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Preface

In the last few years, changes have had a profound influence on the problems addressed by compiler

designers. First, the proliferation in machine architectures has necessitated the fine-tuning of compiler

back ends to exploit features such as multiple memory banks, pipelines and clustered architectures.

These features provide potential for compilers to play a vital role in the drive for improved perfor-

mance. Areas in which such possibilities can be exploited are, for example, speculative execution,

software pipelining, instruction scheduling and dynamic compilation. Another trend that is con-

tinuously explored is the generation of parts of the compiler from specifications. Such techniques

are well established for the front end, but still in the experimental stages for the problems of code

optimization and code generation. Optimizers in compilers are relying on newer intermediate forms

like static single assignment (SSA) form. The growing use of object-oriented languages has brought

into focus the need for optimizations that are special to such languages. Algorithms for program

slicing and shape analysis have made it possible to gather detailed information about a program that

can be used in tasks such as debugging, testing, scheduling and parallelization.

The Compiler Design Handbook: Optimizations and Machine Code Generation addresses some

of these issues listed that are of central concern to compiler designers. However, it does not attempt

to be an encyclopedia of optimization and code generation. Several topics could not be included

mainly because of space limitations. Notable among omissions are just-in-time (JIT) compilation,

implementation of parallel languages, interpreters, intermediate languages, compilation of hardware

description languages, optimization for memory hierarchies, constraint programming languages

and their compilation, functional programming languages and their compilation, code generation

using rewriting systems, peephole optimizers and runtime organizations. The topics included are of

relevance mainly to the compilation of imperative languages.

The material presented in this volume is addressed to readers having a sound background in

traditional compiler design. In particular, we assume that the reader is familiar with parsing, semantic

analysis, intermediate code generation, elements of data flow analysis, code improvement techniques

and principles of machine code generation. We hope that the material presented here can be useful

to graduate students, compiler designers in industry and researchers in the area.

v





Acknowledgments

The patience and efforts of the contributors are the major factors that have made this handbook

possible. We thank each one of them for their contribution and for sparing their time to write a chapter.

All of them have responded promptly to our requests and have readily cooperated in reviewing

other contributors’ chapters. We thank Ramesh Subrahmanyam, Uday Khedker, Vineeth Kumar,

Wei Qin, S. Rajagopalan, Sanjay Rajopadhye, Mahmut Kandemir, Evelyn Duesterwald, Rajiv

Gupta, Rajib Mall, R. Venugopal, Ravindra B. Keskar, Eduard Mehofer, Sanjeev Kumar Aggarwal,

Reinhard Wilhelm, Thomas Reps, Andreas Krall, Nigel Horspool, Vicki H. Allan, Matthew T. Jacob,

D.V. Ravindra and S.R. Prakash for reviewing the chapters. The assistance and continuous coop-

eration of the editors and other staff of CRC Press have proved to be invaluable in producing

this text.

vii





Editors

Y.N. Srikant is a Professor at the Indian Institute of Science (IIS), Bangalore, India, and is currently

the chairman of the department of computer science and automation. He received his Ph.D. in

computer science from the Indian Institute of Science, and is the recipient of young scientist medal

of the Indian National Science Academy. He joined IIS in 1987 as a faculty member. Since then, he

has guided a number of doctoral and master degree students and has consulted for a large number of

industries. His areas of interest are compiler design, and application of compiler technology to the

development of software tools used in software architecture design and software testing.

He started the compiler laboratory in the department of computer science and automation of IIS,

where several major research projects in the following areas have been carried out in the last few

years: automatic machine code generation, specification and generation of compiler optimizations,

parallelization and HPF compilation, incremental compilation and just-in-time (JIT) compilation of

Java. Some of the research projects currently in progress are implementation of .NET CLR on Linux,

implementation of UDDI on Linux, code generation for embedded processors and optimizations for

the Itanium processor.

Priti Shankar is at the department of computer science and automation at the Indian Institute of

Science (IIS) where she is currently professor. She received a BE in Electrical Engineering at the

Indian Institute of Technology (IIT), Delhi in 1968, and the M.S. and Ph.D. degrees at the University

of Maryland at College Park in 1971 and 1972, respectively. She joined the IIS in 1973. She has guided

a large number of research students in the areas of formal languages, tools for automatic compiler

generation and code optimization, and algorithms for pattern matching and image processing. Several

tools for automatic code generation have been designed and implemented under her supervision. Her

principal interests are in the applications of formal techniques in the design of software tools and in

algebraic coding theory. She is a member of the American Mathematical Society and the Association

for Computing Machinery.

ix





Contents

1 Data Flow Analysis

Uday P. Khedker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Automatic Generation of Code Optimizers from Formal Specifications

Vineeth Kumar Paleri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Scalar Compiler Optimizations on the Static Single Assignment

Form and the Flow Graph

Y.N. Srikant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Profile-Guided Compiler Optimizations

Rajiv Gupta, Eduard Mehofer and Youtao Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Shape Analysis and Applications

Reinhard Wilhelm, Thomas Reps and Mooly Sagiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Optimizations for Object-Oriented Languages

Andreas Krall and Nigel Horspool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Data Flow Testing

Rajiv Gupta and Neelam Gupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8 Program Slicing

G.B. Mund, D. Goswami and Rajib Mall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9 Debuggers for Programming Languages

Sanjeev Kumar Aggarwal and M. Sarath Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10 Dependence Analysis and Parallelizing Transformations

Sanjay Rajopadhye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

11 Compilation for Distributed Memory Architectures

Alok Choudhary and Mahmut Kandemir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

12 Automatic Data Distribution

J. Ramanujam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

13 Register Allocation

K. Gopinath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

14 Architecture Description Languages for Retargetable Compilation

Wei Qin and Sharad Malik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

xi



15 Instruction Selection Using Tree Parsing

Priti Shankar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

16 Retargetable Very Long Instruction Word Compiler Framework

for Digital Signal Processors

Subramanian Rajagopalan and Sharad Malik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

17 Instruction Scheduling

R. Govindarajan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

18 Software Pipelining

Vicki H. Allan and Stephen J. Allan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

19 Dynamic Compilation

Evelyn Duesterwald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

20 Compiling Safe Mobile Code

R. Venugopal and Ravindra B. Keskar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

21 Type Systems in Programming Languages

Ramesh Subrahmanyam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

22 Introduction to Operational Semantics

Sanjiva Prasad and S. Arun-Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891

xii



1
Data Flow Analysis

Uday P. Khedker
Indian Institute of Technology

(IIT) Bombay

1.1 How to Read This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Program Analysis: The Larger Perspective . . . . . . . . . 2
Characteristics of Semantic Analysis • Characteristics of
Data Flow Analysis

1.3 Basic Concepts of Data Flow Analysis . . . . . . . . . . . . . 5
Program Representation for Data Flow Analysis • Defining
the Semantic Information to Be Captured • Modeling Data
Flow Analysis: Defining Constraints • Solutions of Data
Flow Analysis • Soundness of Data Flow Analysis • Some
Theoretical Properties of Data Flow Analysis • Perform-
ing Data Flow Analysis: Solving Constraints • Generic
Abstractions in Data Flow Analysis

1.4 Advances in Data Flow Analysis . . . . . . . . . . . . . . . . . . . 24
Background • Enriching the Classical Abstractions in Data
Flow Analysis

1.5 Theoretical Foundations of Data Flow Analysis . . . 27
Algebra of Data Flow Information • World of Flow Func-
tions • Data Flow Frameworks • Instance of a Data
Flow Framework • Information Flow Paths and the Path
Flow Function • Solutions of an Instance of a Data Flow
Framework

1.6 Solution Methods of Data Flow Analysis . . . . . . . . . . 40
Iterative Methods of Data Flow Analysis • Elimination
Methods of Data Flow Analysis • Complexity of Data Flow
Analysis • Comparison of Solution Methods and Some
Practical Issues

1.7 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.A Appendix: Some Examples of Advanced Analyses 55
Data Flow Equations and Brief Descriptions • Taxonomies
of Data Flow Analysis

1.1 How to Read This Chapter

This chapter provides a thorough treatment of data flow analysis for imperative languages. Because

our focus is analysis instead of applications, we describe optimizations very briefly. Besides, we

do not cover high level data flow analyses of declarative languages, static single assignment (SSA)

based data flow analyses and intermediate representations; the latter two are covered in separate

chapters.
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We distinguish between what data flow analysis is and how data flow analysis is performed by

delaying the latter as much as possible; we believe that this provides a much cleaner exposition of

ideas. We begin from the first principles and evolve all basic concepts intuitively. In the early part

of the chapter, rigor follows intuition until the peak is reached in Section 1.5 where the situation is

completely reversed. We also provide the larger perspective of program analysis to highlight that

data flow analysis may look very different from other program analyses but it is only a special case

of a more general theme. This is achieved through a highly abstract summary in Section 1.2, which

may be read cursorily in the first reading. Revisiting it after reading the rest of the chapter may

bring out the relevance of this section better. Section 1.3 evolves the basic concepts of data flow

analysis and it must be understood thoroughly before reading the rest of the chapter. Section 1.4

describes the expanding horizons of data flow analysis; the believers may skip it but the skeptics

will do well to dissect it to appreciate the significance of the concept of information flow paths in

Section 1.5.5. Sections 1.5.1, 1.5.2, and Figures 1.16 and 1.17 are very important and should not

be skipped. Solution methods of data flow analysis are discussed in Section 1.6. Finally, the most

important section of this chapter is Section 1.7; we urge the reader to make the most of it.

1.2 Program Analysis: The Larger Perspective

Language processors analyze programs to derive useful information about them. Syntactic analyses

derive information about the structure of a program (which is typically static) whereas semantic

analyses derive information about the properties of dynamic computations of a program. The

semantic information can capture properties of both operations and data (together as well as

independently).

1.2.1 Characteristics of Semantic Analysis

Semantic analyses cover a large spectrum of motivations, basic principles and methods. On the

face of it, the existence of very many diverse analyses lead to the impression that there are more

variances than similarities. Though this is true of practical implementations, at a conceptual level

almost all semantic analyses are characterized by some common aspects. These characteristics are

highly abstract, largely orthogonal and far from exhaustive. Although very elementary, they provide

a good frame of reference; finding the coordinates of a given analysis on this frame of reference

yields valuable insights about the analysis. However, a deeper understanding of the analysis would

require exploring many more analysis-specific details.

1.2.1.1 Applications of Analysis

Typical uses of the information derived by semantic analyses can be broadly classified as:

• Determining the validity of a program. An analysis may be used to validate programs with

regard to some desired properties (e.g., type correctness).

• Understanding the behavior of a program. An analysis may verify (or discover) useful properties

of programs required for debugging, maintenance, verification, testing, etc.

• Transforming a program. Most analyses enable useful transformations to be performed on

programs. These transformations include constructing one program representation from another

as well as modifying a given program representation.

• Enabling program execution. Semantic analysis can also be used for determining the operations

implied by a program so that the program can be executed (e.g., dynamic-type inferencing).



Data Flow Analysis 3

1.2.1.2 Theoretical Foundations of Analysis

Specification and computation of semantic properties can be based on any of the following:

• Inference systems. These systems consist of a set of axioms and inductive and compositional

definitions constituting rules of inference. In such systems, the properties are inferred by

repeatedly discovering the premises that are satisfied and by invoking appropriate rules of

inference.

• Constraint resolution systems. These consist of a constraint store and a logic for solving con-

straints. In such systems, a program component constrains the semantic properties. These con-

straints are expressed in form of inequalities and the semantics properties are derived by finding

a solution that satisfies all the constraints. The solution may have to satisfy some other desirable

properties (namely, largest or smallest) too. 1 The constraints could be of the following types:

◦ Structured constraints. These take advantage of the temporal or spatial structures of data

and operations by grouping the related constraints together. Traditionally they have been

unconditional, and are called flow-based constraints because they have been solved by

traversals over trees or general graphs. Grouping of structured constraints often leads to

replacing groups of related inequalities by equations. Structured constraints often lead to

more efficient analyses, both in terms of time and space.
◦ Unstructured constraints. These are not restricted by the structure and can capture more

powerful semantics because they can be conditional. They often lead to comparatively less

efficient analyses because the related constraints may not be grouped together.

• Abstract interpretations. These use abstraction functions to map the concrete domains of values

to abstract domains, perform the computations on the abstract domains and use concretization

functions to map the abstract values back to the concrete domains.

• Other approaches. These include formal semantics-based approaches (typically using denota-

tional semantics), or model checking-based approaches, which are relatively less common.

These foundations are neither exclusive nor exhaustive. Though some foundations are preferred

for some semantic analyses, in general, an analysis can be expressed in any of the preceding models.

1.2.1.3 Time of Performing Analysis

An analysis performed before the execution of a program is termed static analysis, whereas

an analysis performed during the execution of a program (in an interleaved fashion) is termed

dynamic analysis. Thus, an interpreter can perform static analysis (by analyzing a program just before

execution) as well as dynamic analysis (by analyzing the program during execution). A compiler,

however, can perform static analysis only.

In principle, the choice between static and dynamics analysis is governed by the availability of

information on which the analysis depends, the amount of precision required (or the imprecision that

can be tolerated), and the permissible runtime overheads.

An analysis that depends on runtime information is inherently dynamic. For example, if type

annotations can be omitted in a language and type associations could change at runtime, types

can be discovered only at runtime. This requires dynamic-type inferencing. If some amount of

imprecision can be tolerated (e.g., if precise-type information is not expected but only sets of possible

types are expected), it may be possible to perform an approximate static analysis for an otherwise

inherently dynamic analysis. This obviates dynamic analysis only if a compromise on the precision

1The terms largest and smallest depend on the particular semantics derived and need to be defined
appropriately.
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of information is acceptable; otherwise it requires a subsequent dynamic analysis. In any case, it

reduces the amount of dynamic analysis and hence runtime overheads.

If runtime overheads are a matter of concern, dynamic analyses should either be avoided or

preceded by corresponding (approximate) static analyses. In practice, a majority of analyses

performed by language processors are indeed static. In addition, many dynamic analyses have a

static counterpart. For instance, many languages require array bounds to be checked at runtime;

optimizing compilers can minimize these checks by a static array bound checking optimization.

1.2.1.4 Scope of Analysis

Semantic analyses try to discover summary information about some program unit by correlating the

summary information discovered for smaller constituent units. As such, an analysis may be confined

to a small unit of a program such as an expression or a statement, to larger units such as a group

of statements or function and procedure blocks or to still larger units such as modules or entire

programs. Program units with the same level of scope are analyzed independently. Analysis of units

with differing levels of scope may be interleaved or may be nonoverlapped (and cascaded); in either

case, the larger units can be analyzed only after their constituent units.

1.2.1.5 Granularity of Analysis

An exhaustive analysis derives information starting from scratch whereas an incremental analysis

updates the previously derived semantic information to incorporate the effect of some changes in the

programs. These changes may be caused by transformations (typically for optimization) or by user

edits (typically in programming environments). In general, an incremental analysis must be preceded

by at least one instance of the corresponding exhaustive analysis.

1.2.1.6 Program Representations Used for Analysis

An analysis is typically performed on an intermediate representation of the program. Though

the theoretical discussions of many analyses are in terms of the source code, e.g., in the case of

parallelization, in practice these analyses are performed on a suitable internal representation.

1.2.2 Characteristics of Data Flow Analysis

Data flow analysis discovers useful information about the flow of data (i.e., uses and definitions of

data) in a program. We list the following characteristics of data flow analysis as a special case of

semantic analysis:

• Applications. Data flow analysis can be used for:

◦ Determining the semantic validity of a program, e.g., type correctness based on inferencing,

prohibiting the use of uninitialized variables, etc.

◦ Understanding the behavior of a program for debugging, maintenance, verification or testing

◦ Transforming a program. This is the classical application of data flow analysis and data flow

analysis was originally conceived in this context.

• Foundations. Data flow analysis uses constraint resolution systems based on structured con-

straints. These constraints are unconditional and traditionally related constraints are grouped

together into data flow equations.

• Time. Data flow analysis is mostly static analysis.2

• Scope. Data flow analysis may be performed at almost all levels of scope in a program.

Traditionally the following terms have been associated with data flow analysis for different

scopes in the domain of imperative languages:

2Some form of dynamic data flow analysis for dynamic slicing, etc. is an active area of current research.
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• Local data flow analysis. Analysis across statements but confined to a maximal sequence of

statements with no control transfer other than fall through (i.e., within a basic block).

• Global (intraprocedural) data flow analysis. Analysis across basic blocks but confined to a

function or procedure.

• Interprocedural data flow analysis. Analysis across functions and procedures.

It is also common to use the term local data flow analysis for analysis of a single statement and

global data flow analysis for analysis across statements in a function and procedure. Effectively,

the basic blocks for such analyses consist of a single statement.

• Granularity. Data flow analysis can have exhaustive as well as incremental versions. Incre-

mental versions of data flow analysis are conceptually more difficult compared with exhaustive

data flow analysis.

• Program representations. The possible internal representations for data flow analysis are

abstract syntax trees (ASTs), directed acyclic graphs (DAGs), control flow graphs (CFGs),

program flow graphs (PFGs), call graphs (CGs), program dependence graphs (PDGs), static

single assignment (SSA) forms, etc. The most common representations for global data flow

analysis are CFGs, PFGs, SSA and PDGs whereas interprocedural data flow analyses use a

combination of CGs (and CFGs or PFGs). Though ASTs can and have been used for data flow

analysis, they are not common because they do not exhibit control flow explicitly.

In this chapter, we restrict ourselves to CFGs.

1.3 Basic Concepts of Data Flow Analysis

This section is a gentle introduction to data flow analysis. We evolve the concepts through a running

example contained in Figure 1.1(a), which is a stripped down version of a typical function in signal

processing applications. The function RunningTotal calculates the running sum of energy at

every instant in an interval From to To from the amplitude of the signal.3

1.3.1 Program Representation for Data Flow Analysis

Figure 1.1(b) contains the corresponding program in a typical linear intermediate representation

generated by a compiler front end after scanning, parsing, declaration processing and type checking.

We observe that the instructions in the intermediate representation correspond to the actual imperative

statements of the C code; the declarative statements would populate the symbol table. The compiler

has performed array address calculation using Int Size to identify the position of an element from the

start of the arrays. The instructions to access the location of an element in the memory (by adding

the array base address) can be inserted by the code generator later. This is a matter of design choice.

Finally, the most important observation is as follows:

Expression i ∗ Int Size is computed on lines 5 and 16. Int Size is a constant so it does not change;

however, if we can ascertain that the value of i would not change during the time between execution

of the instructions on line 5 and 16, then the computation of i ∗ Int Size on line 16 is redundant

because it would compute the same value that would have been computed during the execution of

the instruction on line 5.

3A digital signal processor (DSP) programmer may probably write some other kind of code but that is beside
the point.
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# define INSTANTS 10000 1. i = From

# define SFACTOR 0.8 /* Scaling Factor */ 2. Sum = 0

float Amplitude [INSTANTS], Energy [INSTANTS]; 3. t0 = (From ≤ To)

4. if not t0 goto L0

float RunningTotal (int From, int To) 5. L1: t1 = i × Int−Size

{ float Sum; 6. Amp = Amplitude[t1]

int i; 7. t2 = Amp < 0

i = From; Sum = 0; 8. if t2 goto L2

if (From < = To) 9. t3 = Amp × 0.8

{ do 10. t4 = Sum + t3
{ Amp = Amplitude[i]; 11. Sum = t4

if (Amp < 0) 12. goto L3

Sum = Sum − Amp * SFACTOR; 13. L2: t5 = Amp × 0.8
14. t6 = Sum−t5

else 15. Sum = t6
Sum = Sum + Amp * SFACTOR; 16. L3: t7 = i × Int−Size

Energy[i++] = Sum; 17. Energy[t7] = Sum

} 18. t8 = i + 1

while (i <= To); 19. i = t8
} 20. t9 = (i ≤ To)

return Sum; 21. if t9 goto L1

} 22. L0: return Sum

(a) The C code fragment (b) An intermediate representation

FIGURE 1.1 Calculating sum of energies of some signal at distinct instants.

The optimization that eliminates such redundant computations is called common subexpression

elimination and it uses a data flow analysis called available expressions analysis.

Though it appears that the value of i is not modified at any time between the execution of lines 5

and 16, there are gotos and we need to ensure that we have covered all execution paths. Toward this

end, we convert the program into a more convenient representation as shown in Figure 1.2.

We make the following observations about this representation:

• This representation is a directed graph with two well-defined relations pred and succ:

pred(i) = {p | ∃ edge p → i}

succ(i) = {s | ∃ edge i → s}

Note that succ includes only the immediate successors and not all descendants. Similarly, pred

includes only the immediate predecessors and not all ancestors.

• This representation makes the control transfer explicit in form of (directed) edges between

nodes; the nodes themselves represent maximal group of instructions that are executed sequen-

tially without any control transfer into or out of them. Such a group of statements is called a

basic block.

• We have made a distinction between uses and modifications of program variables by separating

expression computations and assignments; the assignments to variables are called definitions

of variables.

1.3.2 Defining the Semantic Information to Be Captured

In this section we look at some standard data flow problems that have been widely used in theory

and practice of data flow analysis; our goal is to see how they define the information to be captured

by analysis. We provide a motivation for each analysis and the criterion to be satisfied by the data

flow information.
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1

2

3 4

5

6

a1 : i = . . .

a2 : Sum = . . .

e1 : From ≤ To

e8 : i ≤ To

e2 : i * Int_Size

a3 : Amp = . . .

e3 : Amp < 0

e2 : i * Int_Size

e7 : i + 1

a1 : i = . . .

e4 : Amp * 0.8

e5 : Sum − t5

a2 : Sum = . . .

e4 : Amp * 0.8

e6 : Sum + t3

a2 : Sum = . . .

Definitions : {a1, a2, a3}

Expressions : {e1, e2, e3, e4, e5, e6, e7, e8}

Array references have been ommitted and 

the “uses” and “modifications” of program 

variables have been highlighted by

separating the computations of expressions

from the assignments to program variables;

the assignments to variables are called

“definitions” of variables.

FIGURE 1.2 Program flow graph for the intermediate representation in Figure 1.1(b).

We talk about the information associated with a program point. Two important categories of

program points are the entry and exit points of a basic block, denoted entryi and exiti for block

i. The entryi is the point just before the execution of the first statement in the block, whereas the

exiti is the point just after the execution of the last statement in the block.

1.3.2.1 Available Expressions Analysis

By generalizing our observation about the expression i ∗ Int Size in our example program, we can

identify the set of expressions whose previously computed values can be reused at a given program

point to eliminate redundant recomputations of the expressions.

An expression e is available at a program point p if, along every path from the start node to p, a

computation of e exists that is not followed by a definition of any of its operands.

1.3.2.2 Reaching Definitions Analysis

Consider a situation where a variable x has been assigned some value at a program point (say p). If

x is used at some other program point (say q), we may want to know whether the definition of x at

p can influence the use of x at q. In particular, this is used for copy propagation optimization that

replaces the use of a variable by the right-hand side variable of its preceding definition. This is in

the hope that the preceding definition would become dead code (i.e., a definition whose value is not

used), which can be eliminated. For example, if the definition in node 2 of Figure 1.2 is Amp = c,

the expression e3 in node 2 can be replaced by c < . . . and the expression e4 in nodes 3 and 4 can

be replaced by c ∗ 0.8. Then variable Amp has no use and its definition can be safely eliminated.
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A definition d : v = c may reach program point p, if d appears on some path from the start node

to p and is not followed by any other definition of v.

1.3.2.3 Live Variables Analysis

This analysis tries to find out if a variable has any further uses after a program point. This information

can be used to identify the live range of a variable (i.e., the region of a program over which the value

of the variable should be considered for keeping in a register); if the variable has no further use, its

value does not need to be kept in a register. Consider the variables in node 1 in Figure 1.2. Variable

From does not have any subsequent use whereas variable Sum is used in nodes 3 and 4 and To is

used in node 5. Thus, From is not live at exit1 whereas Sum and To are.

A variable v may be live at a program point p, if v is used along some path from p to a program

exit, and is not preceded by its definition.

1.3.2.4 Very Busy Expressions (Anticipability) Analysis

This analysis tries to find out the set of expressions at a program point whose value is used along all

paths toward program exits so as to decide whether the value of the expression should be kept in a

register. In our example flow graph (Figure 1.2), expression i ∗ Int Size is very busy in node 2 but

not in node 5.

An expression e is very busy (or anticipatable) at a program point p, if a computation of e exists

that is not preceded by a definition of any operand of e along any path from p to program exits.

1.3.2.5 Constant Propagation

If it can be asserted at compile time that an expression would compute a fixed (known) value in every

execution of the program, the expression computation can be replaced by the known constant value.

This can then be propagated further as the value of the result of the expression to identify whether

other expressions compute a constant value. We elaborate on this optimization in Section 1.3.6.2.

A variable is a constant with value c at the entry of the node if along all paths it has value c, or if it

has value c along some path and is undefined along all other paths. For a definition v := e in a node,

the variable v is a constant with value c at the exit of the node if it can be shown that e evaluates to

c and this definition is not followed by any other definition of v.

1.3.2.6 Partial Redundancy Elimination

Available expressions analysis captures redundancy of an expression along all paths (i.e., complete

redundancy). However, in some situations an expression may be only partially redundant (i.e.,

redundant along some path but nonredundant along some other).

In Figure 1.3(a), expression x ∗ y is clearly not available at node 3. When the execution follows

the path 2 → 3, only one computation of x ∗ y occurs on the path. However, along the path 1 → 3,

two computations of x ∗y occur. Thus, x ∗y is partially redundant in node 3. This redundancy can be

eliminated by inserting x ∗ y in node 2; this makes its computation in node 3 completely redundant,

which can then be eliminated. This can also be seen as hoisting expression x ∗ y from node 3 into

node 2 (Figure 1.3(b)).

1 x * y 2

3 x * y

(a)

1 x * y 2

3

x * y

(b)

FIGURE 1.3 Partial redundancy elimination.
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The precise criterion for PRE is quite subtle; intuitively, the expression must be partially redundant

at a node (say i) and some predecessors of i must exist in which the expression can be inserted without

changing the semantics of the program (see Appendix A for more details).

1.3.3 Modeling Data Flow Analysis: Defining Constraints

This section evolves some of the basic concepts of data flow analysis, namely, data flow information,

data flow properties, data flow constraints, flow functions and data flow equations. We achieve this

by using the data flow problem of available expressions analysis.

Intuitively, two reasons why an expression may not be available at a given program point could

be:

• Some path exists from program entry to program point may not contain any computation of

the given expression (i.e., no basic block falling on that path computes the expression). Such a

path does not “generate” the value of the expression.

• Some path from program entry to the program point contains a definition of some operand of the

expression (in some basic block falling on that path), which is not followed by a recomputation

of the expression along the remaining path. Such a path “kills” the value of the expression.

1.3.3.1 Data Flow Information and Data Flow Properties

We can find the set of available expressions by identifying the set of expressions that are generated in

a node and the set of expressions that are killed in a node. Such sets capture the data flow information

used or gathered by data flow analysis. In the context of available expressions analysis, we use the

following notation for these sets:

AvGeni Set of expressions that are computed in node i and are not followed

(within the node) by a modification of any of their operands

AvKilli Set of expressions whose operands are modified in node i

AVINi Set of expressions available at entryi

AVOUTi Set of expressions available at exiti

Each of the preceding names represents a data flow property. Thus, data flow analysis gathers data

flow information by computing the values of data flow properties.

1.3.3.2 Data Flow Constraints

We define the constraint for expressions available at entryi as follows:

∀p ∈ pred(i), AVINi ⊆ AVOUTp (1.1)

This should be read as:

Only those expressions can be available at the entry point of a node, which can be available at the

exit points of all predecessors, and no more.

We can make some suitable assumptions for the graph entry node that does not have any predecessor. If

we restrict ourselves to the expressions involving local variables, then we can assume that AVIN = ∅
for the entry node. For other expressions we can initializeAVIN of the entry node to the value available

from interprocedural analysis. The constraint for expressions available at the exit of a node is defined

as follows:

AVOUTi ⊆ AvGeni ∪ (AVINi − AvKilli) (1.2)
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This should be read as:

Only those expressions can be available at the exit of a node, which are either generated within

the node, or are available at the entry of the node and are not killed in the node — and no more.

Constraint (1.2) can also be looked on as:

AVOUTi ⊆ fi(AVINi) (1.3)

where fi is a flow function associated with node i and is defined as follows:

fi(X) = AvGeni ∪ (X − AvKilli) (1.4)

1.3.3.3 Data Flow Equations

Because a set intersection gives a subset of all the sets intersected, inequality (1.1) can be rewritten as:

AVINi ⊆
⋂

p∈ pred(i)

AVOUTp (1.5)

Typically, we want the largest set so it may further be converted into an equation:

AVINi =
⋂

p∈ pred(i)

AVOUTp (1.6)

Inequalities (1.2) and (1.3) can be converted to the following equation:

AVOUTi = AvGeni ∪ (AVINi − AvKilli) = fi(AVINi) (1.7)

Use of equality in the first conversion, that is, Equation (1.6), may imply some loss of information

for nondistributive analyses. Section 1.3.6.2 elaborates on this. Fortunately, available expressions

analysis is distributive.

1.3.3.4 Modeling Available Expressions Analysis for Example Program

In keeping with our observation that analysis of smaller constituent units precedes the analysis of

larger units, we first define the local analysis, which is then used for defining the global analysis.

The former is confined to the statements within a node whereas the latter spreads across various

nodes.

• Modeling local analysis: Defining transfer functions. For finding the expressions that are

available at various nodes we need to compute AvGen and AvKill sets. AvGen can be

directly computed. For computing AvKill, we list the expressions that are killed by various

definitions in the following:

Definition Variable Expressions Killed

a1 i e2, e7, e8

a2 Sum e5, e6

a3 Amp e3, e4
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By using the preceding details, the AvGen and AvKill sets (and hence the flow functions)

are defined as follows:

Node i AvGeni AvKilli fi(X)

1 {e1} {e2, e5, e6, e7, e8} {e1} ∪ (X − {e2, e5, e6, e7, e8})
2 {e2, e3} {e3, e4} {e2, e3} ∪ (X − {e3, e4})
3 {e4} {e5, e6} {e4} ∪ (X − {e5, e6})
4 {e4} {e5, e6} {e4} ∪ (X − {e5, e6})
5 {e8} {e2, e7, e8} {e8} ∪ (X − {e2, e7, e8})
6 ∅ ∅ X

(1.8)

• Modeling global analysis: Defining constraints. By embedding the flow functions from the

preceding table in constraints (1.1) and (1.2), we get the following constraints for available

expressions analysis of our example program:

AVIN1 = ∅
AVOUT1 ⊆ {e1} ∪ (AVIN1 − {e2, e5, e6, e7, e8})

⊆ {e1} (1.9)

AVIN2 ⊆ AVOUT1

⊆ {e1}
AVIN2 ⊆ AVOUT5 (1.10)

AVOUT2 ⊆ {e2, e3} ∪ (AVIN2 − {e3, e4})
AVIN3 ⊆ AVOUT2

AVOUT3 ⊆ {e4} ∪ (AVIN3 − {e5, e6})
AVIN4 ⊆ AVOUT2

AVOUT4 ⊆ {e4} ∪ (AVIN4 − {e5, e6})
AVIN5 ⊆ AVOUT3

AVIN5 ⊆ AVOUT4

AVOUT5 ⊆ {e8} ∪ (AVIN5 − {e2, e7, e8})

AVIN6 ⊆ AVOUT1 (1.11)

AVIN6 ⊆ AVOUT5

AVOUT6 ⊆ AvGen6 ∪ (AVIN6 − AvKill6)

⊆ AVIN6 (1.12)

1.3.4 Solutions of Data Flow Analysis

An assignment of data flow information to nodes in control flow graph represents a potential solution

of data flow analysis; an assignment that satisfies the constraints represents an actual solution. It

is interesting to look at a range of assignments to examine the amount and the precision of desired

semantic information captured by them. This discussion motivates some important concepts using

some terms intuitively; their formal definitions follow in Sections 1.5.1 and 1.5.6.
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1.3.4.1 Examples of Assignments

We present several assignments for our example program without discussing how they may have

been found.

1. A trivial assignment is:

∀i, AVINi = AVOUTi = ∅ (1.13)

This implies that no expression is available at any point in the program and may look like

an incorrect solution because several expressions are not followed by a modification of their

operands. However, this assignment satisfies the constraints; and if we use it for common

subexpression elimination, it cannot violate the intended semantics of the program (because

no subexpression is eliminated). Hence, it is a safe assignment.

2. The other extreme is to guess the universal set U as the assignment at every program point:

∀i, AVINi = AVOUTi = U = {e1, e2, e3, e4, e5, e6, e7, e8} (1.14)

Clearly, this does not satisfy all constraints and performing common subexpression elimination

based on this assignment can surely lead to a wrong program. This assignment is unsafe.

3. This is another assignment:

Node AVIN AVOUT

1 ∅ {e1}
2 ∅ {e2, e3}
3 {e2, e3} {e2, e3, e4}
4 {e2, e3} {e2, e3, e4}
5 {e2, e3, e4} {e3, e4, e8}
6 ∅ ∅

(1.15)

This assignment satisfies all the constraints. However, we discover that expression e1 is

computed in node 1 and is not killed anywhere (no assignment to From or To anywhere) and

yet is not available anywhere. This implies that this assignment is not the largest assignment

(and hence is imprecise).

4. Yet another assignment includes e1 at appropriate program points:

Node AVIN AVOUT

1 ∅ {e1}
2 {e1} {e1, e2, e3}
3 {e1, e2, e3} {e1, e2, e3, e4}
4 {e1, e2, e3} {e1, e2, e3, e4}
5 {e1, e2, e3, e4} {e1, e3, e4, e8}
6 {e1} {e1}

(1.16)

Addition of any expression anywhere to this assignment can violate the constraints. Hence,

this is the largest safe assignment.

1.3.4.2 Properties of Assignments

Having discussed how to interpret the assignments of data flow information, we now look at some

interesting properties of these assignments.



Data Flow Analysis 13

1.3.4.2.1 Largeness of an Assignment

It can be easily verified that assignment (1.16) is the largest assignment satisfying the constraints for

our example program. In the general situation, the adjective large can be associated with either the

size of the set used to represent the data flow information, or the amount of data flow information

captured by a set. The former is an instance of set theoretical largeness whereas the latter is an instance

of information theoretical largeness and the two are orthogonal. In the case of available expressions

analysis, large sets indicate more information whereas in the case of reaching definitions analysis

small sets represent more information. In some other situations, namely, constant propagation, the

amount of information may be independent of the size of the set. This depends on the criteria to be

satisfied by data flow information and can be explained as follows:

• Available expressions analysis. An expression is available at a program point if it is available

along all paths leading to that program point; if it is not available along any path, it must

be excluded from AVINi . This implies that AVINi can only be a subset of AVOUT of predeces-

sors — constraints (1.1) and (1.5). Clearly, larger AVINi (in set theoretical terms) satisfying the

criteria implies that a larger number of common subexpressions can be (potentially) eliminated.

To compute larger sets we replace ⊆ by in constraint (1.5) by = to get constraint (1.6).

• Reaching definitions analysis. A definition may reach a program point, if it may reach along

some path leading to that program point; if it can reach along some path, it must be included in

RDINi even if it does not reach along some other path. This implies that RDINi can only be a

superset of RDOUT of predecessors:

∀p ∈ pred(i) RDINi ⊇ RDOUTp (1.17)

This should be read as:

The actual set of definitions satisfying constraint (1.17) may be larger than the set of definitions

reaching from some predecessor p because they may not reach i from p but may reach i

from some other predecessor p′.

Another way of writing this constraint is:

RDINi ⊇
⋃

p∈ pred(i)

RDOUTp (1.18)

This information is used for performing copy propagation optimization (and possibly, a

subsequent dead code elimination). Note that this is possible if only one definition reaches

a program point. If multiple definitions reach the program point, obviously we do not know for

sure which value the variable may have and hence cannot perform optimization.

A trivial assignment for the constraints for reaching definitions analysis is:

∀i RDINi = U (1.19)

where U denotes the universal set. Obviously, this assignment serves no useful purpose and we

want the smallest set satisfying (1.17). In other words, the maximum meaningful information

is captured by the smallest RDINi set satisfying (1.17); larger RDINi (in set theoretical terms)

contains some “noise” (i.e., extra information that may not be meaningful). To compute smaller

sets we replace ⊇ by =:

RDINi =
⋃

p∈ pred(i)

RDOUTp (1.20)
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Whenever we talk about largeness of assignment, we refer to the information theoretical largeness

of the amount of data flow information and not the set theoretical largeness of the set representing

the data flow information. It must be emphasized that the largeness of data flow information is a

direct consequence of the way the information is merged, which in turn is governed by the criteria to

be satisfied by the data flow information. We dwell more on information theoretical largeness later

in Figure 1.16 in Section 1.5.6.

1.3.4.2.2 Safe and Maximum Safe Assignments

If the use of any information changes the intended semantics of a program, either the information is

incorrect or its use is improper (i.e., out of context or inconsistent with the intended semantics of the

constraints). If an assignment satisfies the constraints, then a proper use of this assignment cannot

lead to violation of the semantics of the program analysis. Hence, such an assignment is called a safe

assignment. We explain this with the following examples:

• Available expressions analysis. We say that “an expression is available (i.e., included in Avin),

if . . . ” and not “an expression is available, if and only if . . . .” This implies that:

• When an expression is included in an AVIN set, it must satisfy the conditions of availability,

else it may lead to wrong optimization.

• When an expression is not included inAVIN and yet satisfies the the conditions of availability,

it does not contradict the statement. Hence, it is not an error but an imprecision. Though it

may not lead to any optimization, the assignment is still safe.

• Reaching definitions analysis. For semantic soundness, we use a special value undef and it is

assumed that the following definitions reach the entry node:

RDINentry = {x := undef | x is a variable in the program} (1.21)

This allows us to guard against the use of undefined variables. The analysis statement says that

“a definition may reach (i.e., may be included in RDIN), if . . . .” This implies that:

• If a definition x := c is included in RDINi and does not satisfy the conditions of reachability,

there are two possibilities:

◦ If there are multiple definitions of x in RDINi , then optimization cannot be performed;

hence spurious inclusion of definitions in RDINi is safe.

◦ The situation that x := c is the only definition included in RDINi and in reality it does

not satisfy the conditions of reachability is not possible: if no definition of x reaches i

in the program, then according to our constraints, the definition x := undef must reach

i (because a path must exist from the entry node to i). With spurious inclusions we may

have at least two definitions in RDINi unless x := undef is removed from RDINi ; the

latter is erroneous and is covered by the next case.

• When a definition is not included in RDINi but it actually satisfies the condition of reach-

ability, we may make erroneous optimization. For instance, if two definitions x := c1 and

x := c2 satisfy the condition of reachability at i but RDINi contains only one of them, then

optimization can still be performed and it can be wrong. Replace x := c1 by x := undef in

this argument and it is easy to see why removing x := undef erroneously may lead to wrong

optimization.

A safe assignment represents a valid solution of data flow analysis. Assignments (1.13), (1.15)

and (1.16) are safe assignments. However, assignment (1.13) does not capture all useful information,
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thereby missing some optimization opportunities. The maximum4 safe assignment is the largest

safe assignment (in information theoretical terms). It represents the largest possible solution and

implies that no useful information (which could be inferred from the constraints) has been missed

in the assignment. A common traditional term for the maximum safe assignment is meet over paths

(MOP) solution, which basically follows from the formal definition presented in Section 1.5.6.

Assignment (1.16) is the maximum safe assignment.

From assignment (1.13), it is easy to conclude that the existence of a safe assignment is trivially

guaranteed.5 Thus, the existence of the maximum safe assignment automatically follows. Any

assignment that satisfies the constraints is safe. However, the formal definition of safe assignments

is quite subtle — it admits not only those assignments that satisfy the constraints but also some that

do not satisfy the constraints. We elaborate later on this in Figure 1.18 in Section 1.5.6.

1.3.4.2.3 Fixed Point and Maximum Fixed Point Assignments

Though assignment (1.13) is safe, if we try to recompute AVIN and AVOUT — using the values

in assignment (1.13) — it is possible to add a few expressions to them. This happens because the

use of inequalities allows multiple values to satisfy a given constraint. Thus if a solution uses a

smaller value satisfying the constraint, it is possible to update the solution by choosing a larger value

satisfying the constraint. With equalities in constraints, the AVIN sets of assignment (1.13) are not

consistent with the AVOUT sets of the predecessors and the AVOUT sets are not consistent with the

AVIN sets of the same node.

Mathematically, a fixed point of a function h : A → A is a value x ∈ A such that h(x) = x. We

use this concept to define a fixed point assignment that captures the fact that no value can be updated

any further by recomputations. This enables characterization of termination of analysis.

Assignment (1.13) is a safe assignment but neither the maximum safe assignment nor a fixed point

assignment. Assignment (1.15), on the other hand, is not only a safe assignment but also a fixed point

assignment, although it is not the maximum safe assignment. It might appear that it is possible to

update AVIN2 in this assignment by adding e1 to it because it is contained in AVOUT1. However, e1

is not contained in AVOUT5 and because node 5 is a predecessor of node 2, we cannot conclude that

e1 is available at entry2. Ironically, we observe that if we assume that e1 is available at exit5,

then it becomes available at node 2. Because neither From nor To is modified anywhere, e1 becomes

available at node 5, thereby confirming its initial inclusion inAVOUT5. An “if” qualifies the preceding

statement and unless we make that assumption, we cannot update this assignment any further and

it is indeed consistent, though not maximally consistent. Assignment (1.16) is the maximum safe

assignment and a fixed point assignment. It is maximally consistent because it assumed e1 to be

available in AVOUT5 (we revisit this in Section 1.3.7).

Unlike safe assignment, the existence of a fixed point assignment is not guaranteed; we discuss

this in Section 1.3.6.

The maximum fixed point assignment is the largest fixed point assignment (in information

theoretical terms).6 Assignment (1.16) is the maximum safe and the maximum fixed point assignment.

4Is it “maximal” or “maximum”? If a unique largest safe assignment exists, then it is the maximum safe
assignment; if multiple largest safe assignments exists, then we have maximal safe assignments. Section 1.5.1
assures us that in our case, we have a unique largest safe assignment.
5If you do not want to make a mistake, one way of guaranteeing it is to not do any work.
6The traditional data flow analysis literature usually does not distinguish between the information theoretical
largeness and the set theoretical largeness. For available expressions analysis, the desired solution is called
the maximum fixed point solution whereas for reaching definitions analysis, it is called the minimum fixed
point solution. Thanks to our general characterization, such a dual term is not required for our discussion.
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All Possible Assignments of

Data Flow Information

Safe Assignments

Fixed Point

Assignments

FIGURE 1.4 Categories of assignments of a data flow problem.

1.3.4.2.4 Relationship between Maximum Safe, Safe and Fixed Point Assignments

Safety guarantees the correctness of information derived from an analysis, maximum safety guaran-

tees exhaustiveness of correct information and fixed points enable characterization of the termination

of analysis. Figure 1.4 summarizes the relationship between different kinds of assignments; several

interesting conclusions can be drawn from it. We make this figure more precise and reproduce it later

as Figure 1.17 in Section 1.5.6.

In the case of nondistributive problems, the maximum fixed point assignment may not be the

maximum safe assignment, and the maximum safe assignment does not need to be a fixed point

assignment. These are indicated by the containment of fixed point assignments in safe assignments

in Figure 1.4. We explain this in Section 1.3.6.2.

1.3.5 Soundness of Data Flow Analysis

Soundness of data flow analysis is a combination of the soundness of modeling and the soundness

of the use of the information derived by analysis. It is possible that the modeling is sound but the

use of safe assignment is improper. Conversely, it is also possible that the modeling is unsound. It

is too easy to rely on intuition and make subtle mistakes (or conversely, to take rigor for granted

and accept unintuitive assignments as valid). An example of an unsound modeling is leaving out

definitions (1.21) from reaching definitions analysis. In such a case, if no definition of x actually

reaches node i and a definition x := c is included in RDINi , the solution would have this definition as

the only definition of x in RDINi . Hence, copy propagation for x may be performed and definitions

of x may be eliminated as dead code leading to incorrect program.

An example of an improper use of a safe assignment is presented in Section 1.5.6.

1.3.6 Some Theoretical Properties of Data Flow Analysis

Having looked at the possible assignments of data flow analysis, it is important to understand some

properties of data flow analysis that influence the possibilities of finding these assignments. These

properties form the basis of the actual methods of performing analysis; hence, this discussion precedes

the discussion of solution methods of data flow analysis.

1.3.6.1 Properties Influencing the Convergence of Analysis

Each constraint corresponds to the shortest segment of a data flow path. These segments can be

combined in many ways and many times depending on the interdependence of constraints (this, in

turn, depends on the structure of the flow graph). This raises two important questions:

• How many paths would have to be traversed for performing analysis?

• How long will these paths be?
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We answer these questions by examining constraints (1.11) and (1.12) for AVIN6. By successively

substituting the right-hand sides of relevant constraints, we can rewrite (1.12) as two different

constraints (one along the path 2 → 3 → 5 → 6 and the other along path 2 → 4 → 5 → 6):

AVIN6 ⊆ f5(f3(f2(AVIN2))) (1.22)

AVIN6 ⊆ f5(f4(f2(AVIN2))) (1.23)

AVIN2 depends on AVOUT1 and AVOUT5. Further substitutions in (1.22) and (1.23) yield multiple

constraints, two constraints resulting from substituting for AVOUT1 and the other two resulting from

substituting for AVOUT5, namely:

AVIN6 ⊆ f5(f3(f2(f1(AVIN1))))

AVIN6 ⊆ f5(f3(f2(f5(AVIN5)))) (1.24)

AVIN6 ⊆ f5(f4(f2(f1(AVIN1))))

AVIN6 ⊆ f5(f4(f2(f5(AVIN5)))) (1.25)

Note the recursive application of f5 in inequalities (1.24) and (1.25). If we substitute for AVIN5,

we get recursive applications of f4 and f2 (or f3 and f2) also. Each recursive function application

implies that the path (traced by the flow function composition) is retraversed.

Because the traversal of a cyclic path is not bounded in length (i.e., generally the number of times

a loop can be executed is not known at compile time), we can have potentially an infinite number of

paths, many of which may be potentially infinite in length. Let P IN(i) represent the set of all paths

from the initial node to entryi . Then the constraint for AVIN6 can be expressed as:

∀ ρ ∈ P IN(6), AVIN6 ⊆ fρ(AVIN1) (1.26)

where fρ denotes the function compositions along a path in P IN(6). Though theoretically we have to

deal with infinitely many path traversals of infinite length, practically all flow functions are monotonic

(i.e., the values either do not decrease for increasing inputs or do not increase for decreasing inputs).

Monotonicity guarantees convergence of recursive calls if:

• Either the number of possible values of a data flow property is finite

• Or the confluence operation (in our case ∩) has some desirable properties

This eliminates the infiniteness of both the number as well as the length of path traversals by bounding

the number of times a cycle would have to be traversed in a path. In practice, it is desirable that

this bound should be a (small) constant instead of a function of some measure of the program to be

analyzed. For available expressions analysis, this number is 1.7 We discuss these concepts with due

rigor in Section 1.5.1.

1.3.6.2 Properties Influencing the Quality of Solutions

Yet another important question is: Will data flow information be computed afresh along each path

even if path segments are shared? Clearly, this is undesirable and can be avoided by:

7Formally, the bound is one more than the number of times a cycle may have to be traversed.
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• Summarizing this information at a node by grouping the constraints

• Remembering this information and reusing it instead of recomputing it afresh each time it is

required

Summarization of data flow information requires grouping of related constraints and implies merging

of shared path segments. Then, retraversals of shared path segments can be avoided by remembering

and reusing the summarized information. This implies that for constraint (1.26), there is no need

to actually compute the function composition fρ explicitly. Instead, it is sufficient to apply f5 to

AVIN5 and f1 to compute AVOUT5 and AVOUT1 and then compute AVIN6 by:

AVIN6 ⊆ AVOUT1 ∩ AVOUT5

This is under the assumption that AVIN1 and AVIN5 have also been computed in the same way. For

the maximality of values, ⊆ can be replaced by =.

Summarization of information is not without any price. It may lead to some loss of information.

We explain this with the help of the data flow analysis for constant propagation.

1.3.6.2.1 An Aside on Constant Propagation

Figure 1.5 contains the program flow graph for our example. The question that is of interest is, Is z

constant in node 5? A manual inspection of the flow graph reveals that z is indeed constant whose

value is 24. We explain the effect of summarization on this information by defining the flow functions

and the confluence operation for constant propagation.

• Data flow information. Let the data flow information (denoted by CINi and COUTi) be repre-

sented by a set of tuples 〈v, t〉 where v is a variable and t is a tag that can have the following

values:

• ud, if v is undefined

• nc, if v is not a constant

• Number n, if v is a constant with value n

1 z MAX

2
x 4

y 6
3

x 6

y 4

4 z MIN

5 z x y 6 z MIN

<

=

=

=

=

= =

>

∗

FIGURE 1.5 Loss of information in constant propagation.
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• Flow functions. We need to define flow functions for each arithmetic expression. For brevity,

we define the flow function for multiplication (denoted mult) only. Let a1 and a2 be the two

arguments and r , the result (i.e., r = a1 ∗ a2). Then:

mult 〈a1, ud〉 〈a1, nc〉 〈a1, c1〉

〈a2, ud〉 〈r, ud〉 〈r, nc〉 〈r, c1〉
〈a2, nc〉 〈r, nc〉 〈r, nc〉 〈r, nc〉
〈a2, c2〉 〈r, c2〉 〈r, nc〉 〈r, (c1 ∗ c2)〉

(1.27)

The preceding definition says that the result is a constant if either the two arguments are constants

or one of them is undefined and the other is constant. If both arguments are undefined, then the

result is undefined. In all other cases, the result is not constant.

• Confluence operation. The confluence operation for a single element in the set is defined as

follows and can be lifted to arbitrary sets elementwise.

⊓ 〈v, ud〉 〈v, nc〉 〈v, c1〉

〈v, ud〉 〈v, ud〉 〈v, nc〉 〈v, c1〉
〈v, nc〉 〈v, nc〉 〈v, nc〉 〈v, nc〉

〈v, c2〉 〈v, c2〉 〈v, nc〉
〈v, c1〉 if c1 = c2

〈v, nc〉 otherwise
(1.28)

• Constant propagation without summarization. In this case we try to find out if x and y are

constant in node 5 along different paths reaching node 5 without merging the information about

x and y at intermediate points in the shared path segments. The two paths reaching node 5 are

1 → 2 → 4 → 5 and 1 → 3 → 4 → 5.

• Along the path 1 → 2 → 4 → 5, the value of x is 4 and the value of y is 6. Thus, both x

and y are constant. The value of z is 24.

• Along the path 1 → 3 → 4 → 5, the value of x is 6 and the value of y is 4. Thus, both x

and y are constant. The value of z is 24.

Because the value of z is same (i.e., 24) along both the paths, z indeed is constant in node 5.

Thus the maximum safe assignment is:

Node CINi COUTi

1 {〈x, ud〉, 〈y, ud〉, 〈z, ud〉} {〈x, ud〉, 〈y, ud〉, 〈z, ud〉}
2 {〈x, ud〉, 〈y, ud〉, 〈z, ud〉} {〈x, 4〉, 〈y, 6〉, 〈z, ud〉}
3 {〈x, ud〉, 〈y, ud〉, 〈z, ud〉} {〈x, 6〉, 〈y, 4〉, 〈z, ud〉}
4 {〈x, nc〉, 〈y, nc〉, 〈z, ud〉} {〈x, nc〉, 〈y, nc〉, 〈z, ud〉}
5 {〈x, nc〉, 〈y, nc〉, 〈z, ud〉} {〈x, nc〉, 〈y, nc〉, 〈z, 24〉}
6 {〈x, nc〉, 〈y, nc〉, 〈z, ud〉} {〈x, nc〉, 〈y, nc〉, 〈z, MIN〉}

(1.29)
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• Constant propagation with summarization. In this case we try to find whether x and

y are constant in node 5 by merging the information about x and y in the shared

path segments along different paths reaching node 5. The information can be merged at

node 4.

• The value of x is 4 along the path segment 1 → 2 → 4 and 6 along the path segment

1 → 3 → 4. Thus, x is not constant in node 4 (and hence in node 5 also).

• The value of y is 6 along the path segment 1 → 2 → 4 and 4 along the path segment

1 → 3 → 4. Thus, y is not constant in node 4 (and hence in node 5 also).

Because x and y are not constant in node 5, z is not constant. Thus, our maximum fixed point

assignment is:

Node CINi COUTi

1 {〈x, ud〉, 〈y, ud〉, 〈z, ud〉} {〈x, ud〉, 〈y, ud〉, 〈z, ud〉}
2 {〈x, ud〉, 〈y, ud〉, 〈z, ud〉} {〈x, 4〉, 〈y, 6〉, 〈z, ud〉}
3 {〈x, ud〉, 〈y, ud〉, 〈z, ud〉} {〈x, 6〉, 〈y, 4〉, 〈z, ud〉}
4 {〈x, nc〉, 〈y, nc〉, 〈z, ud〉} {〈x, nc〉, 〈y, nc〉, 〈z, ud〉}
5 {〈x, nc〉, 〈y, nc〉, 〈z, ud〉} {〈x, nc〉, 〈y, nc〉, 〈z, nc〉}
6 {〈x, nc〉, 〈y, nc〉, 〈z, ud〉} {〈x, nc〉, 〈y, nc〉, 〈z, MIN〉}

(1.30)

Clearly, summarization misses the fact that z is a constant in node 5.

Use of equations gives us a fixed point assignment, but in this case the maximum safe assign-

ment is not a fixed point; it is larger than the maximum fixed point.8 Fortunately, such loss of

useful information takes place for only for a few practical data flow problems. For most (not all)

practical data flow problems, summarization gives the same assignment as would be computed

by traversing all paths independently (i.e., the maximum fixed point assignment is also the max-

imum safe assignment); such data flow problems are called distributive. Accordingly, available

expressions analysis is distributive whereas the analysis for constant propagation is nondistribu-

tive; intuitively, this happens because constantness of z in node 5 depends on constantness of

variables other than z (in this case x and y). We look at this more precisely and rigorously in

Section 1.5.2.

1.3.7 Performing Data Flow Analysis: Solving Constraints

Because constraints depend on each other, one would like to solve them by systematic substitution

of variables by the corresponding right-hand sides.9 For our example, we substitute the right-hand

side of AVIN1 in the right-hand side of AVOUT1. The resulting right-hand side is substituted in

the right-hand side of AVIN2. However, the second constraint for AVIN2, that is, constraint (1.10)

requires the value of AVOUT5. Thus:

8Maximum safe assignment can never be smaller than a fixed point. Why?
9When we use substitution in the case of inequalities, we should consistently choose either the largest or the
smallest value satisfying the constraint.
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AVIN2 ⊆ AVOUT5

⊆ ({e8} ∪ (AVIN5 − {e2, e7, e8}))

⊆ ({e8} ∪ (AVOUT3 − {e2, e7, e8}))

⊆ ({e8} ∪ (({e4} ∪ (AVIN3 − {e5, e6})) − {e2, e7, e8}))

⊆ ({e8} ∪ (({e4} ∪ (AVOUT2 − {e5, e6})) − {e2, e7, e8}))

⊆ ({e8} ∪ (({e4} ∪ (({e2, e3} ∪ (AVIN2 − {e3, e4})) − {e5, e6})) − {e2, e7, e8}))

RHS for AVOUT5

RHS for AVOUT5

RHS for AVOUT3

RHS for AVOUT5

RHS for AVOUT3

RHS for AVOUT5

RHS for AVOUT2

RHS for AVOUT3

RHS for AVOUT5            (1.31)  

Thus, AVIN2 depends on itself. This is what was captured by the observation of recursive appli-

cations of functions in the previous section. If there had not been a recursive dependence like this, a

systematic substitution of the terms would give us a solution for the constraint. Clearly, solving the

system of constraints requires the elimination of recursive dependences. This can be achieved in one

of two ways:

• Assume a suitable initial value of recursively dependent data flow information, substitute it in

right-hand sides to circumvent the recursive dependence and recompute the value.

• Delay the computation of recursively dependent data flow information by substituting a

(group of) variables by a new variable and eliminate the recursive dependence.

We discuss these two approaches in the rest of this section.

1.3.7.1 Solving Constraints by Successive Refinement

In this case we assume an approximate value for each variable and then recompute it by substituting

it in the right-hand side of the constraints defining the variable. If the initial choice of the value

is appropriate, the recomputations can make the values more precise. This process may have to be

repeated until the values stabilize. In the current context two obvious choices for the initial guess are:

• Empty set ∅. When we substitute ∅ for AVIN2 in the right-hand side of constraint (1.31), it

reduces to:

AVIN2 ⊆ {e2, e3, e4, e8} (1.32)

The initial guess (∅) satisfies this constraint. If we substitute the right-hand side of (1.32) back

in the right-hand side of (1.31), we get the same solution, implying that it does not need to

be recomputed any more. However, AVIN2 must also satisfy constraint (1.9). Hence, the only

solution possible for AVIN2 in this case is ∅. This is how solution (1.15) was computed.



22 The Compiler Design Handbook: Optimizations and Machine Code Generation

1

7 Nodes 2, 3, 4, 5

6

FIGURE 1.6 Grouping of interdependent nodes.

• Universal set ({e1, e2, e3, e4, e5, e6, e7, e8}). When this is substituted in (1.31), it becomes:

AVIN2 ⊆ {e1, e2, e3, e4, e8} (1.33)

Because AVIN2 must also satisfy constraint (1.9), in this case two values are possible: ∅, and

{e1}. Because we want the largest solution, we should select the latter value. This is how

assignment (1.16) was computed.

Other choices are also possible — in general any initial value larger than the largest solution can serve

the purpose. Also note that when successive recomputations are used, the constraints can be solved

in any order; no particular order is necessary, although one order may be more efficient (i.e., may

require less computation) than the other.

1.3.7.2 Solving Constraints by Delaying Some Computations

We can delay some computations by identifying all maximal groups of mutually dependent sets

and abstracting out each set by a single variable. It can also be seen as abstracting out a group of

nodes in the graph by a single node. In our case a single group exists that consists of the following

sets: AVIN2,AVOUT2,AVIN3,AVOUT3,AVIN4,AVOUT4,AVIN5 and AVOUT5. In terms of nodes,

we can replace the group 2, 3, 4 and 5 by a single newly constructed node (say 7) as shown in

Figure 1.6. This replacement is only conceptual and is used for computing the flow functions (for

the interdependent nodes) and values at other program points.

Now if we define constraints for AVIN7 and AVOUT7, there can be no recursive dependence and

a systematic substitution can give us the solution of the new system of constraints. Then, we are

able to compute the values of the AVIN/AVOUT for nodes 2, 3, 4 and 5 from the value of AVIN7.

This approach is the same as the standard elimination methods used for solving linear systems of

simultaneous equations.10 We explain this method in greater detail in Section 1.6.2.

1.3.8 Generic Abstractions in Data Flow Analysis

After examining the basic concepts of data flow analysis, it is time now to discuss some generic

abstractions in data flow analysis to cover the data flow problems mentioned in Section 1.3.2.

10Our equations involve sets, and, though the solution methods can be borrowed from the mathematics of
linear system of simultaneous equations, its theory is not applicable in this context. We cannot use it to reason
about the existence of, or the uniqueness of, solutions — or about the convergence of the solution process.
For us, the relevant mathematics is set algebra and our equations can be viewed as Boolean equations, much
in the genre of satisfiability problems that are NP complete. However, we have discussed some properties
in Section 1.3.4.2 that deal with the issues of existence of, and convergence on, solutions. These properties
are presented with due rigor in Section 1.5.1.
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1.3.8.1 Data Flow Values

By data flow values we mean the values associated with entryi or exiti variables. They represent

the aggregate data flow information about all the data items that are analyzed. For available expres-

sions analysis, we used sets of expressions as data flow values. We can also view the value associated

with a single expression as a boolean value that is true if the expression is available and false if the

expression is not available. In general, the data flow values can be seen as sets of (or aggregates of)

scalar values or tuples. As we have seen in Section 1.3.6.2, we cannot use simple Boolean values for

representing the constantness information in constant propagation; instead we have to use a tuple.

As long as the data flow values satisfy some well-defined rigorous conditions (formally defined in

Section 1.5), no restrictions exist on the types of values.

1.3.8.2 Confluence Operation

We used ∩ in available expression analysis to combine the data flow information because we wanted

to derive information that was the same along all paths. As noted in Section 1.3.2, for reaching

definitions analysis we relax the condition that the same information be carried along all paths

because the relevant information may be carried by only some paths. We have used ∪ operation in

Equation (1.18) for capturing such information. We say that a data flow problem uses:

• Any Path flow confluence if the relevant information can be carried by any path

• All Paths flow confluence if the (same) relevant information must be carried by all paths

This still is not sufficiently general because ∩ and ∪ are not the only operations that are used;

a different operation may have to be devised depending on the data flow values. Whenever the

values can be booleans, we can use ∩ and ∪. However, if the values are not booleans, we need

to define appropriate confluence operation on them. We have done this for constant propagation in

Section 1.3.6.2. When we use a special confluence operation such as this, classifying it as any path

or all paths is hard; it could only be looked on as a combination of the two. For generality, we use ⊓
to denote all the three possibilities of confluences.

1.3.8.3 Direction of Data Flow

Constraint (1.1) for available expressions analysis suggests that the data flow information at a node

is influenced by the data flow information at its predecessors. In other words, the flow of information

between two nodes is from predecessors to successors (or from ancestors to descendants, in general);

within a node, it is from entry to exit. Because such a flow is along the direction of control flow,

it is called a forward flow. A backward flow, on the other hand, is against the direction of control flow.

The flow of information between two nodes is from successors to predecessors (or from descendants to

ancestors, in general); within a node, it is fromexit toentry. From the description in Section 1.3.2,

it is clear that live variables analysis and very busy expressions analysis use backward flows.

It is possible to view data flow analysis at an abstract level independent of the direction of flow;

the forward problems can be considered duals of backward data flow problems (and vice versa) with

regard to the direction and no separate theoretical treatment is required for them.

1.3.8.4 Data Flow Equations

For forward data flow problems, the generic data flow equations are:

INi =





Outside Info if i is a graph entry node

p∈pred(i)
OUTp otherwise (1.34)

OUTi = fi(INi) (1.35)

They can be adapted to any forward data flow problem by merely substituting appropriate confluence

operation ⊓ and flow functions f .
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Note the special treatment given to the graph entry nodes. Clearly, we cannot assume anything a

priori about the information reaching the graph from the outside world. Traditionally, this has almost

always received a misleading treatment of the form: assume ∅ for any path problems and assume the

universal set for all path problems. This is incorrect for the graph entry and exit nodes (and hence

exceptions to the general rule are introduced). The actual information at these nodes depends on the

language to be analyzed, the exact semantics of analysis and the categories of data items covered by

the analysis. For instance, if we want to include the expressions involving global variables, it may

be fair to expect the interprocedural data flow analysis to infer (if possible) whether the values of

such expressions are available at the graph entry. We leave it for the designer of data flow analysis

to choose appropriate value for Outside Info because it is not connected with any path or all paths

confluence in any way. In the case of reaching definitions analysis, Outside Info is captured by

definition (1.21).

For backward data flow problems, the generic data flow equations are:

INi = fi(OUTi) (1.36)

OUTi =
{

Outside Info if i is a graph exit node

s∈succ(i)
INs otherwise (1.37)

1.3.8.5 Taxonomy of Data Flow Analysis

After developing all basic concepts in data flow analysis, it is now possible to compare and contrast

some data flow problems for the way they employ the generic abstractions. It is easy to see that the

four classical data flow problems represent the four possible combinations of the direction of flow

and the confluence of flow, as follows:

Direction of Flow

Confluence Forward Backward

All paths Available expressions analysis Anticipability analysis

Any path Reaching definitions analysis Live variables analysis

This taxonomy is actually quite simplistic and fails to cover many data flow problems (e.g., partial

redundancy elimination). We present some advanced issues in data flow analysis in Section 1.4, and

some examples of advanced data flow and more elaborate taxonomies in Appendix A.

1.4 Advances in Data Flow Analysis

The concepts that we have discussed so far belong to the classical data flow analysis in that they

have been in existence for a long time, and have been used widely in theory and practice of data

flow analysis. One thread that is common to these concepts is that the flow components in any data

flow problem are homogeneous in nature (i.e., of the same kind); either all of them are forward or

all of them are backward — no combinations are allowed. Similarly, only one kind of confluence

is allowed. Data flow analysis has progressed beyond these limiting concepts in that heterogeneous

components have also been used fruitfully. In this section, we look at some advanced concepts;

some of them have been theorized in a satisfactory manner whereas some others are still waiting for

technical breakthroughs required to devise sound theoretical foundations for them.
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1.4.1 Background

The discussion in this section is mostly driven by data flow analysis requirements of the partial

redundancy elimination (PRE) and type inferencing. There have been many formulations of PRE,

but the one that stretches the limits of our theory (and hence enhances it) is the original formulation by

Morel and Renvoise. Hence, we use this formulation instead of the other formulations; to highlight

this distinction we call it Morel–Renvoise partial redundancy elimination (MR-PRE). We would like

to emphasize that:

Our use of MR-PRE is motivated by the need of understanding the nature of flows that data flow

analysis may have to support. This does not require understanding the semantics of the data flow

dependencies in MR-PRE; it merely requires understanding the structure of flows. Toward this

end, we merely present the original formulation of MR-PRE in Appendix A. From these equations,

it is easy to decipher the flows, though it is very hard to divine why they have been defined in that

way or whether they can be defined in an alternative way; the latter is irrelevant for the discussions

in this chapter.

Similar remarks apply to type inferencing; we restrict ourselves to a specific formulation of type

inferencing (which we call KDM type inferencing) that basically formalizes Tennenbaum’s type

inferencing data flow analysis.

1.4.2 Enriching the Classical Abstractions in Data Flow Analysis

The generic abstractions that are used in new ways or are enriched and made more precise by the

preceding data flow analyses are confluences of flows, directions of flows and flow functions.

1.4.2.1 Multiple Confluences of Flows

The classical data flow problems have only one confluence that is manifested in the form of a single ⊓
in data flow Equations (1.34) and (1.37). However, it is possible to have multiple confluences in a data

flow problem (i.e., multiple ⊓ in data flow equations). MR-PRE has two confluences; the data flow

information is merged at both entryi and exiti (Equations (1.61) and (1.62) in Appendix A).

In the general situation, the multiple confluences do not need to be the same; one of them may

be ∩ whereas the other may be ∪. The classical theory of data flow analysis can deal with only

one confluence; the more advanced generalized theory of data flow analysis can deal with multiple

but homogeneous confluences. Data flow analysis has still not advanced sufficiently to provide a

theoretical foundation for data flow problems that use heterogeneous confluences. However, such

data flow problems do exist in practice; we describe modified Morel–Renvoise algorithm (MMRA)

and edge placement algorithm (EPA) data flow analyses in Appendix A.

1.4.2.2 Multiple Directions of Flows

It is possible to have both forward and backward data flows in the same problem (PRE uses forward

as well as backward data flows). The classical theory can deal with only unidirectional data flow

problems that have either forward or backward flows, but not both. The more advanced general-

ized theory provides sound theoretical foundations for bidirectional data flow problems — these

foundations are uniformly applicable to unidirectional data flow problems also.

The data flow dependencies in the classical data flow problems are:

• Forward data flows. INk is computed from OUTi , i ∈ pred(k) and OUTk is computed from INk ,

and so on — Figure 1.8(a).

• Backward data flows. OUTk is computed from INm, m ∈ succ(k) and INk is computed from

OUTk , and so on — Figure 1.8(b).

Apart from these dependencies it is possible that INi is computed from OUTi and OUTi is computed

from INi , and INi is computed from OUTp, p ∈ pred(i) and OUTp is computed from INi in the

same data flow problem. Such dependencies give rise to the flows in Figure 1.8(c) and 1.8(d).
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FIGURE 1.7 Node and edge flow functions.

1.4.2.3 Multiple Kinds of Flow Functions

In the case of available expressions analysis, it is possible to use simple algebraic substitution to

combine Equations (1.6) and (1.7) into a single equation:

AVOUTi =
⋂

p∈ pred(i)

fi(AVOUTp) (1.38)

Alternatively:

AVINi =
⋂

p∈ pred(i)

fp→i(AVINp) (1.39)

This implies that the flow function fi can be associated with node i or with the edge p → i

without any loss of generality. Such flow functions can be used for unidirectional data flows only.

They cannot be used for more general flows (Figures 1.8(c) and 1.8(d)). The generalized theory of

data flow analysis enables the characterization of these general flows by carefully distinguishing

between the node flow functions and the edge flow functions. Node flow functions map information

between entry and exit points of a node whereas edge flow functions map information from a node

to its predecessors and successors.

Figure 1.7 illustrates the various kinds of flow functions, for node i and s ∈ succ(i):

• Forward node flow functions f F
i map INi to OUTi (OUTi is computed from INi using f F

i ).

• Backward node flow functions f B
i map OUTi to INi (INi is computed from OUTi using f B

i ).

• Forward edge flow functions gF
i→s map OUTi to INs (INs is computed from OUTi using gB

i→s).

• Backward edge flow functions gB
i→s mapINs toOUTi (OUTi is computed fromINs using gB

i→s).

By using these functions, all the flows can be characterized as shown in Figure 1.8 where the

function compositions are denoted by f ◦ g where [f ◦ g] (x) ≡ f (g(x)). Note that for traditional

unidirectional flows the edge flow functions are identity functions.

We list these abstractions for some of the data flow problems mentioned in Section 1.3.2.

Direction of Direction of Confluence of

Data Flow Problem Node Flows Edge Flows Edge Flows

Available expressions analysis Forward Forward All paths

Reaching definitions analysis Forward Forward Any path

Live variables analysis Backward Backward Any path

Very busy expressions analysis Backward Backward All paths

Partial redundancy elimination Forward Forward and backward All paths
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FIGURE 1.8 Characterizing general flows in data flow analysis.

1.4.2.4 Generic Data Flow Equations

It is possible to write generic data flow equations as follows:11

INi =





Outside Info ⊓ f B
i (OUTi) if i is a graph entry node

p∈pred(i)
gF

p→i(OUTp) ⊓ f B
i (OUTi) otherwise

(1.40)

OUTi =





Outside Info ⊓ f F
i (INi) if i is a graph exit node

s∈succ(i)
gB

i→s(INs) ⊓ f F
i (INi) otherwise

(1.41)

Note that these equations assume homogeneous confluence operations for all flows. Hence, they

cannot be used for MMRA and EPA data flow analyses described in Appendix A. However, they are

applicable to almost all other known data flow problems including constant propagation and type

inferencing. These data flow equations are customized for unidirectional data flows as follows:

• For forward data flow problems, the backward flow functions do not exist; hence, gB and f B

disappear along with their confluences. Also, for almost all unidirectional problems, the edge

flow functions are identity functions; hence, even gF disappears leaving behind its confluence

operator.12 The data flow equations reduce to Equations (1.34) and (1.35) where f appears in

place of f F.

• For backward data flow problems, the forward flow functions do not exist and gF and f F

disappear along with their confluences. Because the typical edge flow functions are identity

functions, even gB disappears leaving behind its confluence operator. The data flow equations

reduce to Equations (1.36) and (1.37) where f appears in place of f B .

1.5 Theoretical Foundations of Data Flow Analysis

We have seen that data flow analysis is defined in terms of constraints on data flow information. In

general, the data flow values are aggregates of booleans, multivalued scalars or tuples. The individual

11Actually we need a constant term for PRE that we ignore for simplicity.
12We do this in a more systematic and formal way in Section 1.5.
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components of these aggregates capture the data flow information of a single data item. The basic

operations that we need to perform on data flow values are:

• Comparison (larger or smaller)

• Merging (∪, ∩ or special confluence)

• Computations using flow functions

These operations are used to specify the constraints defining the data flow information associated with

a program point. Clearly, the operations of comparison and merging can be defined on aggregates

only componentwise (i.e., we need to be able to define the operations of comparison and merging

on each component of the aggregate). Computations using flow functions may not be definable in

terms of aggregates of components.

1.5.1 Algebra of Data Flow Information

Formally, we define the algebra of data flow information in terms of a semilattice 〈L , ⊓〉, where L

is a nonempty set and ⊓ : L × L → L is a binary operation that is commutative, associative and

idempotent. Relation ⊓ computes the greatest lower bound (glb) of two elements in L and thereby

induces a partial order relation13 denoted by ⊑, which is transitive, reflexive and antisymmetric. The

partial order is defined by:

∀a, b ∈ L : a ⊓ b ⊑ a and a ⊓ b ⊑ b (1.42)

Note that ⊑ relation allows equality. Strict partial order, which excludes equality, is denoted by ⊏.

Because the ordering is only partial instead of total, it is possible that two elements are incomparable,

as indicated by a ⊑/ b and b ⊑/ a.

For the purpose of data flow analysis, this semilattice has two special features:

• There are two special elements called top (⊤) and bottom (⊥) such that:

∀a ∈ L , a ⊓ ⊤ = a (i.e., a ⊑ ⊤) (1.43)

∀a ∈ L , a ⊓ ⊥ = ⊥ (i.e., ⊥ ⊑ a) (1.44)

Such a semilattice is called a complete semilattice. Uniqueness of ⊤ and ⊥ guarantee the

uniqueness of minimal and maximal solutions.

• The length of every strictly descending chain a1 ⊏ a2 ⊏ a3 ⊏ · · · ⊏ an(i.e., the number of ⊏)

is finite. We say that L has finite height. If this length is bounded by some constant l, we say

that L has height l.

Because the number of data items can be large, it is hard to construct and understand the lattices for

data flow values for aggregate data flow information for all the data items together. Instead we factor

the aggregate data flow information in terms of the data flow information for individual data items

and view the lattice for the aggregate data flow information as consisting of a (Cartesian) product of

lattices (one for each data item). We use the notation of L̂ , ⊓̂ and ⊑̂ for the component lattices.14 If

there are k data items, then:

• Lattice: L ≡ 〈L̂ 1, L̂ 2, . . . , L̂ k〉
• Confluence operation: ⊓ ≡ 〈̂⊓1, ⊓̂2, . . . , ⊓̂k〉

13If we choose a different confluence operation, the partial order changes.
14Cartesian product of functions and relations imply pointwise products of the values in ranges.
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FIGURE 1.9 Lattices for available expressions analysis where U = {e1, e2, e3}.

• Partial order: ⊑≡ 〈⊑̂1, ⊑̂2, . . . , ⊑̂k〉
• Top and bottom elements: ⊤ ≡ 〈⊤̂1, ⊤̂2, . . . , ⊤̂k〉, and ⊥ ≡ 〈⊥̂1, ⊥̂2, . . . , ⊥̂k〉.
• Height: For the product lattice we are interested in the effective height, which is defined as the

maximum li , where li is the height of L̂ i , 1 ≤ i ≤ k.

Because all data items for which the analysis is performed are homogeneous15
L̂ , ⊓̂, ⊑̂, ⊤̂ and ⊥̂

have similar structures across various components.

We present some examples of data flow information:

• Available expressions analysis. Let us assume that we have only three expressions in our

program (i.e., U = {e1, e2, e3}). Then the sets of values are L̂ 1 = {{e1}, ∅}, L̂ 2 = {{e2}, ∅},
and L̂ 3 = {{e3}, ∅}. The first value in each set indicates that the expression is available, whereas

the second value indicates that the expression is not available. The confluence operation is

⊓̂1 = ⊓̂2 = ⊓̂3 = ∩ whereas the partial order is ⊑̂1 = ⊑̂2 = ⊑̂3 = ⊆. If we treat the set {e1}
(or for that matter, {e2} and {e3}) by a boolean value 1 and ∅ by boolean 0, we can view L̂ i as

{1, 0} and the product lattice as:

L = {〈111〉, 〈110〉, 〈101〉, 〈100〉, 〈011〉, 〈010〉, 〈001〉, 〈000〉}

where we have dropped the customary “,” between the elements in a tuple and a positional

correspondence exists between the elements in a tuple and expressions e1, e2 and e3. It is clear

that ⊆ over L as the product of ⊆ over L̂ and ∩ over L as the product of ∩ over L̂ achieve

the desired results. For L̂ , ⊤̂ = 1 and ⊥̂ = 0 whereas for L , ⊤ = 111 and ⊥ = 000. The

height of L is 3 whereas the height of L̂ (and hence the effective height of L ) is 1. Figure 1.9

illustrates the lattices.

• Reaching definitions analysis. In this case ⊓̂ is ∪, ⊑̂ is ⊇, ⊤̂ is 0 whereas ⊥̂ is 1. The structure

of the lattice would be the same as in Figure 1.9 except that it would be drawn upside down (or

1’s and 0’s would get exchanged).

• Constant propagation. We illustrate the component lattice L̂ assuming m constants

c1, c2, . . . , cm in Figure 1.10. Note that the effective height of the product lattice is 2 (even

when we allow infinite number of constants).

15All of them belong to the same class, namely, expressions or variables, etc.
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FIGURE 1.10 Component lattice L̂ for constant propagation (assuming m constants c1, c2, . . . , cm).

1.5.1.1 Interpreting the Algebra of Data Flow Information

This section relates the mathematical definitions of data flow information with the intuitions that we

have developed in Section 1.3. These explanations are applicable to both the product as well as the

component’s lattices:

• The top element ⊤ is the largest element and serves as an initializer to begin the data flow analysis

(Section 1.3.7.1). It is a conservative approximation because it does not affect any value (i.e.,

a ⊓ ⊤ = a. The ⊤ element may not be a natural element of the lattice and a fictitious ⊤ may

have to be devised.

• The bottom element ⊥ is the smallest element and signifies that among all possible values

of data flow information the most conclusive (i.e., smallest) value has been reached. Because

a ⊓ ⊥ = ⊥, a value that is ⊥ changes other values (unless the other value is also ⊥).

• The properties of the confluence ⊓ include:

◦ Commutativity. ∀a, b ∈ L : a ⊓ b = b ⊓ a. When we merge the information, the order of

merging (or the order in which different predecessors or successors are visited) should not

matter.

◦ Associativity. ∀a, b, c ∈ L : (a ⊓ b) ⊓ c = a ⊓ (b ⊓ c). It should be possible to extend the

merge operation to more than two values (possibly coming from multiple predecessors or

successors) without needing a specific order of merging.

◦ Idempotence. ∀a ∈ L , a ⊓a = a. Merging a data flow value with itself should not produce

a different value.

• The partial order ⊑ captures the notion of information theoretic largeness. Definition (1.42)

should be read as: the order used for comparison is defined by saying that when two data flow

values are combined, the result cannot exceed either of the values. The actual sets representing

these values may be smaller or larger (in set theoretical terms); the confluence may be ∩, ∪ or

special confluence — appropriate ordering is automatically induced. It is easy to conclude that:

◦ ∀a, b ∈ L : a ⊑ b ⇔ a ⊓ b = a. If two data flow values are comparable, the result of

merging them is the same as the smaller value (with regard to the partial order).

◦ ∀a, b ∈ L : a ⊑/ b and b ⊑/ a ⇔ a ⊓ b ⊏ a and a ⊓ b ⊏ b. If two data flow values are incom-

parable, the result of merging them is different from both and is strictly smaller than both.

• The properties of partial order relation ⊑ include:

◦ Transitivity. ∀a, b, c ∈ L : a ⊑ b and b ⊑ c ⇒ a ⊑ c. Because we need to find out the

largest solution satisfying the constraints, the comparison better be transitive.
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◦ Reflexivity. ∀a ∈ L , a ⊑ a. A data flow value must be comparable to itself.

◦ Antisymmetry. ∀a, b ∈ L : a ⊑ b and b ⊑ a ⇔ a = b. If a data flow value a is smaller

or equal to b, and b is also smaller or equal to a, then this is possible if and only if they are

identical.

1.5.2 World of Flow Functions

We extend the algebra of data flow information by including flow functions to capture the effect of

a node and an edge (i.e., transfer of control) on the data flow information. We define our function

space to be H ⊆ {h | h : L → L } such that it contains an identity function ı and is closed under

composition. Note that H contains both node flow as well as edge flow functions. When there is a

need to distinguish between node and edge flow functions, we use the earlier notation in which f F

and f B denote node flow functions whereas gF and gB denote edge flow functions. When no need

exists to distinguish between the two, we use h to denote a function.

Function spaces are characterized by many interesting properties that influence data flow analysis.

1.5.2.1 Monotonic Function Space

H is monotonic iff the results of the functions either do not decrease for increasing inputs or do not

increase for decreasing inputs. Formally:

∀a, b ∈ L , ∀h ∈ H : a ⊑ b ⇒ h(a) ⊑ h(b) (1.45)

This is necessary for convergence on a fixed point (but is not necessary for its existence). Another

way of looking at monotonicity is:

∀ a, b ∈ L , ∀ h ∈ H : h(a ⊓ b) ⊑ h(a) ⊓ h(b) (1.46)

This implies that the result of merging the information before applying a function cannot exceed

the result if the functions were applied first and the results merged later. Recall that at every stage we

want to show that the information would not increase or else it might violate our data flow constraints;

decreased information may be less useful, but it is provably correct.

By way of an example, function h : {0, 1} → {0, 1}, such that h(0) = 1 and h(1) = 0, is not

monotonic. In general, a function is monotonic if and only if it does not negate its arguments, where

the semantics of negate depends on the domain of the function.

1.5.2.2 Distributive Function Space

H is distributive iff merging the information at a node does not lead to loss of useful information

(i.e., the decrease that is possible in monotonicity is ruled out in distributivity).

∀ a, b ∈ L , ∀ h ∈ H : h(a ⊓ b) = h(a) ⊓ h(b) (1.47)

This is a stronger condition than monotonicity and guarantees that the maximum fixed point is the

same as the maximum safe assignment because no approximation takes place.

The function space of constant propagation is monotonic but not distributive. Let us consider the

example in Figure 1.5, the flow function definition (1.27) and the confluence definition (1.30). Let
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FIGURE 1.11 Defining loop closure.

the data flow information along the path 1 → 2 → 4 → 5 be denoted by a and that along the path

1 → 3 → 4 → 5 be denoted by b. Then:

a = {〈x, 4〉, 〈y, 6〉, 〈z, ud〉}
b = {〈x, 6〉, 〈y, 4〉, 〈z, ud〉}

a ⊓ b = {〈x, nc〉, 〈y, nc〉, 〈z, ud〉}
f F

5 (a ⊓ b) = {〈x, nc〉, 〈y, nc〉, 〈z, nc〉}
f F

5 (a) = {〈x, 4〉, 〈y, 6〉, 〈z, 24〉}

f
f

5 (b) = {〈x, 6〉, 〈y, 4〉, 〈z, 24〉}
f F

5 (a) ⊓ f F
5 (b) = {〈x, nc〉, 〈y, nc〉, 〈z, 24〉}

f F
5 (a ⊓ b) ⊏ f F

5 (a) ⊓ f F
5 (b) . . . (from Figure 1.10, 〈z, nc〉 ⊏ 〈z, 24〉)

1.5.2.3 Bounded Function Space

A monotonic H is bounded iff its loop closures (i.e., the number of times a loop may have to be

traversed during data flow analysis) are bounded (Figure 1.11). Consider the following loop where

α is the flow function across the body of the loop.

Before entering the loop for the second time, x is merged with β(x) (which is the information

along the back edge); note that β ≡ gF
e ◦ α and by the closure of H under composition, β ∈ H .

Thus, the second traversal produces α(x ⊓ β(x)) at the bottom of the loop and the merge at the top

of the loop is x ⊓ β(x ⊓ β(x)). We can rewrite this as:

x ⊓ β(x ⊓ β(x)) ⊑ x ⊓ β(x) ⊓ β(β(x)) . . . (β is monotonic)

If we denote the merge at the top of the loop after i traversals as mi , then:

mi ⊑ β0(x) ⊓ β1(x) ⊓ · · · ⊓ βi(x) where βi(x) = [β ◦ βi−1](x), i ≥ 1 and β0 = ı

The loop closure for a function h is denoted by h∗ and can be defined as follows:16

h∗ ≡ h0 ⊓ h1 ⊓ h2 ⊓ . . . (1.48)

It is desirable that the loop closures of H be bounded by a constant; we say that H is k bounded iff :

∀ h ∈ H , ∃ k ≥ 1 :

k−1

i=0
hi = h∗ (1.49)

16Merging of functions implies pointwise merging of the values in their ranges.
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FIGURE 1.12 Loop closure in constant propagation is not bounded.

The boundedness of loop closure h∗ requires the existence of a fixed point of h, which in general

requires the product lattice L to have a finite height.17 Further, convergence on the fixed point

requires h to be monotonic and defined on all points common to its domain and range.

It is easy to show that the function space in available expressions analysis is 2-bounded but the

function space of constant propagation is not bounded; the latter is illustrated in Figure 1.12. In this

case every time the loop is traversed, the analysis finds that x is indeed a constant albeit with a new

value; the flow function is monotonic but it does not have a fixed point.

1.5.2.4 Separable Function Space

H is separable iff it can be factored into a product of the functions’ spaces for individual data items:

H ≡ 〈Ĥ 1, Ĥ 2, . . . , Ĥ k〉, where Ĥ i ⊆ {̂h | ĥ : L̂ i → L̂ i} (1.50)

In other words, the functions on the aggregate data flow information can be viewed as products of

functions on the individual data flow items and the component functions work only on the component

lattices:

∀h ∈ H , h ≡ 〈̂h1, ĥ2, . . . , ĥk〉, where ĥi ∈ Ĥ i (1.51)

Separability guarantees that data flow analysis can be performed on different data items independently

and the result can be combined without any loss of information. Constant propagation does not have

a separable function space (recall from Section 1.3.6.2 that constantness of z cannot be determined

independently of the constantness of x and y.) Actually, the flow function for constant propagation

can be factored into component functions for each variable. However, these functions would be of

the form ĥ : L → L̂ instead of the desired form ĥ : L̂ → L̂ ; the former indicates that a function

for a single data item requires the data flow information of all data items whereas the latter indicates

that data flow information of only the same data item is required.

We leave it to the reader to verify that if a monotone separable function space H is defined over a

lattice with effective height l, then the data flow values can change at most l times and H is l + 1

bounded.

1.5.2.5 Bit Vector Function Space

H is a bit vector function space iff it is separable and monotonic, and its data flow values can be

sets of booleans. In other words, L̂ = {1, 0}, and the functions that negate its arguments, that is,

ĥ(0) = 1 and ĥ(1) = 0, are prohibited. Clearly, a bit vector function space is distributive. Most of the

traditional analyses use bit vector function spaces; in fact, barring constant propagation and KDM

17Note that even if the component lattice L̂ has finite height, its product lattice L may not have finite height

if L̂ is infinite. This can be easily verified in the case of constant propagation.
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Monotone Data Flow Frameworks

Separable Data Flow Frameworks

Distributive Data Flow Frameworks

k-Bounded Data Flow Frameworks

Bit Vector Data Flow Frameworks

FIGURE 1.13 Relationships between various categories of data flow frameworks.

type inferencing, all data flow analyses mentioned in this chapter use bit vector function spaces. Two

interesting properties of the bit vector function spaces are:

• Ĥ is a bit vector function space iff its component functions can be written as ĥ(x) = a + b · x

where a, b, x ∈ {0, 1}.
• A bit vector function space is 2-bounded. Such functions spaces are, for obvious reasons, called

fast.

1.5.3 Data Flow Frameworks

The algebra of data flow analysis is defined by extending the algebra of data flow information to

include the function space. It is called a data flow framework and is formally defined as 〈L , ⊓, H 〉.
Clearly, a data flow framework defines the domain of data flow information, the confluence operation

and the flow function space, thereby providing a rigorous mathematical foundation for the interplay

of data flow information. All the adjectives of the function spaces carry over to data flow frameworks.

Accordingly, data flow frameworks can be classified as monotone, distributive, bounded, separable,

or bit vector data flow frameworks. In general, monotone data flow frameworks form the largest

class for which performing data flow analysis is meaningful. Figure 1.13 illustrates the relationships

between various categories of data flow frameworks.

Constant propagation is an example of a framework that is monotone but neither distributive, sepa-

rable nor bounded. Available expressions analysis is monotone, distributive, separable, bounded and

bit vector. The combined may-availability and must-availability analysis is monotone, distributive,

separable and bounded, but not bit vector (refer to References Section). A (fictitious) example

of a framework that is monotone, bounded and separable but not distributive has been provided in

Figure 1.14. KDM type inferencing for statically checked languages is monotone, non-separable and

distributive. Interestingly, KDM type inferencing for dynamically checked languages is monotone,

non-separable and non-distributive.

1.5.4 Instance of a Data Flow Framework

Because a program to be analyzed is not a part of a data flow framework, the actual association of flow

functions with nodes and edges and the eventual association of data flow information with the nodes

requires instantiating the data flow framework with the program-specific information. Accordingly,

an instance of a data flow framework is defined by a tuple 〈G, MN , ME〉 where:

• G = 〈N, E, n0, n∞〉 is a directed graph consisting of a set of nodes N , a set of edges E,

a unique graph entry node n0 with indegree zero and a unique graph exit node n∞ with

outdegree zero. Self-loops are allowed in the graph but parallel edges between nodes are not
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v1 v2

v3

L̂ = {⊤̂, v1, v2, v3, ⊥̂} Functions in H are monotonic and

Ĥ : L̂ → L̂ is {ı, ĥ} separable but not distributive

where ĥ ˆ(⊤) = v1 ĥ(v1 ⊓ v2) = ĥ(v3)

ĥ(v1) = v3 = ⊥̂
ĥ(v2) = v3 ĥ(v1) ⊓ ĥ(v2) = v3 ⊓ v3

ĥ(v3) = ⊥̂ = v3

ĥ(⊥̂) = ⊥̂ ĥ(v1 ⊓ v2) ⊏ ĥ(v1) ⊓ ĥ(v2)

FIGURE 1.14 A data flow framework that is monotone and separable but not distributive.

allowed.18 The uniqueness of n0 and n∞ are required basically for mathematical convenience.

It is always possible to satisfy this condition by adding dummy nodes to the graph with edges

from the dummy n0 to actual multiple entry nodes and from the actual multiple exit nodes to the

dummy n∞.

This graph is usually called a control flow graph. Strictly speaking, a control flow graph does

not contain the computations of a program. In practice we use a graph whose nodes also contain

the computations (e.g., Figure 1.2); such graphs are called program flow graphs.

• MN : N × {F, B} → H is a function that associates the flow functions with graph nodes as

either forward (denoted F ) or backward (denoted B) node flow functions. For flow function

definition (1.8), the data flow framework of available expressions analysis is actually a subset

of the mapping MN of the form N × {F } → H . In other words (1.8) defines the forward

node flow functions f F
i . The absence of backward node flow functions (i.e., the other subset

N × {B} → H ) implies 0-ary constant functions that return the value ⊤. Recall that a ⊓ ⊤ = a

for all values of a. Thus, these flow functions do not affect analysis in any adverse way; it is

as good as ignoring the existence of these flow functions. This is precisely the meaning of flow

functions disappearing from data flow Equations (1.40) and (1.41) in Section 1.4 in the case of

unidirectional data flow problems (refer to footnote 12).

• ME : E×{F, B} → H is a function that associates the flow functions with edges. For available

expressions analysis, this sets the forward edge flow functions to identity functions l (because

the edges merely propagate the information in the forward direction without modifying it) and

the backward edge flow functions to constant ⊤ function (because the edges do not propagate

any information against the control flow).

Intuitively, a program flow graph forms the basis of defining G, MN and ME .

1.5.5 Information Flow Paths and the Path Flow Function

A fundamental insight that emerges from various observations is:

The data flow information at a program point is always contained in (or cannot exceed) the

information that is carried to that point by the flow functions associated with the nodes that appear

on a path reaching the program point.

18This is a fair assumption for imperative programs on Von Neumann machine architectures.
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These containments are captured by the constraints. In Section 1.3.6.1, we took a transitive closure of

these containments along various paths for available expressions analysis. Thus, we need to compose

the flow functions along the paths to define the data flow information at a node.

1.5.5.1 Information Flow Paths

Our graphs are directed graphs and the graph theoretical paths are not adequate to characterize the

data flows. For instance, no path exists from node i to node j in Figure 1.8(c) and yet the data flow

information at i may influence the data flow information at j and vice versa. Similarly, data flow

may take place from node l to node m in Figure 1.8(d). Intuitively, these flows take place along paths

in the underlying undirected graph. However, the directions and the distinction between successors

and predecessors cannot be ignored. Hence, we define a new concept of information flow path (ifp).

It is a sequence of program points entryi and exiti for all nodes i for capturing the order in

which the flow functions could be composed to compute the data flow information reaching a node.

Thus the data flow indicated by the dashed line in Figure 1.8(c) is taking place along the ifp (exiti ,

entryk , exitj ) whereas the data flow in Figure 1.8(d) is taking place along the ifp (entryl ,

exitk , entrym). It is easy to see that if a data flow framework is k bounded, a particular program

point needs to appear in its ifp’s at most k−1 times because loop closure is reached in k−1 traversals

over the loop.

We denote an ifp from a program point u to a program point v by 〈u, v〉 or by listing all program

points between u and v along the ifp, namely, (q0 ≡ u, q1, . . . , qi, qi+1, . . . , qk ≡ v). Composing

all node and edge flow functions (in proper order) along this path gives us the path flow function

with which the data flow information reaching v from u can be computed. To understand the order

of function compositions:

• Let qi be entrym. Then qi+1 can be:

• exitm. In this case, the flow is from entrym to exitm and hence we need to apply

forward node flow function f F
m .

• exitp, p ∈ pred(m). In this case, the flow is from entrym to exitp and hence we need

to apply backward edge flow function gB
p→m.

• Let qi be exitm. Then qi+1 can be:

• entrym. In this case, the flow is from exitm to entrym and hence we need to apply

backward node flow function f B
m .

• entrys , s ∈ succ(m). In this case, the flow is from exitm to entrys and hence we need

to apply forward edge flow function gF
m→s .

Note that in both the situations, the two options are mutually exclusive for unidirectional data flow

problems. This implies that an ifp has a well-defined structure that depends on the existence of flow

functions in a data flow framework.

1.5.5.2 Path Flow Function

A path flow function captures the compositions of flow functions along an ifp. Let

PP = {entry,exit} × N be the set of all program points of an instance 〈G, MN , ME〉 and let

IFP be the set of all ifp’s of the instance. IFP includes the null ifp’s (i.e., an ifp consisting of a single

program point) too. We define the following operations on IFP and PP.

• Construction # : IFP × PP → IFP. This operation adds a program point to an ifp to create a

longer ifp. Traversing a program point p farther from an ifp ρ constructs a new ifp ρ′ = ρ # p.

• Extracting the last program point last : IFP → PP. If ρ′ = ρ # p then last(ρ′) = p.
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By using the preceding abstractions, we define the path flow function MP : IFP → H recursively:

MP (ρ′) =





ı ρ = null (i.e., identity function for null ifp)

MN (m, F ) ◦ MP (ρ) last(ρ) ≡ entrym, ρ′ = ρ # exitm

ME(p → m, B) ◦ MP (ρ) last(ρ) ≡ entrym, ρ′ = ρ # exitp, p ∈ pred(m)

MN (m, B) ◦ MP (ρ) last(ρ) ≡ exitm, ρ′ = ρ # entrym

ME(m → s, F ) ◦ MP (ρ) last(ρ) ≡ exitm, ρ′ = ρ # entrys, s ∈ succ(m)

(1.52)

Figure 1.15 illustrates the compositions in the second case of definition (1.52). The dashed double

arrow indicates the ifp, whereas the solid arrow indicates the flow functions along the ifp fragments.

The dashed boxes indicate the program points of interest.

For a forward unidirectional data flow problem, ME(p → m, B) and MN (m, B) map the edge

and node flow functions to constant ⊤ function (hence, they are as good as nonexistent). Besides,

ME(m → s, F ) is an identity function. Thus, the path flow function reduces to:

MP (ρ) =





ı ρ = null (i.e., identity function for null ifp)

MN (m, F ) ◦ MP (ρ) last(ρ) ≡ entrym, ρ′ = ρ # exitm

MP (ρ) last(ρ) ≡ exitm, ρ′ = ρ # entrys, s ∈ succ(m)

(1.53)

For available expressions analysis, the first case allows us to capture the boundary condition of

computingAVINn0 as Outside Info (Equation (1.34)). The second case captures the effect of applying

fi to AVINi in constraint (1.3); AVINi is computed using MP (ρ) in this case. The third case captures

the effect of constraint (1.1); in this case MP (ρ) computes AVOUTi .

1.5.6 Solutions of an Instance of a Data Flow Framework

This section formalizes the observations made in Section 1.3.4.2. We define safe and fixed point

assignments; their maximality gets defined by the partial order relation ⊑.

1.5.6.1 Safe Assignment

Let P IN : N → IFP denote the set of ifp’s reaching entryi from either entryn0 or exitn∞.

Let P OUT : N → IFP denote the set of ifp’s reaching exiti from either entryn0 or exitn∞.

Then:

P IN (i) = {ρ | ρ = 〈entryn0,entryi〉 or ρ = 〈exitn∞ ,entryi〉}

P OUT (i) = {ρ | ρ = 〈entryn0 ,exiti〉 or ρ = 〈exitn∞ ,exiti〉}

FIGURE 1.15 Computing the path flow function.
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A safe assignment (SA) : N → L is an assignment of value pairs 〈SAIn,SAOut〉 such that the

data flow information cannot exceed what can reach a node from the outside world:

∀i ∈ N, ∀ρ ∈ P IN (i), SAIni ⊑ [MP (ρ)] (Outside Info) (1.54)

∀i ∈ N, ∀ρ ∈ P OUT (i)i , SAOuti ⊑ [MP (ρ)] (Outside Info) (1.55)

The maximum safe assignment (MSA) : N → L is 〈MSAIn,MSAOut〉 such that:

∀i ∈ N, ∀ SAIni : SAIni ⊑ MSAIni

∀i ∈ N, ∀ SAOuti : SAOuti ⊑ MSAOuti

Clearly, MSA can be computed by:

MSAIni =
ρ∈P IN(i)

[MP (ρ)] (Outside Info) (1.56)

MSAOuti =
ρ∈P OUT(i)

[MP (ρ)] (Outside Info) (1.57)

It can be proven that the MSA can be computed by traversing all ifp’s independently without merging

the data flow information at intermediate program points.

1.5.6.2 Fixed Point Assignment

A fixed point assignment of an instance of a data flow framework is a fixed point solution of data

flow Equations (1.40) and (1.41).

Recall that a fixed point of a function h : A → A is a value x ∈ A such that h(x) = x. To relate

this concept to the fixed point of data flow equations, recall that in general data flow properties are

recursively dependent on their own values. From the discussion in Section 1.3.7, this can be viewed as:

INi = hR(INi) (1.58)

where hR is constructed by composing and merging functions along the information flow paths that

lead to recursive dependence.19 Thus, computations using data flow Equations (1.40) and (1.41) can

also be viewed as computations using equations of the kind (1.58). When the values cannot change

any further, we say we have computed a fixed point assignment. From the basic fixed point theorem

(also known as Tarski’s lemma), the maximum fixed point assignment is computed by hk
R(⊤) when

hk+1
R (⊤) = hk

R(⊤).

In other words, to compute the maximum fixed point assignment, one should initialize INi and

OUTi values to ⊤ and compute a fixed point assignment. It is easy to show that the maximum fixed

point assignment contains all other fixed point assignments. It can also be proved that the maximum

fixed point assignment can be computed by traversing all ifp’s by factoring out shared ifp’s and

merging the information at intermediate program points.

1.5.6.3 Comparing Various Assignments

A large amount of information does not necessarily imply a large amount of useful information.

For information to be useful, it has to be correct (i.e., the assignment must be safe) and precise

(i.e., maximum safe). The relationship between the precision of information and the amount of

information is captured by Figure 1.16.

19In the absence of a recursive dependence, hR is a constant function.
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FIGURE 1.16 Amount of information and precision of information.

FIGURE 1.17 Assignments of an instance of a monotone data flow framework.

Figure 1.17 illustrates various possibilities of assignments to data flow properties. The largest

amount of information in Figure 1.16 corresponds to the assignmentINi = OUTi = ⊤ in Figure 1.17

whereas the smallest amount of information corresponds to the assignment INi = OUTi = ⊥ for all

nodes i.

For general monotone data flow frameworks, the MSA and maximum fixed point assignments

may be different, in which case the maximum fixed point assignment is contained in and is not

equal to the MSA. This is not the case for distributive data flow frameworks. Unfortunately, the

general problem of computing the MSA is undecidable. The intuitive reason behind this is that for

computing MSA, we need to traverse all information flow paths in a graph separately; common

traversals cannot be factored out. In the presence of cyclic ifp’s this implies infinite number of ifp

traversals, which themselves are infinitely long. Clearly, for bounded monotone frameworks, the

problem of computing the MSA is decidable but may be intractable.

Because no deterministic polynomial time algorithm exists for computing the MSA, we settle

for the next best option — the maximum fixed point assignment, which for all practical purposes

forms the goal of data flow analysis. For the class of distributive data flow frameworks (which is

a large class), this implies computing the MSA also because the two assignments are identical.

As the next section shows, reasonably efficient methods of computing fixed point assignments are

available.
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1 a * b

2 a * b

Flow Functions Constraints Safe Assignments

f F
1 (X) = X ∪ {a ∗ b} AVIN1 = Outside−Info = ∅ SAIn1 ⊆ ∅

gF
(1→2)(X) = X AVOUT1 ⊆ {a ∗ b} SAOut1 ⊆ f F

1 (∅)

AVIN2 ⊆ AVOUT1 SAIn1 ⊆ f F
2 (∅)

f F
2 (X) = X ∪ {a ∗ b} AVOUT2 ⊆ AVIN2 ∪ {a ∗ b} SAOut2 ⊆ [f F

2 ◦ f F
1 ](∅)

Assignment AVIN1= AVOUT1∅, AVIN2=AVOUT2 = {a ∗b} is safe but does

not satisfy the constraints (since AVIN2 ⊆ AVOUT1).

FIGURE 1.18 How safe is a safe assignment for available expressions analysis?

1.5.6.4 An Aside on Safety

The definition of safety is quite subtle. It does not use the individual constraints but instead uses the

path flow function that is a composition of the flow functions in the constraints. Thus, it is possible

to have three kinds of assignments:

• Assignment satisfying definitions (1.54) and (1.55)

• Assignment satisfying constraints that use inequalities

• Assignment satisfying constraints that use equations

An assignment that satisfies the constraints can definitely satisfy definitions (1.54) and (1.55). How-

ever, definitions (1.54) and (1.55) admit even those assignments that do not satisfy the constraints.

This is explained using a simple program flow graph in Figure 1.18.

AssignmentAVIN1 = AVOUT1 = ∅, AVIN2 = AVOUT2 = {a∗b} can be safely used to eliminate

the computation of a ∗ b in node 2. However, if it is used to decide whether the value of a ∗ b should

be preserved in node 1 for a subsequent use in node 2, we discover that because AVOUT1 is ∅, no

expression needs to be preserved. This is clearly incorrect and the fault does not lie with the modeling

of analysis but with the use of information derived by the analysis. When an expression is discovered

to be available, it is guaranteed to be available; when an expression is discovered to be not available,

it is not guaranteed to not be available; hence, such the negation of the derived information should

be avoided.

1.6 Solution Methods of Data Flow Analysis

As noted in Section 1.3.7, if no recursive dependence of data flow properties existed, computing the

solutions would have been simple. We also observed that basically performing data flow analysis

boils down to dealing with these recursive dependences. The two broad approaches that we saw were:

• Circumventing recursive dependences by assuming conservative initial values and then

recomputing them progressively until they stabilize

• Eliminating recursive dependences by delaying the computations by substituting a group of

interdependent data flow properties by new properties and then computing the values of the

properties in the group.

These two methods form the two broad categories of the solution methods of data flow analysis

called iterative and elimination methods.

1.6.1 Iterative Methods of Data Flow Analysis

These methods assume a conservative initial value of data flow properties for each node and then

progressively recompute them until they stabilize. From Figures 1.16 and 1.17, it is clear that using

the ⊤ value for every program point is the simplest choice for a suitable conservative initialization.
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1. procedure round−robin−dfa()

2. { for each node i /* Perform Initialization */

3. { if (i ≡ n0) then IN i = Outside−Info

4. else INi = ⊤
5. if (i ≡ n∞) then OUTi= Outside−Info

6. else OUTi = ⊤
7. }

8. change = true

9. while (change) /* Keep Recomputing */

10. { change = false

11. for each node i /* Visited in a fixed order */

12. { Compute INi and OUTi

13. if either OUTi or INi changes then

14. change = true

15. }

16. }

17. }

FIGURE 1.19 Round robin iterative method of data flow analysis.

1.6.1.1 Round Robin Iterative Data Flow Analysis

This is the simplest method of performing data flow analysis. Figure 1.19 provides the algorithm

that is self-explanatory. It is applicable to the unidirectional and bidirectional data flow problems

uniformly. The reason is simple: the data flow Equations (1.40) and (1.41), which are used in this

algorithm, allow both forward as well as backward flow functions and distinguish between the node

and the edge flow functions. This enables traversing all ifp’s; they get traversed in parts and common

segments are shared across ifp’s.

We leave it to the reader to verify that this method indeed computes the maximum fixed point

solution (1.16) for our example program flow graph in Figure 1.2. Note that a fixed order of traversal

is not really necessary for convergence on a fixed point. Because available expressions analysis

has forward data flows, a forward direction of traversal can converge faster. However, a backward

traversal can also converge on the same fixed point, although it would take much longer. We postpone

the issue of the precise meaning of forward and backward traversals, the choice of the order of

traversal, the number of traversals required, etc. to Section 1.6.3 where we discuss the complexity

of iterative data flow analysis.

Interestingly, if we use the initialization ⊥ instead of ⊤, the resulting solution is the minimum

fixed point solution (1.15). The reason should be evident from Figure 1.17.

1.6.1.2 Work List Based Iterative Data Flow Analysis

The work list based method eliminates the drawbacks of the round robin method by computing data

flow properties in a demand-driven manner. We evolve the algorithm in the following steps:

• Avoiding redundant recomputations. If the data flow property associated with a program point

changes in any iteration, the round robin iterative method recomputes the data flow properties

of all nodes indiscriminately because it does not know exactly which data flow properties have

changed in an iteration. A single scalar variable “change” records the fact that some data flow

properties have changed somewhere.
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A natural improvement over this algorithm would be to remember the program points where

data flow properties change. Then it would be possible to recompute only those data flow

properties that may be affected by a change. This gives rise to the work list based iterative

method of data flow analysis. The basic idea is simple:

Whenever the data flow property at a program point changes, the program point is added to

a work list. Further recomputations are governed by the program points that are included in

the work list. A program point is removed from the work list, and the data flow properties of

neighboring program points are recomputed. If a change occurs, the corresponding program

points are added to the work list and the process is repeated until the work list becomes

empty.

• Refinement of data flow properties. If the data flow values are initialized to ⊤ (or any value

larger than the expected MSA), then the values can only decrease, and can never increase. To

appreciate the full implication of this, consider node i such that:

INi =
p∈pred(i)

gE
p→i(OUTp) ⊓ f B

i (OUTi) (1.59)

If only OUTi changes (and not OUT of predecessors), is it necessary to apply gE
p→i and merge

the resulting (unchanged) data flow information to compute INi? To answer this, let the new

values be indicated by INNew
i and OUTNew

i . Then after the recomputation:

INi
New =

p∈pred(i)
gF

p→i(OUTp) ⊓ f B
i (OUTi

New ) (1.60)

Because a change is only a (potential) decrease instead of an increase:

OUTi
New ⊑ OUTi

f B
i (OUTi

New ) ⊑ f B
i (OUTi) (. . . assuming monotonicity)

f B
i (OUTi

New ) = f B
i (OUTi) ⊓ f B

i (OUTi
New ) (. . . by the definition of ⊑)

Substituting the preceding in Equation (1.60) results in:

INi
New =

p∈pred(i)
gE

p→i(OUTp) ⊓ f B
i (OUTi) ⊓ f B

i (OUTi
New )

INi
New =

(

p∈pred(i)
gF

p→i(OUTp) ⊓ f B
i (OUTi)

)
⊓ f B

i (OUTi
New ) (. . . by associativity)

INi
New = INi ⊓ f B

i (OUTi
New ) (. . . from (1.59))

What we have discovered is the powerful mechanism of refinement of data flow properties.

Whenever a data flow property changes, there is no need to recompute the data flow properties

that it affects; these data flow properties can be just refined by merging their old values with

the value of the changed data flow property that affects them.

• Initializing the work list. Initializing the work list requires identifying the program points

from where the process of refinement should begin. A natural choice is the program points

where the values of data flow properties are smaller than ⊤ due to the local effect of the node.
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In the context of available expressions analysis this means: assume all the expressions to be

available at entryi and find out those that are not available at exiti . If AVOUTi turns out to

be smaller than ⊤, then we have found some such expressions and exiti should be included

in the initial work list so that we can mark all these expressions as not available at AVINs of

successors of i. Thus, we should use ⊤ values in all the flow functions to identify the program

points to be included in the work list:

AVOUTi = f F
i (AVINi) = f F

i (⊤) = AvGeni ∪ (⊤ − AvKilli) (1.61)

This is the same as the computation performed in the first iteration of round robin data flow

analysis (after the initialization).

• Algorithm. The resulting algorithm is provided in Figure 1.20. Note that for unidirectional data

flow problems, some flow functions are constant ⊤ functions. They do not contribute to the

data flow information and hence can be removed. In particular:

◦ For forward data flow problems the computations on line numbers 26 to 30, 33 to 35 and the

function application f B
i on line numbers 7 and 8, and gB

i→s on line number 11 are redundant.

◦ For the backward data flow problems the computations on line numbers 23 to 25, 36 to 40

and the functions application f E
i on line numbers 10 and 11, and gF

p→i on line number 8

are redundant.

We perform available expressions analysis for the program flow graph in Figure 1.2.

Definition (1.8) provides its flow functions. In this context, ⊤ is the universal set

U = {e1, e2, e3, e4, e5, e6, e7, e8} and Outside Info is assumed to be ∅. The values of the data flow

properties with ⊤ as the argument of the flow functions are:

Node Avin Avout

1 ∅ {e1, e3, e4} ⊂ ⊤
2 ⊤ {e1, e2, e3, e5, e6, e7, e8} ⊂ ⊤
3 ⊤ {e1, e2, e3, e4, e7, e8} ⊂ ⊤
4 ⊤ {e1, e2, e3, e4, e7, e8} ⊂ ⊤
5 ⊤ {e1, e3, e4, e5, e6, e8} ⊂ ⊤
6 ⊤ ⊤

The work list is initialized to 〈entry1,exit1,exit2,exit3,exit4,exit5〉. Inserting the

program points in the direction of the data flows would lead to a faster convergence than inserting it

either at the end or in the beginning indiscriminately. In the context of available expressions analysis

we insert the program points in forward direction (to be made more precise in Section 1.6.3) because

of forward data flows. As far as correctness is concerned, it does not matter where a program point

is inserted in the work list.
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Program Point Data Flow Properties

Step No. Selected Refined Resulting Work List

1 entry1 AVOUTi = {e1} 〈exit1,exit2,exit3,exit4,exit5〉
2 exit1 AVIN2 = AVIN6 = {e1} 〈entry2,exit2,exit3,exit4,exit5,entry6〉
3 entry2 AVOUT2 = {e1, e2, e3} 〈exit2,exit3,exit4,exit5,entry6〉
4 exit2 AVIN3 = AVIN4 = {e1, e2, e3} 〈entry3,exit3,entry4,exit4,exit5,entry6〉
5 entry3 AVOUT3 = {e1, e2, e3, e4} 〈exit3,entry4,exit4,exit5,entry6〉
6 exit3 AVIN5 = {e1, e2, e3, e4} 〈entry4,exit4,entry5,exit5,entry6〉
7 entry4 AVOUT4 = {e1, e2, e3, e4} 〈exit4,exit5,entry6〉
8 exit4 No change in AVIN5 〈entry5,exit5,entry6〉
9 entry5 AVOUT5 = {e1, e3, e4, e8} 〈exit5,entry6〉
10 exit5 No change in AVIN2 and AVIN6 〈entry6〉
11 entry6 AVOUT6 = {e1} 〈exit6〉
12 exit6 Does not affect any property 〈〉

It is easy to see that the resulting solution is indeed the same as assignment (1.16). It would be

interesting to use ⊥ (i.e., ∅) to compute the data flow properties and compare them with ⊤ (and

not ⊥) to initialize the work list; this would compute the minimum fixed point solution (1.15).

1.6.2 Elimination Methods of Data Flow Analysis

Elimination methods try to reduce the amount of effort required to solve a data flow problem by

utilizing the structural properties of a flow graph. This approach basically consists of the following

two steps:

• Identify regions with some desirable properties in the flow graph.

◦ Construct the flow functions for each region by composing and merging flow functions along

the ifp’s in the region.

◦ Reduce each region to a single node.

If successive applications of graph transformations reduce the graph to a single node, the graph

is said to be reducible.

• Compute the data flow properties of the nodes (representing regions) in the derived graphs

using the flow functions constructed in the first step. This process starts with the last derived

graph (i.e., single node graph) and terminates with the original graph. The data flow properties

of a region are used to compute the data flow properties of the constituent nodes that represent

regions in the lower level derived graph. This enables delayed substitution of some values in

the simultaneous equations.

1.6.2.1 Identifying Regions

Section 1.3.7 provided a glimpse of this approach through Figure 1.6. The complete sequence of

reductions and the derived graphs is shown in Figure 1.21 that follows. We use interval analysis that

tries to identify the maximal single entry regions in a graph.20

20Interval analysis falls in the category of control flow analysis, which we do not discuss here. Section 1.7
provides references and suggestions for further reading.
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1. procedure worklist−dfa()

2. { init ()

3. settle ()

4. }

5. procedure init()

6. { for each node i

7. { if (i ≡ n0) then INi = Outside−Info ⊓ f B
i (⊤)

8. else INi =
∏

p∈pred(i)

gF
p→i(⊤) ⊓ f B

i (⊤)

9. if (INi ⊏ T) then Insert entryi in LIST

10. if (i ≡ n∞) then OUTi = Outside−Info ⊓ f F
i (⊤)

11. else OUTi =
∏

s∈succ(i)

gB
i→s(⊤) ⊓ f F

i (⊤)

12. if (OUTi ⊏ ⊤) then Insert exiti in LIST

13. }

14. }

15. procedure settle()

16. { while the LIST is not empty

17. { Remove the first program point from LIST

18. if the program point is entryi for some nodei then propagate−in(i)

19. else propagate−out(i) /* must be exiti for some node i */

20. }

21. }

22. procedure propagate−in(i)

23. { OUTNew
i = OUTi ⊓ f F

i (INi ) /* refinement using f F
i ∗ /

24. if (OUTNew
i ⊏ OUTi)then

25. Update OUTi= OUTNew
i and Insert exiti in LIST

26. for all p ∈ pred(i)

27. { OUT New
i =OUTp ⊓ gB

p→i (INi) /* refinement usig gB
p→i */

28. if (OUTNew
p ⊏ OUTp)then

29. Update OUTp= OUTNew
p and Insert exitp in LIST

30. }

31. }

32. procedure propagate−out (i)

33. { IN New
i =INi ⊓ f B

i (OUTi) /* refinement usig f B
i */

34. if (INNew
i ⊏ INi)then

35. Update INi= INNew
i and Insert entryi in LIST

36. for all s ∈ succ(i)

37. { IN New
s =INs ⊓ gF

i→s (OUTi) /* refinement usig gF
i→s */

38. if (INNew
s ⊏ INs)then

39. Update INs= INNew
s and Insert entrys in LIST

40. }

41. }

FIGURE 1.20 Work list based iterative method of data flow analysis. (From Khedker, U.P. and Dhamdhere,

D.M., ACM TOPLAS, 16(5), 1472–1511, 1994. Reproduced with permission of ACM.)
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FIGURE 1.21 Reducing graphs for elimination method of data flow analysis.

