniques can be used to locate

all the code parts that influence the values of variables that might be part of a safety-critical computation,

but these variables that are part of the safety-critical computation have to be determined beforehand by

domain experts.

One way to assure high quality is to incorporate redundancy into the system. If some output values are

critical, they should be computed independently. For doing this, one has to ensure that the computation

of these values should not depend on the same internal functions, since an error might manifest in both

output values in the same way, thereby causing both parts to fail. An example of such a technique is

functional diversity [43]. In this technique, multiple algorithms are used for the same purpose. Thus, the

same critical output values are computed using different internal functions. Program slicing can be used

to determine the logical independence of the slices with respect to the output values computing the same

result.

14.2.3 Program Integration

Programmers often face the problem of integrating several variants of a base program. To achieve integra-

tion, the first step may be to look for textual differences between the variants. Semantics-based program

integration is a technique that attempts to create an integrated program that incorporates the changed

computations of the variants as well as the computations of the base program that are preserved in all

variants [13].

Consider a program Base. Let A and B be two variants of Base created by modifying separate copies of

Base. The set of preserved components consists of those components of Base that are affected in neither

A nor B . This set precisely consists of the components having the same slices in Base, A, and B . Horwitz

et al. presented an algorithm for semantics-based program integration that creates the integrated program

by merging the program Base and its variants A and B [13]. The integrated program is produced through

the following steps: (a) building dependence graphs D1, D2, and D3, which represent Base, A, and

B , respectively; (b) obtaining a dependence graph of the merged program by taking the graph union

of the symmetric difference of D1 and D2, the symmetric difference of D1 and D3, and the induced

graph on the preserved components; (c) testing the merged graph for certain interference criteria; and

(d) reconstructing a program from the merged graph.

14.2.4 Functional Cohesion-Metric Computation

The cohesion metric measures the relatedness of the different parts of some component. A highly cohesive

software module is a module that has one function and is indivisible. For developing an effective functional

cohesion metric, Beiman and Ott define data slices that consist of data tokens (instead of statements) [36].

Data tokens may be variables and constant definitions and references. Data slices are computed for each

output of a procedure (e.g., output to a file, output parameter, assignment to a global variable). The

tokens that are common to more than one data slice are the connections between the slices; they are the

glue that binds the slices together. The tokens that are present in every data slice of a function are called

super-glue. Strong functional cohesion can be expressed as the ratio of super-glue tokens to the total number

of tokens in the slice, whereas weak functional cohesion is the ratio of glue tokens to the total number of

tokens. The adhesiveness of a token is another measure expressing how many slices are glued together by

that token.
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14.2.5 Parallelization

Program slicing can be used to decompose a conventional program into substantially independent slices

for assignment to separate processors as a way to parallelize the program. A goal of such parallelization is

to determine slices with almost no overlap. Assuming that a combination slicer–compiler could produce

a sliced executable code suitable for a parallel machine, an issue of some complexity is the problem of

reconstructing the original behavior by “splicing” the results of the separate outputs of different slices.

Such a technique is investigated in [7].

14.2.6 Other Applications of Program Slicing

Program slicing methods have been used in several other applications such as tuning of compilers, compiler

optimizations, detecting dead code, determining uninitialized variables, software portability analysis,

program understanding, reverse engineering, program specialization and reuse, program verification, and

so on. These applications are discussed in some detail in [41, 44, 63–67, 71].

14.3 Some Basic Concepts and Definitions

In this section we present a few basic concepts, notations, and terminologies that are used later in this

chapter. The existing program slicing literature shows a wide variation in and disagreement about the

notations used in program slicing. We explain our usage here because of this lack of consensus. The usage

presented here does not come from any single source but rather is a personal blending of ideas from many

sources.

Definition 14.1 Directed graph or graph: A directed graph (or graph) G is a pair (N, E ), where N is

a finite non-empty set of nodes, and E ⊆ N × N is a set of directed edges between the nodes.

Let G = (N, E ) be a graph. If (x , y) is an edge of G , then x is called a predecessor of y, and y is called

a successor of x . The number of predecessors of a node is its in-degree, and the number of successors of

the node is its out-degree. A directed path (or path) from a node x1 to a node xk in a graph G = (N, E ) is a

sequence of nodes (x1, x2, ..., xk) such that (xi , xi+1) ∈ E for every i , 1 ≤ i ≤ k − 1.

Definition 14.2 Flow graph: A flow graph is a quadruple (N, E, Start, Stop), where (N, E) is a graph,

Start ∈ N is a distinguished node of in-degree 0 called the start node, Stop ∈ N is a distinguished node of

out-degree 0 called the stop node, there is a path from Start to every other node in the graph, and there is a

path from every other node in the graph to Stop.

Definition 14.3 Dominance: If x and y are two nodes in a flow graph, then x dominates y iff every path

from Start to y passes through x. y post-dominates x iff every path from x to Stop passes through y.

Let x and y be nodes in a flow graph G . Node x is said to be the immediate post-dominator of node

y iff x is a post-dominator of y, x �= y, and each post-dominator z �= x of y post-dominates x . The

post-dominator tree of a flow graph G is the tree that consists of the nodes of G , has the root Stop, and has

an edge (x , y) iff x is the immediate post-dominator of y.

Consider the flow graph shown in Figure 14.3. In the flow graph, each of the nodes 1, 2, and 3 dominates

the node 4. Node 5 does not dominate node 7. Node 7 post-dominates nodes 1, 2, 3, 4, 5, and 6. Node

6 post-dominates node 5. Node 6 post-dominates none of the nodes 1, 2, 3, 4, 7, 8, and 9. Node 3 is the

immediate post-dominator of node 2. Node 7 is the immediate post-dominator of node 4.
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int a, b, sum;
1. read(a);
2. read(b);
3. sum = 0;
4. while(a < 8);
5. sum = sum + b;
6. a = a + 1;
7. write(sum);
8. sum = b;
9. write(sum);

FIGURE 14.2 An example program.

14.3.1 Intermediate Program Representation

To compute a slice, it is first required to transform the program code into a suitable intermediate repre-

sentation. In the following, we present a few basic concepts, notations, and terminologies associated with

intermediate program representation that are used later in this chapter. A common cornerstone for most

of the slicing algorithms is that programs are represented by a directed graph, which captures the notion

of data dependence and control dependence.

14.3.1.1 Control Flow Graph

The control flow graph (CFG) is an intermediate representation for imperative programs that is useful

for data flow analysis and for many optimizing code transformations such as common subexpression

elimination, copy propagation, and loop-invariant code motion [11, 72].

Definition 14.4 Control flow graph: Let the set N represent the set of statements of a program P . The

control flow graph of the program P is the flow graph G = (N1, E ), where N1 = N ∪ {Start, Stop}. An

edge (m, n) ∈ E indicates the possible flow of control from the node m to the node n.

Note that the existence of an edge (x , y) in the control flow graph does not mean control must transfer

from x to y during program execution. Figure 14.3 represents the CFG of the example program given

in Figure 14.2. The CFG of a program P models the branching structures of the program, and it can be

built while parsing the source code using algorithms that have linear time complexity in the size of the

program [35].

Start 4

6

21 3

9

7

8Stop

5

FIGURE 14.3 The CFG of the example program shown in Figure 14.2.
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14.3.1.2 Data Dependence Graph

Several types of data dependences can be distinguished, such as flow dependence, output dependence, and

anti-dependence [11]. However, for the purpose of slicing, only flow dependence is relevant [41].

The CFG of a program represents the flow of control through the program. However, the concept that

is often more useful in program analysis is the flow of data through a program. Data flow describes the

flow of the values of variables from the points of their definitions to the points where their values are used.

Definition 14.5 Data dependence: Let G be the CFG of a program P . A node n is said to be data

dependent on a node m if there exists a variable var of the program P such that the following hold:

� The node m defines var.
� The node n uses var.
� There exists a directed path from m to n along which there is no intervening definition of var.

Consider the example program given in Figure 14.2 and its CFG of Figure 14.3. The node 5 has data

dependence on each of the nodes 2, 3, and 5. The node 8 has data dependence on node 2. Note that node

8 is data dependent on none of the nodes 3 and 5.

Aho et al. [72] use the term reaching definition to mean that a value defined at a node may be used at

another node. That is, node x is a reaching definition for a node y iff y is data dependent on x . A data

dependence from node x to node y indicates that a value computated at x may be used at y under some

path through the control flow graph. A dependence from x to y is a conservative approximation that says

that under some conditions a value computed at x may be used at y.

Definition 14.6 Data dependence graph: The data dependence graph of a program P is the graph

G = (N, E ), where each node n ∈ N represents a statement of the program P and (x , y) ∈ E iff x is data

dependent on y.

14.3.1.3 Control Dependence Graph

Ferrante et al. [11] introduced the notion of control dependences to represent the relations between program

entities arising because of control flow.

Definition 14.7 Control dependence: Let G be the control flow graph of a program P. Let x and y be

nodes in G. Node y is control dependent on node x if the following hold:

� There exists a directed path Q from x to y.
� y post-dominates every z in Q (excluding x and y).
� y does not post-dominate x.

Let x and y be two nodes in the CFG G of a program P . If y is control dependent on x , then x must

have multiple successors in G . Conversely, if x has multiple successors, at least one of its successors must

be control dependent on it.

Consider the example program of Figure 14.2 and its CFG given in Figure 14.3. Each of the nodes 5 and

6 is control dependent on node 4. Note that node 4 has two successor nodes, 5 and 7, and node 5 is control

dependent on node 4.

Definition 14.8 Control dependence graph (CDG): The control dependence graph of a program P is

the graph G = (N, E ), where each node n ∈ N represents a statement of the program P and (x , y) ∈ E iff x

is control dependent on y.

14.3.1.4 Program Dependence Graph

Ferrante et al. [11] presented a new mechanism of program representation called a program dependence

graph (PDG). Unlike the flow graphs, an important feature of the PDG is that it explicitly represents
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32
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Control Dependence Edge

Data Dependence Edge

FIGURE 14.4 PDG of the example program shown in Figure 14.2.

both control and data dependences in a single program representation. A PDG models a program as a

graph in which the nodes represent the statements and the edges represent interstatement data or control

dependences.

Definition 14.9 Program dependence graph (PDG): The program dependence graph G of a program

P is the graph G = (N, E ), where each node n ∈ N represents a statement of the program P. The graph

contains two kinds of directed edges: control dependence edges and data dependence edges. A control (or

data) dependence edge (n, m) indicates that n is control (or data) dependent on m.

Note that the PDG of a program P is the union of a pair of graphs: the data dependence graph of P

and the control dependence graph of P . Consider the example program given in Figure 14.2. Its PDG is

given in Figure 14.4. We consider the PDG representation with the direction of dependences inverse to

the traditional representation. In such a representation, graph traversal becomes more natural, as we can

traverse along the edges directly without reversing their directions.

The program dependence graph of a program P can be built from its control flow graph in O(n2) time,

where n is the number of nodes in the control flow graph [11].

14.3.1.5 System Dependence Graph

The PDG of a program combines the control dependences and data dependences into a common frame-

work. The PDG has been found to be suitable for intraprocedural slicing. However, it cannot handle

procedure calls. Horwitz et al. enhanced the PDG representation to facilitate interprocedural slicing [73].

They introduced the system dependence graph (SDG) representation, which models the main program

together with all nonnested procedures. The SDG, an extention of the PDG, models programs in a language

with the following properties [73]:

� A complete program consists of a main program and a collection of auxiliary procedures.
� Procedures end with return statements. A return statement does not include a list of variables.
� Parameters are passed by value-results.

The SDG is very similar to the PDG. Indeed, a PDG of the main program is a subgraph of the SDG. In

other words, for a program without procedure calls, the PDG and the SDG are identical. The technique

for constructing an SDG consists of first constructing a PDG for every procedure, including the main

procedure, and then adding auxiliary dependence edges that link the various subgraphs together. This
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main()
int s, i;
{

s = 0; void add(int a, int b) void inc(int z)
i = 1; { {

while (i < 10) do a = a + b; add(z, 1);
add(s, i); return; return;
inc(i); } }

write(s);
}

FIGURE 14.5 An example program consisting of a main program and two procedures.

results in a program representation that includes the information necessary for slicing across procedure

boundaries.

An SDG includes several types of nodes to model procedure calls and parameter passing:

� Call-site nodes represent the procedure call statements in a program.
� Actual-in and actual-out nodes represent the input and output parameters at the call sites. They are

control dependent on the call-site nodes.
� Formal-in and formal-out nodes represent the input and output parameters at the called procedure.

They are control dependent on the procedure’s entry node.

Control dependence edges and data dependence edges are used to link the individual PDGs in an SDG.

The additional edges used to link the PDGs together are as follows:

� Call edges link the call-site nodes with the procedure entry nodes.
� Parameter-in edges link the actual-in nodes with the formal-in nodes.
� Parameter-out edges link the formal-out nodes with the actual-out nodes.

Finally, summary edges are used to represent the transitive dependences that arise from calls. A summary

edge is added from an actual-in node A to an actual-out node B , if there exists a path of control, data,

and summary edges in the called procedure from the corresponding formal-in node A
′

to the formal-out

node B ′. Figure 14.6 represents the SDG of the example program shown in Figure 14.5.

14.3.2 Precision and Correctness of Slices

Let P be a program and S be a static slice of P with respect to a slicing criterion C . In Weiser’s original

definition [3], the reduced program S is required to be an executable program, and its behavior with

respect to the slicing criterion C must be the same as the original program P . A slice S of P with respect

to a slicing criterion C is statement-minimal if no other slice of P with respect to the slicing criterion has

fewer statements than S. Weiser [3] has shown that the problem of computing statement-minimal slices

is undecidable.

Another common definition of a static slice is the following: a slice S of a program P with respect to a

slicing criterion C is a subset of the statements of the program that directly or indirectly affect the slicing

criterion [11, 73, 74]. Note that such a slice need not be executable. Unless specified otherwise, we follow

this definition of a slice throughout the discussion in the chapter.

Let G C be the CFG of a program P . In all the existing program slicing frameworks, for each statement s

in the program P , a set UseSet(s ) of variable names used at s and a set DefSet(s ) of variable names defined

at s are maintained. The interstatement dependences in the program P are captured using the CFG G C

and the variable names in the sets UseSet(s ) and DefSet(s ) for each statement s [2, 3, 11, 73, 74].

Note that statement 4 of the example program shown in Figure 14.7 uses the variable m. Though node

4 assigns the value 0 = (m − m) to the variable z, it has dependence on node 1 in the program slicing

frameworks since node 1 is a reaching definition of the variable m for node 4.
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entry main 

entry inc 

entry add 

s = 0  i = 1 while i<10 write(s) 

add inc 

a = ain  
aout = a 

zout = z 

z = aout 

s = aout 
i = zout 

a = a+b b = bin  

bin = 1 

bin = i 

ain = z 

ain = s 

z = zin 

zin = i 

add 

Call, Parameter-in, Parameter-out Edge

Control Dependence Edge 

Data Dependence Edge 

Summary Edge 

FIGURE 14.6 The SDG of the example program shown in Figure 14.5. (An edge (x , y) in the SDG indicates that the

node y has dependence on the node x .)

integer m, i, x, z;
1. read(m);
2. i = 1;
3. x = 4;
4. z = m - m;
5. write(z)

FIGURE 14.7 An example program.
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The precision of a dynamic slice in the existing program slicing frameworks is defined as follows. A

dynamic slice is said to be precise if it contains only those statements that actually affect the slicing criterion in

the particular execution.

Note that a precise dynamic slice need not be a statement-minimal slice. Consider the example program

in Figure 14.7. For any input value of the variable m, the statement-minimal slice with respect to the slicing

criterion <4, z> is {4}, as z is always assigned the value 0 (= m − m). In the existing program slicing

frameworks, the precise slice for the slicing criterion is certainly {1, 4}, as node 1 is a reaching definition

of the variable m for the 4.

A slice is said to be correct if it contains all the nodes that affect the slicing criterion. A slice is said to be

incorrect if it fails to contain at least one statement that affects the slicing criterion. Note that the whole

program is always a correct slice of any slicing criterion. A correct slice is imprecise if and only if it contains

at least one statement that does not affect the slicing criterion.

14.4 Basic Slicing Algorithms: An Overview

This section presents an overview of the basic program slicing techniques and includes a brief history of

their development. We do not aim to give a comprehensive review of the related work. Such an attempt

would be extremely difficult because of the numerous publications in this area and the diverse theory and

techniques used by researchers over the years. Instead, we briefly review the work relevant to our discussion

in this chapter. We start with the original approach of Weiser [1], where slicing is considered as a data flow

analysis problem, and then examine the slicing techniques where slicing is seen as a graph-reachability

problem.

14.4.1 Slicing Using Data Flow Analysis

Weiser introduced the concept of program slicing in his doctoral dissertation [1]. His original motivation

was to develop the slicing technique as an aid to program debugging. His ideas were inspired by the

abstraction mechanisms used by programmers while analyzing existing programs. In his slicing technique,

the units of abstraction were called slices. The slices abstract a program based on the behavior of the program

with respect to a specified set of data components, for example, variables.

14.4.1.1 Static Slicing

The first slicing algorithm was presented by Weiser [1]. His static slicing method used a CFG as an

intermediate representation of the program to be sliced and was based on iteratively solving data and

control flow equations representing interstatement influences. Let v be a variable and n be a statement

(node) of a program P and S be the slice with respect to the slicing criterion <n, v>. Consider a node

m ∈ S. Weiser defined the set of relevant variables for the node m, relevant(m), as the set of variables of

the program P whose values (transitively) affect the computation of the value of the variable v at the node

n. Consider the example program shown in Figure 14.1a and the slice with respect to the slicing criterion

<9, prd>. For this example, relevant(8) = {prd}, relevant(7) = {prd}, and relevant(6) = {prd, i}. In

Weiser’s methodology, computing a slice from a CFG requires computation of the data flow information

about the set of relevant variables at each node. That is, slices can be computed by solving a set of data and

control flow equations derived directly from the CFG of the program being sliced.

Weiser’s algorithms [1, 2] for computing static slices did not handle programs with multiple procedures.

Later [3], Weiser presented algorithms for interprocedural slicing.

In Weiser’s approaches, every slice is computed from scratch. That is, no information obtained during

any previous computation of slices is used. This is a serious disadvantage of his algorithm. It has been

shown that computation of static slices using his algorithm requires O(n2e) time, where n is the number

of nodes and e is the number of edges in the CFG [1].
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int i, n, z, x, y;
1. read(i);
2. n = 3;
3. z = 1;
4. while (i < n) do
5. read(x);
6. if (x < 0) then
7. y = x + 2;

else
8. y = x + 8;
9. z = y + 7;
10. i = i +1;
11. write(z)

FIGURE 14.8 An example program.

14.4.1.2 Dynamic Slicing

Korel and Laski [4] introduced a new form of slicing. This new form of slicing is dependent on input

data and is generated during execution-time analysis as opposed to Weiser’s static-analysis slicing and

is therefore called dynamic slicing. Similar to the major objective of static slicing, dynamic slicing was

specifically designed as an aid to debugging and can be used to help in the search for offending statements

that caused the program error.

Consider the example program in Figure 14.8. The static slice of the program with respect to the criterion

<11, z> includes the whole program. Suppose the program is executed with the input value i = 3. The

dynamic slice with respect to the slicing criterion<11, z> for this execution of the program is {3}. If the value

of z computed at the end of the program is not as expected, we can infer that the program contains a bug.

The dynamic slice identifies statements that contribute to the value of the variable z when the input

i = 3 is supplied to the program. Locating the bug using the dynamic slice is thus easier than examining the

original program or the corresponding static slice, as the number of statements included in the dynamic

slice is normally much less.

Korel and Laski extended Weiser’s CFG-based static slicing algorithm to compute dynamic slices [4].

They computed dynamic slices by solving the associated data flow equations. Their method needs O(N)

space to store the execution history and O(N2) space to store the dynamic flow data, where N is the number

of statements executed (length of execution) during the run of the program. To compute a dynamic slice

using the stored execution history, their method requires O(N) time. Note that for programs containing

loops, N may be unbounded. That is, N may not be bounded in the size of the program. This is a major

shortcoming of their method. Furthermore, the dynamic slices computed by the algorithm of Korel and

Laski [4] may be imprecise [41, 75]. That is, the computed dynamic slice may contain some statements

that do not affect the slicing criterion.

Other relevant dynamic slicing algorithms based on execution history are reported in [76–82]. These

algorithms use execution history along with other relevant information and compute dynamic slices. Note

that these dynamic slicing algorithms have essentially the same space complexity and time complexity as

the basic algorithm of Korel and Laski [4].

14.4.2 Slicing Using Graph-Reachability Analysis

Ottenstein and Ottenstein [74] defined slicing as a reachability problem in the dependence graph repre-

sentation of a program. A directed graph is used as an intermediate representation of the program. This

directed graph models the control or data dependences among the program entities. Slices can be computed

by traversing along the dependence edges of this intermediate representation. An important advantage of

this approach is that data flow analysis has to be performed only once and that the information can be

used for computing all slices.
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14.4.2.1 Static Slicing Using Dependence Graphs

Ottenstein and Ottenstein introduced the PDG as an intermediate program representation [74]. They

demonstrated how the PDG could be used as the basis of a new slicing algorithm. Their algorithm

produced smaller slices than Weiser’s algorithm. This method differed from Weiser’s in an important way:

it used a single reachability pass of a PDG compared to Weiser’s incremental flow analysis. Ottenstein and

Ottenstein presented a linear time solution for intraprocedural static slicing in terms of graph reachability

in the PDG [74]. The construction of the PDG of a program requires O(n2) time, where n is the number

of statements in the program. Once the PDG is constructed, the slice with respect to a slicing criterion

can be computed in O(n + e) time, where n is the number of nodes and e is the number of edges in the

PDG. The process of building the PDG of a program involves computation and storage of most of the

information needed for generating slices of the program.

As described earlier, the notion of the PDG was extended by Horwitz et al. into a system dependence

graph (SDG) to represent multiprocedure programs [73]. Interprocedural slicing can be implemented as a

reachability problem over the SDG. Horwitz et al. developed a two-phase algorithm that computes precise

interprocedural slices [73]. To compute a slice with respect to a node n in a procedure P requires two

phases of computations that perform the following:

� In the first phase, all edges except the parameter-out edges are followed backward starting with node

n in procedure P . All nodes that reach n and are either in P itself or in procedures that (transitively)

call P are marked. That is, the traversal ascends from procedure P upward to the procedures that

called P . Since parameter-out edges are not followed, phase 1 does not “descend” into procedures

called by P . The effects of such procedures are not ignored. Summary edges from actual-in nodes

to actual-out nodes cause nodes to be included in the slice that would only be reached through the

procedure call, though the graph traversal does not actually descend into the called procedure. The

marked nodes represent all nodes that are part of the calling context of P and may influence n.
� In the second phase, all edges except parameter-in and call edges are followed backward starting

from all nodes that have been marked during phase 1. Because parameter-in edges and call edges

are not followed, the traversal does not “ascend” into calling procedures. Again, the summary edges

simulate the effects of the calling procedures. The marked nodes represent all nodes in the called

procedures that induce summary edges.

14.4.2.2 Dynamic Slicing Using Dependence Graphs

Agrawal and Horgan [75] were the first to present algorithms for finding dynamic program slices using the

PDG as the intermediate program representation. In [75] they proposed four intraprocedural dynamic

slicing algorithms.

Their first approach to compute dynamic slices uses the PDG as the intermediate program representation

and marks the nodes of this graph as the corresponding parts of the program are executed for a given set

of input values. A dynamic slice is computed by applying the static slicing algorithm of Ottenstein and

Ottenstein [74] to the subgraph of the PDG induced by the marked nodes. This approach is imprecise

because it does not consider situations where there exits an edge in the PDG from a marked node u to a

marked node v but the definition at v is not used at u.

We illustrate this imprecision through an example. Consider the program of Figure 14.9 and its PDG

in Figure 14.10. Let the input value of the variable m be 2 and the input values of x in the first and second

iterations of the while loop be 0 and 2, respectively. In the first iteration of the while loop, statement

8 defines a value for y. In the second iteration of the loop, statement 9 defines a value for y without

using its previous value and destroys the previous definition of y. Therefore, the dynamic slice for the

slicing criterion <10, w> in the second iteration of the while loop should contain the statement 9 and

should not contain the statement 8. Let us find the dynamic slice using the first approach of Agrawal and

Horgan [75]. We mark node 8 in the first iteration of the loop and node 9 in the second iteration. As node

10 has outgoing dependence edges to both the nodes 8 and 9 in the PDG, both statements 8 and 9 get

included in the dynamic slice, which is clearly imprecise.
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int m, p, i, q, x, y, w
1. read(m);
2. p = 20;
3. i = 1;
4. q = 0;
5. while (i <= m)
6. read(x);
7. if (x <= 0) then
8. y = x + 5;

else
9. y = x - 5;
10. w = y + 4;
11. if (w > 0) then
12. p = p * w;

else
13. q = p - 4;
14. i = i + 1;
15. write(p);
16. write(q)

FIGURE 14.9 An example program.

The second approach of Agrawal and Horgan [75] marks the edges of the PDG as and when the

corresponding dependences arise during program execution. A dynamic slice is computed by applying the

static slicing algorithm of Ottenstein and Ottenstein [74] and traversing the PDG only along the marked

edges. This approach finds precise dynamic slices of programs with no loops. In the presence of loops, the

slices may sometimes include more statements than necessary because this approach does not consider

1 5 9

6 10 13

7 11

8 12

2

14

3

16
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15

Data Dependence Edge

Control Dependence Edge

FIGURE 14.10 The PDG of the example program shown in Figure 14.9.
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that execution of the same statement during different iterations of a loop may be (transitively) dependent

on different sets of statements.

To illustrate this point, consider the example program in Figure 14.9 and its PDG in Figure 14.10, with

the input values m = 2 and x = 0 in the first iteration of the while loop and x = 2 in the second

iteration. The dynamic slice for the slicing criterion <10, w> in the second iteration of the while loop

should contain the statement 9 and should not contain the statement 8. Using the second approach of

Agrawal and Horgan [75], we mark the outgoing dependence edge (10, 8) in the first iteration of the

while loop. In the second iteration, we mark the outgoing dependence edge (10, 9). Traversing along

the marked edges, we include both the statements 8 and 9 in the dynamic slice, which clearly results in an

imprecise slice.

Agrawal and Horgan [75] pointed out that their second approach to compute dynamic slices produces

results identical to those produced by the algorithm of Korel and Laski [4]. Note that the PDG of a program

with n statements requires only O(n2) space. Thus, the space requirement of Agrawal and Horgan’s second

algorithm [75] is O(n2), but the algorithm of Korel and Laski [4] may use unbounded space in the worst

case.

The shortcomings of the second approach of Agrawal and Horgan [75] motivated their third approach:

construct a dynamic dependence graph (DDG) creating a new node for each occurrence of a statement in

the execution history along with the associated dependence edges. A dynamic slicing criterion is identified

with a node in the DDG, and a dynamic slice is computed by determining all the nodes of the DDG that

can be reached from the slicing criterion.

Clearly, the space complexity and time complexity of the DDG-based algorithm are linear in the number

of nodes in the DDG. The disadvantage of using the DDG is that the number of nodes in a DDG is equal

to the number of executed statements (length of execution), which may be unbounded for programs with

loops.

In their fourth approach, Agrawal and Horgan [75] proposed to reduce the number of nodes in the

DDG by merging nodes whose transitive dependences map to the same set of statements. In other words,

a new node is introduced only if it can create a new dynamic slice. This check incurs O(dun) runtime

overhead, where n is the number of statements in the program under consideration and du is the number

of stored (different) dynamic slices corresponding to node u prior to its present execution in the particular

execution of the program. The resulting reduced graph is called the reduced dynamic dependence graph

(RDDG). The size of the RDDG is proportional to the number of dynamic slices that can arise during

execution of the program. Note that in the worst case, the number of dynamic slices of a program having

n statements is O(2n) [41].

Other relevant dependence graph–based dynamic slicing methods that use DDGs are reported in

[83–86]. The interprocedural dynamic slicing algorithms of Agrawal et al. [83] and Kamkar et al. [84–86]

use DDGs with distinct vertices for different occurrences of a statement in the execution history. Therefore,

these algorithms have essentially the same space complexity and time complexity as the basic DDG-based

algorithm of Agrawal and Horgan [75].

In [87] Mund et al. introduced the concepts of stable and unstable edges. They modified the PDG and

used the modified program dependence graph (MPDG) as the intermediate program representation for their

algorithm. Their algorithm [87] is based on marking and unmarking the unstable edges of the MPDG

appropriately as and when the dependences arise and cease during execution of the program. The space

complexity of their algorithm [87] is quadratic in the number of statements in the program. The dynamic

slicing algorithm requires at most O(n2) time to compute a dynamic slice after execution of a statement

of interest.

Goswami and Mall [88] proposed a dynamic slicing algorithm based on a compact dynamic dependence

graph (CDDG). In their approach, they construct the CDDG at runtime. During execution of a loop

containing conditionals (LCC), their method examines the path (sequence of the nodes executed) taken in

every iteration. If the path is not taken in any previous iterations of the LCC, then the path along with

its iteration number is stored. If the path is already taken in some previous executions, then its associated

iteration number is updated with the current iteration number. After execution of the LCC, the paths
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are arranged in ascending order of their associated iteration numbers, and control and data dependence

edges are added. The control and data dependences among nodes of the arranged paths are obtained by

traversing backward along the sequence of paths.

Mund et al. [89] have shown that the dynamic slicing algorithm of Goswami and Mall [88] may compute

incorrect dynamic slices. That is, it may fail to include some statements that actually affect a slicing criterion.

The edge-marking and node-marking dynamic slicing algorithms of Mund et al. [89] use the PDG as

the intermediate program representation and compute precise dynamic slices. The space complexity of

each of these algorithms is quadratic in the number of statements in the program. Each of the dynamic

slicing algorithms reported in [89] requires at most O(n) time to compute and store a dynamic slice after

execution of a statement of interest, where n is the number of statements in the program.

Zhang et al. [90] presented three precise dynamic slicing algorithms. The algorithms differ in the

degree of preprocessing they carry out prior to computation of dynamic slices. They have reported that

their limited preprocessing (LP) algorithm is better than the other two algorithms. Their LP algorithm

augments the execution trace with summary information for faster traversal of the trace. During slicing it

performs demand-driven analysis to capture dynamic dependences from the compacted execution trace.

The space complexity of the algorithm is proportional to the length of the execution trace. The time

required to compute a dynamic slice after execution of a statement of interest is also proportional to the

length of the execution history.

Recently, Mund and Mall [91] presented two precise dynamic slicing algorithms named the IntraSlice al-

gorithm and the InterSlice algorithm. The intraprocedural dynamic slicing algorithm (IntraSlice algorithm)

uses a CDG as the intermediate program representation. The IntraSlice algorithm is based on computing

and updating the data and control dependences at runtime. The interprocedural dynamic slicing algorithm

(InterSlice algorithm) uses a collection of CDGs (one for each function of the program) as the intermediate

program representation. The InterSlice algorithm is similar to the IntraSlice algorithm. However, it uses

additional data structures to handle the interprocedural dependences caused by the calling nodes, the

paramater passing mechanisms, and the RETURN mechanisms.

Mund and Mall [91] have shown that the space complexity of each of their algorithms is quadratic in

the number of statements in the program. The time required to compute and store a dynamic slice after

execution of a statement of interest is at most linear in the number of statements in the program.

14.4.3 Slicing in the Presence of Composite Data Types and Pointers

Lyle [8] proposed a conservative solution to the problem of static slicing in the presence of arrays. Essentially,

any update to an element of an array is regarded as an update and a reference of the entire array. In the

presence of pointers, situations may occur where two or more variables refer to the same memory location;

this phenomenon is commonly called aliasing.

Slicing in the presence of aliasing may require a generalization of the notion of data dependence to

take potential aliases into account. Horwitz et al. [92] defined this notion of data dependence in terms of

potential definitions and uses of abstract memory locations. The DDG-based slicing algorithm of Agrawal

et al. [83] implements a similar idea to deal with both composite data types and pointers.

Jiang et al. [93] presented an algorithm for slicing C programs with pointers and arrays. Tip [41] has

shown that the algorithm of Jiang et al. [93] may compute incorrect slices. Other relevant methods to

compute static slices in the presence of pointer variables are reported in [94–98].

Korel and Laski [4, 76] considered dynamic slicing in the presence of arrays by regarding each element

of an array as a distinct variable. Dynamic data structures are treated as two distinct entities: the element

pointed to and the pointer itself [76]. Agrawal et al. [83] presented a DDG-based algorithm for dynamic

slicing in the presence of arrays and pointers. To handle arrays and pointers, their algorithm uses the actual

memory location of the variables provided by the compiler. The space complexity and time complexity of

these dynamic slicing algorithms remain essentially the same as the basic algorithm of Korel and Laski [4].

In [91] Mund and Mall considered dynamic slicing in the presence of arrays, structures, and pointers.

They follow the approach of Korel and Laski [4, 76] and regard each element of an array as distinct. Let
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arr be an array of k elements in a program P . Consider each array element arr[1], . . . , arr[k] as distinct.

Let a statement s use or define arr[i]. During an actual run of the program, the index value i is known

prior to execution of the statement s . As the sets of array elements used or defined at s corresponding

to its different executions may be different, they consider computing and storing these sets dynamically.

Let ptr be a pointer variable in the program P . Mund and Mall [91] consider ptr and ∗ptr as two distinct

variables. Following an approach similar to their approach of handling arrays, they have proposed efficient

handling of pointers and structures.

14.4.4 Slicing of Unstructured Programs

Computation of slices becomes complicated in the presence of unstructured constructs (e.g., goto ). It

is difficult to capture the interstatement dependences caused by the goto statements or their restricted

forms such as return, exit, break , and continue in a program [41, 44].

Some methods to compute static and dynamic slices for unstructured programs have been reported

[8, 16, 20, 35, 79–81, 93, 99–104]. Lyle [8] reported that the static slicing algorithms of Weiser [2, 3] may

compute incorrect slices in the presence of unstructured control flow. He proposed a solution to slicing in

the presence of unstructured control flows. Gallagher [16] and Gallagher and Lyle [20] used a variation

of Weiser’s methods. They proposed including a goto statement in the slice if it can jump to a label of an

included statement.

Jiang et al. [93] proposed extending Weiser’s static slicing algorithms to C programs by introducing a

number of rules to include the unstructured control flow statements in a slice. However, they have not

given any formal justification for proper handling of the unstructured flow constructs.

Agrawal [99] presented an algorithm to compute static slices of unstructured programs and showed

that the algorithm of Gallagher and Lyle [20] may produce incorrect slices. Agrawal’s algorithm [99] uses

the standard PDG as the intermediate representation and computes slices as a graph-reachability problem.

Finally, affecting jump statements are added to the slices.

Ball and Horwitz [100] and Choi and Ferrante [101] discovered independently that conventional PDG-

based slicing algorithms may produce incorrect slices in the presence of unstructured control flow. The

algorithms presented in Ball and Horwitz [100] and Choi and Ferrante [101] use an augmented CFG

(ACFG) to build a dependence graph. Augmented PDGs (APDG) are constructed using the ACFG. The

control dependence edges in the APDGs are different from those in the PDGs.

Harman and Daninic [102] presented an algorithm for static slicing of unstructured programs. Their

algorithm is an extension of Agrawal [99], and it produces smaller slices by using a refined rule for adding

jump statements.

Sinha et al. [103] proposed a system dependence graph–based static slicing algorithm to handle arbitrary

interprocedural control flow. Their algorithm handles interprocedural control flows in which a return may

not occur, and if it does, it may not be to the call site.

Kumar and Horwitz [104] presented a static slicing algorithm for programs with jumps and switches.

Their algorithm uses ACFG to build a dependence graph called a pseudo-predicate PDG (PPDG) and

computes slices as a restricted graph-reachability problem in the PPDG. Finally, a label L is included in

the static slice iff a goto L statement is already in the slice.

Korel [79] presented a dynamic slicing algorithm for an unstructured program. He employs the notion

of removable blocks to find dynamic program slices. In his approach, data dependencies are used to

compute the parts of the program that affect the value of a variable of interest. The removable blocks are

used to identify parts of the noncontributing computations.

Huynh and Song [80] presented a dynamic slicing algorithm for programs with structured jump state-

ments. Their algorithm also employs the notion of removable blocks to find dynamic program slices. It

can handle unstructured programs that have only structured jumps.

Beszédes et al. [81] presented a dynamic slicing algorithm. Their program representation records two

lists of variable names for each statement of the program: a list of variables defined and a list of variables

used. During execution of the program they keep track of the last definitions of the variables and predicates
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in the execution history. Using the last definitions of variables and predicates, they compute and store the

dynamic slices corresponding to each execution of a statement in the execution history.

Mund et al. [89] presented a node-marking algorithm to compute precise dynamic slices of unstructured

programs. They introduced the concept of jump dependence. Based on the notion of jump dependence,

they built an unstructured program dependence graph (UPDG) as an intermediate representation of the

unstructured program to be sliced. Their algorithm is based on marking and unmarking the nodes of the

UPDG as and when the corresponding dependences arise and cease during runtime.

14.5 Slicing of Concurrent and Distributed
Programs: An Overview

In this section, we first discuss some basic issues associated with concurrent programming. Later, we discuss

how these issues have been addressed in computation of slices of concurrent and distributed programs.

The basic “unit” of concurrent programming is the process (also called task in the literature). A process

is an execution of a program or a section of a program. Multiple processes can execute the same program

(or a section of the program) simultaneously. A set of processes can execute on one or more processors.

In the limiting case of a single processor, all processes are interleaved or time-shared on this processor.

Concurrent program is a generic term that is used to describe any program involving potential parallel

behavior. Parallel and distributed programs are subclasses of concurrent programs that are designed for

execution in specific parallel processing environments.

14.5.1 Nondeterminism

A sequential program imposes a total ordering on the actions it performs. In a concurrent program, there is

an uncertainty over the precise order of occurrence of some events. This property of a concurrent program

is referred to as nondeterminism. A consequence of nondeterminism is that when a concurrent program is

executed repeatedly, it may take different execution paths even when operating on the same input data.

14.5.2 Process Interaction

A concurrent program normally involves process interaction. This occurs for two main reasons:

� Processes compete for exclusive access to shared resources, such as physical devices or data, and

therefore need to coordinate access to the resource.
� Processes communicate to exchange data.

In both the above cases, it is necessary for the processes concerned to synchronize their execution, either

to avoid conflict, when acquiring resources, or to make contact, when exchanging data. Processes can

interact in one of two ways: through shared variables or by message passing. Process interaction may be

explicit within a program description or may occur implicitly when the program is executed.

A process needing to use a shared resource must first acquire the resource, that is, obtain permission to

access it. When the resource is no longer required, it is released. If a process is unable to acquire a resource,

its execution is usually suspended until that resource is available. Resources should be administered so that

no process is delayed unduly.

14.5.3 A Coding View

The main concerns in the representation of concurrent programs are:

� The representation of processes.
� The representation of process interactions.
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Concurrent behavior may be expressed directly in a programming notation or implemented by system

calls. In a programming notation, a process is usually described in a program block, and process instances

are created through declaration or invocation references to that block. Process interaction is achieved via

shared variables or by message passing from one process to another.

14.5.4 Interaction via Shared Variables

A commonly used mechanism for enforcing mutual exclusion is the use of semaphores. Entry to and exit

from a critical region are controlled by using P and V operations, respectively. This notation was proposed

by Dijkstra [105], and the operations can be read as “wait if necessary” and “signal” (the letters actually

represent Dutch words meaning “pass” and “release”). Some semaphores are defined to give access to

competing processes based on their arrival order. The original definition, however, does not stipulate an

order. The less strict definition gives greater flexibility to the implementor but forces the program designer

to find other means of managing queues of waiting processes.

14.5.5 Interaction by Message Passing

Process interaction through message passing is very popular. This model has been adopted by the major

concurrent programming languages [106]. It is also a model amenable to implementation in a distributed

environment. Within the general scheme of message passing, there are two alternatives:
� Synchronous, in which the sending process is blocked until the receiving process has accepted the

message (implicitly or by some explicit operation).
� Asynchronous, in which the sender does not wait for the message to be received but continues

immediately. This is sometimes called a nonblocking or no-wait send.

Synchronous message passing, by definition, involves a synchronization as well as a communication

operation. Since the sender process is blocked while awaiting receipt of the message, there can be at most

one pending message from a given sender to a given receiver, with no ordering relation assumed between

messages sent by different processes. The buffering problem is simple because the number of sending

messages is bounded.

In asynchronous message passing, the pending messages are buffered transparently, leading to potential

unreliability in case of a full buffer. For most applications, synchronous message passing is thought to

be the easier method to understand and use and is more reliable as well. Asynchronous message passing

allows a higher degree of concurrency.

14.5.6 Concurrency at the Operating System Level

In this section we confine our attention to a discussion of the Unix Operating System. Unix [107, 108]

is not a single operating system but an entire family of operating systems. The discussion here is based

chiefly on the POSIX standard, which describes a common, portable, Unix programmer’s interface.

Unix uses a pair of system calls, fork and exec, for process creation and activation. The fork call creates

a copy of the forking process with its own address space. The exec call is invoked by either the original

or a copied process to replace its own virtual memory space with the new program, which is loaded into

memory, destroying the memory image of the calling process. The parent process of a process terminating

by using the exit system call can wait on the termination event of its child process by using the wait system

call. Process synchronization is implemented using semaphores. Interprocess communication is achieved

through shared memory and message passing mechanisms [109]. A shared memory segment is created

using the shmget function. It returns an identifier to the segment. The system call shmat is used to map

a segment to the address space of a particular process. Message queues are created by using the msgget

function. Messages are sent by using the msgsnd function, and these messages get stored in the message

queue. The msgrcv function is used by a process to receive a message addressed to it from the message queue.
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14.5.7 Slicing Concurrent and Distributed Programs

Research in slicing of concurrent programs is scarcely reported in the literature. In the following, we review

the reported work in static and dynamic slicing of concurrent and distributed programs.

14.5.7.1 Static Slicing

Cheng [110] generalized the notion of a CFG and a PDG to a nondeterministic parallel control flow net

and a program dependence net (PDN), respectively. In addition to edges for data dependence and control

dependence, a PDN may also contain edges for selection dependences, synchronization dependences, and

communication dependences. Selection dependence is similar to control dependence but involves non-

deterministic selection statements, such as the ALT statement of Occam-2. Synchronization dependence

reflects the fact that the start or termination of the execution of a statement depends on the start or ter-

mination of the execution of another statement. Communication dependence corresponds to a situation

where a value computed at one point in the program influences the value computed at another point

through interprocess communication. Static slices are computed by solving for the reachability problem

in a PDN. However, Cheng did not precisely define the semantics of synchronization and communication

dependences, nor did he state or prove any property of the slices computed by his algorithm [110].

Goswami et al. [111] presented an algorithm for computing static slices of concurrent programs in a Unix

process environment. They introduced the concept of a concurrent program dependence graph (CPDG) and

constructed the graph representation of a concurrent program through three hierarchical levels: process

graph, concurrency graph, and CPDG. A process graph captures the basic process structure of a concurrent

program and represents process creation, termination, and joining of processes. A process node consists of

a sequence of statements of a concurrent program that would be executed by a process.

Krinke [112] proposed a method for slicing threaded programs. Krinke’s work extends the structures

of the CFG and PDG for threaded programs with interference. She defines interference as data flow that is

introduced through the use of variables common to parallel executing statements. In [112] she proposed

a slicing algorithm to compute slices from the new constructs for threaded programs called threaded-

PDG and threaded-CFG. Nanda and Ramesh [113] later pointed out some inaccuracies in Krinke’s slicing

algorithm and proposed some improvements over it. Their algorithm has a worst-case complexity of

O(Nt ), where N is the number of nodes in the graph and t is the number of threads in the program. They

also proposed three optimizations to reduce this exponential complexity.

A process graph captures only the basic process structure of a program. This has been extended to

capture other Unix programming mechanisms such as interprocess communication and synchronization.

A concurrency graph is a refinement of a process graph where the process nodes of the process graph

containing message passing statements are split up into three different kinds of nodes: send node, receive

node, and statement node. The significance of these nodes and their construction procedure are explained

in the following:

� Send node: A send node consists of a sequence of statements that ends with a msgsend statement.
� Receive node: A receive node consists of a sequence of statements that begins with a msgrecv

statement.
� Statement node: A statement node consists of a sequence of statements without any message passing

statement.

Each node of the concurrency graph is called a concurrent component. A concurrency graph captures

the dependencies among different components arising from message passing communications among

them. However, components may also interact through other forms of communication such as shared

variables. Access to shared variables may be either unsynchronized or synchronized using semaphores.

Furthermore, to compute a slice, in addition to representing concurrency and interprocess communication

aspects, one needs to represent all traditional (sequential) program instructions. To achieve this, Goswami

and Mall [111] extended the concurrency graph to construct a third-level graph called a concurrent program

dependence graph (CPDG). Consider the example program given in Figure 14.11a. Its process graph,



Program Slicing 14-21

Entry

P0

P1 P2

P3 P4

P5

End

End

       main()

       { /*  P0  */

       int i, j, x, n;

       x = shmat(...);

1.    x = 0;

2.    scanf(“%d”, &n);

3.    i = 1;

4.    j = 0;

5.    if (fork() == 0)

       { /*  P1  */

6.          x = x + n;

7.          j = i + x;

8.          msgsend(m1, j);

9.          for(i=1; i<n; i++)

10.               j++;

}

       else { /*  P2  */

11.         if (fork() == 0)

              { /*  P3  */

12.               i = i +1;

13.               msgrecv(m1, j);

14.               i = i +j;

15.               x--;

}

              else { /*  P4  */

16.               if (n>0)

17.                      x--;

                    else

18.                      x++;

19.               n++;

20.               wait(0);

}

             /*  P5  */

21.        printf(“%d”, n);

}

}

Entry

End

P0

P2

P4

P5

P1

P1 P3

P3
End

(a)

(b)

(c)

Communication Edge

Fork, Join, Control Edge

1

2 1

2

FIGURE 14.11 (a) An example program. (b) The process graph. (c) The concurrency graph.

concurrency graph, and CPDG are shown in Figure 14.11b, 14.11c, and Figure 14.12, respectively. Once

the CPDG is constructed, slices can be computed through simple graph-reachability analysis.

Goswami et al. [111] implemented a static slicing tool that supports an option to view slices of programs

at different levels, that is, process level, concurrent component level, or code level. They reported on the basis

of implementation experience that their approach of hierarchical presentation of the slicing information

helps users get a better understanding of the behaviors of concurrent programs.

Krinke [114] proposed a context-sensitive method to slice concurrent recursive programs. She used

extended CFG and extended PDG to represent concurrent programs with interference. Her technique

does not require serialization or inlining of called procedures.

14.5.7.2 Dynamic Slicing

Korel and Ferguson extended the dynamic slicing method of [4, 76] to distributed programs with Ada-

type rendezvous communication [115]. For a distributed program, the execution history is formalized as
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if(n<0)

msgrecv(m1, j)

x = 0 scanf(“%d”, & n) i = 1 J = 0 if(fork()==0)

if(fork()==0)
P1

start

P2
start

P4
start

P0
start

P5
start

P3
start

x = x+n j = i+x msgsend(m1,j)

for(...)

j++
n++

x++x--
wait(0)

i = i+1 i = i+j x--

printf(“%d”, n)

To 6,15,17,18
To 6,9,16,19
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Fork Edge, Data/Control Dependence Edge

Shared Dependence Edge

Communication Edge

FIGURE 14.12 The CPDG for the example program shown in Figure 14.11a.

a distributed program path that, for each task, comprises of: (a) the sequences of statements (trajectory)

executed by it and (b) a sequence of triples (A, C, B) identifying each rendezvous in which the task is

involved.

A dynamic slicing criterion of a distributed program specifies: (a) the inputs to each task, (b) a distributed

program path P , (c) a task W, (d) a statement occurrence q in the trajectory of w , and (e) a variable v . A

dynamic slice with respect to such a criterion is an executable projection of the program that is obtained

by deleting statements from it. However, the computed slice is only guaranteed to preserve the behavior

of the program if the rendezvous in the slice occurs in the same relative order as in the program.

Duesterwald et al. presented a dependence graph–based algorithm for computing dynamic slices of

distributed programs [116]. They introduced a DDG for representing distributed programs. A DDG

contains a single vertex for each statement and predicate in a program. Control dependences between

statements are determined statically, prior to execution. Edges for data and communication dependences

are added to the graph at runtime. Slices are computed in the usual way by determining the set of

DDG vertices for which the vertices specified in the criterion can be reached. Both the construction of

the DDG and the computation of slices are performed in a distributed manner. Thus, a separate DDG

construction process and slicing process are assigned to each process Pi in the program. The different

processes communicate when a send or receive statement is encountered, but, because a single vertex is

used for all occurrences of a statement in the execution history, inaccurate slices may be computed in the

presence of loops.

Cheng presented an alternative graph-based algorithm for computing dynamic slices of distributed

and concurrent programs [110]. Cheng’s algorithm is basically a generalization of the initial approach
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proposed by Agrawal and Horgan in [75]; the PDN vertices corresponding to executed statements are

marked, and the static slicing algorithm is applied to the PDN subgraph induced by the marked vertices.

This, however, yields inaccurate slices in the presence of loops.

In [117] Goswami and Mall extended their static slicing framework [111] to compute dynamic slices

of concurrent programs. They introduced the notion of the dynamic program dependence graph (DPDG)

to represent various intra- and inter-process dependences of concurrent programs. They constructed the

DPDG of a concurrent program through three hierarchical stages. At compile time, a dynamic process

graph and a static program dependence graph (SPDG) are constructed. A dynamic process graph is the most

abstract representation of a concurrent program. It captures the basic information about processes that is

obtained through a static analysis of the program code. The SPDG of a concurrent program represents the

static part of data and control dependences of the program. Trace files are generated at runtime to record

the information regarding the relevant events that occur during the execution of concurrent programs.

Using the information stored in the trace files, the dynamic process graph is refined to realize a dynamic

concurrency graph. The SPDG, the information stored in the trace files, and the dynamic concurrency

graph are then used to construct the DPDG. The DPDG of a concurrent program represents dynamic

information regarding fork/join, semaphore/shared dependences and communication dependences due

to message passing in addition to data and control dependences. After construction of the DPDG of a

concurrent program, dynamic slices can be computed using some simple graph-reachability algorithm.

The dynamic slicing algorithm of Goswami and Mall [117] can handle both shared memory and message

passing constructs. They have shown that their dynamic slicing algorithm computes more precise dynamic

slices than the dynamic slicing algorithms of Duesterwald et al. and Soffa [116] and Cheng [110].

Rilling et al. [118, 119] proposed predicate-based dynamic slicing algorithms for message passing pro-

grams. They considered slicing criteria to focus on parts of the program that affect the predicates. Their

dynamic predicate slices capture all statements that are relevant to some global requirements or suspected

error properties of the distributed program.

14.6 Parallelization of Slicing

Parallel algorithms have the potential of being faster than their sequential counterparts since the com-

putation work can be shared by many computing agents all executing at the same time. Also, for large

programs, sequential algorithms become very slow. Slicing algorithms for concurrent programs are highly

compute-intensive, as the graphs required for intermediate representations of the programs often become

very large for practical problems. Therefore, parallelization of slicing algorithms seems to be an attractive

option to improve efficiency. In the following, we review the research results in parallelization of slicing

algorithms for sequential and concurrent programs.

14.6.1 Parallel Slicing of Sequential Programs

Harman et al. presented a parallel slicing algorithm to compute intraprocedural slices for sequential pro-

grams. In their method, a process network is constructed from the program to be sliced. A process network is

a network of concurrent processes. It is represented as a directed graph in which nodes represent processes

and edges represent communication channels among processes.

The process network is constructed using the CFG of the program. The reverse control flow graph (RCFG)

is constructed by reversing the direction of every edge in the CFG. The topology of the process network

is obtained from the RCFG, with one process for each of its nodes and with communication channels

corresponding to its edges. The edges entering a node i represent input to process i , and the edges leaving

node i represent outputs from process i .

To compute a slice for the slicing criterion <n, V>, where V is a set of variables of the program and n is

a node of the CFG of the program, network communication is initiated by outputing the message V from

the process n of the process network. Messages will then be generated and passed around the network

until it eventually stabilizes, that is, when no new message arrives from any node. The algorithm computes
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the slice of a program by including the set of nodes whose identifiers are input to the entry node of the

process network. The parallel slicing algorithm has been shown to be correct and finitely terminating [120].

Implementation details of the algorithm were not reported in [120].

14.6.2 Parallel Slicing of Concurrent Programs

Goswami et al. [121–123] extended the parallel static slicing algorithm of Harman et al. [120] for sequential

programs to concurrent programs. They introduced the concept of the concurrent control flow graph

(CCFG). The CCFG of a concurrent program consists of the CFGs of all the processes, with nodes and

edges added to represent interprocess communications. Note that fork edges in a process graph represent

flow of control among processes in a concurrent program. When a process forks, it creates a child process

and executes concurrently with the child, so a fork edge in a process can be used to represent parallel flow

of control. Process graphs and concurrency graphs are constructed as already discussed in the context

of static slicing of concurrent programs. For every node x of the process graph, a CFG is constructed

from the process represented by node x . The CCFG is then constructed by interconnecting the individual

CFGs.

The algorithm of Goswami et al. [121, 122] first constructs the process network of a given concurrent

program. The topology of the process network is given by the reverse concurrent control flow graph (RCCFG).

The RCCFG is constructed from the CCFG by reversing the direction of all the edges. Every node of the

RCCFG represents a process, and the edges represent communication channels among processes. Consider

a slicing criterion<P , s , V>of a concurrent program, where P is a process, s is a statement in the process P ,

and V is a set of variables of the program. To compute a slice with respect to this criterion, the process

network is first initiated. Let n be the node in the CCFG corresponding to the statement s in the process

P and m be the process in the process network corresponding to the CCFG node m. The process network

is initiated by transmitting the message {m, V} on all output channels of m. Each process in the process

network repeatedly sends and receives messages until the network stabilizes. The network stabilizes when

no messages are generated in the whole network. The set of all node identifiers that reach the Entry node

gives the required static slice. Goswami et al. [121, 122] proved that their algorithm is correct and finite

terminating. The steps for computation of slices are summarized below:

1. Construct the hierarchical CCFG for the concurrent program.

2. Reverse the CCFG.

3. Compile the RCCFG into a process network.

4. Initiate network communication by outputting the message {s , v} from the process in the process

network representing statement s in the process P , where <P , s , v> is the slicing criterion.

5. Continue the process of message generation until no new messages are generated in the network.

6. Add to the slice all statements whose node identifiers have reached the entry node of the CCFG.

14.6.2.1 Implementation Results

Goswami et al. [121, 122] implemented their parallel algorithm for computing dynamic slices of concurrent

programs in a Digital–Unix environment. They considered a subset of C language with Unix primitives

for process creation and interprocess communications. Standard Unix tools Lex and Yacc have been used

for lexical analysis and parsing of the source code.

A major aim of Goswami et al.’s implementation was to investigate the achieved speed-up in computing

slices. They examined their algorithm with several input concurrent programs. The lengths of the input

programs were between 30 to 100 lines.

They reported the following encouraging results of the implementation. The speed-up achieved for

different programs in a two-processor environment is between 1.13 and 1.56; in a three-processor envi-

ronment it is between 1.175 and 1.81; in a four-processor environment it is between 1.255 and 2.08. For the

same number of processors used, speed-up varies for different program samples. It is shown that speed-up

is more for larger programs. This may be because the number of nodes in the process network for larger
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programs is higher compared to smaller programs, leading to higher utilization of processors. Goswami

et al.’s implemetation supported up to four-processor environment and considered small input programs

(up to 100 lines).

14.7 Slicing of Object-Oriented Programs

Object-oriented programming languages have become very popular during the last decade. The concepts

of classes, inheritance, polymorphism, and dynamic binding are the basic strengths of object-oriented

programming languages. However, these concepts raise new challenges for program slicing. Intermedi-

ate representations for object-oriented programs need to model classes, objects, inheritance, scoping,

persistence, polymorphism, and dynamic binding effectively. In the literature, research efforts to slice

object-oriented programs are rarely reported. In the following, we briefly review the reported work on

static and dynamic slicing of object-oriented programs.

14.7.1 Static Slicing of Object-Oriented Programs

Several researchers have extended the concepts of intermediate procedural program representation to

intermediate object-oriented program representation. Kung et al. [124–126] presented a representation

for object-oriented software. Their model consists of an object relation diagram and a block branch diagram.

The object relation diagram of an object-oriented program provides static structural information on

the relationships existing between objects. It models the relationship that exists between classes such as

inheritance, aggregation, association, and so on. The block branch diagram of an object-oriented program

contains the CFG of each of the class methods and presents a static implementation view of the program.

Harrold and Rothermel [127] presented the concept of the call graph. A call graph provides a static view

of the relationship between object classes. A call graph is an interprocedural program representation in

which nodes represent individual methods and edges represent call sites. However, a call graph does not

represent important object-oriented concepts such as inheritance, polymorphism, and dynamic binding.

Krishnaswamy [128] introduced the concept of the object-oriented program dependence graph (OPDG).

The OPDG of an object-oriented program represents control flow, data dependences, and control de-

pendences. The OPDG representation of an object-oriented program is constructed in three layers: class

hierarchy subgrach (CHS), control dependence subgraph (CDS), and data dependence subgraph (DDS). The

CHS represents the inheritance relationship between classes and the composition of methods into a class.

A CHS contains a single class header node and a method header node for each method that is defined in the

class. Inheritance relationships are represented by edges connecting class headers. Every method header is

connected to the class header by a membership edge. Subclass representations do not repeat representations

of methods that are already defined in the superclasses. Inheritance edges of a CHS connect the class header

node of a derived class to the class header nodes of its superclasses. Inherited membership edges connect the

class header node of the derived class to the method header nodes of the methods that it inherits. A CDS

represents the static control dependence relationships that exist within and among the different methods

of a class. The DDS represents the data dependence relationship among the statements and predicates of

the program. The OPDG of an object-oriented program is the union of the three subgraphs: CHS, CDS,

and DDS. Slices can be computed using an OPDG as a graph-reachability problem.

The OPDG of an object-oriented program is constructed as the classes are compiled, and hence it

captures the complete class representations. The main advantage of OPDG representation over other

representations is that the representation has to be generated only once during the entire life of the class.

It does not need to be changed as long as the class definition remains unchanged. Figure 14.13b represents

the CHS of the example program of Figure 14.13a.

Larsen and Harrold [129] extended the concept of the system dependence graph (SDG) to represent some

of the features of object-oriented programs. They introduced the notions of the class dependence graph,

class call graph, class control flow graph, and interclass dependence graph. A class dependence graph captures

the control and data dependence among statements in a single class hierarchy. It connects individual PDGs
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Class A

{

Public:

A( );

void ~A( );

Private:

}

Class B: Public A

{

B( );

~B( );

void D( );

}

Class-header A

Class-header B

Method A()

Method  ~A()

Method  C()

Method  B()

Method ~B()

Method D()

void    C( );

(a) (b)

Class Membership

Inherited Method

Inheritance

FIGURE 14.13 (a) An object-oriented program and (b) its CHS.

for methods that are members of the class. A class dependence graph uses a polymorphic choice node

to represent the dynamic choice among the possible destinations. Such a node has all edges incident to

subgraphs representing calls to each possible destination. A class call graph captures calling relationships

among methods in a class hierarchy. Like the CHS, it contains class header nodes, method header nodes,

virtual method header nodes, membership edges, inheritance edges, and inherited membership edges. A

class call graph also includes edges that represent method calls. A class control flow graph captures the static

control flow relationships that exist within and among methods of the class. It consists of a class call graph

in which each method header node is replaced by the control flow graph for its associated method. An

interclass dependence graph captures the control and data dependences for interacting classes that are not

in the same hierarchy. In object-oriented programs, a composite class may instantiate its component class

either through a declaration or by using an operation, such as new. Larsen and Harrold [129] constructed

SDGs for these individual classes, groups of interacting classes, and finally for the complete object-oriented

program. Slices are computed using a graph-reachability algorithm.

14.7.2 Dynamic Slicing of Object-Oriented Programs

Zhao [130] presented an algorithm for dynamic slicing of object-oriented programs. He adopted the

following concepts for slicing of object-oriented programs:

� A slicing criterion for an object-oriented program is of the form (s , v , t, i), where s is a statement

in the program, v is a variable used at s , and t is an execution trace of the program with input i .
� A dynamic slice of an object-oriented program on a given slicing criterion (s , v , t, i) consists of all

statements in the program that affected the value of the variable v at the statement s .

Zhao [130] introduced the concept of the dynamic object-oriented dependence graph (DODG). Con-

struction of DODG involves creating a new node for each occurrence of a statement in the execution
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history and creating all the dependence edges associated with the occurrence at runtime. Zhao’s method

of construction of the DODG of an object-oriented program is based on performing dynamic analysis of

data and control flow of the program. This is similar to the methods of Agrawal and Horgan [75] and

Agrawal et al. [83] for constructing DDGs of procedural programs. Computation of dynamic slices using

the DODG is carried out as a graph-reachability problem. Other relevant dynamic slicing methods for

object-oriented programs have been reported in [131–136].

Mohapatra et al. [134–136] proposed dynamic slicing algorithms for object-oriented programs. They

used the basic concepts of the edge-marking and node-marking algorithms of Mund et al. [65, 89]. Their

edge-marking dynamic slicing algorithm [135] and node-marking dynamic slicing algorithm [134] for

object-oriented programs use an extended system dependence graph as the intermediate program repre-

sentation. Mohapatra et al. [134–136] have shown that each of their algorithms is more space and time

efficient than the existing dynamic slicing algorithms for object-oriented programs.

14.8 Slicing of Concurrent and Distributed
Object-Oriented Programs

The nondeterministic nature of concurrent and distributed programs, unsynchronized interactions among

objects, lack of global states, and dynamically varying numbers of objects make the understanding and

debugging of concurrent and distributed object-oriented programs difficult. An increasing amount of

resources are being spent in testing and maintaining these software products. Slicing techniques promise to

come in handy at this point. However, research reports dealing with intermediate representations and slicing

of concurrent and distributed object-oriented programs are scarce in the literature [57, 67, 131, 137–148].

14.8.1 Static Slicing

Zhao et al. [57] introduced an intermediate program representation called system dependence net (SDN) to

capture various dependence relations in a concurrent object-oriented program. To represent interprocess

communications between different methods in a class of a concurrent object-oriented program, they

introduced a new type of dependence edge called an external communication dependence edge. An SDN

captures the object-oriented features as well as the concurrency issues in a concurrent object-oriented

program. Using SDN as the intermediate program representation, Zhao et al. [57] presented a static slicing

algorithm for concurrent object-oriented programs.

Zhao [138, 139] introduced the concept of a multithreaded dependence graph (MDG) as an intermediate

representation of a concurrent Java program. The MDG consists of a collection of thread dependence graphs

(TDGs). A TDG represents a single thread of the program. Zhao’s algorithm [139] uses an MDG as the

intermediate program representation to compute static slices of the concurrent Java program.

Chen and Xu [140] proposed a static slicing algorithm for concurrent Java programs. Their algorithm

uses a CPDG as the intermediate program representation and computes more precise slices than Zhao’s

algorithm [139].

14.8.2 Dynamic Slicing

Recently, Mohapatra et al. [136, 146, 147] presented algorithms for dynamic slicing of concurrent Java

programs. They use a concurrent system dependence graph (CSDG) as the intermediate program repre-

sentation. A CSDG contains control dependence, data dependence, synchronization dependence, and

communication dependence edges. Their edge-marking algorithm is based on marking and unmark-

ing the edges of the CSDG as and when the corresponding dependences arise and cease during an ac-

tual run of the program. The space complexity of their algorithm is O(n2), and the time complexity is

O(n2 S), where n is the number of statements in the program and S is the length of the execution trace of

the program.
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Lallchandani and Mall [149] proposed a novel dynamic slicing technique for object-oriented concur-

rent programs. They introduced the notion of the object-oriented concurrent program dependence graph

(OOCPDG). Their dynamic slicing algorithm [149] uses an OOCPDG as the intermediate program rep-

resentation and is based on marking and unmarking the dependence edges as and when the dependences

arise and cease at runtime. Their technique encompasses different aspects of an object-oriented program-

ming paradigm, namely inheritance and polymorphism from the slicing arena. Their approch handles

dynamically created object-based processes and process interactions through shared memory and mes-

sage passing. They have also reported a dynamic slicing tool called the concurrent dynamic slicer for

object-oriented concurrent programs, which implements their dynamic slicing technique.

Mohapatra et al. [145] were the first to present an algorithm for dynamic slicing of distributed object-

oriented programs. They introduced the notion of the DPDG. Based on the DPDG, Mohapatra et al.

[136, 145] presented an algorithm for dynamic slicing of distributed object-oriented programs. Their

algorithm addresses the concurrency issues of the object-oriented program while computing the dynamic

slices. The algorithm also handles the communication dependences arising because of objects shared

among processes on the same machine and because of message passing among processes on different

machines. The space complexity of their dynamic slicing algorithm is O(n2), and the time complexity is

O(n2 S), where n is the total number of statements in the distributed object-oriented program and S is the

total length of execution of the program. Mohapatra et al. [136, 148] also presented an efficient dynamic

slicing algorithm for distributed Java programs.

14.9 Conclusions

We started with a discussion on the basic concepts and terminologies used in the area of program slicing.

We also reviewed recent work in the area of program slicing, including slicing of sequential, concurrent,

and object-oriented programs. Starting with the basic sequential program constructs, researchers have

now started to address various issues of slicing distributed object-oriented programs. Also, slicing algo-

rithms are being extended to architectural slicing and slicing of low-level programs such as hardware

description languages. Since modern software products often require programs with millions of lines of

code, development of parallel algorithms for slicing has assumed importance to reduce the slicing time.
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15.1 Introduction

This chapter consists of two independent parts. The first deals with programs involving indexed data sets

such as dense arrays and indexed computations such as loops. Our position is that high-level mathematical

equations are the most natural way to express a large class of such computations, and furthermore, such

equations are amenable to powerful static analyses that would enable a compiler to derive very efficient

code, possibly significantly better than what a human would write. We illustrate this by describing a

simple equational language and its semantic foundations and by illustrating the analyses we can perform,

including one that allows the compiler to reduce the degree of the polynomial complexity of the algorithm

embodied in the program.

The second part of this chapter deals with tiling, an important program reordering transformation

applicable to imperative loop programs. It can be used for many different purposes. On sequential machines

tiling can improve the locality of programs by exploiting reuse, so that the caches are used more effectively.

On parallel machines it can also be used to improve the granularity of programs so that the communication

and computation “units” are balanced.

We describe the tiling transformation, an optimization problem for selecting tile sizes, and how to

generate tiled code for codes with regular or affine dependences between loop iterations. We also discuss

approaches for reordering iterations, parallelizing loops, and tiling sparse computations that have irregular

dependences.

15.2 The Z-Polyhedral Model and Some Static Analyses

It has been widely accepted that the single most important attribute of a programming language is

programmer productivity. Moreover, the shift to multi-core consumer systems, with the number of

cores expected to double every year, necessitates the shift to parallel programs. This emphasizes the need

for productivity even further, since parallel programming is substantially harder than writing unithreaded
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code. Even the field of high-end computing, typically focused exclusively on performance, is becoming

concerned with the unacceptably high cost per megaflop of current high-end systems resulting from

the required programming expertise. The current initiative is to increase programmability, portability,

and robustness. DARPA’s High Productivity Computing Systems (HPCSs) program aims to reevaluate

and redesign the computing paradigms for high-performance applications from architectural models to

programming abstractions.

We focus on compute- and data-intensive computations. Many data-parallel models and languages

have been developed for the analysis and transformation of such computations. These models essentially

abstract programs through (a) variables representing collections of values, (b) pointwise operations on

the elements in the collections, and (c) collection-level operations. The parallelism may either be specified

explicitly or derived automatically by the compiler. Parallelism detection involves analyzing the dependence

between computations. Computations that are independent may be executed in parallel.

We present high-level mathematical equations to describe data-parallel computations succinctly and

precisely. Equations describe the kernels of many applications. Moreover, most scientific and mathematical

computations, for example, matrix multiplication, LU-decomposition, Cholesky factorization, Kalman

filtering, as well as many algorithms arising in RNA secondary structure prediction, dynamic programming,

and so on, are naturally expressed as equations.

It is also widely known that high-level programming languages increase programmer productivity and

software life cycles. The cost of this convenience comes in the form of a performance penalty compared to

lower-level implementations. With the subsequent improvement of compilation technology to accommo-

date these higher-level constructs, this performance gap narrows. For example, most programmers never

use assembly language today. As a compilation challenge, the advantages of programmability offered by

equations need to be supplemented by performance. After our presentation of an equational language,

we will present automatic analyses and transformations to reduce the asymptotic complexity and to par-

allelize our specifications. Finally, we will present a brief description of the generation of imperative code

from optimized equational specifications. The efficiency of the generated imperative code is comparable

to hand-optimized implementations.

For an example of an equational specification and its automatic simplification, consider the following:

Yi =

i
∑

j=0

i
∑

k=0

Ai, j+k × Bk, j for 0 ≤ i ≤ n (15.1)

Here, the variable Y is defined over a line segment, and the variables A and B , over a triangle and

a square, respectively. These are the previously mentioned collections of values and are also called the

domains of the respective variables. The dependence in the given computation is such that the value of Y

at i requires the value of A at [i, j + k] and the value of B at [k, j ] for all valid values of j and k.

An imperative code segment that implements this equation is given in Figure 15.1. The triply nested

loop (with linear bounds) indicates a �(n3) asymptotic complexity for such an implementation. However,

a �(n2) implementation of Equation 15.1 exists and can be derived automatically. The code for this

“simplified” specification is provided as well in Figure 15.1. The required sequence of transformations

required to optimize the initial specification is given in Section 15.2.4. These transformations have been

developed at the level of equations.

The equations presented so far have been of a very special form. It is primarily this special form that

enables the development of sophisticated analyses and transformations. Analyses on general equations are

often impossible. The class of equations that we consider consist of (a) variables defined on Z-polyhedral

domains with (b) dependences in the form of affine functions. These restrictions enable us to use linear

algebraic theory and techniques. In Section 15.2.1, we present Z-polyhedra and associated mathematical

objects in detail that abstract the iteration domains of loop nests. Then we show the advantages of manip-

ulating Z-polyhedra over integer polyhedra. A language to express equations over Z-polyhedral domains

is presented in Section 15.2.3. The latter half of this section presents transformations to automatically

simplify and parallelize equations. Finally, we provide a brief explanation of the transformations in the

backend and code generation.
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for i = 0 to n {
Y [i] = 0;
for j = 0 to i

for k = 0 to i
Y[i] += A[i, j + k] * B[k, j];

}

// Evaluation of temporary variable X
for i = 1 to n {

l = i - 1;
X[i, l] = 0;
for k = 0 to 1

X[i, l] += B[k, l-k];
for l = 0 to i -2

X[i, l] = X[i-1, l];
}

// Evaluation of temporary variable W
for i = 0 to n {

for l = 2i-1 to 2i { // Constant trip count
W[i, l] = 0;
for k = l-i to i

W[l, l] += B[k, l-k];
}
for l = i to 2i-2

W[i, l] = W[i-1, l] + B [l-i, i] + B[i, l-i];
}

// Evaluation of temporary variable Z
for i = 0 to n {

for l = 0 to i-1
Z [i, l] = X [i, l];

for 1 = i to 2i
Z [i, l] =W [i, l];

}
// Evaluation of Y

for i = 0 to n {
Y[i] = 0;
for l = 0 to 2i

Y[i] += A[i, l]*Z [i, l];
}

FIGURE 15.1 A �(n3) loop nest for Equation 15.1 and an equivalent �(n2) loop nest.

15.2.1 Mathematical Background1

First, we review some mathematical background on matrices and decribe terminology. As a convention,

we denote matrices with upper-case letters and vectors with lower-case. All our matrices and vectors have

integer elements. We denote the identity matrix by I . Syntactically, the different elements of a vector v will

be written as a list.

We use the following concepts and properties of matrices:

� The kernel of a matrix T , written as ker(T), is the set of all vectors z such that T z = 0.
� The column (respectively row) rank of a matrix T is the maximal number of linearly independent

columns (respectively rows) of T .
� A matrix is unimodular if it is square and its determinant is either 1 or −1.

1Parts of this section are adapted from [37], © 2007, Association for Computing Machinery, Inc., included by permission.
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� Two matrices L and L ′ are said to be column equivalent or right equivalent if there exists a

unimodular matrix U such that L = L ′U .
� A unique representative element in each set of matrices that are column equivalent is the one in

Hermite normal form (HNF).

Definition 15.1
An n × m matrix H with column rank d is in HNF if:

1. For columns 2,. . ., d, the first nonzero element is positive and is below

the first positive element for the previous column.

∃i1,. . ., id , 1 ≤ i1 < . . . < id ≤ n : Hi j , j > 0

2. In the first d columns, all elements above the first positive element are

zero.

∀1 ≤ j ≤ d , 1 ≤ i < i j : Hi, j = 0

3. The first positive entry in columns 1,. . ., d is the maximal entry on its

row. All elements are nonnegative in this row.

∀1 ≤ l < j ≤ d : 0 ≤ Hi j ,l < Hi j , j

4. Columns d + 1, . . . m are zero columns.

∀d + 1 ≤ j ≤ m, 1 ≤ i ≤ n : Hi, j = 0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

� 0 0 0 0

⋆ 0 0 0 0

� � 0 0 0

⋆ ⋆ 0 0 0

� � � 0 0

⋆ ⋆ ⋆ 0 0

⋆ ⋆ ⋆ 0 0

� � � � 0

⋆ ⋆ ⋆ ⋆ 0

⋆ ⋆ ⋆ ⋆ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A template of a matrix in HNF is provided above. In the template, � denotes the maximum element

in the corresponding row, � denotes elements that are not the maximum element, and ⋆ denotes any

integer. Both � and � are nonnegative elements.

For every matrix A, there exists a unique matrix H that is in HNF and column equivalent to A, that

is, there exists a unimodular matrix U such that A = HU . Note that the provided definition of the HNF

does not require the matrix A to have full row rank.

15.2.1.1 Integer Polyhedra

An integer polyhedron, P , is a subset of Z
n that can be defined by a finite number of affine inequalities (also

called affine constraints or just constraints when there is no ambiguity) with integer coefficients. We follow

the convention that the affine constraint c i is given as (aT
i z + αi ≥ 0), where z, ai ∈ Z

n, αi ∈ Z. The integer

polyhedron, P , satisfying the set of constraints C = {c1,. . ., cb}, is often written as {z ∈ Z
n|Qz + q ≥ 0},

where Q = (a1 . . . ab)T is an b × n matrix and q = (α1 . . . αb)T is a b-vector.

Example 15.1

Consider the equation

Yi =

i
∑

j=0

i
∑

k=0

Ai, j+k × Bk, j , 0 ≤ i ≤ 10

The domains of the variables Y , A, and B are, respectively, the sets {i |0 ≤ i ≤ 10}, {i, l |0 ≤ i ≤ 10, 0 ≤

l ≤ 2i}, and {k, j |0 ≤ k ≤ 10, 0 ≤ j ≤ 10}. These sets are polyhedra, and deriving the aforementioned

representation simply requires us to obtain, through elementary algebra, all affine constraints of the

correct form, yielding {i |i ≥ 0, −i + 10 ≥ 0}, {i, l |i ≥ 0, −i + 10 ≥ 0, l ≥ 0, 2i − l ≥ 0}, and

{k, j |k ≥ 0, −k + 10 ≥ 0, j ≥ 0, − j + 10 ≥ 0}, respectively. Nevertheless, these are less intuitive, and in

our presentation, we will not conform to the formalities of representation.
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A subtle point to note here is that elements of polyhedral sets are tuples of integers. The index variables

i , j , k, and l are simply place holders and can be substituted by other unused names. The domain of B

can also be specified by the set {i, j |0 ≤ i ≤ 10, 0 ≤ j ≤ 2i}.

We shall use the following properties and notation of integer polyhedra and affine constraints:

� For any two coefficients β and β ′, where β, β ′ ≥ 0 and β + β ′ = 1, βz + β ′z′ is said to be a convex

combination of z and z′. If z and z′ are two iteration points in an integer polyhedron, P , then any

convex combination of z and z′ that has all integer elements is also in P .
� The constraint c ≡ (aT z + α ≥ 0) of P is said to be saturated iff (aT z + α = 0) ∩ P = P .
� The lineality space of P is defined as the linear part of the largest affine subspace contained in P . It

is given by ker(Q).
� The context of P is defined as the linear part of the smallest affine subspace that contains P . If the

saturated constraints in C are the rows of {Q0z + q0 ≥ 0}, then the context of P is ker(Q0).

15.2.1.1.1 Parameterized Integer Polyhedra

Recall Equation 15.1. The domain of Y is given by the set {i |0 ≤ i ≤ n}. Intuitively, the variable n is seen

as a size parameter that indicates the problem instance under consideration. If we associate every iteration

point in the domain of Y with the appropriate problem instance, the domain of Y would be described by

the set {n, i |0 ≤ i ≤ n}. Thus, a parameterized integer polyhedron is an integer polyhedron where some

indices are interpreted as size parameters.

An equivalence relation is defined on the set of iteration points in a parameterized polyhedron such

that two iteration points are equivalent if they have identical values of size parameters. By this relation,

a parameterized polyhedron is partitioned into a set of equivalence classes, each of which is identified by

the vector of size parameters. Equivalence classes correspond to program instances and are, thus, called

instances of the parameterized polyhedron. We identify size parameters by omitting them from the index

list in the set notation of a domain.

15.2.1.2 Affine Images of Integer Polyhedra

An (standard) affine function, f , is a function from iteration points to iteration points. It is of the form

(z → T z + t), where T is an n × m matrix and t is an n-vector.

Consider the integer polyhedron P = {z ∈ Z
m|Qz + q ≥ 0} and the standard affine function given

above. The image of P under f is of the form {T z + t|Qz + q ≥ 0, z ∈ Z
m}. These are the so-called

linearly bound lattices (LBLs). The family of LBLs is a strict superset of the family of integer polyhedra.

Clearly, every integer polyhedra is an LBL with T = I and t = 0. However, for an example of an LBL that

is not an integer polyhedron refer to Figure 15.2.

0

(0,0)

(0,1)

(0,2)

(0,3)

(1,2)

(1,1) (2,1)

(1,0) (2,0) (3,0)

1 2 3

{i + 3j|0 ≤ i, 0 ≤ j, i + j ≤ 3}

{i, j|0 ≤ i, 0 ≤ j, i + j ≤ 3}

4 5 6 7 8 9

FIGURE 15.2 The LBL corresponding to the image of the polyhedron {i, j |0 ≤ i, 0 ≤ j, i + j ≤ 3} by the affine

function (i, j → i + 3 j ) does not contain the iteration point 8 but contains 7 and 9. Since 8 is a convex combination

of 7 and 9, the set is not an integer polyhedron. Adapted from [37], © 2007, Association for Computing Machinery,

Inc., included by permission.
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for k = 1 to m {
start = 0; // int to hold the starting point for j
forall i = 0 to n {

forall j = start to n step 2
C[i, j, k] = 0.25 * (C[i-1, j, k-1] + C[i+1, j, k-1] +

C[i, j-1, k-1] + C[i, j+1, k-1] );
start = 1 - start;

}
start = 1;
forall i = 0 to n {

forall j = start to n step 2
C[i, j, k] = 0.25 * (C [i-1, j, k] + C[i+1, j, k] +

C [i, j-1, k] + C[i, j+1, k] );
start = 1 - start;

}
}

FIGURE 15.3 Imperative loop implementing the red–black SOR.

15.2.1.3 Affine Lattices

Often, the domain over which an equation is specified, or the iteration space of a loop program, does not

contain every integer point that satisfies a set of affine constraints.

Example 15.2

Consider the red–black SOR for the iterative computation of partial differential equations. Iterations in

the (i, j ) plane are divided into “red” points and “black” points, similar to the layout of squares in a chess

board. First, black points (at even i + j ) are computed using the four neighboring red points (at odd

i + j ), and then the red points are computed using its four neighboring black points. These two phases

are repeated until convergence. Introducing an additional dimension, k to denote the iterative application

of the two phases, we get the following equation:

Ci, j,k =

{

i + j even : 1
4

(Ci−1, j,k−1 + Ci+1, j,k−1 + Ci, j−1,k−1 + Ci, j+1,k−1) // black

i + j odd : 1
4

(Ci−1, j,k + Ci+1, j,k + Ci, j−1,k + Ci, j+1,k) // red
(15.2)

where the domain of C is {i, j, k|0 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ k ≤ m}, n and m are size parameters, and

C[i, j, 0] is given as input. The imperative loop nest that implements this equation is given in Figure 15.3.

We see that the first (respectively second) branch of the equation is not defined over all iteration points

that satisfy a set of affine constraints, namely, {0 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ k ≤ m}, but over points that

additionally satisfy (i + j ) mod 2 = 0 (respectively [i + j ] mod 2 = 1). This additional constraint

in the first branch of the equation is satisfied precisely by the iteration points that can be expressed as

an integer linear combination of the vectors {( 1
1

), ( 0
2

)}. The vectors ( 1
1

) and ( 0
2

) are the generators of the

lattice on which these iteration points lie.

The additional constraint in the second branch of the equation is satisfied precisely by iteration points

that can be expressed as the following affine combination:

(

1

1

)

i ′ +

(

0

2

)

j ′ +

(

0

1

)

=

(

1 0

1 2

) (

i ′

j ′

)

+

(

0

1

)

Formally, the lattice generated by a matrix L is the set of all integer linear combinations of the columns

of L . If the columns of a matrix are linearly independent, they constitute a basis of the generated lattice. The

lattices generated by two-dimensionally identical matrices are equal iff the matrices are column equivalent.

In general, the lattices generated by two arbitrary matrices are equal iff the submatrices corresponding to

the nonzero columns in their HNF are equal.

As seen in the previous example, we need a generalization of the lattices generated by a matrix, addi-

tionally allowing offsets by constant vectors. These are called affine lattices. An affine lattice is a subset of
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Z
n of the form {L z + l |z ∈ Z

m}, where L and l are an n × m matrix and n-vector, respectively. We call z

the coordinates of the affine lattice.

The affine lattices {L z + l |z ∈ Z
m} and {L ′z′ + l ′|z′ ∈ Z

m′

} are equal iff the lattices generated by L and

L ′ are equal and l ′ = L z0 + l for some constant vector z0 ∈ Z
m. The latter requirement basically enforces

that the offset of one lattice lies on the other lattice.

15.2.1.4 Z-Polyhedra

A Z-polyhedron is the intersection of an integer polyhedron and an affine lattice. Recall the set of it-

eration points defined by either branch of the equation for the red–black SOR. As we saw above, these

iteration points lie on an affine lattice in addition to satisfying a set of affine constraints. Thus, the set of

these iteration points is precisely a Z-polyhedron. When the affine lattice is the canonical lattice, Z
n, a

Z-polyhedron is also an integer polyhedron. We adopt the following representation for Z-polyhedra:

{L z + l |Qz + q ≥ 0, z ∈ Z
m} (15.3)

where L has full column rank, and the polyhedron P c = {z|Qz + q ≥ 0, z ∈ Z
m} has a context that is the

universe, Z
m. P c is called the coordinate polyhedron of the Z-polyhedron. The Z-polyhedron for which

L has no columns has a coordinate polyhedron in Z
0.

We see that every Z-polyhedron is an LBL simply by observing that the representation for a

Z-polyhedron is in the form of an affine image of an integer polyhedron. However, the LBL in Figure

15.2 is clearly not a Z-polyhedron. There does not exist any lattice with which we can intersect the integer

polyhedron {i |0 ≤ i ≤ 9} to get the set of iteration points of the LBL. Thus, the family of LBLs is a strict

superset of the family of Z-polyhedra.

Our representation for Z-polyhedra as affine images of integer polyhedra is specialized through the

restriction to L and P c . We may interpret the Z-polyhedral representation in Equation 15.3 as follows.

It is said to be based on the affine lattice given by {L z + l |z ∈ Z
m}. Iteration points of the Z-polyhedral

domain are points of the affine lattice corresponding to valid coordinates. The set of valid coordinates is

given by the coordinate polyhedron.

15.2.1.4.1 Parameterized Z-Polyhedra

A parameterized Z-polyhedron is a Z-polyhedron where some rows of its corresponding affine lattice

are interpreted as size parameters. An equivalence relation is defined on the set of iteration points in a

parameterized Z-polyhedron such that two iteration points are equivalent if they have identical value of

size parameters. By this relation, a parameterized Z-polyhedron is partitioned into a set of equivalence

classes, each of which is identified by the vector of size parameters. Equivalence classes correspond to

program instances and are, thus, called instances of the parameterized Z-polyhedron.

For the sake of explanation, and without loss of generality, we may impose that the rows that denote

size parameters are before all non-parameter rows. The equivalent Z-polyhedron based on the HNF of

such a lattice has the important property that all points of the coordinate polyhedron with identical values

of the first few indices belong to the same instance of the parameterized Z-polyhedron.

Example 15.3

Consider the Z-polyhedron given by the intersection of the polyhedron {p, i |0 ≤ i ≤ p} and the lattice

{ j + k, j − k}.2 It may be written as

{ j + k, j − k|0 ≤ j − k ≤ j + k} = { j + k, j − k|0 ≤ k ≤ j }

Now, suppose the first index, p, in the polyhedron is the size parameter. As a result, the first row in the

lattice { j + k, j − k} corresponding to the Z-polyhedron is the size parameter. The HNF of this lattice is

2For both the polyhedron and the affine lattice, the specification of the coordinate space Z
2 is redundant. It can be

derived from the number of indices and is therefore dropped for the sake of brevity.
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{ j ′, j ′ + 2k′}. The equivalent Z-polyhedron is

{ j ′, j ′ + 2k′|k′ ≤ 0 ≤ j ′ + 2k′}

The iterations of this Z-polyhedron belong to the same program instance iff they have the same

coordinate index j ′. Note that valid values of the parameter row trivially have a one-to-one correspondence

with values of j ′, identity being the required bijection. In the general case, however, this is not the case.

Nevertheless, the required property remains invariant. For example, consider the following Z-polyhedron

with the first two rows considered as size parameters:

{m, m + 2n, i + m, j + n|0 ≤ i ≤ m; 0 ≤ j ≤ n}

Here, valid values of the parameter rows have a one-to-one correspondence with the values of m and n,

but it is impossible to obtain identity as the required bijection.

15.2.1.5 Affine Lattice Functions

Affine lattice functions are of the form (Kz + k → Rz + r ), where K has full column rank. Such functions

provide a mapping from the iteration Kz + k to the iteration Rz + r . We have imposed that K have full

column rank to guarantee that (Kz + k → Rz + r ) be a function and not a relation, mapping any point

in its domain to a unique point in its range. All standard affine functions are also affine lattice functions.

The mathematical objects introduced here are used to abstract the iteration domains and dependences

between computations. In the next two sections, we will show the advantages of manipulating equations

with Z-polyhedral domains instead of polyhedral domains and present a language for the specification of

such equations.

15.2.2 The Z-Polyhedral Model

We will now develop the Z-polyhedral model that enables the specification, analysis, and transformation

of equations described over Z-polyhedral domains. It has its origins in the polyhedral model that has

been developed for over a quarter century. The polyhedral model has been used in a variety of contexts,

namely, automatic parallelization of loop programs, locality, hardware generation, verification, and, more

recently, automatic reduction of asymptotic computational complexity. However, the prime limitation of

the polyhedral model lay in its requirement for dense iteration domains. This motivated the extension

to Z-polyhedral domains. As we have seen in the red–black SOR, Z-polyhedral domains describe the

iterations of a regular loop with non-unit stride.

In addition to allowing more general specifications, theZ-polyhedral model enables more sophisticated

analyses and transformations by providing greater information in the specifications, namely, pertaining

to lattices. The example below demonstrates the advantages of manipulating Z-polyhedral domains. The

variable X is defined over the domain {i |1 ≤ i ≤ n}.3

for i = 1 to n
if ((i%2==0) || (i%3==0)) X[i] = X[i-1];

In the loop, only iteration points that are a multiple of 2 or 3 execute the statement X[i] = X[i − 1].

The iteration at i = 5 may be excluded from the loop nest. Generalizing, any iteration that can be written

in the form 6 j + 5 may be excluded from the loop nest. The same argument applies to iterations that can

be written in the form 6 j + 1. As result of these “holes,” all iterations at 6 j + 2 may be executed in parallel

at the first time step. The iterations at 6 j + 6 may also be executed in parallel at the first time step. At the

3Code fragments in this section are adapted from [37], ©2007, Association for Computing Machinery, Inc., included

by permission.
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next time step, we may execute iterations at 6 j +3 and finally at iterations 6 j +4. The length of the longest

dependence chain is 3. Thus, the loop nest can be parallelized to execute in constant time as follows:

forall i = 2 to n step 6
X[i] = X[i-1];

forall i = 6 to n step 6
X[i] = X[i-1];

forall i = 3 to n step 6
X[i] = X[i-1];

forall i = 4 to n step 6
X[i] = X[i-1];

However, our derivation of parallel code requires to manipulate Z-polyhedral domains. A polyhedral

approximation of the problem would be unable to result in such a parallelization.

Finally, the Z-polyhedral model allows specifications with a more general dependence pattern than the

specifications in the polyhedral model. Consider the following equation that cannot be expressed in the

polyhedral model.

A[i] =

{

i even : A[i/2]

i odd : 0
(15.4)

where 1 ≤ i ≤ n and the corresponding loop is

for i = 1 to N
A[i] = (i%2==0 ? A[i/2] : 0);

This program exhibits a dependence pattern that is richer than the affine dependences of the polyhedral

model. In other words, it is impossible to write an equivalent program in the polyhedral model, that is,

without the use of the mod operator or non-unit stride loops, that can perform the required computation.

One may consider replacing the variable A with two variables X and Y corresponding to the even and odd

points of A such that A[2i] = X[i] and A[2i − 1] = Y [i]. However, the definition of X now requires the

mod operator, because X[2i] = X[i] and X[2i − 1] = Y [i].

Thus, the Z-polyhedral model is a strict generalization of the polyhedral model and enables more

powerful optimizations.

15.2.3 Equational Language

In our presentation of the red–black SOR in Section 15.2.1.3, we studied the domains of the two branches

of Equation 15.2. More specifically, these are the branches of the case expression in the right-hand side (rhs)

of the equation. In general, our techniques require the analysis and transformation of the subexpressions

that constitute the rhs of equations, treating expressions as first-class objects.

For example, consider the simplification of Equation 15.1. As written, the simplification transforms the

accumulation expression in the rhs of the equation. However, one would expect the technique to be able

to decrease the asymptotic complexity of the following equation as well.

Yi = 5 +

i
∑

j=0

i
∑

k=0

Ai, j+k × Bk, j for 0 ≤ i ≤ n (15.5)

Generalizing, one would reasonably expect the existence of a technique to reduce the complexity of

evaluation of the accumulation subexpression (
∑i

j=0

∑i
k=0 Ai, j+k × Bk, j ), irrespective of its “level.” This

motivates a homogeneous treatment of the subexpression at any level. At the lowest level of specification,
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TABLE 15.1 Expressions: Syntax and Domains

Expression Syntax Domain

Constants Constant name or symbol DC

Variables V DV

Operators op(Expr1, . . .,ExprM)
⋂M

i=1 DExpri

Case caseExpr1; . . .; ExprMesac
⊎M

i=1 DExpri

Restriction D′ :Expr D′ ∩ DExpr

Dependence Expr. f f −1(DExpr)

Reductions reduce (⊕, f, E xpr ) f (DExpr)

The domain of an expression A is denoted by DA. The operator,

op , may be written in infix notation if it is binary.
⊎

denotes disjoint

union and f −1 denotes relational inverse. Adapted from [38], ©2006,

Association for Computing Machinery, Inc., included by permission.

a subexpression is a variable (or a constant) associated with a domain. Generalizing, we associate domains

to arbitrary subexpressions.

The treatment of expressions as first-class objects leads to the design of a functional language where

programs are a finite list of (mutually recursive) equations of the form Var = Expr , where both Var
and Expr denote mappings from their respective domains to a set of values (similar to multidimensional

arrays). A variable is defined by at most one equation. Expressions are constructed by the rules given

in Table 15.1, column 2. The domains of all variables are declared, the domains of constants are either

declared or defined over Z
0 by default, and the domains of expressions are derived by the rules given in

Table 15.1, column 3. The function specified in a dependence expression is called the dependence function

(or simply a dependence), and the function specified in a reduction is called the projection function (or

simply a projection).

In this language, Equation 15.5 would be a syntactically sugared version of the following concrete

problem.

Y=5.(i->) + reduce(+,(i,j,k->i),A.(i,j,k->i,j+k)*B.(i,j,k->k,j))

In the equation above, 5 is a constant expression defined over {i |0 ≤ i ≤ n} and Y, A, and Bare variables.

In addition to the equation, the domains of Y, A, and B would be declared as the sets {i |0 ≤ i ≤ n},

{i, l |0 ≤ i ≤ n, 0 ≤ l ≤ 2i}, and {k, j |0 ≤ k ≤ n, 0 ≤ j ≤ n}, respectively. The reduction expression is

the accumulation in Equation 15.5. Summation is expressed by the reduction operator + (other possible

reduction operators are ∗, max, min , or , and , etc.). The projection function (i,j,k->i) specifies

that the accumulation is over the space spanned by j and k resulting in values in the one-dimensional

space spanned by i . A subtle and important detail is that the expression that is accumulated is defined

over a domain in three-dimensional space spanned by i , j , and k (this information is implicit in standard

mathematical specifications as in Equation 15.5). This is an operator expression equal to the product of the

value of A at [i, j + k] and B at [k, j ]. In the space spanned by i , j , and k, the required dependences on A

and B are expressed through dependence expressions A.(i,j,k->i,j+k) and B.(i,j,k->k,j) ,

respectively. The equation does not contain any case or restrict constructs. For an example of these two

constructs, refer back to Equation 15.4. In our equational specification, the equation would be written as

A = case

{2 j |1 ≤ 2 j ≤ n}:A.(2j->j)

{2 j − 1|1 ≤ 2 j − 1 ≤ n}:0

esac

where the domains of A and the constant 0 are {i |1 ≤ i ≤ n} and {2i − 1|1 ≤ 2i − 1 ≤ n}, respectively.

There are two branches of the case expression, each of which is a restriction expression. We have not

provided domains of any of the subexpressions mentioned above for the sake of brevity. These can be

computed using the rules given in Table 15.1, column 3.
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15.2.3.1 Semantics4

At this point, we intuitively understand the semantics of expressions. Here, we provide the formal semantics

of expressions over their domains of definition. At the iteration point z in its domain, the value of:

� A constant expression is the associated constant.
� A variable is either provided as input or given by an equation; in the latter case, it is the value, at z,

of the expression on its rhs.
� An operator expression is the result of applying op on the values, at z, of its expression arguments.

op is an arbitrary, iteration-wise, single valued function.
� A case expression is the value at z of that alternative, to whose domain z belongs. Alternatives of a

case expression are defined over disjoint domains to ensure that the case expression is not under-

or overdefined.
� A restriction over E is the value of E at z.
� The dependence expression E. f is the value of E at f (z). For the affine lattice function (L z + l →

Rz + r ), the value of the (sub)expression E.(L z + l → Rz + r ) at L z + l equals the value of E at

Rz + r .
� reduce (⊕, f, E) is the application of ⊕ on the values of E at all iteration points in DE that map

to z by f . Since ⊕ is an associative and commutative binary operator, we may choose any order of

its application.

It is often convenient to have a variable defined either entirely as input or only by an equation. The former

is called an input variable and the latter is a computed variable. So far, all our variables have been of these

two kinds only. Computed variables are just names for valid expressions.

15.2.3.2 The Family of Domains

Variables (and expressions) are defined over Z-polyhedral domains. Let us study the compositional con-

structs in Table 15.1 to get a more precise understanding of the family of Z-polyhedral domains.

For compound expressions to be defined over the same family of domains as their subexpressions, the

family should be closed under intersection (operator expressions, restrictions), union (case expression),

and preimage (dependence expressions) and image (reduction expressions) by the family of functions.

With closure, we mean that a (valid) domain operation on two elements of the family of domains should

result in an element that also belongs to the family. For example, the family of integer polyhedra is closed

under intersection but not under images, as demonstrated by the LBL in Figure 15.2. The family of integer

polyhedra is closed under intersection since the intersection of two integer polyhedra that lie in the same di-

mensional space results in an integer polyhedron that satisfies the constraints of both the integer polyhedra.

In addition to intersection, union, and preimage and image by the family of functions, most analyses

and transformations (e.g., simplification, code generation, etc.) require closure under the difference of

two domains. With closure under the difference of domains, we may always transform any specification

to have only input and computed variables.

The family of Z-polyhedral domains should be closed under the domain operations mentioned above.

This constraint is unsatisfied if the elements of this family are Z-polyhedra. For example, the union of two

Z-polyhedra is not a Z-polyhedron. Also, the LBL in Figure 15.2 shows that the image of a Z-polyhedron

is not a Z-polyhedron. However, if the elements of the family of Z-polyhedral domains are unions of

Z-polyhedra, then all the domain operations mentioned above maintain closure.

15.2.3.3 Parameterized Specifications

Extending the concept of parameterizedZ-polyhedra, it is possible to parameterize the domains of variables

and expressions with size parameters. This leads to parameterized equational specifications. Instances of

the parameterized Z-polyhedra correspond to program instances.

4Parts of this section are adapted from [38], © 2006, Association for Computing Machinery, Inc., included by permission.
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TABLE 15.2 Normalization Rules

# Input Output

1 case E 1, . . ., E k−1, case , E ′
1, . . ., E ′

m esac, case E 1, . . ., E k−1, E ′
1, . . ., E ′

m,

E k+1, . . ., E n esac E k+1, . . . , E n esac
2 D′:case E 1, . . ., E n esac case D′ : E 1, . . . , D′ : E n esac
3 op(E 1, . . ., E k−1, case E ′

1, . . ., E ′
m esac , case op (E 1, . . ., E k−1, E ′

1, E k+1, . . ., E n), . . .,

E k+1, . . ., E n) op(E 1, . . ., E k−1, E ′
m, E k+1, . . ., E n) esac

4 (case E 1, . . ., E n esac ). f case E 1. f, . . ., E n. f esac
5 D1 : D2 : E (D1 ∩ D2) : E

6 op(E 1, . . ., E k−1,D′ : E , E k+1, . . ., E n) D′ : op(E 1, . . ., E k−1, E , E k+1, . . ., E n)

7 (D′ : E ). f f −1(D′) : E

8 (op(E 1, . . ., E n)). f op(E 1. f, . . ., E n. f )

9 (E . f1). f2 E .( f1 ◦ f2)

Every program instance in a parameterized specification is independent, so all functions should map

consumer iterations to producer iterations within the same program instance.

15.2.3.4 Normalization

For most analyses and transformations (e.g., the simplification of reductions, scheduling, etc.), we need

equations in a special normal form. Normalization is a transformation of an equational specification

to obtain an equivalent specification containing only equations of the canonic forms V = E or V =

reduce (⊕, f p , E), where the expression E is of the form

case . . .,DV,i : op(. . ., U. f, . . . ), . . . esac (15.6)

and U is a variable or a constant.

Such a normalization transformation5 first introduces an equation for every reduce expression,

replacing its occurrence with the corresponding local variable. As a result, we get equations of the forms

V = E or V = reduce (⊕, f p , E), where the expression E does not contain any reduce subexpressions.

Subsequently, these expressions are processed by a rewrite engine to obtain equivalent expressions of the

form specified in Equation 15.6. The rules for the rewrite engine are given in Table 15.2. Rules 1 to 4 “bubble”

a single case expression to the outermost level, rules 5 to 7 then “bubble” a single restrict subexpression

to the second level, rule 8 gets the operator to the penultimate level, and rule 9 is a dependence composition

to obtain a single dependence at the innermost level.

The validity of these rules, in the context of obtaining a valid specification of the language, relies on the

closure properties of the family of unions of Z-polyhedra.

15.2.4 Simplification of Reductions6

We now provide a deeper study of reductions. Reductions, commonly called accumulations, are the

application of an associative and commutative operator to a collection of values to produce a collection of

results.

Our use of equations was motivated by the simplification of asymptotic complexity of an equation

involving reductions. We first present the required steps for the simplification. Then we will provide an

intuitive explanation of the algorithm for simplification. For the sake of intuition, we use the standard

mathematical notation for accumualations rather than the reduce expression.

5More sophisticated normalization rules may be applied, expressing the interaction of reduce expressions with

other subexpressions. However, these are unnecessary in the scope of this chapter.
6Parts of this section are adapted from [38], © 2006, Association for Computing Machinery, Inc., included by permission.
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Our initial specification was

Yi =

i
∑

j=0

i
∑

k=0

Ai, j+k × Bk, j for 0 ≤ i ≤ n (15.7)

The loop nest corresponding to this equation has a �(n3) complexity. The cubic complexity for this

equation can also be directly deduced from the equational specification. Parameterized by n, there are

three independent7 indices within the summation. The following steps are involved in the derivation of

the �(n2) equivalent specification.

1. Introduce the index variable l = j + k and replace every occurrence of j with l . This is a change

of basis of the three-dimensional space containing the domain of the expression that is reduced.

Yi =

2i
∑

l=0

min(i,l)
∑

k=max(0,l−i)

Ai,l × Bk,l−k for 0 ≤ i ≤ n

The change in the order of summation is legal under our assumption that the reduction operator

is associative and commutative.

2. Distribute multiplication over the summation since Ai,l is independent of k, the index of the inner

summation.

Yi =

2i
∑

l=0

⎛

⎝Ai,l ×

min(i,l)
∑

k=max(0,l−i)

Bk,l−k

⎞

⎠ for 0 ≤ i ≤ n

3. Introduce variable Zi,l to hold the result of the inner summation
∑min(i,l)

k=max(0,l−i) Bk,l−k .

Yi =

2i
∑

l=0

Ai,l × Zi,l for 0 ≤ i ≤ n

Zi,l =

min(i,l)
∑

k=max(0,l−i)

Bk,l−k for 0 ≤ i ≤ n, 0 ≤ l ≤ 2i

Note that the complexity of evaluating Y is now quadratic. However, we still have an equational

specification that has cubic complexity (for the evaluation of Z).

4. Separate the summation over k to remove min and max operators in the equation for Zi,l .

Zi,l =

{

0 ≤ l < i :
∑l

k=0 Bk,l−k

i ≤ l ≤ 2i :
∑i

k=l−i Bk,l−k
for 0 ≤ i ≤ n

5. Introduce variables Xi,l and Wi,l for each branch of the equation defining Zi,l .

Xi,l =

l
∑

k=0

Bk,l−k for 1 ≤ i ≤ n, 0 ≤ l < i

Wi,l =

i
∑

k=l−i

Bk,l−k for 0 ≤ i ≤ n, i ≤ l ≤ 2i

Both the equations given above have cubic complexity.

7With independent, we mean that there are no equalities between indices.
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6. Reuse. The complexity for the evaluation of X can be decreased by identifying that the expression

on the rhs is independent of i . We may evaluate each result once (for instance, at a boundary) and

then pipeline along i as follows.

Xi,l =

{

1 ≤ i ≤ n, l = i − 1 :
∑l

k=0 Bk,l−k

1 ≤ i ≤ n, 0 ≤ l < i − 1 : Xi−1,l

The initialization takes quadratic time since there are a linear number of results to evaluate and

each evaluation takes linear time. Then the pipelining of results over an area requires quadratic

time. This decreases the overall complexity of evaluating X to quadratic time.

7. Scan detection. The simplification of Wi,l occurs when we identify

Wi,l = Bl−i,i + Bi,l−i +

i−1
∑

k=l−i+1

Bk,l−k for 0 ≤ i ≤ n, i ≤ l ≤ 2i − 2

= Bl−i,i + Bi,l−i + Wi−1,l for 0 ≤ i ≤ n, i ≤ l ≤ 2i − 2

The values are, once again, initialized in quadratic time at a boundary (here, 0 ≤ i ≤ n, 2i − 1 ≤

l ≤ 2i). The scan takes constant time per iteration over an area and can be performed in quadratic

time as well, thereby decreasing the complexity for the evaluation of W to quadratic time.

8. Summarizing, we have the following system of equations:

Yi =

2i
∑

l=0

Ai,l × Zi,l , 0 ≤ i ≤ n

Zi,l =

{

0 ≤ i ≤ n, 0 ≤ l < i : Xi,l

0 ≤ i ≤ n, i ≤ l ≤ 2i : Wi,l

Xi,l =

{

1 ≤ i ≤ n, l = i − 1 :
∑l

k=0 Bk,l−k

1 ≤ i ≤ n, 0 ≤ l < i − 1 : Xi−1,l

Wi,l =

{

0 ≤ i ≤ n, 2i − 1 ≤ l ≤ 2i :
∑i

k=l−i Bk,l−k

0 ≤ i ≤ n, i ≤ l ≤ 2i − 2 : Bl−i,i + Bi,l−i + Wi−1,l

These equations directly correspond to the optimized loop nest given in Figure 15.1. We have not optimized

these equations or the loop nest any further for the sake for clarity, and moreso, because we only want

to show an asymptotic decrease in complexity. However, a constant-fold improvement in the asymptotic

complexity (as well as the memory requirement) can be obtained by eliminating the variable Z (or,

alternatively, the two variables X and W).

We now provide an intuitive explanation of the algorithm for simplification. Consider the reduction

Y = reduce (⊕, f p , E )

where E is defined over the domain DE . The accumulation space of the above equation is characterized by

ker( f p). Any two points z and z′ that contribute to the same element of the result, Y , satisfy z−z′ ∈ ker( f p).

To aid intuition, we may also write this reduction as

Y [ f p(z)] = ⊕E [z] (15.8)

Y [ f p(z)] is the “accumulation,” using the ⊕ operator, of the values of E at all points z ∈ DE that have

the same image f p(z). Now, if E has a distinct value at all points in its domain, they must all be computed,

and no optimization is possible. However, consider the case where the expression E exhibits reuse: its value

is the same at many points in DE . Reuse is characterized by ker( fr ), the kernel of a many-to-one affine



Computations on Iteration Spaces 15-15

he reuse space is spanned by {(1, 0, 0)T} and the accumulation
space is spanned by {(0, 0, 1)T}. Translating D by (1, 0, 0)T

exposes the left and top diagonal boundaries (light), and exceeds
the right and bottom diagonal boundaries (dark). Moreover,
left and right boundaries contain the accumulation space. Each
boundary is thus treated differently 

he left boundary is the initialization domain. 

he top diagonal boundary is the addition domain. 

he bottom diagonal boundary is the subtraction domain. 

he right boundary is ignored (the projection along the 
accumulation space is outside the domain of the answer). 

he front, back, and top horizontal boundaries are also
ignored since translation is along these boundaries.

k 
j 

i 

FIGURE 15.4 Illustration of the core algorithm for Yi, j =
∑min(i+n,3n/2)

k=i+1 X j,k for 1 ≤ i, j ≤ n. Adapted from

[38], © 2006, Association for Computing Machinery, Inc., included by permission.

function, fr ; the value of E at any two points inDE is the same if their difference belongs to ker( fr ). We can

denote this reuse by E [z] = X[ fr (z)], where X is a variable with domain DX . In our language, this would

be expressed by the dependence expression X.(z → fr [z]). The canonical equation that we analyze is

Y [ f p(z)] = ⊕X[ fr (z)] (15.9)

Its nominal complexity is the cardinality of the domain DE of E . The main idea behind our method is

based on analyzing (a) DE , the domain of the expression E inside the reduction, (b) its reuse space, and

(c) the accumulation space.

15.2.4.1 Core Algorithm

Consider two adjacent instances of the answer variable, Yz and Yz−rY
along rY = f p(r E ), where r E is a

vector in the reuse space of E . The set of values that contribute to Yz and Yz−rY
overlap. This would enable

us to express Yz in terms of Yz−rY
. Of course, there would be residual accumulations on values outside

the intersection that must be “added” or “subtracted” accordingly. We may repeat this for other values of

Y along rY . The simplification results from replacing the original accumulation by a recurrence on Yz−rY

and residual accumulations. For example, in the simple scan, Yi =
∑i

j=1 X j , the expression inside the

summation Fi, j = X j has reuse along (1, 0)T . Taking rY = (1), we get Yi = Yi−1 + Fi,i = Yi−1 + Xi .

The geometric interpretation of the above reasoning is that we translateDE by a vector in the reuse space

of E . Let us call the translated domainDE ′ . The intersection ofDE andDE ′ is precisely the domain of values,

the accumulation over which can be avoided. Their differences account for the residual accumulations. In

the simple scan explained above, the residual domain to be added is {i, j |1 ≤ i = j ≤ n}, and the domain

to be subtracted is empty. The residual accumulations to be added or subtracted are determined only by

DE and r E .

This leads to Algorithm 15.1 (also see Figure 15.4).

Algorithm 15.1 Intuition of the Core Algorithm8

1. Choose r E , a vector in ker( fr ), along which the reuse of E is to be exploited. In general, ker( fr ) is

multidimensional and therefore there may be infinitely many choices.

2. Determine the domains D0, D−, and D+ corresponding to the domain of initialization, and

the residual domains to subtract and to add, respectively. The choice of r E is made such that

the cardinalities of these three domains are polynomials whose degree is strictly less than that for

the original accumulation. This leads to simplification of the complexity.