G1 is the first derived graph constructed from the original graph G0. Region R1 and R3 consist of

single nodes (1 and 6, respectively) whereas region R2 consists of nodes 2, 3, 4 and 5. Regions R1,

R2 and R3 are combined to form the lone region R4 representing the limit graph G2.

1.6.2.2 Constructing the Flow Functions

Because available expressions analysis is a bit vector framework, its functions are of the form

h(X) = Gen ∪ (X − Kill). Also, because it is two bounded, the loop closure of any function h is

h∗ = ı ∩ h where ı is the identity function. Function compositions and loop closures are defined as

follows:

• Function composition. We write h(X) = Gen ∪ (X ∩ �Kill) for ease of algebraic

manipulation. Let h1(X) = Gen1 ∪ X ∩ �Kill1 and h2(X) = Gen2 ∪ X ∩ �Kill2. Let

h′(X) = h2(h1(X)).

h′(X) = Gen′ ∪ (X − Kill′) = Gen2 ∪ (Gen1 ∪ X ∩ �Kill1) ∩ �Kill2

= Gen2 ∪ (Gen1 ∩ �Kill2 ∪ X ∩ �Kill1 ∩ �Kill2)

= Gen2 ∪ Gen1 ∩ �Kill2 ∪ X ∩ �(Kill1 ∪ Kill2)

= Gen2 ∪ (Gen1 − Kill2) ∪ (X − (Kill1 ∪ Kill2))

Thus for composition, Gen′ = Gen2 ∪ (Gen1 − Kill2) and Kill′ = Kill1 ∪ Kill2.

• Loop closure. Loop closure is worked out in a similar way. For this example, we need a simpler

function intersection ı ∩ h for loop closure h∗:

h∗(X) = ı(X) ∩ h(X) = X ∩ (Gen ∪ (X − Kill))

= X ∩ Gen ∪ (X ∩ (X − Kill))

= X ∩ Gen ∪ (X − Kill) (. . . (X − Kill) ⊆ X)

= X − (Kill− Gen)

Thus for loop closure, Gen′ = ∅ and Kill′ = Kill− Gen. This implies that no expression

can be generated within the loop that can be available at the loop entry along the looping

edge (i.e., the looping edge cannot add any expression to the set of expressions available

at the loop entry; it can only remove some expressions if they are not available at the loop

exit).
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Now we construct the flow functions for each region. All the edge flow functions are identity

functions. Because all the node flow functions are forward functions, we drop the superscript F .

• fR1 = f1.

• fR2 = f5 ◦ (f3 ◦ f2 ∩ f4 ◦ f2)
∗ = f5 ◦ f3 ◦ f2 because f3 and f4 are identical from (1.8).

We first compose f3 and f2 to construct f23 (i.e., compute AvGen23 and AvKill23) using the

preceding definition of function composition:

AvGen23 = AvGen3 ∪ (AvGen2 − AvKill3)

= {e4} ∪ ({e2, e3} − {e5, e6})
= {e2, e3, e4}

AvKill23 = AvKill3 ∪ AvKill2

= {e3, e4} ∪ {e5, e6}
= {e3, e4, e5, e6}

Then we compose f5 ◦ f23 to construct fR2 :

AvGenR2 = AvGen5 ∪ (AvGen23 − AvKill5)

= {e8} ∪ ({e2, e3, e4} − {e2, e7, e8})
= {e3, e4, e8}

AvKillR2 = AvKill5 ∪ AvKill23

= {e2, e7, e8} ∪ {e3, e4, e5, e6}
= {e2, e3, e4, e5, e6, e7, e8}

Now we construct the loop closure:

f ∗
R2

(X) = X − (AvKillR2 − AvGenR2)

= X − ({e2, e3, e4, e5, e6, e7, e8} − {e3, e4, e8})
= X − {e2, e5, e6, e7}

• fR3 = f6.

• fR4 = fR3 ◦ (fR1 ∩ fR2 ◦ fR1). Because our motivation basically is to compute AVINi (from

which AVOUTi can be computed by applying fi), constructing the flow function R4 (i.e., for

the region representing the limit graph) is not required.

1.6.2.3 Computing Data Flow Properties

After computing the flow functions, now we are in a position to compute the data flow properties.

We begin with the limit graph G2:

• For limit graph G2: AVINR4 = Outside Info = ∅.

• For graph G1:

∗We assume that function composition has higher precedence than function intersection.
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AVINR1 = AVINR4 = ∅ (. . . NodeR1 is the header of region R4)

AVINR2 = f ∗
R2

(fR1(AVINR1)) (. . . Loop closure must be taken for R2)

= f ∗
R2

(fR1(∅)) = f ∗
R2

(f1(∅))

= f ∗
R2

({e1} ∪ (∅ − {e2, e5, e6, e7, e8})) (. . . Substituting for f1 from (1.8))

= f ∗
R2

({e1}) = {e1} − {e2, e5, e6, e7}
= {e1}

AVINR3 = fR1(AVINR1) ∩ fR2(AVINR2)

= f1(∅) ∩ fR2({e1})
= ({e1} ∪ (∅ − {e2, e5, e6, e7, e8}))

∩({e3, e4, e8} ∪ ({e1} − {e2, e3, e4, e5, e6, e7, e8}))
= {e1} ∩ ({e1, e3, e4, e8})
= {e1}

• For Graph G0:

AVIN1 = AVINR1 = ∅ (. . . Node 1 is the header of region R1)

AVIN2 = AVINR2 = {e1} (. . . Node 2 is the header of region R2)

AVIN3 = f2(AVIN2) = f2({e1})
= {e2, e3} ∪ ({e1} − {e3, e4}) (. . . Substituting for f2 from (1.8))

= {e1, e2, e3}
AVIN4 = f2(AVIN2) = f2({e1})

= {e2, e3} ∪ ({e1} − {e3, e4})
= {e1, e2, e3}

AVIN5 = f3(AVIN3) ∩ f4(AVIN4)

= f3({e1, e2, e3}) ∩ f4({e1, e2, e3})
= ({e4} ∪ ({e1, e2, e3} − {e5, e6})) (. . . Substituting forf3 and f4 from (1.8))

∩({e4} ∪ ({e1, e2, e3} − {e5, e6}))
= {e1, e2, e3, e4}

AVIN6 = AVINR3 = {e1} (. . . Node 6 is the header of region R3)

From AVINi , we can compute AVOUTi by applying fi . It is easy to see that the resulting solution is

the same as the maximum fixed point assignment (1.16).

1.6.3 Complexity of Data Flow Analysis

In this section we discuss the complexity of the various methods of data flow analysis.

1.6.3.1 Round Robin Iterative Methods of Data Flow Analysis

It was suggested in Section 1.6.1.1 that the round robin method would converge faster if the nodes are

traversed in the direction of the data flow. This section explains the order of traversal more precisely.

The entire discussion in this section is with respect to a depth-first spanning tree of a control flow

graph. A spanning tree is a tree that spans (i.e., covers) all nodes in a graph whereas depth-first

traversal visits the (unvisited) successors of a node before visiting its siblings (i.e., successors of a

predecessor). Figure 1.22 provides a depth-first spanning tree (consisting of the solid arrows) for the

control flow graph in Figure 1.2.

We define the following terms for a graph G with respect to a chosen depth-first spanning tree

T (G) of G. An edge i → k is a tree edge in G if k is a descendant of i in T (G); it is a back edge

if k is an ancestor of i in T (G). As a special case, an edge from a node to itself is also considered a
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FIGURE 1.22 Classifications of edges in a graph based on a depth-first spanning tree.

back edge. An edge i → k is a cross edge in G if k is neither an ancestor, nor a descendant of i in

in T (G). Tree edges and cross edges are clubbed together as forward edges. A forward, or reverse

postorder, traversal of a graph implies traversing G such that a node is traversed before any of its

descendants in T (G). For our graph in Figure 1.22, two possible forward traversals are 1, 2, 3, 4,

5, 6 and 1, 2, 4, 3, 5, 6. A backward, or postorder, traversal of a graph implies traversing G such

that a node is traversed after all its descendants in T (G). For our graph in Figure 1.22, two possible

backward traversals are 6, 5, 3, 4, 2, 1 and 6, 5, 4, 3, 2, 1.

To estimate the total number of traversals required in the case of a round robin iterative method,

consider an ifp (exit2,entry3,exit3,entry5,exit5,entry2). We assume that visiting

node i leaves the values of INi and OUTi in a mutually consistent state. This ifp is covered by the

sequence of edge traversals (2 → 3 → 5 → 2). Let us choose forward traversal over the graph.

Let the edge traversals that are along the direction of the graph traversal be indicated by
√

and the

edge traversals against the direction of the graph traversal be indicated by ×. Then, our ifp can be

represented by (2

√
→3

√
→5

×→2). The edge traversals marked by
√

are called conforming traversals

whereas the ones marked by × are called nonconforming traversals. A nonconforming edge traversal

implies that its target node is visited before the source node in the chosen graph traversal; in the

case of (5
×→2), node 2 has already been visited before node 5 in a forward traversal over the graph.

Clearly, to propagate the data flow information from exit5 to entry2, another traversal over the

graph is required. This can be generalized as follows:

Every nonconforming edge traversal requires an additional iteration in round robin iterative data

flow analysis.

We define the width of a graph for a data flow framework as the maximum number of nonconfirming

edge traversals in any ifp.21 If the width of a graph for a data flow framework is w, then it is easy to

show that the round robin iterative method of data flow analysis can converge in w + 1 iterations for

two-bounded problems. If the data flow framework is k bounded, then the bound on the number of

iterations becomes (k − 1) · w + 1.

It is interesting to note that if we choose a backward traversal over the graph, then node 5 would

be visited before node 2 and the edge traversal (5 → 2) would not need an additional iteration;

consequently it becomes a conforming traversal. On the other hand, the edge traversal (2 → 3), which

is a conforming traversal with respect to forward traversal over the graph, becomes a nonconfirming

21In the formal statement, a qualifying clause says, “no part of which has been bypassed.”
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traversal with respect to the backward traversal over the graph because node 3 is visited before 2;

this requires an additional iteration to visit 3 after 2. In the general situation, a nonconforming edge

traversal may be associated with a forward edge or a back edge. We show examples of all possibilities

in the following:

Type of Edge Traversal

Direction

Direction of Data An Example Forward Graph Backward Graph

of Edge Flow Edge Traversal Traversal Traversal

Forward Forward (2 → 3)
√ ×

Forward Backward (3 → 2) × √

Back Forward (5 → 2) × √

Back Backward (2 → 5)
√ ×

We observe that:

• For forward data flow problems, the edge traversals of the kind (3 → 2) and (2 → 5) do not

exist because both of them are backward flows. If we choose the forward graph traversal, then

the nonconfirming edge traversals are only those that are traversals along a back edge. On the

other hand, if we choose the backward graph traversal, then the nonconfirming edge traversals

are those that are associated with forward edges. Because the number of forward edges usually

is larger than the number of back edges, the width is very high in the case of backward graph

traversal for problems involving forward data flows. This explains, quantitatively, why the

number of traversal is much larger for available expressions analysis in the case of backward

graph traversal.

• For backward data flow problems, the edge traversals of the kind (2 → 3) and (5 → 2) do not

exist because both of them are forward flows. Thus, the nonconfirming edge traversals with

respect to the backward graph traversal are only those that are traversals along a back edge.

Clearly, a forward graph traversal can have many more nonconforming edge traversals requiring

a much larger number of iterations.

Thus for unidirectional data flow problems, if the direction of graph traversal is the same as the

direction of the data flows, the width of a graph reduces to the depth of a graph, which is defined

as the maximum number of back edges in an acyclic path in a graph. However, depth is applicable

to unidirectional data flow problems only. Width is not only more general than depth but also more

precise than depth because it considers only those ifp segments that are not short-circuited by shorter

ifp segments.

Though the round robin method converges in w + 1 iterations, in practice we do not know the

width of a flow graph and the method terminates after discovering that there is no further change.

Thus, practically, w + 2 iterations are required; if n nodes and r data items exist (i.e., r data flow

properties), the total work is O((w + 2) · n · r).

1.6.3.2 Work List Based Iterative Method of Data Flow Analysis

Work list based methods work in a demand-driven manner, and computations are made only where

a change is likely to happen. In the worst case, a data flow property may have to be computed

everywhere in a graph. For the bit vector problems, the effective height of the lattice is one and

functions are monotonic, implying that a value can change only once. If the entire graph is traversed

for this data flow property it implies O(e) computations where e is the number of edges. If r properties

exist, in the worst case the entire graph may have to be visited for each one of them, implying the
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worst-case complexity of O(e · r); because e = O(n) for practical control flow graphs, the bound is

O(n · r). If the framework is k bounded, a multiplication factor is (k − 1).

1.6.3.3 Elimination Methods of Data Flow Analysis

Let there be r data flow properties and let the total number of nodes in all the graphs in the sequence

of derived graphs (including the original graph) be N . Because r data flow properties are computed

for each node once, the complexity of elimination methods is O(N · r).

1.6.4 Comparison of Solution Methods and Some Practical Issues

Elimination methods require complicated control flow analysis22 and are restricted to programs that

are reducible. They work well for bit vector data flow frameworks but are difficult to adapt to different

data flow problems and it is difficult to prove their correctness. They require different treatment for

forward and backward data flow problems and are not applicable to general bidirectional data flow

problems. They usually work on identifying loops to avoid repetitive computations of data flow

properties. However, for bidirectional data flow problems, even forward edges can have a behavior

similar to back edges (i.e., they could be nonconforming; see Section 1.6.3.1) and hence may

require repetitive computations of data flow properties. Apart from the suitability of a structure to

be considered a region, the requirement of the ability to construct flow functions for a given instance

of a data flow framework puts some limitations on the adaptability of elimination-based methods.

Function compositions and merging may not be possible for general flow functions, say for flow

function such as (1.27) for constant propagation. Hence, elimination methods are usually not a part

of contemporary practices.

If an optimizing compiler uses many data flow analyses, it is preferable to use iterative methods.

The round robin method is quite simple to implement and is reasonably fast; practically the widths

of common control flow graphs (which admittedly depend on the data flow frameworks also) are

quite small (at most two or three for unidirectional data flows and may be four for data flows like

MR-PRE).

For the problems that have high widths, it is preferable to use the work list based method because

it processes only those data flow properties that need to be processed. However, its complexity does

not take into account the overheads of list management. Our initial experiments indicated that though

the number of bit vector operations were much less for work list methods, the round robin methods

worked faster; the list management overheads had more than nullified the advantage of fewer bit

vector operations. We discovered that the most practical list management is with the help of a bit

string where each bit corresponds to a program point. Constant time fast operations for this list can

be implemented. Besides, the list can be easily organized (into a fixed order) to take advantage of

the direction of data flows. With this organization, our implementations of work list methods turned

out to be faster than round robin methods.

For bit vector problems, m bits can be processed in one machine operation where the size of the

machine word is m. Thus, actual cost of wordwise iterative analysis reduces considerably. This is

applicable to both round robin as well as work list methods of data flow analysis.

As a final comment, the global data flow analysis depends on local data flow analysis for computing

the local data flow properties (namely, Gen and Kill). In our experience, this is harder than getting

the global data flow analyzer to work. The reason is simple: the global data flow analyzer assumes

simple interface with the program in the form of a control flow graph, and the data flow semantics of

the actual computations performed in the program are hidden behind the local data flow properties.

22The exception is if they are performed on abstract syntax trees, in which case data flow analysis becomes
quite complicated.
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Practical intermediate representations have to address the concerns of all the phases of a compiler,

right from syntax analysis to code generation; thus, they are not simple and clean. The local data flow

analyzer has to deal with the entire gamut of information included in the intermediate representation

and as such warrants extra efforts.

1.7 Bibliographic Notes

Most of texts on compilers discuss data flow analysis in varying lengths [1, 3, 23, 38, 39, 58]. The

ones that discuss details are [1, 3, 39]. Among other books, a more advanced treatment can be found

in [24, 40, 41].

Historically, the practice of data flow analysis precedes the theory. The round robin data flow analy-

sis can be traced back to [57]. The pioneering work on data flow analysis includes [2, 22, 25, 30]. The

classical concepts in data flow analysis are based on the treatments in [1, 22, 24, 25, 30, 35, 45]. All of

them were restricted to unidirectional data flows. The need for a more general theory was perceived

after the advent of the partial redundancy elimination [37] and composite hoisting and strength

reduction [15] optimizations. This was felt particularly due to the fact that the complexity measures

of unidirectional analyses were not applicable to these analyses. The initial forays [12, 17, 18, 31]

failed to address the concerns adequately for two reasons: they were mostly directed at solution

methods or were restricted to MR-PRE class of problems. They were based on edge splitting and

placement that became very popular and served the cause of many investigations. Meanwhile, a

generalized theory for data flows was proposed [16, 27, 28]. The theoretical foundations of these

works provided interesting insights into the process of data flow analysis and paved the way for simple

generic algorithms and precise complexity bounds that are uniformly applicable to unidirectional

and bidirectional data flows — most discussions in this chapter are based on these insights.

We believe that it is very important to distinguish between the theoretical foundations of data flow

analysis (the what) and the solution methods of data flow analysis (the how). The initial distinctions

were made by [22, 25, 30]; [22] used set theoretical foundations whereas [25, 30] pioneered the

lattice theoretical foundations that have now become de facto standard. These distinctions were

strengthened by [16, 28, 35, 45]. The third aspect of data flow analysis (i.e., the semantics of the

information captured by data flow analysis) is covered very well by [41].

Monotonicity in data flow analysis was first observed in [25] and almost simultaneously and

independently in [22]. The implication of monotonicity captured by [46] is also called GKUW

property, which is basically named after the authors of [22, 25]. Separability of function spaces

has been used only implicitly in the literature; it was first defined in [28]. Similarly, the bit vector

frameworks were defined only intuitively, with the first formal definition provided by [28]. The

example of combined may-availability and must-availability is from [5], where it is simply called

availability analysis.

Elimination methods are also called structural methods because they use the structural proper-

ties of control flow graphs. The pioneering works in elimination methods of data flow analysis

are [2, 22, 51, 55]. A good discussion of these methods can be found in [24, 48]; later notable works

include [6, 53]. We have ignored some solution methods, namely, node listing based data flow

analysis; a much wider range of solution methods can be found in [24, 26].

Finally, some aspects of data flow analysis that we have left out for want of space. Each one of them

deserves a separate treatment in an independent chapter. We have not covered interprocedural data

flow analysis. Two pioneering publications on interprocedural data flow analysis are [4, 52]. Other

popular investigations include [6, 9, 10, 19, 21, 43]. A good discussion can be found in [39, 41]. The

effectiveness of interprocedural data flow analysis was studied in [44] and more recently in [36].

We have also excluded the effect of aliasing, which is an important issue related to both inter-

procedural as well as intraprocedural data flow analysis. A partial list of some recent works along
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this direction includes [11, 32, 33, 46, 50, 59]. Further, we have not discussed incremental data flow

analysis, which updates the previously computed data flow information to incorporate changes in

the programs. Incremental data flow analysis algorithms based on elimination methods are found

in [6, 8, 47, 49] whereas those based on iterative methods are reported in [20, 42]; [34] falls in both

the categories whereas [60] does not fall in either one. An early comparison of various incremental

methods is contained in [7]. Some recent works on incremental data flow analysis are included

in [27, 53, 54].
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1.A Appendix: Some Examples of Advanced Analyses

This section presents the data flow equations of some advanced analyses that stretch the limits of the

classical theory of data flow analysis. We specify them in their original form in terms of bit vectors

instead of sets. The confluence operation ∩ is now represented by the bitwise AND, which is denoted

by “.” when it is used as a binary operation and by � when it is used to range over many operands.

Similarly, ∪ is indicated by the bitwise OR, which is denoted by “+” when it is used as a binary

operation and by � when it is used to range over many operands.

1.A.1 Data Flow Equations and Brief Descriptions

MR-PRE [37] performs global program optimization by suppression of partial redundancies.

Partial redundancy of an expression is used to motivate its hoisting. Because common subexpression

elimination and loop invariant movement are special cases of partial redundancy elimination, the
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algorithm unifies several traditional optimizations within a single framework. Equations (1.61) and

(1.62) represent the data flows of MR-PRE:

PPINi = Consti · (Antloci + Transpi · PPOUTi) ·
∏

p∈pred(i)

(AVOUTp + PPOUTp)

(1.61)

PPOUTi =
∏

s∈succ(i)

(PPINs) (1.62)

Local property Antloci represents information concerning upward exposed occurrences of an

expression e in node i of the program flow graph, whereasTranspi reflects the absence of definitions

of e’s operands in the node. Partial redundancy is represented by the data flow property of partial

availability PAVINi/PAVOUTi (which is a part of Consti). It is defined using available expressions

analysis with the confluence operator changed to �. Safety of hoisting is incorporated by considering

only those expressions that are very busy at the entry or exit of a node. This is incorporated by the∏
term of the PPOUTi (Equation 1.62). A property Inserti (not defined here) identifies nodes

where occurrences of expression e should be inserted. PPINi · �Antloci identifies occurrences

that become redundant following the insertion.

In the load store insertion algorithm [13], the problem of placing Load and Store instructions of

a variable to characterize its live range for register assignment is modeled as redundancy elimination

of the Load and Store instructions. Here, we present the data flow equations of the problem of

the placement of Store instructions Equations (1.63) and (1.64), which is a dual of MR-PRE in

that this analysis tries to identify suitable program points to sink a Store instruction as much as

possible:

SPPINi =
∏

p∈pred(i)

(SPPOUTp) (1.63)

SPPOUTi = DPANTOUTi · (Dcompi + Dtranspi · SPPINi)

·
∏

s∈succ(i)

(DANTINs + SPPINs) (1.64)

In the MMRA [14], an additional term with
∑

as the confluence, is added to the PPINi equation

to suppress redundant hoisting of an expression (Equation (1.65)). Other terms in the equations are

the same as in MR-PRE:

PPINi = Consti · (Antloci + Transpi · PPOUTi)

·
∏

p∈pred(i)

(AVOUTp + PPOUTp)

·
∑

p∈pred(i)

(PPINp · �Antlocp + AVOUTp) (1.65)

PPOUTi =
∏

s∈succ(i)

(PPINs) (1.66)

The technique of edge placement aims at total elimination of partial redundancies by placing an

expression that is partially redundant in node i, but cannot be safely placed in a predecessor node

j , into a synthetic node placed along edge j → i. This simplifies the data flow dependencies by

eliminating the
∏

term of the MR-PRE PPINi equation. The edge placement algorithm (EPA) [12]

uses the technique of edge placement, and also incorporates the suppression of redundant hoisting

by adding a � term in the PPINi equation (Equation (1.67)).



Data Flow Analysis 57

PPINi = Consti · (Antloci + Transpi · PPOUTi)

·
∑

p∈pred(i)

(PPINp · �Antlocp + AVOUTp) (1.67)

PPOUTi =
∏

s∈succ(i)

(PPINs) (1.68)

Data flow analysis based type inferencing for dynamically typed languages was proposed by

Tennenbaum [56]; however, its formulation presented in [1] fails to qualify as a formal data flow

framework, suffers from imprecision and is not amenable to complexity analysis. A formulation that

eliminates these drawbacks is proposed in [29]. This is what we refer to as KDM type inferencing.

We merely reproduce its data flow equations without defining the flow functions and the confluence

operation:

INn =
{

Outside Info ⊓ f B
n (OUTn), n ≡ n0

( p ∈Pred(n) gF
p→n(OUTp)) ⊓ f B

n (OUTn), n ≡/ n0

(1.69)

OUTn =
{

Outside Info ⊓ f E
n (INn), n ≡ n∞

( s ∈Succ(n) gB
n→s(INs)) ⊓ f F

n (INn) ⊓ OUTn, n ≡/ n∞
(1.70)

1.A.2 Taxonomies of Data Flow Analysis

In this section we refine the taxonomy in Section 1.3.8 to include advanced analyses. Figure 1.23

presents a larger canvas by laying out the possible combinations of confluences and directions of

flows when the confluences are all paths or any paths (and data flow values are Boolean). It places

some data flow problems at appropriate coordinates on the grid:

• The horizontal sides of the grid represent the possibilities for the direction of flows. The left

corner indicates forward flows whereas the right corner indicates backward flows. The center

point indicates that the number of forward flows is the same as the number of backward flows.

FIGURE 1.23 Taxonomy of data flow analysis problems with ∩ and ∪ confluences.
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As we move away from the center toward the left, we have a larger number of forward flows

than backward flows. Exactly opposite happens when we move from the center to the right.

• The vertical sides represent the possibilities for the confluence of flows. The bottom corner

indicates any path confluences whereas the top corner indicates the all paths confluences. The

center point indicates that the number of all paths confluences is the same as the number of any

path confluences. As we move away from the center toward the top, we have a larger number

of all paths confluences than any path confluences. Exactly opposite happens when we move

from the center to the bottom.

It is easy to see that the four classical data flow problems appear in the four corners of the grid.

We explain the placement of the other data flow problems in the following:

• Partial redundancy elimination (MR-PRE). MR-PRE uses backward node flows as well as edge

flows. However, forward edge flows exist but forward node flows do not exist. Thus, it is only

partially bidirectional, and the technique of edge splitting can be used to make this data flow

problem amenable to the classical theory of data flow analysis. Both forward edge flows and

backward edge flows are combined using ∩, which is an all paths confluence.

• Load Store Insertion Algorithm (LSIA). The Store-sinking equations of LSIA are duals or

MR-PRE as far as the direction is concerned.

• Edge placement algorithm (EPA). In this case, forward edge flows use any path confluence,

whereas the backward edge flows use all paths confluence. Replacing the all path forward

confluence of MR-PRE by an any path forward confluence reduces the complexity of EPA but

fails to make it amenable to the classical theory because it still has two confluences.

• Modified Morel–Renvoise algorithm (MMRA). In this case there is an additional any path

forward edge flow component. Thus, it has two forward edge flows (one uses any path confluence

whereas the other uses all paths confluence), one backward edge flow (which uses all paths

confluence) and one backward node flow. MMRA does not have forward node flow.

Note that the generalized theory covers a larger ground than the classical theory in Figure 1.23,

and yet a large ground remains uncovered. As of now very few data flow problems occur in the

uncovered area. However, we believe that the development of theory for these problems may

encourage researchers to experiment and find out many real applications where such data flow

analyses can prove to be useful.

Now we present another taxonomy in which the variation is not in terms of the number of

confluences but in terms of the type of confluence. This discussion allows us to compare constant

FIGURE 1.24 Taxonomy of data flow analysis problems with general (single) confluence.
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propagation and KDM type inferencing with other data flow problems by placing them on a grid in

Figure 1.24. In this, the vertical sides of the grid indicate whether the confluence is indiscriminate

any path or all paths or special confluence:

• Constant propagation. Constant propagation uses a forward node flow and a forward edge flow

that is combined using a special confluence operation.

• KDM type inferencing. This analysis uses information from successors as well as predecessors.

Thus, it is a bidirectional data flow problem that uses forward node as well as edge flows and

backward node as well as edge flows. Both forward and backward edge flows are combined

using a special confluence operation.
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2.1 Introduction

Code transformations form an integral part of high-performance computing systems. Optimizing

compilers try to reduce the execution time or the size of a program by analyzing it and applying

various transformations. Code transformations are broadly classified into scalar transformations and

parallel transformations; scalar transformations reduce the number of instructions executed by the

program and parallel transformations, in general, maximize parallelism and memory locality.

Different levels of representation of the source code exist at which different transformations are

applied: high-level intermediate language, low-level intermediate language and object code. All

semantic information of the source program is available at the high-level intermediate language

level to apply high-level transformations. Low-level transformations are applied at the low-level

intermediate language level and machine-specific transformations are performed at the object code

level.

Code transformation is a complex function of a compiler involving data flow analysis and modi-

fication over the entire program. In spite of its complexity, hardly any tool exists to support this

function of the compiler, unlike the functions lexical analysis, parsing and code generation; we have

well-established tools, such as Lex and Yacc, for lexical analysis and parsing, and tools are now

available for the code generation phase also.

Automatic generation of code transformers involves identification of a framework for the

specification of code transformations, design of a specification language based on the framework
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identified, specification of the transformations in the specification language and development of a

generator to produce code for compiler transformers from their specifications.

Code transformations have been discussed extensively in the literature [1, 4, 17, 18, 26]. Aho,

Sethi and Ullman [1] describe all traditional scalar transformations in detail, along with different

approaches to data flow analysis. Bacon, Graham and Sharp [4] give an extensive, but brief, coverage

of all code transformations — both scalar and parallel. Muchnick [17] describes all code transfor-

mations, in detail. Padua and Wolfe [18] and Wolfe [26] deal more with parallel transformations.

Banerjee [2, 3] deals with transformations specifically for loops. Hecht [14], and Muchnick and

Jones [16] deal with the data flow analysis for code transformations. Ryder and Paull [21] discuss

different elimination algorithms for data flow analysis. Click and Cooper [8] describe combining

analyses and optimizations.

We start with the formal specification of code transformations using dependence relations. Bacon,

Graham and Sharp [4], Padua and Wolfe [18], Whitfield and Soffa [31] and Wolfe [26, 27] give

informal definitions of dependence relations. Because dependence relations form the basis of our

specifications, we need formal definitions for them, as well. Cytron et al. [6], Ferrante, Ottenstein

and Warren [11], and Sarkar [22] give formal definitions of control dependence. Whereas Ferrante,

Ottenstein and Warren [11], and Sarkar [22] use the concept of postdominance as the basis of their

definition, the definition by Cytron et al. is based on the concept of dominance frontiers. Bilardi

and Pingali [5] give a generalized notion of control dependence. Of the two formal definitions for

data dependence — one by Banerjee [2] and the other by Sarkar [22] — Banerjee’s definition is

specifically for loop nests. Sarkar’s definition is suitable in a more general setting.

Formal specifications for some of the scalar and parallel transformations, using dependence

relations, were given by Whitfield and Soffa in their work on ordering optimizing transformations

[28], automatic generation of global optimizers [29] and study of properties of code improving

transformations [31].

In the later part we present the development of a system to generate code for compiler transformers

from their specifications and to conduct experiments with the code thus generated. Early attempts

to build tools for code transformations, including the analyses needed, were restricted to localized

transformations. Davidson and Fraser [9], Fraser and Wendt [12], and Kessler [15] describe automatic

generation of peephole optimizers. Tjiang and Hennessy [24], in a more recent work, describe a tool

to generate global data flow analyzers.

Whitfield and Soffa [29–31] have developed a tool, called Genesis, for generating code transform-

ers from formal specifications written in the specification language Gospel, designed by them. For

each optimization, Gospel requires the specification of the preconditions and the actions to optimize

the code. The preconditions consist of the code patterns and the global dependence information

needed for the optimization. The code patterns express the format of the code, and the global infor-

mation determines the control and data dependences that are required for the specified optimization.

The actions take the form of primitive operations that occur when applying code transformations. The

primitive actions are combined to express the total effect of applying a specific optimization. Genesis

assumes a high-level intermediate representation that retains the loop structures from the source

program. The high-level intermediate representation allows the user to interact at the source level for

loop transformations. They have generated code for many of the scalar and parallel transformations

from a prototype implementation of the generator.

Paleri [19] describes a code transformation system that provides an environment in which one can

specify a transformation — using dependence relations — in the specification language designed for

the purpose, generate code for a transformer from its specification using the transformer generator

and experiment with the transformers generated on real-world programs.

In this work all traditional scalar transformations and some of the parallel transformations

have been specified in the framework using dependence relations, but the implementation is
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restricted to scalar transformations. The specification language is powerful enough to express

formal specifications for all traditional scalar transformations. The system takes a program to be

transformed — in C or FORTRAN — as input, translates it to intermediate code, requests the user

to choose the transformation to be performed, computes the required dependence relations using the

dependence analyzer, applies the specified transformation and converts the transformed intermediate

code back to high level. Code for all traditional scalar transformations have been generated from

their specifications using the system and applied them on LINPACK benchmark programs. The

system can be used either as a tool for the generation of code transformers or as an environment for

experimentation with code transformations.

This article presents the design and implementation of the system for automatic generation of code

optimizers from formal specifications developed by Paleri [19].

2.2 Formal Specification of Code Transformations

Even though code transformations — both scalar and parallel — have been discussed extensively in

the literature [1, 4, 17, 18, 26, 27], only a few attempts have been made in formalizing them [20, 28−
31]. Formal specification of code transformations not only helps in the precise understanding of those

transformations but also finds many applications such as ordering of transformations [28, 30, 31] and

code transformer generators [29–31].

In dependence relations, we have a uniform framework for the specification of both scalar and

parallel transformations [2, 4, 17, 26, 27]. A dependence is a relationship between two computations

that places constraints on their execution order. Dependence relations, representing these constraints,

are used to determine whether a particular transformation can be applied without changing the

semantics of the computations.

Different transformations are applied at different levels of representation of the source code. In

general, scalar transformations use the low-level intermediate representation and parallel transforma-

tion the high-level intermediate representation. We require an intermediate representation satisfying

the requirements of both scalar and parallel transformations for their specification.

All traditional scalar transformations and some of the parallel transformations have been specified

in the dependence relations framework. The specification for each transformation constitutes a

precondition part and an action part. The precondition part specifies the conditions to be satisfied

for the application of the transformation and the action part specifies the steps for performing the

transformation using some primitive actions. The specifications are expressed in a notation similar

to predicate logic.

We first discuss about the framework used for the specification before giving the specifications

for various transformations.

2.2.1 Framework for Specification

2.2.1.1 Dependence Relations

A dependence is a relationship between two computations that places constraints on their execution

order. Dependence analysis identifies these constraints, which are then used to determine whether a

particular transformation can be applied without changing the semantics of the computation. The two

kinds of dependences are control dependence and data dependence. Whereas control dependence is

a consequence of the flow of control in a program, data dependence is a consequence of the flow of

data.
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2.2.1.1.1 Control Dependence.

There is a control dependence [4, 6, 11, 22, 27] between statement Si and statement Sj , denoted

Siδ
cSj , when statement Si determines whether Sj can be executed. In the following example, Sj is

control dependent on Si (i.e., Siδ
cSj ):

Si : if(x = c)

Sj : y := 1

To give a formal definition for control dependence we first define the terms control flow graph,

dominance, dominance frontier, postdominance and postdominance frontier. We assume that a

program is represented as a control flow graph (CFG) with each node as a single instruction or

a basic block.

Definition 2.1 (control flow graph). A CFG is a tuple (N, E, s) such that:

• (N, E) is a directed graph (or multigraph), with the set of nodes N and the set of edges E

• s ∈ N is a unique entry node

• All nodes are reachable from s, that is, (∀v ∈ N)[s
∗

→ v]

Note that s
∗

→ v means v is reachable from s by traversing zero or more edges.

Definition 2.2 (Dominance). A node m in a CFG dominates a node n if every path from s to n

includes m, denoted m dom n.

By this definition, every node dominates itself, and s dominates every node in the CFG, including

itself.

Definition 2.3 (dominance frontier). The dominance frontier of a node m is the set of nodes r

such that m dominates some predecessor of r , but not all; that is:

df (m) = {r | ∃p, q ∈ pred(r)[m dom p ∧ m dom q]}

where, pred(r) is the set of predecessors of r , and m dom q means m does not dominate q.

Note that nodes in the dominance frontier are nodes with more than one predecessor in the CFG.

To define postdominance we must also have a unique exit node e, which is reachable from all

other nodes. We define a single-exit CFG as CFG = (N, E, s, e), where N, E, and s are as before

and e ∈ N is reachable from all other nodes; i.e.:

(∀v ∈ N)[v
∗

→ e]

Definition 2.4 (postdominance). A node n in a single-exit CFG postdominates a node m, denoted

n pdom m, if every path from m to e includes n.

By this definition, every node postdominates itself, and e postdominates every node in the graph,

including itself.

Definition 2.5 (postdominance frontier). The postdominance frontier of a node n is the set of

nodes r such that n postdominates some successor of r , but not all; that is:

pdf (n) = {r | (∃m ∈ succ(r))[n pdom m ∧ n spdom r}]
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where, succ(r) is the set of successors of r , and spdom means strict postdominance; that is:

n spdom m ≡ (n pdom m) ∧ (n =/ m)

With a flow graph G = (NG, EG, sG, eG), we can define the reverse CFG RCFG, GR =

(NG, ER
G, eG, sG), with the same set of nodes, but with an edge (n → m) ∈ ER

G for each edge

(m → n) ∈ EG. Note that sG and eG switch roles. The dominator relationship in the RCFG is the

same as the postdominator relationship in the original CFG.

Definition 2.6 (control dependence). A node n in a CFG is control dependent on node m if:

1. n postdominates some successor of m.

2. n does not postdominate all successors of m.

A less formal definition is to say that n is control dependent on m if:

1. Following one edge out of m eventually always executes n.

2. Choosing some other edge out of m may avoid n.

Note that n is control dependent on m if and only if m ∈ pdf (n).

2.2.1.1.2 Data Dependence.

Two statements have a data dependence [2, 4, 22, 26, 27] between them if they cannot be executed

simultaneously due to conflicting uses of a variable. The three types of data dependence relations are

flow dependence, antidependence and output dependence. If Si and Sj are two statements, we say

Sj is flow dependent on Si , denoted SiδSj , if a variable is defined in Si and a subsequently executed

statement Sj uses the definition in Si . An antidependence occurs between two statements Si and Sj ,

denoted Si δ̄Sj , when a variable is used in Si and redefined in a subsequently executed statement

Sj . When a variable is defined in a statement Si and redefined in a subsequently executed statement

Sj , we say an output dependence exists between Si and Sj , denoted Siδ
oSj .

The following examples illustrate the three dependences:

Si : x := a + b

Sj : y := x + c

Here, SiδSj due to the variable x;

Si : x := y + a

Sj : y := a + b

Here, Si δ̄Sj due to the variable y;

Si : z := x + a

Sj : z := y + b

Here, Siδ
oSj due to the variable z.

A fourth possible data dependence relation exists between two statements Si and Sj called input

dependence, denoted Siδ
iSj , when two accesses to the same variable in these statements are reads.

In the following example, Siδ
iSj due to the variable x:

Si : y := x + a

Sj : z := x + b
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In general, no ordering is implied in this case, because it does not matter which statement, Si or Sj ,

reads from the variable first. However, there are cases when this relation do matter. For this reason

and for completeness we include input dependence in the set of dependence relations.

Definition 2.7 (data dependence). Consider two statements Si and Sj in a CFG. A data

dependence exists between statements Si and Sj with respect to variable x if and only if:

1. A path P : Si
∗

→ Sj exists in the CFG.

2. Variable x is written by Si and later read by Sj (flow dependence), x is read by Si and later

written by Sj (antidependence), x is written by Si and later rewritten by Sj (output dependence)

or x is read by Si and later reread by Sj (input dependence).

3. Variable x is not written in between the two references in Si and Sj on the path from Si to Sj .

The third condition means that variable x should not be written in the time period between the two

references in Si and Sj during execution.

It is often convenient to be able to ignore the kind of the dependence relation. In such cases we

can simply say that Sj is dependent on Si and write it as Siδ
∗Sj .

2.2.1.1.3 Data Dependence in Loops.

In a loop, each statement may be executed many times, and for many transformations it is necessary

to describe dependences that exist between statements in different iterations, called loop-carried

dependences. To discover whether a dependence exists in a loop nest, it is sufficient to determine

whether any of the iterations can write a value that is read or written by any of the other iterations.

An iteration in a perfectly nested loop of d loops can be uniquely named by a vector of d elements

I = (i1, . . . , id), where each index falls within the iteration range of its corresponding loop in

the nesting (i.e., lp ≤ ip ≤ up where, lp and up are the lower and upper bounds of loop p). The

outermost loop corresponds to the leftmost index.

A reference in iteration J can depend on another reference in an earlier iteration I , but not on a

reference in an iteration after iteration J . By using the ≺ relation to formalize the notion of before,

we have:

I ≺ J iff ∃p : (ip < jp ∧ ∀q : q < p : iq = jq)

A reference in some iteration J depends on a reference in iteration I if and only if at least one

reference is a write and:

I ≺ J ∧ ∀p : 1 ≤ p ≤ d : fp(I ) = gp(J )

where the functions fp(i1, . . . , id) and gp(i1, . . . , id) map the current values of the loop iteration

variables to integers that index the pth dimension of the array. In other words, a dependence exists

when the values of the subscripts are the same in different iterations. By extending the notation for

dependences to dependences between iterations, we write Iδ∗J for a dependence from iteration I

to iteration J .

When Iδ∗J , the dependence distance is defined as J − I = (j1 − i1, . . . , jd − id). When all the

dependence distances for a specific pair of references are the same, the potentially unbounded set of

dependences can be represented by the dependence distance. When a dependence distance is used

to describe the dependences for all iterations, it is called a distance vector.

A legal distance vector V must be lexicographically positive, meaning that 0 ≺ V (the first nonzero

element of the distance vector must be positive). A negative element in the distance vector means that

the dependence in the corresponding loop is on the higher numbered iteration (i.e., a later iteration

of that loop). If the first nonzero element was negative, this would indicate a dependence on a future

iteration, which is impossible.
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For the nested loop given next there is a loop-carried dependence Sj δSi , with a distance vector

(0, 1), due to the references B[I1, I2 + 1] in Sj and B[I1, I2] in Si :

doI1 = LB1,UB1

doI2 = LB2,UB2

Si : A[I1, I2] = B[I1, I2] + C[I1, I2]

Sj : B[I1, I2 + 1] = A[I1, I2] + B[I1, I2]

enddo

enddo

It should be noted that distance vectors describe dependences among iterations, not among array

elements.

In some cases it is not possible to determine the exact dependence distance at compile time, or the

dependence distance may vary between iterations. In such cases a direction vector is used to describe

such dependences, where enough information is available to partially characterize the dependence.

For a dependence Iδ∗J , we define the direction vector � = (�1, . . . , �d), where

�p =







< if ip < jp

= if ip = jp

> if ip > jp

A particular dependence between statements Si and Sj is denoted by writing Siδ
∗
ψSj . For the nested

loop given earlier, corresponding to the distance vector (0, 1) we have the direction vector (=, <)

and the dependence is denoted by Sj δ(=, <)Si .

The general term dependence vector is used to encompass both distance and direction vectors.

Note that a direction vector entry of < corresponds to a distance vector entry that is greater than

zero.

The dependence behavior of a loop is described by the set of dependence vectors for each pair of

possibly conflicting references. These can be summarized into a single loop direction vector with

�k ∈ {<, =, >, ≤, ≥, =/ , ∗}, where ∗ stands for any of the direction vector entries <, =, or >, at

the expense of some loss of information. For example, the set of direction vectors (=, <), (<, =),

(<, >) can be summarized as (≤,*).

2.2.1.2 Intermediate Representation

Different transformations are applied at different levels of representation of the source code: high-

level intermediate representation, low-level intermediate representation and machine code. All

semantic information of the source program is available at the high-level intermediate represen-

tation to apply high-level transformations. Low-level transformations are applied on the low-level

intermediate representation, and machine-specific optimizations are performed on machine code.

Parallel transformations, in general, use the high-level intermediate representation in which refer-

ences to source-level information such as loops and arrays can be made. Scalar transformations are

applied on the machine-independent low-level intermediate representation. Statements at this level

are assumed to be in the three-address code form:

dst := src1 op src2

where, op represents the opcode, src1 and src2 are the source operands and dst is the destination

operand of the statement.

Many possible intermediate representations may be useful in our context, namely, CFG, data

dependence graph, program dependence graph [11] and static single assignment form. We assume
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an intermediate representation, such as an abstract syntax tree in Stanford University Intermediate

Format [25], which satisfies the requirements of both scalar and parallel transformations.

2.2.1.3 Specification Format

The specification for each of the transformation has two parts — a precondition part and an action

part. The precondition part specifies the condition as a combination of some basic conditions, which

has to be satisfied for the application of the transformation; and the action part consists of a sequence

of primitive actions to perform the transformation. The precondition is expressed in a format similar

to the predicate form (Q:R:P), read as, “Q such that R for which P is true,” where Q is the quantifier,

R the range and P the predicate. The action part is expressed by enclosing the actions in curly braces.

Basic conditions in the precondition part include conditions to identify interested program elements

such as statements and loops, and checks for dependence relations between pairs of statements.

The primitive actions used to perform the transformations include creation, insertion, deletion

and modification of program elements. Following are some of the primitive actions used in the

specifications:

delete stmt(Si) : delete statement Si

delete node(n) : delete basic block n

new operand() : create a new operand using the given argument;

the argument may be a symbol or a value

replace operand(opr1,opr2) : replace the operand opr1 by the new operand opr2

new stmt() : create a new statement using the given arguments;

the arguments are the opcode and operands of the

new statement

replace stmt(Si ,Sj ) : replace the statement Si by the new statement Sj

insert stmt(Si ,position) : insert the new statement Si at the indicated position;

possible positions are before and after a statement

move stmt(Si ,position) : move the existing statement Si to the indicated position;

possible positions are before a statement, after a statement

and loop preheader

eval(op,opr1,opr2) : return the value of the expression with

opr1 and opr2 as operands of the operation op

The preceding actions are mainly with respect to the program element statement and the set of

primitive actions include similar operations for other program elements.

For loops we assume a syntax similar to FORTRAN do loops:

do i = lb, ub

loop − body

enddo

and denote the header, end, lower bound, upper bound, control variable and body of a loop L by

L.header, L.end, L.initial, L.final, L.lcv and L.body, respectively.

2.2.2 Formal Specifications for Code Transformations

This section gives formal specifications for all traditional scalar transformations and some of the

parallel transformations. The transformations considered are constant propagation, constant folding,

useless code elimination, unreachable code elimination, copy propagation, common subexpression

elimination, invariant code motion, induction variable elimination, loop interchange, loop fusion,

loop reversal and loop skewing. All specifications given are for global transformations.
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In the specifications given next Si .src1, Si .src2, Si .dst and Si .op represent the first source operand,

the second source operand, the destination operand and the operation, respectively, of statement Si .

For a conditional branch statement Si , Si .op can be any of the relational operators.

2.2.2.1 Constant Propagation

Constant propagation is a transformation that propagates values defined in a statement of the form

x := c, for a variable x and a constant c, through the entire program. For the constant value, defined

by a statement Si , to be propagated the following conditions have to be satisfied:

1. There should be a statement Sj in which a use of the variable defined in Si appears.

2. All definitions of the variable reaching the use at Sj must have the same value.

2.2.2.1.1 Formal Specification.

∃Si∃Sj∃opr : constant defn(Si) ∧ SiδSj ∧ opr ∈ source operands(Sj ) ∧ Si .dst = Sj .opr

/* constant defn(Si) ≡ Si .opcode = ASSIGN ∧ type(Si .dst) = VAR

∧ type(Si .src1) = CONST. ∗/

: (∀Sk : SkδSj ∧ Sk =/ Si ∧ Sk.dst = Sj .opr

: constant defn(Sk) ∧ Sk.src1 = Si .src1)

/* All definitions from Sk ’s reaching the use at Sj .opr have the same value. ∗/

{replace operand(Sj .opr , Si .src1); }

The preceding specification is less conservative compared with other specifications available in

the literature [28, 31]. Although other specifications do not consider the case where more than one

definition are reaching the use, the specification given earlier considers this case also.

2.2.2.2 Constant Folding

Constant folding refers to the evaluation at compile time of expressions whose values are known to

be constants. It involves determining that all operands in an expression are constants, performing

the evaluation of the expression and replacing the expression by its value. Constant folding may not

be legal if the operations performed at compile time are not identical to those that would have been

performed at run time. In the following specification, if the expression folded is a Boolean expression

in the condition part of a conditional branch statement, then the conditional branch statement is either

deleted or replaced by a jump statement, depending on the truth-value of the condition.

2.2.2.2.1 Formal Specification.

∃Si :: foldable stmt(Si)

/∗ foldable stmt(Si) ≡ type(Si .src1) = CONST ∧ type(Si .src2) = CONST. ∗/

{
if (conditional branch stmt(Si))

{
if (eval(Si .op, Si .src1, Si .src2))

replace stmt(Si,new stmt(JMP , Si .dst));

/* Replace the conditional branch statement by a jump.

Si .dst is the target of jump. ∗/

else

delete stmt(Si);

}
else

replace stmt(Si,new stmt(ASSIGN , Si .dst,

new operand(eval(Si .op, Si .src1, Si .src2))));

/* Replace the constant expression by its value. ∗/

}
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When a conditional branch statement is folded, it may leave unreachable code. Removal of such

unreachable code is not considered as part of constant folding transformation with the assumption

that this code is removed later using unreachable code elimination.

2.2.2.3 Useless Code Elimination

A statement is useless if it computes only values that are not used on any executable path leading from

the statement. Even though original programs may include useless code, it is much more likely to

arise from other code transformations. Useless code elimination is a form of dead code elimination.

2.2.2.3.1 Formal Specification.

∃Si : definition stmt(Si)

/∗ A statement is a definition statement if it involves the definition of a variable. ∗/

: (∃/Sj : Sj =/ Si : SiδSj )

{delete stmt(Si); }

2.2.2.4 Unreachable Code Elimination

Unreachable code is code that cannot be executed regardless of the input data. Such code is likely

to arise as a result of other transformations — constant folding, as specified earlier, for example.

Whereas useless code elimination removes code that is executable but has no effect on the result of the

computation, unreachable code elimination removes codes that are never executable. Unreachable

code elimination is another form of dead code elimination.

2.2.2.4.1 Formal Specification.

∃n : n ∈ N

/∗ N is the set of nodes in the CFG, each node representing a basic block. ∗/

: (∃/m : m ∈ N : mδcn)

{delete node(n); }

The preceding specification assumes an augmented CFG in which every reachable node is control

dependent on some node in the graph [11]. The augmented CFG is constructed by adding two

additional nodes, namely, Entry and Exit, to the CFG, such that an edge exists from Entry to any

basic block at which the program can be entered, and an edge exists to Exit from any basic block that

is an exit point for the program. An edge from Entry to Exit is also added as part of the construction

of the augmented CFG.

2.2.2.5 Copy Propagation

Copy propagation is a transformation that, given an assignment x := y for some variables x and y,

replaces later uses of x with uses of y, as long as intervening instructions have not changed the value

of either x or y. Although this transformation by itself does not improve the code, this may leave the

original assignment statement useless, and removal of this useless statement improves the code.

For a copy statement, Si : x := y, we can replace any later use u of the variable x, where this

definition is used, by the variable y if the following conditions are satisfied:

1. All definitions Sk of x reaching u must be a copy statement with variable y as the source

operand.

2. On every path from definition Sk to use u, including paths that go through u several times (but

do not go through Sk a second time), there are no assignments to the source variable y.
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2.2.2.5.1 Formal Specification.

∃Si∃Sj∃opr : copy stmt(Si) ∧ SiδSj ∧ opr ∈ source operands(Sj ) ∧ Si .dst = Sj .opr

/* copy stmt(Si) ≡ Si .opcode = COPY ∧ type(Si .dst) = VAR

∧ type(Si .src1) = VAR. ∗/

: (∀p : p ∈ Paths[Sbegin , Sj ]

: (∃Sk : Sk ∈ p ∧ SkδSj ∧ Sk.dst = Sj .opr

: copy stmt(Sk) ∧ Sk.src1 = Si .src1

∧ (∃/Sl : Sl ∈ p : Sk δ̄Sl)))

/∗ There are no redefinitions of the source operand of Sk

between Sk and Sj on path p. ∗/

{replace operand(Sj .opr , Si .src1); }

As in constant propagation, the preceding specification is less conservative compared with other

specifications available in the literature [31]. This specification includes the case where more than

one definition reaches the use, which is not considered by other specifications.

2.2.2.6 Common Subexpression Elimination

An occurrence of an expression in a program is a common subexpression if another occurrence of the

expression exists whose evaluation always precedes this one in execution order and if the operands of

the expression remain unchanged between these two executions. Common subexpression elimination

(CSE) is a transformation that removes the recomputations of common subexpressions and replaces

them with uses of saved values.

2.2.2.6.1 Formal Specification.

∃Si∃Sj : Si =/ Sj ∧ valid cse expr(Si .expr) ∧ valid cse expr(Sj .expr)

/∗ valid cse expr() checks whether the expression ∗/

is a possible candidate for CSE.

: Si .expr = Sj .expr ∧ same control dep(Si, Sj )

/∗ same control dep(Si ,Sj ) checks whether the set of statements to which Si

and Sj are control dependent are the same and also that both Si and Sj

occur on a single execution path. ∗/

∧ (∃/p : p ∈ Paths[Si, Sj ] : (∃Sl : Sl ∈ p : Si δ̄Sl))

/∗ There are no redefinitions of the source operands of Si between Si and Sj . ∗/

{
replace operand(Si .dst,new operand(h));

/∗ Replace the destination operand of Si by the new variable h. ∗/

insert stmt(new stmt(COPY , Si .dst,new operand(h)), Si .next);

/∗ Insert a new statement Si .dst := h after statement Si .
∗/

replace stmt(Sj ,new stmt(COPY , Sj .dst,new operand(h)));

/∗ Replace Sj by Sj .dst := h. ∗/

}

where:

same control dep(Si, Sj ) ≡ (∀Sk : Skδ
cSi : Skδ

cSj ) ∧ (∀Sk : Skδ
cSj : Skδ

cSi)

∧ same side of branch(Si, Sj )

/∗ same side of branch(Si, Sj ) checks whether Si and Sj

are on the same side of the branch instruction to which

Si and Sj are control dependent. ∗/

Like other specifications in the literature, the preceding specification also is conservative

(i.e., it does not capture all possible common subexpressions). The reason for the conservativeness
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is due to the difficulty in capturing the concept of available expressions in the dependence relations

framework.

The specification can be easily modified to capture more than two common subexpressions existing

on a single execution path simultaneously [19].

2.2.2.7 Invariant Code Motion

A computation in a loop is invariant if its value does not change within the loop. Loop invariant code

motion recognizes invariant computations in loops and moves them to the loop preheader. For an

invariant computation Si : x := y + z, in a loop L, the following three conditions ensure that code

motion does not change the semantics of the program:

1. The basic block containing Si dominates all exit nodes of the loop, where an exit of a loop is

a node with successor not in the loop.

2. No other statement is in the loop that assigns to x.

3. No use of x in the loop is reached by any definition of x from outside the loop.

2.2.2.7.1 Formal Specification.

∃Si∃L : Si ∈ L.body

: (∃/Sj : Sj ∈ L.body

: (Si δ̄Sj ∨ Sj δSi) ∨

/∗ There are no redefinitions of the operands of Si in L. ∗/

(Sj =/ Si ∧ (Siδ
oSj ∨ Sj δ

oSi)) ∨

/∗ There are no redefinitions of the destination variable of Si in L. ∗/

(Sj δ̄Si ∧ (∃Sk : Sk ∈/ L : SkδSj ∧ Skδ
oSi)) ∨

/∗ No definition of the destination variable of Si , from outside the loop,

reaches any use of it in the loop. ∗/

(Sj δ
cSi))

/∗ Si is not control dependent on any statement in the loop body. ∗/

{move stmt(Si,L.pre); }

/∗ Move statement Si to loop preheader. ∗/

The specification given here is less conservative compared with other specifications in the literature

[28, 31]; see the difference in the specification of the condition stating that no definition of the

destination variable of Si from outside the loop reaches any use of it in the loop.

2.2.2.8 Induction Variable Elimination

Induction variable elimination tries to get rid of all induction variables, except one, when two or

more induction variables of a family are in a loop. Induction variable elimination may be enabled

by strength reduction on induction variables; strength reduction replaces expensive operations, such

as multiplication and division, by less expensive addition and subtraction operations. After strength

reduction on induction variables the only use of some induction variables is in branch tests. We can

replace a test of such an induction variable by that of another, making the original induction variable

useless.

A variable x, in a loop L, is called an induction variable if every time the variable x changes

its value, it is incremented or decremented by some constant. Basic induction variables (BIVs) are

those variables x whose only assignments within the loop are of the form x := x + c, where c is

a constant. Other induction variables (OIVs) are variables y defined only once within the loop and

whose value is a linear function of some BIV or of some OIV.

Associated with each other induction variable y is a triple 〈x, c, d〉, where c and d are constants,

and x is a basic induction variable such that the value of y is given by c ∗x +d . Each basic induction

variable x has a triple 〈x, 1, 0〉 associated with it.
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The process of induction variable elimination may be divided into three subtasks:

1. Detection of induction variables

2. Strength reduction on induction variables

3. Elimination of induction variables

After detecting the induction variables, strength reduction is applied on these induction variables

followed by induction variable elimination transformation.

We now give the formal specifications for induction variables, induction variable strength reduction

transformation and induction variable elimination transformation:

2.2.2.8.1 Formal Specification for Induction Variables.

BIV (x, L) ≡ /∗ x is a basic induction variable in loop L. ∗/

∃Si : Si ∈ L ∧ same symbol(Si .dst .symbol , x) ∧ same symbol(Si .src1.symbol , x)

∧ type(Si .src2) = CONST ∧ Si .opcode ∈ {+, −}

: (∀Sp : Sp ∈ L ∧ Sp =/ Si ∧ (SpδoSi ∨ Siδ
oSp)

: same symbol(Sp.src1.symbol , x)

∧ type(Sp.src2) = CONST ∧ Sp.opcode ∈ {+, −})

OIV (z, x, L) ≡ /∗ z is an other induction variable with x as the BIV in loop L. ∗/

/∗ Case(a): z is defined in terms of basic induction variable x. ∗/

∃Sk : Sk ∈ L ∧ same symbol(Sk.dst .symbol , z) ∧ �same symbol(z, x)

∧ same symbol(Sk.src1.symbol , x)

∧ type(Sk.src2) = CONST ∧ Sk.opcode ∈ {+, −, ∗, /}

: (∃/Sp : Sp ∈ L ∧ Sp =/ Sk : SpδoSk ∨ Skδ
oSp)

/∗ There are no redefinitions of z in L. ∗/

/∗ Case(b): z is defined in terms of other induction variable y. ∗/

∃Sk∃Sj : Sk ∈ L ∧ same symbol(Sk.dst .symbol , z) ∧ �same symbol(z, x)

∧ same symbol(Sj .dst .symbol , y) ∧ �same symbol(y, z) ∧ OIV (y, x, L)

∧ same symbol(Sk.src1.symbol , y) ∧ type(Sk.src2) = CONST

∧ Sk.opcode ∈ {+, −, ∗, /}

: (∃/Sp : Sp ∈ L ∧ Sp =/ Sk : SpδoSk ∨ Skδ
oSp)

/∗ There are no redefinitions of z in L. ∗/

∧ (∃/Sq : Sq ∈/ L : SqδSk)

/∗ No definition of y from outside L reaches Sk. ∗/

∧ (∃/p : p ∈ Paths[Sj , Sk] : (∃Sr : Sr ∈ p : same symbol(Sr .dst .symbol , x)))

/∗ There are no assignments to x between Sj and Sk. ∗/

2.2.2.8.2 Formal Specification for Induction Variable Strength Reduction.

∃x∃L :: BIV (x, L)

{
∀z :: OIV (z, x, L)

/∗ Note that OIV (z, x, L) ⇒ ∃Sk : Sk ∈ L : same symbol(Sk.dst .symbol , z).

Let the triple associated with z be 〈x, c, d〉. ∗/

{
replace stmt(Sk,new stmt(COPY ,new operand(z), new operand(temp1)));

/∗ Replace assignment to z by z := temp1, where temp1 is a new unique variable. ∗/

/∗ Immediately after each assignment x := x + n in L, where n is a constant, append

temp1 := temp1 + c ∗ n. The case x := x − n has to be treated analogously. ∗/
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∀Sl : Sl ∈ L

: same symbol(Sl .dst .symbol , x) ∧ same symbol(Sl .src1.symbol , x)

∧ type(Sl .src2) = CONST ∧ Sl .opcode = ADD

{ insert stmt(new stmt(ADD,new operand(temp1),new operand(temp1),

new operand(eval(MUL, c, Sl .src2))), Sl .next); }
/∗ At this point, temp1 is placed in the family of x with triple 〈x, c, d〉,

and z is removed from the family of x. ∗/

/∗ Initialize temp1 to c ∗ x + d in the loop preheader, L.pre. ∗/

insert stmt(new stmt(MUL,new operand(temp1),

new operand(c),new operand(x)), L.pre);

if (d =/ 0)

insert stmt(new stmt(ADD,new operand(temp1),

new operand(temp1),new operand(d)), L.pre);

}
}

Note that insertion at L.pre means insertion at the end of the preheader block of loop L.

2.2.2.8.3 Formal Specification for Induction Variable Elimination.

∃x∃L : BIV (x, L)

: (∀Sl : Sl ∈ L ∧ (∃Sl .src :: same symbol(Sl .src.symbol , x))

: conditional branch stmt(Sl) ∨ OIV (Sl .dst .symbol , x, L))

∧ (∃Sm : Sm ∈ L ∧ (∃Sm.src :: same symbol(Sm.src.symbol , x))

: conditional branch stmt(Sm))

∧ (∃z :: OIV (z, x, L))

/∗ Let the triple associated with z be 〈x, c, d〉.

The specification given here assumes c to be positive. ∗/

{
/∗ Replace each statement of the form, “if x relop w goto L”,

where, w is not an induction variable by

“ temp := c ∗ x; temp := temp + d; if (z relop temp) goto L;”,

where, temp is a new unique variable.

The case, “if (w relop x) goto L” has to be treated analogously.

The special case, “if (x1 relop x2) goto L”,

where, both x1 and x2 are basic induction variables is not considered here. ∗/

∀St : St ∈ L ∧ conditional branch stmt(St )

: same symbol(St .src1.symbol , x) ∧ �induction variable(St .src2, L)

/∗ where, induction variable ≡ BIV ∨ OIV. ∗/

{
insert stmt(new stmt(MUL,new operand(temp),

new operand(c),new operand(St .src2)), St .prev);

if (d =/ 0)

insert stmt(new stmt(ADD,new operand(temp),

new operand(temp),new operand(d)),St .prev);

replace stmt(St ,new stmt( St .opcode,new operand(St .dst),

new operand(z ),new operand(temp)));

}
}
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2.2.2.9 Loop Interchange

Loop interchange exchange the position of two loops in a tightly nested loop. Interchange is one of

the most powerful transformations and can improve performance in many ways.

For example, loop interchange may be performed to enable vectorization by interchanging an

inner, dependent loop with an outer, independent loop.

The requirements for loop interchanging can be stated as:

1. The loops L1 and L2 must be tightly nested (L1 surrounds L2, but contains no other executable

statements).

2. The loop limits of L2 are invariant in L1.

3. There are no statements Si and Sj (not necessarily distinct) in L2 with a dependence relation

Siδ
∗
(〈,〉)Sj .

Also, if input or output (I/O) statements exist, then interchanging the loops can change the order in

which the I/O occurs. Even though this may be allowable in some cases, in general it is not allowable

for the compiler to change the order of I/O operations of a program.

2.2.2.9.1 Formal Specification.

∃L1∃L2 : tightly nested loops(L1 ,L2 )

/∗ L1 surrounds L2, but contains no other executable statements. ∗/

∧(∃/Si : Si ∈ L2.body : io stmt(Si))

/∗ There are no I/O statements in the loop. ∗/

: �(∃Sj∃Sk : Sj ∈ L1.head ∧ Sk ∈ L2.head : Sj δSk ∨ Sj δ̄Sk ∨ Sj δ
oSk)

/∗ Loop limits of L2 are invariant in L1. ∗/

∧�(∃Sm∃Sn : Sm ∈ L2.body ∧ Sn ∈ L2.body

: Smδ(〈,〉)Sn ∨ Smδ̄(〈,〉)Sn ∨ Smδo
(〈,〉)Sn)

/∗ There are no dependences with direction vector (〈, 〉) in the loop. ∗/

{move(L2.head , L1.head .prev); }

/∗ Interchange heads of loops L1 and L2. ∗/

2.2.2.10 Loop Fusion

Loop fusion transformation fuses two adjacent loops into one. Reducing the loop overhead and

increasing instruction parallelism are some of the performance improvements that can be achieved

by loop fusion.

The requirements for fusing two adjacent loops L1 and L2 are:

1. The loop control variables should be the same and the loop limits must be identical.

2. There should not be any statement Sv in L1 and Sw in L2 with a dependence relation Svδ
∗
(〉)Sw.

3. Both loops do not have a conditional branch that exits the loop.

4. Loops L1 and L2 both should not have I/O statements.

Note that in condition 2 we have used data dependence direction vector augmented to add a

direction for the adjacent loop [26].

2.2.2.10.1 Formal Specification.

∃L1∃L2 : adjacent loops(L1, L2)

/∗ There are no statements between the end of L1 and the header of L2. ∗/

∧ identical loop headers(L1, L2)

/∗ Loop control variables are the same and the loop bounds are identical. ∗/

∧ �(∃Si : Si ∈ L1 : conditional branch(Si) ∧ branch target(Si) /∈ L1)

/∗ There is no conditional branch statement in L1 which exits the loop. ∗/
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∧ � (∃Sj : Sj ∈ L2 : conditional branch(Sj ) ∧ branch target(Sj ) /∈ L2)

/∗ There is no conditional branch statement in L2 which exits the loop. ∗/

∧ � (∃Sm∃Sn : Sm ∈ L1 ∧ Sn ∈ L2 : io stmt(Sm) ∧ io stmt(Sn))

/∗ Loops L1 and L2 both do not have I/O statements. ∗/

: �(∃Sv∃Sw : Sv ∈ L1 ∧ Sw ∈ L2 : Svδ(〉)Sw ∨ Sv δ̄(〉)Sw ∨ Svδ
o
(〉)Sw)

/∗ There are no statements Sv and Sw such that Sv ∈ L1 and Sw ∈ L2 which will

cause a dependence Svδ
∗
(〈)Sw in the fused loop. ∗/

{delete(L1.end); delete(L2.head); }

/∗ Fuse loops L1 and L2. ∗/

2.2.2.11 Loop Reversal

Reversal changes the direction in which the loop traverses its iteration range. It is often used in

conjunction with other iteration space reordering transformations because it changes the dependence

vectors; for example, loop reversal may enable loop interchange.

If loop p in a nest of d loops is reversed, then for each dependence vector V , the entry vp is

negated. The reversal is legal if each resulting vector V ′ is lexicographically positive, i.e., when

vp = 0 or ∃q〈p : vq〉0.

2.2.2.11.1 Formal Specification.

∃NL∃Li : Li ∈ NL

/∗ Li is a loop in the loop nest NL. ∗/

: (∀V : V ∈ reversed direction vectors(NL,Li )

/∗ V is a direction vector in NL with Li reversed. ∗/

: lexicographically positive(V ))

/∗ The first nonzero element of the direction vector is positive. ∗/

{
swap(Li .initial ,Li .final);

/∗ Interchange the initial and final iteration values of loop Li .
∗/

replace(Li .step, eval(−Li .step));

/∗ Reverse the direction of iteration of loop Li .
∗/

}

2.2.2.12 Loop Skewing

Loop skewing is an enabling transformation that is primarily useful in combination with loop inter-

change. Skewing handles wavefront computations where updates to the array propagates like a wave

across the iteration space.

Skewing is performed by adding the outer loop index multiplied by a skew factor, f , to the bounds

of the inner iteration variable, and then subtracting the same quantity from every use of the inner

iteration variable inside the loop. Because it alters the loop bounds but then alters the uses of the

corresponding index variables to compensate, skewing does not change the meaning of the program

and is always legal.

2.2.2.12.1 Formal Specification.

∃L1∃L2 : tightly nested loops(L1, L2) ∧ forward loop(L1) ∧ forward loop(L2)

/∗ L1 surround L2, but contains no other executable statements.

Both L1 and L2 traverses the iteration range in the forward direction;

i.e., Both loops have positive step values. ∗/

{
replace(L2.initial , eval(L2.initial + f ∗ L1.lcv));

/∗ Add loop index of L1 multiplied by skew factor f to the lower bound
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of the iteration variable of L2. ∗/

replace(L2.final , eval(L2.final + f ∗ L1.lcv));

/∗ Add loop index of L1 multiplied by skew factor f to the upper bound

of the iteration variable of L2. ∗/

∀x : x ∈ L2.body : x = L2.lcv

{ replace(x, eval(x − f ∗ L1.lcv)); }
}

In this work most of the scalar transformations and also some of the parallel transformations

have been specified in the dependence relations framework. Each specification has two parts — a

precondition part and an action part. Whereas the precondition part specifies the condition that has

to be satisfied for the application of the transformation, the action part specifies the steps to perform

the transformation using some primitive actions. The work assumes an intermediate representation

that supports both low-level and high-level transformations. We did not succeed in specifying some

of the transformations in the framework used, for instance, partial redundancy elimination. Further

study is required on the limitations of the current framework to come up with better alternatives for

the specification of code transformations.

2.3 Specification Language

We need a specification language to express formal specifications of code transformations; these

specifications, expressed in the specification language, are used to generate code for the correspond-

ing transformations. Ideally, one would like to have a language in which all code transformations

can be specified. Whitfield and Soffa [31] have designed a specification language, called Gospel, in

which they have specified many of the traditional and parallelizing transformations, using dependence

relations.

The specification language we describe here is powerful enough to specify all traditional scalar

transformations in the dependence relations framework. Each specification has a precondition part

and an action part. The precondition part, which checks the conditions to be satisfied for the applica-

tion of the transformation, is expressed in a notation similar to predicate logic. The action part, which

specifies the transformation to be performed, is expressed using a set of primitive actions provided

by the language. These primitive actions assume an intermediate representation of the program to

be transformed, in three-address code form.

The specifications for all traditional scalar transformations have been expressed in this language.

The transformations expressed in the specification language are constant propagation (CTP), con-

stant folding (CFD), useless code elimination (UCE), unreachable code elimination (URCE), copy

propagation (CPP), common subexpression elimination (CSE), invariant code motion (ICM) and

induction variable elimination (IVE). The language is more powerful, compared to Gospel, for the

class of transformations for which it is intended (i.e., scalar transformations). The expressive power

of the language is demonstrated by the specification of a complex transformation, such as induction

variable elimination. The language permits modularity in expressing complex specifications. The

language design is restricted to the class of scalar transformations, but permits extensions to the

language, if needed.

2.3.1 Description of the Language

The language is designed with the intention of specifying all scalar transformations, having depen-

dence relations as the basis of the specification. The program elements used in the specification are

operands, statements, loops and basic blocks. A program, which has to be transformed, is represented
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as a CFG in which each node is a basic block. Each basic black contains a sequence of statements

without a branch, except for the last statement. A loop in the program is represented as a sequence of

basic blocks. The specification of a transformation assumes an intermediate representation in three-

address code form on which the transformations are applied. In general, a statement in three-address

code form has a destination operand, two source operands and an opcode: dst := scr1 op src2.

In the following part of this section we describe the major syntactic categories of the language:

specification, subspecification, conditional expr, action and main specification. The complete

syntax of the language is given in Appendix 2.A.

2.3.1.1 Complete Specification

The complete specification for a transformation consists of a sequence of optional subspecifications

followed by the main specification, the production for which is given as follows:

specification ::

sub specification listopt main specification

The subspecification facility can be of help when writing complex specifications; see the

specification for constant propagation in Section 2.3.3.

2.3.1.2 Subspecification

The subspecification can be either a condition that has to hold for the application of the transformation

or an action for transforming the code:

sub specification ::

condition sub specification

action sub specification

Each subspecification has a header and a body; the header contains a name for identification and

a list of parameters used in the subspecification. Examples of parameters include program elements

such as operands and statements. The body of condition subspecification is a predicate and the body

of action subspecification is a list of actions to transform the code:

condition sub specification ::

sub specification header condition predicate

action sub specification ::

sub specification header {action list}
sub specification header ::

identifier(parameter list) :

The syntactic category condition predicate is a subpart of the precondition in the main specification

and is expressed in a notation similar to predicate logic: (Q:R:P) where Q is the quantifier, R

the range of the quantified element and P the predicate. The elements that can be quantified are

the program elements — operands, statements, loops and basic blocks. The range part identifies the

program elements satisfying the conditions mentioned and the predicate part checks whether the

selected program elements satisfy the conditions for applying the transformation:

condition predicate ::

(quantifier : conditional expr : conditional expr)

quantifier ::

quantifier type program element
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quantifier type :: one of

FORALL EXISTS NOT EXISTS

program element :: one of

OPERAND STMT LOOP NODE

When alternative categories are listed on one line, it is marked by the phrase “one of.” Words in

upper case letters represent terminals in the grammar. FORALL and EXISTS represent the universal

and existential quantifiers and NOT EXISTS represents the negation of existential quantifier. The

lexemes corresponding to terminals FORALL, EXISTS and NOT EXISTS are the same character

sequence in those words, in lowercase letters.

2.3.1.3 Conditional Expressions

Conditional expressions are built from basic conditions using Boolean operators not, and and or:

conditional expr ::

condition

NOT conditional expr

conditional expr AND conditional expr

conditional expr OR conditional expr

Basic conditions include checks for dependence relations between pairs of statements. The

following productions give some examples:

conditions ::

FLOW (STMT ,STMT )

CTRL (NODE ,NODE )

The condition FLOW(STMT ,STMT ) checks for a flow dependence between the two statements

and CTRL(NODE ,NODE ) checks for a control dependence between the two nodes (basic blocks).

The terminals representing the dependences, such as FLOW, have their lexemes as the same character

sequence in those words, in lowercase letters. For example, a specification may contain a condition,

such as flow (stmt i, stmt j).

Apart from the conditions involving dependence relations, the language also provides some general

conditions useful for the precondition part. For example, consider the following conditions:

condition ::

VAR OPERAND (OPERAND)

COND BRANCH (STMT )

VAR OPERAND checks whether the given operand is a variable, and COND BRANCH checks

whether the given statement is a conditional branch statement.

Provision to add new conditions is made through the production:

condition ::

identifier (parameter list)

By using this provision, one can write new conditions within the constraints of parameters

permitted by the language, and can use these conditions in a specification.
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2.3.1.4 Primitive Actions

The language provides a set of primitive actions in which all code transformations are specified. For

example, consider the following primitive actions provided by the language:

action ::

DELETE STMT (STMT );
CREATE NEW STMT (STMT CLASS , parameter list,NEW STMT );
INSERT STMT (NEW STMT ,POSITION );
CREATE NEW OPERAND (parameter ,NEW OPERAND);
REPLACE OPERAND (OPERAND, parameter);

DELETE STMT deletes the specified statement from the program. CREATE NEW STMT returns

a new statement knowing the statement class and using the parameters provided in the parameter

list. STMT CLASS represents a different class of statements, like branch or jump statements. The

parameters in the parameter list are the opcode and operands of the statement. INSERT STMT inserts

a newly created statement at the indicated position in the program. The position in a program is

indicated with reference to a statement — either before or after a statement. For example, stmt i .next

and stmt i .prev indicate the positions after and before statement i, respectively. Another position

used in the language is the loop preheader; for example, loop i .pre represents the preheader of

loop i. CREATE NEW OPERAND creates a new operand from the parameter given; the parameter

can be a new symbol, an existing operand symbol, an existing operand, an existing statement or a

new statement. REPLACE OPERAND replaces an operand of a statement by the parameter supplied;

the parameter can be either another existing operand or a newly created operand.

Facility is also provided to add new actions through the production:

action ::

identifier (parameter list);

The provision allows one to write new actions, with the parameters permitted by the language,

and to use them in a specification.

2.3.1.5 Main Specification

The main specification of a transformation constitutes a name to identify the transformation followed

by the precondition and action parts:

main specification ::

transformation name : action predicate

action predicate ::

[action quantifier : conditional expr : conditional expr{action list}]
action quantifier ::

FOREACH program element

The syntactic category action predicate identifies all program elements specified by FOREACH

program element, satisfying the conditions mentioned in the range part — specified by the first

conditional expr, checks the conditions mentioned in the predicate part — specified by the second

conditional expr and makes the transformations mentioned in the action part if the predicate is true.
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Experiments with new specifications can be done by the provision made in the language with the

production:

transformation name ::

NEW

This provision allows the user to write new specifications with the transformation name,

new transformation.

2.3.2 Lexical Conventions

The specification language has tokens like identifiers, keywords, constants, operators and punctuation

symbols [19]. White spaces like blanks, tabs and new lines are ignored except for the case when they

separate tokens. Comments can appear inside the specification between characters /∗ and ∗/.

An identifier is a sequence of letters and digits with a letter at the beginning; the underscore counts

as a letter. Many identifiers are reserved for use as keywords and may not be used otherwise. The

keywords include names used for denoting dependences — such as flow, names used for quantifiers —

such as forall, names used for conditions — such as var operand, names used for actions — such

as delete stmt, and names used for transformations — such as constant propagation. Only integer

constants are permitted and each integer constant is a sequence of digits. The operators used are

relational operators and Boolean operators. The punctuation symbols include comma, colon and

semicolon.

The token OPERAND can represent any operand of a statement. STMT CLASS represents the

class of statements; the same classes as in Stanford University Intermediate Format (SUIF) have

been used: ldc — the load constant statements, rrr — three address statements and bj — branch and

jump statements. The token NULL VALUE — with lexeme null — is used in place of a parameter

when it is not required.

2.3.3 Example: Specification for Constant Propagation in the Language

All traditional scalar transformations have been expressed in the specification language [19]. Here,

we give an example of a specification, for constant propagation, expressed in the language.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subspecification to check whether all definitions of the variable reaching the point of use have same

constant values. If more than one definition reaches the point of use, then all definitions must have

the same constant value for applying constant propagation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

same const value from all candidate stmts(stmt i, stmt j, stmt j.src) :

( forall stmt k : flow(stmt k, stmt j)

and not (same stmt(stmt k, stmt i))

and same operand symbol(stmt k.dst, stmt j.src)

: same expr(stmt k.expr, stmt i.expr))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Main specification for constant propagation. Condition “constant defn(stmt i)” checks whether

stmt i is a constant definitions statement (i.e., statement of the form x := 5).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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constant propagation :

[ foreach stmt i : constant defn(stmt i) :

{
[ foreach stmt j : flow(stmt i, stmt j) :

{
[ foreach stmt j.src : same operand symbol(stmt i.dst, stmt j.src)

: same const value from all candidate stmts(stmt i, stmt j, stmt j.src)

{
replace operand(stmt j.src, stmt i.src1);

}
]

}
]

}
]

2.4 Automatic Generation of Code Optimizers

We describe the transformation system to generate code for scalar optimizers from their specifications.

The system provides a complete environment for code transformations where one can specify a

transformation in the specification language, generate code for it and experiment the effect of the

transformation on real-world programs. Code for all traditional scalar transformations have been

generated, and those transformers were applied on LINPACK benchmark programs. The use of an

intermediate representation such as SUIF makes the system portable and extendable.

2.4.1 Code Transformation System

The system provides a complete environment for code transformations where one can specify a

transformation in the specification language, generate code for it and experiment with the transformer

generated on real-world programs. The system is built using the infrastructure provided by SUIF

[25]. Figure 2.1 gives the organization of the system.

The transformer generator takes specifications — written in the specification language — as input,

analyzes it using Lex and Yacc and generates code — the transformer — for the specified transfor-

mations. The generated code uses the transformer library, which contains a collection of routines for

checking the preconditions and performing the actions for different transformations. The program

to be transformed, in C or FORTRAN, is first converted to the intermediate form by the component

HLL-to-SUIF, supported by SUIF. The dependence analyzer analyzes the code in the intermediate

form and annotates it with control and data dependences. The code transformer interface then applies

the transformation, requested by the user, on the intermediate code using the transformer generated

from the specification. The transformer uses the annotations on the intermediate code for dependence

checks. Finally, the transformed intermediate code is converted back to high level by the component

SUIF-to-HLL, again a function supported by SUIF. The transformer generator, transformer library,

dependence analyzer and code transformer interface (blocks drawn using bold lines in the figure)

are the components developed in this work, on top of SUIF, to build the transformation system.

2.4.1.1 Stanford University Intermediate Format

SUIF consists of a small kernel and a tool kit of compiler passes built on top of the kernel [25].

The kernel defines the intermediate representation, provides functions to access and manipulate the

intermediate representation, and structures the interface between compiler passes [23]. The tool
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FIGURE 2.1 The code transformation system.

kit includes C and FORTRAN front ends, an optimizing MIPS back end and a set of compiler

development tools.

The intermediate representation supports both high-level and low-level information. The high-

level structure is represented by a language-independent form of abstract syntax trees and the low-

level structure by sequential lists of instructions. The low-level structure is better suited for scalar

transformations and the high-level structure is required for parallel transformations.

Low-level instruction in SUIF performs a single operation specified by its opcode. With a few

exceptions, the opcodes are simple and straightforward, similar to the instruction set of a typical

reduced instruction set computing (RISC) processor. The instructions include arithmetic, data transfer

and control flow operations; and are divided into several classes, including three-operand instructions,

branch and jump instructions, load constant instructions, call instructions and array instructions.

Most SUIF instructions use a quadruple format with a destination operand and two source operands.

However, some instructions require more specialized formats. For example, load constant instructions

have an immediate value field in place of the source operands.

The symbol tables in a SUIF program hold detailed symbol and type information. A symbol table

is attached to each element of the hierarchical structure of SUIF — such as procedures and blocks —

that defines a new scope. Symbols record information about variables, labels and procedures. The

symbol tables are organized in a tree structure that form a hierarchy parallel to the SUIF hierarchy.

SUIF tool kit consists of a set of compiler passes implemented as separate programs. Each pass

typically performs a single analysis or transformation and then writes the results out to a file. Compiler

passes interact with one another either by updating the SUIF representation directly or by adding

annotations to various elements of the program.

2.4.1.2 Transformer Generator

The transformer generator takes specifications for code transformations — written in the specification

language — as input, analyzes it using Lex and Yacc and generates C language code for performing

those transformations. The generated code — the transformer — relies on the transformer library,

which contains routines for all conditions and actions supported by the specification language, for

checking the precondition and performing the actions corresponding to the transformation. The
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transformer is generated under the assumption that it can be applied on low-level SUIF intermediate

representation.

Lexical and syntax analysis of the specification are done by Lex and Yacc using the lexical and

syntactical specifications of the language. The method of syntax-directed translation has been used

for generating the transformer; semantic actions are associated with the productions of the grammar,

which emits the code for the transformer. Generated code for each transformer is put into separate

files, and the code transformer interface uses them appropriately.

The transformer generator first generates code for identifying the program elements of interest

such as loops and instructions, followed by code to check the conditions to be satisfied for the

application of the transformation, using the precondition part of the specifications. The action part

of the specification is used next to generate code that can perform the corresponding transformation.

In the productions for the main specification:

main specification ::

transformation name : action predicate

action predicate ::

[action quantifier : conditional expr1 : conditional expr2 {action list}]

the term action quantifier : conditional expr1 : conditional expr2 forms the precondition part and

the term action list forms the action part.

The semantic actions associated with the production for the syntactic component action quantifier

generate a loop construct for iteration over the instances of the program element in the program to

be transformed:

action quantifier ::

FOREACH program element

{
Semantic actions to generate a loop construct for

iteration over the instances of the program element.

}

As an example, if the program element is a statement, then the semantic actions can emit code for a

loop construct to iterate over the list of instructions of the program.

The syntactic component conditional expr1, in the precondition part, is used to generate code

for checking the conditions to select the instances of the program element of interest. Semantic

actions associated with the productions for conditional expr generates code for complex conditional

expressions. For example, semantic actions associated with the production:

conditional expr ::

conditional expra AND conditional exprb

generate code for conditional expr using the code for conditional expra and conditional exprb with

the Boolean operator and in between. The entire code generated for conditional expr1, in the

precondition part, is enclosed in parentheses, preceded by an “if,” to get the code form:

if(‘code for conditional expr1’)

Semantic actions associated with the syntactic component conditional expr2, in the precondition part,

generate code to check the conditions that have to be satisfied for the application of the transformation;

the generation of code is done in the same way as in the case of conditional expr1.

The action part of the specification constitutes a sequence of actions supported by the specifica-

tion language. Semantic actions associated with the production for each action can emit code for
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performing the corresponding function. For example, the action DELETE STMT can emit code to

delete the specified statement from the program:

action ::

DELETE STMT (STMT );
{

Semantic actions to generate code for deleting the specified statement.

}

The structure of the code generated for the syntactic component action predicate (i.e.,

action quantifier : conditional expr1 : conditional expr2 {action list}) is of the form:

while(! end of program element instances)

{
if(‘code for conditional expr1’)

if(‘code for conditional expr2’)

{‘code for action list’}
}

For example, consider the specification for useless code elimination:

useless code elimination :

[

foreach stmt i :: useless stmt (stmt i)

{delete stmt(stmt i); }
]

The code generated by the transformer generator for the preceding specification is given next, with

some finer details removed:

void useless code elimination(. . . )

{ . . .

while(! end of instruction list)

{ . . .

stmt i = next instruction;
if(useless stmt(stmt i))

{delete stmt(stmt i); }
}

}

Note that the condition useless stmt and the action delete stmt are routines provided by the trans-

former library. The construct while(!end of instruction list) is the loop header of the loop generated

for iteration over the list of instructions of the program.

By using the transformer generator, codes for all traditional scalar transformations have been

generated. The major effort for implementing the code generator was for creation of the transformer

library, which contains routines for all conditions and actions supported by the specification language.

The current implementation did not take efficiency as a major concern and, hence, possibilities exist

for improvement in this regard.
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2.4.1.3 Dependence Analyzer

The dependence analyzer takes the SUIF intermediate representation of the program as input, does

control and data dependence analyses on it and gives annotated intermediate code — intermediate

code with control and data dependence information attached — as output. Computations of control

dependence information involve construction of an augmented control flow graph (ACFG), reversal

of ACFG to get the reverse augmented control flow graph (RACFG), computation of dominators of

the RACFG and computation of dominance frontiers [6, 27] of each node in the RACFG [6]. Data

dependences — flow, anti, output and input — are computed by the conventional iterative data flow

analysis method [1]. Local information for each basic block is computed first, and then it is propagated

over the CFG to get the global information at each basic block — through an iterative procedure.

Finally, this global information is used to compute the data dependences for each instruction in a

basic block.

2.4.1.4 Computation of Control Dependence

Control dependences of a node are essentially the dominance frontiers of that node in the reverse

CFG [6]. In a reverse CFG, node n is control dependent on node m if and only if m is an element of

the dominance frontier of n, that is:

mδcn ≡ m ∈ df (n)

where, df (n) is the dominance frontier of n, in the reverse CFG. The formal definition of control

dependence is given in Section 2.2.1.1.

The algorithm to compute control dependence in a program is given as follows [6]:

begin

construct the control flow graph, CFG;

construct the augmented control flow graph, ACFG;

construct the reverse augmented control flow graph, RACFG;

compute dominators of each node in RACFG;

compute the dominance frontier of each node in RACFG;

compute control dependences, from the dominance frontier information;

end

CFG is a directed graph whose nodes represent the basic blocks of a program, and edges the flow

of control. A basic block is a sequence of consecutive statements in which flow of control enters at

the beginning and leaves at the end without a branch, except at the end. First, the statements in the

intermediate representation of the given program are partioned into basic blocks [1]. The CFG is

built using these basic blocks as nodes, and the flow of control as edges. Figure 2.2 shows a CFG as

an example.

The ACFG is constructed by adding two additional nodes Entry and Exit to the CFG, such that

there is an edge from Entry to any basic block at which the program can be entered, and there is an

edge to Exit from any basic block that is an exit point for the program. An edge from Entry to Exit

is added as part of the requirement for the computation of control dependences [6]; see Figure 2.3.

From ACFG the RACFG can be constructed with the same set of vertices, but with all arcs

reversed. Note that the Entry and Exit nodes of ACFG become the Exit and Entry nodes of the

RACFG respectively; see Figure 2.4.

A node m, in an augmented CFG, dominates a node n if every path from Entry to n includes m.

The dominators of m include m and any node that also dominates all its predecessors [27], that is:

dom(m) = {m}
⋃ ⋂

p∈pred(m)

dom(p)
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FIGURE 2.4 Reverse augmented control flow graph.

Based on the preceding relation, dominators for all nodes of RACFG are computed by the following

algorithm:

begin

dom(Entry) = {Entry} ;

for x ∈ V − {Entry} do /∗ V is the set of vertices of RACFG ∗/

dom(x) = V;

changed = TRUE;

while(changed) do

{
changed = FALSE;

for x ∈ V − {Entry} do

old dom = dom(x);

dom(x) = {x}
⋃ ⋂

p∈pred(x) dom(p);

if(dom(x) =/ old dom)

changed = TRUE;

}
end

The dominators computed for the example in Figure 2.2 are given in Table 2.1.

The dominance frontier of a node m is the set of nodes r such that m dominates some predecessor

of r , but not all, that is:

df (m) = {r | ∃p, q ∈ pred(r)[m dom p ∧ m dom q]}
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TABLE 2.1 Computation of Control Dependence

Nodes

Node in RACFG Dominators of n Dominance frontiers of n Control Dependent on n

n dom(n) df (n) cd(n)

0 {0, 8} φ —

1 {1, 7, 8} {0} {2, 3, 6}

2 {2, 6, 7, 8} {1} {4, 5}

3 {3, 7, 8} {1} {5, 6}

4 {4, 6, 7, 8} {2} φ

5 {5, 6, 7, 8} {2, 3} φ

6 {6, 7, 8} {1, 3} φ

7 {7, 8} {0} φ

8 {8} φ —

With the dominator information available, dominance frontiers of all nodes in RACFG are computed,

using the preceding relation; see Table 2.1.

In a reverse CFG, node n is control dependent on node m if and only if m ∈ df (n) [6, 27].

Based on this knowledge, the control dependences for all nodes in RACFG is computed using the

algorithm given next; see Table 2.1.

begin

for each node m do

cd(m) = φ; /∗ cd(m) represents nodes that are control dependent on m ∗/

for each node n do

for each m ∈ df (n) do

cd(m) = cd(m)
⋃

{n};

end

Note that, df (n) in the preceding algorithm represents the dominance frontier of node n in RACFG.

The procedure outlined earlier computes the control dependences for each basic block in a pro-

gram. The control dependence information computed is marked as annotations on instructions in the

intermediate code. In the implementation, the information is attached to instructions that are leaders

of basic blocks; the first instruction in a basic block is the leader of the basic block. When dealing

with control dependences between instructions, instead of nodes, the control dependence information

attached to the leader of a basic block is considered to be the representation for all instructions in the

basic block. The specification language supports control dependence checks between either nodes

or instructions.

2.4.1.5 Computation of Data Dependences

Data dependence analysis involves identification of all data dependences — flow, anti, output and

input, as well as the direction vectors, between statements in a program. Because the implementation

is restricted to scalar transformations, data dependences are computed without the computation of

direction vectors; direction vectors are required, in general, for performing parallel transformations.

Computation of data dependences is done by the conventional iterative data flow analysis method [1].

Data dependence computation problems have been formulated as data flow analysis problems by

setting up the corresponding data flow equations. The analysis is a conservative approximation to
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the actual dependence relations adding all possible relations that might occur during execution. The

implementation adopts this conservative approach to deal with pointers and procedure calls, without

performing a detailed analysis in their presence.

Data flow information can be collected by setting up and solving systems of equations that relate

information at various points in a program. A typical equation has the form:

out[s] = gen[s]
⋃

(in[s] − kill[s])

and can be read as, “the information at the end of a statement is either generated within the statement,

or enters at the beginning and is not killed as control flows through the statement." Such equations

are called data flow equations [1].

For some problems, instead of proceeding along the flow of control and defining out[s] in terms

of in[s], we need to proceed backward and define in[s] in terms of out[s]. In general, equations are

set up at the level of basic blocks, instead of statements. Data flow analysis gives information that

does not misinterpret what the program under analysis does, in the sense that it does not tell us that

a transformation of the code is safe to perform, when, in fact, it is not safe.

Computation of data dependences essentially boils down to the problem of identifying definitions

and uses of all variables in a program, and the relationships among them. Based on this observation,

data dependence computations have been formulated as data flow analysis problems by setting up the

corresponding data flow equations. Note that computation of flow dependence is a backward analysis

problem and computation of anti, output and input dependences are forwarded analysis problems.

2.4.1.5.1 Flow Dependence.

Flow dependence computation is essentially the identification of all reachable uses of each definition

in a program, termed as reachable uses problem, with the following data flow equations:

in[B] = gen[B]
⋃

(out[B] − kill[B])

in[B] =
⋃

s∈succ(B)

in[s]

where, in[B] is the set of uses reachable from the beginning of basic block B, out[B] the set of uses

reachable from the end of B, gen[B] the set of upward exposed uses in B and kill[B] the set of uses

reachable from the end of B, of all variables defined in B.

2.4.1.5.2 Antidependence.

The computation of antidependence is essentially the identification of uses of variables before its

redefinition on an execution path, termed as uses before redefinition problem, with the following

data flow equations:

out[B] = gen[B]
⋃

(in[B] − kill[B])

in[B] =
⋃

p∈pred(B)

out[p]

where in [B] is the set of uses reaching the beginning of B, without a definition of the variable in

between, out [B] is the set of uses reaching the end of B, without a definition of the variable in

between, gen [B] is the set of uses in B, without a definition of the variable later in the block and

kill [B] is the set of uses reaching the beginning of B, of all variables defined in B.
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2.4.1.5.3 Output Dependence.

Output dependence computation is essentially the well-known reaching definitions problem with the

following data flow equations:

out[B] = gen[B]
⋃

(in[B] − kill[B])

in[B] =
⋃

p∈pred(B)

out[p]

where in [B] is the set of definitions reaching the beginning of B, out [B] is the set of definitions

reaching the end of B, gen [B] is the set of definitions in B reaching the end of B and kill [B] is the

set of definitions reaching the beginning of B, of all variables defined in B.

2.4.1.5.4 Input Dependence.

For the computation of input dependence, a variant of its definition given in Section 2.2.1.1 has been

used. Consider the following example:

s1 : x := w + a

s2 : y := w + b

s3 : y := w + c

Here, according to the definition, we have three input dependences due to the variable w :

s1δ
iδ2, s2δ

is3 and s1δ
is3. The implementation considered only input dependences between state-

ments having uses of a variable without another reference — definition or use — of the same variable

in between (i.e., only s1δ
iδ2 and s2δ

is3 in the preceding example). It is assumed that other input

dependences, such as s1δ
is3 cited earlier, can be derived from the dependences computed, if needed.

With this notion of input dependence, the problem essentially becomes identification of last uses of

variables before its redefinition on an execution path, termed as last uses before redefinition problem,

with the following data flow equations:

out[B] = gen[B]
⋃

(in[B] − kill[B])

in[B] =
⋃

p∈pred(B)

out[p]

where in[B] is the uses reaching the beginning of B, without a reference — definition or use — of

the same variable, in between; out[B] is the set of uses reaching the end of B, without a reference

in between; gen[B] is the set of uses in B, without a reference later in the block; and kill[B] is the

set of uses reaching the beginning of B, without a reference in between, of all variables referenced

in B.

For each problem, gen and kill for each basic block is computed first, followed by computation

of global information at the entry and exit points of each basic block by solving the set of data flow

equations using an iterative process. Finally, the global data flow information is computed at points

inside basic blocks using the global information available at the entry and exit points of each basic

block. The iterative process for solving the systems of equations can give several solutions depending

on the initialization of unknowns, and the initializations are done appropriately to get safe solutions.

The implementation adopts a conservative approach in dealing with pointers and procedure calls.

Arrays cause no problems because of the way in which they are handled in low-level SUIF. Each

array reference is an instruction in low-level SUIF, which essentially gives a pointer to the location

of the array element, and this pointer is used later for either a read or a write. In the case of pointers,

it is assumed that an assignment through a pointer can define any variable, and a use through a
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pointer can cause a reference to any variable. Also, it is assumed, conservatively, that no definitions

or uses are killed by any definition or use through a pointer. For procedure calls, it is assumed that

all variables passed as parameters and all global variables are defined and used inside the called

procedure. Also, it is assumed, conservatively, that no definitions or uses reaching the call site are

killed by the procedure call.

The implementation used linked list as the data structure to store the information concerning

definitions and uses of variables in a program. Each element of the list is a pair, consisting of a

variable name and a statement number. The linked list representation makes the implementation

inefficient, but the main feature of the implementation is that it permits real-world programs as

input.

2.4.1.6 Code Transformer Interface

The code transformer interface provides a convenient environment for the user to interact with the

transformation system (see Figure 2.1). The system has to be initialized first, with the generation

of all transformers from their respective specifications. After the initialization, a program to be

transformed — in C or FORTRAN — is translated to SUIF intermediate code using the component

HLL-to-SUIF. The code transformer interface takes SUIF intermediate code as input and requests

the user to choose the transformation to be performed on the code. Based on the transformation

specified by the user, the dependence analyzer does the required dependence analyses; for example,

only flow dependence information is required for useless code elimination. The intermediate code,

with the dependence information attached as annotations, is given as input to the transformer, which

performs the specified transformation on the intermediate code. The output from the interface —

the transformed intermediate code — is then passed to the component SUIF-to-HLL to get the

transformed code back in high-level language.

2.4.2 Experiments

Routines from LINPACK benchmarks were taken as input and all the transformations generated by

the system were applied on these routines. The number of applications of each transformation in

each routine was counted to see the effect. The correctness of the transformations was verified by

comparing the output of the transformed code with the original code before transformation. The

data from the experiments conducted on the routines taken from LINPACK benchmarks are given

in Table 2.2 that follows. The last two entries in Table 2.2 are sample programs created to test

copy propagation and induction variable elimination, which had no effect on LINPACK benchmark

programs. The experiments were conducted mainly to demonstrate the completeness and correctness

of the system implementation.

2.5 Conclusion

The code transformation system described earlier provides a complete environment for automatic

generation of code transformers from formal specifications. The development of the code transfor-

mation system involved formal specification of transformations, design of a specification language

and the implementation of the transformation system.

The main issue concerning the specification of code transformations is the choice of a framework

for the specification. This work used a framework with dependence relations as the basis for the

specification of both scalar and parallel transformations.

Formal specification of code transformations not only helps in their precise understanding but also

has many applications. Formal specifications of code transformations have found use in the study of

ordering of transformations and transformer generators. In the work described here the whole class of
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TABLE 2.2 Experimental Results

Number of Applications of the Transformation
Name of the Number of Number of SUIF

Routine Nodes Statements CTP UCE CFD CPP CSE ICM IVE

daxpy 19 116 0 1 0 0 0 4 0

ddot 17 100 0 1 1 0 0 3 0

dgefa 26 249 0 3 0 0 6 25 0

dgesl 36 318 0 4 0 0 6 46 0

dmxpy 35 735 0 6 0 0 26 308 0

dscal 10 59 0 1 0 0 0 2 0

epslon 7 46 1 0 1 0 0 10 0

idamax 32 159 1 2 0 0 0 4 0

matgen 29 200 0 5 0 0 1 20 0

main 202 1408 86 8 1 0 1 49 0

cpp 4 18 0 1 0 2 0 0 0

ive 5 33 0 0 0 0 0 3 1

traditional scalar transformations has been specified, using dependence relations. The specifications

given in the work are, in general, improved versions — in terms of conservativeness — compared

with the specifications available in the literature. Not all transformations could be specified in the

chosen framework, for instance, partial redundancy elimination. Further study is required to find a

better alternative to the current framework.

Generation of code for compiler transformations involves the design of a specification language

for specifying those transformations. A specification language for the class of scalar transformations

has been designed and the power of the language is demonstrated by the specification of a complex

transformation such as induction variable elimination. The design permits extensions to the language,

if needed.

The development of the code transformation system involves the design and implementation of a

transformer generator and a dependence analyzer. The method of syntax-directed translation is used

to translate the specification of a transformation, written in the specification language, to code for the

corresponding transformation. Implementation of the dependence analyzer involves the computation

of control and data dependences. In the implementation, a conservative approach is adopted to deal

with pointers and procedure calls, without going for a detailed analysis in their presence. This, of

course, is a limitation that should be addressed to make the system more useful. Experiments have

been conducted using the system with LINPACK benchmark programs as input, transforming it using

the transformers generated and verifying the output of the transformed code with that of the original

one. The use of an intermediate representation like SUIF makes the system extendable and portable.

The implementation of the code transformation system is restricted to scalar transformations, but

the system provides a working model for automatic generation of code transformers from formal

specifications.

Efficiency is not taken as a major concern in the implementation and there is scope for improvement

of the system in this regard, especially in the implementation of the transformer generator and the

dependence analyzer. The system requires the computation of dependence relations each time a

transformation is applied. One may think of improving this by incremental updating of dependence

relations instead of recomputing them each time. The system can be extended to include parallel

transformations also, because dependence relations provide a uniform framework for the specification

of both scalar and parallel transformations.
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2.A Appendix: Syntax of the Specification Language

The full grammar for the specification language is given in this appendix. The nonterminals are

indicated by italic type and the terminals, in upper case letters. Alternative categories are usually

listed on separate lines; in some cases, the alternatives are presented on one line marked by the phrase

“one of.” An optional element is represented with a subscript “opt.”

specification ::

sub specification listopt main specification

sub specification list ::

sub specification

sub specification list sub specification

sub specification ::

condition sub specification

action sub specification

condition sub specification ::

sub specification header condition predicate

action sub specification ::

sub specification header {action list}

sub specification header ::

identifier (parameter list):

parameter list ::

parameter

parameter list, parameter

parameter :: one of

INT CONST OPCODE OPERAND SYMBOL OPERAND TYPE

NEW SYMBOL NEW OPERAND NEW STMT NULL VALUE

program element identifier

condition predicate ::

(quantifier: conditional expropt : conditional expr)

quantifier ::

quantifier type program element
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quantifier type :: one of

FORALL EXISTS NOT EXISTS

main specification ::

transformation name : action predicate

transformation name :: one of

CTP CFD UCE URCE CPP CSE ICM IVE NEW

action predicate ::

[action quantifier : conditional expropt : conditional expropt {action list}]

action quantifier ::

FOREACH program element

program element :: one of

OPERAND STMT LOOP NODE

conditional expr ::

condition

NOT conditional expr

conditional expr AND conditional expr

conditional expr OR conditional expr

condition ::

VAR OPERAND (OPERAND)

INT CONST OPERAND (OPERAND)

SAME OPCODE (STMT, OPCODE)

SAME OPERAND SYMBOL (OPERAND, OPERAND)

SAME OPERAND VALUE (OPERAND, OPERAND)

SAME EXPR (EXPR, EXPR)

SAME STMT (STMT, STMT)

VALID CSE EXPR (EXPR)

STMT IN LOOP (STMT, LOOP)

STMT IN LOOP BODY (STMT, LOOP)

CTRL (NODE, NODE)

CTRL DEP STMT (STMT, STMT)

SAME CTRL DEP (STMT, STMT)

COND BRANCH TRUTH VALUE (STMT)

OPERAND REDEFN BETWEEN STMTS (STMT, STMT)

parameter RELOP parameter

stmt type (STMT)

dep type (STMT)

identifier (parameter list)

stmt type :: one of

LABEL STMT CONST DEFN COPY STMT COND BRANCH

COND BRANCH TEST USELESS STMT FOLDABLE STMT MOVABLE STMT

dep type :: one of

FLOW ANTI OUTPUT INPUT

action list ::

action

action list action
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action ::

DELETE STMT (STMT);

DELETE NODE (NODE);

REPLACE OPERAND (OPERAND, parameter);

REPLACE STMT (STMT, NEW STMT);

INSERT STMT (NEW STMT, POSITION);

MOVE STMT (STMT, POSITION);

FOLD STMT (STMT);

SET OPCODE (STMT, OPCODE);

CREATE NEW SYMBOL (OPERAND TYPE, SCOPE, NEW SYMBOL);

CREATE NEW OPERAND (parameter, NEW OPERAND);

CREATE NEW STMT (STMT CLASS, parameter list, NEW STMT);

IF (conditional expr) action list

IF (conditional expr) action list ELSE action list

BREAK;

action predicate

{action list}
identifier (parameter list);

identifier ::

IDENTIFIER
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3.1 Introduction

The topic of scalar compiler optimizations is definitely not new. It has been studied, researched and

criticized for over 40 years. Several books [3, 7, 8, 41, 44] and articles contain detailed descriptions

of important optimizations that are performed by compilers. However, the last word has not yet

been said on this topic. The emergence of newer intermediate forms and extremely sophisticated

microprocessors have always managed to keep the subject alive. Some of the important classi-

cal optimization algorithms have been made simpler, more precise and more efficient due to the

emergence of the static single assignment (SSA) form as an important intermediate representation

used in compilers [9]. In this chapter we present some of the important optimization algorithms as

applied to the traditional flow graph and the SSA form. We hope that this helps in gaining an insight

into the working of SSA-based algorithms.
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We discuss partial redundancy elimination [7,10–13,44], global value numbering [7, 15, 16, 19, 44]

and conditional constant propagation [2, 7, 44]. Out of these three optimizations, we discuss the latter

two on both the flow graph and the SSA form, but we discuss partial redundancy elimination (PRE)

only on the flow graph. PRE has emerged as one of the most important scalar optimizations of today

and is still one of the most intensely researched topics. Whereas the concepts behind the flow graph

version of PRE have stabilized, the SSA version is just emerging [13], and has not established its

superiority over the flow graph version (unlike the other two algorithms mentioned earlier). Several

other algorithms such as dead code elimination [9, 41, 44], strength reduction [1, 8, 17, 33−35, 44]

and array-bound check elimination [18, 21, 22] have not been included due to space constraints.

Section 3.2 discusses the SSA form with several examples, its construction, its advantages and its

disadvantages. Section 3.3 contains a detailed presentation of the conditional constant propagation

algorithms, both on the flow graph and the SSA form. This is followed by a description of the PRE

algorithm in Section 3.4, and the value-numbering algorithms in Section 3.5. Conclusions and future

directions are presented in Section 3.6.

In our discussion, we assume that the reader is familiar with the terminology of control flow

graphs, basic blocks, paths, etc. These definitions are available in [3, 9, 41, 44].

3.2 Static Single Assignment Form

The SSA form has emerged in recent years as an important intermediate representation used in

compilers. A program is in SSA form if each of its variables has exactly one definition that implies

each use of a variable is reached by exactly one definition. The control flow remains the same as

in a traditional (non-SSA) program. A special merge operator, denoted φ, is used for the selection

of values in join nodes. The SSA form is usually augmented with use–definition or definition–use

chains in its data structure representation to facilitate design of faster algorithms.

Figures 3.1 and 3.4 show two non-SSA form programs, Figures 3.2 and 3.5 show their SSA forms

and Figures 3.3 and 3.6 show the flowcharts of SSA forms.

Read A, B, C

if (A > B)

if (A > C) max = A

else max = C

else if (B > C) max = B

else max = C

Print max

FIGURE 3.1 Program in non-SSA form.

Read A, B, C

if (A > B)

if (A > C)max 1 = A

else max 2 = C

else if (B > C) max 3 = B

else max 4 = C

max 5 = φ(max 1,max 2,max 3,max 4)

Print max 5

FIGURE 3.2 Program in Figure 3.1 in SSA form.
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A>C

A>B

B>C

Stop

Start

Read 

A,B,C

max1=A max2=B max3=C max4=D

max5 = φ(max1,max2,max3,max4)

Print
max5

 

FIGURE 3.3 Flowchart of program in Figure 3.2.

Read A; LSR = 1; RSR = A; SR = (LSR + RSR)/2;

Repeat

T = SR ∗ SR;

if (T > A)RSR = SR

else if (T < A)LSR = SR

else begin LSR = SR; RSR = SR; end

SR = (LSR + RSR)/2;

until (LSR =/ RSR)

Print SR

FIGURE 3.4 Another program in non-SSA form.

The program in Figure 3.1 is not in SSA form because there are several assignments to the variable

max. In the program in Figure 3.2 (see Figure 3.3 also), each assignment is made to a different variable,

maxi . Variable max5 is assigned the correct value by the φ-function, which takes the value maxi , if

the control reaches it via the ith incoming branch from left to right.

The φ-functions in the two blocks B1 and B5 in Figure 3.6 are meant to choose the appropriate

value based on the control flow. For example, the φ-assignment to RSR5 in the block B5 in Figure 3.6

selects one ofRSR3, RSR2, orRSR4 based on the execution following the arc B2 → B5, B3 → B5,

or B4 → B5, respectively.

Usually, compilers construct a control flow graph representation of a program first, and then

convert it to SSA form. The conversion process involves introduction of statements with assignment

to φ-functions in several join nodes and renaming of variables that are targets of more than one

definition. Of course, the usages of such variables can also be changed appropriately. Not every join
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Read A; LSR1 = 1; RSR1 = A; SR1 = (LSR1 + RSR1)/2;
Repeat

LSR2 = φ(LSR5, LSR1);
RSR2 = φ(RSR5, RSR1);
SR2 = φ(SR3, SR1);
T = SR2 ∗ SR2;

if (T > A)RSR3 = SR2

else if (T < A)LSR3 = SR2

else begin LSR4 = SR2; RSR4 = SR2; end

LSR5 = φ(LSR2, LSR3, LSR4);

RSR5 = φ(RSR3, RSR2, RSR4);

SR3 = (LSR5 + RSR5)/2;

until (LSR5 =/ RSR5)

Print SR3

FIGURE 3.5 Program in Figure 3.4 in SSA form.

node needs a φ function for every variable in the program. Suitable placement of φ functions so as

to ensure a minimal SSA form and the renaming of variables are topics covered in the next section

and are also available in [9, 14, 41, 44].

A reader unfamiliar with SSA forms may wonder about the role of φ-functions in the final machine

code of the program. No direct translation of a φ-function to machine code is possible for general

purpose processors of today. A copy instruction needs to be inserted at the end of each predecessor

block of the block containing a φ-function (the temporary variable t is essential in some cases to

maintain correctness, but not in this case; see [44] for a full discussion). This introduces some

inefficiency into machine code, which can be annulled to some extent by good register allocation

[9]. Carrying out dead code elimination before φ-conversion is also required to remove redundant

assignment statements. It is not possible to replace all subscripted instances of a variable x by x

itself due to possible movement of code during optimizations. For example, dropping the subscripts

for a would lead to wrong code shown later in Figure 3.16.

Figure 3.7 shows a simple example of the effect of φ-conversion. During register allocation, the

same register would be assigned to t, max1, max2, max3, max4 and max5, and thereby eliminating

copying.

3.2.1 Construction of the Static Single Assignment Form

We now discuss the construction of an SSA form from a flow graph. We consider only scalars

and refer the reader to [9, 37] for details on how structures, pointers and arrays are handled. Our

presentation is based on the material in [9].

3.2.1.1 Conditions on the SSA Form

After a program has been translated to SSA form, the new form should satisfy the following conditions

for every variable v in the original program:

1. If two paths from nodes having a definition of v converge at a node p, then p contains a trivial

φ-function of the form v = φ(v, v, . . . , v), with a fanout equal to the in-degree of v.

2. Each appearance of v in the original program or a φ-function in the new program has been

replaced by a new variable vi , leaving the new program in SSA form.

3. Any use of a variable v along any control path in the original program and the corresponding

use of vi in the new program yield the same value for both v and vi .
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FIGURE 3.6 Flowchart of program in Figure 3.5.

Preceding condition 1 is recursive. It implies that φ-assignments introduced by the translation

procedure can also qualify as assignments to v and this in turn may lead to introduction of more

φ-assignments at other nodes.

3.2.1.2 The Join Set and φ-Nodes

Given a set S of flow graph nodes, we define the set JOIN (S ) of nodes from the flow graph to be

the set of all nodes n, such that there are two nonnull paths in the flow graph that start at two distinct

nodes in S and converge at n. The iterated join set, JOIN +(S ), is the limit of the monotonic

nondecreasing sequence of sets of nodes:

JOIN (1)(S ) = JOIN (S )

JOIN (i+1)(S ) = JOIN (S ∪ JOIN (i)(S ))
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FIGURE 3.7 φ-Conversion on program in Figure 3.3.

We note that if S is defined to be the set of assignment nodes for a variable v, then JOIN +(S )

is precisely the set of flow graph nodes, where φ-functions are needed (for v). See [9] for proofs.

JOIN +(S ) is precisely the iterated dominance frontier, DF+(S ) [9], which can be computed

efficiently in a manner to be described shortly.

3.2.1.3 Dominator Tree

Given two nodes x and y in a flow graph, x dominates y, if x appears in all paths from the Start node

to y; x strictly dominates y, if x dominates y and x =/ y; and x is the immediate dominator of y

(denoted idom(y)), if x is the closest strict dominator of y. A dominator tree shows all the immediate

dominator relationships. Figure 3.8 shows a flow graph and its dominator tree. Dominator trees can

be constructed in time almost linear in the number of edges of a flow graph [39] (see [40] for a linear

time but more difficult algorithm).

3.2.1.4 Dominance Frontier

For a flow graph node x, the set of all flow graph nodes y, such that x dominates a predecessor of y,

but does not strictly dominate y is called the dominance frontier of x and is denoted by DF (x). The

following redefinition of DF (x) makes it simple to compute it in linear time:

DF (x) = DF local(x) ∪
⋃

z ∈ children(x) DF up(y)

DF local(x) =
{

y ∈ successor(x)
∣

∣ idom(y) =/ x
}

DF up(x) =
{

y ∈ DF (x)
∣

∣ idom(y) =/ parent(x)
}
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Here, children(x) and parent(x) are defined over the dominator tree and successor(x) is defined

over the flow graph. The algorithm in Figure 3.9 computes the dominance frontier based on the

definitions given earlier. It is called on the root of the dominator tree and the tree is traversed in

postorder. Figure 3.8 shows the DF sets as decorations on the nodes of the dominator tree.

We now extend the definition of DF to act on sets and also define the iterated dominance frontier,

on lines similar to JOIN +(S ).

DF (S ) =
⋃

x ∈ S
DF (x)

DF (1)(S ) = DF (S )

DF (i+1)(S ) = DF (S ∪ DF (i)(S ))

FIGURE 3.8 Example flow graph for SSA form construction.

function dominance−frontier(n) // n is a node in the dominator tree

begin

for all children c of n in the dominator tree do

dominance−frontier(n.c);

end for

DF(n) = ∅;

//DFlocal computation

for all successors of n in the flow graph do

if (idom(s) =/ n) then DF(n) = DF (n) ∪ {s};

end for

// DFup computation

for all children c of n in the dominator tree do

for all p ∈ DF (c) do

if (idom(p) =/ n) then DF (n) = DF(n) ∪ {p};

end for

end for

end

FIGURE 3.9 Dominance frontier computation.
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As mentioned before, for each variable v, the set of flow graph nodes that need φ-functions is

DF+(S ), where S is the set of nodes containing assignments to v. We do not construct DF+(S )

explicitly. It is computed implicitly during the placement of φ-functions.