8Adapted from [38], © 2006, Association for Computing Machinery, Inc., included by permission.
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3. For these three domains, D0, D−, and D+, define the three expressions, E 0, E −, and E +, consisting

of the original expression E , restricted to the appropriate subdomain.

4. Replace the original equation by the following recurrence:

Y [ f p(z)] =

⎧

⎪

⎨

⎪

⎩

f p(D0) : ⊕E 0

DY − f p(D0) : Y [z − r E ]⊕

(⊕E +) ⊖ (⊕E −)

5. Apply steps 1 to 4 recursively on the residual reductions over E 0, E −, or E + if they exhibit further

reuse.

Note that Algorithm 15.1 assumes that the reduction operation admits an inverse; that is, “subtraction”

is defined. If this is not the case, we need to impose constraints on the direction of reuse to exploit:

essentially, we require that the domain D− is empty. This leads to a feasible space of exploitable reuse.

15.2.4.2 Multidimensional Reuse

When the reuse space as well as the accumulation space are multidimensional, there are some interesting

interactions. Consider the equation Yi =
∑i−1

j=1

∑i− j
k=1 X j for i ≥ 2. It has two-dimensional reuse (in

the {i, k} plane), and the accumulation is also two-dimensional (in the { j, k} plane). Note that the two

subspaces intersect, and this means that in the k direction, not only do all points have identical values, but

they also all contribute to the same answer. From the bounds on the k summation we see that there are

exactly i − j such values, so the inner summation is just (i − j ) × X j , because multiplication is a higher-

order operator for repeated addition of identical values (similar situations arise with other operators, e.g.,

power for multiplication, identity for the idempotent operator max, etc.). We have thus optimized the

�(n3) computation to �(n2). However, our original equation had two dimensions of reuse, and we may

wonder whether further optimization is possible. In the new equation Yi =
∑i−1

j=1(i − j )× X j , the body is

the product of two subexpressions, (i − j ) and X j . They both have one dimension of reuse, in the (1, 1)T

and (1, 0)T directions, respectively, but their product does not. No further optimization is possible for this

equation.

However, if we had first exploited reuse along i , we would have obtained the simplified equation

Yi = Yi−1 +
∑i−1

j=1 X j , initialized with Y2 = X1. The residual reduction here is itself a scan, and we may

recurse the algorithm to obtain Yi = Yi−1 + Zi and Zi = Zi−1 + Xi−1 initialized with Z2 = X1. Thus,

our equation can be computed in linear time. This shows how the choice of reuse vectors to exploit, and

their order, affects the final simplification.

15.2.4.3 Decomposition of Accumulation

Consider the equation Yi =
⊕n−i

k=1

⊕i
j=1 X j,k for 1 ≤ i ≤ n − 1. The one-dimensional reuse space is

along {i}, and { j, k} is the two-dimensional accumulation space. The set of points that contribute to the

i th result lie in an i × (n − i) rectangle of the two-dimensional input array X . Comparing successive

rectangles, we see that as the width decreases from one to the other, the height increases (Figure 15.5). If

the operator ⊕ does not have an inverse, it seems that we may not be able to simplify this equation. This is

not true: we can see that for each k we have an independent scan. The inner reduction Zi,k =
⊕i

j=1 X j,k

is just a family of scans, which can be done in quadratic time with Zi,k = Zi−1,k + Xi,k initialized with

Z1,k = X1,k . The outer reduction just accumulates columns of Zi,k , which is also quadratic.

What we did in this example was to decompose the original reduction that was along the { j, k} space into

two reductions, the inner along the { j } space yielding partial answers along the {i, k}plane and the outer that

combined these partial answers along the {k} space. Although the default choice of the decomposition —

the innermost accumulation direction — of the {k, j } space worked for this example, in general this is not

the case. It is possible that the optimal solution may require a nonobvious decomposition, for instance,
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Additional Values

j

i
k

Absent Values
Scans

FIGURE 15.5 Geometric interpretation for Yi = ⊕n−i
k=1 ⊕i

j=1 X j,k . Adapted from [38], © 2006, Association for

Computing Machinery, Inc., included by permission.

along some diagonal. We encourage the reader to simplify9 the following equation:

Yi =

n+i
⊕

j=i

n+2i− j
⊕

k=i

X j,k

15.2.4.4 Distributivity and Accumulation Decomposition

Returning to the simplification of Equation 15.7, we see that the methods presented so far do not apply,

since the body of the summation, Ai, j+k × Bk, j , has no reuse. The expression has a distinct value at each

point in the three-dimensional space spanned by i , j , and k. However, the expression is composed of two

subexpressions, which individually have reuse and are combined with the multiplication operator that

distributes over the reduction operator, addition.

We may be able to distribute a subexpression outside a reduction if it has a constant value at all the

points that map to the same answer. This was ensured by a change in basis of the three-dimensional space

to i , l , and k, followed by a decomposition to summations over k and then l . Values of A were constant

for different iterations of the accumulation over k. After distribution, the body of the inner summation

exhibited reuse that was exploited for the simplification of complexity.

15.2.5 Scheduling10

Scheduling is assigning an execution time to each computation so that precedence constraints are satisfied.

It is one of the most important and widely studied problems. We present the scheduling analysis for

programs in the Z-polyhedral model. The resultant schedule can be subsequently used to construct a

space–time transformation leading to the generation of sequential or parallel code. The application of this

schedule is made possible as a result of closure of the family of Z-polyhedral domains under image by

the constructed transformation. We showed the advantages of scheduling programs in the Z-polyhedral

model in Section 15.2.2. The general problem of scheduling programs with reductions is beyond the scope

of this chapter. We will restrict our analysis to Z-polyhedral programs without reductions.

The steps involved in the scheduling analysis are (a) deriving precedence (causality) constraints for

programs written in the Z-polyhedral model and (b) formulation of an integer linear program to obtain

the schedule.

9Solution: The inner reduction would map all points for which j + k = c , for a given constant c , to the same partial

answer.
10Adapted from [36] © 2007 IEEE, included by permission.



15-18 The Compiler Design Handbook: Optimizations and Machine Code Generation

(a) Basic RDG

{2i|1 ≤ 2i ≤ n}

{2i      i}

{2i − 1|1 ≤ 2i − 1 ≤ n}
X

(b) Refined RDG

XY
{2i − 1|1 ≤ 2i − 1 ≤ n} {2i|1 ≤ 2i ≤ n}

{4i      2i}

{4i − 2      2i − 1}

Y

{2i      i}

FIGURE 15.6 Basic and refined reduced dependence graphs for Example 15.4. Adapted from [36], © 2007 IEEE,

included by permission.

The precedence constraints between variables are derived from the reduced dependence graph (RDG).

We will now provide some refinements of the RDG.

15.2.5.1 Basic and Refined RDG

Equations in the Z-polyhedral model can be defined over an infinite iteration domain. For any depen-

dence analysis on an infinite graph, we need a compact representation. A directed multi-graph, the RDG

precisely describes the dependences between iterations of variables. It is based on the normalized form of

a specification and defined as follows:

� For every variable in the normalized specification, there is a vertex in the RDG labeled by the

variable name and annotated by its domain. We will refer to vertices and variables interchangeably.
� For every dependence of the variable V on U, there is an edge from V to U, annotated by the

corresponding dependence function. We will refer to edges and dependences interchangeably.

At a finer granularity, every branch of an equation in a normalized specification dictates the dependences

between computations. A precise analysis requires that dependences be expressed separately for every

branch. Again, for reasons of precision, we may express dependences of a variable separately for every

Z-polyhedron in the Z-polyhedral domain of the corresponding branch of its equation. To enable these,

we replace a variable by a set of new variables as elaborated below. Remember, our equations are of the

form

case . . .,DV,i : op(. . ., U. f, . . . ), . . . esac (15.10)

Let DV,i be written as a disjoint union of Z-polyhedra given by
⊎

j Z j . The variable V in the domain

Z j is replaced by a new variable, for instance, X j . Similarly, let U be replaced by new variables given as

Yk . The dependence of V in DV,i on U is replaced by dependences from all X j on all Yk . An edge from

X j to Yk may be omitted if there are no iterations in X j that map to Yk (mathematically, if the preimage

of Yk by the dependence function does not intersect with X j ). A naive construction following these rules

results in the basic reduced dependence graph.

Figure 15.6a gives the basic RDG for Equation 15.4, which is repeated here for convenience.

A =

{

{2i |1 ≤ 2i ≤ n} : A.(2i → i) (denoted by X)

{2i − 1|1 ≤ 2i − 1 ≤ n} : 0 (denoted by Y )

The domains of A and the constant 0 are {i |1 ≤ i ≤ n} and {2i − 1|1 ≤ 2i − 1 ≤ n}, respectively. Next,

we will study a refinement on this RDG.

In the RDG for the generic equation given in Equation 15.10, let X be a variable derived from V and

defined on ZX ∈ DV,i , and let Y be a variable derived from U defined on ZY ∈ DU , where ZX and ZY

are given as follows:

ZX = {L X zX + l X |zX ∈ P c
X}

ZY = {L Y zY + lY |zY ∈ P c
Y }
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A dependence of the form (L z + l → Rz + r ) is directed from X to Y . X at (L z + l) ∈ ZX cannot be

evaluated before Y at (Rz + r ) ∈ ZY . The affine lattice {L z + l |z ∈ Z
n} may contain points that do not lie

in the affine lattice {L X zX + l X |zX ∈ Z
nX }. Similarly, the affine lattice {Rz + r |z ∈ Z

n} may contain points

that do not lie in the affine lattice {L Y zY + lY |zY ∈ Z
nY }. As a result, the dependence may be specified on a

finer lattice than necessary and may safely be replaced by a dependence of the form (L ′z′ + l ′ → R′z′ +r ′),

where

L ′ = L X S, l ′ = L X s + l X

R′ = L Y S ′, r ′ = L Y s ′ + lY
(15.11)

where S and S ′ are matrices and s and s ′ are integer vectors. The refined RDG is a refinement of the basic

RDG where every dependence has been replaced by a dependence satisfying Equation 15.11. Figure 15.6b

gives the refined RDG for Equation 15.4.

15.2.5.2 Causality Constraints

Dependences between the different iterations of variables impose an ordering on their evaluation. A valid

schedule of the evaluation of these iterations is the assignment of an execution time to each computation

so that precedence (causality) constraints are satisfied.

Let X and Y be two variables in the refined RDG defined on {L X zX + l X |zX ∈ P c
X} and {L Y zY + lY |zY ∈

P c
Y }, respectively. We seek to find schedules on X and Y of the following form:

λ′
X (zX ) = (L X zX + l X → λX (zX ))

λ′
Y (zY ) = (L Y zY + lY → λY (zY )) (15.12)

where λX and λY are affine functions on zX and zY , respectively. Our motivation for such schedules is that

all vectors and matrices are composed of integer scalars. If we seek schedules of the form λ′(z′), where

λ′ is an affine function and z′ is an iteration in the domain of a variable, then we may potentially assign

execution times to “holes,” or computations that do not exist.

We will now formulate causality constraints using the refined RDG. Consider dependences from X to

Y . All such dependences can be written as

(L X (Sz + s ) + l X → L Y (S ′z + s ′) + lY )

where S and S ′ are matrices and s and s ′ are vectors. The execution time for Y at L Y (S ′z + s ′) + lY

should precede the execution time for X at L X (Sz + s ) + l X . With the nature of the schedules presented

in Equation 15.12, our causality constraint becomes

λX (Sz + s ) − λY (S ′z + s ′) ≥ 1 (15.13)

with the assumption that op is atomic and takes a single time step to evaluate.

From these constraints, we may derive an integer linear program to obtain schedules of the form

λ′(z) = (L z + l → λ[z]), where {L z + l |z ∈ Z
n} is the lattice corresponding to the Z-polyhedron and

λ(z) is the affine function (composed of integer scalars) on the coordinates of this lattice. An important

feature of this formulation is that the resultant schedule can then be used to construct a space–time

transformation.

15.2.6 Backend

After optimization of the equational specification and obtaining a schedule, the following steps are per-

formed to generate (parallel) imperative code.

Analogous to the schedule that assigns a date to every operation, a second key aspect of the parallelization

is to assign a processor to each operation. This is done by means of a processor allocation function. As with

schedules, we confine ourselves to affine lattice functions. Since there are no causality constraints for
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choosing an allocation function, there is considerable freedom in choosing it. However, in the search for

processor allocation functions, we need to ensure that two iteration points that are scheduled at the same

time are not mapped to the same processing element.

The final key aspect in the static analysis of our equations is the allocation of operations to memory

locations. As with the schedule and processor allocation function, the memory allocation is also an affine

lattice function. The memory allocation function is, in general, a many-to-one mapping with most values

overwritten as the computation proceeds. The validity condition for memory allocation functions is that

no value is overwritten before all the computations that depend on it are themselves executed.

Once we have the three sets of functions, namely, schedule, processor allocation, and memory allocation,

we are left with the problem of code generation. Given the above three functions, how do we produce parallel

code that “implements” these choices? Code generation may produce either sequential or parallel code for

programmable processors, or even descriptions of application-specific or nonprogrammable hardware (in

appropriate hardware description language) that implements the computation specified by the equation.

Current techniques in code generation produce extremely efficient implementations comparable to

hand-optimized imperative programs. With this knowledge, we return to our motivation for the use of

equations to specify computations. An imperative loop nest that corresponds to an equation contains more

information than required to specify the computation. There is an order (corresponding to the schedule)

in the evaluation of values of a variable at different iteration points, namely, the lexicographic order of the

loop indices. A loop nest also specifies the order of evaluation of the partial results of accumulations. A

memory mapping has been chosen to associate values to memory locations. Finally, in the case of parallel

code, a loop nest also specifies a processor allocation. Any analysis or transformation of loop nests that

is equivalent to analysis or transformations on equations has to deconstruct these attributes and, thus,

becomes unnecessarily complex.

15.2.7 Bibliographic Notes11

Our presentation of the equational language and the various analyses and transformations is based on the

the ALPHA language [59, 69] and the MMALPHA framework for manipulating ALPHA programs, which

relies on a library for manipulating polyhedra [107].

Although the presentation in this section has focused on equational specifications, the impact of the

presented work is equally directed toward loop optimizations. In fact, many advances in the development

of the polyhedral model were motivated by the loop parallelization and hardware synthesis communities.

To overcome the limitations of the polyhedral model in its requirement of dense iteration spaces, Teich

and Thiele proposed LBLs [104]. Z-polyhedra were originally proposed by Ancourt [6]. Le Verge [60]

argued for the extension of the polyhedral model to Z-polyhedral domains. Le Verge also developed

normalization rules for programs with reductions [59].

The first work that proposed the extension to a language based on unions ofZ-polyhedra was by Quinton

and Van Dongen [81]. However, they did not have a unique canonic representation. Also, they could not

establish the equivalence between identical Z-polyhedra nor provide the difference of two Z-polyhedra

or their image under affine functions. Closure of unions of Z-polyhedra under all the required domain

operations was proved in [37] as a result of a novel representation for Z-polyhedra and the associated

family of dependences. One of the consequences of their results on closure was the equivalence of the

family of Z-polyhedral domains and unions of LBLs.

Liu et al. [67] described how incrementalization can be used to optimize polyhedral loop computations

involving reductions, possibly improving asymptotic complexity. However, they did not have a cost model

and, therefore, could not claim optimality. They exploited reuse only along the indices of the accumulation

loops and would not be able to simplify an equation like Yi, j =
∑

k Xi− j,k . Other limitations were the

requirement of an inverse operator. Also, they did not consider reduction decompositions and algebraic

11Parts of this section are adapted from [36] ©2007 IEEE and [37, 38], ©2007, 2006 Association for Computing Machinery,
Inc., included by permission.
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transformations and do not handle the case when there is reuse of values that contribute to the same answer.

These limitations were resolved in [38], which presented a precise characterization of the complexity of

equations in the polyhedral model and an algorithm for the automatic and optimal application of program

simplifications.

The scheduling problem on recurrence equations with uniform (constant-sized) dependences was

originally presented by Karp et al. [52]. A similar problem was posed by Lamport [56] for programs

with uniform dependences. Shang and Fortes [97] and Lisper [66] presented optimal linear schedules

for uniform dependence algorithms. Rao [87] first presented affine by variable schedules for uniform

dependences (Darte et al. [21] showed that these results could have been interpreted from [52]). The

first result of scheduling programs with affine dependences was solved by Rajopadhye et al. [83] and

independently by Quinton and Van Dongen [82]. These results were generalized to variable dependent

schedules by Mauras et al. [70]. Feautrier [31] and Darte and Robert [23] independently presented the

optimal solution to the affine scheduling problem (by variable). Feautrier also provided the extension to

multidimensional time [32]. The extension of these techniques to programs in the Z-polyhedral model

was presented in [36]. Their problem formulation searched for schedules that could directly be used to

perform appropriate program transformations. The problem of scheduling reductions was initially solved

by Redon and Feautrier [90]. They had assumed a Concurrent Read, Concurrent Write Parallel Random

Access Machine (CRCW PRAM) such that each reduction took constant time. The problem of scheduling

reductions on a Concurrent Read, Exclusive Write (CREW) PRAM was presented in [39]. The scheduling

problem was studied along with the objective for minimizing communication by Lim et al. [63]. The

problem of memory optimization, too, has been studied extensively [22, 26, 57, 64, 79, 105].

The generation of efficient imperative code for programs in the polyhedral model was presented by

Quilleré et al. [80] and later extended by Bastoul [9]. Algorithms to generate code, both sequential and

parallel, after applying nonunimodular transformations to nested loop programs has been studied exten-

sively [33, 62, 85, 111]. However, these results were all restricted to single, perfectly nested loop nests, with

the same transformation applied to all the statements in the loop body. The code generation problem

thus reduced to scanning the image, by a nonunimodular function, of a single polyhedron. The general

problem of generating loop nests for a union of Z-polyhedra was solved by Bastoul in [11].

Lenders and Rajopadhye [58] proposed a technique for designing multirate VLSI arrays, which are

regular arrays of processing elements, but where different registers are clocked at different rates. Their

formulation was based on equations defined over Z-polyhedral domains.

Feautrier [30] showed that an important class of conventional imperative loop programs called affine con-

trol loops (ACLs) can be transformed to programs in the polyhedral model. Pugh [78] extended Feautrier’s

results. The detection of scans in imperative loop programs was presented by Redon and Feautrier in [89].

Bastoul et al. [10] showed that significant parts of the SpecFP and PerfectClub benchmarks are ACLs.

15.3 Iteration Space Tiling

This section describes an important class of reordering transformations called tiling. Tiling is crucial to

exploit locality on a single proccessor, as well as for adapting the granularity of a parallel program. We first

describe tiling for dense iteration spaces and data sets and then consider irregular iteration spaces and sparse

data sets. Next, we briefly summarize the steps involved in tiling and conclude with bibliographic notes.

15.3.1 Tiling for Dense Iteration Spaces

Tiling is a loop transformation used for adjusting the granularity of the computation so that its character-

istics match those of the execution environment. Intuitively, tiling partitions the iterations of a loop into

groups called tiles. The tile sizes determine the granularity.

In this section, we will study three aspects related to tiling. First, we will introduce tiling as a loop

transformation and derive conditions under which it can be applied. Second, we present a constrained

optimization approach for formulating and finding the optimal tile sizes. We then discuss techniques for

generating tiled code.
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15.3.1.1 Tiling as a Loop Transformation

Stencil computations occur frequently in many numerical solvers, and we use them to illustrate the

concepts and techniques related to tiling. Consider the typical Gauss–Seidel style stencil computation

shown in Figure 15.7 as a running example. The loop specifies a particular order in which the values are

computed. An iteration reordering transformation specifies a new order for computation. Obviously not

every reordering of the iterations is legal, that is, semantics preserving. The notion of semantics preserving

can be formalized using the concept of dependence. A dependence is a relation between a producer and

consumer of a value. A dependence is said to be preserved after the reordering transformation if the

iteration that produces a value is computed before the consumer iteration. Legal iteration reorderings are

those that preserve all the dependences in a given computation.

Array data dependence analyses determine data dependences between values stored in arrays. The

relationship can be either memory-based or value-based. Memory-based dependencies are induced by write

to and read from the same memory location. Value-based dependencies are induced by production and

consumption of values. Once can view memory-based dependences as a relation between memory locations

and valued-based dependences as a relation between values produced and consumed. For computations

represented by loop nests, the values produced and consumed can be uniquely associated with an iteration.

Hence, dependences can be viewed as a relation between iterations.

Dependence analyses summarize these dependence relationships with a suitable representation. Dif-

ferent dependence representations can be used. Here, we introduce and use distance vectors that can

represent a particular kind of dependence and discuss legality of tiling with respect to them. More gen-

eral representations such as direction vectors, dependence polyhedra, and cones can be used to capture

general dependence relationships. Legality of tiling transformations can be naturally extended to these

representations, and a discussion of them is beyond the scope of this article.

We consider perfect loop nests. Since, through array expansion, memory-based dependences can be

automatically transformed to value-based dependences, we consider only the later. For an n-deep perfect

for i = 1 . . . M 

for j = 2 . . . N–1 

A [j] = (A [j] + A [j – 1] + A [j + 1])/3; 
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FIGURE 15.7 A stencil computation is shown on the bottom-left and a geometric view of its data flow is shown

above it. Shown on the right is an illegal rectangular tiling of the iteration space with 2 × 2 tiles. This is due to the cyclic

dependences between the tiles. An instance of this is highlighted.
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loop nest, the iterations can be represented as integer n-vectors. A dependence vector for an n-dimensional

perfect loop nest is an n-vector d = (d1,. . ., dn), where the kth component corresponds to the kth loop

(counted from outermost to innermost). A distance vector is a dependence vector d ∈ Z
n, that is, every

component dk is an integer. A dependence distance is the distance between the iteration that produces a

value and the iteration that consumes a value. Distance vectors represent this information. The dependence

distance vector for a value produced at iteration p = (p1,. . ., pn) and consumed at a later iteration

c = (c1,. . ., cn) is d = (c − p) = (c1 − p1,. . ., cn − pn). The stencil computation given in Figure 15.7

has three dependences. The values consumed at an iteration (i, j ) are produced at iterations (i, j − 1),

(i − 1, j ), and (i − 1, j + 1). The corresponding three dependence vectors are ( 0
1

), ( 1
0

), and ( 1
−1

).

Tiling is an iteration reordering transformation. Tiling reorders the iterations to be executed in a block-

by-block or tile-by-tile fashion. Consider the tiled iteration space shown in Figure 15.7 and the following

execution order. Both the tiles and the points within a tile are executed in the lexicographic order. The tiles

are also executed in an atomic fashion, that is, all the iterations in a tile are executed before any iteration

of another tile. It is very instructive to pause for a moment and ask whether this tiled execution order

preserves all the dependences of the original computation. One can observe that the dependence ( 1
−1

) is

not preserved, and hence the tiling is illegal. There exists a nice geometric way of checking the legality of

a tiling. A given tiling is illegal if there exist cyclic dependences between tiles. An instance of this cyclic

dependence is highlighted in Figure 15.7.

The legality of tiling is determined not by the dependences alone, but also by the shape of the tiles.12

We saw (Figure 15.7) that tiling the stencil computation with rectangles is illegal. However, one might

wonder whether there are other tile shapes for which tiling is legal. Yes, tiling with parallelograms is legal as

shown in Figure 15.8. Note how the change in the tile shape has avoided the cyclic dependences that were

present in the rectangular tiling. Instead of considering nonrectangular shapes that make tiling legal, one

could also consider transforming the data dependences so that rectangular tiling becomes legal. Often, one

can easily find such transformations. A commonly used transformation is skewing. The skewed iteration

space is shown in Figure 15.8 together with a rectangular tiling. Compare the dependences between tiles

in this tiling with those in the illegal rectangular tiling shown in Figure 15.7. One could also think of more

complicated tile shapes, such as hexagons or octagons. Because of complexity of tiled code generation such

tile shapes are not used.

A given tiling can be characterized by the shape and size of the tiles, both of which can be concisely

specified with a matrix. Two matrices, clustering and tiling, are used to characterize a given tiling. The

clustering matrix has a straightforward geometric interpretation, and the tiling matrix is its inverse and

is useful in defining legality conditions. A parallelogram (or a rectangle) has four vertices and four edges.

Let us pick one of the vertices to be the origin. Now we have two edges or two vertices adjoining the

origin. The shape and size of the tiles can be specified by characterizing these edges or vertices. We can

easily generalize these concepts to higher dimensions. In general, an n-dimensional parallelepiped has 2n

vertices and 2n facets (higher-dimensional edges), out of which n facets and n vertices adjoin the origin.

A clustering matrix is an n × n square matrix whose columns correspond to the facets that determine a

tile. The clustering matrix has the property that the absolute value of its determinant is equal to the tile

volume.

The clustering matrices of the parallelogram and rectangular tilings shown in Figure 15.8 are

G ppd =

(

0 2

2 −2

)

and G rect =

(

2 0

0 2

)

12Legality of tiling also depends on the shape of the iteration space. However, for practical applications, we can

check the legality with the shape of the tiles and dependence information alone.
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FIGURE 15.8 Shown on the left is a parallelogram tiling. A rectangular tiling of the transformed iteration space is

shown on the right. A skewing transformation is required to make the rectangular tiling valid.

In G ppd, the first column represents the horizontal edge, and the second represents the oblique edge. In

G rect , the first column represents the horizontal edge, and the second represents the vertical edge.

The tiling matrix is the inverse of the clustering matrix. The tiling matrices of the parallelogram and the

rectangular tilings shown in Figure 15.8 are

Hppd = G−1
ppd =

(

1
2

1
2

1
2

0

)

and Hrect = G−1
rect =

(

1
2

0

0 1
2

)

For rectangular tiling the edges are always along the canonical axes, and hence, there is no loss of generality

in assuming that the tiling and clustering matrices are diagonal. The tiling is completely described by just

the so-called tile size vector, s = (s1,. . ., sn), where each s i denotes the tile size along the i th dimension.

The clustering and tiling matrices are simply G rect = diag(s1,. . ., sn) and Hrect = diag( 1
s1

,. . ., 1
sn

), where

diag(x1,. . ., xn) denotes the n × n diagonal matrix with x1,. . ., xn as the diagonal entries.

A geometric way of checking the legality of a given tiling was discussed earlier. One can derive formal

legality conditions based on the shape and size of the tiles and the dependences. Let D be the set of

dependence distance vectors. A vector x = (x1,. . ., xn) is lexicographically nonnegative if the leading

nonzero component of the x is positive, that is, x1 > 0 or both x1 = 0 and (x2,. . ., xn) � 0. The floor

operator ⌊.⌋ when used on vectors is applied component-wise, that is, ⌊x⌋ = (⌊x1⌋,. . ., ⌊xn⌋). The legality

condition for a given (rectangular or parallelepiped) tiling specified by the tiling matrix H and dependence

set D is

∀d ∈ D : ⌊Hd⌋ � 0

The above condition formally captures the presence or absence of cycles between tiles.
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We can now apply this legality condition to the stencil computation example. Let Dorig = {( 0
1

), ( 1
0

), ( 1
−1

)},

the set of dependence vectors from the original or given stencil computation, and Dskew = {( 0
1

), ( 1
1

), ( 1
0

)},

the dependence vectors obtained after applying the skewing transformation ( 1 0
1 1

) to the original depen-

dences. Earlier we showed that rectangular tiling of the original iteration space is not legal based on the

existence of cycles between tiles (cf. Figure 15.7). This can also be verified by observing that the condition for

validity, ∀d ∈ Dorig : ⌊Hrectd⌋ � 0, is not satisfied, since, for the dependence vector ( 1
−1

) in Dorig , we have

⌊Hrect(
1

−1
)⌋ = ( 0

−1
). However, for the same dependences, Dorig , as shown in Figure 15.8, a parallelogram

tiling is valid. This validity is confirmed by the satisfaction of the constraint ∀d ∈ Dorig : ⌊Hppdd⌋ � 0. We

also showed that a skewing transformation of the iteration space can make rectangular tiling valid. This

can also be verified by observing the satisfaction of ∀d ∈ Dskew : ⌊Hrectd⌋ � 0. In the case of rectangular

tiling the legality condition can be simplified by using the fact that the tiling can be completely specified

by the tile size vector s = (s1,. . ., sn). The legality condition for rectangular tiling specified by the tile size

vector s for a loop nest with a set of dependences D is

∀d ∈ D :

⎛

⎜

⎜

⎜

⎝

⌊

d1

s1

⌋

...
⌊

dn

sn

⌋

⎞

⎟

⎟

⎟

⎠

� 0

A rectangular tiling can also be viewed as a sequence of two transformations: strip mining and loop

interchange. This view is presented by Raman and August in this text [84].

15.3.1.2 Optimal Tiling

Selecting the tile shape and selecting the sizes are two important tasks in using loop tiling. If rectangular

tiling is valid or could be made valid by appropriate loop transformation, then it should be preferred over

parallelepipeds. This preference is motivated by the simplicity and efficiency in tiled code generation as well

as tile size selection methods. For many practical applications we can transform the loop so that rectangular

tiling is valid. We discuss rectangular tiling only. Having fixed the shape of tiles to (hyper-)rectangles, we

address the problem of choosing the “best” tile sizes.

Tile size selection methods vary widely depending on the purpose of tiling. For example, when tiling

for multi-processor parallelism, analytical models are often used to pick the best tile sizes. However, when

tiling for caches or registers, empirical search is often the best choice. Though the methods vary widely,

they can be treated in the single unifying formulation of constrained optimization problems. This approach

is used in the next section to formulate the optimal tile size selection problem.

15.3.1.2.1 Optimal Tile Size Selection Problem

The optimal tile size selection problem involves selecting the best tile sizes from a set of valid tile sizes.

What makes a tile size valid and what makes it the best can be specified in a number of ways. Constrained

optimization provides this unified approach. Validity is specified with a set of constraints, and an objective

function is used to pick the best tile sizes. A constrained optimization problem has the following form:

minimize f (s )

subject to g i (s ) ≤ 0 for i = 1 . . . m (15.14)

where s is the variable, f (s ) is the objective function, and g i (s ) ≤ 0 are constraints on s . The solution to

such an optimization problem has two components: (a) the minimum value of f over all valid s and (b) a

minimizer s ∗, which is a value of s at which f attains the minimum value.

All the optimal tile size selection problems can be formulated as a constrained optimization problem

with appropriate choice of the f and g i s. Furthermore, the structure of f and g i s determines the techniques

that can be used to solve the optimization problem. For example, consider the problem of tiling for data

locality, where we seek to pick a tile size that minimizes the number of cache misses. This can be cast into

an optimization problem, where the objective function is the number of misses, and the constraints are
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the positivity constraints on the tile sizes and possibly upper bounds on the tile sizes based on program

size parameters as well as cache capacity. In the next two sections, we will present an optimization-based

approach to optimal tile size selection in the context of two problems: (a) tiling for data locality and

(b) tiling for parallelism. The optimization problems resulting from optimal tiling formulations can be

cast into a particular form of numerical convex optimization problems called geometric programs, for

which powerful and efficient tools are widely available. We first introduce this class of convex optimization

problems in the next section and use them in the later sections.

15.3.1.2.2 Geometric Programs

In this section we introduce the class of numerical optimization problems called geometric programs,

which will be used in later sections to formulate optimal tile size selection problems.

Let x denote the vector (x1, x2,. . ., xn) of n real, positive variables. A function f is called a posynomial

function of x if it has the form

f (x1, x2,. . ., xn) =

t
∑

k=1

ck x
α1k

1 x
α2k

2 · · · xαnk
n

where c j ≥ 0 and αi j ∈ R. Note that the coefficients ck must be nonnegative, but the exponents αi j can be

arbitrary real numbers, including negative or fractional. When there is exactly one nonzero term in the sum,

that is, t = 1 and c1 > 0, we call f a monomial function. For example, 0.7 + 2x1/x2
3 + x0.3

2 is a posynomial

(but not monomial), 2.3(x1/x2)1.5 is a monomial (and, hence, a posynomial), while 2x1/x2
3 −x0.3

2 is neither.

Note that posynomials are closed under addition, multiplication, and nonnegative scaling. Monomials are

closed under multiplication and division.

A geometric program (GP) is an optimization problem of the form

mimimize f0(x)

subject to fi (x) ≤ 1, i = 1, . . ., m

g i (x) = 1, i = 1, . . ., p (15.15)

xi > 0, i = 1, . . ., n

where f0,. . ., fm are posynomial functions and g1,. . ., g p are monomial functions. If ∀i = 1 . . . n : xi ∈ Z,

we call the GP an integer geometric program (IGP).

15.3.1.2.2.1 Solving IGPs

GPs can be transformed into convex optimization problems using a variable substitution and solved

efficiently using polynomial time interior point methods. Integer solutions can be found by using a branch-

and-bound algorithm. Tools such as YALMIP provide a high-level symbolic interface (in MATLAB) that

can be used to define and solve IGPs. The number of (tile) variables of our IGPs are related to number

of dimensions tiled and hence are often small. In our experience with solving IGPs related to tiling, the

integer solutions were found in a few (fewer than 10) iterations of the branch-and-bound algorithm.

The (wall clock) running time of this algorithm was just a few seconds, even with the overhead of using

the symbolic MATLAB interface.

15.3.1.2.3 Tiling for Parallelism

We consider a distributed memory parallel machine as the execution target. Message passing is a widely

used interprocess communication mechanism for such parallel machines. The cost of communication in

such systems is significant. Programs with fine-grained parallelism require frequent communications and

are not suited for message-passing-style parallel execution. We need to increase the granularity of parallel

computation and make the communications less frequent. Tiling can be used to increase the granularity

of parallelism from fine to coarse. Instead of executing individual iterations in parallel, we can execute

tiles in parallel, and instead of communicating after every iteration, we communicate between tiles. The

tile sizes determine how much computation is done between communications.
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Tile graph for a tiling with si = sj
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FIGURE 15.9 Tile graph and a parallelization of it.

Consider the 2 × 2 rectangular tiling shown in Figure 15.8. We seek to execute the tiles in parallel.

To do this we need (a) a processor mapping that maps tiles to processors and (b) a schedule that specifies

a (parallel) time stamp for each tile. A parallelization of a tiled iteration space involves derivation of a

processor mapping and a schedule. A better abstraction of the tiled iteration space useful in comparing

and analyzing different parallelizations is the tile graph. A tile graph consists of nodes that are tiles and

edges representing dependences between them. Figure 15.9 shows the tile graph of the 2 × 2 tiling shown

in Figure 15.8. The dependences between tiles are induced by the dependences between the iterations and

the tiles they are grouped into. The shape of the tile graph is determined by the shape of the tiled iteration

space as well as the tile sizes. The shapes of the tile graph (Figure 15.9) and the rectangular tiled iteration

space (Figure 15.8) are the same because the tile sizes s i = s j = 2 are the same. It is useful to pause for a

moment and think of the tile graph shape when s i = 2 and s j = 4.

To parallelize the tile graph we need to find a parallel schedule and a processor mapping. As shown in

Figure 15.9, the wavefronts corresponding to the i + j = c lines define a parallel schedule — all the tiles on

a wavefront can be executed in parallel. We can verify that this schedule is valid by observing that any given

tile is scheduled after all the tiles it depends on are executed. A processor mapping is valid if it does not

map two tiles scheduled to execute at the same time to the same processor. There are many valid processor

mappings possible for this schedule. For example, one can easily verify that the following three mappings

are valid: (a) map each column of tiles to a processor, (b) map each row of tiles to a processor, and (c) map

all the tiles along the i = j diagonal line to a single processor. Though all of them are valid, they have

very different properties: the first (column-wise) and the last (diagonal) map the same number of tiles to

each processor, whereas the second (row-wise) maps a different number of tiles to different processors.

For a load-balanced allocation one would prefer the column-wise or the diagonal mappings. However, for

simplicity of the resulting parallel program, one would prefer the column-wise over the diagonal mapping.

Typically the number of processors that results from a processor mapping is far greater than the number

of available processors. We call the former the virtual processors and the latter the physical processors. Fewer

physical processors simulate the execution of the virtual processors in multiple passes. For example, the

column-wise mapping in Figure 15.9 results in six virtual processors, and they are simulated by three
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foreach tile t ∈ tiles ( p)
Receive tile-inputs for t from neighboring processors
compute t
Send tile-outputs for t to neighboring processors

FIGURE 15.10 Steps performed by each processor p for computing the tiles allocated to it. tiles( p) gives the

tiles allocated to a processor p.

physical processors in two passes. Tiles are executed in an atomic fashion; all the iterations in a tile are

executed before any iteration of another tile. The parallel execution proceeds in a wavefront style.

We call a parallelization idle-free if it has the property that once a processor starts execution it will never

be idle until it finishes all the computations assigned to it. We call a parallelization load-balanced if it has the

property that all the processors are assigned an (almost) equal amount of work. For example, the column-

wise and diagonal mappings are load-balanced, whereas the row-wise mapping is not. Furthermore, within

a given pass, the wavefront schedule is idle-free. Across multiple passes, it will be idle-free if by the time

the first processor finishes its first column of tiles the last processor finishes at least one tile. This will be

true whenever the number of tiles in a column is more than the number of physical processors.

15.3.1.2.4 An Execution Time Model

After selecting a schedule and a processor mapping, the next step is to pick the tile size. We want to pick the

tile size that minimizes the execution time. We will develop an analytical model for the total running time

of the parallel program and then use it to formulate a constrained optimization problem, whose solution

will yield the optimal tile sizes.

We choose the wave front schedule and the column-wise processor mapping discussed earlier. Recall

that the column-wise mapping is load-balanced, and within a pass the wave front schedule is idle-free.

To ensure that the schedule is also idle-free across passes, we will characterize and enforce the constraint

that the number of tiles in a column is greater than the number of physical processors. Furthermore, we

consider the following receive–compute–send execution pattern (shown in Figure 15.10): every processor

first receives all the inputs it needs to execute a tile and then executes the tiles and then sends the tile

outputs to other processors. The total execution time is the time elapsed between the start of the first tile

and the completion of the last tile. Let us assume that all the passes are full, that is, in each pass all the

processors have a column of tiles to execute. Now, the last tile will be executed by the last processor, and

its completion time will give the total execution time. Given that the parallelization is idle-free, the total

time taken by any processor is equal to the initial latency (time it waits to get started) and the time it takes

to compute all the tiles allocated to it. Hence, the sum of the latency and the computation time of the last

processor is equal to the total execution time. Based on this reasoning, the total execution time is

T = L + (TPP × TET)

where L denotes the latency last processor to start, TPP denotes the number of tiles allocated per processor,

and TET is the time to execute a tile (sequentially) by a single processor. Here, the term TPP×TET denotes

the time any processor takes to execute all the tiles allocated to it. Given that we have a load-balanced

processor mapping, this term is same for all processors. In the following derivations, P is the number of

physical processors, Ni and N j denote the size of the iteration space along i and j, respectively, and s i and

s j are the tile sizes along i and j , respectively.

Let us now derive closed-form expressions for the terms discussed above. The time to execute a tile,

TET, is the sum of the computation and communication time. The computation time is proportional

to the area of the rectangular tile and is given by s i × s j × α. The constant α denotes the average time

to execute one iteration. The communication time is modeled as an affine function of the message size.

Every processor receives the left edge of the tile from its left neighbor and sends its right edge to the right

neighbor. This results in two communications with messages of size s j , the length of the vertical edge of
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a tile. The cost of sending a message of size x is modeled by τ x + β, where τ and β are constants that

denote the transmission cost per byte and the start-up cost of a communication call, respectively. The cost

of the two communications performed for each tile is 2(τ s j + β). The total time to execute a tile is now

TET = s i s j α + 2(τ s j + β).

The number of tiles allocated to a processor is equal to the number of columns allocated to a processor

times the number of tiles per column. The number of columns is equal to the number of passes, which is
Ni

s i P
. The tiles per column is equal to

N j +s i

s j
, which makes TPP = Ni

s i P
×

N j +s i

s j
.

The dependences in the tile graph induce the delay between the start of the processors. The slope σ =
s j

s i
,

known as the rise, plays a fundamental role in determining the latency. The last processor can start as soon

as the processor before it completes the execution of its first two tiles. Formally, the last processor can start

its first tile only after (P − 1) × (σ + 1). For example, in Figure 15.9 the last processor can start only after

four time steps since σ = 2
2

= 1 and P = 3, yielding (3 − 1) × (1 + 1) = 4. Since at each time step a

processor computes a tile, (P − 1) × (σ + 1) ×TET gives the time after which the last processor can start,

that is, L = (P − 1) × (σ + 1) × TET.

To ensure that there is no idle time between passes, we need to constrain the tile sizes such that by the

time the first processor finishes its column of tiles, the last processor must have finished its first tile. The

time the first processor takes to complete a column of tiles is equal to
N j +s i

s j
× TET, and the time by which

the last processor would finish its first tile is [(P − 1 + 1) × (σ + 1)] × TET. The no idle time between

passes constraint is
N j +s i

s j
× TET ≥ [P × (σ + 1)] × TET.

Using the terms derived above we can now formulate an optimization problem to pick the optimal

tile size.

minimize T =
[

((P − 1)(σ + 1)) +
(

Ni

s i P
×

N j + s i

s j

)]

× (αs i s j + 2(τ s j + β)) (15.16)

subject to
N j + s i

s j

≥ P (σ + 1)

The solution to the above optimization problem yields the optimal tile sizes, that is, the tile sizes that

minimize the total execution time of the parallel program, subject to the constraint that there is no idle

time between passes.

The optimization problem in Equation 15.16 can be transformed into a GP. The objective function T

is directly a posynomial. With the approximation of N j + s i ≈ N j , the constraint transforms into

P (σ + 1)s j

N j

≤ 1

which is the required form for a GP constraint. Adding to it the obvious constraints that tile sizes are

integers and positive, that is, s i , s j ∈ Z, s i ≥ 1, and s j ≥ 1, we get an IGP that can be solved efficiently as

discussed above. The solution to this IGP will yield the optimal tile sizes.

15.3.1.2.4.1 Generality of Approach

The analysis techniques presented above can be directly extended to higher-dimensional rectangular

or parallelepiped iteration spaces. For example, stencil computations with two-dimensional or three-

dimensional data grids, after skewing to make rectangular tiling valid, have parallelepiped iteration spaces,

and the techniques described above can be directly applied to them. The GP-based modeling approach

is quite general. Because of the fundamental positivity property of tile sizes, often the functions used

in modeling parallel execution time or communication or computation volumes are posynomials. This

naturally leads to optimization problems that are GPs.

15.3.1.2.5 Tiling for Data Locality

Consider the stencil computation shown in Figure 15.7. Every value, A[j] , computed at an iteration (i, j )

is used by three other computations as illustrated in the geometric view shown in Figure 15.7 (left). The
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for (iT = 1; iT < = N; iT += Si)
for (jT = 2; jT < = N+M; jT += Sj)

for (i= max(iT,1); i<= min(iT+Si-1, N); i++)
for (j= max(jT, i+1); i<= min(jT+Sj-1, i+N); j++)

/* Loop Body */

FIGURE 15.11 Tiled loop nest with tile sizes as parameters.

three uses are in iterations (i, j + 1), (i + 1, j ), and (i + 1, j − 1). Consider the case when the size of A is

much larger than the cache size. On the first use at iteration (i, j + 1), the value will be cache. However,

for the other two uses, (i + 1, j ) and (i + 1, j − 1), the value may not be in cache, resulting in a cache miss.

This cache miss can be avoided if we can keep the computed values in the cache until their last use. One

way to achieve this is by changing the order of the computations such that the iterations that use a value

are computed “as soon as” the value itself is computed. Tiling is widely used to achieve such reorderings

that improve data locality. Furthermore, the question of how soon the iterations that use a value should

be computed is dependent on the size of the cache and processor architecture. This aspect can be captured

by appropriately picking the tile sizes.

Consider the rectangular tiling of the skewed iteration space shown in Figure 15.8 (right). Figure 15.11

shows the tiled loop nest of the skewed iteration space, with tile sizes as parameters. The new execution

order after tiling is as follows: both the tiles and the points within a tile are executed in column-major

order. Observe how the new execution order brings the consumers of a value closer to the producer, thereby

decreasing the chances of a cache miss. Figure 15.8 (right) shows a tiling with tiles of sizes 2×2. In general,

the sizes are picked so that the volume data touched by a tile, known as its footprint, fits in the cache, and

some metric such as number of misses or total execution time is minimized. A discussion of other loop

transformations (e.g., loop fusion, fission, etc.) aimed at memory hierarchy optimization can be found in

the chapter by Raman and August [84] in the same text.

15.3.1.2.5.1 Tile Size Selection Approaches

A straightforward approach for picking the best tile size is empirical search. The tiled loop nest is executed

for a range of tile sizes, and the one that has the minimum execution time is selected. This search method

has the advantage of being accurate, that is, the minimum execution time tile is the best for the machine

on which it is obtained. However, such a search may not be feasible because of the huge space of tile

sizes that needs to be explored. Often, some heuristic model is used to narrow down this space. In spite

of the disadvantages, such an empirical search is the popular and widely used approach for picking

the best tile sizes. For the obvious reason of huge search time, such an approach is not suitable for a

compiler.

Compilers trade off accuracy for search time required to find the best tile size. They use approximate

cache behavior models and high-level execution time models. Efficiency is achieved by specializing the

tile size search algorithm to the chosen cache and execution time models. However, such specialization of

search algorithms makes it difficult to change or refine the models.

Designing a good model for the cache behavior of loop programs is hard, but even harder is the task of

designing a model that would keep up with the advancements in processor and cache architectures. Thus,

cache models used by compilers are often outdated and inaccurate. In fact, the performance of a tiled

loop nest generated by a state-of-the-art optimizing compiler could be a few factors poorer than the one

hand-tuned with an empirical search for best tile sizes. This has led to the development of the so-called

auto-tuners, which automatically generate loop kernels that are highly tuned to a given architecture. Tile

sizes are an important parameter tuned by auto-tuners. They use a model-driven empirical search to pick

the tile sizes. Essentially they do an empirical search for the best tile size over a space of tile sizes and use

an approximate model to prune the search space.
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15.3.1.2.5.2 Constrained Optimization Approach

Instead of discussing specialized algorithms, we present a GP-based framework that can be used to develop

models, formulate optimal tile size selection problems, and obtain the best tile sizes by using the efficient

numerical solvers. We illustrate the use of the GP framework by developing an execution time model for

the tiled stencil computation and formulating a GP whose solution will yield the optimal tile sizes. Though

we restrict our discussion to this illustration-based presentation, the GP framework is quite general and

can be used with several other models. For example, the models used in the IBM production compiler or

the one used by the auto-tuner ATLAS can be transformed into the GP framework.

The generality and wide applicability of the GP framework stems from a fundamental property of the

models used for optimal tile size selection. The key property is based on the following: tile sizes are always

positive and all these models use metrics and constraints that are functions of the tile sizes. These functions of

tile size variables often turn out to be posynomials. Furthermore, the closure properties of posynomials

provide the ability to compose models. We illustrate these in the following sections.

15.3.1.2.5.3 An Analytical Model

We will first derive closed-form characterizations of several basic components related to the execution of

a tiled loop and then use them to develop an analytical model for the total execution time. We will use

the following parameters in the modeling. Some of them are features of processor memory hierarchy and

others are a combination of processor and loop body features:

� α: The average cost (in cycles) of computing an iteration assuming that the accessed data values

are in the lowest level of cache. This can be determined by executing the loop for a small number

of iterations, such that the data arrays fit in the cache, and taking the average.
� µ: The cost (in cycles) for moving a word from main memory to the lowest level of cache. This

can be determined by the miss penalties associated with caches, translation look aside buffers,

and so on.
� λ: The average cost (in cycles) to compute and check loop bounds. This can be determined by

executing the loops without any body and taking the average.
� C and L : The capacity and line size, in words, of the lowest level of cache. These two can be directly

determined from the architecture manual.

15.3.1.2.5.4 Computation Cost

The number of iterations computed by a tile is given by the tile area s i × s j . If the data values are present

in the lowest level of cache, then the cost of computing the iterations of a tile, denoted by �(s ), is αs i s j ,

where α is the average cost to compute an iteration.

15.3.1.2.5.5 Loop Overhead Cost

Tiling (all the loops of) a loop nest of depth d results in 2d loops of which the outer d loops enumerate

the tiles and the inner d loops enumerate points in a tile. We refer to the cost for computing and testing

loop bounds as the loop overhead cost. In general, the loop overhead is significant for tiled loops and needs

to be accounted for in modeling the execution time. The loop overhead cost of a given loop is proportional

to the number of iterations it enumerates. In general, λ, the loops bounds check cost, is dependent on the

complexity of the loop bounds of a given loop. However, for notational and modeling simplicity we will

use the same λ for all the loops. Now the product of λ with the number iterations of a loop gives the loop

overhead of that loop.

Consider the tiled loop nest of the skewed iteration space shown in Figure 15.11. The total number of

iterations enumerated by the tile-loops (iT and jT loops) is N×(N+M)
s j

+ N
s i

. The loop overhead of the

tile-loops is λ N×(N+M)
s j

+ N
s i

. With the small overapproximation of partial tiles by full tiles, the number of

iterations enumerated by the point-loops (i and j loops), for any given iteration of the outer tile-loops,
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is s i × (s i × s j ). The loop overhead of the point-loops is λ(s 2
i s j ). The total loop overhead of the tiled loop

nest is denoted by �(s ) = λs 2
i s j

N×(N+M)
s j

+ N
s i

.

15.3.1.2.5.6 Footprint of a Tile

The footprint of a tile is the number of distinct array elements touched by a tile. Let us denote the footprint

of a tile of size s by F(s ). Deriving closed-form descriptions of F(s ) for loop nests with an arbitrary loop

body is hard. However, for the case when the loop body consists of references to arrays and the dependences

are distance vectors, we can derive closed-form descriptions of F(s ). However, for the case when the loop

body contains affine references, deriving closed-form expressions for F(s ) is complicated. We illustrate the

steps involved in deriving F(s ) for dependence distance vectors with our stencil computation example.

Consider the tiled stencil computation. Let s = (s i , s j ) be the tile size vector, where s i represents the tile

size along i and s j along j. Each (nonboundary, full) tile executes s i × s j iterations updating the values of

the one-dimensional array A. The number of distinct values of A touched by a tile is proportional to one

of its edges, namely, s j . One might have to store some intermediate values during the tiled execution, and

these require an additional array of size s i . Adding these two together, we get F(s ) = s i + s j . Note that

F(s ) takes into account the reuse of values. Loops with good data locality (i.e., with at least one dimension

of reuse) have the following property: the footprint is proportional to the (weighted) sum of the facets of

the tile. Note that our stencil computation has this property, and hence F(s ) is the sum of the facets (here

just edges) s i and s j . To maximize the benefits of data locality, we should make sure that the footprint F(s )

fits in the cache.

15.3.1.2.5.7 Load Store Cost of a Tile

Earlier during the calculation of the computation cost, we assumed that the values are available in the

lowest level of the cache. Now we will model the cost of moving the values between main memory and the

lowest level of cache. To derive this cost we need a model of the cache. We will assume a fully associative

cache of capacity C words with cache lines of size L words. μ is the cost of getting a word from the main

memory to the cache. Ignoring the reuse of cache lines across tiles, F(s ) provides a good estimated number

of values accessed by a tile during its execution. Let FL(s ) be the number of cache lines needed for F(s ).

We have FL(s ) = ⌈ F(s )
L

⌉, where L is the cache line size. Then the load store cost of a tile, denoted by 	(s ),

is FL(s ) × μ.

15.3.1.2.5.8 Total Execution Time of a Tiled Loop Nest

The total execution time of the tiled loop nest is the sum of the time it takes to execute the tiles and the

loop overhead. The time to execute the tiles can be modeled as the product of time to execute a tile times

the number of tiles. For our stencil computation the iteration space is a parallelogram, and calculating

the number of s i × s j rectangles that cover it is a hard problem. However, we can use the reasonable

approximation of N×M
s i ×s j

to model the number of tiles, denoted by ntiles(s ). The total execution time T is

given by

T = ntiles × [�(s ) + 	(s )] + �(s ) (15.17)

where ntiles(s ) is the number of tiles, �(s ) is the cost of executing a tile, 	(s ) is the load store cost, and

�(s ) is the loop overhead.

15.3.1.2.5.9 Optimal Tile Size Selection Problem Formulation

Using the quantities derived above, we can now formulate an optimization problem whose solution will

yield the optimal tile size — one that minimizes the total execution time. Recall that the function T

(Equation 15.17) derived above models the execution time under the assumption that the data accessed

by a tile fits in the cache. We model this assumption by translating it into a constraint in the optimization

problem. Recall that F(s ) measures the data accessed by a tile, and FL(s ) gives the number of cache lines

needed for F(s ). The constraint FL(s ) ≤ C , where C is the cache capacity, ensures that all the data touched
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by a tile fits in the cache. Now we can formulate the optimization problem to find the tile size that minimizes

Tbase as follows:

minimize Tbase = ntiles × [�(s ) + 	(s )] + �(s ) (15.18)

subject to FL(s ) ≤ C

s i , s j ≥ 1

s i , s j ∈ Z

where the last two constraints ensure that s i and s j are positive and are integers.

15.3.1.2.5.10 Optimal Tiling Problem Is an IGP

The constrained optimization problem formulated above (Equation 15.18) can be directly cast into an IGP

(integer geometric program) of the form of Equation 15.15. The constraints are already in the required

form. The objective function T is a posynomial. This can be easily verified by observing that the terms used

in the construction of Tbase, namely, ntiles, �(s ), 	(s ), and �(s ), are all posynomials, and posynomials

are closed under addition — the sum of posynomials is a posynomial. Based on the above reasoning, the

optimization problem Equation 15.18 is an IGP.

15.3.1.2.5.11 A Sophisticated Execution Time Model

One can also consider a sophisticated execution time model that captures several hardware and compiler

optimizations. For example, modern processor architectures support nonblocking caches, out-of-order

issue, hardware prefetching, and so on, and compilers can also do latency hiding optimizations such as

software prefetching and instruction reordering. As a result of these hardware and compiler optimizations,

one can almost completely hide the load–store cost. In such a case, the cost of a tile is not the sum of the

computation and communication cost, but the maximum of them. We model this sophisticated execution

time with the function Topt as follows:

Topt = ntiles × max (�(s ), 	(s )) + �(s )

Thanks to our unified view of the optimization problem approach, we can substitute Tbase with Topt in

the optimization problem Equation 15.18 and solve for the optimal tile sizes. However, Topt must be a

posynomial for this substitution to yield a GP. We can easily transform Topt to a posynomial by introducing

new variables to eliminate the max (.) operator.

15.3.1.3 Tiled Code Generation

An important step in applying the tiling transformation is the generation of the tiled code. This step

involves generation of tiled loops and the transformed loop body. Since tiling can be used for a variety

of purposes, depending on the purpose, the loop body generation can be simple and straightforward

to complicated. For example, loop body generation is simple when tiling is used to improve data cache

locality, whereas, in the context of register tiling, loop body generation involves loop unrolling followed by

scalar replacement, and in the context of tiling for parallelism, loop body generation involves generation

of communication and synchronization. There exist a variety of techniques for loop body generation, and

a discussion of them is beyond the scope of this article. We will present techniques that can be used for

tiled loop generation both when the tile sizes are fixed and when they are left as symbolic parameters.

15.3.1.3.1 Tiled Loop Generation

We will first introduce the structure of tiled loops and develop an intuition for the concepts involved in

generating them. Consider the iteration space of a two-dimensional parallelogram such as the one shown

in Figure 15.12, which is the skewed version of the stencil computation. Figure 15.13 shows a geometric

view of the iteration space superimposed with a 2 × 2 rectangular tiling. There are three types of tiles: full

(which are completely contained in the iteration space), partial (which are not completely contained but

have a nonempty intersection with the iteration space), and empty (which do not intersect the iteration
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for (i=1; i<=M; i++)
for (j=i+1; j<=N+i-1; j++)

A[j-1]=(A[j-1]+A[j-i-1]+A[j-i+1])/3;

FIGURE 15.12 Skewed iteration space of the stencil computation.

space). The lexicographically earliest point in a tile is called its origin. The goal is to generate a set of loops

that scans (i.e., visits) each integer point in the original iteration space based on the tiling transformation,

where the tiles are visited lexicographically and then the points within each tile are visited lexicographically.

We can view the four loops that scan the tiled iteration space as two sets of two loops each, where the first

set of two loops enumerate the tile origins and the next set of two loops visit every point within a tile. We

call the loops that enumerate the tile origins the tile-loops and those that enumerate the points within a

tile the point-loops.

15.3.1.3.2 Bounding Box Method

One solution for generating the tile-loops is to have them enumerate every tile origin in the bounding box

of the iteration space and push the responsibility of checking whether a tile contains a valid iteration to the

point-loops. The tiled loop nest generated with this bounding box scheme is shown in Figure 15.11. The

first two loops (iT and jT ) enumerate all the tile origins in the bounding box of size N × (N + M), and

the two inner loops (i and j ) scan the points within a tile. A closer look at the point-loop bounds reveals

its simple structure. One set of bounds is from what we refer to as the tile box bounds, which restrict the

loop variable to points within a tile. The other set of bounds restricts the loop variable to points within
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FIGURE 15.13 A 2×2 rectangular tiling of the 2D stencil iteration space is shown. The bounding box of the iteration

space together with full, partial, and empty tiles and their origins are also shown. Adapted from [92], ©2007 Association

for Computing Machinery, Inc., included by permission.
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for (iT = 0; iT < = ⌊(N/2) ⌋; iT++)
for (jT = max (1, iT); jT <=min ( ⌊ (2*iT+M+1)/2 ⌋, ( ⌊N+M/2⌋); jT++)

for (i = max (max (1,2*iT), 2*jT-M); i <=min (min (2*iT+1, 2*jT), N); i++)
for (j = max (2*jT, i+1); j <=min (2* jT+1, i+M); j++)

/* Loop Body */

FIGURE 15.14 Tiled loops generated for fixed tile sizes using the classic scheme.

the iteration space. Combining these two sets of bounds, we get the point-loops that scan points within

the iteration space and tiles. Geometrically, the point-loop bounds correspond to the intersection of the

tile box (or rectangle) and the iteration space, here the parallelogram in Figure 15.13.

The bounding box scheme provides a couple of important insights into the tiled-loop generation

problem. First, the problem can be decomposed into the generation of tile-loops and the generation of

point-loops. Such a decomposition leads to efficient loop generation, since the time and space complexity of

loop generation techniques is a doubly exponential function of the number of bounds. The second insight

is the scheme of combining the tile box bounds and iteration space bounds to generate point-loops. An

important feature of the bounding box scheme is that tile sizes need not be fixed at loop generation time,

but can be left as symbolic parameters. This feature enables generation of parameterized tiled loops, which

is useful in iterative compilation, auto-tuners, and runtime tile size adaptation. However, the empty tiles

enumerated by tile-loops can become a source of inefficiency, particularly for small tile sizes.

15.3.1.3.3 When Tile Sizes Are Fixed

When the tile sizes can be fixed at the loop generation time, an exact tiled loop nest can be generated. The

tile-loops are exact in the sense that they do not enumerate any empty tile origins. When the tile sizes are

fixed, the tiled iteration space can be described as a set of linear constraints. Tools such as OMEGA and

CLOOG provide standard techniques to generate loops that scan the integer points in sets described by

linear constraints. These tools can be used to generate the tiled loop nest. The exact tiled loop nest for the

two-dimensional stencil example is shown in Figure 15.14. Note that the efficiency due to the exactness of the

tile-loops has come at the cost of fixing the tile sizes at generation time. Such loops are called fixed tiled loops.

The classic schemes for tiled loop generation take as input all the constraints that describe the bounds

of the 2d loops of the tiled iteration space, where d is the depth of the original loop nest. Since the time–

space complexity of the method is doubly exponential on the number of constraints, an increase in the

number (from d to 2d) of constraints might lead to situations where the loop generation time becomes

prohibitively expensive. Similar to the bounding box technique, tiled loop generation for fixed tile sizes

can also be decomposed into generating tile-loops and point-loops separately. Such a decomposition will

reduce the number of constraints considered into each step by half and will improve the scalability of the

tiled loop generation method.

15.3.2 Tiling Irregular Applications

Applications that make heavy use of sparse data structures are difficult to parallelize and reschedule for

improved data locality. Examples of such applications include mesh-quality optimization, nonlinear equa-

tion solvers, linear equation solvers, finite element analysis, N-body problems, and molecular dynamics

simulations. Sparse data structures introduce irregular memory references in the form of indirect array

accesses (e.g., A[B[i]] ), which inhibit compile-time, performance-improving transformations such as

tiling. For example, in Figure 15.15, the array A is referenced with two different indirect array accesses,

p[i] and q[i] .

The flow, memory-based data dependences within the loop in Figure 15.15 can be described with the

dependence relation (i ′ → i), where iteration i ′ depends on the value generated in iteration i .

{(i ′ → i) | q(i ′) = p(i) and (1 ≤ i, i ′ ≤ N) and i ′ > i}
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for i = 1 .. N
A[p[i]]=...

...=A[q[i]]

FIGURE 15.15 Example loop with irregular memory references.

The uninterpreted functions p() and q() are static place holders for quantities that are unknown until

runtime. It is not possible to parallelize or tile the loop in Figure 15.15 without moving some of the required

analysis to the runtime.

To address this problem, inspector and executor strategies have been developed where the inspector

dynamically analyzes memory reference patterns and reorganizes computation and data, and the executor

executes the irregular computation in a different order to improve data locality or exploit parallelism. The

ideal role for the compiler in applying inspector and executor strategies is performing program analysis

to determine where such techniques are applicable and inserting inspector code and transforming the

original code to form the executor. This section summarizes how inspector and executor strategies are

currently applied to various loop patterns. The section culminates with the description of a technique

called full sparse tiling being applied to irregular Gauss–Seidel.

15.3.2.1 Terminology

Irregular memory references are those that cannot be described with a closed-form, static function. Irregular

array references often occur as a result of indirect array references where an access to an index array is used

to reference a data array (e.g., A[p[i]] and A[q[i]] in Figure 15.15). A data array is an array that

holds data for the computation. An index array is an array of integers, where the integers indicate indices

into a data array or another index array.

This section assumes that data dependence analysis has been performed on the loops under consid-

eration. The dependences are represented as relations between integer tuples with contraints specified

using Presburger arithmetic including uninterpreted function symbols. Presburger arithmetic includes the

universal operator ∀, existential operator ∃, conjunction ∧, disjunction ∨, negation ¬, integer addition +,

and multiplication by a constant.

The dependence relations are divided into flow dependences, anti dependences, and output dependences.

Flow dependence relations are specified as a set of iteration pairs where the iteration in which a read occurs

depends on the iteration where a write occurs. The flow dependence relation for Figure 15.15 is as follows:

{(i ′ → i) | q(i ′) = p(i) ∧ (1 ≤ i, i ′ ≤ N) ∧ i ′ > i}

An anti dependence is when a write must happen after a read because of variable reuse. The anti dependence

relation for the example in Figure 15.15 is

{(i ′ → i) | p(i ′) = q(i) ∧ (1 ≤ i, i ′ ≤ N) ∧ i ′ > i}

An output dependence is a dependence between two writes to the same memory location. The output

dependence relation for the example in Figure 15.15 is

{(i ′ → i) | p(i ′) = p(i) ∧ (1 ≤ i, i ′ ≤ N) ∧ i ′ > i}

A reduction loop has no loop-carried dependences except for statements of the form

X = X op expression

where X is a reference to a scalar or an array that is the same on the left- and right-hand side of the

assignment, there are no references to the variable being referenced by X in the expression on the

right-hand side, and op is an associative operator (e.g., addition, max, min). Since associative statements
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for i = 1 .. n
for j = 1 .. m

x[j] = ...
for k = 1 .. p

y[i][k] = x[pos[k]]

FIGURE 15.16 Compile-time analysis can determine that the x array is privatizable.

may be executed in any order, the loop may be parallelized as long as accesses to X are surrounded with a

lock.

15.3.2.2 Detecting Parallelism

In some situations, static analysis algorithms are capable of detecting when array privatization and loop

parallelization are possible in loops involving indirect array accesses. Figure 15.16 shows an example where

compile-time program analysis can determine that the array x can be privatized, and therefore the i loop

can be parallelized. The approach is to analyze the possible range of values that pos[k] might have and

verify that it is a subset of the range [1..m] , which is the portion of x being defined in the j loop.

If compile-time parallelism detection is not possible, then it is sometimes possible to detect parallelism

at runtime. Figures 15.17 and 15.19 show loops where runtime tests might prove that the loop is in

fact parallelizable. For the example in Figure 15.17, there are possible sets of flow and anti dependences

between the write to A[p[i]] and the read of A[i] . If a runtime inspector determines that for all i ,

p(i) is greater than N, then the loop is parallelizable. Figure 15.18 shows an inspector that implements the

runtime check and an executor that selects between the original loop and a parallel version of the loop.

To show an overall performance improvement, the overhead of the runtime inspector must be amortized

over multiple executions of the loop. Therefore, one underlying assumption is that an outer loop encloses

the loop to be parallelized. Another assumption needed for correctness is that the indirection arrays p and

q are not modified within the loops. Figure 15.19 has an example where the inspection required might be

overly cumbersome. In Figure 15.19, there are possible sets of flow and anti dependences between the write

to A[p[i]] and the read of A[q[i]] . If it can be shown that for all i and j such that 1 ≤ i, j ≤ N,

p(i) is not equal to q( j ), then there are no dependences in the loop. Notice in Figure 15.20 that for this

example, the inspector that determines whether there is a dependence requires O(N2) time, thus making

it quite difficult to amortize such parallelization detection for this example.

15.3.2.3 Runtime Reordering for Data Locality and Parallelism

Many runtime data reordering and iteration reordering heuristics for loops with no dependences or

only reduction dependences have been developed. Such runtime reordering transformations inspect data

mappings (the mapping of iterations to data) to determine the best data and iteration reordering within

a parallelizable loop.

In molecular dynamics simulations there is typically a list of interactions between molecules, and each

interaction is visited to modify the position, velocity, and acceleration of each molecule. Figure 15.21

outlines the main loop within the molecular dynamics benchmark moldyn . An outer time-stepping loop

makes amortization of inspector overhead possible. The j loop calculates the forces on the molecules

using the left and right index arrays, which indicate interaction pairs. In the j loop are two reduction

for i = 1 .. N
A[p[i]] = ... A[i] ...

FIGURE 15.17 A runtime inspector can determine this loop is parallelizable if for i = 1 to N , p[i] is greater

than N.
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// inspector
dep = false
for i = 1 . . N

if p [i] <=N then
dep = true

for s = . . .

// executor
if dep then // serial version

for i = 1 to N
A[p[i]] = . . . A[i] . . .

else // parallel version
for all i = 1 to N

A [p[i]]= . . . A [i] . . .

FIGURE 15.18 An inspector checks if any of the writes to array A will occur in the same range as the reads. If not, it

is possible to execute the loop from Figure 15.17 in parallel.

for i=1 .. N
A[p[i]] = ... A[q[i]]

FIGURE 15.19 To disprove loop-carried dependence in this loop, a runtime inspector would need to show that for

all i and j such that 1 ≤ i, j ≤ N, p(i) is not equal to q( j ).

// inspector
dep = false
for i = 1 . . N

for j = 1 . . N
if p [i] = = p[j] then

dep = true

for s = . . .

// executor
if dep then // serial version

for i = 1 to N
A[p[i]] = . . . A[q[i]]

else // parallel version
for all i = 1 to N

A [p[i]]= . . . A[q[i]]

FIGURE 15.20 An inspector checks if there are any possible conflicts between the reads and writes for the loop in

Figure 15.19.

for s = 1 .. num steps
for i = 1 .. num nodes

S1 x [i] = x[i] + vx[i] + fx[i]

for j = 1 .. num inter
S2 fx[left [j]] += g( x [left [j]], x [right [j]] )
S3 fx[right [j]] -= g( x [left [j]], x [right [j]] )

for k = 1 .. num nodes
S4 vx [k] += fx [k]

FIGURE 15.21 Simplified moldyn example. Adapted from [102], © 2003 ACM, Inc., included with permission.
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for s = 1 .. M
forall i in wavefront(s)

A[p[i]] = ...
... = A[q[i]]

FIGURE 15.22 Executor for a loop that has been dynamically scheduled into parallel wavefronts of iterations.

statements where the x-coordinate of the force fx for a molecule is updated as a function of the original

x position for that molecule and the x position of some neighboring molecule right[i] . The j loop

indirectly accesses the data arrays x and fx with the index arrays left and right .

Runtime data and iteration reorderings are legal for the j loop, because it only involves loop-carried

dependences due to reductions. The data and iteration reordering inspectors can be inserted before the s
loop, because the index arrays left and right are not modified within s (in some implementations

of moldyn the index arrays are modified every 10 to 20 iterations, at which point the reorderings would

need to be updated as well). The inspector can use various heuristics to inspect the index arrays and

reorder the data arrays x and fx including: packing data items in the order they will be accessed in the

loop, ordering data items based on graph partitioning, and sorting iterations based on the indices of

the data items accessed. As part of the data reordering, the index arrays should be updated using a

technique called pointer update. Iteration reordering is implemented through a reordering of the entries

in the index array. Of course in this example, the left and right arrays must be reordered identically

since entries left[i] and right[i] indicate an interacting pair of molecules. The executor is the

original computation, which uses the reordered data and index arrays.

A significant amount of work has been done to parallelize irregular reduction loops on distributed

memory machines. The data and computations are distributed among the processors in some fashion.

Often the data is distributed using graph partitioning, where the graph arises from a physical mesh or list of

interactions between entities. A common way to distribute the computations is called “owner computes,”

where all updates to a data element are performed by the processor where the data is allocated. Inspector and

executor strategies were originally developed to determine a communication schedule for each processor

so that data that is read in the loop is gathered before executing the loop, and at the end of the loop

results that other processors will need in the next iteration are scattered. In iterative computations, an

owner-computes approach typically involves communication between processors with neighboring data

at each outermost iteration of the computation. The inspector must be inserted into the code after the

index arrays have been initialized, but preferably outside of a loop enclosing the target loop. The executor

is the original loop with gather and scatter sections inserted before and after.

For irregular loops with loop-carried dependences, an inspector must determine the dependences at

runtime before rescheduling the loop. The goal is to dynamically schedule iterations into wavefronts such

that all of the iterations within one wavefront may be executed in parallel. As an example, consider the loop in

Figure 15.15. The flow, anti, and output dependences for the loop are given in Section 15.3.2.1. An inspector

for detecting partial parallelism inspects all the dependences for a loop and places iterations into wavefronts.

The original loop is transformed into an executor similar to the one in Figure 15.22, where the newly inserted

s loop iterates over wavefronts, and all iterations within a wavefront can be executed in parallel.

15.3.2.4 Tiling Irregular Loops with Dependences13

The partial parallelism techniques described in Section 15.3.2.3 dynamically discover fine-grained paral-

lelism within a loop. Sparse tiling techniques can dynamically schedule between loops or across outermost

loops and can create course-grain parallel schedules. Two application domains where sparse tiling tech-

niques have been found useful are iterative computations over interaction lists (e.g., molecular dynamics

simulations) and iterative computations over sparse matrices. This section describes full sparse tiling, which

13Parts of this section are adapted from [102], ©ACM, Inc., included with permission, and from [101], with kind permission
of Springer Science and Business Media © 2002.



15-40 The Compiler Design Handbook: Optimizations and Machine Code Generation
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FIGURE 15.23 We highlight the iterations of one sparse tile for the code in Figure 15.21. The j loop has been blocked

to provide a seed partitioning. In the full sparse-tiled executor code, the iterations within a tile are executed atomically.

Adapted from [102], © 2003, Association for Computing Machinery, Inc., included with permission.

has been used to tile sparse computations across loops in a molecular dynamics benchmark and across the

outermost loop of iterative computations.

15.3.2.4.1 Full Sparse Tiling for Molecular Dynamics Simulations

The runtime data and iteration reordering transformations described in Section 15.3.2.3 may be applied

to the loop j in the molecular dynamics code shown in Figure 15.21. Reordering the data and iterations

within the j loop is legal since the j loop is a reduction. Full sparse tiling is capable of scheduling subsets

of iterations across the i , j , and k loops in the same example. The full sparse tiling inspector starts with a

seed partitioning of iterations in one of the loops (or in one iteration of an outer loop). If other data and

iteration reordering transformations have been applied to the loop being partitioned, then consecutive

iterations in the loop have good locality, and a simple block partitioning of the iterations is sufficient to

obtain an effective seed partitioning. Tiles are grown from the seed partitioning to the other loops involved

in the sparse tiling by a traversal of the data dependences between loops (or between iterations of an outer

loop). Growing from the seed partition to an earlier loop entails including in the tile all iterations in the

previous loop that are sources for data dependences ending in the current seed partition and that have not

yet been placed in a tile. Growth to a later loop is limited to iterations in the later loop whose dependences

have been satisfied by the current seed partition and any previously scheduled tiles.

For the simplified moldyn example, Figure 15.23 shows one possible instance of the data dependences

between iterations of the i , j , and k loops after applying various data and iteration reorderings to each of

the loops. A full sparse tiling iteration reordering causes subsets of all three loops to be executed atomically

as sparse tiles. Figure 15.23 highlights one such sparse tile where the j loop has been blocked to create

a seed partitioning. The highlighted iterations that make up the first tile execute in the following order:

iterations 4, 5, 2, and 6 in loop i ; iterations 1, 4, 2, and 6 in loop j ; and iterations 4 and 2 in loop k . The

second tile executes the remaining iterations. Figure 15.24 shows the executor that maintains the outer loop

over time steps, iterates over tiles, and then within the i , j , and k loops executes the iterations belonging

for s = 1 . . num steps
for t = 1 . . num tiles

for i in sched (t, 1)
x ′ [i] = x ′[i] + vx ′ [i] + fx ′[i]

for j in sched (t, 2)
fx ′ [left ′ [j]] += g(x ′ [left ′ [j]], x ′ [right ′ [j]])
fx ′ [right ′ [j]] += g(x ′ [left ′ [j]], x ′ [right ′ [j]])

for k in sched (t, 2)
vx ′ [k] += fx ′ [k]

FIGURE 15.24 Sparse-tiled executor when the composed inspector performs CPACK, lexGroup, full sparse tiling,

and tilePack.
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for iter =1 .. T
for i = 0 . . (R-1)

S1 u [i] = f[i]
for p = ia[i] . . ia [i+1]-1

if (ja[p] ! = i)
S2 u[i] = u[i] - a [p] * u [ja[p]]

else
S3 diag[i] = a[p]
S4 u[i] = u[i] / diag[i]

FIGURE 15.25 Typical Gauss–Seidel for CSR assuming an initial reordering of sparse matrix rows and columns and

entries in vectors u and f.

to each tile as specified by the schedule data structure. Since iterations within all three loops touch the

same or adjacent data locations, locality between the loops is improved in the new schedule.

Full sparse tiling can dynamically parallelize irregular loops by executing the directed, acyclic dependence

graph between the sparse tiles in parallel using a master–worker strategy. The small example shown in

Figure 15.23 only contains two tiles, where one tile must be executed before the other to satisfy dependences

between the i , j , and k loops. In a typical computation where the seed partitions are ordered via a graph

coloring, more parallelism between tiles is possible.

15.3.2.4.2 Full Sparse Tiling for Iterative Computations Over Sparse Matrices

Full sparse tiling can also be used to improve the temporal locality and parallelize the Gauss–Seidel

computation. Gauss–Seidel is an iterative computation commonly used alone or as a smoother within

multigrid methods for solving systems of linear equations of the form Au = f , where A is a matrix, u

is a vector of unknowns, and f is a known right-hand side. Figure 15.25 contains a linear Gauss–Seidel

computation written for the compressed sparse row (CSR) sparse matrix format. We refer to iterations

of the outer loop as convergence iterations. The iteration space graph in Figure 15.26 visually represents

an instance of the linear Gauss–Seidel computation. Each iteration point 〈iter, i〉 in the iteration space

represents all the computation for the unknown ui at convergence iteration iter (one instance of S1 and S4

and multiple instances of S2 and S3). The iter axis shows three convergence iterations. The dark arrows show

the data dependences between iteration points for one unknown ui in the three convergence iterations. The

unknowns are indexed by a single variable i , but the computations are displayed in a two-dimensional plane

parallel to the x and y axes to exhibit the relationships between iterations. At each convergence iteration

iter the relationships between the unknowns are shown by the lightly shaded matrix graph. Specifically,

for each nonzero in the sparse matrix A, ai j �= 0, there is an edge 〈i, j 〉 in the matrix graph. The original

Iter

x

y

FIGURE 15.26 The arrows show the data dependences for one unknown ui . The relationships between the iteration

points are shown with a matrix graph.
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FIGURE 15.27 Full sparse-tiled Gauss–Seidel iteration space. Adapted from [101], with kind permission of Springer

Science and Business Media, © 2002.

order, v = 0, 1, . . ., (R − 1), given to the unknowns and corresponding matrix rows and columns is often

arbitrary and can be changed without affecting the convergence properties of Gauss–Seidel. Therefore, if

the unknowns are mapped to another order before performing Gauss–Seidel, the final numerical result

will vary somewhat, but the convergence properties still hold.

In linear Gauss–Seidel, the data dependences arise from the nonzero structure of the sparse matrix A.

Each iteration point 〈iter, i〉 depends on the iteration points of its neighbors in the matrix graph from either

the current or the previous convergence iteration, depending on whether the neighbor’s index j is ordered

before or after i . The dependences between iteration points within the same convergence iteration make

parallelization of Gauss–Seidel especially difficult. Approaches to parallelizing Gauss–Seidel that maintain

the same pattern of Gauss–Seidel data dependences use the fact that it is possible to apply an a priori

reordering to the unknowns and the corresponding rows of the sparse matrix A. This domain-specific

knowledge is impossible to analyze with a compiler, so while automating full sparse tiling, it is necessary to

provide some mechanism for a domain expert to communicate such information to the program analysis

tool.

Figure 15.27 illustrates how the full sparse tiling inspector divides the Gauss–Seidel iteration space

into tiles. The process starts by performing a seed partitioning on the matrix graph. In Figure 15.27, the

seed-partitioned matrix graph logically sits at the second convergence iteration, and tiles are grown to the

first and third convergence iterations.14 The tile growth must satisfy the dependences. For Gauss–Seidel,

that involves creating and maintaining a new data order during tile growth. The full sparse tiling executor

is a transformed version of the original Gauss–Seidel computation that executes each tile atomically (see

Figure 15.28).

At runtime, the full sparse tiling inspector generates a data reordering function for reordering the rows

and columns in the matrix, σ (v) : V → {0, . . ., (R − 1)}, and a tiling function, θ(iter, v) : {1, .., T} x

V → {0,. . ., (k − 1)}. The tiling function maps iteration points 〈iter, v〉 to tiles. From this tiling function,

the inspector creates a schedule function, sched(tileID, iter) : {0,. . ., (k −1)} x {1,. . ., T} → 2{0,... ,(R−1)}. The

schedule function specifies for each tile and convergence iteration the subset of the reordered unknowns

that must be updated. The transformed code shown in Figure 15.28 performs a tile-by-tile execution of

the iteration points using the schedule function, which is created by the inspector to satisfy the following:

sched(tileID, iter) = {σ (v) | θ(iter, v) = tileID}

14The number of iterations for tile growth is usually small (i.e., two to five), and the full sparse tiling pattern can be

repeated multiple times if necessary. The tile growth is started from a middle iteration to keep the size of the tiles as

small as possible.
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for tileID = 0 .. (k-1)
for iter = 1 .. T

for i in sched (tileID, iter)
S1 u′ [i] = f ′ [i]

for p = ia [i] .. ia[i+1]-1
if (ja [p] ! = i)

S2 u′ [i] = u ′ [i] - a [p] * u ′[ja[p]]
else

S3 diag [i] = a[p]
S4 u′[i] = u ′[i] / diag [i]

FIGURE 15.28 Code that performs a serial execution of sparse-tiled Gauss–Seidel for compressed sparse row (CSR).

A matrix graph partitioning serves as a seed partitioning from which tiles can be grown. The seed

partitioning determines the tiling at a particular convergence iteration, iters . Specifically at iters , where

1 ≤ iters ≤ T , the tiling function is set to the partition function, θ(iters , v) = part(v). To determine

the tiling at other convergence iterations, the tile growth algorithm adds or deletes nodes from the seed

partition as needed to ensure that atomic execution of each tile does not violate any data dependences.

The FULLSPARSENAIVE GSCSR algorithm, shown in Figure 15.29, generates the tiling function θ for

the Gauss–Seidel computation in Figure 15.25. While generating the tiling function, ordering constraints

between nodes in the matrix graph are maintained in the relation NodeOrd. The first two statements in

ALGORITHM FULLSPARSENAIVE GSCSR (G(V, E ), part( ), T, iters )

1: foreach vertex v ∈ V , θ (iters , v) ← part (v)

2: NodeOrd ← {〈v , w〉| θ (iters , v) < θ (iters , w)

and (〈v , w〉 ∈ E or 〈w , v〉 ∈ E )}

Downward tile growth

3: for iter = (iters – 1) downto 1

4: foreach vertex v ∈ V , θ (iter, v) ← θ (iter + 1, v)

5: do while θ changes

6: foreach 〈v , w〉 ∈ NodeOrd

7: θ(iter, w) ← min(θ(iter, w), θ(iter + 1, v))

8: θ (iter, v) ← min(θ(iter, v), θ (iter, w))

9: end foreach

10: end do while

11: NodeOrd ← NodeOrd
⋃

{〈v , w〉|θ (iter, v) < θ (iter, w)

and (〈v , w〉 ∈ E or 〈w , v〉 ∈ E )}
12: end for

Upward tile growth

13: for iter = (iters +1) to T

14: foreach vertex v ∈ V , θ (iter, v) ← θ(iter – 1, v)

15: do while θ changes

16: foreach 〈v , w〉 ∈ NodeOrd

17: θ (iter, v) ← max (θ (iter, v), θ (iter,– 1, w))

18: θ (iter, w) ← max (θ (iter,, w), θ (iter, v))

19: end foreach

20: end do while

21: NodeOrd ← NodeOrd
⋃

{〈v , w〉| θ (iter, v) < θ (iter, w)

and (〈v , w〉 ∈ E or 〈w , v〉 ∈ E )}
22: end for

FIGURE 15.29 FullSparseNaive GSCSR algorithm.
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the algorithm initialize the NodeOrd relation and all of the tiling function values for the convergence

iteration iters . The algorithm then loops through the convergence iterations iter such that iter < iters ,

setting θ at each iteration point 〈iter, v〉 to 〈iter+1, v〉. Finally, it visits the edges that have endpoints in two

different partition cells, adjusting the tiling function θ to ensure that the data dependences are satisfied.

The process is repeated for the convergence iterations between iters and T in the upward tile growth.

Once neighboring nodes, 〈v , w〉 ∈ E , are put into two different tiles at any iteration iter, the relative order

between these two nodes must be maintained. The NodeOrd relation maintains that relative order. For

example, if θ(iter, v) < θ(iter, w), then 〈v , w〉 ∈ NodeOrd.

The running time of this algorithm is O(Tk|V ||E |), where T is the number of convergence iterations,

k is the number of tiles, |V | is the number of nodes in the matrix graph, and |E | is the number of

edges in the matrix graph. The k|V ||E | term is due to the while loops that begin at lines 5 and 15.

In the worst case, the while loop will execute k|V | times, with only one θ(iter, v) value decreasing (or

increasing in the forward tile growth) each time through the while loop. Each θ(iter, v) can take on values

between 1 and k, where k is the number of tiles. In practice, the algorithm runs much faster than this

bound.

To exploit parallelism, the inspector creates a tile dependence graph, and the executor for the full sparse-

tiled computation executes sets of independent tiles in parallel. The tile dependence graph is used by a

master–worker implementation that is part of the executor. The master puts tiles whose data dependences

are satisfied on a ready queue. The workers execute tiles from the ready queue and notify the master upon

completion. The following is an outline of the full sparse tiling process for parallelism:

� Partition the matrix graph to create the seed partitioning.
� Choose a numbering on the cells of the seed partition. The numbering dictates the order in

which tiles are grown and affects the resulting parallelism in the tile dependence graph (TDG). A

numbering that is based on a coloring of a partition interaction graph results in much improved

TDG parallelism.
� Grow tiles from each cell of the seed partitioning in turn, based on the numbering, to create the

tiling function θ that assigns each iteration point to a tile. The tile growth algorithm will also

generate constraints on the data reordering function.
� Reorder the data using a reordering function that satisfies the constraints generated during tile

growth.
� Reschedule by creating a schedule function based on the tiling function θ . The schedule function

provides a list of iteration points to execute for each tile at each convergence iteration.
� Generate a TDG identifying which tiles may be executed in parallel.

15.3.3 Bibliographic Notes

As early as 1969, McKellar and Coffman [71] studied how to match the organization of matrices and their

operations to paged memory systems. Early studies of such matching, in the context of program transfor-

mation, were done by Abu-Sufah et al. [2] and Wolfe and coworkers [55, 109]. Irigoin and Triolet [49]

in their seminal work give validity conditions for arbitrary parallelepiped tiling. These conditions were

further refined by Xue [113].

Tiling for memory hierarchy is a well-studied problem, and so is the problem of modeling the cache

behavior of a loop nest. Several analytical models measure the number of cache misses for a given class

of loop nests. These models can be classified into precise models that use sophisticated (computationally

costly) methods and approximate models that provide a closed form with simple analysis. In the precise

category, we have the cache miss equations [40] and the refinement by Chatterjee et al. [17], which

use Ehrhart polynomials [18] and Presburger formulae to describe the number of cache misses. Harper

et al. [44] propose an analytical model of set-associative caches and Cascaval and Padua [15] give a compile-

time technique to estimate cache misses using stack distances. In the approximate category, Ferrante

et al. [34] present techniques to estimate the number of distinct cache lines touched by a given loop nest.
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Sarkar [94] presents a refinement of this model. Although the precise models can be used for selecting the

optimal tile sizes, only Abella et al. [1] have proposed a near-optimal loop tiling using cache miss equations

and genetic algorithms. Sarkar and Megiddo [95] have proposed an algorithm that uses an approximate

model [34] and finds the optimal tile sizes for loops of depth up to three.

Several algorithms [16, 19, 47, 54] have been proposed for single-level tile size selection (see Hsu and

Kremer [47] for a good comparison). The majority of them use an indirect cost function such as the

number of capacity misses or conflict misses, and not a direct metric such as overall execution time.

Mitchell et al. [74] illustrate how such local cost functions may not lead to globally optimal performance.

Mitchell et al. [74] were the first to quantify the multilevel interactions of tiling. They clearly point out

the importance of using a global metric such as execution time rather than local metrics such as number of

misses. Furthermore, they also show, through examples, the interactions between different levels of tiling

and hence the need for a framework in which the tile sizes at all the levels are chosen simultaneously with

respect to a global cost function. Other results that show the application and importance of multilevel tiling

include [14, 50, 75]. Auto-tuners such as PHiPHAC [12] and ATLAS [106] use a model-driven empirical

approach to choose the optimal tile sizes.

The description of optimal tiling literature presented above and the GP-based approach presented in this

chapter is based on the work of Renganarayanan and Rajopadhye [91]15, who present a general technique

for optimal multilevel tiling of rectangular iteration spaces with uniform dependences. YALMIP [68] is a

tool that provides a symbolic interface to many optimization solvers. In particular, it provides an interface

for defining and solving IGPs.

15.3.3.1 Tiled Loop Generation16

Ancourt and Irigoin proposed a technique [6] for scanning a single polyhedron, based on Fourier–Motzkin

elimination over inequality constraints. Le Verge et al. [61] proposed an algorithm that exploits the dual

representation of polyhedra with vertices and rays in addition to constraints. The general code generation

problem for affine control loops requires scanning unions of polyhedra. Kelley et al. [53] solved this

by extending the Ancourt–Irigoin technique, and together with a number of sophisticated optimizations,

developed the widely distributed Omega library [78]. The SUIF [108] tool has a similar algorithm. Quilleré

et al. proposed a dual-representation algorithm [80] for scanning the union of polyhedra, and this algorithm

is implemented in the CLooG code generator [11] and its derivative Wloog used in the WRaP-IT project.

Code generation for fixed tile sizes can also benefit from the above techniques, thanks to Irigoin and

Triolet’s proof that the tiled iteration space is a polyhedron if the tile sizes are constants [49]. Either of the

above tools may be used (in fact, most of them can generate such tiled code). However, it is well known that

since the worst-case complexity of Fourier–Motzkin elimination is doubly exponential in the number of

dimensions, this may be inefficient. Goumas et al. [41] decompose the generation into two subproblems,

one to scan the tile origins, and the other to scan points within a tile, thus obtaining significant reduction

of the worst-case complexity. They propose a technique to generate code for fixed-sized, parallelogram tiles.

There has been relatively little work for the case when tile sizes are symbolic parameters, except for the

very simple case of orthogonal tiling: either rectangular loops tiled with rectangular tiles or loops that can be

easily transformed to this. For the more general case, the standard solution, as described in Xue’s text [114],

has been to simply extend the iteration space to a rectangular one (i.e., to consider its bounding box)

and apply the orthogonal technique with appropriate guards to avoid computations outside the original

iteration space.

Amarasinghe and Lam [4, 5] implemented, in the SUIF tool set, a version of Fourier-Motzkin Elimina-

tion (FME) that can deal with a limited class of symbolic coefficients (parameters and block sizes), but the

full details have not been made available. Größlinger et al. [42] have proposed an extension to the polyhe-

dral model, in which they allow arbitrary rational polynomials as coefficients in the linear constraints that

define the iteration space. Their generosity comes at the price of requiring computationally very expensive

15Portions reprinted, with permission, from [91], © 2004 IEEE.
16Parts of this section are based on [92], © 2007, Association for Computing Machinery, Inc., included with permission.
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machinery such as quantifier elimination in polynomials over the real algebra to simplify constraints that

arise during loop generations. Because of this their method does not scale with the number of dimensions

and the number of nonlinear parameters.

Jiménez et al. [51] develop code generation techniques for register tiling of nonrectangular iteration

spaces. They generate code that traverses the bounding box of the tile iteration space to enable parameterized

tile sizes. They apply index-set splitting to tiled code to traverse parts of the tile space that include only full

tiles. Their approach involves less overhead in the loop nest that visits the full tiles; however, the resulting

code experiences significant code expansion.

15.3.3.2 Tiling for Parallelism

Communication-minimal tiling refers to the problem of choosing the tile sizes such that the communication

volume is minimized. Schriber and Dongarra [96] are perhaps the first to study communication-minimal

tilings. Boulet et al. [13] are the first to solve the communication-minimal tiling optimally. Xue [112] gives

a detailed comparison of various communication-minimal tilings.

Hogstedt et al. [45] studied the idle time associated with parallelepiped tiling. They characterize the

time processor’s wait for data from other processors. Desprez et al. [27] present simpler proofs to the

solution presented by Hogstedt et al.

Several researchers [46, 76, 86, 115] have studied the problem of picking the tile sizes that minimize

the parallel execution time. Andonov et al. [7, 8] have proposed optimal tile size selection algorithms for

n-dimensional rectangular and two-dimensional parallelogram iteration spaces. Our formulation of the

optimal tiling problem for parallelism is very similar to theirs. They derive closed-form optimal solutions

for both cases. We presented a GP-based framework that can be used to solve their formulation directly.

Xue [114] gives a good overview of loop tiling for parallelism.

15.3.3.3 Tiling for Sparse Computations

Irregular memory references are also prevalent in popular games such as Unreal, which was analyzed as

having 90% of its integer variables within index arrays such as B [103].

In Section 15.3.2.2, the static analysis techniques described were developed by Lin and Padua [65]. Pugh

and Wonnacott [77] and Rus et al. [92] have developed techniques for extending static data dependence

analysis with runtime checks, as discussed in Section 15.3.2.2. In [77] constraints for disproving depen-

dences are generated at compile time, with the possibility of evaluating such constraints at runtime. Rus

et al. [92] developed an interprocedural hybrid (static and dynamic) analysis framework, where it is possible

to disprove all data dependences at runtime, if necessary.

Examples of runtime reordering transformation for data locality include [3, 20, 24, 28, 35, 43, 48,

72, 73, 99]. The pointer update optimization was presented by Ding and Kennedy [28].

Saltz et al. [93] originally developed inspector–executor strategies for the parallelization of irregular

programs. Initially such transformations were incorporated into applications manually for parallelism [24].

Next, libraries with runtime transformation primitives were developed so that a programmer or compiler

could insert calls to such primitives [25, 98].

Rauchwerger [88] surveys various techniques for dynamically scheduling iterations into wavefronts

such that all of the iterations within one wavefront may be executed in parallel. Rauchwerger also discusses

many issues such as load balancing, parallelizing the inspector, finding the optimal schedule, and removing

anti and output dependences.

Strout et al. developed full sparse tiling [100–102]. Cache blocking of unstructured grids is another

sparse tiling transformation, which was developed by Douglas et al. [29]. Wu [110] shows that reordering

the unknowns in Gauss–Seidel does not affect the convergence properties.
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16.1 Introduction

Retargetable compilation has posed many challenges to researchers. The ultimate goal of the field is to

develop a universal compiler that generates high-quality code for all known architectures. Among all

existing compilers, GNU Compiler Collection (GCC) comes closest to this goal by using a myriad of

formal algorithms and engineering hacks. Currently, GCC officially supports more than 30 architectures

commonly used around the world [12]. Still, for many less known architectures, there is no GCC support.

Many recent application-specific instruction set processors (ASIPs) are designed with such specialized

architectural features that it is not a straightforward task to create customized compilers for them, let

alone retarget GCC. Despite the difficulties, good retargetable compilers are highly desirable for these

architectures, especially during their development stages in which many candidate domain-specific features

need to be evaluated. If a retargetable compiler is capable of utilizing these candidate features and generating

optimized code accordingly, their effectiveness can be quickly evaluated by running the resulting code on

an equally retargetable simulator. In this regard, retargetable compilation and retargetable simulation are

closely related problems, but retargetable compilation is a much harder one.

The need for retargetability largely comes from the back-ends of compilers. Compiler back-ends may be

classified into the following three types: customized, semi-retargetable, and retargetable. Customized back-

ends have little retargetability. They are usually written for high-quality proprietary compilers or developed

for special architectures requiring nonstandard code generation flow. In contrast, semi-retargetable and

retargetable compilers reuse at least part of the compiler back-end by factoring out target-dependent

information into machine description systems. The difference of customization and retargetability is

illustrated in Figure 16.1.

16-1
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FIGURE 16.1 Different compilation flows.

Semi-retargetable compilers, for example, lcc [11] and GCC [12], share a significant amount of code

across the back-ends for different targets. The sharing reduces the time to retarget the compilers to a new

processor. Nevertheless, the retargeting effort is still substantial because of target-specific architectural

features or function calling conventions. In a semi-retargetable compiler implementation, the instruction

set of the target is usually described in tree patterns as is required by popular code generation algorithms [3].

General-purpose register files and usage of the registers are either described as some data structures or

simply hard-coded in algorithms. This type of description system serves as the interface between the

machine-independent part and the machine-dependent part of the compiler. It typically involves a mixture

of the pattern descriptions and C interface functions or macros. It is the primitive form of architecture

description languages.

A fully retargetable compiler minimizes coding effort for various target architectures by providing a

more friendly machine description interface. Retargetable compilers are important for the development of

ASIPs (including digital signal processors [DSPs]). These cost-sensitive processors are usually designed for

specialized application domains and have a narrow market window. During their development process,

numerous design choices need to be evaluated with benchmarks. It is impractical for designers to manually

tune a general-purpose semi-retargetable compiler for each design choice to quantitatively verify its efficacy.

A fully retargetable compiler, which can be configured through an architecture description language (ADL),

is desirable in such situations.

An ideal ASIP design flow involving an ADL is illustrated as the Y-chart [30] in Figure 16.2. In such a flow,

a designer or possibly an automated tool tunes the architecture description. The retargetable compiler reads

the description, configures itself, and compiles the applications (usually a set of benchmark programs)
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into target binary code. The retargetable simulator also reads the description, configures itself, executes the

compiled code, and produces performance metrics such as cycle count and power consumption. Based on

these metrics, the designer can then tune the architecture and the corresponding architecture description.

The updated description will initiate another round of compilation and simulation. The process iterates

until a satisfactory trade-off is found. Since the process may iterate for dozens of times, fully retargetable

tools driven by a common ADL description are indispensable.

In the past three decades, many interesting ADLs have been introduced together with their related retar-

getable tools. These ADLs include MIMOLA [33], UDL/I [4], nML [9], ISDL [15], CSDL [48], Maril [7],

HMDES [14], TDL [28], LISA [39, 40], RADL [50], EXPRESSION [17], PRMDL [52], and MADL [44].

The common retargetable tools driven by an ADL include a retargetable compiler, an assembler, a dis-

assembler, and a functional simulator. In some rare cases, a cycle-accurate simulator and even hardware

synthesis tools are included. This chapter starts with a survey of the existing ADLs. It will then analyze and

compare the ADLs and highlight their relative strengths and weaknesses. This will be followed by a study

of the necessary elements and the organization of ADLs. The chapter then discusses the major challenges

faced by ADL designers and ADL users. In the end, this chapter points out the future architecture trends

of ASIPs and their implications for future ADLs.

16.2 Architecture Description Languages

Traditionally, ADLs are classified into three categories: structural, behavioral, and mixed. This classifica-

tion is based on the nature of the information provided by the language. Structural ADLs describe the

microarchitecture organization of the processor. Behavioral ADLs focus on the instruction set architecture

(ISA) of the processor, and mixed ADLs contain both microarchitecture and architecture information.

16.2.1 Structural Languages

Structural ADLs are similar to hardware description languages (HDLs). They describe the actual structural

organization of microprocessors at the register-transfer level (RT-level). At the RT-level, structural ADLs

specify data transformation and transfer among storage units at each clock cycle. It is sufficiently general

to model the behavior of arbitrary digital logic, but without the tedious details of gates or transistors. The

structural ADLs include MIMOLA [33] and UDL/I [4].

It is worth noting that the RT-level abstraction is not the same as the notion of register-transfer lists

(RT-lists) used by computer scientists, though both are often abbreviated as RTL. The latter is a higher

abstraction level used for specifying instruction semantics. The major difference between the two is the

notion of time. Cycle time is an essential element in an RT-level description. All RT-level events are

associated with a specific time stamp and are fully ordered. In contrast, for RT-lists time is not a concern.

Only causality is of interest, and events are only partially ordered based on data dependency.
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16.2.1.1 MIMOLA

MIMOLA [33] is an interesting combination of a computer hardware description language and a high-level

programming language developed at the University of Dortmund, Germany. It was originally proposed

for microarchitecture implementation. Over the years, MIMOLA has undergone many revisions, and

a number of tools have been developed based on it. These tools cover the areas of hardware synthesis,

simulation, test generation, and code generation. They include the MSSH hardware synthesizer, the MSSQ

code generator, the MSST self-test program compiler, the MSSB functional simulator, and the MSSU

RT-level simulator. MIMOLA was also used by the RECORD compiler as its ADL [32].

MIMOLA contains two parts: the hardware part in which microarchitectures are specified in the form of

a component netlist and the software part in which application programs are written using a PASCAL-like

syntax. Hardware structures in MIMOLA are described as a network of modules at the RT-level. A simple

arithmetic unit module, slightly modified from an example in [33], is shown below.

MODULE Alu
(IN i1, i2: (15:0); OUT outp: (15:0);

IN ctr: (1:0));
CONBEGIN

outp <- CASE ctr OF
0: i1 + i2 ;
1: i1 - i2 ;
2: i1 AND i2 ;
3: i1 ;
END AFTER 1;

CONEND;

The syntax of the hardware part of MIMOLA is similar to the Verilog Hardware Description Lan-

guage [21]. The first line of the above example declares the module named “Alu.” The following two lines

describe the names, directions, and bit-widths of the module’s ports. The name of the ports can be referred

in the rest part of the description, for example, the behavior statements, for their signal values. If multiple

statements exist between “CONBEGIN” and “CONEND,” they are evaluated concurrently. The “AFTER”

statement in the above example describes timing information. It means that the output is produced one

cycle after the input is received. For a network of module instances, connections need to be declared to

connect the ports of module instances. Below is an example connection statement from [33].

CONNECTIONS Alu.outp -> Accu.inp
Accu.outp -> alu.i1

The MSSQ code generator extracts instruction set information from the network of modules. It trans-

forms the RT-level hardware structure into a connection operation graph (COG). The nodes in a COG

represent hardware operators or module ports, while the edges represent data flow through the nodes. An

instruction tree (I-tree) is also derived from the netlist and the decoder module. It records the encoding

information of instructions. During code generation, a MIMOLA application program is translated to

an intermediate representation. Then pattern matching is performed to map the intermediate code to

COGs. After that, register allocation is performed on the COGs, and binary code is emitted. For the MSSQ

compiler to identify important hardware modules such as the register file, the instruction memory, and

the program counter, linkage information is provided in MIMOLA as hints. For example, the program

counter and instruction memory location can be specified as in the example below [33].

LOCATION_FOR_PROGRAMCOUNTER PCReg;
LOCATION_FOR_INSTRUCTIONS IM[0..1023];
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The above statements point out that the “PCReg” is the program counter and the “IM” is the instruction

memory. Despite the linkage information, it is a very difficult task to extract the COG and I-trees from

the MIMOLA description in general. Extra constraints are imposed for the MSSQ code generator to work

properly. The constraints limit the architecture scope of MSSQ to micro-programmable controllers, in

which all control signals must originate directly from the instruction word [33].

MIMOLA’s software programming part is an extension of PASCAL. It is different from other high-level

programming languages in that it allows programmers to designate variables to physical registers and to

refer to hardware as procedures calls. For example, to use an operation performed by a module called

“Simd,” programmers can write the following:

x: = Simd(y,z);

This special feature helps programmers control code generation and map intrinsics effectively. Compiler

intrinsics are assembly instructions disguised as library functions. They help programmers utilize complex

machine instructions while avoiding writing inline assembly.

16.2.1.2 UDL/I

A second RT-level ADL used for compiler generation is UDL/I developed at Kyushu University in Japan [4].

ADL descriptions in UDL/I serve as the input to an automated ASIP design system named COACH. From

the structural description of a processor, the COACH system will extract the instruction set following the

hints given by the designer. Similar to MIMOLA, restrictions must be imposed on the type of processors for

successful extraction. According to [4], superscalar and very long instruction word (VLIW) architectures

are not supported because of their complicated structure.

In general, RT-level ADLs enable flexible and precise microarchitecture descriptions. An RT-level ADL

description can be used by a range of electronic design automation (EDA) tools including logic syn-

thesizers and automatic test generators as well as software tools such as retargetable compilers and sim-

ulators. However, for users only interested in retargetable compilers, describing a processor at the RT-

level is an overly arduous process. The resulting instruction set information is buried under enormous

microarchitecture details that only hardware designers care about. Additionally, the extraction of instruc-

tion set information is very difficult in general. Restrictions on the processor microarchitecture must be

imposed. Consequently, the generality provided by the RT-level abstraction is lost in the support for code

generation.

16.2.2 Behavioral Languages

Behavioral ADLs directly specify the ISAs, avoiding the difficulty of extracting the instruction set. In

behavioral ADLs, instruction semantics are directly specified in the form of RT-lists, while detailed hardware

structures are ignored. A typical behavioral ADL description is close in its form to an instruction set

reference manual. ADLs in this category include nML [9], ISDL [15], and CSDL [48].

16.2.2.1 nML

nML is a simple and elegant formalism for instruction set modeling. It was proposed at the Technical

University of Berlin, Germany. nML was used by the retargetable code generator CBC [8] and the instruction

set simulator Sigh/Sim [34]. It has also been used by the CHESS [31] code generator and the CHECKERS

instruction set simulator at IMEC. CHESS and CHECKERS were later commercialized [51].

Designers of nML observed that in any real-world processor, many instructions share common prop-

erties. Factorization based on these common properties can yield a simple and compact representation.

Consequently, nML uses a hierarchical scheme to factorize instructions. The root elements of the hierarchy

are instructions, and the intermediate elements are partial instructions (PIs). Two composition rules can

be used to specify the relationships between the elements: the AND-rule groups several PIs into a larger
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PI, and the OR-rule enumerates a set of alternatives for one PI. Thus, instruction definitions in nML

can be in the form of an AND–OR tree. Each possible derivation of the tree corresponds to an actual

instruction.

nML utilizes attribute grammars [38] to simplify the description of instruction properties. Each element

in nML defines a few attributes such as semantic behavior and instruction encoding. The attribute values

of a non-leaf element can be derived based on the attribute values of its children. Attribute grammar was

later adopted by Instruction Set Description Language (ISDL) and several other ADLs.

An example nML instruction semantics specification is provided below:

op num_instruction(a:num_action, src:SRC, dst:DST)
action {

temp_src = src;
temp_dst = dst;
a.action;
dst = temp_dst;

}
op num_action = add | sub | mul | div
op add()
action = {

temp_dst = temp_dst + temp_src
}

The “num instruction” definition above combines three PIs using the AND-rule. The first PI,

“num action,” is formed through an OR-rule. Any of “add,” “sub,” “mul,” and “div” is a valid option

for “num action.” The set of instructions covered by the “num instruction” is the Cartesian product of the

sets of “num action,” “SRC,” and “DST.” The common behavior of all these instructions is defined in the

action attribute of “num instruction.” Each option of “num action” should have its own action attribute

defined as its functional behavior, which is referred to via the “a.action” statement in the “num instruction”

module. Besides the action attribute shown in the example, two additional attributes, image and syntax,

can be specified in the same hierarchical manner. Image represents the binary encoding of instructions,

and syntax is their assembly mnemonic.

Although generally classified as a behavioral language, nML is not completely free of structural in-

formation. In addition to instruction properties, nML also specifies the storage units including RAM,

register, and transitory storage. Transitory storage refers to machine states that are retained only for a

limited number of cycles, for instance, values on busses and latches. nML assumes a simple timing model:

computation has no delay; only storage units have delay. Instruction delay slots can be modeled by using

storage units as pipeline registers and by propagating the result through the registers in the behavior

specification [9].

nML models constraints between operations by enumerating all valid combinations. For instance,

consider a VLIW architecture with three issue slots and two operation types: A and B. If because of some

resource contention at most one type A operation can be issued at each cycle, then the user needs to

enumerate all the possible issue combinations including ABB, BAB, BBA, and BBB. The enumeration of

valid cases can make nML descriptions lengthy. More complicated constraints, which often appear in DSPs

with irregular instruction level parallelism (ILP) constraints or VLIW processors with many issue slots,

are hard to model with nML. For example, nML cannot model the temporal constraint that operation X

cannot directly follow operation Y.

16.2.2.2 ISDL

ISDL tackles the problem of constraint modeling with its explicit constraint specification. ISDL was

developed at MIT and used by the Aviv compiler [19]. It was also used by the retargetable simulator

generation system GENSIM [16]. ISDL was designed to assist hardware-software codesign for embedded

systems. Its target scope is VLIW ASIPs.
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ISDL mainly contains five sections:

� Storage resources
� Instruction word format
� Global definition
� Instruction set
� Constraints

Similar to nML, ISDL also contains storage resources. In ISDL, the register files, the program counter,

and the instruction memory must be defined for each architecture. An instruction word format section

describes the composing fields of the instruction word. ISDL assumes a simple tree-like VLIW instruction

model; an instruction word contains a list of fields, and each field contains a list of subfields. Each field

corresponds to one operation. For VLIW architectures, an ISDL operation is equivalent to an nML PI, and

an ISDL instruction is equivalent to an nML instruction.

The global definition section describes the addressing modes of operations. Production rules for tokens

and non-terminals can be defined in this section. Tokens are the primitive operands of instructions.

For each token, assembly format and binary encoding information must be defined. An example token

definition of a register operand is

Token "RA"[0..15] RA {[0..15];}

In this example, following the keyword “Token” is the assembly format of the operand. Here any one of

“RA0” to “RA15” is a valid choice. Next, “RA” defines the name of the token. The second “[0..15]” defines

the range of its value. The value will be used during the definition of behavioral action, binary encoding, and

assembly format. The non-terminal is a mechanism provided to exploit commonalities among operations.

It is often used to describe complex addressing modes. A non-terminal typically groups a few tokens

or other child non-terminals as its arguments, whose assembly formats and return values are referred to

when defining the properties of the non-terminal itself. An example non-terminal specification is provided

below.

Non_Terminal SRC:
RA {$$ = 0x00000 | RA;} {RFA[RA]} {} {} {} |
RB {$$ = 0x10000 | RB;} {RFB[RB]} {} {} {};

The above example shows a non-terminal named “SRC.” It defines an addressing mode with two options:

“RA” and “RB.” The first pair of braces in each line defines the binary encoding of the operand. In this case

it is the result of a bitwise-OR expression. The “$$” symbol indicates the return value of the non-terminal,

a usage likely borrowed from Yacc [25]. The second pair of braces contains the semantic action. Here the

“SRC” operand refers to the data value in the register indexed by the return value of token “RA” as its action.

The following three empty pairs of braces specify side effects, cost, and time, which are all nonexistent for

this simple operand. These three fields exist in the instruction set section as well.

The instruction set section of an ISDL describes the instruction set in terms of its fields. For each field,

a list of alternative operations can be described. Similar to non-terminals, an operation contains a name,

a list of tokens or non-terminals as arguments, a binary encoding definition, an action definition, side

effects, and costs. Side effects refer to behaviors such as the setting or clearing of a machine flag. Three

types of cost can be specified: execution cycles, encoding size, and stall. Stall models the cycle number

of pipeline stalls if the next instruction uses the result of the current instruction. The timing model of

ISDL contains two parameters: latency and usage. Latency is the number of fetch cycles before the result of

the current operation becomes available. Usage is the cycle count that the operation spends in its slot. The

difference between the latency and the stall cost is not clear from the available publications of ISDL. The

most interesting part of ISDL is its explicit constraint specification. In contrast to nML, which enumerates

all valid combinations, ISDL defines invalid combinations in the form of Boolean expressions. This often

results in a much simpler constraint specification. It also enables ISDL to capture more irregular ILP

constraints. Recall the temporal constraint that instruction X cannot directly follow Y, which cannot be
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modeled by nML. ISDL can describe the constraint as follows [15]:

~(Y *) & ([1] X *, *)

The above “[1]” indicates a one-cycle delay between the fetch bundle (instruction) containing Y and

the one containing X. The “ ” is an operator for logic complement and “&” for logical and. The detailed

grammar of the Boolean constraints syntax is available in [19]. The way ISDL models constraints affects

the code generation process; a constraint checker is needed to check if the selected instructions meet the

constraint. In case of a checking failure, alternative code must be generated.

Overall, ISDL provides the means for compact, hierarchical specification of instruction sets. Its Boolean

constraint specification models irregular ILP constraints effectively. A shortcoming of ISDL is that its simple

tree-like instruction format forbids the description of instruction sets with multiple encoding formats.

16.2.2.3 CSDL

CSDL (Computer System Description Languages) [48] is a family of machine description languages used

by the Zephyr compiler infrastructure. The CSDL family currently includes CCL [5], a function-calling

convention-specification language; SLED [49], a formalism describing instruction assembly format and

a specification language for functions calling conventions, binary encoding, and λ-RTL [47], an RT-list

description language for instruction semantics.

SLED (Specification Language for Encoding and Decoding) was developed as part of the New Jer-

sey Machine-Code Toolkit, which helps programmers build binary editing tools. The retargetable linker

mld [10] and the retargetable debugger ldb [46] were developed based on the toolkit. Similar to ISDL,

SLED uses a hierarchical model for machine instructions. A SLED instruction is composed of one or more

tokens, each of which is composed of one or more fields. The pattern construct groups the fields together

and binds them to binary encoding values. The directive construct concatenates the fields to form instruc-

tion words. A detailed description of the syntax can be found in [49]. SLED does not assume a single format

of the instruction set. Therefore, it is sufficiently flexible to describe the encoding and the assembly format

of both reduced instruction set computers (RISCs) and complex instruction set computers (CISCs). Like

nML, SLED enumerates valid combinations of fields. There is neither a notion of hardware resources nor

explicit constraint descriptions. Therefore, in its current form, SLED is not suitable for describing VLIW

instruction sets.

The vpo (very portable optimizer) in the Zephyr system is capable of instruction selection, instruction

scheduling, and global optimization. Instruction sets are represented as RT-lists in vpo. Since the raw

RT-list form is verbose, λ-RTL was developed to improve description efficiency. A λ-RTL description is

translated into RT-lists for the use of vpo. According to its developers [47], λ-RTL is “a high order, strongly

typed, polymorphic, and pure functional language” based on Standard ML [35]. It has many high-level

language features such as name space (through the module and import directives) and function. Users can

even overload basic operators to introduce new semantics and precedence.

The CSDL family of languages does not specify any timing information. Therefore, CSDL does not

contain enough information for supporting code generation and scheduling of VLIW processors. It is

more suitable for modeling conventional general-purpose processors.

In summary, the behavioral languages share one common feature: hierarchical description of the in-

struction set based on attribute grammars [38]. This feature greatly simplifies the description of instruction

sets by sharing common parts among operations. However, the lack of solid pipeline and timing infor-

mation prevents these languages from being useful to modern optimizing schedulers. Also, the behavioral

ADLs cannot be used to generate a cycle-accurate simulator without assumptions on the control behavior

of the architecture. In other words, underlying architecture templates must be used to interpret the full

behavior of the ADL descriptions.

16.2.3 Mixed Languages

Similar to behavioral languages, mixed ADLs often use RT-lists for specifying instruction semantics. They

also include abstract hardware resources and temporal behavior of the instructions.
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16.2.3.1 Maril

Maril is a mixed ADL used by the retargetable compiler Marion [7], which targets RISC-style processors.

Maril contains both instruction set information and coarse-grained structural information. Its structural

information contains storage units as well as highly abstracted pipeline units. Compiler back-ends for the

Motorola 88000 [36], the MIPS R2000 [26], and the Intel i860 [22] architectures were developed based on

Maril descriptions.

Maril contains the following three sections:

� Declaration: The declaration section describes structural information, such as register files, mem-

ory, and abstract hardware resources. Abstract hardware resources include pipeline stages and

data buses. They are useful for specifying reservation tables, which are essentially temporal map-

ping relationships between instructions and architecture resources. A reservation table captures

the resource usage of an instruction at every cycle starting with the fetch. It is often a one-to-many

mapping since there may be multiple alternative paths for an instruction. Besides hardware struc-

tures, the declaration section also contains information such as the range of immediate operands

or relative branch offset. This is necessary for the correctness of generated code.
� Runtime model: The runtime model section specifies the conventions of the architecture, mostly the

function calling conventions. However, it is not intended to be a general framework for specifying

these, but instead, is a parameter system for configuring the Marion compiler. Specifying the

function calling conventions is a complicated subject and falls beyond the scope of this chapter.

Interested readers can refer to [5] for more information.
� Instruction: The instruction section describes the instruction set. Each instruction is specified in five

parts. The first part is the instruction mnemonics and operands, which specify the assembly format

of instructions. The optional second part declares data type constraints of the operation for code

selection use. The third part describes an expression that can be used by the Marion code generator

as the tree-pattern of the instruction. Only one assignment can occur in the expression since the tree-

pattern can have only one root node (and an assignment operator is always a root). As a result, this

part cannot specify instruction behaviors such as side effects on machine flags and post-increment

memory addressing modes because they all involve additional assignments. This limitation can be

worked around for code generation purposes since code generators require simplified semantics

specification anyway. But for simulators, the Maril description seems insufficient. The fourth part

of the instruction description is the reservation table of the instruction. The abstract resources used

in each cycle can be described here, starting from the instruction fetching cycle. The fifth and last

part of the instruction description is a triple of (cost, latency, slot). The cost is used to distinguish

actual instructions from the so-called dummy instructions, which are used for type conversion. The

latency is the number of cycles before the result of the instruction can be used by other operations.

The slot specifies the delay slot count. Instruction encoding information is not provided in Maril.

An example definition integer “Add” instruction is given below [7].

%instr Add r, r, r (int)
{$3 = $1+$2;}
{IF; ID; EX; MEM; WB} (1,1,0)

The operands of the “Add” instruction are all general-purpose registers, as denoted by the “r”s in the first

line. The “;” in the reservation table specification delimits cycle boundaries. The “Add” instruction will go

through five pipeline stages in five cycles. It has a cost of one, takes one cycle, and has no delay slot.

In general, Maril is designed for code generation and scheduling of RISC architectures. Maril does not

describe VLIW instruction sets, nor does it provide enough information for cycle-accurate simulation.

Some information in Maril is not part of the target architecture, but hints to Marion. Maril does not

utilize a hierarchical instruction set description scheme, as do most behavioral languages. Nonetheless,

compared with the behavioral languages, it carries more structural information than just storage units. Its
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description of reservation tables enables resource-based instruction scheduling, which can bring notable

performance improvement for deeply pipelined processors.

16.2.3.2 HMDES

HMDES is an ADL emphasizing scheduling support [14]. It was developed at the University of Illinois at

Urbana-Champaign for the IMPACT research compiler. Because IMPACT focuses on exploring ILP, the

reservation tables of instructions become the major content of HMDES. There is no explicit notion of

instruction or operation bundle in HMDES. Instead, it represents VLIW issue slots as artificial resources

that are consumed by operations. IMPACT is interested in wide-issue architectures in which a single

instruction can have numerous scheduling alternatives. For example, if in an eight-issue processor an

“Add” instruction can go from any of the eight decoding slots to any of the eight function units, there are

in total 64 scheduling alternatives. To avoid laboriously enumerating the alternatives, an AND–OR tree

structure is used in HMDES to compress reservation tables. Figure 16.3 shows the description hierarchy

used in HMDES. The leaf nodes are called resource usages, which are tuples of (resource, time).

A special feature of HMDES is its preprocessing constructs. It performs C-like preprocessing tasks

such as conditional file inclusion and macro expansion. More complex preprocessing constructs such as

loops are also supported. The preprocessing does not provide extra description power, but helps keep

the description compact and readable. Instruction semantics, assembly format, and binary encoding

information are not part of HMDES since IMPACT is not designed to be a fully retargetable compiler.

Instead, it uses manually written code generation back-ends. After generating machine code, the back-ends

query the machine database based on HMDES to do ILP scheduling. A detailed description of the interface

between the machine description system and the compiler back-end can be found in the documentation

of Elcor [1].

16.2.3.3 TDL

TDL (Target Description Language) was developed at Saarland University in Germany. The language is used

in a retargetable post-pass assembly-based code optimization system called PROPAN [27]. In PROPAN, a

TDL description is transformed into a parser for target assembly code and a set of ANSI C files containing

data structures and functions. The C files are included in the application as a means of generic access to

architecture information. A TDL description consists of four parts:

� Resource section: Storage units such as register files and memory have built-in syntax support in

this section. Moreover, TDL allows the description of the cache memory, which partially exposes the

memory hierarchy to the compiler and allows for more optimization opportunities. Function units
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are also described in this section. TDL also provides flexible syntax support for the user to define

generic function units that do not belong to any predefined category.
� Instruction set section: Similar to the behavioral languages, TDL utilizes the attribute gram-

mar [38]. TDL supports VLIW architectures explicitly, so it distinguishes the notions of operation

and instruction. However, no binary encoding information is provided by TDL. An adapted exam-

ple description from [28] for an integer add operation is shown below.

DefineOp IAdd "%s=%s+%s"
{dst1="$1" in {gpr}, src1="$2" in {gpr}, src2="$3" in {gpr}},
{ALU1(latency=1, slots=0, exectime=1) |

ALU2(latency=1, slots=0, exectime=2);
WbBus(latency=1)},

{dst1 := src1+src2;}.

The above operation definition contains a name, an assembly format, a list of predefined attributes

such as the locations and the types of the source and destination operands, the reservation table,

and the semantics in RT-lists form. In this example, the destination operand “$1” corresponds to

the first “%s” in the assembly format and is from the register file named “gpr.” The operation can be

scheduled on either function unit “ALU1” or “ALU2.” It will also occupy the result write back bus

(“WbBus”) resource. The operation performs addition. The detailed TDL syntax rules for describing

operation semantics can be found in [28]. This section also contains an operation class definition

that groups operations into groups for ease of reference. The format of an instruction word can

be defined based on the operation classes. For instance, a declaration “InstructionFormat ifo2

[opclass3, opclass4];” means the instruction format “ifo2” contains one operation from opclass3

and one from opclass4. Similar to ISDL, TDL also provides a non-terminal syntax construct to

capture common components between operations.
� Constraints section: The Boolean expression used in ISDL is based on lexical elements in the

assembly instruction. TDL also uses Boolean expressions for constraint modeling, but its expressions

are based on explicitly declared operation attributes defined in the other sections. A constraint

definition includes a premise part followed by a rule part, separated by a colon. An example

definition from [28] is given below.

op1 in {MultiAluFixed} & op2 {MultiMulFixed} :
!(op1 && op2) | op1.src1 in {iregC} & op1.src2 in {iregD}

& op2.src1 in {iregA} & op2.src2 in {iregB}

The example specifies the constraint for two operations from the “MultiAluFixed” class and the

“MultiMulFixed” class, respectively. Either they do not coexist in one instruction word or their

operands have to be in the designated register files. The constraint specification is equally powerful

to that of ISDL, but in a cleaner syntax. The Boolean expression will be transformed to integer

linear programming constraints to be used in the PROPAN system.
� Assembly section: This section describes the lexical elements in assembly code including comment

syntax, operation and instruction delimiters, and assembly directives.

Overall, TDL provides a well-organized formalism for describing the assembly code of VLIW DSPs. It

supports preprocessing and description of hardware resources such as caches. It also meticulously defines

the rules for describing RT-lists. It uses a hierarchical scheme to exploit the commonality among opera-

tions and provides both resource-based (function units) and explicit Boolean constraints for constraint

modeling. However, its timing model and reservation table model seem to be restricted by the syntax.

There is no way for users to flexibly specify operand latency — the cycle time when operands are read and

written. These restrictions prevent the use of TDL for accurate RISC architecture modeling. Furthermore,

register ports and data transfer paths are not explicitly modeled in the resource section. Both are often

resource bottlenecks in VLIW DSPs.
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A related but more restrictive machine description formalism for assembly code analysis and

transformation applications can be found in the SALTO framework [6]. Its organization is similar to

that of TDL.

16.2.3.4 EXPRESSION

The explicit reservation table description in HMDES is not natural and intuitive. Users have to manually

translate pipeline structures to abstract resources, which is an annoying task during design space explo-

ration. The EXPRESSION [17] ADL eliminates such manual effort. In EXPRESSION, one can describe a

graph of pipeline stages and storage units. The EXPRESSION compiler can automatically generate reser-

vation tables based on the graph. In contrast to MIMOLA’s fine-grained netlist, EXPRESSION uses a much

coarser representation. Its graph style specification is more friendly to computer architects.

EXPRESSION was developed at the University of California at Irvine. It was used by the research

compiler EXPRESS [18] and the research simulator SIMPRESS [29], developed at the same university. A

graphical user interface (GUI) front-end for EXPRESSION was also reported [29]. EXPRESSION takes a

balanced view of behavioral and structural descriptions. It contains a behavioral section and a structural

section. The behavioral section is similar to that of ISDL in that it distinguishes instructions and operations,

but it does not cover assembly format and binary encoding. Nor does it use any hierarchical structure for

describing operation properties.

The behavioral section contains three subsections: operation, instruction, and operation mapping. The

operation subsection is in the form of RT-lists, but detailed rules for semantics description are not publicly

available. Similar to TDL, EXPRESSION groups similar operations together for ease of reference. Operation

addressing modes are also defined in the operation subsection. The instruction subsection describes the

bundling of operations that can be issued in parallel. Instruction width, issuing widths, and the function

units bound to the issuing slots are in this section. Such information is essential for VLIW modeling.

The operation mapping subsection specifies the translation rules when generating code. Two types of

mapping can be specified: mapping from a compiler’s intermediate generic operations to target operations

and mapping from some target operations to other target-specific operations. The first type of mapping

is used for code generation. The second type is required for code optimization purposes. Predicates can

be specified for conditional mappings. The mapping subsection in EXPRESSION makes code generation

much easier, but it also makes the EXPRESSION language dependent on the code generation algorithm,

which is based on direct mapping.

The most interesting part of EXPRESSION is its structural specification in a graph. This part contains

three subsections: component declaration, path declaration, and memory subsystem declaration. In the

component subsection, coarse-grained structural units such as pipeline stages, memory controllers, mem-

ory banks, register files, and latches are specified. Linkage resources such as ports and connections can also

be declared in this part. A pipeline stage declaration for the example architecture in Figure 16.4 is shown

below.
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FIGURE 16.4 Example DLX pipeline.
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(DECODEUnit ID
(LATCHES decodeLatch)
(PORTS ID_srcport1 ID_srcport2)
(CAPACITY 1)
(OPCODES all)
(TIMING all 1)

)

The above example describes an instruction decoding stage. The “LATCHES” statement refers to the output

pipeline register of the unit. The “PORTS” statement refers to the abstract data ports of the unit. Here the

“ID” unit has two register read ports. “CAPACITY” describes the number of instructions that the pipeline

stage can hold at the same time. Normal function units have a capacity of one, while the fetching and

decoding stages of VLIW or superscalar processors can have a capacity as large as the issue width of the

processor. “OPCODES” describes the operations that can go through this stage. The “all” refers to a prede-

fined operation group containing all operations. “TIMING” is the cycle count that operations spend in the

unit. In this example, each operation takes one cycle. Timing can also be specified on a per-operation basis.

In the path subsection of the structural description, the pipeline paths and the data paths between

pipeline stages and storage units are specified. This subsection connects the components into a graph. The

pipeline path declaration stitches together the pipeline stages to form a directed acyclic pipeline graph. An

example path declaration for the simple DLX architecture [20] in Figure 16.4 is shown below.

(PIPELINE FE ID EX MEM WB)
(PIPELINE FE ID F1 F2 F3 F4 WB)

Recall that the “OPCODES” attribute of pipeline stages declares the operations that can go through each

stage, so the paths that an operation may traverse are those whose pipeline stages can all accommodate the

operation. Since the time spent by each operation in each stage is specified in the “TIMING” declaration in

the component subsection, a reservation table can be generated for the operation. In addition to pipeline

stage resources, the usage of register ports and data transfer paths by an operation can also be inferred from

its operands and the connections between the pipeline stages and the storage units. The ports and data

transfer paths are modeled as resources in the reservation tables too. Compared to the explicit description

style of reservation tables in HMDES and Maril, EXPRESSION’s graph style is more convenient and

intuitive. However, the expressiveness of EXPRESSION in this regard is limited for the same reason. For

example, it cannot describe the situation in which an operation should occupy two pipeline stages at the

same cycle, which often occurs in floating point pipelines or when artificial resources [45] need to be

introduced for irregular ILP constraint modeling.

The last structural subsection is the memory model. EXPRESSION adopts a parameterized memory

hierarchy model. Description of memory hierarchy is useful for optimizing compilers to improve the cache

behavior of the generated code. EXPRESSION and TDL are the only ADLs that address memory hierarchy.

In general, EXPRESSION captures the data path information in the processor. As with all the afore-

mentioned mixed languages, the control path is not explicitly modeled. Thus, it does not contain complete

information for cycle-accurate simulation. An underlying architecture template is necessary to provide the

missing information of the control path for simulation purposes. The behavioral model of EXPRESSION

does not utilize hierarchical techniques such as the AND–OR tree. This makes it tedious to specify a com-

plete instruction set. The VLIW instruction composition model is simple. It is not clear if interoperation

constraints such as sharing of common fields can be modeled. Such constraints can be modeled in ISDL

through cross-field encoding assignment.

16.2.3.5 LISA

The emphasis of the behavioral languages is on instruction set specification. Mixed languages look beyond

that and provide coarse-grained data path information. However, the description of control paths is

largely ignored by the aforementioned mixed languages. This is probably due to the lack of convenient
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formalism for modeling control paths. Complex control-related behaviors such as speculation and zero-

overhead loops are very difficult to model cleanly. Nevertheless, modeling of control behaviors is valuable

for code generation and simulation. As the pipeline structures of high-end processors become increasingly

complicated, control behaviors such as branching and speculation can have a significant effect on the

performance of a processor.

The LISA (Language of Instruction Set Architecture) [40] ADL is capable of accurately specifying the

control-related behaviors of a processor. It was developed at Aachen University of Technology in Germany.

LISA’s development accompanies that of a production-quality cycle-accurate simulator [39]. LISA has

many features of an imperative programming language. Using a C-like syntax, it can specify control-

related behaviors such as pipeline flush or stall. The flexibility of the imperative-style description allows

LISA to specify a wide range of processors.

LISA contains mainly two types of top-level declarations: resource and operation. Resource declara-

tions cover hardware resources including register files, memories, program counters, and pipeline stages.

A pipeline definition in LISA enumerates all possible pipeline paths that the operations can go through.

A pipeline description corresponding to the same example in Figure 16.4 is as follows:

PIPELINE pipe = {FE; ID; EX; MEM; WB}
PIPELINE pipe_fp = {FE; ID; F1; F2; F3; F4; WB}

Similar to Maril, the “;”s above are used to delimit the cycle boundary. Machine operations are described

with respect to the pipeline stages in LISA. Its basic description unit is an OPERATION, which specifies

the behavior, the encoding, and the assembly format of similar instructions at one pipeline stage. The

OPERATIONs form an AND–OR tree structure in LISA, greatly reducing the amount of code for a

processor. In a slightly modified example from [39], the decoding behavior for arithmetic operations in

the DLX ID stage can be described as below.

OPERATION arithmetic IN pipe.ID {
DECLARE {

GROUP opcode={ADD || ADDU || SUB || SUBU}
GROUP rs1, rs2, rd = {fix_register};

}
CODING {opcode rs1 rs2 rd}
SYNTAX {opcode rd "," rs1 "," rs2}
BEHAVIOR {

reg_a = rs1;
reg_b = rs2;
cond = 0;

}
ACTIVATION {opcode, writeback}

}

The above example captures the common behavior of the arithmetic instructions “ADD,” “ADDU,” “SUB,”

and “SUBU” in the decoding stage, as well as their assembly format and binary encoding. In general, an

“OPERATION” declaration can contain several parts:

� DECLARE, where local identifiers are specified.
� CODING, where the binary encoding of the operation is described.
� SYNTAX, where the assembly format of the operation is declared.
� BEHAVIOR, where the exact instruction semantics including side effects are specified in a C-like

syntax.
� ACTIVATION, where the follow-up operations are activated.

In LISA, one OPERATION can activate another OPERATION. The firing time of the activated OP-

ERATION is dependent on the distance between the two OPERATIONs in the pipeline path. The above
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LISA example activates one of the opcodes, which are OPERATIONs declared with respect to the “EX”

stage. Since “EX” directly follows “ID,” the activated opcode will execute in the following cycle. In the same

example [39], an opcode “ADD” is declared as follows:

OPERATION ADD IN pipe.EX {
CODING {0b001000}
SYNTAX {"ADD"}
BEHAVIOR {alu = reg_a + reg_b;}

}

Each LISA description contains a special main OPERATION, which will be activated at every cycle.

It serves as a kernel loop in simulation. Built-in pipeline control functions such as “shift,” “stall,” and

“flush” can be invoked in the main loop. One advantage of LISA is that the user can describe detailed

control path information with the activation model. Control path description is important in generating

a real cycle-accurate simulator. A fast and accurate simulator for Texas Instrument’s TMS320C6201 VLIW

DSP [53] based on LISA was reported [39].

To use a LISA description for code generation, the instruction set needs to be extracted. First, the

AND–OR tree formed by the OPERATIONs can be analyzed and expanded. Each derivation represents

one instruction. It contains architecture information such as the semantics of the instruction, as well

as microarchitecture information such as timing and bypassing. Second, semantics information can be

extracted in the form of RT-lists. However, for complicated processors, the extraction task is not straight-

forward. Consequently, LISA supports an optional SEMANTICS subsection for users to specify simplified

instruction semantics directly. The use of the SEMANTICS subsection introduces redundancy into the

LISA description since its content overlaps with the BEHAVIOR subsection. Similar redundancy can also be

found in EXPRESSION, whose operation subsection and mapping subsection are related to the semantics

specification.

16.2.3.6 MADL

The MESCAL Architecture Description Language (MADL) was developed at Princeton University as part

of the MESCAL project [44]. It provides support to tools including the cycle-accurate simulator, the

functional simulator, the compiler, the assembler, and the disassembler. MADL is an open-source ADL.

Its reference manual and the MADL compiler are available for download from [41].

MADL is based on a flexible computation model called the Operation State Machine (OSM) [43].

The OSM model adopts a two-layer view of microprocessors: an operation layer that defines instruction

semantics and resource consumption and an abstract hardware layer that controls the resource tokens.

The operation layer contains a set of finite state machines (FSMs), each representing an instruction in the

pipeline. The hardware layer contains a set of token managers, each of which controls a set of resource

tokens. The FSMs communicate with the token managers through token transactions. The model is very

flexible in modeling all types of processor architectures, including superscalar and VLIW.

MADL recognizes that there may be both tool-independent and tool-dependent information in de-

scriptions. The former represents the architecture and can be shared among different tools, while the latter

serve only individual tools using the ADL. To separate these two types of information, MADL is designed

with a two-level structure, the core level and the annotation level. The core level of MADL is a description

language for the operation layer of the OSM model. This level defines the FSMs and their interaction

with the token managers. Based on the well-defined semantics of the OSM model, the core description is

executable. The annotation level of MADL is a generic description language for specifying tool-dependent

information. For example, hints for the compiler can be placed in this level. The hints help the compiler

extract useful information for its optimizers.

Overall, MADL is designed for balanced support of simulation and compilation. The fast cycle-accurate

simulator in the popular SimIt-ARM [42] package was generated from an MADL description of the

StrongARM processor. An MADL description is also highly analyzable. For retargetable compilation, it is

convenient to extract reservation tables from MADL descriptions owing to the resource-based abstraction
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used in OSM. MADL also allows users to embed instruction properties into FSMs, such as semantics

and assembly encoding. It supports the AND–OR tree description style for both FSMs and instruction

properties, allowing the descriptions to be very compact. In theory, it is possible to extract instruction

semantics information from MADL for code generation purposes. However, because of the complexity of

implementing a retargetable code generator, it remains a work in progress.

16.2.3.7 Other ADLs

An ADL similar to LISA is RADL (Rockwell Architecture Description Language) [50]. It was developed

as a follow-up of some earlier work on LISA. The only purpose of RADL is to support cycle-accurate

simulation. Control-related library functions such as “stall” and “kill” may be used in RADL descriptions

to control the pipeline. There is no available information on the simulator utilizing RADL. Besides RADL,

another Architecture Description Language developed in the industry is PRMDL (Philips Research

Machine Description Language) [52]. Its goal is to cover a range of VLIW architectures, mostly clus-

tered VLIW architectures with incomplete bypassing networks and shared function units among different

issuing slots. A PRMDL description separates the software view (the virtual machine) and the hardware

view (the physical machine) of the processor. The separation ensures code portability by keeping applica-

tion programs independent of changes in hardware. However, no information is available on the mapping

from the virtual machine to the physical machine.

16.3 Discussions

16.3.1 Summary of ADLs

ADL as a research area is far from being mature. In contrast to other computer languages such as pro-

gramming languages and HDLs, there is no common or de facto standard in the ADL field. New ADLs

continue to show up and there seems no sign of convergence.

An obvious reason for this situation is the lack of mathematical formalism for general modeling of

computer architecture. Modern computer architectures range from simple DSP/ASIPs with small register

files and little control logic to complex out-of-order superscalar machines [20] with deep memory hierarchy

and heavy control and data speculation. As semiconductor processes evolve, more and more transistors are

being squeezed into a single chip. The growing thirst for higher performance and lower power led to the

birth of even more sophisticated architectures such as multithreaded and multicore processors. Without a

solid underlying mathematical model, it is extremely hard for an ADL to simply use description techniques

to cover the vast range of computer architectures.

A second reason for the absence of convergence is the diverging purposes of ADLs. Some ADLs were

originally designed as hardware description languages, for example, MIMOLA and UDL/I. The main goal

of those languages is accurate hardware modeling. Cycle-accurate simulators and hardware synthesizers

are natural products of such languages. However, it is nontrivial to extract the ISA from them for use

by a compiler. Some other ADLs were initially developed to be high-level processor modeling languages,

such as nML, LISA, EXPRESSION, and MADL. The main goals of these ADLs are general coverage over

a wide architecture range and general support for both compilers and simulators. However, because of

the diverging needs of compilers and simulators, these ADLs tend to have notable limitations for their

support for one type of tools. Furthermore, many ADLs were developed as configuration systems for their

associated tools, such as Maril, HMDES, TDL, and PRMDL. In some sense those languages can be viewed

as a by-product of the software tools. They are valuable only in the context of their associated tools.

In summary, ADLs are designed for different purposes, at different abstraction levels, with emphasis on

different architectures of interest, and with support for different tools. Table 16.1 compares the important

features of various ADLs. A few entries in the table were left empty, because information is either not

available (no related publication) or not applicable. The parentheses in some entries indicate support with

significant limitation. Without a flexible and solid mathematical model for processors, it is hard to unify
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all the ADL efforts. However, this situation may change in the near future. As programmable processors

play an increasingly important role in the development of systems, the ADL field is attracting the attention

of more researchers and engineers. Some excellent ADLs will eventually stand out.

16.3.2 Essential Elements of an ADL

Modern retargetable compiler back-ends normally consist of three phases: code selection, register allo-

cation, and operation scheduling. Although the phases and the additional optimization steps [37] may

sometimes be performed in a different order and in different combinations, the first two phases are indis-

pensable to generating working code. They require operation semantics and addressing mode information.

The last phase, operation scheduling, is traditionally viewed as an optimization phase. It minimizes po-

tential pipeline hazards during the execution of the resulting code. Scheduling also packs operations into

instruction words for VLIW processors and minimizes the number of wasted slots. As deeper pipelines

and wider instruction words are gaining popularity in processors, scheduling is increasingly important to

the quality of generated code. A good ILP scheduler can improve performance as well as reduce code size

notably. Therefore, we assume in this chapter that it is also an essential part of the compiler back-end.

The data model of a typical operation scheduler contains two basic elements: operand latency and

reservation table [14]. The first element models data hazards and is used to build a directed acyclic

dependency graph of the operations in a program. The second element models structural hazards between

operations. For VLIW architectures, the instruction word packing constraints can also be modeled as

reservation tables. The key idea is to convert the packing constraints into artificial resources [45]. For

example, if two types of operation cannot be scheduled in the same instruction, an artificial resource is

created. Each type of operation is required to obtain the artificial resource to be issued. Therefore, only one

operation can be packed into the instruction at the same time. By augmenting the reservation table with

artificial resources, the scheduler unifies the operation scheduling problem and the instruction packing

problem.

Each machine operation performs some state transition in the processor. A precise description of the state

transition should include three elements: what, where, and when. Correspondingly, information required

by a compiler back-end contains three basic elements: behavior, resource, and time. Here, behavior means

semantic actions including reading of source operands, calculation, and writing of destination operands.

Resource refers to abstracted hardware resources used to model structural hazards or artificial resources

used to model instruction packing. Common hardware resources include pipeline stages, register file ports,

memory ports, and data transfer paths. The last element, time, is the cycle number when the behavior

occurs and when resources are occupied. It is usually relative to the operation fetching time or issuing

time. In some cases, phase (subcycle) number can be used for even more accurate modeling. With the

three basic elements, we can easily represent each machine operation in a list of triples. Each triple is in

the form of (behavior, resource, time). For example, an integer “Add” operation in the pipeline depicted

by Figure 16.4 can be described as

(read operand reg[src1], through register file port a,
at the 2nd cycle since fetch);

(read operand reg[src2], through register file port b,
at the 2nd cycle since fetch);

(perform addition, in alu, at the 3rd cycle since fetch);
(write operand reg[dst], through register file write port,

at the 5th cycle since fetch).

From the triple list, a compiler can extract the operation semantics and addressing mode by combining

the first elements in the description order. It can also extract operand latency and reservation table

information for the scheduler. Operand latency is used to avoid data hazards, while reservation table can

be used to avoid structural hazards. The triple list is a simple and general way of operation description. In

practice, some triples may sometimes be simplified into tuples. For instance, most architectures contain
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sufficient register ports so that no resource hazard can ever occur because of those. As a result, the scheduler

does not need to take the ports into consideration. In the above example, one can simplify the first two

triples by omitting the resource elements. However, when there are resources that may cause contention,

but there is no visible behavior associated with the resources, the behavior can be omitted from the triple.

In the same integer “Add” example, if the MEM stage becomes a source of conflict, one may model it as a

tuple of (MEM stage, at the 4th cycle since fetch).

The triple/tuple list can be found in all mixed languages in some form. For instance, the HMDES

language is composed of these two types of tuples: the (behavior, time) tuple for operand latency and the

(resource, time) tuple for reservation table. In LISA, operations were described in terms of pipeline stages.

Each pipeline stage has an associated time stamp according to its position in the path. Therefore, a LISA

description contains the triple list. The pieces of architectural information left out by the triple list are the

assembly format and the binary encoding. These two can be viewed as attributes attached to the operation

behavior. It is a relatively straightforward task to describe them.

16.3.3 Organization of an ADL

It is possible to directly use the triple list form as an ADL. However, describing a processor based on

such an ADL can be a tedious task for a human. A typical RISC processor contains 50 to 100 operations.

Each operation has multiple issuing alternatives, proportional to the issuing width of the processor. Each

issuing alternative corresponds to one triple list, whose length is approximately the depth of the pipeline.

Consequently, the total number of tuples is the product of the operation count, the issuing width, and

the depth of the pipeline, which is typically at the order of thousands. Moreover, artificial resources can

be used to model instruction packing constraints. A raw triple list representation requires that the user

manually perform the artificial resource formation prior to the description. This process can be laborious

and error-prone for a human.

The task of an ADL design is to find a simple, concise, and intuitive organization to capture the required

information. Conceptually, to capture all relevant architecture and microarchitecture information, an ADL

should contain three parts:

� Behavioral part: This part contains operation addressing modes, operation semantics, assembly

mnemonics, and binary encoding. These correspond to the first element in the triple. Behavior

information can be found directly in architecture reference manuals. For typical processors, op-

erations in the same category share common properties. For instance, usually all three-operand

arithmetic operations and logic operations share the same addressing modes and binary encoding

formats. They differ only in their opcode encoding and semantics. Exploiting the commonalities

among them can make the description compact, as has been demonstrated by at least nML and

ISDL. Both ADLs adopt hierarchical description schemes, under which common behaviors are

described at the roots of the hierarchy while specifics are kept in the leaves. Besides the sharing

of common properties, another powerful description scheme is factorization. A single machine

operation can be viewed as the combination of several suboperations, each of which has a few

alternatives. Take, for example, the “Load” operation of the TMS320C6200 DSP family [53]. The

operation contains two suboperations: the load action and the addressing mode. Five versions of

load action exist: load byte, load unsigned byte, load half word, load unsigned half word, and load

word. The addressing mode can further be decomposed into two parts: the offset mode and the

address calculation mode. Two offset modes exist: register offset and constant offset. In the ad-

dress calculation mode, six options exist: plus-offset, minus-offset, pre-increment, pre-decrement,

post-increment, and post-decrement. Overall, the single “Load” operation contains 5 ∗ 2 ∗ 6 = 60

versions. Under a flat description scheme, it would be a laborious task to enumerate all 60 versions.

To reduce the description effort, a hierarchical description scheme can factorize suboperations. It

first describes the set of load actions and the set of addressing modes separately and then combines

them into a set of operations through the Cartesian product of the suboperation sets. The resulting

compact description is much easier to verify and modify.
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� Structural part: This part describes the hardware resources corresponding to the second element in

the triple. Artificial resources may also be included in this part. The level of abstraction in this part

can vary from fine-grained RT-level to coarse-grained pipeline level. Two schemes exist for coarse-

grained structural descriptions: resource based and netlist based. Maril, TDL, and HMDES utilize

the resource-based description scheme. The main advantage of using resources is flexibility. When

creating a resource, the description writer does not need to be concerned about its corresponding

physical entity and its interconnection with other entities. It may be just an artificial resource

used for constraint modeling. In contrast, EXPRESSION and PRMDL utilize the netlist-based

scheme. The advantage of a netlist-based description is its intuitiveness. Netlists are more familiar

to computer architects. The netlist description scheme also enables the use of friendly GUIs. A

reservation table can be extracted from the netlist through some simple automated translation.

The disadvantage of netlist is its limited modeling capability. Architectures with complex dynamic

pipeline behaviors are hard to model as a simple coarse-grained netlist. Also, netlists of commercial

superscalar architectures may not be available to researchers. In summary, the resource-based

scheme seems more suitable for complex high-end architectures, while the netlist-based scheme is

better suited as an accurate model for simple ASIP/DSP designs whose netlists are available and

whose control logic is minimal.
� Linkage part: This part completes the triple. The linkage information maps operation behavior to

resources and time. It is usually an implicit part of ADLs. In Maril, TDL, and HMDES, linkage is

described in the form of an explicit reservation table. For each operation, the resources that it uses

and the time of each use are enumerated. HMDES further exploits the commonality of resource

usages through a hierarchical description scheme. In EXPRESSION, the linkage information is

expressed in multiple ways: operations are mapped to pipeline stages by the OPCODES attribute

associated with the pipeline stages and are mapped to data transfer resources according to the

interconnection of the pipeline stages and the storage units. Grouping of operations helps simplify

the mapping in EXPRESSION.

In summary, the desirable features of an ADL include simplicity, conciseness, and generality. These

features may be contradictory to each other. A major task of the ADL design process is to find a good

trade-off among the three for the architecture family of interest. A good ADL design should also

distinguish true architecture information and artificial information useful only for individual tool

implementations.

16.3.4 Challenges

ADL designers are constantly coping with the trade-off of generality and efficiency. A low abstraction

level brings more generality but at the cost of efficiency. A high abstraction level makes ADL descriptions

more concise but less general in supporting different architectures. Regarding the retargetable tools utilizing

ADLs, compilers prefer simplified high-level abstraction, while simulators prefer concrete low-level mod-

els. It is very difficult to find a clean and elegant representation to satisfy both. In addition, idiosyncrasies

of various architectures make the design of a general ADL an agonizing process. When a new processor

needs to be described, designers need to first reevaluate the generality of the ADL. If the ADL is not general

enough to cover the new processor, they need to extend the ADL but without seriously disrupting all the

existing descriptions based on the ADL. If this is not possible, the entire language must be revised, the

parser should be rewritten, and all existing architecture descriptions need to be updated. The constant

emergence of new “weird” architectural features keeps designers struggling with such reevaluations, revis-

ing and rewriting tasks. Consequently, most ADLs give up generality to some degree but focus on a fixed

range of architectures that are interesting to the associated tools.

Below we enumerate a few common challenges faced by ADL designers and users. There seems to be

no clean solution for most of the challenges. Trade-offs have to be made depending on the specific needs

of each case.
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16.3.4.1 Ambiguity

The most common challenge when designing an ADL is to control its ambiguity, or the inability to

precisely describe architectural features. Ambiguity is a by-product of abstraction. It exists in most ADLs

and especially manifests itself in the description of control-related behaviors. Take, for example, the

common behavior of pipeline interlocking. RISC architectures have the capability to detect data and control

hazards and stall the pipeline when a hazard exists. Many VLIW architectures, however, do not have the

interlocking mechanism. The difference between the two will obviously result in different requirements

for the operation scheduler. For RISC processors, the scheduler needs to remove as many read-after-write

(RAW) data hazards as possible, while for VLIWs, the scheduler must ensure the correctness of the code

by completely removing all data hazards. For these two very different architecture types, it is expected that

they result in very different ADL descriptions. However, in most ADLs, there is no difference between the

two because of their inability to precisely specify control paths. Among the mixed ADLs, only LISA and

RADL can model the interlocking mechanism since they focus on accurate simulator generation.

Another example is the instruction packing of VLIW processors. Some architectures allow only one

issue bundle in an instruction word; that is, only operations scheduled to issue at the same cycle can appear

in the same instruction word, while other architectures allow multiple issue bundles in one instruction

word. The latter architectures will dispatch the issue bundles at different cycles according to the stop bits

encoded in the instruction words [24] or according to the instruction templates. Among the mixed ADLs,

few can capture such instruction packing details. The code compression [2, 54] feature in some processors

is more difficult than simple bundling and is not addressed by ADLs at all.

The amount of ambiguity in an ADL is directly affected by its abstraction level. RT-level languages

have the least amount of ambiguity, while behavioral-level ADLs have the most. Among mixed ADLs,

executable simulator-oriented ADLs are less ambiguous than descriptive compiler-oriented ADLs. A good

ADL involves clever abstraction with minimal ambiguity. In practice, ambiguity can be resolved by using

an underlying architecture template; that is, the compiler or simulator presumes some basic architecture

information that is not explicitly described by the ADL. This strategy has been adopted by the tool-specific

ADLs. A more general ADL may resolve the ambiguity while preserving generality by using multiple

architecture templates.

16.3.4.2 Variable Latency

In many processors, operations or their operands may have variable latency. Many compiler-oriented ADLs

can only describe a fixed latency rather than the accurate variable latency. Consider again the example

of the integer “Add” in Figure 16.4. By default, the source operands will be read at the “ID” stage and

the destination written at the “WB” stage. Therefore, the source operand has a latency of one, while the

destination operand’s latency is four, both relative to the fetching time. However, if there exists a forwarding

path, which allows the processor to forward computation results from the “MEM” stage to “EX,” then

its destination operand latency is equivalent to three. It is sufficient for the compiler if we provide the

equivalent latency. Now consider a multi-issue version of the same architecture in which interpipeline

forwarding is forbidden, shown in Figure 16.5. Inside each pipeline, forwarding can occur, resulting in

an equivalent latency of three. Between pipelines, no forwarding is allowed, so the equivalent latency is

four. Here we see a variable latency for the same operand. It may be three or four, depending on whether

the forwarding occurs within the same pipeline and between pipelines. Such a type of variable latency is

hard to describe explicitly in the triple list, unless the forwarding path and its implication become part

of the ADL. ADLs based on reservation tables normally do not capture forwarding paths. The common

practice is to inform the scheduler about the worst-case latency, which means there is no distinction

to the compiler between the above intrapipeline and interpipeline forwarding case. Consequently, some

optimization opportunities are lost.

Another type of variable latency resides in the operations themselves. Operations such as floating point

division or square root can take a variable number of execution cycles depending on the value of the

source operands. In the triple list model, a variable latency means the time element should be a function,

which would complicate the ADL greatly. To save the complexity, usually a worst-case latency is used in the
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FIGURE 16.5 Two-issue integer pipeline with forwarding.

description. Memory operations can also introduce variable latencies due to the presence of probabilistic

components such as TLBs and caches. Most ADLs ignore the memory hierarchy by specifying an optimistic

latency for load and store operations since their emphasis is only on the processors. Memory hierarchy

modeling is nontrivial because of different types of memory technologies, different hierarchical structures,

and different memory management policies. Research has indicated that memory-aware code optimization

may yield an average performance gain of 24% [13]. As the speed gap between digital logic and memory

continues to enlarge, it is increasingly important that the compiler be aware of the memory hierarchy. So

far only EXPRESSION and TDL support a simple parameterized memory hierarchy model.

16.3.4.3 Irregular Constraints

Constraints exist in computer architectures because of the limitation of resources, such as the function

units in a pipeline and the bit fields in an instruction word. Common constraints include the range of

constant operands and the number of issue slots. These constraints are familiar to compiler developers and

can be handled with standard code generation and scheduling techniques. The recent trend of ASIP brings

about many extra-irregular constraints. Most ASIP processors are extremely optimized for cost and power

consumption. They often use features such as clustered register files, incomplete data transfer paths,

and irregular instruction encoding. Irregular instruction encoding helps reduce the size of individual

instruction words and therefore the size of the instruction memory. Instruction encoding constraints

include intraoperation constraints and interoperation constraints. An intraoperation constraint example

from a real proprietary DSP design is that if in operation “ADD D1, S0, S1,” “D1” is “AX,” then “S0” and

“S1” must be chosen from “B0” and “B1.” If “D1” is not “AX,” there is no constraint on “S0” and “S1.”

Interoperation constraints may involve operands in different operations. These operand-related constraints

are difficult to convert to artificial resource-based constraints. Special compiler techniques are necessary

to handle them. For example, the Aviv compiler uses an extra constraint-checking phase [19], and the

Propane system uses integer linear programming to solve the constraints [27]. The irregular constraints

create new challenges for ADLs as well as compilers. Most existing ADLs cannot model irregular constraints.

The exceptions are ISDL and TDL. Both utilize Boolean expressions for constraint modeling, which are

effective supplements to the triple list.

16.3.4.4 Operation Semantics

Both the code generator and the instruction set simulator need operation semantics information. For code

generation, simple tree-like semantics is most desirable because of the popularity of tree-pattern-based

code-generation algorithms [3]. Side effects such as the setting of machine flags cannot be expressed directly

as a part of the tree-patterns and are often omitted. Similarly, operations unused for code generation are

often omitted too. In contrast, for simulation, precise operation semantics of all operations should be

provided. It is not a straightforward task to unify the two types of semantic specification into one, while

at the same time making it convenient to access by both the compiler and simulator. Consequently, ADLs

like LISA and EXPRESSION separate the two types of semantic specification at the cost of redundancy.

Redundancy leads to additional verification challenges to verify the consistency between the two parts of

the description.
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For compilers, two description schemes for operation semantics have been used in ADLs. The first is a

simple mapping from machine-independent intermediate operations to machine-dependent operations.

Both EXPRESSION and PRMDL use this scheme. The mapping scheme makes code generation a simple

table lookup. The disadvantage of this practical scheme is that the description cannot be reused for

simulation purposes, and the description is dependent on the implementation of the compiler. A different

compiler may not be able to use the mapping if it uses a different set of intermediate operations. The

second description scheme defines for each operation one or more statements based on a predefined set

of primitive operators. nML, ISDL, and Maril use this approach. The statements can be directly used for

simulation. For most operations, the compiler can derive tree-patterns for its use. It will then be able

to apply the pattern matching algorithm for code generation [3]. However, occasionally the compiler’s

intermediate representations (IR) may fail to match any single operation. For example, in lcc’s IR, a

comparison operation and a branch operation are unified in the same tree node. Its operator “EQ”

compares its two operands and jumps to the associated label if they are equal. But many processors do not

have a single operation performing this task. Take the IA32 family, for example [23]. A comparison followed

by a conditional branch is used to perform this task. The former sets machine flags. The latter reads the

flags and updates the program counter conditionally. The IA32 floating point comparison and branch is

even more complicated; the flags set by the comparison need to be moved through an integer register to the

machine flags before the branch operation can read them. As a result, a total of four operations is needed

to map the single “EQ” node. It is a complicated task for the compiler to understand the meanings of the

operations and the flags. Some hints to the compiler should be provided in such cases. Because of these,

Maril [7] contains the “glue” and “∗func” mechanisms. “Glue” allows users to transform the IR tree for

easier pattern matching, and “∗func” maps an IR node to multiple operations. However, such mechanisms

expose the internals of the compiler to the ADL and make ADL descriptions dependent on the compiler.

16.3.4.5 Debugging of ADL Descriptions

Debugging support is an important feature for any programming language since code written by humans

invariably contains bugs. Retargetable compilers and simulators are difficult to write and debug themselves.

The bugs inside an ADL description simply make the development process harder. An initial ADL descrip-

tion may contain thousands of lines of code and may have hundreds of errors. Among the errors, syntax

ones can be easily detected by the ADL compiler. Some others can be detected by careful semantic analysis

in the ADL compiler. However, many functional errors can pass both tests and remain in the software for

a long time. The experience of LISA developers shows that it takes longer to debug a machine description

than to write the description itself [39]. So far there is no formal methodology for ADL debugging. An

ADL description itself does not execute on the host machine. It is usually interpreted or transformed into

executable C code. In the former case, debugging the ADL description is intertwined with the task of

debugging the tool that utilizes the description. In the latter case, debugging can be performed on the

generated C code, which probably looks familiar only to the developers of the tool.

The task of debugging may be easier if there exists a golden reference compiler and simulator for the

architecture to be described. Comparison of emitted assembly code or simulation traces helps detect errors.

Unfortunately, this is impossible for the descriptions of new architectures. The ADL users invariably spend

months to go through a trial-and-error process before getting a working description. Though it takes long

to get the right description, it is still worthwhile since it would take even longer to customize a compiler.

16.3.4.6 Miscellaneous

Other challenges in designing an ADL include the handling of register overlapping and the mapping of

intrinsics. These challenges have been addressed by several existing ADLs, but they are still well worth the

attention of ADL designers. Register overlapping, or alias, is common to many architectures. For example,

in the IA32 architecture, the lower 16 bits of the 32-bit register “EAX” can be used independently as “AX.”

The lower and upper half of “AX” can also be used as 8-bit registers “AL” and “AH.” Register overlapping

also commonly exists in floating point register files in which a single-precision register occupies half of a

double-precision register. An ADL must provide proper syntax constructs to handle such cases.
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Most architectures contain a few operations that cannot be expressed by predefined RT-list operators.

For example, the TI’s TMS320C6200 family implements some bit manipulation operations such as the

bit-reverse “BITR.” Such operations are useful to special application families, but no high-level language

operators resemble such operations. To utilize them, the programmers may either write assembly code or

resort to intrinsics, which are essentially assembly-level code in C syntax.

16.3.5 Future Directions

As both chip density and size increase, traditional board-level functionality can now be performed on a

single chip. Processors are no longer privileged central components in electronic systems. Sophisticated

modern chips contain multiple processors, busses, memories, and peripheral circuits. As EDA tools start

to address system-on-chip (SoC) design issues, system-level modeling becomes a very active research area.

It is desirable that an ADL that models processors can be extended to model a complete system. RT-level

ADLs such as MIMOLA may naturally be used for this purpose. However, because of the large size of

a typical SoC, describing the entire system at the RT-level inevitably suffers from poor efficiency. Using

mixed abstraction levels seems a more practical approach.

To reuse the existing tools and ADLs for system-level description, a convenient approach is to equip

the ADLs with the capability to model communication interfaces, which include bus drivers, memory

controllers, interrupt interfaces, and so on. The communication interfaces are useful for the processor

simulators to interact with other components in the system-level simulator. They are also important for

advanced optimizing compilers. For instance, a system-level compiler may partition tasks and assign them

to multiple processors according to their computation power and their communication latency. It can also

schedule individual communication transactions to avoid congestion. Among the existing mixed ADLs,

LISA is capable of modeling interrupts, and EXPRESSION has a parameterized memory hierarchy model.

Both have made important first steps toward the specification of system-level communication interfaces,

but overall, the systematic modeling of communication interfaces still faces a lot of challenges.

16.4 Conclusion

Architecture Description Languages provide machine models for retargetable software tools including

compilers and simulators. They are crucial to the design space exploration of ASIPs. To effectively support

an optimizing compiler, an ADL should contain several pieces of information:

� Behavioral information in the form of RT-lists. Hierarchical behavioral models based on attribute

grammars are common and effective means. For VLIW architectures, instruction formats should

be also modeled.
� Structural information in the form of a reservation table or coarse-grained netlists. Essential in-

formation provided by this part includes abstracted resources such as pipeline stages and data

transfer paths.
� Mapping between behavioral and structural information. Information in this part includes the

time when semantic actions take place and the resources used by the actions.

In addition, modeling of irregular ILP constraints is useful for ADLs targeting ASIPs. In summary, the

desirable features of an ADL include simplicity for comprehending, conciseness for efficiency, generality

for supporting wide architecture range, flexibility for supporting wide tool range, minimal ambiguity, and

minimal redundancy. It is also helpful to separate the description of true architecture information and

artificial information used only for individual tool implementations. It is extremely difficult to design an

ADL with these features. In practice, trade-offs are always necessary and helpful. As ASIPs gain popularity

in the SoC era, ADLs as well as retargetable compilers will become important additions to electronic

design automation tools. Eventually, they should encompass not just single processors, but complete

systems.
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17.1 Introduction and Background

17.1.1 Introduction

One of the final phases in a typical compiler is the instruction selection phase. This traverses an intermediate

representation of the source code and selects a sequence of target machine instructions that implement the

code. There are two aspects to this task. The first has to do with finding efficient algorithms for generating

an optimal instruction sequence with reference to some measure of optimality. The second has to do

with the automatic generation of instruction selection programs from precise specifications of machine

instructions. Achieving the second aim is a first step toward retargetabiltiy of code generators. We confine

our attention to instruction selection for basic blocks. An optimal sequence of instructions for a basic

block is called locally optimal code.

Early techniques in code generation centered around interpretive approaches where code is produced

for a virtual machine and then expanded into real machine instructions. The interpretive approach suffers

from the drawback of having to change the code generator for each machine. The idea of code generation

by tree parsing replaced the strategy of virtual machine interpretation. The intermediate representation

(IR) of the source program is in the form of a tree, and the target machine instructions are represented

as productions of a regular tree grammar augmented with semantic actions and costs. The code generator

parses the input subject tree, and on each reduction, outputs target code. This is illustrated in Figure 17.1

for a subject tree generated by the grammar of Example 17.1.

17-1
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Example 17.1

Consider the tree grammar below where the right-hand sides of productions represent trees using the

usual list notation. Each production is associated with a cost and a semantic action enclosed in braces. The

operator := is the assignment operator; deref is the deferencing operator that dereferences an address to

refer to its contents. Subscripts on nonterminals are used to indicate attributes. For example, c j indicates

a constant with value j . Costs are assumed to be additive.

S →:= (+(cj, Gk), Ri) [3] {emit(“store R%s, %s[%s] ′′), i, j, k)}

R → +(deref(+(cj, Gk), Ri) [3] {emit(“add %s[%s], R%s ′′), j, k, i}

Ri → cj [2] {i = allocreg(); emit(“mov #%s, R%s′′), j, i}

Gi → sp [0] {i = sp}

Consider the source level statement b := b + 1, where b is a local variable stored in the current frame

pointed at by the stack pointer sp. The IR tree is shown as the first tree in Figure 17.1, with nodes numbered

from 1 to 10. The IR tree is processed using the replacements shown in Figure 17.1. Each nonterminal

replacing a subtree has its cost shown alongside.

The tree is said to have been reduced to S by a tree-parsing process, which implicitly constructs the

derivation tree shown in Figure 17.2 for the subject tree. The set of productions used is a cover for the tree.

In general, there are several covers, given a set of productions, and we aim to obtain the best one according

to some measure of optimality. The semantic actions also include a call to a routine to allocate a register.

This can go hand in hand with the tree parsing, and the selection of the register is independent of the

parsing process. For the sequence of replacements shown, the code emitted is

move #1, R0

add b[sp], R0

store R0, b[sp]

Fraser [19] and Cattell [12] employed tree-pattern matching along with heuristic search for code

generation. Fraser used knowledge-based rules to direct pattern matching, whereas Cattell suggested a

goal-directed heuristic search. In 1978, Graham and Glanville [23] opened up new directions in the

area of retargetable code generation. They showed that if the intermediate code tree is linearized and the

target machine instructions are represented as context-free grammar productions, then bottom-up parsing

techniques could be used to generate parsers that parse the linearized intermediate code tree and emit

machine instructions while performing reductions. This was a purely syntactic approach to the problem

of instruction selection and suffered from the drawback that the effective derivation has a left bias, in

that the code for the subtree corresponding to the left operand is selected without considering the right

operand. As a result, the code generated is suboptimal in many instances. A second problem with the

Graham–Glanville approach is that many architectural restrictions have to be taken into account when

generating code, such as register restrictions on addressing modes and so on. A purely syntactic approach

to such semantics yields a very large number of productions in the specifications. Several implementations

of the Graham–Glanville technique have been described, and the technique has been applied to practical

compilers [24, 30]. Ganapathi and Fischer [21] suggested using attribute grammars instead of context-free

grammars to handle the problem of semantics. Attributes are used to track multiple instruction results,

for example, the setting of condition codes. Furthermore, predicates are used to specify architectural

restrictions on the programming model. Instruction selection is therefore performed by attributed parsing.

While this solves the problem of handling of semantic attributes, it is still not able to overcome the problem

of left bias in the mode of instruction selection. A good survey of early work in this area is [22].

The seminal work of Hoffman and O’Donnell (HOD) [28] provided new approaches that could be

adopted for retargetable code generation. They considered the general problem of pattern matching in

trees with operators of fixed arity and presented algorithms for both top-down and bottom-up tree
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FIGURE 17.1 A sequence of tree replacements for an IR tree for the grammar of Example 17.1.

pattern matching. The fact that choices for patterns that are available can be stored, and decisions can

be deferred until an optimal choice can be made, overcomes the problem of left bias in the Graham–

Glanville approach. The basic idea here is that a tree automaton can be constructed from a specification

of the machine instructions in terms of tree patterns during a “preprocessing” phase, and this can be

used to traverse an intermediate code tree during a “matching” phase to find all matches and finally

generate object code. Hoffmann and O’Donnell showed that if tables encoding the automaton could be

precomputed, matching could be achieved in linear time. The size of the tables precomputed for bottom-up

tree-pattern-matching automata can be exponential in the product of the arity and the number of sub-

patterns. Chase [13] showed that table compression techniques that could be applied as the tables were

being constructed could greatly reduce auxiliary space requirements while performing pattern matching.

This important observation made the HOD technique practically useful. Several bottom-up tools for
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FIGURE 17.2 Derivation tree for the IR tree of Figure 17.1.

generating retargetable code generators were designed. Some of these are “hard coded” in that their control

structure mirrors the underlying regular tree grammar [17, 20]. Such techniques have been employed in the

tools BEG[17] and iburg [20], where the dynamic programming strategy first proposed by Aho and

Johnson [4] is used in conjunction with tree parsing to obtain locally optimal code.

Aho and Ganapathi [2] showed that top-down tree parsing combined with dynamic programming can

be used for generating locally optimal code. Their technique is implemented in the code-generator gener-

ators twig [41] and olive [42]. The advantage of a top-down technique is that the tables describing the

tree-parsing automaton are small. The disadvantage stems from the fact that cost computations associated

with dynamic programming are performed at code generation time, thus slowing down the code generator.

Dynamic programming using a top-down traversal was also used by Christopher et al. [14]. Appel [7] has

generated code generators for the VAX and Motorola 68020 using twig . Weisgerber and Wilhelm [44]

describe top-down and bottom-up techniques to generate code. Henry and Damron [27] carried out an

extensive comparison of Graham–Glanville style code generators and those based on tree parsing. Hatcher

and Christopher [26] showed that costs could be included in the states of the finite-state tree-pattern-

matching automaton so that optimal instruction selection could be performed without incurring the extra

overhead of the cost computations on-line. Static cost analysis exemplified in the approach of Hatcher

and Christopher makes the code-generator generator more complex and involves large space overheads.

However, the resultant code generator is simple and fast, which implies faster compilation. The technique

of Hatcher and Christopher does not guarantee that the statically selected code will always be optimal and

requires interaction from the user.

Pelegri-Llopart and Graham [37] combined static cost analysis with table compression techniques from

Chase [13] and used term rewrite systems rather than tree patterns to develop a bottom-up rewrite system

(BURS). A BURS is more powerful than a bottom-up pattern-matching system, as it can incorporate

algebraic properties of terms into the code generation system. However, systems based on BURS are

generally more complex than those based on tree parsing. Balachandran et al. [9] used an extension of

the work of Chase [13] to perform static cost analysis and produce optimal code. Proebsting [38] used a

simple and efficient algorithm for generating tables with static costs, in which new techniques called triangle

trimming and chain rule trimming are used for state reduction. This technique is used in the bottom-

up tool burg . Ferdinand et al. [18] reformulated the static bottom-up tree-parsing algorithm based on

finite tree automata. This generalized the work of Chase to work for regular tree grammars and included

table compression techniques. More recently, Nymeyer and Katoen [36] described an implementation of

an algorithm based on BURS theory, which computes all pattern matches and does a search that results
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in optimal code. Heuristics are used to cut down the search space. Shankar et al. [40] constructed an

LR-like parsing algorithm for regular tree parsing, which can be used for code generation with dynamic

cost computation. The static cost computation technique of Balachandran et al. and the LR-like parsing

approach of Shankar et al. have been combined into a technique for locally optimal code generation in

[34]. A treatment of tree parsing for instruction selection is given in [45].

The bottom-up techniques mentioned above all require at least two passes over the intermediate code

tree, one for labeling the tree with matched patterns and costs and the next for selecting the least-cost

parse based on the information collected during the first pass. Thus, an explicit IR tree needs to be built.

A technique that avoids the building of an explicit IR tree is proposed by Proebsting and Whaley [39].

The tool wburg generates parsers that can find an optimal parse in a single pass. An IR tree is not built

explicitly, as the tree structure is mirrored in the sequence of procedure invocations necessary to build

the tree in a bottom-up fashion. The class of grammars handled by this technique is a proper subset of

the grammars that the two pass systems can handle. However, Proebsting and Whaley have claimed that

optimal code can be generated for most major instruction sets including the SPARC, the MIPS R3000, and

the x86.

We restrict our attention in this chapter to instruction selection techniques based on tree parsing. The

techniques based on term rewriting systems [15, 36, 37] are more powerful but not as practical.

17.1.2 Dynamic Programming

Aho and Johnnson [4] used dynamic programming to generate code for expression trees. The algorithm

they presented generates optimal code for a machine with r interchangeable registers and instructions

of the form Ri := E . Ri is one of the registers, and E is any expression involving operators, registers,

and memory locations. The dynamic programming algorithm generates optimal code for evaluation of

an expression “contiguously.” If T is an expression tree with op at its root and T1 and T2 as its subtrees,

then a program is said to evaluate the tree contiguously if it first evaluates the subtrees of T that need to

be computed into memory and then evaluates the remainder of the tree either in the order T1, T2, and

then the root, or T2, T1, and then the root. Aho and Johnson proved that for a uniform register machine,

optimal code would always be generated by their algorithm. The implication of the property is that for any

expression tree there is always an optimal program that consists of optimal programs for subtrees of the

root followed by an instruction to evaluate the root. The original dynamic programming algorithm uses

three phases. In the first bottom-up phase it computes a vector of costs for each node n of the expression

tree, in which the i th component of the vector is the cost of computing the subtree at that node into

a register, assuming i registers are available for the computation 0 ≤ i ≤ r . The zeroth component of

the vector is the minimal cost of computing the subtree into memory. In the second phase the algorithm

traverses the tree top-down to determine which subtrees should be computed into memory. In the third

phase the algorithm traverses each tree using the cost vectors to generate the optimal code.

A simplified form of the dynamic programming algorithm is used in most code generator tools where

what is computed at each node is a set of (rule, scalar cost) pairs. Register allocation is not part of

the instruction selection algorithm, though it can be carried out concurrently. The cost associated with a

subtree is computed either at compile time (i.e., dynamically), by using cost rules provided in the grammar

specification, or by simply adding the costs of the children to the cost of the operation at the root or at

compiler generation time (i.e., statically) by precomputing differential costs and storing them along with

the instructions that match, as part of the state information of a tree-pattern-matching automaton. How

exactly this is done will become clear in the following sections.

17.2 Regular Tree Grammars and Tree Parsing

Let A be a finite alphabet consisting of a set of operators OP and a set of terminals T . Each operator op

in OP is associated with an arity, arity(op). Elements of T have arity 0. The set TREES(A) consists of all

trees with internal nodes labeled with elements of OP and leaves with labels from T . Such trees are called
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subject trees in this chapter. The number of children of a node labeled op is arity(op). Special symbols called

wildcards are assumed to have arity 0. If N is a set of wildcards, the set TREES(A ∪ N) is the set of all trees

with wildcards also allowed as labels of leaves.

We begin with a few definitions drawn from [9] and [18].

Definition 17.1 A regular cost-augmented tree grammar G is a four tuple (N, A, P , S) where:

1. N is a finite set of nonterminal symbols.

2. A = T ∪ OP is a ranked alphabet, with the ranking function denoted by arity. T is the set of terminal

symbols, and OP is the set of operators.

3. P is a finite set of production rules of the form X → t [c], where X ∈ N and t is an encoding of a

tree in TREES(A ∪ N), and c is a cost, which is a nonnegative integer.

4. S is the start symbol of the grammar.

A tree pattern is thus represented by the right-hand side of a production of P in the grammar above. A

production of P is called a chain rule if it is of the form A → B , where both A and B are nonterminals.

Definition 17.2 A production is said to be in normal form if it is in one of the three forms below.

1. A → op(B1, B2 . . . , Bk)[c], where A, Bi , i = 1, 2, . . . k are all nonterminals, and op has arity k.

2. A → B [c], where A and B are nonterminals. Such a production is called a chain rule.

3. B → b [c], where b is a terminal.

A grammar is in normal form if all its productions are in normal form.

Any regular tree grammar can be put into normal form by the introduction of extra nonterminals and

zero-cost rules.

Below is an example of a cost-augmented regular tree grammar in normal form. Arities of symbols in

the alphabet are shown in parentheses next to the symbol.

Example 17.2

G = ({V, B, G}, {a(2), b(0)}, P, V)

P :

V →a(V, B)[0]

V →a(G, V)[1]

V →G [1]

G →B [1]

V →b [7]

B →b [4]

Definition 17.3 For t, t ′ ∈ TREES(A ∪ N), t directly derives t ′, written as t ⇒ t ′, if t ′ can be obtained

from t by replacement of a leaf of t labeled X by a tree p where X → p ∈ P . We write ⇒r if we want

to specify that rule r is used in a derivation step. The relations ⇒+ and ⇒∗ are the transitive closure and

reflexive-transitive closure, respectively, of ⇒.

An X-derivation tree, DX , for G has the following properties:

� The root of the tree has label X .
� If X is an internal node, then the subtree rooted at X is one of the following three types (for

describing trees we use the usual list notation).



Instruction Selection Using Tree Parsing 17-7

a

<V,17>

<V,13> <B,4>

ba

<V,7><G,5>

<B,4> b

b

a

<V,11> <B,4>

ba

<V,7> <B,4>

b b

<V,15> <V,14>

a

<V,10> <B,4>

ba

<V,6> <B,4>

b<G,5>

<B,4>

b

<B,4>

<G,5>

<V,6><G,5>

<B,4>

b

b

a b

<B,4><V,12>

a

<V,16>

FIGURE 17.3 Four cost-augmented derivation trees for the subject tree a(a(b, b), b) in the grammar of

Example 17.2.

• X(DY ) if X → Y is a chain rule and DY is a derivation tree rooted at Y .

• X(a) if X → a , a ∈ T is a production of P .

• X(op(DX1
, DX2

, . . . DXk
)) if X → op(X1, X2 . . . Xk) is an element of P .

The language defined by the grammar is the set

L (G) = {t | t ∈ TREES(A), and S =⇒∗ t}

With each derivation tree is an associated cost, namely, the sum of the costs of all the productions used

in constructing the derivation tree. We label each nonterminal in the derivation tree with the cost of the

subtree below it. Four cost-augmented derivation trees for the subject tree a(a(b, b), b) in the language

generated by the regular tree grammar of Example 17.2 above are displayed in Figure 17.3.

Definition 17.4 A rule r : X → p matches a tree t if there exists a derivation X ⇒r p ⇒∗ t.

Definition 17.5 A nonterminal X matches a tree t if there exists a rule of the form X → p that

matches t.

Definition 17.6 A rule or nonterminal matches a tree t at node n if the rule or nonterminal matches the

subtree rooted at the node n.

Each derivation tree for a subject tree thus defines a set of matching rules at each node in the subject

tree (a set because there may be chain rules that also match at the node).

Example 17.3

For all the derivation trees of Figure 17.3 the rule V → a(V, B) matches at the root.
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<G B, 1>,
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{<V a(V,B), 0>,

a(G,V), 2>} a

FIGURE 17.4 Subject tree of Figure 17.3 shown with <matching rule, relative cost> pairs.

For a rule r : X → p matching a tree t at node n, where t1 is the subtree rooted at node n, we define:

� The cost of rule r matching t at node n. It is the minimum of the cost of all possible derivations of

the form X ⇒r p ⇒∗ t1.
� The cost of nonterminal X matching t at node n is the minimum of the cost of all rules r of the

form X → p that match t1.

Typically, any algorithm that does dynamic cost computations compares the costs of all possible deriva-

tion trees and selects one with minimal costs while computing matches. To do this it has to compute for

each nonterminal that matches at a node the minimal cost of reducing to that nonterminal (or equiva-

lently, deriving the portion of the subject tree rooted at that node from the nonterminal.) In contrast,

algorithms that perform static cost computations precompute relative costs, and store differential costs for

nonterminals. Thus, the cost associated with a rule r at a particular node in a subject tree is the difference

between the minimum cost of deriving the subtree of the subject tree rooted at that node using rule r at the

first step and the minimum cost of deriving it using any other rule at the first step. Figure 17.4 shows the

matching rules with relative costs at the nodes of the subject tree for which derivation trees are displayed

in Figure 17.3. Assuming such differences are bounded for all possible derivation trees of the grammar,

they can be stored as part of the information in the states of a finite-state tree-parsing automaton. Thus,

no cost analysis need be done at matching time. Clearly, tables encoding the tree automaton with static

costs tend to be larger than those without cost information in the states.

The tree-parsing problem we will address in this chapter is:

Given a regular tree grammar G = (N, T, P , S), and a subject tree t in TREES(A), find (a representation

of) all S-derivation trees for t.

The problem of computing an optimal derivation tree has to take into account costs as well. We will be

discussing top-down as well as bottom-up strategies for solving this problem. All the algorithms we will

present will solve the following problem, which we will call the optimal tree-parsing problem:

Given a cost-augmented regular tree grammar G and a subject tree t in TREES(A), find a representation

of a cheapest derivation tree for t in G.

Given a specification of the target machine by a regular tree grammar at the semantic level of a target

machine and an IR tree, we distinguish between the following two times when we solve the optimal

tree-parsing problem for the IR tree:

� Preprocessing time: This is the time required to process the input grammar, independent of the

IR tree. It typically includes the time taken to build the matching automaton or the tables.
� Matching time: This involves all IR tree–dependent operations and captures the time taken by the

driver to match a given IR tree using the tables created during the preprocessing phase.



Instruction Selection Using Tree Parsing 17-9

For the application of code generation, minimizing matching time is important since it adds to compile

time, whereas preprocessing is done only once at compiler generation time.

17.3 A Top-Down Tree-Parsing Approach

The key idea here is to reduce tree-pattern matching to string-pattern matching. Each root-to-leaf path in

a tree is regarded as a string in which the symbols in the alphabet are interleaved with numbers indicating

which branch from father to son has been followed. This effectively generates a set of strings. The well-

known Aho–Corasick multiple-keyword pattern-matching algorithm [1] is then adapted to generate a

top-down tree-pattern-matching algorithm. The Aho–Corasick algorithm converts the set of keywords

into a trie; the trie is then converted into a string-pattern-matching automaton that performs a parallel

search for keywords in the input string. If K is the set of keywords, then each keyword has a root leaf path

in the trie, whose branch labels spell out the keyword. This trie is then converted into a string-pattern-

matching automaton as follows. The states of the automaton are the nodes of the trie, with the root being

the start state. All states that correspond to complete keywords are final states. The transitions are just

the branches of the trie with the labels representing the input symbols on which the transition is made.

There is a transition from the start state to itself on every symbol that does not begin a keyword. The

pattern-matching automaton has a failure function for every state other than the start state. For a state

reached on input w , this is a pointer to the state reached on the longest prefix of a keyword that is a

proper suffix of w . The construction of the trie as well as the pattern-matching automaton has complexity

linear in the sum of the sizes of the keywords. Moreover, matches of the keywords in an input string w are

found in time linearly proportional to the length of w . Thus, the string-pattern-matching problem can be

solved in time O(|K | + |w |), where K is the sum of the lengths of the keywords and w is the length of

the input string [1].

Hoffman and O’Donnell generalized this algorithm for tree-pattern matching by noting that a tree

can be defined by its root-to-leaf paths. A root-to-leaf path contains, alternately, root labels and branch

numbers according to a left-to-right ordering. Consider the tree patterns on the right-hand sides of the

regular tree grammar in Example 17.4. Arities of various terminals and operators are given in parentheses

next to the operators and terminals and rules for computing costs shown along with the productions.

Actions to be carried out at each reduction are omitted.

Example 17.4

G = ({S, R}, {:= (2), +(2), deref (1), sp(0), c(0)}, P , S), where P consists of the following productions:

� S → := (deref (sp), R) cost = 3 + cost(R)
� R → deref (sp) cost = 2
� R → +(R, c) cost = 1 + cost(R)
� R → +(c , R) cost = 1 + cost(R)
� R → c cost = 1

Thus, the patterns on the right-hand sides of productions in Example 17.4 are associated with the

following set of path strings:

1. := 1 deref 1 sp

2. := 2 R

3. deref 1 sp

4. + 1 R

5. + 2 c

6. + 1 c

7. + 2 R

8. c
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FIGURE 17.5 The tree-pattern-matching automaton for the tree grammar of Example 17.2.

Using the Aho–Corasick algorithm, we can construct the pattern-matching automaton shown in Fig-

ure 17.5. The final states are enclosed in double circles, and the failure function pointers that do not point

to state 0 are shown as dashed lines. Path strings that match at final states are indicated by specifying the

trees they belong to next to the state, ti , indicating the right-hand side of rule i . Once the pattern-matching

automaton is constructed, the subject tree is traversed in preorder, computing automaton states as we visit

nodes and traverse edges.

The top-down tree-pattern-matching algorithm was adapted to the problem of tree parsing by Aho and

Ganapathi, and the presentation that follows is based on [3]. First, the subject tree is traversed in depth-first

order using the routine MarkStates(n), and the automaton state reached at each node is kept track of. This

is displayed in Figure 17.6, where δ is the transition function of the underlying string-pattern-matching

automaton. The routine also determines the matching-string patterns. The scheme described by Hoffman

and O’Donnell [28] using bit vectors to decide whether there is a match at a node is used here. With each

node of the subject tree, a bit string bi is associated with every right-hand side pattern ti , 1 ≤ i ≤ m,

where m is the total number of patterns. At any node n of the subject tree, bit j of the bit string bi is 1

iff every path from the ancestor of n at distance j through n to every descendant of n has a prefix that

is a path string of the pattern we want to match. The bit string need not be longer than the height of

the corresponding pattern. To find a cover of the intermediate code tree, it is necessary to keep track of

reductions that are applicable at a node. The routine Reduce shown in Figure 17.7 does this. Since we are
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procedure MarkStates(n)

if n is the root then

n.state = δ (0, n.symbol)

else

n.state = δ(δ(n.parent.state, k), n.symbol)

where n is the kth child of n.parent

end if

for every child c of n do

MarkStates(c)

end for

n.bi = 0

if n.state is accepting then

for each path string of ti of length 2 j + 1 recognized at n.state do

n.bi = n.bi or 2 j

end for

end if

for every righthandside tree pattern ti do do

n.bi = n.bi or
∏

c∈C(n) right shifit (c .bi )

where C (n) is the set of all children of node n

end for

Reduce(n)

end procedure

FIGURE 17.6 The procedure for visiting nodes and computing states.

looking for an optimal cover, there is the need to maintain a cost for each tree ti that matches at a node

n. The implementation in [3] allows general cost computation rules to be used in place of simple additive

costs. The function cost(ti , n) computes this cost for each node n. For each node n, there is an array n.cost

of dimension equal to the number of nonterminals. The entry corresponding to a nonterminal is the cost

of the cheapest match of a rule with that nonterminal on the left-hand side. The index of that rule is

procedure Reduce(n)

list = set of productions li → ti such that the zeroth bit of n.bi is 1

while list 	= /0 do

choose and remove next element li → ti from list

if cost (ti , n) < n.cost [li ] then

n.cost [li ] = cost (ti , n)

n.match [li ]= i

if n is the root then

q = δ (0, li )

else

q = δ(δ (n.parent.state, k), li )

where n is the kth child or n.parent

end if

if q is an accepting state then

for each path string of tk of length 2 j + 1 recognized at q do

n.bk = n.bk or 2 j

if the zeroth bit of n.bk is a 1 then

add lk → tk to list

end if

end for

end if

end if

end while

end procedure

FIGURE 17.7 Procedure for reducing IR trees.
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FIGURE 17.8 A subject tree generated by the tree grammar of Example 17.2.

stored in the array n.match, which also has dimension equal to the number of nonterminals. Thus, after

the parsing is over, the least-cost covers at each node along with their associated costs are available. The

result of applying MarkStates to the root of the subject tree shown in Figure 17.8 is shown in Figure 17.9.

We trace through the first few steps of this computation.

Example 17.5

We use the subject tree of Figure 17.8 with the nodes numbered as shown and the automaton of Figure 17.5

whose transition function is denoted by δ.

1. The start state is 0.

2. node(1).state = δ(0, :=) = 11.

3. node(2).state = δ(δ(11, 1), deref ) = 13.

4. node(3).state = δ(δ(13, 1), sp) = 15.

5. Path strings corresponding to patterns t1 and t3 are matched at node(3). Bit strings node(3).b1 = 100,

node(3).b2 = 10, and all the other bit strings are 0.

6. The routine Reduce(node(3)) does nothing, as no reductions are called for.

7. We now return to node(2) and update the bit string node(2).b1 = 10 and node(2).b2 = 1 to reflect

the fact that we have moved one level up in the tree.

8. The call to Reduce(node(2)) notes that the zeroth bit of node(2).b2 = 1. Thus, a reduction by the

rule R → deref (sp) is called for. The cost of this rule is 2 and the rule number is 2; thus, Cost(R) = 2

and Match(R) = 2 at node(2).

9. We return to node(1) and call MarkState(node(7)); node(7) is the second child of its parent, the

failure function is invoked at state 16 on which a transition is made to state 0 and then from state

0 to state 4 on the symbol +. Thus, node(7).state = 4.

10. node(5).state = δ(δ(4, 1), deref ) = 1. (Note: The failure function is invoked here again at state 5.)

11. node(4).state = δ(δ(1, 1), sp) = 3.

12. A path string corresponding to pattern t2 is matched at node(4). The bit string node(4).b2 = 10,

and all other bit strings are 0.

13. The routine Reduce(node(4)) does nothing, as no reductions are called for.

14. We return to node(5); the bit string node(5).b2 = 1 to reflect that we have moved one level up in

the tree.

15. The call to Reduce(node(5)) notes that the zeroth bit of node(5).b2 is a 1. Thus, a reduction by the

rule R → deref (sp) is called for. The cost of this rule is 2, and the number of the rule is 2. Thus

Cost(R) = 2 and Match(R) = 2 at node(5).

16. The variable q at node(5) is updated to reflect the state after reduction. Thus, q = δ(δ(4, 1), R) = 6.

The state 6 is an accepting state, which matches a string pattern of t3. Therefore, node(5).b3 = 10.

17. Continuing in this manner, we obtain the labels in Figure 17.9.
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Cost(R) = 6
Match(R) = 1

State = 11
Symbol = :=

b1 = 1   b2 = 0
b3 = 0   b4 = 0

b5 = 0

Cost(R) = 2
Match(R) = 2

State = 13
Symbol = deref
b1 = 10   b2 = 1
b3 = 0     b4 = 0

b5 = 0

Cost(R) = 2
Match(R) = 2

State = 1
Symbol = deref
b1 = 0     b2 = 1   
b3 = 10    b4 = 0

b5 = 0

Cost(R) = 1
Match(R) = 5

State = 10
Symbol = c

Cost(R) = ∞
Match(R) = 0

State = 15
Symbol = sp

b1 = 100   b2 = 10
b3 = 0         b4 = 0 

b5 = 0

Cost(R) = 3
Match(R) = 3

State = 4
Symbol = +

b1 = 10   b2 = 0
b3 = 1      b4 = 0

b5 = 0

b1 = 0     b2 = 0   
b3 = 10   b4 = 10

b5 = 1

Cost(R) = ∞
Match(R) = 0

State = 3
Symbol = sp

b1 = 0     b2 = 10
b3 = 0     b4 = 0

b5 = 0

FIGURE 17.9 The information at each node after MarkStates is applied to the subject tree of Figure 17.8.

Once a cover has been found, the reductions are performed, during which time the action parts of the

productions constituting the cover are executed. As we observed earlier, a reduction may be viewed as

replacing a subtree corresponding to the right-hand side of a production with the left-hand side nonter-

minal. In addition, the action part of the rule is also executed. Usually actions associated with reductions

are carried out in depth-first order.
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17.4 Bottom-Up Tree-Parsing Approaches

We begin with cost-augmented regular tree grammars in normal form. We first describe a strategy for the

generation of tables representing a tree automaton whose states do not encode cost information. Using

such an automaton, cost computations for generating locally optimal code will have to be performed at

code generation time, that is, dynamically.

Our aim is to find at each node n in the subject tree, minimal cost rules for each nonterminal that matches

at the node. We call such a set of nonterminals matching nonterminals at node n. If the intermediate code

tree is in the language generated by the tree grammar, we expect one of the nonterminals that matches at

the root to be the start symbol of the regular tree grammar. The information about rules and nonterminals

that match as we go up the tree can be computed with the help of a bottom-up tree-pattern-matching

automaton built from the specifications. Thus, during the matching or code generation phase, we traverse

the intermediate code tree bottom-up, computing states and costs as we go along. For a given nonterminal

in a set, we retain only the minimal cost rule associated with that nonterminal. Finally, when we reach the

root of the tree, we have associated with the start symbol the minimal cost of deriving the tree from the

start nonterminal. Next, in a top-down pass we select the nonterminals that yield the minimal-cost tree

and generate code as specified in the translation scheme.

We present an iterative algorithm as well as a worklist-based algorithm drawing from the work of

Balachandran et al. [9] and Proebsting [38].

17.4.1 The Iterative Bottom-Up Preprocessing Algorithm

Let G = (N, A, P , S) be a regular tree grammar in normal form. Before describing the algorithm, we

describe some functions that we will be using in the computation. Let maxarity be the maximum arity of

an operator in A. Let Il be the set of positive integers of magnitude at most maxarity.

rules : T ∪ OP 
→ 2P

Fora ∈ Trules(a) = {r |r : n → a ∈ P }

Forop ∈ OPrules(op) = {r : |r : n → op(n1, n2, . . . , nk) ∈ P }

The set rules(a) contains all production rules of the grammar whose right-hand side tree patterns are

rooted at a .

child rules : N × Il 
→ 2P

child rules(n, i) = {r |r : nl → op(n1, n2, . . . , nk) and ni = n}

The set child rules(n, i) contains all those productions such that the i th nonterminal on the right-hand

side is n. The function can be extended to a set of nonterminals N1 as follows:

child rules(N1, i) = ∪n∈N1
child rules(n, i)

child NT : OP × Il 
→ 2N

child NT(op, j ) = {n j |r : nl → op n1, n2, . . . , n j , . . . , nk ∈ P }

In other words, child NT(op, j ) is the set of all nonterminals that can appear in the j th position in the

sequence of nonterminals on the right-hand side of a production for operator op. (If j exceeds arity[op],

the function is not defined.)

nt : P 
→ 2N

nt(r ) = {n|r : n → α ∈ P }
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function Match(t)

begin

if t = a ∈ T then

match rules = rules(a);

match NT = nt(match rules);

Match = match rules ∪ chain rule closure (match NT);

else

let t = op(t1, t2, . . . tk ) where arity (op) = k

for i = 1 to k do

mri = Match(ti )

nti = nt(mri )

end for

match rules = rules(op) ∩ child rules (nt1, 1) ∩ child rules (nt2, 2) . . . ∩

child rules (ntk , k)

match NT = nt(match rules);

Match = match rules ∪ chain rule closure (match NT)

end if

end function

FIGURE 17.10 Function that computes matching rules and nonterminals.

The set nt(r ) contains the left-hand side nonterminal of the production. The function can be extended

to a set R of rules as follows:

nt(R) = ∪r∈Rnt(r )

chain rule closure : N 
→ 2P

chain rule closure(n) = {r |r ∈ P , r : n1 → n2, n1 ⇒ n2 ⇒∗ n}

The set chain rule closure of a nonterminal is the set of all rules that begin derivation sequences that derive

that nonterminal and contain only chain rules. The function can be extended to a set of nonterminals as

follows:

chain rule closure(N1) = ∪n∈N1
chain rule closure(n)

Given a regular tree grammar in normal form and a subject tree, function Match in Figure 17.10

computes the rules that match at the root. For the time being, we ignore the costs of the rules.

The function computes the matching rules at the root of the subject tree by recursively computing

matching rules and hence matching nonterminals at the children. This suggests a bottom-up strategy that

computes matching rules and nonterminal sets at the children of a node before computing the sets at

the node. Each such set can be thought of as a state. The computation that finds the matching rules at a

node from the nonterminals that match at its children need not be performed at matching time, as all the

sets under consideration are finite and can be precomputed and stored in the form of tables — one for

each operator and terminal. This set of tables is actually an encoding of the transition function of a finite-

state bottom-up tree-pattern-matching automaton, which computes the state at a node corresponding to

an operator from the states of its children. For a terminal symbol a ∈ T , the table τa will contain just

one set of rules. For an operator op ∈ OP, of arity k, the table τop will be a k-dimensional table. Each

dimension is indexed with indices corresponding to the states described above. Assume that such tables are

precomputed and stored as auxiliary information to be used during matching. The function TableMatch

shown in Figure 17.11 will find the matching rules at the root of a subject tree.
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function Table Match(t)

begin

if t = a ∈ T then

Table Match = τa

else

let t = op(t1, t2, . . . tk ) where arity (op) = k

Table Match = τop(TableMatch)(t1), TableMatch(t2) . . . TableMatch(tk ))

end if

end function

FIGURE 17.11 Function that computes matches using precomputed tables.

The function TableMatch computes transitions in a bottom-up fashion, performing a constant amount

of computation per node. Thus, matching time with precomputed tables is linear in the size of the subject

tree. The size of the table for an operator of arity k is O(2|N|×maxarity). The table sizes computed in this

manner are huge and can be reduced in the following way.

Assume that States is the set of states that is precomputed and indexed by integers from the set I . Let us

call each element of States an itemset. Each such set consists of a set of rules, satisfying the property that there

is some subject tree matched by exactly this set of rules. Let itemset(i) denote the set indexed by i . We define

for each operator op and each dimension j , 1 ≤ j ≤ arity(op), an equivalence relation R
j
op as follows:

for i p and iq ∈ I , i p R
j
op iq , if nt(itemset[i p]) ∩ child NT(op, j ) = nt(itemset[iq ]) ∩ child NT(op, j ). In

other words, two indices are put into the same equivalence class of operator op in dimension j if their

corresponding nonterminal sets project onto the same sets in the j th dimension of operator op. If i p

and iq are in the same equivalence class of R
j
op, then it follows that for all (i1, i2, . . . , i j−1, i j+1, . . . , ik),

τop(i1, i2, . . . , i j−1, i p , i j+1, . . . , ik) = τop(i1, i2, . . . , i j−1, iq , i j+1, . . . , ik). For the case k = 2 this means

that i p and iq correspond to the indices of identical rows or columns. This duplication can be avoided

by storing just one copy. We therefore use index maps as follows. The mapping from the set of indices

in I to the set of indices of equivalence classes of R
j
op denoted by I

j
op is denoted by μ

j
op. Thus, we have

the mapping

μ j
op : I 
→ I j

op, 1 ≤ j ≤ k, arity(op) = k

The table τop is now indexed by elements of I
j

op in dimension j instead of those of I . At matching time

one extra index table lookup is necessary in each dimension to obtain the resulting element of States. This

is expressed by the following relation that will replace the table lookup statement of function TableMatch.

τop(i1, i2, . . . , ik) = θop(μ1
op(i1), μ2

op(i2), . . . , μk
op(ik)), where θop is the compressed table.

The next step is the direct generation of compressed tables. Informally, the algorithm works as follows.

It begins by finding elements of States for all symbols of arity 0. It then finds elements of States that

result from derivation trees of height increasing by one at each iteration until there is no change to the

set States. At each iteration, elements of States corresponding to all operators that contribute to derivation

trees of that height are computed. For each operator op and each dimension j of that operator, only

nonterminals in child NT(op, j ) that are also members of a set in States computed so far will contribute to

new sets associated with op. Such a collection of subsets for op in the j th dimension at iteration i is called

repset(op, j, i). Thus, choices for a sequence of children of op are confined to elements drawn from a tuple

of sets in the Cartesian product of collections at each iteration. Each such tuple is called a repset tuple.

Iteration is confined only to elements drawn from new tuples formed at the end of every iteration. At the

end of each iteration, the new values of repset(op, j, i) are computed for the next iteration. The computation

is complete when there is no change to repset(op, j, i) for all operators in all dimensions, for then no new

tuples are generated. The procedure for precomputing compressed tables is given in Figure 17.12. We

illustrate with the help of an example (adapted from [20]).
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procedure MainNoCost( )

States = /0

itemset = /0

for each a ∈ T do

mrules = mrules (a)

mnonterminals = nt(mrules(a))

match rules = mrules ∪ chain rule closure(mnonterminals)

itemset = match rules

States = States ∪ {itemset}
end for

generate child NT (op, j) for each op ∈ OP and j , 1 ≤ j ≤ arity (op);

generate repset (op, j, 1) for each op ∈ OP and j, 1 ≤ j ≤ arity (op) and

update index maps;

i = 1; repset product0 = /0

repeat

for each op ∈ OP do

let repset producti =
∏

j=1...arity(op) repset (op, j, i)

for each repset tuple = (S1, S2, . . . Sk ) ∈ repset producti –repset producti−1

do

itemset = /0

for each (n1, n2 . . . nk ) with ni ∈ Si , 1 ≤ i ≤ k do

mrules = {r : n → op (n1, n2 . . . nk ) ∈ P}
mnonterminals = nt(mrules)

match rules = mrules ∪ chain rule closure(mrules)

itemset = itemset ∪ match rules

end for

θop (S1, S2 . . . Sk ) = itemset

States = States ∪ {itemset}
end for

end for

i = i+ 1

generate repset(op, j, i) for each op ∈ OP and j , 1 ≤ arity(op) and update index maps

until repset (op, j, i) = repset (op, j, i –1) ∀op∀ j , 1 ≤ j ≤ arity(op)

end

FIGURE 17.12 Algorithm to precompute compressed tables without costs.

Example 17.6

Let the following be the rules of a regular tree gramar. The rules and nonterminals are numbered for

convenience:

� stmt →:= (addr, reg) [1]
� addr → +(reg, con) [0]
� addr → reg [0]
� reg → +(reg, con) [1]
� reg → con [1]
� con → CONST [0]

The nonterminals are numbered as follows: stmt = 1, addr = 2, reg = 3, and con = 4.

The operators are := and + both of arity 2, and there is a single terminal CONST of arity 0.

Below are the results of the first iteration of the algorithm:

� There is only one symbol of arity 0, namely CONST.

mrules = {con → CONST}

mnonterminals = {con}

match rules = {con → CONST, reg → con, addr → reg}



17-18 The Compiler Design Handbook: Optimizations and Machine Code Generation

Thus, after processing symbols of arity 0 States = {con → CONST, reg → con, addr → reg}.

Assume this set has index 1. Thus, I = {1}.

Referring to the state by its index, nt(1) = {con, reg, addr}.
� Consider the operator +.

The set child NT(+, 1) = {reg} and child NT(+, 2) = {con}.

Thus, repset(+, 1, 1) = child NT(+, 1) ∩ nt(1) = {{reg}}, μ1
+(1) = 1, I 1

+ = {1}. Here the pro-

jection onto the first dimension of operator + gives the set containing a single set {reg} assigned

index 1. For ease of understanding, we will use the indices and the actual sets they represent

interchangeably. repset(+, 2, 1) = child NT(+, 2) ∩ nt(1) = {{con}}, μ2
+ = 1, I 2

+ = {1}.

Thus, for i = 1 repset product for + = {{{reg}}, {{con}}}.

For repset tuple = ({reg}, {con}), i = 1,

mrules = {reg → +(reg, con), addr → +(reg, con)}

mnonterminals = {reg, addr}

match rules = {reg → +(reg, con), addr → +(reg, con), addr → reg}

This set match rules is added as a new element of States with index 2.

Thus, θ+(1, 1) = 2.

There are no more states added due to operator + at iteration 1.
� Consider the operator :=.

The set child NT(1, :=) = {addr} and child NT(2, :=) = {reg}.

Thus, repset(:=, 1, 1) = {{addr}} and μ1
:= = 1, I 1

:= = {1}.

repset(:=, 2, 1) = {{reg}} and μ2
:= = 1, I 1

:= = {1}.

Thus, for i = 1 repset product for operator := ={ {{addr}},{{reg}}}.

For repset tuple = ({addr}, {reg}) and i = 1,

mrules = {stmt → := (addr, reg)}, mnonterminals = {stmt}

match rules = {stmt → := (addr, reg)}

A new state corresponding to match rules is added to States with index 3. Thus θ:=(1, 1) = 3. There

are no more states added due to operator := at iteration 1.
� At the end of the iteration for i = 1, States= {1, 2, 3}.
� It turns out that no more states can be added to States.

We next show how costs can be included in the states of the bottom-up tree-pattern-matching automaton.

We want to capture the following information. Supposing we had a subject tree t and we computed all

matching rules and nonterminals as well as minimal costs for each rule and each nonterminal that matched

at a node. If we now compute the difference between the cost of each rule and that of the cheapest rule

matching at the same node in the tree, we obtain the differential cost. If these differential costs are bounded,

they can be precomputed and stored as part of the item in the itemset. Likewise, we can store differential

costs with each nonterminal.

As before, let match rules(t) be the set of rules matching at the root of a subject tree t. We now define

the set of (rule, cost) pairs, itemset matching the root of t.

itemset = {(r, �r )|r ∈ match rules(t), �r = cost(r ) − min{cost(r ′)|r ′ ∈ match rules(t)}}

If the costs are bounded for all such pairs, we can precompute them by augmenting the procedure in

Figure 17.12. The function that performs the computation for arity 0 symbols is given in Figure 17.13.

Given this procedure, we present the algorithm for precomputing tables with costs. We note that

repset(op, i, j ) is a collection of sets whose elements are <nonterminal, cost > pairs. The iterative procedure

IterativeMain in Figure 17.14, for precomputation of itemsets, first calls IterativeArityZeroTables to create

the tables for symbols of arity 0. It then iterates over patterns of increasing height until no further items

are generated. The procedure IterativeComputeTransitions in Figure 17.15 creates the new states for each

operator at each iteration and updates States.

We illustrate the procedure for the grammar of Example 17.6.
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procedure Iterative Arity Zero Tables

States = /0

for each a ∈ T do

itemset = /0

mrules = rules(a)

mnonterminals = nt(rules(a))

match rules = mrules ∪ chain rule closure (mnonterminals)

match NT = nt(match rules)

�r = ∞, τ ∈ match rules

Dn = ∞, n ∈ match NT

COSTmin = min{rule cost(r )|r ∈ mrules}
for each r in mrules do

�r = COSTτ – COSTmin

end for

for each n in mnonterminals do

Dn = min {�r |∃r ∈ mrules, n ∈ nt(r )}
end for

repeat

for each r : n → n1 such that r ∈ chain rule closure(mnonterminals))

do

Dn = min {Dn , Dn1 + rule cost(ir)}
�r = min {�r , Dn1 + rule cost(r )}

end for

until no change to any Dn or �r

itemset = {(r , �r )}|r ∈ match rules}
τa = itemset

States = States ∪ {itemset}
end for

end procedure

FIGURE 17.13 Computation of arity 0 tables with static costs.

Example 17.7

The following steps are carried out for the only symbol CONST of arity 0:

� mrules = {6 : con → CONST}, mnonterminals = {con}.
� match rules = {6 : con → CONST, 5 : reg → con, 3 : addr → con}, match NT = {con, reg, addr}.
� �6 = ∞, �5 = ∞, �3 = ∞.
� D4 = ∞, D3 = ∞, D2 = ∞.
� COSTmin = min{rule cost(con → CONST)} = 0.

procedure IterativeMain( )

Iterative Arity Zero Tables

generate repset(op, j , 1) for each op ∈ OP and j , 1 ≤ j ≤ arity (op)

i = 1; repset product0 = /0

repeat

for each op ∈ OP do

IterativeComputeTransition (op, i)

end for

i = i+ 1

generate repset (op, j, i) for each op ∈ OP and j , 1 ≤ j ≤ arity(op) and

update index maps

until repset (op, j, i) = repset(op, j, i –1)∀op∀ j , 1 ≤ j ≤ arity (op)

end

FIGURE 17.14 Procedure to precompute reduced tables with static costs.
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procedure IterativeComputeTransition (op, i)

let repset producti =
∏

j=1...arity(op) repset (op, j , i)

for each repset tuple = (S1, S2, . . . Sk ) ∈ repset producti -repset producti−−1

do

itemset = /0; mrules = /0;

for each (< n1 Dn1 >, < n2, Dn2 > . . . < nk , Dnk >), < ni Di > ∈ Si

do

if r : n → op (n1, n2, . . . nk ) ∈ P then

Crhs,r = Dn1 + Dn2 + · · · Dnk

mrules = mrules ∪ {r}
end if

end for

mnonterminals = nt(mrules)

match rules = mrules ∪ chain rule closure(mrules)

match NT = nt(match rules)

�r = ∞, r ∈ match rules; Dn = ∞, n ∈ match NT

for each r in mrules do

COSTr = Crhs,r + rule cost(r )

end for

COSTmin = min {COSTr |r ∈ mrules}
for each r in mrules do

�r = COSTr – COSTmin

end for

for each n in mnonterminals do

Dn= min {�r |n ∈ nt(r )}
end for

repeat

for each r : n → n1 such that r ∈ chain rule closure (match NT))

do

Dn = min {Dn , Dn1 + rule cost(r )}
�r = min {�r , Dn1 + rule.cost(r )}

end for

until no change to any Dn or �n

itemset = itemset ∪ {(r , �r )}|r ∈ match rules, �r ≤ �r ′ if nt(r ) = nt(r ′)}
θop (S1, S2. . . Sk ) = itemset

States = States ∪ {itemset}
end for

end procedure

FIGURE 17.15 Procedure for computing transitions on operators.

� �6 = rule cost(con → CONST) − COSTmin = 0.
� D4 = 0.
� After the first iteration of the repeat-until loop D4 = 0, D3 = 1, D2 = ∞, �6 = 0, �5 = 1, �3 =

∞.
� After the second iteration of the repeat-until loop D4 = 0, D3 = 1, D2 = 1, �6 = 0, �5 = 1, �3 =

1.
� There is no change at the next iteration, so States = {{< con → CONST, 0 >, < reg → con, 1 >,

<addr → reg, 1>}}.

We next consider the operator + of arity 2. child NT(+, 1) = {reg}, child NT(+, 2) = {con}. repset

(+, 1, 1) = {{< reg, 0>}}, repset(+, 2, 1) = {{< con, 0>}}. The following steps are then carried out for the

operator + at the first iteration:

� repset pr oduct1 = {{< reg, 0>}} × {{< con, 0>}}.
� repset tuple = ({< reg, 0>}, {< con, 0>}).
� mrules = {2 : addr → + (reg con), 4 : reg → + (reg con)}.
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� Crhs,2 = 0, Crhs,4 = 0.
� mnonterminals = {addr, reg}.
� match rules = {2 : addr → + (reg con), 4 : reg → + (reg con), 3 : addr → reg}.
� match NT = {addr, reg}.
� �2 = �4 = �3 = ∞.
� D3 = D2 = ∞.
� COST2 = 0 + 0 = 0, COST4 = 0 + 1 = 1, COSTmin = 0.
� �2 = 0, �4 = 1, D2 = 0, D3 = 1.
� There is no change to these sets during the first iteration of the while loop, so the value of itemset

after discarding more expensive rules for the same nonterminal is itemset = {<addr → + (reg con),

0>, < reg → + (reg con), 1>}.
� Thus, States = {{< con → CONST, 0>, < reg → con, 1>, <addr → reg, 1>}} ∪ {{<addr → +

(reg con), 0>, < reg → + (reg con), 1>}}.

After processing the operator := in a similar manner, we get the following three itemsets in States:

� {< con → CONST, 0>, < reg → con, 1>, <addr → reg, 1>}
� {<addr → + (reg con), 0>, < reg → + (reg con), 1>}
� {< stmt →:= (addr, reg), 0>}

17.4.2 A Worklist-Based Approach to Bottom-Up Code-Generator Generators

Proebsting [38] employs a worklist approach to the computation of itemsets; the presentation that follows

is based on [38]. A state is implemented as a set of tuples, each tuple containing:

� A nonterminal that matches a node
� The normalized cost of this nonterminal
� The rule that generated this nonterminal at minimal cost

A tuple structured as above is called an item; a collection of such items is termed an itemset. Each

itemset represents a state of the underlying cost-augmented tree-pattern-matching automaton whose set

of states is States. Each itemset is represented as an array of (rule, cost) pairs indexed by nonterminals.

Thus, itemset[n].cost refers to the normalized cost of nonterminal n of the itemset, and itemset[n].rule

gives a rule that generates that nonterminal at minimal cost. A cost of ∞ in any position indicates that no

rule derives the given nonterminal. The empty state (∅) has all costs equal to infinity.

The procedure WorklistMain() in Figure 17.16 manipulates a worklist that processes itemsets. Assume

that States is a table that maintains a one-to-one mapping from itemsets to nonnegative integers. The

routine WorklistArityZeroTables in Figure 17.17 computes the tables for all terminals in T .

The routine WorklistComputeTransition shown in Figure 17.18 augments the operator tables with a new

transition computed from an itemset in the worklist. The itemset is projected in each dimension of each

operator and combined with other representer sets for that operator to check if the combination leads to

a new state. The closure is computed only if this is a new state. Finally, the itemset is added to the worklist

and the set of states, and the appropriate transition table is updated.

Proebsting has shown that an optimization that he calls state trimming considerably reduces table sizes.

We briefly explain one of the optimizations, called triangle trimming. Consider the two derivation trees

shown in Figure 17.19. Both these have the same root and leaves except for a single leaf nonterminal. Both

trees use different rules for the operator op to reduce to A. Let r1 : A → op(X, Q) and r2 : B → op(Y, R),

with A → B , R → Q, and Y → Z being chain rules. Triangle trimming notes that both reductions to A

involve different nonterminals for a left child state related to operator op that occur in the same state. Let that

state be state. If state[X].cost exceeds or equals state[Z].cost in all contexts, we can eliminate nonterminal

X from all such states. Considerable savings in storage have been reported using this optimization.
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procedure WorklistMain( )

States = /0

WorkList = /0

Worklist Arity Zero Tables

while WorkList 	= /0 do

itemset = next itemset from WorkList

for op ∈ OP do

WorklistComputeTransition (op, itemset)

end for

end while

end procedure

FIGURE 17.16 Worklist processing routine.

17.4.3 Hard Coded Bottom-Up Code-Generator Generators

Hard coded code-generator generators are exemplified in the work of Fraser et al. [20] and Emmelmann

et al. [17]. They mirror their input specifications in the same way that recursive descent parsers mirror the

structure of the underlying LL(1) grammar. Examples of such tools are BEG[17] and iburg [20]. Code

generators generated by such tools are easy to understand and debug, as the underlying logic is simple.

The code generator that is output typically works in two passes on the subject tree. In a first bottom-up,

left-to-right pass it labels each node with the set of nonterminals that match at the node. Then in a second

top-down pass, it visits each node, performing appropriate semantic actions, such as generating code. The

transition tables used in the techniques described earlier in this section are thus encoded in the flow of

control of the code generator, with cost computations being performed dynamically.

17.4.4 The Code Generation Pass

Following the first pass, where all the nodes of the IR tree are labeled with a state, a second pass over the tree

generates the optimal code. Each rule has associated with it a case number that specifies a set of actions to

procedure WorklistArityZeroTables

for a ∈ T do

itemset = /0

for each r ∈ rules (a) do

itemset[nt(r )] = (r , rule cost(r ))

end for

// normalize costs

for all n ∈ N do

itemset[n].cost = itemset[n].cost – mini {itemset[i].cost}
end for

// compute chain rule closure

repeat

for all r such that r : n → m is a chain rule do

cost = rule cost(r ) + itemset[m].cost

if cost < itemset[n].cost then

itemset[n] = (r , cost)

end if

end for

until no changes to itemset

Append itemset to WorkList

States = States ∪ {itemset}
τ a = itemset

end for

end procedure

FIGURE 17.17 The computation of tables of arity 0.
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procedure WorklistComputeTransition (op, itemset)

for i = 1 to arity(op) do

repstate = /0

for n ∈ N do

if child rules(n, i) ∪ rules (op) 	= /0 then

repstate[n].cost = itemset[n].cost

end if

end for

for all n ∈ N do

repstate[n].cost = repstate[n].cost – mini {repstate [i].cost}
end for

μi
op (itemset) = repstate

if repstate ∈ I i
op then

I i
op = I i

op ∪ {repstate}

for each repset tuple = (S1, S2, . . . Si−1, repstate Si+1, . . . Sk ) where S j ∈

I i
op , j 	= i do

newitemset = /0

for each rule r of the form n → op n1n2 . . . narity(op) in rules (op) do

cost = rule cost(r ) + repstate[ni ].cost + � j 	=i S j [n j ].cost

if cost < newitemset[n].cost then

newitemset[n] = (r , cost)

end if

end for

for all n ∈ N do

newitemset[n].cost = newitemset[n].cost–mini {newitemset[i].cost}
end for

if newitemset /∈ States then

repeat

for all r such that r : n → m is a chain rule do

cost = rule cost(r ) + newitemset[m].cost

if cost < newitemset[n].cost then

newitemset[n] = (r , cost)

end if

end for

until no changes to newitemset

append newitemset to WorkList

States = States ∪ {newitemset}
end if

θop (S1, S2, . . ., Si−1, repset, Si+1, . . . Sk ) = newitemset

end for

end if

end for

end procedure

FIGURE 17.18 Procedure to compute transitions on operators.
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FIGURE 17.19 Two derivation trees to illustrate triangle trimming.
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procedure GenerateCode

top down traverse(root, S)

execute actions in root.caselist in reverse order of the list

end procedure

FIGURE 17.20 Code generation routine.

be executed when the rule is matched. The actions could include allocation of a register, emission of code,

or computation of some attribute. During this phase each node n will be assigned a list of case numbers

stored in n.caselist in the reverse order of execution. This is described in the procedures GenerateCode and

TopDownTraverse in Figures 17.20 and 17.21, respectively.

17.5 Techniques Extending LR-Parsers

The idea of LR-based techniques for table-driven code generation had been proposed earlier by Graham

and Glanville [23]. However, their approach cannot be applied in general to the problem of regular tree

parsing for ambiguous tree grammars, as it does not carry forward all possible choices in order to be able to

report all matches. The technique described here can be viewed as an extension of the LR(0) parsing strategy

and is based on the work reported in Shankar et al. [40] and Madhavan et al. [34]. Let G ′ be the context-

free grammar obtained by replacing all right-hand sides of productions of G by postorder listings of the

corresponding trees in TREES(A ∪ N). Note that G is a regular tree grammar whose associated language

contains trees, whereas G ′ is a context-free grammar whose language contains strings with symbols from

A. Of course, these strings are just the linear encodings of trees.

Let post(t) denote the postorder listing of the nodes of a tree t. The following (rather obvious) claim

underlies the algorithm:

procedure TopDownTraverse (node, nonterminal)

if node is a leaf then

if node.state[nonterminal].rule is r : X → Y , Y ∈ N then

append case number of r to node.caselist

TopDownTravese(node, Y)

else

if node.state[nonterminal].rule is r : X → a , a ∈ T then

append case number of r to node.caselist

execute actions in node.caselist in reverse order

end if

end if

else

if node.state [nonterminal].rule is r : X → Y, Y ∈ N then

append case number of r to node.caselist

TopDownTraverse (node, Y)

else

if node.state[nonterminal].rule is r : X → op (X1, X2, . . . Xk ) then

append case number of r to node.caselist

for i = 1 to k do

TopDownTraverse (child (i, node), Xi )

end for

end if

execute actions in node.caselist in reverse order

end if

end if

end procedure

FIGURE 17.21 Top-down traversal for code generation.
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A tree t is in L (G) if and only if post(t) is in L (G ′). Also, any tree α in TREES(A∪ N) that has an

associated S-derivation tree in G has a unique sentential form pos t(α) of G ′ associated with it.

The problem of finding matches at any node of a subject tree t is equivalent to that of parsing the string

corresponding to the postorder listing of the nodes of t. Assuming that a bottom-up parsing strategy is

used, parsing corresponds to reducing the string to the start symbol, by a sequence of shift and reduce moves

on the parsing stack, with a match of rule r being reported at node j whenever r is used for the reduction

at the corresponding position in the string. Thus, in contrast with earlier methods that seek to construct a

tree automaton to solve the problem, a deterministic pushdown automaton is constructed for the purpose.

17.5.1 Extension of the LR(0) Parsing Algorithm

We assume that the reader is familiar with the notions of rightmost derivation sequences, handles, viable

prefixes of right sentential forms, and items being valid for viable prefixes. Definitions can be found in

[29]. The meaning of an item in this section corresponds to that understood in LR parsing theory. By a

viable prefix induced by an input string is the stack contents that result from processing the input string

during an LR parsing sequence. If the grammar is ambiguous, there may be several viable prefixes induced

by an input string.

The key idea used in the algorithm is contained in the theorem below [40].

Theorem 17.1 Let G ′ be a normal form context-free grammar derived from a regular tree grammar. Then

all viable prefixes induced by an input string are of the same length.

To apply the algorithm to the problem of tree-pattern matching, the notion of matching is refined to one

of matching in a left context.

Definition 17.7 Let n be any node in a tree t. A subtree ti is said to be to the left of node n in the tree if

the node m at which the subtree ti is rooted occurs before n in a postorder listing of t. ti is said to be a maximal

subtree to the left of n if it is not a proper subtree of any subtree that is also to the left of n.

Definition 17.8 Let G = (N, T, P , S) be a regular tree grammar in normal form and t be a subject tree.

Then rule X → β matches at node j in left context α, α ∈ N∗ if:

� X → β matches at node j or equivalently, X ⇒ β ⇒∗ t ′, where t ′ is the subtree rooted at j .
� If α is not ǫ, then the sequence of maximal complete subtrees of t to the left of j , listed from left to right,

is t1, t2, . . . , tk , with ti having an Xi -derivation tree, 1 ≤ i ≤ k, where α = X1 X2 . . . Xk .
� The string X1 X2 . . . Xk X is a prefix of the postorder listing of some tree in TREES(A ∪ N) with an

S-derivation.