3.2.1.5 Minimal SSA Form Construction

The three steps in the construction of the minimal SSA form are:

1. Compute DF sets for each node of the flow graph using the algorithm in Figure 3.9.

2. Place trivial φ-functions for each variable in the nodes of the flow graph using the algorithm

in Figure 3.10.

3. Rename variables using the algorithm in Figure 3.11.

The function place Phi-Function (v) is called once for each variable v. It can be made more efficient

by using integer flags instead of Boolean flags as described in [9]. Our presentation uses Boolean

flags to make the algorithm simpler to understand.

The renaming algorithm in Figure 3.11 performs a top-down traversal of the dominator tree. It

maintains a version stack V , whose top element is always the version to be used for a variable usage

encountered (in the appropriate range, of course). A counter v is used to generate a new version

number. It is possible to use a separate stack for each variable as in [9], so as to reduce the overheads

a bit. However, we believe that our presentation is simpler to comprehend.

function Place-phi-function(v) // v is a variable

// This function is executed once for each variable in the flow graph

begin

// has-phi (B) is true if a φ-function has already

// been placed in B

// processed(B) is true if B has already been processed once

// for variable v

for all nodes B in the flow graph do

has-phi(B) = false; processed(B) = false;
end for

W = ∅; //W is the work list

// Assignment-nodes(v) is the set of nodes containing

// statements assigning to v

for all nodes B ∈ Assignment-nodes(v) do

processed (B) = true; Add(W, B);

end for

while W =/ ∅; do

begin

B = Remove(W );

for all nodes y ∈ DF (B) do

if (not has-phi(y)) then

begin

place < v = φ(v, v, . . . , v) > in y;

has-phi(y) = true;

if (not processed(y)) then

being processed(y) = true; Add(W, y); end

end

end for

end

end

FIGURE 3.10 Minimal SSA construction.
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function Rename-variables(x, B)//x is a variable and B is a block

begin

ve = Top(V ); //V is the version stack of x

for all statements s ∈ B do

if s is a non-φ statement then

replace all uses of x in the RHS(s) with Top(V );

if s defines x then

begin

replace x with xv in its definition; push xv onto V ;

// xv is the renamed version of x in this definition

v = v + 1; v is the version number counter

end

end for

for all successors s of B in the flow graph do

j = predecessor index of B with respect to s

for all φ-functions f in s which define x do

replace the j th operand of f with Top(V );

end for

end for

for all children c of B in the dominator tree do

Rename-variables (x, c);

end for

repeat Pop(V ); until (Top(V ) == ve);

end

being // calling program

for all variables x in the flow graph do

V = ∅; v = 1; push 0 onto V ; // end-of-stack marker

Rename-variables (x,Start);

end for

end

FIGURE 3.11 Renaming variables.

Let us trace the steps of the SSA construction algorithm with the help of the example in Figure 3.12.

Let us concentrate on the variable n. Blocks B1, B5 and B6 have assignments to n (read n is also

considered as an assignment). With the dominance frontier of B1 as null, no φ-function is introduced

while processing it. A φ-function is introduced for n in B7 while processing B5 (this is not repeated

while processing B6). B2 gets a φ-function for n when B7 is handled.

Let us now understand how different instances of n are renamed. The instruction read n in B1

becomes read n0 while processing B1. At the same time, the second parameter of the φ-function

for n in block B2 is changed to n0. Processing B2 in the top-down order results in changing the

statement n = φ(n, n0) to n1 = φ(n, n0) and the new version number 1 is pushed onto the version

stack V . This results in changing the comparisons n =/ 1 to n1 =/ 1 in block B2 and even(n) to

even(n1) in block B3. The expressions n/2 in block B5 and 3 ∗ n + 1 in block B6 also change to

n1/2 and 3 ∗ n1 + 1, respectively. A new version of n, namely, n2 (n3, respectively) is created while

processing the assignment in block B5 (B6, respectively). The version number 2 (3, respectively) is

pushed onto V . This results in changing the parameters of the φ-function in block B7 as shown in

Figure 3.12. After finishing with B5 (B6, respectively), V is popped to remove 2 (3, respectively),

before processing B7. A new version n4 is created while processing the φ statement in B7, which in

turn changes the first parameter of the φ-function for n in block B2, from n to n4. V is then popped

and recursion unwinds. The variable i is treated in a similar manner.
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FIGURE 3.12 SSA form construction for the flow graph in 3.8.

3.2.1.6 Complexity of SSA Graph Construction

We define R, the size of a flow graph as follows:

R = max {N, E, A, M},
where N is the number of nodes in the flow graph, E is the number of edges in the flow graph, A is

the number of assignments in the flow graph and M is the number of uses of variables in the flow

graph.

The construction of the dominance frontier and the SSA form in theory take O(R2) and O(R3)

time, respectively. However, according to [9], measurements on programs show that the size of

dominance frontiers in practice is small and hence the entire construction process, including

construction of dominance frontiers, takes only O(R) time.

3.2.1.7 Note on the Size of SSA Graphs

An SSA form is usually augmented with links from every unique definition of a variable to its uses

(corresponding to d-u information). Some algorithms need SSA forms augmented with links that

go from every use of a variable to its unique definition (corresponding to u-d information). If n

definitions are in a program, and each of these could reach n uses, then both d-u and u-d chains can

have O(n2) links. However, an SSA graph with d-u or u-d information can have only O(n) links due

to the factoring carried out by φ-functions. See Figures 3.13 and 3.14 for an example.

In Figure 3.13, the d-u chain of each definition of i contains all the three uses of i in the second

switch statement. However, in Figure 3.14, due to the factoring introduced by the φ-function, each

definition reaches only one use.
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switch (j )

case 1: i = 10; break;

case 2: i = 20; break;

case 3: i = 30; break;

end

switch (k)

case 1: x = i ∗ 3 + 5; break;

case 2: y = i ∗ 6 + 15; break;

case 3: z = i ∗ 9 + 25; break;

end

FIGURE 3.13 Program in non-SSA form.

switch (j )

case 1: i1 = 10; break;

case 2: i2 = 20; break;

case 3: i3 = 30; break;

end

i4 = φ(i1, i2, i3);

switch (k)

case 1: x = i4 ∗ 3 + 5; break;

case 2: y = i4 ∗ 6 + 15; break;

case 3: z = i4 ∗ 9 + 25; break;

end

FIGURE 3.14 Program in Figure 3.13 in SSA form.

b = 5;

L1: if (b > 100) goto L2;

read a;

b = a + b;

a = 16;

b = a + b;

goto L1

L2: stop

FIGURE 3.15 Loop invariant code motion not possible.

The renaming algorithm of Figure 3.11 can be augmented to establish the d-u and u-d links. This

requires that every statement be a separate node in the flow graph. It also requires keeping a pointer

to the node defining a variable on the version stack along with the name of the variable. The rest of

the process is simple.

The SSA form increases the number of variables. If n variables are in a program and each of these

has k definitions, then the SSA form would have nk variables to take care of the nk definitions. It

may not be possible to map these nk variables back to n variables during machine code generation

because of code movements that could have taken place during optimizations. Figures 3.15 and 3.16

show an example of such a code motion.
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b = 5; a2 = 16;

L1: b2 = φ(b1, b4);

if (b2 > 100) goto L2;

read a1;

b3 = a1 + b2;
b4 = a2 + b3;
goto L1

L2: stop

FIGURE 3.16 Loop invariant code moved out.

3.2.2 Advantages of the Static Single Assignment Form

• Only one definition reaches every usage and this makes optimization algorithms simpler. For

example, this enables efficient constant propagation along SSA edges.

• The number of edges in an SSA graph (including d-u and u-d information edges) is generally

only O(max{N, E}), with N and E the number of nodes and edges in the flow graph, respec-

tively. This makes SSA graphs sparse and hence optimization algorithms using edge traversals

are efficient. For example, conditional constant propagation on SSA graphs is better and more

efficient than the corresponding version on flow graphs [2].

• The single assignment property makes better code movement possible. For example, in the

program in Figure 3.15, the assignment a = 16 cannot be moved out of the loop due to the

presence of the statement read a. However, once the program is converted to SSA form, this

is possible (see Figure 3.16). Note that other optimizations such as constant propagation have

not been applied in either of the programs.

• The φ-functions are the only points where several definitions merge and this makes code

movement during transformations easier. Further, φ-functions can also be used to indicate

beginning and end of loops, conditionals, etc.

• Several optimization algorithms operating on SSA forms do not need iterative data flow analysis.

They use the dominator tree and the dominance frontier instead. An example is global value

numbering.

• Most global optimization algorithms are no more expensive than local versions. An example is

partition-based value numbering.

3.2.3 Disadvantages of the Static Single Assignment Form

• Several instances of a single variable are created. Potentially, n2 instances can be created out of n

variables. This increases the memory requirement and hence SSA forms may not be suitable for

use in compilers that perform aggressive space optimizations (e.g., compilation for embedded

systems).

• Optimizations needing information that cannot be computed using dominator and d-u infor-

mation are not efficiently performed on the SSA form. An example is liveness analysis

[32, 38, 41, 44].

• Optimizations such as loop unrolling, procedure in-lining and loop tiling do not benefit from

using the SSA form. Similarly, dependence analysis that needs array subscript intersection tests

does not benefit significantly from the use of SSA forms.

• Register allocation needs an interference graph of some kind and SSA forms do not facilitate

its construction easily (liveness analysis is needed).
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• The effects of SSA forms on the quality of code generated have not been adequately studied.

However, it is known that good register allocation is essential to make the quality of code even

acceptable.

• Some of the optimization algorithms use SSA forms with d-u edges [2] and a few others use SSA

forms with u-d edges [17]. There is no single canonical SSA form on which all the optimization

algorithms operate.

• Some of the known optimization algorithms using SSA graphs are not as efficient as ones on

flow graphs in practice. Examples are partition-based value numbering and partial redundancy

elimination [13, 15].

• Because all optimizations cannot be carried out beneficially on the SSA form, conversions from

flow graph to SSA and back to flow graph introduces some inefficiency in the compiler.

• The SSA form is a conservative mechanism of guaranteeing single definition property at runtime.

Transformations require to know that when a variable v is used, exactly one definition of v can

reach that use at runtime. This is sufficient. However, SSA forms (over-)guarantee this by

enforcing it in program text (the static part).

• The φ-functions form a bottleneck for movement of code. In general, a φ-function cannot be

moved across basic blocks, because it does not explicitly mention the control conditions under

which an input is selected. Alternative SSA forms such as gated SSA forms [42] address this

issue.

3.3 Conditional Constant Propagation

Conditional constant propagation (CCP) is one of the well-known compiler optimizations. Variables

that can be determined to contain only constant values at runtime in all possible executions of

the program are discovered during this optimization. These values are also propagated throughout

the program, and expressions whose operands can be determined to be only constants are also

discovered and evaluated. In effect, a symbolic execution of the program is with the limited purpose

of discovering constant values. The following examples help in explaining the intricacies of constant

propagation.

The simplest case is that of straight-line code without any branches, as in a basic block. This

requires only one pass through the code with forward substitutions and no iteration. However, such

a one-pass strategy cannot discover constants in conditionals and loops. For such cases we need to

carry out data flow analysis involving work lists and iterations. A simple algorithm of this kind adds

successor nodes to the work list as symbolic execution proceeds. Nodes are removed one at a time

from the work list and executed. If the new value at a node is different from the old value, then all the

successors of the node are added to the work list. The algorithm stops when the work list becomes

empty. Such an algorithm can catch constants in programs such as program A but not in programs

such as program B in the Figure ??.

CCP handles programs such as program B in Figure ?? by evaluating all conditional branches

with only constant operands. This uses a work list of edges (instead of nodes) from the flow graph.

Further, both successor edges of a branch node are not added to the work list, when the branch

condition evaluates to a constant value (true or false); only the relevant successor (true or false) is

added.

CCP algorithms on SSA graphs are faster and more efficient than the ones on flow graphs. They

find at least as many constants as the algorithms on flow graphs (even with d-u chains, this efficiency

cannot be achieved with flow graphs, see [2]). In the following sections, we present CCP algorithms

on flow graphs as well as SSA graphs. Our description is based on the algorithms presented in [2].

We assume that each node contains exactly one instruction and that expressions at nodes can contain
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Program A Program A after simple CP

a = 10; a = 10;

if (i > j ) b = a else c = a; if (i > j ) b = 10 else c = 10;

Program B Program B after simple CP

a = 10; b = 20; a = 10; b = 20;

if (a ==  10) x = b else x = a; if (a == 10) x = 20 else x = 10;

Program B after CCP with flowgraph

a = 10; b = 20;

x = 10;

Program C Program C after CCP with flowgraph

a = 10; b = 20; a = 10; b = 20;

if (b ==  20) a = 30; a = 30;

d = a; d = a; (a cannot be determined to be a constant)

Program C after CCP with SSA graph

a = 10;// unused code, removable

b = 20;

a = 30; 

d = 30; (a has been determined to be a constant)

FIGURE 3.17 Limitations of various CP algorithms.

at most one operator and two operands (except for φ-functions). The graphs are supposed to contain

N number of nodes, Ef number of flow edges, Es number of SSA edges (corresponding to d-u

information) and V number of variables.

3.3.1 Lattice of Constants

The infinite lattice of constants used in the constant propagation algorithms is a flat lattice as shown

in Figure 3.18. ⊤ stands for an as yet undetermined constant ⊥ for a nonconstant and C i for a

constant value. The meet operator ⊓ is defined as in Figure 3.19, with any standing for any lattice

value in Figure 3.19.

3.3.2 Conditional Constant Propagation Algorithm:
Flow Graph Version

All variables are supposed to be used only after defining them and are initialized by the CCP algorithm

to ⊤ at every node. This is a special feature of the Wegman–Zadeck algorithm that enables it to find

more constants than other algorithms (in programs with loops). For details of this effect, the reader is

referred to [2]. Each node is supposed to have two lattice cells per variable, one to store the incoming

value and the other to store the computed value (exit value). Also two lattice cells are at each node to

store the old and new values of the expression. All the edges going out of the start node are initially
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FIGURE 3.18 The lattice of constants.

any ⊓ ⊤ = any

any ⊓ ⊥ = ⊥

Ci ⊓ Cj = ⊥ if i =/ j

Ci ⊓ Cj = Cj , if i = j

FIGURE 3.19 The meet operator.

val (a op b) = ⊥, if either or both of a and b is ⊥

= Ci op Cj , if val (a) and val (b) are constants, Ci and Cj , respectively

= ⊤, otherwise

Special rules for ∨ and ∧

any stands for an element of {true, false, ⊥, ⊤}

These rules indicate that if one of the operands is known in the

shown cases, then the other operand is irrelevant

any ∨ true = true

true ∨ any = true

any ∧ false = false

false ∧ any = false

FIGURE 3.20 Expression evaluation.

put on the work list and marked as executable. The algorithm does not process any edges that are

not so marked. A marked edge is removed from the work list and the node at the target end of the

edge is symbolically executed. This execution involves computing the lattice value of all variables

(not just the assigned variable). The incoming value of a variable x at a node y is computed as the

meet of the exit values of x at the preceding nodes of y, and the values are stored in the incoming

lattice cells of the respective variables at the node.

The expression at the node is evaluated by the rules given in Figure 3.20. If the node contains

an assignment statement, and if the new value of the expression is lower (in lattice value) than the

existing value of the assignment target variable, then all outgoing edges of the node are marked as

executable and added to the work list. The new value is also stored in the exit lattice cell of the

assignment target variable.
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If the node contains a branch condition, and if the new value of the expression is lower than its

existing value, then one of the following two actions is taken. If the new value is ⊥, then both the

successor edges of the node are marked and added to the work list. If the new value is a constant

(true or false), then only the corresponding successor edge is marked and added to the work list.

This step enables elimination of unreachable code. The new value of the expression is also stored in

a lattice cell at the node.

In both these cases, note that no action is taken if the value of the expression does not change

from one visit to the next. There is also a copying of all incoming lattice cells apart from the target

variable of the assignment, to their exit cells, so as to enable the successor nodes to pick up values

of variables. Figures 3.21 and 3.22 show the CCP algorithm in more detail.

3.3.2.1 Asymptotic Complexity

Because each variable can take only three lattice values (⊤, ⊥ and C i), starting from a value of ⊤,

a variable can be lowered only twice. Each node can be visited through any of its predecessors, and

// G = (N, Ef ) is the flowgraph, and V is the set of variables used in the flowgraph

begin

Pile = {(Start → n)|(Start → n) ∈ E f };

Mark all edges {(Start → n)|(Start → n) ∈ E f } as executable

and all other edges as unexecutable;

// y.oldval and y.newval store the lattice values of expressions at node y

for all y ∈ N do

y.oldval = ⊤; y .newval = ⊤;

for all u ∈ V do

y.v.incell = ⊤; y.v.outcell = ⊤;

end for

end for

while Pile =/ ∈ do

begin

(x, y) = remove (Pile);

// y.i.incell and y.i.outcell are the lattice cells

// associated with the variable i at node y

for all i ∈ V do

y.i.incell = ⊓p∈Pred(y) p.i.outcell

end for

// evaluate expression as in Figure 3.20

y.newval = evaluate(y);

switch (y)

case y is an assignment node:

// y.instruction.output.outcell is the out-lattice cell of the target variable

// of the assignment at node y and it contains the value from a previous visit to y

if (y.newval < y.instruction.output.outcell) then

begin

Mark all edges {(y → n)|(y → n) ∈ E f } as executable

and add them to Pile;

for all i ∈ V do y.i.outcell = y.i.incell; end for // copy cells

y.instruction.output.outcell = y.newval;

y.oldval = y.newval;

end

end case

FIGURE 3.21 CCP algorithm with flow graph.
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case y is a branch node:

// copy lattice cells

for all i ∈ V do

y.i.outcell = y.i.incell;

end for

if (y.newval < y.oldval) then

begin

switch (y.newval)

case ⊥: // both true and false branches are equally likely

Mark all edges {(y → n)|(y → n) ∈ E f )} as excutable

and add them to Pile;

y.oldval = y.newval;

end case

case true :

Mark the true branch edge of y as executable and add it to Pile;

y.oldval = y.newval;

end case

case false:

Mark the false branch edge of y as executable and add it to Pile;

y.oldval = y.newval;

end case

// ⊤ value results due to uninitialized variables which is a

// program error and hence is not considered here

end switch

end

end case

end switch

end // while

end

FIGURE 3.22 CCP algorithm with flow graph cont’d.

in each visit, the value of a variable can be either lowered or not at all. However, during each visit

to a node, lattice values of all the variables are computed. Assuming that we have N nodes, each

with an in-degree of at most din, V variables and Ef edges in the flow graph, each node is visited at

most (din × 2 × 2) times, because each instruction has at most two operands, each of which can be

a variable. The total number of visits to all the nodes is obtained by multiplying this quantity by N .

During each visit, (din × V + k1 × V + k2) computations are performed. Here, the first additive

term corresponds to the meet computation, and the second additive term accounts for the time for

lattice value copy operations. The time for adding an edge to the pile is charged to the edge removal

operation, because every edge is added from a unique node and because each edge that is added to

a pile is also definitely removed. Thus, these are constant time operations and are taken care of by

the last additive term. Expression evaluation as indicated in Figure 3.20 (note that expressions can

contain at most one operator and two operands) and other constant time operations are also taken

care of by the last additive term. This entire term can be seen to be k3 × V , for some constant k3, if

din is small in magnitude compared with V . This is a reasonable assumption because each node has

one instruction and thus N and V are of the same order of magnitude. Because din × N is k4 × E,

for some constant k4, we get the total time needed by this algorithm to be k5 × E × V , for some

constant k5, or O(E × V ).

This algorithm is too slow in practice and hence is not used as it is in any compiler. It is used

with d-u information, which helps in eliminating most of the lattice cell copy operations. The major

source of inefficiency is that it uses the flow graph edges for both propagation of values and also
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for tracking reachable code. The SSA-based algorithm does this more efficiently because it uses

different types of edges for each task. We present this version next.

3.3.3 Conditional Constant Propagation Algorithm: Static
Single Assignment Version

SSA forms along with extra edges (SSA edges) corresponding to d-u information are more efficient

for constant propagation than the flow graph. We add an edge from every definition to each of its uses

in the SSA form. The new algorithm uses both flow graph and SSA edges and maintains two different

work lists, one for each. Flow graph edges are used to keep track of reachable code and SSA edges

help in propagation of values. Flow graph edges are added to the flow work list whenever a branch

node is symbolically executed or whenever an assignment node has a single successor (all this is

subject to value changes as before). SSA edges coming out of a node are added to the SSA work list

whenever a change occurs in the value of the assigned variable at the node. This ensures that all uses

of a definition are processed whenever a definition changes its lattice value. This algorithm needs

only one lattice cell per variable (globally, not on a per node basis) and two lattice cells per node to

store expression values. Conditional expressions at branch nodes are handled as before. However,

at any join node, the meet operation considers only those predecessors that are marked executable.

The SSA-based algorithm is presented in Figures 3.23 to 3.26.

Example 3.1

Consider the program C in Figure ??. The flow graph and the SSA graph for this program are shown

in Figures 3.27 and 3.28. It is clear that at node B5, a cannot be determined to be a constant by the

CCP algorithm using a flow graph, because of the two definitions of a reaching B5. The problem is

due to the meet operation executed at B5 using both its predecessors while determining the lattice

value of a. This problem is avoided by the CCP algorithm using the SSA graph. It uses only those

predecessors that have edges to the current node marked as executable.

In this example, only C4 would be considered while performing the meet operation to compute the

new value for a3, because the other edge (C3, C5) is not marked executable. As shown in Figure ??,

the SSA version of the algorithm determines a3 to be a constant (of value same as that of a2), and

assigns its value to d .

3.3.3.1 Asymptotic Complexity

Each SSA edge can be examined at least once and at most twice. This is because the lattice value

of each variable can be lowered only twice and thus each SSA edge can be added to the SSA pile

only twice. Each flow graph edge can be examined only once. During a visit to a node, all operations

take only constant time. As before, the time for adding an edge (either flow or SSA) to a pile is

charged to the edge removal operation. Thus, the total time taken by the algorithm is O(Ef + Es).

Theoretically, Es can be as large as O
(

max{Ef , N}
)2

[9], and this algorithm can become O(Ef
2).

However, in practice, Es is usually O(max{Ef , N}), and hence the time for constant propagation

with the SSA graph is linear in the size of the program (max{Ef , N}).

3.4 Partial Redundancy Elimination

PRE is a powerful compiler optimization that subsumes global common subexpression elimination

and loop-invariant code motion, and can be modified to perform additional code improvements

such as strength reduction as well. PRE was originally proposed by Morel and Renvoise [11]. They

showed that elimination of redundant computations and movement of invariant computations out of

loops can be combined by solving a more general problem, (i.e., the elimination of computations



Scalar Compiler Optimizations on the Static Single Assignment Form and the Flow Graph 117

// G = (N, Ef , Es) is the SSA graph, with flow edges and SSA edges,

// and V is the set of variables used in the SSA graph

begin

Flowpile = {(Start → n)|(Start → n) ∈ Ef };

SS Apile = ∅;

for all e ∈ E f do e.executable = false; end for

v.cell is the lattice cell associated with the variable v

for all v ∈ V do v.cell = ⊤; end for

// y.oldval and y.newval store the lattice values of expressions at node y

for all y ∈ N do

y.oldval = ⊤; y .newval = ⊤;

end for

while (Flowpile =/ φ) or (SS Apile =/ φ) do

begin

if (Flowpile =/ φ) then

begin

(x, y). = remove (Flowpile);

if (not (x, y).executable) then

begin

(x, y).executable = true;

if (φ-present(y)) then visit-φ(y)

else if (first-time-visit(y)) then visit-expr (y);

// visit-expr is called on y only on the first visit

// to y through a flow edge; subsequently, it is called

// on y on visits through SSA edges only

if (flow-outdegree(y) == 1) then

// Only one successor flow edge for y

Flowpile = Flowpile ∪ {(y, z)|(y, z) ∈ E f };

end

// if the edge is already marked, then do nothing

end

FIGURE 3.23 CCP algorithm with SSA graphs.

performed twice on a given execution path). Such computations were termed as partially redundant.

PRE performs insertions and deletions of computations on a flow graph in such a way that after the

transformation, each path, in general, contains fewer occurrences of such computations than before.

Most compilers of today perform PRE. It is regarded as one of the most important optimizations and

it has generated substantial interest in the research community [7, 8, 10, 12, 13, 23 to 29, 33 to 35].

In spite of the benefits, the Morel and Renvoise algorithm has several serious shortcomings. It is

not optimal in the sense that it does not eliminate all partial redundancies that exist in a program

and it performs redundant code motion. It involves performing bidirectional data flow analysis,

which some claim is in general more complex than unidirectional analysis [10]. Knoop, Rüthing and

Steffen decomposed the bidirectional structure of the PRE algorithm into a sequence of unidirectional

analyses and proposed an optimal solution to the problem with no redundant code motion [10, 28].

Next we present a simple algorithm for partial redundancy elimination [12, 29] based on well-

known concepts, namely, availability, anticipability, partial availability and partial anticipability.

The algorithm is computationally and lifetime optimal. The algorithm operates on a flow graph with

a single statement per node. Modifications to the algorithm to handle basic blocks with multiple

statements are reported in [29]. The essential feature of this algorithm is the integration of the

notion of safety into the definition of partial availability and partial anticipability. It requires four
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if (SS Apile =/ ∅) then

begin

(x, y) = remove (SS Apile);

if (φ-present(y)) then visit-φ(y)

else if (already-visited(y)) then visit-expr(y);

// A false returned by already-visited implies that y

// is not yet reachable through flow edges

end

end // Both piles are empty

end

function φ-present(y) // y ∈ N

begin

if y is a φ-node then return true

else return false

end

function present-φ(y) // y ∈ N

begin

y.newval= ⊤;

// ‖y.instruction.inputs‖ is the number of parameters of φ-instruction at node y

for i = 1 to ‖y.instruction.inputs‖ do

Let pi be the ith predecessor of y;

if ((pi , y).executable) then

begin

Let ai = y.instruction.inputs[i];

// ai is the ith input and ai .cell is the lattice cell associated with that variable

y.newval = y.newval ⊓ ai .cell;

end

end for

if (y.newval < y.instruction.output.cell) then

begin

y.instruction.output.cell = y.newval;

SS Apile = SS Apile ∪ {(y, z) | (y, z) ∈ Es};

end

end

FIGURE 3.24 CCP algorithm with SSA graphs cont’d.

unidirectional bit vector analyses. A special feature of this algorithm is that it does not require the

edge-splitting transformation to be done before the application of the algorithm.

An informal description of the idea behind the algorithm follows. We say an expression is available

at a point if it has been computed along all paths reaching this point with no changes to its operands

since the computation. An expression is said to be anticipatable at a point if every path from this point

has a computation of that expression with no changes to its operands in between. Partial availability

and partial anticipability are weaker properties with the requirement of a computation along “at least

one path” as against “all paths” in the case of availability and anticipability.

We say a point is safe for an expression if it is either available or anticipatable at that point.

Safe partial availability (anticipability) at a point differs from partial availability (anticipability) in

that it requires all points be safe on the path along which the computation is partially available

(anticipatable). In the example given in Figure 3.29, partial availability at the entry of node 4 is true

but safe partial availability at that point is false, because the entry and exit points of node 3 are not

safe. In Figure 3.30, safe partial availability at the entry of node 4 is true. We say a computation is
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function visit-expr (y) // y ∈ N

being

Let input1 = y.instruction.inputs[1];

Let input2 = y.instruction.inputs[2];

If (input1.cell == ⊥ or input2.cell == ⊥) then

y.newval = ⊥

else if (input1.cell == ⊤ or input2. cell == ⊤) then

y.newval = ⊤

else // evaluate expression at y as in Figure 3.20

y.newval = evaluate(y);

it is easy to handle instructions with one operand

if y is an assignment node then

if (y.newval < y.instruction.output.cell) then

begin

y.instruction.output.cell = y.newval;

SS Apile = SS Apile ∪ {(y, z)|(y, z) ∈ Es};

end

else if y is a branch node then

begin

if (y.newval < y.oldval) then

begin

y.oldval = y.newval;

switch (y.newval)

case ⊥: // Both true and false branches are equally likely

Flowpile = Flowpile ∪ {(y, z)|(y, z) ∈ Ef };

case true: Flowpile = Flowpile ∪ {(y, z)|(y, z) ∈ Ef and

(y, z) is the true branch edge at y};

case false: Flowpile = Flowpile ∪ {(y, z)|(y, z) ∈ Ef and

(y, z) is the false branch edge at y};

end switch

end

end

end

FIGURE 3.25 CCP algorithm with SSA graphs cont’d.

safe partially redundant in a node, if it is locally anticipatable and is safe partially available at the

entry of the node. In Figure 3.30, the computation in node 4 is safe partially redundant.

The basis of the algorithm is to identify safe partially redundant computations and make them

totally redundant by the insertion of new computations at proper points. The totally redundant

computations after the insertions are then replaced. If a + b is the expression of interest, then by

insertion we mean insertion of the computation h = a + b, where h is a new variable; replacement

means substitution of a computation, such as x = a + b, by x = h.

Given a control flow graph we compute availability, anticipability, safety, safe partial availability

and safe partial anticipability at the entry and exit points of all the nodes in the graph. We then

mark all points that satisfy both safe partial availability and safe partial anticipability. Next, we note

that the points of insertion for the transformation are the entry points of all nodes containing the

computation whose exit point is marked but whose entry point is not, and also all edges whose head

is marked but whose tail is not. We also note that replacement points are the nodes containing the

computation whose entry or exit point is marked.

Alternatively, if we consider the paths formed by connecting all the adjacent points that are marked,

we observe that the points of insertion are the nodes corresponding to the starting points of such paths
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function first-time-visit(y) // y ∈ N

// This function is called when processing a flowgraph edge

begin // Check in-coming flowgraph edge of y

for all e ∈ {(x, y) | (x, y) ∈ Ef }

if e.executable is true for more than one edge e

then return false else return true

end for

// At least one in-coming edge will have executable true

// because the edge through which node y is entered is

// marked as executable before calling this function

end

function already-visited (y) // y ∈ N

// This function is called when processing an SSA edge

being // Check in-coming flowgraph edges of y

for all e ∈ {(x, y) | (x, y) ∈ Ef }

if e.executable is true for at least one edge e

then return true else return false

end for

end

FIGURE 3.26 CCP algorithm with SSA graphs cont’d.

FIGURE 3.27 Flow graph of program C in Figure ??.

and also the edges that enter junction nodes on these paths. The computations that are to be replaced

are the ones appearing on these paths. For the example in Figure 3.31, small circles correspond to

marked points. Based on the preceding observation, we see that node 1 and edge (2, 3) are the points

of insertion and nodes 1 and 4 are the points of replacement. The graph after the transformation is

shown in Figure 3.32.
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FIGURE 3.28 SSA graph of program C in Figure ??.

FIGURE 3.29 Node 4: a+b not safe partially available.

3.4.1 Boolean Properties Associated with the Expressions

We assume that the program representation is a flow graph with a single assignment statement or

condition per node.

For each expression and each node, Boolean properties are defined. Some of these properties

depend only on the statement in the node and are termed local. Other properties that depend on

statements beyond a node are termed global. We develop our algorithm for an arbitrary and fixed

expression, and a global algorithm dealing with all expressions simultaneously is the independent

combination of all of them.

3.4.1.1 Local Properties

The local properties associated with a node are transparency, availability and anticipability. An

expression is said to be transparent in a node i, denoted by TRANSP i , if its operands are not

modified by the execution of the statement in node i. The expression in node i is said to be locally



122 The Compiler Design Handbook: Optimizations and Machine Code Generation

a+b

a+b

3

4

FIGURE 3.30 Node 4: a+b is safe partially redundant.

x = a+b

y = a+b

1

3

4

2

FIGURE 3.31 Before PRE.

anticipatable and is denoted by ANTLOC i . We say the expression in node i is locally available,

denoted by COMP i , if the statement in node i does not modify any of its operands.

3.4.1.2 Global Properties

The global properties of our interest are availability anticipability, safe partial availability and

safe partial anticipability. We use AVIN i , ANTIN i , SPAVIN i and SPANTIN i to denote global

availability, anticipability, safe partial availability and safe partial anticipability, respectively, of the
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y=h

3

4

h=a+b
x=h

h=a+b

1 2

FIGURE 3.32 After PRE.

expression at the entry of node i. Similarly, AV OUTi , ANTOUT i , SPAVOUT i andSPANTOUT i

are used to denote the same properties at the exit of node i.

We use SAFEIN i and SAFEOUT i to denote the fact that it is safe to insert a computation at the

entry and exit, respectively, of node i. We say a path p[m, n], from point m to point n in the flow

graph, is safe if every point on the path is safe and denote it by SAFE [m,n]. Also, we say a path

p[i, j ], where i and j are nodes, is transparent if every node on the path is transparent and denote it

by TRANSP [i,j ].

The relation between global and local properties for all nodes of the graph are expressed in terms

of systems of Boolean equations. Boolean conjunctions are denoted by . and �; disjunctions, by +

and �; and Boolean negation, by �.

3.4.1.2.1 Availability.

An expression is said to be available at a point p if every path from the entry node s to p con-

tains a computation of that expression, and after the last such computation prior to reaching p no

modifications occur to its operands.

An expression is available at the entry of a node if it is available on exit from each predecessor of

the node. An expression is available at the exit of a node if it is locally available or if it is available

at the entry of the node and transparent in this node. That is:

AVIN i =
{

FALSE if i = s
∏

j∈pred(i) AVOUT j otherwise

AVOUT i = COMP i + AVIN i .TRANSP i
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3.4.1.2.2 Anticipability.

An expression is said to be anticipatable at a point p if every path from p to the exit node e

contains a computation of that expression, and after p prior to reaching the first such computation

no modifications occur to its operands.

An expression is anticipatable at the exit of a node if it is anticipatable at the entry of each successor

of the node. An expression is anticipatable at the entry of a node if it is locally anticipatable or it is

anticipatable at the exit of the node and transparent in this node. That is:

ANTOUT i =
{

FALSE if i = e
∏

j∈succ(i) ANTIN j otherwise

ANTIN i = ANTLOC i + ANTOUT i .TRANSP i

3.4.1.2.3 Safety.

A point p is considered to be safe for an expression if the insertion of a computation of that expression

at p does not introduce a new value on any path through p. Alternatively, a point p is safe if the

expression is either available or anticipatable at that point. That is:

SAFEIN i = AVIN i + ANTIN i

SAFEOUT i = AVOUT i + ANTOUT i

3.4.1.2.4 Safe Partial Availability.

We say an expression is safe partially available at a point n, if at least one path exists from the entry

node s to n that contains a computation of that expression, and if after the last such computation on

this path prior to reaching n, say at node m, no modifications occur to its operands, with the path

from the exit of node m to n safe. That is:

SPAVIN i =

{

FALSE if i = s or �SAFEIN i
∑

j∈pred(i) SPAVOUT j otherwise

SPAVOUT i =

{

FALSE if �SAFEOUT i

COMP i + SPAVIN i .TRANSP i otherwise

3.4.1.2.5 Safe Partial Anticipability.

We say an expression is safe partially anticipatable at a point m, if at least one path exists from m

to the exit node e that contains a computation of that expression, and if after m prior to reaching the

first such computation on this path, say at node n, no modifications of its operands occur, with the

path from m to the entry of node n safe. That is:

SPANTOUT i =

{

FALSE if i = e or �SAFEOUT i
∑

j∈succ(i) SPANTIN j otherwise

SPANTIN i =

{

FALSE if �SAFEIN i

ANTLOC i + SPANTOUT i .TRANSP i otherwise
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The iterative process for the resolution of the systems of Boolean equations can give several

solutions depending on the initialization of the unknowns. For the preceding Boolean systems,

the required solution is the largest one for the system involving the conjunction operator � and

the initialization value is TRUE for all the unknowns in this case. For the systems involving the

disjunction operator �, the required solution is the smallest one and the initialization value is FALSE

for all unknowns.

We next give the formal definitions of safe partial redundancy, total redundancy and isolatedness.

3.4.1.2.6 Safe Partial Redundancy.

A computation of an expression is safe partially redundant in a node i, denoted SPREDUNDi , if

it is locally anticipatable and is safe partially available at the entry of node i. That is:

SPREDUND i = ANTLOC i .SPAVIN i

3.4.1.2.7 Total Redundancy.

We say an expression is totally redundant, or simply redundant, in a node i, denoted by REDUND i ,

if it is locally anticipatable and is available at the entry of node i. That is:

REDUND i = ANTLOC i .AVIN i

3.4.1.2.8 Isolatedness.

An expression in node i is said to be isolated, denoted ISOLATED i , if the expression is not safe

partially available at the entry of node i and is either not safe partially anticipatable at the exit of

node i or not locally available. That is:

ISOLATED i = ANTLOC i .�SPAVIN i .(�COMP i + �SPANTOUT i)

3.4.2 Partial Redundancy Elimination Algorithm

The basic principle of the algorithm is to introduce new computations of the expression at points of

the program chosen in such a way that the safe partially redundant computations become totally

redundant. As in [28], our algorithm introduces a new auxiliary variable h for the expression

concerned, inserts assignments of the form h := expr at some program points and replaces some

of the original computations of the expression by h, to achieve the transformation. The algorithm

computes the points at which these insertions and replacements are to be done. We denote the insertion

at the entry of node i by INSERT i , insertion on edge (i, j) by INSERT (i,j) and replacement in

node i by REPLACE i .

The steps of the algorithm are as follows:

1. Compute AVIN/AVOUT and ANTIN/ANTOUT for all nodes.

2. Compute SAFEIN/SAFEOUT for all nodes.

3. Compute SPAVIN/SPAVOUT and SPANTIN/SPANTOUT for all nodes.

4. Compute points of insertions and replacements INSERT i , INSERT (i,j) and REPLACE i .

The points of insertions and replacements are computed using the following equations:

INSERT i = COMP i .�SPAVIN i .SPANTOUT i

INSERT (i,j) = �SPAVOUT i .SPAVIN j .SPANTIN j

REPLACE i = ANTLOC i .SPAVIN i + COMP i .SPANTOUT i
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Placement of a new computation on an edge means introducing a new node. Therefore, edge

placements should be avoided as far as possible. We reduce the number of insertions on edges by

the following strategy. For a node i:

If (
∏

j∈succ(i)(INSERT (i,j) + INSERT j .(|pred(j)| = 1))) then do a single insertion at the exit

of node i, instead of INSERT (i,j)’s and INSERT j ’s in the preceding term.

The formal proofs of correctness and optimality of the algorithm are given in [12].

Example

We consider the same example as in [11]; refer to Figures 3.33 and 3.34.

Local boolean properties are:

ANTLOC = {6, 7, 8, 9}

COMP = {6, 7, 8, 9}

a=

= a+b

= a+b

= a+b

= a+b

1

2

4

5

3

6

8

9

7

FIGURE 3.33 Initial program.



Scalar Compiler Optimizations on the Static Single Assignment Form and the Flow Graph 127

a =
h = a+b h = a+b

= h

= h

= h

= h

1

2

3

5

7

6

4

8

9

FIGURE 3.34 Transformed program.

Global Boolean properties are:

AVIN = {9}
AVOUT = {6, 7, 8, 9}
ANTIN = {3, 5, 6, 7, 8, 9}

ANTOUT = {3, 4, 5, 6, 7}
SAFEIN = {3, 5, 6, 7, 8, 9}

SAFEOUT = {3, 4, 5, 6, 7, 8, 9}
SPAVIN = {5, 7, 8, 9}

SPAVOUT = {5, 6, 7, 8, 9}
SPANTIN = {3, 5, 6, 7, 8, 9}

SPANTOUT = {3, 4, 5, 6, 7, 8}
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Insertions and replacements are:

INSERT i = {6}
INSERT (i,j) = {(3, 5), (4, 8)}
REPLACE i = {6, 7, 8, 9}

Because
∏

j∈succ(i)(INSERT (i,j) + INSERT j ) = TRUE for i = 3, we insert a new computation

at the exit of node 3, instead of INSERT 6 and INSERT (3,5). Similarly, we insert a new computation

at the exit of node 4, instead of INSERT (4,8). Computations in nodes 6, 7, 8 and 9 are replaced. The

final solution is insertions at the exit of nodes 3 and 4 and replacements in nodes 6, 7, 8 and 9. The

transformed program is given in Figure 3.34.

3.5 Value Numbering

Value numbering is one of the oldest and still a very effective technique that is used for performing

several optimizations in compilers [3, 8, 15, 16, 19, 30, 31]. It operates on flow graphs with basic

blocks (having perhaps more than one instruction) and it has been extended to operate on SSA graphs.

The central idea in this method is to assign numbers (called value numbers) to expressions in such

a way that two expressions receive the same number if the compiler can prove that they are equal

for all possible program inputs. This technique is useful in finding redundant computations and fold

constants. Even though it was originally proposed as a local optimization technique applicable to

basic blocks, it is now available in its global form. We assume that expressions in basic blocks have

at most one operator (except for φ-functions in SSA forms). The two principal techniques to prove

equivalence of expressions are hashing and partitioning.

The hashing scheme is simple and easy to understand. It uses a hashing function that combines

the operator and the value numbers of operands of an expression (assume non-φ, for the present)

contained in the instruction and produces a unique value number for the expression. If this number

is already contained in the hash table, then the name corresponding to this existing value number

refers to an earlier computation in the block. This name holds the same value as the expression for

all inputs, and hence the expression can be replaced by the name. Any operator with known constant

values is evaluated and the resulting constant value is used to replace any subsequent references.

It is easy to adapt this algorithm to apply commutativity and simple algebraic identities without

increasing its complexity.

The partitioning method operates on SSA forms and uses the technique of deterministic finite

automation (DFA) minimization [4] to partition the values into congruence classes. Two expressions

are congruent to each other, if their operators are identical and their operands are congruent to each

other. Two constants are congruent to each other if their values are the same. Two variables are

congruent to each other if the computations defining them are congruent to each other. The process

starts by putting all expressions with the same operator into the same class and then refining the classes

based on the equivalence of operands. Partitioning-based technique is described in [7, 15, 16, 20].

Partitioning-based methods are global techniques that operate on the whole SSA graph, unlike

the hash-based methods. We provide a flavor of the partitioning method through an example. See

Figures 3.35 and 3.36.

The initial and final value partitions are as shown in Figure 3.35. To begin with, variables that

have been assigned constants with the same value are put in the same partition (P1, and P5), and so

are variables assigned expressions with the same operator (P3); φ-instructions of the same block are

also bundled together (P2, and P4). Next, we start examining instructions in each partition pairwise,

and split the partition if the operands of the instructions are not in the same partition. For example,

we split P3 into Q3 and Q4, because x2 + 2 is not equivalent to x2 + 3 (constants 2 and 3 are
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Initial Partitions Final Partitions 

P1 = {x1, y1} 

P2 = {x2, y2} 

P3 = {x5, y5, x6, y6} 

P4 = {x4, y4} 

P5 = {x3, y3} 

Q1 = {x1, y1} 

Q2 = {x2, y2} 

Q3 = {x5, y5} 

Q4 = {x6, y6} 

Q6 = {x3, y3} 

Q5 = {x4, y4} 

FIGURE 3.35 Initial and final value partitions for the SSA graph in Figure 3.36.

Start
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x  = 4
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B3 B4
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FIGURE 3.36 SSA graph for value-numbering with the partitioning technique.

not equivalent). Partitioning technique splits partitions only when necessary, whereas the hashing

technique combines partitions whenever equivalence is found. Continuing the example, we cannot

split x2 and y2 into different classes because their corresponding inputs, namely, (x1, y1), (x3, y3)

and (x4, y4), belong to identical equivalent classes, P1, P5 and P4, respectively. A similar argument

holds for x4 and y4 as well. After partitioning, this information may be used for several optimizations

such as common subexpression elimination and invariant code motion, as explained in [16].

Even though programs are available on which partitioning is more effective than hashing (and

also vice versa), partitioning is not as effective as hashing on real-life programs [15]. Hashing is the
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Value number

Expression Value number

(indexed by name hash value)

Constant value

(indexed by expression hash value)

ValnumTable entry 

 Name

 Name list Constflag

(indexed by value number)
NameTable entry

HashTable entry

FIGURE 3.37 Data structures for value-numbering with basic blocks.

method of choice for most compilers and hence we describe hashing-based value numbering in detail

in the following sections. Our presentation is based on the techniques described in [7, 8, 15, 31].

3.5.1 Hashing-Based Value Numbering: Basic Block Version

We first describe the basic block version of value numbering based on hashing, because this is the

basis for the global versions. The algorithm uses three tables, namely, HashTable, ValnumTable and

NameTable. HashTable is indexed using the output of a hashing function that takes an expression

(with value numbers of its operands replacing the operands themselves) as a parameter. It stores

expressions and their value numbers. ValnumTable is indexed using another hashing function that

takes a variable name (a string) as a parameter. It stores variable names and their value numbers.

NameTable is indexed using a value number, and it stores the variable names (a list) corresponding

to this value number, and also the constant value associated with this variable, if any, indicated by

the field Constflag . The first name in the name list always corresponds to the first definition for the

concerned value number. This first name is extracted using the function Defining var and is used

to replace other name occurrences in the basic block with the same value number.

The example given later makes this clear. A counter, valcounter, is used to generate new value

numbers by simple incrementing. The array B of size n stores the n instructions of a basic block.

Any good hashing scheme presented in books on data structures and algorithms can be used for the

hashing functions [5, 6]. The value-numbering algorithm is presented in Figures 3.38 to 3.42. The

data structures used in value numbering are shown in Figure 3.37.

Example of Value Numbering

The high-level language statements and the intermediate code in the form of quadruples are shown

in Figure 3.43, along with the final transformed code. Let us run through the instructions in the basic

block one at a time and observe how value numbering works on them. Processing the first instruction,

a = 10, results in a entered into ValnumTable and NameTable with a value number, say 1, along with

its constant value. When handling instruction 2, a is looked up in the ValnumTable and its constant

value is fetched from NameTable. Constant folding results in b getting a constant value of 40; b is

entered into ValnumTable and NameTable with a new value number, say 2, and also its constant value

of 40.

Then i and j are entered into the two tables with new value numbers, when processing instruction 3.

The expression i ∗ j is searched in HashTable (with value numbers of i and j used during hashing).

Because it is not found there, it is entered into HashTable with a new value number. The name t1 is
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function CheckAndInsert (ValnumTable, x, s)

// x is a variable name and s is an assignment statement

begin

if (not (found−VT (ValnumTable, x)) then // x does not have a value number

begin

vn−new = valcounter++; // Generate a new value number

add−VT (ValnumTable, vn−new, x);

end

else begin

vn = Find−valnum (ValnumTable, x);

if (NameTable[vn].Const flag) then // vn corresponds to a constant

replace x in s by NameTable [vn].constval

else begin // Find the first variable with this value number

first−var = Defining−var (NameTable, vn);

replace x in s by first−var;

end

end

end

function value-number (B) // B is a basic block

begin

for i = 1 to n do // process all instructions in the basic block

Let s be the intruction at B[i]

if s is an assignment statement then

begin

let s be of the form a = b op c;

if b is not a constant then

CheckAndInsert (ValnumTable, b, s);

if c is not a constant then

CheckAndInsert (ValnumTable, c, s);

Simplify the new expression in s by constant folding

and replace it by the result

// Note that constant folding may not be possible in the above step

// if one or both operands in s are not constants

// Algebraic laws may be applied at this point in simplification

let the new s be a = 〈expr〉;

FIGURE 3.38 The value-numbering algorithm: Basic block version.

also entered into ValnumTable and NameTable with the same value number. The constant value of b,

namely, 40, replaces b in instruction 4, gets into HashTable with a new value number and c enters the

tables with this value number. Instructions 5 to 7 are processed in a similar way, with t2 becoming

a constant of value 150 and this value of 150 replacing t2 in instruction 6. During the processing of

instruction 8, e is replaced by i, and the expression i ∗ j is found in HashTable. NameTable gives

the name of the first definition corresponding to it as t1. Therefore, t1 replaces t3 in instruction

10. Instructions 5 and 8 can be deleted, because the holding variables t2 and t3 have already been

replaced by 150 and t1, respectively, in instructions referencing them.

3.5.2 Accommodating Extended Basic Blocks

An extended basic block is a sequence of basic blocks, B1, B2, . . . , Bk , such that Bi is the unique

predecessor of Bi+1 (1 ≤ i < k), and B1 is either the start block or has no unique predecessor. Two

or more extended basic blocks may share their first few blocks and this sharing is represented well

using trees, as shown in Figure 3.44. Hashing-based value numbering applicable to basic blocks may
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if (〈expr〉 is a constant) then

begin

if (found−VT (ValnumTable, a)) then // a is already present

begin

// remove existing a and value number

vn = Find−valnum (ValnumTable, a);

remove−NT (Nametable, vn, a);

remove−VT (ValnumTable, vn, a);

end

// Add the name a, its new value number and

// its new constant value to the tables

vn−new = valcounter + +;

add−NT (NameTable, vn−new, a);

add−NT−Const (NameTable, vn−new, 〈expr〉);

add−VT (ValnumTable, vn−new, a);

end

else // 〈expr〉 is not a constant

begin

if (not found−HT (HashTable, 〈expr〉)) then

// 〈expr〉 does not have a value number

begin

vn−new = valcounter + +;

add−HT (HashTable, vn−new, 〈expr〉)

if (found−VT (ValnumTable, a)) then // a is already present

begin

// remove existing a and value number

vn = Find−valnum (ValnumTable, a);

remove−NT (NameTable, vn, a);

remove−VT (ValnumTable, vn, a);

end

// Add the name a and the value number to the tables

add−NT (NameTable, vn−new, a);

add−VT (ValnumTable, vn−new, a);

end

FIGURE 3.39 The value-numbering algorithm: Cont’d.

be used with extended basic blocks also with some changes. When the constituent basic blocks of

an extended block are not shared by any other extended block, the matter is simple. We just process

the instructions in the basic blocks of the extended block as if they belonged to a single basic block.

Sharing of blocks requires a scope structure in all the three tables, namely, HashTable, ValnumTable

and NameTable. The modified algorithm is shown in Figure 3.45. We do a preorder traversal on the

trees of extended basic blocks. Preorder traversal ensures that shared blocks are processed only once.

Managing scoped tables involves removal of new table entries when the function visit-ebb-tree exits

and also restoration of old entries that might have been invalidated by the new entries. For example,

when a name a is redefined in a new block, the entry for name a is removed from the NameTable

against its old value number (obtained from ValnumTable), before entering the name a against the

new value number. The old entry must be restored when processing of the new block is completed.

This indeed introduces considerable overheads. Thus, this version of the value-numbering algorithm

may run slowly compared with the basic block version. As an example, let us consider the tree T 2 in

Figure 3.44. We start with B2, process it completely and then call visit-ebb-tree on B3, followed by a

call on B5. After processing B5, the entries in tables made during the processing of B5 are removed

from the tables, and the changed entries are restored to their old values before a return to B3. The
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else // 〈expr〉 is present in the hashtable and has a value number

begin

expr−vn = Find−Expr−valnum (Hash Table, 〈expr〉);

if (var−found (Name Table, expr−vn)) then

// 〈expr〉 is not hanging alone, it is attached to a variable

if (is−one−of−vars (Name Table, expr−vn, a)) then

// a is already attached to 〈expr〉, so s is redundant

delete s

else

begin // Get the first defining variable for 〈expr〉

old−var = Defining−var (NameTable, expr−vn);

replace 〈expr〉 in s by old−var;

add−NT (NameTable, expr−vn, a);

end

else // 〈expr〉 is present in the hashtable but is not attached to

// any variable; reuse the value number, and the expression;

// this saves some time

add−NT (NameTable, expr−vn, a);

end

end // end of 〈expr〉 not a constant

end // end of assignment statement processing

end for // end of for statement

// Assignment statements of the form a = op b, and a = b can be processed

// in a similar way. A conditional statement of the form

// ‘if 〈expr〉 then goto L’, can be replaced by two statements

// S1: ‘〈newtemp〉 = 〈expr〉’ and

// S2: ‘if 〈newtemp〉 then goto L’. S1 can be processed as before

// and S2 needs no special processing, 〈newtemp〉 may need replacement

// by another variable, if 〈expr〉 is already computed and available.

end

FIGURE 3.40 The value-numbering algorithm: Cont’d.

function is now called on B6; after processing the corresponding entries are deleted and the changes

are undone. Similar processing ensues on blocks B3,B2 and B4. Note that the shared blocks B2 and

B3 are processed only once.

3.5.3 Value Numbering with Hashing and Static Single
Assignment Forms

The principle of scoped tables is used here as well, but not with extended basic blocks. We use

dominator trees and a reverse postorder over the SSA flow graph to guide traversals over the dominator

trees of flow graphs. One of the reasons for choosing a reverse postorder over the SSA flow graph

is to ensure that all the predecessors of a block are processed before the block is processed (this

is obviously not possible in the presence of loops, with the effect of loops explained later). The

dominator tree for a flow graph is shown in Figure 3.46, along with a depth-first tree for the same

flow graph and traversal orders on these. The scope of the tables now extends along the paths in the

dominator tree, instead of paths in the tree representation for extended basic blocks. The SSA form

used here does not need any additional edges in the form of u-d or d-u information. The structures

of the tables used in this algorithm are shown in Figure 3.47.

The SSA form introduces some specialties in instruction processing. This form has no “hanging

expressions” (expressions not attached to any variable), because no variable is redefined and no

definition is killed. This also means that there is no need to restore any old entries in tables when
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// ValnumTable is always searched by hashing a name

// NameTable is always indexed using a value number

// HashTable is always searched by hashing an expression

function found−VT (ValnumTable, x)

returns true if the name x is found in ValnumTable

otherwise returns false

function add−VT (ValnumTable, vn−new, x)

Insert name x with value number vn−new into ValnumTable

function remove−VT (ValnumTable, x)

Removes the name x from ValnumTable

function Find−valnum (ValnumTable, x)

returns value number of x in ValnumTable

function Defining−var (NameTable, vn)

returns the first name in the namelist field of the entry at vn in the NameTable

function add−NT (NameTable, vn−new, x)

Inserts name x into the name list at value number vn−new into NameTable

function remove−NT (NameTable, vn, a)

Removes the name x from the namelist at vn in NameTable

FIGURE 3.41 The value-numbering algorithm: support functions.

function add−NT−Const (NameTable, vn−new, constval)

Inserts the constant constval at vn−new in NameTable

function found−HT (HashTable, 〈expr〉))

returns true if the expression 〈expr〉 is found in Hash Table

otherwise returns false

function add−HT (HashTable, vn−new, 〈expr〉)

Inserts the expression 〈expr〉 with value number vn−new into HashTable

function Find−Expr−valnum (HashTable, 〈expr〉)

returns value number of the expression 〈expr〉

function var−found (NameTable, vn)

returns true if the namelist at value number vn in NameTable is not empty

otherwise returns false

function is−one−of−vars (NameTable, vn, x)

returns true if the name x is found in the namelist at value number vn in NameTable

otherwise returns false

FIGURE 3.42 The value-numbering algorithm: more support functions.

the processing of a block is completed. It is enough if the new entries are deleted. This reduces the

overheads in managing scoped tables. We do not need the NameTable here.

A computation C (say of the form a = b op c) becomes redundant if b op c has already been

computed in one of the nodes dominating the node containing C. If the defining variable of the

dominating computation is x, then C can be deleted and all occurrences of a can be replaced by x.

This fact is recorded in the ValnumTable by entering a, and value number of x into it, and setting the

field replacing-variable to x. From now on, whenever an expression involving a is to be processed,

we search for a in the ValnumTable and get its replacing-variable field (which contains x). This

replaces a in the expression processed. While processing an instruction of the form p = q, we take

the replacing-variable of q (say r), and enter it along with p in the ValnumTable. This ensures that

any future references of p are also replaced by r .

We maintain a global ValnumTable and a scoped HashTable as before, but over the dominator

tree (ValnumTable is not scoped). For example in Figure 3.46, a computation in block B5 can be
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HLL Program Quadruples before

Value-Numbering  

Quadruples after

Value-Numbering 

a = 10

b = 4 * a

c = i * j + b

d = 15 * a * c

e = i 

c = e * j + i * a

  1. a = 10

  2. b = 4 * a

  3. t1 = i * j

  4. c = t1 + b

  5. t2 = 15 * a

  6. d = t2 * c

  7. e = i

  8. t3 = e * j

  9. t4 = i * a

10. c = t3 + t4

  1. a = 10

  2. b = 40 

  3. t1 = i * j

  4. c = t1 + 40

  5. t2 = 150 

  6. d = 150 * c

  7. e = i

  8. t3 = i * j

  9. t4 = i * 10

10. c = t1 + t4

(Instructions 5 and 8

can be deleted)

FIGURE 3.43 Example of value-numbering.

replaced by a computation in block B1 or B4, because the tables for B1, B4 and B5 are together

while processing B5. It is possible that no such previous computations are found in the HashTable, in

which case, we generate a new value number and store the expression in the computation along with

the new value number in the HashTable. The defining variable of the computation is also stored in

the global ValnumTable along with the new value number. A global table is needed for ValnumTable

while processing φ-instructions.

Processing φ-instructions is slightly more complicated. A φ-instruction receives inputs from

several variables along different predecessors of a block. The inputs do not need to be defined

in the immediate predecessors or dominators of the current block. They may in fact be defined in any

block that has a control path to the current block. For example, in Figure 3.48, while processing block

B9, we need definitions of a2, a6, etc., which are not in the same scope as B9 (over the dominator

tree). However, each incoming arc corresponds to exactly one input parameter of the φ-instruction.

This global nature of inputs requires a global ValnumTable, containing all the variable names in the

SSA graph.

During the processing of a φ-instruction, it is possible that one or more of its inputs are not yet

defined because the corresponding definitions reach the block through back arcs. Such entries are not

found in the ValnumTable. In such a case, we simply assign a new value number to the φ-expression

and record the defining variable of the φ-instruction along with this new value number in the global

ValnumTable. The φ-expression is also stored with the new value number in the scoped HashTable.

It may not be out of place to mention here that value numbering based on partitioning can handle

some of the cases where definitions reach through back arcs. For details, refer to [7, 15] and the

example discussed later in this section.

If all the input variables are found in the global ValnumTable, then we first replace the inputs

of the φ-instruction by the entries found in the ValnumTable, and then go on to check whether the

φ-expression is either meaningless or redundant. If these conditions are not true, then a new value

number is generated and the simplified φ-expression and its defining variable are entered into the

tables as explained before.
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FIGURE 3.44 Extended basic blocks and their trees.

A φ-expression is meaningless, if all its inputs are identical. In such a case, the corresponding

φ-instruction can be deleted and all occurrences of the defining variable of the φ-instruction can

be replaced by the input parameter. This fact is recorded in the global ValnumTable along with

the value number of the input parameter. For example, the instruction u = φ(a, b, c) may become

u = φ(x, x, x), if a, b and c are all equivalent to x, as determined from the entries in ValnumTable.

In such a case, we delete the instruction and record u in ValnumTable along with x and its value

number, so that future occurrences of u can be replaced by x.

A φ-expression is redundant, if another φ-expression in the same basic block has exactly the

same parameters. Note that we cannot use another φ-expression from a dominating block here

because the control conditions for the blocks may be different. For example, the blocks B1 and

B4 in Figure 3.46 may have the same φ-expression, but they may yield different values at runtime

depending on the control flow. HashTable can be used to check redundancy of a φ-expression in the

block. If a φ-expression is indeed redundant, then the corresponding φ-instruction can be deleted

and all occurrences of the defining variable in the redundant φ-instruction can be replaced by the

earlier nonredundant one. This information is recorded in the tables.

Figures 3.48 and 3.49 show an SSA graph before and after value numbering. Figure 3.50 shows

the dominator tree and a reverse postorder for the same SSA graph. Block B8 has a meaningless

φ-instruction and block B9 has a redundant φ-instruction. The instructions such as a2 = b1 in block
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Function visit-ebb-tree(e) // e is node in the tree

begin

// From now on, the new names will be entered with a new scope into the tables.

// When searching the tables, we always search beginning with the current scope

// and move to enclosing scopes. This is similar to the processing involved with

// symbol tables for lexically scoped languages

value-number (e.B);

// Process the block e.B using the basic block version of the algorithm

if (e.left =/ null) then visit-ebb-tree(e.left);

if (e.right =/ null) then visit-ebb-tree(e.right);

remove entries for new scope from all the tables

and undo the changes in the tables of enclosing scopes;

end

begin // main calling loop

for each tree t do visit-ebb-tree(t);

// t is a tree representing an extended basic block

end

FIGURE 3.45 Value-numbering with extended basic blocks.
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FIGURE 3.46 Flowchart, DFST and dominator tree.

B2 can perhaps be deleted, but are shown in Figure 3.49 for the sake of explaining the functioning

of the algorithm. The SSA graph in Figure 3.48 has not been obtained by translation from a flow

graph; it has been constructed to demonstrate the features of the algorithm.

As another example, consider the SSA graph shown in Figure 3.36. Hashing-based techniques

discover fewer equivalences, shown as follows:

{x1, y1}, {x3, y3}, {x2}, {x4}, {x5}, {x6}, {y2}, {y4}, {y5}, {y6}
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Constant value
Variable
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Replacing
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(indexed by name hash value)
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(indexed by expression hash value)
HashTable entry

FIGURE 3.47 Data structures for value-numbering with SSA forms.
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FIGURE 3.48 Example of value-numbering with SSA forms.

This is partly because of the back arcs. The values of x2 and y2 always are assigned different value

numbers, because x3, x4, y3 and y4 reach the block B2 through back edges and their corresponding

instructions would not have been processed (present in blocks B5 and B6) while block B2 is processed.

Values x5 and y5 are not assigned the same value number because x2 and y2 do not have the same

value number. The same is true of x6 and y6 also.

3.6 Conclusions and Future Directions

In this chapter, we discuss in detail several algorithms on both the traditional flow graph and also the

more recently introduced SSA form. These algorithms demonstrate how the features of SSA graphs

such as φ-functions, single assignment to variables and SSA edges (corresponding to d-u information)

assist in making the algorithms global, faster and more versatile. For example, conditional constant
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FIGURE 3.49 Example of value-numbering with SSA forms contd.
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B2 B3 B9

B4 B5 B8 B6 B7

Start

Stop

Reverse postorder on the SSA graph that is used

with the dominator tree above:

Start,B1,B3,B7,B6,B2,B5,B4,B8,B9,Stop

FIGURE 3.50 Dominator tree and reverse postorder for Figure 3.48.

propagation becomes much faster on SSA graphs due to SSA edges and φ-functions. Further, it

discovers at least the same set of constants as the algorithm on the flow graph. In the case of value

numbering, the SSA version becomes not only faster and simpler but also global, due to single

assignment property. The results available on other SSA-based algorithms are unfortunately not as

striking in their demonstration of advantages over flow graph-based algorithms.

We do not make any recommendations to use any one of these forms exclusively in a compiler.

Much more research on SSA-based optimization algorithms is essential before any such recommen-

dations can be made. It is also necessary that more implementations of available SSA algorithms are

carried out and comparisons are made with flow graph-based algorithms. Investigations on whether

optimizations can be combined on the lines of [36], and on alternative SSA forms [42, 43] on

which more optimization algorithms can operate, are required to be conducted. The issue of using
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dependence information in SSA forms also arises while tackling parallelization transformations.

The array SSA form and its use in parallelization are discussed in [37]. Efficient storage allocation

is an important question that needs to be addressed while dealing with code generation. It is not

known whether SSA forms can be beneficially modified to include other data flow information such

as liveness and aliasing. Efficient code generation techniques such as tree pattern matching cannot

be applied directly to SSA forms (with SSA edges) and it is necessary to carry out more research on

the needed modifications to these techniques (or new techniques) to support SSA forms.
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4.1 Introduction

Over the past several decades numerous compile-time optimizations have been developed to speed

up the execution of programs. Application of a typical optimization can be viewed as consisting of

two primary tasks: uncovering optimization opportunities through static analysis of the program, and

transforming the program to exploit the uncovered opportunities. Most of the early work on classical

code optimizations is based on a very simple performance model. Optimizations are defined such that

their application is always considered to have a positive impact on performance. Therefore, the focus

of the research has been on developing aggressive analysis techniques for uncovering opportunities

for optimization in greater numbers and designing powerful program transformations to exploit most

if not all the uncovered opportunities.

Although the simplicity of the above approach is attractive, in recent years it has been recognized

that the preceding approach for optimizing programs has serious drawbacks. On one hand, this

approach fails to exploit many opportunities for optimization; on the other hand, it may apply

optimizations that may have an adverse impact on performance. The first drawback can be remedied

by employing a combination of static analysis and execution profiles to detect optimization opportu-

nities. The second drawback can be addressed by using a sophisticated performance model during the

application of optimizations. In particular, a cost-benefit analysis of a program transformation can be

carried out before actually applying the transformation. Given adequate profile data, the following

broad categories of optimization opportunities can now be exploited:

• Some optimization opportunities are uncovered using static analysis whose exploitation

involves performance trade-offs. In some situations the analysis phase of an optimiza-

tion algorithm may be successful in uncovering an optimization opportunity; however, the
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transformation phase may require cost-benefit analysis to determine whether the optimization

opportunity should be exploited. For example, the transformation may represent a trade-off

between improved performance in one part of the program and degraded performance in another

part of the program.

• Other optimization opportunities cannot be uncovered by static analysis, but are frequently

observed to exist during program execution. Program optimizations can be designed to exploit

characteristics of values, representing data or addresses, encountered by various instructions

during program execution. Although static analysis can be used to relate values of variables, it is

not amenable to identifying specific values involved. For example, by examining the statement

i ← i + 1, we can statically determine that the statement increments the value of i by 1.

However, in general, it is not likely that we can determine the exact value of i because the value

of i may depend on a number of runtime factors such as the program input and the number of

times the statement is executed.

To illustrate the preceding scenarios, consider the example shown in Figure 4.1. Let us consider the

first scenario. The original code contains an optimization opportunity. If both conditionals evaluate to

true, the expression x×y is computed twice. Moreover, we can make this determination by statically

analyzing the program. To optimize the program we may wish to transform the code as shown in

Figure 4.1(b). This transformation removes the redundant evaluation of x × y for true evaluations

of the conditionals. However, if we consider the execution corresponding to false evaluations of

the conditionals, we find that an evaluation of x × y is introduced in the transformed code where

none was present prior to transformation. Therefore, we can conclude that the transformation is

useful only if line 4 is executed less frequently than line 7. A simple cost-benefit analysis based on

expected execution frequencies of various statements in the program can be used to decide whether

the transformation should be applied.

Next let us consider an instance of the second scenario. Let us assume that static analysis cannot

identify any specific values associated with variable y during program execution. However, by

profiling the execution of the program we may determine that very frequently the value of y at

line 4 is 1. Therefore, by using profiling we have identified an optimization opportunity that was

not detected using static analysis, namely, that the multiply operation at line 4 can be frequently

optimized away. We can transform the program as shown in Figure 4.1(c). The multiply operation at

line 4 is executed conditionally in the transformed code. Because extra instructions are required to

check whether the value of y is 1 and accordingly update t , it is important that we ensure the overall

benefit of eliminating the multiply operation is greater than the overall cost of executing the extra

instructions. A simple cost-benefit analysis based on the expected frequencies with which variable

1. if () then 1. if () then 1. if () then

2. z = x × y 2. t = z = x × y 2. t = z = x × y

3. else 3. else 3. else

4. . . . 4. t = x × y 4. t = (y = 1)?x : x × y

5. endif 5. endif 5. endif

6. if () then 6. if () then 6. if () then

7. w = x × y 7. w = t 7. w = t

8. else 8. else 8. else

9. . . . 9. . . . 9. . . .

10. endif 10. endif 10. endif

(a) Original Code. (b) Rebundancy Removal. (c) Strength Reduction.

FIGURE 4.1 Examples of profile-guided transformations.
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y has the value 1 or some other value at line 4 can be used to determine whether the transformation

should be applied.

Although the example in Figure 4.1 illustrated that execution profiles can be used to both detect

optimization opportunities and identify beneficial transformations in context of classical optimiza-

tions, similar situations also arise in the context of memory optimizations discussed later in this

chapter.

Another reason for increased relevance of profile-guided optimizations is that many opportunities

for optimizations that could not be exploited on processors of the past can now be exploited due to

the advanced hardware features present in modern processors. Support for safe speculative execution

and predicated execution can be helpful in carrying out profile-guided optimizations. For example,

if the multiple operation in Figure 4.1 is replaced by a divide operation, then the placement of x/y at

line 4 can result in a divide by 0 exception that may not have occurred during the original program

execution. Therefore, the redundancy removal transformation is rendered illegal. However, the

IA-64 processor provides hardware support for suppressing spurious exceptions and therefore allows

the optimization of divide operation to be carried out [18]. Support for predicated execution, also

provided by IA-64, can enable efficient implementation of the strength reduction transformation

shown in the preceding example because it enables conditional execution of the multiply operation

without introducing additional branch instructions.

From the previous discussion it is clear that the cost-benefit analysis should be an integral part of

an optimization algorithm. Moreover, cost-benefit analysis for a given program execution can only

be carried out if we are provided with estimates of execution frequencies of various runtime events

that are both relevant to the program performance and are impacted by the program transformation.

Although in the preceding example both the cost and the benefit was measured in terms of number

of instructions (or cycles), this may not always be the case. In some situations although the benefit

may be measured in terms of anticipated reduction in the number of instructions, the cost may be in

measured in terms of code growth resulting from the transformation. This is because many of the

optimizations essentially perform code specialization that results in code growth.

The profile-guided compilation process is summarized in Figure 4.2. Before profile-guided

optimizations can be carried out, an instrumented version of the program must be run on one or

more representative inputs to collect profile data. These profile data are then used by the optimizing

compiler to recompile the program generating optimized code. The selection of representative inputs

is important because the optimizations are expected to be beneficial only if the profile data that is

collected is relatively stable across a wide range of inputs on which the program is expected to be

executed. Although this chapter is devoted to static profile-guided optimization of programs, the

concept of profile-guided optimization is also used by dynamic optimizers. However, in contrast to

the techniques described in this chapter, the profiling and optimization techniques employed during

dynamic optimization must be extremely lightweight.

The remainder of this chapter is organized as follows. In Section 4.2 we provide a brief overview

of types of profile data that are used to guide a wide range of optimizations. In Section 4.3 we

discuss the role of profiles in carrying out classical optimizations. We illustrate the principles of

profile-guided optimization through an in-depth look at a partial redundancy elimination algorithm.

Compiler
Program

Execution

Program

Profile Com.

profile-guided
Optimizing
Compiler

Optimized

Code

Representative

Input

Program

Inscomenced

FIGURE 4.2 Profile-guided optimizing compiler.
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In Section 4.4 we discuss the role of profiles in carrying out optimizations that improve the memory

performance of a program. Concluding remarks are given in Section 4.5.

4.2 Types of Profile Information

Profiles provide summary information on past program executions that are used to guide program

optimization. However, different types of optimizations require different types of profiles. In parti-

cular, three types of profile information are used in practice: control flow profiles, value profiles and

address profiles. In this section we briefly discuss each of the profile types including the types of

optimizations where they are used.

4.2.1 Control Flow Profiles

One form of profile captures a trace of the execution path taken by the program. This trace represents

the order in which the nodes corresponding to basic blocks in the program control flow graph (CFG)

are visited. We refer to such a profile as the program control flow trace (CFT). By examining a CFT

we can compute the execution frequency of any given program subpath. As expected, CFTs can be

extremely large in size and therefore representations that maintain CFTs in compressed form have

been considered. Such compressed forms are referred to as whole program paths (WPPs). In [27]

Larus used the Sequitur [31] algorithm for compression whereas in [43] Zhang and Gupta proposed

alternative redundancy removal techniques for compression. However, even after compression, WPPs

can be extremely large.

In practice, a number of approximations of CFT that directly measure the execution frequencies

of selected program subpaths are used. These profiles differ in the degree of approximation involved

and the cost for collecting them. The proposed approximations of control flow profiles include the

following:

• Node profiles provide the execution frequencies of the basic blocks in the CFG. For some

optimizations such profiles are adequate. For example, in making code placement decisions,

as illustrated by the redundancy removal transformation of Figure 4.1(b), node profiles are

sufficient.

• Edge profiles provide the execution frequencies of each edge in the CFG. The overhead of

collecting edge profiles is comparable to the overhead of collecting node profiles. However,

edge profiles are superior to node profiles because edge profiles cannot always be computed

from node profiles whereas node profiles can always be computed from edge profiles. Edge

profiles are widely used.

• Two-edge profiles [30] provide the execution frequencies of each pair of consecutive edges in the

CFG. They are clearly superior to edge profiles. Edge profiles can always be computed from two-

edge profiles. However, the reverse is not true. Two-edge profiles derive their increased power

from their ability to capture the correlation between the executions of consecutive conditional

branches.

• Path profiles [2] provide the execution frequencies of acyclic subpaths in the CFG such that they

are acyclic and intraprocedural. Because a path is acyclic, it does not ever include a loop back

edge and because it is intraprocedural, it terminates if an exit node of a procedure is reached.

Path profiles are more precise than two-edge profiles for acyclic components of a CFG because

they capture correlation across multiple conditional branches within an acyclic graph. However,

two-edge profiles can capture correlation among a pair of conditional branches along a cyclic

path whereas path profiles cannot do so.
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FIGURE 4.3 Relative precision of control flow profiles.

4.2.1.1 Relative Precision of Control Flow Profiles

Each of the preceding profiles can be used to derive an estimate of the execution frequency of an

arbitrary subpath in the program. However, the precision of the estimate can vary from one type

of profile data to another. If we examine the subpaths with execution frequencies that are directly

measured by each of the preceding profiling algorithms, they can be distinguished based on two

important characteristics. First, the lengths of the subpaths whose execution frequencies are collected

vary. Second, the degree of overlap between two subpaths that may be executed one after another

also varies. The table in Figure 4.3 gives the length and overlap, in terms of number of nodes, for

each of the profile types. From this table we can conclude the relationships of the precisions for

any pair of profile types. For example, the two-edge and path profiles are not comparable because

the former has greater degree of overlap whereas the latter allows for longer paths. The precision

relationships are summarized by the hierarchy shown in Figure 4.3.

Let us illustrate the estimation of the execution frequency of a given program path from various

types of profiles. When such an estimate is not exact, we can obtain lower and upper bounds on the

execution frequency. If the lower and upper bounds for a path are found to be l and h, then it means

that the path was definitely executed l times and potentially executed as many as h times. Figure 4.4

shows a sample CFG and the complete CFT for a program execution. The node, edge, two-edge and

path profiles corresponding to this program execution are also given. Let us estimate the frequency

of path abefgk from various profiles.

• Estimate based on node profiles. If we examine the execution frequencies of the nodes on

path abefgk, the minimum frequency encountered is 70 for node g. Therefore the upper

bound on the execution frequency of the path is 70. To find the lower bound on the execution

frequency of path abefgk, first consider the lower bound on the execution frequency of

subpath efgk. Because node d is executed 20 times, the lower bound on the execution

frequency of efgk is 50. By further considering that the execution frequency of node c is 20,

the lower bound on the execution frequency of path abefgk is 30. Therefore, we conclude

that path abefgk is executed at least 30 times and potentially as many as 70 times.

• Estimate based on edge profiles. By examining the edge profiles, we can conclude that the

subpathsabef, fgk andfhk are executed exactly 60, 70 and 30 times, respectively. Therefore,

we can conclude that the path abefgk is executed at least 30 times and potentially 60 times.

An algorithm for deriving these estimates can be found in [3].

• Estimate based on two-edge profiles. As in the case of edge profiles, we can deduce that the

subpath abef has a frequency of 60. The frequency of subpaths efg and efh are measured

directly to be 60 and 20, respectively. Therefore, we can conclude that the path abefgk is

executed at least 40 times and possibly as many as 60 times.

• Estimate based on path profiles. During path profiling the execution frequency of path abefgk
is directly measured because it is an acyclic path. Therefore, we know that its execution

frequency is exactly 50.
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4.2.1.2 Cost of Collecting Profiles

To collect the profiles we must execute instrumented versions of the program. The instrumentation

code that is introduced depends on the type of profiles being collected. Although in general the

overhead of instrumented code is linear in the length of the program execution, techniques can be

employed to reduce the overhead.

During the collection of node profiles, instead of instrumenting each basic block to collect its

execution frequency, we can introduce a counter for each control dependence region in the program.

The execution frequency of a basic block is equal to the sum of the execution frequencies of the

control dependence regions to which it belongs [32]. Because there are far fewer control dependence

regions than there are basic blocks, this approach reduces the overhead of profiling. In Figure 4.4

the basic blocks a, f and k belong to the same control dependence region and they all have identical

execution frequencies. Therefore, a single shared counter can be used to measure their execution

frequencies.

Similarly, each edge in the CFG does not need to be instrumented because execution frequencies

of some edges can be computed from execution frequencies of other edges. In Figure 4.4 the edges

fg and gk always have the same frequency, so that at most one of them should be instrumented.

Moreover, if the frequencies of edges df, ef and fh are known, in absence of exceptions, we can

deduce the frequency of edge fg.
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FIGURE 4.4 An example of control flow profiles.
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The collection of two-edge and path profiles is more expensive. However, their computation can

also be optimized by reducing instrumentation points. In [2] an algorithm is presented to reduce the

overhead of instrumentation code during collection of path profiles. Each path in the acyclic graph is

assigned a unique number. The form of the instrumentation is such that it computes the path number

as the path is traversed. On reaching the end of the path, this path number is available and used

to update the frequency counter associated with the path. By carefully placing the instrumentation

code, the number of instructions needed to compute the path number can be minimized.

4.2.2 Value Profiles

Value profiles identify the specific values encountered as an operand of an instruction as well as the

frequencies with which the values are encountered. The example in Figure 4.5 illustrates the form

of these profiles. With this information the compiler can recognize operands that are almost always

constant and utilize this information to carry out value specialization optimizations such as constant

folding, strength reduction and motion of nearly invariant code out of loops.

Because the number of instructions in a program is large, and each operand of an instruction may

potentially hold a very large number of values, collection of complete value profiles is not practical.

Therefore, to reduce the size of the profile data and the execution time overhead of profiling the

following two steps are taken.

First, only the most frequently appearing N values are collected for a given operand. Calder et al.

[9] have proposed maintaining a top-n-value table (TNV) for a register written by an instruction.

Each TNV table entry contains a pair of values: the value and the frequency with which that value

is encountered. Least frequently used (LFU) replacement policy is used to choose an entry for

replacement when the table is full. If we exclusively use the LFU policy for updating the TNV, the

values that are encountered later in the program may not be able to reside in the table even if they

are encountered frequently. This is because they may be repeatedly replaced. To avoid this situation,

at regular intervals the bottom half of the table is cleared. By clearing part of the table, free entries

are created that can be used by values encountered later in the program. Both the number of entries

in the table and clearing interval are carefully tuned to get good results. Collecting only top N values

not only reduces the profiling overhead but also makes the convergence to a steady state easier and

faster to reach.

Second, the complimentary approach to reducing profiling overhead is to collect value profiles

for only interesting instructions. Watterson and Debray [35] use a cost-benefit model where the cost

is the testing cost of whether a register has a special value, and the benefit is the direct and indirect

instruction savings that can be achieved by optimizing the program with this information. Control

flow profiles are collected first to carry out cost-benefit analysis and identify candidates for value

profiling.

Code:

I1: load R3, 0(R4)

I2: R2    R3 & 0xff

Value profile:

(instruction,

register)

(I1,R3)

profiles (value,freq)

(0xb8d003400,10)...

(I1,R2)

(I2,R3)

(0,1000)

(0,100),(0x8900,200)

...,(0x2900,100) 

... ...

FIGURE 4.5 Sample value profiles.
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4.2.3 Address Profiles

Address profiles can be collected in form of a stream of memory addresses that are referenced by

a program. These profiles are usually used to apply data layout and placement transformations for

improving the performance of memory hierarchy. Depending on the optimization, the address traces

can be collected at different levels of granularity. At the finest level of granularity, each memory

address can be traced. Coarser level traces record references to individual objects instead of individual

addresses.

A program address space can be divided into three parts: stack, heap and globals. Stack data

typically exhibit good cache locality. Therefore, most of the research is focused on improving the

data access behavior of globals and heap data. Programmers usually organize their data structures

logically. They tend to put logically related data objects or data fields together. However, the logical

relationships may be different from the order in which the data structures are actually accessed

at runtime. By using the information provided by address profiles, compilers can reorganize the

placement of data objects with respect to each other or the placement of fields within a data object

such that closely accessed items are placed next to each other. In this way the cache behavior is

improved.

A complete address trace of a program run can be extremely large. To compress the size of the

address trace, Chilimbi [13] has proposed using the Sequitur algorithm to generate a compressed

whole program stream (WPS) representation of the address trace in much the same way as Sequitur is

used to compress a program control flow trace. To guide the application of data layout and placement

transformations, the WPS representation is analyzed to identify hot address streams. These streams

represent subsequences of addresses that are encountered very frequently during the program run.

Although the preceding approach first collects complete address profiles and then processes them to

identify information useful in guiding data layout and placement transformations, another approach

is to directly identify the useful information. Calder et al. [10] have proposed an algorithm based on

such an approach. The information that they collect is represented by a graph named the temporal

relationship graph (TRG). The nodes in this graph are data items of interest. Weighted links are

established between pairs of nodes.

If references to a pair of data items are separated by fewer than a threshold number (say N ) of

other data references, then the weight associated with the link between the two items is incremented.

To maintain the weights of all the links, an N -entry queue is maintained that records the latest N

data items that are referenced by the program. The weights on the links at the end of the program

run can be used by the compiler to identify data items that should be placed close to each other for

achieving good cache behavior. Figure 4.6 shows an example of the information collected using this

approach.

4.3 Profile-Guided Classical Optimizations

Simple optimization algorithms typically optimize statements that are determined to be optimizable

under all conditions through static analysis of the program. On the other hand, more aggressive

algorithms also optimize statements that are conditionally optimizable where the optimization

opportunities are discovered either through static analysis or through profiling. As a consequence,

often such algorithms involve replicating statements and creating unoptimized and optimized copies

of them. Depending on the conditions that hold, appropriate copy of the statement is executed.

The preceding process is also commonly referred to as code specialization. In some optimizations

specialization leads to elimination of a copy (e.g., redundancy and dead code elimination) whereas

during other optimizations specialization leads to simpler and more efficient code (e.g., strength

reduction and constant folding).



Profile-Guided Compiler Optimizations 151

Sample code:

for (1=0;i<2000;i++){

switch (tag) {

case 1:

xa = *pa; ...; break;

case 2:

xb = *pb; ...; break;

case 3:

xc = *pc; ...; break;

case 4:

xd = *pd; ...; break;

}

....

pa = buf[i]

....

}

Declarations:

int tag:

int*pa,*pb,*pc,*pd;

int bu[2000]:

...

int xa,xb,xc,xd;

Address profile:

Link

(A(xa)A(pa))

(A(xb)A(pb))

(A(xc)A(pc))

(A(xd)A(pd))

        ....

(A(pa)A(bu1))

Weight

500

20

2

10

....

2000

FIGURE 4.6 Address profiles.

In this section we begin by providing a brief overview of various code specialization transforma-

tions followed by identification of specific optimizations that rely on them. We describe the critical

role that profiling plays in carrying out these optimizations. Later we present a profile-guided partial

redundancy algorithm to illustrate how profile data can be exploited in a systematic way in developing

a profile-guided optimization algorithm.

4.3.1 Transformations

Different code specialization algorithms carry out code replication at different levels of granularity.

For example, function inlining replicates entire functions, partial inlining replicates code along

selected paths through a function and code motion based algorithms replicate individual statements.

Primarily, the two classes of transformations that are used to carry out code replication and enable

specialization of conditionally optimizable code are code motion of different types and control flow

restructuring with varying scope.

4.3.1.1 Code Motion of Statements

The basic form of code motion, namely, safe code motion, in addition to honoring program data

dependences, guarantees that for every execution of a statement during the execution of optimized

code, a corresponding execution of the statement exists during the execution of unoptimized code.

As a consequence, it must be the case that if an exception occurs during the execution of optimized

code, it would have also occurred during the execution of unoptimized code. Hardware support

present in modern processors such as IA-64 allows relaxation of the preceding constraint and yet

preserves the program semantics [18]. In particular, speculative code motion allows the compiler to

introduce executions of a statement in the optimized code that are not present in the unoptimized

code. To be beneficial, the added cost of these extra executions must be offset by savings resulting

from speculative code motion. Therefore, profile-based cost-benefit analysis is typically required

to take advantage of speculative code motion. Predicated code motion further creates opportunities

for performing code motion more freely [18]. Statements can be moved out of control structures

and executed at a different program point under the original conditions by predicating its execution

with an appropriately constructed predicate expression. Profiling can assist in estimating whether

the benefit achieved by code motion outweighs the cost of evaluating the predicate expression.
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4.3.1.2 Control Flow Restructuring

If the conditions under which a statement can be optimized hold along some execution paths but not

others, then control flow restructuring can be employed to enable the optimization of the statement

as follows. By using restructuring we can create a program such that when we reach the statement,

based on the incoming edge along which we arrive at the statement, we can determine whether the

statement can be optimized. We can create unoptimized and optimized copies of the statement and

place them along the incoming edges. The scope of control flow restructuring determines the degree

to which the code can be optimized. For example, the changes due to intraprocedural control flow

restructuring are localized to within a procedure body whereas interprocedural restructuring changes

the flow of control across procedure boundaries. The primary cost of using this transformation is

the resulting growth in code size. Increasing the scope of restructuring also increases the amount

of resulting growth in code size. Function inlining is one way to achieve interprocedural control

flow restructuring. However, it is also accompanied with significant code growth. To limit code

growth while performing interprocedural optimizations, a couple of alternative techniques have

been proposed: partial inlining of frequently executed paths through a procedure [23] and creating

procedures with multiple entries and multiple exits [4].

4.3.2 Optimizations

4.3.2.1 Partial Redundancy Elimination

The PRE of expressions is traditionally performed using safe code motion [15, 25, 36]. However,

many opportunities for redundancy removal cannot be exploited using this restricted form of code

motion. For example, in Figure 4.7(a) the evaluation of expression x + y in node 7 is partially

redundant because if node 2 is visited prior to reaching node 7, then the expression has already been

evaluated at node 2 and does not need to be evaluated again. However, the partial redundancy of

x + y cannot be either reduced or eliminated using safe code motion. If speculative code motion is

used to hoist x + y above node 6, as shown in Figure 4.7(b), a net reduction in partial redundancy

of x + y results if the frequency of node 3 is less than the frequency of node 7. If control flow

restructuring is employed in the manner shown in Figure 4.7(c), then the redundancy is entirely

eliminated. However, some code growth also results. Cost-benefit functions based on profile data

can be designed to selectively carry out the preceding transformations.

The use of speculation was first proposed in [20, 21] and that of control flow restructuring was first

proposed in [40]. The use of the combination of all the preceding transformations to achieve greater

benefits at lower costs is discussed in [6]. Although we have only considered redundancy elimination

in the context of arithmetic expressions, partial redundancy elimination can also be applied in other

contexts such as load removal [7] and array bound check elimination [8, 19].

4.3.2.2 Partial Dead Code Elimination

The PDE of an assignment is achieved by delaying the execution of the statement to a point where

its execution is definitely required [26]. Using conservative code motion all opportunities for PDE

cannot be exploited. For example, the assignment in node 2 of Figure 4.7(d) is partially dead because

if control reaches nodes 6 or 7, the value computed by the assignment is never used. However, we

cannot simply delay the execution of the assignment to node 8 because in some cases placement

of the assignment at node 8 can block the correct value of x from reaching its use in node 10.

Straightforward code motion can block the sinking of the assignment to node 4, and therefore any

farther, thus preventing any optimization to occur. By predicating the statement we can enable its

sinking past node 4 and down to 8 and thus achieve PDE — (see Figure 4.7(e)). This approach is

clearly beneficial if the frequency of node 8 is less than that of node 2. Control flow restructuring

can also be applied to carry out PDE as shown in Figure 4.7(f). As in the case of PRE, profile-based

cost-benefit analysis is required to selectively apply the preceding forms of PDE. Predication-based
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FIGURE 4.7 Code motion and control flow restructuring for profile guided classical optimizations.

PDE was first proposed in [22]. A control flow restructuring algorithm that minimizes code growth

associated with PDE can be found in [5]. Just as partially dead assignments can be eliminated using

the motion and restructuring transformations, partially dead stores can also be eliminated.

4.3.2.3 Conditional Branch Elimination

A conditional branch is considered to be partially redundant if along some paths its outcome can be

determined at compile time. Elimination of a partially redundant conditional branch requires flow

graph restructuring to be performed. During flow graph restructuring, the paths along which the
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outcome of a conditional branch is known at compile time are separated from the paths along which

its outcome is unknown through code duplication. The basic idea of intraprocedural restructuring

was first proposed in [37] and then a more general algorithm based on interprocedural demand-driven

analysis as well as profile-guided interprocedural control flow restructuring was given in [4].

The last example in Figure 4.7 illustrates this optimization. The flow graph in Figure 4.7(g)

contains two paths, an intraprocedural one and an interprocedural one, along which conditional

branch elimination is applicable. The first path is established when x > 0 is false and hence x = 1

is known to be false. The second path arises because if x = 1 is true, and value of x is preserved

during the call to function F(), the condition x = 0 evaluates to false. The first opportunity is

exploited through intraprocedural control flow restructuring and the second requires interprocedural

restructuring that is achieved by splitting the exit of function F() as shown in Figure 4.7(h).

4.3.3 Partial Redundancy Elimination via Speculative Code Motion

A computation is called partially redundant if at least one path exists on which it is computed twice.

Such redundancies can be eliminated by executing the computation once at an appropriate program

point, assigning the value to an auxiliary variable and replacing the original computations by the

auxiliary variable. The problem of finding an appropriate program point is guided by the following

transformational idea. Unnecessary recomputations can be avoided by moving computations in the

opposite direction of the control flow and placing them in a more general context maximizing in this

way the potential of redundant code that can be eliminated thereafter.

Under the restriction that no new computations are inserted along any path, computationally

optimal results can be obtained statically [25]. However, it is assumed that all paths are equally

important, which is not true in practice. In this section we present a PRE algorithm that takes

profile information into account to reduce the number of recomputations further. By executing

expressions speculatively, it enables the removal of redundancies along more frequently executed

paths at the expense of introducing additional expression evaluations along less frequently executed

paths. More specifically, speculation is the process of hoisting expressions such that an expression

whose execution is controlled by a conditional prior to speculation is executed irrespective of the

outcome of that conditional after speculation. In this way new computations may be introduced on

some paths that can alter the semantics of a program in case these computations can cause exceptions.

However, modern architectures like Intel IA-64 support speculative execution of instructions by

suppressing exceptions making this kind of transformation safe.

The remainder of this section is organized as follows. We first present a cost model that can be

used to identify profitable opportunities for speculation. Next we present a practical algorithm for

carrying out cost-benefit analysis based on probabilistic data flow analysis. We show how under this

analysis the application of the cost model is approximated. Finally, we present the details of the code

motion framework used to carry out PRE using a combination of safe code motion and selectively

enabled speculative code motion based on cost-benefit analysis.

4.3.3.1 Cost Model

For a given expression exp and a conditional node n we formulate a condition under which it is

potentially profitable to enable speculative hoisting of exp above n. Essentially we identify the paths

through n that can benefit from speculation of exp and paths that incur an additional execution time

cost due to speculation of exp. If the probability of following paths that benefit is greater than the

paths that incur a cost, then speculation of exp is enabled at n. The computation of these probabilities

is based on an execution profile.
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FIGURE 4.8 Path classification.

To develop the preceding cost model for hoisting an expression exp above a conditional node

n, it is useful to categorize the program subpaths that either originate or terminate at n as follows

(Figure 4.8):

1. Available subpaths are subpaths from the start node to n along which an evaluation of exp is

encountered and is not killed by a redefinition of any of its operands prior to reaching n.

2. Unavailable subpaths are subpaths from the start node to n along which exp is not available

at n. These subpaths include those along which an evaluation of exp is not encountered or if

exp is encountered, it is killed by a redefinition of one of its operands prior to reaching n.

3. Anticipatable subpaths are subpaths from n to the end node along which exp is evaluated prior

to any redefinition of the operands of exp.

4. Unanticipatable subpaths are subpaths from n to the end node along which exp is not antici-

pable at n. These subpaths include those along which exp is not evaluated or if exp is evaluated,

it is done after a redefinition of one of its operands.

The paths that can potentially benefit from hoisting of exp above a conditional node n are the paths

that are obtained by concatenating available subpaths with anticipatable subpaths at n. First this is

because all along these paths there is redundancy. An evaluation of exp prior to reaching n causes an

evaluation of exp performed after visiting n to become redundant. Second, the redundancy cannot

be removed unless exp is hoisted above node n. Therefore, we can now state that, given a path p that

passes through the conditional node n, the hoisting of an expression exp above n can benefit path

p only if exp is available and anticipatable at n’s entry along p. We denote the set of paths through

n that benefit from hoisting of exp above n as BenefitPathsexp(n). The expected overall benefit

of speculating exp can be computed by summing up the execution frequencies of paths in this set,

shown as follows (Figure 4.9):

Benefitexp(n) =
∑

p∈BenefitPathsexp(n)

Freq(p)

The paths that incur a cost due to hoisting of exp above a conditional node n are the paths that are

obtained by concatenating unavailable subpaths with unanticipatable subpaths at n. This is because
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FIGURE 4.9 Paths that benefit vs. paths that incur a cost.

along these paths an additional evaluation of exp prior to reaching n is introduced. Therefore, given

a path p that passes through a conditional node n, the hoisting of an expression exp above n costs

path p only if exp is unavailable and unanticipatable at n’s entry along p. We denote the set of paths

through n that incur a cost due to hoisting of exp above n as CostPathsexp(n). The expected overall

cost of speculating exp above n can be computed by summing up the execution frequencies of paths

in this set shown as follows:

Costexp(n) =
∑

p∈CostPathsexp (n)

Freq(p)

Speculation should be enabled if based on the profile data we conclude that the expected benefit

exceeds the expected cost. A Boolean variable EnableSpecexp(n) is associated with an expression

and conditional node pair (exp,n), which is set to true if speculation for exp at n is enabled;

otherwise it is set to false. For convenience we restate the speculation enabling condition in terms

of probabilities as the detailed analysis algorithm that we present later is based on probabilistic data

flow analysis. As shown later, speculation is enabled if the probability of following a path through n

that benefits is greater than the probability of following a path that incurs an additional cost. Freq(n)

is the execution frequency of node n. Note that the sum of the following two probabilities does not

need to be one because there may be other paths that are unaffected by speculation:

EnableSpecexp(n) = ProbCostexp(n) < ProbBenefitexp(n)

where:

ProbCostexp(n) =
Costexp(n)

Freq(n)

and

ProbBenefitexp(n) =
Benefitexp(n)

Freq(n)
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FIGURE 4.10 Enabling speculation using idealized cost model.

It should be noted that if an expression exp is never available or never anticipable at n, then

ProbBenefitexp(n) is zero and therefore speculation is never enabled at n. On the other hand,

if exp is always available or always anticipatable at n, then ProbCostexp(n) is zero and, if the

ProbBenefitexp(n) is nonzero, speculation is enabled at n.

Let us apply the preceding cost model to the example in Figure 4.10. We assume that we are given

the entire CFT shown in Figure 4.10 according to which the loop iterates 10 times. The encircled

numbers at the right side of the nodes denote the number of times the node is visited during execution.

Hence, x + y is evaluated 11 times and a + b is evaluated 15 times with 2 evaluations of x + y and

7 evaluations of a + b being redundant. Given the entire CFT, the cost model we have described

is used to compute the precise probabilities given in the Figure 4.10. From these probabilities we

conclude that we should enable speculative hoisting of both x + y and a + b above conditional node

9. However, the speculation for either of the expressions should not be enabled at conditional nodes

6, 3 and 4.

4.3.3.2 Cost-Benefit Analysis Based on Probabilistic Data Flow Analysis

The analysis we described in the preceding section is idealized in two respects. First, the availability

and anticipability data flow information is required for each interesting path that passes through a

conditional. Second, it is assumed that the entire CFT is available so that the execution frequencies

of each of these interesting paths can be determined. Although it is possible to compute path-based

data flow information and maintain complete control flow traces using the techniques described in

[20] and [27, 43] respectively, for practical reasons it may be desirable to explore less expensive

alternatives. In this section we present a detailed cost-benefit algorithm that uses probabilistic data

flow analysis (PDFA) guided by two-edge profiles. Therefore this algorithm neither requires the

entire control flow trace nor does is compute data flow information on a per path basis.
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Whereas traditional data flow analysis calculates whether a data flow fact holds or does not hold

at some program point, PDFAs calculate the probability with which a data flow fact can hold at some

program point. Therefore, when applied to the data flow problems of availability and anticipability,

PDFA provides us with the following probabilities: AvailProbexp(n) is the probability that expres-

sion exp is available at node n and AntiProbexp(n) is the probability that exp is anticipatable at node

n. Therefore, we reformulate the speculation enabling condition for expression exp at a conditional

node n in terms of these probabilities as follows:

EnableSpecexp(n) = ProbCostexp(n) < ProbBenefitexp(n)

where

ProbBenefitexp(n) ≈ AvailProbexp(n) × AntiProbexp(n)

and

ProbCostexp(n) ≈ (1 − AvailProbexp(n)) × (1 − AntiProbexp(n))

It is important to note that the preceding formulation is an approximation of the prior cost model

because it is based on the assumption that availability and anticipability at a conditional node are

independent events. Therefore, we have computed the probability of following a path that benefits

(incurs a cost) by taking the product of probabilities for availability (not availability) and anticipability

(not anticipability). However, as we know, in practice the outcomes of conditionals in the program

may be correlated. Therefore, the preceding model is approximate even though it uses precise

probabilities for availability and anticipability.

Let us reconsider the example of Figure 4.10 in light of the preceding cost model. Before we

can use this model, we should compute the availability and anticipability probabilities. We compute

the precise probabilities using the CFT. As we can see from the results in Figure 4.11, even though

the estimates for cost and benefit probabilities have changed, their relationship has not changed.

Therefore, as before we again conclude that speculation should only be enabled at conditional

node 9 for the two expressions.

Although in the preceding example we used an approximation of the cost model, we still used

precise availability and anticipability probabilities derived from the CFT. Next we discuss how these

probabilities can be approximated using PDFA based on two-edge profiles.

The first probabilistic data flow system that is based on edge probabilities was developed by

Ramalingam [38]. A demand-driven frequency analyzer for which cost can be controlled by permit-

ting a bounded degree of imprecision was proposed by Bodik et al. [6]. Because edge frequencies do

not capture any branch correlation, the approximations introduced in computed probabilities can be

considerable. Therefore, Mehofer and Scholz [30] proposed a data flow system based on two-edge

probabilities. Instead of relating the data flow facts at a node only with the data flow facts at the

immediate predecessor nodes in the flow graph using one-edge probabilities, the data flow facts at

a node are related to two predecessor nodes using a flow graph with two-edge probabilities. In this

way significantly better results can be achieved as presented in [30]. Of course, this approach can

be made more precise by extending it beyond two edges; however, it can undermine our goal of

computing the probabilities efficiently.

Availability and anticipability are calculated based on the traditional formulations of the data flow

problems as shown in Figure 4.12(a). Availability analysis is guided by the local Boolean predicates

LocAvail and LocBlkAvail. LocAvailexp(n) equals true, if an occurrence of exp in n is not blocked by a

subsequent statement of n, that is, a statement that modifies variables used in exp. LocBlkAvailexp(n)

equals true, if exp is blocked by some statement of n, that is, a statement modifying a variable used
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FIGURE 4.11 Enabling speculation using precise availability and anticipability probabilities.

in exp. Boolean conjunction is denoted by ∧, Boolean disjunction is denoted by ∨ and boolean

negation is denoted by a bar. Prefix N and X are used as abbreviations of entry and exit, respectively.

The confluence operator
∧

indicates that the availability problem is a forward all-path problem.

Similarly, anticipability analysis is guided by the local predicates LocAnti and LocBlkAnti.

LocAntiexp(n) equals true, if an occurrence of exp in n is not blocked by a preceding statement of

n, that is, a statement that modifies variables used in exp. LocBlkAntiexp(n) equals true, if exp is

blocked by some statement of n, that is, a statement modifying a variable used in exp. The confluence

operator ∧ indicates that the anticipability problem is a backward all-path problem.

Because probabilistic data flow systems are based on any problems in which the meet operator is

union, the analyses problems have to be transformed as described by Reps et al. [39]. If a “must-

be-X” problem is an intersection problem, then the “may-not-be-X” problem is a union problem.

The solution of the “must-be-X” problem is the complement of the solution of the “may-not-be-X”

problem. Figure 4.12(b) presents the data flow equations after complementing the original ones. Note

that the initializations of the start and end node have to be changed appropriately as well. Because

now the confluence operator for both problems is union, the PDFA framework can be applied in

a straightforward way. The solutions N-NoAvail∗, X-NoAvail∗, N-NoAnti∗ and X-NoAnti∗ of the

equation systems denote the probabilities of the complementary problems. Thus, the probabilities for

availability and anticipability are given by N-Avail∗ = 1−N-NoAvail∗, X-Avail∗ = 1−X-NoAvail∗,

N-Anti∗ = 1 − N-NoAnti∗ and X-Anti∗ = 1 − X-NoAnti∗.

Next we discuss PDFAs in more detail and specify the equation system for the two-edge approach.

PDFAs as presented in [30, 38] are applicable for a large class of data flow problems called finite

bidistributive subset problems. This class of data flow problems requires (1) a finite set of data flow

facts and (2) the data flow functions that distribute over both set union and set intersection. This

class of data flow problems is more general than bit-vector problems but less general than the class

of finite distributive subset problems introduced by Reps et al. [39].
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Availability Analysis:

—LocAvailexp(n): There is an expression exp in n which is available at the exit of n

(downwards exposed).

—LocBlkAvailexp(n): The expression exp is blocked by some statement of n.

N − Availexp(n) =





f alse if n = start node
∧

m∈pred(n)

X − Availexp(M) otherwise

X − Availexp(n) = LocAvailexp(n) ∨ (N − Availexp(n) ∨ LocBlkAvailexp(n))

Anticipability Analysis:

—LocAntiexp(n): There is a hoisting candidate exp in n (upwards exposed).

—LocBlkAntiexp(n): The hoisting of exp is blocked by some satement of n.

N − Antiexp(n) = LocAntiexp(n) ∨ (X − Antiexp(n) ∧ LocBlkAntiexp(n))

X − Antiexp(n) =

{

f alse if n = end node
∧

m∈succ(n)

X − Antiexp(m) otherwise

(a) Original Data Flow Equations.

Dual Availability Analysis:

N − NoAvailexp(n) =







true if n = start node
∨

m∈pred(n)

X − NoAvailexp(m) otherwise

X − NoAvailexp(n) = (LocBlkAvailexp(n) ∧ LocAvailexp(n)) ∨

(N − NoAvailexp(n) ∧ LocAvailexp(n))

Dual Anticipability Analysis:

N − NoAntiexp(n) = (LocBlkAntiexp(n) ∧ LocAntiexp(n)) ∨

(X − NoAntiexp(n) ∧ LocAntiexp(n))

X − NoAntiexp(n) =

{

true if n = end node
∨

m∈succ(n)

N − NoAntiexp(m) otherwise

(b) Data Flow Equations After Transformation.

FIGURE 4.12 Availability and anticipability analysis.

PDFA equations are built by utilizing a so-called exploded control flow graph (ECFG) [39], which

is created from the original CFG and a data flow problem. Figure 4.13 depicts the ECFG for the

availability problem for a subgraph of our example consisting of the nodes 1, 2, 3, 4 and 5.

The ECFG has N × (D ∪ {�}) nodes with N denoting the node set of the corresponding CFG

and D denoting the data flow information set extended by the special symbol � used to calculate

node frequencies. Data flow facts d1 and d2 designate expressions x + y and a + b, respectively.

The edges of the ECFG are derived from the representation relation [39] of a data flow function f ,

Rf ⊆ (D ∪ {�}) × (D ∪ {�}), as follows:

Rf = {(�, �)}

∪ {(�, y)|y ∈ f (φ)}

∪ {(x, y)|y ∈ f ({x}) ∧ y /∈ f (φ)}
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FIGURE 4.13 CFG and ECFG of subgraph of our example.

Note that nodes (n, �) are always connected with the successor nodes. Nodes 1 and 2 do not affect

availability that is described by the identity function where all nodes are connected with the corres-

ponding “exploded” successor nodes. However, because data flow fact d1 is generated at node 3, we

have an edge from (3, �) to (6, d1). On the other hand, because data flow fact d1 is killed at node 4,

no outgoing edge exists from node (4, d1). In this way an ECFG represents DFA functions explicitly.

For the two-edge approach we require two-edge probabilitiesp(u, v, w) that specify the probability

that execution can follow edge vw once edge uv has been reached:

p(u, v, w) =
{ occurs(uvw,π)

occurs(uv,π)
if occurs(uv, π) =/ 0,

0 otherwise

Function occurs denotes the number of occurrences of a path in the CFT π . Further, we need the

notion of predecessor edge similar to predecessor node:

In(vw, δ) =
{

(u, δ′′)
∣

∣(u, δ′′) → (v, δ′) → (w, δ) ∈ ECFG
}

In(vw, δ) denotes the set of predecessor edges of edge vw with data fact δ in the ECFG. Finally,

Figure 4.14 gives the equation system of the two-edge approach.

The unknowns of the equation system are related to the ECFG edges. Unknown y(vw, d) denotes

the expected frequency of data flow fact d to hold true at node w under the condition that edge vw
has been taken, and y(vw, �) denotes the expected number of times that edge vw is executed. In

Figure 4.14 the core of the equation system is Equation (3). The unknown related to edge vw and

fact δ is linked to all unknowns related to precessor edges weighting it with a two-edge probability.

For initialization reasons we introduce an artificial “root” edge ǫs from the pseudo node ǫ to the

start node s. In Figure 4.14 Equation (1) and Equation (2) show the initialization of the equation

system with c(d) denoting the initial values of the corresponding data flow problem, Equation (4)

describes the relation between nodes and edges in the ECFG. Once the equation system with the

frequency unknowns has been solved, Prob(v, d) = y(v, d)/y(v, �) denotes the probability of data

flow fact d to hold true in node v. The two-edge equation system of Figure 4.14 has been presented

in terms of forward data flow problems. For backward problems the two-edge probability and the

equation system must be adapted accordingly.

The probabilities for availability of the two-edge approach coincide with the precise results for our

example. Note that for solving the availability of x +y precisely at conditional node 9, it is important

to figure out whether path 3 − 6 − 9 or 4 − 6 − 9 has been taken. Fortunately, the two-edge approach
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(1)       y(ǫs,Λ) = 1      

for all d in D:

(2) y(ǫs,d) = c(d)

for all vw in E: for all δ in D:

for all w in N: for all δ in D:

(3) y(vw,δ) =

y(vw,δ)(4) y(w,δ) =

Σ

Σ

p(u,v,w)    y(uv,δ′)*
(u, δ′)ǫ In(vw,δ)

uǫpred(v)

FIGURE 4.14 Two-edge equation system.

succeeds in enabling hoisting of both expressions at node 9. However, in general, the probabilities

may deviate from the precise results such that beneficial opportunities for improvements are missed.

Thus, a trade-off exists between preciseness of the results having possibly direct influence on the

optimizations performed and the effort required to obtain those results.

4.3.3.3 Speculative Code Motion Framework

We next present the speculative code motion framework that is used to carry out the optimization.

This framework hoists expressions to appropriate points in the program using safe code motion

across conditionals at which speculation is disabled and speculative code motion across conditionals

where speculation is enabled. A number of PRE algorithms can be found in the literature. We adapt

the safe code motion based PRE algorithm proposed by Steffen [41].

The original analysis in [41] consists of a backward data flow analysis phase followed by a forward

data flow analysis phase. The backward data flow is used to identify all down-safe points, that is,

points to which expression evaluations can be safely hoisted. Forward data flow analysis identifies

the earliest points at which expression evaluations can be placed. Finally, the expression evaluations

are placed at points that are both earliest and down-safe. We modify the down-safety analysis to

take advantage of speculation past the conditional nodes where speculation has been enabled. The

earliestness analysis remains unchanged.

The placement points identified by the preceding algorithm are entry or exit points of nodes in

the CFG. In some situations the flow graph may not contain a node at the appropriate placement

point. To ensure this never happens, certain so-called critical edges are split and a synthetic node is

introduced. These are edges from nodes with more than one successor to nodes with more than one

predecessor. Therefore, in the flow graph of Figure 4.10, edge 6 → 9 is a critical edge. Thus, a node

is introduced along this edge before performing the analysis for carrying out PRE.

The data flow equations for computing down-safety of an expression exp are as follows. An

expression exp is down-safe at entry of node n if either it is computed in n (i.e., Usedexp(n) is

true) or it is down-safe at n’s exit and preserved by n (i.e., Presexp(n) is true). The expression exp

is down-safe at the exit of a conditional node n if one of the following conditions is true: exp is

down-safe at entry points of all of n’s successor nodes; or speculation of exp has been enabled at

n, that is, AppEnabSpecexp(n) is true, and exp is down-safe at least one of n’s successor nodes.

The first of the preceding two conditions was used in Steffen’s original code motion framework as

it carries out safe code motion. The second condition has been added to allow useful speculative
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FIGURE 4.15 Speculative PRE based on modified down-safety analysis.

motion of exp to occur. If the node under examination is not a conditional node, then only the first

of the two conditions is checked:

N − DSafeexp(n) = Usedexp(n) ∨ (Presexp(n) ∧ X − DSafeexp(n))

X − DSafeexp(n) =

























False n is the exit node

∧

m∈Succ(n) DSafeexp(m) n is a conditional

∨(AppEnabSpecexp(n) ∧
∨

m∈Succ(n) Dsafeexp(m))

∧

m∈Succ(n) DSafeexp(m) otherwise

The outcome of applying the preceding algorithm to the example of Figure 4.10 is shown in

Figure 4.15. From the results of down-safety analysis we observe the following. The expressions

x + y and a + b are both down-safe at the entry of node 9 because speculation is enabled at 9

for both expressions. Although we did not formally describe the earliestness analysis, it is easy to

informally observe that the earliest points at which x + y is down-safe are the entry point of node 3

(because x + y is not down-safe at the exit of node 2) and the exit point of node 4 (because x + y

is not down-safe at the entry of node 4). Therefore, evaluations of x + y are placed at these points

and assigned to the temporary cx that replaces all the original occurrences of x + y in the program.

Similarly, we also observe that the earliest points at which a + b is down-safe are the entry point of

node 5, entry point of node 7, exit point of node 8 and entry point of node 8a. Evaluations of a + b

are placed at these four points and assigned to the temporary ca that replaces all original occurrences

of a + b.

The optimized placement results in 10 evaluations of x + y and a + b reducing the evaluations of

x + y by 1 and a + b by 5, respectively. Hence, the enabling of speculation for the two expressions

at node 9 was profitable and resulted in more efficient code. This example also illustrates the need

for breaking critical edges because an evaluation of a + b has been placed in the newly created

node 8a.
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4.3.4 Cost of Analysis

When applied to the entire program, the compile-time cost of a profile-guided optimization algorithm

can be expected to be higher than its non-profile-guided counterpart. For example, the speculative

PRE algorithm of the preceding section is more expensive than the traditional safe code motion-

based algorithm. Additional cost results from the cost-benefit analysis associated with enabling

speculation. However, the following approaches can be applied to limit the cost of profile-guided

algorithms:

• The application of optimization algorithms can be limited so that only the code belonging to

frequently executed (hot) program regions is aggressively optimized.

• Instead of carrying out exhaustive data flow analysis, we can employ demand driven analysis

techniques [16, 17, 24]. These techniques limit the cost of data flow analysis by only computing

data flow facts that are relevant to a code optimization. This approach is particularly beneficial

for expensive analyses (e.g., interprocedural analysis).

• Conservatively, imprecise frequency analysis techniques can be used to limit the cost of

frequency analysis. A frequency analyzer for which cost can be controlled by permitting a

bounded degree of imprecision was proposed by Bodik et al. [6]. In addition, this analyzer is

demand-driven.

4.4 Profile-Guided Memory Optimizations

Over the past decade, whereas the processor speeds have risen by 55% per year, the memory speeds

have only improved by 7% per year. As a result, the cache miss penalties have increased from several

cycles to over 100 cycles. Because the memory accesses, especially those due to loads, are on the

critical path, cache misses greatly reduce the ability of a modern processor to effectively exploit

instruction level parallelism.

Broadly speaking, two classes of optimization techniques are aimed at improving cache perfor-

mance: those that reduce the number of cache misses to minimize memory stalls and others that

better tolerate cache miss penalty. The focus of this section is on optimizations of the first type.

A program’s address space is divided into three parts: heap, stack and global space. Stack data

typically exhibit good cache behavior. Therefore, most of the research has been aimed at improving

the cache locality for statically allocated global data and dynamically allocated heap data. Although

the optimizations for statically allocated data are typically carried out at compile time, optimizations

applicable to dynamically allocated data must use a combination of compile time decisions and

runtime actions. The techniques used to improve data locality can be divided into the following

categories:

• Object placement techniques determine a placement of data objects in relation to each other

that provides improved cache behavior.

• Object layout techniques determine a layout of fields within a large data object to improve

cache locality.

• Object layout and placement techniques alter both the layout of fields within an object as well

as the placement of data objects in relation to each other.

• Object compression techniques improve cache behavior by reducing the data memory footprint

of a program

4.4.1 Object Placement

The address profiles provide the compiler with the information useful in organizing the placement of

objects in memory in relation to one another. For example, we can categorize objects as frequently
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referenced hot objects and infrequently accessed cold objects. The hot objects can be placed together

separate from the cold objects. By further seeing which hot objects are frequently used together, the

placement of hot objects in relation to each other can be determined.

For statically allocated global data, object placement can be carried out at one time during com-

pilation. However, the placement of heap objects can only be carried incrementally and at runtime

as they are dynamically allocated. Standard system provided memory allocators (e.g., malloc) do

not provide any control over data placement. The two proposed approaches for placement of heap

objects are memory clustering and object migration.

4.4.1.1 Object Migration

In this approach standard memory allocators are used; and therefore when the heap objects are

initially allocated, their placement is not optimized. At runtime the objects are migrated from their

original locations to other ones to improve cache locality. Two main challenges of carrying out

effective object migration exist.

First, a substantial overhead of object migration exists. The two sources of this overhead are

object migration, which requires extra execution time, and access to migrated objects, which may

require additional operations in some situations. If the gain of improved cache locality outweighs the

migration overhead, only then is the object migration optimization profitable. The role of address

profiles is to identify objects that should be colocated through migration.