Example 17.8

We reproduce the tree grammar of Example 17.6 as a context-free grammar below:

1. stmt → addr reg := [1]

2. addr → reg con + [0]

3. addr → reg [0]

4. reg → reg con+ [1]

5. reg → con [1]

6. con → CONST [0]

Consider the subject tree of Figure 17.22 and the derivation tree alongside. The rule con → CONST

matches at node 2 in left context ǫ. The rule con → CONST matches at node 3 in left context addr. The

rule reg → reg con + matches at node 5 in left context addr.
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:=

stmt

addr

reg

con

reg

reg

+

con

CONST(2)

CONST(3)

(1)

+(5)

CONST(4)

:=

con CONST
CONST

CONST

FIGURE 17.22 A derivation tree for a subject tree derived by the grammar of Example 17.8.

The following property forms the basis of the algorithm. Let t be a subject tree with postorder listing

a1 . . . a j w , ai ∈ A, w ∈ A∗. Then rule X → β matches at node j in the left context α if and only if there

is a rightmost derivation in the grammar G ′ of the form

S ⇒∗ αXz ⇒∗ α post(β)z ⇒∗ αah . . . a j z ⇒∗ a1 . . . a j z, z ∈ A∗

where ah . . . a j is the subtree rooted at node j .

Since there is a direct correspondence between obtaining rightmost derivation sequences in G ′ and finding

matches of rules in G , the possibility of using an LR-like parsing strategy for tree parsing is obvious. Since

all viable prefixes are of the same length, a deterministic finite automaton (DFA) can be constructed that

recognizes sets of viable prefixes. We call this device the auxiliary automaton. The grammar is first aug-

mented with the production Z → S$ to make it prefix free. Next, the auxiliary automaton is constructed;

this plays the role that a DFA for a canonical set of LR items does in an LR parsing process. We first explain

how this automaton is constructed without costs. The automaton M is defined as follows:

M = (Q, �, δ, q0, F )

where each state of Q contains a set of items of the grammar:

� � = A ∪ 2N .
� q0 ∈ Q is the start state.
� F is the state containing the item Z −→ S$.
� δ : Q × (A ∪ 2N) 
→ Q.

Transitions of the automaton are thus either on terminals or on sets of nonterminals. A set of nonterminals

will label an edge iff all the nonterminals in the set match some subtree of a tree in the language generated by

the regular tree grammar in the same left context. The precomputation of M is similar to the precomputation

of the states of the DFA for canonical sets of LR(0) items for a context-free grammar. However, there is

one important difference. In the DFA for LR(0) items, transitions on nonterminals are determined just by

looking at the sets of items in any state. Here we have transitions on sets of nonterminals. These cannot

be determined in advance, as we do not know a priori which rules are matched simultaneously when

matching is begun from a given state. Therefore, transitions on sets of nonterminals are added as and

when these sets are determined. Informally, at each step, we compute the set of items generated by making

a transition on some element of A. Because the grammar is in normal form, each such transition leads
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procedure TreeParser (a, M, matchpairs)

// The input string of length n + 1 including the end marker is in array a

// M is the DFA (constructed from the context free grammar) which

controls the parsing process with transition functions δA and δLC .

// matchpairs is a set of pairs (i, m) such that the set of rules in m matches

at node i in a left context induced by the sequence of complete subtrees to the left of i .

stack = q0; matchpairs = /0

current state = q0

for i = 1 to n do

current state: = δA (current state, a[i]);

match rules = current state.match rules

// The entry in the table δA directly gives the set of rules matched.

pop(stack) arity (a|[i] + 1 times;

current state: = δLC (topstack, Sm);

// Sm is the set of nonterminals matched after chain rule application

match rules = match rules ∪ current state.match rules

// add matching rules corresponding to chain rules that are matched

matchpairs = matchpairs ∪ {(i, match rules)}
push(current state)

end for

end procedure

FIGURE 17.23 Procedure for tree parsing using bottom-up context-free parsing approach.

to a state, termed a matchset, that calls for a reduction by one or more productions called match rules.

Since all productions corresponding to a given operator are of the same length (because operator arities

are fixed and the grammar is in normal form), a reduction involves popping off a set of right-hand sides

from the parsing stack and making a transition on a set of nonterminals corresponding to the left-hand

sides of all productions by which we have performed reductions, from each state (called an LCset) that can

be exposed on the stack after popping off the set of handles. This gives us, perhaps, a new state, which is

then added to the collection if it is not present. Two tables encode the automaton. The first, δA, encodes the

transitions on elements of A. Thus, it has as row indices, the indices of the LCsets and as columns, elements

of A. The second, δLC , encodes the transitions of the automaton on sets of nonterminals. The rows are

indexed by LCsets and the columns by indices of sets of nonterminals. The operation of the matcher, which

is effectively a tree parser, is defined in Figure 17.23. Clearly, the algorithm is linear in the size of the subject

tree. It remains to describe the precomputation of the auxiliary automaton coded by the tables δA and δLC .

17.5.2 Precomputation of Tables

The start state of the auxiliary automaton contains the same set of items as would the start state of the DFA

for sets of LR(0) items. From each state, for instance, q , identified to be a state of the auxiliary automaton,

we find the state entered on a symbol of A, for instance, a . (This depends only on the set of items in the

first state.) The second state, for instance, m (which we will refer to as a matchstate) will contain only

complete items. We then set δA(q , a) to the pair (match rules(m), Sm), where match rules(m) is the set of

rules that match at this point and Sm is the set of left-hand side nonterminals of the associated productions

of the context-free grammar. Next we determine all states that have paths of length arity(a) + 1 to q . We

refer to such states as valid left context states for q . These are the states that can be exposed on the stack

while performing a reduction after the handle is popped off the stack. If p is such a state, we compute

the state r corresponding to the itemset obtained by making transitions on elements of Sm augmented by

all nonterminals that can be reduced to because of chain rules. These new itemsets are computed using

the usual rules that are used for computing sets of LR(0) items. Finally, the closure operation on resulting

items completes the new itemset associated with r . The closure operation here is the conventional one

used for constructing canonical sets of LR items [6].
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function Validlc(p, m)

if NTSET (p, rhs(m)) = Sm then

Validlc := true

else

Validlc := false

end if

end function

FIGURE 17.24 Function to compute valid left contexts.

Computing states that have paths of the appropriate length to a given state is expensive. A very good

approximation is computed by the function Validlc in Figure 17.24. This function just examines the sets

of items in a matchstate and a candidate left context state and decides whether the candidate is a valid left

context state. For a matchstate m let rhs(m) be the set of right-hand sides of productions corresponding

to complete items in m.

For a matchstate m and a candidate left context state p, define

NTSET(p, rhs(m)) = {B | B → .α ∈ itemset( p), α ∈ rhs(m)}

Then a necessary, but not a sufficient, condition for p to be a valid left context state for a matchstate

corresponding to a matchset m is NTSET( p, rhs[m]) = Sm. (The condition is only necessary because

there may be another production that always matches in this left context when the others do but that is

not in the matchset.)

Before we describe the preprocessing algorithm, we have to define the costs that we will associate with

items. The definitions are extensions of those used in Section 17.4 and involve keeping track of costs

associated with rules partially matched (as that is what an item encodes) in addition to costs associated

with rules fully matched.

Definition 17.9 The absolute cost of a nonterminal X matching an input symbol a in left context ǫ is

represented by abscost(ǫ, X, a). For a derivation sequence d represented by X ⇒ X1 ⇒ X2 . . . ⇒ Xn ⇒ a,

let Cd = rulecost(Xn → a) +
∑n−1

i=1 rulecost(Xi → Xi+1) + rulecost(X → X1); then abscost(ǫ, X, a) =

mind (Cd ).

Definition 17.10 The absolute cost of a nonterminal X matching a symbol a in left context α is defined

as follows:

abscost(α, X, a) = abscost(ǫ, X, a) if X matches in left context α

abscost(α, X, a) = ∞ otherwise

Definition 17.11 The relative cost of a nonterminal X matching a symbol a in left context α is

cost(α, X, a) = abscost(α, X, a) − miny∈N{abscost(α, Y, a)}.

Having defined costs for trees of height 1, we next look at trees of height greater than 1. Let t be a tree

of height greater than 1.

Definition 17.12 The cost abscost(α, X, t) = ∞ if X does not match t in left context α. If X matches

t in left context α, let t = a(t1, t2, . . . , tq ) and X −→ Y1Y2 . . . Yq a where Yi matches ti , 1 ≤ i ≤ q. Let

abscost(α, X → Y1Y2 . . . Yq a , t) = rulecost(X → Y1 . . . Yq a) + cost(α, Y1, t1) + cost(αY1, Y2, t2) + . . . +

cost(αY1Y2 . . . Yq−1, Yq , tq ). Hence, define

abscost(α, X, t) = minX⇒β⇒∗t{abscost(α, X ⇒ β, t)}

Definition 17.13 The relative cost of a nonterminal X matching a tree t in left context α is cost(α, X, t) =

abscost(α, X, t) − minY⇒∗t{abscost(α, Y, t)}.
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function Goto(itemset, a)

Goto = {[A → αa., c]|[A → α.a , c ′] ∈ intemset and

c = c ′ + rule cost(A → αa)−

min{c ′′ + rule cost(B → βa)|[B → β.a , c ′′] ∈ itemset}}

end function

FIGURE 17.25 The function to compute transitions on elements of A.

We now proceed to define a few functions that will be used by the algorithm. The function Goto in

Figure 17.25 makes a transition from a state on a terminal symbol in A and computes normalized costs.

Each such transition always reaches a matchstate, as the grammar is in normal form.

The reduction operation on a set of complete augmented items itemset1 with respect to another set of

augmented items, itemset2, is encoded in the function Reduction in Figure 17.26. The function Closure

is displayed in Figure 17.27 and encodes the usual closure operation on sets of items. The function

ClosureReduction is shown in Figure 17.28. Having defined these functions, we present the routine for

precomputation in Figure 17.29.

The procedure LRMain will produce the auxiliary automaton for states with cost information included

in the items. Equivalence relations that can be used to compress tables are described in [34]. We now

look at an example with cost precomputation. The context-free grammar obtained by transforming the

grammar of Example 17.2 is displayed in Example 17.9.

Example 17.9

G = (V, B , G , a(2), b(0), P , V)

P :
V →V Ba [0]

V →G Va[1]

V →G [1]

G →B [1]

V →b [7]

B →b [4]

The automaton is shown in Figure 17.30.

function Reduction(itemset2, itemset1)

// First compute costs of nonterminals in matchsets

S − Sitemset1

cost (X) = min {c i | [X → αi.,c i ] ∈ itemset1} if X ∈ S∞ otherwise

// process chain rules and obtain updated costs of nonterminals

temp = ∪{[A → B ., c] |∃ [A → .B ,0] ∈ itemset2∧ [B → γ ., c1] ∈

itemset1 ∧ c = c1 + rule cost (A → B)}
repeat

S = S ∪ {X| [X → Y ., c] ∈ temp}
for X ∈ S do

cost(X) = min(cost (X), min {c i |∃ [X → Y i., c i ] ∈ temp})

temp = {(A → B ., c]|∃ [A → .B , 0] ∈ itemset2∧ [B → Y ., c1] ∈

temp ∧c = c1 + rule cost (A → B)}
end for

until no change to cost array or temp = φ

// Compute reduction

Reduction = ∪ {[A → α B .β, c]| [A → α, B β, c1] ∈ itemset2 ∧ B∈ S ∧ c = cost (B) + c1 if β 	= ǫ else

//This is a complete item corresponding to a chain rule

c = rule cost(A → B) – min {c i |∃ [X → .Y , 0] ∈ itemset2, ∧c i = rule cost (X → Y)}
end function

FIGURE 17.26 Function that performs reduction by a set of rules given the LCstate and the matchstate.
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function Closure (itemset)

repeat

itemset = itemset ∪ {[A → .α, 0]|[B → .Aβ, c] ∈ itemset

until no change to itemset

Closure = itemset

end function

FIGURE 17.27 Function to compute the closure of a set of items.

function Closure Reduction(itemset)

Closure Reduction = Closure(Reduction(itemset))

end function

FIGURE 17.28 Function to compute ClosureReduction of a set of items.

procedure LRMain( )

lcsets : = /0

matchsets : = /0

list: = Closure ({[S → .α, 0] |S → α ∈ P})

while list is not empty do

delete next element q from list and add it to lcsets

for each a ∈ A such there is a transition on a from q do

m: Goto(q , a)

δA(q , a): = (match (m), Sm)

if m is not in matchsets then

matchsets: = matchsets ∪ {m}
for each state r in lcsets do

if Validle(r, m) then

p: = ClosureReduction (r, m)

δLC (r , Sm):= (match ( p), p)

if p is not in list or lcsets then

append p to list

end if

end if

end for

end if

end for

for each state t in matchsets do

if Validlc(q , t) then

s : = ClosureReduction (q , t)

δLC (q , St ): = (match (s ), s )

if s is not in list or lcsets then

append s to list

end if

end if

end for

end while

end procedure

FIGURE 17.29 Algorithm to construct the auxiliary automaton.

Example 17.10

Let us look at a typical step in the preprocessing algorithm. Let the starting state be q0, that is, the first

LCset.

q0 = {[S → .V$, 0], [V → . V B a , 0], [V → . G V a , 0], [V → . G , 0], [G → . B , 0],

[V → . b, 0], [B → . b, 0] }



Instruction Selection Using Tree Parsing 17-31

0

2
3

V V B a . , 0

G V a . , 2V
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V V B . a, 0

V V B a . , 0
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G

G
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S V$ . , 0

11

$S V . $, 0 $

FIGURE 17.30 Auxiliary automaton for grammar of Example 17.9.

Using the definition of the goto operation, we can compute the matchset q1 as

q1 = Goto(q0, b) = { [V → b ., 3], [B → b ., 0] }

In the matchset, the set of matching nonterminals Sq1
is

Sq1
= {V, B}

with costs 3 and 0, respectively.

Now we can compute the set ClosureReduction(q0, q1). First we compute Reduction(q0, q1).

Initialization:

S = Sq1
= {V, B}

cost(V) = 3

cost(B) = 0

cost(G) = ∞

temp = {[G → B ., 1]}

Processing chain rules:

Iteration 1:

S = S ∪ {G} = {V, B , G}

cost(V) = 3

cost(B) = 0

cost(G) = 1

temp = {[V → G ., 2]}
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Iteration 2:

S = S ∪ {V} = {V, B , G}

cost(V) = 2

cost(B) = 0

cost(G) = 1

temp = φ

Computing reduction:

Reduction = {[S → V.$, 2], [V → V . B a , 2], [V → G . V a , 1], [V → G ., 1], [G → B ., 0]}

Once we have Reduction(q0, q1), we can use the function Closure and compute ClosureReduction. Therefore,

q2 = ClosureReduction(q0, q1)

= Closure(Reduction(q0, q1))

= Closure({[S → V.$, 2], [V → V . B a , 2], [V → G . V a , 1], [V → G ., 1], [G → B ., 0], })

= {[S → V.$, 2], [V → . V B a , 0], {[V → V . B a , 2], [V → . G V a , 0], [V → G . V a , 1],

[V → . G , 0], [V → G ., 1], [G → . B , 0],

[G → B ., 0], [V → . b, 0], [B → . b, 0]}

The auxiliary automaton for the grammar of Example 17.6 is shown in Figure 17.31. Though the number

of states for this example exceeds that for the conventional bottom-up tree-pattern-matching automaton,

it has been observed that for real machines, the tables tend to be smaller than those for conventional

bottom-up tree-pattern-matching automata [34]. This is perhaps because separate tables need not be

maintained for each operator. An advantage of this scheme is that it allows the machinery of attribute

grammars to be used along with the parsing.

17.6 Related Issues

A question that arises when generating a specification for a particular target architecture is the following:

Can a specification for a target machine produce code for every possible intermediate code tree produced

by the front-end? (We assume here, of course, that the front-end generates a correct intermediate code

tree.) This question has been addressed by Emmelmann [16], who refers to the property that is desired of

the specification as the completeness property. The problem reduces to one of containment of the language

L (T) of all possible intermediate code trees in L (G), the language of all possible trees generated by the

regular tree grammar constituting the specification. Thus, the completeness test is the problem of testing

the subset property of two regular tree grammars, which is decidable. An algorithm is given in [16].

A second question has to do with whether a code-generator generator designed to compute normalized

costs statically terminates on a given input. If the grammar is such that relative costs diverge, the code-

generator generator will not halt. A sufficient condition for ensuring that code-generator generators based

on extensions of LR parsing techniques halt on an input specification is given in [34]. However, it is shown

that there are specifications that can be handled by the tool but that fail the test.

An important issue is the generation of code for a directed acyclic graph (DAG) where shared nodes

represent common subexpressions. The selection of optimal code for DAGs has been shown to be intractable

[5], but there are heuristics that can be employed to generate code [6]. The labeling phase of a bottom-

up tree parser can be modified to work with DAGs. One possibility is that the code generator could, in

the top-down phase, perform code generation in the normal way but count visits for each node. For the

first visit it could evaluate the shared subtree into a register and keep track of the register assigned. On
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FIGURE 17.31 Auxiliary automaton for the grammar of Example 17.6.

subsequent visits to the node it could reuse the value stored in the register. However, assigning common

subexpressions to registers is not always a good solution, especially when addressing modes in registers

provide free computations associated with offsets and immediate operands. One solution to this problem

involves adding a DAG operator to the intermediate language [10].

17.7 Conclusion and Future Work

We have described various techniques for the generation of instruction selectors from specifications in

the form of tree grammars. Top-down, bottom-up, and LR-parser-based techniques have been described

in detail. Instruction selection using the techniques described in this chapter is useful and practical, but
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the formalism is not powerful enough to capture features such as pipelines, clustered architectures, and

so on. While it would be useful to have a single formalism for specification from which a complete code

generator can be derived, no commonly accepted framework exists as yet. Instruction selection is impor-

tant for complex instruction set computer architectures, but for reduced instruction set architectures there

is a shift in the functional emphasis from code selection to instruction scheduling. In addition, because

computation must be done in registers and because the ratio of memory access time to cycle time is high,

some form of global register allocation is necessary. The interaction between instruction scheduling and

register allocation is also important. Bradlee [11] has implemented a system that integrates instruction

scheduling and global register allocation into a single tool. The advent of embedded processors with

clustered architectures and VLIW instruction formats has added an extra dimension to the complexity

of code-generator generators. The impact of compiler techniques on power consumption has been the

subject of research only recently. Considerable work on retargetable compilers for embedded processors

is already available, including MSSQ [35], RECORD [32], SPAM [8], CHESS [31, 43], CodeSyn [33], and

AVIV [25]. Much more work is needed to address related problems on a sound theoretical basis.
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18.1 Introduction

Digital signal processors (DSPs) are used in a wide variety of embedded systems ranging from safety-critical

flight navigation systems to common electronic items such as cameras, printers, and cellular phones. DSPs

are also some of the more popular processing element cores available in the market today for use in

system-on-a-chip (SOC)-based design for embedded processors. These systems not only have to meet the

real-time constraints and power consumption requirements of the application domain, but also need to

adapt to the fast-changing applications for which they are used. Thus, it is very important that the target

processor be well matched to the particular application to meet the design goals. This in turn requires

that DSP compilers produce good-quality code and be highly retargetable to enable a system designer to

quickly evaluate different architectures for the application on hand.

18-1
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Unlike their general-purpose counterparts, an important requirement for embedded system software

is that it has to be sufficiently dense to fit within the limited quantity of silicon area, either random-

access memory (RAM) or read-only memory (ROM), dedicated to program memory on the chip. This

requirement arises because of the limited and expensive on-chip program memory. To achieve this goal,

and at the same time not sacrifice dynamic performance, DSPs have often been designed with special

architectural features such as address generation units, special addressing modes for better memory access,

computation units optimized for digital signal processing, accumulator-based data-paths, and multiple

memory banks. Hence, to produce good-quality code, it is necessary for DSP compilers to incorporate a

large set of optimizations to support and exploit these special architectural features.

This chapter is organized as follows. DSP architectures are first presented and classified from a compiler

developer’s view in Section 18.2. An overview of the constraints imposed by DSP architectures is then

provided in Section 18.3, using an illustrative example. The need for retargetable methodologies and

previous efforts on this are discussed in Section 18.4. Some of the retargetable code generation and

optimization techniques that have been developed to exploit the special DSP features are then presented

in Section 18.5, followed by the summary in Section 18.6.

18.2 Digital Signal Processor Architectures

A close examination of DSP architectures and the requirements for a DSP compiler suggests that DSPs

can be modeled as very long instruction word (VLIW) processors. A VLIW processor is a fully statically

scheduled processor capable of issuing multiple operations per cycle. Figure 18.1 shows a simplified

overview of the organization of instruction set architectures (ISAs) of VLIW processors.

The ISA of a VLIW processor is composed of multiple instruction templates that define the sets of

operations that can be issued in parallel. Each slot in an instruction can be filled with one operation from

a set of possible operations. Each operation consists of an opcode and a set of operands. The opcode of an

operation defines the operation’s resource usage when it executes. An operand in an operation can be a

register, a memory address, or an immediate operand. The register operand in an operation can be a single

machine word register, a part of a machine word register, or a set of registers. Although the memory address

is shown as a single operand in Figure 18.1, in general, the address itself can be composed of multiple

operands depending on the addressing mode used in the operation. DSPs have statically determined ILP

and thus are specific instances of VLIW compilers, albeit with special constraints.

As compilers for VLIW processors are well studied, they serve as useful starting points for developing

compilers for DSP processors. There is one major point of difference, though. Compilers for VLIW

architectures need optimizations to exploit the application’s instruction level parallelism (ILP) to primarily

ISA

VLIW Inst. Template VLIW Inst. Template VLIW Inst. Template

OperationOperationOperation

Opcode OpcodeOperands Operands

Immediate

Register

Register Register Set Sub-register

Address
Res-table

FIGURE 18.1 VLIW instruction set architecture.
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obtain good dynamic performance, and this is often achieved at the expense of increased static code size.

For DSPs, however, static code size is equally or even more important than the dynamic performance.

This section gives an overview of the features of different classes of DSP architectures from a compiler

perspective. The basic architecture of DSPs is a Harvard architecture with separate data and program

memories. Some of the architectural features of DSPs are motivated by the applications:

� Because DSP applications often work with multiple arrays of data, DSPs feature multiple data

memory banks to extract ILP from memory operations.
� Because vector products and convolutions are common computations in signal processing, a fast

single cycle multiply and multiply-accumulate-based data-paths are common.
� Multiple addressing modes, including special modes such as circular addressing, are used to optimize

variable access.
� Fixed or floating point architectures are used depending on the application’s requirements such as

precision, cost, and scope.
� Hardware to support zero overhead loops is present for efficient stream-based iterative computation.

For the discussion in the rest of this chapter, a VLIW instruction in an ISA is defined as a set of operations

allowed by the ISA to be issued in parallel in a single cycle. ISAs of DSPs can be classified based on the

following attributes:

� Fixed operation width (FOW) ISA or variable operation width (VOW) ISA. A fixed operation

width ISA is an ISA in which all the operations are encoded using a constant number of bits. A

variable operation width ISA is any ISA that does not use a fixed operation width for all operations.
� Fixed operation issue ISA or variable operation issue ISA. A fixed operation issue ISA is an ISA in

which the number of operations issued in each cycle remains a constant. A variable operation issue

ISA can issue a varying number of operations in each cycle.
� Fixed instruction width ISA or variable instruction width ISA. A fixed instruction width ISA is an

ISA in which the number of bits used to encode all the VLIW instructions is a constant. A variable

instruction width ISA is any ISA whose instruction-encoding size is not a constant.

Of these three attributes, operation width and instruction width are more important because the issue

width of a DSP is usually dependent on these two attributes. Hence, programmable DSP architectures can

be broadly classified into four categories as shown in Figure 18.2:

� ISAs with FOW and fixed instruction width (Figure 18.2a).
� ISAs with FOW and variable instruction width (Figure 18.2b).

W W WW

Inst 1:

Inst 2:

Inst 3:

Oper

W W WW

Inst 1:

Inst 2:

Inst 3:

Oper

W1 W3 W4W2

Inst 1:

Inst 2:

Inst 3:

Oper

(a)

(c)

W1 W3 W4W2

Inst 1:

Inst 2:

Inst 3:

Oper

(d)

(b)

FIGURE 18.2 Different classes of DSP architectures: (a) Fixed operation width and fixed instruction width;

(b) fixed operation width and variable instruction width; (c) variable operation width and fixed instruction width;

(d) variable operation width and variable instruction width.
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� ISAs with VOW and fixed instruction width (Figure 18.2c).
� ISAs with VOW and variable instruction width (Figure 18.2d).

Because the architectural features of the first two categories of DSPs are more due to the FOW attribute,

the two categories can be combined into a single FOW category. Similarly, because compiling for archi-

tectures in the last category is similar to VOW and fixed instruction width architectures, they can also be

combined into a single VOW architecture category.

18.2.1 Fixed Operation Width Digital Signal Processor Architectures

The ISA of an FOW architecture consists of reduced instruction set computer (RISC)-style operations, all

of which are encoded using a constant number of bits. From Figure 18.2a and 18.2b, it can be seen that the

issue width and instruction width of these processors are tied to one another. As the issue width is increased

to get more ILP, the instruction width to be decoded also increases proportionally. Examples in this category

include the Texas Instruments (TI) TIC6X series DSPs. Many high-end DSPs and, in particular, floating

point DSP architectures fall into this category. Some of the features of these architectures are:

� These architectures are regular with fewer instruction level constraints on operands and opera-

tions when compared with the other categories of DSPs. The primary reason for this regularity

is the encoding of the instructions. Not only is the encoding of each operation in an instruction

independent, but the encoding of opcode and operands within an operation is also separate.
� A large general-purpose register set, which is a key to exploiting ILP, is an important feature of

these architectures. This set may even be organized into multiple register files.
� The regularity and the large register set together make these DSPs more compiler friendly and

easier to program than their VOW counterparts. This also stems from the fact that these architectures

tend to have an orthogonal set of operands, operations, and instructions.
� Because of the general nature of operations and increased ILP, these processors are capable of

handling a wider variety of applications, and the applications themselves can be large. Specialized

functional units are sometimes used to improve a group of applications.
� To extract more ILP, there is a trend in these architectures to support speculation and predica-

tion, which are features in general-purpose processors. Because a discussion of speculation and

predication is beyond the scope of this chapter, readers are referred to [7, 11].
� One of the drawbacks of fixed instruction width FOW DSPs is code size. For every VLIW slot in an

instruction that the compiler is not able to fill with a useful operation, no-operations (NO-OPs)

need to be filled in. This often leads to an increase in code size because the instruction width

remains constant. To overcome this problem, some processors allow a compiler to signal the end

of an instruction in each operation by turning on a flag in the last operation of an instruction. This

prevents any unnecessary NO-OPs from being inserted, and it is the responsibility of the hardware

to separate the instructions before or during issue. With this feature enabled, fixed instruction

width FOW processors appear similar to variable instruction width FOW processors.

Because the features of these processors are very similar to VLIW processors, their compilers can leverage

the work done in VLIW compilation. Thus, the DSP compiler techniques and optimizations described in

this chapter may not be applicable or useful to most processors in this category.

18.2.2 Variable Operation Width Digital Signal Processor Architectures

The features of VOW architectures shown in Figures 18.2c and 18.2d are in sharp contrast to those of FOW-

style architectures. These DSPs are used in applications such as cellular telephones. Hence, the binary code

size of applications running on these processors needs to be extremely dense because of the limited and

expensive on-chip program memory. Also, a conflicting requirement of good dynamic performance exists

because these applications usually run on battery. Examples in this category include Fujitsu Hiperion, TI
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TMS320C25, Motorola DSP56000, and so on. Most of the features of VOW DSPs described in this chapter

reflect the decisions made by hardware architects to meet these conflicting requirements:

� To contain the code size of applications, but still exploit ILP, VOW DSP instructions are encoded

such that the instruction width does not change with issue width. This leads to a situation where all

the operations in an instruction are encoded together and operands within an operation are also

tied together in an encoding that leads to irregular architectures with restricted ILP support.
� These DSPs feature only a small number of registers with many constraints on how each register

can and cannot be used.
� The irregular architecture and the heterogeneous register set pose a challenge to DSP compilers

that have to tackle the numerous constraints and yet meet the conflicting requirements. This is

primarily due to the irregular operation and instruction encoding in VOW DSPs. This leads to

nonorthogonal operands within operations, nonorthogonal operations within instructions, and a

nonorthogonal instruction set.
� The DSPs in this class have traditionally been programmed in assembly. This drastically restricts

the domain of applications to small programs that are usually kernels of larger applications that

can be accelerated using DSPs.
� To compensate for the lack of a rich register set and to utilize the data memory banks effectively, these

DSPs have an address register set and an address generation unit that enable address computations

to be performed in parallel with other operations.

Section 18.3 discusses how some of these features affect the development of compilers for DSPs. For a

more detailed discussion on DSP architectures, the readers are referred to [26].

18.3 Compilation for Digital Signal Processors

In this section, some of the constraints posed by VOW DSP architectures to compilers are described

using an example from [49]. Some common DSP ISA constraints are shown in Figure 18.3, where the

constraints between the different entries are represented in dotted lines. Figure 18.3a shows operation ILP

constraints in the instruction template that restrict the set of operations that can be performed in parallel.

Operation

OperationOperationOperation

Opcode

Opcode Opcode

Operands

Operands Operands

RegisterAddressRegister

VLIW Instruction

OperationOperation

Register RegisterAddress Address

VLIW Inst. Template

(a) (b)

(c)

FIGURE 18.3 DSP constraints.
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C0,C1;D0,D1 - 16 bit

ALU, MAC

Restricted ILP
      ALU & 1 MEMop
      SFT & 1 MEMop
      MAC & 1 MEMop
      MAC & 2 LOADs
      2 LOADs
      1 LOAD & 1 STORE
      MEMops & AGU

AGU
address regs
X0, X1, .., X8

Address bus

Data bus

(a) (b)

FIGURE 18.4 (a) Hiperion DSP data-path; (b) some operation ILP constraints [49].

Figure 18.3b shows operand constraints that exist between operands within an operation. This can be of

different types such as register–register constraints, register-addressing mode or register–immediate size

constraints, and so on. Finally, Figure 18.3c extends the operand constraints across operations within an

instruction.

Figure 18.4, taken from [49], shows the data-path of Hiperion, a fixed-point DSP core. It is a fixed

instruction width VOW DSP. Its data-path consists of dual memory banks, an arithmetic and logic unit

(ALU) comprising a shift unit, an add unit, a multiply unit, and an address generation unit. There are

eight address registers (ARs) and four accumulators, each with 32b and each of which can also be accessed

as two general-purpose registers, each with 16b. In addition to instructions with parallel memory access

operations, restricted ILP also exists between arithmetic and memory operations. Some of these constraints

are now briefly described and explained with examples:

� Because addressing modes occupy more instruction bits, many restrictions exist on the addressing

mode that a memory operation can use in different instructions. This includes the set of ARs that

can be used by a particular addressing mode in a particular instruction.
� The fixed instruction width and the VOW together enforce several constraints on what set of

operations can be performed in parallel.
� Operations in a single instruction share operands because of a lack of bits to encode the operations

independently. This may or may not affect data flow.
� Operations in a single instruction have to split an already small number of instruction bits to encode

their operands, leading to register allocation constraints that arise not from a lack of registers, but

from a lack of bits to encode more registers.
� Large immediate operands require multiple instruction words to encode them, leading to larger

code size and a potentially extra operation execution time.

The constraints described in this section are representative of constraints found in many commercial

DSPs and are difficult to capture in both behavior description-based machine descriptions (MDs) (MDs

based on ISA descriptions) and structural description-based MDs (MDs that extract ISA information

from description of a processor data-path). It is also important to note that the internal data-paths of a

processor are seldom transparent to the application developer; thus, the latter may not even be an option.
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18.3.1 Operation Instruction Level Parallelism Constraints

These constraints describe what set of operations can and cannot be issued in parallel. Figure 18.4b shows

an example set of ILP constraints. MEMop stands for either a LOAD or a STORE operation; ALU stands for

operations that use the ALU such as ADD, SUB, and Shift operations; and MAC stands for all operations

associated with the MAC unit such as Multiply and Multiply-Accumulate. Although two LOAD operations

can be issued in parallel with a MAC operation, only one LOAD can be issued in parallel with an ALU

operation. Hence, these constraints do not need to be limited by physical resources alone.

18.3.2 Operand Instruction Level Parallelism Constraints

These constraints describe how registers should be assigned to operands of operations issued in parallel.

These constraints may or may not affect data flow.

Example 18.1

Constraint Affecting Data Flow: MUL dest, source1, source2; LOAD dest1, [M1] ; LOAD dest2, [M2] is a

valid single-cycle schedule only if dest1 and dest2 are assigned the same registers as source1 and source2. It

is the responsibility of the compiler to ensure that the two sources of the multiply operation are not used

after this instruction. Hence, these constraints are data-flow-affecting constraints. In addition, there can

also be restrictions on what registers can be assigned to each operand in an operation or instruction.

Example 18.2

Constraint Not Affecting Data Flow: ADD dest1, source1, source2; LOAD dest2, [M] is a valid single-cycle

schedule only if the following conditions are satisfied. If dest1 is assigned the register CX, then:

1. Condition: dest2 can be assigned a register only from the following set of registers {A0,A1,B0,B1,

D0,D1,CX,DX}.

2. Condition: source1 can be assigned only one of {CX, A0}.

3. Condition: source2 must be assigned register A1.

The first constraint is an example of operand constraints across operations, and the other two are

examples of operand constraints within an operation.

Most of these constraints can be attributed to the nonorthogonality property of VOW DSP architec-

tures. Apart from the lack of orthogonality in operand, operation, and instruction encodings, this also

includes difficulty in classifying arithmetic operations into similar classes, for example, an ADD and SUB

may have completely different sets of constraints.

18.4 Retargetable Compilation

Section 18.2 described the architectural features of DSPs that were designed by hardware architects with

the intent of meeting application demands, and Section 18.3 described the constraints posed by the

architectures for compiler developers that are in addition to traditional compiler issues. While the compiler

developers need a clean abstraction of the architecture that allows them to develop reusable or synthesizable

compilers that do not need to know the actual architecture they are compiling for, the hardware architects

need a configurable abstraction of the compiler that allows them to quickly evaluate the architectural

feature that they have designed without much knowledge of how the feature is supported by the compiler.

Traditionally, the compiler has been split into two phases, namely, the front end that converts the application

program into a semantically equivalent common intermediate representation and the back end that takes

the intermediate representation as input and emits the assembly code for the given target. This partially

eases the job of the compiler developer and the hardware designer of having to match the application to

the target.
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FIGURE 18.5 Retargetable interface.

However, this coarse-grain reusability is not sufficient, because the growing number of applications and

the increasing number of processor designs both require an efficient fine-grain reusability of components

that is often referred to as retargetability. This is shown in Figure 18.5, where a retargetable interface captures

the hardware artifacts, exports them to the compiler developer, captures the ability to parameterize the

compiler (masking the algorithms, complexity, etc.), and exports it to the architecture designer. In this

design, each phase of the compiler may be individually configurable, or each phase itself may be divided

into configurable components as shown by dotted lines within each phase in Figure 18.5. An interesting

side effect of such a retargetable design is that the abstraction does not require the user to be an expert in

both architectures and compilers.

For an SOC design, an architect may be faced with many options for the cores that meet the demands

of the application on hand. The designer then needs a software tool-set such as a compiler and a simulator

to quickly evaluate the set of DSP cores available, pick the best core, and reduce the time to market the

design. This set of DSP cores includes programmable cores that may still have to be developed for a

set of applications, therefore also requiring the development of the necessary tool-set, and off-the-shelf

processor cores that are readily available with the tool-set. Although in the second case, the architectures are

predefined and the necessary compilers for the specific processors may be readily available, in the former,

the architecture itself is not defined and it is not practically possible to develop an architecture-specific

compiler for every potential architecture solution. Hence, clearly, a need exists to design the compiler

framework so that it is easy either to synthesize a new compiler for every potential architecture or to reuse

parts of the compiler to the maximum extent possible by minimizing the amount of architecture-specific

components. Based on this need for retargetability, different types of retargetability have been defined with

respect to the extent of reuse [56].
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18.4.1 Automatic Retargetability

An automatically retargetable compiler framework has built-in support for all potential architectures that

meet the demands of the applications on hand. Compilers for specific architectures can then be generated by

configuring a set of parameters in the framework. Although this is an attractive solution for retargetability,

it is limited in scope to a regular set of parameterizable architectures and is not capable of supporting a

wide variety of specialized architectural features found in DSPs.

18.4.2 User Retargetability

A user retargetable compiler framework relies on an architectural description to synthesize a compiler for

a specific architecture. Although support exists for a wide variety of machine-independent optimizations,

this type of framework also suffers from the drawback of not having the ability to automatically generate

machine-dependent optimizations. This level of retargetability has been achieved only in the instruction

selection phase of the back ends. Some examples in this category include Twig [1] and Iburg [16], both of

which automatically generate instruction selectors from a given specification.

18.4.3 Developer Retargetability

A developer is an experienced compiler designer, and a developer retargetable framework is based on a

library of parameterized optimizations for architectural features. A compiler for a specific architecture can

be synthesized in this framework by stringing together the set of relevant optimizations from the developer’s

library with the correct set of parameters. If the library lacks an optimization that can be applied to a certain

new architectural feature, then the developer is responsible for developing a parameterized optimization

module, the associated procedure interface, and its insertion into the library. The new optimization

module can then be used for designs in the future that have the new architectural feature. The success

of this framework lies in the extent of code reuse or optimization module reuse. Hence, this type of

retargetability is best suited for evaluation of architectures in a single family.

Figure 18.6 shows a potential retargetable compiler development methodology that can be used to design

DSP compilers. The methodology starts either by hand-coding DSP kernels in assembly, or, if possible, by

using a simple machine-specific compiler that produces correct code with no optimizations. For example,

this compiler can be obtained from a simple modification of a compiler developed for a closely related

processor, or it can be a first cut of the compiler or one of the publicly available retargetable research

compilers that fits the domain of the applications. The developer then examines the assembly code for

inefficiencies and suggests optimizations for the various regular and irregular parts of the DSP architecture.

This includes efficient capture of the processor ISA and micro-architecture using machine descriptions and

general-purpose performance optimizations for the regular parts. For the special architectural features, a

parameterized optimization library is developed, and the optimizations are added to this library as and

when they are developed. An optimizing compiler is then assembled using the different components,

and the cycle is repeated until satisfactory code quality is achieved. Conventionally, retargetability has

always been achieved with some kind of MD that describes the processor ISA and/or structure. This

database is then queried by the different phases of compilation to generate code specific to the target

processor.

The success of a retargetable methodology can be evaluated or measured based on several qualities such

as nature (parameterizable or synthesizable components), modularity (fine- or coarse-grain capture of

hardware artifacts), efficiency (quality of code generated for a set of processors and time taken to produce

the code in the first place), and extensibility (ability to add new modules or optimizations and ability

to extend the framework to other domains). These are not all independent or arranged in any order of

preference.
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18.5 Retargetable Digital Signal Processor Compiler Framework

In this section, the flow of a retargetable DSP compiler for an architecture with various constraints

mentioned in Section 18.3 is described. The DSP code generator flow is shown in Figure 18.7. Because the

compiler flow shown in Figure 18.7 is very similar to a general-purpose compiler flow, only the issue of
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Machine-Independent
Optimizations

Assembly Emission 
Back End

FIGURE 18.7 DSP code generator flow.
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DSP-specific optimizations is addressed in this section. In general, the wide variety of machine-independent

compiler optimizations used in compilers for general-purpose processors can also be applied to DSP

compilers [2]. However, certain precautions need to be taken before directly applying an optimization

because of the nature of the DSP architectures. For example, in most VOW-style DSPs, an extra instruction

word is needed to store large constants if the operation uses one. Because this may also cause a one-cycle

fetch penalty, constant propagation1 must be applied selectively. Other examples that can have a negative

effect include common subexpression elimination2 and copy propagation.3 These sets of optimizations

tend to increase the register pressure by extending live ranges that can lead to negative results in architectures

with small register sets. Some of the most beneficial optimizations for DSPs are the loop optimizations

such as loop invariant code motion,4 induction variable elimination,5 strength reduction,6 and so on.

Optimizations such as loop unrolling,7 however, increase static code size, and some loop optimizations

also tend to increase register pressure. The trade-off in either case is the gain in reduction of execution

time. Most DSP applications involve some kind of kernel loops that account for the majority of their

execution time. Hence, optimizing loops is an important task in a successful DSP compiler framework.

However, optimizations such as loop induction variable elimination can prevent efficient utilization of

zero overhead looping features in DSPs.

In general, aggressive machine-independent optimizations can also destroy information needed by

DSP optimizations such as array reference allocation and offset assignment. Similar to general-purpose

compilation, DSP compilation also suffers from the interplay between the various optimizations that is

commonly known as the phase-ordering problem. For example, the most commonly used example of the

phase-ordering problem is that between scheduling and register allocation. If scheduling is done prior

to register allocation, the variable live ranges can be long, which can increase register pressure and cause

excessive spills (save/restore registers to/from memory). This may require another scheduling phase to be

introduced after the allocation to take care of the spill code. However, if register allocation is performed

first, several false dependencies are introduced that can lead to extended static schedules. The situation

is no different in the case of DSP compilation. In the examples given in Sections 18.3.1 and 18.3.2, the

constraints can be viewed as the problems of the scheduler, thereby creating unnecessary constraints for

the register allocator, or they can be viewed as constraints for the register allocator, leading to bad schedules

that do not exploit the ILP features of DSPs. Although the different phases in DSP compilation are listed

in Figure 18.7, they may not necessarily be performed in the order shown.

Another concern about optimizations is in terms of the compilation time. Most optimizations described

in this section have been shown to be in NP [17]. Given this, only a few options are available to a user, such

as sacrificing optimality and converting the problem to one that can be solved in polynomial (preferably

linear) time or attempting to solve smaller versions of the problem optimally or use good heuristics.

Hence, the user often needs to make a time versus performance trade-off. This is an important issue in

a retargetable design space exploration environment where faster techniques can be used to eliminate

large portions of the search space and longer near-optimal solutions can be applied to arrive at the final

choice. Because of the many constraints in DSP compilation, some of the techniques use methods such

as simulated annealing and linear programming to solve the problems and more often attempt to solve

multiple problems or phases at a time. This leads to an increase in complexity and a potential increase

1If there is an operation that moves a constant c to a virtual register u, then the uses of u may be replaced by c .
2If a program computes an expression more than once with exactly the same sources, it may be possible to remove

redundant expressions.
3If there is an MOV operation that moves one virtual register v to another virtual register u, then the uses of u may

be replaced by use of v .
4Moving loop invariant computations outside the loop.
5Removing the loop induction variable from inside the loop.
6Replacing expensive computations such as multiply and divide with simple operations such as shift, add, etc.
7Placing two or more copies of the loop body in a row to improve efficiency.
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in compilation time. In such cases, the trade-off is between optimality with some generality within an

architecture class and compilation time, complexity, and scalability. Heuristics can result in completely

different behavior even for small changes in the constraints, whereas an exact method can produce robust

solutions. This is another reason why a compiler framework and an MD need to be tied to one another.

This section briefly describes some of the common DSP optimizations performed to either exploit

specialized architectural features or merely satisfy data-path constraints such as those mentioned in Sec-

tion 18.3. For details on the conventional phases of general-purpose compilation such as scheduling and

register allocation, the readers are referred to the corresponding chapters in this book.

18.5.1 Instruction Selection

Instruction selection corresponds to the task of selecting the sequence of appropriate target architecture

opcodes from the intermediate representation of the application program. The output of most front ends

of compilers is a forest of directed acyclic graphs (DAGs) semantically equivalent to the input program.

It has been shown that the problem of covering the DAG with target opcodes is an NP-complete problem

even for a single register machine [10, 17, 54]. However, optimal solutions exist when the intermediate

representation is in the form of a sequence of expression trees (e.g., Iburg [16] and Twig [1]). Some of

the DSP compilers use heuristics that convert a forest of DAGs to expression trees, potentially losing

overall optimality, followed by locally (per tree) optimal pattern-matching algorithms to do instruction

selection. Araujo proposed a heuristic to transform a DAG into a series of expression trees for acyclic

architectures, classifying the ISA of DSPs as either cyclic or acyclic based on a register transfer graph (RTG)

model [4].

The RTG model of an ISA describes how the different instructions utilize the transfer paths between the

various storage locations to perform computations. The registers transparent to the developer through the

processor ISA are divided into register classes, where each class has a specific function in the data-path.

For example, a typical DSP data-path consists of an address register class, an accumulator class, and a

general-purpose register class.

18.5.1.1 Register Transfer Graph

An RTG is a directed acyclic multi-graph where each node represents a register class, and an edge between

nodes ri and r j is labeled with instructions in the ISA that take operands from location ri and store the

result in location r j . Memory is assumed to be infinitely large and not represented in the RTG. However,

an arrowhead is added to the register class nodes for memory transfer operations to indicate the direction

of memory transfer.

Figure 18.8a shows a simple processor data-path; the corresponding RTG for this data-path is shown

in Figure 18.8b. For clarity, the operations are not shown in the RTG. The accumulator (ACC), register

set Ri , and register set R j are the three register classes in the data-path and hence have a vertex each in

the RTG. Because the data-path allows the accumulator to be both a source operand and a destination

operand of some ALU operations, a self-edge exists around ACC in Figure 18.8b. Because some ALU

operations have Ri and R j as sources and ACC as the destination, a directed edge exists from both Ri and

R j to ACC. The remaining arrowheads in the RTG represent memory operations. Load operations can

be performed only with Ri or R j as destinations, and store operations can be performed using only the

accumulator.

An architecture is said to be cyclic (acyclic) if its RTG has (no) cycles where a cycle is composed of at

least two distinct vertices in the RTG. Acyclic ISAs have the property that any data-path cycle, which is

not a self-loop, including a path between two nodes ri and r j in the RTG, goes through memory. Hence,

the data-path shown in Figure 18.8a is acyclic because the RTG in Figure 18.8b does not have a cycle with

two distinct vertices. Araujo and Malik show that spill-free code can be generated from expression trees

for architectures with acyclic RTGs and provide a linear time algorithm for optimal scheduling for such

architectures [5].
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FIGURE 18.8 (a) Processor data-path; (b) RTG for the data-path.

To transform the DAG into a series of expression trees, a four-phase heuristic is used:

� Partial register allocation is done for operands of operations for which the ISA itself clearly specifies

the allocation. For example, for the data-path in Figure 18.8a, the results of all the ALU operations

are always written to the accumulator.
� The architectural information and the set of constraints imposed by the ISA are used to determine

the set of edges in the DAG that can be broken without loss of optimality in the subsequent phases.

For example, for the data-path in Figure 18.8a, the result of an ALU operation cannot be used as the

left operand of a dependent operation. Such dependencies have to go through memory, and thus

the corresponding DAG edge, called the natural edge, can be broken without any loss. Similarly,

if an ALU operation is dependent on the results of two other ALU operations, at least one of the

dependencies has to go through memory. Such edges are called pseudo-natural edges, and breaking

such an edge does not guarantee optimality, but there is a reasonable probability that this is the case.
� Selective edges of the DAG are then marked and disconnected from the DAG to generate a forest

of trees, while preserving the data flow constraints of the DAG.
� Optimal code is finally generated and scheduled for each expression tree.

Because the conversion of a DAG to expression trees potentially sacrifices optimality, Liao et al. proposed

a technique using a combinatorial optimization algorithm called binate covering for instruction selection

of DAGs. This can be solved either exactly or heuristically using branch and bound techniques [34]. This

method, briefly summarized here, primarily involves the following steps for each basic block:

� All patterns that match each node in the subject program graph and their corresponding costs are

first obtained. This phase does not take into account the data-path constraints and assumes that

the associated data transfers necessary are for free.
� The covering matrix is then constructed, with a Boolean variable for each of the matched patterns

as columns and the clauses and conditions that need to be satisfied for a legal cover of the program

graph using the patterns as rows. This set of conditions is two-fold:

• Each node must be covered by at least one pattern. This is represented as a set of clauses, one for

each node in the program DAG, each of which is the inclusive OR of the Boolean variables that

cover the node. For each row, or clause, an entry of 1 is made in the columns of Boolean variables

included in the clause.

• For each match, all the non-leaf inputs to the match must be outputs of other matches. This

is represented by a set of implication clauses. For each non-leaf input, I, of each match, M, the

set of all matches, MI , that can generate I are determined. If M is chosen to cover a node or a
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set of nodes in the program DAG, at least one of the matches from the set MI must be chosen

to obtain the input, I, to M. This needs to be true for each of the inputs of M and for all such

matches chosen to cover the program graph. In the covering matrix, this is captured by entering

a 0 in the column corresponding to M for all the implication clauses generated by M, and in each

row corresponding to an implication clause of M, a 1 is entered in the columns of the variables

included in the clause apart from M.

� A binate covering of the covering matrix that minimizes the cost and satisfies all the covering

constraints — every row has either a 1 in the entry corresponding to a selected column or a 0 in

the corresponding unselected column. The cost of a cover is the total cost of the selected columns.

The main purpose of this covering is to generate complex instructions in the ISA from the program

DAG that may not be possible by transforming to expression trees.
� The program graph is then modified into a new graph based on the obtained covering to reflect

the complex instructions that have been generated.
� Additional clauses and costs corresponding to the irregular data-path constraints, such as register

class constraints of the selected instructions, and the consequent data transfer constraints and costs

are added.
� A new binate covering of the modified graph using the new set of clauses is then obtained. The

two-phase approach is used to contain the size of the code generation problem by solving for a

smaller number of clauses.

Leupers and Marwedel developed a two-phase linear programming–based method for DSPs with com-

plex instructions [30, 32]. In the first phase, a tree-pattern matcher is used to obtain a cover on expression

trees. In the second phase, complex instructions, which include a set of operations that can be issued in par-

allel, are generated from the cover (i.e., code scheduling is performed using linear programming). Leupers

and Bashford developed a constraint logic programming–based code selection technique for DSPs and

media processors [27]. This technique addresses two potential drawbacks of tree-based methods. The first

is that splitting DAGs into trees can prevent generation of chained operations. For example, a multiply–

accumulate operation cannot be generated if the result of the multiply is used by multiple operations, and

covering expression trees with operation patterns does not take into account the available ILP in the ISA.

Hence, the instruction selection algorithm takes the data flow graphs as input, keeps track of the set of

all alternatives (both operation and instruction patterns that are possible), and then uses constraint logic

programming to arrive at a cover. In addition, the authors incorporate support for single instruction mul-

tiple data (SIMD)-style operations where an SIMD operation is a set of independent identical operations

operating on separate virtual subregisters of a register.

In CodeSyn, Paulin et al. use a hierarchical tree-like representation of the operations in the ISA to cover

a control and data flow graph (CDFG) [43, 44]. If an operation in the tree does not match, the search space

for the matching patterns is reduced by pruning the hierarchical tree at the operation node. Once all the

matching tree patterns are found, dynamic programming is used to select the cover of the CDFG.

Van Praet et al. use their instruction set graph (ISG) model of the target architecture, along with the

control and data flow graph representation of the program, in a branch-and-bound–based instruction

selection algorithm in the CHESS compiler [25, 47]. The ISG is a mixed model of structural and behavioral

models that captures the connectivity, ILP, and constraints of the target processor. CHESS also performs

instruction selection on the program DAG by covering the DAG with patterns called bundles. Bundles are

partial instructions in the target processor that are generated dynamically for a DAG from the ISG when

required. This is a key difference between other techniques that statically determine all possible bundles.

Initially nodes in the DAG may be covered by more than one bundle that is then reduced to the minimum

number of bundles required to cover the DAG by a branch-and-bound strategy.

In addition, there are systems that solve multiple code generation problems in a combined manner.

Hanono and Devadas provide a branch-and-bound–based solution for performing instruction selection

and partial register allocation in a parallelism-aware manner on DAGs [21]. At the core of this method

is the split-node DAG representation of the program DAG. The split-node DAG is used to represent the
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program DAG with the set of all alternatives available for the nodes in the program DAG along with

the corresponding data transfers. The algorithm then searches for a low-cost solution with the maximal

parallelism among nodes in the split-node DAG while looking for the minimal number of instructions that

cover the program DAG, on which graph-coloring-based register allocation is then performed. The valid

operations, instructions, and various constraints of the ISA are represented using the “ISDL” description.

Novack et al. developed the mutation scheduling framework, which is a unified method to perform

instruction selection, register allocation, and scheduling [40, 41]. This is achieved by defining a mutation

set for each expression generating a value. The mutation set keeps track of all the possible machine-

dependent methods of implementing an expression, and this set is dynamically updated as scheduling is

performed. For example, the references to a value depend on the register or memory assigned to it, and the

expression that records this information is added into the corresponding mutation set. During scheduling,

an expression used to implement the corresponding value may be changed to better adapt to the processor

resource constraints by replacing it with another expression in the mutation set.

Wilson et al. provide a linear programming–based integrated solution that performs instruction se-

lection, register allocation, and code scheduling on a DFG [65]. Wess provides another code generation

technique based on trellis diagrams, an alternate form of representing instructions [63]. For more work

in code generation, readers are referred to [9, 22, 24, 33, 36, 39, 46, 48, 51, 55].

18.5.2 Offset Assignment Problem

As stated in Section 18.2, DSPs provide special ARs, various addressing modes, and address generation

units. The address generation units are used by auto-increment or auto-decrement arithmetic operations,

which operate on ARs used in memory accesses. The offset assignment (OA) problem addresses the issue of

finding an ordering of variables within a memory bank that can reduce the amount of address computation

code to a minimum by optimally utilizing the auto-increment and auto-decrement feature. This is shown

in the example in Figure 18.9 taken from [35, 58]. Figures 18.10b and 18.10d show the simple OA (SOA)

optimized code sequence and the SOA unoptimized code sequence, respectively, for the piece of code

in Figure 18.9a. Five additional address modification operations are needed by the unoptimized version

that places variables in the order in which they are accessed in the code. Whereas SOA addresses the offset

assignment problem with one AR and increments and decrements by 1, the multiple AR and the l increment

and decrement variant are addressed by general offset assignment (GOA) and l-SOA, respectively.

The following sequence of steps summarizes the work done by Liao et al. to solve the SOA problem at

the basic block level [35]:

� For the sequence of arithmetic computations shown in Figure 18.9a, the first step in SOA is to

construct the access sequence shown in Figure 18.9b. This is done by adding the source variables

in each operation, from left to right, to the access sequence followed by the destination operand to

the access.
� The next step is the construction of the access graph shown in Figure 18.9c. Each vertex in this

graph corresponds to a variable in the access sequence. An edge with weight w exists between two

c = a + b;
f = d + e;
a = a + d;
c = d + a;

d = d + f + a;

(a)

abcdefadadacdfad

(b)

1

1

1

1

1

1
5

2

2

a f

b e

c d

(c)

FIGURE 18.9 (a) Code sequence; (b) access sequence; (c) access graph [35].
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MOV AR, &a

LD [AR] ; (a)

AR -= 3

LD [AR]++ ; (b)

c = a + b

ST [AR]++ ; (c)

LD [AR] ; (d)

AR += 3

LD [AR]-- ; (e)

f = d + e

ST [AR]-- ; (f)

LD [AR]-- ; (a)

LD [AR]++ ; (d)

a = a + d

ST [AR]-- ; (a)

LD [AR]++ ; (d)

LD [AR] ; (a)

c = d + a

AR -= 2

ST [AR]++ ; (c)

LD [AR] ; (d)

AR += 2

LD [AR]-- ; (f)

d = d + f

LD [AR]-- ; (a)

d = d + a

ST [AR] ; (d)

b (0)

c (1)

d (2)

a (3) - AR

f (4)

e (5)

a (0) - AR

b (1)

c (2)

d (3)

e (4)

f (5)

MOV AR, &a

LD [AR]++ ; (a)

LD [AR]++ ; (b)

c = a + b

ST [AR]++ ; (c)

LD [AR]++ ; (d)

LD [AR]++ ; (e)

f = d + e

ST [AR] ; (f)

AR -= 5

LD [AR] ; (a)

AR += 3

LD [AR] ; (d)

a = a + d

AR -= 3

ST [AR] ; (a)

AR += 3

LD [AR] ; (d)

AR -= 3

LD [AR] ; (a)

c = d + a

AR += 2

ST [AR]++ ; (c)

LD [AR] ; (d)

AR += 2

LD [AR] ; (f)

d = d + f

AR -= 5

LD [AR] ; (a)

d = d + a

AR += 3

ST [AR] ; (d)

(a)

(b)

(c)

(d)

FIGURE 18.10 (a) Optimized memory placement; (b) optimized code sequence; (c) unoptimized memory place-

ment; (d) unoptimized code sequence.

vertices if and only if the corresponding two variables are adjacent to each other w times in the

access sequence.
� From the access graph, the cost of an assignment is equal to the sum of the weights of all edges

connecting pairs of vertices that are not assigned adjacent locations in memory. Hence, the variables

should be assigned memory locations in such a way that the sum of the weights of all edges connect-

ing variables not assigned contiguous locations in memory is minimized. Liao et al. have shown

that this problem is equivalent to finding the maximum-weighted path covering (MWPC) of the

access graph [35]. Because MWPC is NP-hard, heuristics are used to find a good assignment of

variables to memory locations. In Figure 18.9c, the dark edges form an MWPC of the access graph

with a cost of 4. Figure 18.10a shows the memory placement using the SOA path cover shown in

Figure 18.9c and the consequent pseudo-assembly for a data-path like the one shown in Figure 18.8a.

Additional optimizations such as memory propagation can be applied to the pseudo-assembly to

prevent some unnecessary loads and stores. The heuristic given by Liao et al. to find the MWPC

is a greedy approach that looks at the edges in the access graph in decreasing order of weight and

adds an edge to the cover if it does not form a cycle with the edges already in the cover and if it does

not increase the degree of a node in the cover to more than 2.
� A heuristic to solve the GOA problem with k address registers based on the SOA problem was also

provided by Liao. This heuristic recursively partitions the accessed variables into two partitions,

solves the simple assignment problem on each partition, and then decides to either partition further

or return the current partition based on the costs of each assignment. The total number of partitions

generated is dependent on the number of address registers k in the architecture.

In the presence of control flow, the exact access sequence in a procedure can be known only during

execution time. To perform offset assignment optimization at the procedure level instead of at the basic

block level, the access graphs of the basic blocks are merged with equal weighting and the variables
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connected by control flow edges. After including the increments and decrements for each basic block, a

separate phase decides whether to include an increment or a decrement across basic blocks.

Bartley was the first to address the SOA problem [8]. Leupers and Marwedel have also addressed the SOA

problem [31]. Their work includes an improvement to the MWPC heuristic by introducing a tie-breaking

function when the MWPC heuristic is faced with edges of equal weights and another heuristic to partition

the vertices of the access graph for the GOA problem.

Sudarsanam et al. address the issue of an l-SOA problem that corresponds to the case with one AR and

an offset of +/- l and the l, k-GOA problem with k address registers and a maximum offset of l [57]. In this

work, the authors note that with an offset of more than 1, some of the edges in the access graph but not in

the MWPC cover do not contribute to the cost of the cover. To identify these edges, called induced edges,

they define an induced (l + 1) clique of a cover C of the access graph G . Intuitively, if there is a path P

of length l in G , then using the free 1-l auto-increment and auto-decrement feature, it is possible to cover

every edge that is a part of the complete subgraph induced by the (l + 1) vertices of the path P in cover C

on G . Hence, edges in G that are induced by a cover C are called induced edges; the sum of the weights

of all edges in C and the edges induced by C is defined as the induced weight; the sum of the weights

of all edges that are in G but are neither in C nor in the induced edges of C is defined as the l-induced

cost of C . The l-SOA problem now reduces to finding a cover of an access graph G with the minimum

l-induced cost. They define the (k, l)-GOA problem as given an access sequence L for a set of variables V

and partition V into at most k partitions so that the total sum of the induced cost of each l-SOA and the

associated setup costs is minimized. Other work in OA includes [29, 60, 64].

18.5.3 Reference Allocation

The DSP compiler phases of memory bank allocation and register allocation together constitute reference

allocation. Memory bank allocation is performed to exploit the ILP between arithmetic operations and

memory operations and between memory operations themselves. The register allocator is similar to the

general-purpose register allocator that decides which variables should be assigned to registers and to

which register each variable should be assigned. As described in Section 18.3, DSPs can have numerous

operand and operation constraints that directly affect reference allocation. A general technique developed

by Sudarsanam and Malik for reference allocation is presented here [58]. This is a simulated annealing-

based technique that simultaneously performs memory bank allocation and register allocation phases

while taking into account various constraints similar to those described in Section 18.3. The assumptions

made by this technique include statically allocating all static and global variables to one memory bank

and only compiling applications that are nonrecursive in nature. Also, the reference allocation technique

described is performed after code compaction or scheduling.

The first step of the algorithm is to generate the constraint graph. The constraint graph has a vertex for

each symbolic register and variable. The problem of reference allocation is then transformed to a graph-

labeling problem where every vertex representing a symbolic register must be labeled with a physical

register and every vertex representing a variable must be labeled with a memory bank. The different

types of constraint-weighted edges, where the weight corresponds to the penalty of not satisfying the

constraint, are:

� A red edge is added between two symbolic registers if and only if they are simultaneously live [2].

The only exception to adding this edge is between two symbolic registers that are accessed in the

same instruction by two memory operations. In this case, another type of edge ensures correctness.

This edge ensures that the two symbolic registers connected by the edge are not assigned the same

physical register. The cost of this edge is the amount of spill code that needs to be inserted if this

constraint is violated. In the algorithm, this cost is assumed to be a large constant that significantly

reduces the chances of assigning two symbolic registers the same architectural register. Hence, the

algorithm does not compute the spill cost for each symbolic register.
� A green edge is added between two symbolic registers accessed by parallel memory operations to

take into account any constraints that may exist between them. For example, for the instruction
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“MOV vari , reg j MOV vark regl ,” a green edge would be added in the constraint graph between

the vertices corresponding to reg j and regl to take care of any register constraints between the

two symbolic registers. If a restriction exists on the two variables vari and vark concerning the

memory banks to which they can be allocated, this is captured by a pointer to vari and vark from

reg j and regl , respectively. The cost of this edge is the statically estimated instruction execution

count because the two operations have to be issued in separate instructions if this constraint is not

satisfied.
� Similar to green edges, blue, brown, and yellow edges are added to the constraint graph with appro-

priate costs to represent constraints between parallel memory and register transfer operations. Blue

edges are added for instructions involving a register transfer and a load operation. Brown edges are

added for instructions involving an immediate load and a register transfer. Yellow edges are added

for instructions involving a register transfer and a store operation.
� A black edge is added to represent operand constraints within an operation. These edges are added

between symbolic registers and global vertices, which correspond to the register set of the DSP

architecture. A black edge prevents the assignment of a symbolic register to the architectural register

that it connects, because of the encodings of the ISA. Each black edge has an infinite cost because an

unsatisfied black edge constraint is not supported by the hardware. For example, the accumulator

cannot be a destination operand of load operations in the processor data-path shown in Figure 18.9a,

so black edges would be added between symbolic registers representing the destination operands

of load operations and the global vertex representing the accumulator.

Once the constraint graph has been constructed, the reference allocation algorithm uses simulated

annealing to arrive at a low-cost labeling of the constraint graph. The authors reported that a greedy

solution implemented to solve the constraint graph produced results very close to those produced by the

simulated annealing algorithm [58]. The problem, however, with this approach is that for more varieties of

constraints between operands, more complex formulations and additional colored edges would be needed.

Saghir et al. developed an algorithm to exploit the dual memory banks in DSPs using compaction-based

partitioning and partial data duplication [52, 53]. In this method, an interference graph is constructed

for each basic block, with the variables accessed in the program as vertices, and an edge is added between

every pair of memory operations that can be legally performed, based on both the ISA and the data

flow in the program. The edges are labeled with a cost that signifies the performance penalty if the

corresponding two variables are not accessed simultaneously. The interference graph is then partitioned

into two sets corresponding to the two memory banks such that the overall cost is minimum. During the

interference graph construction, memory operations accessing the same variables and locations may be

marked for duplication; these are placed in both memory banks, and operations to preserve data integrity

are inserted.

For more work on reference allocation, readers are referred to [23, 45, 62].

18.5.4 Register Allocation for Irregular Operand Constraints

Register allocation is an important phase in compilation for DSPs. Most compiler optimizations that work

on the IR generate new temporaries assuming that they can be assigned to machine registers without any

penalty. A poor register allocator can undo the effects of the prior optimization phases and weaken the

performance of the compiled code, as register allocation can affect both code size and performance. Some

of the challenges posed by nonorthogonal instruction sets were presented in Section 18.3. This section

presents an adaptation of the integer linear programming–based register allocation technique developed

by Appel and George to handle such irregular constraints [3].

While integer linear program is NP-complete, this technique has several advantages compared to

the technique presented in Section 18.5.3. The integer linear programming–based works by Appel and

George [3] and by George and Matthias [19] have been shown to work well under various constraints.

The model provides for flexibility, that is, the integer linear programming part of the allocator can be used
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ADD v1 <– v2 + v3

…

SUB v5 <– v5 – 1

BEQ v5, 0

SUB v4 <– v2–v1

…

p1

p2

p3

p4

p5

p6

p7

p8

Set examples

Exists : (p2,v1), (p4,v5), (p6,v1) …

Copy : (p5,p6,v1) …

Define : (p3,p4,v5), (p1,p2,v1) …

Use : (p6,p7,v1), (p3,p4,v5) …

Branch : p5 …

FIGURE 18.11 An integer linear program–based modeling example.

only to decide if a temporary should be in a register or memory at a program location, and it can decide

which register the temporary should reside in. AMPL [15] is used to develop the integer linear program.

AMPL provides a clean separation between the allocation model, which is highly architecture dependent,

and the program data, which are dependent on the application program. This is a huge bonus in ease of

implementation and reuse of models. The AMPL representation is compact and easy to read, debug, and

retarget. The flexibility provided by “AMPL” to choose solvers is also an important feature.

The original allocator works in two parts, using integer linear programming to decide which temporaries

are to reside in registers and which ones in memory at each program point, followed by a graph-coloring-

based assignment. The integer linear program model primarily works out of two sets of data, namely, the set

of all program points P and the set of all temporaries V . Figure 18.11 shows a code-snippet with basic blocks,

the set of program points p1, p2, . . . , p8, and some temporaries v1, v2, . . . , v5. The set of register allocation

constraints are captured as tuples in the model. In the set of Exists of tuples ( p j , vi ), p j ∈ P , vi ∈ V , each

tuple (p j , vi ) represents the fact that temporary v j either is live at program point pi or was defined in an

operation just prior to program point p j . Copy, a set of tuples of the form ( p j , pk , vi ), vi ∈ V ; p j , pk ∈ P ,

where p j and pk are adjacent program points, specifies that vi is unchanged from p j to pk . Branch is a

set of all the program points pi ∈ P that are immediately after a branch operation. In addition, there are

several sets of tuples of the form ( p j , pk , v1, v2, . . . , vn), v1, v2, . . . , vn ∈ V ; p j , pk ∈ P . For example, the

set of all tuples (p j , pk , vi ) denotes that vi is used (similarly for defined) at an operation between points

p j and pk .

A key point about this model is that at each program point a temporary can be live only in a register or

memory, but not both. To capture this information, a set of four integer linear program variables is used

for each v that exists at each p with the following interpretation, shown pictorially in Figure 18.12.

� r( p,v) = 1 implies v is live in a register before and after p.
� s( p,v) = 1 implies v is live in a register before p and spilled to memory between the operation before

p and p.
� l( p,v) = 1 implies v is live in memory before p and loaded into a machine register after p.
� m( p,v) = 1 implies v is live in memory before and after p.
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reg

reg

r(pj, vi)

reg

mem

s(pj, vi)

mem

reg

l(pj, vi)

mem

mem

m(pj, vi)

pj pj pj pj

FIGURE 18.12 Storage assignment possibilities for vi at program point p j where it is live.

Given the definition of the variables and using the constraint sets, the set of equations can be written

for register allocation as follows:

� ∀(p, v) ∈ Exists,

l( p,v) + s( p,v) + r( p,v) + m( p,v) = 1
� ∀(pi , p j , vi ) ∈ Copy,

l( p j ,vi ) + r( p j ,vi ) = r( pk ,vi ) + s( pk ,vi )

∀(p j , pk , vi ) ∈ Copy,

s( p j ,vi ) + m(p j ,vi ) = m( pk ,vi ) + l( pk ,vi )

� ∀(p j , pk , vi ) ∈ Defined,

s( pk ,vi ) + r( pk ,vi ) = 1

Similar equations can be written for temporaries that are used, and so on. It must be noted that

there can be no spill code immediately after branch operations, and hence there are equations

enforcing that condition.
� Equations governing the number of machine registers at each program point. This can vary, for

example, because of parameter passing registers or caller/callee save registers being used up at

certain points in the program.

A simple objective that can be used for the integer linear program would be to minimize the number of

loads and stores, but more complex functions can be easily incorporated. The solution of the integer linear

program does not guarantee a valid coloring in the graph coloring phase since a temporary can interfere

with more temporaries than the number of registers in the overall interference graph (though not at a

program point). Appel and George use a combination of splitting live ranges, optimistic coalescing, and

special x86 instructions to address this issue [3].

In the presence of irregular constraints, integer linear programming can also be used to assign the

registers to temporaries by identifying the set of valid register assignments at each program point. Note

that the set of valid registers can be different for a given temporary at different program points depending

upon the context due to the nature of irregular operand constraints mentioned in Section 18.3.2. Other

constraints such as register-pairs (for example, overlapping double and float registers) and temporary-

pairs (constraints relating pairs of temporaries) can be incorporated into the model via simple extensions.

The equations can be augmented to reflect the fact that a machine register can be assigned to only one

temporary at each program point, and each temporary inturn can be assigned to only one machine register

at each program point.

The primary restriction of the integer linear program model presented here is that a temporary can be

in either register or memory at a program point, but not in both. This can be relaxed by including more

variables at each program point. For example, by using six variables instead of four with the following

interpretation, the quality of allocation can possibly be improved upon:
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� r( p,v) = 1 implies v is live only in a register before and after p.
� s( p,v) = 1 implies v is live only in a register before p and only in memory after p.
� l( p,v) = 1 implies v is live only in memory before p and live in both register and memory after p.
� m( p,v) = 1 implies v is live only in memory before and after p.
� k( p,v) = 1 implies v is live in register and memory before p and only in memory after p.
� b( p,v) = 1 implies v is live in register and memory before and after p.

Similarly, more variables can be meaningfully incorporated into this model to potentially improve the

quality of results, but at the cost of increased total number of variables for a program.

For more work on register allocation, readers are referred to Chapter 21.

18.5.5 Irregular ILP Constraints

Pressures to reduce code size and yet meet the power and execution time constraints of embedded ap-

plications often force designers to design processors, such as DSPs, with irregular architectures. As a

consequence, DSPs are designed with small instruction widths and nonorthogonal opcode and operand

encodings. This poses several problems to a compiler as illustrated in Section 18.3. In this section, the

artificial resource allocation (ARA) algorithm for the operation ILP problem developed by Rajagopalan

et al. is described [49, 50]. Conventional VLIW compilers use a reservation table–based scheduler that

keeps track of the processor’s resource usage as operations are scheduled. One of the highlights of the ARA

algorithm is to allow compilers for irregular DSP architectures to use processor-independent table-based

schedulers instead of writing processor-specific schedulers. This is achieved by transforming the set of

irregular operation ILP constraints to a set of artificial regular constraints that can subsequently be used

by conventional VLIW schedulers.

The ARA algorithm takes as input the set of all possible combinations of operations that can be issued in

parallel and produces as output an augmented resource usage of the MD such that the following constraints

are satisfied:

Constraint 1: Every pair of operations that cannot be issued in parallel must share an artificial resource.

Constraint 2: Every pair of operations that can be issued in parallel must not share a resource.

Constraint 3: The total number of artificial resources generated must be minimum. This condition is

used to reduce the size of the reservation table and potentially the scheduler time.

The ARA algorithm is explained next with an example from the Fujitsu Hiperion DSP ISA, as shown in

Figure 18.13 taken from [49]:

� The first step of the ARA algorithm is construction of a compatibility graph G . A vertex in the

compatibility graph corresponds to an operation in the ISA. An edge exists between two vertices

only if the two corresponding operations can be performed in parallel. For example, in Figure 18.13

there are five vertices in the compatibility graph, one each for Add, Shift, Multiply, and two Loads.

v3: MPY(C1)

v4: LOAD2
(C2)

v5: SFT
(C1,C2)

v1: ADD
(C1,C2)

v2: LOAD1
(C3)

Ops that can be issued
in parallel in this
example
SFT LOAD
ADD LOAD
MPY LOAD LOAD

FIGURE 18.13 ARA algorithm applied to a subset of Hiperion ISA [49].
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The parallel combinations shown in the right of Figure 18.13 are captured by the straight-line edges

in the compatibility graph.
� The complement G ′ of the compatibility graph shown in dotted lines in Figure 18.13 is then con-

structed. An edge between two vertices in G ′ implies that the two operations cannot be performed

in parallel. An immediate solution that follows is to assign an artificial resource to each edge in

G ′. Because this solution can cause the size of the reservation table to grow significantly, a better

solution is obtained in the next step.
� The minimum number of artificial resources needed to satisfy the operation ILP constraints is

obtained by performing the minimum edge clique cover on G ′ [50]. The problem of finding

the minimum edge clique cover on G ′ is first converted to an equivalent problem of finding the

minimum vertex clique cover on graph G 1. G 1 is obtained from G ′ as follows. A vertex in G 1

corresponds to an edge in G ′, and an edge exists between two vertices in G 1 if and only if the

vertices connected by the corresponding edges in G ′ form a clique. Hence, a vertex clique cover of

G 1 identifies larger cliques in G . This problem in turn is transformed to graph coloring [17] on

the complement of G 1. In the Figure 18.13 example, three cliques, C1, C2, and C3, are required to

obtain the minimum edge clique cover.
� The final step in the ARA algorithm translates the result of the minimum edge clique cover algorithm

into the resource usage section of the processor machine description.

The advantages of using this algorithm are that it is a highly retargetable solution to the operation ILP

problem and it helps avoid processor-specific schedulers when such irregular constraints exist. Eichenberger

and Davidson have provided techniques to compact the size of machine descriptions of general-purpose

processors [14]. Gyllenhaal and Hwu provided methods to optimize not only the size of the MDs but also

the improvement of the efficiency of queries [20]. For more work on MDs, readers are referred to the

chapter 16 of this handbook.

18.5.6 Array Reference Allocation

The ISA of DSPs provides special address-modifying instructions that update address registers used by

memory operations. Because many signal processing applications contain kernels that operate on arrays,

one of the most important DSP optimizations is to assign ARs to array references so that a majority of the

address computation operations can be replaced by auto-increment and auto-decrement address modifying

operations that are free. This can significantly affect the static code size and the dynamic performance of

the assembly code because address computation for successive memory operations is performed in parallel

with current memory operations. In this section, the array reference allocation algorithm developed by

Araujo and others is described [12, 42, 49].

Global reference allocation (GRA) is the problem of allocating ARs to array references such that the

number of simultaneously live ARs is kept below the maximum number of such registers available in the

processor, and the number of instructions required to update them is minimized. The local version of

this problem, called local reference allocation (LRA), has all references restricted to basic block boundaries.

There are known efficient graph-based solutions for LRA [18, 28]. Araujo et al. proposed a solution for

optimizing array references within loops based on an index graph structure [6]. The index graph is

constructed as follows. A vertex exists for each array access in the loop. An edge exists between two accesses

only if the indexing distance between the two accesses is less than the limit of the auto-increment and auto-

decrement limit in hardware. The array reference allocation problem then deals with finding the disjoint

path cycle cover that minimizes the number of paths and cycles. This is similar to the offset assignment

algorithm explained in Section 18.5.2.

Whereas general-purpose register allocation concerns itself with allocating a fixed set of general-purpose

registers to a potentially much larger set of virtual registers in the program, reference allocation pertains

to assigning a fixed set of address registers to the various memory access references in the program. When

two virtual registers are assigned the same general register, it is the allocator’s responsibility to insert the
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appropriate spill code (store to memory and load from memory). Similarly, when reference allocation

combines two references using a single address register, it is the reference allocator’s responsibility to insert

appropriate update operations.

In the GRA algorithm developed by Cintra and Araujo called live range growth (LRG), to assign ARs

to array references [12], the set of array reference ranges is first initialized to all the independent array

references in the program. The next step involves reducing the number of array reference ranges in the

program to the number of ARs in the processor. This involves combining array reference ranges and at

the same time minimizing the number of reference update operations. To quantify the cost of combining

reference ranges, the notion of an indexing distance is defined as follows:

Definition 18.1 Let a and b be array references and s be the increment of the loop containing these

references. Let index(a) be a function that returns the subscript expression of reference a. The indexing

distance between a and b is the positive integer:

d(a , b) =

{

|index(b) − index(a)| if a < b

|index(b) − index(a) + s | if a > b

where a < b (a > b) if a (b) precedes b (a) in the schedule order.

An update operation is required when combining two reference ranges whenever the indexing distance

is greater (less) than the maximum (minimum) allowed automatic increment (decrement) value. Hence,

the cost of combining two ranges is the number of update instructions that need to be inserted. This is

shown in the example in Figure 18.14b taken from [49], where the two live ranges R and S in Figure 18.14a,

with an indexing distance of 1, have been merged into a single live range. To maintain correctness, necessary

address register update operations have been inserted both within basic blocks and along the appropriate

control flow edges.

To facilitate the computation of the indexing distances, an important requirement is that the references

in the control flow graph are in single reference form [12], a variation of static single assignment (SSA)

form [13].

Although GRA is a typical DSP optimization, it is implemented along with machine-independent

optimizations. It is performed before most of the classical optimizations because techniques such as

common subexpression elimination may destroy some opportunities for applying GRA.

A[i]++

A[i-1]

A[i+1]--

A[i]++

A[i+1]

A[i-1]++

A[i]--

A[i+1]

A[i-1]

R S

A[i]--

A[i-1]

A[i+1]--

A[i]++

A[i+1]

A[i-1]++

A[i]++

A[i+1]

A[i-1]

AR+=2

AR+=2

AR–=1

(a) (b)

FIGURE 18.14 (a) Two array reference live ranges, R, S; (b) after merging live ranges R and S into a single live

range [49].
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Leupers, Basu, and Marwedel have proposed an optimal algorithm for AR allocation to array references

in loops [28]. Liem, Paulin, and Jerraya have developed an array reference analysis tool that takes, as input,

the C program with array references and the address resources of the hardware and produces an equivalent

C program output in which the array references have been converted to optimized pointer references for

the given hardware [37].

18.5.7 Addressing Modes

18.5.7.1 Paged Absolute Addressing

A consequence of reducing instruction width to reduce static code size, as noted in Section 18.2, is that

memory operations using absolute addressing mode (i.e., using a physical address of memory location)

to access data have to be encoded in more than one instruction word. To overcome this extra word

penalty and potentially an extra cycle penalty, architectures such as the TI TMS320C25 [61] feature a

paged absolute addressing mode. In these architectures, a single data memory space is partitioned into

N nonoverlapping pages numbered 0 through N − 1, and a special page pointer register is dedicated

to storing the ordinal of the page that is currently accessed. The absolute address can then be specified

by loading the page pointer register with the appropriate page number and specifying the offset within

the page in the memory operation. This can save instruction memory words and reduce execution time

for a sequence of memory operations accessing the same page. In addition, because a machine register is

used instead of ARs or general-purpose registers, a better register assignment of the program code is also

possible. Because DSP programs are nonrecursive in nature, the automatic variables are statically allocated

in memory to exploit absolute addressing and relieve address registers. In this section, some optimizations

developed by Sudarsanam et al. to exploit absolute paged addressing modes are described [59].

The LDPK operation is used in the TI TMS320C25 DSP to load the page pointer register. To justify the

use of absolute addressing for automatic variables, the LDPK operation overhead should be minimum.

Hence, this algorithm tries to reduce the number of LDPK operations using data flow analysis [2]. The

main steps in this algorithm are as follows:

� Assuming that code is generated on a per basic block basis, the algorithm conservatively assumes

that the first operation to use absolute addressing in each basic block should be preceded by an

LDPK operation.
� Another conservative assumption is that the value of the page pointer register is not preserved

across procedure calls and hence must be restored after each procedure call.
� An LDPK operation can be suppressed before an operation using absolute addressing if the new

value of the page pointer register is the same as the current value of the page pointer register.
� By using data flow analysis [2] on the assembly code, the set of unnecessary LDPK operations are

determined across basic blocks. For each basic block B and page pointer register DP, three variables

are used: IN(B), which holds the value of DP at the entry of B; OUT(B), which holds the value of

DP at the exit of B; and LAST(B), which holds the ordinal of the last referenced page in B.
� A global data flow analysis described here is then performed to identify the redundant LDPK

operations. While traversing B in reverse order, LAST(B) is assigned the value UNKNOWN after a

procedure call and prior to an LDPK operation. LAST(B) is assigned the ordinal of the last LDPK

operation prior to a procedure call while traversing B. Finally, LAST(B) is assigned PROPAGATE if

neither an LDPK operation nor a procedure call is encountered after the traversal of B.
� For each basic block, B, IN(B) is computed as the intersection of all OUT sets of its predecessors.

If the intersection is empty, IN(B) is assigned UNKNOWN. If LAST(B) is PROPAGATE, OUT(B)

is set as IN(B); otherwise OUT(B) is set as LAST(B).
� The previous step is repeated when there is a change in OUT sets.
� After computing the data flow variables for each basic block, if the first LDPK operation of a basic

block B is not preceded by a procedure call, then it can be removed if the ordinal of the LDPK

operation is the same as IN(B).
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An extension of this algorithm for interprocedural optimization was also provided by Sudarsanam et al.

[59]. Lin provides a simple postpass algorithm that removes redundant LDPK instructions within basic

blocks, assuming that an LDPK is generated for each access of a statically allocated variable [38].

18.6 Summary

DSPs are a significant fraction of the processor market and, in particular, low-cost embedded DSPs are

in a wide variety of products and applications of daily use. Hence, it is important not only to design

the necessary tools to program these processors but also to develop tools that can help in an automatic

cooperative synthesis of both the architecture and the associated software tool-set for a given set of

applications. A first step in this direction is the design of a highly reusable and retargetable compiler for

DSPs. In this chapter, DSP architectures were first classified into two classes: FOW DSPs and VOW DSPs.

Although DSPs in the former category are more regular with orthogonal instruction sets, the ones in

the latter category are the low-end processors with highly optimized irregular architectures. VOW DSPs

are also more cost sensitive and require special algorithms to exploit their hardware features and thus

are the focus of this chapter. Sections 18.2 and 18.3 explain the consequences of a VOW-based design

and point out the nature of constraints that a DSP compiler must solve. In Section 18.4, retargetable

compilation is classified into three categories: automatic retargetability, user retargetability, and developer

retargetability, depending on the level of automation, the level of user interaction in retargeting, and the

level of architecture coverage provided by the compiler framework. Retargetability is a key factor in design

automation and reduction of time to market. A potential approach for retargetable compiler development

is also presented along with some qualitative measures.

Finally, in Section 18.5, some DSP architecture–specific issues that a compiler framework developer

must solve to achieve a high level of retargetability and good efficiency were discussed. Some of the

common DSP optimizations that have been developed were presented. In addition to the architecture

constraints described, new features are available such as media operations that usually pack multiple

identical operations into a single operation operating on smaller bit-width operands. Hence, DSP compiler

frameworks also need to be extensible in that it should be easy to add new architectural features and new

algorithms to exploit such features to the framework.
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19.1 Introduction

Ever since the advent of reduced instruction set computers (RISC) [67, 122] and their pipelined execution

of instructions, instruction scheduling techniques have gained importance as they rearrange instructions

to “cover” the delay or latency that is required between an instruction and its dependent successor. Without

such reordering, pipelines would stall, resulting in wasted processor cycles. Pipeline stalls would also occur

while executing control transfer instructions, such as branch and jump instructions. In architectures that

support delayed branching, where the control transfers are effected in a delayed manner [68], instruction

reordering is again useful to cover the stall cycles with useful instructions. Instruction scheduling can be

limited to a single basic block — a region of straight line code with a single point of entry and a single

point of exit, separated by decision points and merge points [3, 73, 107] — or to multiple basic blocks.

The former is referred as basic block scheduling, and the latter as global scheduling [3, 73, 107].

19-1
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A significant amount of research conducted in industry and academia has resulted in processors that

issue multiple instructions per cycle and hence exploit instruction-level parallelism (ILP) [132]. Exploiting

ILP has lent itself as a viable approach for providing continuously increasing performance without having

to rewrite applications. ILP processors have been classified into two broad categories, namely VLIW (very

long instruction word) processors [32, 46, 136] and superscalar processors [77, 150, 151] depending on

whether the parallelism is exposed at compile time or at runtime by dynamic instruction scheduling hard-

ware. In VLIW machines, a compiler identifies independent instructions and communicates them to the

hardware by packing them in a single long word instruction. At runtime, a long word instruction is fetched

and decoded, and the independent instructions in it are executed in parallel in the multiple functional

units available in the VLIW architecture. In a superscalar machine, however, a complex hardware iden-

tifies independent instructions and issues them in parallel at runtime. The explicitly parallel instruction

computing (EPIC) architecture is a variant of the VLIW architecture where the compiler identifies and

exposes independent instructions to the hardware [143, 145].

Multiple instruction issue per cycle has become a common feature in modern processors (see, e.g.,

[70, 82, 114, 145, 175]). The success of ILP processors has placed even more pressure on instruction

scheduling methods, as exposing instruction-level parallelism is the key to the performance of ILP pro-

cessors. Instruction scheduling can be done by hardware at runtime [68, 151] or by software at compile

time [52, 66, 89, 132, 170]. In this discussion, we concentrate on compile-time instruction scheduling

methods. Such compile-time instruction scheduling is solely responsible for exposing and exploiting the

parallelism available in a program in a VLIW architecture. Thus, without the instruction scheduler, the

(early) VLIW processors could not have achieved an ILP of 7 to 14 operations that they are capable of

issuing in a cycle [32, 136].

In superscalar processors, instruction scheduling hardware determines at runtime the independent

instructions that can be issued in parallel. However, the scope of the runtime scheduler is limited to a

narrow window of 16 or 32 instructions [151]. Hence, compile-time techniques may be needed to expose

parallelism beyond this window size. Furthermore, in a certain class of superscalar processors, namely the

in-order issue processors [68, 151], instructions are issued in program order. Hence, when an instruction

is stalled because of a data dependence, instructions beyond the stalled one are also stalled. Instruction

scheduling can be beneficially applied for these in-order issue architectures to rearrange instructions and

hence exploit higher ILP. Thus, even superscalar processors can benefit from the parallelism exposed by a

compile-time scheduler.

Instruction scheduling methods for basic blocks may result in a moderate improvement (less than 5

to 10%) in performance, in terms of the execution time of a schedule, for simple pipelined RISC archi-

tectures [66]. However, the performance improvement achieved for multiple instruction issue processors

could be significant (more than 20 to 50%) [102]. Instruction scheduling beyond basic blocks can achieve

even higher performance improvement, ranging from 50 to 300% [73, 74, 100].

Instruction scheduling is typically performed after machine-independent optimizations, such as copy

propagation, common subexpression elimination, loop-invariant code motion, constant folding, dead-

code elimination, strength reduction, and control flow optimizations [3, 107]. Instruction scheduling is

performed either on the target machine’s assembly code or on a low-level code that is very close to the

machine’s assembly code. In certain implementations, instruction scheduling is performed after register

allocation — another important compiler optimization that determines which variables are stored in reg-

isters and which remain in memory. When instruction scheduling follows register allocation, it is referred

to as a Postpass scheduling approach [3, 107]. In the Prepass scheduling, or prescheduling, approach, instruc-

tion scheduling precedes register allocation. In Prepass scheduling, since register allocation is performed

subsequently, any code introduced as a result of register spills is not scheduled by the scheduler. Hence, in

Prepass scheduling, to handle the spill code, the instruction scheduler may be invoked again after register

allocation. Instruction scheduling and register phases influence each other, so the ordering between the

two phases in a compiler is an important issue. A number of methods integrate the two phases to produce

efficient register-allocated instruction schedules [16, 19, 54, 106, 115, 126].
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Early work on instruction scheduling related it to the problem of code compaction in microprogram-

ming [49]. This relationship between microprogram compaction and instruction scheduling has been

beneficially used in local or basic block scheduling. As pointed out in [132], this mindset remained a

serious obstacle to achieving good performance in global scheduling (instruction scheduling beyond basic

blocks) until trace scheduling [46] and other approaches were proposed. These latter approaches mini-

mize the execution time of the most likely trace or control path, rather than obtaining a compact schedule.

Furthermore, the similarities between job shop scheduling [30] and instruction scheduling were also well

understood. Instruction scheduling borrows a number of concepts and algorithms from scheduling theory.

Many of the theoretical results in instruction scheduling owe their origin to job scheduling.

It should be mentioned here that the objective of this chapter is more to provide an overview of in-

struction scheduling methods than to provide a comprehensive survey of all existing techniques. The

following section presents the necessary background. Simple scheduling methods for covering pipeline

delays are discussed in Section 19.3. Subsequently, we describe basic block instruction scheduling methods

for VLIW and superscalar processors in Section 19.4. Section 19.5 deals with global scheduling techniques.

In Section 19.6, phase ordering issues relating to instruction scheduling and register allocation are pre-

sented. Section 19.7 discusses recent research in instruction scheduling. Finally, we provide a concluding

summary in Section 19.8.

19.2 Background

In this section we review the relevant background. The following subsection presents a number of defini-

tions. In Section 19.2.2 we describe a representation for data dependences, used by instruction scheduling

methods, and its construction. Last, we discuss various performance metrics for instruction scheduling

methods in Section 19.2.3.

Before we proceed further, let us clarify the use of various notations in the programming examples. We

use t1 , t2 , and so on to represent temporaries or symbolic registers, and r1 , r2 , and so on to represent

(logical) registers assigned to temporaries. Symbols, such as x , y and a, b represent variables stored in

memory locations.

19.2.1 Definitions

Two instructions i1 and i2 are said to be data dependent on each other if they share a common operand

(register or memory operand), and the shared operand appears as a destination operand1 in at least one

of the instructions [3, 73, 107]. Consider the following sequence of instructions:

i1: r1 ← load (r2)
i2: r3 ← r1 + 4
i3: r1 ← r4 - r5

Instruction i2 has r1 as one of its source operands, which is written by i1 . This dependence from i1 to i2
is said to be a flow dependence or true data dependence. Thus, in any legal execution of the above sequence,

the operand read of register r1 in instruction i2 must take place after the result value of instruction i1 is

written. The dependence between instructions i2 and i3 due to register r1 is an anti-dependence. Here,

instruction i3 must write the result value in r1 only after i2 has read its operand from r1. Last, there is an

output-dependence between instructions i1 and i3 , where the order in which they write to the destination

must be the same as the program order (i.e., i1 before i3 ) for correct program behavior.

1If the shared operand appears as a source operand in both instructions, then there is an input-dependence between

the two instructions. Since an input-dependence does not constrain the execution order, we do not consider this any

further in our discussion.
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A data dependence could also arise through a memory operand. Detecting such a data dependence

accurately at compile time is hard, especially if the memory operands are accessed using indirect addressing

modes. The problem becomes harder in the presence of memory aliasing, where two or more variables

point to the same memory location. As a consequence, a conservative analysis of data dependence must

assume a true dependence from each previous store to every subsequent load instruction. For the same

reason, there is an anti-dependence from each load to every previous store instruction. Last, there is an

output-dependence from each store to all subsequent stores.

Anti- and output-dependences together are referred to as false dependences. These dependences arise

from the reuse of the same register variable or memory location. By appropriately renaming the destination

register of i3 , that is, using a different destination register, the anti- and output-dependences can be

eliminated. If the dependences are analyzed before register allocation, then the code sequence uses only

temporaries. Since there is no limit on the number of temporaries that can be used, anti- and output-

dependences on the temporaries do not normally occur. However, anti- and output-dependences on

memory variables accessed through load and store operations can still occur.

A basic block is a region of straight line code [3, 73, 107]. The execution control, also referred to as

control flow, enters a basic block at the beginning, that is, the first instruction in the basic block, and exits

at the end, that is, the last instruction. A control flow transfer or jump occurs from one program point to

another because of control transfer instructions such as branch, procedure call, and return.

The control flow in a program is represented by a control flow graph whose nodes represent basic blocks.

There is an arc between two blocks if a control transfer between them is possible. An instruction i is said

to be control dependent on a conditional branch instruction b (or the predicate associated with it) if the

outcome of the conditional branch determines whether or not instruction i is executed. For the sequence

b1: if (t1 > 0) goto i2
i1: t2 ← t3 + t4
i2: t2 ← t3 - t4

instructions use temporaries or symbolic registers. Instruction i1 is executed only if the condition associ-

ated with b1 evaluates to false. Thus, instruction i1 is control dependent on b1 , whereas instruction i2 ,

which is executed irrespective of what b1 evaluates to, is control independent.

Last, we informally define the notion of the live range of a variable or a temporary that is used in register

allocation. A variable or a temporary is said to be defined when it is assigned a value, that is, when the

variable or temporary is the destination of an instruction. A variable is said to be used when it appears

as a source operand in an instruction. The last use of a variable is a program point or instruction where

the variable is used for the last time in the program or used for the last time before it is redefined at a

subsequent program point. The live range of a variable starts from its definition point and ends at its

last use. A variable is said to be live during its live range. For the example code shown in Figure 19.1a,

t2

t1

t3

t4

t5

(a) Instruction Sequence (b) Live Ranges

i1 : t1 <-- ld x;

i2 : t2 <-- ld i

i5 : t5 <-- t3 * t4

i3 : t3 <-- t2 – 4 

i4 : t4 <-- t1 + t2

i6 : x <-- st t5 

FIGURE 19.1 An example code sequence and live ranges.
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the live ranges are depicted in Figure 19.1b. The temporary t2 is defined in instruction i2 , and its last

use is at i4 . Thus, the live range of t2 is from i2 to i4 . We follow the convention that the live range

ends just before the last use so that the last use instruction can reuse the same register as the destination

register.

When the live ranges of two variables do not overlap, they can share the same register. The number of

variables that are live simultaneously indicates the number of registers that would be required. Informally,

the number of simultaneously live variables is referred to as the register pressure at a given program point.

For our example, assuming that no other variable is live into this basic block, the number of simultaneously

live variables is three at instruction i3 . When the number of available registers is less than the number of

simultaneously live variables, the register allocation phase decides which variables or temporaries do not

reside in registers. Load and store instructions are introduced, respectively, to load these temporaries from

memory when necessary and spill them to memory locations subsequently. This is referred to as register

spills, and the load and store instructions are referred to as spill code.

19.2.2 Directed Acyclic Graph

The data dependence among instructions in an instruction sequence can be represented by means of a

dependence graph. The nodes of the dependence graph represent the instructions, and a directed edge

between a pair of nodes represents a data dependence. The dependence graph for instructions in a basic

block is acyclic. Such a dependence graph is termed a directed acyclic graph (DAG). In a DAG, node v

is said to be a successor or immediate successor of u if there exists an edge (u, v). Similarly, node u is the

predecessor (or immediate predecessor) of node v if there exists an edge (u, v) in the DAG. We use the

term descendents to refer to all nodes that can be reached from a node.

Next, let us discuss DAG construction for a basic block. A DAG can be constructed either in a forward

pass or in a backward pass of the basic block [152]. In a forward pass method, at each step a new node

corresponding to an instruction in the sequence is added to the graph. By comparing against all previous

instructions, the dependences among the instructions are determined, and appropriate dependence arcs

between the corresponding nodes are added. This approach requires O(n2) steps, where n is the number of

instructions. The dependences among instructions can also be determined using a table building approach

where a list of definitions and current uses is maintained [152]. The dependences checked for could be

through general-purpose registers (or temporaries), memory locations, and special-purpose registers such

as condition code registers.

Consider the example code given in Figure 19.2a. The DAG for this example code sequence is shown

in Figure 19.2b. (Often a DAG is also drawn in a bottom-up manner [3]. A DAG drawn in this manner is

shown in Figure 19.7.) Since this code uses temporaries rather than register values, there are no anti- and

output-dependences through register variables or temporaries. The dependence arc from node i2 to i9 is

due to an anti-dependence on memory variable b. As the dependences due to memory locations could not

be analyzed accurately, that is, the memory references could not be disambiguated, the anti-dependence arcs

(i1 ,i8 ), (i1 ,i9 ), and (i2 ,i8 ) are also added. These anti-dependence edges are represented as broken

lines in the figure. Finally, in the absence of memory disambiguation, there is also an output-dependence

from i8 to i9 . The output-dependence arc is indicated by a dash–dot line.

Each arc (u, v) in the dependence graph is associated with a weight that is the execution latency of u.

In a DAG, a node that has no incoming arc is referred to as a source node. A node that has no outgoing arc

is termed as a sink node. There could be multiple source nodes and sink nodes in a DAG. In our example

DAG, nodes i1 and i2 are source nodes and i8 and i9 are sink nodes. For convenience, it is typical to

add a fictitious source node, and edges from this node to every other node in the DAG are introduced.

This fictitious node is henceforth referred to as the source node in the DAG. Similarly, there is a fictitious

sink node, referred to as the sink node. Edges are added from each node in the DAG to the sink node.

A weight 0 is associated with each of these newly introduced edges from the source node or to the sink

node. To avoid clutter in the figure, we do not normally show the fictitious source and sink nodes and the

associated edges.
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st

add

mult st

add

ldld

add sub

i1

i3 i4

i7

i8

i6

i2

i5

i9

i1:
i2:
i3:
i4:
i5:
i6:
i7:
i8:
i9:

t1
t2
t3
t4
t5
t6
t7
c
b

load a
load b
t1 + 4
t1 – 2
t2 + 3
t4 * t2
t3 + t6
st t7
st t5

(a) Instruction Sequence

(b) DAG

FIGURE 19.2 An instruction sequence and its dependence graph.

A path in a DAG is said to be a critical path if the sum of the weights associated with the arcs in this path

is (one of) the maximum among all paths. In our example, if the execution latency of each instruction

is one cycle, then the path involving nodes i1 , i4 , i6 , i7 , and i8 is a critical path. Instructions in the

critical path need to be given higher priority while scheduling, so that the execution time of the schedule

is reduced.

19.2.3 Performance Metrics for Scheduling Methods

Typically, the objective of an instruction scheduling method is to reduce the execution time of a schedule,

also referred to as the schedule length. Among the different scheduling methods, one that achieves the

shortest schedule length is said to have the best performance or the best-quality schedule. A schedule

with the shortest schedule length is referred to as an optimal schedule (in terms of schedule length).

Note that the schedule length or execution time of a schedule is a static measure, as it refers to the

execution of the schedule once. The overall execution time of a program is a dynamic measure that is also

of interest.

Since obtaining an optimal schedule is an NP-complete problem [90, 120], the time taken to construct a

schedule, referred to as the schedule time, is also an important performance metric. Scheduling methods

that have unacceptably long schedule times could not be used in a production compiler. Often, a scheduling

method in a production compiler is expected to produce a reasonable-quality schedule for a basic block

within a few milliseconds. However, in certain application domains, such as digital signal processing, or

in embedded applications, where the code is compiled once (at design time) and run subsequently, the

schedule time is less of a constraint; in these applications, the compilation process itself may take several

hours.

Apart from schedule length and schedule time, a performance metric that is of interest in an instruction

scheduling method is the register pressure of the constructed schedule. Schedules with higher register

pressure are likely to incur more register spills, which, in turn, may increase the schedule length. Thus,

besides a lower execution time, a schedule with lower register pressure is often preferred. Many global

scheduling methods, which schedule instructions beyond basic blocks, often cause an increase in the code

size. Hence, the code size of the scheduled code is another metric that is of interest when comparing

different schedules. Code size is especially important in embedded applications, where an increase in code

size increases the on-chip program memory, which, in turn, increases the system cost.



Instruction Scheduling 19-7

Last, in embedded systems [123], power dissipated or energy consumed by the schedule is critical.

Schedules which consume lower power without incurring significant performance penalty, in terms of

execution time, are often preferred in embedded applications.

The initial sections of this chapter focus on instruction scheduling methods for high performance,

where schedule length is the main performance metric. In Section 19.6 we discuss issues relating to register

pressure. Finally, in Section 19.7 we discuss instruction scheduling methods for a specific application

domain, namely digital signal processing, and for low-power embedded applications, where code size,

power, and performance are important.

19.3 Instruction Scheduling for RISC Architectures

In this section we discuss early instruction scheduling methods proposed for handling pipeline stalls.

First we present a simple, generic architecture model and the need for instruction scheduling in this

architecture model. In Section 19.3.2 we present the instruction scheduling method developed by

Gibbons and Muchnick [52] in detail. An alternative approach that combines register allocation and

scheduling for pipeline stalls is discussed in Section 19.3.3. Last, a brief review of other instruction schedul-

ing methods is presented in Section 19.3.4.

19.3.1 Architecture Model

In a simple RISC architecture instructions are executed in a pipelined manner. Instruction execution in a

simple five-stage RISC pipeline is shown in Figure 19.3. Briefly, the instruction fetch (IF) stage is responsible

for fetching instructions from memory. Instruction decode and operand fetch takes place in the decode

(ID) stage. In the execute stage (EX), the specified operation is performed; for memory operations, such

as load or store, address calculation takes place in this stage. The memory stage (MEM) is for load and

store operations. Finally in the write-back stage (WB), the result of an arithmetic instruction or the value

loaded from memory for a load instruction is stored in the destination register.

Let instruction (i+1) be dependent on instruction i ; that is, (i+1) reads the result produced by

instruction i . It can be seen that instruction i+1 may read the operand value (in the ID stage) before

instruction i completes, that is, before i finishes the write-back in the destination register. This dependence

should cause the execution of instruction (i+1) to stall until instruction i writes the result, to ensure

correct program behavior. This is known as a data hazard [68].

Another situation that may warrant stalls in the pipeline is due to control hazards [68]. If instruction i
is a control transfer instruction, such as a conditional branch, unconditional branch, subroutine call, or

IF ID

(a) A Simple Pipeline

(b) Pipelined Execution

EX MEM WB

Time

i

i+1

i+2

i+3

i+4

IF

t t +1

ID

IF

t +2

EX

ID

IF

t+3

MEM

EX

ID

IF

t+4

WB

MEM

EX

ID

IF

t +5

WB

MEM

EX

ID

t+ 6

WB

MEM

EX

t+7

WB

MEM

FIGURE 19.3 Instruction execution in a five-stage pipeline.
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return instruction, then the subsequent instruction to be fetched may not be the instruction immediately

following i . The location or target address from where the next instruction has to be fetched is not known

until instruction i completes execution. Thus fetch, decode, and execution of subsequent instructions

should be stalled until the control transfer instruction is complete.

In either situation, that is, when we have a data or control hazard, the pipeline needs to be stalled to ensure

correct program execution. The pipeline may include hardware support, referred to as pipeline interlock, to

detect such occurrences and stall the subsequent instructions appropriately [68]. With a pipeline interlock,

the dependent instruction and all subsequent instructions are stalled for a few cycles. The number of stall

cycles required depends on the latency of instruction i , pipeline implementation, as well as whether or not

other hardware mechanisms, such as result forwarding or bypassing, exist [68]. Pipeline forwarding reduces

the number of stalls required. In a typical pipeline only certain pairs of consecutive instructions cause such

a stall, and typically these stalls are for one or two cycles, except in cases where there is a dependency from ei-

ther a multi-cycle operation such as a floating point multiply or a memory load that causes a data cache miss.

In processors that do not have pipeline interlocks, for example, in the MIPS R2000 processor [78],

either the compiler or the programmer has to explicitly introduce no-op (no operation) instruction(s)

to ensure correct program execution. Alternatively, either the compiler or the programmer could reorder

instructions, preserving data dependences, such that dependent instructions appear a few instructions

apart. Such reordering would be useful for architectures with or without pipeline interlock hardware, as

it avoids pipeline stalls. It is easy to see how instruction reordering is useful in avoiding stalls due to data

dependence. For control hazard stalls, reordering is useful only if the pipeline supports delayed branching,

a common feature in most of the RISC pipelines [68]. Under delayed branching, a few (typically one or

two) instructions following the branch are executed irrespective of the control transfer. The instructions

following a branch or control transfer instruction are said to occupy the branch delay slots. The instructions

that appear in the delay slot must preserve both control and data dependences. If such instructions cannot

be found, the delay slots should be filled with no-op instructions.

19.3.2 A Simple Instruction Scheduling Method

Optimal instruction scheduling to minimize the number of stalls under arbitrary pipeline constraints is

known to be an NP-complete problem [65, 90, 120]. Several heuristic methods have been proposed in

the literature [52, 65, 66, 120, 127, 170]. All these methods deal with instruction reordering within a basic

block. We shall discuss two of the methods (developed by Gibbons and Muchnick [52] and Proebsting

and Fischer [127]) in detail and compare the rest.

The method proposed by Gibbons and Muchnick [52] assumes that (a) there must be one cycle stall

between a load and an immediately following dependent instruction (which uses the loaded value) and

(b) the architecture has hardware interlocks. Thus, the goal of the scheduling method is to reduce the

pipeline stalls as far as possible; it is neither mandatory to remove all the stalls nor necessary to insert

no-ops where stalls could not be avoided.

The instruction reordering must preserve the data dependences present in the original instruction

sequence. The dependences among instructions in a basic block are represented by a DAG.

Consider the evaluation of a simple statement:

d = (a + b) ∗ (a + b − c)

The code sequence to compute the expression on a RISC architecture is shown in Figure 19.4a. The DAG for

the sequence of instructions is shown in Figure 19.4b. The given instruction order incurs two stall cycles:

one at instruction i3 , as i3 immediately follows a dependent load i2 , and another at instruction i5 ,

which immediately follows the dependent load instruction i4 . We shall now discuss how Gibbons and

Muchnick’s method obtains an instruction schedule with a reduced number of stalls while preserving

program dependences.

If instructions in the basic block are scheduled in the topological order of the DAG, the dependences

are preserved. An instruction is said to be ready if all its immediate predecessors in the DAG have been



Instruction Scheduling 19-9

i1 i2 i4

i3

i5

i7

i6

load load load

add

sub

st

(b) DAG

mult

i1:
i2:
i3:
i4:
i5:
i6:
i7:

(a) Sample Code Sequence

r1
r2
r3
r4
r5
r6
d

load a
load b
r1 + r2
load c
r3 – r4
r3 * r5
st  r6

FIGURE 19.4 Instruction sequence for d = (a+b)*(a+b-c) and its DAG.

scheduled. Ready instructions are kept in a ReadyList. Among the instructions from the ReadyList, the

“best” instruction is selected based on the following two guidelines:

1. An instruction that will not interlock with the one just scheduled.

2. An instruction that is most likely to cause interlock with the instructions after it.

While the first guideline tries to reduce the stalls, the second guideline attempts to schedule early those

instructions that may cause stalls, so that there may be a wider choice of instructions to follow them. In

addition to these guidelines, the method uses three heuristics, applied in the specified order, to select the

next instruction to be scheduled:

1. Choose an instruction that causes a stall with any of its immediate successors in the DAG; this is

somewhat similar to guideline 2 stated above.

2. Choose an instruction that has the largest number of immediate successors in the DAG, as this will

potentially make many successor instructions ready.

3. Schedule an instruction that is farthest from the sink node in the DAG. This will enable the schedule

process to be balanced among various paths toward the sink node.

After scheduling each instruction, the list of ready instructions is updated, including any successor

instruction that has now become ready. The scheduling process proceeds in this way until all instructions

in the basic block are scheduled. The scheduling algorithm is shown in Figure 19.5. The schedule generated

by the above method for the example is depicted in Figure 19.6. This schedule incurs no stalls, as none of

the load instructions are immediately followed by a dependent (arithmetic) instruction.

The worst-case complexity of the instruction scheduling method is O(n2). This happens in the degen-

erated case when all remaining instructions are in the ReadyList at each time step.

19.3.3 Combined Code Generation and Register Allocation Method

Proebsting and Fischer propose a linear time code scheduling algorithm, which integrates code scheduling

and register allocation for a simple RISC architecture [127]. The scheduling method, known as the delayed

load scheduling (DLS) method, assumes that the leaf nodes are memory loads. It produces optimal code,
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Input:The DAG for the basic block
Output:The reordered instruction sequence.

From the ReadyList of instructions by including all source nodes
while (there are instructions to be scheduled in the DAG) do
{

choose a ready instruction based on guidelines (i) and (ii)
and also based on the static heuristics (a) -- (c);

schedule the instruction, and remove it from ReadyList;
add newly enabled instructions to ReadyList;

{

FIGURE 19.5 Gibbons–Muchnick scheduling method.

in terms of both the schedule length and the number of registers used, for a restricted architecture when

the delay stall due to load instructions is one cycle and when the DAG is a tree. The method produces an

efficient, near-optimal, schedule for the general case, i.e., when the delay is greater than one cycle or when

the dependence graph is a DAG.

The DLS method is an adaptation of the Sethi–Ullman method [3, 144] for generating code (instruction

sequence) for basic blocks from its DAG representation. To understand the DLS method, first we shall

explain the Sethi–Ullman method, henceforth referred to as the SU method, with the help of an example.

Unlike the RISC instruction scheduling method discussed in Section 19.3.2, the SU and DLS methods are

applied at the time of code generation. These methods are applied to low-level intermediate form, typically

the 3-address code, and can produce code sequence with register allocation. Hence, these methods can be

considered integrated methods for code generation and register allocation.

19.3.3.1 The Sethi--Ullman Method

The objective of the SU method is to generate a minimum-length code sequence for an expression tree.

The generated code sequence also requires the minimum number of temporaries. The SU method does

not deal with pipeline stalls and hence may schedule a dependent instruction immediately after the load

instruction on which it is dependent. Furthermore, the SU method considers basic blocks with no live-in

registers; that is, all values are available in memory. Hence, the DAG representation of the basic block

consists of leaf nodes that correspond to memory values, which must be loaded in registers (through load

instructions) to perform any operation on them. The interior nodes of a DAG are all arithmetic operations.

Let us once again consider the basic block for the statement

d = (a + b) ∗ (a + b − c)

The 3-address code for the basic block is shown in Figure 19.7a. This code sequence uses temporaries

and is unoptimized. In the 3-address code, the evaluation of (a+b) takes place twice. This would be

eliminated by common subexpression elimination optimization. Hence, we call the 3-address code given

here unoptimized code. Without common subexpression elimination, the DAG for the basic block is a tree

(as shown in Figure 19.7b).

i1:
i2:
i4:
i3:
i5:
i6:
i7:

r1
r2
r4
r3
r5
r6
d

load a
load b
load c
r1 + r2
r3 – r4
r3 * r5
st  r6

FIGURE 19.6 A schedule for the instruction sequence in Figure 19.4.
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2

1 1 111

2

i10
st

i9
mult

i3

i1
load

i2
load

i5
load

i7
add

2

i8
sub

i4
load

i6
load

add

i1:
i2:
i3:
i4:
i5:
i6:
i7:
i8:
i9:
i10:

t1
t2
t3
t4
t5
t6
t7
t8
t9
d

load a
load b
t1 + t2
load c
load a
load b
t5 + t6
t7 – t4
t3 * t8
st  t9

(a) 3-Address Code

(b) Expression Tree

FIGURE 19.7 3-Address code and expression tree for d = (a+b)*(a+b-c) .

The code sequence shown in Figure 19.8a has a higher register pressure. A register-allocated code for

this sequence requires four registers. If the architecture has fewer than four registers, a few values need to

be spilled and reloaded at subsequent points in the computation. The spill loads and stores will increase

the length of the code sequence. The SU method tries to minimize the length of the code sequence and the

number of registers used when the dependence graph is a DAG. The method finds an optimal solution,

optimal in terms of code length and number of registers used, when the dependence graph is a tree. An

optimal solution for the DAG is shown in Figure 19.8b. Let us describe the method for the special case

when the DAG is a tree.

The SU method has two phases: the first phase assigns a label for each node of the tree, and the second

phase is a tree traversal that generates code as the nodes/subtrees of the DAG are visited. Intuitively, the

label of a node represents the number of registers or temporaries that are needed to compute the subtree

rooted under the node. In the tree traversal phase, a subtree is completely traversed before proceeding to

other sibling subtrees. The traversal order among the siblings is based on the labels, and the node with a

larger label is visited first. Thus, the method generates code first for the subtree that requires more registers.

i1: 
i2: 
i3: 
i4: 
i5: 
i6: 
i7: 
i8: 
i9: 
i10: 

r1 
r2 
r1 
r2 
r3 
r4 
r3 
r2 
r1 
d 

load a 
load b 
r1 + r2 
load c 
load a 
load b 
r3 + r4 
r3 – r2 
r1 * r2 
st  r1 

(a) Code Sequence Using
4 Registers

i5: 
i6: 
i7: 
i4: 
i8: 
i1: 
i2: 
i3: 
i9: 
i10: 

r1 
r2 
r1 
r2 
r1 
r2 
r3 
r2 
r1 
d 

load a 
load b 
r1 + r2 
load c 
r1 – r2 
load a 
load b 
r2 + r3 
r1 * r2 
st  r1 

(b) Optimal Code Sequence
with 3 Registers

FIGURE 19.8 Register-allocated code sequences.



19-12 The Compiler Design Handbook: Optimizations and Machine Code Generation

The labeling phase traverses the tree in post-order, visiting all children before visiting a node. The label

assigned for a node n corresponding to a binary operator is given by

label(n) =

{

max(l1, l2) if l1 �= l2

l1 + 1 if l1 = l2

where l1 and l2 are the labels assigned to the left and right children of n. The label assignments for the

nodes are shown in Figure 19.7b.

The label assigned to a nonbinary operator n, having k children, with l1, l2, . . . , lk as the labels of the

children nodes arranged in nonincreasing order, is

label(n) = max
1≤ i≤ k

(li + i − 1)

Intuitively, when there are r children with the same label li (i.e., requiring the same number li registers

for computing the subtrees rooted under them), then li + r − 1 registers are required for computing the

subtree rooted under the parent node.

Each leaf node is assigned the label 1. For architectures supporting register–memory operands, only the

leftmost child of each node that is a leaf node need be assigned the label 1. Other leaf nodes are assigned

the label 0. The intuitive reasoning behind this is that the operand corresponding to the right child (in the

case of a binary operator) that is a leaf node can be used directly as a memory operand (without requiring

it to be loaded in a register) in the instruction corresponding to the parent node. Whereas for RISC

architectures where all arithmetic operators have only register operands, all leaf nodes that are memory

locations must first be loaded in a register. Hence, they are assigned a label 1.

Next we describe the second phase of the SU method, the generate code sequence phase. This phase

traverses the labeled tree recursively, first generating the code for the child with the higher label. When the

children have the same label value, they can be traversed in any order. The method maintains a register stack

of the available registers. If the node visited is a leaf node (or a node with a label 1), then the code, a load

instruction, is generated for the node. The register on the top of the stack is used as the destination register.

For machines that support register–memory operands, a load instruction is generated only for the leftmost

child that has a label value 1. The right child (assuming the parent node to be a binary operator) can be used

directly as a memory operand when the code for the parent node is generated. Since we concentrate on

RISC architectures with register–register operands in this discussion, we omit further details for complex

instruction set computer (CISC) architectures. The interested reader is referred to [3, 144].

The code for an interior node is generated by emitting the corresponding instruction, with the source

operands the same as the destination operand of the children nodes, and the destination register the same

as that of the left child. In the special case when the DAG is a tree, while generating the code for the parent

node, it is always possible to free the destination registers of the children nodes. This is because the value

produced by a node is used only by its parent, and in a tree, there is at most one parent for each node.

The destination registers of the right children can be freed and are pushed into the register stack so that

they can be reused subsequently. The original algorithm also uses a swap operation on the register stack

to ensure that a left child and its parents are evaluated on the same register. We leave out these details in

our discussion. Last, since the code is generated by traversing the tree recursively, generating code for the

children nodes before generating the code for a parent node, the dependences are easily satisfied. For the

tree used in our motivating example, the instruction sequence generated by the SU method is shown in

Figure 19.8b. This sequence uses three registers.

In the general case where the dependence graph is a DAG (and not a tree), the optimal code generation

problem is known to be NP-complete [2]. A near-optimal solution is obtained by partitioning the DAG

into trees. A node with more than one parent is termed a shared node. The partitioning is done in such a

way that each root and/or shared node forms the root of the tree, with the maximal subtree that includes

no shared nodes except as leaves. Shared nodes with more than one parent can be turned into as many

leaves as necessary. More details can be found in [3, 144].
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i5: 
i6: 
i7: 
i4: 
i8: 
i1: 
i2: 
i3: 
i9: 
i10: 

r1 
r2 
r1 
r2 
r1 
r2 
r3 
r2 
r1 
d 

load a 
load b 
r1 + r2 
load c 
r1 – r2 
load a 
load b 
r2 + r3 
r1 * r2 
st  r1 

 
 

% 1 stall 
 

% 1 stall 
 
 

% 1 stall 

(a) Stalls in Sethi–Ullman Sequence

i5: 
i6: 
i4: 
i1: 
i7: 
i2: 
i8: 
i3: 
i9: 
i10: 

r1 
r2 
r3 
r4 
r1 
r2 
r1 
r4 
r1 
d 

load a 
load b 
load c 
load a 
r1 + r2 
load b 
r1 – r3 
r4 + r2 
r1 * r4 
st  r1 

(b) DLS Sequence with No Stalls 

FIGURE 19.9 Instruction sequences with and without stalls.

In the expression used in our example, (a+b) is common to the left and right subtrees of the expression

tree. More specifically, the subtrees rooted on i3 and i7 compute the same expression. On performing

common subexpression elimination, one of these subtrees is eliminated, resulting in a DAG. By splitting

the DAG into a set of subtrees, it is possible to obtain a code sequence using three registers.

19.3.3.2 DLS Method

Next we shall discuss the DLS method, which integrates code generation and register allocation for pipelined

architectures that incur delays [127]. As before, we shall first discuss the method when the DAG is a tree. The

main idea behind the DLS method is to produce a canonical form of the instruction sequence. Suppose the

sequence consists of L memory load instructions (referred to as loads) and (L − 1) arithmetic operations2

(referred to as operations) and uses R registers. Then the canonical form consists of R load instructions

followed by an alternating sequence of (L − R) 〈operation, load〉 pairs, followed by (R − 1) operations.

The canonical form is generated from the sequence generated by the SU method.

The DLS method is a three-phase method, starting with a labeling phase where the nodes in the

expression tree are assigned the minReg value. The minReg value is the label given by the labeling phase

of the SU method. The second phase, order, generates the relative order of loads and operations in two

separate data structures. The ordering is accomplished by recursively generating the order for the left and

right subtrees, starting with the one that has the higher register requirement. The ordering phase is similar

to that in the SU method discussed in the previous subsection. The schedule phase also assigns registers

for all the instructions as discussed in the SU method. The number of registers R used is one more than

the minReg value of the root of the expression tree.

Last, the schedule phase of the DLS method essentially generates the canonical order, listing R loads

followed by an alternating sequence of 〈operation,load〉 pairs. The DLS method generates an optimal

instruction sequence without any pipeline stall except in two special cases: (a) where the expression tree

consists of a single load and (b) where the expression tree consists of a single operation and two leaf nodes

(load instructions).

Let us consider the example expression introduced in Section 19.3.3.1. An optimal schedule for this code,

considering no pipeline delays, is shown in Figure 19.8b. Now let us consider an architecture with delay

D = 1 between a load and a dependent instruction. In this example, we have L = 5 loads, (L − 1) = 4

(binary) operations, and a unary operation (store). The sequence obtained from the SU method causes

three stall cycles, at instructions i7 , i8 , and i3 as shown in Figure 19.9a. The SU schedule uses three

registers. To avoid the stalls completely, the DLS sequence uses one more register than in SU schedules;

hence R = 3 + 1 = 4. The sequence shown in Figure 19.9b is obtained from the DLS method, which

2There are (L − 1) (binary) operations in a binary tree with L leaf nodes.
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incurs no stall cycle. In this sequence, initially we have R = 4 loads, followed by an alternating sequence

of (L − R) = (5 − 4) = 1 〈operation, load〉 pair, followed by four arithmetic operations.3 This sequence

is optimal in terms of the number of execution cycles. It uses one more register than is used by the SU

method but completely avoids all stall cycles. It should be noted here that among the sequences that

incur the lowest execution cycles, this sequence uses the minimum number of registers; that is, no other

instruction sequence incurs the minimum number of execution cycles and requires fewer registers.

The complexity of the DLS method is O(n), as the labeling and ordering phases can be performed by

traversing through the nodes once (bottom-up), and the schedule phase visits each node exactly once. Not

only is this superior to the O(n2) complexity of the instruction scheduling method developed by Gibbons

and Muchnick [52] (discussed in Section 19.3.2), but it performs scheduling and register allocation together

in a single framework. The DLS method also serves as an excellent heuristic when the dependence graph is

an arbitrary DAG or when the delay is greater than 1. Last, recall that the DLS method requires that the leaf

nodes be memory load operations. This precludes register variables, or live-in registers, in the expression

tree. An extension that relaxes this constraint is presented in [87, 166].

19.3.4 Other Pipeline Scheduling Methods

A heuristic pipeline scheduling method that is performed during the code generation was implemented

in the PL-8 compiler [11]. A major advantage of this method is that it performs code scheduling before

register allocation and hence avoids false dependences. Hennessy and Gross describe a heuristic method

that is applied after code generation and register allocation [65, 66]. This method uses a dependence graph

representation that eliminates false dependences. However, to accomplish this, their method needs to check

for deadlocks in scheduling. It uses a look-ahead window to avoid deadlock. The worst-case running time

of this method is O(n4).

Last, we briefly discuss filling the delay slot of a branch instruction. If a processor supports delayed

branching [68], moving independent instructions in the branch delay slots helps reduce the number

of control hazard stalls. Some of the instruction scheduling methods discussed in this section, e.g., the

Gibbons–Muchnick method [52] and the Hennessy–Gross method [65], can be used to fill the branch

delay slot with a useful instruction. It is best to fill the branch delay slot with an instruction from

the basic block that the branch terminates. Otherwise, an instruction from either the target block

(of the branch) or the fall-through block, whichever is most likely to be executed, is selected to be placed

in the delay slot. The selected instruction either occurs as a source node in both (target and fall-through)

basic blocks, has a destination register that is not live-in in the other block, or has a destination register that

can be renamed.

The instruction scheduling methods discussed in this section do not consider (functional unit) resource

constraints. They merely try to reorder instructions to reduce the no-op instructions or the pipeline

stalls needed to ensure correct program behavior. In contrast, the instruction scheduling methods to

be discussed in the following section for VLIW and superscalar architectures take into consideration the

resource constraints.

19.4 Basic Block Scheduling

Instruction scheduling can be broadly classified based on whether the scheduling is for a single basic block,

multiple basic blocks, or control flow loops involving single or multiple basic blocks [132]. Algorithms

that schedule single basic blocks are termed local scheduling algorithms and are the topic of discussion in

this section. Algorithms that deal with multiple basic blocks or basic blocks with cyclic control flow are

3In this sequence, because of the additional unary store operation, we have R, instead of (R − 1), arithmetic

operations at the end of the sequence.
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termed global scheduling algorithms and are dealt with in Section 19.5. The term cyclic scheduling is used

to refer to methods that schedule single or multiple basic blocks with cyclic control flow. Cyclic scheduling

overlaps the execution of multiple instances of a static basic block corresponding to different iterations.

In this section we discuss local or basic block scheduling methods for VLIW and superscalar processors.

First we present the necessary preliminaries in the following section. In Section 19.4.2 we present the basic

list scheduling algorithm. Operation-based instruction scheduling methods are discussed in Section 19.4.3.

An exact approach to obtain an optimal schedule using an integer linear programming formulation is

presented in Section 19.4.4. Section 19.4.5 deals with resource usage models that are used in instruction

scheduling methods. We present a few case studies in Section 19.4.6.

19.4.1 Preliminaries

With the advent of multiple instruction issue processors, namely superscalar processors [68, 77, 151]

and VLIW architectures [47, 136], it has become important to expose ILP at compile time. Both VLIW

and superscalar architectures have a number of functional units and are capable of executing multiple

independent operations in a single cycle. Hence, instruction scheduling for these architectures must

identify the instructions that can be executed in parallel in the same cycle. In a VLIW architecture the

identification of independent instructions, and their reordering to expose ILP, must be done at compile

time. Multiple independent instructions and operations that can be issued in the same cycle should

be packed in a single long word instruction for a VLIW architecture.

Superscalar processors provide hardware mechanisms to detect dependences between instructions at

runtime and to schedule multiple independent instructions in a single cycle. In-order issue superscalar

processors are capable of issuing multiple independent instructions in each cycle; however, once they en-

counter an instruction for which the source operand(s) is (are) not yet ready (the instruction[s] producing

the source operand[s] has [have] not completed execution), the dependent instruction as well as all future

instructions are stalled until the dependent instruction becomes data ready. Out-of-order issue superscalar

processors, however, are capable of issuing independent instructions, even beyond a dependent stalled in-

struction. In other words, they can issue instructions out of the order in which they appear in the program.

Both in-order and out-of-order issue processors benefit by a runtime register-renaming mechanism [151]

that helps eliminate false dependences (anti- and output-dependences). Because of the hardware support

available in superscalar processors, instruction reordering to expose ILP is not mandatory, although such a

reordering would certainly benefit both in-order and out-of-order superscalar processors. This is especially

the case for in-order issue superscalar processors.

The instruction schedule constructed for a VLIW or a superscalar processor must satisfy both de-

pendence constraints and resource constraints. Dependence constraints ensure that an instruction is not

executed until all the instructions on which it is dependent are scheduled and their executions are complete.

Once again, dependences among instructions are represented by means of a DAG. Since local instruction

scheduling deals only with basic blocks, the dependence graph will be acyclic. In our discussion we shall

assume that register allocation is performed after instruction scheduling and that the DAG is constructed

from an instruction sequence that uses temporaries (rather than registers) and hence avoids all anti- and

output-dependence arcs for all non-memory operations.

Resource constraints ensure that the constructed schedule does not require more resources (functional

units) than available in the architecture. The resource usage model in a realistic instruction scheduling

method needs to take into consideration the finite resources available in the architecture, the actual (non-

unit) execution latencies incurred by some of the instructions, and simple or complex resource usage

patterns. In a simple resource usage pattern, each instruction uses one resource for a single cycle, so

multiple instructions scheduled on different cycles do not cause any structural hazard. With such a simple

resource usage pattern, it is possible to schedule a new instruction in the functional unit in each cycle,

whereas when the resource usage pattern is complex, a single resource could be used for multiple cycles.

The resource usage model specifies the usage pattern of resources for different classes of instructions

(such as integer, load/store, multiply, floating point (FP) add, FP multiply, and FP divide instruction classes)
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as well as the available functional units. A simple representation for resource usage is a reservation table,

which is an r × ℓ matrix, where ℓ is the latency of the instruction and r is the number of stages in the

functional unit [85]. An entry R[r, t] is 1 if resource r is used t time steps after the initiation of an instruction

in the functional unit and 0 otherwise. The resource usage pattern is simple when the functional unit is

fully pipelined. A pipelined functional unit can initiate a new operation in every cycle. We defer discussion

of complex resource usage and more sophisticated resource usage models to Section 19.4.5.

The resource requirements of a schedule can be modeled using a global resource reservation table (GRT),

an M × T matrix, where M is the number of resources (including all stages of all functional units as well as

other resources such as memory ports) whose contention must be explicitly modeled in the schedule, and

T is an upper bound on the length of the schedule (i.e., the number of time steps taken by the schedule).

An entry GRT[r, t] is either 1 or 0, representing whether or not resource r is used at time step t in the

current schedule. As a schedule is constructed, the GRT represents the resource requirements of the partial

schedule of instructions that are already scheduled. Any new instruction scheduled should not cause a

resource contention, that is, two or more instructions requiring the same resource at the same time step,

with the partial schedule. Resource contention is checked by a contention query model that checks whether

scheduling an instruction at time step t causes any conflicting resource requirements with instructions that

are already scheduled. We shall return to the contention query model in greater detail in Section 19.4.5.

An instruction scheduling method assumes a fixed execution latency for each instruction. However,

this does not cover variations in latency caused by events like cache misses. A schedule constructed with

an underestimated or optimistic value of the latency may cause unnecessary stalls when a cache miss

occurs. This would be the case even though there may be enough parallelism in the basic block to hide the

latency. However, when a pessimistic latency value is used, the schedules are unnecessarily stretched, even

for cache hit cases. Balanced scheduling [81] and improved balanced scheduling methods [99] generate

schedules that can adapt more readily to uncertainties in memory latencies. These methods use a load

latency estimate that is based on the number of independent instructions available in the basic block to

mask the load latency. All other instruction scheduling methods assume an optimistic estimate for the

execution latency, which will be followed in our discussion in the rest of this chapter.

19.4.2 List Scheduling Method

The list scheduling method schedules instructions from time step 0, starting with the source instructions in

the basic block. At each time step t, it maintains a list of ready instructions (ReadyList) that are data ready,

that is, instructions whose predecessors have already been scheduled and would produce the result value

in the destination register by time t. List scheduling is a greedy heuristic method that always schedules a

ready instruction in the current time step whenever there is no resource conflict.

A list scheduling algorithm is similar to Gibbons and Muchnick’s instruction scheduling method dis-

cussed in Section 19.3.2, except that multiple instructions can be scheduled in the same step. The resource

requirements of scheduled instructions are maintained in the GRT. At each time step, among the set of

ready instructions from the ReadyList, instructions are scheduled one at a time based on a certain priority

ordering of instructions. The priorities assigned to different instructions are decided by heuristics. List

scheduling methods differ in the way they assign priorities to the instructions. We shall discuss some of the

important heuristics that have been used in various instruction scheduling methods in Section 19.4.2.1.

It should be noted here that the priorities assigned to instructions can be either static, that is, assigned

once and remain constant throughout the instruction scheduling, or dynamic, that is, change during the

instruction scheduling and hence require that the priorities of unscheduled instructions be recomputed

after scheduling each instruction. Although the basic list scheduling algorithm discussed below assumes a

static priority, it can easily be adapted for a heuristic that assigns dynamic priority values.

After scheduling all instructions in the ReadyList that do not cause a resource conflict, the time step

is incremented by 1. Any instruction that has now become data ready is included in the ReadyList. The

ReadyList is sorted on decreasing order of priority. The scheduling process continues in this way until all

the instructions are scheduled. The complete algorithm is shown in Figure 19.10.
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Input: DAG
Output: Instruction Schedule
AssignPriority (DAG) ; /* assigns priority to each instruction

in the DAG based on the priority policy */
ReadyList = source nodes in the DAG;
timestep = 0;
while (there exists an unscheduled instruction in the DAG) do
{

Sort ReadyList in non-decreasing priority order;
while (not all instructions in ReadyList are tried)
{

pick next instruction i from ReadyList;
check for resource conflict;
if (instruction can be scheduled)
{

update GRT (i, timestep);
remove instruction i from ReadyList;

}
}
increment timestep by 1;
add instructions that have now become data ready in ReadyList;

}

FIGURE 19.10 A generic list scheduling algorithm.

We illustrate the list scheduling method with the help of a simple example. Consider the code sequence

and its 3-address representation shown in Figures 19.11a and 19.11b, respectively. Its DAG is depicted

in Figure 19.11c. Assume that the target architecture consists of two integer functional units, which can

execute integer instructions as well as load/store instructions, and one multiply/divide unit. All functional

units are fully pipelined. Also assume that the execution latencies of the add , mult , load , and store
instructions are, respectively, one, three, two, and one cycles. These latency values also imply that there
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(b) 3-Address Code

(a) High-Level Code

c = (a+4)+(a–2) *b;
b = b+3;

FIGURE 19.11 An example code, 3-address representation, and DAG.
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FIGURE 19.12 Schedule for the example code in Figure 19.11.

should be one stall cycle between a load and a dependent instruction and two stall cycles between a

mult and a dependent instruction. There are no stall cycles between an add and a dependent instruction.

Furthermore, the path i1 → i4 → i6 → i7 → i8 is the critical path in the DAG.

A list schedule for the example code is shown in Figure 19.12. Instructions on the critical path are

scheduled at their earliest possible start time to achieve this schedule, whose length is 8. Note that if the

two add instructions (i3 and i5 ) are scheduled ahead of the sub instruction in time step 2, it would

have delayed the execution of instructions on the critical path, namely, i4 , i6 , i7 , and i8 instructions,

and hence would have increased the schedule length. To achieve schedules that require fewer execution

cycles, the scheduling method should use an efficient heuristic that gives priorities to instructions on the

critical path.

The schedule is presented as a parallel schedule, as shown in Figure 19.12, to a VLIW architecture, where

multiple instructions that can be executed in the same cycle are packed into a single long word instruction.

For a superscalar architecture, the parallel instructions in each cycle are linearized in a simple way, for

instance, from left to right. It is shown in [147] that the linearizing order could have a performance impact

on out-of-order issue superscalar processors [68, 151]. We defer a discussion of the linearization order to

Section 19.6.3.3.

It has been shown that the worst-case performance of a list scheduling method is within twice the optimal

schedule [90, 120]. That is, if Tlist is the execution time of a schedule constructed by a list scheduler, and Topt

is the minimal execution time that would be required by any schedule for the given resource constraint,

then Tlist/Topt is less than 2. The quality of list scheduling can degrade and approach the above bound as

the number of resources increases and/or the maximum of the latencies of all instructions increases.

It should be noted here that the list scheduling method uses a greedy approach, trying to schedule

instructions as soon as possible. If there are enough resources, in the list scheduling method each instruction

would get scheduled at the earliest start time (Estart) possible. Furthermore, the list scheduling method

described above makes a forward pass of the DAG, starting from a source node. It is possible to have a

backward pass list scheduling method that schedules instructions starting from the sink node to the source

node. While forward pass schedulers attempt to schedule an instruction at the earliest time possible,

backward pass schedulers typically attempt to schedule each instruction as late as possible. The instruction

scheduler of the GNU C Compiler (version 2) [158] and the local instruction scheduler of the Cydra 5

compiler [36] are backward pass schedulers, while the scheduler in the IBM XL compiler family makes a

forward pass [170].

19.4.2.1 Heuristics Used

The list scheduling method uses heuristics to assign priorities to instructions. These priorities are used

in selecting the ready instructions for scheduling in each time step. This section briefly discusses some of

the heuristics used. An extensive survey and a classification of the various heuristics used in instruction

scheduling methods are presented in [152].

A commonly used heuristic is based on the maximum distance of a node to the sink node. The maximum

distance (MaxDistance) of the sink node to itself is 0. The MaxDistance of a node u is defined as

MaxDistance (u) = max
i=1···k

(MaxDistance(vi ) + weight(u, vi ))
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where v1, v2, . . . , vk are the successors of node u in the DAG. MaxDistance is calculated using a backward

pass on the DAG and is a static priority. Priority is given to nodes with larger MaxDistance. A variation of

this heuristic is to consider the maximum distance to the sink node, where distance is measured in terms of

the path length (number of edges in the path) and not as the sum of execution latencies of the instructions

in the path.

Another heuristic used in the list scheduling method is to give priority to instructions that have larger

execution latency. The maximum number of children heuristic gives priority to instructions that have more

successors. A refinement of this is to consider only successors for which this instruction is the only parent.

An alternative is to consider not only the immediate successors, but all the descendents of the instruction. In

all these cases, giving higher priority to instructions with more descendents may enable more instructions

to be added to the ReadyList. All these heuristics are static in nature and are computationally inexpensive

compared to dynamic heuristics.

Many list scheduling methods give higher priority to instructions that have the smallest Estart. The

Estart value of the fictitious source node is 0. The Estart value of an instruction v is defined as

Estart (v) = max
i=1···k

(Estart (ui ) + weight (ui , v))

where u1, u2, . . . , uk are the predecessors of v . Similarly, priorities can be given to instructions with the

smallest Lstart (latest start time), which is defined as

Lstart (u) = min
i=1···k

(Lstart (vi ) − weight (u, vi ))

where v1, v2, . . . , vk are the successors of u. The Lstart value of the sink node is set the same as its Estart

value. Estart and Lstart are computed using a forward or a backward pass of the DAG. The Estart and

Lstart values of the instructions in our example DAG are also shown in Figure 19.11c.

The difference between Lstart(u) and Estart(u), referred to as slack or mobility, can also be used to assign

priorities to the nodes. Instructions with lower slack are given higher priority. Instructions on the critical

path may have a slack 0 and hence get priority over instructions on the off-critical path. The instructions on

the critical path of the DAG shown in Figure 19.11, namely i1 , i4 , i6 , and i8 , have a slack 0, indicating

that there is no slack or freedom in scheduling them.

Many list scheduling methods use Estart and Lstart as static measures, although their values can be

calculated after scheduling instructions in each step. Instructions that are scheduled in the current time

step may affect the Estart (or Lstart) values of successor (or predecessor) nodes, so these values need to be

recomputed in each time step. Slack can also be treated as a static or a dynamic measure. The list scheduling

method described in [120] uses a combination of weighted path length and Lstart values.

A heuristic based on computing a force metric is used in scheduling data path operations in behavioral

synthesis [124]. The self force of each instruction u at time step t reflects the effect of an attempted time

step assignment t to instruction u on the overall instruction concurrency. The force is positive if the time

step causes an increase in the concurrency and negative otherwise. The predecessor and successor forces refer

to the effect of scheduling an instruction at a time step on its predecessors and successors, respectively. The

force metric is a product, K · x , where K represents the extent of concurrency of each type of instruction

at a given time step t, and x is a function of the slack of the instruction u. Instructions with the lowest

force are given the highest priority. For further details on calculating the force metric, the reader is referred

to [124]. Although the objective of the force-directed scheduling method in behavioral synthesis is to

minimize the resources while minimizing the execution time, it still obtains an efficient schedule for the

instructions. In this sense, the force-directed heuristic may serve as a useful heuristic in an instruction

scheduling method as well.

Last, priorities can be given to instructions that define fewer registers (or temporaries), that is, instruc-

tions that start fewer new live ranges. Intuitively, it is advantageous to defer the scheduling of an instruction

that defines new temporaries to a later time step, as it would defer the increase in register pressure. Such

a heuristic is typically used in Prepass scheduling methods. Likewise, it is advantageous to give higher
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priority to instructions that end the live range of a variable or temporary. Version 2 of the GNU C compiler

uses this heuristic [158].

19.4.3 Operation Scheduling Method

While a list scheduling method schedules instructions on a cycle-by-cycle basis, an operation scheduling

method attempts to schedule instructions one after another, trying to find the first time step at which each

instruction can be scheduled. Operation-driven schedulers sort the instructions in the DAG in a topological

order, giving priority to instructions on the critical path [139]. An operation scheduling method could be

non-backtracking or backtracking. Here we discuss a backtracking method.

In a backtracking operation scheduling method, at each iteration, an instruction i is selected, based on

a certain priority function. An attempt is made to schedule the instruction i at time t, which is between

Estart (i) and Lstart (i) and does not cause a resource conflict. The scheduling of an instruction at time

step t may affect the Estart and Lstart values of other unscheduled instructions. If dynamic priority is used

to select the instruction, the priorities of unscheduled instructions are recomputed.

If there is no time step t between the Estart (i) and Lstart (i) at which the instruction can be scheduled,

an already scheduled instruction j , which has conflicting resource requirements with this instruction, is

de-scheduled, making room for this instruction. The de-scheduled instruction j is put back in the list of

unscheduled instructions and is scheduled subsequently. For the method not to get into a loop where a set

of instructions de-schedule each other, a threshold on the number of de-scheduled instructions is kept.

When this threshold is exceeded, the partial schedule is discarded and new Lstart values for instructions

are computed by increasing the Lstart value of the sink node.

19.4.4 An Optimal Instruction Scheduling Method

The resource-constrained instruction scheduling problem is known to be NP-complete [90, 120]. The in-

struction scheduling problem has been formulated as an integer linear programming problem [10, 24, 29].

Such an approach is attractive for the evaluation of (performance) bounds that can be achieved by any

heuristic method. Also, more recently, Wilken, Liu, and Heffernan [174] have shown that optimal sched-

ules can be obtained in a reasonable time even for large basic blocks, so such an optimal scheduling method

can be applied even to production compilers.

In this section we illustrate an integer linear programming formulation for resource-constrained basic

block instruction scheduling. We assume a simple resource model in which all functional units are fully

pipelined. Altman et al. [8] present methods for modeling functional units with a complex resource

usage pattern in an integer linear programming formulation, in the context of software pipelining — an

instruction scheduling method for iterative computation [72, 88, 131–133]. Our discussion will consider

an architecture consisting of functional units of different types, for example, integer arithmetic and logic

unit (ALU), load/store unit, FP add unit, and FP mult/divide units, and the execution latency of instructions

in these functional units can be different. We will assume that there are Rr instances in functional unit

type r .

Let σi represent the time step at which instruction i is scheduled and d(i, j ) represent the weight of edge

(i, j ). To satisfy dependence constraints, for each arc (i, j ) in the DAG,

σ j ≥ σi + d(i, j ) (19.1)

To represent the schedule in a form that can be used in the integer linear programming formulation, a

matrix K of size n × T is used, where n is the number of instructions or nodes in the DAG, and T is an

estimate of the (worst-case) execution time of the schedule. Typically, T is the sum of the execution times

of all the instructions in the basic block. Note that T is a constant and can be obtained from the DAG.

An element of K , for instance, K [i, t], is 1 if instruction i is scheduled at time step t and 0 otherwise. The
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schedule time σi of instruction i can be expressed using K as

σi = ki,0 · 0 + ki,1 · 1 + · · · + ki,T−1 · (T − 1)

This can be written in matrix form for all σi ’s as
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(19.2)

To express that each instruction is scheduled exactly once within the schedule, the constraint

∑

t

ki,t = 1, ∀i (19.3)

is included in the formulation.

Last, the resource constraint that no more than Rr instructions are scheduled in any time step, where

Rr is the number of functional units of type r , can be enforced through the equation

∑

i ∈ F (r )

ki,t ≤ Rr , ∀ t and ∀ r (19.4)

where F (r ) represents the set of instructions that can be executed in functional unit type r .

The objective function is to minimize the execution time or schedule length. This can be repre-

sented as

minimize(max
i

(σi + d(i, j )))

To express this in linear form, we introduce

z ≥ σi + d(i, j ) (19.5)

Now, the objective is to minimize z subject to Equations 19.1 to 19.5.

19.4.5 Resource Usage Models

This subsection deals with different resource usage models used in instruction scheduling. First we motivate

the need for sophisticated resource usage models. In the subsequent subsection, we review some of the

existing resource usage models.

19.4.5.1 Motivation

Modern processors implement very aggressive arithmetic and instruction pipelines. With an aggres-

sive multiple instruction issue, structural hazard resolution in modern processors is expected to be

more complex. Furthermore, in certain emerging application areas, such as mobile computing or space

vehicle on-board computing, the size, weight, and power consumption may put tough requirements on

the processor architecture design, which, in turn, may result in more resource sharing. All these lead to

pipelines with more structural hazards. With such complex resource usage, the scheduling method must

check and avoid any structural hazard, for example, contention for hardware resources by instructions.

Such a check for resource contention is done by a contention query module [40].

The contention query module uses a resource usage model that specifies the resource usage patterns of

various instructions in the target architecture. The contention query module answers the query, “Given

a target machine and a partial schedule, can a new instruction be placed in time slot t without causing

any resource conflicts?” Since a resource contention check needs to be performed before scheduling every

instruction, and for each instruction several time steps of the schedule need to be examined, a significant
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part of the schedule time is spent in the contention query module. This is especially the case when the

resource usage pattern is complex because of many structural hazards. Thus, an efficient resource usage

model is critical for reducing the contention check time in instruction scheduling.

Portability and preciseness are two important aspects in choosing a resource model. Compilers designed

to support a wide range of processors usually define the machine details to the scheduler in a form that can

be easily modified when porting the compiler across different processors [62]. A portable model can only

approximately model the complex execution constraints that are typical in modern-day superscalar and

VLIW processors. Precise modeling of machine resources is important to avoid some of the stalls in the

pipeline. Precise modeling of resource usages often involves a very low-level representation of the machine

description that is generally coded directly into the compiler. As a result, it is tedious and time consuming

to modify the code every time the compiler is targeted for a new processor.

19.4.5.2 Reservation Table Model

Traditionally, the resource usage pattern of an instruction i is represented using a reservation table.

Instructions with identical resource usage patterns are said to belong to the same instruction class. The

resource usage of any instruction in instruction class I has a single reservation table RT I , which is an

mI × l I bit matrix, where mI is the number of resources needed by the instruction for its execution in the

pipeline and l I is the execution latency of the instruction [132]. An entry RT M[r, t] = 1 indicates that the

resource r is needed by this instruction t cycles after it is launched. Typically, each row of the reservation

table is stored as a bit vector. The reservation tables for two instruction classes I1 and I2 are shown in

Figure 19.13.

Apart from storing the reservation tables for each instruction class, the contention query module also

maintains a GRT that is used to keep track of the machine state at every point in the schedule. The GRT is

an M × T bit matrix, where M is the total number of resources in the target machine and T is an upper

bound on the length of the schedule.

To answer the query, “Can an instruction of class I be scheduled in the current cycle?” the scheduler

performs bit-wise AND operations of the nonzero bit vectors of RT I with the corresponding bit vectors

in the global reservation table, starting from the current cycle. If the results of the AND operations are all

0’s, the instruction can be scheduled in the current cycle; otherwise it cannot be scheduled. On scheduling

the instruction, similar bit-wise OR operations are performed on the GRT to reflect the resource usages

of the scheduled instruction.

19.4.5.3 Reduced Reservation Table Model

The reduced reservation table (RRT) approach, developed by Eichenberger and Davidson [40], for an-

swering a contention query is similar to the reservation table (RT) approach, except that the RRT approach

uses a simplified reservation table. This simplified table is derived by eliminating much of the redundant

information in the original reservation table. However, the scheduling constraints present in the original

RT are preserved in the RRT. The resource usages are modeled using logical resources, unlike the RT model,

wherein the actual resources of the target architecture are used. This offers a compact form of representing

the RT, thus reducing the space required to store the tables and minimizing the time spent in contention

queries.
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FIGURE 19.13 Reservation table (RT) for the example machine.
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FIGURE 19.14 Reduced reservation table (RRT) for the example machine.

First we define forbidden latency. For an ordered pair of instruction classes, A and B , a latency value

f is said to be forbidden if two instructions, one belonging to instruction class A and another to B ,

when initiated on the respective functional unit types with a latency f between them cause a structural

hazard. Such a structural hazard occurs if there exists at least one resource r and a time step t such that

RT A[r, (t + f )] and RT B [r, t] are both 1. The forbidden latency set F A,A consists of the forbidden latencies

between two initiations of the same instruction class. Similarly, the forbidden latency set F A,B consists of

the forbidden latencies between two initiations of two different instruction classes. For example, for the

RTs shown in Figure 19.13, latency 0 is in the forbidden set F I1 ,I2
, as two instructions, one each from these

two instruction classes, initiated with a latency 0 (i.e., initiated in the same time step t), require the resource

r0 at time step t. Similarly, latency 1 is in F I1 ,I1
and latency 1 is in F I2 ,I2

, as resource r1 for instruction class

I1 and r4 for instruction class I2 are required for two consecutive time steps.

Construction of the RRT is explained in detail in [40]. The RRT approach uses a set of logical resources to

model all the forbidden latencies of the original resource usage. We shall illustrate the RRT approach using

the example machine considered in Section 19.4.5.2 (refer to Figure 19.13). The RRTs for this machine

are shown in Figure 19.14. Logical resources r ′
0, r ′

1, and r ′
2 are used to model the resource usages. Note

that the resource r ′
0 models the forbidden latencies 0 ∈ F I1 ,I2

and 0 ∈ F I2 ,I1
. Furthermore, the resource

r ′
1 models the forbidden latency 1 ∈ F I1 ,I1

and the resource r ′
2 models the forbidden latency 1 ∈ F I2 ,I2

.

Last, forbidden latencies 0 ∈ F I1 ,I1
and 0 ∈ F I2 ,I2

are modeled by every resource. It can be verified that

these RRTs model all and only those forbidden latencies that are present in the original reservation table.

Compared to the RT in Figure 19.13, the RRT in Figure 19.14 is compact. The advantage of the RRT model

is that it is likely to have fewer logical resources than physical resources. For the example machine, the

number of logical resources is three, while the number of physical resources in the RT model is five. As a

consequence, the space requirements of both the resource model and the contention check computation

become efficient.

The contention query module of the instruction scheduler uses the RRT in the same manner as in the

case of the original RT. The differences, however, are in the size of the GRTs and the individual RTs. The

GRT in this case consists only of M′ rows, where M′ is the total number of logical resources in the machine.

For the considered example, M′ is 3, which is significantly less than the number of physical resources. As

a consequence, the size of the GRT also reduces significantly.

19.4.5.4 Automaton-Based Approaches

The automaton approach models resource usage using a finite state automaton. This approach processes

the reservation tables off-line to generate all possible legal initiation sequences in the architecture. The

states of the automaton correspond to machine states at different points in the scheduling process. The

automaton is constructed just once for the target architecture, and thereafter the compiler uses this during

the instruction scheduling phase.

Müller’s method constructs the automaton directly using the RTs [108]. Each state in this automa-

ton is essentially a snapshot of the GRT (refer to Section 19.4.5.2) in the partial schedule. Proebsting

and Fraser [128] improved upon Müller’s technique by using collision matrices (to be defined later) for

constructing the automaton. Bala and Rubin [12] extended Proebsting’s technique to complex machines

and introduced the notion of factoring. Although Proebsting’s method directly produces the minimal
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FIGURE 19.15 Collision matrices for instruction classes I1 and I2.

automaton, it is still large for complex machines. Instead of building one large automaton, Bala and Rubin

used a factoring scheme to create multiple smaller automatons, the sum total of whose states is less than

the number of states in the original automaton. The factoring scheme is based on the observation that

modern-day processors typically divide the instruction set into different classes, and each class is executed

by a different functional unit. For instance, the integer and floating point units have different pipelines and

use separate resources. As such, these resources can be divided into separate factors, and the automaton

can be constructed separately for each of the factors.

Before we proceed with the construction of the automaton, we define collision matrix [85]. A collision

matrix CM I for the instruction class I is a bit matrix of size n × ℓ
′, where n is the number of instruction

classes and ℓ
′ is the longest repeat latency of an instruction class. The repeat latency of an instruction class

is the minimum value such that any latency f greater than or equal to the repeat latency is permissible

for the instruction class [85]. The collision matrix CM I specifies whether or not a resource conflict will

occur in initiating instructions of various classes, including itself, at different time steps. The rows of the

collision matrix represent various instruction classes, and the columns represent different time steps. More

specifically, the entry CM I [J , t] = 1 if t is a forbidden latency between the instructions classes I and J,

that is, t ∈ F I ,J . The collision matrices for the instruction classes considered in Section 19.4.5.2 are shown

in Figure 19.15.

The construction of the finite state automaton proceeds as follows: each state F in the automaton is

associated with a state matrix SM F , which is an n × ℓ
′ bit matrix. Given a state F and an instruction of

class I , it is legal to issue I in the current cycle from state F , if SM F [I , 0] is 0. A legal issue causes a state

transition F
I

→ F ′. The state matrix SM F ′ is computed by ORing the respective rows of SM F with the

collision matrix CM I . The automaton for the motivating example is shown in Figure 19.16a. When the

automaton reaches a state where all the entries in the first column are 1, it means no more instructions of

any instruction class can be issued from the current cycle. State F2 is an example of such a state. Hence,

the state is cycle advanced, or the automaton moves to the next time step, which results in left-shifting the

state matrix by one column [12]. This instruction class is marked as CA in Figure 19.16a. When

the automaton-based resource model is used in conjunction with a simple list scheduler (such as the

one discussed in Section 19.4.2), which schedules instructions on a cycle-by-cycle basis, it suffices to

examine only transition latency zero, provided cycle advancing transitions are considered.

The automaton is represented in the form of a transition table that is used by the scheduler. The

transition table is a two-dimensional matrix of size N × r , where N is the number of states in the auto-

maton and r is the number of instruction classes, including the pseudo-instruction class CA. The

entries in the transition table are either state numbers or null (denoting illegal transitions). The tran-

sition table corresponding to the automaton for our motivating example is shown in Figure 19.16b. Thus,

in the automaton-based approach, answering a contention query corresponds to a transition table lookup;

updating the machine state on scheduling an instruction is changing to a new state. Both of these are

constant time operations.

Two major concerns in using the automaton-based approach are the construction time of the automaton

and the space requirements of the transition table. The construction of the automaton, though a one-time

cost incurred at the time of compiler construction for this target architecture, could be significant, as the

number of states in the automaton can grow very large, with an increase in either the number of instruction

classes or the latencies of instructions. For example, for the DEC Alpha architecture, Bala and Rubin report

13,254 states when the automaton is constructed for integer and floating point instruction classes together.
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FIGURE 19.16 Automaton for the example machine.

When separate automatons are constructed, the number of states decreases to 237 and 232. For the Cydra 5

architecture [136], the number of states in the factored automaton is 1,127. Thus, the number of states is

still large, which directly contributes to the increase in space requirements. This is because the transition

table is an N × n matrix, where N is the number of states in the automaton and n is the number of

instruction classes.

In [75, 76] the automaton model is further extended to a group automaton model that reduces the space

requirements by observing and eliminating certain symmetry in the constructed automaton. It identifies

instruction groups, sets of instruction classes, which exhibit this symmetric behavior. The work also

proposes a resource model based on collision matrices, referred to as the dynamic collision matrix model.

This resource model combines collision matrices with an RT-based approach to strike a good balance

between the space and time requirements of the resource usage model. A classification of resource usage

models is also presented in [76].

An automaton-based resource model for software pipelining has been proposed independently by

Govindarajan et al. for instruction classes that do not share any resource [56]. It is subsequently extended

to instruction classes that share resources in [58, 177]. The state diagram of the automaton, referred to as

modulo-scheduled (MS)-state diagram, though similar to Bala and Rubin’s automaton, has two important

differences. First, the MS-state diagram is specialized for software pipelining or modulo scheduling, which

take into account the repetitive scheduling of different instances of the same instruction, corresponding

to different iterations. It is argued in [56, 58] that Bala and Rubin’s automaton could not be directly used

in a software pipelining method. Second, in the MS-state diagram, for each state, there is a state transition

corresponding to each permissible latency, including latency 0, whereas in Bala and Rubin’s automaton

the state transitions in a state correspond only to latency value 0.

19.4.5.5 AND/OR-Tree Model

Gyllenhaal et al. proposed a two-tier model for resource usage representation [62]. It allows the user

to specify the resource usage or machine description in a high-level language. The high-level language

is designed to specify the machine description in an easy-to-understand, maintainable, and retargetable

manner. The high-level description is translated into a low-level representation for efficient use by the

instruction scheduler. The two-tier model helps to easily retarget the scheduler for different architectures.
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Gyllenhaal et al. also proposed a new representation for a machine description based on the AND/OR-

tree concept used in search algorithms, which is especially useful when a single instruction class has

multiple options or resource usage patterns to choose from. This happens, for example, when there are two

decode units, and an instruction can use either one of them in the decode stage. The new representation

is an AND-tree of OR-trees. While the OR-trees encode the multiple options available within a stage, the

AND-tree represents the usage of different stages. The AND/OR-tree model uses the short-circuit property

of the AND/OR-trees to detect the resource conflicts quickly. This reduces the space complexity of the

RT-based approaches and the computation time required to answer contention queries.

19.4.6 Case Study

In this section we shall review the instruction scheduling methods used in (a) the compiler for the Cydra 5

VLIW architecture [14, 36], (b) the GNU C compiler [158], and (c) the IBM XL compiler family [170] as

case studies.

19.4.6.1 Instruction Scheduling in the Cydra 5 Compiler

The scheduler implemented in the Cydra 5 compiler is a backward pass list scheduler. It works bottom-up,

scheduling from the sink node of the DAG. For each instruction i from the priority list, the scheduler

attempts to schedule the instruction starting from the largest possible start time, based on its (already)

scheduled successors. The priority algorithm ensures that all successor instructions are placed in the list

ahead of an instruction. In addition, the priority algorithm can give greater priority either to instructions

with the least slack or to instructions that reduce register lifetimes. The former heuristic results in schedules

with low execution time but may increase the register pressure. This may cause register spills. The second

heuristic is used to counter this effect. In the Cydra 5 compiler instruction scheduling is performed prior

to register allocation.

19.4.6.2 Instruction Scheduling in the GNU C Compiler

The instruction scheduling method used in the GNU C compiler (version 2) also follows backward pass

list scheduling [158]. The method orders instructions based on a priority algorithm that gives relatively

higher priority to all successor instructions compared to the parent instruction. By placing instructions

with higher priority later in the schedule than ones with lower priority, the scheduler preserves dependence

constraints. Furthermore, instructions with larger execution time are also given higher priority, exposing

instructions on the critical path.

The algorithm then starts scheduling by issuing the instruction with the highest priority, scheduling

from the last instruction in the basic block to the first. Each time an instruction is scheduled, a check

is performed on each predecessor instruction p to see if it has no more unscheduled successors. Such

instructions are marked “ready” and added to the ReadyList in priority order. When all instructions are

scheduled, the algorithm terminates. This scheduling method works well to produce good schedules but

generally increases the register pressure and results in poor performance when the number of available

registers is less than the required number. For this purpose, the list scheduling method also gives higher

priority to instructions that end live ranges of variables.

19.4.6.3 Instruction Scheduling in the IBM XL Compiler Family

The XL family compiler of IBM uses a forward pass list scheduling method [170]. The primary priority

heuristic used is based on the maximum distance to the sink node. It also uses a combination of smallest

Estart value, minimum liveness, and greatest uncovering — corresponding to how many (ready) instruc-

tions will be added to the ReadyList — heuristics. The list scheduling algorithm starts scheduling from

the source node, attempting to schedule instructions at time steps closer to its Estart time. The scheduling

method is applied both as a Prepass method (before register allocation) and as a Postpass method (after

register allocation). It takes care of a number of types of delay stalls and schedules fixed and floating point

instructions in an alternating sequence for the RS/6000 processor.
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19.5 Global Scheduling

Instruction scheduling within a basic block has limited scope, as the average size of a basic block is quite

small, typically in the range of 5 to 20 instructions. Thus, even if the basic block scheduling method

produces optimal schedules, the performance, in terms of the exploited ILP, is low. This is especially a

serious concern in architectures that support greater ILP, for example, VLIW architectures with several

functional units or superscalar architectures that can issue multiple instructions every cycle. The reason

for the low ILP, especially near the beginning and end of basic blocks, is that basic block boundaries act

like barriers, not allowing the movement of instructions past them.

Global instruction scheduling techniques, in contrast to local scheduling, schedule instructions beyond

basic blocks, that is, overlapping the execution of instructions from successive basic blocks. These global

scheduling methods are either for a set of basic blocks with acyclic control flow among them [36, 46, 74, 102]

or for single or multiple basic blocks of a loop [25, 31, 49, 88, 133]. The former case is referred to as global

acyclic scheduling and the latter as cyclic scheduling. First, we discuss a few global acyclic scheduling methods.

Section 19.5.2 deals with cyclic scheduling.

19.5.1 Global Acyclic Scheduling

Early global scheduling methods performed local scheduling within each basic block and then tried to

move instructions from one block to an empty slot in a neighboring block [25, 162]. However, these

methods followed an ad hoc approach in moving instructions. Furthermore, the local compaction or

scheduling that took place in each of the blocks resulted in several instruction movements (reorderings)

that were done without understanding the opportunities available in neighboring blocks. Hence, some of

these reorderings may have to be undone to get better performance. In contrast, global acyclic scheduling

methods, such as trace scheduling [46], percolation scheduling [111], superblock scheduling [74], hyperblock

scheduling [102], and region scheduling [63], take a global view in scheduling instructions from different

basic blocks. In the following subsections we describe these approaches.

19.5.1.1 Trace Scheduling

Trace scheduling attempts to minimize the overall execution time of a program by identifying frequently

executed traces — acyclic sequences of basic blocks in the control flow graph — and scheduling the

instructions in each trace as if they were in a single basic block. The trace scheduling method identifies the

most frequently executed trace, a single path in the control flow graph, by identifying the unscheduled basic

block that has the highest execution frequency; the trace is then extended forward and backward along

the most frequent edges. The frequency of edges and basic blocks are obtained by a linear combination

of branch probabilities and loop trip counts obtained either through heuristics or through profiling [13].

Various profiling methods are discussed in greater detail in [60].

The instructions in the selected trace (including branch instructions) are then scheduled using a list

scheduling method. The objective of the scheduling is to reduce the schedule length and hence the execution

time of the instructions in the trace. During the scheduling, instructions can move above or below a

branch instruction. Such movement of instructions may warrant compensation code to be inserted at the

beginning or end of the trace. After scheduling the most frequently executed trace, the next trace (involving

unscheduled basic blocks) is selected and scheduled. This process continues until all the basic blocks are

considered.

Let us illustrate the trace scheduling method with the help of the example code shown in Figure 19.17a,

adapted from [73]. The instruction sequence and the control flow graph for the code are shown in

Figures 19.17b and 19.17c. Consider a simple two-way issue architecture with two integer units. Let us

assume that the latency of an integer instruction, such as an add , sub , or mov instruction, is one cycle,

and that of a load instruction is two cycles. Thus, there is a stall of one cycle between a load and a

dependent instruction. For simplicity, we assume here that branch instructions do not require any stall

cycles.
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B2

%%r1
%%r5
%%r6
%%r7

r2
if (r2 != 0) goto i7

i1:
i2:

B1:

B2:

B3:

B4:

for (i=0; i < 100; i++)
{
   if (A[i] == 0)
     B[i] = B[i] + s;
   else
     B[i] = A[i];
   sum = sum + B[i];
}

load a(r1)

r3
r4
b(r1)
goto i9

i3:
i4:
i5:
i6:

i7:
i8:

i9:
i10:
i11:
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r1
it (r1 < r6) goto i1
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r2
r2

0
0
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B3

B4

Main Trace

(b) Assembly Code

(a) High-Level Code

(c) Control Flow Graph

FIGURE 19.17 Multiple basic blocks example.

A basic block scheduling method achieves the schedule shown in Figure 19.18. As instructions cannot be

moved beyond basic block boundaries, this is the best schedule that can be achieved for the given machine.

The first column in the figure represents the time steps at which the instructions can be issued. The time

steps shown in parentheses for instructions i9 to i11 correspond to the schedule time when the control

flow is B1 → B3 → B4. Note that the extra cycle (time step 4) in the schedule (after instructions i7 and

i8 ) in basic block B3 is due to the stall for the load instruction (i8 ) at the basic block boundary. It takes

nine cycles for the path B1 → B2 → B4 and seven cycles for B1 → B3 → B4.

Assume that basic blocks B1, B2, and B4 are frequently executed, and they form the main trace. By

allowing the instructions in basic block B2 to be moved above the split point in the control flow graph, a

compact schedule for the most frequently executed trace can be obtained. For example, instruction i3 can

be moved to block B1. Such movement of instructions above a conditional branch instruction is referred

to as speculative code motion. Moving an instruction that could raise an exception, such as a memory load

or a divide instruction, speculatively above a control split point, requires additional hardware support as

discussed in [23]. This is to avoid raising unwanted exceptions.

The original program semantics must be ensured under speculative code motion. For this, the destination

register of an instruction i should not be live on entry on alternative paths on which i is control dependent.

Time Int. Unit 1 Int. Unit 2

0

1

2

r2

if (r2 != 0) goto i7

load a(r1)

3

4

5

6

r3

r4

b(r1) goto i9

load b(r1)

r3 + r7

r4

3

4

r4 r2 b(r1) r2

7(5)

8(6)

i1:

i2:

i3:

i4:

i5:

i7:

i9:

i11:

r5

if (r1 < r6) goto i1

i6:

i8:

i10:r5 + r4 r1 r1 + 4

FIGURE 19.18 Basic block schedule for the instruction sequence of Figure 19.17.



Instruction Scheduling 19-29

Time Int. Unit 1 Int. Unit 2
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r1 + 4

3

4

i1:

i2:

i5:

i9:

i11:

i7:

i12:

r4

goto i9

r2

i3:

i4:

i10:

i8: b(r1) r2

FIGURE 19.19 Trace schedule for the instruction sequence of Figure 19.17.

The reason is that when execution proceeds on an alternative path, instruction i , which was speculatively

executed, would have modified the destination register, which is live on entry in this path. Suppose register

r3 is live on entry for basic block B3 in our example; that is, there is some instruction j in B3 for which r3
is a source operand, and there are no instructions in B3, before j , that define r3 . Then speculative motion

of i3 from basic block B2 to B1will destroy the live-in value of r3 for instruction j . To perform speculative

code motion of an instruction whose destination register is live-in on an alternative path, the destination

register must be renamed appropriately at compile time.

A schedule for the main trace is shown in Figure 19.19. In this schedule, the main trace consisting of

basic blocks B1, B2, and B4 can be executed in six cycles, while the off-trace path involving B1, B3, and

B4 can be executed in seven cycles. By scheduling instructions across basic blocks, the execution time of

the main trace is reduced from nine to six cycles.

When execution goes through the less frequently executed path, the off-trace path, to preserve correct

program execution, some of the instructions may be duplicated. The code inserted to ensure correct

program behavior and thus compensate for the code movement is known as compensation code. For

example, if an instruction from basic block B1 is moved down below the control split point to B2, then a

compensation code has to be inserted in B3. Several other examples of code movement and the required

compensation code are illustrated in [100].

The trace scheduling algorithm should maintain the need for introducing such compensation code at

various program points. This is known as bookkeeping. The compensation code may increase the schedule

length of other traces. Since the objective is to reduce the overall execution time, and since the trace that is

scheduled first is the most frequently executed one, compacting the schedule of the instructions in this trace

is desirable, even if this increases the schedule length of other traces. A key property of trace scheduling,

as pointed out in [132], is that the decisions as to whether to move an instruction from one basic block

to another, where to schedule it, and so on, are all made jointly in the same compiler phase. The trace

scheduling method was implemented in the Bulldog compiler [43]. The work was later enhanced into a

production-quality multiflow compiler [100].

19.5.1.2 Superblock Scheduling

Hwu et al. proposed a variant of trace scheduling called superblock scheduling [74] in the IMPACT

project [23]. The motivation and the basic idea behind superblocks comes from the observation that

the complexities involved in maintaining bookkeeping information in trace scheduling result from sev-

eral incoming control flow edges at various points in a trace. The bookkeeping associated with these

entrances, known as side entrances, can be avoided if the side entrances themselves are eliminated in

the trace. For example, in Figure 19.17c, there is a side entrance to the trace at basic block B4. Thus, by

eliminating the side entrances, the (control flow) join points, as well as the associated bookkeeping, can

be eliminated in a superblock. To summarize, a superblock trace consists of a sequence of basic blocks with

a single entry (at the beginning of the superblock) and multiple exits. Superblocks are formed in two steps:
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FIGURE 19.20 Superblock formation and scheduling.

in the first step traces are identified using profile information; the second step performs tail duplication to

eliminate side entrances.

We explain the construction of superblocks with the help of the example discussed in Section 19.5.1.1.

Once again, let us assume that basic blocks B1, B2, and B4 constitute the main trace as shown in

Figure 19.17c. The second trace in the control flow graph makes a control flow entry to B4 and hence a side

entrance to the main trace. To form superblocks for this trace, the tail block B4 is replicated to eliminate

the side entrance. The superblocks for the control flow graph are shown in Figure 19.20a.

Three optimizations to enlarge the size of a superblock have been proposed in [74] that, in turn, enhance

the scope for exploiting higher ILP. Additional dependence-removing optimizations are subsequently

performed to expose greater ILP. After these optimizations, the instructions in enlarged superblocks are

scheduled using a list scheduling method. A schedule for the superblock is shown in Figure 19.20b.

Although no bookkeeping code is needed in this example, avoiding the side entrance enables further

compaction of the schedule for the main trace or superblock 1. It can be seen that superblock 1 can be

executed in five cycles. When the control flows to superblock 2, six cycles are needed for the execution.

Both trace and superblock scheduling consider a linear sequence of basic blocks from a single control flow

path. Both methods can move instructions from one basic block to another. However, store instructions

that write into memory locations are not speculatively moved above branches, as this would modify a

memory location whose old contents may be needed in an alternative path when execution proceeds on an

off-trace path. Likewise, instructions that could cause an exception, such as load, store, integer divide, and

floating point instructions, are typically not speculatively moved; otherwise, additional hardware support,

in the form of non-trapping instructions, would be required [23].

19.5.1.3 Hyperblock Scheduling

Trace scheduling and superblock scheduling rely on the existence of a main trace, the most frequently

executed path in the control flow graph. While this is likely in scientific computations, it may not be the case

in control-intensive symbolic computing that dominates integer benchmark programs. To handle multiple

control flow paths simultaneously, Mahlke et al. proposed hyperblock scheduling [102]. In this approach, the

control flow graph is IF-converted [7] to eliminate conditional branches. IF-conversion replaces conditional

branches with corresponding comparison instructions, each of which sets a predicate. Instructions that

are control dependent on a branch are replaced by predicated instructions that are dependent on the

corresponding predicate. For example, an instruction t1 ← t2+t3 that is control dependent on the

condition (t4 == 0) is converted to

i : p1 ← (t4 == 0)

i
′ : t1 ← t2 + t3, ifp1
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Instruction i' is predicated on p1 , and t1 ← t2+t3 is performed only if p1 is true. Thus, by using

IF-conversion, a control dependence can be changed to a data dependence. In architectures supporting

predicated execution [23, 80, 136], a predicated instruction is executed as a normal instruction if the

predicate is true; it is treated as a no-op otherwise.

A hyperblock is a set of predicated basic blocks and, as with superblocks, has a single entry and multiple

exits. However, unlike a superblock, which consists of instructions from only one path of control, a

hyperblock may consist of instructions from multiple paths of control. The presence of multiple control

flow paths in a hyperblock enables better scheduling for programs with heavily biased branches. The

region of blocks chosen to form a hyperblock is from an innermost loop, although a hyperblock is not

necessarily restricted only to loops. While conventional IF-conversion can predicate all basic blocks in an

innermost loop, hyperblocks selectively predicate only those that would improve program performance.

A heuristic based on the frequency of execution, size, and characteristics (such as whether or not they

contain function calls) of basic blocks is used in selecting the blocks for predication. The reason for being

selective in predication is that combining unnecessary basic blocks (from different control flow paths)

results in wasting the available resources, leading to poor performance.

The selected set of basic blocks should (a) not have a side entrance and (b) not contain an inner loop.

Tail duplication is done to eliminate side entrances in a hyperblock. Loop peeling is performed on a nested

inner loop that iterates only a few times to enable inclusion of both inner and outer loops in the hyperblock.

Last, when basic blocks from different control paths are included in a hyperblock, and when the execution

times of the control paths are vastly different, node splitting is performed on nodes subsequent to the merge

point (corresponding to the multiple control path). Node splitting duplicates the merge and its successor

nodes.

Once the blocks are selected for a hyperblock, they are IF-converted. Then certain hyper-block-specific

optimizations are performed [102]. Finally, the instructions in a hyperblock are scheduled using a list

scheduling method. In hyperblock scheduling, two instructions that are in mutually exclusive control flow

paths may be scheduled on the same resource. If the architecture does not support predicated execution,

reverse If-conversion [172] is performed to regenerate the control flow paths.

Let us once again consider the control flow graph shown in Figure 19.17c. If basic blocks B2 and B3
are both equally likely to be executed, the superblock scheduling method can choose only one of the two

basic blocks, whereas both can appear in a hyperblock (refer to Figure 19.21a). A new instruction i2'
that sets a predicate is introduced in the code. Instructions i3 , i4 , and i5 are predicated on p1 while

i7 and i8 are predicated on the complement of p1 (i.e., !p1 ). Since instructions i3 and i4 are now

data dependent on i2' , they can be scheduled only after time step 2. This results in a lengthier schedule.

However, by identifying that these two instructions can be speculatively executed, predicate promotion can

be performed on these instructions [102], and they can be scheduled earlier. The resulting schedule is

shown in Figure 19.21b. Note, however, that the resulting hyperblock schedule takes six cycles and hence

results in a performance degradation if the control flow path B1 → B2 → B4 is taken.

Tail duplication and node splitting performed to form hyperblocks result in duplication of code. This

may increase the code size significantly. Another concern in hyperblock scheduling is that an aggressive

selection for alternate control flow paths may unnecessarily increase the resource usage and hence may

result in degenerated schedules. Hence, in order for hyperblock scheduling to be effective, both code

duplication and the inclusion of alternate control flow paths must be kept under check.

19.5.1.4 Other Global Acyclic Scheduling Methods

In [103] global acyclic scheduling methods have been classified as either profile-driven or structure-

driven approaches. The global acyclic methods discussed in the earlier subsections fall under the profile-

driven approach. They identify the most frequently executed paths using profile information and coalesce

them into an extended basic block. In contrast, the structure-driven approach identifies and attempts to

increase parallelism along all execution paths by moving operations between basic blocks and considering

program structure, without using profile information. Examples of structure-driven approaches are region

scheduling [61], percolation scheduling [111], and global scheduling [15]. In this section we briefly review
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FIGURE 19.21 Hyperblock formation and scheduling.

some of the structure-driven global scheduling methods, as well as a few other profile-driven scheduling

methods.

Trace scheduling is generalized to deal with general control flow in percolation scheduling [111]. Per-

colation scheduling uses four transformations, namely delete, move, move conditional, and unify. For

each node in the control flow graph, it tries to apply each of the four transformations and repeats the

transformation until none can be applied. Three out of four of these transformations move operations

upward in the control flow graph. Delete removes a node when it is empty. Percolation scheduling orig-

inally assumed unbounded resources. It is then extended to non-unit execution latencies, but still with

unbounded resources, in [113]. Trailblazing [112] is another extension to percolation scheduling that

exploits the structure of the hierarchical task graph representation to move instructions across large blocks

of code in a nonincremental way, that is, without having to move instructions in a step-by-step manner

through every block in the control flow path. This facilitates both efficient code motion and elimination

of code explosion in certain cases.

Meld scheduling is a simple but effective instruction scheduling method across basic blocks that was used

in the Cydra 5 compiler [36]. It follows a simple basic block scheduling approach, except that during the

scheduling of a basic block B , if the predecessor (or the successor block), for instance, B ′, has already been

scheduled, then the resource usage information at the end (or, respectively, the beginning) of the schedule

for B ′ is used as the resource usage at the start (or end) of the the basic block B . The resource usage

entering into the basic block should take into account the multiple basic blocks from which (to which)

control flow could enter (leave) the block B . Taking into account the resource usage at the boundary

of neighboring basic blocks and scheduling instructions from the current basic block allows the overlap

of instructions across basic blocks. The work of Abraham et al. generalizes this idea and quantitatively

evaluates the benefits of meld scheduling [1].

Another global code scheduling, called region scheduling, is discussed in [61]. This approach is based on

an extended program dependence graph representation allowing code motion between regions consisting

of control equivalent statements [45]. Regions are classified according to their parallelism content, which

is used to drive a set of powerful code transformations. Golumbic and Rainish proposed several simple

schemes for scheduling instructions beyond basic blocks [53].

A global instruction scheduling method, also based on a program dependence graph, has been imple-

mented in the IBM XL family of compilers for the IBM RS/6000 systems [15]. The scheduling method

proceeds by processing one basic block at a time. However, when scheduling instructions in a basic block B ,

instructions from control equivalent blocks as well as instructions from successors of B and successors

of control equivalent blocks are also considered. While the latter two categories of instructions (from
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successor blocks) are considered speculatively executed instructions, instructions from control equivalent

blocks are considered useful instructions. During a scheduling step, speculative instructions can be

scheduled, provided they are data ready, resources for them are available, and they are schedulable across

basic blocks. However, preference is given to useful instructions as opposed to speculatively executed ones.

This is especially important in machines with a few functional units, such as the RS/6000 system.

Next we turn our attention to a few other profile-driven scheduling methods. Hank, Hwu, and Rau

proposed region-based compilation, an approach that allows an arbitrary collection of basic blocks, possibly

extending over multiple function bodies, to be considered as a compilation unit [63]. The region formation

approach is a generalization of profile-based trace selection. A region can expand across more than one

control path. Region formation considers aggressive function inlining to extend regions across function

bodies. The region formation approach is proposed as a generalized technique that is applicable to the

entire compilation process, including ILP optimizations, instruction scheduling, and register allocation.

A global scheduling technique that operates over a restricted region, a single entry subgraph, is proposed

in [101]. A region-based register allocation approach is discussed in [83].

Trace scheduling and superblock scheduling operate on linear sequences of basic blocks from a single

control flow path and favor the current trace path at the expense of instructions in the off-trace trace.

Hsu and Davidson [71] and, more recently, Havanaki et al. [64] proposed global scheduling methods

that operate on a tree of basic blocks, possibly involving multiple control flow paths. A treegion, as the

name suggests, is a tree in the control flow graph, where except for the root node, all other nodes (basic

blocks) have a single incoming edge. Scheduling of instructions in the tree of basic blocks can benefit from

profile information. Furthermore, a treegion [64] can be enlarged by performing tail duplication of merge

nodes (and its successors). Compile-time register renaming is used to allow speculative code motion of

instructions above their control-dependent branches.

The integrated global local scheduling (IGLS) approach [103] is a hybrid of profile-driven and structure-

driven scheduling approaches. This method avoids the tail duplication and bookkeeping overheads of

profile-driven approaches. IGLS orders the selection of blocks using profile information. However, in ap-

plying the code reordering transformation, it follows a structure-driven approach and does not necessarily

restrict code reordering to any trace or extended block. Also, the selection of the appropriate code motion

and the target block selection are made flexible and depend on the block’s current properties such as the

available parallelism within the block. The method has been implemented in the SGI MIPSpro compiler.

An important consequence of aggressive speculative scheduling of instructions in a global instruction

scheduling method is that it may unduly delay some of the paths in the global region (such as a superblock)

considered for the schedule. This happens especially when the resources (functional units) are limited. The

reason for this is that the profile information is used only during the formation of the global region and

not while scheduling the instructions. Fisher proposed the use of speculative yield — the probability that

a speculatively scheduled instruction produces useful work — along with dependence height (similar to

MaxDistance, defined in Section 19.4.2.1) in scheduling instructions in the global region [48]. Successive

retirement is another profile-independent scheduling heuristic that attempts to retire each path (or exit)

in order, as early as possible [27]. This heuristic, applied to superblock regions, minimizes speculation

so that it only speculates when there are no non-speculative instructions available. The speculative hedge

heuristic attempts to ensure that no path gets delayed unnecessarily by accounting for different processor

resources while scheduling, and not just using a common scheduling priority function based on dependence

height [37]. Last, the treegion scheduling method [64], by virtue of scheduling multiple paths in parallel,

also avoids unduly penalizing the off-trace paths.

19.5.2 Cyclic Scheduling

To exploit higher ILP in loops, several cyclic scheduling methods have been proposed to overlap the

execution of instructions from multiple basic blocks, where the multiple blocks could be multiple instances

of the same static basic block corresponding to different iterations. Early cyclic scheduling methods unrolled

the loop several times and performed some form of global scheduling on the unrolled loop [49]. While
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FIGURE 19.22 Software pipelining example.

this approach exploits greater ILP within the unrolled iteration, there is very little or no overlap across the

iterations of the unrolled loop.

Software pipelining [6, 88, 132, 133] overlaps the execution of instructions from multiple iterations of

a loop. The objective here is to sustain a high initiation rate, where the initiation of a subsequent iteration

may start even before the previous iteration is complete. We discuss software pipelining only briefly here,

as this is the topic of discussion of another chapter [5] in this book.

Let us first explain software pipelining with the help of the example (refer to Figure 19.22) adapted

from [57, 135]. The dependences among the instructions in the loop are represented by means of a data

dependence graph (DDG). The DDG, unlike the DAG used so far for acyclic scheduling, may be cyclic.

In particular, a dependence from an instruction i to i' could be across iterations. That is, the value

produced by i in the j th iteration could be used by i' in iteration ( j + d). Such a dependence is known

as a loop-carried dependence with a dependence distance d . A loop-carried dependence is marked in the

DDG by tokens on the dependence arc. The number of tokens present in an arc indicates the dependence

distance.

For the instruction sequence shown in Figure 19.22b, the dependence graph is depicted in Figure 19.22c.

In this graph, we assume that the possible dependence from store to load can be disambiguated

and hence omitted. We shall assume an architecture with two Integer functional units and two floating

point units. Let the latencies of instructions in these functional units be one and two cycles, respectively.

Furthermore, we will assume that Load and Store instructions are executed by a Load/Store unit with

execution times of two and one time units, respectively. An acyclic scheduling approach will be able to

achieve a schedule in which the execution time of each iteration is five cycles. This corresponds to an

initiation rate of one-fifth iteration per cycle.

Software pipelining overlaps successive iterations of the loop and hence can exploit higher ILP. Successive

iterations of a loop are initiated with an initiation interval (II) and initiation rate (1/II). The minimum

initiation interval (MII) achievable for a given loop is governed by resource constraints and recurrences

or cyclic data dependences. The MII of a loop is the maximum of resource MII (ResMII) and recurrence

MII (RecMII).

RecMII is determined from the dependence cycle(s) in the DDG [137]. Specifically,

RecMII = max
∀cycles C

⌈

sum of execution latencies of instructions in C

sum of dependence distances in C

⌉



Instruction Scheduling 19-35

ResMII, for simple resource usage patterns (fully pipelined functional units), is given by

ResMII = max
r

⌈

Nr

Fr

⌉

where Nr is the number of instructions that can be executed in a functional unit of type r and Fr is the

number of instances of a type r functional unit. For our target architecture,

ResMII = max(ResMIIInt , ResMIIFP, ResMIILd/St)

ResMII = max

(

3

2
,

1

2
,

2

1

)

= 2

For the DDG in Figure 19.22b there are two self cycles on instructions i3 and i4 . Hence, the RecMII for

the loop is

RecMII = max

(

1

1
,

1

1

)

= 1

Thus,

MII = max(RecMII, ResMII) = max(1, 2) = 2

In our discussion we consider periodic linear schedules, under which various instructions begin their

execution at time steps given by a simple linear relationship. The j th iteration of an instruction i begins

execution at time II · j + ti , where ti ≥ 0 is an integer offset and II is the initiation interval of the given

schedule. It can be seen that ti is also the schedule time of instruction i in iteration 0.

Figure 19.23 gives a resource-constrained schedule with II = 2 for our example loop. This schedule is

obtained with II = 2, ti0 = 0, ti1 = 2, ti2 = 5, ti3 = 3, ti4 = 4, and ti5 = 5. The schedule has a prolog

(from time step 0 to time step 3), a repetitive pattern (at time steps 4 and 5), and an epilog code starting from

time step 6 to time step 9 as shown in the figure. Furthermore, at the first time step in the repetitive pattern

i1 :  mult

i3 :  add

i4 :  sub

i2 :  st
i5 :  bge

i0 :  ld 

i1 :  mult

i3 :  add

i4 :  sub

i2 :  st
i5 :  bge

i0 :  ld 

i1 : mult

i3 : add

i4 : sub

i2 : st
i5 : bge

i0 :  ld 

0

1

2

3

4

5

6

7

8

9

Iter. 1 Iter. 2Iter. 0
Time
Step

Prolog

Epilog

Kernel

FIGURE 19.23 A software pipelined schedule with II = 2.
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(time step 4), instructions i0 , i1 , and i4 are scheduled. Instructions i2 , i3 , and i5 are scheduled at

the second time step (time step 5). The repetitive kernel is executed (n − 2) times in this case, and hence

t1 must be appropriately set. The resource requirement in both cycles in the repetitive kernel is within the

available resources. Furthermore, the schedule shown above is one of those resource-constrained schedules

that achieves the lowest initiation interval (MII = 2). Hence, the schedule is a rate-optimal schedule.

Obtaining a rate-optimal resource-constrained software pipelined schedule is known to be NP-complete

[88, 132]. Hence, many of the proposed methods for software pipelining attempt to obtain a near-optimal

resource-constrained schedule. A number of heuristic methods for software pipelining have been pro-

posed [36, 38, 51, 88, 105, 130, 131, 153, 168], starting with the work of Rau and Glaeser [133] and its

application in the floating point systems (FPS) compiler and Cydra 5 compiler [35, 36]. Some of these

algorithms backtrack some of the scheduling decisions to obtain efficient schedules.

A resource-constrained software pipelining method using list scheduling and hierarchical reduction

of cyclic components has been proposed by Lam [88]. Her approach identifies strongly connected

components — the maximal connected subgraph of the underlying undirected graph, where there is a path

between every pair of nodes — and schedules the instructions in them. The strongly connected component

is then treated as a single pseudo-operation with a complex resource usage pattern. Thus, the remaining

DDG is reduced in a hierarchical way. Other heuristic-based scheduling methods have been proposed by

Gasperoni and Schwiegelshohn [51], Wang and Eisenbeis [168], and Rau [131]. The problem of obtaining

a rate-optimal resource-constrained software pipelined schedule is formulated as an integer linear pro-

gramming problem in [44, 55, 57]. Altman et al. have extended their integer linear program formulation to

handle complex resource usage patterns by unifying the scheduling and mapping problem in a single frame-

work [8]. Efficient integer linear program formulation is proposed in [41] that makes use of a structured 1-0

formulation [26].

In [56, 58] a novel scheduling method, called co-scheduling, has been proposed that is a heuristic method

that uses an MS-state diagram, an automaton-based resource usage model. The MS-state diagram model,

proposed independently, is similar to the finite state automaton approach proposed by Bala and Rubin [12];

the main difference is that the former incorporates information about the initiation interval (II).

In addition to obtaining efficient schedules, in terms of low II, many software pipelining methods also

attempt to reduce the register requirements of the constructed schedule. Huff ’s slack scheduling [72] is

an iterative solution that gives priority to scheduling instructions with minimum slack (as defined in

Section 19.4.2.1) and tries to schedule an instruction at a time step that minimizes register pressure. Stage

scheduling constructs a schedule with lower register requirements from an already constructed resource-

constrained software pipeline schedule either using a number of heuristics [39] or by solving a linear

programming problem [42]. It should be noted here that the newly constructed schedule and the original

schedule have the same repetitive kernel and ti values (the schedule time of instruction i in iteration 0).

The hypernode reduction modulo scheduling (HRMS) method [98], register-sensitive software pipe-

lining [34], and swing modulo scheduling [97] are some of the other software pipelining methods that

reduce the register requirements of the software pipelined schedule.

Register allocation of software pipelined schedules has been studied in [135]. A number of register

allocation strategies were discussed and evaluated for architectures with and without specific hardware

support. An important issue in software pipelining is that of handling the live ranges of the same variable

corresponding to different iterations that overlap with themselves. For example, the value produced by

instruction i1 at time step 2 in the schedule shown in Figure 19.23 is used by instruction i2 only at time

step 5. However, another instance of i1 corresponding to the next iteration is executed (at time step 4)

that could overwrite the destination register. Modulo variable expansion is a technique that unrolls the

schedule a required number of times and renames the destination register appropriately to handle multiple

simultaneously live values [88, 133]. Hardware support in the form of rotating registers was proposed in

Cydra 5 [136] as a solution to this problem. With rotating registers, unrolling of loop schedules as in

modulo variable expansion is not necessary. A software pipelining method that is sensitive to modulo

variable expansion is proposed in [164]. This method first unrolls the loop an estimated number of times

and schedules it in such a way as to avoid overlapping live ranges of the same variable.
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If the register requirement is higher than the available registers, earlier approaches follow one of the

following two simplistic approaches:

� Spill some of the variables to memory. In this approach, register spills require additional load and

store operations, which need to be scheduled in the kernel. However, if the memory unit is saturated

in the kernel such that the spill loads/stores could not be scheduled, then the II value needs to be

increased and the loop must be rescheduled for the new II value.
� Reschedule the loop with a larger II but without inserting spills. Increased II in general reduces

the register requirement of the schedule. Hence, with the new II, the register requirement of the

constructed schedule may be lower than the number of available registers.

In general, increasing the II produces worse schedules than adding spill code. However, for some loops,

the introduction of spill code may increase the II beyond what is achieved by the other method [4]. Thus,

a hybrid method that adds spill code in some cases and increases the II in others can produce better

results. The hybrid approaches [97, 140, 169, 176] first spill as many variables as required to have a register-

constrained schedule without increasing the II; if this does not get the desired result, that is, even with

the spill a schedule cannot be constructed with a register requirement less than the available register, then

the II is increased. More recently, an on-the-fly spilling method has been proposed [4, 176] that takes into

account register requirements during loop scheduling. If the register pressure of the partial schedule is

high and greater than the available number of registers, the scheme inserts and schedules spill instructions

on-the-fly. Further, if the spill code does not reduce register pressure sufficiently, then backtracking is used

and selected instructions are unscheduled in order to reduce register pressure.

Loops consisting of multiple basic blocks with arbitrary acyclic control flow in the loop body pose another

important challenge for software pipelining. Lam’s hierarchical reduction approach, which schedules

strongly connected components and reduces them as a single pseudo-operation, can handle conditionals

as well [88]. In her approach, the two branches of a conditional are first scheduled independently. The

entire conditional is then represented as a single node whose resource usage at each time step is the union

of resource usages of the two branches, with the length of the schedule equal to the maximum of the lengths

of the branches. After the entire loop is scheduled, the explicit control structure is regenerated by inserting

conditionals. Another approach to handle conditionals in a loop body is by performing IF-conversion [7].

The IF-converted (or predicated) code can be scheduled [35] for architectures that support predicated

execution [23, 80, 136] as if it were a single basic block. However, the resource usage for predicated code

is the sum of the resource usages rather than their union.

The enhanced modulo scheduling method [171] follows an approach similar to software pipelining

predicated code. However, it regenerates the explicit control structure as in the hierarchical reduction

method [88]. This not only eliminates the disadvantage on resource requirements of predicated methods,

but also does not require hardware support for predicated execution. In [173] a software pipelining method

that uses multiple II values has been proposed. The scheduling procedure is reminiscent of trace scheduling;

the most likely trace of execution is chosen and scheduled separately with the smallest possible II. The

next trace is scheduled on top of this trace, filling in holes with an II that is a multiple of the smallest II

and so on.

A comprehensive survey of various software pipelining methods can be found in [6, 132]. A survey of

the recent advances in software pipelining can be found in [138].

19.6 Scheduling and Register Allocation

In this section we discuss the interaction between instruction scheduling and register allocation, another

important phase in an optimizing compiler. Register allocation determines which frequently used variables

are kept in registers to reduce memory references. Instruction scheduling and register allocation phases

influence each other, so the ordering of these two phases in a compiler is an important issue.
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19.6.1 Phase Ordering Issues

In many early compilers instruction scheduling and register allocation phases were performed separately,

with each phase being ignorant of the requirements of the other, leading to degradation of performance.

The performance degradation can be explained as follows. In Postpass scheduling where register allocation

precedes instruction scheduling [52, 66], the register allocator, in an attempt to reduce the register re-

quirements, may reuse the same register for different variables. This reuse of registers could result in anti-

and output-dependences, which in turn will limit the scheduler’s reordering opportunities. On aggressive

multiple instruction issue processors, especially those that are statically scheduled, the parallelism lost may

far outweigh any penalties incurred due to spill code.

However, in a Prepass method [11, 54, 170], instruction scheduling is performed before register alloca-

tion. This typically increases the lifetimes of registers, possibly leading to more spills and hence degrading

performance. Furthermore, any spill code generated after the register allocation pass may go unsched-

uled, as scheduling was done before register allocation. This may even lead to illegal schedules in statically

scheduled processors if the resources required for the spill code are not available. Therefore, it is customary

that Prepass scheduling is followed by register allocation and Postpass scheduling.

19.6.2 Integrated Methods

A number of integrated techniques have been proposed in the literature to introduce some communication

between the two phases [17, 19, 54, 126]. These integrated techniques increase the ILP exposed to the

processor without drastically increasing the number of spills and hence improve performance considerably.

We discuss two of these integrated methods, namely integrated prepass scheduling (IPS) [54] and the

parallel interference graph method [126], in detail. A number of other integrated methods have also been

proposed in the literature [16, 19, 106, 115], which are reviewed briefly.

19.6.2.1 Integrated Prepass Scheduling

In IPS [54], instruction scheduling precedes register allocation, but the scheduler is given a bound on the

number of registers, which guides it to increase parallelism when the register pressure is low and to limit

the parallelism otherwise.

The basic idea is to keep track of the number of available registers during the scheduling phase. Each

issued instruction may create a new live register and terminate the lifetime of some registers. Hence, this

method keeps track of the number of available registers at each scheduling step. The main algorithm

switches between two schedulers. When there are enough registers, the scheduler uses CSP (code scheduler

to avoid pipeline delays), which schedules instructions to avoid delays in pipelined machines. When the

number of registers falls below a threshold, the scheduler switches to CSR (code scheduling to minimize

registers usage), which essentially controls the use of registers.

Switching between CSP and CSR is driven by the number of available registers, AVLREG. AVLREG is

increased when a live range ends and decreased when an instruction creates live registers. CSP is responsible

for code scheduling most of the time. When AVLREG falls below a threshold (for instance, 1), CSR is

invoked. The goal of CSR at this point is to find the next instruction that will not increase the number

of live registers, or, if possible, decrease that number. That is, CSR tries to schedule an instruction that

frees more registers than the number of live registers it creates. After AVLREG is restored to an acceptable

value, CSP resumes scheduling. Thus, IPS performs Prepass scheduling without excessively increasing the

register requirements of the schedule.

The scheduling phase is subsequently followed by the global register allocation phase. The IPS scheduler

is similar to the list scheduler described in Section 19.4.2. The IPS scheduler uses the DDG of a basic block

to perform the scheduling in each basic block.

19.6.2.2 Parallel Interference Graph Method

The integrated technique developed by Pinter is based on the coloring of a graph called the parallel

interference graph [126]. The graph provides a single framework within which the considerations of both
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register allocation and instruction scheduling can be applied simultaneously. In this technique, the parallel

interference graph — an interference graph that also takes into account scheduling constraints — is first

constructed. Using this graph, register allocation is carried out, which is then followed by instruction

scheduling. Hence, this is a Postpass method.

The parallel interference graph combines properties of the traditional interference graph and the

scheduling graph. However, a simple combination of the two graphs is not possible because the ver-

tices in the two graphs represent different things: the vertices in the interference graph stand for symbolic

or virtual registers in the program, while the vertices in the scheduling graph correspond to instructions

in the program. Likewise, an edge in the interference graph indicates an interference of live ranges of two

symbolic registers, whereas an edge in the scheduling graph represents a precedence constraint between

two instructions.

To see how the two graphs are combined consider the example code sequence shown in Figure 19.24a.

The live ranges of variables are also shown in the same figure. Figure 19.24b shows the DAG for the code.

The DAG gives the precedence constraints of the program. The transitive closure of this graph is generated

and the edge directions are removed (refer to Figure 19.24c). The transitive closure edges are shown as

dash–dot lines in the graph in Figure 19.24c. To this new graph all the machine-related dependencies that

are not of precedence type are added. For example, consider a target machine with only one Integer unit and

one Load/Store unit. Then, instructions i1 , i2 , and i6 that execute on the Load/Store unit form a group.

Similarly, instructions i3 , i4 , and i5 , which execute on the Integer unit, form another group. Any pair

of instructions in the same group cannot be executed in parallel. This constraint is represented by adding

an edge between each pair of instructions in a group. A machine constraint edge, shown as dashed line, is
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i1 : t1 <−− ld x;

i2 : t2 <−− ldi

i3 : t3 <−− t2 − 4

i6 : x   <−− st t5

i4 : t4 <−− t1 * t1

i5 : t5 <−− t3 * t4
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t3
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FIGURE 19.24 Construction of parallel interference graph.
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added only if neither a dependency edge nor a transitive closure edge already exists between that pair of

instructions. Figure 19.24c shows the graph after transitive closure and machine-related edges are added.

For example, edges (i1,i2) and (i3,i4) are machine-related edges. The edges in the complement

of this graph represent the actual parallelism available in the given program. The complement graph

consists of only two edges, namely, (i1,i3) and (i2,i4) . If we can ensure that the two definitions

corresponding to each edge in the complement graph are given different registers, then no false dependence

will be introduced by the register allocator. For example, the live ranges for t1 and t3 , corresponding to

the complement edge (i1,i3 ), should be given different registers to ensure that no false dependences are

introduced between i1 and i3 .

In the interference graph, nodes represent symbolic or virtual registers. An edge is added between a

pair of nodes in the interference graph if their live ranges overlap. The interference graph for the code

sequence is shown in Figure 19.24d. Now the parallel interference graph is built by adding edges from

the complement graph to the interference graph, if they are not already present. In our example, the

complement edge (i2,i4 ) should be added to the parallel interference graph. The resulting parallel

interference graph is shown in Figure 19.24e. An optimal coloring of this graph will ensure that no false

dependence will be introduced. While coloring the graph, if it is found that spill code has to be added,

the scheduling edges in the interference graph are removed one at a time to avoid spilling, thus giving up

some possible parallelism.

19.6.2.3 Other Integrated Methods

The unified resource allocator (URSA) method deals with function unit and register allocation simultane-

ously [16]. The method uses a three-phase measure–reduce–assign approach, where resource requirements

are measured and program regions of excess requirements are identified in the first phase. The second phase

reduces the requirements to what is available in the architecture, and the final phase carries out resource

assignment. Norris and Pollock [115] proposed a cooperative scheduler-sensitive global register allocator,

which is followed by local instruction scheduling. The scheduler-sensitive global register allocator is a

graph coloring allocator that takes into consideration the scheduler’s objectives throughout each phase of

its allocation. The potential for code reordering is reflected in the construction of the interference graph.

Scheduling constraints and possibilities are also taken into consideration when the allocator cannot find

a coloring and decides to spill.

Bradlee et al. [19] developed an integrated approach called RASE, in which a prescheduling phase is run

to calculate cost estimates for guiding the register allocator. A global register allocator then uses the cost

estimates and spill costs to obtain an allocation and to determine a limit on the number of local registers

for each block. A final scheduler is run using the register limit from allocation and inserting spill code as

it schedules.

Motwani et al. studied a combined register allocation and instructions scheduling problem (CRISP)

[106]. They formulated the problem as a single optimization problem and proposed an efficient heuristic

algorithm, called the (α, β)-combined algorithm. The parameters α and β provide relative weightage for

register pressure and ILP.

19.6.2.4 Evaluation of Integrated Methods

Several studies have compared the Prepass and Postpass scheduling methods with integrated techniques

[17, 19, 22, 116]. In [19] Bradlee et al. compared three code generation strategies, namely, Postpass, inte-

grated Prepass scheduling, and their own integrated technique called RASE. Their study, conducted for a

statically scheduled in-order issue processor, demonstrated that while some level of integration is necessary

to produce efficient schedules, the implementation and compilation expense of strategies that very closely

couple the two phases is unnecessary. Chang et al. studied the importance of Prepass scheduling using the

IMPACT compiler [23]. Their method applies both Prepass and Postpass scheduling to control-intensive

nonscientific applications. Their study considers single-issue, superscalar, and superpipelined processors.

Their evaluation also included superblock scheduling [74]. Their study reveals that Prepass scheduling

does not improve the performance in control-intensive applications when a restricted percolation model
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is used. With a more general code motion, scheduling before register allocation is important to achieve

good speedup, especially for machines with 48 or more registers.

In [116] Norris and Pollock describe a strategy for providing cooperation between register allocation

and instruction scheduling. They considered both global and local instruction scheduling techniques.

They experimentally compared their strategy with other cooperative and noncooperative techniques.

Their results suggest that either a cooperative or noncooperative global instruction scheduling phase,

followed by register allocation that is sensitive to the subsequent local instruction scheduling and local

instruction scheduling yields good performance over noncooperative methods. Berson et al. [17] compared

two previous integrated strategies [54, 115] with their strategy [16], which is based on register reuse

DAGs for measuring the register pressure. They evaluated register spilling and register splitting methods

for reducing register requirements. They studied the performance of the above methods on a six-issue

VLIW architecture. Their results reveal that (a) the importance of integrated methods is more significant

for programs with higher register pressure, (b) methods that use precomputed information (prior to

instruction scheduling) on register demands perform better than the ones that compute register demands

on-the-fly, for example, using register pressure as an index for register demands, and (c) live range splitting

is more effective than live range spilling.

19.6.3 Phase Ordering in Out-of-Order Issue Processors

Many modern processors (e.g., MIPS R10000 [175], DEC Alpha 21264 [82], and the AMD K5 [148]) sup-

port out-of-order issue. In an out-of-order issue processor, instructions are scheduled dynamically with the

help of complex hardware support mechanisms such as register renaming and instruction window. Register

renaming is a technique by which logical registers are mapped to hardware physical registers or locations in

the reorder buffer [151]. Such mapping removes anti- and output-dependences and hence exposes greater

ILP in the program. Furthermore, the number of available physical registers is typically larger (roughly

twice) than the number of logical registers visible to the register allocator. The instruction window holds

the fetched and decoded instructions; the dynamic issue hardware selects data-ready instructions from the

window and issues them. Instructions may be issued in an order different from the original program order.

The register-renaming mechanism and the reorder buffer together remove anti- and output-dependences.

This, in spirit, is similar to what the integrated register allocation and instruction scheduling techniques

do at compile time. This makes the issues in phase ordering for out-of-order issue processors different

from those for statically scheduled processors, namely, in-order issue and VLIW processors.

19.6.3.1 Evaluation of Phase Ordering in Out-of-Order Processors

The phase ordering problem in the context of out-of-order issue has been studied in [163, 165]. The

study investigates (a) whether complex compile-time techniques do improve the overall performance and

(b) whether a Prepass-like or a Postpass-like approach should be followed for out-of-order issue processors.

The study observes an insignificant improvement in performance due to integrated methods when schedul-

ing is limited to basic blocks. Furthermore, it advocates Postpass-like methods, as it is important to mini-

mize register spills in out-of-order issue processors, even at the expense of obscuring some ILP [163, 165].

19.6.3.2 Minimum Register Instruction Sequencing

Recall the optimal code generation problem and a solution to it, the Sethi–Ullman method for integrated

code generation and register allocation, discussed in Section 19.3.3.1. This problem is revisited in the

context of out-of-order issue superscalar processors in [59]. The problem addressed in this work is that of

obtaining an instruction sequence for a DAG that uses the minimum number of registers. This problem,

termed minimum register instruction sequencing (MRIS), is motivated by the fact that in out-of-order

issue processors it is important to reduce the number of register spills, even at the expense of not exposing

ILP. It should be noted here that the MRIS problem and its solution take into account neither the resource

constraints in the architecture nor the execution latencies of instructions. The emphasis here is to generate

an instruction sequence rather than a schedule.
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i2

i1

i3

i4 i5

i6 i7

i8

(b) Instruction Sequence A (c) Instruction Sequence B(a) Dependence Graph

i2 : t2 <− t1 + 4;

i3 : t3 <− t1 * 2;

i4 : t4 <− t2 * 4;

i6 : t6 <− t2 * t4;

i7 : t7 <− t3/t5;

t1

t2

t7

t3

t4

t5

t6

i1 : t1 <− load x;

t1

t3

i5 : t5 <− t3 − 1;

i8 : mem[t6] <− st t7;

i2 : t2 <− t1 + 4;

i4 : t4 <− t2 * 4;

i6 : t6 <− t2 * t4;

i3 : t3 <− t1 * 2;

i1 : t1 <− load x;

i5 : t5 <− t3 − 1;

i7 : t7 <− t3/t5;

i8 : mem[t6] <− st t7;

t2

t4

t6

t7

t5

FIGURE 19.25 Instruction sequences with different register requirements.

Let us motivate the MRIS problem with the help of an example. Consider the computation represented

by the DAG shown in Figure 19.25. Two possible instruction sequences for this DAG are also shown in

the figure along with the live ranges of the variables t1 to t7 . For the instruction sequence A shown in

Figure 19.25b, four variables are simultaneously live during instruction i5 ; therefore, four registers are

required for sequence A. If the number of available registers is less than four, sequence A will result in spill

loads/stores. However, for sequence B, shown in Figure 19.25c, only three variables are simultaneously

live, so this sequence requires only three registers. In this example, the minimum register requirement is

three. Hence, the sequence shown in Figure 19.25c is one of the minimum register sequences.

A solution to the MRIS problem proposed in [59] proceeds by identifying which instructions can share

the same register in any legal instruction sequence. A complete answer to this question is known to be

NP-hard [50]. The approach proposed in [59] uses the notion of an instruction lineage, which corresponds

to a sequence of instructions that forms a path in the DAG, that is, a sequence of instructions {i1 , i2 ,

i3 , . . . , in } in the DAG, where i2 is the successor of i1 , i3 is the successor of i2 , and so on. When

{i1 , i2 , . . . , in } forms a lineage, the instructions in a lineage share the same register. That is, the register

assigned to i1 is passed on to i2 (i1 ’s heir), which is passed on to i3 , and so on. Because of data

dependence between pairs of instructions in the lineage, any legal sequence will order the instructions as

i1 , i2 , . . . , in . Hence, the instructions in a lineage can certainly share the same destination register.

When an instruction i1 has more than one successor, one of the successors, for instance, i2 , is chosen

as the legal heir. To make i2 the last use instruction of i1 , and hence reuse the destination register,

sequencing arcs are added from each successor of i1 to the chosen heir i2 . For example, for the DAG

shown in Figure 19.25a, L1 = [i1,i3,i7,i8 ) forms a lineage. Typically, the last node in a lineage

either is a store node (in this case, i8 ) or is already in some other lineage. Thus, all instructions in a

lineage except the last one share the same destination register. To emphasize that the last instruction in a

lineage does not use the same destination register, a semi-open interval notation is used for a lineage, as

in L1 = [i1,i3,i7,i8 ). Since instruction i3 is chosen as the heir of i1 , a sequencing edge is added

from i2 to i3 . A simple but efficient heuristic based on the maximum distance (MaxDistance), measured

in terms of the path length to the sink node, is used to select heirs. If the MaxDistance heuristic used is

dynamic, that is, it is calculated after the introduction of each set of sequencing edges, then the introduction

of sequencing edges does not introduce cycles in the DAG [59]. The remaining lineages for the DAG are

L2 = [i2,i6,i8 ), L3 = [i5,i7 ), and L4 = [i4,i6 ).

To address the question of whether the live ranges of two lineages definitely overlap in any legal schedule,

a sufficient condition is established in [59]. The sufficient condition tests whether there exists a path from

the start node of lineage L1 to the end node of L2 and vice versa. If such paths exist, the live ranges of two
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lineages overlap in all legal sequences, and the lineages cannot share the same register. In our example,

lineages L1 and L2 overlap. So do the pairs of lineages (L1,L3), (L1,L4), (L2,L3), and (L2,L4), but lineages

L3 and L4 do not necessarily overlap in all sequences. Hence, they can be made to share the same register.

Doing so would result in sequencing the execution of some of the instructions because of false dependences.

However, in an out-of-order issue processor, these false dependences would be removed at runtime, and

hence the parallelism will be exposed.

Based on the overlap relation, a lineage interference graph is constructed and colored using a traditional

graph coloring algorithm. The number of colors required to color the graph is a heuristic lower bound on

the minimum registers required. Using this lower bound as a guideline, a modified list scheduling method

is used to generate a sequence that results in a near-optimal solution to the MRIS problem. This approach

to the MRIS problem was found to be very effective in reducing the register pressure and in reducing the

number of spill loads and stores in a number of SPEC benchmarks. Although the sequencing method

does not take into consideration resource constraints and execution latencies, the execution time of the

generated sequence was found to be comparable to that generated by a production-quality compiler.

19.6.3.3 Linearization of the Instruction Schedule

A superscalar processor expects a linear sequence of instructions. Hence, a parallel instruction schedule,

such as the one shown in Figure 19.12, is presented to a superscalar processor by linearizing it in a simple

way. The linearization method sequences the instructions in each cycle of the schedule in a left-to-right

order. However, simple linearization methods are not aware of the register-renaming capabilities of out-of-

order issue superscalar processors and may generate a sequence that would have higher register pressure.

As a consequence, it may result in spill code. Furthermore, the linearization does not take into account the

size of the instruction window [151], the register-renaming capabilities of superscalar architecture, or the

in-order graduation mechanism. These may result in certain inefficiencies in the form of stall cycles. An

efficient linearization method that is sensitive to register pressure and is aware of the architectural features

of out-of-order issue superscalar processors has been proposed in [147].

The linearization proposed in [147] uses a set of matching conditions that ensure the ILP available in

the given parallel schedule is not lost in the linearization process. The linearization method is an extension

of the list scheduling method and adds instructions to the linear sequence in such a way that it reduces the

register pressure without losing any parallelism compared to the given parallel schedule. The method was

applied to basic blocks.

19.7 Recent Research in Instruction Scheduling

In this section we report some of the recent research work on instruction scheduling.

19.7.1 Instruction Scheduling for Application-Specific Processors

Instruction scheduling methods have been proposed for application-specific processors such as digital

signal processing (DSP). Originally, most DSP applications, or their important kernels, were hand-coded

in assembly language. The application programmer is required to perform the necessary instruction re-

ordering to take full advantage of the parallelism that is available in these processors. With the increasing

complexity of the processors and their programmability, programming in higher-level languages and

compilation techniques to produce efficient code automatically are becoming increasingly important. A

major challenge in applying existing instruction scheduling methods arises from the irregularities of DSP

processors [92]. These irregularities include having special-purpose registers in the data path, heteroge-

neous registers, dedicated memory address generation units, chained instructions such as multiply-and-

accumulate, saturation arithmetic, multi-stage functional units, and parallel memory banks. Furthermore,

in most cases, code running on a DSP’s processor also has to meet real-time constraints. Thus, instruction

scheduling for DSP processors, which needs to take into account the irregularities of the architectures and

the real-time constraints in resource usage, poses a major challenge.
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Several instruction scheduling methods for DSP processors have been proposed. A DSP-specific code

compaction technique was developed in [159] that considers both resource and timing constraints. In-

struction scheduling for the TriMedia VLIW processor [125] is reported in [69]. The instruction scheduling

problem is transformed into an integer linear program problem in [95]. Another integer linear program

formulation for integrated instruction scheduling and register allocation is proposed in [20]. Methods for

simultaneous register allocation and instruction scheduling for DSP processors (involving heterogeneous

registers) are proposed in [28, 96]. An extensive survey of code generation for signal processing systems is

presented in [18].

Certain DSP processors, for example, the Texas Instruments TMS320C series [157], support multiple

operating modes, such as the sign-extension mode and product-shift mode, which provide slightly different

execution semantics for instructions [9]. Multiple operating modes raise another interesting instruction

scheduling problem. Here the objective is to schedule instructions, making use of the multiple modes,

while reducing the number of mode setting instructions required, and hence the associated overhead cost.

Code size is another key concern in application-specific processors. As code size relates to on-chip

program memory in these processors, code size can directly influence the cost of the system. Hence,

compilation methods in general, and instruction scheduling methods in particular, optimize the code not

only for performance, but also for code size. In the presence of code size constraints, the scope of global

code scheduling methods is limited, as these methods are known for their code bloating problem.

The TMS C6x DSP processor, well known for its compiler-friendly architecture, has a cluster of functional

units [157]. Each cluster has a register file of its own. Each functional unit in a cluster can access two read

ports and one write port to its local register file. In addition, at most one functional unit in a cluster can

access a register file in a cross cluster in any given time step. If more than one functional unit needs to

access data across clusters, or multiple accesses to a cross register file are needed, it is desirable to explicitly

copy this data to a local register.

In this type of architecture, known as clustered architecture, associated with the instruction scheduling

is the problem of mapping, which assigns an instruction and its destination operand to a cluster. Methods

that perform instruction scheduling before mapping [21] or mapping before scheduling [134] could

result in poor schedules, as the first phase makes certain decisions without knowing their consequences

on the subsequent phase. To take full advantage of the ILP that can be exploited in this architecture, a

compiler needs to perform instruction scheduling along with instruction mapping. This requires that the

two problems, assignment and scheduling, be solved in a unified framework as in [94, 118]. A modulo

scheduling method for clustered architecture is discussed in [117, 141].

19.7.2 Instruction Scheduling for IA-64

The explicitly parallel instruction computing (EPIC) architecture is a synthesis of VLIW and superscalar

design principles [143]. In this architecture, the compiler is responsible for exploiting the available ILP

as in a VLIW architecture. However, the hardware routes instructions to appropriate functional units

from a compact instruction encoding and inserts necessary stalls for data dependences to address the

problem of increased code size in VLIW architecture. The Itanium (IA-64) architecture [145] is a statically

scheduled architecture that follows the EPIC approach. The architecture also has several kinds of hardware

support, for example, predicated execution and rotating registers [136], for exploiting higher ILP. In this

architecture, the compiler exposes the ILP and packs independent instruction into instruction bundles.

Certain restrictions on which types of instructions can be grouped into a bundle, along with which

instructions are independent and what resources are available in a given cycle, make the problem of

instruction scheduling and bundling an interesting problem. We discuss instruction scheduling in IA-64

in some detail in this section.

Each instruction in IA-64 is categorized into one of six instruction types: integer ALU (A-type), non-ALU

integer (I-type), memory (M-type), floating point (F-type), branch (B-type), and extended (L/X-type).

An instruction bundle contains three instructions. However, only certain groupings of instruction types

are allowed. More specifically, only 12 specific bundle types are allowed. The bundle type of an instruction
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is specified in the 5-bit template field of the instruction. The template bits help in decoding and routing in-

structions and indicate the position of stops that mark the end of groups of instructions that can be executed

in parallel. IA-64 can issue a maximum of two bundles, consisting of a maximum of six instructions per clock

cycle. These six slots can contain at most two I-type, two M-type, two F-type, and three B-type instructions.

The problem of scheduling in IA-64 involves reordering of instructions, functional unit binding, and

bundle allocation. Kastner and Winkel proposed an integer linear program–based approach for basic

block instruction scheduling for IA-64 [79]. They addressed the problem by subdividing it into two

phases, namely, macro-scheduling and bundling. The objective of the macro-scheduling phase is to find a

minimum-length schedule, where instructions are grouped into instruction groups honoring the depen-

dence constraints. The instructions in one group can execute simultaneously in a single cycle. The number

of instructions in a particular instruction group is also bound by the number of instructions that can be

issued in a single cycle, six in the case of IA-64. The macro-scheduling problem is formulated as an integer

linear program.

The bundling phase transforms the sequence of instruction groups into an efficient sequence of feasible

IA-64 bundles. The bundling phase splits the instruction group according to the bundle constraints. Such

splitting is necessary since the macro-scheduling phase only ensures that there are at most six instructions

in the instruction group. However, due to bundling restrictions, it may be necessary to generate more

than two bundles. Second, empty slots in the bundle have to be filled with a no-op operation, and a

no-op operation in IA-64 must be associated with an instruction type. A naive selection of the no-op type

may result in further splits, causing more penalties. For example, if the instruction group contains two

M-type instructions, and we need to associate a type to the no-op in the group, then associating M-type

to the no-op will necessitate the instruction group to be split into more than two bundles. The bundling

phase itself is divided into two subphases, namely, micro-scheduling and sequencing. Micro-scheduling

generates a separate bundle sequence for each instruction group that is a partitioning problem, modeled

again as an integer linear programming problem. The result of micro-scheduling is an optimal bundle

sequence for each instruction group. These partial bundle sequences are combined by the sequencing

phase in a space-efficient manner, minimizing the number of bundles, to form the final schedule.

The two-phase approach of macro-scheduling and bundling proposed by Kastner and Winkel may result

in a suboptimal solution compared to an integrated approach that combines both the phases. However,

the complexity of the integrated approach, especially in the context of an integer linear program problem

that needs to solved, is very high and may negate the benefit.

19.7.3 Instruction Scheduling for Spatial Architectures

As the process technology used in modern processors continues to shrink to below 100 nanometers, wire

delays — rather than gate delays — dominate and limit the frequency scalability of the architecture [119].

To overcome the impact of wire delays, heavily partitioned execution substrates (processing elements) have

been proposed. Examples of these architectures include clustered VLIW architecture [21], Raw [156, 167],

instruction-level distributed processing [84], Grid [110], TRIPS [142], and Wavescalar [155]. Of these,

the Raw, Grid, TRIPS, and Wavesacalar architectures, known as spatial or tiled architectures, distribute

their computing resources and require a compiler to explicitly partition instructions across the computing

resources. Communication between distant resources can incur one or more cycles of delays. Furthermore,

the communication across tiles is exposed to the compiler to make intelligent trade-offs between the

amount of communication introduced and the parallelism exploited in the execution of the schedule.

Thus, instruction scheduling becomes both a spatial mapping and a temporal ordering problem. We

discuss the space–time scheduling methods for these architectures in this section. In particular, we discuss

instruction scheduling for the TRIPS architecture [142].

TRIPS architecture consists of a grid of execution units connected by a thin operand routing network.

The latency required to pass a value between ALUs is dependent on the distance traveled by the operand.

Each ALU includes an integer unit, a floating unit, and an instruction buffer for holding instructions and

their output values. Each block of instruction can have up to 128 instructions, and eight such blocks can

be simultaneously in execution.
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The TRIPS architecture executes the program as a sequence of multi-instruction blocks that are executed

atomically. Within each block, the compiler encodes instruction dependences as a statically constructed

data flow graph. Since these architectures expose the placement of instructions on a grid of ALUs to the

compiler, a static placement and dynamic issue (SPDI) paradigm [109] is preferred, where the compiler

selects the ALU in which the instruction is going to execute (static placement) and the hardware executes

these instructions when their operands become ready (dynamic placement). This is in contrast to VLIW

architectures, in which the compiler identifies both the time slot and the functional unit to which the

instruction is issued, and superscalar processors, where both the issue and mapping of instructions to

functional units are performed by the hardware.

A scheduler for such an architecture needs to map the data flow graph onto a grid of ALUs [109, 149].

A greedy list scheduling algorithm for TRIPS [109] tries to minimize the completion time by minimizing

the static routing latency between a pair of instructions and at the same time exploiting ILP. The scheduler

determines the number of instruction slots needed to schedule a group of instructions. Then a sorted list

of instructions based on their priority is maintained. The priority is assigned based on the instruction’s

depth from the root node and its height from the leaf node in the data flow graph. The ready time includes

the routing delay of the operand(s) to the ALU from other ALUs. More specifically, the time at which

an instruction is ready to execute at a given slot is determined by the latest time at which the parent of

the instruction completes added to the communication latency from the execution unit of the parent to

the instruction slot selected. Then the instruction is assigned to a slot that minimizes the time at which the

instruction is ready to execute. The decision on which slot to place an instruction is guided by a number

of heuristics, including critical path ordering, load balancing, cache locality, and register output [109].