Second, the challenge is that of maintaining program correctness in the presence of object

migration. If the programmer makes use of location of data in developing the code, clearly object

migration can lead to correctness problems. For example, consider the objects corresponding to

variable a and structure pointed to by p shown as follows. The user may assume that the objects

are colocated and use address arithmetic in accessing the fields. In particular, the user may access

p → c data field using &a + 2 ∗ sizeof (int). Clearly, object migration can cause such a code

to fail.
int a;

struct {

int b;

int c;
} ∗ p;

One approach to addressing the correctness issue is to provide programming guidelines that restrict

the manner in which data can be accessed. Address arithmetic can be allowed but only within an

object; that is, we can prohibit the user from deriving the address of one object from the address of

another object. This restriction would eliminate the problem illustrated in the preceding example.

Another approach is to provide hardware support that may enable safe application of object migration

in some situations.

Luk and Mowry [28] have proposed hardware support for memory forwarding that uses limited

hardware support to enable aggressive object migration. The problem addressed by this support is

as follows. When an object is migrated, pointers to that object may exist elsewhere in the program.

Because these pointers are out of date, any accesses through them are illegal. To correctly handle

accesses to migrated objects through such pointers the following support is provided. An extra bit

is attached to each machine word that has the following semantics. If the bit attached is set, it

indicates that the object that resided at that location has been migrated and the location now contains

a forwarding address for the migrated object. The load and store instructions are implemented to

carry out the extra level of dereferencing based on the contents of the bit attached to the memory

location addressed. Thus, this approach enables migration of objects if forwarding addresses are left

behind at locations where the objects originally resided. It should be noted that extra overhead is
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FIGURE 4.16 Memory forwarding.

associated with memory forwarding both in terms of extra storage that is needed to hold forwarding

addresses and extra execution time required to carry out extra level of dereferencing.

The example in Figure 4.16 illustrates the preceding approach. It shows a link list where initially

all the items in the link list reside at their originally assigned locations. The link list after some of

the elements have been migrated to adjacent memory locations is shown next. The list elements are

migrated so that fewer cache misses occur when the list is traversed. Note that the original locations

of the migrated list elements now contain forwarding addresses. If any dangling pointers still point

to these old addresses, they are forwarded to the new addresses by the hardware.

4.4.1.2 Memory Clustering

This approach supports memory management routines that provide limited user level control over

object placement. Therefore, unlike object migration that dynamically changes object placement,

this approach places objects in more desirable locations to begin with. As a result the migration

overhead is avoided. However, this approach burdens the programmer with the task of providing

hints to the memory allocator for making good object placement decisions.

An example of a user level memory allocator is ccmalloc allocator proposed by Chilimbi et al.

[11]. In addition to providing the size of the object during memory allocation, the user provides a

pointer to an existing object that is likely to be accessed contemporaneously with the newly allocated

object. Whenever possible, ccmalloc allocates the new object in the same cache block as the

existing object. The address profiles can be used by the user to identify objects that are accessed

contemporaneously.

In Figure 4.17 we show the grouping of nodes of a binary tree with and without clustering. Group

of nodes belonging to the same cache block are shown by the shading in Figure 4.17. The grouping

prior to clustering reflects the order in which the nodes are created. The grouping following the use

of ccmalloc allocates a group of neighboring nodes to the same cache block. By assuming that this

decision was based on address profiles of perhaps a breadth first traversal of the tree, the optimized

placement of tree nodes can lead to better cache performance.

Although the preceding approach requires a programmer’s involvement, it is also possible to

automate this process using address profiles. We can identify references that appear close to each

other in the address profiles and generate a signature for these group of references. When creating

nodes at runtime, an attempt can be made to colocate the nodes with the same signature.
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(a) Unoptimized (b) Optimized

FIGURE 4.17 A ccmalloc example.

Struct node {
Int field_1:
Int field_2:
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Int field_4:
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FIGURE 4.18 Field reorganization.

4.4.2 Object Layout

A data structure is often defined by the programmer to support code readability. Therefore, logically

related data fields are often put together. The compiler simply uses a memory layout for the fields that

mirrors the order in which the fields are declared. However, this order may not be consistent with the

ordering that incurs fewer cache misses. To improve cache performance, the layout of fields within

an object can be reordered so that the fields that are accessed frequently and contemporaneously are

placed close to each other. Of course, this transformation is only useful if the object is large enough

that it extends across multiple cache blocks. Truong et al. [34] evaluated this approach and showed

that when a node spans several cache blocks, object layout optimization implicitly takes advantage

of cache line prefetching and reduces cache pollution, thus improving cache performance.

Figure 4.18 shows the default memory layout used by the compiler on the left. On the right the

layout generated after profile-guided field reorganization is shown under the assumption that the

cache block is large enough to hold two fields and fields 1 and 4 are used together. A pair of accesses

of fields 1 and 4 would generate two cache misses before reorganization and only one cache miss

after reorganization.

4.4.3 Object Layout and Placement

Some highly aggressive locality improving transformations result in simultaneous changing of object

layouts and their placement with respect to each other. Consider a data structure that contains multiple

objects (or nodes) of the same type. Moreover, each object contains several fields; some are hot
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Struct node {
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FIGURE 4.19 Interleaving instances of the same type.

(frequently used) whereas others are cold (rarely used). Two transformations, instance interleaving

and object splitting, have been proposed to improve the cache behavior of such data structures.

4.4.3.1 Instance Interleaving

Instead of allocating an object in a contiguous set of memory locations, this approach proposed

by Truong et al. [34] interleaves the storing of multiple instances of object instances of the same

type. Hot fields from different object instances are stored together and so are the cold instances. The

application of this transformation to the example of Figure 4.18 is illustrated in Figure 4.19. The hot

fields (1 and 4) from different object instances are stored together in one place and the cold fields

(2 and 3) from different object instances are also stored together. Clearly, from this example we

can observe that both the internal layout and the relative placement of objects are changed by this

transformation.

4.4.3.2 Object Splitting

Chilimbi et al. [12] also proposed a transformation that separates hot fields within an object from the

cold fields. In fact, they split an object into two parts, the hot primary part and the cold secondary

part. Hot fields are accessed directly, whereas a pointer to the cold part is stored within the hot part

and thus an extra level of indirection is involved in accessing cold fields. This transformation does not

explicitly interleave the hot (cold) parts from different object instances. The locality across objects

can be improved by using memory clustering (e.g., ccmalloc) to group together hot (or cold)

fields from different object instances. The example in Figure 4.20 illustrates this transformation.

Compared with instance interleaving, this approach is much cleaner and easy to manage because the

modification to the original source code is easier to perform.

It is important to note that changing an object layout alone is not useful if the object is small and

fits within a cache block. However, when layout and placement are simultaneously changed, it is

beneficial to even split small objects because the splitting can allow clustering of a greater number

of hot parts of objects into a single cache block.

4.4.4 Object Compression

A complimentary technique for improving data cache behavior is that of object compression. This

technique improves cache performance by reducing the memory requirement by packing greater
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FIGURE 4.20 Object splitting.

amounts of data per cache block. Higher data density per cache block reduces the number of cache

misses that take place when accessing a given amount of data from memory.

Compile-time techniques have been developed to exploit the presence of narrow width data to

achieve compression. Stephenson et al. [33] have proposed bit width analysis that is used to discover

narrow width data by performing value range analysis. For example, a flag declared as an integer

may take only 0 or 1 values. Once the compiler has proved that certain data items do not require

a complete word of memory, they are compressed to a smaller size. This approach is particularly

useful for programs with narrow width multimedia data that are not packed by the user. The work by

Davidson and Jinturkar [14] also carries out memory; coalescing using compile-time analysis. The

preceding techniques share one common characteristic, they are applicable only when the compiler

can determine that the data compressed are fully compressible and they only apply to narrow width

nonpointer data.

Zhang and Gupta [45] have proposed profile-guided compression transformations that apply to

partially compressible data, and in addition to handling narrow width nonpointer data they also apply

to pointer data. Therefore, these transformations are quite effective in compressing heap objects.

The generality of this approach is quite important because experience has shown that although heap

allocated data structures are highly compressible, they are almost never fully compressible. This

approach is also simpler in one respect. It does not require complex compile-time analysis to prove

that the data are always compressible. Instead simple profile-guided heuristics can be used by the

compiler to determine that the data structure compressed contains mostly compressible data.

Compression of partially compressible data structures is based on the observation by Zhang et al.

[44] that majority of the data values encountered in data memory allocated to a program can be

divided into two categories: very small constant values and very large address values. In a node

belonging to a heap allocated data structure we are likely to have some data fields that may contain

small constants and pointer fields that contain large address values. If the 18 higher order bits of small

constants are the same, then we can truncate the value to 15 lower order bits because the remaining

bits can be simply obtained by replicating the highest order bit of this truncated entity. If the pointer

field stored in a node shares a common 17 bit prefix with the address at which the node itself is

stored, then we can truncate the pointer field also to 15 bits. This is because the full contents of the

pointer can always be reconstructed from the address at which the node resides. Two truncated 15 bit

entities, each representing either integer data or a pointer, can be compressed into a single word. Of

the two remaining bits of a 32 bit word, one is unused and the other is used to indicate whether the

word contains two compressed values. The word cannot contain two compressed values in case the

values are not found to be compressible at runtime. In this case it contains a pointer to a location

where the two fields are stored in uncompressed form.
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FIGURE 4.21 Compression of partially compressible data structure.

The benefits of the preceding optimization increase with the extent to which large and critical data

structures in the program can be compressed. The cost of the optimization is the additional instructions

for carrying out data compression, expanding compressed data prior to their use in computations,

checking the compressibility of data and accessing uncompressible data through an extra level of

indirection. If profiling indicates that the values in a data structure are mostly compressible, then the

benefits are found to outweigh the costs.

In Figure 4.21 the node structure contains an integer fielda and a pointer fieldnext. Let us assume

that profiling indicates that these fields are mostly compressible. In this situation the compiler replaces

them by a single combined field. At runtime when a node is created, a reduced amount of storage

is allocated to accommodate field a next. If the data stored are found to be compressible, then

they are stored in this single word as shown in Figure 4.21. The most significant bit is set to 0 if the

data are held by this compressed field. On the other hand, if the data stored are not compressible,

additional storage is allocated to store the data and a pointer to this location is placed in a next.

The most significant bit of a next is set to 1.

4.4.5 Profile-Guided Code Layout

The techniques discussed so far are applicable to program data. Techniques have also been proposed

to improve instruction cache behavior [29, 42]. The goal of such techniques is to layout the code

in a manner that increases the fraction of instructions per fetched instruction cache block that is

actually executed. Note that all instructions belonging to a cache block may not be executed due to

the presence of branches in the code.

Consider the example in Figure 4.22: the sizes of cache line and basic blocks (a, b, c and d) are

shown. For illustration purposes, let us assume that we have a two-entry fully associative cache. If

no layout optimizations are performed, it is likely that the compiler can generate the layout marked

as the original layout in the figure. This layout introduces a large number of instruction cache misses

primarily because the blocks a, b and d that are on the frequently executed path cannot be all kept in

the cache. Meanwhile, block c is fetched repeatedly but is rarely executed. By using path profile data

we can easily determine that it is more beneficial to use the optimized layout shown in Figure 4.22

in which blocks b and d are packed into the same cache line. The number of cache misses is greatly

reduced in this case. We have illustrated the application of code layout optimization at the basic block

level. Techniques for layout optimization at the procedural level have also been developed [29].
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FIGURE 4.22 Code placement.

4.5 Concluding Remarks

In this chapter we identify optimization opportunities that may exist during program execution but

cannot be exploited without the availability of profile data. Different types of profile data that are

useful for code optimization are identified. The use of this profile data in carrying out profile-guided

classical and memory optimizations is discussed. We identify the key issues involved in developing

profile-guided optimization algorithms and demonstrate these issues by developing a speculative

PRE algorithm.
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6.1 Introduction

This chapter gives an introduction to optimization techniques appropriate for object-oriented

languages. The topics covered include object and class layout, method invocation, efficient runtime-

type checks, devirtualization with type analysis techniques and escape analyses. Object allocation

and garbage collection techniques are also very important for the efficiency of object-oriented pro-

gramming languages. However, because of their complexity and limited space, this important topic

must unfortunately be omitted. A good reference is the book by Jones and Lins [16].

Optimization issues relevant to a variety of programming languages, including C++, Java, Eiffel,

Smalltalk and Theta, are discussed. However, to ensure consistent treatment, all examples have been

converted to Java syntax. When necessary, some liberties with Java syntax, such as true multiple

inheritance, have been made.
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6.2 Object Layout and Method Invocation

The memory layout of an object and how the layout supports dynamic dispatch are crucial factors

in the performance of object-oriented programming languages. For single inheritance there are only

few efficient techniques: dispatch using a virtual dispatch table and direct calling guarded by a type

test. For multiple inheritance many different techniques with different compromises are available:

embedding superclasses, trampolines and table compression.

6.2.1 Single Inheritance

In the case of single inheritance, the layout of a superclass is a prefix of the layout of the subclass.

Figure 6.1 shows the layouts of an example class and subclass. Access to instance variables requires

just one load or store instruction. Adding new instance variables in subclasses is simple.

Invocation of virtual methods can be implemented by a method pointer table (virtual function

table, vtbl). Each object contains a pointer to the virtual method table. The vtbl of a subclass is

an extension of the superclass. If the implementation of a method of the superclass is used by the

subclass, the pointer in the vtbl of the subclass is the same as the pointer in the superclass.

Figure 6.2 shows the virtual tables for the classes Point and ColorPnt defined as follows:

class Point {
int x, y;
void move(int x, int y) {...}
void draw() {...}
}

class ColorPnt extends Point {
int color;
void draw() {...}
void setcolor(int c) {...}
}

Point

y

x x

color

y

ColorPnt

FIGURE 6.1 Single inheritance layout.
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FIGURE 6.2 Single inheritance layout with virtual method table.
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Each method is assigned a fixed offset in the virtual method table. Method invocation is just three

machine code instructions (two load instructions and one indirect jump):

LD vtblptr,(obj) ; load vtbl pointer
LD mptr,method(vtblptr) ; load method pointer
JSR (mptr) ; call method

Dynamic dispatching using a virtual method table has the advantage that it is fast and executes in

constant time. It is both possible to add new methods and to override old ones. One extra word of

memory is needed for every object. On modern architectures, load instructions and indirect jumps

are expensive. Therefore, Rose [22] suggested fat dispatch tables, where the method code is directly

placed in the virtual method table eliminating one indirection. The problem with fat dispatch tables

is that the offsets for different method implementations must be the same. Either memory is wasted

or large methods must branch to overflow code.

6.2.2 Multiple Inheritance

While designing multiple inheritance for C++, Stroustrup also proposed different implementation

strategies [26]. Extending the superclasses as in single inheritance does not work anymore. The fields

of the superclass are embedded as a contiguous block. Figure 6.3 demonstrates embedding for class

ColorPnt, which is defined as follows:

class Point {
int x, y;
}

class Colored {
int color;
}

class ColorPnt extends Point, Colored {}

Embedding allows fast access to instance variables exactly as in single inheritance. The object

pointer is adjusted to the embedded object whenever explicit or implicit pointer casting occurs

(assignments, type casts, parameter and result passing). Pointer adjustment has to be suppressed for

casts of null pointers:

Colored col;
Colorpoint cp;
col = cp; // col=cp; if (cp!=null)col=(Colored)((int*)cp+2)

In C++ the pointer adjustments break if type casts outside the class hierarchy are used (e.g., casting

to void*). Garbage collection becomes more complex because pointers also point into the middle

of objects.

Point ColorPntColored

Colored

Point
y

x color

color

y

x

FIGURE 6.3 Multiple inheritance layout.
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FIGURE 6.4 Multiple inheritance layout with virtual method table.

Dynamic dispatching also can be solved for embedding. For every superclass, virtual method

tables have to be created and multiple vtbl pointers are included in the object. A problem occurs with

implicit casts from the actual receiver to the formal receiver. The caller does not know the type of

the formal receiver in the callee, and the callee does not know the type of the actual receiver of the

caller. Therefore, this type information has to be stored as an adjustment offset in the virtual method

table. Given the following definition for class ColorPnt, the virtual tables are organized as shown

in Figure 6.4.

class Point {
int x, y;
void move(int x, int y) {...}
void draw() {...}
}

class Colored {
int color;
void setcolor(int c) {...}
}

class ColorPnt extends Point, Colored {
void draw() {...}
}

Method invocation now requires four to five machine instructions, depending on the computer

architecture:

LD vtblptr,(obj) ; load vtbl pointer
LD mptr,method_ptr(vtblptr) ; load method pointer
LD off,method_off(vtblptr) ; load adjustment offset
ADD obj,off,obj ; adjust receiver
JSR (mptr) ; call method

This overhead in table space and program code is even necessary when multiple inheritance is

not used. Furthermore, adjustments to the remaining parameters and the result are not possible. A

solution that eliminates much of the overhead is to insert a small piece of code called a trampoline

that performs the pointer adjustments and then jumps to the original method. The advantages are a
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smaller table (no storing of an offset) and fast method invocation when multiple inheritance is not used

(the same dispatch code as in single inheritance). In the example of Figure 6.4, the setcolorptr
method pointer in the virtual method table of Colorpoint would point to code which adds three

to the receiver before jumping to the code of method setcolor:

ADD obj,3,obj ; adjust receiver
BR setcolor ; call method

When instance variables of common superclasses need to be shared, the offset of each such variable

has to be stored in the virtual method table. Each access to a shared variable then incurs an additional

penalty of loading and adding the appropriate offset.

6.2.3 Bidirectional Object Layout

The programming language Theta [20], like Java, uses single inheritance with multiple subtyping.

For this language, Myers proposed a bidirectional object layout and showed how the bidirectional

layout rules can be extended to support true multiple implementation inheritance [21]. The idea

behind bidirectional layout is that data structures can be extended in two directions and information

can be shared in a way that leads to less indirection and smaller memory usage. Both the object and

virtual method table extend in both directions. The object contains the instance variable fields, the

pointer to the object’s virtual method table, with negative offsets the pointer to the interface method

tables. The method dispatch tables also extend in both directions. The superclass information fields

are in the middle of the tables, and subclass fields are at both ends of the tables. Figure 6.5 shows

the object and method table layout scheme.

The key to the efficiency of the bidirectional layout is the merging of interface and class headers.

Determining an optimal layout is not feasible; therefore a heuristic is used. The details of the algorithm

can be found in the original article by Myers.

Given classes C1 and C2 defined as follows, the bidirectional layout scheme would be as shown

in Figure 6.6:

interface A { interface B extends A{
int a1() {...} int b1() {...}
int a2() {...} }
}

class C1 implements A { class C2 implements B {
int v1; int v2;
int a1() {...} int a2() {...}
int a2() {...} int b1() {...}
int c1() {...} int c2() {...}
} }

Class vtblptr

itblptr

vsub

vsuper

FIGURE 6.5 Bidirectional object layout with dispatch tables.
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FIGURE 6.6 Bidirectional object layout with virtual method table.

As Figure 6.6 shows, the bidirectional layout reduces object and vtbl sizes. No additional dispatch

headers and method tables are needed.

In a large C++ library with 426 classes, bidirectional layout only needs additional dispatch

headers in 27 classes with a maximum of 4 dispatch headers compared with 54 classes with more

than 7 dispatch headers.

6.2.4 Dispatch Table Compression

Invoking a method in an object-oriented language requires looking up the address of the block of

code that implements that method and passing control to it. In some cases, the lookup may be

performed at compile time. Perhaps there is only one implementation of the method in the class and

its subclasses; perhaps the language has provided a declaration that forces the call to be nonvirtual;

perhaps the compiler has performed a static analysis that can determine a unique implementation is

always called at a particular call site. In other cases, a runtime lookup is required.

In principle, the lookup can be implemented as indexing a two-dimensional table. Each method

name in the program can be given a number, and each class in the program can be given a number.

Then, the method call:

result = obj.m(a1,a2);

can be implemented by these three actions:

1. Fetch a pointer to the appropriate row of the dispatch table from the obj object.

2. Index the dispatch table row with the method number.

3. Transfer control to the address obtained.

Note that if two classesC1 andC2 are not related by an ancestor relationship or do not have a subclass

in common (due to multiple inheritance), and if the language is strongly typed (as with C++ and

Java), then the numbers assigned to the methods of C1 do not have to be disjoint from the numbers

used for the methods of C2.

The standard implementation of method dispatch in a strongly typed language such as C++ using

a virtual table (vtbl) may be seen to be equivalent. Each virtual table implements one row of the

two-dimensional dispatch table.

The size of the dispatch table (or of all the virtual tables summed together) can be appreciable.

As reported in [28], the dispatch table for the ObjectWorks Smalltalk class library would require

approximately 16 MB if no compression were to be performed. In this library, there are 776 classes

and 5325 selectors (i.e., method names).
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For a statically typed language, virtual tables provide an effective way to compress the dispatch

table because all entries in each virtual table are used. For a dynamically typed language, such as

Smalltalk, any object can in principle be invoked with any method name. Most methods are not

implemented and therefore most entries in the dispatch table can be filled in with the address of

the “not implemented” error reporting routine. The table for dynamically typed languages therefore

tends to be quite sparse, and that is a property that can be exploited to achieve table compression.

A second property that is possessed by the dispatch tables for both statically and dynamically

typed languages is that many rows tend to be similar. When a subclass is defined, only some of the

methods in the parent class are normally redefined. Therefore, the rows for these two classes would

have identical entries for all except the few redefined methods.

Both properties are also possessed by LR parser tables and there has been considerable research into

compressing such tables. A comprehensive survey of parse table compression is provided by Dencker

et al. [11]. It should not be surprising that two of the most effective techniques for compressing static

dispatch tables have also been used for parse table compression.

6.2.4.1 Virtual Tables

As noted earlier, virtual tables provide an effective implementation of the dispatch table for statically

typed languages. Because methods can be numbered compactly for each class hierarchy to leave no

unused entries in each virtual table, a good degree of compression is automatically obtained. For the

ObjectWorks example used in [28], and if virtual tables could be used (they cannot), the total size

of the dispatch tables would be reduced from 16 MB to 868 KB.

6.2.4.2 Selector Coloring Compression

This is a compression method based on graph coloring. Two rows of the dispatch table can be merged

if no column contains different method address for the two classes. (An unimplemented method

corresponds to an empty entry in the table.) The graph is constructed with one node per class; and an

edge connects two nodes if the corresponding classes provide different implementations for the same

method name. A heuristic algorithm may then be used to assign colors to the nodes so that no two

adjacent nodes have the same color, and the minimal number of distinct colors is used. (Heuristics

must be used in practice because graph coloring is a NP-complete problem.) Each color corresponds

to the index for a row in the compressed table.

Note: A second graph coloring pass may be used to combine columns of the table.

Implementation of the method invocation code does not need to change from that given earlier.

Each object contains a reference to a possibly shared row of the dispatch table. However, if two

classes C1 and C2 share the same row and C1 implements method m whereas C2 does not, then the

code for m should begin with a check that the control was reached via dispatching on an object of

type C1. This extra check is the performance penalty for using table compression.

For the ObjectWorks example, the size of the dispatch table would be reduced from 16 to 1.15-MB.

Of course, an increase occurs in code size to implement the checks that verify the correct class of

the object. That increase is estimated as close to 400 KB for the ObjectWorks library.

6.2.4.3 Row Displacement Compression

The idea is to combine all the rows of the dispatch table into a single very large vector. If the rows

are simply placed one after the other, this is exactly equivalent to using the two-dimensional table.

However, it is possible to have two or more rows overlapping in memory as long as an entry in one

row corresponds to empty entries in the other rows.

A simply greedy algorithm works well when constructing the vector. The first row is placed at the

beginning of the vector; then the second row is aligned on top of the first row and tested to see if a
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conflicting entry exists. If there is a conflict, the row is shifted one position to the right and the test

is repeated, and so on until a nonconflicting alignment is found.

Implementation of the method invocation code is again unchanged. As before, a test to verify the

class of the current object must be placed at the beginning of any method that can be accessed via

more than one row of the dispatch table. For the ObjectWorks example, the size of the dispatch table

would be reduced from 16 MB to 819 KB, with the same 400 KB penalty for implementing checks

in methods to verify the class.

6.2.4.4 Partitioning

It is pointed out in [28] that good compression combined with fast access code can be achieved

by breaking dispatch tables into pieces. If two classes have the same implementations for 50

methods, say, and different implementations for just 5 methods, then we could have a single shared

dispatch table for the common methods plus two separate but small tables for the 5 methods where

implementations differ. The partitioning approach generalizes this insight by allowing any number

of partitions to be created.

For each method, the compiler must predetermine its partition number within the owning class

and its offset within a partition table. The method lookup code requires indexing the class top-level

table with the method partition number to obtain a pointer to the partition table, and then indexing

that partition table with the method offset.

To keep the access code as efficient as possible, the partitioning should be regular. That is, each

class must have the same number of partitions, and all partitions accessed via the same offset in each

class table must have the same size.

The partitioning approach advocated by Vitek and Horspool proceeds in three steps [28]. First,

the compiler divides the method selectors into two sets: one set contains the conflict selectors that

are selectors that are implemented by two classes unrelated by inheritance, and the other set contains

all other method selectors. Two separate dispatch tables are created for the two sets of methods.

Second, two columns in a table may be combined if no two classes provide different implemen-

tations for the two methods. Merging columns may be performed using graph coloring heuristics to

achieve the best results.

Third, and finally, the two tables are divided into equal sized partitions and any two partitions

that are discovered to have identical contents are shared. It is possible to use two different partition

sizes for splitting the two tables. Although a clever reordering of the columns might increase the

opportunities for partition table sharing, good results are achieved without that extra work.

Vitek and Horspool report that a partition size of 14 entries gave good results with the ObjectWorks

library [28]. The total size of all the tables came to 221 KB for the library, with a penalty for increased

code size of less than 300 KB.

6.2.5 Java Class Layout and Method Invocation

Java and the programming language Theta do not implement multiple inheritance, but single inheri-

tance with multiple subtyping. This important difference makes object layout and method dispatch

more efficient. Although the bidirectional layout was designed for a language with multiple subtyping,

it has the problem that more than one vtbl pointer has to be included in objects. The CACAO

JIT compiler [18] moves the dispatch header of the bidirectional layout into the class information

with negative offsets from the vtbl. For each implemented interface a distinct interface vtbl exists.

Unimplemented interfaces are represented by null pointers. An example of the layout used by CACAO

is shown in Figure 6.7.

To call a virtual method, two memory access instructions are necessary (load the class pointer, load

the method pointer) followed by the call instruction. Calling an interface method needs an additional

indirection.
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FIGURE 6.8 CACAO object and fast class descriptor layout.

In the faster scheme, we store interface methods in an additional table at negative offsets from

the vtbl, as shown in Figure 6.8. Segregating the interface virtual function table keeps the standard

virtual function table small and allows interface methods to be called with just two memory accesses.

The memory consumption of virtual function tables containing interface and class methods would

be number of (classes + interfaces) × number of distinct methods. The memory consumption of the

interface tables is only number of classes that implement interfaces × number of interface methods.

Coloring can be used to reduce the number of distinct offsets for interface methods further, but

complicates dynamic class loading, leading to renumbering and code patching.

The Jalapeno virtual machine (VM) implements an interface method invocation similar to the fast

class descriptor layout of CACAO; however, instead of coloring, hashing of the method indices is

used [1]. The table for the interface method pointers is allocated with a fixed size much smaller

than the number of interface methods. When two method indices hash to the same offset, a conflict

resolving stub is called instead of the interface methods directly. For conflict resolution the stub

is passed to the method index in a scratch register as additional argument. An interface method

invocation can be executed with the following four machine instructions:

LD vtblptr,(obj) ; load vtbl pointer
LD mptr,hash(method_ptr)(vtblptr); load method pointer
MV mindex,idreg ; load method index
JSR (mptr) ; call method (or conflict stub)

The number of machine instructions is the same as in the compact class descriptor layout of

CACAO, but the indirection is eliminated, which reduces the number of cycles needed for the
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execution of this instruction sequence on a pipelined architecture. Compared with the old interface

method invocation in the Jalapeno VM, which searched the superclass hierarchy for a matching

method signature, the new method yields runtimes that range from a 1% reduction in speed to a 51%

speedup.

6.2.6 Dispatch without Virtual Method Tables

Virtual method tables are the most common way to implement dynamic dispatch. Despite the use of

branch target caches and similar techniques, indirect branches are expensive on modern architectures.

The SmallEiffel compiler [30] uses a technique similar to polymorphic in-line caches [15]. The

indirect branch is replaced by a binary search for the type of the receiver and a direct branch to the

method or the inlined code of the method.

Usually an object contains a pointer to the class information and the virtual method table. Small-

Eiffel replaces the pointer by an integer representing the type of the object. This type identifier

is used in a dispatch function that searches for the type of the receiver. SmallEiffel uses a binary

search, but a linear search weighted by the frequency of the receiver type would be possible also.

The dispatch functions are shared between calls with the same statically determined set of concrete

types. Assuming that the type identifiers TA, TB , TC and TD are sorted by increasing number, the

dispatch code for calling x.f is:

if idx ≤ TB then

if idx ≤ TA then fA(x)

else fB(x)

else if idx ≤ TC then fC(x)

else fD(x)

Obviously the method calls are inlined when the code is reasonably small. An empirical evaluation

showed that for a method invocation with three concrete types, dispatching with binary search

is between 10 and 48% faster than dispatching with a virtual method table. For a megamorphic

call with 50 concrete types, the performance of the two dispatch techniques is about the same.

Dispatch without virtual method calls cannot be used easily in a language with dynamic class loading

(e.g., Java). Either the code has to be patched at runtime or some escape mechanism is necessary.

6.3 Fast-Type Inclusion Tests

In a statically typed language, an assignment may require a runtime test to verify correctness. For

example, if class B is a subclass of A, then the assignment to b in the following Java code:

A a = new B();
... // intervening code omitted
B b = a;

needs validation to ensure that a holds a value of type B (or some subclass of B) instead of type A.

Usually that validation can be a runtime test.

Java also has an explicit instanceof test to check whether an object has the same type or is a

subtype of a given type. Other object-oriented languages have similar tests. Static analysis is not very

effective in eliminating these tests [14]. Therefore, efficient runtime type checking is very important.

The obvious implementation of a type inclusion test is for a representation of the class hierarchy

graph to be held in memory and that graph to be traversed, searching to see whether one node is an
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ancestor of the other node. The traversal is straightforward to implement for a language with single

inheritance, and less so for multiple inheritance. However, the defect with this approach is that the

execution time of the test increases with the depth of the class hierarchy. Small improvements are

possible if one or two supertypes are cached [25].

6.3.1 Binary Matrix Implementation

Given two types, c1 and c2, it is straightforward to precompute a binary matrix that is indexed by

numbers associated with the two types BM[c1,c2] to determine whether one type is a subtype of

the other.

Accessing an entry in the binary matrix requires only a few machine instructions, but the matrix

can be inconveniently large, perhaps hundreds of kilobytes in size. Compaction of the binary matrix

is possible, but that makes the access code more complicated.

6.3.2 Cohen’s Algorithm

Cohen [10] adapted the notion of a display table (used for finding frames in block structured

programming languages). Cohen’s idea applies to languages with single inheritance, so that the

class hierarchy graph is a tree.

Each type has a unique type identifier, tid, which is simply a number. A runtime data structure

records the complete path of each type to the root of the class as a vector of type identifiers. The tid

in say position three of that vector would identify the ancestor at level three in the class hierarchy.

If the compiler has to implement the test:

if (obj instanceof C) ...

then the level and type identifier for class C are both constants, C level and C tid, determined by the

compiler. The steps needed to implement the test are simply:

level := obj.level;
if level < C_level then

result := false
else

result := (obj.display[C_level] = C_tid)

Cohen’s algorithm is easy to implement, requires constant time for lookups and uses little storage.

However, it works only for single inheritance hierarchies. Extending the algorithm to work with

multiple inheritance hierarchies is not trivial.

6.3.3 Relative Numbering

There is a well-known algorithm for testing whether one node is an ancestor of another in a tree that

works by associating a pair of integers with each node. An example tree and the numbering is shown

in Figure 6.9.

To test whether node n1 is a descendant of n2 (or equal), the test is implemented as:

n1.left ≥ n2.left and n1.right ≤ n2.right

where the two numbers associated with a node are named left and right.
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FIGURE 6.9 Relative Numbering for a Hierarchy.

Although the scheme is simple and efficient, no obvious way is available to extend it to multiple

inheritance hierarchies.

6.3.4 Hierarchical Encoding

With hierarchical encoding, a bit vector is associated with each type. Each bit vector implements a

compact set of integers. The test of whether type t1 is a subclass of t2 is implemented as the subset

test t2.vector ⊆ t1.vector. The approach works with multiple inheritance hierarchies.

A simple way to implement the bit vectors is to number all the nodes in the class hierarchy graph.

The bit vector for node n represents the set of all the integers associated with n and the ancestors of

n. That yields correct but unnecessarily large vectors.

Caseau [8], Aït-Kaci [4] and Krall et al. [19] all provide algorithms for constructing much smaller

bit vectors. The algorithms are, however, computationally expensive and would need to be reexecuted

after even a small change to the class hierarchy.

6.3.5 Further Algorithms

Vitek et al. [29] describe three more type test algorithms that they call packed encoding, bit-packed

encoding and compact encoding. All three perform worse than hierarchical encoding if the total size

of the data tables is used as the only criterion. However, these algorithms are much faster and are

therefore more suitable for an environment where the class hierarchy may be dynamically updated,

as with Java or Smalltalk, for example.

6.3.6 Partitioning the Class Hierarchy

Because type tests for trees are more (space) efficient than type tests for direct acyclic graphs (DAGs),

a possible solution is to split a DAG into a tree part and the remaining graph. For languages with

single inheritance and multiple subtyping, this partitioning of the class hierarchy is already done in

the language itself.

CACAO uses a subtype test based on relative numbering for classes and a kind of matrix

implementation for interfaces. Two numbers low and high are stored for each class in the class

hierarchy. A depth-first traversal of the hierarchy increments a counter for each class and assigns

the counter to the low field when the class is first encountered and assigns the counter to the high

field when the traversal leaves the class. In languages with dynamic class loading a renumbering

of the hierarchy is needed whenever a class is added. A class sub is a subtype of another class

super, if super.low ≤ sub.low ≤ super.high. Because a range check is implemented more efficiently

by an unsigned comparison, CACAO stores the difference between the low and high values and
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FIGURE 6.10 Elative numbering with baseval and diffval pairs.

compares it against the difference of the low values of both classes. The code forinstanceof looks

similar to:

return (unsigned) (sub->vftbl->baseval - super->vftbl->baseval)
<= (unsigned) (super->vftbl->diffval);

Figure 6.10 shows an example hierarchy using baseval and diffval pairs. For leaf nodes in the class

hierarchy the diffval is 0, which results in a faster test (a simple comparison of the baseval
fields of the sub- and superclass). In general, a just-in-time (JIT) compiler can generate the faster test

only for final classes. An AOT compiler or a JIT compiler that does patching of the already generated

machine code may additionally replace both the baseval and the diffval of the superclass by

a constant. Currently, CACAO uses constants only when dynamic class loading is not used.

CACAO stores an interface table at negative offsets from the virtual method table (as seen in

Figure 6.7). This table is needed for the invocation of interface methods. The same table is additionally

used by the subtype test for interfaces. If the table is empty for the index of the superclass, the subtype

test fails. The code for instanceof looks similar to:

return (sub->vftbl->interfacetable[-super->index] != NULL);

Both subtype tests can be implemented by just a few machine code instructions without using

branches that are expensive on modern processors.

6.4 Devirtualization

Devirtualization is a technique to reduce the overhead of virtual method invocation in object-oriented

languages. The aim of this technique is to statically determine which methods can be invoked by

virtual method calls. If exactly one method is resolved for a method call, the method can be inlined

or the virtual method call can be replaced by a static method call. The analyses necessary for

devirtualization also improve the accuracy of the call graph and the accuracy of subsequent inter-

procedural analyses. We first discuss different type analysis algorithms, comparing their precision

and complexity. Then, different solutions for devirtualization of extensible class hierarchies and

similar problems are presented.

6.4.1 Class Hierarchy Analysis

The simplest devirtualization technique is class hierarchy analysis (CHA), which determines the

class hierarchy used in a program. A Java class file contains information about all referenced classes.

This information can be used to create a conservative approximation of the class hierarchy. The
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FIGURE 6.11 Class hierarchy and call graph.

approximation is formed by computing the transitive closure of all classes referenced by the class

containing the main method. A more accurate hierarchy can be constructed by computing the call

graph [12]. CHA uses the declared types for the receiver of a virtual method call for determining all

possible receivers.

As an example, Figure 6.11 shows the class hierarchy and call graph that corresponds to the

following fragment of Java code:

class A extends Object {
void m1() {...}
void m2() {...}
}

class B extends A {
void m1() {...}
}

class C extends A {
void m1() {...}
public static void main(...) {

A a = new A();
B b = new B();

a.m1(); b.m1(); b.m2();
}

}

Informally, CHA collects all methods in the call graph in a work list of methods. This work list

is initialized with the main method. Every method is added to this work list that is inherited by a

subtype of the declared type of a virtual method call in the body of each method in the work list. The

algorithm given in Figure 6.12 gives the computation of the class hierarchy and call graph in more

detail.

6.4.2 Rapid Type Analysis

A more accurate class hierarchy and call graph can be computed if the type of the receiver can be

determined more precisely than the declared type specifies. Rapid type analysis (RTA) uses the fact

that a method m of a class c can be invoked only if an object of type c is created during the execution
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main // the main method in a program

x() // call of static method x

type(x) // the declared type of the expression x

x.y() // call of virtual method y in expression x

subtype(x) // x and all classes which are a subtype of class x

method(x, y) // the method y which is defined for class x

callgraph := main

hierarchy := {}

for each m ∈ callgraph do

for each mstat () occurring in m do

if mstat /∈ callgraph then

add mstat to callgraph

for each e.mvir () occurring in m do

for each c ∈ subtype(type(e)) do

mdef := method(c; mvir )

if mdef /∈ callgraph then

add mdef to callgraph

add c to hierarchy

FIGURE 6.12 Class hierarchy analysis.

of a program [5, 7]. RTA refines the class hierarchy by only including classes for which objects can

be created at runtime. The pessimistic algorithm includes all classes in the class hierarchy for which

instantiations occur in methods of the call graph from CHA.

The optimistic algorithm initially assumes that no methods besides main are called and that no

objects are instantiated. It traverses the call graph initially ignoring virtual calls (only marking them

in a class mapping as a potential call) following static calls only. When the instantiation of an object is

found during the analysis, all virtual methods of the corresponding class that were left out previously

are then traversed as well. The live part of the call graph and the set of instantiated classes grow

interleaved as the algorithm proceeds.

Figure 6.13 shows the rapid type analysis algorithm.

6.4.3 Other Fast Precise-Type Analysis Algorithms

Tip and Palsberg [27] evaluated different algorithms that are more precise but are on average only a

factor of five slower than RTA. The different type analysis algorithms differ primarily in the number

of sets of types used. RTA uses one set for the whole program. 0-Control flow analysis (CFA) [13, 23]

uses one set per expression. k-l-CFA makes separate analyses for k levels of method invocations and

uses more than one set per expression. These algorithms have high computational complexity and

only work for small programs. Therefore, Tip and Palsberg evaluated the design space between RTA

and 0-CFA [27].

XTA uses a distinct set for each field and method of a class, fast type analysis (FTA) uses one set

for all fields and a distinct set for every method of a class and MTA uses one set for all methods

and a distinct set for every field of a class. Arrays are modeled as classes with one instance field.

All algorithms use iterative propagation-based flow analysis to compute the results. Three work

lists are associated with each method or field that keeps track of processed types. New types are

propagated to the method or field in the current iteration and can be propagated onward in the next

iteration. Current types can be propagated onward in the current iteration. Processed types have been

propagated onward in previous iterations.

Tip and Palsberg efficiently implemented the type sets using a combination of array-based and

hash-based data structures to allow efficient membership tests, element additions and iterations
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main // the main method in a program

new x // instantiation of an object of class x

marked(x) // marked methods of class x

x() // call of static method x

type(x) // the declared type of the expression x

x.y() // call of virtual method y in expression x

subtype(x) // x and all classes which are a subtype of class x

method(x, y) // the method y which is defined for class x

mark(m, x) // mark method m in class x

callgraph := main

hierarchy := {}

for each m ∈ callgraph do

for each new c occurring in m do

if c /∈ hierarchy then

add c to hierarchy

for each mmark ∈ marked(c) do

add mmark to callgraph

for each mstat () occurring in m do

if mstat /∈ callgraph then

add mstat to callgraph

for each e.mvir () occurring in body(m) do

for each c ∈ subtype(type(e)) do

mdef := method(c, mvir )

if mdef /∈ callgraph then

if c /∈ hierarchy then

mark(mdef ,c)

else

add mdef to callgraph

FIGURE 6.13 Rapid type analysis.

over all elements [27]. Type inclusion is implemented by relative numbering. These techniques are

necessary because the type sets are filtered by the types of fields, method parameters and method

return types. Additionally, type casts restricting return types are used for filtering.

All these algorithms are more precise than RTA. On the range of Java benchmark programs

(benchmark code only), MTA computes call graphs with 0.6% fewer methods and 1.6% fewer edges

than RTA. FTA computes call graphs with 1.4% fewer methods and 6.6% fewer edges than RTA.

XTA computes call graphs with 1.6% fewer methods and 7.2% fewer edges than RTA. All algorithms

are about five times as slow as RTA. Therefore, XTA has the best precision and performance trade-off

of the three algorithms compared.

6.4.4 Variable Type Analysis

RTA is imprecise because every type that is instantiated somewhere in the program and is a subtype

of the declared type can potentially be the receiver of a method invocation. Variable type analysis

(VTA) is more precise because it computes reaching type information, taking into consideration

chains of assignments between instantiations and method invocations [24], but it does ignore type

casts. It is a flow-insensitive algorithm that avoids iterations over the program. The analysis works by

constructing a directed type propagation graph where nodes represent variables and edges represent

assignments. Reaching type information is initialized by object instantiations and propagated along

the edges of the type propagation graph.
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The type propagation graph is constructed from the classes and methods contained in the

conservative call graph. For every class c and for every field f of c that has a reference type a

node c.f is created. Additionally for every method c.m and:

• For every formal parameter p (including this) of c.m that has a reference type, create a node

c.m.p.

• For every local variable l of c.m that has a reference type, create a node c.m.l.

• If c.m returns a reference type, create a node c.m.ret.

After the nodes are created, then for every assignment of reference types an edge is added to the

graph. Assignments are either explicit assignments of local variables or object fields or assignments

resulting from passing of parameters or returning a reference value. Native methods are handled by

summarizing their effects on the analysis.

To avoid alias analysis, all variable references and all their aliases are represented by exactly

one node. In Java, locals and parameters cannot be aliased. All instances of a field of a class are

represented by one node. Arrays could introduce aliasing. Different variables could point to the same

array. Therefore, if both sides of an assignment are of type Object or if at least one side is an array

type, edges in both directions are added.

Type propagation is accomplished in two phases. The first phase detects strongly connected

components in the type propagation graph. All nodes of a strongly connected component are collapsed

into one supernode. The type of this supernode is the union of the types of all its subnodes. The

remaining graph is a DAG. Types are propagated in a topological order where a node is processed

after all its predecessors have been processed. The complexity of both strongly connected component

detection and type propagation are linear in the maximum of the number of edges and nodes. The

most expensive operation is the union of type sets.

The algorithm does no killing of types on casts or declared types. An algorithm using declared

type information would be more precise, but collapsing of strongly connected components would

not be possible anymore. Impossible types are filtered after type propagation has been finished.

Over the set of Java benchmarks (the benchmark code only), VTA computes call graphs with 0.1 to

6.6% fewer methods and 1.1 to 18% fewer edges than RTA. For the set of Java applications (including

the libraries), VTA computes call graphs with 2.1 to 20% fewer methods and 7.7 to 27% fewer edges

than RTA. The implementation is untuned and written in Java. The performance numbers indicate

that the algorithm scales linearly with the size of the program (54 sec for 27,570 instructions, 102

sec for 55,468 instructions).

6.4.5 Cartesian Product Algorithm

Agesen [2] developed a type analysis algorithm called the Cartesian product algorithm (CPA) where

a method is analyzed separately for every combination of argument types (Cartesian product of the

argument types). For example, a method with two arguments, where the first argument can be of

type Int and Long and the second argument can be of type Float and Double, can result in

four different analyses with argument types (Int, Float), (Long, Float), (Int, Double) and

(Long, Double). For better precision, CPA computes the needed analyses lazily. Only argument

type combinations are analyzed that occur during program analysis. The return type of a method is

the union of the return types of the different analyses for a specific method invocation.

CPA is precise in the sense that it can analyze arbitrary deep call chains without loss of precision.

CPA is efficient, because redundant analysis is avoided. However, megamorphic call sites, where

the method has many arguments and an argument has a high number of different types, can lead to

long analysis times. Therefore, Agesen restricted the number of different types for an argument and
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combined the analyses if the number exceeded a small constant. The bounded CPA scales well for

bigger programs too.

6.4.6 Comparisons and Related Work

Grove et al. investigated the precision and complexity of a set of type analysis algorithms [13]. They

implemented a framework where different algorithms can be evaluated. They evaluated RTA, the

bounded CPA and different levels of k-l-CFA. CPA gives more accuracy than 0-CFA with reasonable

computation times. The higher levels of k-l-CFA cannot be used for bigger applications.

CHA and RTA have the same complexity, but RTA always produces more accurate results. The

results for XTA and VTA cannot be compared directly, because different programs are used for

benchmarking and implementation of VTA was not done for performance. It can be estimated that

the runtime for the algorithms can be similar, but VTA can produce more accurate results. 0-CFA is

more accurate than the other algorithms at slightly higher analysis costs.

6.4.7 Inlining and Devirtualization Techniques

Ishizaki et al. [16] point out that straightforward devirtualization may have little effect on the

performance of Java programs. Because Java is strongly typed, a vtbl can be used for dispatching.

Devirtualizing simply removes the lookup in the vtbl, and that is not significant compared with the

other costs of calling a method. Significant performance gains only arise if the devirtualized method

is inlined at the call site; many opportunities for devirtualization are lost in any case because Java

has dynamic class loading.

Ishizaki et al. [16] propose a technique based on code patching that allows methods to be inlined

and inlining to be removed if dynamic class loading subsequently requires the method call to be

implemented by the normal vtbl dispatching again. Their code patching technique avoids any need

to recompile the code of the caller.

An example can make the idea clear. Suppose that the program to be compiled contains the

following Java statements:

i = i + 1;
obj.meth(i,j);
j = j - 1;

The compiler would normally generate the following pattern of code for those statements:

// code for i = i + 1
// code to load arguments i and j
// dispatch code to lookup address of method meth

// ... and pass obj and arguments to that method
// code for j = j - 1

Now suppose that analysis of the program shows that only one possible implementation of method

meth can be invoked at this call site. If the body of that method is reasonably small, it can be inlined.

The generated code corresponds to the following pattern:

// code for i = i + 1
// inlined code for method meth parameterized
// ... by the arguments obj, i, and j

L2: // code for j = j - 1
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... // much omitted code

L1: // code to load arguments i and j
// dispatch code to lookup address of method meth

// ... and pass arguments and obj to that method
goto L2;

Label L1 is not reached with this version of the code.

Now suppose that dynamic class loading causes an alternative implementation of method meth

to be loaded. The runtime environment now uninlines the method call by patching the code. It

overwrites the first word of the inlined method with a branch instruction, so that the patched code

corresponds to the following pattern:

// code for i = i + 1
goto L1
// remainder of code of inlined method, which
// is now unreachable.

L2: // code for j = j - 1

... // much omitted code

L1: // code to load arguments i and j
// dispatch code to lookup address of method meth

// ... and pass arguments and obj to that method
goto L2;

This patched code contains two more branches than the original unoptimized program and would

therefore run more slowly; it also contains unreachable code that incurs a modest space penalty. The

assumption is that dynamic class loading is rare and that methods rarely need to be uninlined.

Experiments with a JIT compiler showed that the number of dynamic method calls is reduced by

9 to 97% on their test suite. The effect on execution speed ranged from a small 1% worsening of

performance to an impressive 133% improvement in performance, with a geometric mean speedup

of 16%.

Ishizaki et al. [16] also point out that a similar technique is applicable to a method invoked via

an interface. If only one class implements an interface class, we can generate code that assumes this

class is actually used and we can inline methods of that class that are not overridden by any of its

subclasses. If the assumption is later broken by dynamically loading a new class that also implements

the interface or that overrides the method, we can patch the code to revert to the original full scheme

of looking up the class and looking up the method.

6.5 Escape Analysis

In general, instances of classes are dynamically allocated. Storage for these instances is normally

allocated on the heap. In a language such as C++ where the programmer is responsible for allocating

and deallocating memory for objects on the heap, the program should free the memory for a class

instance when it is no longer needed. Other languages, such as Java, provide automatic garbage

collection. At periodic intervals, the garbage collector is invoked to perform the computationally

intensive task of tracing through the references between objects and determining which objects can

no longer be referenced. The storage for these objects is reclaimed.
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The goal of escape analysis is to determine which objects have lifetimes that do not stretch outside

the lifetime of their immediately enclosing scopes. The storage for such objects can be safely allocated

as part of the current stack frame; that is, their storage can be allocated on the runtime stack. (For

C programmers who use the gcc C compiler, the transformation is equivalent to replacing a use of

the malloc function with the alloca function.) This optimization is valuable for Java programs.

The transformation also improves the data locality of the program and, depending on the computer

cache, can significantly reduce execution time.

Another benefit of escape analysis is that objects with lifetimes that are confined to within a single

scope cannot be shared between two threads. Therefore, any synchronization actions for these objects

can be eliminated. Escape analysis does not capture all possibilities for synchronization removal,

however. If this is deemed to be an important optimization, then a separate analysis to uncover

unnecessary synchronization operations should be performed.

Algorithms for escape analysis are based on abstract interpretation techniques [3]. There are

different algorithms that make different trade-offs between the precision of the analysis and the

length of time the analysis takes. The better the precision, the more opportunities for optimization

that should be found.

The reported speedup of Java programs can range up to 44% [6], but that last figure includes savings

due to synchronization removal and due to inlining of small methods. (Blanchet [6] reports an average

speedup of 21% in his experiments.) Inlining significantly increases the number of opportunities for

finding objects that do not escape from their enclosing scope, especially because many methods

allocate a new object that is returned as the result of the method call.

6.5.1 Escape Analysis by Abstract Interpretation

A prototype implementation of escape analysis was included in the IBM High Performance Compiler

for Java. This implementation is based on straightforward abstract interpretation techniques and has

been selected for presentation in this text because it is relatively easy to understand. Further details

of the algorithm may be found in the paper published by Choi et al. [9].

The approach of Choi et al. [9] attempts to determine two properties for each allocated object —

whether the object escapes from a method (i.e., from the scope where it is allocated), and whether

the object escapes from the thread that created it. It is possible that an object escapes the method

but does not escape from the thread, and thus synchronization code may be removed. The converse

is not possible; if an object does not escape a method, then it cannot escape its thread. The analysis

therefore uses the very simple lattice of three values shown in Figure 6.14. If analysis determines

that an object status is NoEscape, then the object definitely does not escape from its method or from

its thread; if the status is ArgScape, the object may escape from a method via its arguments but

definitely does not escape the thread; finally, GlobalEscape means that the object may escape from

both the method and the thread.

ArgEscape

GlobalEscape

NoEscape (T)

(T)

FIGURE 6.14 Lattice elements for escape analysis.
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The two versions of the analysis are a fast flow-insensitive version that yields imprecise results,

and a slower flow-sensitive version that gives better results. Imprecise means that the analysis can be

overly conservative, reporting many objects as having GlobalEscape status when a more accurate

analysis might have shown the status as one of the other two possibilities, or reporting ArgEscape

instead of NoEscape. Imprecision in this manner does not cause incorrect optimizations to be made;

some opportunities for optimization can simply be missed. We give only the more precise flow-

sensitive version of the analysis in this chapter.

6.5.1.1 Connection Graphs

As its name suggests, abstract interpretation involves interpretive execution of the program. With this

form of execution, the contents of variables (or fields of classes when analyzing a Java program) are

tracked. However, we do not attempt to determine the contents of the variables for normal execution

of the program — we would of course simply execute the program to do that. To perform escape

analysis, we are interested only in following an object O from its point of allocation, knowing which

variables reference O and which other objects are referenced by O fields. The abstraction implied

in the name abstract interpretation is to abstract out just the referencing information, using a graph

structure where nodes represent variables and objects, and directed edges represent object references

and containment of fields inside objects. Choi et al. [9] call this graph a connection graph.

A sample connection graph is shown in Figure 6.15; it shows the program state after executing

the code:

A a = new A(); // line L1
a.b1 = new B(); // line L2
a.b2 = a.b1;

where we assume that the only fields of AC are b1 and b2, and BC has only fields with intrinsic

types (i.e., the types int and char).

The notational conventions used in the connection graph are as follows. A circle node represents

a variable (i.e., a field of a class or a formal parameter of a method); a square node represents an

object instance. An edge from a circle to a square represents a reference; an edge from a square to a

circle represents ownership of fields.

The graph shown in Figure 6.15 on the left is a simplification of that used by Choi et al. [9]. Their

more complicated graph structure has two kinds of edges. An edge drawn as a dotted arrow is called

a deferred edge. When there is an assignment from copies one object reference to another, such as:

p = q; // p and q have class types

then the effect of the assignment is shown as a deferred edge from the node for p to the node for q.

In Figure 6.15, the graph on the right uses a deferred edge to show the effect of an assignment from

one variable to another.

a

Simple version

b1 b2

L1

L2

a

Using deferred edges

b1 b2

L1

L2

FIGURE 6.15 A sample connection graph.
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Before After

a

c

L1

cb

p

a L1

b

p

FIGURE 6.16 Effect of bypass operation.

Each node in a connection graph has an associated escape state, chosen from the three possibilities

given in Figure 6.14. If a connection graph has been constructed for a method M and if O is an object

node in M, then if O can be reached from any node in the graph whose escape state is other than

NoEscape then O may escape from M. A similar property holds for objects escaping from a thread.

6.5.1.2 Intraprocedural Abstract Interpretation

The abstract interpretation is performed on a low-level version of the code where only one action

at a time is performed. The Java bytecode is adequate for this purpose, as are other intermediate

representation formats used in a typical compiler. Assuming that the code has been suitably simplified,

abstract interpretation of the code within a method steps through the code and performs an action

appropriate for each low-level operation. This interpretive execution involves following control flow

edges, as explained in more detail later.

The actions for assignment statements and instantiations of new object instances are shown next.

Each action involves an update to the connection graph. An assignment to a variable p kills any

previous value that the variable previously had. The kill part of an assignment to p is implemented

by an update to the connection graph that is called ByPass(p). The ByPass(p) operation redirects or

removes deferred edges as illustrated in Figure 6.16. Note also that compound operations, such as

p.a.b.c, are assumed to be decomposed into simpler steps that dereference only one level at a

time — the bytecode form of the program automatically possesses this property:

p = new C(); // line L

If the connection graph does not already contain an object node labeled L then one is created

and added to the graph. If the node needs to be created, then nodes for the fields of C that have

nonintrinsic types are also created and are connected by edges pointing from the object node.

Any outgoing edges from the node for p are deleted by applying the ByPass(p) operation, then

a new edge from p to the object node for L is added.

p = q;

The ByPass(p) operation is applied to the graph. Then a new deferred edge from p to q is

created.

p.f = q;

If p does not point to any object nodes in the connection graph, then a new object node (with the

appropriate fields for the datatype of p) is created and an edge from p to the new object node

is added to the graph. (Choi et al. [9] call this new object node a phantom node. Two reasons

why phantom nodes may arise are (1) the original program may contain an error and p would

actually be null, referencing no object, when this statement is reached; and (2) p may reference

an object outside the current method — and that situation can be covered by the interprocedural

analysis.) Then, for each object node that is connected to p by an edge, an assignment to the
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f field of that object is performed. That assignment is implemented by adding a deferred edge

from the f node to the q node. Note that no ByPass operation is performed (to kill the previous

value of f) because there is not necessarily a unique object that p references, and we cannot

therefore be sure that the assignment kills all previous values for f.

p = q.f;

As before, if q does not point at any object nodes, then a phantom node is created and an edge

from q to the new node is added to the graph. Then, ByPass(p) is applied, and deferred edges

are added from p to all the f nodes that q is connected to by field edges.

In principle, a different connection graph represents the state of the program at each statement

in the method. Thus, when the abstract interpretation action modifies the graph, it is modifying a

copy of the graph. When analyzing a sequence of statements in a basic block, the analysis proceeds

sequentially through the statements in order. At a point where control flow diverges, such as at a

conditional statement, each successor statement of the conditional is analyzed using a separate copy

of the connection graph. At a point where two or more control paths converge, the connections graphs

from each predecessor statements are merged.

A small example is given to make the process clearer. Suppose that the code inside some method

is as follows, with the declarations of classes A, B1 and B2 omitted:

A a = new A(); // line L1
if (i > 0)

a.f1 = new B1(); // line L3
else

a.f1 = new B2(); // Line L5
a.f2 = a.f1; // Line L6

The connection graphs that are constructed by the abstract interpretation actions are shown in

Figure 6.17. Diagram 1 in the figure shows the state after executing line L1; diagrams 2 and 3

show the states after lines L3 and L5, respectively. Note that diagrams 2 and 3 are obtained by

applying the effects of lines L3 and L5 to the state in diagram 1. After the if statement, the two

control flow paths merge; the graph in diagram 4 is the result of merging diagrams 2 and 3. Finally,

diagram 5 shows the effect of applying line L6.

If the program contains a loop, abstract interpretation is performed repeatedly until the connection

graphs converge. Convergence is guaranteed because the maximum number of nodes in the graph is

a finite number that is proportional to the number of occurrences of new in the source code, and the

number of edges that can be added between the nodes is also finite. If, for example, the source code

to be analyzed is:

Node head = null;
for( int cnt = 0; cnt < 1000; cnt++ ) {

Node n = new Node(); // Line L3
n.next = head;
n.data = cnt;
head = n;

}

then analysis gives the connection graphs shown in Figure 6.18. After analyzing the loop body once,

the graph has the structure shown on the left; after analyzing a second time, the graph has converged

to the diagram on the right. Even though the actual program allocates 1000 instances of the Node
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FIGURE 6.17 Sequence of connection graphs.
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L3head

next
n

FIGURE 6.18 Connection graph for a loop.

class, only one new operation is in the code and therefore only one object node is in the graph. The

fact that one graph node represents 1000 objects in the program is one of the approximations inherent

in the graph structure invented by Choi et al. [9].

6.5.1.3 Interprocedural Abstract Interpretation

A call to a method M is equivalent to copying the actual parameters (i.e., the arguments are passed

in the method call) to the formal parameters, then executing the body of M, and finally copying any

value returned by M as its result back to the caller. If M has already been analyzed intraprocedurally

following the approach described earlier, the effect of M can be summarized with a connection graph.

That summary information eliminates the need to reanalyze M for each call site in the program.

It is necessary to analyze each method in the reverse of the order implied by the call graph. If

method A may call methods B and C, then B and C should be analyzed before A. Recursive edges in

the call graph are ignored when determining the order. Java has virtual method calls — at a method

call site where it is not known which method implementation is invoked, the analysis must assume
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that all the possible implementations are called, combining the effects from all the possibilities. The

interprocedural analysis iterates over all the methods in the call graph until the results converge.

The extra actions needed to create the summary information for a method M follow:

Entry to a method M

If M has n − 1 formal parameters, fi, . . . fn, then n object nodes a1 . . . an are created. These

correspond to the actual parameters (or arguments). The extra parameter corresponds to the

implicit this parameter. Because Java has call-by-value semantics, an implicit assignment

exists from each actual parameter to the corresponding formal parameter at method invocation.

These assignments are modeled by creating a deferred edge from fi to ai for each parameter.

The escape state initially associated with a fi node is NoEscape and the state initially associated

with a ai node is ArgEscape. By having created the first object nodes for the parameters, the

body of the method is analyzed using the approach described for intraprocedural analysis.

Exit from method M

A return statement is processed by creating a dummy variable named return to which the

returned result is assigned. If there are multiple return statements in the method, the different

result values are merged into the connection graph by adding deferred edges from the return

node to the different results.

When the whole method body has been processed, the connection graph that was created after

the return statement represents the summary information for the method. In particular, after the

ByPass function has been used to eliminate all deferred edges, the connection graph can be partitioned

into three subgraphs:

Global escape nodes. All nodes that are reachable from a node whose associated state is

GlobalEscape are themselves nodes that are considered to be global escape nodes and form the

first subgraph. The nodes initially marked as GlobalEscape are the static fields of any classes

and instances of any class that implements the Runnable interface.

Argument escape nodes. All nodes reachable from a mode whose associated state is ArgEscape,

but are not reachable from a Global Escape node, are in the second subgraph. The nodes initially

marked as ArgEscape are the argument nodes a1 . . . an.

No escape nodes. All other nodes in the connection graph form the third subgraph and have

NoEscape status.

All objects created within a method M and that have the NoEscape status after the three subgraphs

are determined can be safely allocated on the stack. The third subgraph represents the summary

information for the method because it shows which objects can be reached via the arguments passed

to the method. The remaining part that remains to be covered is how to process a method call when

it is encountered in the body of the method analyzed.

Suppose that while analyzing some method m1, we reach a method call:

result = obj.m2(p1,p2);

and that we have previously analyzed method m2 in the class to which obj belongs. The analysis

algorithm creates three formal parameter nodes â1, â2, â3 and processes three assignments:

â1 = obj; â2 = p1; â3 = p2;

The nodes â1 . . . correspond to the argument nodes a1 . . . in the connection graph that summarizes

method m2, whereas the values obj, p1 and p2 are nodes within the connection graph constructed

for method m1.
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The summary connection graph for m2 is used like a macro. Connections from a1 . . . are copied,

becoming edge connections from obj. Field nodes that are children of object values that ai nodes

reference are matched against field nodes that are children of the obj, p1 and p2 nodes, and so on

recursively. During this process, many of the phantom nodes that were introduced into the connection

graph of m2 can be matched against nodes of m1. The algorithm for matching and duplicating the

nodes and edges is omitted for space reasons.

One more issue needs to be covered. If the method call graph contains cycles, as occurs in the

presence of direct or indirect recursion, then it appears to be necessary to use a method summary

connection graph before it has been created. For this situation, a special bottom graph is used in

place of the connection graph for the unanalyzed method. The bottom graph represents a worst-case

(or conservative) scenario for escape of objects from any method in the program. The bottom graph

has one node for every class. A points-to edge is from the node for class C1 to the node for class C2

if C1 contains a field of type C2; a deferred edge is from the node for C1 to the node for C2 if C2 is

a subtype of C1. This graph can be used to make a conservative estimate for the escape of objects

passed to a method by matching the argument types against the nodes in the bottom graph.

6.5.2 Other Approaches

A different analysis technique was developed by Blanchet [6]. His approach also uses abstract

interpretation, but three significant differences exist.

First, the Java bytecode is directly interpreted so that an abstract representation of the values on

the Java runtime stack is managed. During abstract interpretation, each bytecode operation has an

effect on that representation of the stack.

Second, information is propagated both forward and backward. Forward propagation occurs when

instructions are analyzed following the normal flow of control — as in the approach of Choi et al.

[9]. Backward propagation is performed by interpretively executing the bytecode instructions along

the reverse of control flow paths. The reverse execution mode has, of course, different semantics for

the abstract meaning of each instruction (e.g., an instruction that pushes a value when interpreted

forward becomes one that pops a value when analyzed backward). The combination of forward and

backward analysis passes enables much more precise results to be obtained, especially when used

in conjunction with the program analyzed containing no errors. (This is a common assumption for

code optimization.)

Third, Blanchet [6] uses a quite different domain of values to represent escape of objects. He

represents each class type by an integer, which is the context for what may escape from an instance

of that class. His abstract values are equations (or context transformers) that map from the contexts of

the arguments and result of a method to the escape contexts of concrete values. Instead of manipulating

a collection of graphs, as Choi et al. [9], Blanchet [6] manipulates sets of equations.

No comparison has been made between the two approaches of Choi et al. and Blanchet. Blanchet

states that the Choi et al. analysis is more time consuming, and that is almost certainly true. Blanchet

also claims bigger speedups for his set of sample programs, but Blanchet also performs extensive

inlining of small methods.

6.6 Conclusion

We presented the most important optimizations for object-oriented programming languages that

should give language implementors good choices for their work. Method invocation can be efficiently

solved by different kind of dispatch tables and inlining. Inlining and specialization greatly improve

the performance but need precise and efficient type analysis algorithms. Escape analysis computes

the informations necessary to allocate objects on the runtime stack.
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7.1 Introduction

Although the employment of systematic design and development practices results in increasingly

reliable software, some errors are still likely to be present in the software. The goal of testing is to

expose hidden errors by exercising the software on a set of test cases. In its simplest form, a test case

consists of program inputs and corresponding expected outputs. Once the software has successfully

gone through the testing phase, we have a greater degree of confidence in the software’s reliability.

Software testing is very labor intensive and hence also expensive. It can account for 50% of the

total cost of software development [6]. Therefore, tools that automate one or more aspects of testing

can greatly help in managing the overall cost of testing. Testing techniques can be broadly classified

into two categories, functional and structural. Functional testing is concerned with functionality

instead of implementation of the program. Therefore, it involves exercising different input and

output conditions. Structural testing is concerned with testing the implementation of the program by

exercising different programming structures used by the program.

The primary focus of this chapter is structural testing. Before we discuss structural testing in

greater detail, let us identify the key aspects of a structural testing strategy.

What is the form of test requirements?

We must identify specific program entities in terms of which test requirements of a program

can be stated. When the program is run on a test case, we can analyze the program execution

to determine the set of test requirements that are exercised by the test case. Some examples

of test requirements are program statements, program paths, definition–use associations and

definition–use paths.
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How much testing is enough?

We need to determine when the testing process has been completed. For this purpose we define

test coverage criteria. A test coverage criterion specifies a minimal set of test requirements

that must be collectively exercised by the test cases on which the program is executed during

the testing process. Depending on the criterion, a minimal set of test requirements may or

may not be unique. The test criterion also helps us guide the testing process. At any point

during the testing of a program, our goal is to run the program on test cases that exercise test

requirements that are yet to be covered by any of test cases that have already been executed.

What is the testing strategy?

Typically, first unit testing is employed to test all the modules in the program individually and

then integration testing is employed to test the interfaces among the modules. There are

different ways to organize the integration testing process. Whereas initially a program is

fully tested, during the maintenance stages of a program, regression testing techniques are

employed to exercise only the test requirements that are impacted by the program changes.

Finally, the generation of test cases required to test a given set of test requirements can be

conducted by manual means or some automatic techniques can be employed.

The three types of structural testing techniques are control flow based testing, data flow based

testing, and mutation testing. Control flow based test coverage criteria express testing requirements

in terms of the nodes, edges or paths in the program control flow graph. The data flow based test

coverage criteria express testing in terms of definition–use associations present in the program.

Mutation testing begins by creating mutants of the original program that are obtained by making

simple changes to the original program. The changes made to the original program correspond to the

most likely errors that could be present. The goal of testing is to execute the original program and

its mutants on test cases that distinguish them from each other. Although the focus of this chapter is

on data flow testing, we also briefly comment on control flow testing for comparison purposes.

The steps of the data flow testing are summarized in Figure 7.1. A test coverage criterion is chosen

and test cases are generated to adequately test the program under the selected criterion. When the

test coverage criterion is satisfied, testing terminates. If the program output differs from the expected

output for some test case, the program is debugged and modified and then testing resumes.

The remainder of this chapter is organized as follows. In Section 7.2 we introduce the various

test coverage criteria aimed at exercising the program control flow and data flow characteristics. In

Section 7.3 we discuss commonly used strategies for complete testing of a program under a data flow

based testing criterion. In Section 7.4 we describe regression testing techniques that are employed

after a program change is made during program maintenance. The test input generation problem is

considered in Section 7.5. We briefly describe some approaches to automating test case generation.

Concluding remarks are given in Section 7.6.

Select/Generate

 A Test Input

No

Execute Program

On Test Input

No

Is

Program

Output

Correct

Yes

Debug Program

Mode

Newly Tested

Requirements

YesTest

Criterion

Satisfied

Testing

Complete

FIGURE 7.1 Testing process.
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7.2 Test Coverage Criteria

A test coverage criterion is used to determine whether a program has been adequately tested. It

specifies the minimal set of program entities that must be collectively exercised by the test cases on

which the program is executed during the testing process. Given a set of test cases, by executing the

program on those test cases, and examining the paths followed during the program’s executions, we

can determine whether a given test coverage criterion is satisfied.

7.2.1 Control Flow Coverage Criteria

A simple form of structural test coverage criteria is based on the characteristics of the program control

flow graph. The test coverage criteria included in this category are:

All-nodes test coverage criterion requires that each node in the control flow graph be executed by

some test case. Therefore, it is also called statement testing.

All-edges test coverage criterion requires that each edge in the control flow graph be traversed

during some program execution. This form of testing is also called branch testing because each

branch outcome is exercised under this criterion. Various variations on branch testing have been

proposed to rigorously test the branch predicates [13]. The all-edges criterion subsumes the

all-nodes criterion because if all edges in the flow graph are exercised by the test cases, then it

is guaranteed that all-nodes are also exercised by the test cases; however, the reverse is not true.

All-paths criterion requires that every complete path (i.e., a path from the entry node to the exit

node of the flow graph) in the program be tested. This form of testing is also called path testing.

The all-paths criterion subsumes the all-edges test criterion. For a program with loops, there

may be infinite complete paths. Therefore, proposals have been made to limit the testing to a

finite set of paths. A popular technique that falls in this category is McCabe’s basis path testing

technique. This technique requires a set of paths to be tested that cover all the branches in the

program. Therefore, McCabe’s basis path testing technique provides exactly the same coverage

as the all-edges test coverage criterion.

From the preceding descriptions of the three criterion it is clear that the degree of testing performed

differs from one test criterion to another. The all-nodes criterion performs the least amount of testing

and is not considered effective in exposing faults because it does not sufficiently exercise interactions

between statements. The all-paths criterion is very stringent but it is impractical for realistic programs.

7.2.2 Data Flow Coverage Criteria

Data flow testing was introduced to close the gap between all-edges and all-paths criteria [14, 34, 35].

Data flow testing criteria are aimed at exercising definition–use associations in the program. The

exercising of a definition–use association can be viewed as requiring traversal of a selected subpath

that originates at the definition, terminates at the use, and is responsible for establishing the definition–

use association. Before introducing the data flow based testing criteria, we give the following relevant

definitions:

Each occurrence of a variable on the left-hand side of an assignment is a definition of the variable

as it updates the value of the variable.

Each occurrence of a variable on the right-hand side of an assignment is called a computation use,

or a c-use.

Each occurrence of a variable in a Boolean predicate results in a pair of predicate uses, or p-uses,

corresponding to true and false evaluations of the predicate.
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FIGURE 7.2 Illustration of definitions.

A path (i, n1, n2, . . . , nm, j) is a definition-clear path from the exit of i to entry of j if n1 through

nm do not contain a definition of x.

Given a definition of x in node nd and a c-use of x in node nc−use, the presence of a definition-clear

path for x from nd to nc−use establishes the definition-c-use association (nd , nc−use, x).

Given a definition of x in node nd and a p-use of x in node np−use, the presence of a

definition-clear path for x from nd to np−use establishes a pair of definition-p-use associations

(nd , (np−use, t), x) and (nd , (np−use, f ), x) corresponding to true and false evaluations of the

predicate in np−use, respectively.

The paths through the program along which definition–use associations are established are called

du-paths. A path (n1, . . . , nj , nk) is a du-path for variable x if n1 contains a definition of x

and either nk has a c-use of x and (n1, . . . , nj , nk) is definition-clear simple path for x (i.e., a

definition-clear path with all nodes distinct, except possibly the first and last), or nj is a p-use

of x and (n1, . . . , nj ) is a definition-clear loop-free path for x (i.e., a definition-clear path in

which all nodes are distinct).

The example in Figure 7.2 contains two definitions of x in nodes 1 and 4, one c-use of x in node 4,

and a pair of p-uses of x due to its use by the predicate in node 5. The paths (1, 2, 3, 5) and (1, 2, 4) are

definition clear paths for x. The du-path (1, 2, 4) establishes the definition-c-use association (1, 4, x)

while the du-path (1, 2, 3, 5) establishes definition-p-use associations (1, (5, t), x) and (1, (5, f ), x).

Given a set of test cases, let P be the set of complete paths exercised by the program executions

for these test cases. For each of the data flow based test coverage criterion, the conditions that P

must meet for the test criterion to be satisfied are given as follows:

All-defs is satisfied ifP includes a definition-clear path from every definition to some corresponding

use (c-use or p-use).

All-c-uses is satisfied if P includes a definition-clear path from every definition to all its

corresponding c-uses.

All-c-uses or some-p-uses is satisfied if P includes a definition-clear path from every definition to

all of its corresponding c-uses. In addition, if a definition has no c-use, then P must include a

definition-clear path to some p-use.

All-p-uses is satisfied if P includes a definition-clear path from every definition to all its

corresponding p-uses.
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ALL-PATHS

ALL-DU-PATHS OI-ALL-USES

ALL-USES

ALL-C-USES/
SOME-P-USES

ALL-P-USES/
SOME-C-USES

ALL-DEFSALL-C-USES ALL-P-USES

ALL-EDGES

ALL-NODES

FIGURE 7.3 Test coverage criteria hierarchy.

All-p-uses or some-c-uses is satisfied if P includes a definition-clear path from every definition to

all of its corresponding p-uses. In addition, if a definition has no p-use, then P must include a

definition-clear path to some c-use.

All-uses is satisfied if P includes a definition-clear path from every definition to each of its uses

including both c-uses and p-uses.

All-du-paths is satisfied if P includes all du-paths for each definition. Therefore, if there are

multiple paths between a given definition and a use, they must all be included.

Oi-all-uses is satisfied if P includes a definition-clear path from every definition to each of its uses

including both c-uses and p-uses. Moreover, each use is considered tested only if it is output

influencing; that is, it directly or indirectly influences the computation of some program output

during the program run [9].

From the preceding definitions of different data flow based criteria it is clear that each criterion

identifies a minimal set of definition–use associations that must be exercised by a set of test cases

to satisfy the criterion. However, this minimal set is not unique. As was the case with control flow

based testing criteria, subsumption relationships also exist between certain data flow based criteria.

In Figure 7.3 these subsumption relationships are identified. We have also included the control flow

based test coverage criteria in this hierarchy for completeness. Dashed lines are used to distinguish

them from the data flow based test coverage criteria.

Let us consider the example in Figure 7.4 to illustrate the test criteria. In addition to the control

flow graph, two test inputs and their corresponding complete paths are given in the figure. The two

complete paths cover all nodes and edges in the flow graph and therefore satisfy the all-nodes and

all-edges criteria. Now let us consider the various data flow based test coverage criteria. The table in

Figure 7.4 lists all the definition–use associations present in the program. For each of the data flow

based criterion, excluding the all-du-paths and oi-all-uses criteria, a minimal set of associations is

identified. If a given set of complete paths exercises the specified associations for a test criterion,

then it satisfies the test criterion. In this example, all the specified test criteria are satisfied by the
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FIGURE 7.4 Example of test criteria.

two complete paths corresponding to the two program inputs. The all-du-paths criteria are also

specified by the two complete paths because in this example only a single du-path corresponds to

each definition–use association.

From the example in Figure 7.4, we can make the following additional observations:

If a more stringent test coverage criterion is chosen, the number of definition–use associations

that must be tested increases. For example, to satisfy the all-defs criterion we need to test only

four associations whereas to satisfy the all-uses criterion we must test all associations.

The minimal set of associations that must be tested to satisfy a given criterion is not always unique.

For example, to satisfy the all-defs criteria any one of the first nine associations can be selected

to test the definition of x in node 1. The test requirements or test cases can be prioritized to
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FIGURE 7.5 All-du-paths and oi-all-uses coverage criteria.

exploit the preceding characteristic. In particular, priorities can be used to reduce the testing

effort [19] or maximize the rate of fault detection [17, 36].

Testing a greater number of associations does not always require execution of greater number of

test cases. In our example, although the minimal number of definition–use associations that

must be tested to satisfy various criteria varies greatly, all coverage criteria are satisfied by the

two test cases. In fact it has been shown that the all-uses criteria are quite practical because

relatively few test cases are required to satisfy this criterion [41].

Although it may be possible to find a minimal number of complete paths that satisfy a given test

coverage criterion, this approach cannot always be used to minimize the testing effort. This is

because some of the complete paths may be infeasible. For example, the complete path 1-2-4-8

for the program in Figure 7.4 is infeasible.

Let us consider another example to illustrate the all-du-paths and oi-all-uses criteria. Figure 7.5

shows two complete paths through the given control flow graph. The definition–use association

(2, 5, x) is established along two du-paths 2-3-4-5 and 2-3-5. The path P1 exercises (2, 5, x) along

both du-paths and therefore sufficiently tests it to meet the all-du-paths criterion. However, because

the value of x at node 5 does not influence the output y along P1, it does not meet the oi-all-uses

criterion for (2, 5, x). On the other hand, although path P2 exercises only one of the du-paths,

the value of x at node 5 does influence the output y. Therefore, although P2 does not satisfy the

all-du-paths criterion for (2, 5, x) it does satisfy the oi-all-uses criterion.

7.3 Complete Testing

Before the software can be deployed it should be throughly tested. For large software, testing is

carried out in a number of steps. First, the individual procedures are tested one at a time during unit

testing. The interfaces between the procedures are tested next during integration testing. A number

of researchers have explored data flow testing methodologies for complete testing. Some of these
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techniques are suitable for unit testing because they are intraprocedural (i.e., their applicability is

restricted to procedure bodies) [4, 15, 31]. Others have developed integration testing techniques that

are interprocedural and therefore these techniques consider definition–use associations that extend

across procedure boundaries [8, 26].

In this section we present an overview of unit and integration testing assuming that the all-uses

criterion is employed. During each step in testing we must identify the test requirements in form of

definition–use associations that are to be tested. Once the test requirements have been identified, we

must generate test cases to exercise the definition–use associations. One approach is to select a path

along which at least one untested definition–use association is exercised. Test data are generated that

cause the program to take the desired path and the definition–use association is tested. This process

is repeatedly applied to test all the test requirements.

Unit testing considers one procedure at a time and exercises the definition–use associations within

that procedure. A definition–use association within a procedure, also referred to as a intraprocedural

definition–use association, is one for which the definition and the use belong to the procedure and

a definition-clear path can be found within the procedure without examining the code belonging to

any called procedures. In other words, to identify intraprocedural definition–use associations for a

procedure, we conservatively assume that all variables visible to the called procedures are killed by

them. A procedure may read values of global variables and may have input parameters. Definitions

for input parameters and globals are introduced at the beginning of the procedure in form of read

statements. These definitions also give rise to definition–use associations that must be tested. Once

the definition–use associations have been computed the testing of the procedure can proceed using

the path selection based strategy described earlier.

Integration testing exercises the interprocedural definition–use associations during one or more

integration steps. An interprocedural definition–use association may be formed in a situation where

the definition and use belong to different procedures. It can also be formed in cases where although

the definition and use are in the same procedure, all the definition-clear paths between them contain

procedure calls. In each integration step one or more procedures are selected for integration. The

program call graph is used to drive the selection process. For example, integration can be carried out

in a top-down fashion or bottom-up fashion according to the call graph. In each integration step the

interprocedural definition–use associations relevant for that step must be tested. The computation

of interprocedural definition–use associations can be carried in a couple of different ways. One

approach analyzes the complete program and computes all the definition–use associations prior to

integration testing [27]. Another approach partially analyzes the program to compute the relevant

interprocedural definition–use associations during an integration step using demand-driven data flow

analysis [10].

The example in Figure 7.6 illustrates unit and integration testing. The sample program contains

four variables that are all globals. The definition–use associations that are generated as requirements

for unit testing are given in Figure 7.6(b). To compute definition–use associations to unit test P

and Q, definitions for globals referenced by these procedures are introduced in the entry nodes of

the procedures. During integration testing we assume that a bottom-up strategy is used. Therefore,

we first integrate Q into P and then we integrate P and Main. The interprocedural definition–use

associations that must be tested during the integration steps are given in Figure 7.6(c).

To carry out the testing of the requirements during unit and integration testing we must generate

test inputs. The test data generation problem is discussed later in this chapter. After the program is

executed on a test input we would like to identify all the definition–use associations exercised by that

input. For this purpose we can instrument the program to either generate an execution trace that can

be later analyzed or dynamically track the definition–use associations that are exercised. Techniques

used by dynamic slicing algorithms can be used for this purpose [1, 30].
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FIGURE 7.6 Example of complete testing.
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7.4 Regression Testing

Program changes are sometimes required after the deployment of software. The two common rea-

sons for such changes are (1) although the software may have been completely tested prior to its

deployment, some errors may only be discovered once the software is in use; and (2) some changes

may be made to better meet the needs of the customer. Regression testing is the process of testing the

modified parts of the software and ensuring that no new errors have been introduced into previously

tested code. Therefore, regression testing must test both the modified code and other parts of the

program that may be affected by the program change. Researchers have developed a number of data

flow based regression testing techniques [20, 33, 37].

In this section we describe an approach for regression testing proposed by Gupta et al. [20]. In

this approach a program change is translated into a series of low-level program edits. Demand-

driven static slicing algorithms are used to identify definition–use associations that are affected by

each program edit. The complete set of definition–use associations that are affected by a series

of program edits corresponding to a program change are retested during regression testing. During

regression testing we make use of existing test cases that were developed during the initial exhaustive

testing of the software by maintaining the test suite [25]. However, in general, some new test cases

may also have to be generated to adequately test the modified code.

The program change is mapped into a series of low-level program edits. We identify a complete

set of program edits such that changes to the program can always be mapped into a series of program

edits. This list of edits follows, with the edits defined in terms of operations on the program control

flow graph:

1. Delete a use of a variable from an assignment statement.

2. Insert a use of a variable in an assignment statement.

3. Delete a definition of a variable from an assignment statement.

4. Insert a definition of a variable in an assignment statement.

5. Delete a use of a variable from a conditional statement.

6. Insert a use of a variable in a conditional statement.

7. Change an operator or a constant in an assignment statement.

8. Change an operator or a constant in a conditional statement.

9. Insert an edge.

10. Delete an edge.

11. Insert a new assignment statement.

12. Insert a new conditional statement.

Let us assume that we used the all-uses criterion during complete testing. During regression testing,

given a program edit, the newly created definition–use associations not only should be tested, but

also all definition–use associations that are affected directly or indirectly by the program edit must be

retested. The definition–use associations that should be tested during regression testing are classified

into the following three categories:

New associations. A program edit can cause the creation of new definition–use associations that

must be tested. In particular, edit types 2, 3, 4, 6, 9, 11 and 12 can create new definition–use

associations.

Value associations. If an existing definition of a variable is directly or indirectly impacted by a

program edit, such that the value assigned in the definition is changed, then all definition–use

associations for this definition must be retested.

Path associations. If a program edit directly or indirectly affects a predicate, then definition–use

associations impacted by the predicate are also tested. A predicate is affected by a program

edit if either the edit explicitly modifies the predicate or the predicate contains a use belonging
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to a new or value association. A definition–use association is impacted by a predicate if the

definition in the association is control dependent on the predicate.

The example in Figure 7.7, taken from [20], illustrates the preceding approach. This program

iteratively computes the square root of x. It has an error in statement 8 in which x1 should be

assigned the value of x3 instead of x2. Correcting the error can be expressed in terms of two low-

level edits: deletion of the use of x2 from statement 8 followed by the insertion of the use of x3 in

its place. The definition–use associations that must be tested due to these edits are as follows:

New associations. The insertion of the new use of x3 in statement 8 creates a new definition–use

association (5, 8, x3).

Value associations. Because the value of x1 defined by statement 8 is affected, the value asso-

ciations (8, (4, t), x1), (8, (4, f ), x1), (8, 5, x1), (8, (6, t), x1) and (8, (6, f ), x1) must be

tested. The use of x1 in statement 5 affects the definition of x3 and therefore value associations

(5, 7, x3), (5, (6, t), x3) and (5, (6, f ), x3) must also be tested. Finally, the use of x3 in state-

ment 7 affects the definition of x2 and thus the value associations (7, (4, t), x2), (7, (4, f ), x2)

and (7, 5, x2) must also be tested.

Path associations. The preceding value associations indicate that the predicates 4 and 6 are affected

by the edits. Therefore, path associations created by definitions that are control dependent on

predicates 4 and 6 must be tested. The definitions that are control dependent on these predicates

include statements 5, 7 and 8. Because all definition–use associations for these three statements

have already been marked for testing as value associations, all path associations are already

included in the preceding set of value associations.

The modified program must be analyzed to identify the definition–use associations that have to

be tested. One approach for performing such analysis is to exhaustively compute definition–use

associations for the program prior to an edit as well as following an edit. By comparing the two the
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FIGURE 7.7 Testing following program edits.
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Reaching Defs (v, n){

Initialize Worklist to contain node n

While Worklist is not empty do

remove a node. say m, from Worklist

if m defines variable v then

add m to DefsFound

else

add predecessor nodes of m to Worklist

endif

endwhile

return (DefsFound)

}

(a) Finding Reaching Definitions Using Backward Analysis.

ReachableUses (v, n)

Initial Worklist to contain node n

While Worklist is not empty do

remove a node, say m, from Worklist

if m contains a use of variable v then

add m to UsesFound

endif

if m does not define variable v then

add successor nodes of m to Worklist

endif

endwhile

return(UsesFound)
}

(b) Finding Reachable Uses Using Forward Analysis

FIGURE 7.8 Reaching definitions and reachable uses analysis.

new definition–use associations are identified. By starting at the new associations and performing

a forward static slicing operation over the definition–use associations, the value associations are

identified. The predicates involved in new and value associations are now known and the definitions

that are control dependent on them are found. By performing forward static slicing operations from

these definitions all the path associations are found.

Another approach that only partially computes the definition–use associations before and after

the program edit is based on demand-driven analysis. Demand-driven analysis algorithms can be

devised to identify only those associations that are of interest. As an example consider a situation

in which a definition of variable v has been deleted from node n. We would like to identify the new

definition–use associations for v that may have been established. By using the algorithms shown in

Figure 7.8, we can compute the definitions of v that reach the entry of node n (ReachingDefs(v,n)) as

well as the uses of v that are reachable from the exit of n (i.e., ReachableUses(v, n)). All definition–

use associations for v that are established through n are now known. If some of these associations

did not exist in the program prior to the edit, then they are new associations. The advantage of this

approach is that the new associations have been found without exhaustively analyzing the program.

The first algorithm for demand-driven computation of definition–use associations that we are aware

of was proposed by Weiser, who used this approach to compute static slices [18, 39]. Since then this

approach has been used to deal with program edits in other works [18, 20].
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7.5 Test Input Data Generation

One of the most difficult tasks one faces during the initial testing of a program is that of generating

test cases to exercise the various test requirements. Whereas during functional testing the test cases

are generated from the functional specification, during data flow testing test cases must be generated

to provide adequate coverage under the selected test criterion for a given implementation. One by

one as the test cases are generated, the program is executed on them and the execution is analyzed to

identify the test requirements that are covered by the test case. As testing proceeds, an attempt must

be made to generate test cases that exercise test requirements yet to be covered.

7.5.1 Manual Test Input Generation

One approach to test input generation leaves the task of generating test cases to the person testing the

software. Even under this situation some of the other tasks can still be carried out automatically. In

particular, the determination of overall test requirements, the tracking of test requirements exercised

by a given test case and the identification of test requirements that must be exercised to satisfy the

test coverage criterion can all be carried out automatically.

The generation of test cases is extremely labor intensive and time consuming. Therefore, the use of

static analysis information has been explored to guide the user during the generation of test data [21].

In particular, static information is used to identify paths covering one or more test requirements that

are yet to be tested. Another problem that is encountered is due to the presence of infeasible program

paths. Because the identification of test requirements is based on static analysis, it is possible that

some of the identified test requirements are in fact infeasible; that is, there is no program input on

which they are exercised. The generation of infeasible test requirements is unavoidable because static

analysis is based on the assumption that all program paths are feasible. The time spent in trying to

generate a test case for an infeasible test requirement is clearly wasted. In fact, it is quite possible

that the test engineer discovers that a test requirement is infeasible only after spending a great deal

of time trying to generate a test case for the requirement.

To reduce the time wasted on infeasible requirements, an approach was proposed by Bodik et al.

[2]. A simple static analysis is described to identify some of the infeasible test requirements. These

requirements can be removed from consideration during the testing process. The basic idea behind

this approach is to identify smallest subpaths through the control flow graph that are infeasible. The

traditional data flow analysis for identifying definition–use associations is then modified such that

it prevents propagation of data flow information along infeasible subpaths. Consider the example in

Figure 7.9 that contains an infeasible definition-c-use association (1, 4, a). This association can be

identified as infeasible by the analysis in [2]. In particular, it is determined that if x < y is true, then

x < y + 1 must also be true; therefore, the subpath 1-2-4 is infeasible.

7.5.2 Automated Test Input Generation

Because test input generation is a time-consuming process, researchers have proposed techniques

for automating test input generation [7, 12, 16, 22−24, 29]. In this section we describe an approach

that has been proposed to automatically generate test data. We first consider a class of programs in

which the branch predicates involve computations that can be expressed as linear functions of the

program inputs. Later we show how this condition can be relaxed to allow for more general programs.

The high-level view of the automated test data generation method that we present is as follows.

We first select a program path that exercises the test requirement considered. The task of the test

generator is to identify a program input that can cause the program execution to follow the selected

path. To carry out this task we consider each branch predicate evaluation along the selected program

path; then by analyzing the code along the program path, we derive a linear constraint on the
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if x < y

if x < y + 1

... ... ...

... ... ...a = ...

...= a + 1 ...= a – 1

t

1

t

f

f
2

3 4

Feasible def–use association: (1,3,o)

Infeasible def–use association: (1,4,o)

FIGURE 7.9 Feasible vs. infeasible definition–use associations.
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FIGURE 7.10 Automated test data generation and testing.

program’s inputs that must be satisfied for that branch predicate to evaluate correctly. This process

is repeated for each branch predicate evaluation and a system of linear constraints is obtained. Any

constraint solver, such as XA [43] or UNA [23], can then be used to solve the linear constraint system

(Figure 7.10).

The preceding approach deals with infeasible path problem quite naturally. If the path chosen

is infeasible, then the set of constraints that result are inconsistent and therefore no solution can

be found. It is possible that certain constraints on the input domain exist (e.g., an input value may

have to be a positive integer to be meaningful). These constraints can also be naturally handled in

conjunction with the derived constraints by the constraint solver.

The key step of the preceding process is the derivation of the system of linear constraints from the

program. We discuss two approaches to carry out this task: one is based on a symbolic evlauation [3]

and the other is based on program execution [24]. We illustrate these approaches through an example

program of Figure 7.11, which reads three input values into variables a, b and c and then changes

the contents of the variables such that eventually a contains the smallest number and c contains the

largest number. We consider the generation of test data for a couple of paths through this program,

one feasible and another infeasible.

7.5.2.1 Symbolic Evaluation-Based Derivation of Linear Constraints

Let us consider the symbolic evaluation approach. For each branch predicate evaluation along the

selected path, we prepare a straight-line code segment consisting of all statements along the path

except for the earlier branch predicate evaluations. This straight-line code is symbolically executed

so that the branch predicate evaluation under consideration can be expressed directly in terms of the

program inputs. The desired evaluation of the branch predicate imposes a constraint on the inputs

that must be satisfied by the test input. This process is repeated for each branch predicate evaluation

along the selected path and a system of constraints is derived.

Figure 7.12 illustrates this approach for the sorting example of Figure 7.11. The first path consi-

dered is a feasible path. The code along the path is given and the desired branch predicate evaluations

are indicated. For simplicity the statements that implement the loop, causing it to iterate twice,

are ignored. No input constraints result from analyzing the loop predicate evaluations because the

number of times the loop iterates is fixed and independent of the program input. This fact can also
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FIGURE 7.11 Example for test data generation.

be easily discovered through symbolic evaluation. When symbolic evaluation of the code along the

path to other branch predicate evaluations is carried out, we obtain a system of constraints shown in

Figure 7.12. This indicates that for the path to be followed, we must select input values for a, b and

c such that a > b > c.

If we consider the second path shown in Figure 7.12, we notice that this path only differs from

the first path in its evaluation of the last branch predicate (true instead of false). Although the first

three constraints are the same, the fourth constraint we obtain is different (b > a instead of b >/ a).

We can clearly see that the constraint system that we have obtained now has no solution because the

constraints corresponding to the first and last branch predicate evaluations cannot be simultaneously

satisfied. Therefore, we can conclude that the selected path is infeasible.

7.5.2.2 Execution Based Derivation of Linear Constraints

Next we consider an execution-based approach for deriving the constraints. Given a Boolean pred-

icate, we can write this predicate in a normalized form P relop 0, where relop is a relational

operator. Our goal is to find a linear representation for P in terms of the program inputs. If P is a

linear function of program inputs, it can be expressed in the following form where i1 through in are

the inputs and x0 through xn are constants:

P = x0 + x1 × i1 + x2 × i2 + · · · + xn × in

If we can find the values of the constants in the preceding representation, we have the linear

representation of P in terms of the program inputs. To do so we execute the statements along the

path leading to P , excluding the prior branch predicates, on n + 1 arbitrary input data sets and

print out the values of P for each of these input data sets. By substituting the input data values and
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Test data for feasible path: 1-2-3(t)-4(t)-5-6(t)-7-8-3(t)-4(t)-5-6(f )-8-3(f )-9

read a, b, c read a, b, c read a, b, c read a, b, c read a, b, c

if a > [true] if a > b [true] t = a t = a t = a

t = a ⇓ a = b a = b a = b

a = b ⇓ b = t b = t b = t

b = t ⇓ if b > c [true] t = b t = b

if b > c [true] ⇓ ⇓ b = c b = c

t = b ⇓ ⇓ c = t c = t

b = c ⇓ ⇓ if a > b [true] t = a

c = t ⇓ ⇓ ⇓ a = b

if a > b [true] ⇓ ⇓ ⇓ b = t

t = a ⇓ ⇓ ⇓ if b > c [false]

a = b ⇓ ⇓ ⇓ ⇓

b = t ⇓ ⇓ ⇓ ⇓

if b > c [false] a > b a > c b > c b /> a or b ≤ a

print a,b,c

a > b

a > c ⇒ a > b > c

b > c

b /> a or b ≤ a

Test data for infeasible path: 1-2-3(t)-4(t)-5-6(t)-7-8-3(t)-4(t)-5-6(t)-7-8-3(f )-9

read a, b, c read a, b, c read a, b, c read a, b, c read a, b, c

if a > [true] if a > b [true] t = a t = a t = a

t = a ⇓ a = b a = b a = b

a = b ⇓ b = t b = t b = t

b = t ⇓ if b > c [true] t = b t = b

if b > c [true] ⇓ ⇓ b = c b = c

t = b ⇓ ⇓ c = t c = t

b = c ⇓ ⇓ if a > b [true] t = a

c = t ⇓ ⇓ ⇓ a = b

if a > b [true] ⇓ ⇓ ⇓ b = t

t = a ⇓ ⇓ ⇓ if b > c [true]

a = b ⇓ ⇓ ⇓ ⇓

b = t ⇓ ⇓ ⇓ ⇓

if b > c [true] a > b a > c b > c b > a

print a,b,c

a > b

a > c ⇒ Infeasible Path

b > c

b > a

FIGURE 7.12 Constraint derivation using symbolic evaluation.
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the corresponding printed value of P in the preceding equation, we obtain the following system of

equations:

P [0] = x0 + x1 × i1[0] + x2 × i2[0] + · · · + xn × in[0]

P [1] = x0 + x1 × i1[1] + x2 × i2[1] + · · · + xn × in[1]

· · ·

P [n] = x0 + x1 × i1[1] + x2 × i2[n] + · · · + xn × in[n]

Therefore, we have a system of n+1 equations in n+1 unknowns that can be solved to compute the

values of x0 through xn using standard packages such as MATLAB [42]. The result of the preceding

computation is the linear representation of P in terms of program inputs.

Figure 7.13 illustrates the derivation of a predicate expression using the execution-based approach.

In this example we derive the linear representation of the last predicate expression corresponding

to the feasible path of Figure 7.12. The predicate is represented by f (a, b, c) in terms of the three

program inputs. The code along the path is executed on some arbitrarily selected inputs and from

the resulting values of f , we obtain the system of equations from which the values of constant

coefficients are computed. As we can see, this approach yields the constraint b >/ a, which is the

same as the earlier representation that we obtained using the symbolic execution approach.

There are some advantages to using the execution-based approach. In the example we considered,

it was fairly straightforward to carry out the symbolic evaluation because variable names referenced

were statically unambiguous, no array or pointer references existed in the code and finally expressions

under manipulation were small and simple. For long paths containing array and pointer references,

symbolic evaluation can become impossible to perform. However, the execution-based approach is

free of these limitations.

7.5.2.3 Nonlinear Constraints

We have restricted our discussion to situations in which the predicate expressions were linear func-

tions of the program inputs. In general, this may not be the case and some of the predicate expressions

may be nonlinear functions of the inputs. The presence of nonlinear predicate expressions poses

challenges both in deriving the predicate expressions and solving the nonlinear constraint system.

In principle, the symbolic evaluation approach is not restricted to a linear representation. However,

the simplification of nonlinear expressions during symbolic evaluation is far more complex. The

execution-based approach has a rather strict limitation. It requires that the form of the predicate

expression in terms of program inputs be known. However, it is not realistic to assume that this

would be the case. Even if the nonlinear predicate expressions are identified, solving the resulting

system of nonlinear constraints is a problem.

An approach that addresses the preceding problem was proposed by Gupta et al. in [23, 24]. The

predicate expressions are handled as follows:

All predicate expressions are treated uniformly by assuming that they are linear functions of the

inputs. The execution-based approach is used to derive these linear representations. If the pred-

icate expression is linear, we have chosen the correct form. However, if a predicate expression

has a nonlinear representation, the linear representation that is derived is an approximation of

the actual nonlinear representation.

A nonlinear function cannot be accurately approximated by a linear function across the entire input

domain. This problem is addressed as follows. Instead of having a single linear representation

for the predicate expression for all program inputs, the linear representation is derived with
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if b > c [false]

⇓

if b > c [false]

⇓

if f (a, b, c) > 0 [false]

where, f (a, b, c) = x1 × a + x2 × b + x3 × c

read a, b, c ⇓

t = a f (a, b, c){

a = b read a, b, c

b = t t = a f (0, 5, 10) = 5

t = b a = b f (1, 6, 11) = 5

b = c b = t f (2, 8, 10) = 6

c = t t = b f (3, 9, 12) = 6

t = a b = c

a = b c = t

b = t t = a

if b > c [false] a = b

b = t

print (f (a, b, c) = b − c)

}

f (0, 5, 10) = 5 ⇒ x0 + x1 × 0 + x2 × 5 + x3 × 10 = 5

f (1, 6, 11) = 5 ⇒ x0 + x1 × 1 + x2 × 6 + x3 × 11 = 5

f (2, 8, 10) = 6 ⇒ x0 + x1 × 2 + x2 × 8 + x3 × 10 = 6

f (3, 9, 12) = 6 ⇒ x0 + x1 × 3 + x2 × 9 + x3 × 12 = 6

x0 + 5 × x2 + 10 × x3 = 5 x0 = 0

x0 + x1 + 6 × x2 + 11 × x3 = 5 ⇒ x1 = −1

x0 + 2 × x1 + 8 × x2 + 10 × x3 = 6 x2 = 1

x0 + 3 × x1 + 9 × x2 + 12 × x3 = 6 x3 = 0

f (a, b, c) = x0 + x1 × a + x2 × b + x3 × c = b − a ⇒ if b > a [false] ⇒ b /> a or b ≤ a

FIGURE 7.13 Execution-based constraint derivation.

respect to each program input. In fact, the linear approximation represents the tangent plane

to the nonlinear expression for a given input. Because the approximate linear representation is

specific to a program input, a specific input must be chosen before the representations can be

derived.

The preceding treatment of predicate expressions leads to the overall approach shown in Figure 7.14

that uses an iterative relaxation method to generate test input. Test data generation is initiated with

an arbitrarily chosen input from a given domain. This input is then iteratively refined to obtain an

input on which all the predicate expressions on the given path evaluate to the desired outcome. In

each iteration the program statements relevant to the evaluation of each branch predicates on the

path are executed, and a set of linear constraints is derived. The constraints are then solved to obtain

the increments for the input. These increments are added to the current input to obtain the input

for the next iteration. The relaxation technique used in deriving the constraints provides feedback on

the amount by which each input variable should be adjusted for the branches on the path to

evaluate to the desired outcome.
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FIGURE 7.14 Iterative refinement of test data.

7.6 Concluding Remarks

In this chapter we provide an overview of different aspects of data flow based testing of programs.

We describe the various data flow based test coverage criterion and the relationships among them.

The various aspects of data flow testing can be automated to a significant extent. In particular,

static data flow analysis is used to identify test requirements, dynamic analysis is used to track

test requirements exercised during a given program execution, test requirements that remain to be

tested can be automatically tracked and finally automatic determination can be made when enough

testing has been performed to satisfy a given test coverage criterion. We also describe techniques that

automate the difficult task of generating test cases. Although we consider the testing of sequential

programs, researchers are also developing testing strategies for dealing with object-oriented programs

[28], and parallel and real-time programs [5, 11, 38].
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8.1 Introduction

Program slicing is a program analysis technique. It can be used to extract the statements of a program

relevant for a given computation. The concept of program slicing was introduced by Weiser in his

doctoral work [1]. A program can be sliced with respect to some slicing criterion. In Weiser’s

terminology, a slicing criterion is a pair 〈p, V 〉, where p is a program point of interest and V is a

subset of the program variables. If we attach integer labels to all the statements of a program, then a

program point of interest could be an integer i representing the label associated with a statement of

the program. A slice of a program P with respect to a slicing criterion 〈p, V 〉 is defined as the set of all

statements of P that might affect the values of the variables in V used or defined at the program point

p. The program slicing technique introduced by Weiser [1] is now called static backward slicing. It is

0-8493-1240-7/03/$0.00+$1.50
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1.   read(i);

2.   prod := 1;

3.   sum := 0;

4.   while(i < 10) do

      begin

5.          sum := sum + i;

6.          prod : = prod * i;

7.          i := i + 1;

      end

8.   write(sum);

9.   write(prod);

(a)

1.   read(i);

3.   sum := 0;

4.   while(i < 10) do

      begin

5.          sum := sum + i;

7.          i := i + 1;

      end

8.   write(sum);

(b)

FIGURE 8.1 (a) Example program and (b) its slice with respect to the slicing criterion 〈8, sum〉.

static in the sense that the slice is independent of the input values to the program. It is backward

because the control flow of the program is considered in reverse while constructing the slice.

Consider the example program given in Figure 8.1(a). Slicing it with respect to the slicing criterion

〈8, sum〉 would yield the program slice shown in Figure 8.1(b). A semantic relationship exists

between the slice and the original program by the fact that both result in computation of the same

value of the variable sum for all possible inputs.

The program slicing technique was originally developed to realize automated static code decom-

position tools. The primary objective of those tools was to aid program debugging. From this modest

beginning, program slicing techniques have now ramified into a powerful set of tools for use in

such diverse applications as program understanding, automated computation of several software

engineering metrics, dead code elimination, reverse engineering, parallelization, software portability,

reusable component generation, etc. [2–12].

A major aim of any slicing technique is to realize as small a slice with respect to a slicing criterion

as possible because smaller slices are found to be more useful in different applications. Much of the

literature on program slicing is concerned with improving the algorithms for slicing both in terms

of reducing the size of the slice and improving the efficiency of slice computation. These works

address computation of more precise dependence information and more accurate slices. Tip [11] and

Binkley and Gallagher [12] provide comprehensive surveys of the existing paradigms, applications

and algorithms for program slicing.

8.1.1 Static and Dynamic Slicing

Static slicing techniques perform static analysis to derive slices. That is, the source code of the

program is analyzed and slices are computed that hold good for all possible input values [13]. A

static slice conservatively contains all the statements that may affect the value of a variable at a

program point for every possible input. Therefore, a static slice may contain some statements that

might not be executed during an actual run of the program.

Dynamic slicing makes use of the information about a particular execution of a program [14]. A

dynamic slice with respect to a slicing criterion 〈p, V 〉, for a particular execution, contains only those

statements that actually affect the values of the variables in V at the program point p. Therefore,
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dynamic slices are usually smaller than static slices. A comprehensive survey on the existing dynamic

program slicing algorithms is reported in Korel and Rilling [15].

8.1.2 Backward and Forward Slicing

As already discussed, a backward slice contains all parts of the program that might directly or

indirectly affect the variables at the statement under consideration. Thus, a static backward slice

provides the answer to the question: Which statements affect the slicing criterion?

A forward slice with respect to a slicing criterion 〈p, V 〉 contains all parts of the program that

might be affected by the variables in V used or defined at the program point p [16]. A forward slice

provides the answer to the question: Which statements will be affected by a slicing criterion?

8.1.3 Organization of the Chapter

The remainder of this chapter is organized as follows. In Section 8.2, we discuss the applications

of program slicing. In Section 8.3, we examine some basic concepts, notations and terminologies

associated with intermediate representations of sequential programs. Section 8.4 presents some basic

slicing algorithms for sequential programs. Section 8.5 deals with intermediate representations and

slicing of concurrent and distributed programs. In Section 8.6, we cover parallel slicing of sequential

and concurrent programs. In Section 8.7, we discuss intermediate representations and slicing of

object-oriented programs. Finally, we present our conclusions in Section 8.8.

8.2 Applications of Program Slicing

The utility and power of program slicing comes from its ability to assist software engineers in many

tedious and error prone tasks. Important applications of program slicing include debugging, software

maintenance and testing, program integration, functional cohesion metric computation, etc. In the

following, we briefly discuss these applications of program slicing.

8.2.1 Debugging

Realization of automated tools to help effective program debugging was the original motivation for

the development of the static slicing technique. In his doctoral thesis, Weiser provided experimental

evidence that programmers unconsciously use a mental form of slicing during program debugging [1].

Locating a bug can be a difficult task when one is confronted with a large program. In such cases,

program slicing is useful because it can enable one to ignore many statements while attempting to

localize the bug. If a program computes an erroneous value for a variable x, only those statements

in its slice would contain the bug; all statements not in the slice can safely be ignored.

The control and data dependences existing in a program are determined during slice computation.

A program slicer integrated into a symbolic debugger can help in visualizing control and data

dependences. Variants of the basic program slicing technique have been developed to further assist

the programmer during debugging: program dicing [17] identifies statements that are likely to contain

bugs by using information that some variables fail some tests whereas others pass all tests at some

program point. Consider a slice with respect to an incorrectly computed variable at a particular

statement. Now consider a correctly computed variable at some program point. Then the bug is

likely to be associated with the slice on the incorrectly computed variable minus the slice on the

correctly computed variable. This dicing heuristic can be used iteratively to locate a program bug.

Several slices may be combined with each other in different ways: the intersection of two slices

contains all statements that lead to an error in both test cases. The union of two slices contains all
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statements that lead to an error in at least one of the test cases. The symmetric difference of two

slices contains all statements that lead to an error in exactly one of the test cases.

Another variant of program slicing is program chopping [18, 19]. It identifies statements that lie

between two points a and b in the program and are affected by a change at a. Debugging in such a

situation should be focused only on those statements between a and b that transmit the change of

a to b.

8.2.2 Software Maintenance and Testing

Software maintainers often have to perform regression testing (i.e., retesting a software product after

any modifications are carried out to it to ensure that no new bugs have been introduced [20]). Even

after a small change, extensive tests may be necessary, requiring running of a large number of test

cases. Suppose a program modification requires only changing a statement that defines a variable x

at a program point p. If the forward slice with respect to the slicing criterion 〈p, x〉 is disjoint from

the coverage of a regression test t , then it is not necessary to rerun the test t . Let us consider another

situation. Suppose a coverage tool reveals that a use of variable x at some program point p has not

been tested. What input data is required to cover p? The answer to this question can be provided by

examining the backward slice with respect to the slicing criterion 〈p, x〉. Work has also been reported

concerning testing incrementally through an application of program slicing [21]. These applications

are discussed in detail in [22, 23].

Software testers have to locate safety critical code and to ascertain its proper functioning throughout

the system. Program slicing techniques can be used to locate all the code parts that influence the

values of variables that might be part of a safety critical computation. However, these variables that

are part of the safety critical computation have to be determined beforehand by domain experts.

One possibility to assure high quality is to incorporate redundancy into the system. If some output

values are critical, then these output values should be computed independently. For doing this, one

has to ensure that the computation of these values should not depend on the same internal functions,

because an error might manifest in both output values in the same way, thereby causing both the

parts to fail. An example of such a technique is functional diversity [24]. In this technique, multiple

algorithms are used for the same purpose. Thus, the same critical output values are computed using

different internal functions. Program slicing can be used to determine the logical independence of

the slices with respect to the output values computing the same result.

8.2.3 Program Integration

Programmers often face the problem of integrating several variants of a base program. To achieve inte-

gration, the first step possibly is to look for textual differences between the variants. Semantics-based

program integration is a technique that attempts to create an integrated program that incorporates

the changed computations of the variants as well as the computations of the base program that

are preserved in all variants [25]. Consider a program Called Base. Let A and B be two variants

of Base created by modifying separate copies of Base. The set of preserved components consists

of those components of Base that are neither affected in A nor in B. This set precisely consists of

the components having the same slices in Base, A and B. Horwitz et al. presented an algorithm

for semantics-based program integration that creates the integrated program by merging the Base

program, and its variants A and B [25]. The integrated program is produced through the following

steps: (1) building dependence graphs D1, D2 and D3, which represent Base, A, and B respectively;

(2) obtaining a dependence graph of the merged program by taking the graph union of the following:

symmetric difference of D1 and D2, symmetric difference of D1 and D3 and induced graph

on the preserved components; (3) testing the merged graph for certain interference criteria; and

(4) reconstructing a program from the merged graph.
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8.2.4 Functional Cohesion Metric Computation

The cohesion metric measures the relatedness of the different parts of some component. A highly

cohesive software module is a module that has one function and is indivisible. For developing an

effective functional cohesion metric, Beiman and Ott define data slices that consist of data tokens

(instead of statements) [26]. Data tokens may be variables and constant definitions and references.

Data slices are computed for each output of a procedure (e.g., output to a file, output parameter

and assignment to a global variable). The tokens that are common to more than one data slice are

the connections between the slices; they are the glue that bind the slices together. The tokens that

are present in every data slice of a function are called superglue. Strong functional cohesion can be

expressed as the ratio of superglue tokens to the total number of tokens in the slice, whereas weak

functional cohesion is the ratio of glue tokens to the total number of tokens. The adhesiveness of a

token is another measure expressing how many slices are glued together by that token.

8.2.5 Other Applications of Program Slicing

Program slicing methods have been used in several other applications such as tuning of

compilers, compiler optimizations, parallelization of sequential programs, detection of dead code,

determination of uninitialized variables, software portability analysis, program understanding,

reverse engineering and program specialization and reuse. These applications are discussed in some

detail in [2, 4–12, 27].

8.3 Intermediate Program Representation

To compute a slice, it is first required to transform the program code into a suitable intermediate

representation. In this section we present a few basic concepts, notations and terminologies associated

with intermediate program representation that are used later in this chapter. A common cornerstone

for most of the slicing algorithms is that programs are represented by a directed graph, which captures

the notion of data dependence and control dependence.

Definition 8.1 (directed graph or graph). A directed graph G is a pair (N, E) where N is a

finite nonempty set of nodes, and E ⊆ N × N is a set of directed edges between the nodes. Each

edge denoted by (x, y) or x → y leaves the source node x and enters the sink node y, making x a

predecessor of y, and y a successor of x.

The number of predecessors of a node is its in-degree, and the number of successors of the node

is its out-degree. A path from a node x1 to a node xk in a graph G = (N, E) is a sequence of nodes

(x1, x2, . . . , xk) such that (xi, xi+1) ∈ E for every i, 1 ≤ i ≤ k − 1.

Definition 8.2 (flow graph). A flow graph is a quadruple (N, E, Start, Stop) where (N, E) is

a graph, Start ∈ N is a distinguished node of in-degree 0 called the start node, Stop ∈ N is a

distinguished node of out-degree 0 called the stop node, there is a path from the Start to every other

node in the graph, and there is a path from every other node in the graph to the Stop.

If x and y are two nodes in a flow graph, then x dominates y iff every path from Start to y passes

through x; y postdominates x iff every path from x to Stop passes through y. Finding post dominators

of a flow graph is equivalent to finding the dominators of the reverse flow graph. In a reverse flow

graph, the direction of every edge of the original flow graph is reversed and the Start and Stop labels

are interchanged. We call x the immediate dominator of y, iff x is a dominator of y, x =/ y, and no

other node z dominates y and is dominated by x. The dominator tree of a directed graph G with
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Start 4

56 87

9
Stop

21 3

FIGURE 8.2 CFG of the example program given in Figure 8.1(a).

entry node Start is the tree that consists of the nodes of G, has the root Start and has an edge between

nodes x and y, if x immediately dominates y.

8.3.1 Control Flow Graph

Definition 8.3 (control flow graph). A control flow graph (CFG)G of a program P is a flow graph

(N, E, Start, Stop), where each node n ∈ N represents either a statement or a control predicate.

An edge (m, n) ∈ E indicates the possible flow of control from the node m to the node n. Nodes Start

and Stop are unique nodes representing entry and exit of the program P , respectively.

Note that the existence of an edge (x, y) in the CFG does not mean that control must transfer from

x to y during program execution. Figure 8.2 represents the CFG of the example program given in

Figure 8.1(a). CFGs model the branching structure of the program. They can be built while parsing

the source code using algorithms that have linear time complexity in the size of the program.

8.3.2 Data Dependence Graph

Data flow describes the flow of the values of variables from the points of their definitions to the points

where they are used. In the following, we describe how data flow information can be computed for

structured programming languages. A data dependence of a node x to another node y means that the

program computation might be changed if the relative order of the nodes x and y are reversed. The

direction of the data dependence from a node x to a node y indicates the flow of the value of some

variable defined at node x to the node y. The value computed at node y depends on some value of

the variable defined at node x that may reach node y. Aho et al. [28] use the term reaching definition

to express the fact that the value of a variable defined at some node j may be used at another node

i. That is, node j is a reaching definition for an execution of node i if node i is data dependent on

node j . The precise computation of reaching definitions is one of the goals of data flow analysis.

Let m be a node of a CFG G. The sets def(m) and ref(m) denote the sets of variables defined and

referenced at the node m, respectively.

Definition 8.4 (Data Dependence). Let G be the CFG of a program P. A node n is said to be data

dependent on a node m if there exists a variable x of the program P such that the following hold:

1. x ∈ def (m).

2. x ∈ ref (n).