Spatial path scheduling [33] improves the performance when compared to the greedy scheduling

method [109]. The basic algorithm computes criticality based on routing distances using all known anchor

points, that is, fixed positions for operations in the block, such as register accesses. The basic algorithm is

augmented with heuristics to model contention on the ALUs and network links, estimation of interblock

critical paths, and lookahead planning of path routes. In addition, it uses a simulated annealing and a

weight-based heuristic to obtain improved schedules.

The problem of instruction placement has significant impact on the performance of the spatial schedul-

ing algorithms. An instruction placement performance model is developed in [104] that takes into consid-

eration several factors that contribute to overall performance. Their model is composed of three separate

components, namely, inter-instruction operand latency, data cache coherence overhead, and contention

for computing resources (ALUs). They also propose a unified model that combines these components in

proportion to their relative contribution to overall performance.

RAWCC [93], the compiler for the Raw architecture [156, 167], compiles general-purpose sequential

programs to exploit ILP in the distributed Raw architecture. The Raw compiler handles the orchestration

of computation and communication by performing spatial and temporal instruction scheduling, as well

as data partitioning using a distributed on-chip memory model to exploit ILP. The central tasks of the

orchestrater are the assignment and scheduling of instructions in a basic block. The Raw compiler performs

assignments in three steps:

� Clustering: Clustering groups together instructions in such a way that the benefits obtained by exe-

cuting the instructions within a cluster in parallel are overshadowed by the cost of communication

across the tiles.
� Merging: Merging reduces the number of clusters down to the number of processing units by

merging the clusters.
� Placement: Placement performs the mapping of merged clusters to the processing units (or tiles),

taking into account the topology of the interconnect.

The assignment phase is followed by a scheduling phase that is performed with a traditional list scheduler.

In [129] a convergent scheduler is proposed that is composed of independent passes, each implement-

ing a heuristic that addresses a particular problem or constraint in the spatial and temporal instruc-

tion scheduling. Each pass provides spatial and temporal preferences for each instruction, which are not
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absolute. Furthermore, each pass expresses the confidence of its preferences, as well as preferences for

multiple space and time slots. By applying a series of passes that address all the relevant constraints, the

convergent scheduler can produce a schedule that satisfies all the important constraints. Passes can be run

multiple times and in any order. The order in which the different passes are applied can vary with the

architecture. Hence, using genetic programming, a machine learning technique, convergent scheduling

automatically finds good ordering of the passes for a given architecture [129].

19.7.4 Instruction Scheduling for Low Power

Another area that has been receiving increasing attention is instruction scheduling for low power in em-

bedded processors [123]. Embedded processors are used in many handheld devices, such as cell phones,

pagers, digital cameras, toys, and so on, in which battery longevity and size are key factors that determine

system cost. As the overall power dissipated or energy consumed directly relates to battery life, embedded

processors generally have low power requirements. In these systems, it is quite common that an applica-

tion is compiled more for power efficiency than for performance. By reordering instructions, the power

dissipated can be decreased.

The transition or switching activities — toggling of signals from 0 to 1 or vice versa — that take place

on the system bus, or more specifically on the instruction bus, can be reduced by instruction reordering

methods, which in turn help reduce power. Su et al. [154] propose a technique that reorders instructions in

such a way that the toggles between the encodings or machine codes of adjacent instructions are reduced.

This is accomplished by a simple list scheduling method that uses a priority function that gives a higher

priority to an instruction in the ReadyList that has the lowest power cost. The power cost of an instruction

is estimated based on the last scheduled instruction in the partial schedule and a power cost table. The

essential idea of this method is to reduce the amount of switching activity between adjacent instructions

to reduce the power consumed.

Another scheduling method for reducing power consumption is presented by Tiwari et al. [160]. The

goal of this work is to judiciously select instructions as opposed to reordering them to reduce power

consumption. This approach uses a power table, which contains power consumed by individual instruc-

tions as well as certain commonly paired instructions. Using this power table, code is rescheduled to use

instructions that result in less power consumption. In [161] a method to reduce the peak power dissi-

pation is proposed. This method uses a predefined per cycle energy dissipation threshold and limits the

number of instructions that can be scheduled in a given cycle based on this threshold. A method to reduce

the power consumption on the instruction bus of a VLIW architecture is proposed in [91]. Each VLIW

instruction, referred to as a long word instruction, consists of a number of instructions or operations. This

method uses a greedy approach to reschedule operations within a long instruction word, as well as across

long instruction words, but within a limited instruction window size, to reduce the switching activities

among the instructions. When the operations are rescheduled across long word instructions, dependence

constraints are preserved. The method attempts to obtain a schedule that consumes low power, without

sacrificing performance. Several scheduling strategies that attempt to reduce energy consumption with

and without sacrificing performance are evaluated in [121].

More recently, a number of scheduling methods [86, 146] have been proposed that deal with voltage

and frequency scaling, an approach in which the operating voltage and/or the operating frequency are

scaled down to reduce power consumption.

19.8 Summary

Instruction scheduling methods rearrange instructions in a code sequence to expose ILP for multiple

instruction issue processors and to reduce the number of stall cycles incurred in single-issue, pipelined

processors. Simple scheduling methods that cover pipeline stalls use information on the number of stall

cycles required between dependent instructions. Basic block instruction scheduling methods are limited

to rearranging instructions in a straight line code sequence with a single control flow entry and exit. In
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this chapter, we have reviewed several approaches to basic block instruction scheduling, including list

scheduling, operation scheduling, and integer linear programming–based methods. The heuristics used

in list scheduling methods, and resource models used for modeling complex resource usage patterns, have

also been discussed.

Global scheduling refers to instruction scheduling that extends beyond instructions in a basic block. In

the case of global acyclic scheduling, the control flow graph on which the scheduling method is applied

is acyclic. Trace scheduling and superblock scheduling consider an acyclic control flow subgraph that

consists of a single control flow path. In hyperblock scheduling and treegion scheduling, multiple control

flow paths can be explored in a single trace. Software pipelining methods schedule multiple instances of

either a single or multiple static basic block, corresponding to multiple iterations, of a cyclic control flow

graph.

Register allocation is a closely related ILP compilation issue. Instruction scheduling and register al-

location phases in an optimizing compiler influence each other. Issues related to the phase ordering of

instruction scheduling and register allocation in both statically scheduled and dynamically scheduled mul-

tiple instruction issue processors have been discussed in this chapter. The need to reduce register spills,

even at the expense of obscuring some ILP, has resulted in new approaches for instruction sequencing. Last,

recent research on the application of instruction scheduling methods for application-specific processors

and low-power embedded systems has been briefly discussed.
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141. J. Sánchez and A. González. 2000. Modulo scheduling for a fully-distributed clustered VLIW archi-

tecture. In Proceedings of the 33rd Annual International Symposium on Microarchitecture, 124–33.

New York: ACM Press.



19-56 The Compiler Design Handbook: Optimizations and Machine Code Generation

142. K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R. Moore.

2003. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In Proceedings of

the 30th International Symposium on Computer Architecture, 422–33. New York: ACM Press.

143. M. Schlansker and B. Rau. 2000. EPIC: Explicitly parallel instruction computing. IEEE Computer

30(2):37–45.

144. R. Sethi and J. D. Ullman. 1970. The generation of optimal code for arithmetic expressions. Journal

of the ACM 17(4):715–28.

145. H. Sharangpani and H. Arora. 2000. Itanium processor microarchitecture. IEEE Micro 20(5):24–43.

146. D. Shin, S. Lee, and J. Kim. 2001. Intra-task voltage scheduling for low-energy hard real-time

applications. IEEE Design & Test of Computers 18(2):20–30.

147. R. Silvera, J. Wang, G. R. Gao, and R. Govindarajan. 1997. A register pressure sensitive instruction

scheduler for dynamic issue processors. In Proceedings of the 1997 International Conference on Parallel

Architectures and Compilation Techniques, 78–89. Washington, DC: IEEE Computer Society.

148. M. Slater. 1994. AMD’s K5 designed to outrun Pentium. Microprocessor Report. Micro Design Re-

sources, 8(4):1–11.

149. A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger, K. S. McKinley, and J. Burrill.

2006. Compiling for EDGE architectures. In Proceedings of the International Symposium on Code

Generation and Optimization, 185–95. Washington, DC: IEEE Computer Society.

150. J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski, D. L. Fowler, K. R.

Scidmore, and J. P. Laudon. 1987. The ZS-1 central processor. In Proceedings of the Second Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems,

199–204. Los Alamitos, CA: IEEE Computer Society Press.

151. J. E. Smith and G. S. Sohi. 1995. The microarchitecture of superscalar processors. Proceedings of the

IEEE 83(12):1609–24.

152. M. Smotherman, S. Krishnamurthy, P. S. Aravind, and D. Hunnicutt. 1991. Efficient DAG con-

struction and heuristic calculation for instruction scheduling. In Proceedings of the 24th Annual

International Symposium on Microarchitecture, 93–102. New York: ACM Press.

153. B. Su, S. Ding, J. Wang, and J. Xia. 1987. Microcode compaction with timing constraints. In Pro-

ceedings of the 20th Annual Workshop on Microprogramming, 59–68. New York: ACM Press.

154. C.-L. Su, C.-Y. Tsui, and A. M. Despain. 1994. Low power architecture and compilation techniques

for high-performance processors. In Proceedings of the IEEE COMPCON, 489–98. Washington, DC:

IEEE Computer Society Press.

155. S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. 2003. WaveScalar. In Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchitecture, 291–303. Washington, DC: IEEE

Computer Society Press.

156. M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, J.-W. Lee, P. Johnson,

W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. S. M. Frank, S. Amarasinghe, and A. Agarwal.

2002. The Raw microprocessor: A computational fabric for software circuits and general purpose

programs. IEEE Micro 22(2):25–35.

157. Texas Instruments. 1998. TMS320C62xx CPU and instruction set reference guide. http://www.

ti.com/sc/c6x.

158. M. D. Tiemann. 1989. The GNU instruction scheduler — cs343 course report. Technical report,

Stanford University, Computer Science, Stanford, CA.

159. A. Timmer, M. Strik, J. van Meerbergen, and J. Jess. 1995. Conflict modelling and instruction

scheduling in code generation for in-house DSP cores. In Proceedings of the 32nd ACM/IEEE Design

Automation Conference, 593–98. New York: ACM Press.

160. V. Tiwari, S. Malik, and A. Wolfe. 1994. Power analysis of embedded software: A first step towards soft-

ware power minimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2:437–45.

161. M. C. Toburen, T. M. Conte, and M. Reilly. 1998. Instruction scheduling for low power dissipation

in high performance processors. In Proceedings of the Power Driven Microarchitecture Workshop.

Hingham, MA: Kluwer Academic Publishers.



Instruction Scheduling 19-57

162. M. Tokoro, T. Takizuka, E. Tamura, and I. Yamamura. 1977. A technique for global optimization of

microprograms. In Proceedings of the Tenth Annual Microprogramming Workshop, 41–50. Piscataway,

NJ: IEEE Press.

163. M. G. Valluri. 1999. Evaluation of register allocation and instruction scheduling methods in multiple

issue processors. M.Sc.(Engg) thesis, Indian Institute of Science, Supercomputer Education and

Research Centre, Bangalore, India.

164. M. G. Valluri and R. Govindarajan. 1998. Modulo-variable expansion sensitive software pipelin-

ing. In Proceedings of the 5th International Conference on High Performance Computing, 334–41.

Washington, DC: IEEE Computer Society Press.

165. M. G. Valluri and R. Govindarajan. 1999. Evaluating register allocation and instruction scheduling

techniques in out-of-order issue processors. In Proceedings of the 1999 International Conference on

Parallel Architectures and Compilation Techniques. Washington, DC: IEEE Computer Society Press.

166. R. Venugopal and Y. N. Srikant. 1995. Scheduling expression trees with reusable registers on delayed-

load architectures. Computer Languages 21(1):49–65.

167. E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua,

J. Babb, S. Amarasinghe, and A. Agarwal. 1997. Baring it all to software: Raw machines. IEEE

Computer 30(9):86–93.

168. J. Wang and C. Eisenbeis. 1993. Decomposed software pipelining: A new approach to exploit instruc-

tion level parallelism for loop programs. In Proceedings of the IFIP WG 10.3 Working Conference on

Architectures and Compilation Techniques for Fine and Medium Grain Parallelism, ed. M. Cosnard, K.
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20.1 Introduction

Many state-of-the-art processors have multiple functional units and execute several instructions simultane-

ously to exploit instruction-level parallelism (ILP) [97]. The ILP architectures include very long instruction

word (VLIW) architectures [27, 43, 88], superscalar processors [56, 97, 98], and explicitly parallel instruc-

tion computing (EPIC) architectures [96]. For these architectures, it is important for the compiler to

expose parallelism in the application to the underlying hardware. The compiler assists the hardware by

statically scheduling independent instructions in the same time step, scheduling dependent instructions

apart to satisfy dependences, and mapping the instructions onto appropriate hardware resources. This

role is critical for VLIW and EPIC architectures, which fully rely on the compiler to expose parallelism. In

these architectures, the compiler identifies and packs a set of independent instructions into a single long

word instruction and communicates it to the hardware. The hardware fetches and decodes the long word

instruction and executes the instructions in it in parallel, without being required to check the dependences

between them. For superscalar processors, although the hardware dynamically identifies independent in-

structions and issues them to the resources for execution in parallel, the ability is limited by the size of the

instruction window, from which instructions are scheduled, and its hardware complexity. With instruc-

tions scheduled according to their dependences and mapped to appropriate resources by the compiler,

the chances of finding independent instructions at runtime are increased, while the chances of stalling

instruction issue resulting from nonavailability of dependent values and/or resources are decreased.

20-1
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Software pipelining is an instruction scheduling technique to expose ILP from loops. It is particularly

important, as loops usually dominate the execution time of scientific applications. Software pipelining

reduces the execution time of a loop by overlapping the execution of different iterations of the loop.

Successive iterations are initiated at a (usually fixed) interval, called the initiation interval (II). The aim is

to minimize the II and thus maximize the throughput.

Analogous to hardware pipelining, where instructions flow from resource to resource synchronously

according to a pipeline schedule, in software pipelining, iterations flow from resource to resource syn-

chronously [60]. Several iterations are concurrently active in different stages of the pipeline. When the

pipeline is full, it enters a steady state. In this steady state, a kernel of length T time steps, T equal to II,

repeats periodically. Every T time steps, effectively a single iteration gets completed and flushed out of the

pipeline, and a new iteration is initiated and pushed into the pipeline. The software pipelined schedule

must satisfy the dependences of the loop, including both intra- and inter-iteration dependences, and the

resource constraints imposed by the architecture.

Numerous proposals on software pipelining for ILP architectures have been reported [1, 2, 17, 32, 33,

38, 40, 47, 50, 54, 59, 67, 83, 85, 104, 108]. The past decade has witnessed dramatic changes in processor

architecture: from single-core to multi-core, from single-threaded to multi-threaded architectures, and

from single VLIW to clustered VLIW architectures. The hardware resources have become increasingly

abundant. In response to these changes, new constraints have been imposed on software pipelining to

adapt it to these newer architectures. There is also a trend to go beyond the traditional limit that exposes

ILP from the innermost loop and go to loop nests for more ILP [44, 59, 70, 79, 83, 92, 106].

This chapter surveys these advances in software pipelining. We focus on modulo scheduling, the most

common approach found in the literature and product compilers. Throughout this chapter the terms

instruction and operation, time step and cycle, and loop nest and nested loop will be used interchangeably.

We use single loop to refer to a loop without any inner loop, or the innermost loop of a loop nest.

The rest of this section presents a historical perspective on software pipelining. Section 20.2 reviews

traditional software pipelining of single loops, particularly modulo scheduling, including techniques for

scheduling, register allocation, and code generation. Section 20.3 discusses recent advances in software

pipelining of single loops, including power-aware and register pressure–aware methods, software pipelining

for the new architectures that emerged in the past decade, and the fundamental link between software

pipelining and hardware circuit retiming. In Section 20.4, we present the recent progress in software

pipelining of nested loops, including a survey of several traditional and recent approaches and a detailed

introduction to a new scheduling methodology, its register allocation, and code generation. Finally, we

summarize the chapter and highlight future research directions in Section 20.5.

20.1.1 A Historical Perspective

ILP was originally exploited within a basic block by performing simple instruction scheduling via list

scheduling methods, using an approach similar to microcode compaction [43]. The available ILP within

a basic block, however, is limited [57, 71]. Trace scheduling breaks the limitation and schedules instruc-

tions across basic block boundaries [43]. However, it does not schedule instructions across the back

edge of a loop, and therefore still cannot overlap different iterations of the loop. This weakness can

be remedied to some extent by unrolling the loop by a certain factor k and applying trace schedul-

ing to the unrolled loop body [42, 66]. Still, there is no overlap between the iterations of the unrolled

loop. To achieve such overlapping, one can continue to unroll the loop until a repeating pattern is

found in the schedule. The repeating pattern, known as the kernel, is rerolled to obtain a compact loop

schedule [42, 100].

Software pipelining aims to identify such a pattern without unrolling. It is related to hardware pipeline

scheduling, which was developed by Patel and Davidson to obtain optimal throughput [25, 60, 77, 84]. The

objective in both hardware and software pipelining is to overlap the execution of successive instructions

(iterations) in the case of hardware (software) pipelining and fully utilize the hardware resources. Early

work constructed a software pipelined schedule by ad hoc hand coding [25, 26]. Rau and Glaeser [85]
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developed the first compiler to automatically generate software pipelines, drawing upon and generalizing

the theory of hardware pipeline design [77]. A variety of software pipelining methods have been proposed

since then [1, 2, 17, 32, 33, 38, 40, 45, 47, 50, 54, 59, 67, 83, 85, 100, 101, 104, 108]. Surveys on them can be

found in [8, 9, 84].

The problem of constructing an optimal software pipeline that has the lowest possible initiation interval

under the resource constraints imposed by the architecture is known to be NP-complete [59]. This can

be shown by transforming the resource-constrained scheduling problem [46] to the software pipelining

problem. The optimal resource-constrained software pipelining problem can be formulated as an integer

linear programming problem [36, 40, 51], which will be discussed in detail in Section 20.2.4. Most software

pipelining methods, however, employ heuristics to obtain a near-optimal schedule. Rau [87] classifies them

into two broad categories: “move-then-schedule” and “schedule-then-move.”

The move-then-schedule approach moves instructions, one by one, across the back edge of the loop,

either in the forward or in the backward direction, and then schedules them to achieve a software pipelined

schedule [31, 32, 47, 67]. The moving of an instruction through the back edge effectively moves the instruc-

tion from one iteration to another. Thus, the overlapping of different iterations is achieved. The subsequent

scheduling compacts the loop body. Such a control flow transformation maintains the structure of the

loop, thus naturally exposing a repeating pattern, which forms the new loop body.

The schedule-then-move approach focuses directly on the creation of a schedule that maximizes per-

formance and subsequently discovers the code motions that are implicit in the schedule. There are two

ways of doing this. The first, “unroll-while-scheduling,” simultaneously unrolls and schedules the loop

until it gets to a point where the rest of the schedule would be a repetition of an existing portion of the

schedule [2].

The second approach in the schedule-then-move category, known as modulo scheduling, is particularly

interesting [85]. Its objective is to derive a schedule for a single iteration of the loop, such that when the

same schedule is repeated for the other iterations at an initiation interval, both intra- and inter-iteration

dependences are satisfied, and no resource usage conflict arises among instructions of either the same or

different iterations. It specifies a set of constraints for a legal schedule, which are respected during the

scheduling process. This approach is interesting in that it is relatively simple and efficient. Empirically, it

has a computational complexity of O(w 2), where w is the number of instructions in the loop body [87].

It has also been shown to be able to produce optimal code, in terms of II in most cases [94]. For these

reasons, almost every production compiler implementing software pipelining chooses this approach. As

such, it is the main focus of this chapter.

Modulo scheduling is essentially an extension of list scheduling to loops. The instructions to be scheduled

are ordered into a priority list. One difficulty in ordering is that the data dependence graph may have

recurrences in it. Early work by Lam [59] addresses this by using a hierarchical approach; it first considers

the strongly connected components (SCCs) in the underlying data dependence graph and schedules the

instructions in them first. The schedule for each SCC is abstracted as a macro instruction. With this,

the dependence graph becomes acyclic, and an acyclic scheduling algorithm based on list scheduling can

be used. The hierarchical scheduling approach also enables software pipelining loops with conditionals

(if-then-else constructs) and nested loops. Since then, a number of heuristic approaches have been proposed

for constructing modulo schedules.

By overlapping iterations, software pipelining increases the register pressure in the constructed schedule.

Thus, many software pipelining methods, in addition to obtaining efficient schedules by minimizing II,

also attempt to reduce the register requirements [28, 34, 51, 54, 64, 65]. A discussion of register-constrained

modulo schedules is presented in Section 20.3.1.

In addition to increased register pressure, software pipelining also introduces a new kind of register

allocation problem, in which the lifetimes of the same variable from successive iterations overlap each

other. This happens when a lifetime is longer than II time steps. Normally, this would result in a value

being overwritten before its last use. One solution to overcome this is via modulo variable expansion [59],

which unrolls the scheduled kernel a sufficient number of times, for instance, k times, such that no lifetime

is longer than k ∗ II time steps. Then the overlapped lifetimes in the unrolled kernel get distinct registers
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allocated to them. However, unrolling the loop increases the code size of the schedule. Unrolling can be

avoided by using a hardware support called rotating registers, proposed in the Cydra architecture [88].

Instead of unrolling the kernel and allocating different registers to the overlapping lifetimes at compile

time, the kernel is kept untouched, but the lifetimes are automatically mapped to different physical

registers at runtime by the hardware. Section 20.2.5.2 will introduce the register allocation solution for a

software pipelined schedule in the presence of rotating registers [30, 86]. In case the register requirement

is more than the available physical registers, some lifetimes are spilled. Spilling code can be inserted either

during or after the scheduling process [6, 116].

Early software pipelining methods did not consider loops with conditional constructs. Lam’s hierarchical

reduction approach [59] schedules the two branches of a conditional individually and then reduces the

entire conditional construct into a macro instruction whose scheduling constraints are the union of both

branches. This does not require any special hardware support. Alternatively, for architectures supporting

predicated execution, IF-conversion [10] can be applied to convert the conditional constructs into straight

line code, and then software pipelining can be employed as usual [88]. The generated code, however, can also

be converted back to have conditional constructs via reverse-IF conversion [109]. Then the code can be

executed on machines without predication support as well. Warter and Partamian also proposed an

interesting software pipelining method that uses multiple IIs for scheduling the different control flow

paths in the loop [110].

Last, software pipelining has traditionally been restricted to single (non-nested) loops or the innermost

loop of a loop nest. Initial efforts to extend software pipelining to loop nests schedule the loops hierarchi-

cally, starting from the innermost loop to the outer loops [59, 70, 106]. Another direction is to apply the

traditional hyperplane scheduling [61], which is usually used in large-array hardware structures such as

systolic arrays, to a uniprocessor such that the hyperplanes repeat [44, 83]. This approach does not consider

resource constraints, though. The other approach combines software pipelining with loop transforma-

tion [19, 79, 112], for example, applying unroll-and-jam to the loop nest, followed by software pipelining.

More recently, a novel approach that modulo schedules an arbitrary loop level in a loop nest under resource

constraints has been proposed [92]. We discuss these methods in greater detail in Section 20.4.

20.2 Software Pipelining for Single Loops

This section reviews the basic scheduling, register allocation, and code generation techniques for software

pipelining of single loops. We focus on modulo scheduling for its simplicity and usefulness. We assume

that the loop body does not contain any conditional or function call. While conditionals can be converted

into linear code via IF-conversion [10] and predicated execution [88], function calls essentially prevent a

loop from being software pipelined.

We first illustrate modulo scheduling with a simple example in Section 20.2.1 and present the required

background knowledge in Section 20.2.2. For the resource-constrained modulo scheduling problem, we

present a heuristic solution as a generic modulo scheduling framework in Section 20.2.3 and an optimal

solution via integer linear programming in Section 20.2.4. For the obtained modulo schedule, the register

allocation and code generation techniques, with and without hardware support, are then described in

Section 20.2.5.

20.2.1 A Motivating Example

Figure 20.1a shows a single loop. Its intermediate representation is shown in Figure 20.1b, where a temporary

name (TN) represents a variable. In this example, there are four variables, TN1 to TN4. We use the notation

TN{d} to refer to the TN value defined d iterations before. For example, TN2{1} is the TN2 value defined

in the previous loop iteration, and TN2{2} is the TN2 value defined in the previous previous loop iteration.

The data dependence graph for the loop is shown in Figure 20.1c, where a node represents an instruction,

and a directed arc between a pair of nodes represents a data dependence between the two instructions.

Each arc is labeled with the nonnegative dependence distance. When the dependence distance is 0, the



Advances in Software Pipelining 20-5

real A[N];

int B[N];

for (i = 2; i < N; i ++) {

A[i] = (int)A[i−1]+B[i−2];

B[i] = A[i];

}

(a)

TN3 = start address of array A

TN4 = start address of array B

TN3 = TN3+4 //Address of A [1]

ld4 TN1 {1} = [TN3], 4 //Read A [1]. Increment the address

ld4 TN2 {2} = [TN4], 4 // Read B [0]. Increment the address

ld4 TN2 {1} = [TN4], 4 //Read B[1]. Increment the address

for (i =2; i < N; i++) {
a : TN1 = TN1{1}+TN2 {2} //TN1 = A[i –1]+B [i–2]

b: st4 [TN4] = TN1 //B [i] = TN1

c : ld4 TN2 = [TN4], 4 //Read B[i]. Increment the address

d : fs4 [TN3] = TN1, 4 // A[i] = TN1. Increment the address

}

(b)

<0>

c

a

bd

<0>

<2>

<1>

<0>

(c)

FIGURE 20.1 An example loop and its data dependence graph. (a) A single loop in C language. (b) The intermediate

representation. (c) Data dependence graph (for the loop only).

dependence is within an iteration. Otherwise, the dependence is across loop iterations and is referred to

as a loop-carried dependence. For example, there is a loop-carried dependence from instruction c to a and

a loop-carried dependence from a to itself.

Suppose all the instructions are integer operations, except instruction d , which is a floating point (FP)

operation. Consider a simple architecture with two Integer arithmetic and logic units (ALUs) and one FP

ALU. Both are fully pipelined. The latency of the Integer units is one cycle, while that of the FP unit is two

cycles.

In traditional instruction scheduling, the instructions in the loop body are scheduled to make it compact.

Instructions are not moved across the loop back edge, and thus the iterations of the loop do not overlap.

Such a nonoverlapping schedule is shown in Figure 20.2a. Note that the original lexical order between

the instructions is not important in constructing the schedule. Their order in the schedule is determined

only by the dependences between them. In this schedule, an iteration takes four time steps to complete,

and then the next iteration is issued. In other words, the throughput of this schedule is one-fourth of an

iteration per time step.
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Iteration i = 2 Iteration i = 3
Time
Step Int.

ALU
FP

ALU
Int.

ALU
FP

ALU
0 a
1 d
2 b
3 c
4 a
5 d
6 b
7 c

(a)

Iteration i = 2 Iteration i = 3 Iteration i = 4 Iteration i = 5
Time
Step

Int.
ALU

FP
ALU

Int.
ALU

FP
ALU

Int.
ALU

FP
ALU

Int.
ALU

FP
ALU

0 a
1 d
2 b a
3 c d
4 b a
5 c d
6 b a
7 c d

(b)

FIGURE 20.2 Comparison of two schedules for the motivating example. (a) A schedule without any overlap between

iterations. (b) A software pipelined schedule with II = 2.

To achieve a higher iteration throughput, even before the current iteration is complete, a subsequent loop

iteration can be allowed to initiate, provided the dependences to it are satisfied and the required resources

are available. For such a schedule, the loop iterations are naturally overlapped (refer to Figure 20.2b). Every

iteration of the loop has the same schedule, and successive iterations are initiated at an interval of two time

steps. A repetitive pattern, called the kernel, appears in the schedule from time step 2. The kernel consists of

b and c from one iteration and a and d from the next iteration. Before the kernel is the prolog, which consists

of time steps 0 and 1. Likewise, there is an epilog at the end of the schedule, which is not shown in this figure.

Such a schedule is called a modulo schedule. In this schedule, a software pipeline is constructed for

the loop iterations. Every two time steps, a new iteration is initiated into the pipeline. At the same time,

a previous iteration finishes execution and exits the pipeline. For example, at time step 4, iteration 4

enters the pipeline, while iteration 2 exits from it. This leads to a throughput of half an iteration per time

step. Compared to the schedule shown in Figure 20.2a, the modulo schedule gives better throughput by

overlapping successive iterations of the loop.

To illustrate the code generated for a modulo schedule, we show the rewritten loop in a high-level

language in Figure 20.3 for the modulo schedule depicted in Figure 20.2b. In the rewritten loop, a(i) refers

to the instance of instruction a in iteration i . To be brief, we may also refer to the instance simply as

“instruction a in iteration i .” The binding between the instructions and the functional units is not shown.

This information is encoded in the very long instructional word (VLIW) and conveyed to the hardware.

From now on, we would ignore such information for simplicity.

Figure 20.4 specifically shows the kernel. It has two time steps, which is equal to the initiation interval,1

represented as T = 2. It has two stages, denoted S = 2. Each stage has instructions from a distinct iteration.

Note that S and T are independent. Although they are equal here, it is just a coincidence.

1We use the notation T to represent the initiation interval of a schedule and II the initiation interval in general.
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FIGURE 20.3 Loop rewriting with the software pipelined schedule.
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FIGURE 20.4 Kernel of the software pipelined schedule.

20.2.2 Background

Below we introduce the loop model and certain basic concepts relevant to modulo scheduling, including the

data dependence graph, modulo scheduling constraints, the minimum distance between two instructions

in a legal schedule, and the computation of the minimum initiation interval (MII).

20.2.2.1 Loop Model

We assume a single loop L that has an index variable i and a trip count N > 1. In our motivating example

above, the index is not normalized. However, from now on, for convenience, we will assume that the index

has been normalized to change from 0 to N − 1 with unit step. Then iterations 0, 1, and so on are the first,

second, and so on iterations. The loop body contains no branch or function call.

20.2.2.2 Data Dependence

A data dependence from instruction a to instruction b is represented as (a → b, δ, d), where δ is the

dependence latency and d is the dependence distance vector. This notation will later be applied to nested

loops as well. However, in a single (non-nested) loop, the dependence distance vector is one-dimensional.

Let d = 〈d〉. We can simply refer to d as the dependence distance. It indicates that for any i , instruction

a in loop iteration i accesses (writes or reads) a value that is accessed by instruction b in loop iteration

i +d . For example, in Figure 20.1c, the dependence from instruction a to instruction b can be represented

as (a → b, 1, 〈0〉). It has a unit dependence latency, as the integer functional unit used to execute it has

unit latency. The dependence distance is 0, which means the two dependent instructions are in the same

iteration.

The data dependence (a → b, δ, d) can be a flow, anti-, or output dependence [68]. Assume instruction

a lexically appears before b in the program. We say it is a flow dependence if instruction a writes to a variable

that is read by instruction b. It is an anti-dependence if instruction a reads a variable that instruction b

writes to. It is an output dependence if both instructions write to the same variable.
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A flow dependence is a true dependence, in that the order of the two instructions cannot be changed; the

producer instruction a must be scheduled before the consumer instruction b at least δ time steps earlier,

where the dependence latency δ is usually the latency of the functional unit that executes the producer

instruction a . That is, the i th iteration of a must be executed at least δ time steps ahead of the (i + d)th

iteration of b. The other two kinds of dependences, anti- and output dependences, are false dependences,

as they can be removed simply via renaming the variable, which is accessed by the two instructions, to

two different variables. So we do not consider false data dependences henceforth. Further, control

dependences within the loop body have been converted into data dependences using IF-conversion [10]

and predicated execution [88]. Therefore, in this chapter, a dependence refers to a (data) flow dependence

by default.

For a variable, among all the flow dependences on it, the maximal dependence distance d implies that

the variable requires d number of live-in values defined before the loop. For example, in Figure 20.1b, there

is one dependence c → a for TN2 with a distance of 2. So before the loop, we need to prepare two live-in

values for TN2. The two live-in values are the TN2{2} and TN2{1} loaded before the loop. They will be

consumed by the first and second iterations of the loop, respectively.

All the flow dependences of the loop compose the data dependence graph (DDG). For an instruction

a , we use PREDS(a) to denote the set of its immediate predecessors in the dependence graph; that is, if

b ∈ PREDS(a), then there exists an edge b → a in the DDG. Then PREDS+(a), the transitive closure

of PREDS(a), represents the set of instructions that have a path to instruction a in the DDG. Similarly,

we use SUCCS(a) to represent the set of its immediate successors in the graph; that is, if b ∈ SUCCS(a),

then there exists an edge a → b in the DDG. SUCCS+(a) is the transitive closure of SUCCS(a), which

represents the set of instructions that have a path from instruction a in the DDG.

A path in the DDG is a recurrence or cycle if it starts and ends at the same instruction. It is a simple

recurrence or simple cycle if no instruction appears more than once in it. In this chapter, when we use the

terms recurrence or cycle, we refer to simple recurrence (cycle) by default.

A strongly connected component (SCC) in the DDG is a set of instructions such that for any two

instructions a and b in the SCC, there is a path from a to b and a path from b to a . An SCC may contain

more than one recurrence.

20.2.2.3 Modulo Scheduling Constraints

Let σ (a , i) be the schedule time of a(i), the instruction a in iteration i , and T be the initiation interval.

Modulo scheduling specifies that the following set of constraints must be met to achieve a legal software

pipelined schedule:

� Modulo property: Two instances of an instruction corresponding to two successive iterations are

scheduled with an offset of T time steps. That is,

σ (a , i) + T = σ (a , i + 1) (20.1)

� Dependence constraints: For every dependence (a → b, δ, 〈d〉), the producer instruction a in the

i th iteration must be scheduled at least δ time steps before the (i + d)th instance of the consumer

instruction b. That is,

σ (a , i) + δ ≤ σ (b, i + d) (20.2)

� Resource constraints: At any time step in the modulo scheduled kernel, no hardware resource is

allocated to more than one instruction.

Because of the modulo property, we can take the schedule time of an instruction in the first iteration

as a reference. Therefore, from now on, unless stated otherwise, by schedule time of an instruction a , we

refer to its schedule time in the first iteration, that is, σ (a , 0).
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20.2.2.4 Minimum Distance between Two Instructions

According to the dependence constraints in Equation 20.2, for a dependence (a → b, δ, 〈d〉),

σ (b, 0) − σ (a , 0) ≥ δ − d ∗ T (20.3)

The right-hand side is the minimum number of time steps by which instruction b must succeed instruction

a in the same iteration in any feasible schedule. This is the minimum distance between the two instructions

in the schedule, denoted as

MinDist(a , b) = δ − d ∗ T (20.4)

For two instructions that are not directly connected in the dependence graph, their minimum distance

is transitively calculated as follows:

MinDist(a , b) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−∞ If there is no path

from a to b in the

dependency graph.

max∀c∈PREDS(b) (MinDist(a , c) + MinDist(c , b)) Otherwise

(20.5)

An all-pairs shortest-path algorithm, such as the Bellman–Ford algorithm or the Gabow–Tarjan

algorithm [62], can be used to perform the above computation of MinDist. The time complexity for

the MinDist computation is O(w 3), where w is number of instructions in the loop.

20.2.2.5 Computation of the Minimum Initiation Interval

The performance of a modulo schedule is determined mainly by the II. The smaller the II is, the higher is

the throughput of the software pipeline, leading to better performance. The II has a lower bound governed

by the recurrences in the dependence graph, termed recurrence minimum initiation interval (RecMII), and

a lower bound determined by the resource constraints of the underlying architecture, termed resource

minimum initiation interval (ResMII). The minimum II for any valid modulo schedule is then

MII = max(RecMII, ResMII) (20.6)

RecMII can be calculated by enumerating all the recurrences in the dependence graph.

RecMII = max
∀recurrence R

⌈

δ(R)

d(R)

⌉

(20.7)

where δ(R) is the sum of the dependence latencies of the instructions in recurrence R of the dependence

graph, and d(R) is the sum of the dependence distances around the recurrence [89]. Those recurrences with

the maximum value of ⌈ δ(R)
d(R)

⌉ are known as critical recurrences. Although there could be many recurrences

in a DDG, in practice, there are only a few [54].

An alternative approach to finding RecMII is to make use of a property of MinDist. It is interesting to

apply the MinDist constraint to a recurrence. From Equations 20.3 and 20.4, we have

0 ≥ MinDist(a , a) (20.8)

This property still holds when the recurrence around instruction a spans over other instructions. Therefore,

for any instruction a, if the II is legal, then MinDist(a , a) ≤ 0. Otherwise, that would indicate that the

schedule time of the instruction is strictly greater than that of itself, which is a contradiction. Therefore,

we can also compute RecMII by enumerating the values of II until MinDist(a , a) ≤ 0 for all instruction a

in any recurrence. The minimum value of II that meets the above constraint is RecMII.
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The resource constraints also impose a lower bound on II. This bound, for pipelined functional units,

is given by [59, 85]:

ResMII = max
∀ r

(⌈

Nr

Fr

⌉)

(20.9)

where Nr represents the number of instructions that execute on a functional unit of type r , and Fr is the

number of functional units of type r . If the functional units are non-pipelined or have complex structural

hazards, calculation of ResMII is based on the total number of time steps for which a functional unit of a

type r is required. In these cases, ResMII is defined as

ResMII = max
∀ r

⌈
∑

a Na ,r

Fr

⌉

(20.10)

where Na ,r represents the maximum number of time steps for which instruction a uses any of the stages

of a functional unit of type r . For example, for a non-pipelined functional unit, Na ,r equals the latency of

the functional unit.

Example 20.1

In our example dependence graph of Figure 20.1c, there are two recurrences. One is a → b → c → a

with a latency of three cycles and dependence distance of 2. The other is a → a with a latency of one cycle

and dependence distance of 1. Thus,

RecMII = max

(⌈

3

2

⌉

,

⌈

1

1

⌉)

= 2

Clearly, the first recurrence is critical.

We have two different types of pipelined functional units, namely integer and FP ALUs. The number of

functional units in these types is two and one, respectively. They are used by three and one instructions,

respectively. Hence,

ResMII = max

(⌈

3

2

⌉

,

⌈

1

1

⌉)

= 2

Therefore, MII = max(2, 2) = 2.

In a production compiler, one is interested in MII, rather than RecMII or ResMII. One can start with

an initial value of II = ResMII and perform a binary search, and arrive at the lowest II under which

MinDist(a , a) ≤ 0 for any a that is in a recurrence cycle. This lowest II is MII. This approach avoids

explicit computation of RecMII.

20.2.3 A Heuristic Modulo Scheduling Framework

20.2.3.1 Overview

Typically, modulo scheduling is an extension of list scheduling. It sorts the instructions into a priority-

order list and attempts to schedule the instructions one by one according to the order, satisfying both

resource constraints and dependence constraints. Modulo scheduling methods differ mainly in:

� How they construct the order.
� Within the feasible time range, which time step is chosen for scheduling an instruction.
� How to proceed when there is no feasible time step for scheduling an instruction.

Despite the variations in different heuristics, they all try to first schedule those instructions which in their

assessment are hard to schedule. Usually, the instructions in a recurrence cycle, and more specifically those

in a critical recurrence cycle, are given higher priorities than others.
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A typical modulo scheduler starts by computing MII as introduced in Section 20.2.2.5. It chooses an

initiation interval T = MII and attempts to construct a module schedule under this II. Each instruction

has a feasible time range within which it can be scheduled without violating any dependence constraint with

the already scheduled instructions, as will be described in Section 20.2.3.2. However, some feasible time

step may lead to resource conflict with an already scheduled instruction. Therefore, the scheduler inspects

every feasible time step until one is found that does not result in a resource conflict. The resource usage

is kept track of by a modulo reservation table (MRT), which will be introduced in Section 20.2.3.3. The

instruction is then scheduled into this time step t, and the MRT is updated. The feasible time range of

every unscheduled instruction that has a path from or to this instruction is updated accordingly, as will

be discussed in Section 20.2.3.2.

If the instruction cannot be scheduled at any time step within the range, a time step t ′ (not necessarily in

the feasible range) is chosen based on some heuristic, and one or more of the already scheduled instructions

that have resource conflicts (and/or dependence violation when t ′ is not in the feasible range) in scheduling

the current instruction at time step t ′ are evicted out of the schedule to accommodate the current instruc-

tion. These evicted instructions are inserted back into the list of unscheduled instructions according to their

priority order. Their resource usages are removed from the MRT. The current instruction is scheduled at t ′,

and the MRT is appropriately updated. Then, the feasible ranges for all the unscheduled instructions, in-

cluding the just evicted ones, are recalculated. Consequently, the priorities of the unscheduled instructions

are also changed. The scheduler proceeds in this way until all instructions in the loop are scheduled.

If scheduling and eviction of instructions happen frequently and finally go beyond a certain threshold,

the scheduler increments the initiation interval T by 1 and starts all over again. Increasing the II should

ease both the resource and dependence constraints, especially for instructions on critical recurrences.

Therefore, it should increase the chances of a successful scheduling. If the scheduler fails repeatedly even

after increasing the II a number of times, it gives up. Then simple instruction scheduling, instead of modulo

scheduling, can be applied to the loop body, to expose parallelism within a single loop iteration.

The above process is shown in Algorithm 20.1 as a general modulo scheduling framework, where

ESTART(a) and LSTART(a) are the lower and upper bounds, respectively, of the feasible time range for

instruction a . The calculation of ESTART and LSTART is explained in Section 20.2.3.2. The algorithm

produces the schedule time for each instruction. With these schedule times, it is trivial to derive the prolog,

kernel, and epilog. Hence, these are not explicitly shown in the algorithm.

The computational complexity of the algorithm depends on the specific algorithms used for MII calcu-

lation, prioritization of instructions, the heuristic used for choosing the time step at which an instruction

is scheduled, the threshold value that determines when to increment the II, and so on. As an example, Rau’s

iterative modulo scheduling method [87] is similar to the algorithm framework here. It has the worst-case

complexity that is exponential in w , the total number of instructions in the loop. However, the empirical

computational complexity is only O(w 2).

Algorithm 20.1

A Generic Modulo Scheduling Framework

Input: Dependence graph, resource usage table RTa for each instruction a, a thresholdII as the maximum

II to be tried, and a budget as the limit of total instructions to be attempted during scheduling under a

particular II.

Output: σ (a , 0) for each instruction a.

1: Compute MII;

2: T = MII;

3: while T < thresholdII do

4: instructionsTried = 0;

5: Reset MRT;

6: for all instruction a do

7: Compute ESTART(a) and LSTART(a) under the initiation interval T;

8: Compute the priority for a;
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9: Scheduled(a) = false;

10: end for

11: while there are unscheduled instructions do

12: Pick an unscheduled instruction a that has the highest priority;

13: for t = ESTART(a) to LSTART(a) do

14: if Instruction a can be scheduled at time t without resource conflict then

15: σ (a, 0) = t

16: Scheduled(a) = true;

17: Update MRT with RTa;

18: Update ESTART(b) ∀b ∈ SUCCS+(a) and b is unscheduled;

19: Update LSTART(b) ∀b ∈ PREDS+(a) and b is unscheduled;

20: break;

21: end if

22: end for

23: if t > LSTART(a) then

24: Choose a time step t′ using some heuristics

25: σ (a, 0) = t′

26: Scheduled(a) = true;

27: Evict any already scheduled instruction that has resource conflict with a;

28: Update ESTART(b) ∀b ∈ SUCCS+(a);

29: Update LSTART(b) ∀b ∈ PREDS+(a);

30: Evict any already scheduled instruction b in SUCCS+(a) or PREDS+(a) whose schedule time is

not within its updated feasible range [ESTART(b), LSTART(b)];

31: Update MRT by removing the resource usage of all the evicted instructions;

32: Update MRT with RTa ;

33: end if

34: Recompute the priorities of the unscheduled instructions;

35: instructionsTried + +;

36: if instructionsTried > budget then

37: T + +;goto step 3;

38: end if

39: end while

40: return SUCCESS

41: end while

42: return FAILURE

20.2.3.2 Feasible Time Ranges and Dependence Constraints

Now we explain how the feasible time ranges for the instructions are computed during scheduling. The

feasible range is identified by a lower bound, the earliest start (ESTART) time, and an upper bound, the

latest start (LSTART) time.

To calculate the ESTART and LSTART of an instruction, first, insert into the dependence graph a

dummy start instruction START and a dummy stop instruction STOP. Then add a dependence from

START to every instruction a that has no predecessor in the graph, and let MinDist(START, a) = 0.

Similarly, add a dependence to STOP from every instruction b that has no successor in the graph,

and let MinDist(b, STOP) = 0. Then the feasible range for any instruction a is calculated as follows

[30, 54, 87]:

ESTART(a) =

⎧

⎪

⎨

⎪

⎩

0 If a is START

maxb∈PREDS(a)(ESTART(b) + MinDist(b, a)) Otherwise

(20.11)
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and

LSTART(a) =

⎧

⎪

⎨

⎪

⎩

ESTART(STOP) If a is STOP

minb∈SUCCS(a)(LSTART(b) − MinDist(a , b)) Otherwise

(20.12)

Note that because of the recurrences in the DDG, an instruction b may be within both PREDS(a) and

SUCCS(a), and therefore, scheduling of it will affect both LSTART and ESTART of instruction a . The

width of the time range,

LSTART(a) − ESTART(a) (20.13)

is referred to as the slack of instruction a . The slack indicates how much freedom the scheduler has in

scheduling the instruction.

Usually, given an II, the minimum distance (MinDist) for every instruction pair can be calculated

beforehand. Using these, the feasible time range and the slack of each instruction can be derived.

Note that the minimum distance between two instructions is a static concept: it never changes. However,

the feasible time range and slack of an instruction are dynamic; at the beginning of scheduling, when no

instruction is scheduled yet, the initial values of the range and the slack for every instruction are computed

according to Equations 20.11, 20.12, and 20.13. Once an instruction b is scheduled at a time step t, it

affects the feasible ranges and slacks of the unscheduled instructions from or to which there is a path in

the dependence graph. We may consider that ESTART(b) = LSTART(b) = t and apply the new values to

the above equations to update the ranges and slacks of these unscheduled instructions.

20.2.3.3 Modulo Reservation Table and Resource Constraints

During scheduling, the resource constraints are checked with the help of an MRT [59, 85, 87]. The MRT

records the resource usage of the schedule as it is constructed. Because of the modulo property, the resource

usage of a kernel represented by the MRT also represents the resource usage for the entire schedule.

The MRT is an M × T 0-1 matrix, where M is is the total number of resources in the architecture and

T is the initiation interval. For each resource, the MRT records its usage in the T time steps in the kernel.

Initially, all entries in the MRT are 0. If an instruction uses a resource r at time step t, then the entry

MRT(r, t mod T) is set to 1.

Usually, an instruction a uses more than one hardware resource. For example, it may need the bus,

issue slots, and various pipeline stages of an ALU. Thus, the instruction has its own resource usage pattern,

represented by a reservation table RTa , which is an M × d 0-1 matrix, where d is the latency of the

instruction. In scheduling instruction a , the scheduler checks the availability of resources and updates the

MRT by performing binary operations between MRT and RTa .

To check whether there is any potential resource conflict in scheduling an instruction a at time step t, first

RTa is wrapped around the kernel with its first time step overlapped with time step (t mod T) of the kernel,

its second step with time step ([t + 1] mod T), and so on. The scheduler performs non-destructive bit-

wise AND operations between the corresponding entries of RTa and MRT. By non-destructive, we mean

that MRT is consulted but not modified. If any entry of the resulting matrix is 1, this means a resource that

is requested by the instruction has already been taken by some other instruction scheduled in the kernel,

and hence it is not feasible to schedule the instruction at the given time step. If the result of the bit-wise

AND operation is a zero matrix, the instruction can be scheduled at t without resource conflict. The MRT

is updated by performing bit-wise OR operations with RTa [84].

Note that the latency of the instruction can be arbitrarily long, and therefore, it is possible that a single

entry of the MRT overlaps with more than one entry of the instruction’s reservation table, after it is

wrapped around the kernel. These entries from the instruction’s reservation table should not have any

resource conflict between themselves. Thus, if a single resource is used by an instruction in two time steps

that are separated by l cycles, then an initiation interval II = l is not possible. Using that II will lead to

violation of the resource constraints given in Section 20.2.2.3.
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The number of bit-wise AND and OR operations performed for checking resource constraints can

become a source of inefficiency, especially when the resource usage is complex or the number of instructions

tried is large. Efficient resource modeling for general instruction scheduling and software pipelining has

been proposed in [13, 30, 35, 51, 52, 81, 82].

20.2.3.4 Heuristics in Modulo Scheduling

Let us now look at a few heuristic methods and relate them to the generic modulo scheduling framework.

Lam [59] proposed a method that establishes several important points on resource-constrained modulo

scheduling. First, modulo scheduling can be accomplished without special hardware support by unrolling

the kernel by a small number of times. This is referred to as modulo variable expansion, which is explained

in greater detail in Section 20.2.5. Second, the instructions in the SCCs in the dependence graph are

more important than other instructions, because scheduling one instruction in an SCC constrains the

scheduling of all the other instructions in the same SCC. Not all SCCs are equally important. Only SCCs

that correspond to the critical recurrences, which strongly constrain the initiation interval, should be given

highest priority in scheduling. Third, list scheduling for an acyclic dependence graph can be extended to

handle a cyclic dependence graph as well. This is accomplished as follows. First, schedule each SCC in the

order of priority. The schedule for an SCC is kept as a single macro instruction in the DDG, which represents

the collective resource usage of the instructions in the SCC. When every SCC is replaced with a macro

instruction, the DDG becomes acyclic. Then apply the acyclic scheduling algorithm to schedule the macro

instructions and other instructions to arrive at a resource-constrained software pipelined schedule. Next,

the control constructs in the loop body, if any, can be processed hierarchically, starting with the innermost

control construct. After a construct is scheduled, the entire construct is reduced into a single macro

instruction, representing all the scheduling constraints of its components with other constructs. This is

called hierarchical reduction. An application of this technique is to handle the conditionals in the loop body.

The two branches of a conditional are scheduled separately, and then the entire conditional construct is

reduced into a macro instruction, with the union of the scheduling constraints of the two branches as

its scheduling constraints. The same principle can be used to schedule nested loops as well. The work of

Muthukumar and Doshi [70] and Wang and Gao [106] are two applications of this principle.

Rau’s iterative modulo scheduling method [87] is in line with the generic modulo scheduling framework

shown in Algorithm 20.1. It uses a height-based heuristic to prioritize the instructions. The height of an

instruction a is equal to MinDist(a , STOP), where STOP is the dummy stop instruction introduced in the

dependence graph, as described in Section 20.2.3.2. The larger the MinDist is, the higher is the priority.

Rau observes that (a) the height priority helps complete the scheduling process for most of the single loops

in a single pass, and (b) it gives higher priority to instructions in SCCs that more strongly constrain the

initiation interval. Iterative scheduling uses a fixed budget, k ∗ w , where k is a small constant and w is the

number of instructions in the loop. The budget also determines the number of different IIs to be tried, and

how many times the eviction of instructions can happen under a particular II before the II is incremented.

Huff ’s slack scheduling method [54] is also similar to the generic modulo scheduling algorithm. Here,

the instructions are prioritized according to their slacks. Instructions with smaller slacks are scheduled

prior to those with higher slack values. All the above three methods [54, 59, 87] ensure that the instructions

in SCCs are given higher priorities in scheduling, although they use different heuristics. Lam’s method

explicitly finds all the SCCs and schedules them first; Rau and Huff ’s methods implicitly favor the SCCs

by prioritizing the instructions appropriately.

A number of methods, including Huff ’s slack scheduling, in addition to constructing a software pipeline,

also minimize register pressure [28, 34, 37, 54, 64, 65, 107]. Many of them follow the general modulo

scheduling framework shown in Algorithm 20.1 with the exception that the schedule time steps for

instructions are chosen to reduce the register lifetimes.

Another unique approach to modulo scheduling, called decomposed software pipelining (DESP), de-

composes the resource-constrained cyclic scheduling problem into a cyclic scheduling problem without

resource constraints, followed by an acyclic scheduling problem with resource constraints. Both subprob-

lems are simpler than the original problem. In other words, it first handles dependence constraints without
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considering resource constraints and then modifies the schedule to enforce resource constraints. The pro-

cess is as follows. Assuming there are unlimited resources and considering the dependence constraints

only, an initial schedule is found using classical graph theoretic algorithms. Then certain edges in the

DDG can be removed to make the DDG acyclic. Hence, the scheduling problem now becomes resource-

constrained scheduling of acyclic DDG. For this, traditional list scheduling can be applied, which ad-

justs the initial schedule under the resource constraints. This approach was proposed by Gasperoni and

Schwiegelshohn [47]. Later, Wang et al. [105] proposed another perspective to DESP. They view the kernel

as a two-dimensional matrix of instructions. Thus, the scheduling problem is to find the row and column

numbers for each instruction. The row number corresponds to the time step within the kernel at which

the instruction is scheduled. The column number relates to the stage number or iteration to which the

instruction belongs. They find the row and column numbers in two steps, which is similar to the DESP

approach. Calland et al. [17] improved DESP by applying circuit retiming, which was originally a hard-

ware circuit design technique, to identify the edges to be removed in the DDG. This not only improves

the efficiency of the method, but, more interestingly, establishes a link between software pipelining and

circuit retiming. We will discuss this approach in more detail in Section 20.3.2.

20.2.4 An Optimal Modulo Scheduling Formulation

The resource-constrained optimal modulo scheduling problem, which is known to be NP-complete, is

formulated as an optimization problem in [40, 51] as below.

Problem 20.1

Given a loop L and a machine architecture, construct a modulo schedule for a given II that achieves a certain

optimal objective, subject to the modulo property, dependence constraints, and resource constraints as stated

in Section 20.2.2.3.

Usually, the scheduler tries different IIs starting from MII, and solves the above optimization problem

for each II. The first successful solution is the one that both minimizes II and achieves the optimal objective.

In this section, we present only the formulation for the modulo property and dependence and resource

constraints, which stay the same for different optimal objectives. The objectives can be a minimization

of resources such as the functional units or registers required by the schedule [11, 35, 51], minimization

of power consumption, or power variation [113–115], and so on. We will show the formulation for

minimizing power consumption and power variation in Section 20.3.3. If the optimality objective is null,

that is, there is no objective function in the formulation, then the problem becomes a constraint solving

problem.

In this section, we discuss the integer linear programming solution presented in [51] to the above

problem. For simplicity, we assume an architecture with pipelined functional units. For architectures with

non-pipelined functional units or functional units with complex resources, the formulation is presented

in [11, 12].

Assume the loop consists of w instructions. For convenience, we number the instructions instruction

0, 1, . . . , w − 1. The architecture has Fr functional units of type r . For any instruction a , let ta = σ (a , 0)

be the time step at which the instruction in the first iteration (iteration 0) is scheduled. Then, according

to the modulo property, the instruction in iteration i is scheduled at time σ (a , i) = ta + i ∗ T , where T

is the initiation interval.

First, consider the dependence constraints given in Equation 20.2. If there is a dependence (a →

b, δ, 〈d〉), then

σ (a , i) + δ ≤ σ (b, i + d)

This can be rewritten as

ta + i ∗ T + δ ≤ tb + (i + d) ∗ T
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This, in turn, can be written as an integer constraint:

tb − ta ≥ δ − d ∗ T ∀ dependence (a → b, δ, 〈d〉) (20.14)

Next, we represent the resource constraints in a linear form. Define a pair of values, ka and oa , for each

ta , such that

ta = ka ∗ T + oa

where 0 ≤ oa < T . Thus, if K, O, and Ŵ are w-element row vectors

Ŵ =

⎡

⎢

⎢

⎢

⎢

⎣

to

t1

...

tw−1

⎤

⎥

⎥

⎥

⎥

⎦

, K =

⎡

⎢

⎢

⎢

⎢

⎣

ko

k1

...

kw−1

⎤

⎥

⎥

⎥

⎥

⎦

, and O =

⎡

⎢

⎢

⎢

⎢

⎣

oo

o1

...

ow−1

⎤

⎥

⎥

⎥

⎥

⎦

then we can write Ŵ in the following way:

Ŵ = K ∗ T + O

The repetitive kernel of the software pipelined loop is represented by a two-dimensional 0-1 matrix

M of size T × w . An entry M[t, a] = 1 represents that instruction a is scheduled at time step t in the

repetitive kernel; that is, oa = t. The relation between O and M can be written as

O =

⎡

⎢

⎢

⎢

⎢

⎣

o0

o1

...

ow−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

m0,0 m0,1 · · · m0,(w−1)

m1,0 m1,1 · · · m1,(w−1)

...
...

...

m(T−1),0 m(T−1),1 · · · m(T−1),(w−1)

⎤

⎥

⎥

⎥

⎥

⎦

Trans.

×

⎡

⎢

⎢

⎢

⎢

⎣

0

1
...

(T − 1)

⎤

⎥

⎥

⎥

⎥

⎦

Now Ŵ can be expressed as

Ŵ = K ∗ T + MTrans. ×

⎡

⎢

⎢

⎢

⎢

⎣

0

1
...

(T − 1)

⎤

⎥

⎥

⎥

⎥

⎦

(20.15)

Each instruction must be scheduled exactly once in the repetitive kernel. Therefore,

T−1
∑

t=0

mt,a = 1 , ∀a ∈ [0, w − 1] (20.16)

The total requirement of the schedule for resource type r at time step t is given by

∑

a∈Ir

mt,a ,

where Ir represents the set of instructions that use functional unit type r . The resource constraints specify

that the resource requirement of the schedule at any time step is less than or equal to the number of

available resources. That is,

∑

a∈Ir

mt,a ≤ Fr , ∀t ∈ [0, T − 1] and ∀ r (20.17)

We do not discuss the formulation of the objective function here. The resource-constrained optimal

software pipelining problem is to solve Equations 20.14, 20.15, 20.16, and 20.17, subject to the objective

function.
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20.2.5 Register Allocation and Code Generation

Having discussed how to construct the modulo schedule, next we focus on register allocation and code

generation for the constructed schedule.

First, let us introduce the concepts of scalar lifetime and vector lifetime [86]. A scalar lifetime is the

lifetime of a loop variable for a given iteration of the loop. Each variable has one producer instruction that

produces the value and one or more instructions that consume the value. The scalar lifetime starts when the

producer is issued and ends when all of the consumers have finished.2 The scalar lifetimes corresponding

to the first, second, . . . , iterations of the loop, are referred to as the first scalar lifetime, the second scalar

lifetime, . . . , respectively. The scalar lifetimes of a variable over all iterations of the loop compose the

vector lifetime of the variable. In this chapter, the term lifetime refers to a vector lifetime by default, unless

stated otherwise.

The lifetimes of the variables in a software pipelined schedule have unique features, which makes

register allocation and code generation for it different from those for a traditional schedule. We illustrate

the features with the help of an example. Consider the simple example loop in Figure 20.5a. In this example,

there are two variables, TN1 and TN2. If a TN has d number of live-in values, correspondingly, it has

d number of live-in scalar lifetimes. Note that these scalar lifetimes are defined outside of the loop and

therefore appear earlier than the first scalar lifetime (of the loop). We assume that the value of TN1

produced in the last iteration is used after the loop, that is, TN1 has a live-out scalar lifetime.

Figure 20.5b shows a modulo schedule for the loop, assuming there are two general-purpose pipelined

functional units that can execute any instruction and assuming that the latencies of instructions a , b, and c

are, five, one, and one cycle(s), respectively. To illustrate the lifetimes of the variables, we unroll the schedule

(see Figure 20.5c). The scalar lifetimes for variables TN1 and TN2 are shown beside the instructions that

produce them.

The lifetimes have interesting features. It is unique to software pipelining that for each variable, its

scalar lifetimes are produced regularly every II time steps, and all the scalar lifetimes have the same length,

except for the live-in and live-out scalar lifetimes; if the lifetime is longer than II, when a new scalar

lifetime is produced, the previous one is still live, and thus they are overlapped in time. Overlapping

scalar lifetimes must be given different registers to keep them live at the same time. Such overlapping

between the scalar lifetimes of the same variable is unique to a software pipelined schedule. In contrast,

in a traditional schedule, overlapping happens only between the scalar lifetimes of different variables; for

the same variable, a scalar lifetime of it ends before the next one is produced, and they never overlap.

To allocate registers efficiently for such a schedule, it is imperative to address the challenge of overlapping

scalar lifetimes and make use of the repetition. There are two subproblems: first, how to address the overlap

between the scalar lifetimes of the same variable and, second, how to address the overlap between those of

different variables.

There are two approaches to solving the above problems. A software-only approach proposed by Lam,

known as modulo variable expansion (MVE) [59], addresses the first subproblem and leaves the second one

to the global register allocator in a later phase. It unrolls the kernel of the software pipelined schedule by a

small number of times, such that a group of overlapping scalar lifetimes are given distinct variable names,

and the names can be repetitively reused by other scalar lifetimes. The subsequent global register allocator

will allocate distinct registers to these names. The unrolling leads to code size expansion, though. The other

2This definition is to support precise interrupt handling. Assume the following two instructions are executed at the

same time step: a : x = · · · and b : · · · = y. Since x is live from this time step, and y is live until instruction b is

completed, x and y will not be allocated the same register. If during the execution, an interrupt happens, the hardware

will automatically re-execute both instructions. It can do so because all the input registers still keep the original values,

without being overwritten. For example, y is still kept in a register, which is different from that of x , and cannot be

overwritten by x , even if x might have been produced. If precise interrupt handling is not necessary, then the definition

of the scalar lifetime can be such that it starts after the producer has finished and ends when all the consumers have

started.
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for (i = 0; i < N; i ++){

a : TN2=TN1 {1} . . .

b : TN1= . . .

c : . . . =TN2

}
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FIGURE 20.5 A modulo schedule and lifetimes of its variables. (a) An example single loop. (b) A possible modulo

schedule with T = 2 and S = 3. The kernel is highlighted in darker color. (c) The unrolled schedule and the lifetimes

of the variables. Source: Figures (a) and (b) are from [91], courtesy of ACM.

approach, developed first by Dehnert et al., uses special hardware support in the form of rotating register

files [88]. With such support, the adjacent scalar lifetimes of a variable are automatically mapped to a set of

consecutive registers during execution time. Under such an assumption, the lifetimes of the variables are

represented elegantly, and both subproblems are solved in the same framework. With additional support

for predicated execution, in code generation, only the kernel is generated, without requiring unrolling of

the loop at all and without explicit prolog and epilog.

The two schemes are trade-offs in compiler and architecture functionality and in performance and code

size. Basically, both schemes expand a single variable into an array of variables (for MVE) or registers (for

the rotating registers approach) so that different instances of the same variable that are simultaneously
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live can be stored in distinct registers. MVE assumes no hardware support, while the other approach does.

Below we describe the two approaches in detail.

20.2.5.1 Software-Only Approach: Modulo Variable Expansion

All the scalar lifetimes, except the live-in and live-out scalar lifetimes, have the same length. If the length

is l , and the II is T time steps, then the variable has
⌈

l
T
⌉ number of scalar lifetimes that are overlapping,

that is, live simultaneously. The variable in these scalar lifetimes is renamed as distinct variables, each one

of which can be allocated a different register by a global register allocator in a subsequent phase.

Consider the variable TN2 in Figure 20.5c as an example. The length of its lifetime is six time steps, and

T = 2. Thus, it always has three scalar lifetimes overlapping during the pipelined kernel execution. We can

expand TN2 to three variables, TN2, TN2′, and TN2′′, as shown in Figure 20.6a. The three variables are

repeatedly reused. Now no two scalar lifetimes of the same variable overlap. The length of a scalar lifetime

of TN1 is two time steps, which is less than or equal to T . Hence, it does not require any MVE. Then

the lifetimes of the variables in the software pipelined schedule can be allocated registers using a traditional

global register allocator, for which there are many options available, including Chaitin’s graph coloring

approach [23].

Expansion of the variables implies unrolling the kernel and renaming the variables. In general, the kernel

is unrolled u number of times, where

u = maxv

(⌈

lv

T

⌉)

where lv is the length of a scalar lifetime for variable v , not considering live-in and live-out scalar lifetimes.

Note that in the unrolled kernel, a variable v has u number of instances now. These instances are renamed

to x number of variables, where x is the smallest factor of u, and x is no less than ⌈ lv

T
⌉. The instances in

the first x number of iterations are renamed to distinct names. Then these names are applied to the next x

number of iterations in the unrolled kernel, and so on. As u is divisible by x , the u instances of the variable

v will be renamed to these names exactly an integer number ( u
x

) of times.

For the motivating example, the lengths of a scalar lifetime of TN1 and TN2 are two and six time steps.

Therefore,

u = max

(⌈

2

2

⌉

,

⌈

6

2

⌉)

= 3

Thus, the kernel is unrolled three times. For TN1, the smallest factor of u no less than
⌈

2
2

⌉

is 1. For TN2,

the smallest factor of u no less than
⌈

6
2

⌉

is 3. Therefore, the two variables are expanded to one and three

variables, respectively. This is illustrated in Figure 20.6b.

Suppose the trip count of the original loop is N. Software pipelining the loop results in a kernel with S

number of stages. Assume the kernel is unrolled u times for modulo variable expansion, and the unrolled

kernel is executed p times. Since the prolog and epilog together contribute to S − 1 number of iterations,

and the unrolled kernel contributes u ∗ p iterations, we have the following relationship:

N = u ∗ p + (S − 1) + q

where 0 ≤ q < u is the remaining number of loop iterations not covered by the software pipelined

schedule. These loop iterations are executed in the original sequential form. This is known as pre-

conditioning. In other words, for MVE, the generated code has two parts: one consisting of

q = (N − (S − 1)) mod u (20.18)

number of non-software pipelined loop iterations, and the other consisting of all the other iterations in

pipelined fashion. For the example shown in Figure 20.5, S = 3 and u = 3. Thus q = (N − 2) mod 3.

The code generation (loop rewriting) for this loop is shown in Figure 20.6b.
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/* Preconditioned loop iterations */

q = (N − 2) mod 3;

for (i = 0; i < q ; i ++) {
TN2 = TN1 {1} . . .

TN1 = . . .

. . . = TN2

}
/* Below are the software pipelined loop iterations */

/* Prolog: */

TN2 = TN1 {1} . . .

TN1 = . . .

TN2′ = TN1 {1} . . .

TN1= . . .

/* In the loop body, the kernel is unrolled 3 times, and the variables are expanded: */

for (i = 0; i < (N − 2 − q) div 3; i ++) {
TN2′′ = TN1 {1} . . .

. . . = TN2 TN1 = . . .

TN2 = TN1 {1} . . .

. . . =TN2′ TN1= . . .

TN2′ = TN1{1} . . .

. . . = TN2′′ TN1= . . .

}
/* Epilog: * /

. . . =TN2

. . . =TN2′

(b)

FIGURE 20.6 Illustration of modulo variable expansion. (a) Expand the variable TN2 to three variables to remove

overlapping of the scalar lifetimes of the same variable. TN2 is expanded to TN2, TN2′, and TN2′′ repeatedly. (b) MVE

code generation (loop rewriting).
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In the above discussion, we have ignored the live-in and live-out scalar lifetimes. In practice, some of the

iterations of the kernel need to be peeled off at the beginning and at the end of the loop. These iterations of

the kernel are put into the prolog and epilog, respectively. This makes the prolog and epilog long enough

to contain the live-in and live-out scalar lifetimes, such that in determining the unrolling factor u, above,

we need only consider the length of a scalar lifetime that is not live-in or live-out. The scalar lifetimes

in the prolog and epilog are renamed separately, honoring the constraints imposed by renaming for the

unrolled kernel [86]. Our example happens to require no peeling of the iterations of the kernel.

20.2.5.2 Hardware-Supported Approach

In this subsection, we briefly review how to perform register allocation and code generation for a modulo

scheduled loop when the target architecture provides support for software pipelining in the form of rotating

register files and predicated execution [30, 86]. We first explain such hardware support and then discuss

the solution in detail.

20.2.5.2.1 Hardware Support for Modulo Scheduling

A hardware support, called a rotating register file, has been proposed to address the problem of overlapping

scalar lifetimes of the same variable. Such a support was originally provided in the Cydra architecture [88]

and more recently in the IA-64 architecture [55].

A rotating register file is a set of physical registers organized as a circle. Let C be the circumference of the

circle, that is, the total number of registers in the rotating register file. The problem of overlapping scalar

lifetimes of the same variable is solved under this convention: if the first scalar lifetime of the variable is

allocated to physical register rx , then the second one is automatically allocated to the next physical register

r(x−1) mod C , the third to r(x−2) mod C , and so on. Here we modulo the register indexes by the circumference

C because of the cyclic nature of the rotating register file; the register index wraps around to the highest

index when it becomes −1. The register allocator guarantees that when the register index wraps around,

the scalar lifetime originally in the physical register with the highest index is no longer live.

The convention is realized by the cooperation between hardware and software. In the hardware side,

there is a separate base register for the rotating register file. In the software side, the code generator replaces

a variable with a virtual register, which is mapped to a set of physical registers at runtime with the help

of the hardware. To distinguish between the virtual and physical register names, we use γ to denote the

former and r to represent the latter. The correspondence between the two is achieved as follows. An access

to a virtual register γx is automatically translated by the hardware into an access to a physical register

r(x+base) mod C , where base is the content of the base register.

Thus, in this approach, a variable is mapped to a single virtual register γx without any explicit expansion.

In the code generated for the schedule, the base register is initialized to 0, which means γx is initially

mapped to the physical register rx . Then the kernel is repeatedly executed, once every II cycles. At the end

of an execution of the kernel, a special instruction is issued to “rotate” the register file. The rotation is to

decrement the content of the base register. The effect is such that with the repetitive execution of the kernel,

the variable in the first, second, third, . . . loop iterations is automatically mapped to physical registers rx ,

r(x−1) mod C , r(x−2) mod C , . . . .

Register allocation for the loop variables for such a rotating register file happens before code generation.

The impact of the above convention upon the register allocator is that it needs only to consider which

physical register is to be allocated to the first scalar lifetime of a variable. Once that is done, all the other

scalar lifetimes of the variable automatically have physical registers allocated, according to the convention.

Suppose the physical registers allocated to the scalar lifetimes are rx , r(x−1) mod C , and so on. Then in code

generation, a corresponding single virtual register γx is used to represent them. In execution of the code, the

virtual register is mapped to rx , r(x−1) mod C , and so on, dynamically, just as the register allocator expects.

In the IA-64 architecture, there are three classes of rotating register files: integer, floating point, and

predicate. Their base registers are initialized by a special instruction at the same time, and they are

rotated simultaneously by the “rotation” instruction. The integer, floating point, and predicate variables

are allocated to the three register files separately via the same register allocation method.
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20.2.5.2.2 Register Allocation

In register allocation, the variables in the same register class, for example, integer registers, are considered

together and allocated registers from the rotating register file of that class. The allocation method for each

register class is the same. Hence, we discuss register allocation for only one register file.

Each variable has a vector lifetime in a software pipelined schedule. Now that the consecutive scalar

lifetimes in it will be mapped to consecutive physical registers, we can represent the vector lifetime on a

space–time diagram, where time is on the horizontal axis and the physical registers are on the vertical axis,

assuming that there is an infinite number of registers. A vector lifetime is composed of a leading blade in

case of live-in values, a trailing blade in case of live-out values, and a wand (the diagonal band) [86].

Because of the repetition of the scalar lifetimes, the first scalar lifetime is taken as a reference in rep-

resentation of the whole vector lifetime. A vector lifetime is represented by a 4-tuple (start, end, omega,

alpha) [86]. The start and end values refer to the start and end time steps of the first scalar lifetime. The

scalar lifetime corresponding to iteration i starts at (start + i ∗ T) and ends at (end + i ∗ T), where T is

the initiation interval. Omega is the number of live-in values for the loop variable. Alpha represents the

number of live-out values for the loop variable. Figure 20.7a illustrates these ideas with an example.

Intuitively, register allocation packs the vector lifetimes on the space–time diagram as close as possible

without any conflict. A physical register rx is said to be allocated to a vector lifetime v if it is allocated to

the first scalar lifetime of v . The next physical register r(x−1) mod C is then allocated to the second scalar

TN2
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FIGURE 20.7 Register allocation for a modulo schedule with rotating register file support. (a) Space–time diagram

for the example in Figure 20.5a with N1 = 7. TN2 is made of a wand only. TN1 has a leading blade for it has a live-in

value, and a trailing blade (assume it has a live-out value). The first scalar lifetime of TN1 starts at time step 1 and ends

at 3, while that of TN2 starts at time step 0 and ends at 6. So the vector lifetimes of TN1 and TN2 can be represented

as (start, end, omega, alpha) = (1,3, 1, 1) and (0, 6, 0, 0), respectively. (b) An optimal bin packing for the space–time

diagram in Figure 20.7a. TN1 is allocated physical register 0, and TN2 physical register 2, with a circumference of 5

after the diagram is wrapped into a cylinder. Source: From [91], courtesy of ACM.
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lifetime, and so on. Conflict refers to the fact that two scalar lifetimes that overlap in time are allocated to

the same register.

To avoid any conflict, two vector lifetimes must have a certain distance between them in the space–time

diagram. For two vector lifetimes A and B , let r A and r B be the physical registers allocated to A and B ,

respectively. The distance DIST[A, B] is the legal range of r B −r A, within which A and B do not conflict in

the space–time diagram. It is defined as [d3, +∞], where d3 is the lower bound value calculated as shown

below. There is no upper bound (or the upper bound is +∞).3

The distance DIST[A,B] must meet the following conditions [86]. The wand of B must be to the right

of the wand of A, and the leading/trailing blades of B must be above the leading/trailing blades of A.

Formally,

start(B) + (r B − r A) ∗ T ≥ end(A)

r B − r A ≥ omega(A) if omega(B) > 0

r B − r A ≥ alpha(A) if alpha(A) > 0

That is,

d1 =

⌈

end(A) − start(B)

T

⌉

(20.19)

d2 =

{

d1 if omega(B) = 0

max(d1, omega(A)) otherwise
(20.20)

d3 =

{

d2 if alpha(A) = 0

max(d2, alpha(A)) otherwise
(20.21)

where d3 is the final value for the lower bound of the distance.

For the example in Figure 20.7a, TN1 and TN2 are represented as (start, end, omega, alpha) = (1, 3, 1, 1)

and (0, 6, 0, 0), respectively. Thus, DIST[T N2, TN1] = [3, +∞], according to the above equations. This

can also be seen intuitively from the figure. Similarly, we can calculate that DIST[TN1, TN2] = [2, +∞].

Because of the cyclic nature of the rotating register file, the space–time diagram can be wrapped up as a

cylinder with time along the axis and registers on the circumference of the cylinder. Therefore, the register

allocation problem consists of packing the vector lifetimes on the surface of the cylinder, such that there

is no conflict and the circumference is minimized. Figure 20.7b illustrates the bin-packing concept.

In general, an optimal bin-packing problem is known to be NP-complete [86]. Therefore, heuristics are

employed to sort the vector lifetimes and insert them one by one on the surface of the space–time cylinder

without backtracking. Three sorting heuristics were proposed in [86]. In start time ordering, the earliest

vector lifetime is inserted first. In adjacency ordering, the vector lifetime that minimizes the horizontal

distance with the previously inserted lifetime is given higher priority. Last, conflict ordering follows an

approach that is similar to what graph coloring [23] does for scalar lifetimes. The insertion of the chosen

vector lifetime is then decided using one of the three strategies: best fit, first fit, and end fit. Best fit finds

a register that minimizes the current register usage. First fit chooses the first compatible register starting

from register 0. End fit starts from the register allocated to the vector lifetime inserted at the last step.

One might see the similarity between this process and scheduling. The definition of DIST[A, B] is

similar to MinDist, while the sorted ordering is similar to the priority list of instructions, and the insertion

of the vector lifetimes is similar to scheduling instructions.

The above register allocation approach is very efficient. To get an indication of its efficiency, consider

MaxLive, the maximum number of scalar lifetimes, of the same variable or different variables, that are

simultaneously live. This is a lower bound on the number of registers required for the scalar lifetimes.

3The distance defined in [86] contains only the lower bound. Here we expand it to a range for clarity.
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In traditional local register allocation for basic blocks, the lower bound MaxLive can always be achieved.

In a software pipelined schedule, even with vector lifetimes, it was found that the tightness of this lower

bound for the register requirement holds in many cases. That is, the register allocation approach, when

combined with the best lifetime ordering and insertion heuristics, results in an actual register requirement

that is close to the lower bound. Experiments show that the average register requirements vary from 1.0

to 1.3 times the MaxLive value [86]. This efficiency is reasonable, as the approach has fully considered the

special features of the vector lifetimes in a software pipelined schedule and made use of them in the whole

process, especially in lifetime representation, distance calculation, and ordering.

20.2.5.2.3 Code Generation

With rotating register files and predicated execution, it is possible to generate code for a software pipelined

schedule that contains only the kernel. In such a schedule there is no explicit prolog or epilog.

As discussed in Section 20.2.1, a modulo scheduled kernel has S stages, where each stage has instructions

from a distinct iteration. To control the execution of the stages during the prolog and epilog, the code

generation scheme associates a predicate register with each stage of the kernel. This approach does not

result in any code size increase.

We consider IA-64 [55] as the target architecture for the code generation. For the modulo schedule

shown in Figure 20.5b and the register allocation in Figure 20.7b, the kernel-only code generation scheme

results in the code depicted in Figure 20.8a. The code first initializes control registers and then executes

the kernel, followed by a br.ctop instruction that branches back to the kernel.

The initialization consists of aclrrrb instruction in line 2, which resets the base registers corresponding

to the integer, floating point, and predicate rotating register files. In lines 3 and 4, the loop count register

LC is set to the original trip count minus 1, and the epilog count register EC is set to the total number of

stages, S = 3.

The stages are controlled by S virtual predicate registers. For the IA-64 architecture,4 ρ16, ρ17, . . . ,

ρ(16 + S − 1) are assigned to each stage in the kernel from right to left. The instruction in line 5 initializes

ρ16 to 1 and all the other predicate rotating registers to 0. Line 6 sets up the live-in value for TN1.

Lines 9 and 10 compose the kernel. It consists of instructions a and b from iteration i and c from iteration

(i − 2). We defer a discussion on the register assignment for the variables to a later part of this section. The

Br.ctop instruction in line 11 is a branch instruction in the IA-64 instruction set architecture (ISA),

which rotates the three rotating register files simultaneously, decrements LC, and sets ρ16 to 1 if LC > 0;

otherwise, that is, if LC = 0, it decrements EC and resets ρ16. Then it branches to the target. When finally

both LC and EC become 0, it does not take the branch, but fails through.

To help us understand the kernel-only code more clearly, Figure 20.8b shows the dynamic execution

process of the code. For simplicity, assume N = 7. The software pipeline is controlled by LC, EC, and

the predicates of the three stages: ρ16 to ρ18. Their initial setting and the changes after every br.ctop
instruction are listed at the right side. Initially, LC = N − 1 = 6, and EC = S = 3. After the kernel is

executed once, the br.ctop instruction rotates the register files, decrements LC, and sets ρ16. The effect

is that LC changes from 6 to 0, and at the same time, because of register rotation, all ρ16 to ρ18 gradually

become 1. These three predicates are always associated with the stages from right to left, as annotated

in the first kernel iterations. In the initial iteration, as ρ18 has a value 0, the instruction c is effectively

not executed. Thus, the ineffective stages are automatically ignored in execution, as the corresponding

predicates are 0. The ineffective stages are highlighted in darker color (the change of the corresponding

predicates is shown in the triangle at the upper-right side). This dynamically forms the prolog.

After LC becomes 0, the br.ctop instruction rotates the register files, decrements EC, and resets ρ16

instead. The effect is that EC changes from 3 to 0, and in the same time, all ρ16 to ρ18 gradually become 0,

4In the IA-64 architecture, the predicate registers are named as p16, p17, . . . . To emphasize that they are actually

virtual register names used by the code generator, we use the Greek letter ρ for predicate registers. Similarly, the Greek

letter γ is used to denote integer virtual register names.
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1 /* Intialization: */

2 clrrrb;;

3 LC = N − 1

4 EC = 3

5 mov pr.rot = 1 << 16

6 mov γ 33 = live-in value of TN1;;

7 /* The software pipelined schedule: */

8 L ′:

9 a: (ρ16) TN2 (γ 34) = TN1 {1} (γ 33);;

10 c: (ρ 18) . . . = TN2 (γ 36) b: (ρ16) TN1 (γ 32) = . . . ;;

11 br.ctop L ′;;
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FIGURE 20.8 Code generation with rotating register files and predicated execution. (a) Kernel-only code for the

software pipelined schedule in Figure 20.5b. (b) Execution of the kernel-only code (assume N = 7).

which makes the latter stages ineffective and prevents them from execution (see the triangle at the lower-

right side). This dynamically forms the epilog.

After the kernel is executed for the last time, both LC and EC have been exactly decremented to 0. The

br.ctop instruction fails through, and the loop finishes.



20-26 The Compiler Design Handbook: Optimizations and Machine Code Generation

Now let us explain how the registers are assigned. As illustrated in Figure 20.7b, the two variables TN1

and TN2 are allocated physical registers 0 and 2, respectively. Assume they are integer variables. In IA-64,

the integer rotating registers are from γ 32 to γ 127. Hence, two virtual registers with distance of 2, for

instance, γ 32 and γ 34, are assigned to TN1 and TN2, respectively.

As mentioned earlier, at the end of the kernel, a br.ctop instruction rotates the rotating register files.

Rotation of a register file means the base register corresponding to it is decremented. In other words, a

physical register corresponding to virtual register γ 32 before the rotation corresponds to virtual register

γ 33 after the rotation. Since a rotation occurs every II time steps, and TN1 is originally allocated γ 32,

after one rotation, the value in the same physical register corresponds to γ 33. This explains why in line

6, we move the live-in value to γ 33, corresponding to TN1{1}. Similarly, TN2’s value stays in a single

physical register but is named γ 34, γ 35, and γ 36 with the rotations. That is why in line 10, in instruction

c , TN2 uses γ 36 as a source register. This can be clearly seen from Figure 20.8b, where we show the name

change of the physical register for TN2 in the first two iterations; it originally corresponds to γ 34. After

one rotation by br.ctop , its corresponds to γ 35, and after another rotation, it corresponds to γ 36.

In the above example for kernel-only register allocation and code generation, a br.ctop instruction

is scheduled after the kernel. To reduce the kernel execution time, such an instruction should be scheduled

together with the instructions in the original loop body, as is done in the open research compiler [74].

It must be scheduled such that it is at the last time step of the kernel and executed after all the other

instructions in the kernel.

20.3 Advances in Single-Loop Software Pipelining

Substantial progress has been made in software pipelining in the past decade. In the context of traditional

uniprocessor architectures, efforts to construct software pipelined schedules that require no more than

the available registers have been made. There has also been an interesting discovery on the relationship

between software pipelining and circuit retiming [17], a hardware pipeline design technique.

The past decade has also seen fundamental changes in the direction of architectural design. Power

consumption has become a major design constraint for high-performance and embedded systems. As

aggressive ILP techniques applied to traditional architectures result in diminishing returns and technology

constraints limit the scalability of the large monolithic hardware architecture, newer complexity-effective

architectures, for example, clustered VLIW and multi-core architectures, have emerged. To meet the

demands of these newer architectures and constraints, software pipelining has been adapted appropriately.

In this section, we survey these recent advances in software pipelining. First, we discuss the progress in the

traditional uniprocessor context, namely register-constrained software pipelining (Section 20.3.1), the link

between software pipelining and circuit retiming (Section 20.3.2), and power-aware software pipelining

(Section 20.3.3). Section 20.3.4 deals with extensions to software pipelining for newer architectures.

20.3.1 Register-Constrained Software Pipelining

Although software pipelining and register allocation are coupled problems, they are usually addressed inde-

pendently for simplicity. As a result, though a number of software pipelining methods considered reducing

the register requirement as an additional objective [28, 34, 51, 54, 64], they still do not explicitly consider

the number of available registers and limit the requirements of the constructed schedule to the available

registers. This has resulted in scheduling being performed without considering register constraints, that

is, assuming that an infinite number of registers are available, and then register allocation is attempted for

the constructed schedule. In case the schedule requires more registers than are available from the target

processor, earlier approaches follow one of the two options: posteriori spilling or rescheduling with a larger

II. Recent advances, however, have considered register constraints during scheduling. We discuss these

methods in some detail in this section.
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20.3.1.1 Posteriori Spilling

Posteriori spilling selects some of the loop variables as spill candidates and adds the required spill loads

and stores to the loop body. It reschedules the loop body with the same II and performs register allocation

again [86]. The spilling is called posteriori because the spill code is generated after the initial scheduling.

The spilling heuristic used in different methods varies in terms of the following aspects:

� Whether every use of a spilled candidate variable requires a spill load, or only certain uses of it

require spill loads.
� The priority function used for selecting the spill candidates.
� The heuristic used to schedule the spill instructions.
� How many loop variables are spilled at a time before rescheduling the loop with the same II. As

the loop is rescheduled after spilling, its register requirement may decrease. However, with the

introduction of the spills, the memory units might be saturated and cannot accommodate all the

loads and stores under the current II. In this case, the added spill code is removed, and the original

loop body is rescheduled after incrementing II by 1.

Posteriori spilling was used in the MIPS compiler [94]. The number of variables selected for spilling

increases exponentially. The first scheduling failure results in one variable being spilled, the second, two

variables, the third, four variables, and so on. Spill candidates are selected by a heuristic, which computes

the ratio of the number of time steps spanned by the scalar lifetime of a variable to the number of uses of

the variable. The higher the ratio, the greater is the cost and, hence, the lower is the benefit to keep the

lifetime in a register.

Another set of heuristics has been proposed for posteriori spilling in [116]. It spills candidates that are

live at the “critical” time steps, the time steps at which the total number of scalar lifetimes equals MaxLive.

That is, these time steps have the maximal register requirement. The number of candidates to be spilled

is proportional to the difference between MaxLive and the number of available registers. It foresees the

situation when it is better not to perform spilling, but to reschedule the loop with a larger II (without

inserting spill code). This happens if the spill loads and stores to be inserted would overcommit the memory

units under the current II.

20.3.1.2 Rescheduling with a Larger II

The other option, rescheduling the original loop with a larger II without inserting any spill code, results

in a schedule with a lower throughput and possibly with fewer iterations overlapped. It presumes that the

register requirement is somewhat proportional to the number of concurrently executing iterations. At the

expense of reduced performance, a feasible register allocation may be found [86]. This option was used in

the Cydra 5 compiler [30].

The two alternatives, posteriori scheduling and rescheduling with a larger II, were evaluated and com-

pared by Llosa et al. [65]. They observed that, in general, rescheduling with an increased II performs poorly

and might not find a schedule requiring fewer registers than available for some loops. Posteriori spilling

always leads to a feasible schedule and, in many cases, results in more efficient schedules with a lower II

than the other approach.

20.3.1.3 Register-Constrained Software Pipelining

While decoupling scheduling and register allocation does simplify the compilation process, it is beneficial

to consider register constraints during scheduling, at least to some extent, to avoid failures in allocating

registers for the constructed schedule.

Two approaches consider register requirement during scheduling [6, 28, 54, 64, 116]. One attempts to

reduce register requirement, with no guarantee that the final schedule will require fewer registers than

available [28, 54, 64]. The other approach monitors register requirement and introduces spill code on-the-fly

during scheduling [6].
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Reducing register requirement is based on the obvious fact that shortening the scalar lifetimes in

the schedule lowers register pressure. The scalar lifetimes can be shortened by carefully prioritizing and

scheduling the instructions such that for a variable, the producer instructions and the consumer instruc-

tions are scheduled closer to each other. In slack scheduling [54], the priority list is based on the slack of

an instruction, which does not particularly favor register pressure. However, the decision of whether to

schedule an instruction as early as possible (closer to the ESTART time) or as late as possible (closer to

the LSTART time) is used for this purpose. In hypernode reduction modulo scheduling [64], the priority

order of the instructions is such that only all the predecessors or all the successors of an instruction in

the dependence graph, but not both, are ahead of the instruction in the priority list. During scheduling,

the instruction is scheduled as early (or as late) as possible if its predecessors (or, respectively, successors)

have already been scheduled.

The other approach, monitoring register requirement and introducing spilling code on-the-fly, is based

on the observation that register requirement of a schedule is usually close to the lower bound, MaxLive.

As mentioned in Section 20.2.5.2.2, MaxLive is a surprisingly tight lower bound for register requirement.

Therefore, we can estimate register requirement with this lower bound, and monitor it during scheduling.

In scheduling, if MaxLive in the current partial schedule is greater than the available number of registers,

spill instructions can be inserted on-the-fly to keep the MaxLive of the partial schedule lower than the

available registers. The final schedule would almost guarantee success in the subsequent register allocation

phase [86]. Even if the spill code does not reduce register requirement sufficiently, backtracking can be

used to reschedule some instructions for further reduction in register requirement.

A hybrid approach has been proposed in [6], which combines the benefits of on-the-fly and posteriori

spilling. It makes two scheduling passes. The first pass tries to schedule the loop without adding spill code. If

the MaxLive of the schedule is found to be less than the number of available registers, then register allocation

is performed, since it is likely to succeed. Otherwise, another scheduling pass starts, which reschedules

the loop with on-the-fly spill code generation. The same scheduling strategies are used in both passes,

which makes the two schedules as similar as possible. Therefore, although the complete information of the

lifetimes is not available until the rescheduling terminates, the MaxLive can be estimated by approximating

the lifetimes of variables whose producer and/or consumers are not yet scheduled to those obtained in

the first scheduling pass. Spill codes are inserted on-the-fly, guided by the information obtained from the

schedule of the first pass. With respect to the first pass, the spilling is posteriori. With respect to the second

pass, however, it is on-the-fly.

20.3.2 Modulo Scheduling and Retiming

Recent years have seen interesting advances relating modulo scheduling and circuit retiming

[15–17, 21, 22, 24, 95, 99, 102]. The former is a technique for constructing software pipelines, while the

latter is for optimizing hardware pipelines. Modulo scheduling has been applied to optimize synchronous

circuits [15, 21, 99, 102], which was usually done by retiming. Conversely, retiming has been combined

with modulo scheduling for scheduling loops [4, 16, 17, 95] for various objectives, such as maximizing

throughput and minimizing power, register pressure, area, and so on.

What is the relationship between these two technologies? Why can they be combined? This section

answers these questions based on the literatures [16, 17, 63]. We focus on a single loop with a single basic

block of instructions.

20.3.2.1 Retiming

First, let us cite the concepts of synchronous circuit and retiming as defined by Leiserson and Saxe [63],

with a minor change in notations. A circuit is modeled as a directed multi-graph G = 〈V, E , δ, w〉, where

V is the set of functional units, and E is the directed interconnections between them. A node a ∈ V has

a latency or propagation delay δ(a). An edge e ∈ E is weighted with a register count w(e). The weight

means there are w(e) number of registers located on the edge.

This graph is a synchronous circuit if the following conditions are met:

D1: The latency δ(a) is nonnegative for each node a ∈ V .
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W1: The register count w(e) is a nonnegative integer for all edges e ∈ E .

W2: In any directed cycle of G , there is at least one edge with a positive register count.

Condition W2 is to prevent a cycle in which every edge is zero weighted, which may lead to race conditions,

oscillation, and so on. In other words, in a synchronous circuit, a feedback loop must have at least one

register as a buffer. A cycle in a synchronous circuit is similar to a recurrence cycle in a DDG.

In the terminology of pipelining, a path between two registers, without any other register in between,

is a pipeline stage. The length of the path, which is the total latencies of the functional units in the path,

is the latency of the pipeline stage. The total weight of the path, which is the sum of the register counts of

the edges in the path, is 0 by definition. Among all such zero-weighted paths, the longest one determines

the clock period.

To maximize the throughput of the pipeline, it is necessary to minimize the clock period. This is done

by retiming the synchronous circuit. Retiming reduces the length of the longest zero-weighted path by

inserting or deleting registers, but without affecting the circuit structure otherwise [63].

Formally, a retiming of the circuit is an integer-valued vertex labeling function r : V → Z. It maps the

original graph G to a new graph G r = 〈V, E , δ, wr 〉, where for each edge e : a → b ∈ E , the new weight

wr is defined as wr (e) = w(e) + r (b) − r (a).

From the above definition, it is clear that retiming does not change the total weight of a cycle. That

is, retiming does not violate condition W2. Of course, it does not change condition D1. Therefore, for a

synchronous circuit, if a retiming guarantees that the retimed circuit still satisfies condition W1, then the

retimed circuit is still a synchronous circuit, and the retiming is said to be legal.

20.3.2.2 Modulo Scheduling and Retiming

Several observations have been made about the relationship between retiming and software pipelining.

20.3.2.2.1 A DDG Is Equivalent to a Synchronous Circuit,
Assuming No Resource Constraints

For each instruction, assume there is a functional unit exclusively assigned to it. Thus, an instruction in the

DDG can be regarded as a functional unit in a circuit. A dependence between two instructions is a directed

edge between two functional units, and the dependence distance is the edge’s weight (register count).

The latency of a functional unit is the maximal dependence latency among all the dependences for which

the corresponding instruction is the producer. According to the discussion in Section 20.2.2.2, the DDG

contains only flow dependences for software pipelining. Flow dependences’ latencies must be positive.

Therefore, the latency of every functional unit must be positive, which satisfies the above condition D1.

The dependence distance is always a nonnegative integer, which respects condition W1. It is also impossible

for the DDG to have a cycle in which every edge has a dependence distance of 0. This meets condition W2.

In short, the DDG is a synchronous circuit.

20.3.2.2.2 Retiming Is a Mapping of Instructions to Pipeline Stages

From the perspective of pipelining, retiming groups into the same pipeline stage some functional units

(i.e., instructions) that were originally in different stages by deleting the registers on the paths between

them; retiming also divides into different pipelines stages some other functional units (instructions) that

were originally in the same stage, by inserting registers on the paths between them. In other words, retiming

is a mapping of instructions to pipeline stages.

20.3.2.2.3 Any Legal Modulo Schedule Has a Legally Retimed DDG

Modulo scheduling also maps the instructions to pipeline stages. It does so by retiming the DDG implicitly.

According to the dependence constraints in Equation 20.2, for a dependence (a → b, δ, 〈d〉), a valid modulo

schedule must have the following:

σ (a , i) + δ ≤ σ (b, i + d) (20.22)
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for any loop iteration i . Assume the schedule times for the two instructions are as follows:

σ (a , 0) = sa ∗ T + oa where 0 ≤ oa < T

σ (b, 0) = sb ∗ T + ob where 0 ≤ ob < T

where T is the initiation interval. In other words, instructions a and b are scheduled into stages sa and sb ,

respectively. Thus, Equation 20.22 can be rewritten as

σ (b, i + d) − σ (a , i) = (d + sb − sa ) ∗ T + ob − oa ≥ δ

Dividing both sides with T , and taking the floor function, we get

⌊

σ (b, i + d) − σ (a , i)

T

⌋

= d + sb − sa +

⌊

ob − oa

T

⌋

≥

⌊

δ

T

⌋

Since −T < ob − oa < T and δ ≥ 0, there must be
⌊

ob−oa

T

⌋

= 0, and
⌊

δ
T

⌋

≥ 0. Therefore,

⌊

σ (b, i + d) − σ (a , i)

T

⌋

= d + sb − sa ≥ 0 (20.23)

Remember, d is the dependence distance, which is the register count in terms of retiming. If we label the

functional units corresponding to instructions a and b with their stage numbers sa and sb , respectively,

then d + sb − sa is the new register count of the edge between the two functional units, according to

the definition of retiming. In the above relationship, d + sb − sa ≥ 0 exactly says that condition W1 is

guaranteed, and, therefore, this is a legal retiming.

The above relationship also answers this question: What does it mean by the new register count d+sb−sa ?

From the equation
⌊

σ (b, i + d)−σ (a , i)
T

⌋

= d + sb − sa , it is clear that it refers to the total number of stages,

i.e., the total number of instances of the kernel, a value, produced by instruction a in loop iteration i , has

to cross before it reaches the consumer instruction b in loop iteration i + d .

Finally, what does it mean by the original register count d? It means that before scheduling/retiming,

all the instructions in the same iteration belong to a single pipeline stage (sb = sa = 0). Therefore, the

value produced in loop iteration i must cross d number of stages to reach the consumer in loop iteration

i + d . The number of stages d happens to equal the dependence distance in this case.

In summary, the above discussion helps with a deeper understanding of retiming. The labels attached

to the functional units are the indexes of the pipeline stages where the corresponding instructions (in the

first loop iteration) are scheduled. The register count of an edge is the total pipeline stages for a value

to cross.

From Equation 20.23, we can further conclude:

⌊

σ (b, i + d)

T

⌋

=

⌊

σ (a , i)

T

⌋

⇐⇒ d + sb − sa = 0 (20.24)

The above relationship means that iff the new register count is 0, the producer σ (a , i) and the consumer

σ (b, i + d) are in the same stage, that is, they are executed in the same instance of the kernel [16, 17].

Example 20.2

Let us illustrate these points with the help of the DDG for our motivating example discussed in

Section 20.2.1. Before modulo scheduling, every instruction is in a single stage i.e., the same instance of

the kernel. Therefore, we can imagine that every instruction in the DDG is labeled with stage number 0

(see Figure 20.9a).

After modulo scheduling, instructions a and d are scheduled in stage 0, and the others in stage 1, as

shown by the kernel in Figure 20.4. In other words, there is a retiming r , which has r (a) = r (d) = 0, and

r (b) = r (c) = 1. Label the instructions in the DDG with their stages and update the weight of every edge

accordingly. We get Figure 20.9b.



Advances in Software Pipelining 20-31

c

a

d

<0>

<2>

<1>

<0> <0>

b

[0]

[0]

[0] [0]

(a)

[1]

c

a

d

<1>

<1>

<0> <1>

[0]

[0]

[1]

<0>

b

(b)

FIGURE 20.9 Illustration of retiming. The stage number of an instruction is enclosed in square brackets, [ ]. (a) The

original DDG before retiming; (b) the DDG after retiming.

Compare the two figures. The weights of edges a → b and c → a have been changed from 0 to 1, and

from 2 to 1, respectively. The weights of other edges are not changed. Let us take edge c → a to illustrate

the meaning of the weights. According to the dependence, a result of instruction c in loop iteration 0 needs

to be transferred to instruction a in iteration 2. Since every iteration is in a single stage before modulo

scheduling, it needs to cross two stages. Therefore, the edge originally has a weight 2, which is equal to

the dependence distance. In the modulo schedule in Figure 20.2b, however, the producer instruction c in

iteration 0 and the consumer instruction a in iteration 2 are scheduled at time steps 3 and 4, respectively.

One is in stage
⌊

3
T

⌋

= 1, the other in stage
⌊

4
T

⌋

= 2. Here T = 2 is the initiation interval. Therefore, the

value needs to cross 2 − 1 = 1 stage. That is why the weight of the edge c → a is changed to 1.

It should be noted that a retimed schedule is not necessarily a software pipelined schedule. This is because

retiming finds only the stages for each instruction but does not consider the latencies of the instruction,

nor their exact time steps in a stage, as can be seen from Equation 20.23. Therefore, given a retiming, there

can be more than one schedule.

Under an infinite number of resources, a modulo schedule with II = RecMII implies a retimed graph

with the shortest clock period. In addition, the modulo schedule divides the clock period equally into II

number of time steps.

In short, modulo scheduling implicitly retimes the DDG by allocating instructions to pipeline stages,

but it is more than retiming. In this sense, all possible modulo schedules compose a subset of all possible

retimed schedules (Figure 20.10).
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Retimed Schedules

Modulo Schedules

FIGURE 20.10 The space of modulo scheduling is a subspace of retiming.

20.3.2.2.4 The Legally Retimed DDG May Be Further Retimed, Leading to a Change
in the Modulo Schedule

The retimed DDG may be optimized by a sequence of other retiming. Consequently, the modulo schedule

is changed with each retiming.

20.3.2.2.5 Resource-Constrained Modulo Scheduling Achieves Resource Sharing between
Instructions, but Retiming Alone Usually Cannot Share Resources

Retiming inherently assumes that one instruction is bound to one distinct functional unit. There is no

sharing of the functional units between the instructions. Modulo scheduling allows different instructions

to share the same functional unit by putting them into different time steps in the kernel. This can be used

to optimize hardware circuit area; in compiling the modulo schedule into hardware, the input register to

the functional unit is replaced with a sequence of input registers, one for each time step in the kernel. This

is called c-slowdown in hardware terminology [99].

20.3.2.3 Decomposed Software Pipelining

Retiming assigns instructions to pipeline stages. Modulo scheduling is more than retiming. It specifies

the exact time step in the kernel for each instruction. Therefore, to construct a modulo schedule, one can

perform retiming to decide the stages of the instructions first, and then specify their time steps in the

kernel. This approach is called decomposed software pipelining (DESP) [16, 17, 47, 105].

In this approach, first, the DDG is retimed to minimize the clock period. In this step, only dependence

constraints are considered. This decides the stage for every instruction, assuming infinite resources. Second,

under the resource constraints, the exact time step of each instruction in its stage is determined. The

dependences whose register counts after retiming are 0 are kept as they are within the same instance of the

kernel, according to the Equation 20.24, while all the other dependences are removed. Note that before

and after retiming, the DDG is a synchronous circuit. According to condition W2 in the definition of a

synchronous circuit, these zero-weighted dependences that remain in the DDG cannot form any cycle.

In other words, the dependence graph becomes acyclic. Therefore, any acyclic scheduling method, for

example, list scheduling, is then applied to arrange the instructions. It does not change the stages of the

instructions, but only their time steps in the kernel. The height of the schedule is the initiation interval.

20.3.2.4 Improving Modulo Scheduling with Retiming

Retiming can be used before modulo scheduling to help achieve a better schedule than using modulo

scheduling alone. Appropriate retiming reduces the total number of zero-weighted dependences. Therefore,

retiming the dependence graph before modulo scheduling can provide modulo scheduling with less-

constrained dependences [22, 99].

It is interesting to note that retiming, however, does not reduce MII, the lower bound of the II. This

lower bound is determined by resources, and by the total latencies and total distances of a cycle in the

DDG. Although retiming may change the weight of some dependences, the total weight of the cycle stays

the same, as stated in Section 20.3.2.1. Retiming helps modulo scheduling not because it reduces MII, but

because the retimed graph has fewer dependence constraints and thus may require less time to construct

a schedule.
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20.3.3 Power-Aware Software Pipelining

Power consumption has become one of the major design constraints in today’s high-performance pro-

cessors and embedded systems [69]. Excessive power consumption in small chip areas causes high chip

temperature, affecting processor reliability adversely and increasing hardware packaging cost. Further-

more, for handheld systems, such as laptops and PDAs, reducing power or energy consumption also

helps lengthen the battery life. Thus, it is of importance to reduce the power or energy consumed by the

processor without significantly degrading its performance.

As software pipelining is the focus of this chapter, we concentrate only on recent compiler techniques that

reduce the power or energy consumption of software pipelined schedules. General power-aware computing

techniques are discussed in greater detail elsewhere [14]. First we present the necessary background on

power and energy consumption [69]. This is followed by a discussion on power-aware software pipelining

methods [113–115].

20.3.3.1 Background on Power/Energy Consumption

The power dissipated by a CMOS logic circuit can be categorized into three parts: dynamic power, short-

circuit power, and leakage power. The dynamic power is due to the charging and discharging of the capacitive

load on the output of each gate. The short-circuit power, as the name indicates, is due to the short-circuit

current, which momentarily flows between the supply voltage and ground when the output of a CMOS

gate switches. The leakage power is the power lost due to the leakage current regardless of the gate’s state.

Among the three, the dynamic power dominates, especially when a processor technology 90 nanometer

or higher is used.

The dynamic power of a CMOS circuit scales quadratically with the supply voltage. In particular, if f is

the clock frequency, C is the capacitance, and V is the supply voltage, then the dynamic power dissipated

is given by

Pdyn ∝ CV2 f

It is easy to observe that a reduction in supply voltage can bring about a quadratic reduction in dynamic

power. As a side effect, reduction in the supply voltage also lowers the operating frequency f . Thus, reducing

the supply voltage has a significant effect on dynamic power consumption. That is why voltage scaling is

performed in modern processors which reduces the supply voltage (and operating frequency) to decrease

the power/energy consumption. This is accomplished either by changing the supply voltage and frequency

of the processor dynamically or by providing multiple functional units that have different operating

frequencies and voltages [80] or different architectural implementations [118]. It is the responsibility of

the compiler to identify the appropriate functional units, or the operating frequency of the functional

units, to save power.

In addition to the power dissipated, the power variation exhibited by the system across different cycles is

also important. In high-performance embedded systems, the number of on-chip activities varies drastically

on a cycle-by-cycle basis. This results in power supply voltage noise. Large power variation is usually

correlated with high peak power and a large number of “hot spots.” Both are detrimental to functional

unit reliability. Ironically, such power variations are often exacerbated by commonly used power-saving

circuit design techniques.

In an embedded system or handheld device, while the power dissipated directly concerns the input

power supply, cooling, and thermal effects, the energy consumed concerns the battery capacity. Reducing

the energy consumption is important, as it increases the battery’s lifetime and reduces its cost and weight.

The energy consumed is proportional to the product of power and the work time of the system:

E ∝ P · t

where P is the average power dissipated and t is the work time. In the context of software pipelining, since

the execution time and energy consumption of the kernel dominate those of the loop, P can be defined
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as the sum of the power consumed at each time step in the kernel, and t as the total times the kernel is

executed.

20.3.3.2 Power-Aware Software Pipelining

Power-aware software pipelining methods [113–115] reorder instructions at compile time based on an

accurate estimate of power consumption at each time step, with the objective of minimizing either the

overall power consumed or the power variation in the kernel. They are motivated by the following facts:

� Instructions usually have nonzero slacks. As introduced in Section 20.2.3.2, an instruction a has a

feasible schedule time range [ESTART(a), LSTART(a)], and its slack is LSTART(a) − ESTART(a).

When the slack is nonzero, the instruction has more than one time step to schedule without violating

the dependence constraints with the already scheduled instructions and without degrading the

performance of the schedule.
� Modern processor design tends to make functional units fully pipelined to reduce structural hazards.

Thus, it is possible to delay the schedule time of certain noncritical instructions and obtain a schedule

that uses fewer functional units without degrading the performance significantly.

20.3.3.2.1 Reducing Power Consumption

The method proposed in [113] attempts to reduce the power consumed while retaining the optimality

of the software pipelined schedule. It assumes an architecture where functional units are pipelined. It

minimizes the number of functional units that are active at a time step. A functional unit is said to be active

at time step t if any stage of the functional unit is busy at that time step. Note that from the viewpoint of

minimizing the power and energy, it is preferable to keep multiple stages of a functional unit active than

to have multiple functional units, each with one stage active. The problem is formulated as follows:

Problem 20.2

Given a loop L and a machine architecture, construct a modulo schedule for a given II that consumes the

minimal power, subject to the modulo property, dependence constraints, and resource constraints as stated in

Section 20.2.2.3.

The resource-constrained modulo scheduling problem was formulated in Section 20.2.4. The depen-

dence and resource constraints are expressed using Equations 20.14, 20.15, 20.16, and 20.17. Now we need

to model the power consumed at each time step in the schedule as well. For this, we model the number of

functional units that are active at each time step and minimize them.

To model the functional units that are active at a given time step, it is necessary to model the latency

of each instruction, which specifies how long a functional unit is active. We assume that an instruction

that takes s time steps is executed in a functional unit that has exactly s stages. At the first time step it is

initiated, it is in the first stage of the functional unit; at the next time step, it is in the second stage, and so

on. Therefore, an instruction a issued at time step t will be in stage s at time step (t + s ) mod T , where T

is the initiation interval. To model the usage of the stages of different functional units, a three-dimensional

array U = [ut, a , s ] is introduced as

ut,a ,s = 1 ⇐⇒ instruction a is in stage s at time step t in the kernel

The variable ut,a ,s can be defined using matrix M as below:

ut,a ,s =

⎧

⎪

⎨

⎪

⎩

m
(t+s ) mod T,a

∀a ∈ [0, w − 1], ∀t ∈ [0, T − 1], and ∀s ∈ [0, δ(a) − 1]

0 ∀a ∈ [0, w − 1], ∀t ∈ [0, T − 1], and ∀s ∈ [δ(a), L r − 1]

(20.25)

where δ(a) is the latency of instruction a , and L r is the maximum latency of all instructions that can be

executed on a functional unit of type r . The second case of Equation 20.25 is necessary, since different
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types of instructions (e.g., floating point divide and square root) executing in the same functional unit

may have different execution latencies.

In a software pipelined schedule, the number of functional units of type r used at time step t is

given by

Ft,r = max
s∈[0,L r −1]

⎛

⎝

∑

a∈I(r )

ut,a ,s

⎞

⎠

The above equation can be expressed in a linear form as

Ft,r ≥
∑

a∈I(r )

ut,a ,s ∀t ∈ [0, T − 1], ∀s ∈ [0, L r − 1], and ∀r (20.26)

Our objective is to minimize the power consumed by the active functional units. Let Fr represent the

number of r -type functional units in the given architecture and Pdr (Plr ) be the power dissipated (leaked)

by an active (inactive) functional unit of type r in a single time step. The total amount of power consumed

at time step t by all functional units is given by

Pt =
∑

r

(Pdr ∗ Ft,r + Plr ∗ (Fr − Ft,r ))

Then the power consumed by all the functional units in the software pipelined kernel is given by

P =

(T−1)
∑

t=0

Pt (20.27)

The objective function minimizes P , subject to Equations 20.14, 20.15, 20.16, 20.17, 20.25, 20.26,

and 20.27.

20.3.3.2.2 Reducing Power Variations

The above formulation can be slightly modified to model and reduce power variations across different

time steps, which is important from the viewpoint of the reliability of the system. Such a formulation

is proposed in [114]. This formulation minimizes
∑

t

∣

∣Pt − Pavg

∣

∣, where Pavg denotes the average power

consumed during the execution of loop L . This formulation also uses U = [ut,a ,s ], the variable as defined

in Equation 20.25. Pavg is

Pavg =

T−1
∑

t=0

Pt

T

The software pipelined schedule desired is the one that has a smooth power profile, which means the

actual power consumed at each time step is as close to the average power as possible. The difference between

the actual power consumed at time step t and the average power is

∣

∣Pt − Pavg

∣

∣

The objective function is to minimize the value of the following expression:

T−1
∑

t=0

∣

∣Pt − Pavg

∣

∣

To formulate this as an integer linear programming problem, we introduce two inequalities as follows:

Dt ≥ Pt − Pavg (20.28)

Dt ≥ Pavg − Pt (20.29)
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and define the objective function as

min
T−1
∑

t=0

Dt (20.30)

Although this does not explicitly specify an upper bound for Dt , the objective function (Equation 20.30)

ensures that Dt for all t in [0, T − 1] will get its smallest permissible value. Consequently, Dt must be

equal to the maximum of the right-hand sides of Equations 20.28 and 20.29.

Thus, a software pipelined schedule that has a balanced power profile can be achieved by solving the

integer linear programming problem with the objective function (Equation 20.30) under the constraints

given by Equations 20.14, 20.15, 20.16, 20.17, 20.25, 20.26, 20.28, and 20.29. The above formulation is

shown to be effective in minimizing the peak power, number of hot spots, and power variation [114].

A similar effort to reduce peak power and power variation is proposed in [115]. This approach is based

on the heuristic iterative modulo scheduling method [87]. The idea is to make the power consumed at

each time step as close to the average power as possible. In other words, it avoids peaks in the power

consumption in the kernel, making the power profile of the kernel as “flat” as possible in terms of power

usage. Specifically, for an instruction, it chooses from its feasible time range a time step such that once the

instruction is scheduled in this time step, the power profile of the constructed partial schedule is as flat as

possible.

20.3.4 Software Pipelining for New Architectures

Software pipelining traditionally targets monolithic VLIW architectures. However, in conventional mono-

lithic architectures, as the complexity grows and feature sizes decrease to tens of nanometers, wire delays

tend to dominate gate delays, which limits the increase in processor clock frequencies [76]. Clustering

has been proposed as an effective microarchitectural approach to mitigate the negative effect of wire de-

lays. The main idea is to have a hierarchical organization of the interconnection wires such that units

that communicate frequently are interconnected through short and fast wires, and those that communi-

cate infrequently use longer and slower wires. More specifically, in a clustered VLIW architecture [18],

the functional units are grouped into clusters and the clusters are interconnected. Examples include Texas

Instruments’ TMS320C6x [103], BOPS’s ManArray [78], HP/ST’s Lx [39], and Equator’s MAP1000 [5, 48].

The cluster approach has also been followed in the superscalar architecture, with Alpha 21264 [58] as an

important example. More recently, multi-core architectures [73] have become a commercially viable option

that can effectively utilize the few 100 million transistors available in the chip. In both clustered VLIW and

multi-core architectures, software pipelining remains a useful compiler technology to extract parallelism

from loops.

20.3.4.1 Overview of Challenges and Solutions

In a clustered VLIW architecture, the front end of the microarchitecture is similar to that of a monolithic

architecture. However, the functional units are grouped into clusters, with each cluster having its own

register file. Enough datapaths are available for a functional unit to access the required operands, typically

two source operands and one destination operand, from the register file of the same cluster, referred to

as the local register file. However, only a few ports are available for all the functional units in a cluster

to access a register file in a non-local cluster, referred to as remote register file. Therefore, when multiple

functional units in a cluster try to access a remote register file, only a few (equal to the number of remote

ports) of the accesses can go through in a single cycle, while others are stalled. To reduce the number of

remote register file accesses, the value from a remote register can be copied to a local register through an

explicit copy operation.

The clustered VLIW architecture introduces a few new challenges to software pipelining. First, it is

no longer sufficient to just specify the time step for an instruction, but it is also required to specify to

which cluster (and what functional unit) the instruction is scheduled. The latter, referred to as cluster
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assignment or mapping, adds an additional dimension to the software pipelining problem. Second, the

latency of a dependence may vary because of potential access to a remote register file. Even among the

remote clusters, the access time to different remote register files may be different because of the topology

of the inter-cluster interconnect. That is, clustered machines are imbalanced in access time to the register

banks. The nonhomogeneous latency in accessing remote register files needs to be taken into account while

scheduling the instructions. Last, the value of a remote register may need to be copied via an inter-cluster

transfer/copy instruction from the remote to the local register file. Such an instruction may be introduced

into the dependence graph dynamically during the software pipelining process. Thus, the DDG used in

the scheduling process itself gets modified during scheduling, depending on the instruction scheduled and

the clusters to which they are assigned.

Thus, software pipelining for a clustered VLIW architecture needs to address three closely related key

problems: cluster assignment, scheduling, and register spilling. Depending on the order of solving the

problems, there have been several different approaches [3, 7, 18, 41, 53, 72, 117]:

� Cluster assignment first: In this approach, the instructions are first assigned to specific clusters.

Once the assignment is done, edges in the dependence graph that span across two clusters are

annotated with higher latencies. The subsequent scheduling phase, where any traditional software

pipelining method can be employed, uses the modified DDG and determines the schedule time

for each instruction and the functional unit within the cluster to which the instruction is assigned.

Cluster assignment can be performed explicitly by graph partitioning [3, 7] or pre-scheduling [72],

or implicitly by register partitioning [53].
� Scheduling first: In this approach, instructions are scheduled as if the target architecture is an

idealized monolithic VLIW equivalent, where all functional units are within a single cluster. Then

the interconnection in the cluster architecture is considered and the required inter-cluster transfer

(copy) instructions are inserted into the schedule for the values flowing between clusters [18]. One

major issue with this approach is that if the copy instructions happen to be inserted into a critical

cycle in the dependence graph, then II is increased. Furthermore, there should be free remote ports

available in the time step in which the copy instruction is to be scheduled.
� Integrated scheduling with cluster assignment: In this approach, the dependence graph is dy-

namically updated with the assignment and scheduling of the instructions and the insertion of new

instructions. The new instructions inserted include the inter-cluster transfers (copy instructions)

and the spill loads and stores if register spilling is also integrated [41, 117].

Software pipelining for multi-core architectures [49] has similar challenges and can be addressed simi-

larly. However, functional units in such architectures are not lock-stepped as in clustered VLIWs. Hence, it

is natural to expose coarse-grained parallelism in multi-core architecture. The concept of software pipelin-

ing for them needs to be extended accordingly; for example, an “instruction” may be a macro instruction

that contains a set of machine instructions.

Below we describe the first and the last approaches in greater detail for clustered VLIW architectures

and the second approach for multi-core architectures, which are less sensitive to the increase in II.

20.3.4.2 Cluster Assignment First Approach

In this approach, cluster assignment and scheduling are not coupled; that is, they are performed in two

independent phases. We focus on how cluster assignment is done. Three approaches based on graph

partitioning [7], pre-scheduling [72], and register partitioning [53] have been proposed. We review

them briefly.

20.3.4.2.1 Cluster Assignment by Graph Partitioning

In the graph partitioning–based method [7], a preliminary cluster assignment is obtained by partitioning

the dependence graph. This is followed by a scheduling phase that integrates register allocation and spill

code generation. More specifically, the cluster assignment is translated into the following graph partitioning

problem:
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Problem 20.3

Given the data dependence graph of a loop and an II, partition the nodes of the DDG into C number of sets,

where C is the number of clusters, such that the inter-cluster data transfers have minimum impact on the

execution time of the loop.

The approach proposed in [7] partitions the graph such that no resource in a cluster is fully saturated. The

DDG is partitioned using the following multilevel strategy:
� Coarsening the graph: Each dependence edge in the DDG is associated with a weight, which is

determined using two factors: (a) the impact adding a delay to this edge has on the execution time

and (b) the slack of the edge, defined as the number of delay cycles that could be added to this

edge without affecting the execution time. The weight of the edge combines these two factors into

a single metric. The graph is coarsened using a maximum weight-matching algorithm iteratively.

Here, a matching refers to a set of edges in the DDG such that no two edges have a node in common.

The weight of a matching is the sum of the weights of the edges in the matching. In each iteration, a

matching with the maximum total weight is found. For each of the edges, the two nodes connected

by it are combined into a single macro node, and the edge is removed. This process continues until

the number of macro nodes in the graph equals the number of clusters. Each macro node is then

assigned to a cluster.
� Refining the partition: This is a reverse step of coarsening. It tries to improve the partition by

relocating some nodes to clusters other than their original ones. The nodes can be macro nodes or

nodes in the original DDG. A refinement is said to improve a partition if the workload tends to be

more balanced across clusters or if the impact of the inter-cluster edges upon the execution time is

reduced.

To achieve load balancing, the resources are considered from the most saturated to the least

saturated. For each saturated resource, a node containing an instruction that uses this resource is

moved to another cluster, if this resource in that cluster is not saturated, and the other resources

that were previously saturated, but have been considered before, do not become saturated again.

In addition to achieving load balancing, the refinement process relocates some nodes or swaps

some pairs of nodes to reduce the impact of the inter-cluster edges upon the execution time. Such

nodes are at the boundary of a cluster; that is, each of them is connected by a dependence edge that

spans two clusters. All such possible relocations and swappings are sorted, and the one that results

in the maximum reduction in execution time is performed. Ties are broken by giving preference to

the refinement that results in a larger increase of the total slack of the inter-cluster edges or a larger

reduction of the total number of inter-cluster edges.

20.3.4.2.2 Cluster Assignment by Pre-Scheduling

In its essence, cluster assignment is also a scheduling problem that schedules the instructions into the

clusters. Pre-scheduling is therefore another way to perform cluster assignment. Once pre-scheduling is

performed, the dependence edges that span across two clusters are marked as inter-cluster edges. For such

an edge, a copy instruction can be explicitly inserted on the edge. More specifically, pre-scheduling mimics

a modulo scheduling, which computes MII, sorts the instructions, schedules them one by one into the

clusters, reserves resources beforehand for copy instructions if some values are predicted to be produced in

a cluster and used in a different cluster, inserts copy instructions whenever necessary as the resources have

already been reserved, or unreserves the resources if the values are actually produced and used in the same

cluster, and reassigns some instructions or increases II if the assignment process cannot proceed [72].

In the context of traditional monolithic VLIW architectures, priority is given to instructions in the

critical cycles during scheduling. In the context of clustered VLIW architectures, it is also important to

avoid inserting copy instructions that increase II. To achieve this purpose, first, the nodes in the SCCs are

assigned to clusters, avoiding splitting them across the clusters with copy instructions whenever possible.

The SCCs themselves are also ordered. The most constraining SCC that results in the highest RecMII is
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ordered first, then the next most constraining SCC, and so on. Second, whenever possible, data-dependent

nodes are assigned to the same cluster. For this purpose, a heuristic is borrowed from the hypernode

reduction modulo scheduling [64], as discussed in Section 20.3.1.3. In this heuristic, a node is ordered

after all its predecessor nodes or all its successor nodes. This increases the chance that the node is assigned

to the same cluster as its predecessors or successors.

As the results of pre-scheduling, we find an II under which all instructions are assigned specific clusters,

and copy instructions are introduced in the DDG. However, pre-scheduling does not determine the

schedule time step for the instructions, which makes it different from a full modulo scheduling.

Once pre-scheduling is done, any traditional modulo scheduling method can use the new dependence

graph and the cluster assignment results to arrive at a final schedule, under the II found by pre-scheduling.

This scheduling, in addition to the cluster assignment, specifies the exact time step and the functional unit

in which each instruction is scheduled. If the modulo scheduling fails, the II is incremented, and the whole

process, pre-scheduling followed by scheduling, repeats.

Note that the purpose of pre-scheduling is different from the latter (modulo) scheduling phase. The

former aims to produce a DDG with explicit copy instructions that have minimum impact on the execution

time, whereas the latter modulo scheduling phase works on the new dependence graph and produces the

complete schedule.

20.3.4.2.3 Cluster Assignment by Register Partitioning

It is good if an instruction accesses all its register operands from the local register file. In the heuristic

proposed in [53], a register component graph is built, where each node is a register operand, and an

edge connects two register operands of the same instruction. The nodes that are not connected are good

candidates to be assigned to different register banks. Each edge has an associated weight that represents the

benefit of assigning the two nodes connected by the edge to the same register bank. Basically, the benefit is

higher if the instructions containing the two nodes are more critical. For example, if the instructions have

less mobility (slack) or they are within a deeply nested loop, the weight of the edge is higher.

To be more precise, a pre-scheduling phase can be applied first to software pipeline the loop, assuming

an equivalent monolithic architecture. Then a different kind of edge with a low weight is added in the

register component graph between the destination operands of two instructions scheduled at the same

time step in the pre-schedule. This edge indicates that it is beneficial not to allocate the two operands to

the same register bank. Instead, distribute them to two different register banks. This increases the chance

of the two instructions being scheduled in the same time step.

Note that the register component graph is different from the data dependence graph: its nodes represent

register operands, not instructions. The graph needs to be partitioned into C sets, where C is the number of

clusters. Any graph partitioning algorithm can be applied to partition the nodes. Once the clusters for the

register operands are known, the latter scheduling phase can attempt to assign instructions to appropriate

clusters, based on the clusters of their register operands.

20.3.4.3 Scheduling Integrated with Cluster Assignment

MIRS C (modulo scheduling with integrated register spilling and cluster assignment) [117] performs

modulo scheduling, spilling, and cluster assignment in a single framework. In this approach, the depen-

dence graph is updated on-the-fly as a result of cluster assignment, spilling, or eviction of instructions out

of the schedule. Below we briefly describe the scheduling process.

The instructions in the DDG are sorted into a priority list and scheduled in that order. The cluster for the

current instruction is chosen with the twin objectives of load balancing and communication minimization.

If an instruction requires a value produced by an instruction scheduled in another cluster, or it produces a

value consumed by an instruction in a different cluster, a copy instruction is introduced in the dependence

graph. This copy instruction is scheduled first, followed by the current instruction.

After scheduling an instruction, the register pressure of the resulting partial schedule is checked. If

MaxLive, the maximum number of simultaneously live values in the partial schedule, exceeds the total

available registers by a certain factor, then a use of a value is chosen and spilled. The chosen use is such that
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spilling it will lower MaxLive and such that it requires a minimum number of loads and stores on average.

The loads and stores are then introduced into the dependence graph and the priority list.

Recall that heuristic scheduling methods often involve a backtracking step if the current instruction

cannot be scheduled in any time step between its feasible time range. The same is done by MIRS C: some

time step is heuristically chosen, and the current instruction is scheduled in this time step. Consequently,

some other already scheduled instructions are evicted from the partial schedule if they compete for the

same resource, or violate dependence constraints, with this instruction. In the MIRS C approach, if an

ejected instruction is the predecessor or a unique successor of a previously introduced copy instruction,

the copy is also ejected from the schedule and removed from the dependence graph as well. The above

process repeats until all instructions are scheduled. Otherwise, when the number of reschedules is greater

than a certain threshold, the II is incremented and the scheduling restarts again.

20.3.4.4 Software Pipelining for Multi-Core Architectures

Coarse-grained software pipelining has been used to exploit parallelism for streaming applications (image,

video, DSP, etc.) [49]. These applications are naturally represented by a set of autonomous actors, referred

to as filters, which communicate over explicit data channels. The filters are fired repeatedly in execution. To

facilitate understanding, one may think of a filter as a macro instruction, and the filters (macro instructions)

compose the body of a loop. Software pipelining is especially attractive when there are loop-carried

dependences between the filters.

The approach proposed in [49] performs software pipelining followed by core assignment. First, the

architecture is treated as a conventional single-core processor, without considering the interconnections be-

tween the cores, where each core is a functional unit. With this underlying assumption, software pipelining

schedules the filters to the cores like the traditional software pipelining schedules instructions to func-

tional units. The prolog is constructed to buffer enough data items such that the filters in the kernel are

guaranteed to be independent. This allows each filter to execute completely independently during each

iteration of the kernel, as they are reading and writing to buffers rather than communicating directly. The

buffers could be stored in a variety of places, such as the local memory of the core, a hardware FIFO, a

shared on-chip cache, or an off-chip DRAM.

In the second step, the core assignment is performed. As the filters are independent, any set of filters,

contiguous or not, can be mapped to the same core. The mapping follows two criteria: load balancing

and synchronization minimization. To achieve load balancing, filters are sorted in order of decreasing

work (computation load), and then they are assigned to the cores in that order. A filter is assigned to

the core that has the least amount of work so far. To reduce the synchronization cost, the load balancing

algorithm is wrapped with a selective fusion pass: two adjacent filters in the data flow graph that have the

smallest combined work are fused into a single filter. After each fusion step, the load balancing algorithm is

re-executed. This fusion–load balancing cycle repeats until the core that is a bottleneck in the pipeline has

its workload increased by more than a given threshold (10%). When this happens, the fusion is reversed

and the process terminates.

Decoupled software pipelining (DSWP) [75] is another promising scheduling approach for multi-core

architectures. It divides the functionality of the original loop into more than one loop, each of them being

a thread and assigned to a separate core. This approach requires all the instructions in an SCC in the

dependence graph to be within the same thread. Two threads communicate and synchronize through a

queue, called a synchronization array.

The original loop can have complex control flow within it and can be a nested loop. Correspondingly,

their dependence graph can have control dependences in it. Each SCC in the dependence graph is coalesced

into a single node. After this, the dependence graph becomes acyclic. This graph, where a node represents

an SCC, is partitioned into a number of subgraphs, using a heuristic algorithm.

The partitions are then assigned to the cores in the following way. Consider the cores one by one. From

the nodes whose predecessors in the dependence graph have already been scheduled, choose a node with

the longest estimated execution time and assign it to the current core. If the total estimated execution

time of the nodes for the current core is close to the overall estimated execution time divided by the
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desired number of threads, then assignment to the current core is finished, and the next core becomes the

current core.

Once the core assignment is completed, actual code is generated for each thread. Intuitively, all the

instructions in the nodes (SCCs) that are assigned to the same core, along with their basic blocks and the

control flow between the blocks, are extracted from the original loop as a thread. As such, a basic block can be

duplicated in two different threads but may contain a different set of instructions. The last step of DSWP is to

introduce a pair of producer and consumer instructions, for each inter-thread dependence, in the producer

and the consumer threads, respectively. They access a queue, the synchronization array, to store and remove

the value. This realizes both synchronization and communications between threads, without involving

the operating system or communicating via shared memory, which are slow. However, for a memory

dependence, the value is still stored into the memory, instead of into the queue. In this case, the producer

and consumer instructions serve only as tokens to enforce memory instruction ordering constraints.

20.4 Software Pipelining for Nested Loops

In this section, we discuss various approaches for software pipelining of nested loops. Nested loops are

important, as they contribute to most of the execution time of scientific applications.

Software pipelining of nested loops is more complicated than that of single loops, as the operation

instances in the n-dimensional iteration space need to be distributed to distinct time steps, such that

resources are not overcommitted at any time step, dependences are satisfied, the total number of time

steps is minimized, and there is a repeating pattern(s) in the schedule to enable loop rewriting for code

generation. A simple approach is to only software pipeline the innermost loop and execute the outer loops

sequentially. Unfortunately, this approach may not always result in good performance for one or more of

the following reasons:

� The innermost loop may have a tight recurrence, due to which the amount of ILP exploited is

limited.
� The trip count of the innermost loop is low, due to which the kernel is repeated only a few times

and the overheads of the prolog and epilog dominate.
� The data locality exhibited by the innermost loop may not exploit the cache architecture of the

system efficiently, resulting in poor overall performance.

Thus, it is important to arrive at other techniques for software pipelining nested loops that can better

exploit parallelism and data locality for higher performance.

This section introduces several approaches for such a purpose. We survey some of the traditional

approaches, and study two new methods, unroll-and-squash [79], and single-dimension software pipelin-

ing [92], in more detail. The former combines a loop transformation with software pipelining and employs

general techniques to reduce code size in a software pipelined schedule. The latter is interesting because of

its generality and efficiency; it subsumes the classical modulo scheduling as a special case and generates a

schedule with the shortest computation time compared to traditional modulo scheduling approaches un-

der identical conditions. It also extends the traditional hyperplane scheduling [29, 61] to handle resource

constraints. The approach has systematically addressed all of the following: scheduling, register allocation,

and code generation, for software pipelining of loop nests.

20.4.1 Basic Concepts

First, let us establish some basic definitions. Formally, a nested loop is referred to as “a loop nest.” An

n-deep loop nest is composed of n loops, L 1, L 2, . . ., L n, from the outermost to the innermost level, with

each level having exactly one loop. Each loop L x (1 ≤ x ≤ n) has an index variable ix and a trip count

Nx > 1. The index is normalized to change from 0 to Nx − 1 with a unit step.

The loop nest is a perfect loop nest if all the operations are within the innermost loop. In this case,

an instance of an operation o has an n-dimensional index vector I = (i1, i2, . . ., in), denoted by o(I).
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L 1 : for(i1 = 0; i1 < N1; i1++){

L 2 : for(i2 = 0; i2 < N2; i2++){

· · ·

L n : for(in = 0; in < Nn ; in ++){

OPSETn

}//end L n

· · ·

}//end L 2

} //end L 1

(a)

(0, 0)

0 1

(99, 0)
......

(1, 0)

(0, 1) (99, 1)
......

(1, 1)

(0, 49) (99, 49)
......

(1, 49)

99......

0

1

49

......

i2

i1

(b)

FIGURE 20.11 The perfect loop nest model and an example iteration space. (a) The generic perfect loop nest model.

(b) An example iteration space for a two-deep perfect loop nest (assume N1 = 100 and N2 = 50).

Figure 20.11a shows the generic perfect loop nest model, where OPSETn is the set of operations, which

are in the innermost loop.

If there is any operation between two loop levels, the loop nest is said to be an imperfect loop nest. Suppose

there is an operation o, which is in loop L x but outside the inner loop L x+1. An instance of it has an index

vector I = (i1, i2, . . ., ix ). For uniformity, we can expand the index vector to be n-dimensional as well. If

the operation is lexically before the inner loop L x+1, the vector is expanded to I = (i1, i2, . . ., ix , 0, . . ., 0);

otherwise, it is expanded to I = (i1, i2, . . ., ix , Nx+1 −1, . . ., Nn −1). The operation instance is also denoted

by o(I).

The loop nest has an iteration space, where one point stands for the set of the operation instances that

have the same index vector I. Such a point is called an iteration point and is identified by the index vector I.

The iteration space for a two-deep perfect loop nest is illustrated in Figure 20.11b.

Note the difference between an iteration point and an iteration: an iteration of the L x loop is one

execution of the L x loop body. Thus, the L x loop has a total of Nx number of iterations, and each of the

iterations contains Nx+1 ∗ Nx+2 ∗ · · · ∗ Nn number of iteration points.

The iteration space is rectangular if its bounds N1, N2, . . . , and Nn, do not change during the execution

of the loop nest, although they can change before and after it.

As before, a data dependence from operation a to operation b is represented as (a → b, δ, d), where

δ ≥ 0 is the dependence latency, and d = 〈d1, d2, . . ., dn〉 is the dependence distance vector, with d1 the

distance at the outermost level and dn the innermost. The distance vector indicates that for any I, operation

instance a(I) produces a value that is consumed by operation instance b(I + d).

The sign of a vector is that of its first nonzero element, either positive or negative. If all elements are 0,

the vector is a zero vector.
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20.4.2 Overview

Under resource constraints, it is an NP-complete problem to find the shortest schedule for a loop nest. In

response to the complexity, the approaches to software pipelining nested loops can be broadly classified into

two categories: (a) optimal approaches, which ensure dependence constraints are satisfied and the repetitive

patterns are identified for compact code generation, but without considering resource constraints [44, 83],

and (b) heuristic approaches, which address all three aspects (viz., resource constraints, dependence

constraints, and repetitive patterns) simultaneously [59, 70, 79, 92, 106].

20.4.2.1 Optimal Approaches

The optimal approaches, which do not consider resource constraints, are extensions of the classical hyper-

plane scheduling [29, 61]. Hyperplane scheduling takes an iteration point as a unit and defines its schedule

time as I.π , where I = (i1, i2, . . ., in) is the iteration point, π is a scheduling vector, and “.” is the inner

product operator. It is extended to exploit ILP by giving a distinct scheduling vector and/or an offset to

each operation in the loop body. The general form of the schedule time for an instance of operation o in

an iteration point I is given by [29]

f (o, I) = I.π(o) + offset(o) (20.31)

where π(o) and offset(o) are the scheduling vector and the offset, respectively. A special case arises when

all the scheduling vectors for all the operations are the same:

f (o, I) = I.π + offset(o) (20.32)

As an example, the r -periodic scheduling [44] defines

π = (
T1

r
,

T2

r
, . . .,

Tn

r
)Transpose (20.33)

and

offset(o) =
A(o)

r
(20.34)

where Tx (1 ≤ x ≤ n), A(o), and r are positive integers. The schedule time function means that every Tx

time steps, r number of iterations of loop L x are issued. The scheduling problem is to find the scheduling

vector and the offset for each operation such that the schedule time of the latest operation instance is

minimized. If f (o, I) is not an integer, then ⌊ f (o, I)⌋ is taken as the practical schedule time. Similarly,

another optimal approach [83] defines

π = (a1, a2, . . ., an)Transpose (20.35)

where ax is a rational, and offset(o) is also a rational.

20.4.2.2 Heuristic Approaches

Heuristic approaches essentially extend software pipelining methods for single (non-nested) loops. There

have been several kinds of extensions: hierarchical reduction pipelines each loop in the loop nest, starting

from the innermost one [59, 70, 106]; unroll-and-squash [79] overlaps the iterations of the outer loop in a

two-deep loop nest and pipelines the inner loop; single-dimension software pipelining (SSP) overlaps and

pipelines an arbitrary loop level, not necessarily the innermost one, in a loop nest. We defer a discussion

of SSP and the register allocation and code generation for it to a subsequent subsection.

20.4.2.2.1 Hierarchical Reduction Methods

Hierarchical reduction methods [59, 70, 106] software pipeline the innermost loop first, then reduce the

resulting loop (the loop that repeats the kernel) into a single macro operation. This macro operation
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represents the collective scheduling constraints of the entire kernel. The macro operation cannot be

executed with any other operations. This is ensured by marking all the resources as consumed by the

macro operation. The prolog and the epilog are outside the macro operation and are naturally merged

with the other operations at the outer loop level. Then the outer loop can be software pipelined as a single

loop. In this way, hierarchical reduction keeps the pipeline in a steady state by repeatedly executing the

kernels and fills and drains the pipelines only at the beginning and the end of the whole execution. This is

especially important from the viewpoint of performance when the inner loops have small trip counts.

One commonality across hierarchical approaches [59, 70, 106] is that they are innermost-loop centric,

as these approaches schedule each loop level successively, starting with the innermost one. Among these

works, the principle of hierarchical reduction was first proposed in [59], and then the work in [70] applied

the same principle to the IA-64 architecture and worked out the details of the code generation, taking

advantage of the hardware support for software pipelining in the IA-64 architecture, including predicated

execution and rotating register files.

20.4.2.2.2 Unroll-and-Squash

Unroll-and-squash [79] was developed from unroll-and-jam [20]. It applies to a two-deep loop nest whose

outer loop iterations are independent and can be executed in parallel. Given an unrolling factor u, unroll-

and-jam unrolls the outer loop u times, and jams them together. The new inner loop is u times as big as

the original one. Unroll-and-squash aims to achieve the same functionality of unroll-and-jam but reduces

the code size of the inner loop such that it is nearly equal to that of the original inner loop. It does this by

pipelining the inner loop and feeding the pipeline with data from the u different outer loop iterations in

a round-robin fashion. The data are stored in rotating registers. One may regard this as a particular code

size reduction technique for unroll-and-jam. However, the key to do this is the application of pipelining

and rotating registers, which are very general. In fact, unroll-and-squash can be related to unroll-and-

jam in just the way the kernel-only code generation scheme is related to modulo variable expansion (see

Section 20.2.5). They use the same techniques to avoid code duplication. However, unroll-and-squash

implicitly borrows the idea of hierarchical reduction in its process.

Let us illustrate unroll-and-squash with the help of the example loop nest shown in Figure 20.12a.

Suppose we are given an unrolling factor u = 3. Unroll-and-jam unrolls the outer loop u times and jams

them together. In the new loop nest, the operations both at the outer loop level and the inner loop level

are u times as many as before. Among the u copies of the original operations, each copy is from a distinct

outer loop iteration (refer to Figure 20.12b).

Since the inner loop body is composed of u copies of the same set of operations, it can be rearranged in a

pipeline fashion, as shown in Figure 20.12c. Now the inner loop body is a short pipeline. If we simulate the

execution of the inner loop, we can overlap the draining and filling parts of the pipelines of two successive

inner loop iterations (see Figure 20.12d). This is the same idea as hierarchical reduction.

We can see that at each cycle, except for the beginning and the end of the execution, there is a steady

state consisting of operations g and f . They take input operands from u original outer loop iterations

alternatively. The same effect can be achieved by using a single copy of the operations g and f , but they

take values from the different outer loop iterations in a round-robin fashion as shown in Figure 20.12e.

Each variable is expanded into an array of u registers, corresponding to the u original outer loop iterations.

The u registers are connected as a cycle, that is, as a rotating register file. It is rotated at the end of each

execution of the current loop body. Executing the current loop body u times is equivalent to executing the

unrolled loop body once. The rotation of the registers can be easily implemented in hardware, and in that

case, the code size is reduced for the inner loop.

20.4.3 Single-Dimension Software Pipelining

SSP [90–93] is a resource-constrained scheduling method to pipeline a loop nest. In contrast to traditional

innermost-loop-centric approaches [59, 70, 106], SSP identifies and pipelines the most profitable loop

level from the entire loop nest. Here profitability can be measured in terms of ILP, data reuse, or any other



Advances in Software Pipelining 20-45

for (i1 = 0; i1 < N1; i1++){
TN1 = 0

for (i2 = 0; i2 < N2; i2++){
TN2 = f(TN1)

TN1 = g(TN2)

}
}

(a)

for (i1 = 0; i1 < N1; i1+ = 3){
TN1=0 TN1′ = 0 TN1′′ = 0

for (i2 = 0; i2 < N2; i2++){
TN2=f(TN1) TN2′ =f(TN1′) TN2′′ =f(TN1′′)

TN1=g(TN2) TN1′ =g(TN2′) TN1′′ =g(TN2′′)

}
}

(b)

for (i1 = 0; i1 < N1; i1+ = 3){
TN1=0 TN1′ = 0 TN1′′ = 0

for (i2 = 0; i2 < N2; i2++){
TN2=f(TN1)

TN1=g(TN2) TN2′ =f(TN1′) TN2′′ =f(TN1′′)

TN1′ =g(TN2′) TN1′′ =g(TN2′′)

}
}

(c)

he operand changes in the order of TN1, TN1́ , TN1́ , repetitively.
TN2 = f(TN1)

······

TN1 = g(TN2) TN2́  = f(TN1́ )

TN1́  = g(TN2́ )

TN1̋  = g(TN2˝)

TN1 = g(TN2)

TN2 = f(TN1)

TN2́  = f(TN1́ )

TN1́  = g(TN2́ ) TN2˝ = f(TN1̋ )

TN1̋  = g(TN2˝)

he two pipelines overlap here.

TN2˝ = f(TN1˝)

(d)

FIGURE 20.12 An illustration of unroll-and-squash. (a) Source loop nest. Here f and g are two operations. (b) The

loop nest after unroll-and-jam. (c) Pipeline the inner loop. (d) Execution of the inner loop. The pipeline of the first

iteration of the inner loop is overlapped with that of the second iteration. A variable repetitively takes the values from

the three original outer loop iterations, as illustrated by the change of TN1. This suggests that the inner loop can be

compacted by using rotating register files. (e) The loop nest after the inner loop is compacted. The inner loop contains

a single set of the operations, but consumes the data from the three original outer loop iterations in a round-robin

fashion. (Note: The inner loop trip count is roughly tripled.) A variable is expanded into a register file with three

registers. Rotation is inserted at the end of the loop body. Here the rotation is simulated by moving registers, with

the help of two temporary registers, tmp1 and tmp2. The moving operations can be eliminated if rotation is done by

hardware automatically, and thus code size is reduced.
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for (i1 = 0; i1 < N1; i1 + = 3) {
TN1 = 0 TN1′ = 0 TN1′′ = 0

/* Below is a compact equivalent to the inner loop */

TN2 = f(TN1)

for (i2 = 0; i2 < 3 * N2 – 1; i2 ++) {
TN1 = g(TN2) TN2′ = f(TN1′)

/* Rotate the values for TN1 and TN2* /

tmp1 = TN1; TN1= TN1′; TN1′ = TN′′; TN1′′ = tmp1;

tmp2 = TN2; TN2′ = TN2′; TN2′ = TN2′′; TN2′′ = tmp2;

}
TN1” = g(TN2′′)

}

(e)

FIGURE 20.12 (Continued)

optimization criteria. SSP retains the simplicity of the classical modulo scheduling technique for single

loops and actually subsumes it as a special case.

Let us motivate the method with the help of a simple example. Figure 20.13a shows a perfect loop

nest in C language. For simplicity, assume that each statement is an operation. Figure 20.13b is the data

dependence graph, where each dependence edge is associated with the distance vector.

It can be seen that the inner loop has no parallelism because of the dependence cycle a→b→a at this

level. Thus, modulo scheduling of the inner loop would fail to find any parallelism for this example.

The innermost-centric approaches expose extra parallelism by overlapping the filling and draining of the

pipelines between successive outer loop iterations. Since modulo scheduling cannot find any parallelism,

there is no filling or draining and therefore no overlapping. Thus, the innermost-centric approaches cannot

find any parallelism either.

L 1: for (i1 = 0; i1 < N1; i1++){

L 2: for (i2 = 0; i2 < N2; i2++){

a : U[i1 + 1][i2] = V[i1][i2] + U[i1][i2];

b : V[i1][i2 + 1] = U[i1 + 1][i2];

}
}

<1,0>

<0,0> <0,1>

b

a

(a) (b)

<1>

<0>

a

b

a

b

a

b

a

b

(c) (d)

FIGURE 20.13 Illustration of the single-dimension software pipelining approach. (a) An example loop nest. (b) The

DDG. (c) The simplified DDG of the L 1 loop. (d) One-dimensional schedule. (e) Software pipelined slices. (f) The

final schedule. Source: From [92], courtesy of IEEE.
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FIGURE 20.13 (Continued)
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One may argue that a loop interchange transformation before software pipelining will solve this problem.

Unfortunately, that may destroy the data reuse in the original loop nest; for large arrays each iteration

point will introduce three cache misses for accessing U[i1 + 1][i2], V[i1][i2], and U[i1][i2], as they are

now accessed column-wise rather than row-wise. However, if N2 is small, then even if the inner loop did

not contain the tight recurrence, the overhead of the prolog and epilog would dominate, resulting in poor

performance.

The above example shows the limitation of the traditional software pipelining: it cannot see the whole

loop nest to better exploit parallelism, nor can it exploit the data reuse potential of the outer loop(s). This

raises the question: Why not select a better loop to software pipeline, not necessarily the innermost one?

These arguments motivate identifying the most appropriate loop level in the loop nest and software

pipelining it. SSP essentially accomplishes this using a novel approach. Before we proceed to the details,

we illustrate the approach through the motivating example shown in Figure 20.13a.

Let us assume operations a and b in Figure 20.13a have a latency of one and two cycles, respectively.

Further assume that we have two functional units, and both are pipelined and can perform any of the

operations. The DDG is in Figure 20.13b. Suppose that the outer loop is selected for software pipelining.

If only the dependences at this loop level are considered, a simplified DDG, shown in Figure 20.13c, can

be obtained. We shall explain later why considering these dependences alone suffices. These dependences

include a → a and a → b, both having a distance vector in the form of 〈d1, 0〉 in the original DDG. In the

simplified DDG, such a dependence distance vector has been simplified into 〈d1〉, as we software pipeline

only the outer loop, and only the distance d1 is useful.

Now that the DDG is 1-dimensional, from it and the resource constraints, a modulo schedule can be

constructed using any modulo scheduling method, as if the outer loop were a single loop. An example

modulo schedule is shown in Figure 20.13d, where the initiation interval T = 1, and there are S = 3

number of stages. This schedule is referred to as the one-dimensional (1-D) schedule.

Our task is to software pipeline the outer loop and hence overlap its iterations. Let each iteration of

the outer loop run sequentially and successive iterations run in parallel. We consider that the operations

belonging to iteration points (i1, 0), for all i1, constitute the first slice, operations belonging to points (i1, 1)

constitute the second slice, and so on. By applying the 1-D modulo schedule to each slice, one can obtain

an ideal schedule, as shown in Figure 20.13e. In this ideal schedule, successive L 1 iterations are scheduled

with the initiation interval T = 1 cycle. Here we assume N1 = 6 and N2 = 3 for simplicity.

Although the resource constraints are respected within each modulo scheduled slice, they are violated

between slices, because a slice is issued greedily without waiting for the resources to be released by the

previous slice. For example, at cycle 3, there are three operations, although there are only two functional

units available. To remove the conflicts, we cut the slices into groups, with each group having S = 3

iterations of the outer loop. Each group, except the first one, is pushed down by (N2 − 1) ∗ S ∗ T

cycles relative to its previous group. The delay is designed to ensure that repeating patterns definitely

appear. This leads to the final schedule that maps each instance of an operation to its schedule time, as

shown in Figure 20.13f. Not only dependence and resource constraints are respected, but the parallelism

degree exploited in a modulo scheduled slice (S = 3) is still preserved, and the resources are fully

used. A dependence is still respected after the pushing-down because that action either does not affect

or only increases the time distance between the producer and consumer operations of the dependence,

as illustrated by the dependences in Figure 20.13e before the pushing-down and in Figure 20.13f after

that.

In the final schedule, one can identify some repeating patterns, if some ineffective operation instances

are added. The final schedule with such operation instances is shown in Figure 20.14, where the added

operation instances are highlighted by the shaded part. They are ineffective, as their first indexes are beyond

the legal range of i1, the outer loop index variable (the range is assumed to be [0, 6) in our example).

For target architectures with predication support like IA-64, predicate registers can be used to make them

ineffective during execution of the final schedule, as illustrated later.

With the added ineffective operation instances, it is clear that the final schedule is composed of two

repeating patterns, referred to as the outermost loop pattern (OLP) and the inner loop execution segment
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FIGURE 20.14 Repeating patterns in the final schedule. Source: From [93], courtesy of ACM.

(ILES). An OLP drains the pipeline of a previous group and fills the pipeline with a new group simulta-

neously. An ILES starts when the pipeline is filled with the new group and continues to run all the inner

loops of the new group until the group is going to drain. Then another OLP starts. Note that an ILES itself

is composed of N2 −1 = 2 number of a smaller pattern, as shown in the Figure 20.14. Apart from the OLP

and ILES, the final schedule also contains a prolog and an epilog. The first two cycles in the final schedule

are the prolog. As we can see from the figure, it is part of the first OLP. The last three cycles form the epilog.

Based on the above discussion, it is straightforward to rewrite the final schedule in a more compact form

(refer to Figure 20.15).

}

}

Epilog

Ĺ1: for (i1 = 0;i1 < N1;i1+ = 3){

Ĺ 2: for (i2 = 1;i2 < N2;i2++)   {

b(i1 − 2, N2 − 1) a(i1 − 1, N2 − 1)

a(i1, 0)b(i1 − 1, N2 − 1)

b(i1, 0) a(i1 + 1, 0)

b(i1 + 1, i2 − 1) a(i1 + 2, i2 − 1)

b(i1 + 2, i2 − 1)a(i1, i2)

b(i1, i2) a(i1 + 1, i2)

b(i1 − 1, N2 − 1)

b(i1 − 2, N2 − 1)   a(i1 − 1, N2 − 1)

ILES

OLP

FIGURE 20.15 Rewritten loop nest. Source: From [93], courtesy of ACM.
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Below we will introduce the scheduling, register allocation, and code generation of the SSP approach

in detail.

20.4.3.1 Scheduling

SSP consists of the following three steps:

� Loop selection: Select the appropriate loop level in the loop nest, based on certain criteria, such

as the ILP or data locality exploited. The selected loop will be software pipelined by the next two

steps, while its outer loops, if any, remain intact and may be parallelized using other methods. The

loop level to be software pipelined must have a rectangular iteration space.
� 1-D schedule construction: The n-dimensional (n ≥ 1) DDG of the selected loop is reduced into a

1-D DDG, called a simplified DDG. Based on this DDG and the resource constraints, a 1-D schedule

is computed, represented by a kernel. No matter how many inner loops the selected loop has, it is

scheduled as if it were a single loop. Any traditional modulo scheduling technique may be applied

to construct this 1-D schedule.
� Final schedule computation: The 1-D schedule is mapped back to the n-dimensional iteration space

to form the final schedule, which is semantically equivalent to the selected loop. In theory, this step

computes a function that specifies the schedule time of each operation instance. In practice, this step

translates into code generation for a target architecture, which will be discussed in Section 20.4.3.3.

Register allocation can be performed right after 1-D schedule construction, and the allocation result

can then be directly used in generating code. A discussion on register allocation for SSP will be

presented in Section 20.4.3.2.

The above approach is referred to as single-dimension software pipelining, as the problem of multi-

dimensional scheduling is simplified to 1-D scheduling and mapping.

The scheduling problem can be simplified because of the way the iterations of the selected loop are

overlapped and the dependences are handled in this situation. For simplicity, let us assume that the loop

selected for software pipelining is the outermost loop L 1. As illustrated in Figures 20.13e and 20.13f,

the iterations run in parallel, while each of them runs sequentially.5 For this, the set of iteration points

(i1, 0, . . ., 0, 0) for i1 ∈ [0, N1) can be considered to be in the first slice, (i1, 0, . . ., 0, 1) to be in the second

slice, and so on. Successive slices are closely packed together. A 1-D (modulo) schedule is constructed for

a slice. The same schedule is applied to all the other slices.

In terms of slices, there are three kinds of dependences: zero, positive, and negative dependences. Let

the distance vector be 〈d1, d2, . . ., dn〉, where the first element d1 must be nonnegative. The dependence

is classified according to the sign of the sub-vector composed by the other elements, 〈d2, . . ., dn〉. The

dependence is said to be a zero, positive, or negative dependence if the sub-vector is a zero, positive, or

negative vector, respectively.

A zero dependence occurs within the same slice. Hence, it has to be considered in constructing the

1-D schedule of the slice. In addition, only the distance d1 is useful for software pipelining. That is, the

dependence distance vector can be simplified as 〈d1〉 in pipelining. A positive dependence is from a slice to

a next slice and is naturally resolved, as the two slices are executed sequentially. Thus, it can be ignored in

constructing the 1-D schedule. Figure 20.16 illustrates the concepts. By keeping only the zero dependences

and only their first elements in the distance vectors, we get the simplified DDG. This DDG, together with

the resource constraints, is used in constructing the 1-D modulo schedule.

A negative dependence is from a slice to an earlier slice. Such a dependence cannot be directly handled

by SSP. Henceforth, we assume that for the selected loop, we have only zero and positive dependences.

5By “sequential,” we mean that the iteration points in the same iteration of the selected loop run in lexical order.

This does not prevent the operation instances within the same individual iteration point from running in parallel.



Advances in Software Pipelining 20-51

A positive (inter−slice) dependence.
Distance vector=<1, 0, ..., 0, 1>

Cycle

A zero (intra−slice) dependence.
Distance vector=<1, 0, ..., 0, 0>

(i1 + 1, i2, ···, in−1, in + 1)(i1, i2, ···, in−1, in + 1)

(i1, i2, ···, in−1, in) (i1 + 1, i2, ···, in−1, in)

FIGURE 20.16 The dependences in an n-dimensional loop nest in two successive slices, where each parallelogram

represents a slice, and each dot an iteration point. Although not shown, each slice is modulo scheduled. The outermost

level L 1 is assumed to be the chosen loop. The intra-slice dependence must have all distance elements, except the first

one, being 0. Source: From [92], courtesy of IEEE.

As illustrated in Figure 20.13f, to resolve resource conflicts between the slices, we cut them into groups,

with each group having S number of L 1 iterations. Each group, except the first one, is delayed (pushed

down) until the previous group drains and resources are available again. It is important to see that if a

dependence is respected before the pushing-down, it is still respected after that. Therefore, we need only

consider how to satisfy the dependences before the pushing-down.

In summary, in SSP, we consider only the zero dependences, which can be simplified to be 1-D, and we

consider them only during the construction of the 1-D schedule (before the pushing-down). This enables

us to reduce the n-dimensional scheduling problem to a 1-D scheduling problem. With this understanding,

below we explain the three steps of SSP scheduling.

20.4.3.1.1 Loop Selection

To construct the most efficient software pipelined schedule, it is desirable to select the loop level with

a lower initiation interval (higher parallelism) or a better data reuse potential (better cache effect) or

both. All the loop levels that have rectangular iteration spaces are considered, and the initiation interval

and data reuse are evaluated for each of them. The minimum initiation interval at loop level L x is

estimated as max(RecMIIx , ResMII), where RecMIIx and ResMII are the MIIs determined, respectively,

by the recurrences in the simplified DDG of loop L x and by the available hardware resources. RecMIIx

is calculated according to Equation 20.7, with the simplified DDG as the dependence graph. ResMII is

computed by Equations 20.9 and 20.10 for pipelined and non-pipelined resources, respectively.

Data reuse potential is estimated in the following way. As shown in Figure 20.13f, when we software

pipeline a loop level, the iterations of the loop run in groups, with S number of iterations in a group. A tile

containing S ∗ S number of iteration points is cut from any one of the groups, and the average number

of memory accesses per iteration point within the tile is evaluated, based on a classical work [111]. If the

estimated number of memory accesses is low, then the data reuse potential is high.

20.4.3.1.2 1-D Schedule Construction

Without loss of generality, assume L 1 is the selected level. The DDG is first reduced to obtain a simplified

DDG, which consists of only zero dependences with 1-D distance vectors, as discussed earlier. Based on
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the simplified DDG and the hardware resource constraints, a 1-D schedule is constructed. Since the DDG

is 1-D, from the viewpoint of scheduling, L 1 is treated as if it were a single loop, without any inner loops.

Any modulo scheduling method can be applied to schedule L 1 to obtain the 1-D schedule.

Let T be the initiation interval of the 1-D schedule and S be the number of stages. Let the schedule time

for any operation instance o(i1) in the 1-D schedule be σ (o, i1), where 0 ≤ σ (o, i1) < S ∗ T when i1 = 0.

The 1-D schedule must satisfy the following properties:

� Modulo property:

σ (o, i1) + T = σ (o, i1 + 1) (20.36)

� Dependence constraints:

σ (o1, i1) + δ ≤ σ (o2, i1 + k) (20.37)

for every dependence arc (o1 → o2, δ, 〈k〉) in the simplified DDG.
� Resource constraints: At any time step in the modulo scheduled kernel, no hardware resource is

allocated to more than one operation.
� Sequential constraints: If n > 1, then

S ∗ T − σ (o, 0) ≥ δ (20.38)

for every positive dependence with operation o as the producer operation, and δ as the dependence

latency.

The first three constraints are exactly the same as those of the classical modulo scheduling, as presented

in Section 20.2.2.3. The additional sequential constraints enforce sequential order between two successive

iteration points in the same L 1 iteration. Consequently, the two successive slices containing the iteration

points are executed sequentially. This ensures that all positive dependences are honored at runtime. The

sequential constraints affect only loop nests with more than one loop.

20.4.3.1.3 Final Schedule Computation

For any operation o in the iteration point I = (i1, i2, . . . , in), the schedule time f (o, I) is given by

f (o, I) = σ (o, i1)

+
∑

2≤x≤n

(ix ∗ (
∏

x<y≤n+1

Ny) ∗ S ∗ T)

+

⌊

i1

S

⌋

∗ ((
∏

2≤x≤n+1

Nx ) − 1) ∗ S ∗ T (20.39)

where Nn+1 = 1.

The sum of the first two terms is the schedule time of o(I) before pushing down the groups. The third

term is the delay caused by the push-down. For example, consider the two-deep loop nest in Figure 20.13a.

From the 1-D schedule in Figure 20.13d, we know that S = 3, T = 1, and σ (a , i1) = 0 + i1 ∗ T . Thus, for

any operation instance a(i1, i2), we have the final schedule

f (a , (i1, i2)) = i1 + i2 ∗ 3 +

⌊

i1

3

⌋

∗ (N2 − 1) ∗ 3

For instance, when N2 = 3, we have f (a , (4, 1)) = 13, as can be seen from Figure 20.13f.

The final schedule defined in Equation 20.39 has been shown to respect all the n-dimensional depen-

dences in the original DDG and the resource constraints, although it considers only the 1-D simplified

dependences during 1-D schedule construction [93]. In terms of performance, it has been shown that the

SSP schedule is no worse than that of innermost-loop-centric modulo scheduling approaches [59, 70, 106]

if (a) they use the same initiation interval T , (b) they have the same number of stages S, and (c) the trip
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count of the loop level selected for SSP is divisible by S. In other words, SSP has the shortest computation

time among these approaches. Intuitively, this is because the final schedule produced by SSP always issues

one iteration point every T cycles, without any hole, as can be seen from the example in Figure 20.13f.

If the loop nest is a single loop (n = 1), the sequential constraints are trivially satisfied. Other constraints

are exactly the same as those of the classical modulo scheduling. The final schedule is f (o, (i1)) = σ (o, i1).

In this sense, classical modulo scheduling is subsumed by SSP as a special case.

The SSP final schedule can be related to the traditional hyperplane scheduling methods [29, 61] and

actually extends the latter with resource constraints. Rewrite the mapping function for the final schedule

in Equation 20.39 as follows:

f (o, I) = I.π + offset(o, I) (20.40)

where I = (i1, i2, · · · , in), “.” represents the inner product operator,

π = (T, (
∏

2<y≤n+1

Ny) ∗ S ∗ T, · · · , Nn+1 ∗ S ∗ T)Transpose (20.41)

and

offset(o, I) = σ (o, 0) +

⌊

i1

S

⌋

∗ ((
∏

2≤x≤n+1

Nx ) − 1) ∗ S ∗ T (20.42)

This function consists of two parts. The first part, I.π , corresponds to hyperplane scheduling, which

determines how to allocate the iteration points to slices. The second part, offset(o, I), enforces dependences

and resource constraints at the instruction level.

20.4.3.1.4 Extension to Imperfect Loop Nests

The above approach has been extended to imperfect loop nests. Figure 20.17a shows the general loop nest

model, where OPSETx represents a set of non-branch operations between the beginnings of two adjacent

loops. In this model, there is no operation between the ends of two adjacent loops. Assume the outermost

loop is chosen for software pipelining. The corresponding kernel (1-D schedule) is shown in Figure 20.17b.

All the loops have the same initiation interval T . The operations in the same loop L x , including its inner

loops, are scheduled into contiguous stages. The first such stage is referred to as fx , and the last one, lx .

The total number of stages for loop L x is termed Sx , which equals lx − fx + 1. In the current loop nest

model, all loops will have the same last stage. That is, l1 = l2 = · · · = ln. Operations in the same stage

must be from the same loop level. Figure 20.17c shows the general form of the final schedule.

The principle of overlapping the iterations of the selected loop is essentially the same as that for perfect

loop nests. Intuitively, in the final schedule, the iterations of the selected loop are issued in parallel,

whereas the inner loops within each of the iterations run sequentially. Let Sn be the total number of stages

corresponding to the innermost loop in the kernel and T be the initiation interval of the kernel. Every

T cycles, an iteration of the selected loop is issued, until the processor resources become insufficient to

support any new iteration. Then a single group of Sn iterations, already issued, execute their inner loops

in parallel. Until this group finishes execution and frees the resources, all the other iterations stall. Such a

stalling period is an ILES.

Because of the regular stalls and issuing, repeating patterns naturally appear in the final schedule.

The final schedule is composed of a prolog, the repetition of an OLP and an ILES, and an epilog

(see Figure 20.17c).

Compared with the perfect loop nest case, the overlapping is different only in two minor points. First,

a group has Sn iterations, in contrast with S iterations in the perfect case. Second, the prolog is no longer

a part of the first OLP. It is a separate component of the final schedule now.

Because the principle of overlapping the iterations is basically unchanged, the principles of the three

steps in SSP (loop selection and generating the 1-D and final schedules) for imperfect loop nests also stay

the same as those for perfect loop nests.
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L 1: for (i1 = 0; i1 < N1; i1++){
OPSET1

L 2: for (i2 = 0; i2 < N2; i2++){
OPSET2

· · ·

L n : for (in = 0; in < Nn ; in ++){
OPSETn

} //end L n

· · ·

} //end L 2

} //end L 1

(a)

fnfn+1

T cycles

Sx stages of loop Lx

fx+1

Sn stages of loop Ln 

fxl 1
=...=

l x
=...=

l n

S1 stages of loop L1 

......Stage index 2 1 0... =f 1

(b)

Prolog

L ′
1 : for(i1 = 0; i1 < N1; i1+ = Sn){

OLP

ILES

}
Epilog

(c)

FIGURE 20.17 Generic loop nest scheduled by SSP. (a) A general loop nest model. (b) The general form of a kernel,

assuming the outermost loop L 1 is chosen for scheduling. (c) The general form of a final schedule. Note that i1 is

incremented by Sn , which means a group contains Sn number of outermost loop iterations. Source: From [91], courtesy

of ACM.

Example 20.3

Figure 20.18a shows a two-deep imperfect loop nest. Assume that L 1 is selected for scheduling, three

functional units are available, and operations a , b, c , d , and e have latencies of two, five, one, four, and one

cycles, respectively. A 1-D schedule can be found, as shown in Figure 20.18b. Based on the 1-D schedule,

the final schedule in Figure 20.18c is formed as follows:

Initially, an L 1 iteration is issued every two cycles and executed sequentially. The issuing continues until the

10th cycle, when an ILES starts. If new iterations continue to be issued, there would be resource conflicts

with the already running iterations. In the ILES, only the first group of Sn = 3 iterations continue executing

their inner loops. Once done, the control goes back to L ′
1 and starts another OLP. To clarify the purpose

of the OLP, we divide it into two parts by a vertical line. In the OLP, the left part drains the pipeline for

previous group(s), which releases the processor resources, while at the same time, the right part fills the

pipeline with the L 1 iterations of the following group(s), which get the resources.
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Sn = 3

a

b

c

de

012345
=f n =f 1Stage

index

S1 = 6

T=2

=l 1
=l nL 1: for (i1 = 0; i1 < N1; i1++){

a : TN1 = TN1{1} . . .

b : TN2 = . . .

L 2: for (i2 = 0; i2 < N2; i2++){

c : TN3 = TN2 . . .

d : . . . = TN3

e : TN2 = . . .

}//end L 2

}//end L 1

(a) (b)

Prolog

Epilog

ILES

OLP

b(0, 0)

a(0, 0)

d(i1 − 1, N2 − 1)

c(i1 − 1, N2 − 1)

e(i1 − 1, N2 − 1)

d(i1 − 1, N2 − 1)

c(i1 − 1, N2 − 1)

b(i1 + 3, 0)

a(i1 + 3, 0)

L2́: for (i2 = 1; i2 < N2; i2++)

L1́: for(i1 = 0; i1 < N1; i1+=3)

}//L2́

}//L1́

e(i1 − 2, N2 − 1)

e(i1 − 3, N2 − 1)

e(i1 − 3, N2 − 1)

e(i1 − 2, N2 − 1)

e(i1 − 1, N2 − 1) b(i1 + 4, 0)

a(i1 + 4, 0)

c(i1, i2)

d(i1, i2)

e(i1, i2 − 1) d(i1 + 2, i2 − 1)

c(i1 + 2, i2 − 1)

b(i1 + 2, 0)

a(i1 + 2, 0)

d(i1, 0)

c(i1, 0)

d(i1 + 1, i2 ) e(i1 + 2, i2 – 1)

c(i1 + 1, i2)

e(i1 + 1, i2 − 1)

d(i1 + 1, 0)

c(i1 + 1, 0)

b(1, 0)

a(1, 0)

(c)

FIGURE 20.18 Illustration of software pipelining of an imperfect loop nest: (a) a two-deep loop nest; (b) a possible

1-D schedule (kernel); (c) final schedule in the form of a parallel loop nest. Source: From [91], courtesy of ACM.
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To facilitate understanding, the final schedule is further illustrated cycle by cycle in Figure 20.19, with

ineffective operation instances being masked from execution. To prepare for the introduction of register

allocation below, we also show the scalar lifetimes of TN2 for the first six iterations. Each scalar lifetime is

shown to the right of the iteration that produces it.

The extension to a more general imperfect loop nest model and constructing the 1-D schedule with

multiple IIs for different loop levels can be found elsewhere [93].

20.4.3.2 Register Allocation

In this section, we show how register allocation is performed for the variables in an SSP final schedule,

with the architectural support of a rotating register file, which was introduced in Section 20.2.5.2.1.

For simplicity, let us assume that the outermost loop L 1 is software pipelined. Unless stated otherwise,

the term iteration always refers to an iteration of the outermost loop. A loop variable refers to a temporary

name that has a definition in loop L 1, including its inner loops. For simplicity, we assume that at each

loop level, the variable is either not defined or, if defined, defined only once. This does not prevent it from

being defined at different loop levels.

First, let us briefly review how register allocation is done for single-loops. For single-loop software

pipelining, the scalar lifetimes of a loop variable in successive iterations of the loop form a repetitive

pattern. Therefore, the collection of the scalar lifetimes, the vector lifetime, can be represented with the first

scalar lifetime as a reference. Based on the representation, the distances between all pairs of vector lifetimes

can be computed. Then the vector lifetimes are packed on the surface of a space–time cylinder without

violating the distances between them [30, 86]. This classical method was described in Section 20.2.5.2.

The software pipelined schedule of a loop nest is considerably more complex, and so are the vector

lifetimes in it. As illustrated in Figure 20.19, there may be multiple intervals in a single scalar lifetime;

pushing down a group may stretch some intervals and delay the others in it. Here by an “interval,” we refer

to a section of a scalar lifetime, whose start is a definition to the loop variable, and whose end is the last use

of this definition. In addition, if a variable lives through a loop without being redefined, the corresponding

interval of this variable in a scalar lifetime may be unknown at compile time; the length is dependent on

the trip counts of this loop and its inner loops.

The key to the entire register allocation problem is to efficiently abstract the vector lifetimes, and based

on the abstraction, accurately measure the distances of the vector lifetimes. Both tasks are based on a

dynamic view of a vector lifetime, which exposes the different aspects of the vector lifetime step by step

and thus enables incremental representation and distance calculation, and eventually a final solution is

achieved. The dynamic view starts from the simplest form of the vector lifetime, and moves to the ideal

form, and finally to the final form. The simplest form corresponds to the special case where the outermost

loop is assumed to be a single loop; that is, the trip count of every inner loop equals 1. The ideal form

corresponds to the ideal schedule where all iterations initiate at the constant II, without being delayed,

and the intervals defined at inner loops are exposed, by considering the trip count of every inner loop

bigger than 1. The final form corresponds to the complete final schedule, where the iterations are delayed

in groups. For our example schedule in Figure 20.19, the three forms for TN2 are shown in Figure 20.21.

The concept of distance is expanded. For a pair of vector lifetimes, there is a conservative distance and an

aggressive distance. The conservative distance does not allow for interleaving of the lifetimes, whereas the

aggressive distance does. The aggressive distance enforces finer control upon the selection of a register for

a vector lifetime. Figure 20.20 shows a register allocation for our example with and without interleaving.

The register allocation problem is still formulated as bin packing of the vector lifetimes on the surface

of a cylinder, such that there is no conflict between any two scalar lifetimes and the circumference is

minimized. The difference is the vector lifetimes themselves. The solution to the problem consists of the

following steps:

� Lifetime normalization: First, the vector lifetimes are normalized such that any interval has a

length known at compile time.
� Lifetime representation: The normalized vector lifetimes are then abstracted by a set of parameters.
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FIGURE 20.19 The unrolled final schedule (with N1 = 7, N2 = 3) for the example in Figure 20.18. To show the new

features of the vector lifetimes, the scalar lifetimes of TN2 in the first two groups are illustrated. Each of them has four

intervals. Due to the pushing-down of the second group, the first intervals defined in iterations 3 and 4 are stretched,

and the first interval in iteration 5 is delayed. The ineffective operation instances are shaded. In order to show how the

code generation technique masks them from execution, we intentionally assume N1 = 7 so that the last group has two

ineffective L 1 iterations. We will show the code generation later. Source: From [91], courtesy of ACM.
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� Distance calculation: Using those parameters, a conservative distance and an aggressive distance

between any two vector lifetimes, including the distances between a vector lifetime and itself, are

computed. Then either the conservative or the aggressive distance can be used in the following

steps.
� Sorting: The distance is used to order the vector lifetimes.
� Bin packing: The ordered vector lifetimes are inserted one by one onto the surface of the space–time

cylinder with one of the strategies (best, first, and end fits), assuming the maximum circumference,

that is, the maximal available registers in the architecture, with the distance between any pair of

vector lifetimes respected.
� Circumference minimization: The last step minimizes the circumference of the cylinder so that

the minimum number of registers are used.

This solution subsumes the classical register allocation for software pipelined single loops [30, 86] as a

special case.

The first step, lifetime normalization, conceptually inserts a dummy copy operation TN = TN in the

innermost loop if TN is live through any loop without being redefined. The introduction of the copy breaks

an interval of TN in the middle such that TN is no longer live through the loop. The fourth step, sorting,

can be done by a process similar to that in the traditional register allocation for single loops. Below we

describe the other steps in more detail.

20.4.3.2.1 Lifetime Representation

For a loop variable, the simplest form is characterized in the same way as in the traditional register allocation

for software pipelined single loops. The first scalar lifetime is taken as a point of reference. SingleStart and

singleEnd are the start and end times of the first scalar lifetime. Omega and alpha are the total live-in values

and total live-out values, respectively.

The ideal form exposes the intervals defined in the inner loops. Still, the first scalar lifetime is the

reference. Also within it, for the interval defined at each inner loop level, the first instance of the interval is

taken as a reference. For each inner loop L x , the interval defined at this loop level and the hole following

it are represented by start[x], end[x], and nextStart[x], respectively. End[x] − start[x] is the maximal

possible size of the interval, and nextStart[x] − end[x] is the smallest possible size of the hole.

Compared with the simple and ideal forms, the new thing in the final form is the ILESs. We take the first

ILES as a reference. For the ILES, top is the iteration index of the intervals at the top of it, and bottom is one

plus the iteration index of the intervals at the bottom of it. When there is no interval in it, (top, bottom) is set

as (+∞, −∞). The difference bottom−top represents the vertical thickness of the vector lifetime in an ILES.

FirstStretch and lastStretch are the iteration indexes of the first and last stretched intervals, respectively, that

appear in the ILES. If there is no stretched interval at all, we set (firstStretch, lastStretch) = (+∞, −∞).

The boolean variable outermostIntervalOnly is true when the loop variable is defined only at the outermost

loop level.

Lifetime representation is illustrated along with the three forms of the lifetime of TN2 in Figure 20.21.

20.4.3.2.2 Distance Calculation

Like the single-loop register allocation, a physical register r A is said to be allocated to vector lifetime A if

it is allocated to the first scalar lifetime. For any two vector lifetimes A and B , let r A and r B be the physical

registers to be allocated to A and B , respectively. Each of the conservative distance, denoted CONS[A, B],

and the aggressive distance, denoted AGGR[A, B], define a legal range of r B − r A, within which A and B

do not conflict in the space–time diagram. The conservative distance does not allow the vector lifetimes

to interleave, while the aggressive distance does. For simplicity, we introduce the computation of the

conservative distance only.

CONS[A, B] is computed in the same way as in the single-loop case introduced in Section 20.2.5.2.2.

There are two additional conditions: first, singleEnd(A) is adjusted. In the simplest form, an ILES is

compressed into a time line. Any scalar lifetime that ends within the ILES should appear as if it ends at
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this time line (which is at time step ln ∗ T in general). Second, in the final form, an ILES of B should be

above the corresponding ILES of A. That is, let

adjustedSingleEnd(A) =

⎧

⎪

⎨

⎪

⎩

singleEnd(A) if outermostIntervalOnly(A)

max(singleEnd(A), ln ∗ T) otherwise

Then

singleStart(B) + (r B − r A) ∗ T ≥ adjustedSingleEnd(A),

r B − r A ≥ omeg a(A) if omega(B) > 0

r B − r A ≥ al pha(A) if alpha(A) > 0

r B − bottom(B) ≥ r A − top(A)

The first inequality says that B ’s wand must be to the right of A’s wand. The next two inequalities say that

the leading and trailing blades of B must be above the leading and trailing blades of A. The last inequality

says that an ILES of B is above the corresponding ILES of A. An illustration is given in Figure 20.22.

Solving these inequalities results in the following formulas:

d1 =

⌈

adjustedSingleEnd(A) − singleStart(B)

T

⌉

(20.43)

d2 =

⎧

⎪

⎨

⎪

⎩

d1 if omega(B) = 0

max(d1, omega(A))otherwise.

(20.44)

d3 =

⎧

⎪

⎨

⎪

⎩

d2 if alpha(A) = 0

max(d2, alpha(A))otherwise.

(20.45)

d4 = max(d3, bottom(B) − top(A)) (20.46)

=⇒ CONS[A, B] = [d4, +∞] (20.47)

When the loop nest is a single loop (n = 1), the above formulas become completely the same as those

in Section 20.2.5.2.2. Although the aggressive distance is not introduced here, in this case, it is proved

that CONS[A, B] = AGGR[A, B]. In this sense, the register allocation approach subsumes the classical

register allocation for software pipelined single loops as a special case. Not just the distance calculation,

but the whole solution is an extension of the classical approach.

20.4.3.2.3 Bin Packing on the Cylinder

The bin packing is guided by either the conservative or aggressive distance between the vector lifetimes,

depending on the heuristics used. Once the distance between any two vector lifetimes is computed, the

vector lifetimes are sorted and inserted one after the other on the surface of a space–time cylinder of a

circumference equal to the maximum number of available registers, R. Let us assume that the physical

registers are named 0, 1, . . . , R − 1, respectively.

The inserting of the vector lifetimes is similar to a scheduling process. For any vector lifetime B , find

a physical register r B ∈ [0, R − 1] such that allocating r B to B does not lead to conflict with any already

inserted vector lifetime A.

Let r A be the physical register allocated to A. Imagine we insert the vector lifetimes first to a space–time

diagram and then wrap this diagram into a cylinder. On the diagram, the set of legal registers that B can
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9*T 10*T 11*T

HFDBA

0*T 1*T 2*T 3*T 4*T 5*T 12*T 13*T 14*T6*T 7*T 8*T

he first ILES (segment C) is compressed into this line.

TN3

TN1

5

(a)

1*T 2*T 3*T 4*T 5*T 6*T 7*T 8*T 9*T 10*T 11*T 12*T 13*T 14*T0*T

DBA C(1st ILES)

TN1’s bottom is above TN3’s top.

......

TN1

TN3

5

(b)

FIGURE 20.22 Illustration: Calculating the conservative distance CONS[TN3, TN1]. The simplest and final forms

are used to show the intuition. The result is CONS[TN3, TN1] = [5, +∞]. Note that the first scalar lifetime of TN3

has intervals in the first ILES, and in the simplest form they are imagined to be compressed into the timeline 5 ∗ T .

Thus, the scalar lifetime is imagined to end at that line. We enclose this scalar lifetime in a dotted box in the first figure

to illustrate this fact. Source: From [91], courtesy of ACM.

choose from is

(r A + DIST[A, B]) ∪ (r A − DIST[B , A])

where DIST is the given distance (CONS or AGGR), and r A ± s et denotes a new set that is {r A ± i |∀i ∈ set}.

Any register not in the above set cannot be allocated to B . Therefore, after the diagram is wrapped into a

cylinder, the illegal registers for B resulting from the conflict with A are

illegal(B , A, x) = {i mod x|∀i ∈ N, i /∈ (r A + DIST[A, B]), and i /∈ (r A − DIST[B , A])}

where x is the circumference of the cylinder. Here it is R.
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For all such already inserted vector lifetimes A, the illegal registers for B equal

∪illegal(B , A, x)

Therefore, the bin-packing problem can be reinterpreted as follows:

Problem 20.4

Given a set of vector lifetimes, an order between them, the distance DIST (either CONS or AGGR) between

any pair of them, and a strategy (e.g., first fit, last fit, best fit, etc.), find a mapping for each vector lifetime, one

by one, according to the order, such that for the current vector lifetime B, it is mapped to a physical register

r B , where r B ∈ [0, R − 1], and r B /∈ ∪illegal(B , A, R) for any vector lifetime A before B in this order.

This problem statement gives the solution as well. Note that the resulting mapping is dependent on

whether the given distance is conservative or aggressive and what strategy is used.

20.4.3.2.4 Circumference Minimization

So far, the solution uses the maximum number of physical registers, R, as the circumference of the cylinder.

The last step tries to decrease the actual number of registers required. This leads to a new circumference c .

First, the allocation that resulted from the bin-packing step is translated such that the smallest register

allocated equals 0. That is, for each vector lifetime A whose physical register allocated is r A, it is reallocated

to r A − minReg , where minReg is the smallest register allocated. Note that we have been using a number

to represent register.

Then the circumference c is initialized as the distance between the smallest and the biggest registers

allocated. The circumference c is legal if there is no conflict between the vector lifetimes. A vector lifetime

A may conflict with itself after wrapping around if the circumference is not within DIST[A, A], where

DIST is the same as that in the bin-packing process, which is either CONS or AGGR. It also conflicts

with a different vector lifetime B , if B is allocated an illegal register with respect to A under the current

circumference. In other words, c is legal if

c ∈ DIST[A, A] ∀ vector lifetime A

and

r B /∈ ∪illegal(B , A, c) ∀ vector lifetimes A and B , A �= B

where r B is the register allocated to B .

The circumference c is incremented until it is legal.

20.4.3.3 Code Generation

Code generation for a software pipelined loop nest extends that for a software pipelined single loop

introduced in Section 20.2.5.2.3. Again we take IA-64 as the target architecture, which has hardware

support in the form of rotating register files and predicated execution. The new issue to be addressed here

is how to control the hardware support, which was designed to support single-loop software pipelining

only, such that it works for nested loop software pipelining as well.

In [90] the above issue is addressed by rotating registers only at the outermost (the selected) loop level.

That is, perform register rotation only in the prolog, OLP, and epilog. In an ILES, do not rotate the registers,

but access them statically. In addition, the control registers LC and EC are set up appropriately to ensure

that exactly N1 number of iterations are issued, and all the ineffective operation instances are masked from

execution.

We explain the solution with an illustration for our example final schedule in Figure 20.18c. Assume we

use aggressive distance during register allocation. Then, according to the allocation result in Figure 20.20b,

TN1, TN2, and TN3 are allocated registers 0, 1, and 2, respectively. For IA-64, we assign γ 32, γ 33, and

γ 34 to them.
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Figure 20.23 shows the corresponding IA-64 assembly code. The initialization phase (lines 1 to 5) is

similar to that in the software pipelined single loop illustrated in Figure 20.8a, so we do not repeat the

explanation. The setting of the control registers LC and EC shown in the figure is general to any deep loop

nest. We omit the derivation of the formulas here.

Starting from the prolog (line 6), the code is essentially a one-to-one translation of the operations

in the abstract rewritten loop in Figure 20.18c to assembly, so we do not explain it in detail. There are

several minor differences: the L ′
1 is realized by a branch from line 29 back to line 12; before executing

the epilog code (line 30), the control registers are asserted to have become 0, and then EC is reset to

another value to drain the pipeline (line 31); after the epilog, the control registers must have become 0

again (line 41).

To be clear, we simulate the execution of the code, and show the process in Figure 20.24. In the prolog,

each OLP, and the epilog, a rotation of the register files is performed via a br.ctop operation after each

execution of a kernel (or a partial kernel). However, in an ILES, there is no rotation at all, and the rotating

registers are accessed just like static registers. Take the first scalar lifetime of TN2 as an example. Before

entering an ILES, the physical register containing a value of it is originally named γ 33, and renamed γ 34,

γ 35, γ 36, and γ 37, in order, with the rotations. Then its name stays γ 37 throughout the whole ILES. We

also illustrated the second scalar lifetime of TN2 to help understanding.

Next we explain how the loop is controlled. The stages of a kernel are predicated, from right to left, with

the predicate registersρ16 toρ21, as illustrated by the first three (partial) kernels. Initially, onlyρ16 is 1. Step

by step, all of them become 1. The stages predicated by 0 are automatically ignored in execution, as high-

lighted by shaded color. The change of the predicates is shown by the shaded triangle in the upper-right side.

With the execution, LC decrements step by step, until finally it becomes 0 in segment D, when EC starts

to decrement, which gradually resets the predicate registers to 0, as shown by the shaded triangle in the

lower-right side. After the ILES of the last group (segment G), another br.ctop is executed, and LC and

EC become 0 exactly. This corresponds to the assertion in line 30 of Figure 20.23. Note that this detail is

important for the correctness of the code generation: if either LC or EC is not 0, the br.ctop (or more

exactly, br.ctop L ′
1 in line 29 of Figure 20.23) will cause the control to transfer to line 12 of Figure 20.23,

and another OLP will be executed, which is wrong. The initial setting of LC and EC in lines 2 and 3 make

sure this erroneous transfer never occurs. When all the groups have been issued, the control will definitely

transfer to the epilog.

In the epilog (segment H), since we still have some operation instances to execute, we reset EC to finish

them. After that, it can be seen that LC and EC become 0 again. This corresponds to the assertion in line

41 of Figure 20.23.

20.5 Summary and Future Directions

Software pipelining originally emerged as a software approach to exploit ILP available in loops in unipro-

cessors. Numerous approaches to software pipelining have been proposed and studied in detail. Both

optimal and heuristic approaches have been proposed. The techniques for scheduling, register allocation,

and code generation have been extensively investigated. In this chapter, we have described the fundamental

techniques in detail and surveyed various research directions.

As traditional architectures cease to scale well, distributed architectures such as clustered VLIW and

multi-core processors become prevalent. Power has also become a first-order constraint in architectural

design. Consequently, software pipelining has been adapted to these newer architectures, and to save

power/energy consumption.

Although software pipelining is powerful in extracting fine-grain parallelism, this is also its limitation.

Fine-grain parallelism becomes exploitable usually after the intermediate representation of a program is

lowered to machine level during compilation. In such lowering, the high-level context has been largely

lost. A comprehensive solution to speed up a loop should combine the power of loop transformation and

threading at high levels and that of software pipelining at low levels, so that parallelism at different levels
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is exploited systematically in the whole compilation process. Little work addresses this problem, despite

its importance.
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21.1 Introduction

Compilers introduce an unbounded number of temporary registers during different phases of compilation;

these temporary registers arise from the translation of programmer declared variables, simplification of

complex expressions, and introduction of temporaries during different optimization phases. However, the

target hardware is constrained by the limited number of actual available registers. The task of the register

allocator is to map these temporary registers to real registers and memory locations. In the text, we shall

be abbreviating temporary registers as pseudos and actual registers as registers.

The register allocation problem has historically been studied under two subproblems: register assign-

ment and spilling. Register assignment is the phase of assigning of machine registers to pseudos wherever

possible. Spilling is the combined act of storing a currently used pseudo to memory and reloading it for

21-1
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the next use. Even though these two subproblems can be solved sequentially, such an approach leads to

inefficient solutions. This has led researchers to integrate the two subproblems into one super problem [22].

The scope of the register allocation phase has also increased because of the interdependence of this phase

on other subphases, such as coalescing, rematerialization, code scheduling, and so on. Researchers have

proposed solutions to these issues by closely integrating the solutions to these subphases with the register

allocation phase. Pointers to some of the classical solutions are presented in Section 21.1.1, and some of

the later advances in this area are presented later. These advances have not yet been rigorously tested in

industrial-strength compilers. Thus, our presentation is more in the nature of describing concepts and

reporting on some recent experiences of the researchers in the area.

21.1.1 Classical Approaches

The register allocation problem has been studied in great detail [3, 9, 11, 12, 22, 46] for a wide variety of

architectures [3, 13, 28]. The register allocation problem has been shown to be NP-complete [35, 52], and

researchers have explored heuristic-based [9, 11, 12] as well as practically optimal solutions (for example,

solutions based on genetic algorithms [18] and solutions based on integer linear programs [3, 22, 46]).

In this chapter, we provide some of the latest advances in register allocation. As a reference, we provide a

list of standard terminology and definitions here:

� Basic block: A sequence of branch and label-free instructions.
� Live range: A range of instructions, over which a pseudo is live.
� Reaching definitions: All the definitions that reach a program point.
� Coalescing: An add-on phase in register allocation that coalesces pseudos related by move instruc-

tion [38].
� Rematerialization: An add-on phase in register allocation that replaces a pseudo with the expression

that computes the value in the pseudo [38].
� Local allocation: Register allocation done within one basic block.
� Global allocation: Register allocation for a function or procedure.
� Interprocedural allocation: Register allocation done across functions and procedures.
� Interference graph: An undirected graph G = (V, E ), where the set of vertices represent the set of

live ranges and v1, v2 ∈ V, (v1, v2) ∈ E iff the live ranges corresponding to v1 and v2 interfere. That

is, the live ranges have common instructions.
� Graph coloring: Given an undirected graph, assign colors to the nodes of the graph, such that no

two neighbors get the same color. The register allocation problem has long been studied as a variant

of the graph coloring problem [12].
� Spill cost: The cost of introduced spill instructions in the code. It can be computed both dynamically

and statically.
� Chaitin–Briggs register allocation: Chaitin proposed graph-coloring-based register allocator [12],

and Briggs extended it with his optimistic register allocation algorithm [8]. The main phases of the

two allocators are shown in Figure 21.1.

A brief explanation of each of the phases is given below:

• Renumber: A unique name is given to each live range.

• Build: Builds an interference graph.

• Coalesce: Remove trivial register–register copies. Build–coalesce phases are repeated until no more

coalescing can be conducted.

• Spill cost: Calculate the cost of spilling every node of the interference graph.

• Simplify: Repeatedly find trivially colorable nodes (nodes with a degree less than the number of

available registers). If no such node can be found, then based on a heuristic, spill a node.
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Chaitin

Briggs

Renumber Build SelectSimplifySpill CostCoalesce

Spill Code

FIGURE 21.1 Overview of Chaitin and Briggs allocator. The dotted and dashed lines show the difference between

the two, the dashed being part of Chaitin’s allocation and the dotted part of Briggs’.

• Select: Assign colors (registers) to the nodes of the graph in the order determined by the phase

Simplify.

• Spill code: Insert spill code for the use/def of the live ranges to be spilled (as decided by Simplify).

� Iterated register coalescing: George and Appel [21] proposed an aggressive coalescing scheme to

eliminate copy instructions. Figure 21.2 presents an overview of their algorithm. A brief explanation

of the phases that are different from Chaitin–Briggs register allocation is given below.

• Build: Along with building an interference graph, this phase identifies nodes that are a part

(source or destination) of move instructions (called move-related nodes).

• Simplify: Like Chaitin–Briggs register allocation but removes non-move-related nodes only.

• Coalesce: Similar to Chaitin–Briggs register allocation. Repeat Build-Simplify-Coalesce until there

is no change.

• Freeze: If there are still nodes to be colored and the previous phases have not succeeded in making

the graph colorable, then pick one move-related node and make it non-move-related.

• Select: Similar to Chaitin–Briggs register allocation.

• Potential/actual spill: The potential spill phase notes the potential spill candidates, but the actual

spilling is done in the actual spill phase after taking into consideration any changes made by the

Select phase.
� Linear scan register allocation: A very fast register allocation algorithm that does the allocation by

doing only one pass over the code. The algorithm does not perform very well compared to other

register allocators in terms of the execution time of the generated code, but it does very well in

terms of compilation time and the space utilization [49].
� Three-address code: A program in which every statement has at most three operands, two source

operands, and one destination operand. For example, x = y op z [1].

Spill

Build Simplify Coalesce Freeze

Potential
Spill

SelectActual

FIGURE 21.2 Overview of iterated register coalescing algorithm.
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� Static single assignment: A program is considered to be in static single assignment (SSA) form if

every pseudo has exactly one definition [16].
� Split variables: While translating a program into SSA form, multiple definitions to the same variable

are replaced with different versions of the same variable. These instances are called the split variables.

Over the past few years, significant advances have been made in the area of register allocation. There have

been new clarifications on the complexity of the register allocation problem, new results that improve the

precision of the register allocation results (chordal graphs), new frontiers in register allocation (bitwidth-

aware register allocation), new applications of register allocation (code size reduction), new extensions to

register allocation (stack location allocation), and studies evaluating the correctness of register allocation.

We will be exploring each of these in the following sections.

21.2 Language

Register allocation can be considered as a program translation phase, which takes as input a program with

pseudos and returns as output a program where pseudos have been replaced with registers and memory

locations. We define a simple three-address code language as our input language. The syntax for operands

(pseudos and registers) in this language is given in Figure 21.3. The set P represents the set of pseudos,

and set R represents the set of registers. The input program can contain statements that use constants

and operands shown in Figure 21.3. The compiler during different stages of compilation can generate

code containing registers (called precolored registers). Hence, registers are present as an operand in the

grammar. The register allocator must respect the data flow constraints between these pre-colored registers

in the input program (see Section 21.11).

After the completion of the register allocation phase, the program is still in the same format as the

original code, with one difference: the pseudo to register mapping is encoded in the program, along with

the new memory instructions added by the register allocator. That is, an operand v in the register allocated

program can be either a register or a pseudo–register pair:

v ∈ (P × R) + R

Note that this representation allows a pseudo to be mapped to different registers at different stages of the

program. Some of the register allocators insert additional instructions such as move instructions, bit-wise

operations, and so on.

The problem of register allocation is to translate an input program with operands in the language shown

in Figure 21.3 to a program with the pseudo operands replaced with pseudo–register pairs. Figure 21.4

shows an example program and the register allocated program.

P ::= {p1, p2, · · · , pn}

R ::= {ℜ1, ℜ2, · · · , ℜn}

pr ∈ PR ⊆ (P + R)

FIGURE 21.3 Grammar for the operands in the input program.

p1 := ℜ0 + ℜ1

p2 := p1 + 2

p3 := p1 + p2

(a)

(p1, ℜ1) := ℜ0 + ℜ1

(p2, ℜ0) := (p1, ℜ1) + ℜ0

(p3, ℜ0) := (p1, ℜ1) + ( p2, ℜ0)

(b)

FIGURE 21.4 Register allocation example. (a) Input program. (b) Register allocated program. The input program

contains three pseudos and two pre-colored registers.
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21.3 Advances in Graph Coloring Techniques

An observation that has been successfully used in recent studies is that many of the interference graphs

induced by the live ranges of variables in programs are 1-perfect [2]. A graph G is said to be 1-perfect if

the chromatic number of G is equal to the size of the maximum clique in G. Andersson [2] shows that all

the interference graphs present in the corpus of graphs studied by George and Appel [21] are 1-perfect.

However, recognition of 1-perfect graphs is an NP-complete problem [43], so this observation cannot be

used directly. A graph G is said to be perfect if, for each vertex-induced subgraph G′ of G, the graph G′ is

1-perfect. A vertex-induced subgraph (sometimes simply called an induced subgraph) consists of a subset

of the vertices of a graph together with any edges whose endpoints are both in this subset. Grötschel

et al. [23] show that the k-colorability problem can be solved in polynomial time for perfect graphs.

Gavril [20] shows that chordal graphs come with interesting properties, because of which problems such

as minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set,

which are NP-complete in general, have polynomial time solutions in the context of chordal graphs. A

graph is chordal if every cycle of four or more nodes in the graph has a chord, an edge joining two nodes

that are not adjacent in the cycle (see below for further explanation). Chordal graphs are a subset of perfect

graphs, so solving the minimum coloring problem in polynomial time leads to the register allocation

problem being solved in polynomial time. This optimal coloring of chordal graphs can be undertaken in

time linear in the number of edges and vertices.

Pereira and Palsberg [47] use the features of chordal graphs to do register allocation optimally for a large

set of interference graphs. Hack et al. [24] and Brisk et al. [10] have independently proved the chordality

of the interference graphs of programs in SSA form.

21.3.1 Chordal Graphs and Impact on Register Allocation

21.3.1.1 Chordal Graphs and Properties

Figures 21.5a and 21.5b present examples of chordal graphs. Figure 21.5a has no cycle of more than three

nodes, and Figure 21.5b has a chord bd in the only possible cycle abcd. Figure 21.5c is another example of

a chordal graph. However, removal of any of the six dashed edges would make the graph non-chordal.

A useful observation by Pereira and Palsberg [47] is that most of the graphs in the corpus of interference

graphs of George and Appel [21] are chordal. It turns out that in a program in SSA form, without

unstructured jumps (for example, with no arbitrary goto statements) (called strict programs), it will

always generate chordal graphs. Three independent groups [6, 10, 24] came up with this key observation

around the same time frame. This observation helps clearly decouple register assignment and spilling. For

programs written in a structured language such as Java, where arbitrary goto statements do not appear, the

interference graph is guaranteed to be chordal, provided the program is in SSA form. Thus, we can know

precisely the optimal number of colors required to color the graph and hence can proceed to spilling without

going through a coloring phase. In the absence of such decoupling, George and Appel [21] proposed an

iterative algorithm to do register allocation, where the register allocator iteratively goes over phases that

do coalescing, spilling, and coloring. However, this new optimality result helped Pereira and Palsberg [47]

and Hack et al. [24] to design register allocators similar to the one shown in Figure 21.6.

f

da

a
b

(b) (c)(a)

c a b

b c

c

de

FIGURE 21.5 Example of chordal graphs. Graphs (a), (b), (c) are chordal graphs. However, removal of any of the

dashed edges makes the graph non-chordal.
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Spill Color Coalesce
Interference

Graph

FIGURE 21.6 Optimal coloring helps decoupling of the phases in register allocation.

Function Greedy-color(V, seoV)

BEGIN

while(true)

v = next(seoV);

if v == null then break;

C (v) = lowest color not used in the neighbors of v .

END

FIGURE 21.7 Sample greedy algorithm to color the nodes of an interference graph.

Function Maximum Cardinality Search (V, E)

BEGIN

For all v ∈ V, do w(v) = 0.

ActiveSet = V

For i = 1..|V |

Let v ′ the node with maximum weight in ActiveSet.

output v ′

Increase the weight of the neighbors of v ′ by 1.

ActiveSet = ActiveSet - {v ′}
END

FIGURE 21.8 Function maximum cardinality search generating a SEO.

In an undirected graph G = (V, E ), a vertex v is called simplicial if its neighborhood1 in G is a clique.

An ordering of the vertices of the graph G is called a simplicial elimination ordering (also called perfect

elimination ordering) of G if every vertex vi ∈ V is a simplicial vertex in the subgraph induced by

{v1, v2, . . . , vi}. In Figure 21.5b, the vertices a and c are simplicial. However b and d are not.

A useful property of chordal graphs is given by Dirac [17]:

An undirected graph without self-loops is chordal if and only if it has a simplicial elimination ordering.

All three graphs in Figure 21.5 have simplicial elimination orderings: Figure 21.5a: a, b, c; Figure 21.5b:

a, b, c, d; and Figure 21.5c: a, b, c, d, e, f.

Gavril [20] shows that a greedy approach can give optimal coloring if the order of vertices chosen for

coloring is a simplicial elimination order. A sample greedy algorithm is shown in Figure 21.7.

The argument seoV is a simplicial elimination ordering (SEO) of the vertices of the graph under

consideration, and V is the set of vertices. The function next(seoV) returns the next vertex in the order, if

there is one present, or else returns null. The map C (v) gives the color of the vertex v .

Given a graph G , an algorithm known as a maximum cardinality search [56] (Figure 21.8) recognizes

and determines an SEO of a chordal graph in O(|E | + |V |) time. The algorithm associates a weight w

1In a graph G = (V, E ), the neighborhood of a vertex v ∈ V is the set of vertices V ′ such that ∀v ′ ∈ V ′ (v , v ′) ∈ E .
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with each vertex v , which is initialized to 0. It keeps a set of vertices called ActiveSet (initialized to the set

of vertices). At each iteration, it outputs a vertex v ′, which has the maximum weight among the vertices

of the ActiveSet, increases the weight of the neighbors of v ′, and removes v ′ from the ActiveSet. The ties

are resolved arbitrarily.

21.3.1.2 Implementation and Comments

Register assignment for strict programs in SSA form can be done optimally in polynomial time and thus

allows for the decoupling of register assignment and spilling phases. Pereira and Palsberg exploited this to

good effect and came up with a strategy that does near-optimal register allocation. A program in SSA form

must also have to remove the φ nodes, and this inserts additional copy instructions. Pereira and Palsberg

[47] and Hack et al. [24] employ an explicit approximate coalescing phase to get performance benefits.

For the programs not in SSA form, the results generated by these approaches will not be optimal.

Pereira and Palsberg [47] use these algorithms and show that 95% of the methods of the Java 1.5 library

have chordal interference graphs. Hack et al. [24] feed their heuristic-based coalescing solution to an

integer linear program (ILP)-based coalescing solution and find significant speed-ups in the ILP-based

coalescing method.

21.4 Register Allocation and Static Single Assignment

In Section 21.3 we showed that a program in SSA form has interesting properties such that the optimal

register assignment can be done in polynomial time. In this section, we show some more issues that are

specific to programs in SSA form.

In a program in SSA form, φ function nodes represent the control-flow-directed value renaming. Unlike

regular function nodes, the arguments of a φ node may be contained in the same register as well. Another

interesting point about φ nodes is that there is no specific ordering among the φ nodes present at the

beginning of a basic block, and semantically, all the φ nodes present (at the beginning of a basic block)

can be executed simultaneously.

The classical way to translate a φ function (removal of φ nodes) is by replacing it with a sequence of

copy instructions along different control flow edges. For example, say we have a φ node in basic block b0

ℜ1 = φ(ℜ2, ℜ3)

representing the flow of value in ℜ2 across one edge (for instance, e1, connecting a basic block b1 and b0)

and in ℜ3 across another edge (for instance, e2, connecting a basic block b2 and b0). The classical way to

remove the φ function is to do the following:

� Create a new basic block b01 and add a copy instruction ℜ1 := ℜ2 in that. Remove the control flow

edge between b0 and b1. Make b01 the successor of b0 and b1 the successor of b01.
� Create a new basic block b02 and add a copy instruction ℜ1 := ℜ3 in that. Remove the control flow

edge between b0 and b2. Make b02 the successor of b0 and b2 the successor of b02.

These copy instructions introduce additional interference among the live ranges, and this increases the

register pressure further. Pereira and Palsberg [48] prove that register allocation after classical SSA elimi-

nation is NP-complete. An interesting observation by Hack et al. [24] is that φ nodes can be removed in

such a way the register demand does not increase; that is, register demand for the φ node never exceeds

the number of variables the φ nodes define. In the following example,

ℜ3 := φ(ℜ1, ℜ2)

ℜ4 := φ(ℜ2, ℜ1)

the φ nodes pick the values of ℜ1 and ℜ2, or ℜ2 and ℜ1, into ℜ3 and ℜ4. In other words, we choose a

permutation of the incoming values.
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The set of copy instructions across any control flow edge can be thought of as a permutation of the

incoming values.

(a1, . . . , an) = Perm(b1, . . . , bn)

The operation Perm can be thought of as a “simultaneous” copy assigning b1 to a1, b2 to a2, and so on. Note

that this may require some copies and some swap instructions. This Perm function can be implemented

in various ways.

21.4.1 Swapping without Side Effects

Each permutation of size n can be written as a sequence of swaps and is thus implementable using n registers.

Some architectures have instructions to swap two registers. Even architectures that do not support such

an instruction can do a register swap by using three xor (exclusive or) instructions. (Note that register

swap by the use of add or subtract operations is not safe; these operations can cause overflow and result in

incorrect translation.) Let us say that at a join point, we have a set of φ instructions:

(v1, ℜ1) := φ(ℜ1, ℜ2)

(v2, ℜ2) = φ(ℜ3, ℜ1)

That is, we are getting values for v1 in ℜ1 along edge e1 and for ℜ2 along edge e2. Similarly, we are getting

values for v2 in ℜ1 and ℜ2 along edges e1 and e2, respectively. Along edge e1, we would need a copy (from

ℜ3 to ℜ1). We can insert a swap (ℜ1, ℜ2), along edge e2. Let us take another example. Say we want to do

the following permutation along some edge:

(ℜ1, ℜ2, ℜ3) → (ℜ2, ℜ3, ℜ1)

This can be implemented by the following swap operations:

swap ℜ2, ℜ3

swap ℜ1, ℜ2

A simple algorithm can be used to generate swap operations required for a given permutation. First, we

have to decompose the permutation into disjoint cycles. For example, in the permutation

(1, 2, 3, 4, 5, 6) → (6, 3, 1, 4, 5, 2)

there are two disjoint cycles: (1 6 2 3) and (4 5). Each cycle (a b c d . . . ) can be implemented with a sequence

of swaps: (a b) (b c) (c d) and so on.

21.4.2 Scratch Register

The permutation operation can also be undertaken using a scratch register, if that is available. This would

require at most n + 1 number of moves, where n is the size of the source set. For the above example

involving four registers shown in the context of “side-effect-less swap,” we would insert the following set

of move instructions:

ℜX := ℜ1

ℜ1 := ℜ2

ℜ2 := ℜ3

ℜ3 := ℜX

In this way, we can remove the φ functions without increasing the register pressure. Thus, it can be seen

that assigning of registers to pseudos can be done in polynomial time if the program is in SSA form.
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A program in non-SSA form can be converted to a program in SSA form in polynomial time. Since

register assignment can be done in polynomial time for programs in SSA form with no arbitrary goto

statements, does it imply that P = NP? The answer is no. The overall register allocation problem is still

NP-complete. Intuitively, this hardness can be seen from two angles:

� If a normal program P requires K registers, and the SSA-converted program Pssa requires K′ registers,

then definitely K′ ≤ K. (This follows directly from the fact that allocation for Pssa can be done using

exactly the same allocation as that of P. It can, however, use fewer registers owing to the reduced

interference.) Thus, finding the optimal coloring for P requires more work than finding K′.
� If we consider programs only in SSA form, without arbitrary gotos, even then, the register allocation

problem is still hard. Bouchez et al. [7] show that the hardness comes from pseudos that could not

be put in registers — ones that are spilled and coalesced.

21.4.3 Linear Scan Register Allocation in the Context of the SSA Form

Linear scan register allocation has come as a good alternative to many traditional register allocations, when

the time taken to do register allocation is an important consideration. A T linear scan algorithm computes

live intervals of pseudos in a program and finds the overlaps in them by scanning them sequentially and

allocating the same registers to nonoverlapping intervals. With the popularity of SSA as an intermediate

form, the resulting impact of such a representation on different analyses cannot be ignored; linear scan

register allocation is no exception.

The SSA form simplifies the data flow information in the sense that resulting intermediate code tends

to have shorter live ranges than the intermediate form in non-SSA form. Figure 21.9 shows the snippet of

a program in SSA form. The pseudo p has been split into two pseudos p1 and p2. A φ function is inserted

at the merge point that computes p3. If we study the live ranges of the pseudos p1 and p2, we see that the

live ranges of p1 and p2 interfere and hence cannot be assigned the same register. However, the key point

to note is that p1 and p2 can never be live together at the same time at the φ instruction; p1 will be live if

the path under consideration has basic block B1, and p2 will be live if the path has basic block B2. To use

this key point to good effect, we have to treat the φ function in a special way for the liveness analysis. Note

that we cannot ignore the φ function altogether, as otherwise, the semantics of the data flow (the merger

of the split variables in the φ function) will not be preserved.

Assigning the same register to all the SSA variables ( p1, p2, etc.) generated from a particular variable p

might not be beneficial in general. A simple example to this effect is presented in Figure 21.10.

Hence, we need a scheme that does more than blindly assign the same register to all the split variables

of a variable and at the same time understands the special nature of the φ function.

21.4.3.1 Implementation

Mössenböck and Pfeiffer [37] present a scheme that understands the above-mentioned special semantics

of the φ function. They present extensions to the linear scan register allocation algorithm for architectures

with irregular register constraints.

For each split variable p1 and p2, being joined in a φ( p1, p2) node, they insert two move instructions

in the basic blocks preceding the φ node; p4 := p1 in the basic block in which the definition of p1 gets

B3

p2 =

p3 = φ(p1,p2)

p1 =B1 B2

FIGURE 21.9 φ functions require special treatment.
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FIGURE 21.10 Assigning the same register to all the split values of the original pseudo might not give the optimal

solution: (a) Shows the case where all the split copies of the variable a get the same register. In this case, the liveness

interference graph shows that the live ranges of the variables a , b, and c interfere with each other. And we need three

colors to color the graph. (b) Shows the case that by treating the split copies as different variables we get to see two

disconnected graphs for the live range interference; the graph can be colored using two colors.

carried, and p5 := p2 in the other basic block. Also, they change the φ node to φ(p4, p5). Now the two

original live ranges, corresponding to the variables p1 and p2, do not overlap, and the algorithm is at its

discretion to assign them the same register. They use a heuristic to coalesce live ranges, so that all live

ranges present in a coalesced live range get the same register. The heuristic is that two live ranges x and y

can be coalesced if the register that is assigned to x is not assigned to any coalesced live range z, such that

y overlaps with z.

Once these live ranges are coalesced, they present a variation to the classical linear scan algorithm, which

understands these coalesced live ranges. This linear scan algorithm uses these coalesced live ranges rather

than simple live ranges used by the original linear scan algorithm.

21.4.3.2 Complexity

One chief drawback of this approach is that compared to the original linear scan algorithm (linear in the

number of live ranges), the complexity of this improvised algorithm is quadratic in the number of live

ranges. For an algorithm that is aimed at reducing the register allocation time, having nonlinear complexity

can be discouraging. However, in practice, the authors claim that the algorithm exhibits near-linear-time

cost.

21.5 Bitwidth-Aware Register Allocation

Media and network applications have introduced new challenges and problems in research. In the context

of register allocation, one of the issues that has added newer dimensions is the extensive use of subword

data in these applications. In a classical view, the register allocation process maps pseudos to a complete

register, not any subparts in it. An interesting point to note is that in case a pseudo needs only a few of the

available bits in a register, then allocating all the bits of the register (full register, that is) to the pseudo can

be considered wasteful. To be able to utilize this observation for register allocation and allocate a part of a

register for each pseudo, we need a direct way to reference bit sections within the register. Architectures of
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modern embedded processors [19, 44, 57] allow this. The following example picks up an 8-bit value from

ℜ2 and a 4-bit value from ℜ3 and stores them in a 12-bit destination in ℜ1.

ℜ1[4..15] := ℜ2[0..7] + ℜ3[2..5]

The goal is to take advantage of such instructions and reference multiple pseudos in one register simul-

taneously. For example, in the above example, we could use just one register to store/access all three

values. Such an approach reduces the register requirements, which can help reduce the memory accesses

(hence, improved execution time). Reduction in register requirements can also help in reducing the power

consumption of the embedded device [29].

An operand v in the bitwidth-aware register allocated program can be represented by the following

grammar:

baR ⊆ R × N × N

PRPair := (P × baR)

v ∈ (PRPair + baR)

A bitwidth-aware register allocator replaces each pseudo p with a triple (ℜ, m, n), signifying that the bits

[m..n) of register ℜ are mapped to the pseudo p.

To take advantage of this observation during register allocation, we first need to compute the bitwidth

information of the pseudos, which gives the sizes of the pseudos at different points of the program. Now

we have to solve one more problem during the process of register allocation. Along with solving the register

assignment and spilling problems, we have to solve the bin-packing problem to pack multiple pseudos into

the same register. This second problem can be seen as a variation of register allocation. For the register

allocation problem, we consider the interferences of the pseudos among each other and generate a pseudo

to register map (PsR) in such a way that

∀ps1, ps2 ∈ P, ps1 	= ps2, ps1 and ps2 interfere ⇒ PsR(ps1) 	= PsR(ps2)

For the bitwidth-aware register allocation problem, we consider the interferences of pseudos among

each other and then generate a pseudo to subregister map (PssR) in such a way that

∀ps1, ps2 ∈ P, ps1 	= ps2, ps1 and ps2 interfere

⇒

PssR(ps1) 	= PssR(ps2) OR bitSequence(PssR(ps1)) ∩ bitSequence(PssR(ps2)) = nil

For each pseudo ps, PssR returns a subregister in the form (ℜ j , x , y), indicating that the bits [x..y) of

the register ℜ j are mapped to ps. The function bitSequence(ℜ j , x , y) returns a set {x , x + 1, . . . , y − 1}.

The bitwidth-aware register allocator thus typically has two phases: bitwidth analysis and register

coalescing.

21.5.1 Bitwidth Analysis

Even though the declared sizes of the pseudos give an upper limit on the sizes of the pseudos, it might not

be a tight bound. For example, in the following code:

int a1, n;

read n;

a1 = n & 0xff;

· · ·

the size of a1 after the assignment is bound by 8 bits, even though it is declared as an integer (32 bits).

Thus, to obtain precise bitwidth information, the compiler has to do some form of bitwidth analysis.

Let us look at another example, shown in Figure 21.11. In this figure, we have two variables of interest:

x1 and x2. The maximum size of x1 is 16 bits and that of x2 is 8 bits. Assuming our registers are of size
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L1: x1 = y1 & 0xffff

L2: x1 = y1 & 0xff

x2 = y2 & 0xff

L1: x1 = y2 & 0xffff

x2

8

L1

L2

L3

8 8

x1

FIGURE 21.11 A sample code sequence and its corresponding live ranges.

Operation Details Impact 

v>>t 
v<<t 
v & c 

t is a compile time constant 

t is a compile time constant 

c is a compile time constant 

with l leading and t trailing zero bits 

t trailing bits of v are unused

t leading bits of v are unused

l leading and t leading bits of v are unused

leading and t leading bits are unused

FIGURE 21.12 Arithmetic operations and their impact on the size.

16 bits, we cannot pack them in the same register if we do not take their lifetime into consideration. At

any point in the program the combined size of x1 and x2 is always at most 16 bits and hence can be packed

in one register of 16 bits. Besides the logical-and (&) operator, other operators impact the size of a pseudo.

Figure 21.12 shows the different arithmetic operations and their corresponding impacts.

Thus, the challenge is to identify the minimal width of each live range at each program point and do so

efficiently.

21.5.1.1 Implementation

Tallam and Gupta [55] introduced the problem of bitwidth-aware register allocation and provided an

iterative data flow–based algorithm to compute the bitwidth information. To compute the bitwidth

information, for each variable they track:

� Dead bits: If all the computations following a program point p that use the value of a variable v , at

p, can be performed without explicitly referring to some bits in the representation of v , then these

bits are called dead bits.
� Live bits: For each variable v , all the nondead bits are called live bits.

Hence, in the representation of the variable v , we will have a sequence of live bits, squeezed in between

two sequences of dead bits. That is, there is a leading sequence of dead bits and a trailing sequence of dead

bits to each sequence of live bits. The goal of the bitwidth analysis is to determine the live and dead bits

for each of the variables at each program point.

Tallam and Gupta present a three-phase approach, as shown in Figure 21.13, for the computation of

the live and dead bits:

� Compute zero bit sections: A forward analysis is carried out to compute a conservative estimate of

the leading and trailing zero bit sections in each pseudo at each program point. This is computed

using the information in Figure 21.12 and propagated along assignment statements. For example,

in an assignment statement x := y, the zero bit sections of y are propagated to x .



Advances in Register Allocation Techniques 21-13

Compute Dead Bit Info.

Compute Zero Section 

Compute NoUse Info. 

FIGURE 21.13 Computation of bitwidth-aware live ranges.

� Compute NoUse information: For each statement s p that refers to the value of a pseudo p, NoUse(s p , v)

returns a pair (l , t) such that the leading l bits and trailing t bits of v need not be explicitly referred

to during the execution of s p . Along with the rules inferred from Figure 21.12, the zero bit section

information is used to generate NoUse information. NoUse information is propagated along the

expressions using the following rules.

s p Details Impact

op ( p, ..) p has at least l leading zero bits l leading bits of p are not used

|( p, ..) p has at least l leading zero bits l leading bits and t trailing bits of p are not used

and t trailing zero bits

� Compute dead bit information: A backward analysis is carried out to determine the leading and

trailing dead bit sections for each pseudo. If the bit sections in NoUse(s p , p), are dead at the

statement after s , then they are also dead immediately before s p . If a statement s defines p and does

not use p, then all bits of p are dead before s .

While iteratively computing zero bits, NoUse, and dead bit information, at any merge point, a conservative

merge is done.

21.5.2 Variable Packing

Once the sizes of the pseudos (live bits) at different program points are known, the goal is to pack the

pseudos, keeping the total size as the constraint. This packing of the pseudos can be seen as coalescing of

the interfering pseudos. Formally, this problem can be stated as:

Live range coalescing: Given a set of live ranges L and two constants k and R, does there exist a

live range coalescing that takes L as an input and outputs k coalesced live ranges such that the width

of no coalesced live range exceeds R?

Tallam and Gupta [55] show that live range coalescing is an NP-complete problem. Given an interference

graph, we will present an iterative algorithm for this problem in this section. In each step a pair of

interfering live ranges can be coalesced into one node, provided that at no program point does the

maximum interference width (MIW) exceed the size of a register. Given a pair of live ranges lr1 and lr2, the

MIW is defined as

MIW(lr1, lr2) = MAX
∀program point p(width(lr1, p) + width(lr2, p))
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where width(lri , p) returns the width of the live range lri at program point p. Two live ranges lr1 and lr2

can be coalesced iff MIW(lr1, lr2) ≤ |R|, where |R| is the number of the bits in each register. This check

requires O(N) number of comparisons, where N is the number of program points.

Tallam and Gupta [55] and Barik and Sarkar [4] present heuristic-based algorithms to compute an

estimated MIW (EMIW) in O(1) time. Tallam and Gupta propose a scheme of edge labels to compute

EMIW. Each edge (A, B) is labeled with a pair of values (Ab , Ba ), Ab signifying the maximum width of A,

while interfering with B and vice versa. EMIW (A, B) can be computed as Ab + Ba . During the coalescing

phase, labels for the edges with coalesced nodes need to be updated.

If there is an edge between node C and node A, and node A has an edge to node B , then in the coalesced

graph we will have an edge between AB and C . The edge label for the same would be (Ac , Ca ). If node C

is connected to both A and B , then we have three candidates for EMIW:

E 1 := max(Ab , Ac ) + Bc + Cb

E 2 := max(Ba , Bc ) + Ac + Ca

E 3 := max(Ca , Cb) + Ab + Ba

These three candidates signify the maximum interference of one node assuming the other two interfere

maximally. Take, for example, E 1. The maximum A will contribute is given by max(Ab , Ac ). Hence, the

EMIW for the three nodes will include the maximum of Ab and Ac and the EMIW for (B , C ), which

is obtained by E 1. Tallam and Gupta prove that for an EMIW to be safe, it has to be in the range of

E min = min(E 1, E 2, E 3) and E max = max(E 1, E 2, E 3). They also show that picking E min as the EMIW

might not be safe, as under some circumstances E min < MIW and hence is not suitable.

There can be many possible EMIWs between E min and E max. Tallam and Gupta propose picking the

middle one between E 1, E 2, and E 3. On choosing the middle one, the edge label for the edge (AB, C ) is

given by the following:

(ABc , Cab) =

⎧

⎨

⎩

(max(Ab , Ac ) + Bc , Cb) if E middle = E 1

(max(Ba , Bc ) + Ac , Ca ) if E middle = E 2

(Ab + Ba , max(Cb , Ca )) if E middle = E 3

Barik and Sarkar [4] generate multiple intermediate EMIWs and pick the least among them.

21.5.2.1 Handling Loops and Arrays

Besides handling the arithmetic and logical operations shown above, some high-level abstractions help

in estimating the size of some more variables. For example, if we can identify loop induction variables,

then we can easily place a bound on their sizes. In general, if we can get a closed-form expression for any

pseudo, we can get a bound on their size.

Besides handling the scalar pseudos, we can use similar logic to handle arrays and help reduce the sizes

of the arrays. In the simplest of the cases, we can compute the size of the array elements as the maximum

size of any element in the array. This can be computed by going over the whole code and treating array

accesses separately. This information can be used to pack multiple array elements into one word and

consequentially reduce the number of memory accesses required to iterate over the array. See Barik and

Sarkar [4] for details.

21.5.3 Comments

The works presented in this section give heuristics to do coalescing. How they perform in comparison

with exact solutions needs to be tested.
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21.6 Extensions to Register Allocation: Code Size Reduction

Register allocation has traditionally been used for code optimization targeted for execution time gains. In

the past two decades attempts have been made to focus the goal on code size reduction as well. The reason

for the shift of focus is the advent of new embedded processors with very limited memory, and they come

with constraints on the code size.