3. An execution path exists from m to n along which there is no intervening definition of x.

Definition 8.5 (data dependence graph). The data dependence graph (DDG) G of a program P

is a graph G = (N, E), where each node n ∈ N represents either a statement or a predicate of the

program. An edge (m, n) indicates that n is data dependent on m.



Program Slicing 275

8.3.3 Control Dependence Graph

In a control dependence graph (CDG), the notion of control dependence is used to represent the

relations between program entities arising out of control flow.

Definition 8.6 (control dependence). Let G be the control flow graph of a program P. Let x and y

be nodes in G. Node y is control-dependent on node x if the following hold:

1. A directed path Q exists from x to y.

2. Node y postdominates every z in Q (excluding x and y).

3. Node y does not postdominate x.

If y is control-dependent on x, then x must have multiple successors. Following one path from x

results in execution of y whereas following other paths may result in no execution of y.

Definition 8.7 (control dependence graph). The CDG over a CFG G is the graph defined over all

nodes of G in which a directed edge exists from node x to node y iff y is control dependent on x.

The CDG compactly encodes the required order of execution of the statements of a program. A

node evaluating a condition on which the execution of the other nodes depends has to be executed

first. The later nodes are therefore control dependent on the condition node.

8.3.4 Program Dependence Graph

Ottenstein and Ottenstein presented a new mechanism of program representation called program

dependence graph (PDG) [29]. Unlike flow graphs, an important feature of the PDG is that it

explicitly represents both control and data dependences in a single program representation. Because

program slicing requires both kinds of dependences, the PDG has been adopted as an appropriate

representation for use with slicing algorithms. A PDG models a program as a graph in which the

nodes represent either statements or predicates, and the edges represent data or control dependences.

Definition 8.8 (program dependence graph). The PDG of a program P is the union of a pair of

graphs : the DDG of P and the CDG of P.

Note that the DDG and CDG are subgraphs of a PDG. Figure 8.3 represents the PDG of the

example program given in Figure 8.1(a).

8.3.5 System Dependence Graph

The PDG of a program combines the control dependences and data dependences into a common

framework. The PDG has been found to be suitable for intraprocedural slicing. However, it cannot

handle procedure calls. Horwitz et al. enhanced the PDG representation to facilitate interprocedural

slicing [30]. They introduced the system dependence graph (SDG) representation that models the

main program together with all nonnested procedures. This graph is very similar to the PDG. Indeed,

a PDG of the main program is a subgraph of the SDG. In other words, for a program without procedure

calls, the PDG and the SDG are identical. The technique for constructing an SDG consists of first

constructing a PDG for every procedure, including the main procedure, and then adding auxiliary

dependence edges that link the various subgraphs together. This results in a program representation

that includes the information necessary for slicing across procedure boundaries.

An SDG includes several types of nodes to model procedure calls and parameter passing:

• Call-site nodes. These represent the procedure call statements in a program.

• Actual-in and actual-out nodes. These represent the input and output parameters at the call

sites. They are control dependent on the call-site nodes.
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9 4 5 8
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7

Data Dependence Edge

 Control  Dependence Edge

2 1 3

FIGURE 8.3 PDG of the example program given in Figure 8.1(a).

main( )

begin

s=0;

i=1;

while (i < 10) do

begin

add(s, i);

inc(i)

end

end

add(a, b)

begin

inc(z)

begin

end

return add(z, 1)

end

a=a+b;

write(s)

return a

FIGURE 8.4 Example program consisting of a main program and two procedures.

• Formal-in and formal-out nodes. These represent the input and output parameters at the called

procedure. They are control dependent on the procedure’s entry node.

Control dependence edges and data dependence edges are used to link the individual PDGs in an

SDG. The additional edges to link the PDGs together are as follows:

• Call edges. These link the call-site nodes with the procedure entry nodes.

• Parameter-in edges. These link the actual-in nodes with the formal-in nodes.

• Parameter-out edges. These link the formal-out nodes with the actual-out nodes.

Finally, summary edges are used to represent the transitive dependences that arise due to calls. A

summary edge is added from an actual-in node A to an actual-out node B, if a path of control, data

and summary edges exist in the called procedure from the corresponding formal-in node A′ to the

formal-out node B ′. Figure 8.5 represents the SDG of the example program shown in Figure 8.4.
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entry main

entry inc

entry add

s = 0 i = 1 while i<10 write(s)

add inc

a   = s b   = i s = a

a = a b = b a = a+b a      = a

z = z add z      =z

a     = z b     = 1 z = a

in in inz    = i i = z outout

out

out

out

in

in in

in in

Control  Dependence  Edge

Data  Dependence  Edge

Call.  Parameter-in,  Parameter-out  Edge

Summary  Edge

FIGURE 8.5 SDG of the example program shown in Figure 8.4.

8.4 Basic Slicing Algorithms: An Overview

This section presents an overview of the basic program slicing techniques and includes a brief history

of their development. We start with the original approach of Weiser [1] where slicing is considered

as a data flow analysis problem, and then examine the slicing techniques where slicing is seen as a

graph reachability problem.

8.4.1 Slicing Using Data Flow Analysis

8.4.1.1 Weiser’s Algorithm

Weiser used a CFG as an intermediate representation for his slicing algorithm [1]. Let v be a

variable and n be a statement (node) of a program P , and S be the slice with respect to the slicing

criterion 〈n, v〉. Consider a node m ∈ S. Weiser defined the set of relevant variables for the node

m, relevant(m), as the set of variables of the program P whose values (transitively) affect the

computation of the value of the variable v at the node n. Consider the example program shown

in Figure 8.1(a) and the slice with respect to the slicing criterion 〈9, prod〉. For this example,

relevant(8) = {prod}, relevant(7) = {prod}, and relevant(6) = {prod , i}. Computing a slice

from a CFG requires computation of the data flow information about the set of relevant variables
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at each node. That is, slices can be computed by solving a set of data and control flow equations

derived directly from the CFG of the program undergoing slicing.

In Weiser’s approach, every slice is computed from scratch. That is, no information obtained

during any previous computation of slices is used. This is a serious disadvantage of his algorithm. It

has been shown that computation of static slices using his algorithm requires O(n2e) time, where n

is the number of nodes and e is the number of edges in the CFG [1].

Weiser’s algorithm [1] for computing static slices cannot handle programs with multiple

procedures. Later in [13], Weiser presented algorithms for interprocedural slicing.

8.4.1.1.1 Dynamic Slicing.

Consider the example program given in Figure 8.6. The static slice of the program with respect to

the criterion 〈11, z〉 includes the whole program. Suppose the program is executed and the value

entered for the variable i was 3. Now, if the value of z printed at the end of the program is not as

expected, then we can infer that the program contains a bug. To locate the bug a dynamic slice can

be constructed as shown in Figure 8.6(b). The dynamic slice only identifies those statements that

contribute to the value of the variable z when the input i = 3 is supplied to the program. Locating the

bug using the dynamic slice is thus easier than examining the original program or the corresponding

static slice because the number of statements included in the dynamic slice is normally much less. A

dynamic slice is said to be precise if it includes only those statements that actually affect the value

of a variable at a program point for the given execution.

Korel and Laski extended Weiser’s CFG based static slicing algorithm to compute dynamic

slice [14]. They computed dynamic slices by solving the associated data flow equations. However,

their dynamic slice may not be optimal. They require that if any one occurrence of a statement

in the execution trace is included in the slice, then all other occurrences of that statement should

be automatically included in the slice, even when the value of the variable in the slicing criterion

under consideration is not affected by other occurrences. Their method needs O(N) space to store

the execution history, and O(N2) space to store the dynamic flow data, where N is the number of

statements executed during the run of the program. Note that for programs containing loops, N may

be unbounded. This is a major shortcoming of their method.

8.4.2 Slicing Using Graph-Reachability Analysis

Ottenstein and Ottenstein [29] defined slicing as a reachability problem in the dependence graph

representation of a program. A directed graph is used as an intermediate representation of the

program. This directed graph models the control or data dependences among the program entities.

Slices can be computed by traversing along the dependence edges of this intermediate representation.

An important advantage of this approach is that data flow analysis has to be performed only once,

and that the information can be used for computing all slices.

8.4.2.1 Intraprocedural Slicing: Program Dependence Graph

Ottenstein and Ottenstein introduced PDG as an intermediate program representation [29]. We have

already discussed the definitions of these types of graphs in Section 8.3.4 . They demonstrated how

the PDG could be used as the basis of a new slicing algorithm. Their algorithm produced smaller

slices than Weiser’s algorithm. This method differed from Weiser’s in an important way: it used

a single reachability pass of a PDG compared with Weiser’s incremental flow analysis. Ottenstein

and Ottenstein presented a linear time solution for intraprocedural static slicing in terms of graph

reachability in the PDG [29]. The construction of the PDG of a program requires O(n2) time, where

n is the number of statements in the program. Once the PDG is constructed, the slice with respect to

a slicing criterion can be computed in O(n + e) time, where n is the number of nodes and e is the
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1.   read(i);

2.   n = 3;

3.   z = 1;

4.   while(i < n) do

       begin

5.          read(x);

6.          if(x < 0) then

7.                 y = f1(x);

             else

8.                 y = f2(x);

9.          z = f3(y);

10.        i = i + 1;

       end;

11.  write(z);

3.   z = 1;

(a) (b)

FIGURE 8.6 (a) Example program and (b) its dynamic slice with respect to the slicing criterion 〈11, z〉 for

the input value i = 3.

number of edges in the PDG. The process of building the PDG of a program involves computation

and storage of most of the information needed for generating slices of the program.

8.4.2.1.1 Dynamic Slicing Using PDG.

Agrawal and Horgan [31] were the first to present algorithms for finding dynamic program slices

using PDG as the intermediate program representation. In their approach, they construct a DDG of

the program at runtime using its PDG. Construction of DDG involves creating a new node for each

occurrence of a statement in the execution history, along with its associated control and dependence

edges [31]. The disadvantage of using the DDG is that the number of nodes in a DDG is equal to the

number of executed statements (length of execution), which may be unbounded for programs having

loops.

Agrawal and Horgan [31] proposed to reduce the number of nodes in the DDG by merging nodes

for which the transitive dependences map to the same set of statements. In other words, a new node

is introduced only if it can create a new dynamic slice. This check involves some runtime overhead.

The resulting reduced graph is called the reduced dynamic dependence graph (RDDG).The size of

the RDDG is proportional to the number of dynamic slices that can arise during execution of the

program. Note that in the worst case, the number of dynamic slices of a program having n statements

is O(2n) [11].

The example given in Figure 8.7 shows a program having O(2n) different dynamic slices. The

program reads n distinct numbers x1, x2, . . . , xn. Then, for every possible subset S ⊆

{x1, x2, . . . , xn}, it finds the sum of all the elements of the subset S. Note that in each iteration

of the outer loop, the slice with respect to write(y) contains all the statements read(xi) for which

xi ∈ S. Because a set with n elements has 2n subsets, the example of Figure 8.7 has O(2n) different

dynamic slices. Thus, the worst-case space complexity of the RDDG-based algorithm of Agrawal

and Horgan [31] is exponential in the number of statements of the program.

Mund et al. [32] have proposed an efficient intraprocedural dynamic slicing algorithm. They used

the PDG as an intermediate program representation, and modified it by introducing the concepts of
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read(xn);

write(y);

/*   of a subset of  { x1,…, xn}.   */

/*   this loop finds the   */

/*   sum of the elements   */

n: y=y+xn;

  .......

read(moreSubsets);

finished=false;

y=0;

while not(finished) do

read(i);

case(i) of

endwhile;

 endcase;

read(finished);

while (moreSubsets) do
 moreSubsets=true;

 endwhile.

1:  y=y+x1;

moreSubsets, finished : boolean;

integer  y, i, x1,…, xn;

......

read(x1);

 /* subsets    of  the  set of  the read numbers.*/

/* This  program  reads  n  numbers  and prints  the  sum of  various */

/* Output  sum of the current subset  */

/*  Find  out  whether  there are  any more subsets . */

FIGURE 8.7 Program having exponential (in the number of statements) number of dynamic slices.

a stable edge and an unstable edge. Let S be a statement in a program P . An outgoing dependence

edge (S, Si) in the PDG GP of P is said to be an unstable edge if there exists an outgoing dependence

edge (S, Sj ) with Si =/ Sj such that the statements Si and Sj both define the same variable used

at S.

An edge that is not unstable is said to be an stable edge. If (x, y) is an unstable edge, then it does

not mean that node x can have dependence on node y in all executions of the program. That is, in

some execution of the program node x may have dependence on node y, and in some other execution

of the program node x may not have dependence on node y. Figure 8.8 represents the modified

program dependence graph (MPDG) of the example program given in Figure 8.6(a). The MPDG of

a program does not distinguish data and control dependence edges. It contains two types of edges:

stable edges and unstable edges. In the MPDG of Figure 8.8, the edges (4,1), (4,10), (9,7), (9,8),

(10,1), (10,10), (11, 3) and (11, 9) are unstable edges, with all other edges stable. The algorithm of

Mund et al. [32] is based on marking and unmarking the unstable edges as and when the dependences

arise and cease at runtime. Their algorithm does not need to create any new node at runtime. They

have shown that their algorithm always finds a precise dynamic slice with respect to a given slicing

criterion. Further, they have shown that their algorithm is more time efficient than the existing ones,

and that the worst-case space complexity of their algorithm is O(n2), where n is the number of

statements in the program.

8.4.2.2 Interprocedural Slicing: System Dependence Graph

As described earlier, the notion of PDG was extended by Horwitz et al. into an SDG to represent

multiprocedure programs [30]. Interprocedural slicing can be implemented as a reachability problem

over the SDG. Horwitz et al. developed a two-phase algorithm that computes precise interprocedural
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FIGURE 8.8 MPDG of the example program given in Figure 8.6(a). An edge (x, y) represents data or control

dependence of the node x on the node y.

slices [30]. To compute a slice with respect to a node n in a procedure P requires two phases of

computations that perform the following:

• In the first phase, all edges except the parameter-out edges are followed backward starting with

the node n in procedure P . All nodes that reach n and are in P itself or in procedures that

(transitively) call P are marked. That is, the traversal ascends from procedure P upward to

the procedures that called P . Because parameter-out edges are not followed, phase 1 does not

descend into procedures called by P . The effects of such procedures are not ignored. Summary

edges from actual-in nodes to actual-out nodes cause nodes to be included in the slice that

would only be reached through the procedure call, though the graph traversal does not actually

descend into the called procedure. The marked nodes represent all nodes that are part of the

calling context of P and may influence n.

• In the second phase, all edges except parameter-in and call edges are followed backward starting

from all nodes that have been marked during phase 1. Because parameter-in edges and call edges

are not followed, the traversal does not ascend into calling procedures. Again, the summary

edges simulate the effects of the calling procedures. The marked nodes represent all nodes in

the called procedures that induce summary edges.

8.5 Slicing of Concurrent and Distributed Programs

In this section, we first discuss some basic issues associated with concurrent programming. Later,

we discuss how these issues have been addressed in computation of slices of concurrent programs.

The basic unit of concurrent programming is the process (also called task in the literature). A

process is an execution of a program or a section of a program. Multiple processes can be executing

the same program (or a section of the program) simultaneously. A set of processes can execute on
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one or more processors. In the limiting case of a single processor, all processes are interleaved or

time shared on this processor. Concurrent program is a generic term that is used to describe any

program involving potential parallel behavior. Parallel and distributed programs are subclasses of

concurrent programs that are designed for execution in specific parallel processing environments.

8.5.1 Program Properties

8.5.1.1 Nondeterminism

A sequential program imposes a total ordering on the actions it performs. In a concurrent program,

an uncertainty exists over the precise order of occurrence of some events. This property of a

concurrent program is referred to as nondeterminism. A consequence of nondeterminism is that

when a concurrent program is executed repeatedly, it may take different execution paths even when

operating on the same input data.

8.5.1.2 Process Interaction

A concurrent program normally involves process interaction. This occurs for two main reasons:

• Processes compete for exclusive access to shared resources, such as physical devices or data,

and therefore need to coordinate access to the resource.

• Processes communicate to exchange data.

In both the preceding cases, it is necessary for the processes concerned to synchronize their

execution, either to avoid conflict, when acquiring resources, or to make contact, when exchanging

data. Processes can interact in one of two ways: through shared variables, or by message passing.

Process interaction may be explicit within a program description or may occur implicitly when the

program is executed.

A process wishing to use a shared resource must first acquire the resource, that is, obtain permission

to access it. When the resource is no longer required, it is released. If a process is unable to acquire

a resource, its execution is usually suspended until that resource is available. Resources should be

administered so that no process is delayed unduly.

8.5.1.3 A Coding View

The main concerns in the representation of concurrent programs are:

• Representation of processes

• Representation of process interactions

Concurrent behavior may be expressed directly in a programming notation or implemented by

system calls. In a programming notation, a process is usually described in a program block and

process instances are created through declaration or invocation references to that block. Process

interaction is achieved via shared variables or by message passing from one process to another.

8.5.1.4 Interaction via Shared Variables

A commonly used mechanism for enforcing mutual exclusion is through use of semaphores. Entry to

and exit from a critical region is controlled by using P and V operations, respectively. This notation

was proposed by Dijkstra [33], and the operations can be read as “wait if necessary” and “signal”

(the letters actually represent Dutch words meaning pass and release). Some semaphores are defined

to give access to competing processes based on their arrival order. The original definition, however,

does not stipulate an order. The less strict definition gives greater flexibility to the implementor but

forces the program designer to find other means of managing queues of waiting processes.
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8.5.1.5 Interaction by Message Passing

Process interaction through message passing is very popular. This model has been adopted by the

major concurrent programming languages [34]. It is also a model amenable to implementation in a

distributed environment. Within the general scheme of message passing, there are two alternatives:

• Synchronous. The sending process is blocked until the receiving process has accepted the

message (by implicit or by some explicit operation).

• Asynchronous. The sender does not wait for the message to be received but continues

immediately. This is sometimes called a nonblocking, or no-wait send.

Synchronous message passing, by definition, involves a synchronization as well as a communica-

tion operation. Because the sender process is blocked while awaiting receipt of the message, there

can be at most one spending message from a given sender to a given receiver, with no ordering

relation assumed between messages sent by different processes. The buffering problem is simple

because the number of sending messages is bounded.

In asynchronous message passing, the pending messages are buffered transparently, leading to

potential unreliability in case of a full buffer. For most applications, synchronous message passing

is thought to be the easier method to understand and use, and is more reliable as well. Asynchronous

message passing allows a higher degree of concurrency.

8.5.2 Concurrency at the Operating System Level

In this section we confine our attention to the discussion on the UNIX operating system.

UNIX [35, 36] is not a single operating system but an entire family of operating systems. The

discussion here is based chiefly on the POSIX standard, which describes a common, portable, UNIX

programmer’s interface.

UNIX uses a pair of system calls, fork and exec, for process creation and activation. The fork call

creates a copy of the forking process with its own address space. The exec call is invoked by either

the original or a copied process to replace its own virtual memory space with the new program,

which is loaded into memory, destroying the memory image of the calling process. The parent

process of a process terminating by using the exit system call can wait on the termination event

of its child process by using the wait system call. Process synchronization is implemented using

semaphores. Interprocess communication is achieved through shared memory and message-passing

mechanisms [37]. A shared memory segment is created using the shmget function. It returns an

identifier to the segment. The system call shmat is used to map a segment to the address space of

a particular process. Message queues are created by using msgget function. Messages are sent by

using the msgsnd function and these messages get stored in the message queue. The msgrcv function

is used by a process to receive a message addressed to it from the message queue.

8.5.3 Slicing of Concurrent Programs

Research in slicing of concurrent programs is scarcely reported in the literature. In the following,

we review the reported work in static and dynamic slicing of concurrent programs.

8.5.3.1 Static Slicing

Cheng [38] generalized the notion of CFG and a PDG to a nondeterministic parallel control flow

net and a program dependence net (PDN), respectively. In addition to edges for data dependence

and control dependence, PDN may also contain edges for selection dependences, synchronization

dependences and communication dependences. Selection dependence is similar to control depen-

dence but involves nondeterministic selection statements, such as the ALT statement of Occam-2.
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Synchronization dependence reflects the fact that the start or termination of the execution of a

statement depends on the start or termination of the execution of another statement. Communication

dependence corresponds to a situation where a value computed at one point in the program influences

the value computed at another point through interprocess communication. Static slices are computed

by solving for the reachability problem in a PDN. However, Cheng did not precisely define the

semantics of synchronization and communication dependences, or state or prove any property of the

slices computed by his algorithm [38].

Goswami et al. [39] presented an algorithm for computing static slices of concurrent programs in

a UNIX process environment. They introduced the concept of a concurrent program dependence

graph (CPDG), and constructed the graph representation of a concurrent program through three

hierarchical levels: process graph, concurrency graph and CPDG. A process graph captures the

basic process structure of a concurrent program, and represents process creation, termination and

joining of processes. A process node consists of a sequence of statements of a concurrent program

that would be executed by a process.

Krinke [40] proposed a method for slicing threaded programs. Krinke’s work extends the structures

of CFG and PDG for threaded programs with interference. She defines interference as data flow that

is introduced through use of variables common to parallel executing statements. In [40], Krinke

proposed a slicing algorithm to compute slices from the new constructs for threaded programs called

as threaded-PDG and threaded-CFG. Nanda and Ramesh [41] later pointed out some inaccuracies

in the slicing algorithm of Krinke and proposed some improvements for it. Their algorithm has a

worst-case complexity of O(N t ), where N is the number of nodes in the graph and t is the number of

threads in the program. They also proposed three optimizations to reduce this exponential complexity.

A process graph captures only the basic process structure of a program. This has been extended

to capture other UNIX programming mechanisms such as interprocess communication and syn-

chronization. A concurrency graph is a refinement of a process graph where the process nodes of

the process graph containing message passing statements are split up into three different kinds of

nodes, namely, send node, receive node and statement node. The significance of these nodes and the

construction procedure of these nodes are explained in the following:

• Send node. A send node consists of a sequence of statements that ends with a msgsend statement.

• Receive node. A receive node consists of a sequence of statements that begins with a msgrecv

statement.

• Statement node. A statement node consists of a sequence of statements without any message

passing statement.

Each node of the concurrency graph is called a concurrent component. A concurrency graph cap-

tures the dependencies among different components arising due to message-passing communications

among them. However, components may also interact through other forms of communication such

as shared variables. Access to shared variables may either be unsynchronized or synchronized using

semaphores. Further, to compute a slice, in addition to representing concurrency and interprocess

communication aspects, one needs to represent all traditional (sequential) program instructions. To

achieve this, they extended the concurrency graph to construct a third level graph called CPDG.

Consider the example program given in Figure 8.9(a). Its process graph, concurrency graph and

CPDG are shown in Figures 8.9(b), 8.9(c) and 8.10, respectively. Once the CPDG is constructed,

slices can be computed through simple graph reachability analysis.

Goswami et al. [39] implemented a static slicing tool that supports an option to view slices of

programs at different levels, that is, process level, concurrent component level or code level. They

reported on the basis of implementation experience that their approach of hierarchical presentation

of the slicing information helps the users get a better understanding of the behaviors of concurrent

programs.
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Entry

P0

P1 P2

P3 P4

P5

End

End

       main()

       { /*  P0  */

       int i, j, x, n;

       x = shmat(...);

1.    x = 0;

2.    scanf("%d", &n);

3.    i = 1;

4.    j = 0;

5.    if (fork() == 0)

       { /*  P1  */

6.          x = x + n;

7.          j = i + x;

8.          msgsend(m1, j);

9.          for(i=1; i<n; i++)

10                j++;

       }

       else { /*  P2  */

11.         if (fork() == 0)

              { /*  P3  */

12.               i = i +1;

13.               msgrecv(m1, j);

14.               i = i +j;

15.               x--;

              }

              else { /*  P4  */

16.               if (n>0)

17.                      x--;

                    else

18.                      x++;

19.               n++;

20.               wait(0);

             }

             /*  P5  */

21.        printf("%d", n);

       }      

      }

Entry

End

P0

P2

P4

P5

P1

P1 P3

P3
End

(b)

(a) (c)

Communication  Edge

Fork,  Join,  Control  Edge

1

2 1

2

FIGURE 8.9 (a) Example program; (b) process graph and (c) concurrency graph.

8.5.3.2 Dynamic Slicing

Korel and Ferguson extended the dynamic slicing method of [14, 42] to distributed programs with

Ada-type rendezvous communication [43]. For a distributed program, the execution history is for-

malized as a distributed program path which, for each task, comprises (1) the sequences of statements

(trajectory) executed by it, and (2) a sequence of triples (A, C, B) identifying each rendezvous in

which the task is involved.

A dynamic slicing criterion of a distributed program specifies: (1) the inputs to each task, (2) a

distributed program path P , (3) a task W , (4) a statement occurrence q in the trajectory of w and (5) a

variable v. A dynamic slice with respect to such a criterion is an executable projection of the program

that is obtained by deleting statements from it. However, the computed slice is only guaranteed to

preserve the behavior of the program if the rendezvous in the slice occurs in the same relative order

as in the program.

Duesterwald, Gupta and Soffa present a dependence graph based algorithm for computing dynamic

slices of distributed programs [44]. They introduce a DDG for representing distributed programs. A

DDG contains a single vertex for each statement and predicate in a program. Control dependences

between statements are determined statically, prior to execution. Edges for data and communication
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if (n<0)

msgrecv(m1, j)

x = 0 scant ("%d",&n) i = 1 j = 0 if (fork() = 0)

if (fork() = 0)
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x= x+n j = i+x msgsend(m1,j)

for (...)

j++
n++

x++x--
wait(0)

i=i+1 i=i+j x--

printf("%d", n)
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FIGURE 8.10 CPDG for the example program shown in Figure 8.9(a).

dependences are added to the graph at runtime. Slices are computed in the usual way by determining

the set of DDG vertices for which the vertices specified in the criterion can be reached. Both the

construction of the DDG and the computation of slices are performed in a distributed manner. Thus, a

separate DDG construction process and slicing process are assigned to each process Pi in the program.

The different processes communicate when a send or receive statement is encountered. However,

due to the fact that a single vertex is used for all occurrences of a statement in the execution history,

inaccurate slices may be computed in the presence of loops.

Cheng presents an alternative graph-based algorithm for computing dynamic slices of distributed

and concurrent programs [38]. Cheng’s algorithm is basically a generalization of the initial approach

proposed by Agrawal and Horgan in [31]: the PDN vertices corresponding to executed statements

are marked, and the static slicing algorithm is applied to the PDN subgraph induced by the marked

vertices. This, however, yields inaccurate slices in presence of loops.

In [45], Goswami and Mall extended their static slicing framework [39] to compute dynamic

slices of concurrent programs. They introduced the notion of the dynamic program dependence

graph (DPDG) to represent various intra- and interprocess dependences of concurrent programs.

They constructed the DPDG of a concurrent program through three hierarchical stages. At compile

time, a dynamic process graph and a static program dependence graph (SPDG) are constructed.

The dynamic process graph is the most abstract representation of a concurrent program. It captures

the basic information about processes that are obtained through a static analysis of the program

code. The SPDG of a concurrent program represents the static part of data and control dependences

of the program. Trace files are generated at runtime to record the information regarding the relevant

events that occur during the execution of concurrent programs. By using the information stored in the

trace files, the dynamic process graph is refined to realize a dynamic concurrency graph. The SPDG,

the information stored in the trace files and the dynamic concurrency graph are then used to construct

the DPDG. The DPDG of a concurrent program represents dynamic information concerning fork and

join, semaphore and shared dependences and communication dependences due to message passing in
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addition to data and control dependences. After construction of the DPDG of a concurrent program,

dynamic slices can be computed using some simple graph-reachability algorithm.

The dynamic slicing algorithm of Goswami and Mall [45] can handle both shared memory and

message-passing constructs. They have shown that their dynamic slicing algorithm computes more

precise dynamic slices than the dynamic slicing algorithms of Cheng [38] and Duesterwald, Gupta

and Soffa [44].

8.6 Parallelization of Slicing

Parallel algorithms have the potential to be faster than their sequential counterparts because the

computation work can be shared by many computing agents all executing at the same time. Also,

for large programs, sequential algorithms become very slow. Slicing algorithms for concurrent

programs are highly compute-intensive because the graphs required for intermediate representations

of the programs often become very large for practical problems. Therefore, parallelization of slicing

algorithms seems to be an attractive option to improve efficiency. In the following, we review the

research results in parallelization of slicing algorithms for sequential and concurrent programs.

8.6.1 Parallel Slicing of Sequential Programs

In [46], Harman et al. presented a parallel-slicing algorithm to compute intraprocedural slices for

sequential programs. In their method, a process network is constructed from the program to be sliced.

A process network is a network of concurrent processes. It is represented as a directed graph in which

nodes represent processes and edges represent communication channels among processes.

The process network is constructed using the CFG of the program. The reverse control flow

graph (RCFG) is constructed by reversing the direction of every edge in the CFG. The topology of

the process network is obtained from the RCFG, with one process for each of its nodes and with

communication channels corresponding to its edges. The edges entering a node i represent input to

process i, and the edges leaving node i represent outputs from process i.

To compute a slice for the slicing criterion 〈n, V 〉, where V is a set of variables of the program and

n is a node of the CFG of the program, network communication is initiated by outputing the message

V from the process n of the process network. Messages then are generated and passed around the

network until it eventually stabilizes, that is, when no new message arrives from any node. The

algorithm computes the slice of a program by including the set of nodes, with identifiers that are

input to the entry node of the process network. The parallel-slicing algorithm has been shown to be

correct and finitely terminating [46]. Implementation details of the algorithm have not been reported

in [46].

8.6.2 Parallel Slicing of Concurrent Programs

In [47], Haldar et al. extended the parallel static slicing algorithm of Harman et al. [46] for sequential

programs to concurrent programs. They introduced the concept of concurrent control flow graph

(CCFG). The CCFG of a concurrent program consists of the CFGs of all the processes, with nodes

and edges added to represent interprocess communications. Note that fork edges in a process graph

represent flow of control among processes in a concurrent program. When a process forks, it creates

a child process and executes concurrently with the child. Thus, a fork edge in a process can be used to

represent parallel flow of control. Process graph and concurrency graphs are constructed as already

discussed in the context of static slicing of concurrent programs. For every node x of the process

graph, a CFG is constructed from the process represented by node x. The CCFG is then constructed

by interconnecting the individual CFGs.
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The algorithm of Haldar et al. [47] first constructs the process network of a given concurrent

program. The topology of the process network is given by the reverse concurrent control flow graph

(RCCFG). The RCCFG is constructed from the CCFG by reversing the direction of all the edges.

Every node of the RCCFG represents a process and the edges represent communication channels

among processes. Consider a slicing criterion 〈P, s, V 〉 of a concurrent program, where P is a

process, s is a statement in the process P and V is a set of variables of the program. To compute

a slice with respect to this criterion, the process network is first initiated. Let n be the node in

the CCFG corresponding to the statement s in the process P, and m be the process in the process

network corresponding to the CCFG node m. The process network is initiated by transmitting the

message {m, V } on all output channels of m. Each process in the process network repeatedly sends

and receives messages until the network stabilizes. The network stabilizes when no messages are

generated in the whole network. The set of all node identifiers that reach the entry node gives the

required static slice. Haldar et al. [47] proved that their algorithm is correct and finite terminating.

The steps for computation of slices are summarized as follows:

1. Construct the hierarchical CCFG for the concurrent program.

2. Reverse the CCFG.

3. Compile the RCCFG into a process network.

4. Initiate network communication by outputting the message {s, v} from the process in the

process network representing statement s in the process P , where 〈P, s, v〉 is the slicing

criterion.

5. Continue the process of message generation until no new messages are generated in the

network.

6. Add to the slice all those statements with node identifiers that have reached the entry node of

the CCFG.

8.6.2.1 Implementation Results

Haldar et al. [47] implemented their parallel algorithm for computing dynamic slices of concurrent

programs in Digital–UNIX environment. They considered a subset of C language with UNIX

primitives for process creation and interprocess communications. Standard UNIX tools Lex and

Yacc have been used for lexical analysis and parsing of the source code. The information stored with

each node of RCCFG representing a statement s are node id, statement type, ref (s), def (s), C(s),

input channels (numbers and types) and output channels (numbers and types).

A major aim of their implementation was to investigate the achieved speedup in computing slices.

They examined their algorithm with several input concurrent programs. They have reported that

the lengths of the input programs were in between 30 to 100 lines. They considered a subset of C

programming language in writing these programs.

They have reported the following encouraging results of the implementation. The speedup achieved

for different programs — in a 2-processor environment is between 1.13 and 1.56, in 3-processor

environment is between 1.175 and 1.81 and in 4-processor environment is between 1.255 and 2.08.

For the same number of processors used, speedup varies for different program samples. It is seen

that speedup is more for larger programs. This may be due to the fact that the number of nodes

in the process network for larger programs is higher compared with smaller programs, leading to

higher utilization of processors. Their implementation supported up to a 4-processor environment

and considered small size input programs (up to 100 lines).

8.7 Slicing of Object-Oriented Programs

Object-oriented programming languages have become very popular during the last decade. The

concepts of classes, inheritance, polymorphism and dynamic binding are the basic strengths of
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object-oriented programming languages. On the other hand, these concepts raise new challenges for

program slicing. Intermediate representations for object-oriented programs need to model classes,

objects, inheritance, scoping, persistence, polymorphism and dynamic binding effectively. In the

literature, research efforts to slice object-oriented programs are scarely reported. In the following,

we briefly review the reported work on static and dynamic slicing of object-oriented programs.

8.7.1 Static Slicing of Object-Oriented Programs

Several researchers have extended the concepts of intermediate procedural program representation to

intermediate object-oriented program representation. Kung et al. [48–50] presented a representation

for object-oriented software. Their model consists of an object relation diagram and a block branch

diagram. The object relation diagram of an object-oriented program provides static structural infor-

mation on the relationships existing between objects. It models the relationship that exists between

classes such as inheritance, aggregation and association. The block branch diagram of an object-

oriented program contains the CFG of each of the class methods, and presents a static implementation

view of the program. Harrold and Rothermel [51] presented the concept of call graph. A call graph

provides a static view of the relationship between object classes. A call graph is an interprocedural

program representation in which nodes represent individual methods and edges represent call sites.

However, a call graph does not represent important object-oriented concepts such as inheritance,

polymorphism and dynamic binding.

Krishnaswamy [52] introduced the concept of the object-oriented program dependence graph

(OPDG). The OPDG of an object-oriented program represents control flow, data dependences and

control dependences. The OPDG representation of an object-oriented program is constructed in

three layers, namely: class hierarchy subgraph (CHS), control dependence subgraph (CDS) and data

dependence subgraph (DDS). The CHS represents inheritance relationship between classes, and the

composition of methods into a class. A CHS contains a single class header node and a method header

node for each method that is defined in the class. Inheritance relationships are represented by edges

connecting class headers. Every method header is connected to the class header by a membership

edge. Subclass representations do not repeat representations of methods that are already defined in

the superclasses. Inheritance edges of a CHS connect the class header node of a derived class to the

class header nodes of its superclasses. Inherited membership edges connect the class header node of

the derived class to the method header nodes of the methods that it inherits. A CDS represents the

static control dependence relationships that exist within and among the different methods of a class.

The DDS represents the data dependence relationship among the statements and predicates of the

program. The OPDG of an object-oriented program is the union of the three subgraphs: CHS, CDS

and DDS. Slices can be computed using OPDG as a graph-reachability problem.

The OPDG of an object-oriented program is constructed as the classes are compiled and hence it

captures the complete class representations. The main advantage of OPDG representation over other

representations is that the representation has to be generated only once during the entire life of the

class. It does not need to be changed as long as the class definition remains unchanged. Figure 8.11(b)

represents the CHS of the example program of Figure 8.11(a).

In [53], Larsen and Harrold extended the concept of SDG to represent some of the features

of object-oriented programs. They introduced the notions of the CDG, class call graph, CCFG

and interclass dependence graph. A CDG captures the control and data dependence among state-

ments in a single class hierarchy. It connects individual PDGs for methods that are members

of the class. A CDG uses a polymorphic choice node to represent the dynamic choice among

the possible destinations. Such a node has all edges incident to subgraphs representing calls

to each possible destination. A class call graph captures the calling relationship among meth-

ods in a class hierarchy. As the CHS, it contains class header nodes, method header nodes,

virtual method header nodes, membership edges, inheritance edges and inherited membership
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Class  A

{

Public: 

A( );

void ~A( );

Private:

}

Class B:  Public A

{

B( );

~B( );

void D( );

}

Class-header  A

Class-header  B

Method A()

Method  ~A()

Method  C()

Method  B()

Method  ~B()

Method D()

void C( );

(a)

Class Membership

Inherited Method

Inheritance

(b)

FIGURE 8.11 (a) Object-oriented program, and (b) its CHS.

edges. A class call graph also includes edges that represent method calls. A CCFG captures

the static control flow relationships that exist within and among methods of the class. It con-

sists of a class call graph in which each method header node is replaced by the CFG for its

associated method. An interclass dependence graph captures the control and data dependences

for interacting classes that are not in the same hierarchy. In object-oriented programs, a com-

posite class may instantiate its component class either through a declaration or by use of an

operation, such as new. Larsen and Harrold [53] constructed SDGs for these individual classes,

groups of interacting classes and finally the complete object-oriented program. Slices are computed

using a graph-reachability algorithm. Some results on intermediate representations and slicing

of concurrent object-oriented and multithreaded programs have been reported in the literature

[54–57].

8.7.2 Dynamic Slicing of Object-Oriented Programs

Zhao [58] presented an algorithm for dynamic slicing of object-oriented programs, and adopted the

following concepts:

• A slicing criterion for an object-oriented program is of the form (s, v, t, i), where s is a statement

in the program, v is a variable used at s and t is an execution trace of the program with input i.

• A dynamic slice of an object-oriented program on a given slicing criterion (s, v, t, i) consists of

all statements in the program that actually affected the value of the variable v at the statement s.

Zhao [58] introduced the concept of dynamic object-oriented dependence graph (DODG). Con-

struction of DODG involves creating a new node for each occurrence of a statement in the execution

history, and creating all the dependence edges associated with the occurrence at runtime. His method

of construction of the DODG of an object-oriented program is based on performing dynamic analysis
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of data and control flow of the program. This is similar to the methods of Agrawal and Horgan [31]

and Agrawal et al. [59] for constructing DDGs of procedural programs. Computation of dynamic

slices using the DODG is carried out as a graph-reachability problem. Implementation details of the

algorithm have not been reported in [58].

8.8 Conclusions

We started with a discussion on the basic concepts and terminologies used in the area of program

slicing. We also reviewed the recent work in the area of program slicing, including slicing of sequen-

tial, concurrent and object-oriented programs. An interesting trend that is visible in the slicing area is

its step-lock advancements to the program slicing techniques with the programming language trends.

By starting with the basic sequential program constructs researchers are now trying to address various

issues of slicing distributed object-oriented programs. Also, because modern software products often

require programs with millions of lines of code, development of parallel algorithms for slicing has

assumed importance to reduce the slicing time.
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9.1 Introduction

A symbolic debugger is one of the most important tools in a software development environment. It is

normally used to fix logical errors in a program. A debugger is used when a program does not produce

expected behavior during execution, and the reasons for the unexpected behavior are not clear. The

program may give unexpected results or may prematurely terminate with an error condition.
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A symbolic debugger helps a programmer to examine the values of variables while a program is

running. It also allows the programmer to change the value of a variable, suspend execution of a

program and resume execution from a previously suspended session. It can monitor the state of the

variables, may allow the programmer to change the value of a variable and may allow the programmer

to test the effects of the change without going through the edit session. Symbolic debuggers work

with the names of variables in the programs and not with the memory addresses of variables.

A debugger, usually:

• Displays program source code and permits browsing through the code

• Sets break points to suspend execution of program at break points

• Examines values of variables at the break points

• Executes the program by executing one statement at a time

• Examines and changes the value of a variable during execution

• Examines currently active routines and processes

• Examines the stack and symbol table

• Captures signals sent to the operating system by the program

Debuggers are complex pieces of software and require support from the compiler, assembler, linker

and operating system (OS) to operate.

Debuggers control the program to be debugged by using special facilities provided by the hardware

and OS. For example, Pentium provides interrupt instruction (INT), and UNIX environment provides

ptrace () system call. The most common features used to control program execution are break points

and single stepping.

As software systems are becoming larger and more complex, debuggers become very important

tools in identifying and fixing software defects. Debuggers are used right from the beginning when

the program is at the design stage and very little code has been developed until the time the complete

software has been developed. Debuggers are used at intermediate steps to test modules and to check

whether a module is ready for integration with the rest of the system. After the complete system is

deployed, debuggers are used by developers who maintain and enhance the system to understand the

intricacies of the code.

The oldest and perhaps the most commonly used technique for debugging is to insert print state-

ments at the places where a bug is suspected to be present. This technique is both quick and effective

for small programs. However, for large software systems an interactive debugger with graphic user

interface support is used. In addition, other techniques such as inserting assertions in the code,

printing to log files, looking at function call and process stacks and taking postmortem dumps

are used.

An important method of debugging is to use symbolic debuggers. These debuggers interact with

the developer using symbolic names defined in the program to be debugged. The user gets a view as if

the program is directly executed on the target machine. Symbolic debuggers are the most convenient

and the most frequently used debuggers. They have also been the most effective tools for debugging.

Historically, postmortem dumps are the oldest tools used for program debugging. These were

followed by machine level debuggers and symbolic debuggers. The current state-of-the-art debuggers

provide graphic user interfaces, and form part of a complete program development environment

integrating editors, compiler and interpreter, debugger, etc.

Current state-of-the-art debuggers provide either command line interface (gdb on UNIX) or com-

plete graphic user interface (GUI) environment (on Windows). Both support a rich set of features.

Usually, command line debuggers come as stand-alone modules. However, GUI-based debuggers

normally come with an integrated program development environment consisting of editor, compiler,

linker, etc. Modern debugging environments also support logging calls to user, system functions and

profiling.
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Debuggers control execution of programs to be debugged by using break points and single stepping.

Single stepping may be either at the instruction level or at the statement level. Break points and single

stepping are the most basic features of debuggers.

Break points are supported by placing a special code in the code sequence to be executed. When

the special code is executed, it causes a trap or interrupt to occur. The trap is reported to the debugger

by the processor and the OS. Most modern processors and OSs provide special features that are used

by debuggers.

Single stepping is a method that controls the execution of the program to be debugged at the

instruction and statement level. It allows the debugger to control the processor executing the program

to be debugged. Again, most modern processors and OSs provide special features that are used by

debuggers to do single stepping.

Once an execution stops due to either the break point or the exception condition, the debugger,

depending on the functionality built into it, reports to the user the location where the program

stopped. It also reports back why the program stopped, makes available stack trace, values of

variables, values of registers and contents of memory locations. It also allows the user to change the

contents of variables, registers and memory locations to fix the exception conditions. The execution

then continues from this point. This saves edit–compile cycles.

Debuggers modify the code of the program to be debugged. In the case of the UNIX OS, the

code to be debugged is executed in the process space of the debugger. This may make the program

unstable. It is desirable that the changes to the code to be debugged are minimized. The inserted code

should not change the functionality of the code to be debugged. Thus something like the Heisenberg

uncertainty principle is applied in the context of debugging [8]. Both the debugger and the code to be

debugged reside in the same memory that in turn is controlled by the OS. In the UNIX environment

both the debugger and the code to be debugged run as independent processes. Because the debugger

process cannot change the process space of the code to be debugged, the debugger copies the code

into its own process space. This can affect the behavior of the debugged program.

Today, compiler optimizations are an integral part of compilers. The optimizations reorder, elimi-

nate and duplicate code. This procedure may alter the program control flow. Therefore, symbolic

debuggers cannot mimic the exact behavior of the source code. However, a debugger is expected to

provide correct mapping between the line numbers in the source code and the object code locations,

and between variable names and corresponding memory locations. The optimizing transformations

affect these mappings. Therefore, support must be built both in the compilers and the debuggers for

debugging optimized code.

Debugging becomes easier if the original source code can be mapped directly to the translated

machine code. The developer has a view of the original source code normally written in high-

level language. In most cases, machine level instructions may not be useful or meaningful to the

developer. Therefore, most developers prefer to work with the original source code when debugging.

This becomes increasingly important as the systems become larger and more complex. The developer

should get an illusion of the code directly executed on a machine whose machine language is the

same as the source language. For this reason interpreters provide good debugging support with much

less effort. Compilers have to extract and store extensive information from the source code, and the

way the source code maps onto the target machine. However, situations arise where the developer

needs to get access to machine-specific details such as register values, process and function stack

and memory dump. The source level debugger must have built-in support to provide the low-level

machine specific details.

A stand-alone debugger like gdb is used only for program debugging. It does not support any other

activity in the program development cycle. An integrated development environment that includes a

debugger enhances productivity. Therefore, there is great merit in integrating a debugger with the

rest of the environment. In such environments the editor can be used to set break points. When

the program stops during execution, control can come back to the editor at the location where the
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program stopped. Another advantage of an integrated environment is that compiler data structures

such as symbol tables become available to the debugger. Also, when expressions need to be evaluated,

these would be interpreted using the same compiler that generated the code. This makes the program

behavior consistent.

Debuggers are also offered with interpreted languages. Such environments provide better support

to debuggers when compared with compiled environments. Such debuggers are easier to use because

they provide immediate feedback about any change. Also, they do not require support from the

hardware and the OS.

A good discussion about debuggers may be found in [16, 21]. Other useful sources of informa-

tion about debuggers are [5, 6]. Information about some commercial debuggers is available from

[2, 10, 14, 20, 22].

The rest of the chapter is organized as follows: Section 9.2 describes debugger architecture;

Sections 9.3 to 9.5 discuss hardware, OSs and compiler and linker support issues related to a debugger;

Sections 9.6 to 9.8 examine issues related to break points, program stack and expression evaluation;

Section 9.9 covers the design of a typical debugger; and Section 9.10 discusses issues related to

debugging optimized code.

9.2 Debugger Architecture

A debugger requires support from the underlying OS. Therefore, it must be closely tied with the OS.

At the top level it must have a user interface that presents a set of features to the user. The interface

is used by the user to gather information and to modify the values of the variables. Figure 9.1 shows

the architecture of a debugger.

A debugger presents several views to the user. It presents the source that is the most important

view required for debugging. This view also presents the editor window to the user. Other views may

be the machine level execution view, about the modules loaded during execution, errors encountered

during execution, threads and process view and any other information that may be useful for the user

in program debugging.

A very important piece of information required for debugging is the stack information. This

gives the function and procedure stack frame. It consists of stack frames, with each frame an

activation record. If the program halts with an error, the activation record on the top of the stack

frame immediately gives information about the function in which the program stopped.

Other very important information concerns the break points set by the user. Breakpoints allow the

programmer to control execution. These are the points where the programmer wishes the application

to halt for examining the values of variables.

User Interface

Process Control

Operating System APIs

Operating system

Hardware

user

program

FIGURE 9.1 Architecture of a debugger.
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The machine level execution view is important for any large piece of software. Although the

source level view (symbolic view) is normally enough for debugging, it is not complete. Any large

application is bound to interact with the OS and system libraries. This occasionally requires going

through machine instructions. Often a problem can be solved by examining the assembly level code

and the values in the registers. A machine level execution view normally shows the assembly code,

the contents of the registers, the memory dump, the various system flags and the hardware stack.

Process control takes place in the layer above OS application program interfaces (APIs). The

application to be debugged is a process. This layer is responsible for process creation and symbol

table access. The symbol table provides mapping between the source statement and the address of

the executable instructions. This information is necessary for setting up break points. The symbol

table also provides the type information that is required for mapping the bit sequences back to values.

The execution control sequence of the debugger presents a source code execution view of the

program. This controls the execution to the next break point, single stepping through a machine level

instruction or statement, handling exceptions and evaluating functions.

The expression interpreter evaluates values of expressions and functions. It must use, as far

as possible, the compiler parser for expression evaluation. It must be ensured that the expression

evaluator uses the built-in parser, symbol table, values in memory and machine execution engine to

evaluate expressions.

The debugger accesses the user program through a set of APIs provided by the OS. The APIs

must provide a way to access (both for read and write) the memory of the process, and to control the

execution (through break points and single stepping) of the process. These APIs should not alter the

process to be debugged so that they have minimal impact on the application involved.

9.3 Hardware Support

The minimum support a hardware must provide to a debugger is to specify a break point. The break

point is a location in the code such that execution halts when the control reaches this location. This

support is normally provided through an illegal instruction that can be written into the code of the

program. This instruction generates an interrupt that informs the OS that a break point has occurred.

No additional facility is required for single stepping because it can be modeled as a special case of

break pointing.

Most processors provide special instructions to support break points. Such instructions generate

a trap to the OS when executed. The information in turn is passed on to the debugger. Normally,

these instructions are kept of minimum possible size — one byte on Intel processors to one word

on Compaq Alpha processors. The debugger is provided support by the OS so that it can read and

modify the process space of the program to be debugged. The debugger reads the instruction at

the address where the break point is to be set and replaces it with the trap instruction. The original

instruction at the address is saved by the debugger. During execution of the code, when a trap

instruction (corresponding to a break point) is encountered, control is transferred to the debugger.

The debugger takes appropriate action at this point. When the debugger wants the code to continue

execution beyond the break point, it replaces the trap instruction by the earlier saved instruction, sets

the computer back to the saved instruction and continues the execution.

Normally, single stepping is simulated using break points. Most modern processors do not provide

any special support for single stepping. Wherever the debugger has to execute a single instruction,

it is assumed that the next instruction is a break point instruction.

9.4 Operating System Support

Interaction between the debugger and the OS is crucial support required for debugging. The debugger

must be able to modify the process space of the program involved in debugging, to inform the OS

about the program, to inform the OS to continue to execute the program and to collect information
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about the program when it stops because of a fault. Normally, all OSs provide this kind of support

for debugging programs. The support is provided through an API.

A debugger is neither a part of the OS nor a privileged application. It uses system calls that are

especially provided by the OS for this purpose. These system calls ensure that whenever an event

such as a break point or trap occurs in the program to be debugged, the information is passed on

to the debugger and control is transferred to the debugger. In the process of transferring control to

the debugger, the OS modifies its internal data structures to reflect that the control of the program is

with the debugger. UNIX ptrace() is an example of such a system call.

The following appears in the manual pages of Linux:

The ptrace system call provides a way by which a parent process can observe and control the

execution of another process, and examine and change its core image and registers. It is primarily

used to implement breakpoint debugging and system call tracing.

The parent can initiate a trace by calling fork and having the resulting child do a

PTRACE TRACEME, followed (typically) by an exec. Alternatively, the parent may commence

trace of an existing process using PTRACE ATTACH.

While being traced, the child process stops each time a signal is delivered, even if the signal is

being ignored. The parent is notified at its next wait and may inspect and modify the child process

while it is stopped. The parent then causes the child to continue, optionally ignoring the delivered

signal (or even delivering a different signal instead).

When the parent is finished tracing, it can terminate the child with PTRACE KILL or cause it

to continue executing in a normal, untraced mode via PTRACE DETACH.

Parameter PTRACE TRACEME indicates that this process is to be traced by its parent. Any

signal (except SIGKILL) delivered to this process causes it to stop and its parent to be notified via

wait. Also, all subsequent calls to exec by this process causes a SIGTRAP to be sent to it, giving

the parent a chance to gain control before the new program begins execution.

Refer to UNIX manual pages for details of ptrace().

9.5 Compiler and Linker Support

Most modern compilers provide support for debugging. Normally, the object programs generated

by compilers do not have information such as line numbers, variable names, variable types and

structures. However, for symbolic debugging this information plays a very crucial role. When a

program is compiled for use in debugging, information is generated by the compiler and embedded

in the object code. When an error occurs during the execution of the program, the information and

the control are transferred to the debugger. This additional information usually makes the object

code longer and increases the execution time. For almost all applications, debugging is turned off

while generating the production quality object code.

A symbolic debugger must be able to give a mapping between source line numbers and object

code addresses. This helps the programmer in setting up break points using the source code view,

and the debugger puts the break point at the corresponding location in the object code. Line number

information is simple to generate. However, in case of optimizing compilers it becomes difficult to

provide the mapping between line numbers and object code. Optimizing compilers move the code

around and may remove part of the code. This changes the sequence of code in the object file, and

it can no longer be matched with source line numbers. This issue is discussed in Section 9.10 on

debugging optimized code.

The other information required for symbolic debugging is variable names, their types and

addresses. The compiler must generate this information. This information is put in the symbol



Debuggers for Programming Languages 301

tables, which are not removed by the linkers. The tables include source line number to address

mapping, file names, symbol names, symbol types, symbol addresses, lexical scoping, etc.

Typically, compilers generate debug information for all the variables in the program including

the variables in the header files. Because many program files have common header files, compilers

generate duplicate information. Linkers normally remove the duplicate information before generating

final debuggable executable code [13].

9.6 Break Points

Break pointing is central to the debugging process. It must be represented at two levels, the source

program level and the executable code level. At the source program level it is associated with the

source code view and corresponds to a line in the source code. At the executable program level it is

associated with the machine code and corresponds to an address in memory.

In addition to the break points set by the user each debugger uses internal break points that are

set by the debugger. Single stepping uses a sequence of internal break points to stop the program

after each instruction. Another functionality that requires internal break points is step over. Step over

executes a function to completion without going inside the function code. This is achieved by setting

an internal break point at the return address of the function.

The break point mechanism is also used for logging information. Break points do not always need

to be used for stopping execution of code. They can also be used for gathering information at certain

points in the program. The generated information is used later for postmortem debugging. This is

similar to inserting print statements in the code to gather information. However, using the breakpoint

mechanism has obvious advantages. It does not require modification and recompilation of the code.

The break point mechanism can also be used for counting how many times control passes through a

break point.

Break points do not always need to be trap instructions inserted in the code undergoing debugging.

Any other valid instruction can be used. This instruction can be used for code patching. By using this

mechanism, changes can be made to the code without changing and recompiling the source code.

Therefore, debuggers can also be used as profilers.

9.7 Program Stack

When a program is stopped at an error and control is transferred to the debugger, it is important to

know the program context. The context information includes line number, function name and file

name with complete directory path information. Another very important context of information is

the calling sequence of the functions. This sequence gives information about which functions have

been invoked in the program before the fault occurred. Part of this information is available in the

program stack.

Whenever a function is invoked, its activation record is pushed on the stack. After the function

returns control to the caller, the activation record is removed from the stack. At any point of time the

stack has the information of the active functions in the program. Each activation record is identified

by two pointers: stack pointer and frame pointer. Activation records also contain values of local

variables, parameters, return addresses, pointers to nonlocal variables, previous stack pointer, frame

pointer and saved registers.

The complete call sequence information is stored in another data structure called the call tree.

This structure keeps information about all the procedures that have been invoked before the current

activation. However, information such as local data, pointers to nonlocal data, stack and frame

pointers is no longer available for procedures that are not currently active.
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9.8 Expression Evaluation

An important part of debugging is to set break points and transfer control to the debugger either

when a break point is encountered or when an error occurs. However, another major activity starts

after the debugger gets control of the program. The user may want to evaluate an expression at this

point.

The symbolic debugger must evaluate the value of an expression using the same identifiers that

occur in the source program. Therefore, a debugger must have a built-in expression interpreter. The

expression interpreter must conform to the syntax and semantics of the source language. However,

this interpreter should not create its own variable space. It must use the values of variables from

the locations at which the variables are stored. The name-to-location mapping is available in the

debugger symbol tables. This ensures that no inconsistency exists in the values of the variables.

Normally, debuggers try to adapt the syntax and semantic analysis phases of the compiler to

build the expression interpreter. This ensures that the syntax and semantic checks performed by the

expression interpreter are the same as the ones performed by the compiler. Also, it saves on the effort

involved in building and testing the expression interpreter.

9.9 Design of a Typical Debugger

The top level of a debugger consists of four modules:

• Query processor

• Symbol resolver

• Expression interpreter

• Debug support interface

Figure 9.2 shows top level design of a debugger.

Descriptions of these four modules are given in the following subsections.

9.9.1 Query Processor

The query processor module addresses all the issues concerning the commands accepted and is the

user interface module. This processor also validates the user command and, depending on the nature

of the request, invokes the other modules as and when required. Figure 9.3 shows structure of the

query processor.

The command preprocessor validates the debugger commands. The debugger command is passed

to the lexical analysis phase only if it is valid. Lexical analysis reads the user debugger commands

and translates them into a linear sequence of lexical symbols (lexemes or tokens). The tokens are all

debugger commands, numbers, identifiers and strings (everything until the end of the line). Syntax

analysis checks that the tokens output by the lexical analyzer occur in patterns permitted by the syntax

of the debugger command language. All syntactic errors are detected in this phase. The grammar

used to parse the commands is the main design issue. The view command processor processes all the

debugger view commands. It consists essentially of text editing and string manipulation routines. The

record/playback command processor consists of routines that handle record and playback commands.

9.9.2 Symbol Resolver

The symbol resolver module addresses issues concerning symbol accessibility and the line–address

mapping. It handles all queries related to symbolic references of source program entities and their

corresponding addresses in the target system. Figure 9.4 shows the structure of the symbol resolver.
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9.9.2.1 Debugger Tables

Debugger tables provide interface between the debugger and the linker. The following tables may

contain the interface information:

Symbol table

String table

Line table

More table
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FIGURE 9.4 Structure of the symbol resolver.

Descriptions of these tables follow:

The symbol table consists of one symbol table per file. It consists of main and auxiliary entries.

These entries correspond to each symbol that is defined and referenced in the source file. In

addition, it also contains some special symbols that are used by the table searching algorithms.

The symbol table reflects the source file structure with respect to scope and visibility.

The string table contains symbol names that do not fit into the symbol table. The symbol names

are terminated by NULL character.

The line table gives the mapping of line numbers of source files to the corresponding physical

addresses. The line table consists of the following fields: Address contains the physical address of

a line. Line number contains the source line number relative to the beginning of the file. The first

entry of the table contains the symbol table index of the file name. More table offset contains

an offset into the more table that contains more information that is required for single-step

operation.

The more table contains information necessary for single-step operation. It has the following

format:

Number of Number of Successor Symbol
successor procedures line table
lines addresses indices

Each line has a set of successor lines and zero or more procedure calls. The first two fields in each

entry of the more table contains the number of successor lines and the number of procedure calls in

the line. The variable part of each entry consists of the successor line addresses and symbol table

pointers for each procedure. The successor line of all RETURN statements and of the last executable

statement of the procedure is specified as −1.
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9.9.3 Expression Interpreter

This module is invoked whenever a part of the query has an expression and the examine debugger

command is used. This command enables the user to examine program entities, to evaluate

expressions and to deposit values. This expression following the examine command is parsed and

interpretively evaluated. The results are communicated to the invoking module. This module invokes

the symbol resolver if required (e.g., for getting the address maps of the referenced variables).

The grammar of the expressions is derived from the compiler. The interpretive evaluation is per-

formed during a recursive traversal of the expression. The module can be decomposed as shown in

Figure 9.5.

9.9.3.1 Lexical Analysis

The function of this lexical analyzer is to read the given expression and translate it into a linear

sequence of lexical symbols such as identifiers, constants, strings and separators. This lexical analyzer

is the same as the one used by the compiler.

9.9.3.2 Syntax Analysis

The function of the syntax analyzer is to check that the tokens output by the lexical analyzer occur

in patterns permitted by the syntax of the expressions. The grammar of the expressions is derived

from the compiler. The type of each nonterminal in the expression parser consists of a structure that

contains the address, type, size and other information of the result.

9.9.3.3 Interpreter

This phase performs interpretive evaluation during a recursive traversal of the expression. Only basic-

type checking of operands is performed. The symbol resolver is invoked to get symbol information.

The module makes use of the runtime routines that are used by the compiler for similar operations.

9.9.4 Debug Support Interface

The debug interface contains a library of procedures that would communicate to the debug

support.

9.10 Debugging Optimized Code

Compiler optimizations are an integral part of all modern compilers. However, optimizations reorder,

eliminate and duplicate code. Therefore, source level debuggers working with optimized code

cannot mimic the behavior of the original unoptimized program. The perturbations caused by the

optimizations prevent most source level debuggers from providing support for debugging optimized

code. The traditional ways of designing production code is to first test and debug the unoptimized

code and then optimize the code to get the performance enhancements and release the product.
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Many situations occur where debugging optimized code is necessary and desirable, as follows:

• A program may run correctly when compiled without optimizations but may fail when compiled

enabling optimizations. This can occur even though the optimizer is correct. Compiler optimiza-

tions are correctness preserving transformations for a correct program. Correctness preserving

transformations are not guaranteed to preserve the behavior of a program that behaves differently

for different executions. For example, programs using values of uninitialized variables behave

differently for different executions.

• Reordering of the statements may cause underflow or overflow.

• Exceptions may occur because the value of the uninitialized variable changes when we change

the data layout of the program. An array out of bound exception might occur due to change

in the data layout of the program caused by optimizations.

• Final production code is generally an optimized version. One should be able to debug this

optimized code by looking at the core file and a bug report.

• Programs with timing and instability problems behave differently when compiled with

optimizations and without optimizations. In such cases we should have the ability to debug

optimized code.

• There may be constraints on the space and time requirements of a program. This situation

mainly occurs in designing embedded software systems. The optimized version of a program

may satisfy the requirements; when we need to debug such a program, we should have the

ability to debug optimized code.

• An optimizing compiler may have bugs.

9.10.1 Previous Work

Hennessey [9] addressed the problems in debugging of optimized code. He introduced the terms

nonresident and noncurrent variables. At a break point, a variable is said to be nonresident if no

runtime location corresponds to the variable. At a break point, a variable is said to be noncurrent if

a runtime location corresponds to the variable, but the value of the variable is not the expected value

of the variable. Hennessey showed how to detect variables that were nonresident and noncurrent at

a break point when local optimizations were performed.

Zellweger [23] addressed the problem of correctly mapping the break points set in the source

code to the corresponding places in optimized object code. Simmons et al. [7] showed that when

debugging optimized code, providing the same behavior as an unoptimized program is not feasible

and is impractical. Copperman [3] investigated the problem of detecting endangered variables caused

by global optimizations. Reza and Gross [17–19] described ways to find endangered and noncurrent

variables and to recover the expected values of the variables. They also addressed the code location

problem in detail. Patil et al. [12] described a new framework for debugging optimized code. Kumar

[11] addressed the problem of how to overcome the perturbations caused by optimizations and change

the value of variables at debug time.

9.11 Perturbations Caused by Optimizations

The debugger maintains source-to-object and object-to-source mappings to set break points and report

asynchronous break points (runtime exceptions, user interrupts). In source-to-object mapping, for

each source statement the debugger stores the object code locations where the break point can be

mapped in the object code. The debugger uses source-to-object mapping to set control break points.
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In object-to-source mapping, the debugger stores the source statements corresponding to each object

instruction. The debugger uses the object to source mapping to report asynchronous break points.

While debugging unoptimized code, source-to-object and object-to-source mappings are the same.

For each source statement there is a fixed object code location where the break point set on that

source statement can be mapped. For each group of object statements a corresponding unique source

statement exists. The object-to-source and source-to-object mappings are both one-to-one mappings.

Optimizations reorder, eliminate and duplicate source statements. Therefore, the source-to-object

mapping and the object-to-source mappings become different. Both the mappings are no longer one-

to-one mappings. For each source statement more than one object code location may exist; in such

a case the debugger has to decide to which object code location a break point has to be mapped. The

problem of correctly setting the break points in optimized code is called the code location problem.

In unoptimized code, object instructions are executed in the order specified in the source program.

Thus, the variables have expected values. Optimizations eliminate and reorder the execution of the

statements. The order in which the object instructions execute is different from the source execution

order and this causes the variables to have values different from expected values. In unoptimized

code each variable has a runtime location corresponding to that variable throughout the scope of the

variable. Due to optimizations, a variable may not be allocated a runtime location, or the runtime

location allocated to a variable may be reused to store the value of another variable. When the

debugger wants to display the value of a variable, no runtime location exists for the variable, or more

than one location might contain the value of the variable. The debugger cannot decide which location

contains the expected value of the variable. These problems are called data value problems.

9.11.1 Example: Dead Code Elimination and Loop
Invariant Code Motion

In Figure 9.6 a simple example depicts how optimizations affect debugging of optimized code.

Figure 9.6(b) is the resultant code after performing dead code elimination and loop invariant code

motion on the code in Figure 9.6(a). The optimizations performed cause both code location problems

and data value problems.

9.11.1.1 Code Location Problems

Statement Sj is moved out of the loop due to loop invariant code motion. When the user sets a break

point at Sj , the debugger should find the appropriate location in the object code to map this break

point. If the debugger sets the break point at statement Sj in Figure 9.6(b), then the break point is

triggered only once and all the variables assigned in statements S1 to Sj−1 are noncurrent. If the

debugger sets the break point at statement Sj−1 in Figure 9.6(b), then the break point is triggered the

expected number of times, but the variable i is noncurrent at the break point. If the break point is set

at statement Sj+1 in Figure 9.6(b), then the break point is triggered the expected number of times

and the variable i is current; however, if the statement Sj is the last statement of the basic block, then

there is no statement after Sj . The effect is summarized as follows:

Break Point Break Point Number of Times Endangered Variables

in Figure 9.6(a) in Figure 9.6(b) Break Point Is Triggered at Break Point

Sj Sj Once Variables assigned in S1 to Sj−1

Sj Sj−1 n Times Variables assigned in Sj

Sj Sj+1 n Times None



308 The Compiler Design Handbook: Optimizations and Machine Code Generation

x = y + z 
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i = j 

z = z + 1 

Si :

Sj :
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until p
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FIGURE 9.6 Sample code to demonstrate the perturbations caused by optimizations.

9.11.1.2 Data Value Problems

By assuming that there are no uses of x in statements S2 to Si−1, the assignment to x in S1 is dead

and may be eliminated. As the statement S1 is deleted, at all break points set at statements S2 to Si−1

the value of x is noncurrent. Statement Sj is moved out of the loop. This causes the value of i to be

noncurrent from statements S2 to Sj−1 for the first time through the loop.

9.11.2 Approaches to Debugging Optimized Code

The major approaches to debugging optimized code are:

• Ignore the fact that optimizations have been performed resulting in anomalous behavior.

• Try to hide all optimizations performed and provide the expected behavior.

• Expose all the optimizations that are performed and leave it to the user to figure out how

optimizations affect the program.

• Provide truthful behavior.

9.11.2.1 Ignoring Optimizations

In this approach, the debugger does not consider whether optimizations are performed. The debugger

just shows the current execution state of the program. When the value of a variable is queried, the

debugger displays the value present in the runtime location corresponding to the variable and this

value may be different from the expected value of the variable. The execution path followed may be

different from the expected execution path. These types of debuggers are easy to design and are less

helpful when debugging optimized code.

Some debuggers allow debugging without considering whether optimizations are performed. This

kind of debugger shows values different from the expected values of the variables and execution
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paths different from the expected paths. This type of the debugger is easy to design, but not of much

use to a novice user when debugging optimized code.

9.11.2.2 Providing Expected Behavior

This is the ideal approach for debugging optimized code. In this approach the debugger manages the

effects of the optimizations. It provides the illusion that one source statement is executed at a time

and gives the expected values of the variables. The debugger executes the object statements in the

expected source order to give expected values of the variables. As optimizations reorder, duplicate

and eliminate source statements, it is not possible to execute the statements in the expected source

order without making changes to the data layout and code segment of the program.

The debuggers built using this approach use several techniques to provide the expected results.

They constrain the number of locations where the debugger can be invoked, constrain some of the

optimizations, add instrumentation code and disturb the data layout and code segment of the object

code. These debuggers are invasive, because they disturb the data layout and code segment of a

program.

Patil et al. [12] proposed a new framework for debugging optimized code. They showed that with

perturbations to data layout and code segment one can provide expected behavior for all optimizations

including global optimizations. This scheme did not allow the value of the variable to be changed at

debug time. When the user sets a break point at a source statement, the debugger takes control of the

program early before executing any of the statements that have to be executed after this statement

according to the source execution order. After this, it emulates only those instructions that have to

be executed before the statement according to the source execution order and reports that the break

point has occurred. Because all the statements that have to be executed before the break point have

executed and none of the statements that have to be executed after it have executed, the state of the

program is the expected state and thus provides the expected behavior.

9.11.2.3 Exposing Optimizations to the User

In this approach all the optimizations performed are exposed to the user in source-level terms. The

debugger shows a source-level view of the optimized program. This approach is especially useful

when the debugger performs loop optimizations such as loop peeling, loop interchanging and loop

tiling. This approach has many disadvantages. The user is expected to have full knowledge of

optimizations. There are some optimizations, such as instruction scheduling and register allocation,

with effects that are difficult to express in source level terms.

9.11.2.4 Providing Truthful Behavior

In this approach the debugger detects when optimizations do not affect debugging and hides the

optimizations. When the debugger is unable to hide the optimizations, it exposes the optimizations

to the user. When optimizations are to be exposed to the user, this approach manages the effects of

the optimizations by relating runtime values in the optimized code to source level values. The burden

of analysis falls on the debugger and less knowledge of the optimizations is required on the part of

the debugger user. Hennessey [9], Zellweger [23], Ruscetta et al. [4], Copperman [3] and Reza [17]

use this approach.

9.12 Data Value Problems

Data value problems are problems arising in reporting the value of a source variable at a break point.

Optimizations change the order of execution of the statements. Changing the order of execution of

source assignment statements causes variables to have different values from the expected values.



310 The Compiler Design Handbook: Optimizations and Machine Code Generation

}

Bkpt1

E1: Def X

E2: Use X

B1

B2

B3Bkpt3

Bkpt2

Bkpt4
No use of X

E3: Def X

E4: Y = X

E5: Def Y

E0: Def X E0 is deleted

FIGURE 9.7

When the user asks the debugger to display the value of a variable, the debugger reports the state

of the variable as nonresident, noncurrent, current or suspect:

• At a break point, a variable is said to be nonresident if there is no runtime location containing

the value of the variable and hence no runtime value for the variable. For example, in Figure 9.7,

no uses of X exist after E4. Thus, the same register is shared by X and Y. The next definition of

Y after E4 assigns a new value of Y to the register shared by both X and Y. Hence, no runtime

value exists for X and it is nonresident at a break point Bkpt4 set after E5.

• At a break point, a variable is said to be noncurrent if it is resident and the value of the variable

is not the expected value. For example, in Figure 9.7 E0 is dead code and is eliminated. The

value of X present at Bkpt1 is not the expected value and hence X is noncurrent.

• A variable is said to be current if the variable is resident and the value is the same as the expected

value. At break point Bkpt3 the value of X is the expected value. Hence, X is current.

• A variable is said to be suspect if it is resident and the debugger cannot determine if it is current

or noncurrent. In Figure 9.7 the variable X is current at Bkpt2 if the path taken is B1, B2 and

B3. X is noncurrent if the path followed is B1 and B3. Variables that are suspect and noncurrent

are called endangered variables.

The data value problem can be subdivided into the problem of finding nonresident variables and the

problem of finding endangered variables at a break point.

9.12.1 Detecting Nonresident Variables

A variable is said to be nonresident at a break point if no runtime location corresponds to a variable

at that break point, or multiple runtime locations contain the value of the variable and the debugger

are unable to decide which location contains the expected value of the variable. Reza [17] proposed

an approach to detect nonresident variables. When no optimizations are performed, all variables

are assigned unique memory locations except for register variables that are stored in registers. The

mapping from variables to runtime locations is one to one. Optimizations such as register allocation

and register coalescing disturb this one-to-one mapping and cause nonresident variables.

Register allocation tries to use registers to store the values of frequently accessed variables,

constants and temporaries to reduce their access time. We concentrate only on source variables,

because only these variables are visible at the source level. The register allocator takes the live
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ranges of the variables and assigns registers to these live ranges using some heuristics. Some register

allocation methods split the live ranges of variables and assign each split range a register or a memory

location independent of other live ranges of the same variable. Additional code is added to transfer

runtime value from runtime location of one split range to the runtime location of another split range

when control moves from one to the other.

The variables that are not allocated a register are allocated a memory location on the activation

stack. Sharing of the memory locations by nonoverlapping live ranges reduces the size of the

activation stack. Splitting the live ranges of a variable makes variable to runtime location mappings

one to many. Assigning the same memory location and register to different nonoverlapping live

ranges makes variable to runtime location mappings many to one.

Register coalescing [15] eliminates move instructions from one variable to another by allocating

the same register to both these variables if the live ranges of these variables are nonoverlapping.

Register coalescing makes variable-to-runtime location mapping many to one and causes nonresident

variables.

9.12.2 Detecting Nonresident Variables Caused by Register
Allocation and Register Coalescing

A variable is said to be nonresident outside the live range of that variable. This can be detected by

looking at the live range information in the symbol table. This approach is simple but misses some

opportunities. A storage location allocated to a variable holds the value of the variable during the live

range of the variable. Even after the live range of a variable, the storage location allocated to it holds

the value of the variable until a new variable is assigned to this location. A definition (assignment

to a variable) is called an evicting definition if it assigns the value of the variable to a location that

previously contained the value of another variable.

A location may contain the value of a variable even after the live range of that variable. Improved

response can be given to the user if all evicting definitions are found. A variable V whose value is

found in location L is resident even after the live range of V until an evicting definition assigns to

location V. In Figure 9.8(c) register r2 is used to store the value of y. The live range of y is from S2

to S4. The value of r2 is changed by statement S6. The value of y is present in r2 until S6, which is

outside the live range of y. The evicting definition is S6.

A variable V is resident in location L at a break point B if an assignment to V exists along all paths

from the start of the program to B, the value of the variable is stored in L, and no evicting definition

exists for location L after the last occurrence of assignment to V. Data flow analysis is performed

x = 2

y = 4

w = x * y

z = x + 1

u = x * 2

x = z * 4

s1 = 2

s3 = s1 * s2

s4 = s1 + 1

s5 = s1 * 2

s1 = s2 * 4

r1 = 2

r2 = 4

r3 = r1 * r2

r3 = r1 + 1

r1 = r1 * 2

r2 = r3 * 4 

(a) (b) (c)

s2 = 4

S1 :

S2 :

S3 :

S4 :

S6 :

S5 :

(a) A simple example of register allocation; (b) symbolic 

register assignment for it; (c) an allocation for it with three 

registers assuming y and w are dead on exit from this code

FIGURE 9.8 Sample code to show evicting definitions.
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to get the list of variables and corresponding runtime locations that reach a particular point in the

program.

9.12.2.1 Data Flow Analysis

A residence is a tuple 〈V, L〉. It indicates that a variable V is stored at location L. A basic block B

generates a residence 〈V, L〉 if an assignment to V exists in the block B and no evicting definitions of

L exist after the last such occurrence of assignment to V. A basic block kills a residence 〈V, L〉 if an

evicting definition of location L is in the block.

Definition 9.1 (AvailResGen). AvailResGen indicates the set of residences generated by a basic

block.

Definition 9.2 (AvailResKill). AvailResKill indicates the set of residences killed by a basic block.

Definition 9.3 (AvailResIn). AvailResIn indicates the set of residences that reach a basic block.

Definition 9.4 (AvailResOut). AvailResOut indicates the set of residences that are available after

a basic block.

Initially AvailResGen and AvailResKill sets are computed for all the basic blocks. The sets AvailResIn

and AvailResOut of all basic blocks are found by solving the data flow Equations (9.1) and (9.2):

AvailResIn(I ) =
⋂

J∈Pred(I )

AvailResOut(J ) (9.1)

AvailResOut(I ) = (AvailResIn(I ) − AvailResKill(I ))
⋃

AvailResGen(I ) (9.2)

An iterative approach is used to solve the data flow equations. The algorithm for finding the

AvailResIn and AvailResOut sets of a basic block given next takes AvailResKill and AvailResGen

sets of each basic block as input and generates AvailResIn and AvailResOut sets of each basic block:

for each basic block B do AvailResOut[B] = AvailResGen[B]

change = true

while change do begin

change = false

for each basic block B do begin

AvailResIn(B) =
⋂

J∈Pred(B) AvailResOut(J)

oldout = AvailResOut[B]

AvailResOut(B) = (AvailResIn(B) − AvailResKill(B))
⋃

AvailResGen(B)

if AvailResOut[B] =/ oldout then change = true

end

end

9.12.3 Detecting Endangered Variables

Optimizations that affect assignments to source variables cause endangered variables. Reza gives an

approach [17] to detect endangered variables.

9.12.3.1 Optimizations That Cause Endangered Variables

Optimizations that eliminate and move source assignment statements cause endangered variables.
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9.12.3.2 Code Elimination

Optimizations such as dead code elimination delete assignments to source variables. Eliminating

assignment statements causes endangered variables. The user expects the variable to have the value

that would have been assigned by the deleted assignment statement, whereas the actual value is

different. The programmer does not generally add dead code; it results from performing optimizations

such as constant propagation, copy propagation or induction variable strength reduction.

9.12.3.3 Code Motion

Optimizations such as loop invariant code motion, code hoisting and instruction scheduling move

statements from one location to another location. Moving the statements causes the actual execution

order to be different from the expected execution order. Code motion optimizations move code

either in the direction of control flow or in the direction opposite to control flow, creating endangered

variables.

Two key transformations, code hoisting and dead code elimination, capture data value problems

caused by all the global transformations.

9.12.3.4 Optimizations That Do Not Cause Endangered Variables

Some optimizations do not cause endangered variables. Optimizations such as constant folding,

induction variable strength reduction and copy propagation do not affect assignments to source vari-

ables. These optimizations create new opportunities for dead code elimination indirectly contributing

to creation of endangered variables. Optimizations that affect assignments to compiler temporaries

do not cause any endangered variables.

9.12.3.5 Endangered Variables Caused by Instruction Scheduling

Instruction scheduling reorders and interleaves the execution of source statements. Program seman-

tics defines an ordering on the execution of the statements, which is the same as the expected

execution order. Instruction scheduling moves assignment statements and causes endangered vari-

ables. Endangered variables occur due to either early execution or delayed execution of source

assignment statements. At a break point B, if assignment to a variable V has been executed early,

then the variable is said to be a roll back variable indicated by BackVar(V,B). At a break point B, if

assignment to a source variable V is delayed to be executed after the break point, then V is called a

roll forward variable indicated by ForwardVar(V,B).

Endangered variables can be detected by finding all source assignment statements that have

executed out of order. The debugger maintains source execution order and object execution order

to find the assignment statements that have executed out of order. Source execution order refers to

the order in which the source assignment statements have to be executed. Each source assignment

statement S is assigned a sequence number seq(S) to indicate the source execution order. For all

source assignment statements that immediately follow a source assignment statement Si the sequence

number seq(Si) + 1 is assigned. For two statements S1 and S2, if seq(S1) < seq(S2), then S1 has to

execute before S2 and if seq(S1) > seq(S2) then S1 has to execute after S2. If seq(S1) = seq(S2), then

no fixed ordering is between S1 and S2.

Definition 9.5 (source assignment descriptor). Source assignment descriptor for an object

instruction O is a tuple 〈I, N, V 〉 where I is the object instruction, N is the sequence number of

the source instruction for which O is generated and V is the variable that is assigned in O.

Definition 9.6 (INST()). For a source assignment descriptor D, INST(D) returns the object

instruction in the descriptor.
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Definition 9.7 (seq()). For a source assignment descriptor D, seq(D) returns the sequence number

of the source instruction for which the object instruction of D is generated.

Definition 9.8 (VAR()). For a source assignment descriptor D, VAR(D) returns the variable that is

assigned by the object instruction of D.

Object execution order refers to the order in which the instructions generated for the source

assignment statements execute. For each object instruction O that corresponds to a source assignment

statement, a source assignment descriptor is added.

A break point B is represented by 〈S, O〉 where S is the source statement where the break point is

set in the source and O is the object instruction where the break point is mapped in the object code.

All roll back and roll forward variables at a break point are found and by using this information it

can be determined whether a variable is endangered at the break point.

A variable is said to be a roll forward variable at a break point B〈S, O〉 if an assignment with

assignment descriptor D that has to be executed before the break point according to the source

execution order (seq(D) < seq(S)) is slated to be executed after the break point (INST(D) ≥ O).

Equations (9.3) and (9.4) can be used to find the roll back and roll forward variables, as follows:

((seq(D) < seq(S))&(INST (D) >= O)) => ForwawdVar(VAR(D), B) (9.3)

((seq(D) > seq(S))&(INST (D) < O)) => BackVar(VAR(D), B) (9.4)

9.12.3.6 Endangered Variables Caused by Local Optimizations

Local optimizations cause endangered variables by eliminating assignment statements. Assignment

statements can be eliminated if an assignment is already available or an assignment is a dead

assignment.

An assignment to a variable V is called an available assignment statement if on all paths from

the starting point of the program to this point, an assignment statement is the same as this and no

further assignments are made to V and all other variables present in the assignment statement after

the last such occurrence of the assignment to V. Elimination of available assignment statements does

not cause any endangered variables, because the deleted assignment statement assigns a value that

is already available.

9.12.3.7 Elimination of Dead Assignments

An assignment statement S that assigns to a variable V is a dead assignment statement if there is no

use of V until the next definition of V or the end of the program. Elimination of dead assignment

statements causes endangered variables. The variable is expected to have the value that would have

been assigned by the deleted assignment statement. At all break points set between the deleted

statement and the next assignment to the variable V, the value of V is different from the expected

value.

In the code given in Figure 9.9 the assignment statement SI is dead as there are no uses of x

in statements SI+1 to SJ−1. Eliminating SI makes x endangered at break points set at statements

SI+1 to SJ−1. For every dead assignment statement A that is deleted, a dead assignment descriptor

〈I, N, V 〉 is defined. In the descriptor I is the object instruction corresponding to the instruction A′,
which is the next assignment statement that assigns to V after A, N is the sequence number of the
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X = I + J SI:

. . . 

. . . 

X = I * J 

. . . 

SJ:

After useless code elimination 

and code generationSample code 

. . . 

Rx = Ri * RjIj:

. . . 

(a) (b)

FIGURE 9.9 Sample code to demonstrate effects of dead code elimination.

source instruction A, and V is the variable assigned in A. At a break point B〈S, O〉 a dead assignment

descriptor D creates an endangered variable if the following conditions hold:

1. The source statement where the break point is set comes after the dead assignment statement

according to the source execution order.

2. The object instruction generated for the next source assignment that assigns to the same variable

as dead assignment comes after the object instruction where the break point is mapped.

3. The variable is not a roll forward variable at the break point.

These conditions are checked by:

((seq(D) < seq(S))&(INST (D) ≥ O)& ∼ ForwardV ar(V ar(D), B))

⇒ EndangeredDead(V ar(D), B)

All the endangered variables due to dead code elimination at a break point are found and the

information is used to find whether a variable is endangered due to local dead code elimination at

the break point.

9.12.3.8 Detecting Endangered Variables Caused by Global Optimizations

Optimizations such as code hoisting, code sinking, loop invariant code motion, global dead code

elimination and global instruction scheduling move and delete source assignment statements causing

data value problems. Concentrating on two key transformations code hoisting and global dead code

elimination captures data value problems caused by all the global optimizations.

9.12.3.9 Detecting Endangered Variables Caused by Code Hoisting

Code hoisting is a form of partial redundancy elimination. Adding expressions at some places to

make other partially redundant expressions fully redundant is called code hoisting [1]. Code hoisting

moves expressions in the direction opposite to the control flow. Some of the assignment statements

are executed earlier than expected, causing endangered variables. Expressions that are added by code

hoisting are called hoisted expressions. Expressions that become redundant after code hoisting and

are deleted are called redundant expressions.

An example in Figure 9.10 shows how code hoisting affects debugging. In the sample code shown,

expression X = U−V is executed twice if the path followed is B0, B1 and B3 and the same expression

is evaluated once when the path is B0, B2 and B3. Expression E2 is partially redundant. As part of

code hoisting the expression X = U − V is moved ahead into block B2, making partially redundant

expression E2 fully redundant and a candidate for further optimizations. Expression E2 becomes an

available expression after code hoisting and is deleted.

If a break point is set after E3 in B2, then the value of X is noncurrent because the value that is

present is the value assigned by E3 whereas the expected value is the value assigned by E0. If a break
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E0: X = U − VB0

Bkpt2

Bkpt3

E2: X = U − V

B3

E2 is deleted because

it is available

E1: X = U − VB1

Bkpt1

E3: X = U − V

B2

E3 inserted by 

code Hoisting

FIGURE 9.10 How code hoisting affects debugging.

point is set before E2 in B3 then the variable X is current if the path followed is B0, B1 and B3 and

the variable X is noncurrent if the path followed is B0, B2 and B3 forcing the X to be suspect. This

information is summarized as follows:

Break Points Set at State of X

Bkpt1 X is noncurrent

Bkpt2 X is suspect

Bkpt3 X is current

Code hoisting causes both suspected and noncurrent variables. When we set a break point after

E3 in B2, the variable x is noncurrent. The value present in x is the value that is assigned by E3,

whereas the expected value is the value that is assigned by E0. For every hoisted expressions Eh

a hoist descriptor is added containing the information of the variable that is assigned by Eh, the

corresponding redundant expression Er and the line number of the source instruction for which Er is

generated. For all redundant expressions Er that are deleted by code hoisting, a redundant descriptor

is added containing the information of line number of the source instruction to which it corresponds

and the variable that is assigned.

All hoist expressions that reach a particular instruction are found using global data flow analysis

similar to reaching definition analysis. After finding the data flow information, a variable V is said

to be noncurrent at a break point if on all paths from the starting point of the program to this break

point there is a hoisted expression that assigns to V and the corresponding redundant expression is

not executed. If the preceding case holds for some paths, then the variable V is said to be suspect.
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9.12.3.10 Data Flow Analysis

Definition 9.9 (HoistGen). HoistGen indicates the hoisted expressions generated by a block.

Definition 9.10 (HoistKill). HoistKill indicates the hoisted expressions killed by a block.

Definition 9.11 (AllHoistReachIn). AllHoistReachIn indicates the hoisted expressions that reach

a basic block along all paths from the starting of the program to the basic block.

Definition 9.12 (AllHoistReachOut). AllHoistReachOut indicates the hoisted expressions that

are present after a basic block.

Definition 9.13 (AnyHoistReachIn). AnyHoistReachIn indicates the hoisted expressions that

reach a basic block along any paths from the starting of the program to the basic block.

Definition 9.14 (AnyHoistReachOut). AnyHoistReachOut indicates the hoisted expressions that

are present after a basic block.

A basic block generates a hoisted expression Eh, assigning to V if a hoisted expression exists in the

basic block and no other assignment statement, another hoisted expression or a redundant expression

assigns to V. HoistGen(B) indicates the hoisted expressions generated by block B. A basic block kills

a hoisted assignment statement if a statement or a redundant expression assigns to the same variable

as that of the hoisted expression. HoistKill(B) indicates the hoist expressions that are killed by block

B. The iterative method similar to the one presented earlier is used to solve the following data flow

equations:

AllHoistReachOut(I ) = (AllHoistReachIn(I ) − HoistKill(I ))
⋃

HoistGen(I ) (9.5)

AnyHoistReachOut(I ) = (AnyHoistReachIn(I ) − HoistKill(I ))
⋃

HoistGen(I ) (9.6)

AllHoistReachIn(I ) =
⋂

J∈Pred(I )

AllHoistReachOut(J ) (9.7)

AnyHoistReachIn(I ) =
⋃

J∈Pred(I )

AnyHoistReachOut(J ) (9.8)

9.12.3.11 Detecting Endangered Variables Caused by Global Dead Code Elimination

Dead code elimination deletes all assignment statements that assign to a variable if the value that is

assigned in this assignment is not used later. If an assignment statement that assigns to V is deleted,

then the variable V is noncurrent until the next definition of V. The following example shows how

dead code elimination affects debugging.

In the sample piece of code given in Figure 9.11, expression E0 is dead because there are no

uses of x until the next definition of x. At a break point set after E0 in B0, variable x is noncurrent.

At a break point set in block B1 variable x is noncurrent. At a break point set before E2 in B2 x

is noncurrent. At a break point set after E2 in B2 x is current. At a break point set before E1 in

B3, x is current if the path followed is B0, B2 and B3; and x is noncurrent if the path followed is
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E0: X = Y + Z

Bkpt1

Bkpt3

E2: X Y − Z

Bkpt4

Bkpt2

Bkpt5

E1: X = U − V

Bkpt6

B0

B1 B2

B3

E0 is dead and deleted

FIGURE 9.11 Sanple piece of code.

B0, B1 and B3 making x suspect. If a break point is set after E1 in B3, then x is current as the value

of x is the value assigned by E1. The effect is summarized in the following:

Break Points Set at State of X

Bkpt1 X is noncurrent

Bkpt2 X is noncurrent

Bkpt3 X is noncurrent

Bkpt4 X is current

Bkpt5 X is suspect

Bkpt6 X is current

To determine whether a variable V is endangered due to dead code elimination at a break point it is

found if a dead assignment statement existed along the path and no other definition of V has occurred

after the last such dead assignment statement. For each assignment statement that is eliminated due

to dead code elimination a dead assignment descriptor is added containing the information of the

variable assigned, and the sequence number of the source assignment statement corresponds to the

deleted assignment statement. All dead assignment statements that reach a particular point along

all paths are found to say whether a variable is noncurrent due to dead code elimination. All dead

assignment statements that reach a particular break point along any paths are found to say whether

a variable is suspect due to dead code elimination.

Global data flow analysis is used to find the required sets. The data flow analysis similar to that

for finding endangered variables due to code hoisting is used.

9.13 Code Location Problem

Optimizations such as loop invariant code motion, dead code elimination and instruction scheduling

insert, delete and move code and make mapping of break points difficult. The debugger has to

correctly map the break points and check that the break points are triggered the expected number of
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times and at expected source locations. Optimizations that involve code elimination, code duplication

and code motion affect mapping of the break points. The object code locations where the source

break points are mapped influence the number of variables that are nonresident and endangered at a

break point.

The debugger uses source-to-object mapping and object-to-source mapping to map the source

break points and report asynchronous break points. Compilers generally use different intermediate

representations to perform different optimizations. Initially, when the source program is compiled

and converted into some intermediate representation, the compiler has to construct the source-to-

object and object-to-source mappings. The compiler updates the mappings when optimizations are

performed. When the intermediate representations are lowered, the compiler propagates the mappings

to the lower level until the final object code is obtained.

9.13.1 Code Elimination

Optimizations like dead code elimination remove a source statement completely. No object code

corresponds to the deleted source statement. When the user sets a source level break point at a

statement that has been removed, the debugger has to determine the appropriate location in the

object code where the break point should be mapped. The following cases arise:

1. In the simple case at least one source statement occurs after the deleted statement in the same

basic block. In this case the debugger sets the break point at the object code generated for the

next source statement.

2. The statement that is deleted is the last statement in the basic block. In this case the debugger

maps the break point to the starting instruction of all the successor basic blocks of the basic

block containing the deleted statement. The break point is reported more than the expected

number of times.

3. The statement that is deleted is the only statement in the basic block and the whole basic block

is deleted. In this case the break point is set at the starting instructions of all the successor

blocks.

The example given in Figure 9.12 illustrates the first two cases. Figure 9.12(b) shows the code

obtained after performing dead code elimination on code given in Figure 9.12(a). S3 is the only

statement present in block B2. After dead code elimination block B2 is completely deleted. If the

S1: S1:

S2: S3: X = 

S4:

S2:

S4:

B1 B1

B0

B2

B3

B0

B3

(a) (b)

FIGURE 9.12 Code elimination; (b) shows the code obtained after performing dead code elimination on

code given in (a).
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X = Y + Z

P = Temp1 Q = Temp1

M = Temp1

P = Y + Z Q = Y + Z

M = Y + Z

Temp1 = Y + Z

X = Temp1

(a) (b)

FIGURE 9.13 Common subexpression elimination is performed on the code shown in (a), resulting in the

code shown in (b).

user sets a break point at S3, and the debugger maps the break point to the starting instruction of

block B3, then the break point is triggered more than the expected number of times. The break point

is triggered whenever control reaches block B3 but according to the source semantics the break point

should be triggered only when the control reaches S3. We can set a conditional break point based

on the condition in S1 such that the break point is triggered the expected number of times. When

code elimination is performed, the compiler updates the source-to-object and the object-to-source

mappings to reflect the changes introduced by code elimination.

9.13.2 Code Insertion

Optimizations such as code hoisting and common subexpression elimination insert new code. The

code that is added should be corresponding to a source statement so that if an asynchronous break

occurs at the newly added code, then the break can be reported at the appropriate source statement.

Runtime exceptions and user signals are called asynchronous breaks. The compiler updates the

source-to-object and object-to-source mapping by corresponding the newly added code to some

source statement.

In the example shown in Figure 9.13 common subexpression elimination is performed on the code

shown in Figure 9.13(a), resulting in the code shown in Figure 9.13(b). The statement Temp1 =
y + z is the newly added statement. When an asynchronous break occurs while evaluating y + z in

Temp1 = y + z, the debugger reports that an asynchronous break has occurred at statement S1 in

the source.

9.13.3 Code Motion

Many optimizations such as loop invariant code motion and partial redundancy elimination move

code from one location to another location. When code motion is performed, the compiler updates

the source-to-object and object-to-source mappings. When a break point is set at a statement S that

is moved by code motion, then the debugger can map the break point at:

1. The object code corresponding to the moved statement

2. The object code generated for the statement after the moved statement

3. The object code generated for the statement immediately preceding the moved statement

The choice of where the break point is mapped influences the number of locations that are endangered

and noncurrent.
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x = y + z

x = y – z 

i = j

z = z + 1 

Si :

Sj :

x = y – z 

z = z + 1 

until p

repeat

first time through the loop

repeat

x is noncurrent

i = jSj :

Code segment 

before optimizations

Code segment 

after optimizations
Noncurrent ranges

i is noncurrent for 

until p

(p is independent of i and j) (p is independent of i and j)

Sj−1
:

Sj+1 :

S1:

Sk :

Si :

Si−1 :

:

Sj+1 :

S2 :

Sk :

(a) (b)

FIGURE 9.14 Example to show how break point mapping affects data value problem.

When the debugger sets the break point at statement Sj in Figure 9.14(b), the break point occurs

only once and all variables assigned in statements S1 to Sj−1 are noncurrent. When the debugger sets

the break point at statement Sj−1 in Figure 9.14(b), the break point is triggered the expected number

of times but variable i is noncurrent at the break point. If the break point is set at statement Sj+1 in

Figure 9.14(b), then the break point is triggered the expected number of times and the variable i is

current. The effect is summarized in the following:

Break Point Break Point in Number of Times Endangered Variables

in Figure 9.14(a) Figure 9.14(b) Break Point Is Triggered at Break Point

Sj Sj Once Variables assigned in S1 to Sj−1

Sj Sj−1 n Times Variables assigned in Sj

Sj Sj+1 n Times None

9.13.4 Instruction Scheduling

Instruction scheduling interleaves the object code generated for different source statements. Due

to this, the object instructions generated for a source statement are not consecutive. The object

instructions generated for a source instruction are split into different ranges and object instructions

corresponding to any source statement can come in between these ranges. If the user sets a break

point on an instruction with object instructions that are split into different ranges, the debugger faces

the problem of where to map the break point.

The debugger can set the break point at the first object instruction generated for the source state-

ment or at the first side-effecting instruction generated for an instruction. Generally, assignments,

function calls and branches are treated as side-effecting instructions. Because instruction scheduling
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interleaves the object instructions corresponding to source statements, if a break point is set, then it

cannot be said whether all the instructions that have to execute before the break point have executed,

or no instructions that have to execute after the break point have not executed.

9.14 Value Change Problem

While debugging unoptimized code, source level debuggers allow the value of a variable to be

changed at debug time. When optimizations are performed, it is unsafe to change the value of a

variable at some break points in the program. Changing the value of a variable at some locations

may lead to unexpected and erroneous results. Many source level debuggers that support debugging

optimized code do not allow the value of a variable to be changed when debugging optimized code.

When the compiler performs optimizations based on the value of a variable and relation between

the values of variables, the debugger should not allow the user to change the value of a variable such

that it violates the properties based on which the optimizations are performed. The debugger has to

reevaluate some of the expressions when the value of a variable has to be changed.

The values of variables that are nonresident at a break point cannot be changed at debug time.

Values of some endangered variables can be changed at debug time. A value change problem refers to

the problem of finding whether it is safe to change the value of a variable at a particular break point

and changing the value of the variable without affecting the semantics of the program. Allowing

the user to change the value of a variable requires the compiler to pass additional information to

the debugger. The debugger has to perform additional analysis to change the value of a variable.

Allowing the debugger to change the value of a variable is useful in many situations. We enumerate

the situations where it is beneficial to allow value change at debug time. Some optimizations such

as constant folding that do not affect the data value problem and code location problem affect the

value change problem.

9.14.1 Advantages of Allowing Value Change at Debug Time

1. At a particular break point if it is known that the value of a variable is causing an error, the

value of the variable can be changed and then one can proceed to check whether the rest of

the program is working correctly without going through the edit-compile-debug cycle. Thus,

the effective debugging time can be reduced.

2. Allowing the debugger to change the value of a variable allows the user to traverse all paths of

the program and check that each path is working correctly. This is very useful in cases where

it is difficult or impossible to change the inputs.

9.14.2 Constant Propagation and Constant Folding

In constant propagation, for all statements of the form x = c the compiler replaces the later uses of x

with the value of c. The statement x = c is a candidate for dead code elimination. In constant folding

expressions all of whose operands are constants are evaluated at compile time and the expression is

replaced with the result of the evaluation. Constant propagation along with dead code elimination

causes endangered variables.

When applied in isolation, constant folding does not affect debugging. When constant folding is

applied on a constant expression where one of the operands is a constant propagated variable, the

value of that variable cannot be changed. If the value of a variable that is constant propagated is

changed, the changed value of the variable is not reflected in the expression where the variable is

constant propagated. When the user wants to change the value of a variable that is constant propagated

and one of the instances is constant folded, the debugger has to reevaluate the expression that is folded
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S1:   X = 38 

S2:   IF(P)

         {

S3:       P = X * 4

         }

         ELSE

         {

         }

 S4:       M = X * Y

S1:   X = 38 

S2:   IF(P)

         {

         }

         ELSE

         {

         }

S3:       P = 38 * 4

 S4:       M = 38 * Y

S1:   X = 38 

S2:   IF(P)

         {

         }

         ELSE

         {

         }

 S4:       M = 38 * Y

S3:       P = 152

Sample code Sample code after

Constant Propagation

Sample code after constant 

Propagation and Constant Folding

(a) (b) (c)

FIGURE 9.15 Effects of constant folding and propagation on value change problem.

using the new value of the variable and replace the uses of the constant folded expression with the

changed value.

In Figure 9.15, the sample code in Figure 9.15(b) is the result of applying constant propagation to

the code given in Figure 9.15(a), and Figure 9.15(c) is the result of applying constant propagation and

constant folding to the code given in Figure 9.15(a). If the user sets a break point before statement

S2 and wants to change the value of x at that break point, then the debugger has to reevaluate the

expression in S3 with the changed value of x. The compiler must pass all the expressions that are

constant folded to the debugger.

Definition 9.15 (constant propagation definition descriptor). Constant propagation definition

descriptor is a tuple 〈N, V, Value,const-prop-id〉 where N is the line number of the source instruction,

V is the variable that is assigned, Value is the constant value that is assigned and const-prop-id is

the unique identifier assigned for each constant propagation definition descriptor.

Definition 9.16 (constant propagation descriptor). Constant propagation descriptor is a tuple

〈 N,const-prop-id〉 where N is the line number of the source instruction for which this is generated and

const-prop-id indicates the identifier of the corresponding constant propagation definition descriptor.

For every assignment expression that is constant propagated, a constant propagation definition

descriptor is stored. For each expression where constant propagation is performed, a constant

propagation descriptor is added.

For all constant folded expressions that contain a constant that is the result of constant propagation,

the expression is stored and passed on to the debugger. If the user wants to change the value of a

variable at a break point, then the debugger checks whether any constant propagation definition

descriptors involving this variable reach the break point. If such constant definitions exist, then the

debugger checks whether any of the instances where this is constant propagated are involved in

constant folding. If so, then the debugger has to reevaluate the expression and replace the old value

with the new value. Reaching definitions analysis is used to find all constant propagation definition

descriptors that reach an instruction.

If the compiler performs constant propagation and constant folding recursively, then the amount

of the information that must be stored grows exponentially.
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S1:   X = Y 

        . . . 

S2:   use X 

        . . . 

        . . . 

        . . . 

S3:   use Y 

S5:   def X 

S4:   use X 

S1:   X = Y 

        . . . 

        . . . 

        . . . 

        . . . 

S3:   use Y 

S5:   def X 

S2:   use Y 

S4:   use Y 

Sample Code Sample code after

Copy Propagation

(a) (b)

FIGURE 9.16 Effects of copy propagation on value change problem.

9.14.3 Copy Propagation

Copy propagation affects the value change problem. The debugger cannot directly change the runtime

value of a variable that is involved in copy propagation. If the debugger changes the runtime value of

a variable that is copy propagated, then the changed value is not reflected in the statements where it

is copy propagated and the uses of the variable in these statements are replaced with uses of another

variable.

In the sample code shown in Figure 9.16 if the user sets a break point before S2 and wants to

change the value of variable x, just changing the runtime value of the variable cannot suffice, because

the changed value is not reflected in statements S2 to S5 as the uses of x in these statements are replaced

by uses of y. If the user wants to change the value of y at a break point set after S2, then the debugger

should not directly change the runtime value of y as the uses of x in statements S2 and S4 are

replaced with y.

The compiler gathers more information about the optimizations and propagates it to the debugger.

The additional information is used by the debugger to change the value of a variable. For all copy

statements that are the cause of copy propagation, a copy propagation definition descriptor 〈N,V1,V2〉,

where N is the line number of the source instruction, V1 is the variable that is assigned and V2 is

the variable whose value is assigned, is stored. For all statements where copy propagation is done

a copy propagation descriptor 〈N, Copy-def-id〉 is stored, where N is the line number of the source

instruction for which this instruction is generated and Copy-def-id is the unique identifier for the

copy instruction that is the cause of this copy propagation.

At a break point, if the user wants to change the value of a variable, then it is checked whether the

variable is involved in copy propagation. Two cases arise. First, the variable that has to be changed is

the value that is assigned; second, the variable that has to be changed is the variable whose value is

assigned. In the first case, for all the statements where this variable is replaced with another variable,

the statement is changed so that it uses the new and changed value of the variable and the runtime

value of the variable is changed. The debugger uses code patching to do this. In the second case

where the variable to be changed is on the right-hand side of the copy statement, the uses of the

variable that are copy propagated instances of another variable are replaced with uses of the old value

of the variable, and the runtime value of the variable is changed.
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9.14.4 Common Subexpression Elimination

Common subexpression elimination affects the value change problem. When the user wants to change

the value of a variable that is involved in a common subexpression, the debugger has to reevaluate

the subexpression and change the runtime value of the temporary as well as the runtime value of the

variable to be changed.

Definition 9.17 (cse assignment descriptor). The cse assignment descriptor is a tuple 〈N, Id, Temp,

V1, . . . , Vn〉 where N is the source line number to which the subexpression corresponds, Id is the

unique identifier value that is assigned to each subexpression, Temp is the variable that is used to

store the result of the subexpression and V1 to Vn are the variables involved in the subexpression.

Definition 9.18 (cse descriptor). The cse descriptor is a tuple 〈N, Cse-id〉 where N is the source line

number of the source statement corresponding to this instruction and Cse-id is the unique identifier

of the corresponding cse assignment descriptor.

For common subexpression elimination, as in copy propagation, the optimization information is

replaced in the descriptors and information is used for changing the value of a variable at debug

time. When subexpression elimination is performed, at all instructions where the evaluation is done

and the result is stored into a temporary variable, a cse assignment descriptor is added. At all places

where the subexpression is replaced with a temporary variable, the cse descriptor is added.

At a break point, if the user wants to change the value of a variable that is involved in a sub-

expression, the debugger finds the cse assignment descriptor corresponding to the subexpression and

reevaluates the subexpression with the changed value of the variable and updates the runtime value

of the temporary variable. Reaching definition analysis is used to find all cse assignment descriptors

that reach a point and check whether the variable that is to be changed is present in any one of

these descriptors. If the variable is involved in any such subexpression, then the subexpression is

reevaluated with a changed value of the variable and the runtime value of the temporary is modified.

This requires the debugger to reevaluate the subexpression at debug time.

9.14.5 Code Motion Transformations

Optimizations such as loop invariant code motion, global instruction scheduling and code hoisting

change the order of execution of the source statements and source assignment statements. Changing

the order of execution of the source assignment statements causes endangered variables. Changing

the order of execution of the statements affects the value change problem. Code motion moves some

statements to execute before the break point. In this case, when the debugger changes the value of a

variable the changed value of the variable is not reflected in the statements moved earlier.

9.15 Conclusions

This chapter presents an overview of the techniques and issues in debugging programs. Most of

the issues related to debugging of programs have been addressed. A good amount of literature is

available on debuggers.

However, several important research issues remain open (e.g., debugging optimized code).

Although debuggers form an important tool in any program development environment, not much

work has been done yet on this topic. This chapter has surveyed and shown that optimized code

can be debugged by building extra data structures at compile time. We have shown how effects of

optimizations can be modeled in the context of debuggers and how values of the variable that have

been moved around in the code can be computed. We have also shown that it is viable to allow

the values of variable to be changed, in optimized code, at debug time. The compiler has to store
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additional information about optimizations and pass it to the debugger. The debugger has to perform

additional computations at debug time. The time taken for these computations is negligible while

performing interactive debugging.
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10.1 Introduction

The first impression one gets when phrases such as dependence analysis and automatic parallelization

are mentioned is that of loop programs and array variables. This is not surprising, because the loop

is the classic repetitive structure in any programming language, and clearly this is where programs

spend a significant amount of their time. Second, because of the early impetus on high-performance

computing for large numerical applications (e.g., FORTRAN programs) on supercomputers, a long
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research effort has been underway on parallelizing such programs. The area has been active for over

a quarter century, and a number of well-known texts on this topic are readily available.

Any approach to automatic parallelization must be based on the following fundamental notions:

(1) detection of which statements in which iterations of a (possibly multiply nested and possibly

imperfect) loop truly depend on each other, in the precise sense that one of them produces a value

that is consumed by the other; (2) hence determination of which operations can be executed in parallel;

and (3) transformation of the program so that this choice of parallelization is rendered explicit. The

first problem is called dependence analysis, the second constitutes the additional analysis necessary

to choose the parallelization and the third is called program restructuring.

In all generality, these are extremely difficult problems. Nevertheless, for certain classes of

programs elegant and powerful methods are available. Therefore, instead of giving yet another

survey of a vast field, we present in this chapter, a somewhat less well-known approach, called the

polyhedral model. The model is based on a mathematical model of both the program to be parallelized

and the analysis and transformation techniques used. It draws from operational research, linear and

nonlinear programming and functional and equational programming. Its applicability is, however,

restricted to a well-defined and limited (but nevertheless important) subset of imperative programs.

Essentially, programs in the polyhedral model are those for which the preceding three questions

can be resolved systematically and optimally. This class is called affine control loops (ACLs). This

restriction is motivated by two principal reasons:

• ACLs constitute an important (sub) class of programs. Many programs spend the majority of

their time in such loops. This occurs not only in numerically intensive computations (where

such loops are more or less siné qua non) but also in other domains such as signal and image

processing and multimedia applications.

• Elegant and powerful mathematical techniques exist for reasoning about and transforming

such programs. Drawing from the methods of operational research and linear and nonlinear

programming, they yield provably optimal implementations for a variety of cost criteria.

Independent of how the parallelism is to be specified (notions of a language for expressing the

parallelized program, its semantics and its efficient implementation on a parallel machine), two

primary hurdles exist in detecting parallelism in a sequential (imperative) program. The first is

the reutilization of memory — the problem of false (anti- and output-) dependences. The fact that the

same memory location is used to store two distinct values implies that all computations using the first

value must be executed before it is (over) written by the second, regardless of whether they are

independent of the latter (and hence potentially parallelizable). Indeed, the dependence analysis step

that precedes any parallelization consists essentially of identifying the true dependences between the

different operations of the program.

The second aspect of imperative sequential languages that hinder parallelism detection is what

is called the serialization of reductions. Reductions are operations that combine many (say, n)

data values using an associative (and often commutative) operator. In an imperative sequential

program such computations are serialized (often in an arbitrarily chosen manner), merely because

the programming language cannot express the independence of the result on the order of evaluation.

The dependence graph obtained naively from such a program is a sequence of length n, and does not

allow any parallelism. However, the associativity allows us to potentially execute the computation

in logarithmic time (on n/2 processors with only binary operators), or in time n
p

+ lg p on p

processors, which is of the order �( n
p
) if n ≫ p lg p (such a parallel implementation is thus

work optimal).

The polyhedral model enables the resolution of these two problems. First of all, it allows for

an exact data flow analysis of ACLs that completely eliminates false dependences, thus enabling

essentially perfect dependence analysis. The result of such an analysis yields an intermediate form
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of the program that may be formally described as a system of affine recurrence equations (SARE)

with variables that are defined over polyhedral domains. The polyhedral model enables a second

analysis of such SAREs to detect the presence of reductions in the program.

The formalism of SAREs is interesting in and of itself, instead of a mere intermediate form

for the analysis of ACLs. It constitutes a class of equational programs that are usually closer

to the mathematical notions underlying the algorithms embodied in most ACLs. The notation of

SAREs can be extended to express reduction operations, and this yields an even more intuitive

and mathematical formalism useful for algorithm designers. Because they are equational, program

development in this formalism can benefit formal methods such as program verification, synthesis by

correctness-preserving transformations and abstract interpretation. The ALPHA language developed

at IRISA subscribes to this view, and the tools and techniques used by the MMALPHA system for

parallelizing ALPHA programs are based fundamentally on the same techniques that we describe in

this chapter for ACLs.

The remainder of this chapter is organized as follows. In Section 10.2 we first present an overview

of the parallelization process. Section 10.3 describes the mathematical foundations that we need.

In Section 10.4 we discuss the algorithms for exact data flow analysis of ACLs. We digress in

Section 10.5 to show how the notation of SAREs together with a mechanism for describing reduction

operations can constitute a full-fledged equational, data parallel language (this section may be skipped

at first reading). Next, Sections 10.6 through 10.8 describe the methods of static analysis of SAREs.

Thet treat three important problems, namely, that of scheduling an SARE, and that of allocating

the computations to processors and to memory locations, respectively. Section 10.9 then describes

the problem of generating code from a scheduled and appropriately transformed SARE. Finally, we

describe limitations, open problems and conclude with some bibliographic notes.

10.2 Overview of the Parallelization Process

Deriving a parallel program in the polyhedral model consists of the following steps (note that the

steps may not all be performed in the order stated, and it is not essential that all steps be performed):

1. We analyse the sequential program (i.e., the ACL) to determine the corresponding polyhedral

SARE.

2. We perform a second analysis pass on the SARE to detect reductions and other collective

associative operations. Due to space constraints we do not give details of this analysis in this

chapter.

3. A polyhedral SARE explicitly names every value computed by (i.e., the result of every oper-

ation in) the program. Hence, our next step consists of determining three functions related to

its final implementation. For each operation of the SARE, we determine:

• Execution date (i.e., a schedule)

• Processor allocation that specifies the processor where that operation is to be executed

• Memory address where the result is to be stored

The schedule may impose an order on the accumulations of the intermediate results in reduc-

tions and scans. Vis-à-vis the other two functions, one often uses the convention implied by

the owner-computes rule, namely, that a value computed by any processor is stored in the

(local) memory of that processor itself. In this case, a memory allocation function defined

as a pair — specifying a processor and a (local) address on this processor — is sufficient

to subsume the processor allocation function. Note that two issues are related to the choice

of these functions. First, they must be valid, according to certain architectural and semantic

constraints. In addition, it is desirable that they be chosen so as to optimize certain cost criteria.
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We will see that the polyhedral model provides us with elegant techniques to address both these

issues.

4. Once these functions are chosen, we construct an equivalent SARE that respects the following

conventions: certain indices of all the variables of the SARE, called the temporal indices,

represent time (i.e., the schedule that we have chosen, others represent the processor indices

and still others represent memory addresses).

5. From this transformed SARE, we produce code that (1) respects the order implied by the

temporal indices, (2) has the parallelism implied by the processor indices, and (3) allocates

and accesses the memory as specified by the memory indices. This code is in the form of an

ACL that is now parallelized and optimized for various cost criteria (that guided the choice of

the three functions in step 3, above).

10.3 Notations and Mathematical Foundations

In an ACL program, the two distinct classes of variables are data variables, and index variables (the

latter set also includes certain variables called size parameters that are assigned a single value for

any instance of the program). Data variables are multidimensional arrays (scalars viewed as zero-

dimensional arrays), and represent the primary values computed by the program. Index variables are

integer typed, are never explicitly assigned (they get their values implicitly in loops) and are used to

access data variables.

The only control construct (other than sequential statement composition) is the for loop (note that

there is no conditional if-then-else construct1). The lower (cf. upper) bound of such a loop is an affine

expression of the surrounding loop indices and the size parameters, or the maximum (cf. minimum)

of such expressions. The body of the loop is either:

• Another loop

• An assignment statement

• A sequential composition of any of the above

In any assignment statement, the left-hand side (lhs) is a data variable, and the right-hand side

(rhs) is an expression involving data variables. The access function of the data variables, whether on

the lhs or the rhs, is an affine function of the surrounding loop indices and the size parameters. For

our later analysis, we shall assume that the rhs expression is atomic.

In an ACL, an assignment statement S is executed many times for different values of the surround-

ing loop indices. The loop indices are said to be valid if they are within the appropriate bounds, and

the set of valid indices surrounding S is called its iteration domain, D. Because no conditionals

exist, each loop body must be executed exactly once for each valid value of the surrounding

indices. Every operation in the program is therefore uniquely identified by 〈Si, z〉, where Si is a

statement, and z ∈ D is an integer vector, the iteration vector. For two operations O1 and O2,

we denote by O1 ✁ O2, the fact that operation O1 precedes O2 in the sequential execution order

of the ACL.

We now recall certain standard definitions regarding polyhedra.

1This constraint may be relaxed without any loss of generality, provided that the conditionals are
(conjunctions of) affine inequalities involving only the index variables and size parameters.
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Definition 10.1. A rational polyhedron is a set of the form {z ∈ Qn | Qz ≥ q}, where

Q (cf. q) is an integer matrix (cf. vector). An integral polyhedron or a polyhedral domain (or

simply a polyhedron, when it is clear from the context) is the set of integer points in a rational

polyhedron:

D ≡ {z ∈ Zn | Qz ≥ q} (10.1)

A parametric family of polyhedra corresponds to the case where the q is a (vector-valued) affine

function of m size parameters p (i.e., {z ∈ Zn | Qz ≥ q − Pp}) or equivalently:

{(

z

p

)

∈ Zn+m |
[

Q P
]

(

z

p

)

≥ q

}

We may therefore view such a parametric family of polyhedra as a single n + m dimensional

polyhedron. Note, however, that the converse view, namely, a single n + m dimensional polyhedron

equivalent to an n-dimensional polyhedron, parameterized by m parameters, is valid for rational

polyhedra, but not for integer polyhedra. For example, the projection of an integral polyhedron on

one of its axes is not necessarily an integral polyhedron. Nevertheless, for reasons of clarity we

often abuse the notation and view an integer polyhedron as a parameterized family of its constituent

projections.

Parametric polyhedra also admit an equivalent dual definition in terms of generators (their

vertices, rays and lines) that are all piecewise affine functions of their parameters.

Example 10.1

Consider {i, j, n | 0 ≤ j ≤ i; j ≤ n; 1 ≤ n} as a 3-dimensional polyhedron. It has two vertices:

[0, 0, 1] and [0, 1, 1]. Its rays are the vectors in the set {[1, 0, 0], [0, 0, 1], [0, 1, 1]}. The same polyhe-

dron, viewed as a 2-dimensional polyhedron (parameterized by n), has two vertices, {[0, 0], [n, n]},
and a ray, [1, 0].

Example 10.2

Consider P1 = {i, j, n, m | 0 ≤ j ≤ i ≤ n; j ≤ m; 1 ≤ n, m} as a 2-dimensional polyhedron (with

parameters n and m). Depending on the relative values of its parameters, it is either a triangle (if

n ≤ m) or a trapezium (otherwise). It does not have rays, and we can see that the set of its vertices

is a piecewise affine function of its parameters:

{

{1 ≤ n ≤ m} ⇒ {[0, 0], [n, 0], [n, n]}
{1 ≤ m < n} ⇒ {[0, 0], [n, 0], [n, m], [m, m]}

Finally, the polyhedron P2 = {i, j, n, m | 0 ≤ i = j − 1 ≤ n} is a line segment (parameterized by

n), but in a 2-dimensional space. Its vertices are S2 = {[0, 1], [n, n + 1]}.
We denote by z1 ≺ z2, the (strict) lexicographic order between two vectors, z1 and z2. Note that

this is a total order, and that the vectors may even be of different dimensions (just like the words in

a dictionary). We define ≺n as the order, ≺ applied only to the first n components of two vectors

(i.e., if z′
1 and z′

2 are the first n components of z1 and z2, respectively, and then z1 ≺n z2 if and only

if z′
1 ≺ z′

2. The inverse order ≻, and the related (partial) orders � and  are natural extensions and

may be defined analogously.

We may easily see that the execution order of operations in a sequential ACL (denoted by ✁) is

closely related (but not identical) to the lexicographic order. For any two operations, 〈S1, z1〉 and

〈S2, z2〉, let n12 be the number of common loop indices surrounding S1 and S2. Then:

〈S1, z1〉 ✁ 〈S2, z2〉 ≡

{

z1 �n12 z2 if S1 appears before S2 in the text of the ACL

z1 ≺n12 z2 otherwise
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Lmax (cf. Lmin) denotes the lexicographic maximum (cf. minimum) of two or more vectors. We

remark that the Lmax (or the Lmin) of all the points in a polytope (i.e., a bounded polyhedron) must

be one of its vertices, and that the Lmax (cf. Lmin) of two or more piece-wise affine functions is a

piecewise affine function. Hence the Lmax (cf. Lmin) of all the points in a union of polyhedra is a

piecewise affine function of its parameters.

Definition 10.2. A recurrence equation (RE) is an equation of the following form that defines a

variable X at all points z, in a domain, DX

X(z) = DX : g(. . . X(f (z)) . . .) (10.2)

where

• z is an n-dimensional index variable.

• X is a data variable, denoting a function of n integer arguments; it is said to be an n-dimensional

variable.

• f (z) is a dependence function, f : Zn → Zn; it signifies the fact that to compute the value of

X at z, we need the value of X at the index point f (z).

• g is an elementary computation (in our later analyses we assume that it is strict and executes

in unit time).

• “ . . . ” indicate that there may be other similar arguments to g, with possibly different

dependences.

• DX is a set of points in Zn and is called the domain of the equation. Often, the domains

are parameterized with one or more (say, l) size parameters. In this case, we represent the

parameter as a vector, p ∈ Z l , and use p as an additional superscript on D.

We may also have multiple equations that define X as follows:

X(z) =















...

Di : gi(. . . X(f (z)) . . . )
...

(10.3)

Here, each row of the definition is called a clause (or branch) of the equation, and the domain

of X is the (disjoint) union of the domains of each of the clauses DX =
⋃

i Di . One may also

define an extension of the formalism of REs that allows one to specify computations that have

reduction operations involving associative or commutative operators, but this is beyond the scope

of this chapter.

An RE is called an affine recurrence equation (ARE) if each dependence function is of the

form, f (z) = Az + Bp + a, where A (cf. B) is a n × n (cf. n × l) matrix, and a is

an n vector.

Definition 10.3. A system or recurrence equations (SRE) is a set of mutually recursive recurrence

equations, each one defining one of m variables X1, . . . , Xm over an appropriate domain (DXi

of dimension ni for Xi). Because the equations are mutually recursive, the dependence function

associated with an occurrence of, say Xj , on the rhs of an equation defining Xi is a mapping from

Zni to Znj . In a system of AREs (i.e., an SARE) the dependence functions are all affine (the A

matrices are not necessarily square).
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We often desire to manipulate (i.e., geometrically transform) the domains of variables in an SRE

and construct an equivalent SRE. In particular, consider the following SRE:

X[z] = z ∈ DX : gX(X[fXX(z)], Y [fXY (z)], . . . ) (10.4)

Y [z] = z ∈ DY : gY (X[fYX(z)], Y [fYY (z)], . . . )

We would like to construct a semantically equivalent SRE where the domain of X is now trans-

formed by some function T . The required SRE is given next (a proof of a general form of this

important result is given in Section 10.5):

X[z] = z ∈ T (DX) : gX(X[T ◦ fXX ◦ T ′(z)], Y [fXY ◦ T ′(z)], . . . ) (10.5)

Y [z] = z ∈ DY : gY (X[T ◦ fYX(z)], Y [fYY (z)], . . . )

that T admits a left inverse in the context, DX (i.e., that a function T ′ exits such that, ∀z ∈
DX, T ′(T (z)) = z, i.e., T ′ ◦ T = Id). An important special (but not the only) case is when

T (z) = T z + t for some unimodular matrix, T , and a constant vector, t . Also note that SAREs are

closed under affine change of basis (COBs) (i.e., if T (z) = T z + t for some constant matrix T , and

vector t , the resulting SRE is also an SARE.

Definition 10.4. Finally, we define the reduced dependence graph, (RDG) of an SRE as the (multi)

graph with a node corresponding to each variable in the SRE. For each occurrence of a variable

say, Y , on the rhs of the equation defining say, X, there is a directed edge from X to Y . The edge is

labeled with a pair, 〈DX
i , f 〉, specifying the (sub) domain and the associated dependence function.

The RDG is an important tool for our analysis of SREs.

10.4 Exact Data Flow Analysis of Affine Control Loops

We now discuss how to to determine the true dependences of an ACL. Before we proceed, let us

emphasize a golden rule that we respect in our entire approach. During the analysis of our ACL, the

resulting SARE, and implicitly its data flow graph, we do not explicitly construct this graph. This

rule is motivated by the following factors:

• The graph is usually too big, as compared with the size of the original code, to be easily

manipulated by the compiler or parallelizer. For example, a matrix multiplication program has

only a few lines of code but they specify about n3 operations (and hence an n3 node data flow

graph). It is unreasonable to expect that compiler to explicitly construct this n3 node graph for

analysis purposes.

• More importantly, for parametric programs it is usually not (completely) known statically (i.e.,

at compile time). For our matrix multiplication example, the data flow graph for a 10×10 input

matrix is distinct from that for a 100 × 100 matrix. The size of the matrix is a parameter of

the program and is not known at compile time. Any compilation or parallelization method that

requires explicitly constructing the data flow graph of the program can only be able to produce

code after the size parameter is instantiated.

• Finally, even if we were to accept these limitations and construct the graph explicitly, it would

not be very useful in producing efficient code. The code would need to enumerate each of the

operations explicitly, and hence would correspond to a complete “unrolling” of the loops and

would have an unacceptably large size.
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The implication of our golden rule is that we cannot directly use the conventional and

well-developed methods for scheduling and mapping computations specified as task graphs to parallel

machines. We need to exploit the regularity of our programs and work with a reduced representation

of the data flow graph.

We now seek to identify the true dependences of the computations of our ACL. For this, we render

explicit the results computed by each operation of the program, and construct an SARE that has the

same semantics as the original ACL. Consider an assignment statement:

Si : X[f0
i (z, p)] = gi(. . . Y[fk

i (z, p)] . . . )

Because each operation of the program is uniquely identified by an assignment statement and the

values of the surrounding loop indices, the variables of our SARE are simply (the unique labels of)

the assignment statements in the ACL. Their domains are the corresponding iteration domains, Di .

This determines the lhs of our SARE. Hence, what we need to determine is the rhs of the equations

of our SARE. Obviously, the function gi (the function computed by the expression on the rhs of the

assignment) simply carries over to our SARE. To determine the arguments to gi , we need to resolve

the following question:

Problem 10.1. For each read, Y[f k
i (z, p)] of a variable (array) Y, with an access function f k

i on

the rhs of Si , find the source of the value: which operation (i.e., which iteration of which statement)

wrote the value to be read?

In general, this is a function of z, and indeed it is this function that can be the dependence function of

our SARE. Our solution is some instance, say z′, of an assignment statement, Sj , which has the vari-

able Y (accessed with some function f 0
j ) on its lhs. We consider all such statements as candidates and

address them one by one. Each of them is executed many times and possibly writing to many different

memory addresses, and moreover the same memory address may be (over)written many times.

For each candidate statement, our solution is one of possibly many instances z′ that satisfy the

following conditions (because our solution is a function of z, we also include constraints that z

must satisfy):

∥

∥

∥

∥

∥

∥

∥

∥

z ∈ Di

z′ ∈ Dj

f k
i (z, p) = f 0

j (z′, p)

〈Sj , z
′〉 ✁ 〈Si, z〉

(10.6)

The first two constraints ensure that we are dealing with valid operations, the third one ensures

that the two operations in question address the same memory location and the final one states that

the operation 〈Sj , z
′〉 precedes the operation 〈Si, z〉 in the order of execution of the original ACL.

Observe that these conditions (10.6) are not yet complete: they admit multiple valid points z′ ∈ Dj

that precede 〈Si, z〉 and that write into the same memory location that is read by 〈Si, z〉. Of these,

we have to find the most recent one.

To do so, we first observe that the final constraint in (10.6) is not a simple affine (in)equality.

Nevertheless, because it involves the lexicographic precedence between index points, it may be

expressed as the disjunction (union) of a finite number of such constraints. Hence, the set of possible

solutions, z′, that we need to consider is a finite union of polyhedra. Each one is of dimension

ni + nj + m (the index variables that are involved are those in the respective domains of Si (i.e., z),

of Sj (i.e., z′), and the m parameters of the ACL. We view this as an nj -dimensional polyhedron,

but parameterized with the ni + m other indices. It is therefore clear that its vertices are piecewise

affine functions of z and p.

Now, let us return to the problem of determining the most recent point z′ that satisfies the constraints

(10.6). For each polyhedron (obtained by the decomposition of ✁ into a disjunction of (in)equalities),
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S1: x[n] := b[n]/u[n,n];

for i = n - 1 down to 1 do

S2: s := 0;

for j = i + 1 to n do

S3: s := s + x[j] * u[i, n - j];

enddo

S4: x[i] := (b[i] - s) / u[i,i]

endo

FIGURE 10.1 An affine control loop to solve an upper triangular system of equations.

this is nothing but the point that is the last one to be executed in the sequential execution order (i.e.,

its Lmax, which has to be one of its vertices — a piecewise affine function of z and p). Among

the different polyhedra, the most recent one is therefore the Lmax of their vertices, which is also a

piecewise affine function of z and p.

Finally, we return to the comparison of such solutions for different candidates Sj (recall that more

than one statement may write into the array variable Y in the ACL). We simply take the Lmax of

each of the candidate solutions, and hence we may conclude that the overall solution to Problem 10.1

as posed earlier is a piecewise affine function of z and p. It may be automatically computed by

a tool capable of manipulating parameterized polyhedra, or a parametric integer linear programm-

ing solver.

Although the overall idea is fairly simple, the details are intricate and are best left to an automatic

program analysis tool. We illustrate the analysis method by means of the following example:

Problem. In the program of Figure 10.1, determine the source of s on the rhs of S3.

Solution. We have 4 statements, of which S1 is special (its domain is D0 = Z0, the empty

polyhedron). The other relevant domains are D2 = D4 = {i | 1 ≤ i ≤ n − 1}, and

D3 = {i, j | 1 ≤ i < j ≤ n}. The following source analyses are needed: s and x in S3,

and s in S4. The main point to note is that the i loop goes down from n − 1 to 1, and hence

we have to be careful about our precedence order, ≺, and that we not always look for the

lexicographic maximum, Lmax (in the i dimension it is minimum).

Because two statements write into s, Src(s, S3) = Last(〈S2, f1(i, j)〉, 〈S3, f2(i, j)〉), where

f1(i, j) and f2(i, j) are, respectively:2

f1(i, j) = Last







(i′ | i, j)

∥

∥

∥

∥

∥

∥

i′ ∈ D2

(i, j) ∈ D3

〈S2, i′〉 ≺ 〈S3, (i, j)〉







(10.7)

f2(i, j) = Last







(i′, j ′ | i, j)

∥

∥

∥

∥

∥

∥

(i′, j ′) ∈ D3

(i, j) ∈ D3

〈S3, (i′, j ′)〉 ≺ 〈S3, (i, j)〉







(10.8)

2For notational simplicity, vectors are written as rows, and the bar separates the parameters (i.e., we seek in
Eq. (10.7) the last i ′ as a function of i and j such that the stated constraints are satisfied).
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By using the definition of the ≺ relation,3 and our knowledge of the program text, we see that

〈S2, i′〉 ≺ 〈S3, (i, j)〉 if and only if i′ ≥ i. Hence:

f1(i, j) = Last







(i′ | i, j)

∥

∥

∥

∥

∥

∥

i′ ∈ D2

(i, j) ∈ D3

i ≤ i′







(10.9)

= Last
{

(i′ | i, j) ‖ i ≤ i′ ≤ n; 1 ≤ i < j ≤ n
}

(10.10)

This set of points is viewed as a family 1-dimensional polyhedra (line segments indexed by i′)

parameterized by points in a 2-dimensional parameter polyhedron, D3. At all points in D3, the

line segment is from i to n, and here the Last operation is equivalent to finding the lexicographic

minimum. Hence, f1(i, j) = i.

To find f2(i, j), we observe that 〈S3, (i′, j ′)〉 ≺ 〈S3, (i, j)〉 is equivalent to i′ > i ∨ (i′ =
i ∧ j ′ < j), a disjunction of two sets of inequality constraints, and hence:

f2(i, j) = Last











(i′, j ′ | i, j)

∥

∥

∥

∥

∥

∥

(i′, j ′) ∈ D3

(i, j) ∈ D3

i < i′







⋃







(i′, j ′ | i, j)

∥

∥

∥

∥

∥

∥

(i′, j ′) ∈ D3

(i, j) ∈ D3

i′ = i; j ′ < j









 (10.11)

= Last



Last







(i′, j ′ | i, j)

∥

∥

∥

∥

∥

∥

(i′, j ′) ∈ D3

(i, j) ∈ D3

i < i′







,

Last







(i′, j ′ | i, j)

∥

∥

∥

∥

∥

∥

(i′, j ′) ∈ D3

(i, j) ∈ D3

i′ = i; j ′ < j









 (10.12)

= Last
(

Last
{

(i′, j ′ | i, j)
∥

∥1 ≤ i < i′ < j ′ ≤ n; i < j ≤ n
}

,

Last
{

(i′, j ′, | i, j)
∥

∥1 ≤ i′ = i < j ≤ n; j ′ < j
})

(10.13)

This is Last (f ′
2(i, j), f ′′

2 (i, j)) where:

f ′
2(i, j) =

{

{i, j | i = n − 1; j = n} : ⊥
{i, j | 1 ≤ i < j ≤ n; i ≤ n − 2} : (i + 1, n)

(10.14)

f ′′
2 (i, j) =

{

{i, j | 1 ≤ i = j − 1 ≤ n − 1} : ⊥
{i, j | 1 ≤ i < j − 1 ≤ n − 1} : (i, j − 1)

(10.15)

(10.16)

3Observe the sense of the inequality.
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and hence:

f2(i, j) =







{i, j | i = n − 1; j = n} : Last(⊥, ⊥)

{i, j | 1 ≤ i = j − 1 ≤ n − 2} : Last((i + 1, n), ⊥)

{i, j | 1 ≤ i < j − 1 ≤ n − 1; i ≤ n − 2} : Last((i + 1, n), (i, j − 1))

(10.17)

=







{i, j | i = n − 1; j = n} : ⊥

{i, j | 1 ≤ i = j − 1 ≤ n − 2} : (i + 1, n)

{i, j | 1 ≤ i < j − 1 ≤ n − 1; i ≤ n − 2} : (i, j − 1)

(10.18)

Finally, remember that:

Src(s, S3) = Last (〈S2, f1(i, j)〉, 〈S3, f2(i, j)〉)

= Last



〈S2, i〉,

〈

S3,







{i, j | i = n − 1; j = n} : ⊥
{i, j | 1 ≤ i = j − 1 ≤ n − 2} : (i + 1, n)

{i, j | 1 ≤ i < j − 1 ≤ n − 1; i ≤ n − 2} : (i, j − 1)

〉





= Last



〈S2, i〉,







{i, j | i = n − 1; j = n} : 〈S3, ⊥〉
{i, j | 1 ≤ i = j − 1 ≤ n − 2} : 〈S3, (i + 1, n)〉
{i, j | 1 ≤ i < j − 1 ≤ n − 1; i ≤ n − 2} : 〈S3, (i, j − 1)〉





=







{i, j | i = n − 1; j = n} : Last(〈S2, i〉, 〈S3, ⊥〉)
{i, j | 1 ≤ i = j − 1 ≤ n − 2} : Last(〈S2, i〉, 〈S3, (i + 1, n)〉)
{i, j | 1 ≤ i < j − 1 ≤ n − 1; i ≤ n − 2} : Last(〈S2, i〉, 〈S3, (i, j − 1)〉)

=







{i, j | i = n − 1; j = n} : 〈S2, i〉
{i, j | 1 ≤ i = j − 1 ≤ n − 2} : 〈S2, i〉
{i, j | 1 ≤ i < j − 1 ≤ n − 1; i ≤ n − 2} : 〈S3, (i, j − 1)〉

=

{

{i, j | 1 ≤ i = j − 1 ≤ n − 1} : 〈S2, i〉
{i, j | 1 ≤ i < j − 1 ≤ n − 1; i ≤ n − 2} : 〈S3, (i, j − 1)〉

(10.19)

We have determined the precise source of s on the rhs of statement S3 as a function of its loop

iteration indices (and the system parameters). Essentially, it states that for the very first iteration (i.e.,

for j = i + 1) the producer is the ith iteration of statement S2; otherwise it is the “previous,” that is,

the (i, j − 1)-th iteration of S3 itself, as can be easily verified. end of example

10.5 System of Affine Recurrence Equations: Merely

an Intermediate Form?

In this section, we argue that the formalism of SAREs, augmented with reduction operations, is more

than just an intermediate form for the parallelization of ACLs, but is interesting in its own right. We

present an equational language ALPHA based on this formalism, describe its expressive power and

briefly explain its denotational semantics. We also describe some of the analyses that are enabled by

this formalism (some that would be extremely difficult for a imperative language).

ALPHA, designed by Mauras in 1989 in the context of systolic array synthesis at IRISA (France),

is a strongly typed data-parallel functional language based on SAREs. MMALPHA is a prototype

transformation system (also developed at IRISA, and available under the Gnu Public License at



340 The Compiler Design Handbook: Optimizations and Machine Code Generation

system ForwardSubstitution : { N | N>1 } – comments are like this

( A : { i,j | 0<j<i<=N } of real; – a 2D input variable

B : { i | 0<i<=N } of real) – a 1D input variable

returns ( X : { i | 0<i<=N } of real ); – a 1D output variable

let

X = case

{i | i=1} : B;

{i | i>1} : B - reduce(+, i, j → i), A * X.(i, j → j));

esac;

tel:

FIGURE 10.2 ALPHA program for the forward substitution algorithm.

www.irisa.fr/cosi/ALPHA) for reading and manipulating ALPHA programs through correctness-

preserving transformations and eventually generating very high speed integrated circuit hardware

description language (VHDL) description of regular, systolic very large scale integrated (VLSI)

circuits or (sequential or parallel) code for programmable (i.e., instruction-set) processors.

ALPHA variables are type declared at the beginning of a program, and represent polyhedra2l-

shaped multidimensional arrays. The polyhedra specified in the declaration are called the domains

of the variables. For example, a (strictly) lower triangular, real matrix is specified by the following

declaration:4

A: {i,j| 0<j<i<=N } of real

To introduce the main features of ALPHA, consider the problem of solving, using forward substitu-

tion, a system of linear inequalities, Ax = b, where A is a lower triangular n × n matrix with unit

diagonal. A high-level, mathematical description of the program would be:

for i = 1, . . . , n, xi =







if i = 1 bj

if i > 1 bi −
∑i−1

j=1 Ai,jxj

(10.20)

The corresponding ALPHA program (Figure 10.2) is identical, except for syntactic sugar. The

first line names the system and declares that it has a positive integer parameter, N, which can take any

integer value greater than 1. The next three lines are declarations of the input and output variables

of the system (respectively, before and after the returns keyword). The domain of A is triangular,

while B and X are one-dimensional variables (vectors). A system may also have local variables (not

present here), which are declared after the system header, using the keyword var. The body of the

program is a number of equations delineated by the let and tel keywords. The rhs of an equation is

an expression, following the syntax given in Table 10.1.

In our example, we have a single equation, almost identical to (10.20) above. The case construct

has the usual meaning and allows us to define conditional expressions. The restrict construct has

the syntax 〈domain〉 : 〈expr〉, and denotes the expression 〈expr〉 but restricted to the subset of

index points in 〈domain〉. The reduce construct corresponds to the summation in (10.20) and has

4This syntax is to be read as “the set of i, j such that” the specified linear inequalities are satisfied. In
specifying the inequalities, we may group expressions using parentheses. For example, (i + j, j + 10)
<= N specifies a domain where both i + j and j + 10 are no greater than N.
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TABLE 10.1 Syntax of ALPHA Expressions (Summary)

〈Exp〉 := 〈Const〉 | 〈Var〉 Atomic Expressions

| ⊕ 〈Exp〉 | 〈Exp〉 ⊕ 〈Exp〉 Unary/Binary Pointwise ops

| if 〈Exp〉 then 〈Exp〉 else 〈Exp〉 A Ternary Pointwise op

| 〈Dom〉:〈Exp〉 Restrictions

| case 〈Exp〉; . . . 〈Exp〉; esac Case Expressions

| 〈Exp〉.〈Dep〉 Dependence Expressions

| reduce (⊕, 〈Dep〉, 〈Exp〉) Reductions

〈Dom〉 := {〈Idx〉 . . . |〈IdxExpr〉 >= 0} Domains

〈Dep〉 := (〈Idx〉 . . . → 〈IdxExpr〉 . . . ) Dependences

〈IdxExpr〉 := Any affine expression of indices and system parameters

three parts: an associative and commutative operator, a projection function and an expression. Here

the operator is +. The projection is (i, j → i), and denotes (intuitively) the fact that within the body of

the reduce, there are two indices, i and j, but only i is visible outside the scope of the reduce (i.e., the

two-dimensional expression of the body is projected by the mapping (i, j → i) to a one-dimensional

one. The body of our reduce construct is the expression, A ∗ X. (i, j → j).

Here, (i, j → j), is a dependency function and denotes the fact that to compute the body at [i, j],

we need the value of X at index point [j] (the dependency on A is not explicitly written — it is the

identity). Dependencies are important in ALPHA. They have the syntax (Idx, . . . → IdxExpr, . . . ),

where each Idx is an index name, and IdxExpr is an affine expression of the system parameters and

the idx’s. ALPHA and MMALPHA use this syntax for specifying a multidimensional affine function

in many different contexts (e.g., the projection function in a reduce expression). This syntax can

be viewed as a special kind of lambda expression, restricted to affine mappings from Zn to Zm.

Such a function, f , may be equivalently represented by an m × n matrix A, and an m-vector a

(i.e., f (z) = Az + a) and we later use this form for analysis purposes.

10.5.1 Semantics of Alpha Expressions

Because ALPHA is a data-parallel language, expressions denote collections of values. Indeed all

expressions (not just variables) can be viewed as multidimensional arrays and denote a function from

indices to values. ALPHA semantics consist of two parts: a semantic function and a domain. The

semantic function is defined using classic methods and is fairly obvious (the only subtle points are

dependencies and reductions, as described later), but the domains are a unique aspect of ALPHA.

Every (sub) expression in a program has a domain, and it can be determined from the domains of its

subexpressions, as summarized follows:

• Identifiers and constants. An identifier simply denotes the variable it identifies, and is defined

over its declared domain. In general, this is a finite union of polyhedra. A constant expression

denotes the constant itself, and its domain is Z0, the zero-dimensional polyhedron.

• Pointwise operators. The expression E ⊕ F denotes the pointwise application of the operator ⊕
to the corresponding elements of the expressions E and F, and hence its domain is Dom(E) ∩
Dom(F), the intersection of the domains of its subexpressions. The semantics of unary or

ternary (the if-then-else) pointwise operators are similar.

• Restriction. The expression D : E denotes the expression E, but restricted to the domain D, and

hence its domain is D ∩ Dom(E).
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• Case. The expression case E; F esac denotes an expression that has alternative definitions (there

may be more than two alternatives). Its domain is Dom(E) ∪ Dom(F), the (disjoint) union of

the domains of its subexpressions.

• Dependency. First, we note that the dependency (z → f (z)) by itself simply denotes the affine

function, f . We therefore abuse the notation somewhat to use the same nomenclature for both

the syntactic construct as well as for the corresponding semantic function.

The expression E.f denotes an expression whose value at z is the value of E at f(z). Its domain

must therefore be the set of points which are mapped by f to some point in the domain of E.

This is nothing but the preimage, of Dom(E) by f , that is:

Dom(E . f) = Pre(Dom(E), f) = f −1Dom(E)

where f −1 is the relational inverse of f .

• Reductions: The expression reduce (⊕, f, E) denotes an expression whose domain is the image

of the domain of E by f . Its value at any point, z, in this domain is obtained by taking all points

in the domain of E that are mapped to z by f , and applying the associative and commutative

operator ⊕ to the values of E at these points.

Note that the preceding semantics imply that the domain of any ALPHA expression may be

determined recursively in a top-down traversal of its syntax tree. Because the declared domains in

ALPHA (i.e., the domains of the leaves of the tree) are finite unions of polyhedra, and thanks to

the mathematical closure properties of polyhedra and affine functions, the domain of any ALPHA

expression can be easily determined by using a library for manipulating polyhedra.

10.5.2 ALPHA Transformations

The denotational semantics given earlier describe what an ALPHA expression denotes or means,

without necessarily showing how to compile or otherwise execute an ALPHA program. The denota-

tional semantics enable us to formally reason about ALPHA programs, and to develop and prove the

validity of program transformations. These program transformations are available in the MMALPHA

system, and we shall describe two of the important ones here.

10.5.2.1 Normalization

A number of properties can be proved based on the denotational semantics of ALPHA expres-

sions. For example, we can show that for any expression E, and dependences f1 and f2, the

expression E.f1.f2 is semantically equivalent to E.f, where f = f1 ◦ f2 is the composition5

of f1 and f2.

Although a large number of such transformation rules could be developed and proposed to the user,

a certain set of rules is particularly useful to simplify any ALPHA expression into what is called

a normal form, or the case-restriction-dependency form. It consists of an (optional) outer case,

each of whose branches is a (possibly restricted) simple expression. A simple expression consists of

(possibly a reduction of) either variables or constants composed with a single dependency function

(which may be omitted, if it is the identity), or pointwise operators applied to such subexpres-

sions. This simplification is obtained by a set of rewrite rules that combine dependencies together,

eliminate empty domain expressions, introduce new local variables to define variables for certain

subexpressions (to remove nested reductions), etc.

5Note that function composition is right associative, that is, f1 ◦ f2(z) = f1(f2(z)).
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Let X = {i, j|0 < i, j <= N} : X.(p, q → q, p) + 0.(i, j →) be an equation in an ALPHA pro-

gram (observe that the domain of the constant 0 is Z0, whose preimage by the function (i, j →) is

Z2, which is coherent with the rest of the expression). Because the rhs of this equation is normalized,

we can rewrite the equation as follows:

• Rename the indices in the restrictions and in the dependencies to be identical (e.g., by replacing

p and q by i and j, respectively).

• Move the index names in the dependencies (left of the →) and in domains (left of the |) to the

left of the entire equation.

This yields the following “sugared” syntax, called the array notation, which is often more readable

(indeed, all subsequent examples in this chapter are presented in this notation).

X[i, j] = {|0 < i, j <= N} : X[i, j] + 0[]

Also observe that SAREs as defined in Section 10.3 constitute a proper subset of ALPHA programs,

namely, those that do not contain reductions, and those that are normalized.

10.5.2.2 Generalized Change of Basis

Perhaps the most important transformation in the ALPHA system is the change of basis (COB). The

intuition behind it is as follows. Because an ALPHA variable can be viewed as a multidimensional

array defined over a polyhedral domain, we should be able to “move” (or otherwise change the

“shape” of) its domain and construct an equivalent program. We now develop such a transformation.

Let T and T ′ be functions such that for all points z in some set S of index points, T ′ ◦ T (z) = z.

Note that T and T ′ may not even be affine, but even in the case when they are, we do not insist that

they be square, or that T ′ ◦ T be the identity. We say that T ′ is the left inverse of T in the context of

S. The following can easily be proved from the semantics of ALPHA expressions as defined earlier.

Remark 10.1. For any ALPHA expression E, let T and T ′ be such that T ′ is the left inverse of T
in the context of Dom(E). Then E is semantically equivalent to E.T ′.T , and any occurrence of the

former anywhere in the program may be replaced by the latter.

This implies in particular, that if we choose E as the subexpression consisting of just the variable

X, then every occurrence of X can be replaced by X.T ′.T , without affecting the program semantics.

Moreover, if Expr is the entire rhs of the equation defining X, then:

X.T ′ = Expr.T ′ = X′(say)

We may therefore introduce a new local variable X′ and define its domain to be Pre(DX, T ′), and the

rhs of its defining equation to be Expr.T ′. Next, we replace every occurrence of the subexpression

X.T ′ in the program by X′ (because X.T ′ = X′); and finally because X is no longer used in

the program, drop it, and then rename the X′ to be X. This argument is embodied in the follow-

ing theorem:

Theorem 10.1. In an ALPHA program with a local variable X declared over a domain D, let T and

T ′ be such that T ′ is the left inverse of some T in the context of D. The following transformations

yield a semantically equivalent program:

• Replace the domain of declaration of X by Pre(D, T ′).

• Replace all occurrences of X on the rhs of any equation by X.T .

• Compose the entire rhs expression of the equation for X with T ′.
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Many program transformations such as alignment, scheduling and processor allocation can be

implemented as an appropriate COB. Moreover, we can see that the rules for COB for SREs in

Section 10.3 are merely a special case where the resulting program is normalized after applying the

preceding rules.

10.5.3 Reasoning about ALPHA Programs

The functional and equational nature of ALPHA provides us important advantages not available in a

conventional imperative language. These include the ability to formally reason about programs, the

possibility to systematically derive programs from mathematical specifications, the use of advanced

program analysis techniques such as abstract interpretation, etc. We illustrate one of them by showing

how formal equivalence properties of ALPHA programs can be proved systematically. Consider the

following two recurrences, both defined over the same domain, D = {i, j, k | 1 ≤ i, j ≤ n;

0 ≤ k ≤ n}:

T [i, j, k] =







































{| k = 0} : 0

{| i = j = k} : 1 + T [i, j, k − 1]

{| i = k =/ j} : 1 + max(T [k, k, k], T [i, j, k − 1])

{| j = k =/ i} : 1 + max(T [i, j, k − 1], T [k, k, k])

{| i, j =/ k; k > 0} : 1 + max(T [i, j, k − 1],

T [i, k, k], T [k, j, k − 1])

(10.21)

T ′[i, j, k] =























{| k = 0} : 0

{| i = j = k} : 3k − 2

{| i = k =/ j} : 3k − 1

{| j = k =/ i} : 3k − 1

{| i, jk; k > 0} : 3k

(10.22)

The definition of T is recursive, whereas that of T ′ is in closed form. However, it is probably

not immediately obvious that the two functions compute the same result. We would like to formally

prove this. Specifically, we would like to show that for any point z in D, T [z] = T ′[z]. This

can be done manually by an inductive argument (essentially a structural induction on the recursive

structure of T ).

To do this mechanically with a theorem prover and MMALPHA, we first write an ALPHA program

that has three variables, all defined over the same domain, D. The first two are integer-typed variables,

T and T ′ as defined above. The third is a Boolean variable, Th, the theorem that we seek to prove

(i.e., the rhs of its equation is simply the expression T = T′). We would like to show that Th has the

value true everywhere in its domain. Our proof proceeds as follows:

• We first substitute the definitions of T and T′ in the rhs of Th (this is a provably correct trans-

formation, because ALPHA is functional, and is trivially simple to implement in MMALPHA),

yielding the following equation for Th (a normalization has been done to render the program

more readable).

Th[i, j, k] =























{| k = 0} : 0 = 0

{| i = j = k} : 3k − 2 = 1 + T [i, j, k − 1]

{| i = k =/ j} : 3k − 1 = 1 + max(T [k, k, k], T [i, j, k − 1])

{| j = k =/ i} : 3k − 1 = 1 + max(T [i, j, k − 1], T [k, k, k])

{| i, j ; k > 0} : 3k = 1 + max(T [i, j, k − 1], T [i, k, k], T [k, j, k − 1])

(10.23)
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• Next we make the inductive hypothesis, namely, that the theorem is true for the recursive calls

in the definition of T, so that T may be replaced by T′ on the rhs of (10.23). In general, this is

not a correctness-preserving transformation in MMAlpha. It is simply used here in the context

of proving a certain property, and corresponds to making the induction hypothesis.

• We next substitute the newly introduced instances of T′ by the closed form definition from

Equation (10.22) and simply normalize the program. We obtain an equation (not shown) with

a number of case branches, each of which is an equality of some arithmetic expressions. By

using a standard theorem prover with some knowledge about arithmetic operations, it is fairly

easy to show that these are all tautologies.

Actually, for our example, we can even do a little better, because the closed form of the expressions

are all affine functions of the indices. For such programs, the entire proof can be completely per-

formed in MMALPHA, and indeed, if we simply normalize the program after making the inductive

hypothesis, we simply obtain the following equation for Th:

Th[i, j, k] = True (10.24)

which is exactly what we wanted to prove (and why we did not show it earlier).

10.6 Scheduling in the Polyhedral Model

We next describe how to resolve one of the fundamental analysis questions, namely, assigning an

execution date to each instance of each variable in the original SARE. Remember that our golden rule

implies that we work on the compact representation of the program, instead of the computation graph

that it induces (called the extended dependence graph [EDG]). This means that the schedule cannot

be specified by enumerating the time instances at which each operation is executed, but instead as a

closed form function. We first give a classic technique (the wavefront method) to determine schedules

for a single uniform recurrence equation (URE). Then, we describe how this can be extended to deal

with system of uniform recurrence equations (SUREs), present some of the limitations of these

extensions, and develop the algorithms used to determine more general schedules for SUREs. Next

we show how these scheduling algorithms can be carried over to AREs and SAREs, by exploiting

the fact that the domains of the variables are polyhedra.

Because our schedule is to be expressed in closed form, the time instant at which an operation

O = 〈Si, z〉 (or equivalently, a variable X at point z) is executed is given by the function τ(O) or

τX(z). In the polyhedral model we restrict ourselves to affine schedules, defined as follows (recall

that p is the l-dimensional size parameter):

τ(〈SX, z〉) = �Xz + αX + �′
Xp (10.25)

where �X (resp. �′
X) is a constant k ×nX (resp. k × l) integer matrix, and αX is an integral k vector.

Here, k is called the dimension of the schedule, and nX is the number of dimensions in the iteration

domain of SX). Such a schedule maps every operation of the ACL to a k-dimensional integer vector.

Because a natural total order relation — the lexicographic order — exists over such vectors we can

interpret these vectors as a time instant.

There are a number of special cases that we shall consider. If k = 1 we have what are called

1-dimensional schedules — these are the simplest to understand and visualize, and we shall

initially focus on this class. Another common case is when the schedule function is the same

for all the variables of the SARE (regardless of the dimension of the schedule, but usually for
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1-dimensional schedules). We call them variable-independent schedules,6 and drop the subscript i

in Equation (10.25). Note that variable-independent schedules can only be defined for SREs where

all variables have the same number of dimensions. A slightly more general case is when the linear

part of the affine function is the same for all variables, but the constant αX may be different. Such

schedules are called shifted linear schedules.

One-dimensional (variable-independent) schedules have a nice, intuitive geometric interpretation.

The set of points computed at a given instant t are precisely those that satisfy �z + �′p + α =
t . Because, for a given problem instance �′p is fixed, these points are characterized by the

equation �z = constant, which defines a family of hyperplanes whose normal vector is �. Such

schedules are therefore visualized as wavefronts or iso-temporal hyperplanes through the iteration

space. We defer the geometric visualization of multidimensional schedules (i.e., schedules with

k > 1) to later.

Because the schedule maps operations to k-dimensional integer vectors, it is obvious that any

schedule is valid if and only if the total order induced by the schedule respects the causality constraints

of the computation, as described later.

Remark 10.2. A schedule as defined in Equation (10.25) is valid if and only if for every edge 〈D, f 〉
from node X to Y in the RDG:

∀z ∈ D

�Xz + αX + �′
Xp ≻ �Y f (z) + αY + �′

Y p (10.26)

In formulating this constraint we assume a machine architecture that can execute any instance

of the rhs of any statement in the original ACL in one time step. The main goal of the scheduling

algorithms is to express the potentially unbounded instances of the preceding constraints (10.26) in

a compact manner by exploiting properties of the polyhedral model.

10.6.1 Scheduling a Single Uniform Recurrence Equation:
One-Dimensional Schedules

Consider a single URE with appropriate boundary conditions (not shown):

∀z ∈ D X[z] = g(X[z + d1] . . . X[z + ds]) (10.27)

The scheduling constraints of Equation (10.26) reduce to: for j = 1 . . . s

∀z ∈ D

�z + α + �′p > �(z + dj ) + α + �′p

i.e., ∀z ∈ D

�dj < 0 (10.28)

We observe that the z “cancels out” from the constraints, thus giving us a finite number of constraints.

The feasible space of valid schedules is thus a polyhedron (indeed, a cone). There are (potentially

unbounded) many valid schedules, and by introducing an appropriate linear cost function (e.g., the

6Sometimes we use the term variable-dependent schedules when we are not restricting ourselves to variable-
independent schedules.
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FIGURE 10.3 Scheduling a single URE with a one-dimensional schedule.

total execution time) we can easily formulate scheduling as an integer linear programming problem,

and draw from well-established techniques to find optimal schedules. An example of this technique

is given in Figure 10.3.

10.6.2 Scheduling Systems of Uniform Recurrence Equations:
Variable-Dependent Schedules

With SUREs, we may use the same technique as earlier and seek a single, variable-independent sched-

ule. The formulation of the schedule constraints then remains identical to that in Equation (10.28)

above. However, variable-independent schedules are restrictive because some SUREs, that is, the

SURE of Equations (10.29) to (10.32) given below, may not admit such a schedule.

yi = Y [i, n − 1] (10.29)

Y [i, j ] =

{

j = 0 : W [i, j ] ∗ X[i, j ]

j > 0 : Y [i, j − 1] + W [i, j ] ∗ X[i, j ]
(10.30)

X[i, j ] =

{

j = 0 : xi

j > 0 : X[i − 1, j − 1]
(10.31)

W [i, j ] =

{

i = 0 : wj

i > 0 : W [i − 1, j ]
(10.32)

Here, the computation at a point [i, j ] needs another result at the same point, and hence there is

a dependence vector �0. It does not matter that the two variables involved are distinct, as far as the

scheduling constraints are concerned:

A simple way out of this situation is to use shifted linear schedules, for which the constraints

now include the α values of each variable. For the SURE of Equations (10.29) to (10.31), the

optimal schedule is obtained to be tX(i, j) = tW (i, j) = i + j and tY (i, j) = i + j + 1. However,

although shifted linear schedules resolve the problem for the preceding SURE, they are still not

general enough, as illustrated in Figure 10.5. The problem of determining a variable-dependent

1-dimensional schedule for an SURE can also be formulated as a linear programming problem,

although the arguments are a little more intricate than those leading to Equation (10.28).

Essentially, we define linear constraints that ensure that each data value “comes from a strictly

preceding” hyperplane. Note that the simple geometric interpretation of a single family of iso-

temporal wavefronts sweeping out the iteration domain seems to break down with variable-dependent

schedules. This (slightly) complicates the final code generation step, as we shall see later.
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FIGURE 10.4 Limitations of variable-independent and shifted linear schedules.

FIGURE 10.5 Limitations of one-dimensional schedules.

10.6.3 Scheduling Systems of Uniform Recurrence Equations:
Multidimensional Schedules

Although variable-dependent, one-dimensional affine schedules work well on SUREs such as the

preceding example, they are still too restrictive. It is not always possible to find such a schedule

for many SUREs (see Figure 10.4). It is therefore necessary to use the full generality of multi-

dimensional schedules as defined earlier. A nice geometric interpretation still exists (easiest to

visualize with variable-independent schedules). We interpret each row of the � matrix as defining

a family of hyperplanes or wavefronts. The first row defines, say the hours, the next one the

minutes, and so on. However, caveat emptor: the hours and minutes analogy is at best approximate.

In lexicographic order,

(

0

x

)

can never precede

(

1

0

)

, however large we make x; but 61 min

exceeds 1 h.

Clearly in a k-dimensional schedule, the notion of optimality is simply to reduce k as much as

possible (a quadratic schedule is faster than a cubic one, and so on), and this gives a simple greedy

strategy for finding a multidimensional schedule for SURE, which has been proved to be optimal.

• Try to determine a 1-dimensional schedule, using the linear programming formulation implied

by Equation (10.28) or its generalization to variable-dependent, 1-dimensional schedules (not

shown here). If the algorithm succeeds, we are done.

• If not, we seek to resolve a modified linear programming problem, where the inequalities are

now nonstrict (i.e., we seek scheduling hyperplanes, such that all dependences come from either
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a strictly preceding, or even the same hyperplane). If even the weak problem does not admit a

feasible solution, the SURE does not admit a schedule, and we are done.

• Otherwise, we seek a solution where as many dependences as possible are satisfied in the strict

sense (this is the greedy strategy).

• Next, we delete from the RDG, the edges corresponding to dependences that are strictly satisfied

by the preceding solution.

• We recursively seek a one-dimensional schedule on each connected component of the resulting

RDG (unless we have already recursed to a depth equal to the number of dimensions, in which

case too, the SURE does not admit a schedule, and we are done).

10.6.4 Scheduling Affine Recurrence Equations and Systems of
Affine Recurrence Equations

Let us now consider a single ARE:

∀z ∈ D X[z] = g(X[A1z + a1] . . . X[Asz + as]) (10.33)

Following the same arguments as for the case of a single URE, the scheduling constraints of

Equation (10.26) reduce to: for j = 1 . . . s

∀z ∈ D

�z + α + �′p > �(Ajz + aj ) + α + �′p

i.e., ∀z ∈ D

�((Aj − I )z + aj ) < 0 (10.34)

Here, the z does not “cancel out” from the constraints, and thus we still have a potentially unbounded

number of constraints to satisfy. However, we know that the domain D is a polyhedron and admits a

compact representation. In particular, we exploit the fact that an affine inequality constraint is satisfied

at all points in a polyhedron iff it is satisfied at its extremal points. This leads to the following result.

Remark 10.3. 〈�, α〉 is a valid schedule for the ARE (10.33) if and only if for j = 1 . . . s, for each

vertex, σ and each ray, ρ of D:

�σ + α > 0

�ρ ≥ 0

�σ > �(Ajσ + aj )

�ρ ≥ �Ajρ

Again, we have been able to exploit the compact representation (this time of the domain of the

equation) to reduce the problem to the resolution of a finite number of linear constraints. As with

UREs and SUREs and using arguments analogous to those we have seen earlier, this result can be

extended to shifted linear and variable-dependent (one- and multidimensional) schedules.

10.6.5 Undecidability Results

We conclude this section with some important observations. The general problem of determining a

schedule for an SARE is undecidable. Indeed, there are many subtle related results.

• For a single URE defined on an arbitrary polyhedral domain the scheduling problem is decidable.

• For an SURE defined over any bounded set of domains, the problem is decidable.

• For an SURE defined over an arbitrary set of domains, the problem is undecidable.
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• For an SURE where all variables are defined over the entire positive orthant (a special case of

unbounded domains), the problem is decidable.

• Because SAREs are more general than SUREs, the preceding results also hold for them.

However, for an unbounded family of parameterized SAREs, each of which is defined over

a bounded set of domains, the scheduling problem is also undecidable.

The algorithms that we have described in this section have nevertheless given necessary and

sufficient conditions for determining schedules. This is consistent with the preceding results, because

the scheduling algorithms restricted themselves to a specific class of schedules: affine schedules. This

has an important subtle consequence on our parallelization problem. When we seek to compile an

arbitrary ALPHA program, we must account for the fact that the compiler may not be able to find

such a schedule.

However, if the ALPHA program (or equivalently the SARE) was the result of an exact data flow

analysis of an ACL, we have an independent guarantee of the existence of a multidimensional affine

schedule — the original (completely sequential) execution order of the ACL itself.

For ALPHA, there is a simple “fall-back” strategy to compile programs that do not admit a

multidimensional affine schedule, but an automatic parallelizer for ACLs does not need such a

fall-back strategy.

10.7 Processor Allocation in the Polyhedral Model

Analogous to the schedule that assigns a date to every operation (i.e., each instance of each variable

in the SARE), a second key aspect of the parallelization is to assign a processor to each operation.

This is done by means of a processor allocation function. For all the reasons mentioned earlier,

we insist that this function be determined only by analyzing the RDG, and that it be specified as a

closed form function. As with schedules, we confine ourselves to affine allocation functions, defined

as follows:

alloc(〈SX, z〉) = AX(z) = �Xz + φX + �′
Xp (10.35)

where �Y (resp. φY and �′
Y) is an aY × nY (resp. aY × 1 and aY × l) integral matrix. Thus, the

resulting image of DY by MY is (contained in) an aY dimensional polyhedron.

We mention that there is a difficulty with such allocation functions. In general, the number of

processors that such functions imply is (usually approximated by) a polynomial function of the size

parameters of the program (e.g., one would need O(n2) processors for matrix multiplication). This

is usually too large to be used on a pragmatic machine, and we often treat the allocation function as

the composition of two functions: an affine function gives us the “virtual processors” and the second

one is a mapping that specifies the emulation of these virtual processors by a “physical machine”

(usually through directives that one finds in languages like HPF, such as the block or cyclic allocation

of computations or data to processors). For the purpose of this section, we focus on just the first part

of the complete allocation function, namely, the affine function. Obviously, this introduces certain

limitations, which we discuss in Section 10.10.

For an affine allocation function, observe that two points z and z′ in DX are mapped to the same

processor if and only if �z = �z′; that is, (z−z′) belongs to the null space or kernel7 of �. Similarly,

recall that two points z and z′ in DX are scheduled at the same time instant if and only if z − z′ is in

the kernel of �X.

7For any matrix M , its null space or kernel is Ker(M) ≡ {z|Mz = 0}.
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Unlike the schedule, the allocation function does not have to satisfy any causality constraints, and

hence there is considerable freedom in choosing it. Indeed, the only constraint that we must ensure is

that it does not conflict with the schedule, in the sense that multiple operations must not be scheduled

simultaneously on the same processor. This can be formalized as follows.

Remark 10.4. An allocation function as defined in Equation (10.35) is compatible with a schedule,

as defined in Equation 10.25 if and only if:

∀z, z′ ∈ DX

�Xz + φX + �′
Xp = �Xz′ + φX + �′

Xp ⇔ �Xz + αX + �′
Xp =/ �Xz′ + αX + �′

Xp (10.36)

i.e.,

(z − z′) ∈ Ker(�) ⇔ (z − z′) /∈ Ker(�) (10.37)

Recall that the lineality space of a polyhedron P is given by A if the equality constraints in the

definition of P are of the form Az = a for some constant vector a. Then the preceding constraint is

equivalent to the following.

Remark 10.5. For a variable whose domain, DX, has a lineality space given by AX, an allocation

function as defined in Equation (10.35) is compatible with a schedule as defined in Equation (10.25)

if and only if the matrix





�X

�X

AX



 is of full column rank.

Once again, we have expressed the required constraints in a compact form independent of the size

of the domains. Also note that we have a separate constraint for each variable, X (i.e., we assume

that there is no possibility of conflict between the instances of different variables). This is because

only finitely many variables there are in the SARE, and any potential conflict can be easily resolved

by “serializing” among the (finitely many) conflicting operations.

To choose among the large number of potential allocation functions in the feasible space defined by

the preceding constraints we may use two notions of cost. The first and natural one is the number of

processors. This may be formalized as simply the number of integer points in the union of the images

of each of the variable domains, DX, by the respective allocation functions, AX. Note that because

this is in general a polynomial of the size parameters, we cannot use linear programming methods but

have to take recourse of nonlinear optimization. A second criterion is the communication engendered

by the allocation (indeed, one often seeks to optimize this instead of the number of processors,

because the latter can be later changed by the virtual-to-physical mapping). The polyhedral model

provides us with a very clean way of reasoning about communication. Consider a (self) dependence

(z → Az + a) in an SARE. Now, if the allocation function is given by 35, the computation X[z]

engenders a communication to processor AX(Az + a) to AX(z), that is, a distance of �X(z −
Az − a). Note that for SUREs, this is a constant (since A is the identity). This provides us with

a quantitative measure of the communication, and can be used to choose the allocation function

optimally.

10.8 Memory Allocation in the Polyhedral Model

The third key aspect of the static analysis of SAREs is the allocation of operations to memory

locations. In this section we first introduce some basic machinery and then formulate the constraints

that a memory allocation function must satisfy. We use the forward substitution program (Figure 10.6)
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FIGURE 10.6 Forward substitution program with reduction replaced by a series of binary additions.

as a running example. As with the schedule and the processor allocation function, the memory

allocation is also an affine function, defined as follows:

Mem(〈SY, z〉) = MY(z) = 	Yz + πY + 	′
Y p (10.38)

Here, 	Y (πY and 	′
Y , respectively) is an (nY − mY ) × nY ((nY − mY ) × 1 and (nY − mY ) × l,

respectively) integral matrix. Thus, the resulting image of DY by MY is (contained in) an (nY −mY )

dimensional polyhedron (i.e., mY dimensions are “projected out”). For simplicity in the analysis

presented here, we assume henceforth that πY and 	′
Y are both 0.

As with the processor allocation, a memory allocation function is characterized by null space of

	Y , and can be completely specified by means of mY constant vectors, ρi for i = 1, . . . , mY , that

form a basis for Ker(M), and which can be unimodularly completed (i.e., an nY × nY unimodular8

matrix exists whose first mY columns are ρ1, . . . , ρmY
). One can visualize that an index point z is

mapped to the same memory location as z+
∑

i µiρi , for any integer linear combination of the ρi’s.

Example 10.3

For the forward substitution program (Figure 10.6) we may propose that the variable f be allocated

to a 1-dimensional memory by the projection Mf = [1, −1], which allocates f [i, j] to memory

location i − j. This allocation function is specified by the projection vector ρf = [1, 1]. The image

of the domain of f by the projection is {m|1 <= m <= N} (i.e., a vector of length N).

Alternatively, we may propose that all the points in the domain of f be allocated to a single

scalar (i.e., a projection of its domain to Z0). Here the projection vectors are the two unit vectors

[0, 1] and [1, 0].

Observe that the choice of the projection vectors is not unique. In the first case, [−1, 1] is also

a valid projection, and in the second case the columns of any 2 × 2 unimodular matrix are valid

projections.

We now study the validity of memory allocation functions. Because the memory allocation is, in

general, a many-to-one mapping, certain (in fact, most) values can be overwritten as the computation

proceeds. We need to ensure that no value is overwritten before all the computations that depend on

it are themselves executed, formalized as follows:

8A square integer matrix M is said to be unimodular if and only if det(M) = ±1. Hence, its inverse exists
and is integral.
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Definition 10.5. A memory function MemY is valid if and only if for all z ∈ DY, the next write

after tY(z) into the memory location MemY(z) occurs after all uses of Y[z].

Note that the preceding definition uses the term after, which clearly depends on the schedule. Thus,

the memory allocation function, unlike the processor allocation, has an intricate interaction with the

schedule. Nevertheless, we have a condition analogous to the one for the processor allocation, but

which gives us only necessary conditions.

Remark 10.6. For a variable whose domain DY has a lineality space given by AY, a memory

allocation function as defined in Equation (10.38) is valid if the matrix





�Y

	Y

AY



 is of full column rank.

We also assume that for i = 1, . . . , mY, the vectors ρi’s are such that �Yρi is lexicographically

positive. Note that this does not impose any loss of generality: we may always choose the sign of the

ρi’s appropriately.

In the remainder of this section, we first formalize three notions: the next-write function, the usage

set, and the lifetime; by using these we formulate the validity constraints that the memory allocation

function must satisfy.

10.8.1 Next-Write Function

Now consider, for any z ∈ DY, the next point z′ that overwrites the memory location of Y [z]. We

want to express z′ as a function of z.

Definition 10.6. For any point z ∈ DY, the next write is the earliest scheduled point that satisfies

the following constraints:

∥

∥

∥

∥

∥

∥

∥

∥

	Yz = 	Yz′

z ∈ DY

z′ ∈ DY

�Yz ≺ �Yz′

(10.39)

We write it as z + σY(z). We define �YσY(z) which is the time interval between the computation of

Y [z] and its destruction as the overwrite window of Y [z].

Note that the constraints (10.39) define a set of k disjoint polyhedra, parameterized by z, and

hence the next write can be obtained by resolving k parametric integer programming problems [15].

Hence, σY(z) is a piecewise affine function of z.

Now, observe that if we drop the constraints that z and z′ must belong to DY from (10.39), the

solution is simply z + σY for some constant vector, σY, which we call the next-write vector for Y . It

is clear that �YσY is a lower bound on the overwrite window of Y [z]; and for points “far” from the

boundaries, this approximation is exact. Furthermore, because our domains are large enough, such

points exist (indeed, are the rule instead of the exception). The preceding ideas are formulated in the

following proposition and illustrated through the subsequent examples.

Proposition 10.1. σY(z) is a piecewise affine function, such that at points sufficiently far from the

boundaries of DY its value is a constant, σY.

Example 10.4

For the forward substitution program (Figure 10.6), let the memory allocation function for f

be specified by 	f = [1, −1], and the schedule be given by tf (i, j) =

(

i + j

j

)

, i.e.,
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�f =

(

1 1

0 1

)

, αf = 0. Recall that the schedule may be visualized as follows: the first row

represents the family of lines i + j = h corresponding to the first time dimension (i.e., the hth hour),

and the second row specifies the minutes (j = m) within each hour (i.e., the second time dimension).

Then, for a point z ∈ Df the next write into the same memory location as z is f(z′), where:

z′ =







{i, j |1 < i < N; 0 ≤ j < i} : z +

(

1

1

)

{i, j |i = N; 0 ≤ j < i} : undefined

On the other hand, if (for the same schedule) the memory allocation is specified by the two unit

vectors (i.e., all the points in the domain of f are allocated to a single scalar), then:

z′ =















































































{i, j |2 < i ≤ N; 0 ≤ j < i} : z +

(

−1

1

)

{i, j |i = 2; j = 0} : z +

(

1

0

)

{i, j |2 < i; j = i − 1; 2i − 1 ≤ N} : z +

(

i

−i + 1

)

{i, j |2 < i; j = i − 2; i + j ≤ N − 1} : z +

(

j + 1

0

)

{i, j |2 < i; j = i − 2; i + j ≥ N} : z +

(

0

i − N + 1

)

{i, j |j = i − 1 = N − 1} : undefined

Observe how z′ − z = σf(z) is a piecewise affine function of i and j , and note how the first

clause corresponds to interior points whereas all the other clauses are boundary cases. They occur on

subdomains with equalities, and it can be verified that, for each z ∈ Df, there does not exist z′′ ∈ Df

such that:

�f

(

z +

(

−1

1

))

≺ �fz
′′ ≺ �fz

′

In other words, the value of σf due to the first clause is a lower bound on those predicted by the

other clauses. Thus, for the two allocation functions, the next-write vector σf is

(

1

1

)

and

(

−1

1

)

,

respectively. end of example

10.8.2 Usage Set

Assume that the (sub) expression Y.(z → Mz + m) occurs on the rhs of the equation defining X.

The context where it appears in the ALPHA program (e.g., within a case or a restriction) defines a

domain D′
X ⊆ DX where the dependency is said to hold. This information can be readily computed

from the program text and is written as follows (F serves to name the dependency):

F : ∀z ∈ D′
X, X[z] → Y[Mz + m] (10.40)

Let us also use FY to denote the set of dependencies on Y (i.e., the set of dependencies where

the variable on the rhs is Y ). For any z ∈ DY, we are interested in determining the users of

Y [z], with respect to a dependency, F . Note that because the affine function Mz + m may not be

invertible, there may be multiple users. They constitute some subset of DX (or more precisely, of D′
X,
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because the dependency holds only there). Let us call this set DF
X . The following properties must be

satisfied:

∥

∥

∥

∥

∥

∥

z = Mz′ + m

z ∈ DY

z′ ∈ D′
X

(10.41)

This can be viewed as the set of points

(

z

z′

)

belonging to a polyhedron. Alternatively, and

equivalently, it can also be viewed as a set of points z′ belonging to a polyhedron parameterized

by z (and of course the system parameters), denoted by DF
X (z). It is this interpretation that we

shall use.

Example 10.5

For the forward substitution program (Figure 10.6), the dependencies on variable f are:

F1 : {i, j, N | 1 ≤ j < i ≤ N} : f [i, j ] → f [i, j − 1]

F2 : {i, N |2 ≤ i ≤ N} : X[i] → f[i, i − 1]

Consider the first dependency, F1. For any point z =

(

i

j

)

∈ Df, the set of its users z′ =

(

i′

j ′

)

with respect to F1 is:

D
F1

f
(z) = {i′, j ′, i, j, N | i = i′, j ′ = j + 1}

∩ {i′, j ′, i, j, N | 2 ≤ i ≤ N; 0 ≤ j < i}

∩ {i′, j ′, i, j, N | 1 ≤ j ′ < i′ ≤ N}

= {i′, j ′, i, j, N | 2 ≤ i′ = i ≤ N; j ′ = j + 1; 0 ≤ j < i − 1}

This is viewed as a two-dimensional polyhedron over i′ and j ′, parameterized by i, j (and N ).

Observe that the very last constraint cited earlier, namely, j < i − 1, correctly implies that points

on the i = j + 1 are not used by any computation (with respect to the dependency F1).

For the dependency, F2, we proceed similarly (recall that we are considering usage by X, so z is

2-dimensional, and z′ is 1-dimensional):

D
F2

f
(z) = {i′, i, j, N | i = i′, j = i′ − 1}

∩ {i′, i, j, N | 2 ≤ i ≤ N; 0 ≤ j < i}

∩ {i′, i, j, N | 2 ≤ i′ ≤ N}

= {i′, i, j, N | i = i′ = j + 1; 2 ≤ i ≤ N}

Observe again, that only values of f computed on the i = j + 1 boundary are used (with

respect to this dependency), and this is correctly predicted by our computation of D
F2
f

(z).

Furthermore, the set of points that use f [i, i−1] is a singleton in the domain of X, namely, X[i′]

where i = i′.

To illustrate the case when the dependency function is not invertible, consider the following

dependency on X:

F3 : {i, j, N | 1 ≤ j < i ≤ N} : f[i, j ] → X[j ]
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Here, z = (i) is one-dimensional, and z′ =

(

i′

j ′

)

is two-dimensional, and we have:

D
F3
X (z) = {i′, j ′, i, N | i = j ′}

∩ {i′, j ′, i, N | 1 ≤ i ≤ N}

∩ {i′, j ′, i, N | 1 ≤ j ′ < i′ ≤ N}

= {i′, j ′, i, N | j ′ = i; 1 ≤ i < N; i < i′ ≤ N}

Observe again, that this correctly predicts that the first N − 1 values of X are used. Viewing this

as a family of two-dimensional polyhedra parameterized by i (and N ) we see that a given X[i] is

used by multiple points f [i′, j′] such that j ′ = i and i < i′ ≤ N. end of example

10.8.3 Lifetime

Because we are given a schedule for the program, we know that for any z ∈ DY, Y [z] is computed

at (the k-dimensional) time instant �Yz + αY, and for any z′ ∈ DF
X (z), X[z′] is computed at

time �Xz′ + αX. Hence, the time between the production of Y [z] and its use by X[z′] is simply

�Xz′ + αX − �Yz − αY. We have the following definition, where Lmaxx∈S f (x) denotes the

lexicographic maximum of f (x) over the set S.

Definition 10.7. The partial lifetime, dF
Y (z), of Y [z] with respect to the dependency F is:

dF
Y (z) = Lmax

z′∈DF
X (z)

(�Xz′ + αX − �Yz − αY) (10.42)

The (total) lifetime of Y [z] is:

dY(z) = Lmax
F∈FY

dF
Y (z) (10.43)

The lifetime of the entire variable Y is:

dY = Lmax
z∈DY

dY(z) (10.44)

We observe that dF
Y (z), the lexicographic maximum over a polyhedron parameterized by z, is a

piecewise affine function of z (and the system parameters). Furthermore, dY(z), the lexicographic

maximum of a finite number of such functions (note that FY is a finite set of dependencies), is also

a piecewise affine function of z. Hence, dY is the lexicographic maximum, not of an affine, but a

piecewise affine, cost function over the domain DY. This can be expressed as the resolution of a

finite number of parametric integer programming problems (one for each of the “pieces” of the cost

function), and hence is the lexicographic maximum of a finite number of piecewise affine functions.

As a result, we have the following:

Proposition 10.2. The dY(z) is a piecewise affine function of z and the system parameters.

Example 10.6

Continuing with the forward substitution program, let the respective schedules for f and X be given

by tf (i, j) = i + j and tX(i) = 2i. The lifetime of any f(i, j) is especially easy to determine because

the usage sets are singletons. Because f(i, j) is computed at date i + j , its partial lifetime with

respect to F1 is the lexicographic maximum of tf(i
′, j ′) − tf(i, j) over D

F1
f

(z), and because i = i′

and j ′ = j + 1:

d
F1
f (z) = 1
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Similarly, for F2 the usage sets are again singletons, and it is easy to see that f [i, j] for

2 ≤ i = j + 1 ≤ N is precisely used by X[i′], where i′ = i. These points are computed at

i + j and 2i′, respectively, whose difference is always 1. Hence:

d
F2
f (z) = 1

If we choose the alternative (sequential) schedule given by tf (i, j) =

(

i + j

j

)

and tX(i) =

(

2i

i

)

,

the lifetime is now a 2-dimensional function, and can be easily shown to be:

d
F1
f (z) =

(

1 1

0 1

) (

z +

(

0

1

))

−

(

1 1

0 1

)

z

=

(

1 1

0 1

) (

0

1

)

=

(

1

1

)

d
F2
f (z) =

(

2

1

)

z′ −

(

1 1

0 1

)

z

=

(

2

1

)

(i) −

(

1 1

0 1

) (

i

j

)

=

(

i − j

0

)

=

(

1

0

)

Note that the final simplification is possible because D
F2
f (z) is nonempty only when i = j + 1.

end of example

10.8.4 Validity Conditions for the Memory Allocation Function

We now develop necessary and sufficient conditions on the vectors ρi’s so that the basic constraint

on memory allocation function (Definition 10.5) holds. Recall that:

• The computation that overwrites Y [z] is Y [z + σY(z)].

• The set of users of Y [z] with respect to a dependency, F , is DF
X (z).

• Y[z] is computed at time �Yz + αY.

• Y [z + σY(z)] is computed at time �Y(z + σY(z)) + αY.

• For any z′′ ∈ DF
X (z), X[z′′] is computed at time �Xz′′ + αX.

Hence, the condition imposed by Definition 10.5 holds in the context of F if and only if:

∀z ∈ DY and ∀z′′ ∈ DF
X (z)

�Xz′′ + αX − �Yz − αY � �YσY(z) (10.45)

Note that this inequality is nonstrict — we allow Y [z] to be read at the same instant that its memory

location is overwritten. This assumes that the machine architecture provides such synchronization.

If this is not the case, we could insist on strict inequality, without changing the nature of the analysis.

Because the size of the sets DY and DF
X (z) may be arbitrary, an unbounded number of constraints

may need to be satisfied. However, the fact that DF
X (z) is a polyhedron allows us to exploit the power

of the polyhedral model, namely, that (10.45) holds at all z′′ ∈ DF
X (z) if and only if it is satisfied by

the points of DF
X (z) that maximize, in the lexicographic order, �Xz′′. By using Definition 10.7, this

reduces to:

∀z ∈ DY, dF
Y (z) � �YσY(z) (10.46)
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This defines the constraints on the overwriting of Y [z] with respect to a single dependency. To

determine the necessary and sufficient conditions on the memory allocation function, we need to

extend the preceding analysis to FY . Hence, a memory allocation function is valid if and only if:

∀z ∈ DY

dY(z) � �YσY(z) (10.47)

Now, observe that dY(z) is a piecewise affine function of z, and hence we can separate (10.47)

into a finite number of similar constraints over disjoint subsets, Di
Y, of DY, each of which has a

single affine function d i
Y(z), on the left. As a result, we can seek a separate memory allocation

function for each subdomain, Di
Y. Our experience has shown that piecewise linear allocations are

often very useful (only certain subdomains may need larger memory, whereas for others, additional

projection dimensions may exist). Alternatively, we could also use a single homogeneous allocation

function over the entire domain, DY, by ensuring that dY � �YσY, which is a safe approximation.

Thus, the improvement due to piecewise linear allocations comes at a price of some overhead, and

increased compilation time. Our current implementation uses a homogeneous allocation by default

and performs the refined analysis as a user-specified option.

Like the lifetime function, σY(z) is also a piecewise affine function of z. Moreover, σY(z) is a

constant (see Proposition 10.1.) almost everywhere except near the boundaries of DY, and hence

of the corresponding Di
Y’s. This constant (namely, the next-write vector, σY) is a lower bound on

σy(z). We therefore approximate σY(z) by σY and henceforth use the following sufficient condition:

∀z ∈ Di
Y, dY(z) � �YσY (10.48)

Finally, we again use the key idea of the polyhedral model, namely, that (10.48) holds for all points

z ∈ Di
Y if and only if it holds for the points in Di

Y that maximize the lhs (i.e., if and only if):

d i
Y � �YσY (10.49)

where d i
Y is the lifetime of Y over the subdomain Di

Y.

Hence, we have reduced the validity conditions for a memory allocation function to the satisfaction

of a finite number of linear constraints. The following proposition relates this constraint on σY

to the ρi’s.

Proposition 10.3. A set of projection vectors (ρi) defines a valid memory projection for a variable

Y if and only if for all integral linear combinations η, of ρi’s:

0 ≺ �Yη ⇒ dY � �Yη

Proof. If part. If the ρi’s are such that (10.49) holds ∀z ∈ ZnY , let if possible η =
∑mY

i=1 µiρi ,

µi ∈ Z such that 0 ≺ �Yη and dY � �Yη. Then, for some z ∈ ZnY , 0 ≺ �Yη ≺ dY � �YσY. This

implies that η and σY are distinct, and hence Y [z + η] and not Y [z + σY] is the next write into the

same memory cell as Y [z], a contradiction.

Only if part. Obviously, σY is a linear combination of the ρi’s such that 0 ≺ �YσY.

Finally, as with the memory and the processor allocation functions, a well-defined notion of

optimality exists for the memory allocation, namely, the volume of memory that is used for a given

schedule. Indeed, because this is a polynomial function of the size parameters, the most important

criterion to minimize is the number of linearly independent projection vectors, ρi . It can be shown

(constructively) that this is equal to one plus the number of leading zeroes in dY, the lifetime vector

for the variable.
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10.9 Code Generation

In the previous three sections we have addressed some essential issues of analyzing SAREs. Specifi-

cally, we have given methods to determine three types of functions: schedules to assign a date to

each operation, processor allocation to assign operations to processors and memory allocations to

store intermediate results. These functions may be chosen so as to optimize certain criteria under

certain assumptions, but note that the optimization problems are far from resolved, and indeed many

interesting problems are open. Our focus in this section is to consider a different problem orthogonal

to the choice of these functions. This is the problem of code generation — given the preceding three

functions, how do we produce parallel code that implements these choices?

By insisting that code generation is independent of the choice of the schedule and allocation

functions, we achieve a separation of concerns; for example, the methods described here may be

used to produce either sequential or parallel code for programmable (i.e., instruction-set) processors,

or even VHDL descriptions of application-specific or nonprogrammable hardware that implements

the computation specified by the SARE.

We first show how to implement or compile an SARE (ALPHA program) in the complete absence

of any static analysis. In other words, we present a simple operational semantics for ALPHA and

describe how to produce naive code. This highlights the separation of concerns mentioned earlier,

and also provides us with a baseline, fallback implementation, which we are able to progressively

improve, as and when static analysis is available. Next, we shall see how the schedule (plus the

processor allocation if available) can be used to enable us to generate efficient imperative but memory

inefficient code; finally, we describe how the memory allocation function can be used to perform

very simple and minor modifications of this code to produce memory-efficient code.

10.9.1 Polyhedron Scanning

Before we enter into the details, we develop an important tool that we need, namely, a resolution of

the polyhedron scanning problem, defined as follows.

Problem 10.2. Given a (possibly parameterized) polyhedron, P construct a loop nest to visit the

integral points in P in lexicographic order of the indices.

This problem has been well studied by parallelizing compiler researchers, and the solution is based

on the well-known technique of Fourier–Motzkin elimination. This can be done by what is called

separation of polyhedra and the key step here involves projecting a k + 1-dimensional polyhedron

P(z1, . . . , zk, zk+1) ≡ {z|Az ≥ b} onto its first k indices. To do this, we partition each row of A into

one of three categories: those that (1) are independent of, (2) provide a lower bound on, or (3) provide

an upper bound on zk+1. From every pair of upper and lower bound inequalities, we eliminate zk+1

to get a new inequality that does not include zk+1, and to this list we add the ones from the first cat-

egory. This yields an alternative and equivalent representation of the polyhedron P . By successively

eliminating zk , zk−1, . . . we may rewrite the constraints of the polyhedron in a sequence where the

indices are separated. As an example, consider the polyhedron, {i, j, k|i >= 0; −1 + M >= 0; −j +
N >= 0; k >= 0; i + j − k >= 0}, in the context of parameters constrained by, {N, M|N, M > 0},
and let us seek to visit all its integer points in the scanning order, {j, k, i}. Polyhedron separation in this

order is achieved by first eliminating i, then k and finally j. This yields the format shown on the left

that follows, from which we can construct the loop nest shown alongside, by simply “pretty-printing”

it — each line introduces a new index, and its lower and upper bounds are evident from the inequalities

on the line:

{j| 0<=j<=N} :: for (j=0; j++; j<=N)
{k,j| 0<=k<=j+M} :: for (k=0; k++; k<=j+M)

{i,k,j| 0<=i<=M; i>=k-j} for (i=max(0,k-j); i++; i<=M)
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If the dual (generator) representation of the polyhedron is available, many optimizations can be

performed in this basic step (instead of pairwise combination of all the lower and upper bound

constraints during each projection step, we can simply add a pair of rays to the generator

representation).

It is important to note here that the Fourier–Motzkin elimination method is exact for real and

rational polyhedra, but nonexact for integral polyhedra. This is because, in general, the projection

of an integral polyhedron is not necessarily also in integral polyhedron. However, well-known

methods exist to make the method exact for integral polyhedra. Polyhedron scanning is an important

component of code generation.

10.9.2 ALPHA Operational Semantics: Naive Code Generation

In contrast with the denotational semantics given in Section 10.5, we now provide a simple operational

semantics, one that allow us to develop our fallback strategy for executing ALPHA programs in the

absence of any static analysis.

10.9.2.1 Semantics of Expressions

Recall that because ALPHA expressions denote mappings from indices to values, operational seman-

tics may be developed if we first define this mapping. We do so as a simple interpreter, in terms of a

function Eval : 〈Exp〉×Zn → Type. We first introduce a mechanism for computing and propagating

errors (although this is not strictly necessary):

Eval(〈exp〉, z) =

{

Eval′(z) if z ∈ Dom(exp)

⊥ otherwise

Eval′ is defined recursively, with six cases corresponding to the six syntax rules (see Table 10.1) for

ALPHA expressions:

Eval′(〈Const〉, z) = C

Eval′(〈E1〉 op 〈E2〉, z) = Eval′(〈E1〉, z) ⊕ Eval′(〈E2〉, z)

Eval′(case . . . 〈Ei〉 . . . esac, z) =















...

Eval′(〈Ei〉, z) if z ∈ Dom(〈Ei〉)
...

Eval′(D : 〈E〉, z) = Eval′(〈E〉, z)

Eval′(〈E〉.f, z) = Eval′(〈E〉, f (z))

Eval′(〈Var〉, z) = EvalVar(z)

10.9.2.2 Semantics of Equations

The denotational semantics of ALPHA equations essentially specify that equations denote addi-

tions to a store of definitions (such semantics are fairly standard and hence were not described

in Section 10.5). The corresponding operational semantics are also straightforward, namely, that

every equation causes a function to be defined and added to the store, and the function body is the

operational semantics of the expression on the rhs of the equation:

Eval(Var=〈Exp〉) = (defun EvalVar(Eval(〈Exp〉z)
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10.9.2.3 Semantics of Programs

ALPHA programs are systems, and they denote mappings from input variables to output variables.

The corresponding operational semantics are also straightforward. They require a mechanism to

specify the following steps:

1. Read input variables.

2. Compute (local) and output variables.

3. Write output variables.

This can be achieved by a simple set of loops to scan the domains of each output variable, Var,

and at each point, call the function EvalVar.

This essentially produces an interpreter, and suffers from the standard drawbacks of interpretive

implementations of functional languages, namely, the recomputation of previously evaluated values

(e.g., a program to compute the nth Fibonacci number takes time exponential in n).

However, we may modify the operational semantics to exploit a well-known strategy used in

functional languages, namely, “caching” or tabulation. Instead of recomputing previously evaluated

values, we cache them by storing them in a table (the Eval′ function is modified so that instead of

making a recursive call, it first checks whether the value has been previously evaluated and stored).

The recursive call is made only if this is not so, and when it returns the value is cached into the table.

In ALPHA this requires a very simple modification, namely, the allocation of memory for the tables.

This memory corresponds to the size of the domains and can be allocated as an array. The resulting

code has the following structure:

• Declarations of multidimensional array variables correspond to each local and output variable

in the program.

• The definition of the functions EvalVar is given for all variables. For the local and output

variables this follows the semantics as defined earlier. For input variables, such a function

simply reads the input array at the specified address.

• A main program consists of one set of loops (produced by polyhedron scanning) that visits the

domain of each of the output variables, and calls the corresponding EvalVar function at each

point (the order of each of the output variables, as well the order in which the domains are

scanned is immaterial).

Finally, we point out that very simple and implicit parallelism exists, and the code may be very

easily modified to run in a demand-driven manner on a multithreaded machine — all the pointwise

operators are strict, and this is where a synchronization is necessary to ensure that arguments are

available before they are combined to produce results. Everything else, including the function calls,

can be done in parallel.

10.9.3 Exploiting Static Analysis: Imperative Code Generation

The code produced in the absence of static analysis suffers from two main drawbacks. Because a

function call exists for each evaluation, a considerable overhead of context switching is present.

Furthermore, the memory allocated to each domain corresponds to the entire domain, and this code

is memory inefficient. We next examine how the results of static analysis, namely, the schedule and

the processor and memory allocation functions can be used to improve the code. The main idea is

summarized as follows:

1. We rewrite the SARE, by means of an appropriate COB, such that the first k indices of the

domains of all variables are the k time dimensions; the remaining indices are to be interpreted

as virtual processors.
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2. We produce declarations of multidimensional arrays to store the variables of the program. For

each variable, we allocate memory corresponding to the smallest rectangular box enclosing

its domain.

3. We next generate code that visits the union of the domains of all the variable in the lexicographic

order imposed by the first k indices (loops scanning other indices, if any, are annotated as forall

loops). At each point visited, we simply evaluate the body of the SARE without recursive

calls, and without testing whether the arguments have been previously evaluated (the schedule

guarantees that this is unnecessary).

4. Note that the code that we produce here is single assignment form: each computed value

(representing an operation in the original program) is stored in a distinct memory location.

Suppose that in addition to the schedule and the processor allocation we also have for each

variable of the SARE, a memory allocation function Mi that gives a valid address that the

result of Si[z] is stored at memory address Mi(z). Then we may easily generate multiple

assignment code by modifying the preceding code as follows:

• Modify the preamble so that it allocates memory arrays for only (the bounding box of)

Mi(Di), the image of Di by the memory allocation function.

• Systematically replace every access — on the rhs or the lhs of any statement — to the variable

Si (i.e., an expression of the form Si[f (z)] for some affine function f ) by Si[Mi(f (z))].

10.9.4 Scanning a Union of Polyhedra

The key unresolved problem in the code generation algorithm outlined earlier is that of generating

code to visit the points of a union of polyhedra, as required in step 3 above. We now address

this problem, building on the solution to the (single) polyhedron-scanning problem seen earlier

(Figure 10.7).

We note that the problem is not as easy as it seems at first glance. We cannot simply scan the

individual polyhedra separately and somehow combine the solution. For example, consider the

domains D1 = {i | 1 <= i <= 10} and D2 = {i | 4 <= i <= 12}, with respective schedules

�1(i) = i + 1 and �2(i) = 2i. The statements associated with points 1 and 10 of D1 have to be

executed at logical time 2 and 11, whereas the statements associated with points 4 and 8 of D2 have

to be executed at times 8 and 16. Because 1 < 8 < 10 < 16, we cannot first completely scan D1,

and then scan D2, and we also cannot scan D2 followed by D1. Hence, it is not possible to generate

separate loops to scan both D1 and D2. These loops must be partially merged, so that the statements

are executed in the order given by the schedule.

The simplest solution to scanning a union of polyhedra uses a perfectly nested loop to scan a

convex superset of this union. This superset may be either the bounding box of the domain —

Figure 10.8(a) — or the convex closure of the domain — Figure 10.8(b). However, because the

domain scanned by this loop is also a superset of each statement domain, we cannot unconditionally

execute the statements within the loop body. Instead, each statement Si must be guarded by conditions

testing that the current loop index vector belongs to Di .

However, this solution yields an inefficient (albeit compact) code because of the following

limitations:

• Empty iterations A perfectly nested loop scans a convex polyhedron. Because a domain that

is a union of polyhedra may not be convex, some iterations of the loop may not execute any

statements. It is often especially inefficient when a domain has an extreme aspect ratio. For

example in Figure 10.8(a), only about M out of every N points are usefully visited. Depending

on the parameter values (say if M ≪ N) and on the complexity of the loop body, this could

have a significant overhead.
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FIGURE 10.7 Systems of statements qualified by domains.

(a) bounding box (b) convex closure

for (i=1; i<=N; ++i){ for (i=1; i<=N; ++i){

for (j=1; j<=N; ++j){ for (j=1; j<=min ((i+3N+M-4)/4, i+M-1, N); ++j){

if (j<=M) if (j<=M)

S1; S1;

if (i==j && i>=3) if (i==j && i>=3)

S2; S2;

} }

} }

FIGURE 10.8 Scanning the union of domains of Figure 10.7 by visiting points in a convex superset.

• Control overhead Each loop iteration must test the guards of all guarded statements, causing a

significant control overhead.

• Finally, finite unions of finite parameterized polyhedra do not always admit finite convex

supersets. Consider, for example, the following parameterized domains: {i | 1 <= i <= N}
and {i | 1 <= i <= M}; the smallest convex superset of these domains is the infinite polyhedron

{i | 1 <= i} (note that {i | 1 <= i <= max(M, N)} is not a convex polyhedron).
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for (i = 1; i <= 2; ++i) {

for (j = 1; j <= M; ++j) {

S1;

}

}

for (i = 3; i <= N; ++i) {

for (j = 1; j <= min((-1 + i),M); ++j) {

S1;

}

if (i<=M) {

j = i;

S1;

S2;

}

if (i>=M+1) {

j = i;

S2;

}

for (j = (1 + i); j <= M; ++j) {

S1;

}

}

FIGURE 10.9 Imperfectly nested loops scanning the union of domains of Figure 10.7.

To avoid this overhead, we can separate a union of polyhedra into several distinct regions that can

each be scanned using imperfectly nested loops. The resulting code is more efficient because:

• Imperfectly nested loops can scan nonconvex regions, avoiding empty iterations.

• It may be possible to choose these loops such that some statement guards become always

true or always false. When a guard is always true, the guard may be removed; when a guard

is always false, the entire statement can be removed. This optimization increases the ratio

of the number of executed statements to the number of tested guards, and thus reduces the

control overhead. This can be carried through to its logical limit to yield a code with no

guards.

However, the efficiency is obtained at the expense of code size for two reasons. First, a perfect

loop is replaced by an imperfectly nested loop, which scans a disjoint union of polyhedra. Second, a

statement domain may be divided into several disjoint polyhedra, where each polyhedron is scanned

by a different loop. In this case, the statement code has to be duplicated in each of these loops.

Figure 10.9 illustrates this for the example of Figure 10.7.

The main idea is to recursively decompose the union of polyhedra into imperfectly nested loops,

starting from outermost loops to innermost loops. At each step, we seek to solve the following

problem: given a context (i.e., a polyhedron in Z(d−1) containing the outer loops and system

parameters), and a union of polyhedra in Zn, n ≥ d , generate a loop that scans this union in

lexicographic order.

We generate each additional level of loops by:

1. Projecting the polyhedra onto the outermost d dimensions

2. Separating these projections into disjoint polyhedra

3. Recursively generating loop nests that scan each of these

4. Sorting these loops so that their textual order respects the lexicographic order
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FIGURE 10.10 Projections of domains on first dimension and separation into disjoint loops.

Two subtle details arise. First, the idea of “sorting” polyhedra (in step 4 above), necessitates

an order relation and an associated algorithm. Second, we need to ensure that the “separation” of

polyhedra (in step 2 above) must be such that the resulting polyhedra can be so sorted.

We illustrate the algorithm with an example. Let us start with the program of Figure 10.7,

and generate the first level of loops. Each domain is projected onto the first dimension and the

parameters (i.e., {i, N, M}). These projections are then separated into three disjoint regions: one

region containing only S1, one region containing both S1 and S2, and one region containing

only S2. For our example, the last region is empty, as shown in Figure 10.10(a). Further-

more, note that some regions (those that involve the difference of polyhedra) could be unions of

polyhedra.

The two remaining regions represent two loops scanning different pieces of dimension i, para-

meterized by N and M. At this point, only the first level polyhedra ({i | 1 <= i <= 2} and {i | 3 <=

i <= N}) can be interpreted as loops. The other (two-dimensional) polyhedra act as guards on the

statements. Note that in Figure 10.10, these guards are partially redundant with their context. The

redundant constraints are eliminated later.

We recursively generate separate pieces of code to scan, respectively, regions 1 (containing S1

alone) and 2 (containing both S1 and S2). Then we textually place the former before the latter. This

order respects the lexicographic schedule. Finding such a textual order is trivial for the first dimension,

but becomes more complicated for subsequent levels. In the rest of this example, whenever such an

order is needed, we give a valid order without discussing how to obtain it.

Now, we generate the next level of loops in the context of the first-level loops. The first i-loop —

labeled L1 in Figure 10.11(a) — contains only one statement, and thus the generation of its inner

loop is a perfect loop generation problem. Next, consider the second i-loop, L2. It contains two

guarded statements. In the next level of transformation, these domains are first separated into four

disjoint polyhedra: two of them (namely, L2.1 and L2.2) containing S1 alone, one (L2.3) containing

both S1 and S2, and one (L2.1) containing S2 alone. Then, we sort these polyhedra, such that the

following constraints are respected:

• Loop (L2.1) precedes loops (L2.2), (L2.3) and (L2.4).

• Loop (L2.3) precedes loop (L2.2).
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FIGURE 10.11 Second level: projection and separation of the second loop nest (L2).

Multiple valid textual orderings of these four loops exist, and we propose one of them in

Figure 10.11(b). Also note that no constraint exists on the relative position of loops (L2.2) and

(L2.4), because their respective contexts ({i | i <= M − 1} and {i | 1 >= M + 1}) are distinct. In

other words, for any value of the parameter M and the outer loop index i, at least one of these loops

is empty; it follows that any textual order of these loops can execute correctly.

Finally, we generate code by pretty printing the sorted nested loops, yielding the code we saw

previously in Figure 10.9.

10.10 Limitations of the Polyhedral Model

The polyhedral model suffer from two important limitations. The first is inherent in the model,

namely, the restrictive class of programs covered. This is indeed a fundamental limitation, although

one may perform an approximate analysis by investigating cases where the dependences in the

program as well as the domains of iterations are approximated by affine functions and polyhedra,

respectively. Nevertheless, the model precludes computations that have a more dynamic behavior,

in the sense that the control flow is conditioned by results computed during the program. In spite of

this limitation, the number of programs that come within its scope is considerable. One might view

the limitation as the price to pay for the powerful analysis techniques that the model offers.

The second, and somewhat more serious limitation is that neither the analyses nor the program

transformations that the model offers can satisfactorily deal with resource constraints. We have

already had an inkling of this when we considered the processor allocation function in Section 10.7,

where we were able to formalize and reason about the potential conflicts and the communication

behavior only for a set of virtual processors. One might question whether choosing an optimal

mapping to these virtual processors can remain optimal after the virtual-to-physical mapping that is

expected to follow. Moreover, because this virtual-to-physical mapping assigns the computations of

many virtual processors to a single physical processor, it is also necessary to modify the schedule.

Hence, our choice of the so-called optimal schedules that we made in Section 10.6 is also open to

question — the machine model there assumed an unbounded number of processors.

The most well-known method for dealing with resource constraints is through a technique called

tiling or blocking or supernode partitioning. Essentially, the idea is to cluster a certain number of

nodes in the EDG as a single node and try to develop compact analysis methods. The common

method of specifying tiles is as groups of computation nodes delineated by a family of hyperplanes

(i.e., integer points within a hyperparallelepiped-shaped subset of the iteration space). Unfortunately,
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such transformations do not satisfy the closure properties of the polyhedral model. This is especially

true if we wish to retain both the size and the number of tiles in each dimension as a parameter for

the analysis and hence develop compact methods for analysis and code generation.

10.11 Bibliographic Notes

A number of references are available on the more conventional aspects of dependence analysis and

restructuring compilers, notably the texts by Allen and Kennedy [3], Banerjee [6, 7] and Zima and

Chapman [49].

The roots of the polyhedral model can be traced to the seminal work of Karp, Miller and

Winograd [22], who defined SUREs, and for SUREs where all variables are defined over the entire

positive orthant, resolved the scheduling problem. They developed the multidimensional scheduling9

algorithm explained in Section 10.6.

Another field that contributed heavily to the polyhedral model was the work on automatic synthesis

of systolic arrays, which initially built on the simpler ideas (one-dimensional affine schedule for a

single SURE, and shifted-linear schedules for SAREs) of Karp et al. Though many authors in the

early 1980s worked on the systolic synthesis by space time transformations, the first use of recurrence

equations was in 1983 by Quinton [33], who studied a single URE10 defined over a polyhedral index

space. He expressed the space of one-dimensional affine schedules as the feasible space of an integer

linear programming problem, thus establishing the link to the work of Karp et al. Rao [39, 40] and

Roychowdhury [42] investigated multidimensional schedules for SUREs, and Rao also improved

the alorithm given by Karp et al.

Delosme and Ipsen first studied the scheduling problems for affine recurrences (they defined

the term ARE), but without considering the domains over which they were defined [14]. They

showed that all (one-dimensional) affine schedules belong to a cone. Rajopadhye et al. addressed

the problem of scheduling a single ARE defined over a polyhedral index domain and showed that

the space of valid one-dimensional affine schedules is described in terms of linear inequalities

involving the extremal points (vertices and rays) of the domain [38]. Quinton and Van Dongen

also obtained a somewhat tighter result [34]. Yaacoby and Cappello [48] investigated a special

class of AREs. Mauras et al. extended this result to SAREs, but with one-dimensional variable

dependent schedules [30]. Rajopadhye et al. further extended this and proposed piecewise affine

schedules for SAREs [37]. Feautrier [18] gave an alternative formulation using the Farkas lemma,

for determining (one-dimensional, variable dependent) affine schedules for an SARE. He further

extended the method to multidimensional schedules [19]. Some similar ideas were also developed

in the loop parallelization community, notably the work of Allen and Kennedy [1, 2], Lamport [24]

and Wolf and Lam [45]. An excellent recent book by Darte, Robert and Vivien [12] provides a

detailed description of scheduling SUREs, and also addresses the problem of SAREs by formalizing

affine and more general dependences as dependence cones engendered by a finite set of uniform

dependence vectors.

Feautrier [16] paved the way to using these results for loop parallelization by developing an

algorithm for exact dataflow analysis of ACLs (which he called static control loops, somewhat of

a misnomer) using parametric integer programming, and showed that this yields an SARE whose

9Today we know them to be multidimensional schedules, but this understanding was slow in coming.
10Actually Quinton worked on a a particular restricted form of SUREs, but this can always be viewed as a
single URE for analysis purposes.
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variables are defined over (a generalization of) polyhedral domains. The ideas in Section 10.4 are

based on his work, though presented differently.

In terms of the decidability of the scheduling problem, Gachet and Joinnault [21] showed the

undecidability of SURE scheduling when the variables are defined over arbitrary domains. Saouter

and Quinton [43] showed that scheduling even parameterized families of SAREs (each of whose

domains is bounded) is also undecidable.

The processor allocation function as defined in Section 10.7 is directly drawn from the systolic

synthesis literature. Modeling the communication as the image of the dependences by the allocation

function also draws from work on the localization of affine dependences, notably by Choffrut

and Culik [10], Fortes and Moldovan [20], Li and Chen [27, 28], Quinton and Van Dongen [34],

Rajopadhye et al. [35, 36, 38], Roychowdhury et al. [41, 42], Wong and Delosme [46], and Yaacoby

and Cappello [47].

The problem of memory allocation in the polyhedral model has been addressed by

Chamski [8], De Greef, Catthoor and De Man [13], Lefebvre and Feautrier [26], Quilleré and

Rajopadhye [31] (from which the results presented in Section 10.8 are drawn) and Rajopadhye and

Wilde [44].

The development of a programming language and transformation system based on the polyhedral

model also draws considerably from the area of systolic synthesis. Some early results on the closure

of a single ARE were developed by Rajopadhye, Purushothaman and Fujimoto [38]. Chen defined

the language Crystal based on recurrences defined over data fields [9], and Choo and Chen developed

a theory of domain transformations for Crystal. ALPHA was defined by Mauras [29] and developed

an initial transformation framework for ALPHA programs.

The key problem of code generation, namely, polyhedron scanning was posed and resolved by

Ancourt and Irigoin [5] using the Fourier–Motzkin elimination. It is used in many parallelizing tools

such as the SUIF system [4] developed at Stanford University, PIPS developed at the École des Mines

de Paris and LOOPO developed at the University of Passau. The efficient formulation using the dual

representation was developed by LeVerge et al. [25]. Code generation from a union of polyhedra

was addressed by Kelly, Pugh and Rosser [23] for the Omega project at the University of Maryland,

and by Quilleré, Rajopadhye and Wilde [32] (the results presented in Section 10.9 are drawn from

the latter).

Additional information about the polyhedral model may be obtained from a survey article by

Feautrier [17], and many of the mathematical foundations are described by Darte [11].
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11.1 Introduction

Distributed memory machines provide the required computational power to solve large-scale,

data-intensive applications. These machines achieve high performance and scalability; however, they

are very difficult to program. This is because taking advantage of parallel processors and distributed

memory (see Figure 11.1) requires that both data and computation should be distributed between

processors. In addition, because each processor can directly access only its local memory, nonlocal

(remote) accesses demand a coordination (in the form of explicit communication or synchronization)

across processors. Because the cost of interprocessor synchronization and communication might be

very high, a well-written parallel code for distributed memory machines should minimize the number

of synchronization and communication operations as much as possible. These issues make it very

difficult to program these architectures and necessitates optimizing compiler help for generating

efficient parallel code. Nevertheless, most of the current compiler techniques for distributed memory

architectures require some form of user help for successful compilation.

This chapter presents an overview of existing techniques for distributed memory compilation

and points to promising future directions. Although there are many ways of generating code for a

distributed memory architecture (depending on the type of underlying abstraction, the communication

primitives and the programming interface), most of this chapter focuses on message-passing machines

with two-way communication primitives and on data parallelism. Issues investigated are automatic
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data decomposition, computation partitioning, communication detection and optimization, locality

related problems, and handling input and output (I/O) and irregular computations.

At the highest level, the two ways of generating code for distributed memory architectures are

explicit (programmer-directed) parallelization and automatic parallelization. Most of the current

languages for distributed memory architectures, such as Vienna FORTRAN [21], FORTRAN-D [51]

and high-performance FORTRAN (HPF) [61], provide data alignment and distribution directives to

the users. By using these directives, the users can specify the data mappings; that is, they give

suggestions to the compiler as to how data (e.g., arrays) should be decomposed across parallel pro-

cessors. Then, by using this information, an optimizing compiler can derive computation partitions

and optimize communication and synchronization. In the automatic parallelization option, on the

other hand, the compiler itself determines how data should be decomposed across processors [36, 63].

After data decomposition, the compiler proceeds with computation partitioning and communication

optimization as in the first option.

Whether fully automatic or user assisted, the compilation strategies for distributed memory archi-

tectures start with a parallelism detection step. Exploiting large (coarse) granular parallelism in loop

nest based codes enables processors to perform data communication more efficiently and improves

overall execution time. To ensure coarse granular parallelism, the compiler typically employs a suite

of code transformations. For example, the compiler can interchange two loops if doing so places data

dependences into inner loop positions so that outer loops can safely be parallelized. Other transfor-

mations such as loop fission and iteration space tiling can also be used for maximizing parallelism.

Because maximizing parallelism through loop-level transformations is itself a complex matter, in

this chapter we assume that all parallelism-related optimizations have already been performed. We

refer the reader to [83] for loop-based techniques to enhance parallelism and improve data locality

in array-intensive codes.

The remainder of this chapter is organized as follows. Section 11.2 discusses the problem of auto-

matic data distribution (layout detection) for distributed memory architectures. Section 11.3 presents

computation partitioning techniques and discusses the differences between fully automatic and user-

assisted approaches. Section 11.4 examines how interprocessor communication can be detected and

optimized. In this section, we give details of several loop (loop-level) and global communication

optimization strategies. Section 11.5 covers one-way communication. Section 11.6 addresses the

locality problem from processor as well as memory hierarchy perspectives. Section 11.7 discusses

the problem of compiling applications with irregular data accesses for message-passing architectures.

Section 11.8 describes I/O compilation. Section 11.9 points to future trends in distributed memory

compilation and Section 11.10 concludes the chapter with a summary.
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11.2 Automatic Data Decomposition

Data distribution is one of the key aspects that a parallelizing compiler for a distributed memory

architecture should consider to get efficiency from the system. The cost of accessing local and

remote data can be one or several orders of magnitude different, and this can dramatically affect

performance. Several groups studied techniques for automatic data decomposition. We can classify

these techniques as integer linear programming (ILP)-based techniques and heuristic approaches. The

objective of the techniques in the first group is to formulate the data decomposition problem formally

using ILP and to come up with data decompositions (and accompanying computation partitionings)

such that the parallelism is maximized and interprocessor data communication is minimized.

In [63], an ILP-based technique is presented. The technique starts by partitioning the program into

code segments called phases. Each phase roughly corresponds to an innermost loop. In the second

step, for each phase, a search space of candidate layouts (array decompositions) is constructed. The

technique generates the promising candidate layouts for a phase based on their expected performance

as part of an efficient data layout for the entire program. The phase structure of the program is

represented in a phase control flow graph (PCFG), where each phase is represented by a single node,

and edges (which represent the control flow between phases) are annotated using branch probabilities

and loop control information. After that, a performance estimation step is applied and performance

numbers (estimated execution times) are determined for all candidate data layouts and possible

(layout) remappings between layouts (as we move from one phase to another). Then, armed with this

information (the potential layouts for each array in each phase, cost of each layout, and cost of each

potential remapping), the problem is formulated as a linear 0-1 integer problem and solved optimally.

Reference [63] also presents different 0-1 ILP formulations for the same problem. It should be noted

that the optimality of this approach is with respect to search spaces under consideration. That is, an

inaccurate selection of search spaces may lead to a poor solution, let alone optimality.

An approach in a similar direction is taken by Garcia, Ayguade and Labarta [32, 33]. The

difference is that instead of solving the layout problem in two subproblems, namely, alignment

and decomposition, their strategy solves both the subproblems simultaneously.

Gupta and Banerjee [36] implemented the PARADIGM compiler on top of the Parafrase-2 system.

They developed a methodology (heuristic) for automatic data partitioning given a sequential or shared

memory parallel program, generating single program multiple data (SPMD) programs with explicit

communication. More specifically, their approach divides the automatic data decomposition process

in four phases. The first phase determines whether a blockwise data decomposition or a cyclic data

distribution should be used for each dimension of each array. In the second phase, for each cyclicly

distributed dimension, a cyclic factor is decided. A cyclic factor is the block size for a dimension

distributed in a cyclic manner. The next phase determines the number of processors assigned in each

of the processor-mesh dimensions, assuming that the maximal number of distributed dimensions is

two. The overall computational cost is estimated from the computational cost of a single instance of

each statement and the count of the number of times that statement is executed. Both communication

and synchronization costs are also taken into account. Finally, they employ an alignment phase in

which the array dimensions that are used the same way are aligned together. For each aligned array

dimension, their approach decides whether the decomposition style has to be block or cyclic. This

is performed by estimating the penalty incurred in execution time if the decomposition is selected

as blockwise or cyclic.

A number of articles (e.g., [73]) also consider the use of more costly techniques such as genetic

algorithms for solving the automatic data decomposition problem. Dierstein et al. [25] describe the

ADDAP system, a parallelizing compiler for distributed memory machines. The compiler computes a

data distribution for the arrays of the source program automatically by a branch-and-bound algorithm

and parallelizes the inner loops of the program by inserting the necessary communication statements
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to access nonlocal array sections. Redistributions of data during program execution is arranged,

if this is expected to result in a better program performance. The data distribution phase uses a

communication analysis tool that computes the communication costs of the different data distributions

by determining the number and size of the messages that each processor has to receive during program

execution. The communication analysis tool also takes sequentializations into account that are caused

by data dependences.

In addition to compiler-based techniques, a number of off-line tools also suggest suitable data

decompositions to the compiler or user. Automatic data distribution and placement tool (ADAPT) [28]

is a device that is designed to simplify and accelerate the task of developing HPF versions of existing

constant folding (CFD) applications. The tool starts with an analysis of array index expressions of the

loop nests. For each pair of arrays referenced in a nest statement it generates an arc in the alignment

graph annotated with an affinity relation. The template, alignment and distribution directives for a

particular loop nest then are derived from a transitive closure of the affinity relation. A compromise of

data decompositions in different nests and subroutines is performed by merging annotated alignment

graphs for adjacent nests or subroutine calls in the nest or call graph of the application. ADAPT

has been implemented as a C++ program running in conjunction with a parallelization tool called

CAPTools [52]. It takes advantage of the parse tree, interprocedural analysis and application database

generated by CAPTools. It also relies on the use of directed graph class initially implemented in

parallel debugger of distributed programs (p2d2). The tool has been tested with benchmark codes,

such as ARC3D, BT and LU, and has been found to generate effective data decompositions.

Some studies (e.g., [10]) also considered automatic dynamic data redistribution. Using data

redistribution (at runtime) is beneficial when a poor initial decomposition of the data is responsible

for limited performance or different sections of the code demand different data decompositions for

the same array. It should be noted, though, that the program should run for at least a few seconds

because the communication system typically needs some time to move the data to the best layout

and they need to spend some time there to amortize the cost of dynamic redistribution.

11.3 Computation Distribution

When a compilation strategy based on automatic data layout detection is employed, the computation

distribution is performed along with data decomposition. One of the methods to achieve this is to

employ a linear algebraic strategy in which loop nests, arrays and array accesses are all represented

within a matrix framework.

Anderson and Lam [8] present an optimization strategy that determines data decompositions and

computation distributions automatically and optimizes parallelism and locality simultaneously. In

their mathematical model, data and computation decompositions are represented as affine transfor-

mations. A loop iteration is represented by �I = (i1, i2, . . . , in) and each array element is represented

using �a = (a1, a2, . . . , am). An affine array index function is written as �f ( �I ) = F �I + �o, where

F is an m × n matrix (called access or reference matrix) and �o is an m-dimensional vector. Then,

we can express a data decomposition as D�a + �α and a computation distribution as C �I + �β. In this

formulation, D and C are p × m and p × n linear transformation matrices, respectively, where

p is the dimension of processor topology. Having these definitions, Anderson and Lam state the

problem as follows: find a computation distribution (C and �β) for each nest and a data decomposition

(D and �α) for each array in each loop nest such that parallelism is maximized and communication

is minimized. In mathematical terms, by assuming that Ci and �βi specify computation distribution

for nest i, Dj and �αj specify data decomposition for array j ; and �fji (.) denotes the data reference

to array j in nest i, to eliminate communication:

Dj ( �fji ( �I )) + �αj = Ci( �I ) + �β
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should be satisfied for all loop iterations �I , nests i, and arrays j . Obviously, in many array-intensive

codes, it may not be possible to satisfy this expression (constraint) for all arrays and loops. The

approach proposed in [8] adopts an iterative strategy using as many constraints as possible.

It is also possible to adopt more sophisticated strategies. Amarasinghe and Lam [6] present a compi-

lation strategy that is based on data flow analysis on individual instances of array accesses. By using a

representation called last-write-tree (LWT) the authors capture perfect data flow information, perform

data and computation decompositions and detect and optimize interprocessor communication. Their

code generation strategy is based on scanning a polyhedron.

With another group of techniques programmers try to determine computation distribution based

on user-defined data decompositions. The languages such as HPF allow programmers to describe

how data are to be decomposed among the processors in a distributed memory machine. The pro-

grammer can describe the data-to-processor mapping in two stages: the DISTRIBUTE and ALIGN

operations. DISTRIBUTE is an HPF directive that indicates how an array is to be decomposed into

portions. For example, given an array declaration such as INTEGER X(200, 200), the directive

!HPF$ DISTRIBUTE X(BLOCK,*) decomposes array X in such a fashion that each processor gets

a number of consecutive rows of the array. It is also possible to distribute rows of the array in a

cyclic manner using, for example, the directive !HPF$ DISTRIBUTE X(CYCLIC,*). The ALIGN

directive, on the other hand, indicates how two (or more) arrays are aligned with respect to each

other. As an example, !HPF$ ALIGN X(I,J) with Y(I,J) implies that the corresponding elements of

arrays X and Y are to be decomposed in the same fashion. Typically, the arrays are first aligned with

respect to each other (to capture locality) and then distributed across processors.

The data decomposition expressed using ALIGN and DISTRIBUTE directives is then used to guide

the compiler to generate an SPMD style of execution. In this paradigm, each processor executes the

same program, but operates on different data. To achieve this, a node program is generated and

loaded into each processor. This program can typically update the local data only (owner-computes

rule). Obviously, to create such a parallel code, the compiler has to translate global array references

into local and nonlocal references. All nonlocal references should then be accessed using explicit

communication. The early FORTRAN D compiler also partitioned computation across processors

using the owner-computes rule, where each processor only computes values of data it owns.

In the owner-computes rule, the processor that owns the left-hand side (lhs) element performs the

calculation. For example, in:

DO i = 1,n
X(i-1) = Y(i*6)/Z(i+j)-X(i**i)

END DO

the processor that owns X(i−1) performs the assignment. The components of the right-hand side

(rhs) expression may have to be communicated to this processor before the assignment is made.

It is easy to see that for the owner-computes rule to be successful, the data decomposition across

processors should be performed with care. It should be noted, however, that as this is a rule of

thumb, it is not always followed; for example, if all the rhs objects are codistributed, then instead

of all the rhs elements being sent to the owner of the lhs for computation, the computation of the

result may take place on the home processor of the rhs elements and next be sent to the owner of the

lhs for assignment. This would reduce the number of communications required. In fact, it is up to

the compiler to decide when to follow the owner-computes rule and when not to. The next step in

compilation is to minimize the communication due to rhs references as much as possible. The next

section discusses this problem in detail.

Automatic data parallelism translator (Adaptor) [15] is a compilation system that transforms data

parallel programs written in FORTRAN with array extensions, parallel loops and layout directives
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to parallel programs with explicit message passing. Adaptor only takes advantage of the parallelism

in the array operations and of the parallel loops. It has no features for automatic parallelization.

11.4 Communication Detection and Optimization

On distributed memory machines, the time (cost) to access nonlocal (remote) data is usually orders

of magnitude higher than accessing local data. For example, on the large-scale parallel machines,

accessing remote data can consume thousands of cycles, depending on the distance between commu-

nicating processors [47]. Therefore, it is imperative that the frequency and volume of remote accesses

are reduced as much as possible. In particular, in message-passing programs, the start-up cost for

the messages can easily dominate the execution time. For example, on the IBM SP-2, the message

start-up time is approximately 360 times the transfer time per word, indicating that optimizing com-

munication is very important. The problem is much more severe on network of workstations because

interprocessor latencies are much higher. Several software efforts have been aimed at reducing the

communication overhead. The main goal of these optimizations is to increase the performance of

programs by combining messages in various ways to reduce the overall communication overhead.

These techniques can be classified into two categories depending on the scope of optimization:

optimizations that target a single nest at a time (which we call local or loop-level optimizations in

this chapter) and optimizations that target multiple nests simultaneously.

11.4.1 Local Optimizations

The most common optimization technique used by previous researchers is message vectorization

[9, 10, 14, 31, 51]. In message vectorization, instead of naively inserting Send and Recv operations

just before references to nonlocal data, communication is hoisted to outer loops. Essentially this

optimization replaces many small messages with one large message, thereby reducing the number of

messages. For example, consider the program fragment shown in Figure 11.2(a) and assume that all

arrays are distributed across processors blockwise in the second dimension. Figure 11.2(b) and (c)

shows naively inserted messages and message vectorization, respectively, for a processor p before

loop bounds reduction (a technique to allow processors to execute only those iterations that have

assignments that write to local memory [51]) and guard insertion (a technique that guarantees correct

execution of statements within loop nests). The notation send{B,q,n} means that n elements of

array B should be sent to processor q; recv{B,q,n} is defined similarly. For this discussion, we

are not concerned with exactly which elements are sent and received. Notice that the version in

Figure 11.2(c) reduces the message start-up cost as well as the message latency.

Some of the researchers [2, 51] also considered message coalescing, a technique that combines

messages due to different references to the same array; and message aggregation that combines

messages due to references to different arrays to the same destination processor into a single message.

Once nonlocal accesses are vectorized at outer loops, the compiler considers the sets of elements

that need to be communicated and combines two communication sets if they contain elements that

need to be communicated between the same pair of processors and the elements in both the sets

belong to the same array. This is called message coalescing. As discussed in [51], if two overlapping

communication sets cannot be coalesced without loss of precision, they can be split into smaller

sections in a manner that allows the overlapping sections to be merged precisely.

Message aggregation is employed to ensure that only one communication message (per nest) is

sent to each processor. This requires that the communication sets due to different array variables are

to be merged into a single set, which is then communicated. FORTRAN D compiler [51] applies

message aggregation after message vectorization and coalescing by combining all communication

sets representing data sent to the same processor.
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DO j = 2, 255 DO j = 2, 255
DO i = 1, 255 DO i = 1, 255
A(i,j)=B(i,j)+B(i,j-1) send fB,p+1,1g, recv fB,p-1,1g

END DO A(i,j)=B(i,j)+B(i,j-1)
END DO END DO

END DO

DO j = 2, 255 DO j = 2, 255
DO i = 2, 256 DO i = 2, 256
C(i,j)=B(i,j-1)+C(i,j) send fB,p+1,1g, recv fB,p-1,1g

END DO C(i,j)=B(i,j-1)+C(i,j)
END DO END DO

END DO

(a) (b)

send fB,p+1,255g, recv fB,p-1,255g send fB,p+1,256g, recv fB,p-1,256g
DO j = 2, 255 DO j = 2, 255
DO i = 1, 255 DO i = 1, 255
A(i,j)=B(i,j)+B(i,j-1) A(i,j)=B(i,j)+B(i,j-1)

END DO END DO
END DO END DO

send fB,p+1,255g, recv fB,p-1,255g
DO j = 2, 255 DO j = 2, 255
DO i = 2, 256 DO i = 2, 256
C(i,j)=B(i,j-1)+C(i,j) C(i,j)=B(i,j-1)+C(i,j)

END DO END DO
END DO END DO

(c) (d)

FIGURE 11.2 (a) A code fragment; (b) naive communication placement; (c) message vectorization;

(d) global communication optimization.

If the compiler catches opportunities for exploiting regularity in communication patterns between

different processor groups, it can use collective communication. In collective communication, instead

of inserting individual Send/Recv primitives for individual communications, the fast collective

communication primitives are supported by the underlying architecture. Important examples of

communication types that can take advantage of collective communication are the reduction routines

and scan operations.

11.4.2 Global Optimizations

The main problem with the local optimizations discussed earlier is that they optimize communication

for a single nest at a time. This restriction prevents the compiler from performing interloop optimiza-

tions such as global elimination of redundant communication. To see this, consider Figure 11.2(d),

which shows the global optimization of the same program fragment via elimination of redundant

communication. Notice that, compared with the message-vectorized program in Figure 11.2(c), this

version reduces both the number of messages and the communication volume.

A number of authors have proposed techniques based on data flow analysis to optimize commu-

nication across multiple loop nests [19, 34, 38, 59, 84, 85]. Most of these approaches use a variant

of regular section descriptors (RSD) introduced by Callahan and Kennedy [17]. Two most notable

representations are available section descriptor (ASD) [38] and section communication descriptor

(SCD) [84, 85]. Associated with each array that is referenced in the program is an RSD that describes
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the portion of the array referenced. Although this representation is convenient for simple array

sections such as those found in pure block or cyclic distributions, it is hard to embed alignment and

general distribution information into it. Apart from inadequate support for block–cyclic distributions,

working with section descriptors may sometimes result in overestimation of the communication sets,

because regular sections are not closed under union and difference operators. The resulting inaccuracy

may be linear with the number of data flow formulations to be evaluated, thus defeating the purpose

of global communication optimization.

In [53], Kandemir et al. proposed a communication optimization method based on polyhedral tech-

niques. More specifically, they represent the communication between processors using Presburger

sets; this allows the compiler to combine and intersect arbitrary sets of communicated elements. In

other words, their approach gives the compiler the ability to represent communication sets globally as

equalities and inequalities, and to use polyhedron scanning techniques to perform optimizations such

as redundant communication elimination and global message coalescing, which were not possible

under the loop nest based (i.e., local) communication optimization schemes. This approach first

performs a local analysis and determines for each nest the data elements that need to be communicated

between processors. Then, an interval-based data flow analysis propagates communication sets

between nests and eliminates unnecessary communication. Although this scheme is very general

and can cope with a great variety of communication patterns, it can also increase the compilation

time; therefore, it needs to be applied with care.

To maximize parallelism and optimize communication, an optimizing compiler can use a suite

of loop and data transformations. As mentioned earlier, exploiting a larger granular parallelism

improves the overall program behavior. However, procedure calls within nests may in most cases

prevent effective loop parallelization. Hall et al. [40, 41] present compiler techniques for optimizing

procedure calls within nested loops. One of these techniques is loop embedding which can be very

useful when a procedure call occurs within a loop. This transformation moves a loop that contains a

call to a procedure to the said procedure and changes the loop header and procedure parameter list

accordingly. In doing so, it also needs to (1) eliminate actual parameters that vary in the loop body,

(2) ensure that global variables accessed in the loop are within the scope of the called procedure,

and (3) create local variables in the called procedure corresponding to locals of the caller that are

accessed within the loop but not visible outside the loop [40, 41].

Compilers for distributed memory machines can also employ other, less frequently used optimiza-

tions such as pipelining computations, dynamic data decompositions, vector message pipelining,

unbuffered messages, owner- or store-based optimizations and iteration reordering. We refer the

interested reader to [51] and the references therein.

11.5 One-Way Communication

The compilers for many languages used to program distributed memory machines have traditionally

relied on send and receive primitives to implement message-passing communication. The impact of

this approach is twofold. First, it combines synchronization with communication in the sense that data

messages also carry implicit synchronization information. Although this relieves the compiler of the

job of inserting explicit synchronization messages to maintain data integrity and correct execution,

separating synchronization messages from data messages may actually improve the performance

of programs by giving the compiler the option of optimizing data and synchronization messages

separately. In fact, O’Boyle and Bodin [65] and Tseng [78] have presented techniques to optimize

synchronization messages on shared memory and distributed shared memory parallel architectures.

These techniques, for example, can be applied to the synchronization messages of the programs

compiled using separate data and synchronization messages. Second, the compiler has the task of

matching send and receive operations to guarantee correct execution. As discussed earlier in this
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chapter, this is a difficult job and (in practice) limits the number of programs that can be compiled

effectively for message-passing architectures.

Alternative communication and synchronization mechanisms, which can be called one-way

communication, have been offered. Stricker et al. [74] and Hayashi et al. [43] suggest that the

separation of synchronization from data transfer is extremely useful for realizing good performance.

In the context of distributed operating systems, a similar separation of data and control transfer has

been suggested by Thekkath Levy and Lazowska [77]. Split C [23] offers one-way memory operations

and active messages [81] provide a software implementation of one-way communication. One-way

communication is also part of the proposed message passing interface standard [64]. The main

characteristic of these techniques is that they separate interprocessor data transfers from producer–

consumer synchronization. A number of (physically) distributed memory machines such as the

Fujitsu AP1000+ [43], the Cray T3D [22], the Cray T3E [72] and the Meiko CS-2 [11] already

offer efficient low-level remote memory access (RMA) primitives that provide a processor with the

capability of accessing the memory of another processor without direct involvement of the latter. To

preserve the original semantics, however, a synchronization protocol should be observed.

In this section, we focus on the compilation of programs augmented with HPF-style data map-

ping directives using one-way communication operations Put (remote memory write) and Synch
(synchronization). Although one-way communication strategies were originally meant for message-

passing machines, they are readily applicable to uniform shared memory architectures as well.

Gupta and Schonberg [37] show that the compilers that generate code for one-way communication

can exploit shared-memory architectures with flexible cache–coherence protocols (e.g., Stanford

FLASH [46] and Wisconsin Typhoon [70]).