Most of the research in this area has been target architecture specific. For example, Liao et al. [34], Leupers

and Marwedel [33], and Rao and Pandey [50] target digital signal processor (DSP) type of processors and

the auto-increment, auto-decrement addressing modes. Sudarsanam and Mailk [54] target architectures

with two memory units and the parallel data access modes. Park et al. [46] and Naik and Palsberg [39] target

architectures with more than one register bank and instruction with an RP (register pointer, pointing to

the “current” memory bank)–relative addressing mode. Paek et al. [45] target architectures with multiple-

load/multiple-store instructions and the generated spill code. In this section, we will present some of the

key ideas behind the last two works.

The basic idea behind all of the above work on code size reduction has been modifying the data layout,

such that the different instructions can be clubbed together. The clubbed instructions are the ones that

access memory or memory addresses. Let us look at the example given below.

BEGIN

int a, b, c, d, e;
· · ·

L1: d = a + c;
b = d + e;
L2:

END

Say at label L1, all the variables are in memory, and at label L2, all of the values must be back in memory.

We first have to access variable a, then c, and then store the sum in d. Then we have to load variable e

and then store the sum in b. Some architectures provide efficient mechanisms to access memory addresses

next to each other (for example, auto-increment address mode can set up the base address being accessed).

Thus, it would be advantageous to have a and c next to each other. That way, we can access variable a from

some base address, and then we do not need to set up the base address again; use of auto-increment address

mode would set the base address up automatically. Similarly, while storing b and d, if the architecture

provides instructions to do multiple stores, it would be efficient (in terms of code size) to store them

using one instruction. This will again require that variables b and d be next to each other, so instead of

a syntax-driven layout (a, b, c, d, e), an efficient layout for these variables above would be a, c, b, d, e. In

other words, depending on the architecture specifications of instructions, the input program changing the

layout of the variables can result in efficient access of the variables.

21.6.1 Implementation

21.6.1.1 Z86E30 with Multiple Register Banks

The Z86E30 [58] architecture does not have explicit memory. All declared variables must be stored in

registers. The processor has 16 banks of 16 registers each. Accessing any register requires the use of an RP.

If the RP already points to the required bank, it need not be explicitly referenced. Otherwise, either the

RP has to be set or the bank number has to be included in the instruction, resulting in long instructions

(each long instruction requires one extra byte). Thus, accessing two variables present in two different

banks would require instructions to set the RP or use a long instruction, so it would be advantageous to

map variables into banks, depending on the locality. That is, variables that are accessed next to each other

should be placed in the same bank, thus avoiding the code space required to access a different bank.



21-16 The Compiler Design Handbook: Optimizations and Machine Code Generation

Naik and Palsberg [37] phrase the register allocation problem as an ILP problem, with an objective

function to minimize the estimated size of the target code. The idea is that an instruction requiring register

from a bank, different from the “current” bank (pointed by the RP), either has to use a long instruction

(requires one extra byte) or has to use an instruction to change the current bank (requires two extra bytes).

The goal of the ILP is to minimize the code size, taking into consideration these constraints.

Function = ComputeCodeSize
BEGIN

codeSize = 0
for i

codeSize += spaceForRPReference ( i)
codeSize += spaceForRPManipulationInsts ( i)

return codeSize
END

For each instruction, the space required for explicitly referring the bank number and any RP manipulation

(setting of RP, [re]storing RP) is summed up as the variable codeSize and fed to the ILP for minimization.

The maps spaceForRPReference and spaceForRPManipulationInsts are set up by the ILP formulation.

21.6.1.2 Comments

Naik and Palsberg [37] claim that their approach results in code that is quite comparable to hand-generated

code for their Z86E30 processor benchmarks. How their technique might fare for bigger benchmarks

needs to be checked.

21.6.1.3 StrongARM Architectures with Load/Store Multiple Instructions

Processors like StrongARM provide special instructions to load/store multiple registers at the same time.

Thus, multiple memory reference instructions can be replaced by one load/store multiple instruction

(LDM/STM). However, constraints must be satisfied to be able to use an LDM/STM:

� C1: Memory address constraint. The sequence of memory locations from or to which m operands

are loaded/stored must be contiguous, starting from the address specified by the content of a base

register.
� C2: Register sequence constraint. The sequence of m registers corresponding to the m operands must

be in an increasing sequence (need not be contiguous).
� C3: Bound on number of operands. The number of operands that can be used in an LDM/STM is

bound by the limitation of the LDM/STM instruction. (For example, for the StrongARM LDM/STM

instructions can have at most 16 operands.)

To be able to compact the multiple loads and stores scattered around the program, we must be able to:

� Group the loads (stores) into different sets. This would require moving load (store) instructions,

and this must be done without altering the semantics of the program.
� Change the layout of the variables and possibly their register assignment such that the constraints

C1, C2, and C3 are satisfied.

Paek et al. [45] propose a three-step process to solve the problem:

� Construct a load–store graph, such that it satisfies constraint C3. A load–store graph is a multi-graph

with nodes representing the variables used in the load/store instructions in the original program.

Edges between the nodes indicate an overlap in the lifetime of the two variables (that is, they

interfere).
� Generate temporary LDM/STM instructions, such that they satisfy constraint C1. This requires

changing the layout of the variables to satisfy C1. Finding an optimal layout is an NP-complete

problem [41]. Researchers have used approximate as well as exact methods (ILP based) to solve the

problem.
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� Register assignment. This step is required to satisfy the constraint C2. The generated temporary

LDM/STM instructions might not satisfy C2. Paek et al. propose a conservative approach and

break the LDM/STM instructions until C2 is satisfied for all the LDM/STM instructions.

21.7 Register Allocation Super Optimizations

Register allocation has been long understood to be a key optimization, and its interdependence with

many other phases of optimization is explored here. Some researchers have tried to come up with a super

optimization that does register allocation and the dependent optimization together. In this section, we

will present one such optimization.

21.7.1 Register Allocation + Stack Location Allocation

To offset the increasing gap between processor and memory speed, some of the modern architectures

allow efficient accesses to RAM for some specific types of accesses. For example, in memories like SDRAM,

accessing 64 bits of data requires the same amount of time as 32 bits. That is, it is more advantageous to

access the SDRAM for 64 bits than 32 bits at a time. Architectures like StrongARM, which are part of popular

platforms such as Intel IXPs [26] and Stargate [36], have instructions that allow multiple memory accesses

in one instruction (load-multiple/store-multiple). A compiler can take advantage of these architecture

and memory features to generate efficient spill code. Nandivada and Palsberg [41] explore this to generate

efficient stack accesses for the local variables, by adding a phase after register allocation (SLA, stack location

allocation). However, there is a phase ordering issue between SLA and register allocation. A unified method

that takes into consideration both problems simultaneously could do better.

An important factor needed for an integrated solution is a unified metric to evaluate the impact of

register allocation and SLA. Nandivada and Palsberg [42] present an ILP-based solution (SLA + RA [reg-

ister allocation] = SARA) to this problem. Besides the constraints generated for the register allocation

problem, they generate the constraints for SLA. They model the two-phase approach of register allocation

followed by SLA in one problem. The register allocation tries to generate contiguous memory accesses

next to each other wherever possible, and the SLA constraints try to merge these memory accesses into

single load-multiple/store-multiple instructions. Each of these load-multiple/store-multiple instructions

helps reduce the execution time, compared to the individual load/store instructions. The key point to

note here is the unified metric to evaluate the solution; their ILP tries to minimize the memory access

time needed because of the spill instructions inserted by the register allocator. The goal of the ILP is to

minimize the cost function defined in Figure 21.14. MemAccessCost is the cost of accessing the individual

words in memory. MemAccessCostReduction is the savings one gets by using load-multiple/store-multiple

instructions. The map NumberOfSingleMemAccess(i) gives the number of single memory accesses at in-

struction i . The map NumberOfMultpleMemAccess(i) gives the number of multiple memory accesses at

instruction i .

Function ComputeCost

BEGIN

Cost = 0

For each Instruction i

Cost + = MemAccessCost × NumberOfSingleMemAccess(i)

Cost − = MemAccessCostReduction × NumberOfMultpleMemAccess(i).

return Cost

END

FIGURE 21.14 Function to compute the unified cost for SARA.
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21.7.1.1 Comments

The combined phase of RA+SLA adds significant compile time overhead, though it gives cognizable per-

formance improvement (3 to 15%) over a sequential application of RA and SLA. However, the practicality

of this method needs to be seen on bigger benchmarks (e.g., Spec2000, etc.).

21.8 Data Structures

Traditionally, graph-based register allocator designers have kept interference graphs as the main source

of representation of the dependencies among the pseudos. Program semantics and architectures enforce

additional constraints among the pseudos and registers. These constraints include requirements such as

(a) architectural specification of some of the instructions mandating the use of specific registers (use of

ST0 in fmul operations in x86, etc.), (b) compiler conventions forcing the behavior of some registers

(caller save, callee save, return register, etc.), (c) architecture forcing certain structures in the operands

of certain instructions (e.g., StrongARM requires that the load-multiple instruction have target registers

in increasing order of their number; in IA-64 a coupled load requires a pair of even and odd registers),

(d) architectural specification prohibiting the use of certain types of registers (e.g., use of floating point

of registers in non-floating-point instructions, etc.), and (e) compiler optimization phases introducing

dependencies among pseudos (e.g., while doing whole program register allocation, the compiler could

decide on arbitrary registers to pass the function arguments).

Representing these constraints is fairly intuitive when represented as mathematical constraints, but

representing and processing them in a graph is hard. The reasons are many:

� Representation: It is not clear how to represent all the different constraints at the same time.
� Evaluation: Given a graph with multiple constraints, processing them to arrive at a metric that can

give an ordering of the vertices (pseudos) is hard.
� Transitive constraints: Graphs are convenient to represent constraints between pairs of nodes.

Representing relations that involve multiple nodes (e.g., transitive relations) is not trivial.

There are advantages of including multiple constraints in one graph. It results in a unified analysis that

takes into consideration all the factors at the same time. To be able to get a unified picture, one needs a

common metric to measure and compare different constraints and then come up with a unified metric.

21.8.1 Implementation

Koseki et al. [32] present a scheme to represent multiple constraints as part of the interference graph, and

they use it for the register assignment process. Their scheme consists of two key data structures: register

preference graph and coloring precedence graph. They use these two graphs to do the register assignment.

21.8.1.1 Register Preference Graph

A register preference graph (RPG) is a directed graph with nodes representing live ranges, registers, and

register classes and edges representing the binary relation between the two nodes. The preferences can be

prioritized according to the benefit the preference would derive. The benefit is calculated as a weighted

metric (weighted by the execution frequency or program structure) estimating the performance differential

between when the preference is honored and when the node is located in memory; this metric gives the

strength of the preference. One way to calculate the strengths is by estimating the difference in the number

of processor cycles required to access a variable when it is in its preferred register and when it is located in

memory. Figure 21.15 represents a sample RPG. Pseudo p1 prefers a floating point register, with a strength

of w1; pseudo p2 and p3 prefer integer registers with a strength of w2. All the pseudos prefer caller save

registers with a strength of w3 and callee save registers with a strength of w4. Pseudo p2 can be coalesced

with pseudo p3 with a strength of w5 when p3 is assigned a caller save register and a strength of w6 when

p3 is assigned a callee save register.
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Prefers

p1 p2
p3

IntRegFloatReg

CallerSaveReg CalleeSaveReg

w1
w2

w2

0

0

0

w3

w4
w4

w4 CallerSave:w5

CalleeSave:w6

CallerSave:w7

CalleeSave:w8

w3

w3

FIGURE 21.15 Sample Register Preference Graph

Koseki et al. [32] track many preference types, for example, coalesce (source node tries to use the same

register as the destination), sequential+ (source node tries to use the previous register relative to the

destination), sequential− (source node tries to use the next register relative to the destination), and prefers

(source tries to use one of the registers included in the destination). These preferences add their strengths

to the edges of the graph. The key point here is to ensure that in the presence of diverse constraints, the

evaluation metric still needs to be uniform.

21.8.1.2 Coloring Precedence Graph

A coloring presence graph (CPG) is a directed graph with nodes representing live ranges and edges

representing the precedence of register selection between the two connected nodes. One can pick any

precedence as the criterion for setting an order among the nodes. Koseki et al. [32] use the degree of the

node as the precedence criterion, so the nodes with lowest degrees have higher precedence. The precedence

is represented by directed edges.

21.8.1.3 Register Assignment

In this phase, the two graphs, RPG and CPG, are consulted, and register assignment is done. Once we have

these two preference graphs, the register assignment would proceed in standard fashion. First, the CPG is

consulted and nodes are picked in a certain order of traversal. These nodes are then checked in the RPG

to compute their preference and accordingly assigned registers, as per the availability.

21.8.1.4 Comments

Koseki et al. [32] present a useful data structure to represent multiple constraints. Their representation

assumes that each variable resides either in memory or in register for its whole lifetime. It would be useful

to be able to relax this constraint. It would also be interesting to see how different subproblems of register

allocation, besides register assignment, can be framed using similar data structures.

21.9 Validating Register Allocation

Given a register allocation algorithm, it is a nontrivial task to determine if the algorithm does the reg-

ister allocation correctly. The problem is undecidable, as the problem in general reduces to program

verification. However, given a register allocation (the output of a register allocation algorithm for a given

input program), we can conservatively validate the allocation.

A simple idea is that register allocation preserves the data flow of the original program. That is, if

a variable is defined at label L 1, and used in L 2, without any other definitions in between, then the



21-20 The Compiler Design Handbook: Optimizations and Machine Code Generation

L 1 : p1 = n

L 2 : p2 = 2

L 3 : p3 = p1 + p2

L 1 :(p1, ℜ j ) := (n, ℜ j )

L 2 :(p2, ℜk) := 2

L 3 :(p3, ℜk) := (p1, ℜ j ) + ( p2, ℜl )

FIGURE 21.16 Register allocation validation. Register allocation is valid for p1, but not for p2.

definition and the use must utilize the same register (or memory location). Or in other words, all the def-

use relations must be preserved. Let us look at the program shown in Figure 21.16 and the corresponding

register allocation.

Variable p1 is defined at label L 1 and used at L 3. Similarly, variable p2 is defined at label L 2 and used at

L 3. A valid register allocation algorithm will ensure that the register assigned to p1 at the def instruction

labeled L 1 will be the same as the register for p1 at the use instruction labeled L 2 (unless the register is

copied to some other register). The variable p1 is defined in register ℜ j and used from ℜ j and hence is valid.

However, variable p2 defined in register ℜk at label L 2 is being used from ℜl at label L 3 and hence is an

invalid allocation.

Two types of instructions provide interesting features for the validation process:

� Copy instructions: The register allocator might insert copy/move instructions. These copy/move

instructions break some old def-use pairs and create new ones. While checking the validity of

the assigned registers, these updated def-uses should be taken into consideration. For example,

in the above example, say there is a new copy instruction (ℜl := ℜk ) between L 2 and L 3. Then

the register allocation for the variable p2 would also be considered valid.
� Branch join points: If two definitions of a pseudo reach at a join point in two different registers, it

would result in a conflicting situation. To avoid such scenarios, for any use of a pseudo with multiple

reaching definitions, the defined values must reach the use point in the same register or memory

location.

21.9.1 Implementation

Huang et al. [25] present an iterative data flow method to validate the register allocation. Their process

consists of three phases: model extraction, constraint generation, and constraint solving.

21.9.1.1 Model Extraction

Given the input program and output register allocated program, two maps are generated:

� A map from each of the non-spill output instructions to an instruction in the input program.

The map has no entries for the spill instructions or any copy instructions inserted by the register

allocator.
� A map from each of the output operands (registers and memory locations) to the input pseudos.

These two maps are used in the next two phases to do validation. The basic idea of the map generation is

to build a one–one mapping between the output program and the input program. This one–one mapping

is an important requirement of such an analysis (see Section 21.9.2).

21.9.1.2 Constraint Generation

In this phase data flow constraints are generated. These equations control the flow of values in the output

program. For each program point, three types of information are generated:

� Active values: These are the values (of pseudos) that are currently held in the operands (registers

and memory locations).
� Evicted values: These are the old values (of pseudos) that were present in the operands, but now the

same operands hold active values for some other pseudos.
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L 1 :(a , ℜ1) := 0

store ℜ1, a

L 2 :(b, ℜ1) := 1

· · ·

FIGURE 21.17 A snippet of register allocated program. Variables a and b both are assigned the register ℜ1. Register

ℜ1 gets spilled after instruction L 1.

� Stale values: These are the old values (of pseudos) that were present in the operands, but now the

same operands hold new active values for the same pseudos.

For each statement, this information is kept in three sets: active set, stale set, and evicted set. Let us look

at the example in Figure 21.17. In this example, after L 2 is processed, the current value of b becomes the

active value in ℜ1, the value of a in ℜ1 is evicted, and any old value of b in any other location becomes stale.

To generate the data flow equations, we start with initial empty values for these sets. These sets are

populated at each instruction as per the def-use information of that instruction and the maps generated

in phase 1. At any join point, the evicted and stale sets get merged. The intersection of the elements of the

active sets (A1 and A2) is used as the new active set. The elements of [A1 − (A1 ∩ A2) ∪ A2 − (A1 ∩ A2)]

are added to the stale set.

21.9.1.3 Constraint Solving and Error Checking

In this phase a pass is made over the input program, and then for each instruction, it checks the pseudos in

the original program and operands in the output program. If any of the mappings of pseudos (to operands)

at any instruction is an element of the stale set or evicted set, then an error is flagged. If no error is flagged

during this pass, the register allocation is considered validated.

21.9.2 Limitations of Data Flow---Based Validation

There are limitations to the data flow–based validation process:

� Control flow: This data flow–based validation process has an underlying assumption that the control

flow has not changed significantly. It is based on the assumption that after register allocation is

done, there is a direct mapping from the instruction and pseudos of the original program to

the instructions and pseudo–register pairs in the new program. The register allocator may add

new instructions (for spilling, coalescing, etc.), and these instructions can still be mapped as an

intermediate computation between two instructions of the original program. However, this might

not be true if the register allocator is allowed to modify the control flow of the program. For example,

if the register allocator is allowed to delete instructions, (re)move definitions or uses of pseudos, or

reschedule the original code, then a data flow–based validation framework, like the one suggested

above, would find it hard to map the new instructions and pseudos to the original ones and might

not be able to validate the allocation.
� Computations: The register allocator might insert instructions that do arithmetic or some other

computation. It would be very hard for the validator to interpret arbitrary computations and

validate the output.
� Validation not verification: An instance of register allocation validated by a process similar to the

above does not give any guarantees about the correctness of the register allocator.

21.10 Other Interesting Ideas

In this section, we present some more interesting ideas that have been proposed and extended in recent

years but not categorized under any head in this chapter.
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21.10.1 Live Range Splitting

A naive approach to spilling a live range is by spilling the entire live range. That is, for every def in the

live range, a store is inserted and a load is inserted for every use. Such an approach can lead to significant

performance degradation if the uses/defs of the live range are present in a frequently executed part of the

program.

The point to note is that the standard interference graphs give a skewed notion of interference; if a live

range interferes with K other live ranges, it gives an impression that all of them interfere simultaneously.

In reality, the degree of interference varies at different program points. Hence, a live range may be assigned

to a register at some program points and spilled at others. Also, based on the execution frequency, the

cost of spilling a live range is not the same at all program points; spill instructions inserted in frequently

executed code are more expensive than those inserted in infrequently executed code. Some researchers

[8, 31] have proposed splitting of live ranges into subranges before the register assignment phase, and

others [5, 14, 15, 27] have proposed it during the register assignment phase and assigning registers to some

of these subranges. Live range splitting done before register allocation may increase the register pressure,

because of insertion of copy instructions, and since spilling is done as another separate pass after register

assignment, these approaches may miss out on some opportunities to find the best spilling candidates.

Nandivada and Palsberg [42] propose a scheme of fine grain splitting during the combined phase of

register assignment and spilling. A live range can be split at any program point, irrespective of whether

there is a use-def of the corresponding variable at the program point. This splitting is solely driven by the

execution time penalty of the overall spill code.

Nakaike et al. [40] propose a scheme (employed before register assignment) to split the live ranges

at each join and fork point of basic blocks. To overcome the penalty of copy instructions, they coalesce

subranges in the frequently executed code based on profile information. Nakaike et al. restrict their splitting

to subranges that have interference exceeding the number of available registers. They remove additional

copies present even after coalescing, by spilling some of the subranges. They show that their method is

scalable and gives improvements over other live range splitting algorithms.

21.10.2 Progressive Register Allocation

Traditional register allocators work with a notion of 0/1 completion. That is, they either give the designated

solution or not. There are fast algorithms that give inferior solutions, and there are slow algorithms

that produce superior solutions. It would be conceivable to have an algorithm that produces an initial

solution and gradually improves the solution based on time or other resources. Typical candidates for

such an arrangement include solutions based on ILPs genetic algorithms, and other exact solutions. With

some amount of engineering (providing a simple initial solution), these algorithms, which incrementally

find better solutions, can be guaranteed to give a valid solution at any point during the running of the

algorithm. Thus, a compiler could interrupt the register allocator during the running of the allocator, and

the allocator would return a valid solution.

Koes and Goldstein [30] present a global progressive register allocator that quickly finds an initial

solution and progressively finds better solutions until a provably optimal solution is obtained or a set time

limit is reached. Their algorithm is derived from a model of register allocation based on multicommodity

network flows that explicitly represent register allocation subproblems such as spill code optimization,

register preferences, copy insertion, and constant rematerialization.

The register allocation problem can be intuitively represented as a multicommodity network flow model.

The edge costs are used to model the cost of spilling and the cost of register preference. Each node in the

network represents an allocation class (register, constant, or memory). The variables are represented as

commodities, with each variable definition represented as a source and the last use of each variable shown

as a sink. Thus, valid allocations can be represented as a valid flow (from source to sink), and cost of flow

is the cost of the allocation.

At each iteration, Koes and Goldstein compute a lower bound by using the theory of Lagrangian

relaxation, which guides the optimal solution and gives a hint of the quality of the current solution. The
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authors show that, even though there is no guarantee of finding an optimal solution, compared to the

standard iterated graph coloring approach, their approach gives good improvements in code size reduction.

It would be interesting to see the extensions to these ideas to optimize for execution time and evaluate

the impact. Also, it would be interesting to encode properties such as register coalescing and more complex

features such as bitwidth information in the flow graph.

21.10.3 Register Assignment and Hardware Features

Smith et al. [53] extend the standard graph-coloring-based register assignment algorithms to take into

consideration two common hardware register features: register classes (a single register may be part of

multiple register classes) and register aliases (multiple register names may be aliases for a single hardware

register).

In traditional graph-coloring-based register allocation algorithms (Chaitin–Briggs), two nodes are

considered to be interfering if there is a connecting edge between them. If in the Simplify phase of the

register allocation, a node is found to have a degree less than K (K being the number of available registers),

then it is considered to be trivially colorable. Smith et al. extend this notion to take into consideration

classes and aliasing. If a node n has m neighbors, and m is less than the number of registers available in

the class of registers designated for n (Cn), then n is trivially colorable.

To handle aliasing information, Smith et al. [53] first introduce the notion of an alias map. For each

register r , alias(r ) returns the set of register name with which it aliases. This definition is extended to sets:

alias(S) is the union of the aliases of all the members of S. Similar to the notion of degree of the node,

Smith et al. propose a measure called squeeze∗(n), defined as the maximum set of registers that could be

denied to n and are part of Cn. It can be computed as

squeeze∗(n) = max
S∈colorings of n’s neighbors|Cn ∩ alias(S)|

If squeeze∗(n) < |Cn|, then the node is trivially colorable.

This measure squeeze∗ requires enumerating of the colors of all the neighbors and can be very expensive.

The authors instead propose a heuristic to compute it by taking into consideration the worst-case interfering

scenario in the context of Cn that can be computed as a table and looked up during compilation.

Smith et al. show that their heuristic does well to color SPECFP 2000 floating point benchmarks.

However, it needs to be seen how their work compares against a scheme like that of Koseki et al. [32] and

extends to other register allocation preferences.

21.11 Common Misconceptions

In this section, a few of the common misconceptions that are prevalent in the community are addressed.

Some of these misconceptions may seem trivial, but the author has found many contrasting experiences

during his interactions with different researchers to merit their inclusion:

� Register assignment: Looking at the vast research work on the register assignment problem, one

might get a deceptive notion that register assignment is the most important part of the register

allocation process. However, spill code generation and coalescing, to some extent, have more impact

on the overall performance. Irrespective of how optimal the register assignment process is, if the

spill code generation is not done well (for instance, too many spill instructions inside frequently

executed code) or if too many unnecessary register–register copy instructions remain in the code,

then the runtime penalty can be very high.
� Registers used: Another interesting misconception is about the number of used registers. Besides

the theoretical importance of finding out the minimum number of required registers, the practical

significance of this result is minimal. In an architecture with N number of registers, the more

important question is the following: Can register allocation be done for a given program with N

number of registers?
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The machine code generated by two different register allocation algorithms that use m1 (<N)

and m2 (<N) will have exactly the same execution time, provided both the allocators spill alike.
� 0/1 assignment: Many register allocation techniques are based on the premise that a pseudo either gets

a register or is placed in memory. That is, a pseudo either gets a register for the whole of its lifetime

or a memory location, and every time a pseudo is accessed, which has been mapped to a memory

location, we need a free register. Thus, programs in three-address code form might require up to two

free registers at all program points; this can lead to a considerable increase in program execution time

(arising out of the increased spill code owing to two fewer registers). There are other drawbacks of

such an approach as well. Many times it might be useful to keep the pseudo in register for some part

of the program and then place it in memory for some other part. An intuition for such an approach

comes from the experience that at different program points, different pseudos might be considered

hot and thus be needed in registers for efficient program execution. In such a scenario, permanently

assigning registers and memory locations to a pseudo for all of its lifetime might not be a good idea.
� Caller and callee save: Two register allocations using exactly the same number of registers and

spilling the matching variables (live ranges) can result in machine codes that take different amounts

of time to execute. This might happen because of the difference in the types of available registers.

The registers that are considered caller save, if used in a function, must be saved and restored at

the beginning and end of the function. Depending on the number of times the function is called

during execution, the impact of these stores and restores can become significant.
� Pre-colored registers: The input program given to a register allocator invariably uses both pseu-

dos and registers. Typically, pre-colored registers are used to respect calling conventions (passing

parameters, return values). A register allocator must respect the data flow semantics of these reg-

isters and not interfere with the pre-colored registers. However, not using these registers in the

whole program might not be an efficient way to handle them. The register allocator can compute

the liveness information for these pre-colored registers, and depending on the liveness information

(the program points where the pre-colored registers are not live), the pre-colored registers can be

used for mapping to pseudos.
� Evaluation metric: Register allocation is one of the most important optimization phases in the op-

timization sequence of any compiler. Measuring the number of registers used or the number of live

ranges spilled or the number of spill instructions generated does not show the actual impact. How-

ever, many recent papers limit themselves to some of these static numbers and draw conclusions

based upon them. The most reliable metric to compare and contrast two register allocation algo-

rithms is to compare the final output, for example, (a) execution times of the code generated by the

two allocators if the goal is to optimize for speed, (b) final code size of the two allocators if the code

size reduction is the goal, and (c) power consumption during execution if power saving is the goal.
� Interdependence: To be able to understand and estimate the real impact of a register allocation algo-

rithm, one needs to measure the impact in the presence of other dependent optimizations. Register

allocation has an impact on many optimizations, so measuring its impact in isolation might not

be very useful. A way out is to implement the register allocator as a module in an optimizing com-

piler and then measure the execution time/code size/power consumption of different benchmark

programs in the presence of other optimizations.

21.12 Conclusion and Future Directions

The research work presented in this chapter is indicative of the interest in the area of register allocation.

Though this problem has been studied for a long time, the problem continues to generate challenging

problems and interesting solutions.

An interesting observation by Sarkar and Barik [51] is that even though the graph-based register

allocation algorithms are faster than approaches depending on exact methods, they still take a lot of time.

Efficient and scalable approaches to register allocation algorithms will continue to be areas of interest,

owing to the increasing sizes of applications under consideration.
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Because of the close interaction between the register allocator module and the target architecture,

different evolving architectures open new frontiers for register allocation. Specialized register allocation

techniques in the context of multi-core architectures (with many available registers) and embedded systems

(with very few registers) will be two key areas of research in the future.

Processors constrained by power present a different dimension to the register allocation problem.

Specialized register access mechanisms set up in these processors open up new goals for register allocation.

Irregular architectures (e.g., IA32, x86) come with features such as register pairing (a value can be stored

in two adjacent registers), register classes, subword register access, and so on. Fast and scalable register

allocation techniques understanding these features will go a long way.
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ABS. see Abstract buffer state (ABS)

Absent, 12-8
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Abstract execution, 1-29
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Abstract interpretation

analysis of access control, 2-11

based branch prediction modeling, 1-30

escape analysis, 13-21–23

program statements, 12-19–22

separated approach, 1-27–30

Abstraction, 12-12

computing intersections, 12-39
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refinement, 12-39

truth-blurring embedding, 12-16–17
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Abstract pipeline, 1-29

Abstract semantics, 12-24

Abstract transformers, 12-23

Access control

abstract interpretation, 2-11

cryptography, 2-14
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static analysis, 2-9–14

Access latency, 5-2

Accumulation, 15-12

decomposition, 15-17

Accuracy, 5-18

WCET analysis, 1-35

WCET estimation, 1-40–41

ACL. see Affine control loops (ACL)

Actfor principals, 2-22

Active values, 21-20

Actual-in and actual-out nodes, 14-9

Actual spill, 21-3

Actual WCET, 1-2

Acyclic singly linked list, 12-6

Adaptability, 8-2

Adaptive compilers, 8-7–8

Adaptive fragment selection, 10-6–7

Adaptive optimizing compiler, 8-7

Adaptive tenuring, 6-18–19

Addition domain, 15-15

Addressable memory spaces, 5-2

Addressing modes, 18-24–25

Address profiles, 4-1

Adhesiveness, 14-4

Adjacency ordering, 20-23

ADL. see Architecture Description Language (ADL)

Affine control loops (ACL), 15-21

Affine images, 15-5

Affine lattices, 15-6–7

functions, 15-8

Age of objects, 6-18, 6-19–20

Aho-Corasick algorithm, 17-10

Alias, 12-3, 12-32, 14-16

count, 9-11–12

flow dependences, 12-33

memory, 19-4

Allocate pointer, 6-26

ALT statement, 14-20

Ambiguity, 16-21

Analysis technique, 1-36–37

Analysis time, 1-35, 1-41

AND/OR-tree model, 19-25–26

Anonymity rule, 9-4–5

ConfinedFJ type system, 9-8–9

Anonymous method, 9-4

Anticipable, 11-36

Antidependence, 15-36, 19-3, 20-7

Anytime gc, 6-5

APDG. see Augmented program dependence graph

(APDG)

API

conformance specifications, 12-37

uid-setting system calls, 2-10

Appel-Ellis-Li collector, 6-29

Appel’s SML/NJ collector, 6-22

Application specific design constraints, 3-2–3

Application specific instruction set processors (ASIP),
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Application specific processors, 19-43–44

Approximately depth-first, 6-15

ARA. see Artificial resource allocation (ARA) algorithm

Architecture Description Language (ADL), 16-3–16

ambiguity, 16-21

comparison, 16-17

debugging, 16-23–24

elements, 16-18–19

irregular constraints, 16-22

operation semantics, 16-22–24

organization, 16-19–20

variable latency, 16-21–22

Archival storage, 2-20

Argument escape nodes, 13-25

Arity 0 tables with static costs, 17-19

ARM processors, 1-43

Array reference allocation, 18-22–23

Artificial resource allocation (ARA) algorithm, 18-21

ASIP. See Application specific instruction set processors

(ASIP)

Assignment, 21-24

Asymptotic complexity, 11-25

Asynchronous exceptions, 10-13

Asynchronous message passing, 14-19

Atomic action, 6-25

Attacker, 2-21

Attacker GCS Interface, 2-21

Attacker Node, 2-23

Attacker User Command, 2-21

Attribute-based system requirements, 2-15

Augmented program dependence graph (APDG), 14-17

Automated authorization policy enforcement, 2-13

Automatic label inference, 2-19

Automatic placement of authorization hooks, 2-13

Automaton-based approaches, 19-23–24

Auxiliary automaton, 17-30

grammar, 17-31, 17-33

B

Backend, 15-19–20

Back-translation, 11-47

Backward propagation, 13-27

Backward slicing, 14-2

dynamic, 4-9, 4-12, 4-13

Baker’s copying method, 6-28

Brooks’ variation, 6-28–29

ToSpace, 6-28

Baker’s treadmill noncopying collector, 6-26–27

Barriers, 6-24

Baseval pairs, 13-12–13

Basic block, 19-1, 19-4

context, 1-33–34, 1-39–40

data structures for value numbering, 11-29

definition, 21-2

energy estimation, 1-37

graph, 1-31

hashing-based value numbering, 11-28–29

instruction-specific energy, 1-37

scheduling, 19-14–26, 19-28

BCET. see Best-case execution time (BCET)

Behavioral languages, 16-5–8

Best-case execution time (BCET), 1-2

BHR. see Branch history register (BHR)

BIBOP. see Big bag of pages (BIBOP)

Bidirectional dynamic slicing, 4-11–13

Bidirectional object layout, 13-5–6

dispatch tables, 13-5

virtual method table, 13-6

Big bag of pages (BIBOP), 6-5

Binary dynamic compilation, 10-4

vs. JIT compilation, 10-17

Binary matrix implementation, 13-11

Binary optimization, 10-9–10

Binate covering, 18-14

Binding, 6-2

Bin packing cylinder, 20-61–62

Bit-packed encoding algorithm, 13-12

Bitwidth analysis, 21-11–12

Bitwidth-aware

live range computation, 21-13

register allocation implementation, 21-12–13

register allocation techniques, 21-10–14

Black box approach

design of compiler, 8-29

models, 8-9

Black edges, 18-18

Blanchet analysis, 13-27

Block graph, 1-22, 1-31

Blocking, 5-11, 5-13–15. see also Basic block

matrix multiply factors, 8-12

Blue edges, 18-18

Boehm-Demers-Weiser collector, 6-5

Boolean-valued operators, 8-19

Bottom-up code-generator generators, 17-21

Bottom-up rewrite system (BURS), 17-4

Bottom-up tree-parsing approaches, 17-14–23

Bounding box method, 15-34–35

Bound-T tool, 1-41

Branch default prediction, 1-30

Branch history register (BHR), 1-23

Branch misprediction, 1-40

Branch prediction

analysis integration, 1-34–35, 1-40

constructive effect, 1-24

destructive effect, 1-24

energy consumed, 1-37

interaction, 1-24

interference, 1-20

modeling, 1-30

table, 1-23

Branch target buffer (BTB), 1-30

Branch terminology, 1-23–24

Breach of confinement, 9-10

Brooks’ variation, 6-28–29

Brownbridge-Salkild algorithm, 6-7

Brown edges, 18-18

BTB. see Branch target buffer (BTB)

Buffer overflows

static analysis, 2-8

using forward slice, 4-11



Index I-3

Bug finding, 9-3

Build, 21-2, 21-3

BURS. see Bottom-up rewrite system (BURS)

Bypassing, 19-8

Bypass operation, 13-23

C

CACAO, 13-9, 13-12

fast class descriptor layout, 13-9

Cache

conflict graph, 1-22

conscious garbage collectors, 6-32

flushing, 10-11

hit, 1-22

line coloring, 5-26–27

line conflicts, 5-24

line size vs. stride, 5-10

memory, 5-1

memory hierarchies, 5-2

miss, 1-17, 1-22, 5-2, 5-9

miss count, 1-23

modeling, 1-27

organizations, 3-8

preemption delay, 1-42

scenario of BB, 1-34

terminology, 1-22

transformation interactions, 8-5–6

update function, 1-28

Cache prediction

analysis integrating, 1-34–35, 1-40

interaction, 1-24

CAD. see Computer assisted design (CAD) tool

Call edges, 14-9

Caller and callee save, 21-24

Call graph, 13-15

Call-site nodes, 14-9

Can be avail, 11-43

CAPACITY, 16-13

Capacity misses, 5-2

Card marking, 6-23

Cartesian product algorithm (CPA), 13-18–19

Causality constraints, 15-19

CCFG. see Concurrent control flow graph (CCFG)

CCP. see Conditional constant propagation (CCP)

CCured, 2-8

CDDG. see Compact dynamic dependence graph

(CDDG)

CDG. see Control dependence graph (CDG)

CDS. see Control dependence subgraph (CDS)

CFA. see Control flow analysis (CFA)

CFG. see Control flow graph (CFG)

CHA. see Class hierarchy analysis (CHA)

Chain rule closure, 17-15

Chaitin-Briggs register allocation, 21-3

definition, 21-2

Chase-Wegman-Zadeck algorithm, 12-40

Cheney’s copying collector, 6-12–13

Chip multiprocessors (CMP), 5-27

Choi et al. analysis, 13-27

Chordal graphs

properties, 21-5–6

register allocation, 21-5–6

Chronos WCET analyzer, 1-41

CHS. see Class hierarchy subgraph (CHS)

CIL DSE technique, 3-7

Circuit retiming, 20-28

Circumference minimization, 20-63

Clarity, 9-18

Class call graph, 14-25

Class control flow graph, 14-25

Class dependence graphs, 14-25

Class header node, 14-25

Class hierarchy, 13-15

partitioning, 13-12–13

Class hierarchy analysis (CHA), 13-14–15, 13-16

Class hierarchy subgraph (CHS), 14-25

Class labels, 8-15

Class typing rules, 9-7–8

Cleanness of programs, 12-37

Client, 2-21

Clock network energy, 1-38

Clock power, 1-36

CLooG code generator, 15-45

Close-to-optimal phase orderings, 8-23

Closure Reduction, 17-30

Cluster assignment

first approach, 20-37

by graph partitioning, 20-37–38

by prescheduling, 20-38–39

by register partitioning, 20-39

Clustered architecture, 19-44

VLIW, 20-36

Clustering

matrices, 15-23

and tiling matrices, 5-13

CMP. see Chip multiprocessors (CMP)

COACH, 16-5

Coalesce, 21-2, 21-3

Coalescing, 21-2

Coarse-grained pruning, 4-13

Coarse-grained reusability, 18-8

Coarse-grained software pipelining, 20-40

Code cache management, 10-11

Code fragment

control flow graph, 1-5

syntax tree, 1-5

Code generation, 20-17–18, 20-24–26

pass, 17-22–23

rotating register files, 20-25

routine, 17-24

software pipelined loop nest, 20-63–65

Code layout

algorithm, 5-25

optimizations, 5-2

procedures, 5-25–26

Code motion phase, 11-46

Code restructuring optimizations, 5-2

Code sequence, 19-4

Code sinking, 10-8

Code size reduction, 21-15–16
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CodeSyn, 18-14

Code templates

function dot from, 10-18

specializing function dot from, 10-18

Coding view, 14-18–19

Coerce, 12-23

action example, 12-30

operation, 12-26–28

Cohen’s algorithm, 13-11

Cohen’s impossibility result, 2-5–6

Cold blocks, 5-26

Cold fields, 5-22

Cold misses, 5-2

Collision matrices, 19-23, 19-24

Coloring compression, 13-7

Coloring presence graph (CPG), 21-19

Combined code generation, 19-9–12

Combined register allocation and instructions

scheduling problem (CRISP), 19-40

Comments register assignment, 21-7

Commutative diagram, 12-21

Compact class descriptor layout, 13-9

Compact dynamic dependence graph (CDDG),

14-15

Compaction, 6-3

Comparison checking, 4-14

Compatibility constraint, 12-27, 12-28

hygiene conditions, 12-30

Compilation strategies

performance, 8-28

platform to search and evaluate, 8-28

Compiled code cache, 10-5

Compiler

aided design of embedded computers, 3-1–24

assisted embedded system design, 3-4–5

as CAD tool, 3-4–5

characterizing, 8-8–13

design, 3-24, 8-1–30

effects, 3-24

embedded system, 3-3–4, 3-24

framework, 3-9

horizontally partitioned cache, 3-9–16

interactions, 8-8–13

phases, 8-7

shortcomings, 8-2

traditional and DSE, 3-5

Compiler-in-the-loop

design space, 3-2, 3-6, 3-17

DSE, 3-23

exploration, 3-6–7

HPC design, 3-17–24

methodology, 3-2, 3-17

Compile-time allocation, 7-21–22

Compile-time analysis, 15-37

Complex page partitioning heuristic, 3-11–12

Composite data types and pointers, 14-16–17

Compressed sparse row (CSR), 15-41

sparse-tiled Gauss-Seidel, 15-43

Compressing whole execution traces, 4-6–8

Computation cost, 15-31

Compute dead bit information, 21-13

Computed variable, 15-11

Computer assisted design (CAD) tool, 3-4–5

Computer encoding algorithms, 13-12

Computer system description languages (CSDL), 16-8

Compute zero bit sections, 21-12

Computing intersection abstraction, 12-39

Computing non-locals algorithm, 11-18

Computing non-locals set algorithm, 11-19

Computing states procedure, 17-11

Computing transitions on operator procedure, 17-20

Concrete cache state, 1-27

Concrete execution, 1-29

Concrete pipeline, 1-29

Concurrent

collectors, 6-4, 6-23

graph, 14-20

operating system level, 14-19

parallel slicing programs, 14-24

Concurrent control flow graph (CCFG), 14-24

Concurrent program dependence graph (CPDG),

14-20

Conditional constant propagation (CCP), 11-20–24

algorithm, 11-21, 11-22

flow graph version, 11-21–22

SSA graphs, 11-23

Confined featherweight Java (Confined FJ), 9-5

auxiliary definitions, 9-5

confinement and anonymity rules, 9-8–9

expression typing rules, 9-7

hash table class written, 9-9–10

syntactic anonymity constraints, 9-7

syntax, 9-5–6

Confined types, 9-2, 9-4

Confinement inference, 9-10–11

problem and solution, 9-11

Confinement rules, 9-4

ConfinedFJ type system, 9-8–9

Confinement theorem, 9-10

Conflict misses, 5-2

Conflict ordering, 20-23

Connection graphs, 13-21–22

loop, 13-25

sequence, 13-23

Conservative extraction of store properties, 12-17–19

Conservative pointer-finding, 6-5

Constflag, 11-29

Constrained optimization approach, 15-31

Constraint-generation rules, 12-28

Constraint propagation methods, 1-10

Constructor expressions, 9-15

Contention query module, 19-21

Contiguous dimension, 5-5

Continuous idle periods

with transition-aware scheduling, 7-16

without transition-aware scheduling, 7-16

Control dependence, 1-18, 4-9

definition, 14-7

edges, 14-9

Control dependence graph (CDG), 14-7

Control dependence subgraph (CDS), 14-25

Control flow analysis (CFA), 13-16
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Control flow graph (CFG), 1-4, 1-14, 5-25, 19-4

code fragment, 1-5

definition, 14-6

DVS call placement, 7-10

fragment, 1-16

Control flow profile, 4-2

Control flow traces, 4-1

Control independent, 19-4

Control specialization, 10-8

Convergence, 9-1

iterations, 15-41

Copy folding, 11-47

SSA renaming, 11-48

Copying collection, 6-14

Copying collectors, 6-12–15

performance, 6-13–15

Copy insertion, 11-47

Core algorithm, 15-15–16

Corresponding instruction executions, 4-14

Corrupt Pointer, 4-10, 4-11

Cost-augmented derivation tree, 17-7

Cost-augmented regular tree grammar, 17-8

Cost function performance/energy estimator, 3-9

Covert flows, 2-12

CPA. see Cartesian product algorithm (CPA)

CP algorithms

flow graph, 11-26–28

limitations, 11-20

CPDG. see Concurrent program dependence graph

(CPDG)

CPG. see Coloring presence graph (CPG)

CPU slack time, 7-4, 7-13

Creation space, 6-15

CRISP. see Combined register allocation and

instructions scheduling problem (CRISP)

Critical edge splitting

lost copy problem, 11-49

Critical path, 19-6

Critical predicate

fault, 4-12

Crossover operation, 8-20

Cryptography

combine, 2-14

CSDL. see Computer system description languages

(CSDL)

CSR. see Compressed sparse row (CSR)

Cube root rule, 7-3

Cyclicity, 12-4

Cyclic scheduling, 19-15, 19-33–37

Cydra architecture, 20-20

Cydra 5 compiler

instruction scheduling, 19-26

Cylinder

bin packing, 20-61–62

D

DAG. see Direct acyclic graph (DAG)

DAT

IDF computation, 11-17

Data array, 15-36

Data cache, 1-25

modeling, 1-26–27

Data dependence, 1-17, 20-7–8

definition, 14-7

edges, 14-9

Data dependence graph (DDG), 14-7, 20-8, 20-29

definition, 14-7

loop, 20-5

Data dependence subgraph (DDS), 14-25

Data flow analysis, 1-9–10

algorithm, 12-41

Data flow-based validation limitations, 21-21

Data footprint, 5-5

Data hazard, 19-7

Data layout

optimizations, 5-2

transformations, 5-22–23

Data locality runtime reordering, 15-37–39

Datalog rules, 2-11

Data object layout, 5-24

Data partitioning

algorithms, 3-9–10

heuristic, 3-9

Data prefetching, 5-16–21

Data reordering function, 15-42

Data reuse, 5-5

Data slices, 14-4

Data structures, 12-5–6

basic blocks, 11-29

characterized, 12-6

register allocation techniques, 21-18–19

value numbering, 11-29

DCT. see Discrete cosine transform (DCT)

DDG. see Data dependence graph (DDG); Dynamic

dependence graph (DDG)

DDS. see Data dependence subgraph (DDS)

Dead bits, 21-12

Dealing loops, 1-12

Deallocation timing, 10-11

Debugging, 14-3

ADL descriptions, 16-23–24

WET, 4-8–16

Decentralized labels, 2-17

Declaration linked-list data, 12-2

Declassification mechanism, 2-18

Decode, 1-37

Decomposed software pipelining (DESP), 20-14, 20-32

Decomposition of accumulation, 15-16–17

Decoupled software pipelining (DSWP), 20-40

D-edges. see Dominator edges (D-edges)

Default prediction, 1-30

Deferred reference counting, 6-6

Delayed branching, 19-1, 19-8

Delayed load scheduling (DLS) method, 19-9

Delta debugging, 4-10

Deoptimization, 10-13

Dependence

after skewing, 5-14

before skewing, 5-14

constraints, 20-12
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direction vector, 5-4

distance vector, 5-4, 20-7

dynamic slicing, 14-13–16

dynamic slicing method, 14-15

graph, 14-15, 19-5

instruction sequence, 19-6

latency, 20-7

loop indices, 5-7

loop nest, 20-51

loops, 5-3–4

profile, 4-2

types, 2-19, 9-19

Dependent ML, 9-19

Depth-first traversal, 6-10

Dereferencing NULL pointers, 12-2

Derivation tree, 17-4

illustrating triangle trimming, 17-23

subject tree, 17-26

Description languages, 16-1–24

Design space exploration (DSE)

ASIP, 16-3

compiler, 3-2

compiler-in-the-loop, 3-6

DESP. see Decomposed software pipelining (DESP)

Detecting interactions, 8-13–14

Detecting parallelism, 15-37

Detecting viruses, 2-5

Deterministic finite automation (DFA) minimization,

11-27

Deterministic pushdown automaton, 17-25

Deutsch-Schorr-Waite pointer reversal algorithm, 6-10

Developer retargetability, 18-9–10

Devirtualization, 13-14–19

techniques, 13-19–20

DFA. see Deterministic finite automation (DFA)

minimization

DFST

dominator tree, 11-32

flow chart, 11-32

Different compilation flows, 16-2

Diffval pairs, 13-13

Digital signal processors (DSP), 16-2, 18-1

architectures, 18-2–4, 18-3

classes, 18-3

code generator flow, 18-10

compilation, 18-5–6

constraints, 18-5

data-path, 18-6

retargetable compilation, 18-7–10

retargetable VLIW compiler framework,

18-1–25

Dijkstra’s method, 6-30

Dijkstra’s write-barrier, 6-26

Diophantine equations, 2-7

Direct acyclic graph (DAG), 13-12, 19-5–6

shared nodes, 17-32

Directed graph, 14-5

Direct information flow, 2-12

Discrete cosine transform (DCT), 1-25

Disjointness, 12-3, 12-4

Dispatch table

bidirectional object layout, 13-5

compression, 13-6–7

without virtual method tables, 13-10

Distributed garbage collection, 6-32

Distributed program path, 14-22

Distribution phase, 2-22

Distributivity, 15-17

DJ-graph, 11-12

dominance frontier of single node, 11-14

properties, 11-12–13

DLS. see Delayed load scheduling (DLS) method

DLS method, 19-13–14

DLX pipeline, 16-12

DODG. see Dynamic object-oriented dependence graph

(DODG)

Doligez-Leroy-Gonthier collector, 6-30

Doligez-Leroy-Gonthier method, 6-26

Dominance frontier, 11-6–7

computation, 11-7, 11-14–16

computing, 11-14

definition, 14-5

DJ-graph, 11-14

ladder graph, 11-13

set of nodes, 11-14–17

single node, 11-14

Domination concept, 9-11

Dominator edges (D-edges), 11-12

Dominator tree, 11-6

DFST, 11-32

Dot-product function

before and after specialization, 10-18

Dotted, 12-8

Down-safety, 11-43

DPDG. see Dynamic program dependence graph

(DPDG)

DRAM. see Dynamic Random Access Memory (DRAM)

DSE. see Design space exploration (DSE)

DSP. see Digital signal processors (DSP)

DSWP. see Decoupled software pipelining (DSWP)

DTrace, 2-9

DVS. see Dynamic voltage scaling (DVS)

Dynamic access control, 2-11–12

Dynamic binary translation, 10-14–15

Dynamic branch prediction modeling, 1-23

Dynamic compilation, 10-1–19

approaches, 10-3–4

definition, 10-1

pipeline, 10-2

Dynamic compiler

control specialization, 10-8

DVS algorithm, 7-12

reliability and robustness, 10-14

Dynamic data, 4-9

Dynamic dependence graph (DDG), 14-15

Dynamic energy, 1-37–38

Dynamic labels, 2-16, 2-19

Dynamic matching of program versions, 4-14–16

Dynamic object-oriented dependence graph (DODG),

14-26–27
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Dynamic power, 1-36, 20-33

Dynamic principals, 2-19

Dynamic process graph, 14-23

Dynamic program dependence graph (DPDG), 14-23

Dynamic programming, 17-5

Dynamic program slicing, 4-8–9

Dynamic Random Access Memory (DRAM), 7-3

Dynamic resource usage, 7-15

Dynamic slices, 14-2, 14-11, 14-12, 14-21–22,

14-27–28

object-oriented programs, 14-26–27

times using WET, 4-10

using dependence graphs, 14-13–16

Dynamic translation pipeline, 10-15

Dynamic voltage scaling (DVS), 7-2, 7-3–12

algorithm, 7-6, 7-12

call placement, 7-10

control flow graph, 7-10

decision algorithm, 7-13

definition, 7-4

dynamic compiler, 7-12

finding regions, 7-5–7

integer linear program-based compiler algorithm,

7-8–9

MILP formulation, 7-10–12

region-based compiler algorithm, 7-4–5

Dynamo system online profiling, 10-7–8

E

Earliest start (ESTART) time, 20-12

EDA. see Electronic design automation (EDA)

Edge-marking dynamic slicing algorithms, 14-16

Efficiency, 18-9

Electromagnetic (EM) leakages, 2-6

Electronic design automation (EDA), 16-5

Elitism, 8-21

EM. see Electromagnetic (EM) leakages

Embedded systems

compiler effects, 3-24

compilers, 3-3–4

design constraints, 3-2–3

highly customized designs, 3-3

scratch pad memory, 5-2

Embedding, 13-3

theorem, 12-18

Empirical regression models, 8-9–11

Empty label, 2-22

Energy, 1-36

Energy analysis, 1-1–44

Energy-aware compiler optimizations, 7-1–24

power and energy models, 7-2–3

Energy consumption, 20-33

branch prediction, 1-37

fetch and decode, 1-37

SDRAM, 3-10

Energy estimation

basic block, 1-37

Energy model, 7-17

Energy optimization, 3-11–12

Energy reduction

achieved by exploration algorithms, 3-22

achieved by greedy exploration, 3-20

achieved by OMN, 3-14

achieved by OM2N, 3-13

achieved by ON, 3-15

exploration time tradeoff, 3-21–23

scope, 3-11

Energy savings, 3-18

Ensemble-server, 2-23

Entry tables, 6-21

Environment, 1-9

Ephemeral Garbage Collector, 6-22

EPIC. see Explicitly parallel instruction computing

(EPIC)

Epilogue, 1-33

Equational language, 15-9–10

Equivalence of expressions, 11-26

Escape analysis

abstract interpretation, 13-21–23

object-oriented languages, 13-20–27

ESTART. see Earliest start (ESTART) time

Estimated WCET, 1-2

Estimation algorithm, 1-32–33

Evaluation metric, 21-24

Evicted values, 21-20

Evolutionary operations, 8-19

Executable, 11-21

Execution cycle latency, 1-16

Execution graph, 1-31

Execution time model, 15-33

Exhaustive collectors, 6-4

Exhaustive exploration, 3-18–19

algorithm, 3-18

Explicitly parallel instruction computing (EPIC), 20-1

architecture, 19-44

Exploiting infeasible path information

ILP-based WCET calculation, 1-15–16

tree-based WCET calculation, 1-12–15

Exploration

algorithms, 3-22

CIL vs. SO, 3-23

energy savings, 3-18

Exploration time

exploration algorithms, 3-22

tradeoff energy reduction, 3-21–23

Express evaluation, 11-22

EXPRESSION, 16-12–13, 16-17

Expression

semantics, 15-11

syntax and domains, 15-10

tree, 19-11

Extensibility, 18-9

Extensible type-checker, 9-18

Extensions, 12-38–39

External memory bus parameters, 3-10

Extraction

feature, 8-15, 8-18

store properties, 12-15
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F

False dependences, 19-4

Family of domains, 15-11

Fast class descriptor layout, 13-9

Fast precise-type analysis algorithms, 13-16–17

Fast type analysis (FTA), 13-16

Fast type inclusions tests, 13-10–14

Fault, 4-12

forward dynamic slice, 4-13

Feasible time range, 20-11, 20-12

Feature

classify programs, 8-26

extraction, 8-15, 8-18

vectors, 8-15

Fetch energy consumed, 1-37

Field layout, 5-22–23

FIFO. see First-in, first-out (FIFO)

Finalization, 6-5

Fine-grained pruning, 4-14

Finite-state automaton (FSA), 2-10

Firewalls, 2-10

First-class label values, 2-19

First-in, first-out (FIFO), 10-12

Fitness functions, 8-19

Five-stage pipeline, 19-7

Fixed operation with digital signal processor

architectures, 18-4

Fixed tenuring, 6-18

Flow chart DFST, 11-32

Flow dependence, 12-34, 19-3, 20-7, 20-8

relations, 15-36

Flow facts, 9-12

Flow graph

CCP algorithm, 11-21–22

CP algorithms, 11-26–28

definition, 14-5

SSA form construction, 11-6, 11-10

FME. see Fourier-Motzkin Elimination (FME)

Focus, 12-23

algorithm, 12-25

operation, 12-24–26

target formulas, 12-26

Focused search

techniques, 8-23–24

with training program, 8-26

using predictive models, 8-24–25

Foobar, 5-26

Footprint of tile, 15-32

Forbidden latency, 19-23

Formal-in and formal-out nodes, 14-9

Forward dynamic slicing, 4-10–11

fault, 4-12, 4-13

Forward slicing, 14-2

Fourier-Motzkin Elimination (FME), 15-45

Fragility static analysis, 9-3

Fragment deallocation, 10-11–12

Fragment linking, 10-10–11

Fragment optimization, 10-8

Fragment selection, 10-5–6

Framework shape analysis, 12-13–32

Free pointer, 6-10

Freeze, 21-3

FromSpace, 6-12, 6-27, 6-28

FSA. see Finite-state automaton (FSA)

FTA. see Fast type analysis (FTA)

FullSparseNaive GSCSR algorithm, 15-43

Full sparse tiling, 15-39

Gauss-Seidel iteration space, 15-42

iterative computations, 15-41

molecular dynamics simulations, 15-40–41

Function. see also specific type or name

better New Configuration, 3-19

code templates, 10-18

computes matches using precomputed tables, 17-16

computes matching rules and nonterminals, 17-15

compute valid left contexts, 17-28

dot from, 10-18

evaluate Partition Cost, 3-12

Goto, 17-29

inlining, 8-17

maximum cardinality search, 21-6

Table Match, 17-16

Functional cohesion-metric computation, 14-4

Functional diversity, 14-4

Functional unit

behavior, 7-14

energy consumed, 1-37

G

Garbage collection, 13-3

basic designs, 6-16–18

effectiveness, 6-4

features, 6-2–4

generational, 6-15–18

need, 6-1–2

persistent object stores, 6-32

pragmatics, 6-4–5

techniques, 6-1–30

uncooperative environments, 6-31

Garbage collector, 6-2

Gauss-Seidel iteration space

CSR, 15-41

full sparse tiling, 15-42

stencil computation, 15-22

GCC. see GNU Compiler Collection (GCC)

gcc compiler, 8-13–14

GCS. see Group Communication System (GCS) Interface

GCSE. see Global common subexpression elimination

(GCSE)

Generational collectors, 6-16–22

Generational garbage collection, 6-15

basic designs, 6-16–18

Generations, 6-17

Generic loop nest schedule, 20-54

Genetic algorithms, 8-23

Genetic programming (GP), 8-17–18

algorithm, 8-18

implementation issues, 8-20–21

operations sequence, 8-18
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Geometric programs, 15-26

Gibbons-Muchnick method, 19-14

Global acyclic scheduling, 19-27–30

Global allocation, 21-2

Global common subexpression elimination (GCSE),

8-2–3

Global escape nodes, 13-25

Global reference allocation (GRA), 18-22

Global resource reservation table (GRT), 19-16

Global scheduling, 19-27–36

algorithm, 19-15

Global ValnumTable, 11-33

Global values, 2-20

GNU Compiler Collection (GCC), 11-50, 16-1

instruction scheduling, 19-26

Goodness page partitioning heuristics, 3-14–15

GP. see Genetic programming (GP)

GRA. see Global reference allocation (GRA)

Graham-Glanville style code generators, 17-4

Graph. see also specific type

cluster assignment, 20-37–38

definition, 14-5

partitioning, 20-37–38

Graph coloring

definition, 21-2

register allocation techniques, 21-5–6

Greed edge, 18-17

Greedy exploration, 3-20

HPC CIL DSE, 3-19

Ground terms, 2-11

Group Communication System (GCS) Interface,

2-21

GRT. see Global resource reservation table (GRT)

H

Handling exceptions, 10-12–13

Hard coded, 17-4

bottom-up code-generator generators, 17-22

Hardware description languages (HDL), 16-3

Hardware pipelining, 20-2

Hashing, 11-26

basic block version, 11-28–29

scheme, 11-27

value numbering, 11-28–29

Hashtable, 11-28, 11-30

class, 9-3, 9-9–10

Confined FJ, 9-9–10

HDL. see Hardware description languages (HDL)

Heap abstractions, 12-39

Heap allocation, 6-2

Heap configuration, 6-13

Heap contents, 12-3–9

Heap layout, 5-24

Heap memory, 6-10

Heap overflow bug using backward slice, 4-9

Heap representations, 12-39

Heap shared, 12-6

Heap snapshots, 6-14

Hennessy-Gross method, 19-14

HEPTANE, 1-42

Hermite normal form (HNF), 15-4

Heuristics

approaches, 20-43

framework, 20-10–11

methods, 1-10–11

modulo schedule, 20-10–11, 20-14–15

OMN, 3-13

OM2N, 3-12

ON, 3-14

pipeline scheduling method, 19-14

selection, 8-8, 8-14–20

Hewlett Packard (HP) iPAQ h4300, 3-9

Hierarchical encoding, 13-12

Hierarchical reduction methods, 20-43–44

High-power to low-power mode, 7-14

Hill climbing, 8-23

Hiperion DSP data-path, 18-6

HMDES reservation table hierarchy, 16-10, 16-17

HNF. see Hermite normal form (HNF)

HOD. see Hoffman and O’Donnell (HOD)

Hoffman and O’Donnell (HOD), 17-2, 17-9

technique, 17-3

Horizontally partitioned cache (HPC), 3-8–9

CIL DSE heuristics, 3-19

compiler framework, 3-9

compiler-in-the-loop methodology, 3-17

design space, 3-17

Hot blocks, 5-26

Hot fields, 5-22

HP. see Hewlett Packard (HP) iPAQ h4300

HPC. see Horizontally partitioned cache (HPC)

Huff ’s slack scheduling, 20-14

Hybrid exploration, 3-21

Hygiene conditions, 12-30

Hyperblock formation, 19-32

Hyperblock scheduling, 19-30–31

Hyperplane scheduling, 20-43

I

IA-64 instruction scheduling, 19-44–45

IBM PowerPC 440

CUP pipeline, 1-17

embedded core, 1-17

IBM XL compiler family, 19-26

IDF computation, 11-17

Idle periods, 7-16

IF. see Instruction fetch (IF)

IFTH. see Instruction fetch stage (IFTH)

IGLS. see Integrated global local scheduling (IGLS)

II. see Initiation interval (II)

ILES, 20-49, 20-64

ILP. see Instruction Level Parallelism (ILP); Integer

linear program (ILP)

Immediate successor, 19-5

Imperative loop, 15-6

Imperfect loop nests

extension, 20-53–54

software pipelining, 20-55
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Implementation

bitwidth-aware register allocation, 21-12–13

register assignment, 21-7

strategies, 13-3

Improved abstract semantics, 12-22–23

Incremental and concurrent collectors, 6-23–30

Incremental collectors, 6-4, 6-23

Incremental garbage collector, 6-24

Incremental update techniques, 6-24, 6-25–26

Index array, 15-36

Indirect prefetching, 5-21

Infeasible path detection and exploitation, 1-9

Infeasible path representation, 1-16

Inferential statistics, 8-27–28

Information order, 12-18

Inheritance edges, 14-25

Inheritance hierarchy, 13-14

Initialization domain, 15-15

Initiation interval (II), 20-2

Inlining priority function, 8-19

Inlining techniques, 13-19–20

Inner loop execution segment, 20-48

Input variable, 15-11

Instruction architecture (ISA), 16-3

Instruction cache

interference, 1-20

modeling, 1-22, 1-26

Instruction execution, 19-7

Instruction fetch (IF), 19-7

Instruction fetch stage (IFTH), 1-17

Instruction Level Parallelism (ILP), 7-2, 16-6,

19-2, 20-1

irregular constraints, 18-21–22

scheduler, 16-18

Instruction scheduling, 19-1–47, 20-2

Cydra 5 compiler, 19-26

definition, 19-2

IA-64, 19-44–45

interaction, 8-3, 8-4

leakage energy reduction, 7-2

linearization, 19-43

low power, 19-47

register allocation, 19-37–42

research, 19-43–47

RISC architectures, 19-7–13

spatial architectures, 19-45–46

Instruction selection, 18-12

Instruction sequence

different register requirements, 19-42

trace scheduling, 19-29

with and without sails, 19-13

Instruction set architecture (ISA), 3-3–4, 5-17

Instruction set graph (ISG) model, 18-14

Instruction-specific energy, 1-36

basic block, 1-37

Instrumentation principle, 12-19

Instrumentation properties, 12-5, 12-10

Integer linear program (ILP), 1-7–8, 15-17, 18-19

based WCET calculation, 1-15–16

compiler algorithm, 7-8–9

DVS, 7-8–9

exploiting infeasible path information, 1-15–16

integrated approach, 1-21

model dynamic branch predictors, 1-23–24

solutions, 20-15–16

Integer polyhedra, 15-4–5

affine images, 15-5

Integrated approach, 19-38

based on timing schema, 1-25

cache and branch prediction analysis, 1-34–35,

1-40

evaluation, 19-40–41

ILP, 1-21

schedulability analysis, 1-42

Integrated global local scheduling (IGLS), 19-33

Integrated prepass scheduling, 19-38

Intel PXA3:255 processor, 3-9

Intel XScale, 3-8

Interaction by message passing, 14-19

Interaction via shared variables, 14-19

Interclass dependence graph, 14-25

Interdependence, 21-24

Interference, 14-20

Interference graph, 21-2

Intergenerational pointers, 6-18

recording, 6-20–21

Interleaved detection, 6-4

Interprocedural abstract interpretation, 13-25–26

Interprocedural allocation, 21-2

Interprocedural analysis, 12-38

InterSlice algorithm, 14-16

Intraprocedural abstract interpretation, 13-23–24

IntraSlice algorithm, 14-16

iPAQ, 3-9

h4300, 3-9

Irregular constraints

ADL, 16-22

ILP, 18-21–22

Irregular memory references, 15-36

ISA. see Instruction architecture (ISA); Instruction set

architecture (ISA)

ISDL, 16-6–8, 16-17

ISG. see Instruction set graph (ISG) model

Iterated dominance frontier, 11-6

Iterated register coalescing, 21-3

Iteration reorderings, 15-39

data locality and parallelism, 15-37–39

transformation, 15-22

Iteration space, 20-42

after blocking, 5-12

after interchange, 5-8

before blocking, 5-12

before interchange, 5-8

computations, 15-1–45

static analyses, 15-1–20

tiling, 15-24–45

Z-polyhedral model, 15-1–20

Iteration vector, 5-4

Iterative bottom-up preprocessing algorithm,

17-14–20

Iterative compilation, 8-21

Iterative computations, 15-41
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J

Jalapeno virtual machine, 13-9

for Java, 11-51

Java class layout, 13-8–9

Java database connectivity API (JDBC), 12-37

Java information flow (Jif)

analysis of simplified VSR, 2-22–23

language, 2-17–20

Java Threads, 2-23

JDBC. see Java database connectivity API (JDBC)

J-edges. see Join edges (J-edges)

Jif. see Java information flow (Jif)

Jikes Research Virutal Machine, 11-51, 13-19

JIT. see Just-in-time (JIT)

Join edges (J-edges), 11-11, 11-12

for must and may analysis, 1-29

Joint function, 1-28

Jonker’s algorithm, 6-11

Jonker’s compactor, 6-12

Jump dependence, 14-18

Just-in-time (JIT)

vs. binary dynamic compilation, 10-17

compilation, 10-15–17

compilers, 7-12, 10-4

K

Ken Thompson’s Trojan Horse, 2-4–5

Kernel, 20-6

code, 20-25

Linux, 2-13

predicated execution, 20-25

software pipelined schedule, 20-7

Kleene’s interpretation, 12-18

Kleene’s semantics, 12-17

Kleene’s 3-valued interpretation, 12-17

L

Label polymorphism, 2-18

Ladder graph, 11-11, 11-12

dominance frontier, 11-13

Language

register allocation techniques, 21-4

security, 2-15–23

Language of instruction set architecture (LISA),

16-13–15, 16-17

Last-write information, 12-35, 12-36

LATCHES statement, 16-13

Late start (LSTART) time, 20-12

Lattice-based static analysis method, 2-16

Lattice elements for escape analysis, 13-22

Lattice of constants, 11-21

LCC. see Loop containing conditionals (LCC)

LDM. see Load multiple instruction (LDM)

LDPK, 18-24

Leading blade, 20-22

Leading reference, 5-19

Leakage energy, 1-38, 7-13

instruction scheduling, 7-2

optimization, 7-13–20

reduction, 7-2, 7-13–20

Leakage power, 1-36, 20-33

Least recently used (LRU), 6-6, 10-12

Legality of tiling, 15-23

Lifetime, 20-17

modulo schedule, 20-18

representation, 20-60

Limitations, 21-21

Line, 1-22

Linear Gauss-Seidel, 15-42

Linearization instruction scheduling, 19-43

Linear model building, 8-10–11

Linear programming, 18-11

Linear regression models, 8-9–10

Linear scan register allocation

definition, 21-3

SSA form, 21-9

Linear time algorithm

placing theta-nodes, 11-11

theta-nodes, 11-11

Linked-list data declaration, 12-2

Linked lists, 12-37

Linux kernel, 2-13

LISA. see Language of instruction set architecture (LISA)

Lisp 2 algorithm of compaction, 6-11

List scheduling, 8-17

List scheduling algorithm, 19-17

List scheduling method, 19-16–17

heuristics used, 19-18–19

Live bits, 21-12

Live-in scalar lifetimes, 20-17

Live-out scalar lifetimes, 20-17

Live pointer, 6-10

Live range, 19-4, 21-12

coalescing, 21-13

definition, 21-2

splitting, 21-22

Load multiple instruction (LDM), 21-16

Load store cost of tile, 15-32

Local allocation, 21-2

Locality issues, 6-15–16

Localized iteration space, 5-6

Locally optimal code, 17-1

Local reference allocation (LRA), 18-22

Locked-down domains, 2-12

Logical structures, 12-13, 12-16, 12-18

graphical representations, 12-14

Loop

algorithm, 5-9–10, 5-19

alignment, 5-16

blocking, 5-11–14

bound, 1-5, 1-8, 1-12

carried dependence, 19-34, 20-5

combining two or more, 8-5

connection graph, 13-25

data dependence graph, 20-5

features, 8-16

fission, 5-16
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fusion, 5-15–16

inferencing, 1-12

interactions, 8-5–6

interchange, 5-6–10

legality, 5-6

model, 20-7

nested, 5-9, 15-3, 20-41–64

overhead cost, 15-31

permutation algorithm, 5-9–10

prefetching algorithm, 5-19

profitability, 5-7–9

rewriting, 20-7

selection, 20-51

skewing, 5-13–14, 5-28

software pipelined schedule, 20-7, 20-51

supervised classification, 8-16

tiling, 5-28

transformation, 5-15, 8-5–6, 15-21

unrolling, 8-15

Loop containing conditionals (LCC), 14-15

Lost copy problem

critical edge splitting, 11-49

solution, 11-48–49

Low power, 19-47

LP solvers, 2-8

LRA. see Local reference allocation (LRA)

LR parsers

algorithm extension, 17-25–26

techniques, 17-24–31

LRU. see Least recently used (LRU)

LSTART. see Late start (LSTART) time

M

MAC. see Mandatory access policies (MAC)

Machine learning techniques, 8-1–30

MADL. see MESCAL Architecture Description Language

(MADL)

Major collection, 6-17

Mandatory access policies (MAC), 2-12

retrofitting models, 2-12–13

Mann-Whitney test, 8-27

Mapping, 19-44

automatically generating, 4-14

Maril, 16-9, 16-17

Mark-compact collectors, 6-10–12

Mark/cons ratio, 6-16

Marking phase, 6-8

MarkStates, 17-13

Mark-Sweep

collectors, 6-8–10

time overhead method, 6-8

MARS. see Multivariate adaptive regression splines

(MARS)

MATLAB code, 8-5

Matrices

after loop tiling, 8-11

blocking factors, 8-12

clustering and tiling, 15-23

concepts and properties, 15-3

multiplication, 8-11, 8-12

row sum computation, 5-3

May-aliases, 12-32

and flow dependences differences, 12-33

May analysis, 1-28

MC. see Metacompilation (MC) approach

MDG. see Multithreaded dependence graph (MDG)

Measurement-based timing analysis, 1-4

Measure-reduce-assign approach, 19-40

Meet operator, 11-21

Meld scheduling, 19-32

Membership edge, 14-25

Memory address constraint, 21-16

Memory aliasing, 19-4

Memory allocation, 15-20

Memory-based dependences, 15-22

Memory disambiguation, 12-4–5

Memory hierarchy, 5-1

optimization classification, 5-27

Memory leak, 12-4

Memory paging systems, 10-12

MESCAL Architecture Description Language (MADL),

16-15–16, 16-17

MESCAL project, 16-15–16

Message passing, 14-18

Metacompilation (MC) approach, 2-8

Method

header node, 14-25

invocation, 13-8–9

object-oriented languages, 13-2–10

typing rules, 9-7–8

Micro-architectural modeling, 1-16–21

MII. see Minimum initiation interval (MII)

MILP. see Mixed integer linear programming (MILP)

MIMOLA, 16-4–5, 16-17

Minimal SSA form, 11-18

construction, 11-7–8

Minimum distance (MinDist), 20-13

Minimum distance between two instructions, 20-9

Minimum initiation interval (MII), 20-7

computation, 20-9–10

Minimum register instruction sequencing (MRIS),

19-41–42

Minor collection, 6-17

MIRS C. see Modulo scheduling with integrated register

spilling and cluster assignment (MIRS C)

Mixed integer linear programming (MILP), 7-9

DVS, 7-10–12

Mixed languages, 16-8–16

ML, 16-5–6, 16-17

dependent, 9-19

language, 9-19

refinement types, 9-19

Model branch prediction, 1-24

Model checking access control, 2-13–15

Model direct-mapped instruction caches, 1-22

Model dynamic branch predictors, 1-23–24

Modeled memory subsystems, 3-10

Modeling, 1-22–23

Modified program dependence graph (MPDG), 14-15

Modularity, 18-9
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Modulo reservation table (MRT), 20-11, 20-13–14

Modulo schedule, 20-6

constraints, 20-8

definition, 20-3

hardware support, 20-20

heuristics, 20-14–15

lifetimes, 20-18

register allocation, 20-22

retiming, 20-28–31

with retiming, 20-32

space, 20-32

Modulo scheduling with integrated register spilling and

cluster assignment (MIRS C), 20-39–40

Modulo variable expansion, 19-36, 20-14, 20-19–21

Modulo variable expansion (MVE), 20-17

Molecular dynamics simulations

full sparse tiling, 15-40–41

Morris worm, 2-8

Motivation, 8-2, 19-21

Moving collectors, 6-27–28

Moving vs. nonmoving collectors, 6-3

MPDG. see Modified program dependence graph

(MPDG)

MRIS. see Minimum register instruction sequencing

(MRIS)

MRT. see Modulo reservation table (MRT)

MSSQ code generator, 16-4

MTA, 13-16, 13-17

Muller’s method, 19-23

Multi-core architectures, 20-40–41

Multidimensional design constraints, 3-3

Multidimensional reuse, 15-16

Multiple basic blocks, 19-28

Multiple inheritance, 13-3–5

Multiple inheritance hierarchy, 13-13

Multiple inheritance layout, 13-3

virtual method table, 13-4

Multiple objective functions, 8-3

Multiplying array with matrix, 8-5

Multithreaded dependence graph (MDG), 14-27

Multithreading, 10-12

checking, 12-37

Multivariate adaptive regression splines (MARS),

8-11–13

Must-aliases, 12-32

Must analysis, 1-28

join, 1-29

Mutation

priority function, 8-21

scheduling framework, 18-15

Mutator, 6-2

MVE. see Modulo variable expansion (MVE)

N

Naive sandbox model, 2-9

Naive translation, 11-50

Name certificates, 2-14

Nametable, 11-28, 11-29, 11-30, 11-33

Native methods, 2-23

Nature, 18-9

Nested loops

software pipelining, 20-41–64

Nested repeat-until loops, 11-12

NET. see Next executing tail (NET) scheme

Nettles’ replicating collector, 6-29–30

Next executing tail (NET) scheme, 10-7

nML, 16-5–6, 16-17

Node, 2-21

Node-marking

algorithm, 14-18

dynamic slicing algorithms, 14-16

Nonblocking, 5-17

Nondeterminism, 14-18

Nondeterministic parallel control flow net, 14-20

Noninterference property, 2-15

Nonmoving collectors, 6-24

Nonrectangular loop net, 1-12

Non-SSA form, 11-3

program, 11-2, 11-10

Nonterminal X matching input, 17-28

Nonterminal X matching symbol, 17-28

Nonterminal X matching tree, 17-28

Nontransparent approach, 10-17–19

Normalization rules, 15-12

Normalized iteration number, 5-4

NULL pointers, 12-3

O

OBDD. see Ordered binary decision diagrams (OBDD)

Obfuscation, 2-7–8

Object identification, 6-26

Object layout, 13-2–10

Object-oriented concurrent program dependence

graphs (OOCPDG), 14-28

Object-oriented (OO) languages, 2-9

devirtualization, 13-14–19

escape analysis, 13-20–27

fast type inclusions tests, 13-10–14

object layout and method invocation, 13-2–10

optimizations, 13-1–27

Object-oriented program dependence graphs (OPDG),

14-25

Object-oriented programs (OOP)

dynamic slicing, 14-26–27

program slicing, 14-25–26

static slicing, 14-25–26

Observed WCET, 1-2

Occam-2, 14-20

Offline profiling techniques, 10-7

Offline training, 8-25–26

Offset assignment problem, 18-15–17

Old generation space, 6-17

Old space, 6-15

OLP. see Outermost loop pattern (OLP)

OMN, 3-12–13

energy reduction, 3-14

OM2N, 3-11–12

energy reduction, 3-13
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OM2N heuristic, 3-16

OMN page partitioning heuristic, 3-17

ON

energy reduction, 3-15

Online profiling, 10-7

dynamo system, 10-7–8

OO. see Object-oriented (OO) languages

OOCPDG. see Object-oriented concurrent program

dependence graphs (OOCPDG)

OoO. see Out-of-order (OoO) processors

OOP. see Object-oriented programs (OOP)

OPCODES, 16-13

OPDG. see Object-oriented program dependence graphs

(OPDG)

Operand instruction level parallelism constraints, 18-7

OPERATION, 16-14

Operation instruction level parallelism constraints, 18-7

Operation scheduling method, 19-20

Operations sequence, 8-18

Operators real-valued and Boolean-valued, 8-19

Optimal code, 19-9

Optimal coloring, 21-6

Optimal instruction scheduling method, 19-20–21

Optimal mini-cache parameters, 3-19

Optimal modulo scheduling formulation, 20-15–16

Optimal schedule, 19-6

Optimal tiling, 15-25, 15-33

size selection problem, 15-25–26

Optimization, 8-1, 8-7

classification, 5-27

code sequence, 18-16

compiler structure, 8-7

data layout, 5-2

energy vs. performance, 3-15–16

flags, 8-8, 8-27–28

future, 5-27, 7-23–24

instruction caches, 5-24–26

interactions, 8-2–3

leakage energy reduction, 7-13–20

memory hierarchies, 5-1–28

memory placement, 18-16

object-oriented languages, 13-1–27

SSA form, 11-19

targeting instruction cache performances, 5-28

using inferential statistics, 8-27–28

Ordered binary decision diagrams (OBDD), 12-39

Orthogonal arrays, 8-28

Outermost loop pattern (OLP), 20-48, 20-64

Out-of-order (OoO) processors, 8-5

superscalar, 8-4, 8-8

Output dependence, 15-36, 19-3, 20-7

Overheads, 6-9

Overlap, 1-39

Overt flows, 2-12

P

Packed encoding algorithm, 13-12

Page access information extractor, 3-9

Paged absolute addressing, 18-24–25

Page marking, 6-22

Page partitioning heuristics, 3-14–15

Parallel garbage collection, 6-31

Parallel interference graph, 19-38–39

construction, 19-39

Parallelization, 14-5, 15-27

program slicing, 14-23–24

Parallelogram tiling, 15-24

Parallel slicing

algorithm, 14-23

concurrent programs, 14-24

sequential programs, 14-23–24

Parameter

regression modeling, 8-13

selection, 8-27

Parameter-in edges, 14-9

Parameterized integer polyhedra, 15-5

Parameterized Z-polyhedra, 15-7–8

Parameter-out edges, 14-9

Parametric shape analysis, 12-9–10

Parse tree, 8-18

inlining priority function, 8-19

Parsing instruction selection, 17-1–33

Partial anticipability, 11-36

Partial availability, 11-36

Partial redundancy elimination (PRE), 8-4,

11-36–45

after, 11-38

algorithm, 11-39–46

application, 11-40

before, 11-37

code motion, 11-38, 11-39, 11-46–47

definition, 11-36

down-safety, 11-38, 11-39, 11-43

finalize, 11-38, 11-39, 11-44–46

rename, 11-38, 11-39, 11-41–43

theta-insertion, 11-39–40

WillBeAvail, 11-38, 11-43–44

Partial regression coefficients, 8-9

Partitioning, 1-13, 11-26, 11-33, 13-8

class hierarchy, 13-12–13

cluster assignment, 20-39

register, 20-39

regression techniques, 8-11

Path-based methods, 1-6–7

Pause times, 6-4

PCB. see Printed Circuit Board (PCB)

PDCD. see Predecode stage (PDCD)

PDG. see Program dependence graph (PDG)

PDN. see Program dependence net (PDN)

Percolation scheduling, 19-32

Perfect loop nest model, 20-42

Performance metrics scheduling methods, 19-6–7

Perform loop decomposition, 5-20

Periodic linear schedules, 19-35

Permutation operation, 21-8

Phantom node, 13-23

Phase ordering, 8-21–26

characterizing, 8-22–23

graphical illustration, 8-24

issues, 19-38
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out-of-order issue processors, 19-41

problem, 8-8, 18-11

space, 8-22–24

Phases of compiler, 8-7

Physical registers, 20-20

Pipeline, 1-25

analysis, 1-34

hazards, 1-18

interlock, 19-8

modeling, 1-25, 1-29–30

specific energy, 1-36

Placement of theta, 11-39

Place-phi-function, 11-7

Pointers, 14-16–17

change, 6-31

list, 6-26

Pointer table, 13-2

Points2D, 2-21

Pool allocation, 5-24

PORTS statement, 16-13

Posteriori spilling, 20-27

Postpass scheduling, 8-5, 19-2

Postpass strategy, 8-3

Potential/actual spill, 21-3

Power, 1-36

Power-aware software pipelining, 20-33, 20-34

Power/energy consumption, 20-33

PPDG. see Pseudo-predicate program dependence graph

(PPDG)

PQ-encoding, 13-13–14

Pragmatics, 6-4–5

PRE. see Partial redundancy elimination (PRE)

Precision and correctness of slices, 14-9–11

Precolored registers, 21-24

Precomputation of tables, 17-27–30

Precompute compressed tables without costs algorithm,

17-17

Precompute reduced tables with static costs procedure,

17-19

Preconditioning, 20-19

Predecode stage (PDCD), 1-17

Predicated execution, 20-18

kernel-only code, 20-25

Predicate-update formulae, 12-35

Prediction modeling

abstract interpretation, 1-30

focused search, 8-24–25

Prefetching, 10-8

affine array access, 5-19–20

criteria, 5-17–19

distance, 5-17

hardware support, 5-17

optimizations, 5-2

predicate, 5-19

profitability, 5-17–19

Prepass schedule, 19-2, 19-38

generated, 8-4

Presburger arithmetic, 15-36

Prescheduling, 19-2

cluster assignment, 20-38–39

Principal to actfor another, 2-18

Principle hierarchy, 2-18

Printed Circuit Board (PCB), 3-10

Priority functions, 8-16–17

after mutating, 8-21

constructing, 8-19

GP, 8-18–19

space, 8-19

Proactive secret sharing (PSS), 2-20

Procedure splitting, 5-26

Process graph, 14-20

Process interaction, 14-18

Process network, 14-23

Processor allocation function, 15-19–20

Processor data-path, 18-13

Processor design abstractions, 3-7

Processor mapping, 15-27

Proebsting’s technique, 19-23

Profiling techniques, 10-7

Profitability

loop interchange, 5-7–9

prefetching, 5-17–19

strip-mine and interchange, 5-13

Program chopping, 14-3

Program classification, 8-26

Program compilation, 8-29

Program dependence graph (PDG), 5-16, 14-7, 14-14,

14-20

definition, 14-8

Program dependence net (PDN), 14-20

Program dependences, 12-34

constructing, 12-33–34

Program dicing, 14-3

Program execution, 6-5–6

Program integration, 14-4

Programming discipline

positive in clarity, 9-18

qualifier, 9-17

Programming-language-level WCET analysis, 1-4–7

Program optimization, 11-1–50

Program path analysis, 1-4

Program profiles, 4-1

Program slicing, 14-1–28

algorithms, 14-11–17

applications, 14-3–4

concepts, 14-5–11

concurrent and distributed programs, 14-18–22,

14-27–28

definitions, 14-5–11

object-oriented programs, 14-25–26, 14-27–28

parallelization, 14-23–24

Program statements, 12-15–16

Progressive register allocation, 21-22–23

Prologue, 1-33

Promotion, 6-17

Property-extraction principle, 12-15

Propositional operators, 12-17

Pruned SSA, 11-17

Pruning dynamic slices, 4-13–14

Pseudo-predicate program dependence graph (PPDG),

14-17

PSS. see Proactive secret sharing (PSS)
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Q

Qualifier

checking, 9-16–17

implemented in clarity, 9-18

inference, 9-17

programming discipline, 9-17

refine existing types, 9-12

specific typing rules, 9-17–18

type soundness theorem, 9-18

R

RADL. see Rockwell Architecture Description Language

(RADL)

RAM. see Random-access memory (RAM)

Random-access memory (RAM), 18-2

Rapid type analysis (RTA), 13-15–16, 13-17, 13-19

RASE, 19-40

Rate-optimal schedule, 19-36

RAWCC, 19-46

Raw compiler, 19-46–47

RBAC-based trust management (RT), 2-14

RCCFG. see Reverse concurrent control flow graph

(RCCFG)

RCV. see Redundancy class variable (RCV)

RDG. see Reduced dependence graph (RDG)

Reachability, 6-2, 12-3, 12-12

Reachability graph, 6-2

Reachable object, 6-24

Reaching definitions, 21-2

Read-only memory (ROM), 18-2

Read Ports (RP), 7-14–15

Real-time constraints, 10-14

Real-valued and Boolean-valued operators, 8-19

Receive-compute-send execution pattern, 15-28

Receive node, 14-20

RecMII. see Recurrence minimum initiation interval

(RecMII)

Reconstruction phase, 2-22

Recording

age of objects, 6-18, 6-19–20

history using predicates, 12-35

intergenerational pointers, 6-20–21

Rectangular tiling, 15-24

Recurrence minimum initiation interval (RecMII), 20-9

Recursive-partitioning-based regression techniques, 8-11

Red edge, 18-17

Redistribution phase, 2-22

Reduced bit-width instruction set architecture (rISA),

3-7

Reduced dependence graph (RDG)

basic and refined, 15-18–19

Reduced instruction set computer (RISC), 16-8, 18-4,

19-1

architecture model, 19-7–8

instruction scheduling, 19-7–13

Reduced reservation table (RRT), 19-22–23, 19-23

Reducing IR trees

procedure, 17-11

Reducing power consumption, 20-34–35

Reducing power variations, 20-35–36

Reduction, 15-12

loop, 15-36

operation, 17-29

simplification, 15-12–15

Redundancy class variable (RCV), 11-39

Reference affinity, 5-23

Reference allocation, 18-17–18

Reference count

collectors, 6-6–8

object state, 6-7

Refinement types for ML language, 9-19

Region-based compilation, 19-33

algorithm, 7-4–5

Regions

code instrumentation, 7-8

computation, 7-7–8

example, 7-7

rules for combining, 7-6

sample values, 7-9

scheduling, 19-32

Register access, 1-37

Register allocation, 8-2, 8-4, 20-17–18, 20-22, 20-56–60

bitwidth-aware, 21-10–14

chordal graphs, 21-5–6

code sequences, 19-11

code size reduction, 21-15–16

data structures, 21-18–19

extensions, 21-15–16

future directions, 21-24

graph coloring technique, 21-5–6

instruction scheduling, 19-37–42

interaction, 8-3

irregular operand constraints, 18-18–19

language, 21-4

live ranges, 8-5

method, 19-9–12

misconceptions, 21-23

modulo schedule, 20-22

program, 21-21

SSP, 20-56

stack location, 21-17

static single assignment, 21-7–9

super optimizations, 21-17–18

techniques, 21-1–25

validating, 21-19–20

Register assignment

comments, 21-7

hardware features, 21-23

misconceptions, 21-23

Register component graph, 20-39

Register-constrained software pipelining, 20-26,

20-27–28

Register partitioning, 20-39

Register preference graph (RPG), 21-18

Register pressure, 19-5

Register sequence constraint, 21-16

Register spills, 19-5

Registers used, 21-23

Register transfer graph, 18-12–15
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Register transfer level (RT-level), 16-3

Regression modeling, 8-9

components and parameters, 8-13

Regression testing, 14-3–4

Regular cost-augmented tree grammar, 17-6

Regular tree grammar, 17-1

Reinterpretation principle, 12-20

Relative CPU slack time, 7-13

Relative numbering, 13-11–12

baseval and diffval pairs, 13-13

Reliability of dynamic compiler, 10-14

Rematerialization, 21-2

Remembered sets, 6-21–22

Renumber, 21-2

Reordering runtime, 15-37–39

Representing priority functions, 8-19

Rescheduling with larger II, 20-27

Research Virutal Machine (RVM), 11-51, 13-19

Reservation table (RT), 1-26, 19-22

ResMII. see Resource minimum initiation interval

(ResMII)

Resource constraints, 20-13–14

Resource contention, 1-18

Resource minimum initiation interval (ResMII), 20-9

Resource usage models, 19-21–22

Response, 8-9

Result forwarding, 19-8

Retargetable compilation, 16-1–24

Retargetable compiler methodology, 18-10

Retargetable interface, 18-8

Retargetable qualities, 18-9

Retargetable VLIW compiler framework, 18-1–25

Retargetable WCET analysis, 1-43

Retiming, 20-28–29, 20-31

DDG, 20-29–31

definition, 20-29

modulo schedule, 20-29

Retrofitting MAC models, 2-12–13

Reuse and locality, 5-4–5

quantifying, 5-5–6

Reverse concurrent control flow graph (RCCFG),

14-24

rISA. see Reduced bit-width instruction set

architecture (rISA)

RISC. see Reduced instruction set computer (RISC)

Robustness dynamic compiler, 10-14

Rockwell Architecture Description Language

(RADL), 16-16

ROM. see Read-only memory (ROM)

Root authority, 2-22, 2-23

Rotating register file, 19-36, 20-18, 20-20

code generation, 20-25

Row displacement compression, 13-7–8

RP. see Read Ports (RP)

RPG. see Register preference graph (RPG)

RRT. see Reduced reservation table (RRT)

RT. see RBAC-based trust management (RT);

Reservation table (RT)

RTA. see Rapid type analysis (RTA)

RT-level. see Register transfer level (RT-level)

Rule for sequential composition, 1-6

Runtime code generation function, 10-18

Runtime data, 15-39

Runtime label checking, 2-19

Runtime reordering, 15-37–39

Runtime specialization, 10-17–19

techniques, 10-4

RVM. see Research Virutal Machine (RVM)

S

Safe partial availability (anticipability), 11-36, 11-37

Safe partially redundant, 11-36, 11-37

Safe-points gc, 6-5

Samepath, 1-15

Scalability

WCET analysis techniques, 1-35

worst-case energy estimation technique, 1-40–41

Scalar lifetime, 20-17

Scanning root set, 6-25

Scavenges, 6-19

Scavenging, 6-3

SCC. see Strongly connected components (SCC)

Schedule construction, 20-51–52

Schedule generated

postpass scheduler, 8-5

prepass scheduler, 8-4

Schedule length, 19-6

Schedule time, 19-6

Scheduling, 15-17–18, 20-50–51

definition, 15-17–18

instructions, 7-15

integrated with cluster assignment, 20-39–40

methods, 19-6–7

performance metrics, 19-6–7

transition-aware, 7-15

Scoped HashTable, 11-33

Scratchpad memory

compile-time allocation, 7-21–22

Scratch pad memory

embedded systems, 5-2

Scratchpad memory allocation, 7-2

Scratch register, 21-8–9

SDG. see System dependence graph (SDG)

SDRAM

access latency, 3-10

energy consumed, 3-10

energy parameters, 3-11

SDSI. see Simple distributed security infrastructure

(SDSI)

Search platform, 8-28

Search techniques, 8-23

Secret class contains, 2-20

Security policy, 2-2

Select, 21-3

Selection logic, 1-37

Self-modifying code, 10-14

Self-referential code, 10-14

Self-reproduction, 2-4

Self-spatial reuse, 5-5

Self-temporal reuse, 5-5
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Semantic-reduction operations, 12-23

Semi-pruned SSA, 11-18–19

Semi-spaces, 6-12

Send Message, 2-21

Send node, 14-20

Separated approach

avoids state enumeration, 1-31–33

based on abstract interpretation, 1-27–30

Sequential programs, 14-23–24

Server, 2-21

Sethi-Ullman method, 19-10–12, 19-41

Setuid analysis, 2-10–11

Shape

abstraction, 12-11–12

descriptors, 12-5–6, 12-6

designing, 12-11–12

graph, 12-7, 12-11, 12-40

programs, 12-5

Shape analysis, 12-1–41

algorithm, 12-7

applications, 12-32–37

definition, 12-2

framework, 12-13–32

Share, 2-21, 12-3

Shared code caches, 10-12

Shared nodes, 17-32

Shared resource, 14-18

Shared variables, 14-18

Sharpening mechanism, 12-26

Sharpening principle, 12-27

Short-circuit power, 20-33

Signature matching, 4-15

SIMD. see Single instruction multiple data (SIMD)

Simple cycle, 20-8

Simple distributed security infrastructure

(SDSI), 2-14

Simple greedy heuristics, 3-11–12

Simple page partitioning heuristic, 3-12–13

Simple public key infrastructure (SPKI), 2-14

Simple recurrence, 20-8

Simplified abstract transformer, 12-22

Simplified VSR

distribution phase, 2-22

Jif analysis, 2-22–23

protocol, 2-22

Simplify, 21-2, 21-3

Simply typed lambda calculus, 9-13–14

static type-checking, 9-13

syntax, 9-13

SIMPRESS, 16-12

Simulated annealing, 18-11

Simulation-only design space explorations (SO DSE),

3-6, 3-7

Single-dimension software pipelining (SSP),

20-44–50

generic loop nest schedule, 20-54

lifetime representation, 20-60

register allocation, 20-56

schedule construction, 20-51–52

Single inheritance, 13-2–3

virtual method table, 13-2

Single instruction multiple data (SIMD), 18-14

Single loop

register allocation, 20-60–61

software pipelining, 20-4–40

Sink node, 19-5

Skewed iteration space, 15-34

Skewing, 5-13–15

loop, 5-13–14, 5-28

SLED. see Specification language for encoding and

decoding (SLED)

Slices

composite data types and pointers, 14-16–17

concurrent programs, 14-20–22

criterion, 14-1

distributed programs, 14-20–22

precision and correctness, 14-9–11

unstructured programs, 14-17–18

using data flow analysis, 14-11

using graph-reachability analysis, 14-12

Snapshot-at-beginning techniques, 6-24, 6-25

SOC. see System-on-a-chip (SOC) based design

SO DSE. see Simulation-only design space explorations

(SO DSE)

Software maintenance and testing, 14-3–4

Software pipelining, 19-34, 20-1–67

definition, 20-2

future directions, 20-64–67

heuristic approaches, 20-43

ILP architectures, 20-2

imperfect loop nests, 20-55

loop nest, 20-63–65

loop rewriting, 20-7

loop selection, 20-51

nested loops, 20-41–64

schedule, 19-35

single lops, 20-4–40

VLIW architectures, 20-36

Software prefetching, 5-28

Solid, 12-8

Sorting implementations, 12-37

Source loop nest, 20-45

Source node, 19-5

Space overheads, 6-4

Space-time diagram, 20-22

Sparse matrices, 15-41–44

Sparse-tiled executor, 15-40

Sparse-tiled Gauss-Seidel, 15-43

Sparse tiling techniques, 15-39

Spatial architectures, 19-45–46

Spatial locality, 6-5

Spatial reuse, 5-4

SPDG. see Static program dependence graph (SPDG)

Specification language for encoding and decoding

(SLED), 16-8, 16-17

Specific epilogue, 1-34

Specific prologue, 1-34

Speculatively executed instructions, 19-33

Spill code, 19-5

definition, 21-3

Spill cost, 21-2

SPKI. see Simple public key infrastructure (SPKI)
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Splicing, 14-5

Split variables, 21-4

SQL slammer worm, 2-8

SRC. see Strong reference count (SRC)

SSA. see Static single assignment (SSA) form

SSAPRE. see Static single assignment partial redundancy

elimination (SSAPRE)

SSP. see Single-dimension software pipelining (SSP)

Stable and unstable edges, 14-15

Stack allocation, 6-2

Stale values, 21-21

Start time ordering, 20-23

State enumeration, 1-31–33

Statement free, 4-11

Statement node, 14-20

Static allocation, 6-2

Static analysis, 1-2, 9-3–4, 9-12–13

access control policies, 2-9–14

automatic placement of authorization hooks, 2-13

buffer overflows, 2-8

convergence, 9-1

discipline, 9-3

failure, 2-4–5

fragility, 9-3

GSM security hole, 2-6–7

safety of mobile code, 2-9

Static control dependence, 4-5

Static data dependence, 4-5

Static energy, 7-13

Static labels, 2-16

Static program analysis for security, 2-1–25

Static program dependence graph (SPDG), 14-23

Static single assignment (SSA) form, 11-1–51, 21-4

after rename, 11-41

algorithm, 11-23–26

CCP algorithm, 11-23

conditions, 11-5

construction, 11-5, 11-6, 11-9–10, 11-10

copy folding, 11-48

data structures for value numbering, 11-33

dominator tree, 11-35

edges, 11-50

executable from, 11-47–49

express evaluation, 11-22

flowchart of program, 11-3, 11-4

flow graphs, 11-6, 11-10

graph, 11-9, 11-44, 11-45

hashing, 11-30

join set, 11-5–6

linear scan register allocation, 21-9

optimizations, 11-19

partitioning technique, 11-28

program, 11-2, 11-4, 11-11

pruned and semi-pruned, 11-19

register allocation techniques, 21-7–9

renaming, 11-48

reverse postorder, 11-35

size, 11-10–11

theta-conversion on program, 11-5

theta-nodes, 11-5–6

translation from, 11-47–49

value numbering, 11-28, 11-30, 11-31–32, 11-34–35

variants, 11-17–19

Static single assignment partial redundancy elimination

(SSAPRE), 11-38

algorithm, 11-39–47

application, 11-40

code motion, 11-38, 11-39, 11-46–47

down-safety, 11-38, 11-39, 11-43

finalize, 11-38, 11-39, 11-44–46

rename, 11-38, 11-39, 11-41–43

theta-insertion, 11-38, 11-39–40

WillBeAvail, 11-38, 11-39, 11-43–44

Static slicing, 14-2, 14-11, 14-20–21, 14-27

object-oriented programs, 14-25–26

using dependence graphs, 14-13

Static type checking, 2-17

simply typed lambda calculus, 9-13

Static WCET analysis

implications, 1-20

Statistical learning techniques, 8-1–30

Steele’s write-barrier, 6-26

Stencil computation, 15-22

skewed iteration space, 15-34

STM. see Store multiple instruction (STM)

Storage assignment possibilities, 18-20

Store multiple instruction (STM), 21-16

Stores via 2-valued and 3-valued logical structures,

12-13–14

Straightforward devirtualization, 13-19

Stride

vs. cache line size, 5-10

profiling, 5-20–21

Stringent design constraints, 3-3

Strip-mine and interchange, 5-12

legality, 5-13

profitability, 5-13

StrongARM architectures, 21-16

Strong generational hypothesis, 6-18

Strongly connected components (SCC), 20-3, 20-8

Strongly multistrided, 5-21

Strongly single strided, 5-21

Strong reference count (SRC), 6-7, 6-8

Structural languages, 16-3–5

Structure layout optimizations, 5-28

Structure matching, 4-15

Structure peeling, 5-23

Structure splitting, 5-22

Subject tree, 17-12

derivation tree, 17-26

Suboptimal loop ordering, 5-6

Subshare, 2-21

SubShareBox, 2-21

Subspace of retiming, 20-32

Subtraction domain, 15-15

Subtyping

constraint, 9-17

type systems, 9-16

Successor, 19-5

SUIF 2 Compiler System, 11-51

SUIF tool set, 15-45

Summary edges, 14-9
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Superblock scheduling, 19-29–30, 19-33

Super-glue, 14-4

Super optimizations, 21-17–18

Supervised classification, 8-15

loop features, 8-16

Swapping without side effects, 21-8

Swap problem, 11-49–50

after SSA conversion with copy folding, 11-49

result of naive translation, 11-50

Sweeping phase, 6-8

SWEET analyzer, 1-41

Switching activity, 1-36

Switch-off energy, 1-38

Symbolic execution, 1-10, 1-21

Synchronization array, 20-40

Synchronous circuit, 20-29

Synchronous message passing, 14-19

Syntax adding user-definition tags, 9-14

Syntax tree, 1-4

code fragment, 1-5

System dependence graph (SDG), 14-8, 14-13, 14-25

System-level analysis, 1-43

System-on-a-chip (SOC) based design, 18-1

T

Tables of arity 0

computation, 17-22

Tag checking, 9-14–15

Tag inference, 9-15–16

Tag variable, 9-15

Target address, 19-8

Target description language (TDL), 16-10–11, 16-17

Target formulas

focus, 12-26

Target machine architecture, 7-15–17

TCB. see Trusted computing base (TCB)

TDL. see Target description language (TDL)

Temporal locality, 6-5

Temporal reuse, 5-4

Temporary name (TN), 20-4

Tenuring policy, 6-18

Tenuring threshold, 6-17

Theta-function, 11-3

placement algorithms, 11-16

Theta insertion, 11-41

Theta-nodes, 11-11

Thrashing, 6-8

Threaded-CFG, 14-20

Three-address code, 21-3

3-valued Kleene interpretation, 12-18

3-valued logical structures, 12-18

Three-valued-logic analyzer (TVLA), 12-38, 12-39

3-valued structure, 12-16

Threshold property, 2-23

Threshold set noninterference property, 2-23

Tiled code generation, 15-33

Tiled loop, 15-35

generation, 15-33, 15-45–46

nest, 15-30

Tile graph, 15-27

Tile size, 15-35

selection approaches, 15-30

selection problem formulation, 15-32–33

vector, 15-24

Tiling, 5-11, 15-25, 15-33

data locality, 15-29–30

dense iteration spaces, 15-21

function, 15-42

irregular applications, 15-35–36

irregular loops with dependences, 15-39–40

iteration spaces, 15-24–45

loop, 5-28

loop transformation, 15-22–25

matrices, 5-13, 15-23

memory hierarchy, 15-44

parallelism, 15-26–28, 15-46

parallelogram, 15-24

rectangular, 15-24

shapes, 5-11

size selection problem, 15-25–26

sparse computations, 15-46

Time and energy

distribution, 1-2, 1-3

Timeliness, 5-18

Time model, 15-28–29

Time overheads, 6-4

mark-sweep method, 6-8

Time-predictable system design, 1-43

Time stamped control dependence trace representation,

4-6

Time stamped control flow representation, 4-4

Time stamped data dependence trace representation, 4-7

Time stamped labels, 4-6

Time stamped pairs labeling, 4-7

Time stamped WET representation, 4-2–4

TIMING, 16-13

Timing

anomaly, 1-18, 1-19

deallocation, 10-11

effects, 1-32–33

estimation algorithm, 1-32–33

implications, 1-20

integrated approach, 1-25

schema, 1-5, 1-25

unpredictability, 1-17–18

TN. see Temporary name (TN)

Top-down traversal for code generation, 17-24

Top-down tree-parsing approach, 17-9–13

Top-down tree-pattern-matching algorithm, 17-10

ToSpace, 6-12, 6-14, 6-15, 6-17, 6-20, 6-27, 6-28

Total execution time of tiled loop nest, 15-32

Trace scheduling, 19-27–29, 19-33

instruction sequence, 19-29

Tracing vs. nontracing collectors, 6-3

Traditional compiler analyses, 12-3–4

Traditional design space exploration, 3-5–6

Traditional scheduler, 7-15

Traditional simulation-only design space exploration,

3-6

Trailblazing, 19-32
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Trailing blade, 20-22

Training data, 8-15

Training program

focused search, 8-26

mapping, 8-25

Training region mapping, 8-25

Trampoline, 13-4

Transformations

data layout, 5-22–23

2-valued structures, 12-21

Transition-aware scheduling, 7-14–15, 7-16

Transitive information flow, 2-12

Transparency, 10-14

Transparent binary dynamic optimization, 10-4–13

Transparent dynamic compilation systems, 10-3

alternative, 10-4

Tree-based methods, 1-5–6

Tree-based WCET calculation, 1-12–15

Treegion, 19-33

Tree grammars, 17-5–8

Tree parsing instruction selection, 17-1–33

Tree-pattern-matching, 17-10

Tree replacement sequence, 17-3

Tree static single assignment, 11-51

Tricolor abstraction, 6-24

Trimaran system, 4-15

TRIPS architecture, 19-45–46

Trojan Horse, 2-4–5

True data dependence, 19-3

Trusted computing base (TCB), 2-3

Trust management, 2-13–15

models, 2-14

Truth-blurring embedding, 12-16–17

Truth-blurring quotient, 12-17

TVLA. see Three-valued-logic analyzer (TVLA)

Two array reference live ranges, 18-23

Two-issue integer pipeline, 16-22

Two-phase linear programming, 18-14

Two pointer algorithm, 6-10

Two-pointer method, 6-11

Two-slice PQ-encoding, 13-14

2-valued structure, 12-16, 12-18

Two-vocabulary structures, 12-38

Type analysis algorithm, 13-16

Type-based analysis, 9-2

Type-based approach, 2-16–17

Type environments, 9-13

Type qualifiers, 9-12–19

flow sensitive, 9-19

Type refinements, 9-19

Type rules, 9-6–7

Types for confinement, 9-2–11

Type soundness, 9-10, 9-15

theorem, 9-18

Type systems

adding subtyping, 9-16

adding user-defined tags, 9-14

advances and applications, 9-1–19

convergence, 9-1

for qualifiers, 9-13–14

Type tags, 9-14

U

UDL/I, 16-5, 16-17

Unified resource allocator (URSA), 19-40

Unix API for uid-setting system calls, 2-10

Unmatched statements over time, 4-15

Unreachable, 6-2

Unroll-and-jam, 20-44

Unroll-and-squash, 20-44, 20-45

Unstructured program dependence graph (UPDG),

14-18

URSA. see Unified resource allocator (URSA)

User Command, 2-21

User-defined tags, 9-14

User retargetability, 18-9

User-space servers, 2-13

V

Validating, 21-19–20

Valnumtable, 11-28, 11-29, 11-30

Value-based dependences, 15-22

Value flow, 9-12

Value numbering, 11-25–35, 11-29

partitioning technique, 11-28

Value profiles, 4-1, 4-2

Values labeling, 4-7

Value specialization, 10-9

Value trace representation, 4-5

Vanilla timing schema rules, 1-13

Variable latency, 16-21–22

Variable operation width digital signal processor

architecture, 18-4–5

Variable packing, 21-13–14

Variable type analysis (VTA), 13-17–19

Vector lifetime, 20-17, 20-59

Verifiable secret redistribution (VSR), 2-20, 2-23

Very long instructional word (VLIW), 16-5, 16-6,

16-13, 16-18, 18-2, 19-44, 20-1

architecture, 10-15, 20-36

instruction set architecture, 18-2

machine code, 4-15

processor, 8-4

software pipelining, 20-36

Very portable optimizer (vpo), 16-8

Very simple page partitioning heuristic ON, 3-13–14

Virtual function table (vtbl), 13-2

Virtual machine (VM), 13-9

for Java, 11-51

Virtual registers, 20-20

Virtual Simple Architecture (VISA) approach, 1-43

Virtual tables, 13-7

bidirectional object layout, 13-6

dispatch, 13-10

multiple inheritance layout, 13-4

VISA. see Virtual Simple Architecture (VISA)

approach

Visiting node procedure, 17-11

VLIW. see Very long instructional word (VLIW)

VM. see Virtual machine (VM)
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vpo. see Very portable optimizer (vpo)

VSR. see Verifiable secret redistribution (VSR)

VTA. see Variable type analysis (VTA)

vtbl. see Virtual function table (vtbl)

W

Wakeup logic, 1-37

Wand, 20-22

Watch simulator, 1-41

WCET. see Worst-case execution time

(WCET)

WCTA. see Worst case timing abstraction

(WCTA)

Weak generational hypothesis, 6-16

Weak reference count (WRC), 6-7, 6-8

Wegman-Zadeck algorithm, 11-21

WET. see Whole execution traces (WET)

Whole control flow trace, 4-3–4

Whole dependence trace, 4-5–6

Whole execution traces, 4-1–16

Whole execution traces (WET)

based matching algorithm, 4-15

debugging, 4-8–16

dynamic slices, 4-10

representation, 4-2–4

sizes, 4-8

Whole value trace, 4-4

Worklist-based approach, 17-21

Worklist processing routine, 17-22

Worst-case energy consumption, 1-39

Worst-case energy estimation, 1-35–37

Worst-case energy estimation technique

accuracy and analysis time, 1-41

accuracy and scalability, 1-40–41

Worst-case execution time (WCET), 1-2

accuracy, 1-35

analysis, 1-35, 1-41–42

calculation, 1-5

centric compiler optimizations, 1-43–44

definition, 1-1–44

energy analysis, 1-1–45

estimation, 1-2, 1-35

observed, actual and estimated defined, 1-3

scalability, 1-35

Worst case timing abstraction (WCTA), 1-25

WRC. see Weak reference count (WRC)

Write-barriers, 6-26

Write-once-run-anywhere programming paradigm,

10-16

Wrong-path instructions prefetching, 1-19

X

XScale core, 3-9

XTA, 13-16, 13-17, 13-19

Y

Yellow edges, 18-18

Young generation space, 6-17

Z

Zero count table (ZCT), 6-7

Z86E30 with multiple register banks, 21-15–16

Z-polyhedra

definition, 15-7

model, 15-8–9