The Put primitive — executed by the producer of a data — transfers data from producer memory

to consumer memory. This operation is very similar to the execution of a Send primitive by the

producer and execution of a matching Recv primitive by the consumer (in a two-way communication

strategy). There is an important difference, however; the consumer processor is not involved in the

transfer directly and all the communication parameters are supplied by the producer [64]. As stated

earlier, to ensure correctness, synchronization operations might be necessary. A large number of

synchronization operations can be used to preserve the semantics of the program. These include

barriers, point-to-point (or producer–consumer) synchronizations and locks. The synchronization

primitive used here, Synch (executed by the producer of a data), is a point-to-point communication

primitive; however, the discussion here applies to other types of synchronizations as well. Both

Stricker et al. [74] and Hayashi et al. [43] use barriers to implement synchronization whereas our

effort is aimed at reducing the total amount of synchronization using data flow analysis, and using

finer granularity point-to-point primitives where possible.

Clearly, in a compilation framework based on the Put operation, the correct ordering of memory

accesses has to be imposed by the compiler using the synchronization primitives. That is, one of

the main problems for compiling using Put primitives is to determine the points where explicit

synchronization is necessary (to preserve correctness). A straightforward approach inserts a Synch

operation just before each Put operation. The next question to be addressed then is whether every

Synch operation inserted that way is always necessary. The answer is no, and [55] presents an

algorithm to eliminate redundant synchronization messages. We refer to a Synch operation as

redundant if its functionality can be fulfilled by other data communications or other Synch operations

occurring in the program. The basic idea is to use another message in the reverse direction between

the same pair of processors in place of the Synch call.

It should also be mentioned that in machine environments that support both one-way (Put/Get) and

two-way (Send/Recv) communication mechanisms, it might be the case that two-way communica-

tion mechanisms are implemented using the one-way communication mechanisms. Because of this

reason, one-way communication calls might have significantly lower start-up latencies and higher

bandwidths. Therefore, when used in a communication-intensive part of a program, they can result in
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better scaling of that portion of the computation. This observation suggests that in some architectures

we might be able to obtain better results using one-way communication. These advantages of one-way

communication do not come for free: in cases where the communication activity between processors

needs synchronization, explicit synchronization messages should be inserted in the code.

Finally, as discussed in [37, 55], although both Put and Get can be implemented in terms of each

other, we prefer to use Put because of these two reasons: first, in general, the handshaking protocol

for the Get primitive involves more messages than that of Put [37]; second, the synchronizations

originating from Get primitive is due to flow dependences and are in general difficult to eliminate. The

synchronization messages in case of the Put primitive, on the other hand, are needed for satisfying

antidependences (pseudo dependences), and therefore easier to eliminate.

11.6 Data Locality Issues

On distributed memory machines, cache locality improvements (through data layout transformations)

and memory locality (also called processor locality) improvements (through data distribution) are

complementary. Although good cache locality optimization combined with a good interprocessor

data decomposition strategy can effectively ensure low memory access costs, merely distributing the

data across the memories of the processors in a best possible way may not necessarily ensure good

cache locality. This is particularly true for array-intensive applications with poor cache behavior.

We would like to delve a bit more into this interplay between cache locality optimization and data

distribution on distributed memory machines. A detailed study of such interactions along with how

a compiler can optimize codes for good overall performance, however, is beyond the scope of this

chapter. Although it seems a reasonable idea to first use the best data decomposition strategy and

then optimize each node program for the best locality (taking into account the cache locality), it

might be possible to obtain better results by considering the interaction between processor locality

and cache locality.

Specifically, a compilation strategy can work as follows. First, the compiler applies aggressive

loop and data transformations to improve data reuse. After this step, most of intrinsic data reuse in

the code is carried by the innermost loops. Note that this means the outer loops are dependence free

and can safely be parallelized. It should also be noted that parallelizing these loops can imply a data

decomposition strategy. We can expect that in a distributed memory architecture where both processor

locality and cache locality are important such an integrated approach could perform better than a

straightforward strategy that optimizes each type of locality in isolation. In conclusion, optimizing

compilers for distributed memory architectures might attempt to improve both cache and memory

locality in a unified framework.

11.7 Compiling Irregular Applications

In addition to standard distributions such as BLOCK and CYCLIC, languages such as FORTRAN

D and Vienna FORTRAN also support irregular data distributions. FORTRAN D allows a user to

explicitly specify an irregular distribution using an array, to specify a mapping of array elements to

processors. Vienna FORTRAN allows user-defined functions to describe irregular distributions. The

current version of HPF does not directly support irregular distributions. Language extensions have

been proposed by Hanxeleden et al. [45] and Ponnusamy et al. [68] to support irregular distributions

in languages such as FORTRAN D.

In irregular problems, data access patterns and workload are usually known only at runtime; hence

decisions concerning data and work distributions are made at runtime. Obviously, these on-the-fly

decisions require special runtime support. A set of procedures have been developed, called CHAOS
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C Outer Loop L1
do n = 1, n step
...
C Inner Loop L2

do i = 1, nedge
y(edge1(i)) = y(edge1(i)) + f(x(edge1(i)), x(edge2(i)))
y(edge2(i)) = y(edge2(i)) + g(x(edge1(i)), x(edge2(i)))

end do
...
end do

FIGURE 11.3 An example code with an irregular loop.

[24], that can be used by an HPF-style compiler. CHAOS is a successor of PARTI and provides

support for managing user-defined distributions, partitioning loop iterations, remapping data and

index arrays and generating optimized communication schedules.

To motivate discussion, we focus on two irregular applications: an unstructured Euler solver and

a molecular dynamics code. The nest structures of these two application codes consist of a sequence

of loops with indirectly accessed arrays. The unstructured Euler solver application is used to study

the flow of air over an airfoil. Complex aerodynamic shapes require high-resolution meshes and

consequently large numbers of mesh points. Physical values such as velocity, pressure are associated

with each mesh vertex. These values are called flow variables and are stored in arrays called data

arrays. Calculations are carried out using loops over the list of edges that define the connectivity of

the vertices (see Figure 11.3). To parallelize the unstructured Euler solver, mesh vertices must be

partitioned. Because meshes are typically associated with some sort of physical objects, a spatial

location can often be associated with each mesh point. The spatial locations of the mesh points and

the connectivity of the vertices are determined by the mesh generation strategy. The way in which

the vertices of such irregular computational meshes are numbered frequently does not have a useful

correspondence to the connectivity pattern (edges) of the mesh. During mesh generation, vertices

are added progressively to refine the mesh. While new vertices are added, new edges are created

or older ones are moved around to fulfill certain mesh generation criteria. This causes the apparent

lack of correspondence between the vertex numbering and edge numbering. One way to solve this

problem is to renumber the mesh completely after the mesh has been generated. Mesh points are

partitioned to minimize communication.

Promising heuristics have been developed that can use one or several of the following types of

information: (1) spatial locations of mesh vertices, (2) connectivity of the vertices and (3) estimate

of the computational load associated with each mesh point. For instance, a user might choose a

partitioner that is based on coordinates. A coordinate bisection partitioner decomposes data using

the spatial locations of vertices in the mesh. If the user chooses a graph-based partitioner, the

connectivity of the mesh could be used to decompose the mesh. The next step in parallelizing this

application involves assigning equal amounts of work to processors. A Euler solver consists of a

sequence of loops that sweep over a mesh. The computational work associated with each loop must

be partitioned among processors to balance the load. Consider a loop that sweeps over mesh edges,

closely resembling the loop depicted in Figure 11.3. Mesh edges are partitioned so that (1) load

balance is maintained and (2) computations mostly employ locally stored data.

Other unstructured problems have similar indirectly accessed arrays. For instance, consider the

nonbonded force calculation in the molecular dynamics code, CHARMM, shown in Figure 11.4.

Force components associated with each atom are stored as FORTRAN arrays. The loop L1 sweeps

over all atoms. In this discussion, it is assumed that L1 is a parallel loop whereas L2 is a sequential one.
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L1: do i = 1, NATOM
L2: do index = 1, INB(i)

j = Partners(i, index)
Calculate dF (x, y and z components)
Subtract dF from Fj
Add dF to Fi

end do
end do

FIGURE 11.4 The nonbonded force calculation loop from CHARMM.

The loop iterations of L1 are distributed over processors. All computation pertaining to the iteration

i of L1 is carried out on a single processor, so that loop L2 does not need to be parallelized. It

is assumed that all atoms within a given cutoff radius interact with each other. The array Partners

(i, *) lists all the atoms that interact with atom i. The inner loop calculates the three force components

(x, y, z) between atom i and atom j (van der Waal’s and electrostatic forces). They are then added to

the forces associated with atom i and subtracted from the forces associated with the atom j. The force

array elements are partitioned in a way as to reduce interprocessor communication in the nonbonded

force calculation loop.

The CHAOS runtime library [24] has been developed to efficiently handle problems that consist of

a sequence of clearly demarcated concurrent computational phases. Solving such concurrent irregular

problems on distributed memory machines using CHAOS runtime support involves six major steps.

The first four steps concern mapping data and computations onto processors. The next two steps

concern analyzing data access patterns in a loop and generating optimized communication calls. A

brief description of these phases is given next. Initially, arrays are decomposed into either regular or

irregular distributions.

• A. Data distribution. Phase A calculates how data arrays are to be partitioned by making use

of partitioners provided by CHAOS or by the user. The CHAOS library supports a number of

parallel partitioners that use heuristics based on spatial positions, computational load, connec-

tivity, etc. The partitioners return an irregular assignment of array elements to processors; this

is stored as a CHAOS construct called the translation table. A translation table is a globally

accessible data structure that lists the home processor and offset address of each data array

element. The translation table may be replicated, distributed regularly or stored in a paged

fashion, depending on storage requirements.

• B. Data remapping. Phase B remaps data arrays from the current distribution to the newly

calculated irregular distribution. A CHAOS procedure remap is used to generate an optimized

communication schedule for moving data array elements from their original distribution to the

new distribution.

• C. Loop iteration partitioning. This phase determines how loop iterations should be partitioned

across processors. A large number of possible alternative schemes exist for assigning loop

iterations to processors based on optimizing load balance and communication volume. The

CHAOS library uses the almost-owner-computes rule to assign loop iterations to processors.

Each iteration is assigned to the processor that owns a majority of data array elements accessed

in that iteration. This heuristic is biased toward reducing communication costs.

• D. Remapping loop iterations. This phase is similar to phase B. The indirection array elements

are remapped to conform with the loop iteration partitioning. For example, in Figure 11.3, once

loop L2 is partitioned, indirection array elements edge1(i) and edge2(i) used in iteration i are

moved to the processor that executes that iteration.
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• E. Inspector. Phase E carries out the preprocessing needed for communication optimizations

and index translation.

• F. Executor. Phase F uses information from the earlier phases to carry out computation and

communication. Communication is carried out by data transportation primitives of the CHAOS

library, which use communication schedules constructed in Phase E. It should be noted that the

Phase F is typically executed many times in real application codes; however, phases A through

E are executed only once if the data access patterns do not change. When programs change

data access patterns but maintain good load balance, phases E and F are repeated. If programs

require remapping of data arrays from the current distribution to a new distribution, all phases

are executed again.

A wide range of languages such as Vienna FORTRAN, pC++, FORTRAN D and HPF provide a

rich set of directives that allow users to specify desired data decompositions. With these directives,

compilers can partition loop iterations and generate the communication required to parallelize the

code. The discussion that follows is presented in the FORTRAN D context. However, the same could

be extended for other languages. The following discussion involves existing FORTRAN D language

support and compiler performance for irregular problems.

FORTRAN D provides users with explicit control over data partitioning using DECOMPOSI-

TION, ALIGN and DISTRIBUTE directives. In FORTRAN D a template, called a distribution, is

declared and used to characterize the significant attributes of a distributed array. The distribution fixes

the size, dimension and way in which the array is to be partitioned between processors. A distribution

is produced using two declarations. The first declaration is DECOMPOSITION. Decomposition

fixes the name, dimensionality and size of the distributed array template. The second declaration is

DISTRIBUTE. Note that DISTRIBUTE is an executable statement and specifies how a template is

to be mapped onto the processors. FORTRAN D provides the user with a choice of several regular

distributions. In addition, a user can explicitly specify how a distribution is to be mapped onto

the processors. A specific array is associated with a distribution using the FORTRAN D statement

ALIGN. In the following example, D is declared to be a two-dimensional decomposition of size

N × N. Array A is then aligned with the decomposition D. Distributing decomposition D by

(*,BLOCK) results in a column partition of arrays aligned with D. A detailed description of the

language can be found in Fox et al. [27].

S1 REALA(N, N)

S2 C$ DECOMPOSITION D(N, N)

S3 C$ ALIGN A(I, J) with D(I, J)

S4 C$ DISTRIBUTE D(∗, BLOCK)

The data distribution specifications are then treated as comment statements in a sequential machine

FORTRAN compiler. Hence, a program written with distribution specifications can be compiled and

executed on a sequential machine; this ensures portability.

FORTRAN D supports irregular data distributions and dynamic data decomposition (i.e., changing

the alignment or distribution of a decomposition at any point in the program during the course of

execution). In FORTRAN D, an irregular partition of distributed array elements can be explicitly

specified. Figure 11.5 depicts an example of such a FORTRAN D declaration. In statement S3 of

this figure, two 1D decompositions, each of size N, are defined. In statement S4, decomposition reg

is partitioned into equal sized blocks, with one block assigned to each processor. In statement S5,

array map is aligned with distribution reg. An array map is used to specify (in statement S7) how

distribution irregularity is to be partitioned between processors. An irregular distribution is specified

using an integer array; when map(i) is set equal to p, element i of the distribution irregularity is
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S1 REAL*8 x(N),y(N)
S2 INTEGER map(N)
S3 C\$ DECOMPOSITION reg(N),irreg(N)
S4 C\$ DISTRIBUTE reg(block)
S5 C\$ ALIGN map with reg
S6 ... set values of map array using some mapping method ..
S7 C\$ DISTRIBUTE irreg(map)
S8 C\$ ALIGN x,y with irreg

FIGURE 11.5 Fortran D irregular distribution.

assigned to processor p. A data partitioner can be invoked to set the values of the permutation array.

Support for irregular distributions has been provided by Vienna FORTRAN [21] as well.

The following shows an irregular FORTRAN 90D FORALL loop:

L2 :

FORALL (i = 1 : nedge)

S1 REDUCE (SUM, y(edge1 (i)), f(x(edge1 (i)), x(edge2 (i))))

S2 REDUCE (SUM, y(edge2 (i)), g(x(edge1 (i)), x(edge2 (i))))

END FORALL

In this code fragment, loop L2 represents a sweep over the edges of an unstructured mesh. Because

the mesh is unstructured, an indirection array must be used to access the vertices during a loop over

the edges. In loop L2, a sweep is carried out over the edges of the mesh and the reference pattern

is specified by integer arrays edge1 and edge2. Loop L2 carries out reduction operations that are

the only types of dependency between different iterations of the loop in which they may produce

a value to be accumulated (using an associative and commutative operation) in the same array

element. Loop L2 represents a sweep over the edges of a mesh in which each mesh vertex is updated

using the corresponding values of its neighbors (directly connected through edges). Each vertex

of the mesh is updated as many times as the number of neighboring vertices. The implementation

of the FORALL construct in FORTRAN D follows copy-in-copy-out semantics; that is, the loop-

carried dependencies are not defined. In the present implementation, loop-carried dependences that

arise due to reduction operations are allowed. The reduction operations are specified in a FORALL

construct using the FORTRAN D REDUCE construct. Reduction inside a FORALL construct is

important for representing computations such as those found in sparse and unstructured problems.

This representation also preserves explicit parallelism available in the underlying computations.

Once data arrays are partitioned, computational work must also be partitioned. One convention

is to compute a program assignment statement S in the processor that owns the distributed array

element on the lhs of S. This convention is normally referred to as the owner-computes rule. If the

lhs of S references a replicated variable, then the work is carried out in all processors. One drawback

to the owner-computes rule in sparse codes is that communication might be required within loops,

even in the absence of loop-carried dependencies. For example, consider the following loop:

FORALL i = 1, N

S1 x ( ib ( i ) ) = . . . . . .

S2 y ( ia ( i ) ) = x ( ib ( i ) )

END FORALL

This loop has a loop-independent dependence between S1 and S2, but no loop-carried depen-

dencies. If work is assigned using the owner-computes rule, for iteration i, statement S1 would be
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computed on the owner of x(ib(i)), OWNER(x(ib(i))), whereas statement S2 would be computed

on the owner of y(ia(i)), OWNER(y(ia(i))). The value of y(ib(i)) would have to be communicated

whenever OWNER(x(ib(i))) = OWNER(y(ia(i))). In FORTRAN D and Vienna FORTRAN, a user

can specify on which processor to carry out a loop iteration using the ON clause. For example, in

FORTRAN D, a loop could be written as:

FORALL i = 1, N on HOME ( x (i) )

S1 x(ib (i) ) = . . . . . .

S2 y(ia (i) ) = x ( ib (i) )

END FORALL

This means that iteration i must be computed on the processor on which x(i) resides, where the

sizes of arrays ia and ib are equal to the number of iterations. A similar HPF directive EXECUTE-

ON-HOME, proposed in the journal of development, provides such a capability. A method proposed

by Ponnusamy et al. [68] employs a scheme that executes a loop iteration on the processor that is

the home of the largest number of distributed array references in that iteration. This is referred to as

the almost owner computes rule.

Thus far, the runtime support for irregular problems has been presented in the context of the

FORTRAN D system; these methods can be used in HPF compilers as well. The current version

of HPF does not support nonstandard distributions. However, HPF can indirectly support such

distributions by reordering array elements in ways that lead to reduced communication requirements.

Applications scientists have frequently employed variants of this approach when porting irregular

codes to parallel architectures.

There are also other efforts for handling irregular data accesses within a data parallel framework.

In [79], the authors extend the functionality of data parallel languages to address sparse codes with an

efficient code generation. Ujaldon et al. [80] describe novel methods for the representation and dis-

tribution of such data on distributed memory message passing, and propose simple language features

that permit the user to characterize a matrix as “sparse” and specify the associated representation.

Together with the data distribution for the matrix, this enables the compiler and runtime system to

translate sequential sparse code into explicitly parallel message-passing code. They develop new

compilation and runtime techniques, which focus on achieving storage economy and reducing com-

munication overhead in the target program. The overall result is a powerful mechanism for dealing

efficiently with sparse matrices in data parallel languages and their compilers for distributed-memory

message-passing architectures.

Some recent work has focused on optimizing semiregular distributions. For example, Chakrabarti

and Banerjee [18] demonstrate how efficient support for semiregular distributions can be incorporated

in a uniform compilation framework for hybrid applications. Their strategy performs separate analy-

ses for regular references and irregular references in a given hybrid application. After these analyses,

the compiler is able to generate code to the PILAR runtime library. The compiler inserts calls to

build up the preprocessing data structures, known as the inspector. This phase contains calls to the

runtime library for generating translation tables and the trace arrays for every different access pattern.

Calls are added for building the communication schedules once the translation tables and arrays are

determined. The next phase is usually called the executor, where interprocessor communication takes

place using the schedules generated in the first phase. The runtime processing includes building up

of translation information for semiregular and irregular distributions, generation of trace arrays for

the irregular references and computation of communication schedules. A significant feature of their

runtime library is that it supports multiple internal representations suitable for pure regular, pure

irregular and hybrid accesses. Experimental results on a 16-processor IBM SP-2 message-passing

machine for a number of sparse applications using semiregular distributions show that such a scheme

is feasible.
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11.8 Input and Output Compilation

Despite the fact that the parallel file systems and runtime libraries for I/O-intensive computations

provide considerable I/O performance, they require a considerable effort from the user as well.

As a result, the user-optimized parallel I/O-intensive applications both consume precious time

of the programmer who instead should focus on higher aspects of the program and also are not

portable across a wide variety of distributed memory parallel machines (as each machine has its own

application program interface [API] and support for I/O).

In this section, we concentrate on compiler techniques to optimize the I/O performance of scientific

applications. In other words, we give the responsibility of keeping track of data transfers between

disk subsystems and memory of parallel processors to the compiler. The main rationale behind this

approach is the fact that the compiler is sometimes in a position to examine the overall access pattern

of the application, and can perform I/O optimizations that conform to application behavior. Moreover,

a compiler can establish a coordination with the underlying distributed memory architecture, native

parallel file system of the machine and I/O libraries so that the optimizations can obtain good speedups

and execution times. An important challenge for the compiler approach to I/O on distributed memory

parallel machines is that the disk use, parallelism and communication (synchronization) need to be

considered together to obtain a satisfying I/O performance. A compiler-based approach to the I/O

problem should be able to restructure the disk resident data and computations; insert calls to the

parallel file systems or libraries or both; and perform some low-level I/O optimizations.

To elaborate more on the difficulty of designing efficient compiler optimizations, let us consider an

I/O-intensive data parallel program running on a distributed memory parallel machine. The primary

data sets of the program can be accessed from files stored on disks. Assume that the files are striped

across several disks. We can define four different working spaces [12] in which this I/O-intensive

parallel program operates: a program space that consists of all the data declared in the program,

a processor space that consists of all the data belonging to a processor, a file space that consists

of all the data belonging to a local file of a processor and finally a disk space that contains some

subset of striping units belonging to a local file. An important challenge before the compiler writers

for I/O-intensive applications is to maintain the maximum degree of locality across these spaces.

During the execution of I/O-intensive programs, data need to be fetched from external storage into

memory. Consequently, performance of such a program depends mainly on the time required to

access data. To achieve reasonable speedups, the compiler or user needs to minimize the number of

I/O accesses. One way to achieve this goal is to transform the program and data sets such that the

localities between those spaces are maintained. This problem is similar to that of finding appropriate

compiler optimizations to enhance the locality characteristics of in-core programs; however, due to

the irregular interaction between working spaces, it is more difficult. To improve the I/O performance,

any application should access as much consecutive data as possible from disks. In other words,

the program locality should be translated into spatial locality in disk space. Because maintaining

the locality in disk space is very difficult in general, compiler optimizations attempt to maintain the

locality in the file space instead.

Early work on optimizing the performance of I/O subsystem by compilation techniques came from

researchers dealing with virtual memory issues. The most notable work is from Abu-Sufah et al. [1],

which deals with optimizations to enhance the locality properties of programs in a virtual memory

environment. Among the program transformations used are loop fusion, loop distribution and tiling

(page indexing).

More recent work has concentrated on compilation of out-of-core computations using techniques

based on explicit file I/O. The main difficulty is that neither sequential nor data parallel languages

like HPF provide the appropriate framework for programming I/O-intensive applications. Work in

the language arena offered some parallel I/O directives [16] to give hints to the compiler and runtime
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system about the intended use of the disk resident data. Because implementation of these language

directives strongly depends on the underlying system, no general consensus exists on what kinds of

primitives should be supported and how. Generally, the two feasible ways to give compiler support to

I/O intensive programs are (1) using parallel file systems and (2) using parallel runtime libraries. The

research has generally concentrated on using runtime libraries from a compilation framework [16].

An I/O-intensive program running on a distributed memory machine can be optimized in two

ways:

• Computation transformations [13, 66]

• Data transformations [54]

The techniques based on computation transformations attempt to choreograph I/O, given high-

level compiler directives mentioned earlier. The computation transformations used by the compiler

for handling disk resident arrays can roughly be divided into two categories: (1) approaches based on

tiling and (2) approaches based on loop permutations. Unlike in-core computation, where main data

structures can be kept in memory, in I/O-intensive applications tiling is a necessity. The compiler

should stage the data into memory in small granules called data tiles. The computation can only

be performed on data tiles currently residing in memory. The computation required for other data

tiles should be deferred until they are brought into memory [66]. By using the information given

by directives, the compiler statically analyzes the program and performs an appropriate tiling. Note

that these directives can be handled along with the ALIGN and DISTRIBUTE directives of the HPF.

After tiling, the compiler has to insert the necessary I/O statements (if any) into program. Another

important issue is to optimize the spatial locality in files as much as possible. This can be performed

by permuting the tiling loops in the nest. Alternatively, permutation can be applied before the tiling

transformations are performed. Given the fact that the accesses to the disk are much slower than

accesses to processor registers, cache memory and main memory, optimizing spatial locality in files

to minimize number as well as volume of the I/O transfers is extremely important.

Although for many applications, transformation based on reordering computations is quite success-

ful, for some applications to obtain the best I/O performance, data in files should also be redistributed

[54]. Unfortunately, although the computation transformations can get full benefit from the work that

has been done for cache memories, there has not been much interest on data transformations until

recently. This is especially true for disk resident data consumed by parallel processors. The main

issue in this situation is to reach a balance between optimizing locality and maintaining a decent level

of parallelism. More advanced techniques requiring unified data and computation transformations

are necessary if future compilers for I/O-intensive applications are to be successful. Of course, all the

compiler transformations performed to optimize disk performance of I/O-intensive programs should

be followed by techniques for optimizing the accesses to data tiles currently residing in memory.

Fortunately, many efforts are under way in academia for optimizing the main memory and cache

performance [82, 83].

To further illustrate compilation for high-performance I/O, let us focus on a technique used for

compiling out-of-core applications, details of which can be found in [56]. To translate out-of-core

programs to an efficient node program (i.e., the program that can run on each node of a message-

passing parallel architecture), in addition to the steps used for in-core compilation, the compiler

also has to schedule explicit I/O accesses to data on disks. To accomplish this, the compiler has to

take into account the data distribution on disks, the number of disks used for storing data and the

prefetching and caching strategies available. The portions (known as data tiles or simply tiles) of local

arrays currently required for computation are fetched from disk into memory. The larger the tiles the

better, because the number of disk accesses is reduced. At a given time, each processor performs

computations on the data in its tiles. Notice that the node memory should be divided suitably among

tiles of different out-of-core local arrays. Thus, during the course of execution, a number of data
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DO i = , , DO IT = , ,

DO j = , , DO JT = , ,

computation read data-tile(s) from local file(s)

ENDDO j handle communication and storage of nonlocal data

ENDDO i DO IE = , ,

DO JE = , ,

(a) perform computation on data-tile(s) to compute

the new data values

ENDDO JE

DO IT = , , ENDDO IE

DO JT = , , handle communication and storage of nonlocal data

readdata-tile(s) from local file(s) write data-tile(s) into local file(s)

execution ENDDO JT

write data-tile(s) into local file(s) ENDDO IT

ENDDO JT

ENDDO IT (b)

(c)

FIGURE 11.6 (a) Example loop nest; (b) resulting node program; (c) simplified node program.

tiles belonging to a number of different out-of-core local arrays are brought into memory, the new

values for these data-tiles are computed and the tiles are stored back into appropriate local files, if

necessary.

It should be noted that, for now, we are concentrating on the compilation of a single-loop nest that

accesses a number of out-of-core arrays. The compilation of an out-of-core application consists of

two phases. In the first phase, called the in-core phase, the out-of-core global arrays in the source HPF

program are partitioned according to the mapping information provided by compiler directives and

the bounds for each local out-of-core array file are computed. Array expressions are then analyzed

to compute communication sets. In other words, compilation during this phase proceeds in the same

way as an in-core HPF compiler. The second phase, called the out-of-core phase, involves adding

appropriate statements to perform explicit I/O and communication. The local arrays are first tiled

based on the amount of node memory available in each processor. The resulting tiles are analyzed

for communication and I/O, and finally the loops are modified to insert necessary I/O calls.

Consider the loop nest shown in Figure 11.6(a), where Lk , Uk and Sk are the lower bound, upper

bound and step size for loop k, respectively. A key aspect of the compilation process is the use of

tiling. Tiling (also known as blocking) [83] is a technique used to improve locality and parallelism,

and is a combination of strip mining and loop permutation. It creates blocked (submatrix) versions

of programs; when applied to a loop, it replaces it with two loops: a tiling loop and an element loop.

The loop nest in Figure 11.6(a) can be translated by the compiler into the node program shown in

Figure 11.6(b); in this translated code, the loops IT and JT are the tiling loops, and loops IE and JE

are the element loops. Communication is allowed only at tile boundaries (outside the element loops).

It should be emphasized that the communication of the nonlocal data may involve extra file

I/O on the owner side if the requested data are not currently available in the local memory of the

owner processor [12]. In the rest of the chapter, for the sake of clarity, we write this translated

version as shown in Figure 11.6(c). All communication statements and element loops are omitted

and in the execution part, each reference inside the element loops is replaced by its corresponding

submatrix version. For example, a reference such as A(i,j) to an out-of-core array A can be replaced

by A[IT, JT]. We also show the bounds and the step sizes symbolically to keep the presentation
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IT + S
IT

-1

JT + S
JT

-1

IT

JT

A[IT,JT]
(a data tile)

FIGURE 11.7 A data tile and its coordinates.

simple. Without loss of generality, the original nests in this chapter, such as those in Figure 11.6(a),

can be assumed to iterate from 1 to n (an upper bound) with unit stride. A reference such as

A[IT, JT] denotes a data tile of size SIT × SJT from file coordinates (IT , JT ) as upper left corner

to (IT + SIT − 1, JT + SJT − 1) as lower right corner. In other words, such a reference represents

a block of data instead of a single data element (see Figure 11.7). A reference such as A[IT, 1:n], on

the other hand, denotes a data tile of size SIT × n from (IT , 1) to (IT + SIT − 1, n) (i.e., a block

of SIT consecutive rows of the out-of-core matrix A).

Because the I/O time (cost) is the dominating term in the overall cost expression in out-of-

core computations and node memory is at a premium, the proposed techniques decompose the

node memory among competing out-of-core local arrays such that total I/O time is minimized.

Experience with out-of-core applications demonstrates that partitioning the node memory equally

among competing out-of-core local arrays generally results in poor performance.

We now explain a three-step heuristic approach for optimizing I/O in out-of-core computations.

First, we should explain the distinction between file layouts and disk layouts. Depending on the

storage style used by the underlying file system, a file can be striped across several disks. Accordingly,

an I/O call in the program may correspond to several system calls to disks. The technique described

in this text attempts to reach the optimized file layouts and to minimize the number of I/O calls to the

files. Of course, a reduction in I/O calls to files leads, in general, to a reduction in calls to the disks.

The relationship, though, is system dependent. To illustrate the significance of I/O optimizations,

we consider the example shown in Figure 11.8(a), which assumes that the arrays A, B and C are

out-of-core and reside on (logical) disk in column-major order. It should be noted that in all HPF

illustrations provided in this chapter, the compiler directives apply to data on files [13]. For example,

a directive such as DISTRIBUTE X(BLOCK, BLOCK) ONTO P(4) partitions the out-of-core array

X in (BLOCK, BLOCK) fashion across the local disks of four processors.

The compilation is performed in two phases as described before. In the in-core phase, using

the array distribution information, the compiler computes the local array bounds and partitions the

computation among processors. It then analyzes the local computation assigned to a processor to

determine communication sets. In the second phase, tiling of the out-of-core data is carried out using

the information concerning available node memory size. The I/O calls to fetch necessary data tiles for

A, B and C are inserted and finally the resulting node program with explicit I/O and communication

calls is generated. Figure 11.8(b) shows the resulting simplified node program (tiling loops) without

any I/O optimization having been performed. Note that this translation is a straightforward extension

of the in-core compilation strategy. Although it requires a relatively simple effort to generate this

code, the performance of this code may be rather poor.

Our goal is to automatically derive data and computation transformations for out-of-core codes.

The loop bounds and array subscripts are assumed to be affine functions of the enclosing loop indices

and symbolic constants. We assume HPF-like distributions such as (BLOCK, *), (*, BLOCK) and
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PARAMETER (n=...,p=...) DO IT = LIT ,UIT ,SIT
REAL A(n,n), B(n,n), C(n,n) DO JT = LJT ,UJT ,SJT

!hpf$ PROCESSORS P(p) read data-tile for A

!hpf$ TEMPLATE D(n) DO KT = LKT ,UKT ,SKT

!hpf$ DISTRIBUTE D(BLOCK) ON P read data-tile for B

!hpf$ ALIGN (:,*) WITH D :: A DO LT = LLT ,ULT ,SLT
!hpf$ ALIGN (*,:) WITH D :: B read data-tile for C

DO i = Li,Ui,Si A[IT,JT]=A[IT,JT]+B[KT,IT]+C[LT,KT]+1

DO j = Lj ,Uj ,Sj ENDDO LT

DO k = Lk,Uk,Sk ENDDO KT

DO l = Ll,Ul,Sl write data-tile for A

A(i,j)=A(i,j)+B(k,i)+C(l,k)+1 ENDDO JT

ENDDO l ENDDO IT

ENDDO k (b)

ENDDO j

ENDDO i

END

(a)

DO IT = LIT ,UIT ,SIT
read data-tile for A

read data-tile for B

DO LT = LLT ,ULT ,SLT
read data-tile for C

A[IT,1:n]=A[IT,1:n]+B[1:n,IT]+C[LT,1:n]+1

ENDDO LT

write data-tile for A

ENDDO IT

(c)

FIGURE 11.8 (a) Example out-of-core loop nest; (b) node program resulting from a straightforward

compilation; (c) I/O optimized node program.

(BLOCK, BLOCK) (i.e., each dimension of an array is either block distributed or is not distributed).

As noted earlier, in out-of-core computations, the mapping directives apply to the data on files.

The loops may be imperfectly nested, but the computation inside the nest is assumed to be block-

able (tile-able). Because in out-of-core computations the size of the memory is much smaller as

compared with the size of the data involved, tiling is mandatory. Given a loop nest of depth g, loops

ia through ib can be tiled if and only if for each dependence vector (d1, d2, . . . , da, . . . , db, . . . , dg)
T ,

either (d1, d2, . . . , da−1)
T is lexicographically positive, or (da, . . . , db)

T is nonnegative. If necessary,

the compiler performs the necessary loop transformations (e.g., loop skewing) to make tiling legal.

The number of processors, problem size and size of the available memory do not need to be

known at compile time; thus, this approach involves some manipulation of symbolic expressions.

Our technique does not consider chunking — a method by which rectilinear blocks are stored in

files consecutively — because it seems difficult to choose suitable chunks for multiple loop nests

accessing common arrays given the state-of-the-art optimizing compiler technology.

Each I/O request incurs a fixed start up time in addition to a time proportional to the amount of data

requested. The start-up cost for an I/O access (e.g., file read or write), Cio, can be thought of as the
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sum of the average seek time, average rotation latency, controller delay [47] and software overhead,

to initiate the data transfer. The seek time is roughly the time needed to move the disk arm to the

desired track. The time for the requested sector to come under the disk head is called the rotation

latency. Controller delay is the time spent by the disk controller satisfying the request. Finally, the

software overhead includes the time spent in every I/O software layer (e.g., runtime system, file

system and operating system [OS]). Let the cost of reading (or writing) a single datum from (into)

a file be tio. Thus, the cost of reading (writing) of ℓ consecutive elements from (into) a file can be

modeled as T = Cio + ℓtio. This model is highly simplified and does not take into account the fact

that the file is actually striped across several disks. Our experience shows that, in general, Cio ≫ tio.

We assume that each processor has a memory of size M allocated for a given out-of-core com-

putation and this memory is divided equally among all the out-of-core local arrays. We also assume

that (for simplicity) each array is n × n, where n is also assumed to be the trip count (number of

iterations) of all the loops. For all the examples that we consider in this chapter, we assume that

dn ≤ M ≪ n2 for an integer d . The cases where n > M require a radically different compilation

strategy will be considered in a future work.

Suppose that the compiler works on square tiles of size Sa × Sa as shown in Figure 11.9(a). The

I/O cost of a tile of size Sa × Sa is SaCio + S2
a tio and n2/(pS2

a ) of these tiles are read. The total

I/O cost of the out-of-core array A is, then, TA = (n2/(S2
ap))[SaCio + S2

a tio]. The I/O costs for

the other arrays are computed similarly. Therefore, the overall I/O cost (time) of the nest shown in

Figure 11.8(b) (Toverall) considering the file reads alone can be calculated as follows:

T a
overall =

n2

pS2
a

(

SaCio + S2
a tio +

n(SaCio + S2
a tio)

Sa

+
n2(SaCio + S2

a tio)

S2
a

)

=
n2Cio

pSa

+
n2tio

p
︸ ︷︷ ︸

TA

+
n3Cio

pS2
a

+
n3tio

pSa
︸ ︷︷ ︸

TB

+
n4Cio

pS3
a

+
n4tio

pS2
a

︸ ︷︷ ︸

TC

= Cio

(
n2

pSa

+
n3

pS2
a

+
n4

pS3
a

)

+ tio

(
n2

p
+

n3

pSa

+
n4

pS2
a

)

under the memory constraint 3S2
a ≤ M (with p the number of processors). TA, TB and TC denote the

I/O costs for the out-of-core arrays A, B and C, respectively. By assuming that the entire available

memory can be used (i.e., 3S2
a = M), the last of preceding formulations can be rewritten in terms of

M as:

T a
overall = Cio

(
n2

p
√

M/3
+

n3

p(M/3)
+

n4

p(M/3)
√

M/3

)

+ tio

(
n2

p
+

n3

p
√

M/3
+

n4

p(M/3)

)

.

We believe that this straightforward translation can be improved substantially by taking more care

when choosing file layouts, loop ordering and tile allocations. This technique transforms the loop

nest shown in Figure 11.8(a) to the nest shown in Figure 11.8(c), and associates row-major file layout

for arrays A and C and column-major file layout for array B; and then the technique allocates data

tiles of size Sd × n for A and C and a data tile of size n × Sd for B, as shown in Figure 11.9(d). We

have assumed that the trip counts are equal to array sizes in corresponding dimensions. Otherwise,

either trip count, if it is known at compile time (or an estimation of it based on the array size or a

value obtained by profiling), should be used instead of n. Also because the compiler reads tiles of
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FIGURE 11.9 Out-of-core local arrays and different tile allocations for the example shown in Figure 11.8. Notice that because the size of the available
memory is fixed for all memory allocations, the values for Sa, Sb, (Sc) and Sd are different from each other.
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size Sd × n and n × Sd , the tiling loops JT and KT disappear. The overall I/O cost of this new loop

order and allocation scheme is:

T d
overall =

n

pSd

(

SdCio + Sdntio + SdCio + nSd tio +
n(SdCio + Sdntio)

Sd

)

=
nCio

p
+

n2tio

p
︸ ︷︷ ︸

TA

+
nCio

p
+

n2tio

p
︸ ︷︷ ︸

TB

+
n2Cio

pSd

+
n3tio

pSd
︸ ︷︷ ︸

TC

= Cio

(
2n

p
+

n2

pSd

)

+ tio

(
2n2

p
+

n3

pSd

)

provided that 3nSd ≤ M . Again, assuming that the maximum available memory is used (i.e.,

3nSd = M), we can rewrite this last equation as:

T d
overall = Cio

(
2n

p
+

3n3

pM

)

+ tio

(
2n2

p
+

3n3

pM

)

When the maximum available memory is used, the cost for Figure 11.9(d) is much better than that

of Figure 11.9(a) (the original version). Also, to keep calculations simple, we have assumed that at

most n elements can be requested in a single I/O call.

We next explain how to obtain a good combination of file layout, loop order and memory allocation,

given a single-loop nest. Later in the chapter, we show how to handle the multiple loop nest case.

Our approach consists of the following three steps:

1. Determination of the most appropriate file layouts for all arrays referenced in the loop nest

(Section 11.8.1)

2. Permutation of the loops in the nest to maximize spatial and temporal locality (Section 11.8.2)

3. Partitioning the available memory among references based on I/O cost estimation

(Section 11.8.3)

For now, we assume that the file layout for an out-of-core array may be either row-major or

column-major and only one distinct reference per array exists. To be precise, we are assuming only

one uniformly generated reference set (UGRS) [29] per array. For our purposes, all references in

a UGRS can be treated as a single reference. We later show how our approach can be extended to

handle all types of permutation-based memory layouts (i.e., row-major, column-major and higher

dimensional equivalents of these layouts) and programs with multiple references to the same array.

Unless otherwise stated, the word loop in the rest of the chapter refers to tiling loop. First, we make

the following definitions.

Assume a loop index IT, an array reference R with associated file layout, and an array index position

(array dimension, or subscript position) r . Also assume a data tile with size S in each dimension

(subscript position) except rth dimension where its size is n provided that n = �(N) ≫ S, where

N is size of the array in rth dimension. Then, Index I/O Cost of IT with respect to R, layout and

r is the number of I/O calls required to read such a tile from the associated file into memory, if

IT appears in the rth position of R; otherwise Index I/O Cost is zero. Index I/O Cost is denoted

by ICost(IT , R, r, layout) where layout can be either row-major (row-major) or column-major

(col-major).

Assume a file layout, Basic I/O Cost of a loop index IT with respect to a reference R is the sum

of index I/O costs of IT with respect to all index positions of reference R. That is:

BCost(IT , R, layout) =
∑

r

ICost(IT , R, r, layout)
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Index Reference Layout BCost Index Reference Layout BCost

IT A�IT� JT � col-major S JT A�IT�JT � col-major n
IT A�IT� JT � row-major n�p JT A�IT�JT � row-major S
IT B�KT� IT � col-major n�p JT B�KT� IT � col-major �
IT B�KT� IT � row-major S JT B�KT� IT � row-major �
IT C�LT�KT � col-major � JT C�LT�KT � col-major �
IT C�LT�KT � row-major � JT C�LT�KT � row-major �

KT A�IT� JT � col-major � LT A�IT�JT � col-major �
KT A�IT� JT � row-major � LT A�IT�JT � row-major �
KT B�KT� IT � col-major S LT B�KT� IT � col-major �
KT B�KT� IT � row-major n LT B�KT� IT � row-major �
KT C�LT�KT � col-major n LT C�LT�KT � col-major S
KT C�LT�KT � row-major S LT C�LT�KT � row-major n

FIGURE 11.10 BCost values for the program show in Figure 11.8 (p is the number of processors).

A

A

Array

S + n + 0 + 0

n/p + S + 0 + 0

ACost

B

B

Array

n/p + 0 + S + 0

S + 0 + n + 0

ACost

C

C

Array

0 + 0 + n + S

0 + 0 + S + n

ACostLayout

col-major

row-major

Layout

col-major

row-major

Layout

col-major

row-major

FIGURE 11.11 ACost values for the program shown in Figure 11.8.

Notice that BCost function can be used in two different ways: (1) if IT is fixed and (R,layout) pair

is changed, it gives the I/O cost induced by loop index IT for different local array layouts, and (2)

if (R,layout) pair is fixed and IT is changed over all loop indices in the nest, then it gives the I/O cost

induced by R with the associated layout. The following definition employs the latter usage.

Array Cost of an array reference R, assuming a layout, is the sum of BCost values for all loop

indices with respect to reference R. In other words:

ACost(R, layout) =
∑

IT

BCost(IT , R, layout)

11.8.1 Determining File Layouts

The heuristic for determining file layouts for out-of-core local arrays first computes the ACost values

for all arrays. It then chooses the combination that allows the compiler to perform efficient file

accesses. Consider the statement A[IT , JT ] = A[IT , JT ] + B[KT, IT ] + C[LT, KT ]+1 in

Figure 11.8(b). The BCost values are computed from ICost values as described in the last subsec-

tion. For example, ICost (IT , A[IT , JT ], 1, col-major) is S, because S I/O calls are needed to

read a data-tile of size n × S from associated file with column-major layout. On the other hand,

ICost(IT , A[IT , JT ], 2, col-major) is 0, because the loop index IT does not appear in the second

subscript position of A[IT , JT ]. Other ICost values can be computed similarly. Thus, for example:

BCost(IT , A[IT , JT ], col-major) = ICost(IT , A[IT , JT ], 1, col-major)

+ ICost (IT , A[IT ], 2, col-major)

= S + 0

= S

For our loop nest, the BCost values are given in Figure 11.10. By using these values, the array costs

(ACost values) for the out-of-core arrays A, B and C can be calculated, as shown in Figure 11.11.

Notice that ACost values are listed term by term and each term corresponds to the BCost of a

loop index (IT, JT, KT and LT, in that order) under the given layout of the file. Next, our heuristic
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Combination Array A Array B Array C Cost

1 col-major col-major col-major �S � n�p� � n� �S � n� � S
2 col-major col-major row-major �S � n�p� � n� �S � n
3 col-major row-major col-major �S � n� �n� S
4 col-major row-major row-major �S � n� �S � n� � n
5 row-major col-major col-major �n�p� S � �S � n� � S
6 row-major col-major row-major �n�p� S � �S � n
7 row-major row-major col-major �n�p� S� � S � �n� S
8 row-major row-major row-major �n�p� S� � S � �n� S� � n

FIGURE 11.12 Different layout combinations for the program shown in Figure 11.8.

considers all possible (row-major and column-major) layout combinations by summing up the ACost

values for the components of each combination term by term. Because, in our example eight possible

combinations exists, the term-by-term additions of ACost values are obtained (Figure 11.12).

The order of a term is the greatest symbolic value it contains. For example the order of (S + n/p)

is n whereas the order of (S + 0) is S. A term that contains neither n nor S is called a constant-order

term.

After creating a table of layout combinations term by term, our layout determination algorithm

chooses the combination with the minimum number of n-order terms. If more than one combination

occurs with the minimum number of n-order terms, we choose the one with the minimum (symbolic)

cost. It is easy to see from Figure 11.12 that for our example, row-major file layout for the out-of-core

arrays A and C and column-major file layout for the array B (i.e., combination 6) form a suitable

(minimum I/O cost) combination, because it contains two n-order terms only: 2n/p and n. The other

two terms in this combination are of the S-order.

We try to minimize the number of n-order terms because each n-order term indicates that the I/O

cost of performing a read (or write) with the associated loop index in the innermost loop is in the

order of n. Minimizing the number of n-order terms maximizes the number of constant-order and

S-order terms, which, in turn, results in optimized I/O accesses.

11.8.2 Loop Order

After selecting file layouts for each array, our compiler next determines an optimum (tiling) loop

order that enables efficient file accesses.

The Total I/O Cost of a loop index IT is the sum of the Basic I/O costs (BCost) of IT with respect

to each distinct array reference it encloses. Generally speaking, TCost(IT ) is the estimated I/O cost

caused by loop IT when all array references are considered, that is:

T Cost(IT ) =
∑

R,layoutR

BCost(IT ,R, layoutR)

where R is the array reference and layoutR is the layout of the associated file as determined in the

previous step (Section 11.8.1).

The algorithm for desired loop permutation is rather simple:

1. Calculate TCost(IT ) for each tiling loop IT.

2. If loop permutation is legal, then permute the tiling loops from outermost to innermost position

according to nonincreasing values of TCost; if loop permutation is not legal, then the algorithm

proceeds to the memory allocation step (Section 11.8.3).

3. Apply necessary loop interchanges to improve the temporal locality for (the tile of) the reference

undergoing an update. This step is optional and prevents the file-write operation from occurring

at innermost tiling loops.
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+ n S C

n n n n

S n S S

C n S C

FIGURE 11.13 Addition operation (n, S and C refer to n-order, S-order and constant-order, respectively).

Loop indices that do not have any n expression should be placed into innermost positions. Other

loop indices, however, can be interchanged with one another if doing so promotes temporal locality

for the references undergoing an update in the nest. Returning to our example, under the chosen file

layouts (combination 6 in Figure 11.12), T Cost(IT ) = 2n/p, T Cost(JT ) = S, T Cost(KT ) = 2S

and T Cost (LT ) = n. Therefore, the desired loop permutation from the outermost to innermost

position is LT, IT, KT, JT, assuming p ≥ 2. While considering the temporal locality for the array

written to, the compiler interchanges LT and IT, and reaches the order IT, LT, KT, JT.

A simple implementation of the functions defined so far (e.g., BCost, ACost and TCost) can

be based on a suitable representation of different order terms. The compiler attaches any one of

three states for each computation (and term): n (for n-order), S (for S-order) and C (for constant-

order). Consequently, the addition operation used in our functions can be implemented as shown in

Figure 11.13.

11.8.3 Memory Allocation

Because each node has a limited amount of memory and, in general, a loop nest may contain a number

of out-of-core arrays, the node memory should be partitioned among these out-of-core arrays suitably

so that the total I/O cost is minimized.

We assume that the size of every array along each dimension is greater than one. Given an array and

an associated layout, we define the layout-conformant position as the index of the fastest changing

dimension of the array in the layout. For column- and row-major layouts, these positions are called

the column-conformant (first subscript) position and row-conformant (second subscript) position,

respectively.

Our memory allocation scheme is as follows. The compiler divides the array references in the

nest into two disjoint groups: a group whose associated files have row-major layout, and a group

whose associated files have column-major layout. For the row-major (column-major) layout group,

the compiler considers all row-conformant (column-conformant) positions in turn. If a loop index

appears in the conformant position of a reference and does not appear in any other position (except

the conformant) of any reference in that group, then it sets the tile size for the conformant position to

n; otherwise it sets the tile size to S. For all other index positions of that reference, the tile size is set

to S. After all the tile sizes for all dimensions of all array references are determined, our approach

takes the size of the available memory (M) into consideration and computes the actual value for S.

As an example, suppose that in a four-deep nest in which four two-dimensional arrays A, B, C

and D are referenced, our layout determination algorithm has assigned row-major file layout for the

arrays A, B and C, and column-major file layout for the array D. Also assume that the references to

those arrays are A[IT, KT], B[JT, KT], C[IT, JT] and D[KT, LT], where KT is the innermost loop.

Our memory allocation scheme divides those references into two groups: A[IT, KT], B[JT, KT],

C[IT, JT] in the row-major group, and D[KT, LT] in the column-major group. Because KT appears

in the row-conformant positions of A[IT, KT] and B[JT, KT], and does not appear in any other

position of any reference in this group, the tile sizes for A and B are determined as S ×n. Notice that

JT also appears in a row-conformant position (of the reference C[IT, JT]). Because it also appears in

other positions of some other references (namely, in the first subscript position of B) in this group,
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the compiler determines the tile size for C[IT, JT] as S × S. Then, it proceeds to the other group,

which contains the reference D[KT, LT] alone. Because KT is in the column-conformant position,

and does not appear at any other index position of D, the compiler allocates a data tile of size n×S for

D[KT, LT]. After those allocations the final memory constraint is determined as 3nS + S2 ≤ M .

Given a value for M , the value of S that utilizes all the available memory can easily be determined

by solving the second-order equation S2 + 3nS = M for positive S, that is:

S =

⌊√
9n2 + 4M − 3n

2

⌋

Of course, the memory constraint should be adjusted accordingly. It should be noted that after these

adjustments any inconsistency between those two groups (due to a common loop index) should

be resolved by setting the tile size to S. For example, if, for an array with row-major layout, an

innermost loop KT implies that for a certain dimension the tile size should be n, and for an array

with column-major layout, for the same dimension it should be S, then the final tile size is set to S.

For our running example (Figure 11.8), the compiler divides the array references into two groups:

A[IT, JT] and C[LT, KT] in the first group, and B[KT, IT] in the second group. Because JT and KT

appear in the row-conformant positions of the first group and do not appear elsewhere in this group,

our algorithm allocates data tiles of size S × n for A[IT, JT] and C[LT, KT]. Similarly, because KT

appears in the column-conformant position of the second group and does not appear elsewhere in

this group, our algorithm allocates a data tile of size n×S for B[KT, IT] as shown in Figure 11.9(d).

Notice that after these tile allocations, tiling loops KT and JT disappear and the node program shown

in Figure 11.8(c) is obtained.

The following discourse demonstrates that neither a fixed column-major file layout nor a fixed

row-major file layout for all arrays results in optimal I/O cost in this example.

• Figure 11.5(b). Assume a fixed column-major file layout for all arrays. In that case,

T Cost(IT ) = Sb + n/p, T Cost(JT ) = n, T Cost(KT ) = Sb + n, and T Cost(LT ) = Sb

(using the first row of Figure 11.12). Therefore (from outermost to innermost position),

KT, JT, IT, LT is the desirable loop permutation. Again, considering the temporal locality

for the array written to, the compiler interchanges KT and IT, and the order IT, JT, KT, LT are

obtained. In other words, for a fixed column-major layout, the initial loop order is the most

appropriate one. Our memory allocation scheme allocates a tile of size n × Sb for C, and tiles

of size S2
b for each of A and B as shown in Figure 11.9(b). The reason for assigning tiles of

size S2
b is that although IT and KT appear in column-conformant positions, they appear in

other positions as well. We stress that for this and the following case (fixed row-major layouts),

during memory allocation, there is only one group, and all array references belong to it. The

overall I/O cost of this approach is:

T b
overall =

n2

pS2
b

(

SbCio + S2
b tio +

n(SbCio + S2
b tio)

Sb

+
n(SbCio + nSbtio)

Sb

)

=
n2Cio

pSb

+
n2tio

p
︸ ︷︷ ︸

TA

+
n3Cio

pS2
b

+
n3tio

pSb
︸ ︷︷ ︸

TB

+
n3Cio

pS2
b

+
n4tio

pS2
b

︸ ︷︷ ︸

TC

under the memory constraint 2S2
b + nSb ≤ M .

• Figure 11.5(c). Assume a fixed row-major layout for all arrays. In that case, T Cost(IT ) =
n/p + Sc, T Cost(JT ) = Sc, T Cost(KT ) = n + Sc, and T Cost(LT ) = n (from the last

row of Figure 11.12). From the outermost to innermost position KT, LT, IT, JT is the desirable
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loop permutation. Once more considering the temporal locality, our compiler takes IT to the

outermost position. Thus, the final loop order is IT, KT, LT, JT. The compiler allocates a tile of

size Scn for A, and tiles of size S2
c for each of B and C as shown in Figure 11.9(c). The overall

I/O cost of this approach is

T c
overall =

n

pSc

(

ScCio + Scntio +
n(ScCio + S2

c tio)

Sc

+
n2(ScCio + S2

c tio)

S2
c

)

=
nCio

p
+

n2tio

p
︸ ︷︷ ︸

TA

+
n2Cio

pSc

+
n2tio

p
︸ ︷︷ ︸

TB

+
n3Cio

pS2
c

+
n3tio

pSc
︸ ︷︷ ︸

TC

under the memory constraint 2S2
c + nSc ≤ M .

It should be noted that, although for reasonable values of M these costs are better than that of the

original version, they are worse than the one obtained by our approach.

An important conclusion from the preceding analysis is that simply using the locality-enhancing

techniques originally developed for cache-main memory hierarchy (e.g., [82]) in optimizing the

out-of-core codes may not be sufficient in some cases. The main cause for this insufficiency is that

these techniques assume a fixed memory layout for all arrays referenced in loop nests. There is a

good reason for this assumption: all popular imperative languages (e.g., FORTRAN, C) use fixed

layout representations for all arrays. Therefore, adopting different layouts for different arrays would

necessitate inserting copy loops in the code that dynamically implement the desired layout at runtime.

The same languages, however, do not force any fixed file layout for multidimensional arrays; thus,

we have the flexibility of selecting different file layouts for different arrays through which the I/O

performance of out-of-core codes can be improved significantly.

11.8.4 Overall Algorithm

Figure 11.14 shows the overall algorithm for optimizing file layouts and access patterns for the single

nest case. The steps marked with •, � and ◦ belong to layout determination, loop permutation and

memory allocation sections of the algorithm, respectively.

11.9 Other Topics and Future Trends

Data parallelism is not the only form of parallelism that exists on distributed memory message-

passing machines. Chandy et al. [20] describe two parallel programming paradigms for supporting

data and task parallelism within the same framework, and show how they can be integrated. In

the task parallelism, the program consists of a set of parallel tasks that interact through explicit

communication. FORTRAN M is a language with which the programmer can exploit task level

parallelism. As noted by Chandy et al., a major advantage of task parallelism is its flexibility, that is,

its ability to exploit both structured and unstructured types of parallelism. Note that data parallelism

can only exploit structured forms of parallelism. The compiler’s job in such an environment is to take

as input a source code annotated by task parallelism related directives, detect the communication

and synchronization requirements, and optimize away communication as much as possible. In cases

where the programmer explicitly uses synchronization and communication directives and commands,

the compiler’s job is much easier.

Data parallel languages were initially focused on regular computations and then extended with

some general concepts for irregular or sparse matrix applications that do not retain the efficiency in

most of the complex cases. One of the major obstacles is formed by the fact that sparse programs
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INPUT: A loop nest that accesses a number of out-of-core array references

OUTPUT: For each out-of-core array, a le layout; for the nest a loop order; and tile sizes for each dimension of each array

NOTATION:
: a (tiling) loop index

: an array reference (may represent a UGRS)

: le layout for an out-of-core array ( row-major, column-major )

: assigned le layout for the reference

: an array dimension (index position, subscript position)

: a group of references with the same le layout

: array size (and upper bound for the loops)
: a parameter that satises

ALGORITHM:
Forall and , compute

Forall and , compute

Forall and , compute

Consider possible (row-major, column-major) layout combinations

and choose the one with the minimum number of -order terms

According to the chosen combination in the previous step, associate each array reference with a

Forall , compute

Permute the tiling loops from outermost to innermost position according to nonincreasing values of

Apply necessary loop interchange(s) to improve temporal locality

Divide the array references into s according to the le layouts of the associated le s

Forall s

Forall

If a loop index appears in the conformant position of this reference
and does not appear in any other position (except conformant) of any reference in this group,

then set the tile size for the conformant position to ; otherwise set the tile size to

If there is any conict with the previous group(s), set the tile size of the conformant position to

For all other index positions set the tile size to

Determine the value of by considering the value of

FIGURE 11.14 Overall algorithm for optimizing locality in a single-loop nest.

deal explicitly with the particular data structures selected for storing sparse matrices. This explicit

data structure handling obscures the functionality of a code to such a degree that the optimization

of the code is prohibited. A popular strategy for handling sparse matrix computations on distributed

memory machines is the inspector or executor paradigm.

An interesting research topic that needs more work is compilation for clusters of workstations.

With widespread use of clusters, we expect this problem to be even more important in future. A cluster

of workstations presents a very interesting target environment for an optimizing compiler. Because

the processors within a machine have access to shared memory and processors on different machines

communicate through message passing, the compilation framework should employ both message-

passing and shared memory compilation techniques. Obviously, this requires different parallelization

techniques than current approaches because it means combining two different compilation paradigms.

In addition to this, in a cluster environment, maintaining data locality is of critical importance because

cost (and mechanism) of a data access depends on its location within the cluster. We particularly

consider the following problems very important:

• Design and implementation of new parallelization techniques for clusters. As mentioned earlier,

these techniques should integrate message-passing and shared memory paradigms. The pur-

pose of these techniques should be minimizing intermachine communication and eliminating
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intramachine false sharing (i.e., false sharing of data between processors that share a common

address space).

• Enhancing current data locality optimization techniques to work with cluster environments.

These techniques should include both cache locality optimizations and processor locality

optimizations. The latter corresponds to ensuring that the majority of data references (that

miss in cache) are satisfied from local memories instead of remote memories.

• Integrating locality optimizations and parallelization techniques in a unified framework. This

framework should employ both loop transformations and data transformations. Although loop

transformations are local optimizations in the sense that they optimize a given program by

processing one loop at a time, their application to the program is constrained by inherent data

dependences. The data (or memory layout) transformations, on the other hand, are not affected

by data dependences. However, modifying memory layout of a given data structure has a global

effect in the program, thereby rendering the job of selecting a suitable memory layout for a

given data structure very difficult. In principle, the best locality performance should be obtained

using some combination of loop and data transformations. The research on this topic should

investigate combined loop and data transformations for cluster environments. To investigate the

trade-offs between locality enhancing transformations and parallelism optimizations, accurate

cost formulations (for data accesses and communication) should be developed.

• Automatic (compiler-directed) optimization of sparse codes in cluster environments. The objec-

tive here should be embedding techniques that have previously been used in sparse runtime

libraries in an optimizing compiler. The resulting framework should also be compared against

existing sparse libraries.

• Integrating high-performance compiler optimizations with I/O optimizations discussed earlier

in a unified framework. This is important because many data-intensive applications are also

I/O intensive. In addition, the optimizations that target I/O behavior might conflict with par-

allelization and data locality optimizations (as both manipulate data structures and program

constructs). The work is needed on techniques to resolve these conflicts when they arise.

11.10 Conclusions

This chapter presented an overview of existing techniques for distributed memory compilation

and pointed to promising future directions. Given that distributed memory compilation techniques

are vast and varied, we focused only on the most important compilation problems and strategies.

These included techniques for data partioning, communication detection and optimization, locality

optimization, handling I/O and irregular problems and many optimizations for each area.

Although many ways of generating code exist for a distributed memory architecture (depending

on the type of underlying abstraction, the communication primitives and the programming interface),

most of this chapter focuses on message-passing machines with two-way communication primitives

and on data parallelism. This chapter should be seen as a tutorial and guide to learning about prevailing

techniques for compiling for distributed memory machines, and about potential future directions.
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12.1 Introduction

Distributed memory machines (DMMs) offer great promise because of their scalability and potential

for enormous computational power. Yet, their widespread use has been hindered by the difficulty of

parallel programming. Scientific programmers have had to write explicitly parallel code, and face

many efficiency issues in deriving satisfactory performance. When a parallel program is run on a

DMM, data need to be distributed among processors, with each processor having its own local address

space; and explicit communication must be provided for the exchange of data among processors that

is inherent in many programs. The processors in a DMM communicate by exchanging messages

whenever a processor needs data that are located in some other processor’s local memory. This

exchanging of data through software is commonly referred to in the literature as message passing

and DMMs are usually known as message-passing computers. Local memory accesses on these

machines are much faster than those involving interprocessor communication. Deciding when to

insert messages in a program, thus implementing data and computation partitioning, and which

partitioning of data is optimal are no easy tasks; and much effort has gone into developing ways to

relieve the programmer from this burden.

Data and computation partitioning are at the heart of the compilation process or transfor-

mation of a single processor sequential program into a single program multiple data (SPMD)
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program to be run on a DMM. The main goal of parallelization of code is increased performance

measured by reasonable speedups. However, if code is not properly parallelized, the result could

be a parallelized code that may be even slower than sequential code as reported by Blume and

Eigenmann [16]. One of the main sources of this undesirable degradation in execution time is

the communication among processors and the overhead incurred by this communication. In most

situations communication is unavoidable due to the characteristics of the code; however, it can be

reduced in many instances.

The programmer faces the enormously difficult task of orchestrating the entire parallel execution.

The programmer is forced to manually distribute code and data in addition to managing communica-

tion among tasks explicitly. This task, not only is error prone and time consuming, but also generally

leads to nonportable code. Hence, parallelizing compilers for these machines have been an active

area of research from the late 1980s [17, 18, 24, 31, 48, 67, 68, 70, 80, 87]. The enormity of the task

is to some extent relieved by the hypercube programmer’s paradigm [27] where attention is paid

to the partitioning of tasks alone, while assuming a fixed data partition or a programmer-specified

(in the form of annotations) data partition [28, 31, 48, 68]. In an effort to make this task easier, the

High-Performance FORTRAN Forum met several times in 1992 and announced the first version of

high-performance FORTRAN (HPF) in May 1993. The language was further extended in a series

of meetings in 1995 and 1996. The main objective behind the efforts such as HPF, FORTRAN D,

and Vienna FORTRAN (which grew out of the earlier SUPERB effort) is to raise the level of

programming on DMMs while retaining the object code efficiency (derived, for example, from

message passing). To achieve this objective, improved compilers and runtime systems are needed in

addition to languages such as HPF.

In an important article on programming of multiprocessors, Karp [43] observed:

. . . we see that data organization is the key to parallel algorithms even on shared memory

systems . . . . The importance of data management is also a problem for people writing automatic

parallelization compilers. . . . If such compilers are to be successful, particularly on message-

passing systems, a new kind of analysis will have to be developed. This analysis will have to match

the data structures to the executable code in order to minimize memory traffic.

This chapter presents work aimed at providing this kind of analysis; in particular, we discuss in

detail linear algebra-based techniques for partitioning data and transforming programs in a coor-

dinated fashion. This chapter addresses the optimization of communication among processors in a

DMM by properly aligning data and computation, by finding good distributions and by applying

transformations that allow the use of lower overhead message-passing solutions such as message

vectorization whenever possible.

The rest of this chapter is organized as follows. Section 12.2 presents a brief overview of data map-

ping including alignment and distribution. Section 12.3 motivates the need for communication-free

partitioning and provides some examples. Section 12.4 presents detailed development and discussion

of a matrix-based formulation of the problem of determining the existence of communication-free

partitions of arrays; we then present conditions for the case of constant offset array access. In addition,

a series of examples are presented to illustrate the effectiveness of the technique for linear references;

also, we show the use of loop transformations in deriving the necessary data decompositions,

generalize the formulation for arbitrary linear references and then present a formulation that aids

in deriving heuristics for minimizing communication when communication-free partitions are not

feasible. Section 12.5 presents a method for finding good distributions of arrays and suitable (i.e.,

associated) loop restructuring transformations so that communication is minimized in the execution

of nested loops on message-passing machines. Unlike other work that focuses either on data layout or

on program transformations, this section combines both array distributions and loop transformations

resulting in good performance. The techniques described are suitable for dense linear algebra codes.

Section 12.6 presents a discussion of other work on data mapping. The chapter concludes with a

summary in Section 12.7.
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12.2 Data Mapping

Recall that data mapping onto the processors of a DMM is accomplished in data parallel languages

through a two-step process consisting of alignment followed by distribution. This section reviews

the alignment and distribution phases.

12.2.1 Overview of Alignment

Alignment in data parallel programs can take the form of static alignment, dynamic alignment and

replication of arrays. Static alignment refers to the alignment that is determined at compile time and

dynamic alignment refers to the alignment determined at runtime. Both static and dynamic alignment

can be further classified as axis, stride and reversal, and offset alignment. Static alignment is specified

in the HPF standard using the ALIGN declaration, whereas dynamic alignment is specified through

the executable statement REALIGN [36]. Similarly, static distribution is accomplished through the

DISTRIBUTE declaration and refers to compile time distribution, and dynamic distribution via the

REDISTRIBUTE executable statement at runtime.

Realignment and redistribution may be needed in those cases where the access pattern of data

changes during the course of a program. Some programs may access a particular array in one fashion

during the execution of a loop nest and then access the same array in a different fashion. For example,

we may have a loop inside which elements of an array X are computed as functions of the elements

of an array Y such as X[i] = f (Y [i]); we may then have some computation performed on X and

then another loop with an instruction X[i] = g(Y [2i + 5]) as shown next. The preceding notation

indicates that X[i] is assigned a copy of some function f or g of some element of array Y :

DO i = 1, N

X[i] = Y [i]

ENDDO

DO i = 1, N

X[i] = Y [2i + 5]

ENDDO

For the first loop it is advantageous to align X and Y identically, but the second loop dictates a

different alignment. To reduce communication, array Y needs to be realigned before the execution

of the second loop.

A common case in scientific codes involving multidimensional arrays requires transposition of

one of the arrays, for example:

DO i = 1, N

X[i, j ] = Y [i, j ]

ENDDO

DO i = 1, N

X[i, j ] = Y [j, i]

ENDDO

In this case array Y needs to be transposed between the loops. A redistribution may also arise, for

example, because the programmer decided that it was better to distribute an array in a certain manner

if the number of processors that were available was greater than or equal to some number and to

distribute it in another manner if it was otherwise [73].
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A program may also have a need for replication of arrays if doing so results in a reduction

of communication among processors or just simply because the programmer has specified it. For

example, scalars and small read only arrays may be replicated onto the processors and, in so doing,

completely eliminate the communication that could have arisen because a processor needed elements

owned by some other processor. Also, we may have to replicate a one-dimensional array onto a

multidimensional array for reasons similar to the ones previously stated. Consider the following code:

DO i = 1, N

DO j = 1, M

X[i, j ] = Y [i, j ] · Z[i]

ENDDO

ENDDO

In this code, the one-dimensional read-only array Z could be replicated such that each processor

owns a copy and thus can perform its computation without having to communicate, which would be

the case if Z is not replicated properly. In HPF terminology, we could replicate Z along the rows

or columns of a two-dimensional template to which both arrays X and Y are aligned with the result

that each processor owning an element of X and Y also owns the entire array Z.

12.2.2 Overview of Distribution

The distribution phase of the data mapping problem can be defined as the phase where the abstract

template, and thus all the arrays aligned to it, is mapped onto the physical processors. This phase

comes after the data structures have been aligned to the template. As with the alignment phase, the

distribution phase can be subdivided into static distribution and dynamic distribution.

The most commonly used distributions, which are the only ones currently available in the HPF

proposed standard [36], are the cyclic, cyclic(size), block, and block(size) distributions, where size

is a parameter that specifies the number of data items from a template to be assigned to a processor.

The cyclic distribution assigns one element to each processor in turn until all the processors assigned

to that dimension of the template are exhausted; it then assigns a new element to each processor,

and continues until all the elements on that dimension of the template are assigned. As explained by

Gupta and Banerjee [34], this distribution is of special importance when load balancing needs to be

achieved in the presence of iteration spaces where the lower or upper bound of an iteration variable

is a function of an outer iteration variable (e.g., triangular iteration spaces). On the other hand, this

type of distribution is not the best choice when a lot of nearest neighbor communication exists among

processors, in which case a block distribution would be preferred [34]. See Figure 12.1 for examples

of cyclic distributions and the code shown next for a triangular iteration space example. Note that

the lower bound for loop j is an affine function of the outer loop index variable i:

DO i = 1, N

DO j = i, N

...

ENDDO

ENDDO

The cyclic(size) distribution provides the programmer with the ability of specifying the number

of elements that the compiler should assign to each processor in a cyclic manner. Thus, cyclic(1)

produces the same effect as cyclic.
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FIGURE 12.1 Cyclic and cyclic(size) distribution examples.

The block distribution assigns a number of elements equal to the ceiling of the number of

elements of the array in a particular dimension divided by the number of processors available for that

dimension. Finally, the block(size) distribution assigns a programmer’s specified number of elements

to each processor. Examples are given in Figure 12.2. Note that both the block and the block(size)

distributions can also be obtained from the cyclic(size) distribution. Block distributions are especially

suited for rectangular iteration spaces and nearest neighbor (shift or offset) communication [34].

Skewed distributions are a more general class of distributions from which row, column, diagonal,

parallelogram, etc. distributions could be derived. Both row and column distributions are one-

dimensional distributions that can be obtained by skewing one dimension by a factor of zero with

respect to another dimension. This factor has a nonzero value for diagonal distributions. These

distributions are also referred to in the literature as hyperplanes. Skewed distributions, however

general, are not currently supported by HPF [36].
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FIGURE 12.2 Block and block(size) distribution examples.

12.3 Communication-Free Partitioning

Communication in message-passing machines could arise from the need to synchronize and from the

nonlocality of data. The impact of the absence of a globally shared memory on the compiler writer is

severe. In addition to managing parallelism, it is now essential for the compiler writer to appreciate the

significance of data distribution and decide when data should be copied or generated in local memory.

We focus on distribution of arrays that are commonly used in scientific computation. Our primary

interest is in arrays accessed during the execution of nested loops. We consider the following model

where a processor owns a data element and has to make all updates to it, and there is exactly one copy.

Even in the case of fully parallel loops, care must be taken to ensure appropriate distribution of data.

In the next sections, we explore techniques that a compiler can use to determine whether the

data can be distributed such that no communication is incurred. Operations involving two or more
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operands require that the operands be aligned, that is, the corresponding operands are stored in the

memory of the processor executing the operation. In the model we consider in this chapter, this

means that the operands used in an operation must be communicated to the processor that holds the

operand appearing on the left-hand side (lhs) of an assignment statement. Alignment of operands

generally requires interprocessor communication.

Interprocessor communication is more time consuming than instruction execution on most

message-passing machines. If insufficient attention is paid to the data allocation problem, then

the amount of time spent in interprocessor communication might be so high as to seriously

undermine the benefits of parallelism. It is therefore worthwhile for a compiler to analyze pat-

terns of data usage in determining allocation to minimize interprocessor communication. We now

present a machine-independent analysis of communication-free partitions. We make the following

assumptions:

• Exactly one copy of every array element exists and the processor in whose local memory the

element is stored is said to “own” the element.

• The owner of an array element makes all updates to the element (i.e., all instructions that modify

the value of the element are executed by the “owner” processor).

• A fixed distribution of array elements exists. (Data reorganization costs are architecture

specific.)

12.3.1 Examples of “Good” Partitions

Consider the following loop:

Example 12.1

for i = 1 to N

for j = 4 to N

A[i, j ] ← B[i, j − 3] + B[i, j − 2]

If we allocate row i of array A and row i of array B to the local memory of the same processor,

then no communication is incurred. If we allocate by columns or blocks, interprocessor communi-

cation is incurred. No data dependences occur in the preceding example; such loops are referred

to as doall loops. It is easy to see that allocation by rows would result in zero communication

because no offset in the access of B is along the first dimension. Figure 12.3 shows the partitions of

arrays A and B.

In the next example, even though a nonzero offset is along each dimension, communication-free

partitioning is possible.

row i row i

A B

FIGURE 12.3 Partitions of arrays A and B for Example 12.1.
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A B line  k+3line  k

FIGURE 12.4 Partitions of arrays A and B for Example 12.2.

Example 12.2

for i = 2 to N

for j = 3 to N

A[i, j ] ← B[i + 1, j + 2] + B[i + 2, j + 1]

In this case, row, column or block allocation of arrays A and B would result in interprocessor

communication. In this case, if A and B are partitioned into a family of parallel lines whose equation

is i + j = constant (i.e., antidiagonals), no communication results. Figure 12.4 shows the partitions

of A and B. The kth line in array A (i.e., the line i + j = k in A and the line i + j = k + 3 in array

B must be assigned to the same processor).

In the preceding loop structure, array A is modified as a function of array B; a communication-

free partitioning in this case is referred to as a compatible partition. Consider the loop skeleton in

Example12.3.

Example 12.3

for i = 1 to N

L1 : for j = 1 to N

A[i, j ] ← f (B[i, j ])

· · ·

· · ·

L2 : for j = 1 to N

B[i, j ] ← f (A[i, j ])

Array A is modified in loop L1 as a function of elements of array B whereas loop L2 modifies

array B using elements of array A. Loops L1 and L2 are adjacent loops at the same level of nesting.

The effect of a poor partition is exacerbated here because every iteration of the outer loop suffers

interprocessor communication; in such cases, the communication-free partitioning where possible is

extremely important. Communication-free partitions of arrays involved in adjacent loops are referred

to as mutually compatible partitions.
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row i

A B

column  i

FIGURE 12.5 Array partitions for Example 12.4.

In all the preceding examples, we had the following array access pattern: for computing some

element A[i, j ], element B[i′, j ′] is required where:

i′ = i + ci

and

j ′ = j + cj

where ci and cj are constants. Consider Example 11.4.

Example 12.4

for i = 1 to N

for j = 1 to N

A[i, j ] ← B[j, i]

In this example, allocation of row i of array A and column i of array B to the same processor would

result in no communication. See Figure 12.5 for the partitions of A and B in this example. Note that

i′ is a function of j and j ′ is a function of i here.

In the presence of arbitrary array access patterns, the existence of communication-free partitions

is determined by the connectivity of the data access graph, described later. To each array element

that is accessed (either written or read), we associate a node in this graph. If k different arrays are

accessed, this graph has k groups of nodes; all nodes belonging to a given group are elements of

the same array. Let the node associated with the lhs of an assignment statement S be referred to as

write(S) and the set of all nodes associated with the array elements on the right-hand side (rhs) of the

assignment statement S be called read-set(S). There is an edge between write(S) and every member

of read-set(S) in the data access graph. If this graph is connected, then no communication-free

partition exists [67].

12.4 Communication-Free Partitioning Using Linear Algebra

Consider a nested loop of the following form that accesses arrays A and B:
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Example 12.5

for i = 1 to N

for j = 1 to N

A[i, j ] ← B[i′, j ′]

where i′ and j ′ are linear functions of i and j , that is:

i′ = f (i, j) = a11i + a12j + a10 (12.1)

j ′ = g(i, j) = a21i + a22j + a20 (12.2)

With disjoint partitions of array A, can we find corresponding or required disjoint partitions

of array B to eliminate communication? A partition of B is required for a given partition of A if

the elements in that partition (of B) appear in the rhs of the assignment statements in the body of the

loop that modify elements in the partition of A. For a given partition of A, the required partitions in

B (are) referred to as its images or maps. We discuss array partitioning in the context of fully parallel

loops. Though the techniques are presented for two-dimensional arrays, these generalize easily to

higher dimensions.

In particular, we are interested in partitions of arrays defined by a family of parallel hyperplanes;

such partitions are beneficial from the point of view of restructuring compilers in that the portion of

loop iterations that are executed by a processor can be generated by a relatively simple transformation

of the loop. Thus, the question of partitioning can be stated, Can we find partitions induced by

parallel hyperplanes in A and B such that there is no communication? We focus our attention on

two-dimensional arrays. A hyperplane in two dimensions is a line; hence, we discuss techniques to

find partitions of A and B into parallel lines that incur zero communication. In most loops that occur

in scientific computation, the functions f and g are linear in i and j .

The equation:

αi + βj = c (12.3)

defines a family of parallel lines for different values of c, given that α and β are constants and at

most one of them is zero. For example:

α = 0

β = 1

defines columns, whereas:

α = −1,

β = 1

defines diagonals.

Given a family of parallel lines in array A defined by:

αi + βj = c

can we find a corresponding family of lines in array B given by:

α′i′ + β ′j ′ = c′ (12.4)

such that no communication exists among processors?
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The conditions on the solutions are at most one of α and β can be zero; similarly, at most one of

α′ and β ′ can be zero. Otherwise, the equations do not define parallel lines. A solution that satisfies

these conditions is referred to as a nontrivial solution and the corresponding partition is called a

nontrivial partition. Because i′ and j ′ are given by Equations 12.1 and 12.2, we have:

α′ (a11i + a12j + a10) + β ′ (a21i + a22j + a20) = c′

which implies:

(

α′a11 + β ′a21

)

i +
(

α′a12 + β ′a22

)

j = c′ − α′a10 − β ′a20

Because a family of lines in A is defined by αi + βj = c, we have:

α = α′a11 + β ′a21 (12.5)

β = α′a12 + β ′a22 (12.6)

c = c′ − α′a10 − β ′a20 (12.7)

A solution to the preceding system of equations would imply zero communication. In matrix

notation, we have:




a11 a21 0

a12 a22 0

−a10 −a20 1









α′

β ′

c′



 =





α

β

c





The preceding set of equations decouples into:

(

a11 a21

a12 a22

) (

α′

β ′

)

=
(

α

β

)

and

−a10α
′ − a20β

′ + c′ = c

We illustrate the use of the preceding sufficient condition with Example12.6.

Example 12.6

for i = 2 to N

for j = 2 to N

A[i, j ] ← B[i − 1, j ] + B[i, j − 1]

for each element A[i, j ], we need two elements of B. Consider the element B[i − 1, j ]. For

communication-free partitioning, the system:





1 0 0

0 1 0

1 0 1









α′

β ′

c′



 =





α

β

c





must have a solution. Similarly, considering the element B[i, j − 1], a solution must exist for the

following system as well:





1 0 0

0 1 0

0 1 1









α′

β ′

c′



 =





α

β

c
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line cBA line c+1

FIGURE 12.6 Partitions of arrays A and B for Example 12.6.

Given that there is a single allocation for A and B, the two systems of equations must admit a solution.

This reduces to the following system:

α = α′

β = β ′

c = c′ + α′

c = c′ + β ′

The set of equations reduce to α = α′ = β = β ′ which has a solution say α = 1. This implies that

both A and B are partitioned by antidiagonals. Figure 12.6 shows the partitions of the arrays for zero

communication. The relations between c and c′ give the corresponding lines in A and B.

With a minor modification of Example 12.6, Example 12.7 shows:

Example 12.7

for i = 2 to N

for j = 2 to N

A[i, j ] ← B[i − 2, j ] + B[i, j − 1]

the reduced system of equations would be:

α = α′

β = β ′

c = c′ + 2α′

c = c′ + β ′

which has a solution α = α′ = 1 and β = β ′ = 2. Figure 12.7 shows the lines in arrays A and B

that incur zero communication.

The next example shows a nested loop in which arrays cannot be partitioned such that no

communication exists.
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line cBA line c+2

FIGURE 12.7 Lines in arrays A and B for Example 12.7.

Example 12.8

for i = 2 to N

for j = 2 to N

A[i, j ] ← B[i − 2, j − 1] + B[i − 1, j − 1] + B[i − 1, j − 2]

The system of equations in this case is:

α = α′

β = β ′

c = c′ + α′ + β ′

c = c′ + 2α′ + β ′

c = c′ + α′ + 2β ′

which reduces to

α′ + β ′ = 2α′ + β ′

α′ + β ′ = α′ + 2β ′

This has only one solution α′ = β ′ = 0, which is not a nontrivial solution. Thus, no

communication-free partitioning of arrays A and B occurs.

The examples considered so far involve constant offsets for access of array elements and we

had to find compatible partitions. The next case considered is one where we need to find mutually

compatible partitions. Consider the nested loop in Example 12.9.

Example 12.9

for i = 2 to N

L1 : for j = 1 to N

A[i, j ] ← B[i − 1, j ]

· · ·

· · ·

L2 : for j = 2 to N

B[i, j ] ← A[i, j − 1]
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In this case, the accesses due to loop L1 result in the system:

α = α′

β = β ′

c = c′ + α′

and the accesses due to loop L2 result in the system:

α′ = α

β ′ = β

c′ = c + β

Therefore, for communication-free partitioning, the preceding two systems of equations must admit

a solution; thus, we get the reduced system:

α′ = α

β ′ = β

α′ = −β

which has a solution α = β ′ = 1 and α′ = β = −1. Figure 12.8 shows partitions of A and B into

diagonals.

12.4.1 Constant Offsets in Reference

We discuss the important special case of array accesses with constant offsets which occur in codes

for the solution of partial differential equations. Consider the following loop:

for i = 1 to N

for j = 1 to N

A[i, j ] ← B[i + qi
1, j + q

j

1 ]

+ B[i + qi
2, j + q

j

2 ]

+ · · · + B[i + qi
m, j + q

j
m]

i

j

i

j

BA

FIGURE 12.8 Mutually compatible partition of A and B for Example 12.9.
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where qi
k and q

j
k (for 1 ≤ k ≤ m) are integer constants. The vectors �qk = (qi

k, q
j
k ) are referred to as

offset vectors. There are m such offset vectors, one for each access pair A[i, j ] and B[i+qi
k, j +q

j
k ].

In such cases, the system of equations is (for each access indexed by k, where 1 ≤ k ≤ m):





1 0 0

0 1 0

−qi
k −q

j
k 1









α′

β ′

c′



 =





α

β

c





which reduces to the following constraints:

α = α′

β = β ′

c = c′ − qi
kα

′ − q
j
k β ′ 1 ≤ k ≤ m

Therefore, for a given collection of offset vectors, communication-free partitioning is possible, if:

c = c′ − qi
kα

′ − q
j
k β ′ 1 ≤ k ≤ m

If we consider the offset vectors (qi
k, q

j
k ) as points in 2-dimensional space, then communication-free

partitioning is possible, if the points (qi
k, q

j
k ) for 1 ≤ k ≤ m are collinear. In addition, if all

qi
k = 0, then no communication is required between rowwise partitions; similarly, if all q

j
k = 0,

then partitioning the arrays into columns results in zero communication. For zero communication

in nested loops involving K-dimensional arrays, this means that offset vectors treated as points in

K-dimensional space must lie on a K − 1 dimensional hyperplane.

In all the preceding examples, there was one solution to the set of values for α, α′, β, β ′. In the next

section, we show an example with an infinite number of solutions, and with loop transformations

playing a role in the choice of a specific solution.

12.4.2 Partitioning for Linear References and Program Transformations

In this section, we discuss communication-free partitioning of arrays when references are not constant

offsets but linear functions. Consider the loop in Example12.10.

Example 12.10

for i = 1 to N

for j = 1 to N

A[i, j ] ← B[j, i]

Communication-free partitioning is possible if the system of equations:




0 1 0

1 0 0

0 0 1









α′

β ′

c′



 =





α

β

c





has a solution where no more than one of α and β is zero and no more than one of α′ and β ′ is zero.

The set reduces to:

α = β ′

β = α′

c = c′
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This set has an infinite number of solutions. We present four of them and discuss their relative merits.

The first two equations involve four variables, fixing two of which leads to values of the other

two. For example, if we set α = 1 and β = 0, then array A is partitioned into rows. From the set of

equations, we get α′ = β = 0 and β ′ = α = 1, which means array B is partitioned into columns;

because c = c′, if we assign row k of array A and column k of array to the same processor, then no

communication occurs. See Figure 12.3 for the partitions.

A second partition can be chosen by setting α = 0 and β = 1. In this case, array A is partitioned

into columns. Therefore, α′ = β = 1 and β ′ = α = 0, which means B is partitioned into rows.

See Figure 12.9(a) for this partition. If we set α = 1 and β = 1, then array A is partitioned into

antidiagonals. From the set of equations, we get α′ = β = 1 and β ′ = α = 1, which means array

B is also partitioned into antidiagonals. Figure 12.9(b) shows the third partition. A fourth partition

can be chosen by setting α = 1 and β = −1. In this case, array A is partitioned into diagonals.

Therefore, α′ = β = −1 and β ′ = α = 1, which means B is also partitioned into antidiagonals. In

this case, the kth subdiagonal (below the diagonal) in A corresponds to the kth superdiagonal (above

the diagonal) in array B. Figure 12.9(c) illustrates this partition.

From the point of loop transformations [5, 80], we can rewrite the loop to indicate which processor

executes which portion of the loop iterations; partitions 1 and 2 are easy. Let us assume that the number

of processors is p and the number of rows and columns in N and N is a multiple of p. In such a

case, partition 1 (A is partitioned into rows) can be rewritten as:

Processor k executes (1 ≤ k ≤ p):

for i = k to N by p

for j = 1 to N

A[i, j ] ← B[j, i]

and all rows r of A such that r mod p = k (1 ≤ r ≤ N ) are assigned to processor k; all columns r

of B such that r mod p = k (1 ≤ r ≤ N ) are also assigned to processor k.

In the case of partition 2 (A is partitioned into columns), the loop can be rewritten as:

Processor k executes (1 ≤ k ≤ p) :

for i = 1 to N

for j = k to N by p

A[i, j ] ← B[j, i]

and all columns r of A such that r mod p = k (1 ≤ r ≤ N ) and all rows r of B such that rmodp = k

(1 ≤ r ≤ N ) are also assigned to processor k. Because there are no data dependences anyway, the

loops can be interchanged and written as:

Processor k executes (1 ≤ k ≤ p):

for j = k to N by p

for i = 1 to N

A[i, j ] ← B[j, i]
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A

BA column i row i

BA antidiagonal i antidiagonal i

diagonal diagonal ii

(a)

(b)

(c) B

FIGURE 12.9 Decompositions of arrays A and B for Example 12.10.



426 The Compiler Design Handbook: Optimizations and Machine Code Generation

Partitions 3 and 4 can result in complicated loop structures. In partition 3, α = 1 and β = 1. The

steps we perform to transform the loop use loop skewing and loop interchange transformations [80].

We perform the following steps:

1. If α = 1 and β = 0, then distribute the iterations of the outer loop in a round-robin manner;

in this case, processor k (in a system of p processors) executes all iterations (i, j) where

i = k, k+p, k+2p, . . . , k+N −p and j = 1, . . . , N . This is referred to as wrap distribution.

If α = 0 and β = 1, then apply loop interchange and wrap distribute the iterations of the

interchanged outer loop. If not, apply the following transformation to the index set:

(

1 0

α β

)

2. Apply loop interchanging so that the outer loop now can be stripmined. Because these loops

do not involve flow or antidependences, loop interchanging is always legal. After the first

transformation, the loop does not need to be rectangular. Therefore, the rules for interchange

of trapezoidal loops in [80] are used for performing the loop interchange.

The resulting loop after transformation and loop interchange is the following:

Example 12.11

for j = 2 to 2N

for i = max(1, j − N) to min(N, j − 1)

A[i, j − i] ← B[j − i, i]

The load-balanced version of the loop is:

Processor k executes (1 ≤ k ≤ p):

for j = k + 1 to 2N by p

for i = max(1, j − N) to min(N, j − 1)

A[i, j − i] ← B[j − i, i]

The reason we distribute the outer loop iterations in a wraparound manner is that such a distribution

results in load-balanced execution when N ≫ p.

In partition 4, α = 1 and β = −1. The resulting loop after transformation and loop interchange

is the following:

Processor k executes (1 ≤ k ≤ p):

for j = k + 1 − N to N − 1 by p

for i = max(1, 1 − j) to min(N, N − j)

A[i, j + i] ← B[j + i, i]

Next, we consider a more complicated example to illustrate partitioning of linear recurrences:

Example 12.12

for i = 2 to N

for j = 1 to N

A[i, j ] ← B[i + j, i] + B[i − 1, j ]
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The access B[i + j, i] results in the following system:





1 1 0

1 0 0

0 0 1









α′

β ′

c′



 =





α

β

c





and the second access B[i − 1, j ] results in the system:





1 0 0

0 1 0

1 0 1









α′

β ′

c′



 =





α

β

c





which together give rise to the following set of equations:

α = α′ + β ′

β = α′

α = α′

β = β ′

c = c′ + α′

which has only one solution which is α = α′ = β = β ′ = 0. Thus communication-free partitioning

has been shown to be impossible.

However, for the following loop, communication-free partitioning into columns is possible.

Example 12.13

for i = 2 to N

for j = 1 to N

A[i, j ] ← B[i + j, j ] + B[i − 1, j ]

The accesses give the following set of equations:

α = α′ + β ′

α = α′

β = β ′

c = c′ + α′

In this case, we have a solution: α = 0 and β = 1 giving α′ = 0 and β ′ = 1. Thus both A and B are

partitioned into columns.

12.4.3 Generalized Linear References

In this subsection, we discuss the generalization of the problem formulation discussed earlier on in

the current section.

Example 12.14

for i = 1 to N

for j = 1 to N

B[i′′, j ′′] ← A[i′, j ′]
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where i′, i′′, j ′ and j ′′ are linear functions of i and j , that is:

i′′ = fl(i, j) = b11i + b12j + b10 (12.8)

j ′′ = gl(i, j) = b21i + b22j + b20 (12.9)

i′ = f (i, j) = a11i + a12j + a10 (12.10)

j ′ = g(i, j) = a21i + a22j + a20 (12.11)

Thus, the statement in the loop is:

B[b11i + b12j + b10, b21i + b22j + b20] ← A[a11i + a12j + a10, a21i + a22j + a20]

In this case, the family of lines in array B are given by:

αi′′ + βj ′′ = c

and lines in array A are given by:

α′i′ + β ′j ′ = c′

Thus, the families of lines are:

Array B : α (b11i + b12j + b10) + β (b21i + b22j + b20) = c (12.12)

Array A : α′ (a11i + a12j + a10) + β ′ (a21i + a22j + a20) = c′ (12.13)

which is rewritten as:

Array B : i (b11α + b21β) + j (b12α + b22β) = c − αb10 − βb20 (12.14)

Array A : i
(

a11α
′ + a21β

′
)

+ j
(

a12α
′ + a22β

′
)

= c′ − α′a10 − β ′a20 (12.15)

Therefore, for communication-free partitioning, we should find a solution for the following system

of equations (with the constraint that at most one of α, β is zero and at most one of α′, β ′ is zero):





a11 a21 0

a12 a22 0

−a10 −a20 1









α′

β ′

c′



 =





b11 b21 0

b12 b22 0

−b10 −b20 1









α

β

c





Consider the following example:

Example 12.15

for i = 2 to N

for j = 1 to N

B[i + j, i] ← A[i − 1, j ]

The accesses result in the following system of equations:





1 0 0

0 1 0

1 0 1









α′

β ′

c′



 =





1 1 0

1 0 0

0 0 1









α

β

c
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A B

FIGURE 12.10 Partitions of arrays A and B for Example 12.15.

which leads to the following set of equations:

α′ = α + β

β ′ = α

c = c′ + α′

which has a solution α = 1, β = −1, α′ = 0, β ′ = 1. See Figure 12.10 for the partitions.

Now for a more complicated example:

Example 12.16

for i = 2 to N

for j = 2 to N

B[i + j − 3, i + 2] ← A[i − 1, j + 1]

The accesses result in the following system of equations:





1 0 0

0 1 0

1 −1 1









α′

β ′

c′



 =





1 1 0

1 0 0

3 −2 1









α

β

c





which leads to the following set of equations:

α′ = α + β

β ′ = α

α′ − β ′ + c′ = 3α − 2β + c
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which has solutions where:

2

(

α′

β ′

)

=

(

5 −1

−1 3

) (

α

β

)

The system has the following solution: α = 1, β = 1, α′ = 2, β ′ = 1. The loop after

transformation is:

Processor k executes (1 ≤ k ≤ p):

for j = k + 4 to 2N by p

for i = max(2, j − N) to min(N, j − 2)

B[j − 3, i + 2] ← A[i − 1, j − i + 1]

The following subsection deals with a formulation of the problem for communication minimiza-

tion, when communication-free partitions are not feasible.

12.4.4 Minimizing Communication

In this section, we present a formulation of the communication minimization problem that can be

used when communication-free partitioning is impossible. We focus on two-dimensional arrays with

constant offsets in accesses. The results generalize to higher dimensional arrays easily. We consider

the following loop model:

for i = 1 to N

for j = 1 to N

A[i, j ] ← B[i + qi
1, j + q

j

1 ] + B[i + qi
2, j + q

j

2 ] + · · · + B[i + qi
m, j + q

j
m]

The array accesses in the preceding loop give rise to the set of offset vectors, �q1, �q2, . . . , �qm. The

2 × m matrix Q whose columns are the offset vectors qi is referred to as the offset matrix. Because

A[i, j ] is computed in iteration (i, j), a partition of the array A defines a partition of the iteration

space and vice versa. For constant offsets, the shape of the partitions for the two arrays A and B are

the same; the array boundaries depend on the offset vectors.

Given the offset vectors, the problem is to derive partitions such that the processors have

equal amount of work and communication is minimized. We assume that there are N2 iterations

(N2 elements of array A are computed) and the number of processors is p. We also assume that N2

is a multiple of p. Thus, the workload for each processor is N2

p
.

The shapes of partitions considered are parallelograms, of which rectangles are a special case. A

parallelogram is defined by two vectors each of which is normal to one side of the parallelogram.

Let the normal vectors be �S1 = (S11, S12) and �S2 = (S21, S22). The matrix S refers to:

S =

(

S11 S12

S21 S22

)

If i and j are the array indices, �S1 defines a family of lines given by S11i + S12j = c1 for different

values of c1 and the vector �S2 defines a family of lines given by S21i + S22j = c2 for different

values of c2. S must be nonsingular to define parallelogram blocks that span the entire array. The

matrix S defines a linear transformation applied to each point (i, j); the image of the point (i, j) is
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(S11i + S12j, S21i + S22j). We consider parallelograms defined by solutions to the following set of

linear inequalities:

S11i + S12j ≥ c1

S11i + S12j < c1 + r1l

S21i + S22j ≥ c2

S21i + S22j < c2 + r2l

where r1l and r2l are the lengths of the sides of the parallelograms.

The number of points in the discrete Cartesian space enclosed by this region (which must be the

same as the workload for each processor, N2

p
) is l2 r1r2

|det (S)| when det(S) =/ 0. The nonzero entries in

the matrix Q′ = SQ represent inter-processor communication. Let Q′(i) be the sum of the absolute

values of the entries in the ith row of Q′, that is:

Q′(i) =
m

∑

j=1

|Q′
i,j |

The communication volume incurred is:

2l

(

Q′(1)
r1

|det(S)|
+ Q′(2)

r2

|det(S)|

)

(12.16)

Thus, the problem of finding blocks that minimize interprocessor communication is that of

finding the matrix S, the value l and the aspect ratios r1 and r2 such that the communication

volume is minimized subject to the constraint that the processors have about the same amount of

workload, that is:

l2 r1r2

|det(S)|
=

N2

p

The elements of matrix S determine the shape of the partitions and the values of r1, r2, l determine

the size of the partitions.

12.5 Finding Distributions and Loop Transformations Using a

Matrix-Based Approach

This and the following sections present a technique for finding good distributions of arrays and

suitable loop-restructuring transformations so that communication is minimized in the execution

of nested loops on message-passing machines. For each possible distribution (by one or more

dimensions), we derive the best unimodular loop transformation that results in block transfers of

data. Unimodular matrices have a determinant with a value of ±1 and they are used extensively in

parallelizing compilers [12]. Unlike other work that focuses either on data layout or on program

transformations, this section combines both array distributions and loop transformations resulting in

good performance. The techniques described here are suitable for dense linear algebra codes.

On a DMM, local memory accesses are much faster than accesses to nonlocal data. When a

number of nonlocal accesses are to be made between processors, it is preferable to send fewer but

larger messages instead of several smaller messages more frequently (called message vectorization

[73]). This is because the message setup cost is usually large. Even in shared memory machines,
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it is preferable to use block transfers. Interprocessor communication time is usually modeled as

t = α + β ∗ γ , where α and β are machine dependent and γ is the length of the message. Usually

α ≫ β and thus it is desirable to communicate longer messages instead of short ones whenever

possible.

Given a program segment, our aim is to determine the computation and data mapping onto

processors. Parallelism can be exploited by transforming the loop nest suitably and then distribut-

ing the iterations of the transformed outermost loop onto the processors. The distribution of data

onto processors may then result in communication and synchronization that counter the advantages

obtained by parallelism. This section presents an algorithm that results in the optimal performance

while simultaneously considering the conflicting goals of parallelism and data locality.

Although a programmer can manually write code to enhance data locality by specifying data

distribution among processors, we present a technique where we can automatically derive data

distribution given the program structure. We present a method by which the program is restructured

such that when the outer loop iterations are mapped onto the processors, it results in the least

communication. Wherever communication is unavoidable, we restructure the inner loops so that

data can be transferred using block transfers (the message vectorization approach). Our approach

relieves the programmer from having to specify the distribution of the arrays and optimize the

communication among processors in case this communication is unavoidable.

This section is organized as follows: Subsection 12.5.1 talks about the need for automatic distri-

bution; Subsection 12.5.2 introduces our first algorithm for automatic distribution and vectorization

of messages; Subsection 12.5.3 is a step-by-step application of the algorithm to several examples;

Subsection 12.5.4 shows the advantage of relaxing the owner-computes rule when our algorithm does

not find a solution; Subsection 12.5.5 presents our extended algorithm and applies it to an example

in a step-by-step fashion.

12.5.1 Automatic Distribution

We consider those cases where we allocate outer iterations to processors so that each outer loop

iteration is done by a single processor. The data are then allocated so that a minimum of commu-

nication occurs and all communication is done through block transfers. This section deals with an

algorithm to restructure the program to enhance data locality while still enabling parallelism. We

construct the entries of a legal invertible transformation matrix so that there is a one-to-one mapping

from the original iteration space to the transformed iteration space. This transformation when applied

to the original loop structure does the following:

• Allow the outermost loop iteration to be distributed over the processors (i.e., an entire outermost

iteration is mapped on to a single processor).

• Determine the data distribution (block or cyclic distribution of a single-array dimension).

• Allow blocks transfers to be moved out of the innermost loop so that all the necessary data are

transferred to the respective local memories before the execution of the innermost loop.

12.5.1.1 Relevant Background

The transformation matrix is derived from the data reference matrix of the array references. Given

a loop nest with indices i1, i2, . . . , in which is represented by a column vector �I , we define a data

reference matrix, AR, for each array reference A (distinct or nondistinct) in a loop nest such that

the array reference can be written in the form AR �I + �b where �b is the offset vector. In what follows

we assume that the arrays are not replicated onto the available processors. Consider the following

loop nest.
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Example 12.17

DO i = 1, N1

DOj = 1, N2

DO k = 1, N3

B[i, j − i] = B[i, j − i] + A[i, j + k]

ENDDO

ENDDO

ENDDO

In the preceding example, the data reference matrix for array B is

BR =

[

1 0 0

−1 1 0

]

and the data reference matrix for array A is

AR =

[

1 0 0

0 1 1

]

Note that there are two data reference matrices for array B though they are identical. For each array,

we use only the distinct data reference matrices.

12.5.1.2 Effect of a Transformation

On applying a transformation T to a loop with index I , the transformed loop index becomes �I ′ = T �I
and the transformed data reference matrix becomes A′

R = ART −1. The columns of T −1 determine

the array subscripts of the references in the transformed loop. The key aspect of the algorithm

presented in this section is that the entries of the inverse of the transformation matrix are derived

using the data reference matrices.

Li and Pingali [56] discuss the completion of partial transformations derived from the data access

matrix of a loop nest; the rows of the data access matrix are subscript functions for various array

accesses (excluding constant offsets). Their work assumes that all arrays are distributed by columns.

In contrast, our work attempts to find the best distribution for various arrays (by rows, columns, or

blocks) such that communication incurred is minimal; for each possible combination of distribution

of arrays, we find the best compound loop transformation that results in least communication. Among

all these possible distributions (and the associated loop restructuring), we find the one that incurs the

smallest communication overhead. Whereas several researchers have addressed the issue of automatic

alignment, none except Anderson and Lam [7] addresses the interaction of program transformations

and data mapping.

12.5.1.3 Motivation and Assumptions

Consider Example12.17 that is similar to the one given by Li and Pingali [56]. Two references

to array B (though not distinct) and one reference to array A exist. Li and Pingali [56] assume

that all arrays are distributed by columns and derive a transformation matrix that matches column

distribution. In this case, the loop can be distributed in such a way that no communication is incurred.

Both the arrays can be distributed by rows (i.e., each processor can be assigned an entire row of

array A and an entire row of array B). This makes the loop run without any communication. We

notice that the first row in the data reference matrix for arrays A and B are the same, that is, [1 0 0].

This allows the first dimension of both the lhs and rhs arrays to be distributed (i.e., by rows) over the
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processors so that there is no communication. In the next section, we derive an algorithm to construct

a transformation matrix, which determines the distribution of data.

We restrict our analysis to affine array references in loop nests whose upper and lower bounds

are affine. We assume that the iterations of the outermost loop are distributed among processors. To

exploit data locality and reduce communication among processors, we further look at transformations

that facilitate block transfers so that the data elements that are referenced are brought to local memory

in large chunks; this allows us to amortize the high message start-up costs over large messages. We

assume that the data can be distributed along any one dimension of the array (wrapped or blocked)

and that the loop index variable appearing in the subscript expression of the distributed dimension

of our base array and any array that is identically distributed is that corresponding to the outermost

loop. The results can be generalized where data are distributed along multiple dimensions and block

transfers are set up in outer iterations. Again we assume that the arrays used in the iterations of the

loop nest are not replicated onto the available processors.

12.5.1.4 Criteria for Choosing the Entries in the Transformation Matrix

Let the array indices of the original loop be i1, i2, . . . , in. Let the array indices of the transformed

loop be j1, j2, . . . , jn. We look for transformations such that the lhs array has the outermost loop

index as the only element in any one of the dimensions of the array, e.g., C[∗, ∗, . . . , j1, . . . , ∗]

where j1 is in the rth dimension and “∗” indicates a term independent of j1. The lhs array can then

be distributed along dimension r . This means that the data reference matrix C′
R of the transformed

array reference C has at least one row in which the first entry is nonzero and the rest are zero (i.e.,

there is a row r in C′
RT −1 = [α, 0, 0, . . . , 0]). For all arrays that appear on the rhs:

• If a row in all the data reference matrices of an array is identical to a row in the reference

matrix in the lhs array, then that array can be distributed in the same way as the lhs array.

No communication is due to that array, because the arrays are always mapped onto the same

processor. If all the references of all the arrays have a row in the data reference matrix identical

to that of the lhs array, then the entire loop can be distributed along that dimension and there is

no communication.

• If the preceding condition does not hold, choose the entries in T −1 such that the following

conditions hold:

1. Some dimension of the rhs reference consists only of the transformed innermost loop index,

e.g., A[∗, . . . , jn, . . . , ∗].

2. All the other dimensions are independent of the innermost loop index (i.e., “∗” indicates a

term independent of jn).

This means the transformed reference matrix must have only one nonzero in some row r , and

that nonzero must occur in column n. If this condition is satisfied, then dimension r of the rhs

array is not a distributed dimension; thus, we can move communication arising from that rhs

reference outside the innermost loop. This allows a block transfer to the local memory before

the execution of the innermost loop. This means that a row in the transformed data reference

matrix A′
R has a row with all entries zero except in the last column, which is nonzero. Also,

the last column of the A′
R has all remaining entries as zero.

• If communication could be moved out of the innermost loop, the previous step can be applied

repeatedly starting with the deepest loop outside the innermost and working outward; this

process can either stop at some level of the outside that communication cannot be moved or

when no more loops in the loop nest are to be considered.

The transformation should also satisfy the condition that the determinant is ±1 and must preserve

the dependences in the program.
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12.5.2 The Algorithm

Consider the following loop where n is the loop nesting level and d is the dimension of the arrays:

DO i1 = 1, N1

. . .

DO in = 1, Nn

L[C] �I + �B l = R[A] �I + �Br

ENDDO

. . .

ENDDO

where:

C =







c11 . . . c1n

. . .

cd1 . . . cdn






and A =







a11 . . . a1n

. . .

ad1 . . . adn







are the access or reference matrices for the lhs array L and rhs array R, respectively:

�I =







i1
...

in







is the iteration vector, and:

�B l =







bl
1
...

bl
d






and �Br =







br
1
...

br
d







are the constant offset vectors for the lhs and rhs arrays, respectively. Let the inverse of the

transformation matrix be:

Q = T −1 =







q11 . . . q1n

. . .

qn1 . . . qnn







The algorithm is shown in Table 12.1. We use the notation �A[i, :] to refer to the ith row of a matrix

A, and �A[:, j ] to refer to the j th column of a matrix A.

12.5.3 Examples of Automatic Distribution

We illustrate the use of the algorithm through several examples in this section. The reader is referred

to the work by Ramanujam and Narayan [66] for a detailed discussion of the algorithm. In the

following discussion, we refer to the matrix T −1 as the matrix Q.
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TABLE 12.1 Algorithm for Data Distribution and Loop Transformations

Step 0. If a row in the reference matrix of all the arrays is the same, then no communication is

involved. The data can be distributed along the respective dimension and all the data for the

computation will be in local memory (initialize i ← 1).

Step 1. Distribute lhs array along dimension i (i.e., set �ci .[T
−1] = [1 0 . . . 0] , where �ci represents

row i of the lhs array C).

Step 2. Choose a rhs array that does not have a row in the reference matrix the same as that of an

lhs array. For each row j in turn, set: �a
p

j .[T −1] = [0 0 . . . 0 1] for a reference to that array and

�a
p

k =/ j · �qn = 0, where �a
p

j represents row j in the data reference matrix for the pth rhs array A,

and �qn is the nth column of T −1.

If a valid T −1 is found, check the determinant of T −1. If nonzero block transfers are possible

for that rhs array, (break) go to step 3.

If there are no valid T −1 or the determinant of T −1 is zero, block transfers are not possible for

dimension j on that array with the given distribution of the lhs array; therefore, increment j and

go to step 2.

Step 3. Repeat step 2 for all the reference matrices of a particular array to check the results for that

particular value of j .

Step 4. Repeat step 2 for all distinct arrays on rhs (increment p).

Step 5. Check the number of arrays where block transfers are possible.

Step 6. Repeat step 1 to step 4 for the lhs array distributed along each of the other dimensions in

turn (increment i).

Step 7. Compare the number of arrays that can have block transfers and distribute the lhs array

along the dimension that yields maximum number of block transfers for the arrays on the rhs.

Example 12.18

Matrix Multiplication

DO i = 1, N

DOj = 1, N

DO k = 1, N

C[i, j ] = C[i, j ] + A[i, k] ∗ B[k, j ]

ENDDO

ENDDO

ENDDO

The reference matrices of the arrays are:

CR =

[

1 0 0

0 1 0

]

, AR =

[

1 0 0

0 0 1

]

, and BR =

[

0 0 1

0 1 0

]

.

Step 1. C is distributed along first dimension. Set:

�CR[1, :] · �Q[:, 1] = 1

�CR[1, :] · �Q[:, 2] = 0

�CR[1, :] · �Q[:, 3] = 0

Therefore, we have, q11 = 1, q12 = 0 and q13 = 0.

Step 1a. Derive distribution of array A. Because row 1 of A is the same as that of C (i.e., �CR[1, :

] = �AR[1, :]), distribute A and C identically.
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Step 2.1. Derive distribution for array B. Check if you can find a matrix, BRQ, of the form:

BRQ =

[

0 0 1

? ? 0

]

where ? denotes entries we do not care about. Set:

�BR[1, :] · �Q[:, 1] = 0

�BR[1, :] · �Q[:, 2] = 0

�BR[1, :] · �Q[:, 3] = 1

Therefore, we have q31 = 0, q32 = 0 and q33 = 1. In addition, set �BR[2, :] · �Q[:, 3] = 0. This

implies q23 = 0. Therefore, the first dimension of B is not distributed. Finally we have:

T −1 = Q =





1 0 0

q21 q22 0

0 0 1





For a unimodular transformation, q22 = ±1. Note that the dependence vector is [0 0 1], and therefore,

no constraints are on q21. This results in the identity matrix as the transformation matrix, and thus

nothing needs to be done. Distribute A and C by rows, and B by columns. The code shown next gives

the best performance we can get in terms of parallelism and locality. Note that the communication

occurs outside the innermost loop. In this way a coarser grain in the communication pattern is

achieved by vectorizing the messages. The loop follows:

DO u = 1, N

DO v = 1, N

send B[∗, u]

receive B[∗, v]

DO w = 1, N

C[u, v] = C[u, v] + A[u, w] ∗ B[w, v]

ENDDO

ENDDO

ENDDO

We go ahead and complete the algorithm by looking at distributing the lhs array in the next

dimension.

Step 1.1. C is distributed along the second dimension. Set:

�CR[2, :] · �Q[:, 1] = 1

�CR[2, :] · �Q[:, 2] = 0

�CR[2, :] · �Q[:, 3] = 0

Therefore, we have q21 = 1, q22 = 0 and q23 = 0.

Step 1.1a. Derive distribution for array B. Because the second row of BR is the same as the second

row of CR distribute B the same as C.
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Step 2.2. Derive distribution for array A. Check whether you can find a matrix, ARQ, of the form:

ARQ =

[

0 0 1

? ? 0

]

where ? denotes entries we do not care about. Set:

�AR[1, :] · �Q[:, 1] = 0

�AR[1, :] · �Q[:, 2] = 0

�AR[1, :] · �Q[:, 3] = 1

Therefore we have q11 = 0, q12 = 0 and q13 = 1; and �AR[2, :] · �Q[:, 3] = 0 �⇒ q33 = 0.

Finally, we have:

T −1 =





0 0 1

1 0 0

q31 q32 0





For a unimodular transformation, q32 = ±1. Therefore:

T −1 =





0 0 1

1 0 0

0 1 0



 and T =





0 1 0

0 0 1

1 0 0





Distribute arrays A, B and C by columns. The transformed loop is given as follows:

DO u = 1, N

DO v = 1, N

send A[∗, u]

receive A[∗, v]

DO w = 1, N

C[w, u] = C[w, v] + A[w, v] ∗ B[v, u]

ENDDO

ENDDO

ENDDO

We see that the performance of the loop is similar in both cases. Therefore, array C can be distributed

either by columns with the preceding transformation, or by rows with no transformation for the same

performance with respect to communication. Again notice that the communication is carried outside

the innermost loop.
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Consider the symmetric rank 2K (SYR2K) code, from the basic linear algebra subroutines (BLAS)

[57] example shown as follows:

Example 12.19 SYR2K

DO i = 1, N

DO j = i, min(i + 2b − 2, N)

DO k = max(i − b + 1, j − b + 1, 1), min(i + b − 1, j + b − 1, N)

C[i, j − i + 1] = C[i, j − i + 1] + A[k, i − k + b] ∗ B[k, j − k + b]

+ A[k, j − k + b] ∗ B[k, i − k + b]

ENDDO

ENDDO

ENDDO

The reference matrices for the arrays are:

CR =

[

1 0 0

−1 1 0

]

, A1
R = B2

R =

[

0 0 1

1 0 −1

]

, and A2
R = B1

R =

[

0 0 1

0 1 −1

]

Step 1. C row distributed. Set:

�CR[1, :] · �Q[:, 1] = 1

�CR[1, :] · �Q[:, 2] = 0

�CR[1, :] · �Q[:, 3] = 0

Therefore we have, q11 = 1, q12 = 0 and q13 = 0. None of the other references matrices have any

row common with CR.

Step 1.1. Derive distribution of A for the first reference; check whether the first dimension of A can

not be distributed. Check whether you can find a matrix, A1
RQ, of the form:

A1
RQ =

[

0 0 1

? ? 0

]

where ? denotes entries we do not care about. Set:

�A1
R[1, :] · �Q[:, 1] = 0

�A1
R[1, :] · �Q[:, 2] = 0

�A1
R[1, :] · �Q[:, 3] = 1

Therefore, q31 = 0, q32 = 0 and q33 = 1. In addition, �A1
R[2, :] · �Q[:, 3] = 0 implies q13 − q33 = 0,

which is impossible. Therefore, the first dimension of A has to be distributed.

Step 1.2. Derive distribution of A using first reference; check whether a second dimension of A

cannot be distributed. Check whether you can find a matrix, A1
RQ, of the form:

A1
RQ =

[

? ? 0

0 0 1

]



440 The Compiler Design Handbook: Optimizations and Machine Code Generation

where ? denotes entries we do not care about. Set:

�A1
R[2, :] · �Q[:, 1] = 0

�A1
R[2, :] · �Q[:, 2] = 0

�A1
R[2, :] · �Q[:, 3] = 1

and �A1
R[1, :] · �Q[:, 3] = 0. Therefore, q11 − q31 = 0 �⇒ q13 = 1; q12 − q32 = 0 �⇒ q32 = 0; and

q13 − q33 = 1 �⇒ q33 = −1, which is impossible because q33 = 1. Thus, the second dimension

of A also has to be distributed. Based on an analysis of the first reference of A, every dimension

of A must be distributed. A similar result follows from an analysis of the second reference to A as

well. Because the reference matrix for array A and B are the same, no block transfers for B can take

place as well.

Step 2.0. C column is distributed. Set:

�CR[2, :] · �Q[:, 1] = 1

�CR[2, :] · �Q[:, 2] = 0

�CR[2, :] · �Q[:, 3] = 0

Therefore:

−q11 + q21 = 1 �⇒ q11 = q21 − 1

−q12 + q22 = 0 �⇒ q12 = q22

and:

−q13 + q23 = 0 �⇒ q13 = q23

Step 2.1a. Derive distribution of A; check whether the first dimension of A cannot be distributed. Set:

�A1
R[1, :] · �Q[:, 1] = 0

�A1
R[1, :] · �Q[:, 2] = 0

�A1
R[1, :] · �Q[:, 3] = 1

Therefore, q31 = 0, q32 = 0 and q33 = 1, and:

�A1
R[2, :] · �Q[:, 3] = 0 �⇒ q13 − q33 = 0 �⇒ q13 = 1 and q23 = 1

This means that under a column distribution of array C, the first reference to array A (i.e., A1
R)

allows A not to be distributed along its first dimension. We now check whether the same result can

be obtained with the second reference to array A (i.e., A2
R).

Step 2.1b. For second reference of A, check whether the second reference allows the first dimension

of A not to be distributed. Set:

�A2
R[1, :] · �Q[:, 1] = 0

�A2
R[1, :] · �Q[:, 2] = 0

�A2
R[1, :] · �Q[:, 3] = 1
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Therefore, q31 = 0, q32 = 0 and q33 = 1:

�A2
R[2, :] · �Q[:, 3] = 0 �⇒ q23 − q33 = 0

and q23 = 1.

Thus, both references to A allow A not to be distributed by its first dimension. Thus, A can

be column distributed (by its second dimension). Because B has identical array reference matrices

those of A, array B can also be distributed by columns. Recall, that we started out with a column

distribution of C. Thus, we have the inverse of the transformation matrix as:

T −1 =





q11 q12 1

q21 q22 1

0 0 1





The only constraint on the unknown elements is that the resulting matrix be legal and unimodular.

Thus, we choose the unknown values such that T is a legal unimodular transformation. A possible

T −1 is shown as follows:

T −1 =





0 1 1

1 1 1

0 0 1



 �⇒ T =





−1 1 0

1 0 −1

0 0 1





The transformed reference matrices are as follows:

C′
R =

[

0 1 1

1 0 0

]

, A
′,1
R =

[

0 0 1

0 1 0

]

and

A
′,2
R =

[

0 0 1

1 1 0

]

By using the preceding algorithm we distribute arrays A, B and C by columns. In this way we have

communication arising from A and B. Because we are using the owner-computes rule, the accesses

to C are all local. We can thus move the communication outside the innermost loop. The transformed

code with block transfers is as shown as follows:

DO u = max(0, 2 − 2b), min(N − 1, 2b − 2)

DO ν = max(1 − N, 1 − b), min(N − 1, b − 1 − u)

send A[∗, u], B[∗, u]

receive A[∗, v + b], A[∗, u + v + b], B[∗, u + v + b], B[∗, v + b]

DO w = max(1, 1 − v), min(N − u − v, N)

C[v + w, u + 1] = C[v + w, u + 1] + A[w, v + b] ∗ B[w, u + v + b]

+ A[w, u + v + b] ∗ B[w, v + b]

ENDDO

ENDDO

ENDDO
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12.5.4 Relaxing the Owner-Computes Rule

Thus far we have relied on the use of the owner-computes rule and have assumed the processor that

owns the lhs element of the assignment statement is the one that performs the computation. There

are cases, though, in which using the owner-computes rule cannot allow block transfers. When this

happens, we can try the algorithm by relaxing the owner-computes rule.

If we apply the method presented earlier to the code shown in Example 12.20, we find that whether

array C is distributed by rows or by columns both arrays A and B must be distributed in all their

dimensions and thus no block transfers are possible. The code shown in Example 12.20 is a variation

of the code we have already seen in Example 12.19. Consider the following code:

Example 12.20

DO i = 1, N

DO j = 1, N

DO k = 1, N

C[i, j ] = C[i, j ] + A[k, i − k + b] ∗ B[k, j − k + b]

+ A[k, j − k + b] ∗ B[k, i − k + b]

ENDDO

ENDDO

ENDDO

By relaxing the owner-computes rule and modifying the algorithm accordingly we find that block

transfers are indeed possible. We could distribute arrays A and B by rows and array C by columns

and obtain the following code:

DO u = 1, N

DO ν = 1, N

DO w = 1, N

tmp[w] = tmp[w] + A[u, v − u + b] ∗ B[u, w − u + b]

+ A[u, w − u + b] ∗ B[u, v − u + b]

ENDDO

send tmp[∗]

receive C[∗, u]

ENDDO

ENDDO

where tmp is a temporary column vector used to store the column of C that is computed locally.

This same column storage is used each time the processor needs to compute a column of C. Another

alternative is to distribute arrays A, B and C by rows instead and use the code shown next:

DO u = 1, N

DO ν = 1, N

DO w = 1, N

tmp[w] = tmp[w] + A[u, w − u + b] ∗ B[u, v − u + b]

+ A[u, v − u + b] ∗ B[u, w − u + b]
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ENDDO

send tmp[∗]

receive C[u, ∗]

ENDDO

ENDDO

where tmp is a temporary row vector used to store the row of C that is computed locally. This same

row storage is used each time the processor needs to compute a row of C.

We notice that when the algorithm presented previously could not find a solution that would allow

block transfers we could then, by relaxing the owner-computes rule, allow block transfers by allowing

some other processor to perform the computation.

12.5.5 Generalized Algorithm

To explain the algorithm in Table 12.2 we use it to obtain the solution for the following problem.

This is the code from Example 12.19:

DO i = 1, N

DO j = 1, N

DO k = 1, N

C[i, j ] = C[i, j ] + A[k, i − k + b] ∗ B[k, j − k + b]

+ A[k, j − k + b] ∗ B[k, i − k + b]

ENDDO

ENDDO

ENDDO

Notice that the accesses to the two-dimensional arrays A, B and C are such that although C is

accessed along its second dimension, it is the first dimension of arrays A and B that is accessed. In

other words, this is an example of communication along distinct axes. Note that the alignment phase

TABLE 12.2 Generalized Algorithm for Data Distribution and Loop Transformations

Step 0 through Step 7. These steps are the same as in Table 12.1.

Step 8. If no block transfers are possible, then initialize i to 1.

Step 9. Choose an rhs array and distribute it along dimension i. This array is now the base array.

Step 10. Choose an array that does not have a row in the reference matrix the same as that of the base array. For each row

j in turn, set: �b
p

j · [T −1] = [0 0 . . . 0 1] for a reference to that array and �b
p

k =/ j · �qn = 0.

If a valid T −1 is found, check the determinant of T −1. If nonzero block transfers are possible for that array, (break) go

to step 11.

If there are no valid T −1 or the determinant of T −1 is zero, block transfers are not possible for dimension j on that

array with the given distribution of the base array; therefore, increment j and go to step 10.

Step 11. Repeat step 10 for all the reference matrices of a particular array to check the results for that particular value

of j .

Step 12. Repeat step 10 for all distinct arrays if necessary (increment p).

Step 13. If no block transfers are possible, then increment i and repeat step 10.

Step 14. If block transfers are possible, then stop. Otherwise, initialize i to 1, repeat step 10 for a new rhs base array and

stop when a solution is found or there are no more rhs arrays to be chosen as base arrays.
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is not able to eliminate the interprocessor communication in this case because the index variables

that are used for the accesses along the dimensions are different. In other words, the first dimension

of A and B is indexed with a variable distinct to the variable used for the accesses along the second

dimension of array C.

We identify the reference matrices shown as follows:

CR =

[

1 0 0

0 1 0

]

, A1
R = B2

R =

[

0 0 1

1 0 −1

]

, A2
R = B1

R =

[

0 0 1

0 1 −1

]

The steps resulting from applying the algorithm to the preceding problem are presented in what

follows:

1. C distributed along its first dimension. Set:

�CR[1, :] · �Q[:, 1] = 1

�CR[1, :] · �Q[:, 2] = 0

�CR[1, :] · �Q[:, 3] = 0

from which we obtain, q11 = 1, q12 = 0 and q13 = 0. Note that no rows are in any of the other

reference matrices that are the same as any of the rows of CR. Otherwise, we could determine

at this point which of the remaining arrays could be distributed using the same distribution

that we have for C.

a. Derive distribution for the first dimension of array A using the first reference matrix of

A (i.e., A1
R by checking whether the first dimension of A cannot be distributed). In other

words, check whether we can find a matrix of the form:

A1
RQ =

[

0 0 1

? ? 0

]

Set:

�A1
R[1, :] · �Q[:, 1] = 0

�A1
R[1, :] · �Q[:, 2] = 0

�A1
R[1, :] · �Q[:, 3] = 1

to obtain q31 = 0, q32 = 0 and q33 = 1. To satisfy the requirement that the innermost loop

index variable must not appear in the second dimension, also set �A2
R[1, :] · �Q[:, 3] = 0

from which we obtain q13 = q33 = 0 that is a contradiction to the preceding finding stating

q33 = 1. Therefore, the first dimension of A must be distributed and thus we cannot perform

block transfers for A along its first dimension. Because B2
R = A1

R this means that we also

cannot perform block transfers for B along its first dimension. This is all assuming that C

is distributed along its first dimension.

b. Derive distribution for the second dimension of array A using the first reference matrix

of A (i.e., A1
R by checking whether the second dimension of A cannot be distributed). In

other words, check whether we can find a matrix of the form:

A1
RQ =

[

? ? 0

0 0 1

]
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Set:

�A1
R[2, :] · �Q[:, 1] = 0

�A1
R[2, :] · �Q[:, 2] = 0

�A1
R[2, :] · �Q[:, 3] = 1

Therefore, q11 = q31 = 0, q12 = q32 = 0 and q13 = q33 = 1. Now set �A1
R[1, :] · �Q[:, 3] =

0, that is, q33 = 0, which is again a contradiction to the preceding finding stating q33 = 1.

Thus, the second dimension of A must be distributed and we cannot perform block transfer

for A along its second dimension. Because B2
R = A1

R, this means that we also cannot

perform block transfers for B along its second dimension. Remember that this analysis has

been made assuming that the lhs array C is distributed along its first dimension.

2. C is distributed along its second dimension. Set:

�CR[2, :] · �Q[:, 1] = 1

�CR[2, :] · �Q[:, 2] = 0

�CR[2, :] · �Q[:, 3] = 0

Therefore q21 = 1, q22 = 0 and q23 = 0. Again no rows occur in any of the other reference

matrices that are the same to any of the rows of CR.

a. Derive distribution for the first dimension of array A using the first reference matrix of A

(i.e., A1
R) by checking if the first dimension of A cannot be distributed. In other words,

check whether we can find a matrix of the form:

A1
RQ =

[

0 0 1

? ? 0

]

Set:

�A1
R[1, :] · �Q[:, 1] = 0

�A1
R[1, :] · �Q[:, 2] = 0

�A1
R[1, :] · �Q[:, 3] = 1

to obtain q31 = 0, q32 = 0 and q33 = 1. Also set �A2
R[1, :] · �Q[:, 3] = 0, which yields

q13 = q33 = 0, a contradiction. Therefore, the first dimension of A must be distributed.

This means that we cannot perform block transfers along the first dimension of A. Note

that B2
R = A1

R and thus we cannot perform block transfers along the first dimension of B

if C is distributed along its second dimension.

b. Derive distribution for the second dimension of array A using the first reference matrix

of A (i.e., A1
R by checking whether the second dimension of A cannot be distributed). In

other words, check whether we can find a matrix of the form:

A1
RQ =

[

? ? 0

0 0 1

]
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Set:

�A1
R[2, :] · �Q[:, 1] = 0

�A1
R[2, :] · �Q[:, 2] = 0

�A1
R[2, :] · �Q[:, 3] = 1

Therefore, q11 = q31 = 0, q12 = q32 = 0 and q13 = q33+1. Now set �A1
R[1, :]· �Q[:, 3] = 0,

which yields q33 = 0. Thus, q13 = 1. This results in:

Q =





0 0 1

1 0 0

0 0 0





which is not unimodular. Therefore, the second dimension of A must also be distributed.

This means that we cannot perform block transfers along the second dimension of A and,

as before, because B2
R = A1

R, we also cannot perform block transfers along the second

dimension of B. Therefore, using the owner-computes rule does not allow block transfers

for either array A or array B.

3. At this time we relax the owner-computes rule and allow the owner of a rhs array to be the one

performing the computation. A is distributed along its first dimension. Set:

�A1
R[1, :] · �Q[:, 1] = 1

�A1
R[1, :] · �Q[:, 2] = 0

�A1
R[1, :] · �Q[:, 3] = 0

from which we obtain, q31 = 1, q32 = 0 and q33 = 0. Note that the first row of A2
R,

B1
R and B2

R is identical to the first row of A1
R. Therefore, both arrays A and B can be

distributed by rows.

a. Derive distribution for the first dimension of array C to check whether it cannot be

distributed. Check whether we can find a matrix of the form:

CRQ =

[

0 0 1

? ? 0

]

Set:

�CR[1, :] · �Q[:, 1] = 0

�CR[1, :] · �Q[:, 2] = 0

�CR[1, :] · �Q[:, 3] = 1

which results in q11 = 0, q12 = 0 and q13 = 1. Now set:

�CR[2, :] · �Q[:, 3] = 0

which yields q23 = 0. This means that:

Q =





0 0 1

q21 q22 0

1 0 0







Automatic Data Distribution 447

which is unimodular if we choose q22 = ±1, that is:

Q =





0 0 1

0 1 0

1 0 0





Therefore, by distributing A, B by rows and C by columns and using the preceding transformation,

we can transform the code to:

DO u = 1, N

DO ν = 1, N

DO w = 1, N

tmp[w] = tmp[w] + A[u, w − u + b] ∗ B[u, v − u + b]

+ A[u, v − u + b] ∗ B[u, w − u + b]

ENDDO

send tmp[∗]

receive C[∗, u]

ENDDO

ENDDO

Using tiling to obtain higher granularity communication — It would be advantageous to con-

tinue to increase the granularity of the communication between processors. One way to accomplish

this is by tiling one or more dimensions of the iteration space. Tiling is a well-known technique used

to assign blocks of iterations, instead of just one at a time, to the available processors [6, 7, 65, 81].

Some of the key issues involved in tiling include the choice of tile sizes. A detailed discussion of

these is beyond the scope of this chapter.

Comparison with the work of Li and Pingali — Li and Pingali [57] used specified data

distributions and developed a systematic loop transformation strategy, identified by them as access

normalization, which restructures loop nests to exploit locality and block transfers whenever possible.

Li and Pingali [56] discussed the completion of partial transformations derived from the data access

matrix of a loop nest; the rows of the data access matrix are subscript functions for various array

accesses (excluding constant offsets). Their work assumes that all arrays are distributed by columns.

12.6 Brief Review of Other Work on Data Mapping

Research on problems related to memory optimizations goes back to studies of the organization

of data for paged memory systems [1]. Balasundaram and others [17] have developed interactive

parallelization tools for multicomputers that provide the user with feedback on the interplay between

data decomposition and task partitioning on the performance of programs. Gallivan et al. [28]

discussed problems associated with automatically restructuring data so that it can be moved to and

from local memories in the case of shared memory machines with complex memory hierarchies.

They present a series of theorems that enable one to describe the structure of disjoint sublattices

accessed by different processors, use this information to make “correct” copies of data in local

memories and write the data back to the shared address space when the modifications are complete.

Gannon, Jalby and Gallivan [29] discussed program transformations for effective complex-memory

management for a CEDAR-like architecture with a three-level memory. Gupta and Banerjee [34]

present a constraint-based system to automatically select data decompositions for loop nests in a
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program. Hudak and Abraham [41] discussed the generation of rectangular and hexagonal partitions

of arrays accessed in sequentially iterated parallel loops. Knobe, Lukas and Steele [47] discussed

techniques for automatic layout of arrays in a compiler targeted to SIMD architectures such as

the Connection Machine computer system. Li and Chen [54] (and Chen, Choo and Li [24]) have

addressed the problem of index domain alignment, which is that of finding a set of suitable alignment

functions mapping the index domains of the arrays into a common index domain to minimize the

communication cost incurred due to data movement. The class of alignment functions that they

consider primarily are permutations and embeddings. The kind of alignment functions that we deal

with are more general than these. Mace [60] proved that the problem of finding optimal data storage

patterns for parallel processing (the shapes problem) is NP-complete, even when limited to 1- and 2-

dimensional arrays; in addition, efficient algorithms are derived for the shapes problem for programs

modeled by a directed acyclic graph (DAG) that is derived by series–parallel combinations of treelike

subgraphs. Wang and Gannon [75] presented a heuristic state–space search method for optimizing

programs for memory hierarchies.

In addition, several researchers have developed compilers that take a sequential program aug-

mented with annotations that specify data distribution, and generate the necessary communication.

Koelbel, Mehrotra and van Rosendale [48, 49] address the problem of automatic process partitioning

of programs written in a functional language called BLAZE given a user-specified data partition.

A group led by Kennedy at Rice University [18] is studying similar techniques for compiling a

version of FORTRAN for local memory machines, which includes annotations for specifying data

decomposition. They show how some existing transformations could be used to improve perfor-

mance. Rogers and Pingali [68] present a method that given a sequential program and its data

partition performs task partitions to enhance locality of references. Zima, Bast and Gerndt [87]

have developed SUPERB, an interactive system for semiautomatic transformation of FORTRAN

programs into parallel programs for the SUPRENUM machine, a loosely coupled hierarchical

multiprocessor.

Next, we discuss in greater detail the works of Huang and Sadayappan [40], Gilbert and Schreiber

[32], and Gupta and Banerjee [34]. After this we discuss other work on data mapping.

Huang and Sadayappan [40] focus on partitions of iterations and data arrays that eliminate data

communication and consider partitions of iteration and data spaces along sets of hyperplanes. Because

data elements are not to be accessed by different processors, even read-only data cannot be shared.

All iterations belonging to an iteration hyperplane and all the data belonging to a data hyperplane are

assigned to one processor, thus, the owner-computes rule is implicit. A processor executes iterations

from the iteration hyperplanes that are assigned to it and in so doing it accesses data from its assigned

data hyperplanes. Their article presents no way of dealing with cases when communication-free

partitioning, while maintaining parallelism, is not possible. It begins by presenting solutions for a

single hyperplane partitioning for each iteration and data space and moves on to multiple (double)

hyperplanes per space at which time they propose a heuristic. Huang and Sadayappan [40] derive

necessary and sufficient conditions for communication-free hyperplane partitioning of both data and

computation for fully parallel loop nests in the absence of flow and antidependences. Flow and

antidependences are treated elsewhere and a list of articles that treat this subject is given later in this

work. For communication-free single hyperplane partitioning of the iteration and data spaces the

following must hold for an access function in the form of Ai
j,k(I ) + ai

j,k , which accesses the kth

reference to the j th data array in the ith nested loop, where I is used to denote the iteration vector, H

and G are row vectors containing the iteration and data hyperplane coefficients (which are rational

numbers), respectively, and α is nonzero:

1. Gj1A
i
j1,k1

= Gj2A
i
j2,k2

2. Gja
i
j,k1

= Gja
i
j,k2
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3. Hi = αi
jGjA

i
j,1

4. αi1
j1α

i2
j2 = αi1

j2α
i2
j1

5. αi1
j1Gj1(a

i1
j1,1 − ai2

j1,1) = αi1
j2Gj2(a

i1
j2,1 − ai2

j2,1)

An example that captures the essence of their work for the case of multiple arrays and multiple

references, with single hyperplane partitioning, is shown next for the same loop used previously,

that is:

DO i = lbi, ubi

DO j = lbj , ubj

A[i, j ] = f (A[i, j ], B[i − 1, j ], B[i, j − 1])

ENDDO

ENDDO

Here we find:

A1 =

[

1 0

0 1

]

, a1 =

[

0

0

]

, A2 =

[

1 0

0 1

]

, a2 =

[

0

0

]

B1 =

[

1 0

0 1

]

, b1 =

[

−1

0

]

, B2 =

[

1 0

0 1

]

, b2 =

[

0

−1

]

from which, by applying the conditions stated previously, we get:

GA

[

A1 − A2 a1 − a2

]

=
[

gA1 gA2

]

[

0 0 0

0 0 0

]

=
[

0 0 0
]

and:

GA

[

B1 − B2 b1 − b2

]

=
[

gB1 gB2

]

[

0 0 −1

0 0 1

]

=
[

0 0 0
]

From the last equation we find that gB1 = gB2. The other set of equations is found from:

[

GA GB

]

[

A1

−B1

]

=
[

gA1 gA2 gB1 gB2

]









1 0

0 1

−1 0

0 −1









=
[

0 0
]

which yields gA1 = gB1 and gA2 = gB2. Therefore, we can choose:

GA = GB =
[

1 1
]

which is the same result we obtained using the method in Ramanujam and Sadayappan [64].

Additionally:

H = αAGAA1 =
[

1 1
]

for αA = 1.

The work in Huang and Sadayappan [40] does not assume anything about the architecture of the

machine, and implicitly assumes the owner-computes rule. As mentioned earlier, no attempt is made

to deal with the problem when communication is unavoidable. The alignment obtained and the access

functions allowed are more general than what is allowed in the current HPF standard [36].
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Gilbert and Schreiber [32] propose a method that considers only one expression at a time. The

minimum cost of computing an arbitrary expression is found for architectures with robustness (e.g.,

hypercubes, linear arrays and meshes) on which realistic metrics could be used. As Gilbert and

Schreiber [32] explain, a given metric describes the cost of moving an array from one position

to another within a machine. For example, the l1 (Manhattan), l2 (Euclidean), l∞ and Hamming

metrics are realistic for a 1-dimensional processor array, a grid of processors with connections to

their nearest neighbors, a grid of processors with connections to their nearest neighbors and their

diagonal neighbors, and for hypercubes, respectively. In the l1 or Manhattan metric the distance d

from a point x to a point y on a k-dimensional space is given by:

d(x, y) =
∑

i

|xi − yi |

1 ≤ i ≤ k

whereas in the l∞ metric we have:

d(x, y) = maxi |xi − yi |

1 ≤ i ≤ k

The cost of the expression is evaluated by embedding its rooted binary tree onto the architecture

and then finding the minimum cost of evaluating it using an specific metric. Subexpressions needed to

evaluate an expression are in turn evaluated where doing so is cheapest (i.e., at the closest processors

among a set of processors at which the evaluation of the subexpression is possible, to the processor that

can evaluate the expression). The authors do not assume the owner-computes rule. As an example

of what is presented by Gilbert and Schreiber [32] we have in Figure 12.11(a) four arrays to be

combined in the expression (w ⊕ x) ⊗ (y ⊙ z), where ⊕, ⊗ and ⊙ are array operators. Each point

in Figure 12.11 is a processor and so we could think of a grid of processors as the architecture that

is used. In Figure 12.11(b) we have the result of applying this method to the preceding expression.

Region A in Figure 12.11(b) represents the set of processors that should evaluate w ⊕ x (i.e., the set

of processors for which the cost of evaluating w⊕x is minima). Similarly, region B represents the set

of processors that should evaluate subexpression y ⊙ z, and region C represents the set of processors

that should evaluate the final expression (i.e., the root). Assume that processor p in region C is

chosen to evaluate the final expression among all processors that can evaluate it. Then the processor

in A that is closest to processor p is chosen to evaluate w ⊕ x, and the processor in B that is closest

to processor p is chosen to evaluate y ⊙ z. They both send their partial results to p, which then

evaluates the final expression.

x

w

z

y

x

w

z

y

(a) (b)

A

C

B

FIGURE 12.11 Example from Gilbert and Schreiber.
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Gilbert and Schreiber [32] use an approach where the processors at which the expression under

consideration, as well as its subexpressions, should be evaluated to minimize cost are found. The

article deals with neither data nor computation decompositions. The work pertaining to a computation

is performed by several processors. The work by Gilbert and Schreiber [32] is different to our work in

that we consider all statements within a loop nest, instead of just one statement at a time. They relax

the owner-computes rule and use the l1-metric, which is in this context robust and realistic for a grid

of processors with nearest neighbor connections. We are concerned with partitioning of both data and

computation, vectorization of messages and mapping transformations to machine communication

primitives. We also relax the owner-computes rule, but we assume that the work performed during

one iteration is performed by only one processor.

Gupta and Banerjee [34] present a method restricted to partitioning of arrays (i.e., no computation

partitioning). In their method Gupta and Banerjee select important segments of code to determine

distribution of various arrays based on some constraints. Quality measures are used to choose among

contradicting constraints. These quality measures may require user intervention. The compiler tries

to combine constraints for each array in a consistent manner to minimize overall execution time and

the entire program is considered. Small arrays are assumed to be replicated on all processors. The

distribution of arrays is by rows, columns or blocks. This work uses heuristic algorithms to determine

the alignment of dimensions (i.e., component alignment of various arrays because the problem has

been shown to be NP-complete). The owner-computes rule is assumed and issues concerning the best

way to communicate messages among processors are dealt with, as in the aggregate communication

work introduced by Tseng [73]. Communication costs are determined by Gupta and Banerjee [34]

after identifying the pairs of dimensions that should be aligned. Consideration is given to when it

would be best to replicate a dimension instead of distribute it.

The algorithm builds the component affinity graph (CAG) developed by Li and Chen [54], as

shown in Figure 12.12, and decides to align the first dimension of each of the arrays and also the

second dimension because it would be too costly to do otherwise. That is, the cheapest way to

partition the node set into D = 2 disjoint subsets is by grouping A1 and B1 into one subset, and A2

and B2 into another subset, where D is the dimensionality of the arrays. In this way the total weight

of the edges going from one subset to the other is zero. The cost of choosing a cyclic distribution

should make it favorable for the algorithm to choose a contiguous distribution for both dimensions.

The alignment done is in terms of which dimensions should be aligned but it does not calculate how

to best align them. The nodes of the CAG represent array dimensions. An edge is added between

two nodes for every constraint in the alignment of two dimensions. The weight of the edge is equal

to the quality measure of the constraint.

The work by Gupta and Banerjee [34] uses the owner-computes rule, requires user intervention and

does not attempt to compute alignments beyond alignment of dimensions. In our work we address

both data and computation alignment, relaxing the owner-computes rule. We address cases of axis

c1
B1A1

A2 B2
c2

FIGURE 12.12 Component affinity graph (CAG) partitioned by classes of dimensions.
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alignment, stride and reversal alignments and offset alignment. We do agree that small arrays, such

as scalars, should be replicated; also, the communication should be optimized by moving it outside

the innermost loop whenever possible.

Bau et al. [14] use elementary matrix methods to determine communication-free alignment of code

and data. They also deal with the problem of replicating read-only data to eliminate communication.

They incorporate data dependences in their proposed solution to the problem, but the owner-computes

rule is assumed. Replication of data is also incorporated into their proposed solution.

Amarasinghe et al. [6] show how to find partitions for doall and doacross parallelism, and to

minimize communication across loop nests they use a greedy algorithm that tries to avoid the largest

amounts of potential communication. They give examples of how to obtain parallelism by incurring

some communication when this is the only way to run in parallel.

Chatterjee et al. [19] and [20] provide an algorithm that obtains alignments that are more

general than the owner-computes rule by decomposing alignment functions into several components.

Chatterjee et al. [19] investigate the problem of evaluating FORTRAN 90 style array expressions on

massively parallel DMMs. They present algorithms based on dynamic programming. A number of

other researchers have also made contributions to this problem. Kim and Wolfe [46] show how to

find and operate on the communication pattern matrix from user-aligned references. Our approach

generates the alignment of data and computation and frees the user from this task. Li and Pingali

[57] start with user specified data distributions and develop a systematic loop transformation strategy

identified by them as access normalization, which restructures loop nests to exploit locality and block

transfers whenever possible. Although we are also interested in maintaining locality, our approach

and theirs are different. We develop the data and computation distributions based on our findings;

the user does not have to specify them.

O’Boyle [61] proposed an automatic data partition algorithm based on the analysis of four distinct

factors. We concur with him in his view that automatic data partitioning is possible and that it must

be considered in the context of the whole compilation process instead of left to the programmer. He

does not consider partitioning of computation along with that of data and he is not concerned with

finding the alignment that minimizes communication, as we are in our work. Wakatani and Wolfe

[74] address the problem of minimizing communication overhead but from a different context than

ours. They are concerned with the communication arising from the redistribution of an array and

proposed a technique called strip mining redistribution. They are not concerned with automatically

generating the alignments, as we are, to free the programmer from this task and achieve minimum

communication while preserving parallelism.

Chatterjee, Gilbert and Schreiber [22] and Sheffer et al. [71] deal with determining both static and

dynamic distributions. They use the alignment–distribution graph (ADG) with nodes that represent

program operations, the ports in the nodes represent array objects manipulated by the program and

the edges connect array definitions to their respective uses. The ADG is a directed edge-weighed

graph although it is used as an undirected graph. Communication occurs when the alignment or

distribution at the end points of an edge is different. The completion time of a program is modeled

as the sum of the cost over all the nodes (which accounts for computation and realignment) plus the

sum over all the edges of the redistribution time (which takes into account the cost per data item

of all-to-all personalized communication, the total data volume and the discrete distance between

distributions).

The main effort of Ayguadé et al. [8] is directed toward intraprocedural data mappings. Candidate

distributions are used to build a search space from which to determine, based on profitability analyses,

the points at which to realign or redistribute the arrays to improve the performance by reducing the

total data movement. The CAG of Li and Chen [54] is used to determine the best local distribution

for a particular phase of the code. All the arrays in a phase are distributed identically. Control flow

information is used for phase-sequencing identification. An intraprocedural remapping algorithm is

provided.
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Garcia, Ayguadé and Labarta [30] present an approach to automatically perform static distribution

using a constraint based model on the communication-parallelism graph (CPG). The CPG contains

edges representing both communication and parallelization constraints. The constraints are formu-

lated and solved using a linear 0-1 integer programming model and solver. They obtain solution for

one-dimensional array distributions (i.e., only one dimension of the arrays is distributed), and use

an iterative approach for the multidimensional problem.

Kremer [53] proves the dynamic remapping problem NP-complete. Kremer et al. [52] and Kremer

[51] consider the profitability of dynamic remapping and use an interactive tool for automatic data

layout, respectively. Kennedy and Kremer [44, 45] deal with dynamic remapping in FORTRAN D

[73] and HPF [36]. The work by Kennedy and Kremer proposes a way to solve the NP-complete inter-

dimensional alignment problem [53] using a state-of-the-art, general-purpose integer programming

solver [45]. Thus, Kennedy and Kremer [45] formulate the interdimensional alignment problem as

a 0-1 integer programming problem. The same is done by Bixby, Kennedy and Kremer et al. [15].

Palermo and Banerjee [63] deal with dynamic partitioning by building the communication graph.

In this graph the nodes correspond to statements in the program and the edges are flow dependences

between the statements. The weight on these edges reflects communication. Maximal cuts are used

to remove the largest communication constraints and recursively divide the graph or subgraphs until

chunks of code (phases) that should share the same partitioning schemes are grouped together. Thus,

remapping may be inserted between phases and not within a particular phase to reduce communication

between phases.

In addition, relevant background in the areas of dependence analysis and program transformations

is needed for understanding the material in Section 12.5. For the general theory of dependence

analysis and vectorization, the reader is referred to Allen and Kennedy [3, 5]; Allen, Callahan and

Kennedy [4]; Banerjee [10–12]; Banerjee et al. [13]; Blume and Eigenmann [16]; Cytron [25]; Goff,

Kennedy and Tseng [33]; Irigoin and Triolet [42]; Maydan, Hennessy and Lan [58]; Padua and

Wolfe [62]; Ramanujam and Sadayappan [65]; Wolf and Lam [76]; Wolfe [77–80, 82]; Wolfe and

Banerjee [83]; Wolfe and Tseng [84]; and Zima and Chapman [85]. For cache and locality issues see

Anderson and Lam [7]; Fang and Lu [26]; Gallivan, Jalby and Gannon [28]; and Gannon, Jalby and

Gallivan [29]. In the articles by Chatterjee et al. [20, 21] and by Stichnoth [72] the reader can find

an introduction to the issues related with the assignment of array elements to the local memory of

processors and how these are accessed. Alignment is discussed in detail by Chatterjee et al. [20, 21]

and Chatterjee, Gilbert and Schreiber [22]. HPF and related issues are covered in [36], Hiranandani,

Kennedy and Tseng et al. [37, 38], and Hiranandani et al. [39]. Communication-free compiling is

the main topic of Fang and Lu [26], Huang and Sadayappan [40] and Ramanujam and Sadayappan

[64], whereas data flow analysis is treated in the book by Aho, Sethi and Ullman [2] and the article

by Maydan, Amarasinghe and Lam [59]. Finally, compiling for DMM is the topic of Bal, Steiner

and Tanenbaum [9]; Gupta et al. [35]; Hiranandani, Kennedy and Tseng [37, 38]; Tseng [73]; and

Zima and Chapman [86].

12.7 Summary

In DMM, interprocessor communication is more time consuming than instruction execution. If

insufficient attention is paid to the data allocation problem, then so much time may be spent

in interprocessor communication that much of the benefit of parallelism is lost. It is therefore

worthwhile for a compiler to analyze patterns of data usage to determine allocation for minimizing

interprocessor communication. This chapter presents a detailed discussion of two techniques, the first

for communication-free partitioning of arrays (Section12.4) and the second for deriving data distribu-

tions and associated loop transformations to minimize communication overhead in message-passing

computers (Section12.5).



454 The Compiler Design Handbook: Optimizations and Machine Code Generation

In Section12.4, we present a formulation of the problem of determining whether communication-

free array partitions (decompositions) exist and present machine-independent sufficient conditions

for the same for a class of parallel loops without flow or antidependences, where array references

are affine functions of loop index variables. In addition, where communication-free decompo-

sition is not possible, we have discussed a mathematical formulation that aids in minimizing

communication.

Section12.5 develops an algorithm that derives the terms in the transformation matrix, which

gives the best locality and minimum communication on DMM. We used the concept of data reference

matrices for individual array references. By using this concept as the starting point, we systematically

derive the best set of transformation matrices that give both good locality while enabling parallelism.

Unlike [56], where a padding matrix is used along with an arbitrary set of rows in the basis matrix,

we generate a transformation matrix systematically. The key idea in this method is to move com-

munication out of the innermost loop so that messages can be vectorized, reducing the amount of

communication by an order of magnitude. An algorithm is provided and several detailed examples

are used to show the effectiveness of this systematic approach. This algorithm begins by assuming the

owner-computes rule and relaxes it if no block transfers solution is achieved. The algorithm also gives

an optimal distribution of arrays on to the processors such that block transfers are enabled to reduce

interprocessor communication. Here, distribution of data only along one dimension is considered.

However, complex distributions with more than one distributed dimension can be derived using a

simple extension of this algorithm.

Data mapping in concert with program transformations remains a challenging problem for a wide

variety of machine architectures, ranging from message-passing machines at one end to nonuniform

memory access shared-memory machines at the other. The problem is also important for embedded

systems that have limited amounts of memory. Progress in this area is important for the effective

exploitation of a broad spectrum of machine architectures.

Acknowledgment

We gratefully acknowledge the support of the U.S. National Science Foundation through an NSF

Young Investigator Award 9457768; and through NSF grants 9210422, 0073800 and 0121706.

References

[1] W. Abu-Sufah, D. Kuck and D. Lawrie, On the performance enhancement of paging systems through

program analysis and transformations, IEEE Trans. Comput, C-30(5), 341–356, May 1981.

[2] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-

Wesley, Reading, MA, 1986.

[3] J. Allen and K. Kennedy, Automatic Loop Interchange, in Proceedings 1984 SIGPLAN Symposium

on Compiler Construction, 19, 233–246, June 1984.

[4] J.R. Allen, D. Callahan and K. Kennedy, Automatic Decomposition of Scientific Programs for

Parallel Execution, in Proceedings of the 14th Annual ACM Symposium on the Principles of

Programming Languages, Munich, Germany, January 1987.

[5] J.R. Allen and K. Kennedy, Automatic translation of Fortran programs to vector form, ACM Trans.

on Programming Languages Syst., 9(4), October 1987, 491–542.

[6] S.P. Amarasinghe, J.M. Anderson, M.S. Lam and A.W. Lim, An Overview of a Compiler for Scalable

Parallel Machines, in Proceedings of the 6th Annual Workshop on Languages and Compilers for

Parallel Computing, Portland, OR, August 1993.



Automatic Data Distribution 455

[7] J.M. Anderson and M.S. Lam, Global Optimizations for Parallelism and Locality on Scalable Parallel

Machines, in Proceedings of the ACM SIGPLAN ’93 Conference on Programming Language Design

and Implementation, Albuquerque, NM, June 1993, pp. 112–125.
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13.1 Introduction

An important part of code generation is to decide which values in a program reside in a register

(register allocation) and in what register (register assignment). The values may include temporary

variables introduced in the compilation process. The two aspects are often taken together and

loosely referred to as register allocation. Some algorithms [2, 17] have an explicit separate phase for

assignment whereas some combine both [49]; many combine both along with a separate assignment

phase also [18, 52]. The fundamental problem to be solved is either the optimal reuse of a limited

number of registers or the minimization of traffic to and from memory.

If the number of registers are not enough to hold all the values (the typical case), the problem of

register allocation also includes determining the duration (or the segment of the live range) for which

the variable resides in the register so allocated. Many current designs typically assume an unlimited

number of virtual registers that get mapped to a finite number of physical registers during the process

of register allocation. The virtual registers hold all the values of interest in the program that can be

allocated to registers.

A register allocator thus has to decide the set of candidates to be allocated (virtual registers) and

their associated live ranges. It next has to assign the registers to the candidates using some optimality

criterion (e.g., minimize spilling). Finally, it has to rewrite the code reflecting the allocations.

The first part can include renumbering, coalescing, splitting and rematerialization.

• Renumbering virtual registers. At the abstract code level, we need to distinguish between

unrelated variables that happen to share the same abstract storage location (e.g., on the stack)

or are used by a programmer (e.g., use of a counter i in different loops). The reuse of the stack

locations could be the result of storage optimization (as in machines with register windows or

in cache locality improvement, etc.). If the reuse is not detected, the live range in a specific

register becomes longer than logically necessary and increases register pressure. Separating

out the live range so that each value range is a candidate for register allocation is helpful.

Approaches such as renumbering [17], webs [82] or static single assignment (SSA)1 have been

used.

• Splitting live ranges. Instead of spilling a live range entirely, if it cannot be allocated a register

because of conflicts, it may be better to split the live range so that some part of it can reside in a

register, with move instructions connecting the pieces. The splitting reduces conflicts and can

make allocation possible. The important issues are what live ranges to split and where to split.

• Coalescing live ranges. To avoid overhead, a register allocator should coalesce two temporaries

that are related by a move instruction if this can be done without increasing the number of

spills.

• Rematerialization. Sometimes it is cheaper to recompute a value (typically constants) than to

keep it in a register. In such cases, registers can be freed earlier with a decrease in register

pressure.

1In SSA, only one textual definition of a variable exists (there may be multiple redefinitions as this definition
may be in a loop).
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The second part of the register allocation problem is NP hard and various models have been used

(graph coloring, bin packing, integer programming, other graph models based on cliques or feedback

vertex set), though graph coloring is the most popular.

Some registers are often preallocated. For example, we may need some dedicated registers such

as frame pointer (FP) or stack pointer (SP) though the need for an FP may be eliminated if alloca

is not supported or used.2 Without alloca, the offset from the base of the activation record of every

variable and temporary is known at compile time.

To make some registers available for an instruction, spilling may be needed. However, spilling

itself may need extra registers, especially in reduced instruction-set computing (RISC) architectures

that do not support access to memory in instructions except through LD/STs and if the addressing of

the spill location requires computation. Hence, some scratch registers may have to be preallocated.

Two designs for register allocation are possible: either all the virtual registers have memory as the

“home location” and some of them are promoted to registers by register allocation, or a register is

the home location of a virtual register and demoted or spilled if the register is needed by a more

important virtual register. Even though these two approaches seem symmetrical, there can be a

difference in the number of scratch registers that may have to be preallocated. In the first case,

an instruction at a particular point in the register allocation process may have multiple memory

references that need to be promoted to register before the instruction can be logically executed. If

all registers have been used by this point, current and future memory references can be handled only

by a store (spill) and a load, and the quality of allocation can degrade sharply.3 A better way is to

leave some registers as scratch; the worst-case need for scratch registers is the maximum number

of registers used in any instruction in a given instruction set. However, such a design can enhance

portability because the code can be a high-level intermediate code with many specific details of the

architecture or implementation not known; the scratch registers can help in emulating the abstract

instructions. In the second approach, because all loads and stores from memory to virtual registers

are already in the code, there may be no need to keep scratch registers if all “hidden” computations

(such as address calculation, including the cases when certain sizes of offsets cannot be used directly

in some instructions) are also exposed into the code.4 Although this can give better allocations, it

can be costly in terms of compile time. Every time a variable is spilled, it not only changes the code

to be optimized (similar to the first case where a memory resident variable has to be loaded into

a scratch register) but also changes the register conflicts.5 Hence, the allocation exercise has to be

repeated on the new code until no further spilling occurs. The first case is pessimistic (because some

registers have to be set aside) with the advantage of having more portability whereas the second is

optimistic with the disadvantage of all hidden computations having to be exposed and hence less

portable.

When only linear code is considered (i.e., no branches), an interference graph constructed from

the interval graph6 is a good representation. First, the interval graph of the liveness of variables

can be computed and then the interferences (nonempty intersection of intervals) can be computed.

2allocates temporary space in the stack frame of the caller.
3gcc [39] uses this strategy but does “postload” analysis to improve code (see Section 13.9.1). The problem
becomes acute for very long instruction word (VLIW)/(EPIC) processors, because each spill instruction may
have to be scheduled in a cycle of its own. For such architectures, Berson et al. [13] report that spilling is
poorer than splitting live ranges when there are excessive register and functional unit demands.
4Note that although instruction selection phase handles the issue of what instruction to use given certain
offsets, a phase-ordering issue exists because the offset of a spilled value is only known at the end of register
allocation.
5See Section 13.5.1.1, especially the last part of the discussion on splitting, for further clarification.
6Interval graphs are defined as in graph theory, not as the intervals of data flow analysis.
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If the chromatic number of the resulting graph is less than the registers available, the code can be

register allocated without any spills (i.e., unloading of a variable into memory). Interval graphs can

be colored optimally in polynomial time (see Section 13.3.1.2).

In the presence of branching, an interference graph is still a good representation but interval

graphs are no longer the case. We can use simpler but inaccurate representations, use more complex

models such as using predication to still get nonbranching code or use specific models such as

cyclic interval graphs for nested loops [53]. The former technique is widely used. For example,

consider a control flow graph (CFG) with many basic blocks. Instead of modeling the liveness

of variables at instruction level along with branching information, one can model liveness at the

basic block level and ignore the CFG structure so that in effect all basic blocks are now at a

flat level. Although such a representation loses accuracy, it may be simpler and faster to solve.

Another possibility is to use predication to convert the CFG to a linear set of instructions through

if-conversion [59]. This also loses some accuracy because the optimal splicing of instructions from

different branches for linearized predicated instructions is nontrivial, from a register allocation

perspective.

It has been shown that register allocation is an NP-complete problem for general graphs when the

corresponding decision problem is modeled as follows: Is an undirected graph k-colorable? The

(three-conjunctive normal form (3-CNF)) satisfiability problem can be reduced to this problem [3].

This formulation does not consider the cost models for stores or loads. If the problem of register

allocation is formulated as the minimization of memory traffic between registers and memory, the

problem is also hard, as has been shown by Farach and Liberatore [35].

However, the issue is minimizing the spills instead of maximizing the number of live ranges not

spilled. Although the two problems are equivalent in the case of finding optimal solutions, they are

not in the context of heuristic solutions or approximate solutions. Hence, the model used (graph

coloring, bin packing, integer programming, other graph models based on feedback vertex set or

cliques) can have a direct bearing on the quality of the code produced, though graph coloring is the

most popular model.

Another important aspect is the heuristic time and space complexity of the algorithms for register

allocation. Because programs can be quite large with hundreds to thousands of variables (more

accurately, value ranges) in a function and the number of interference edges can be in the range of

millions (e.g., the combined interference graphs of procedures and functions in gcc of mid-1990s have

approximately a total of 4.6 million edges), decomposition strategies are critical. Traditionally, these

have been handled at the function and procedure level. Hierarchical [22, 73] and profile-based models

(region-based approaches [52, 54]) have become increasingly popular. Graph-theoretical decomposi-

tion models have also been examined [86, 94]. These models can also reduce the need for large space

requirements, with the vertical model of region-based compilation (see Section 13.7) the most aggres-

sive. By using profile information, the region-based approaches may have already decided, by register

allocation time, on some aspects of renumbering, coalescing and splitting due to the decomposition

of the program into regions and the corresponding decomposition of live ranges. If this decompo-

sition is not appropriate, then the register allocator might have to reorganize the regions for better

performance.

The heuristic complexity that seems to be acceptable from a practical viewpoint is at most

n log n (empirical results for Chaitin’s register allocator with instruction-level liveness granularity,

hence larger graphs) or n2 (empirical results for Chow and Hennessy’s register allocation with

basic block level liveness granularity, hence smaller graphs) [16]. Here n is the object size of the

program or routine in bytes. With the introduction of dynamic compilation, even faster approaches

are becoming necessary. For SPEC92 benchmarks, although the gcc compiler (2.5.7) takes an

average of 0.2 sec per function, it takes 0.04 sec for register allocation [49] (i.e., 25% of the

total time).
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13.1.1 Importance and Future Trend

It has been often called one of the most important — if not the most important — optimization [57, 82]

in compilers. With older complex instruction set computers (CISCs) there have been two difficulties:

limited number of registers and nonuniform registers (i.e., implicit use of certain registers for some

operations, etc.). Register allocation is critical in getting performance out of CISC machines [2].

In RISC and VLIW/EPIC7 designs, designed to exploit available instruction parallelism through

compiler optimizations, two important optimizations in the back end that finally determine the quality

of code are instruction scheduling and register allocation. Instruction scheduling exposes the instruc-

tion level parallelism in the code, whereas register allocation assigns registers to frequently accessed

variables. Many of the architectural details are exposed to enable compilers to use the resources

effectively. The back end optimizations are done on assembly code or a low-level instruction fetch

(IF) of the code because all the address computations must be made explicit and all machine details

have to be incorporated for performance. It is now crucial to do a good job of combining instruction

scheduling and register allocation. However, strong interactions occur between these optimizations.

For example, if register allocation is done before instruction scheduling, false dependences (anti- and

output dependences) may be introduced due to register reuse, which limits the scheduler’s reordering

possibilities. However, instruction scheduling typically increases the register requirements (register

pressure) and may result in spill code. Such spill code may not be necessary if register renaming is

done in hardware at runtime (quite common in current superscalar microprocessors) but this is too

late because the compiler cannot know at compile time and has to spill.

With RISC designs, the number of registers has been at least 32 and in current VLIW/EPIC style

designs, as many as 128. Because of the abundance of these registers, the importance of register

allocation is widely perceived to have been reduced vs. other optimizations such as instruction

scheduling. Hence, many compilers for such machines first attempt instruction scheduling, then

register allocation and finally again attempt instruction scheduling to handle code corresponding

to spills [9].

However, aggressive compiler techniques such as loop unrolling, promoting of subscripted array

variables into registers (especially in loops) and interprocedural optimizations create heavy register

pressure and it is still quite important to do a good job of register allocation.

For just-in-time (JIT) compilation for Javalike systems, register allocation is also critical and

many different register allocators that optimize speed of compilation or execution efficiency may be

needed in the same system. For example, the Jalapeno quick compiler [58] compiles each method as

it executes for the first time and balances compile time and runtime costs by applying some effective

optimizations, with register allocation the most important.

13.1.1.1 Patents on Register Allocation

Some critical algorithms have been patented in the United States such as the use of graph coloring for

register allocation (held by IBM, Chaitin et al., U.S. Patent 4,571,678, 1986) and a dependent patent

on optimistic graph coloring (held by Rice University, Briggs et al., U.S. Patent 5,249,295, 1993).

Similarly, the hierarchical graph coloring method (by Callahan and Koblenz, U.S. Patent 5,530,866,

1996), the linear scan and bin packing allocators (by Burmeister et al., U.S. Patent 5,339,428, 1994),

an interprocedural register allocator (held by HP, Odnert et al., U.S. Patent 5,555,417, 1996) are

also covered. However, the Chow and Hennessy priority-based coloring method is not patented.

Approximately 22 patents granted seem to be exclusively concerned with register allocation as of

December 2001.

7EPIC is the basis of a new VLIW-like architecture that Hewlett-Packard (HP) and Intel have designed [70].
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It is believed that gcc from the Free Software Foundation avoids the IBM patent by spilling a real

register during the reload phase instead of a symbolic register during simplification [71]; we discuss

this further in a case study.

13.1.2 Related Topics: Storage Optimization, Paging, Caching
and Register Renaming

One related area is storage optimization that minimizes storage for a computation. They were first

explored as early as 1961 [11] and seem to have been the inspiration for the later work on the

coloring approach. Fabri [60] developed a live range splitting technique for minimizing storage that

has been more successfully used in register allocation [18]. Later work on storage optimization has

concentrated on update in place optimizations or copy elimination, especially important for functional

languages or memory-constrained embedded devices. Minimizing storage through targeting [41]

and single threading [87] has close analogs (coalescing, e.g., [38]) in register allocation. Storage

optimization has an impact on register allocation: if storage locations are reused, any spill locations

(home locations) also get reused and results in better cache performance.

Other related ideas are paging (from operating systems [OSs]) and caching and register renaming

(from computer architecture). Paging, caching and register allocation all exploit memory hierarchy

but are different mechanisms. In register allocation, the user or compiler manages the hierarchy

whereas it is automatic in case of caches and paging. Because a register is expected to be reused,

instruction level parallelism may be compromised due to increase in anti- and output dependences

with register reuse. Register renaming in some architectural designs is a way of eliminating these

false dependences automatically through the use of extra hidden registers in the microarchitecture

that are not present at the instruction level.

Differences between paging, caching and register allocation — In paging and caching, one assumes

that the memory ref streams are not a given and the job of managing the hierarchy has to be done

on-line as best as possible. In register allocation, the future references to variables are known to

some extent because the full text of the code may be potentially available. Even if the full text of the

code is available, the exact code paths may not be known. In realistic situations, one cannot even

assume that the full text of the code is available. For example, if a program uses dynamic linking

(the norm nowadays because the C library is dynamically linked), the exact code executed is not

known until runtime. If static linking is chosen, for good register allocation, it might be appropriate

to attempt it at link time because more information is available. However, the problem is not so much

the question of having the full text of the code or not: it is the ability to do the register allocation

analysis in an economical way so that quadratic effects (using heuristics) or worse (register allocation

is NP-complete) do not make the register allocation have unacceptable times.

In the paging or caching problem, typically only one page or cache reference is generated in

one step (assuming an uniprocessor).8 In local register allocation, multiple references can be gen-

erated in one step (e.g., ADD R1, R2, R3). Multiple simultaneous references arise also in VLIW

architectures.

13.1.3 Brief History

The first significant exercise in register allocation occurred as early as 1954 [99] in the context of

the FORTRAN compilation system. Even though the architecture had only two registers, there was

surprisingly a substantial effort in doing a good job of register allocation. For example [99]:

8We ignore older machines such as VAXes that could refer to multiple memory addresses in one instruction.
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The degree of optimization . . . achieved was really not equalled again in subsequent compilers until

the mid-60s when the work of Fran Allen and John Cocke began to be used in fairly sophisticated

optimizing compilers. . . . The index register allocation procedure . . . was at least as optimal as

any procedure developed during the next 15 years, and it probably is in fact optimal.

For straight-line code, the replacement policy in the allocator was the same as that used in Belady’s

MIN algorithm, which Belady proved to be optimal [15].

Ershov in the former Soviet Union developed the algorithm for optimal register allocation on

expression trees. The FORTRAN H compilation system for the IBM 360 (ca. 1967) is another

milestone. It used dominators to identify loops in CFGs of basic blocks [75] and used data flow

analysis to compute accurate live-in and live-out information to compute costs and benefits of

allocating a register to a variable (see Section 13.6.5.3).

The Bliss-11 compiler has been a groundbreaking optimizing compiler, including in register

allocation that is viewed as a bin packing problem. Chaitin et al. [45] studied coloring as a systematic

technique in 1979 and this technique became important with RISC architectures. Chow and Hennessy

[18] introduced priority coloring in 1984.

Hierarchical methods have been studied since 1990. Knobe and Meltzer [72] (and later Knobe and

Zadeck [73]) first gave a model (control tree based register allocation), which is also similar to an

another model (hierarchical graph coloring with tiling) developed around the same time by Callahan

and Koblenz [22] but without some problematic aspects of the first.

Another hierarchical model is based on regions. Region-based approaches have been proposed

since the 1990s. One significant experimental compiler has been the ELCOR research compiler from

HP Labs that has systematically explored the region-based approach. This back end is available as

a part of the publicly available Trimaran compilation system [98].

13.1.4 Outline of Chapter

In Section 13.2, we discuss some of the background on the subject. In Section 13.3, we cover various

theoretical models for the register allocation problem. In Section 13.4, we describe some of the

techniques used in local register allocation. In Section 13.5, we discuss some of the techniques

used in global register allocation but give some emphasis to the graph coloring approach because it

is widely used. We also give a high-level description of an hierarchical algorithm based on graph

coloring. The books [1, 82] also give up-to-date treatments and can be fruitfully studied, though they

differ in specifics. They also have detailed examples of the coloring algorithm. We also examine

other approaches such as those based on bin packing, integer linear programming and interprocedural

register allocation; and end the section with region-based approaches.

In Section 13.6, we descibe as a case study a region based register allocator that is present in

Trimaran, a publicly available compilation system [98]. We first give an overview of the approach,

the performance problems with a basic design and then enhancements that are required to make

it competitive. Though the compilation system is designed for VLIW/EPIC models, we restrict

our attention to the classical register allocation problem (we do not discuss, e.g., scheduling-aware

register allocation or cache miss or memory hierarchy optimizations necessary for VLIW/EPIC).

In Section 13.7, we cover phase-ordering issues with respect to register allocation and instruction

scheduling and present a framework for phase ordering these optimizations. Instead of the horizontal

model of compilation (where instruction scheduling is done on all units of compilation before

register allocation and then vice versa), we would like to design a vertical model where instruction

scheduling, register allocation and instruction scheduling again are done on each unit of compilation

before another unit is considered. This can help in reusing information across the phases as well

as incrementalizing some aspects of the optimizations, resulting in space and also time savings. If

the unit is as small as an operation, we get a fully combined instruction scheduling and register
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allocation. However, because such a design is quite difficult (register allocation and instruction

scheduling become very tightly coupled), we present a design with an unit that is a reasonably sized

region (such as a basic block or hyperblock). In such a design, instruction scheduling and register

allocation are decoupled to some extent. However, it is important still for register allocation to

influence the scheduling and vice versa. This is carried out by first using a profile-insensitive list

scheduler, then incorporating register pressure to make it sensitive to register allocation costs and

finally making it profile sensitive. This is discussed in Section 13.8.

Finally, we end with two more case studies: one on gcc [39], a freely available compiler from Free

Software Foundation, and a brief discussion on Jalapeno, a JIT compiler. An appendix gives some

details about the Trimaran system.

13.2 Background

13.2.1 Types of Register Allocation

Various types of register allocation are available but the most frequently used classification depends

on the scope of the allocation such as trees, directed acyclic graphs (DAGs) (basic blocks), loops,

function, region based (including hierarchical), interprocedural and link level:

• Local allocation. This is only within a basic block. In the past, allocation within traces,

superblocks and hyperblocks may also have been considered local but we consider them as

region based (see later) given the generality of grouping multiple basic blocks. Local allocation

is important for long basic blocks that usually result in scientific computations with heavy loop

unrolling.

• Global allocation. This is within a procedure or function. This is needed to support separate

compilation. For most programs, local allocation is just not sufficient due to the extensive

branching. The local and global allocations are the most widely used scopes for register

allocation.

• Instruction level allocation. Instruction level allocation may be needed when integrated register

allocation and instruction scheduling is attempted. In many architectures with large numbers

of registers, instruction scheduling is more important; hence when a cycle-level scheduler is

used, registers are also modeled as a resource. Before scheduling an instruction, a check of the

available registers is done along with the performing of any spill actions.

• Interprocedural allocation. This is across procedures but the full-blown version is usually not

supported due to its complexity. The simpler and standard form that is usually followed is the

callee and caller models of saving across calls (see later). One can consider this as a special

case of region-based allocation (that is discussed next) with the region of whole procedures or

functions. We consider it separately, however.

• Region-based allocation. This attempts to group significant basic blocks, even across procedure

calls if appropriate, so that register allocation among these basic blocks is effective. The first

two attempts have been with respect to traces [28] and loops [23, 30, 93]. Another approach

has been in Lisplike languages where handling recursion efficiently is important: here leaf

procedures are handled differently.

In the Java type of environments where byte codes are interpreted at runtime, JIT may be

used. This profiles the execution and compiles only some portions of the code. The register

allocation is likely to be only of a particular region. We discuss region-based allocation in some

detail.

• Link level allocation. This is at object time before the final loading phase. Given that separate

compilation is common, it is necessary to do the simpler form of interprocedural allocation



Register Allocation 469

(using caller and callee models) across procedures whose code is available only at link time.

This requires rewriting of instructions with new register allocations.

• Runtime allocation. This is needed in dynamic compilation such as JIT for Java (as discussed

earlier).

Also other aspects and models are:

• Whether speed of allocation or quality is important. For JIT applications, speed is often

more important than quality. For certain other cases, quality is absolutely critical (e.g.,

real-time or embedded applications with severe constraints such as time or memory) and

approaches based on exhaustive enumeration, integer programming or other approaches similar

to superoptimizers might be used when human coding is problematic.

• Whether register allocation is on an intermediate form (e.g., UCODE, ELCOR) or an assem-

bly code. When an intermediate form is used, one instruction can map to multiple lower

level instructions and setting aside scratch registers to avoid deadlock during allocation

process is critical. Another major problem is the phase-ordering problem with instruction

selection and register allocation. For example, instruction selection depends on whether an

operand is in memory or register whereas register allocation depends on the exact sequence of

instructions.

• What machine models are used — CISC [2], RISC [17] or vector/VLIW/EPIC [52, 55,

68–70] — whether predicated instructions exist. Vector register allocation is usually handled

by the programmer but register allocation for software pipelined loops is now also done in

the compiler (as in ELCOR). More specifically, what register models are available? Many

possibilities exist: small and large register sets, multiple register files, regular vs. irregular

registers, type of stack layout and calling conventions, etc. Also, whether a module for machine

descriptions exists (gcc, ELCOR) that has to be consulted during allocation is a consideration.

This is especially important for VLIW/EPIC types of architectures that usually have multiple

functional units and multiple register files.

• Whether the target language has specific features. For example, FORTRAN and C have different

aliasing models; object-oriented languages such as C++ and Java may require special support

(a region in these languages may be the constructor followed by the specific method call, etc.);

languages like Lisp that use recursion heavily, functional languages may require coalescing

or targeting [41] because a value defined is not changed or changed in a highly constrained

manner (as in SSA or single assignment).

• Whether subscripted array variables are allocated or only scalars. This is quite important in

scientific computation where subscripted array variables are often extensively used in tightly

nested loops.

Another aspect is the interaction with other optimizations: whether stand-alone or combined with

other optimizations (e.g., instruction scheduling, copy propagation, instruction selection in code gen-

erators) and how phase dependencies are handled. We have already discussed the latter for instruction

scheduling (Section 13.1.1) whereas for instruction selection one strategy is to perform instruction

selection twice — once to estimate the register needs and then again after register assignments. We

study interaction with instruction scheduling in some detail.

13.2.2 Interaction with Pointers and Call Conventions

Many languages allow a pointer be taken of a variable. Such variables cannot wholly reside in

registers. Even if they are allocated both a register and a memory location, consistency issues

can arise. Any update to a register has to be delivered to the memory location before an access

through memory. These requirements become extremely severe with aliasing. Hence, if a pointer
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is taken of a variable, it is usually not allocated to a register. If good quality alias information is

available, then one can consider register promotion [25] (especially for languages such as C) that

determines which scalar variables can be safely kept in registers and rewrite the code to reflect

those facts.

Call conventions — Many architectures have calling conventions where certain registers are

denoted as caller-save and others as callee-save. The former are suitable if the calling routine has

only a few registers live after the call and with small callee procedures. The latter are useful for

large procedures because they require work on entry to the procedure. In addition, the callee might

have a better knowledge of the code and may wish to insert the stores at the right place in the callee

(the subject of the shrink wrapping optimization). With interprocedural register allocation, callee

registers are more useful because information about register usage in the caller and callee procedures

are known.

13.3 Theoretical Results

13.3.1 Restricted Acyclic Graphs

13.3.1.1 Trees

There is an optimal algorithm (Sethi–Ullman [SU] algorithm) for trees under many cost models

(Section 13.4.1.1). However, for even simpler graphs such as chains, the problem becomes NP-

complete [91] if instruction scheduling is included. With restriction of delay slot delays to one, the

problem when combined with instruction scheduling is tractable as in the delayed load scheduling

(DLS) algorithm [88].

13.3.1.2 Graphs Resulting from Basic Blocks

The resulting interference graph is an interval graph [79] for which also optimal (polynomial)

algorithms exist. The order of the largest clique in the graph (C(G)) is the same as the chromatic

number (K(G)) in an interval graph (and also for bipartite graphs), and a greedy strategy that

assigns the smallest indexed color already not used is optimal [103]. To see this, consider an

interval that has been colored with a color with index p. Because this is the smallest indexed

color already not used, there is a clique with intervals colored with indices from 1 to p − 1.

Hence, C(G) ≥ p ≥ K(G). Because K(G) ≥ C(G) for all graphs, the coloring is optimal.

More elaborate cost-based approaches, however, are NP complete (Section 13.3.2.2). See also

Section 13.4.2.

13.3.2 Unrestricted Acyclic Graphs

The problem is NP complete for general graphs [3]. The optimality result for interval graphs in

Section 13.3.1.2 does not carry over with the introduction of branches because a live range is now a

set of intervals instead of an interval, and maximal cliques do not necessarily develop.

Various models have been used for handling unrestricted acyclic graphs: graph coloring through

simplification, bin packing, integer programming, other graph models based on cliques or feedback

vertex set. Though all these problems are NP-complete, they have different “approximability.” For

example, whereas a good approximate solution for graph coloring is not possible (see later), bin

packing has good constant factor approximations both in off-line (the situation mostly obtained in

the compiler case) and on-line cases. In the off-line case, if m bins are optimal, it may need at most

11 ·m/9+ 4 bins but for the on-line case it might need ⌈17 ·m/10⌉ bins. If worst-case guarantees

are needed for the approximation algorithms, some models (e.g., based on bin packing used in some

compilers or feedback vertex set advocated in CRISP [81]) may be better than widely popular models

such as graph coloring.
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13.3.2.1 Coloring Models

A (vertex) coloring of an undirected graph is an assignment of a label to each vertex such that the

labels on the pair of vertices incident to any edge are different. A minimum coloring of a graph

is a coloring that uses as few different labels as possible, with the chromatic number its number

of colors.

More than a century and quarter ago Kempe [63] developed the coloring approach based on

simplification:9 a graph G having a node X with degree less than k is k colorable if and only if the

reduced graph G′ formed by removing X with all its adjacent edges is k colorable.

Clique and coloring problems are closely related: the size of the maximum clique is a lower bound

on the minimum number of labels needed to color a graph. The maximum clique problem finds as

large a set of pairwise incompatible items as possible. The minimum coloring problem is to group

the items into as few groups as possible, subject to the constraint that no incompatible items end up

in the same group.

Both the problems, finding the maximum clique or minimum coloring, are formally NP-hard for

general graphs [44]. It is therefore unlikely that it is possible to find a fast (i.e., polynomial time)

algorithm to solve these problems exactly. In addition, based on the results of [5, 7, 14, 33, 78], it

seems unlikely that it is even possible to find an approximate solution to these problems quickly:

Bellare, Goldreich and Sudan [14] show that, assuming P =/ NP, for any ǫ ≥ 1/4 (for clique) or 1/7

(for coloring), no polynomial time approximation algorithm can find a solution that is guaranteed

to be within a ratio of N ǫ of optimal.10 They also show a value of ǫ ≥ 1/3 (for clique) and 1/5

(for coloring) assuming11 co-RP =/ NP. Because N , the number of nodes in the interference graph,

is often more than 1000 for whole procedures, this ratio is often more than 2:3 or 2:4. Hence, if

coloring is used, decomposition of the graph so that the number of nodes in the graph is below 500

(or even 100) is beneficial.

Wigderson’s approximation algorithm [102] for graph coloring runs in polynomial time but can

use as many as 2kN1−1/(N−1) colors where k is the chromatic number.

13.3.2.2 Cost-Based Models

If the problem of register allocation is formulated as the minimization of memory traffic between

registers and memory, the problem is also hard as has been shown recently [35]. More specifically,

consider local register allocation [35] that assigns registers to variables in basic blocks, which are

maximal branch-free sequences of instructions.12 An optimum local allocation schedules the loading

of values from memory into registers and the storing from registers into memory. The main difficulty

of local register allocation stems from the trade-off between the cost of loads and the cost of stores.

The cost of an allocation breaks down into the cost for loading and the cost for storing. The cost for

loading is proportional to the number of times a register is spilled while alive. However, the cost for

storing is a fixed cost that is paid once or not at all. If a cost is charged for storing, that cost does not

depend on the number of times a register is actually spilled. An optimum allocation is hard to find

because of the fixed costs due to stores.

9However, in this work, he wrongly claimed to have solved the four-color problem.
10We use N as the number of vertices in the interference graph all through this chapter.
11RP is randomized polynomial time. A randomized algorithm accepts strings in a language L in RP in
polynomial time with a probability of success (say) of ≥ 1/2 without accepting any string not in L. co-RP
is the complement of RP.
12The local register allocation problem as considered is general enough to model off-line paging with write
backs and weighted caching.
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13.3.2.3 Combined Register Allocation and Instruction Scheduling Problem

This model from [81] is quite instructive, though its primary focus is on integrating instruction

scheduling and register allocation. Because instruction scheduling is an NP-complete problem for

a basic block whereas a register allocation problem can be optimally solved in polynomial time

(Section 13.3.1.2), the combined problem is likely to be NP hard. This has been shown to be the case

even if the edge latencies are all 0 and only one register exists [81].

We first introduce the important concepts and notation from that paper. Let V = {v1, . . . , vm}
be the set of instructions in a basic block. Each instruction is labeled with an execution time t (vi).

DG = (V , E) is the data-dependence graph where each edge (vi, vj ) ∈ E is labeled with an

interinstruction latency l(vi, vj ) ≥ 0 — this means that instruction vj must start at least l(vi, vj )

cycles after the completion time of instruction vi . A schedule, �, specifies the start time σ(vi) ≥ 0

for each instruction vi . The completion time of schedule � is simply T (�) = maxi{σ(vi)+ t (vi)},

the completion time of the last instruction to complete in �.

For a given schedule �, we define a value range of virtual register r to be a triple (r, σ (vi), σ (vj )),

such that:

• Instructions vi and vj are in the basic block.

• For σ(vi) < σ(vj ), instruction vi is scheduled before instruction vj in �.

• Instruction vi is either a producer or a consumer of virtual register r .

• Instruction vj is a consumer of virtual register r .

• There is no intervening instruction vk such that σ(vi) < σ(vk) < σ(vj ) and instruction vk is

a consumer of virtual register r .

A value range is different from a live range, which extends from the first definition to the last

use. Value ranges represent the finest granularity of splitting live ranges. Let V AL(�) be the set

of value ranges over all virtual registers in schedule �. The bandwidth of V AL(�) at any time τ ,

BW(�, V AL(�), τ ) is the number of value ranges in V AL(�) that start at some time < τ and end

at some time ≥ τ in schedule �. Now, let R be the number of physical registers available. Register

spills are required if the bandwidth exceeds R at any time τ (i.e., if BW(�, VAL(�), τ ) > R for any

time τ . The spill choices made by a solution to CRISP are reflected in SV AL(�) ⊆ VAL(�), the

set of spilled value ranges, and AV AL(�) = V AL(�) − SV AL(�), the set of active (nonspilled)

value ranges. Spilling a value range (r, τ1, τ2) has the effect of forcing the value contained in virtual

register r to reside in memory during the time interval (τ1, τ2), thereby avoiding the need for a

physical register to hold that value during that time interval. The overhead of spilling a single value

range consists of a store instruction inserted at time τ1 and a load instruction inserted at time τ2.

For architectures that charge a single cycle overhead for each instruction, the total cost of all spilled

value ranges equal twice the number of spilled value ranges. The combined cost function for CRISP

is then given by the following problem statement:

Problem 13.1. For CRISP find a resource-feasible schedule � and spilled value range set SV AL(�)

so as to minimize the combined cost function C(�) = T (�)+2|SV AL(�)|, the sum of the completion

time of the schedule and twice the number of spilled value ranges. C(�) represents the overall

execution time of the basic block if we assume that each spill increases the execution time by two

cycles.

There is a polynomial time reduction from a feedback vertex set13 to a restricted version of CRISP

termed RCRISP (which has all edge latencies zero and only one register), and hence RCRISP

13Is there a set of k vertices for which removal (along with incident edges) results in an acyclic graph?
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is NP-hard [81]. However, there exists a constant-factor approximation to CRISP with a small

approximation ratio in practice (1 + c where c is the average value of the number of operands that

can be in registers across all instructions).

It is not known whether the preceding approximation results can be extended to unrestricted

acyclic graphs. If that is the case, the CRISP approach may be better than the graph coloring

approach because the problem of approximating to within a ratio of N ǫ the maximum R-colorable

vertex-induced subgraph of a given interference graph G (unrestricted acyclic graph) is NP-hard.

Also, the problem of approximating to within a ratio of N ǫ the minimum number of vertices to delete

from an interference graph G to leave an R-colorable subgraph is also NP-hard.

13.3.3 Cyclic Graphs

Register allocation for variables in nested loops are related to the class of circular arc graph coloring

problems [46, 64]. A graph G is called a circular arc graph if its vertices can be placed in a one-to-one

correspondence with a set of circular arcs of a circle in such a way that two vertices of G are joined by

an edge if and only if the corresponding two arcs intersect one another. If the intervals are periodic,

one can fit them into one circle. Theoretically, the problem of determining a k coloring for a circular

arc graph with n arcs has a complexity of O(nk!k log k) [46].

13.4 Local Register Allocation

13.4.1 Register Allocation in Basic Blocks

A local (basic block) register allocator does not consider the liveness of a variable across block

boundaries; all live variables that reside in registers are stored at the end of each block. Because the

size of most basic blocks is short, such a register allocator can introduce considerable “spill code”

at each block boundary.

Expressions in a basic block can be represented as DAGs where each leaf node is labeled by a

unique variable name or constant, and interior nodes are labeled by an operator symbol having one

or more nodes for the operation as children.

When the expression DAG for a basic block is a tree, the SU algorithm [3] generates an optimal

solution for register allocation.

13.4.1.1 Sethi–Ullman Numbering

The first part labels each node of the tree with an integer (the Sethi–Ullman number) that denotes the

fewest number of registers required to evaluate the tree without spilling. The labeling can be done

by visiting nodes bottom-up so that a node is not visited until all its children are labeled (postorder

traversal). Given two labeled children nodes, the parent node label is set to the label of the child node

requiring more registers. If the register requirement of both children is the same, either node can be

evaluated first with the parent needing one more register than its children. The label is defined as:

label(m) =

{

max(l1, l2) if l1 =/ l2

l1 + 1 if l1 = l2

The second part is to generate the code during the tree traversal. The order of tree traversal is

decided by the label of each node: first evaluate the node requiring more registers. When the label

of a node is bigger than the number of physical register R, the spill code has to be introduced.

Figure 13.1 shows an example of SU numbering where we need three registers.

This algorithm assumes that all registers are equivalent, the trees are binary and the value of

the result fits into one register. Appel and Supowit [6] have generalized the SU algorithm to remove
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FIGURE 13.1 Sethi–Ullman numbering.

the last two assumptions. Given any tree, assume that a registers are required and that b registers are

required to hold the result. Then any ordering that is nondecreasing in a − b of the k children of the

root minimizes the number of registers needed.

13.4.2 Minimization of Loads and Stores in Long Basic Blocks

In this approach [51], suitable for long basic blocks, a “shortest path” through a weighted DAG is

found. At each instruction where no free registers are available, the register to spill can either be the

next farthest to be read or written and which can be either in clean, dirty or dead (no future reference

or next access is a write) state. Given a cost model for a load or store, depending on whether the spillee

is in a clean, dirty or dead state, each allocation results in a different configuration. The problem now

is that of searching through this weighted DAG for the minimal cost path. Because the number of

configurations grows exponentially with the number of virtual registers VR and number of registers

R

(

=

(

|VR| − 1

R − 1

)

· 2R

)

, some way is needed for pruning this DAG. The following are some of

them: replace a dead register, among the clean registers replace the farthest [15], etc. However, these

are not enough and further heuristics are necessary. For example, if there are two candidates for

spilling (a dirty x and a clean y) and y is referenced sooner than x, then replacing y might be cheaper

(because no store of y is required). By using some weights for multiplying the distances, they arrive

at an heuristic weighted cost algorithm that performs within 10% of optimal and better than other

algorithms such as Belady MIN or clean first (spill the most distant clean variable; if none, spill the

most distant dirty one).

13.4.3 Register Allocation in Traces: Multiflow Compiler

The Multiflow compiler performs its register allocation on a trace [61]. Briefly, a trace is a linear

sequence of basic blocks without internal loops. The Multiflow compiler combines register alloca-

tion and instruction scheduling. After constructing a sequence of basic blocks, register allocation

is performed along with instruction scheduling. Trace scheduling gives priority to blocks in the

highest frequency trace; thus, instruction scheduling and register allocation in these blocks do not

have constraints from other blocks. A variable is bound to a register only when the instruction
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scheduler sees an actual reference to that variable. The live ranges extend outward from the highest

frequency traces, and compiler generated compensation code is pushed outward to low frequency

traces. Register spilling may occur inside a trace if not enough registers are available.

When scheduling a trace, the instruction scheduler must decide from where to read the variables

that are live on entry to the trace and where to write the variables that are live on exit from the

trace. For the first trace, no binding decisions have been made and the instruction scheduler is free to

reference these variables in the locations (memory or register) that result in a good schedule. Most

subsequent traces are entered from, or branch to, other traces where code has been scheduled and

binding decisions have already been made. When a trace is entered from a register allocated trace,

it must read its upward-exposed variables from locations where last written. When a trace branches

to a register allocated trace, it must write downward-exposed variables into locations that are read

downstream. This process is effected through a data structure called value location mapping (VLM).

A VLM maps a set of variables into a set of locations. VLMs are created by the instruction scheduler

after the instruction scheduler has generated code for a trace.

Some variables are live from the top to the bottom of a trace but are not actually referenced in the

trace itself. The Multiflow compiler delays binding registers to these variables and affects them only

when the variable is referred explicitly in other traces. The Multiflow scheduler uses the bindings

already resolved as preferences in resolving the delayed bindings. The delayed binding carries the

information necessary to determine whether these preferences can be satisfied.

13.5 Global Register Allocation

Some simple heuristic solutions exist for the global register allocation problem. For example,

lcc [34] allocates registers to the variables with the highest estimated usage counts [31], spills a

variable in a register whose next use is most distant by allocating memory on the stack and allocates

temporary registers within an expression by doing a tree traversal. Another simple heuristic is the

linear scan.

13.5.1 Register Allocation via Graph Coloring

Chaitin [17, 45] was the first systematic attempt to apply graph coloring to register allocation. An

interference graph is constructed from the program. Each node in the interference graph represents a

live range of a program data value that is a candidate to reside in a register. Informally, a live range is

a collection of operations (or basic blocks in some implementations) where a particular definition of

a variable is live. Two nodes in the graph are connected if the two data values corresponding to those

nodes interfere with each other in such a way that they cannot reside in the same register. In addition,

some machine dependences can also be modeled by including specific interferences. For example,

if the result of an instruction cannot reside in a register due to nonregular registers, an interference

edge can easily model it.

In coloring the interference graph, the number of colors used corresponds to the number of registers

available for use. Chaitin’s approach to register allocation attempts to map a fixed set of colors to all

the nodes of the interference graph. If not all the nodes can be colored with the available registers,

a live range is spilled (i.e., assigned a location in memory), and all references effected through

LOAD/STORE instructions (spill code). The live range corresponding to the spilled variable can be

deleted from the interference graph. This deletion reduces the chromatic number and we can repeat

this process until the graph is colorable. However, this change to the code requires recomputing the

interference graph again, an expensive operation. Spilling replaces a global node of higher degree to

several local nodes of lower degree.
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renumber build coalesce spill costs

codespill

simplify select
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FIGURE 13.2 Steps in graph coloring: (A) the Chaitin framework; (B) the Briggs framework.

An important improvement to the basic algorithm is the idea that the live range of a temporary

should be split into smaller pieces, with move instructions connecting the pieces. This relaxes the

interference constraints, making the graph more likely to be k colorable. The graph-coloring register

allocator should also coalesce two temporaries that are related by a move instruction if this can be

done without increasing the number of spills.

The steps14 in the algorithm are as follows (see Figure 13.2):

• Renumber (Section 13.5.2.2). This step creates a new live range for each definition point

and, at each use point, unions together the live ranges that reach the use (disjoint set union-

find problem). SSA can also be used; it is termed web analysis in [82]. In some simpler

implementations, live ranges are discovered by finding connected groups of def-use chains. A

single def-use chain connects the definition of a virtual register to all its uses.

• Build interference graph (Section 13.5.2.1). If the allocation of two live ranges to the same

register changes the meaning of the program, they interfere. An interference graph specifies

these relations between live ranges and this can be implemented either as a matrix or as a linked

list. This phase is the most expensive; hence, some designs repeat other steps of the algorithm

in an attempt to minimize the number of repetitions of this step.

• Coalesce (Section 13.5.2.3). Two live ranges are combined if the initial definition of one is

a copy from the other and they do not otherwise interfere. Combining the two live ranges

eliminates the copy instruction. Due to the change in the graph, build and coalesce steps have

to be iterated until no changes occur.

• Spill costs. This step estimates for each live range the runtime cost of any instructions that

would be added if the item were spilled. Spill cost is estimated by computing the number of

loads and stores that would be required to spill the live range, with each operation weighted

by c · 10d (or use power of 8 on binary machines), where c is the operation cost on the target

architecture and d is the instruction loop-nesting depth.

• Simplification (Section 13.5.2.5). This step creates an empty stack and repeats the following

two steps for each live range l in graph G:

1. If l has interfering nodes with a degree less than k, remove l from the graph G and put l on

a stack for coloring

2. Otherwise, choose a node l to spill using a heuristic such as (Chaitin’s) choosing the node

with the smallest ratio of spill cost divided by current degree. Remove l and all of its edges

from the graph. Mark l to be spilled.

• Coloring (Section 13.5.2.6). Assign colors to the nodes in the stacked last-in, first-out (LIFO)

order. Every live range on the stack is guaranteed to have a distinct color.

14We discuss some details of many of these steps in Section 13.5.2; we also provide the links here.
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• Spill code. Spilling a live range can be done by inserting a store instruction after every definition

and a load code before every use. This approach is refined by skipping the first instruction in

sequential definitions and skipping second load instruction in sequential uses.

Appel [1] has a somewhat different structure with emphasis on removing move operations through

coalescing.

13.5.1.1 Refinements to Chaitin’s Approach

13.5.1.1.1 Optimistic Coloring.

Given an interference graph, Chaitin’s algorithm proceeds by successively removing unconstrained

vertices from the graph. This simplification approach may miss legal coloring opportunities. Consider

a complete bipartite graph with M nodes on each side. Only two colors are needed but Chaitin’s

algorithm can spill if less than M registers are available as every node is constrained. For example,

the interference graph in Figure 13.3 is colorable with 2 colors, but Chaitin’s approach does not find

an optimal solution for this case.

Optimistic coloring by Briggs et al. [11, 16] improves simplification by attempting to assign colors

to live ranges that would have been spilled by Chaitin’s algorithm. Optimistic coloring delays spill

decisions until the register assignment phase. Unlike Chaitin’s approach where spill candidate l is

chosen when the interference graph is simplified and spilled, spill candidates get placed on the stack

with all the other nodes in optimistic coloring. Only when select discovers that no color is available

is the live range actually spilled. A spill is not necessary if not all neighbors have been colored with

different colors. However, Lueh [76] reports that optimistic coloring is not effective in practice.

13.5.1.1.2 Splitting.

Another refinement fits live range splitting into Chaitin’s coloring framework by splitting live ranges

prior to coloring. The motivation is to reduce the degree of the interference graph and to allow

the spilling of only those live range segments that span program regions of high register pressure.

Aggressive live range splitting, as reported by Briggs, uses the SSA representation of a program to

determine split points. A live range is split at a φ node when the incoming values to the φ node result

from distinct assignments. The approach also splits all live ranges that span a loop by splitting these

live ranges immediately before and after the loop. These approaches to splitting live ranges before

y

xw

z

FIGURE 13.3 Chaitin requires three registers for this graph but optimistic coloring requires only two registers.
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coloring have drawbacks of splitting live ranges unnecessarily. Conservative coalescing is proposed

to increase the chance that the same color is given to partner live ranges. The code is traversed in any

convenient order and at each copy instruction; this instruction may be deleted if source and target live

ranges do not interfere and they do not make the resulting node constrained. Another conservative

strategy [38] coalesces two nodes a and b if, for every neighbor t of a, either t interferes with b or t

is unconstrained.

Bergner et al. [12] describe a heuristic called interference region spilling that reduces the amount

of spill code necessary for spilled live ranges. Instead of spilling a live range everywhere, their

method chooses a color for the live range and only spills it in areas where that color is unavailable.

The allocator picks a color for the spilled live range by estimating the costs that would be incurred

for each color; it selects the color with the smallest estimated cost.

Cooper and Simpson [29] introduce another method that compares splitting vs. spilling costs.

Spilling a live range li does not break the interference with any live range lj that is live at either a

definition or a use of li . However, if li and lj interfere but lj is not live at a definition or a use of

li , then li contains lj and it may be beneficial to split li around lj . A containment graph with live

ranges as nodes is used to detect this situation: an edge from lj to li in the graph indicates that li is

live at a definition or use of lj . li can be split across lj if and only if li and lj interfere and no edge

exists from li to lj in the containment graph. If the estimated cost of splitting is less than the cost

of spilling everywhere, splitting is better than spilling. Experiments [29] show that in most cases it

performs better than either the Briggs or Bergner approaches.

13.5.1.1.3 Rematerialization.
Rematerialization reduces the live range of a variable and hence promotes coloring. Briggs uses

SSA in his implementation of rematerialization [10]. By examining the defining instruction for each

value, he recognizes never-killed values and propagates this information through the SSA graph. The

sparse simple constant algorithm by Wegman and Zadeck [104] is used to propagate never-killed

information.

13.5.1.1.4 Multiple Spill Heuristics.
Because much of the time is taken in building the graph with graph coloring itself taking much less

time, it is advantageous to repeat graph coloring multiple times with different costing models on

the same interference graph and choose the coloring with the least cost. The spilling heuristic of

Chaitin-style coloring [45] and optimistic coloring [16] use S(lr)
degree(lr)

as the priority where degree(lr)

is the degree lr in the interference graph. Even though the size of the live unit is a good heuristic for

normalization, a large size live range is not necessarily bad.

Later work by Bernstein et al. [9] explored other spill choice functions. They present three

alternative functions:

P(lr) =
S(lr)

degree(lr)2
(13.1)

P(lr) =
S(lr)

degree(lr)area(lr)
(13.2)

P(lr) =
S(lr)

degree(lr)2area(lr)
(13.3)

In the preceding equations, arean represents an attempt to quantify the impact lr has on live ranges

throughout the routine:

area(lr) =
∑

i∈Q(lr)

(5depthi · widthi) (13.4)
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where Q(lr) is a set of instructions in live range lr (i.e., instructions where a variable is live), depthi

is the number of loops containing the instruction i and widthi is the number of live ranges live across

the instruction i. Experiments conducted by Bernstein et al. [9] show that no single spill priority

function is better than others. They propose the use of a best of three technique where simplify is

repeated three times, each time with a different spill metric, and choose the version giving the lowest

spill cost.

13.5.1.1.5 Hierarchical Allocation.
Callahan and Koblenz [22] partition the register allocation of a function by defining a hierarchical

tiling (similar to control trees [82], with each tile similar to a node in the control tree) based on the

CFG. In the first phase, the tiles are colored individually in a bottom-up fashion and each variable

is assigned a physical register (e.g., to satisfy linkage conventions), or a pseudo register or spilled

to memory. A pseudo register is provisionally a good candidate for allocating a register but it is

not possible to determine at this stage whether it can actually be allocated a register or spilled in

the second phase (due to the presence of pass through live ranges that have no references in this

tile). In a second, downward pass the pseudo registers are mapped to physical registers. In this pass,

variables that have been allocated registers in the parent tile but not referenced in this tile are now

included by making them interfere with every other variable in the conflict graph constructed in the

first pass. These variables are also preferenced to use the registers that have been allocated to them

in the parent tile. Spilling uses the optimistic coloring approach. The optimal location of the spill

code is also addressed: it is either at the topmost possible tile or lower down if it can be pushed down

due to conditional statements (see Section 13.5.2.4).

Though this approach is widely known and possibly implemented in many commercial compilers,

no results are available on the effectiveness of this approach in the literature. We discuss in the next

section (Section 13.5.2) a version of this approach using control trees.

13.5.1.1.6 Graph Decomposition through Clique Separators.
Gupta, Soffa and Ombres [94] use Tarjan’s result on colorability of a graph by decomposition

into subgraphs using clique separators, which states that if each subgraph can be colored using

at most k colors, then the entire graph can be colored in k colors by combining the coloring of

subgraphs. Each subgraph includes the clique separator. A renaming of registers for the clique

separator nodes might be needed when merged with other subgraphs. In Tarjan’s work, the entire

interference graph is constructed and later clique separators are identified. In this work, clique

separators are identified by examining code and interference graphs and then one subgraph is

constructed at a time for space efficiency. A program is partitioned by selecting traces (paths)

through the CFG and finding clique separators for each trace. If a variable is live on multiple

traces, renaming may be necessary at branch or join points. The maximum number of cliques,

chosen as separators, in which a live range can occur is fixed to a small constant (13.2). The time

complexity of register allocation with m-clique is O(N2 ÷ m), but the overhead of determining

the clique separators is larger than the benefit in register allocation time and results in longer

overall time.

13.5.2 Efficient Data Structures and Algorithms for Graph Coloring

Register allocation requires careful attention to data structuring and algorithmic issues. For example,

when constructing the interference graph in graph coloring, adjacency matrix is good but during the

actual coloring phase adjacency lists are better.

The cost of constructing and manipulating the interference graph dominates the overall cost

of allocation. On a test suite of relatively small programs [21], the cost is as as much as 65%

with the graphs having vertices (N ) from 2 to 5,936 and edges (E) from 1 to 723,605. N and
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E are sometimes an order of magnitude larger on some graphs (especially, computer-generated

procedures).

Chaitin [17, 45] suggests representing the interference graph using both an edge list for each node

and a triangular bit matrix (O(N · N)). The edge list allows for efficient examination of a node’s

neighbors, whereas the bit matrix ensures a constant time membership test. George and Appel [38]

recommend using a hash table in place of the bit matrix because E/N for them is approximately

16 (sparse graphs). However, Cooper, Harvey and Torczon [21] report that this ratio is quite variable

and that actually changes during coloring process itself. They conclude that below some threshold

size, the split15 bit matrix method is generally smaller and faster than either hashing or the original

Chaitin method. Above the threshold, the compiler should use closed hashing with the universal

hash function.

13.5.2.1 Interference Graph Construction

This depends on the exact definition of interference, the unit of liveness, whether predication exists

and possibly also the model of scheduling.

A simple definition of interference is that two variables interfere if they are live at the same

time. Assume a lower triangular adjacency matrix for the interference graph with the appropriate

normalization (i.e., the first index is smaller than the second or swapped to get this effect).

at each instruction point I
for each virtual register VR1 live at I

for each virtual register VR2 live at I
if VR1<>VR2

set interferes(VR1,VR2) to true
set interferes(VR2,VR1) to true

The complexity is O(|I | · |V R|2) (can be crudely approximated as cubic in |I |). However, there

is a better notion for interference: Consider:

if (cond)
then A=...
else B=...

X:
if (cond)

then ...=A
else ...=B

At X, both A and B are live but do not interfere. Hence, a better definition is the following: two

names interfere if one of them is live at the definition point of the other [45]. The Chaitin definition

is more accurate because use of an undefined variable is handled better.

The new algorithm for computing interferences is as follows:

at each instruction point I
for each virtual register VR1 live at I

for each virtual register VR2 modified at I
set interferes(VR1,VR2) to true
set interferes(VR2,VR1) to true

15That is, integer and real variables have different bit matrices.
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Because the number of operands modified in an instruction is typically not more than one or

is constant (especially true in RISCs), the complexity is O(|I | · |VR|) (can be approximated as

quadratic in |I |).
An alternative definition [18] is: first, a live range is the intersection of the set of program graph

nodes in which a variable is live and the set of nodes in which it is reaching; second, two live ranges

interfere if they have a common node.

If liveness granularity is at the level of a block (BB/SB/HB), the algorithm for computing

interferences is as follows:

compute the virtual registers live on exit from each block
for each block B

for each instruction I in reverse order in B
for each virtual register VR1 live at I

for each virtual register VR2 modified at I
set interferes(VR1,VR2) to true
set interferes(VR2,VR1) to true

update virtual registers live at the predecessor instruction
by subtracting definitions in I and adding uses in I

It is sometimes necessary to look at intrainstruction level liveness. Consider a VLIW machine that

has two types of scheduling [70]: Equal (EQ) scheduling requires that an operation take a specific

duration while less than equal (LTE) requires less than or equal to some period; thus, LTE scheduling

can cope with variations in time due to caches, etc. but with likely lower performance. Consider

a = a + b, which is equivalent to a1 = a2 + b. In the LTE/NOT-EQ model, a1 and a2 interfere but

not in the EQ model. If register allocation is to be independent of the specific scheduling model used,

we need to define liveness that is based on operations instead of edges. In an edge-based liveness

model, the liveness of a2 extends on the edge into this operation whereas liveness of a1 begins

on the edge out of this operation; hence they do not interfere. Hence, to be independent of both

styles of scheduling, we may have to model liveness at the level of operations at the cost of some

accuracy.

In addition, the live ranges can be constructed recursively from sublive ranges, which can go all

the way down to an operation (see Section 13.6.1 for some details). Predication is also another factor.

Liveness analysis becomes predicated [62] as well as spill code. We discuss some aspects of this

later (Section 13.6.1).

13.5.2.2 Renumbering

To compute the disjoint lifetimes of a virtual register, the union-find algorithm is useful. Each such

disjoint lifetime can be independently allocated.

let D = set of all definitions of VR
for each def d in D, makeset(d)
for each use u of VR

RD = set of defs reaching u
select any one def d1 in RD
S = find({d1})
for each def d in RD - {d1}

S = union(S, find(d))
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The various sets at the end of the algorithm represent the new candidates for register allocation. If

SSA representation is used, this is not necessary.

13.5.2.3 Coalescing

This section and the next have been adapted from an unpublished manuscript on register allocation

[24, 73].16

It is legal to coalesce A and B if, except for the copy instruction between A and B, there are no

interferences between A and B. It may not be possible to coalesce all such pairs because one pair may

introduce interferences for another pair. It is also desirable to coalesce the pair that gives maximum

benefit.

The following pseudo code first initializes the data structures (primarily a priority queue for each

pair of virtual registers that could be potentially coalesced) and then attempts to coalesce them.

Backtracking is effected if some interferences result due to coalescing of other candidates. The

priority queue has four-tuple entries with the two candidates for coalescing as the first component

and prioritized by the cost which is the second component.

Initialization:

for each instruction I
if I is a copy instruction "dest=src"
VR1 = find(dest)
VR2 = find(src)
if VR1 <> VR2
update(PQ, [(VR1,VR2), cost, liveVRsTargetingDest,

liveVRsTargetingSrc])
// upd a priority queue PQ with entry E [(VR1, VR2),
// cost (the savings if VR1 and VR2 were to be coalesced),
// potential coalescible VRs live at copy instrs that

target "dest",
// potential coalescible VRs live at copy instrs that

target "src"]
update VR1’s and VR2’s potential coalescible VRs by

adding E to each

16An interesting informal description (taken verbatim from the abstract of [73]) is as follows:

Register allocation is like trying to fit blocks in a box. There are two distinct problems: first, the volume of the blocks may

be too large for the box, and second, the shapes of the blocks may make the box difficult to pack. No matter how good

your packing technique is, you cannot succeed if the volume of blocks is too large. On the other hand, that the volume of

blocks is acceptable does not guarantee that the box can be packed. In the analogy to register allocation, each live range

associated with a candidate (object to be allocated) is a block. Other algorithms view blocks as having uniform density.

Our blocks have holes, regions in which the candidate’s live range is reference-free. We prune portions of the program

where the number of live candidates is greater than the number of registers (the register pressure is too high) by storing

the value in memory on entry to the region and reloading it on exit. It is always possible to prune enough that the volume

of the candidates does not exceed the volume of the box. In theory, once the volume problem is solved, packing is easy if

one has a chainsaw: when something doesn’t fit, cut it in two and try again. In practice, the problem is difficult to solve

well because splitting has a cost: move instructions must be inserted between the split regions. It is important to select

not only the proper candidate to split but also the proper location of the split to facilitate packing the remaining blocks

and also to minimize the costs of the move instructions. Both the pruning and the splitting use the control tree to take into

account the program structure in determining costs. Because the algorithm uses the control tree to guide the pruning and

splitting decisions, the algorithm is called control-tree register allocation algorithm

.
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else VR1 = find(dest)
for each VR live at I

VR2 = find(VR)
set interferes(VR1,VR2) to true
set interferes(VR2,VR1) to true

Coalesce:

for each entry E == [(VR1,VR2),*,*,*] in PQ
if interferes(VR1, VR2) backtrack(E)

while (PQ is not empty)
E = extract-min(PQ)
VRu = union(VR1,VR2)
interferes(VRu,*) setunion= interferes(VR1,*) setunion

interferes(VR2,*)
interferes(*,VRu) setunion= interferes(*,VR1) setunion

interferes(*,VR2)

update VRu’s potential coalescible entries by adding
those of VR1 and VR2

for each potential coalescible entry E of VRu
if E in PQ

if E.VR1==E.VR2 then delete(PQ, E)
else if interferes(E.VR1,E.VR2) backtrack(E)

else if (VR1<>E.VR1) or (VR2<>E.VR2)
delete(PQ, E)
update(PQ, [(VR1,VR2), E.cost,

E.Live1, E.Live2])
else

else delete(PQ, E)

Let E be [(VR1, VR2), cost, live1, live2]:

update(PQ, E)

if VR1 > VR2, swap (VR1, live1) and (VR2, live2)
if (VR1, VR2) in PQ, update this entry by adding to

the corresp fields
[cost, live1, live2]

else insert entry [(VR1, VR2), cost, live1, live2]
into PQ return entry

backtrack(E)

vr1 = find(VR1)
vr2 = find(VR2)
for each L in live1

vr = find(L)
set interferes(vr, vr1) to true
set interferes(vr1, vr) to true

for each L in live2
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vr = find(L)
set interferes(vr, vr2) to true
set interferes(vr2, vr) to true

delete entry E from PQ

for each entry E in either vr1’s or vr2’s potential
coalescible VRs
if E in PQ

if interferes(find(E.VR1), find(E.VR2)) backtrack(E)

13.5.2.4 Splitting or Pruning for Colorability

Pruning involves determining the set of live ranges to be split and determining the right split points

for the selected live ranges. Once a live range is split, compensation code needs to be inserted to

store/load to/from memory for the uses encountered in the second part of the live range. Due to the

cost of compensation code, pruning decisions need to be cost based, especially taking execution

frequency into account. The following pruning technique is based on the hierarchical technique

proposed by Callahan and Koblenz [22]. In this algorithm, sections of a live range with no references

are identified: these potential candidate regions can be spilled to memory. The maximal length live

range gap is referred to as a wedge in [24]. Nonoverlapping and maximal wedges are identified using

the control tree.17 The choice of wedges to prune is a function of the runtime cost of compensation

code that would be added in the pruned region and the area of the program that would benefit from

the pruning decision.

The initialization computes the excess register pressure for each control node and the estimate of

the size of the lifetime of a candidate to be pruned in a control node. The pruning starts at the top

of the control tree so that larger wedges are pruned first: this minimizes the compensation code and

maximizes the area of the program that sees a reduction in the register pressure. At each node in the

control tree the most desirable wedge is picked and removed; the various structures that keep track

of pruning (e.g., excess register pressure) are then updated. If necessary, other wedges in priority

order are removed next to reduce the excess register pressure. If this does not help, the children of

the node are then examined for pruning.

Sometimes it is important to choose a wedge down the control tree instead of the top, for

example, with an if-then-else statement (but not push it inside loops), to reduce the cost of the

compensation code.18

Initialization

initPrune(Node N)

if N a leaf of the control tree
Livesegment(N) = Live(N)
ExcessPressure(N) = |Live(N)| - |registers|
for each live range L in Live(N)

LiveSize(L,N) = 1
else

for each child M of control tree node N, initPrune(M)

17This is obtained by interval analysis (of data flow analysis) with minimal intervals [82].
18Note the similarity to shrink wrapping.
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Livesegment(N) = set union, over each child node M of N,
Livesegment(M)

Referenced(N) = set union, over each child node M of N,
Referenced(M)

ExcessPressure(N) = max, over each child node M of N,
ExcessPressure(M)

for each live range L in Livesegment(N),
LiveSize(L,N) = sum, over each child node M of N,
LiveSize(L,M)

for each live range L in Referenced(N)
for each child M of N

if L not in Referenced(M) and L in Livesegment(M),
newWedge(L,M)

newWedge(L,M)

if L is a wedge top that is preferable to push lower
into control tree
for each child MM of M, newWedge(L,MM)

else add L to Wedges(M)

Pruning

prune(N)

order Wedges
while (ExcessPressure(N)>0 and |Wedges(N)|>0)

select max W from Wedges(N)
insert ld/st as needed
updatePressure(W,N)

for each child M of N
if ExcessPressure(M)>0, prune(M)

updatePressure(W,N)

if N a leaf in the control tree
delete W from Live(N)
decr ExcessPressure(N) by 1

else ExcessPressure = 0
for each child M of N

if (W in Livesegment(M)), updatePressure(W,M)
if ExcessPressure(M)>ExcessPressure(N)

ExcessPressure(N) = ExcessPressure(M)

13.5.2.5 Graph Coloring

To avoid changing the interference graph during simplification (a costly operation), a counter

(currentDegree) is associated with each node that contains the number of current neighbors. If

a node is spilled, this value is adjusted.
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Initialization

for each V in interference graph
currDegree(V) = degree(V)
if currDegree(V) >= R
insert(ConstrainedPQ, (V, cost(V))
else insert(unConstrainedPQ, (V, currDegree(V))

Simplify

init Stack to empty
for i=1 ... num of vertices

if unConstrainedPQ not empty
V = delete-max(unConstrainedPQ)

else V = delete-max(ConstrainedPQ)
push V onto Stack
adjustDegreeNeighbors(V)

return Stack

adjustDegreeNeighbors(V)

for each U in Neighbors(V)
if search(ConstrainedPQ, U)

decr currDegree(U)
if currDegree(U) < R

delete(ConstrainedPQ,U))
insert(unConstrainedPQ, (U, currDegree(U))

else
else if search(unConstrainedPQ, U)

if U not in Stack
update(unConstrainedPQ, (U, --currDegree(U)))

13.5.2.6 Color Assignment

Two simple strategies are possible:19 always pick the next available register in some fixed ordering

of all registers or pick in the forbidden set of unassigned neighbors and still available. The first

strategy maximizes use of lower numbered registers (may introduce unwanted false dependences)

but is useful with caller-saved registers as fewer registers have to be saved/restored on call/return.

With callee-registers, shrink wrapping is important (Section 13.6.5.5.2)

assignColors

repeat
V = pop(Stack)
ColorsUsed(V) = colors used by neighbors of V
ColorsFree(V) = all colors - ColorsUsed(V)
if |ColorsFree(V)|

choose a free color and assign to node V
else add V to spill list

until Stack empty
return spill list

19With region-based approaches, other strategies are possible. See Section 13.6.5.4.
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Problems exist for assignment with real hardware. If the architecture has register pairs,20

assignment of register pairs can be done before assignment of other registers. However, variables

residing in register pairs may not be as important as others that may get spilled due to this phase

ordering. Cost-based pruning, as discussed earlier, is necessary to minimize such spilling.

Some architectures or application binary interfaces (ABIs) require some values in fixed registers

(e.g., arguments to a call). If the code generator handles this aspect, it may be suboptimal because

it may load the register locally whereas register allocation may be able to handle it globally without

introducing extra copies. Coalescing is important to avoid these copies. If the code generator does not

handle this aspect, the virtual register VR requiring the dedicated register r can be made to interfere

with all other VRs requiring a dedicated register other than r.

Some architectures (especially, VLIW) have multiple register banks. If the register banks are

of different types, it is advantageous to allocate registers separately [21]. If they are of the same

type, allocating from the total pool may require moves before use. It is also possible to add

interference edges to prevent registers from a particular register bank to be allocated for a virtual

register.

13.5.3 Priority-Based Coloring

An alternative form of global register allocation on a per-procedure basis via graph coloring is that of

Chow and Hennessy [18]. This approach takes into account the savings accrued by a variable residing

in a register vs. memory by computing the costs of loads and stores. Variables are ordered by priority

based on the savings. This approach also uses the concept of live range splitting, introduced by Fabri

[60], as an alternative to the spilling techniques used by Chaitin et al. [17]. A basic block is used

as the unit of liveness whereas Chaitin uses the machine-level instruction as the unit. This coarse

grained register allocation has a smaller interference graph and hence a faster allocation, but the

result may be less efficient because a register cannot hold different values in different parts of a basic

block. To mitigate this, Chow and Hennessy force the creation of a new basic block whenever the

number of references crosses a limit. Another difference is that a live range is exact; if there is no

benefit of putting a candidate live range in a register in a region, such a region is excluded. These

include gaps that exist between the occurrences of the def-use chains. Because of these gaps, the

nodes in a live range are not necessarily connected.

Before colors are assigned, unconstrained live ranges are removed from the interference graph.

Unconstrained live ranges have a degree in the interference graph less than the number of registers

available. Color assignment blocks occur when no legal color exists for the next live range to be

colored and this can be resolved by splitting a live range. The basic purpose of splitting is to reduce

the degree of a node in the interference graph by segmenting a long live range into smaller live

ranges. Although the number of live ranges increases, each smaller live range usually interferes with

fewer other candidates because the live ranges occupy smaller regions and the probability of overlap

with other live ranges is thereby reduced.

The value of assigning a given variable to a register depends on the cost of the allocation and

the resultant savings. The cost comes from the possible introduction of register–memory transfer

operations to put the variable in a register and later to update its home location. Coloring greedily

assigns colors to live ranges in a heuristic order determined by a priority function. The priority

function captures the savings in memory accesses from assigning a register to a live range instead

of keeping the live range in memory. It is proportional to the total amount of execution time

savings, S(l), gained due to the live range l residing in registers. S(l) is computed by summing

20These are registers that have to be consecutive and start, say, even.
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si over each live unit i in the live range weighted by the execution frequency wi of the individual

basic blocks:

S(l) =
∑

i∈lr

si × wi (13.5)

where a live unit is each register allocation candidate in conjunction with a basic block and si is:

si = LODSAVE × u + STRSAVE × d − MOVCOST × n (13.6)

where u denotes number of uses, d denotes the number of definitions and n denotes the number of

register moves needed in that live unit.

The last factor to consider is P(l), the size of the live range, which is approximated as the number

of live units, M , in the range. A live range occupying a larger region of code takes up more register

resource if allocated in the register. The total savings are therefore normalized by M so that smaller

live ranges with the same amount of total savings can have higher priority. Thus, the priority function

is computed as:

P(l) =
S(l)

M
(13.7)

Their framework (Figure 13.4) has the following steps:

1. Build the interference graph and separate out unconstrained live ranges.

2. Repeat until no uncolored constrained live ranges exist or all registers are exhausted.

a. Compute priorities of live ranges (using some heuristic function) if any have not already

been computed.

b. If any priority of live range l negative or if no basic block i in l can be assigned a register

(because every color has been assigned to a basic block that interferes with i), delete l from

the interference graph.

c. Select the live range l with the highest priority.

Build

Simplify

Compute priority

Select live range

Binding

Spilling

Splitting

FIGURE 13.4 The framework of Chow and Hennessy register allocation.
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d. Assign a color to l not in its forbidden set and update the forbidden set of those live ranges

that interfere with l.

e. For each live range p that interferes with l, split p if its forbidden set covers the available

colors.

3. Assign colors to unconstrained live ranges not in their corresponding forbidden sets.

One problem with the priority-based approach is that the priority function never changes unless

it is split during the coloring process. Thus, it may fail to capture the “dynamicity” of the register-

binding benefit because the degree of nodes in interference graph changes (see Section 13.6.5.3.2 in

the context of region-based register allocation).

Live range construction — A live range is an isolated and contiguous group of nodes in the CFG.

In the Chow and Hennessy approach, live ranges are determined by data flow analysis: those of live

variable analysis and reaching definition analysis. A variable is live at block i if a direct reference

of the variable exists in block i or at some point leading from block i not preceded by a definition.

A variable is reaching in block i if a definition or use of the variable reaches block i. The live range

lr(v) of a variable v is given by live(v) ∩ reach(v).

Live range splitting — In splitting a live range, Chow and Hennessy separate out a component

from the original live range, starting from the first live unit that has at least one reference to the

variable. This component is made as large as possible to the extent that its basic blocks are connected.

This has the effect of avoiding the creation of too small a live range segment. The live range splitting

steps can be summarized as:

1. Find a live unit in l in which the first appearance is a definition. If this cannot be found, then

start with the first live unit. Let this live unit be part of the new live range l′ that is split from l.

It is guaranteed that l′ has at least one live unit that can be colored due to reasons in preceding

step 2.

2. For each successor lu of the live units in l′ in breadth-first order, add lu into l′ as long as l′ is

colorable. Update l by removing all the live units in l′.

3. Update the interference graph and priority of l and l′.

4. If l and/or l′ become unconstrained after the split, move them from the constrained pool to the

unconstrained pool.

Spill code and shuffle code insertion — Spilling a live range l assumes that the value of l resides

in memory and it is necessary to insert a store operation after every definition of l and a load operation

before every use. The costs due to these operations are called spill costs.

When a live range is split into a number of smaller live segments and split live ranges are

bound to different registers, shuffle code (also called patch up code, or compensation code)

may be needed to move the data from one live range to the next. When a preceding live seg-

ment is bound to a register with the following segment spilled, a store operation is required.

Likewise, if the preceding live segment is spilled and the following live segment is bound to a

register, a load operation is required at the boundary. If two adjacent live segments are bound

to different physical registers, a move operation is needed. In region-based register allocation,

region boundaries provide implicit and natural splitting points to the compiler. In this case, the

shuffle code for the region boundaries are identical to the shuffle code required in live range

splitting.

13.5.3.1 Extensions.

We discuss many of the extensions (such as shrink wrapping) in the context of a region-based

allocator (see Section 13.6.5). However, almost all the ideas discussed there can also be incorporated

in a nonregion-based approach.
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13.5.4 Linear Scan and Binpacking Approaches

The linear scan algorithm allocates registers to variables in a single linear-time scan of the variable

live ranges. The linear scan algorithm is considerably faster than algorithms based on graph coloring,

is simple to implement and results in a code that is almost as efficient as that obtained using more

complex and time-consuming register allocators based on graph coloring. In one study [83], it

is within 12% as fast as code generated by an aggressive graph coloring algorithm for all but

2 benchmarks. The algorithm is of interest in applications where compile time is a concern, such as

dynamic compilation systems, JIT compilers and interactive development environments.

At each step, the algorithm maintains a list, active, of live intervals that overlap the current point

and have been placed in registers. The active list is kept sorted in order of increasing end point. For

each new interval, the algorithm scans the active list from beginning to end. The length of the active

list is at most R. The worst-case scenario is that the active list has length R at the start of a new

interval and no intervals from the active list are expired. In this situation, one of the current live

intervals (from the active or the new interval) must be spilled. Several possible heuristics exist for

selecting a live interval to spill. One heuristic is based on the remaining length of live intervals by

spilling the interval that ends last, farthest away from the current point. This interval can be found

quickly because active is sorted by increasing the end point: the interval to be spilled is either the

new interval or the last interval in the active list, whichever ends later. In straight-line code, and when

each live interval consists of exactly one definition followed by one use, this heuristic produces code

with the minimal possible number of spilled live ranges [15, 81].

Another linear scan algorithm, the second-chance binpacking [97], invests more work at compile

time to produce better code. It is a refinement of binpacking, a technique used in the Digital Equipment

Corporation (DEC) GEM optimizing compiler [8]. The registers are the bins and the lifetimes of

the virtual registers are the ones to be packed into the bins with the constraint that no overlapping

lifetimes be packed into the same register. When a virtual register v is first encountered and no free

registers are available, a spill candidate s is found based on a heuristic (farthest distance, loop depth,

etc.) and its live range split at this point. The live range of v starts from here until it is victimized by

another. If s is next encountered (read or write), another spill candidate is found and its live range

split. The allocation and code generation are all done in a single linear pass inside a basic block;

hence, this method is suitable for JIT compilers. However, at basic block boundaries, allocations

have to be resolved again with a traversal of the CFG edges (an extra pass). The basic blocks in this

approach are the regions in a region-based approach and hence many of the performance problems

with an unoptimized region-based register allocation remain (see Section 13.6.4).

In the GEM system, the allocator uses a density function to control the allocation. A new candidate

can displace a previous variable that has a conflicting lifetime if this action increases the density

measure. After the allocation of temporaries to registers is completed, any unallocated or spilled

temporaries are allocated to stack locations.

13.5.5 Integer Linear Programming Approaches

In some situations, it is important to exhaustively and systematically check (or close to it) all solutions

due to irregularities in the architecture or in the problem domain by formulating the problem as an

integer linear program (ILP) and solve it exactly with a general-purpose ILP solver. The Intel IA-32

architecture (e.g., Pentium), due to its dominance in the marketplace, is an example of an irregular

architecture for which good register allocation is important. Even though eight registers exist, it has

only six allocable registers because usually two are dedicated to specific purposes. However, many

graph coloring register allocation algorithms do not work well for machines with few registers. For

example, on a test suite of 600 basic block clusters comprising 163,355 instructions, iterated register

coalescing produces 84 spill instructions for a 32-register machine, but 22,123 spill instructions for

an 8-register machine (14% of all instructions) [2]. In addition, heuristics for live range splitting may
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be complex or suboptimal, and heuristics for register assignment usually do not take into account

the presence of some addressing modes. These problems are aggravated when only a few registers

are available.

The ILP problem is NP-complete, but approaches that combine the simplex algorithm with branch-

and-bound can be successful on some problems. The first significant work is that of Goodwin for his

Ph.D. thesis [37, 49]. Goodwin and Wilkin [49] formulate global register allocation as a 0-1 integer

programming problem incorporating copy elimination, live range splitting, rematerialization, callee

and caller register spilling, special instruction–operand requirements and paired registers. Based on

the CFG of a program, a symbolic register graph is derived for each virtual register, each edge is

labeled with a decision variable that when solved by the optimal register allocator (ORA) solver

module indicates whether the virtual register is allocated (1) or not (0) to a real register at the point

represented by the edge. Because ORA can take hundreds of seconds to solve for a large procedure,

Goodwin and Wilkin [49] also have formulated near-optimal register allocation (NORA) as an ILP:

one version (profile-guided hybrid allocation) does ORA on performance critical regions identified

through profiling and graph coloring on the rest. A ORA-GCC hybrid takes an average of 4.6 sec

to produce an allocation that is within 1% of optimal for 97% of SPEC92 benchmarks. GCC takes,

however, 0.04 sec on an average.

Appel and George [2] take a different approach to near-optimal register allocation through a two-

phase approach that decomposes the register allocation problem into two parts: spilling and then

register assignment. Instead of formulating the ILP problem as whether variable v is in register r at

program point p, a simpler formulation is whether v is in register or memory at program point p. This

phase of register allocation finds the optimal set of splits and spills with the optimality criterion the

dynamic weighted loads and stores but not register–register moves. In addition to computing where

to insert loads and stores to implement spills, it also optimally selects addressing modes for CISC

instructions that can get operands directly from memory. They report that it is much more efficient

than the Goodwin and Wilken ILP-based approach to register allocation (N1.3 vs. N2.5 empirically)

with many allocations within tens of milliseconds typically. They use a variant of Park and Moon

optimistic coalescing algorithm that does a good (though not provably optimal) job of removing the

register–register moves. Their results show the Pentium code that is 9.5% faster than code generated

by SSA-based splitting with iterated register coalescing. It should be noted that the phase ordering

(spilling followed by register assignment) in this approach can introduce suboptimal results but it is

considerably faster.

13.5.6 Register Allocation for Loops

Hendren et al. [53] propose the use of cyclic interval graphs as a feasible and effective representation

that accurately captures the periodic nature of live ranges found in loops. The thickness of the

cyclic interval graph captures the notion of overlap between live ranges of variables relative to

each particular point of time in the program execution. A new heuristic algorithm for minimum

register allocation, the fat cover algorithm and a new spilling algorithm that makes use of the

extra information available in the interval graph representation are proposed. These two algorithms

work together to provide a two-phase register allocation process that does not require iteration of

the spilling or coloring phases. They next extend the notion of cyclic interval graphs to hierarchical

cyclic interval graphs and outline a framework for a compiler to use this representation when perform-

ing register allocation for programs with hierarchical control structure such as nested conditionals

and loops.

Rau et al. [93] consider register allocation for software pipelined loops but without spilling. The

problem is formulated as the minimization of the number of registers required to pack together

the space–time shapes that correspond to live ranges of loop variants across the entire execution

of the loop.
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Callahan, Carr and Kennedy [30] use a source-to-source transformation (scalar replacement) on

various loop nest types to find opportunities for reuse of subscripted variables and replace them by

scalar references so that the likelihood increases that they can reside in registers. Because register

pressure can be increased substantially, they try to generate scalars so that register pressure is also

minimized. This is modeled as a knapsack optimization problem.

13.5.7 Interprocedural Register Allocation

Given register requirements for each procedure, interprocedural register allocation attempts to mini-

mize execution cost. The simplest approach does not use any interprocedural register allocation and

spill registers that might be used by both the caller and callee [19].

Wall [100] uses the fact that two procedures that are not simultaneously active can share the

same registers for their locals and groups locals that can be assigned a common register. The locals

of a procedure are in different groups than those of its descendants and ancestors in a call graph.

Also, each interprocedurally shared global is placed in a singleton group. Groups are then allocated

registers based on the total frequency in which their members are referenced. However, such an

allocator may not be optimal because locals that are infrequently referenced can be grouped with

locals frequently referenced.

Steenkiste and Hennessy [95] allocate registers to locals in a bottom-up fashion over the call

graph for Lisplike languages that tend to have small procedures and spend much of their time in the

leaf procedures. While registers are available, a procedure is assigned registers that are not already

assigned to its descendants in the call graph. When the registers are exhausted, they switch to an

intraprocedural allocation. However, this approach may introduce register spilling around calls in

frequently executed procedures near the top of a call graph.

Santhanam and Odnert [96] perform interprocedural register allocation over clusters of frequently

executed procedures. Spill code is attempted to be minimized by moving it to the root node of

a cluster.

The Kurlander and Fischer approach [67] avoids register spilling across frequently executed calls

and examines the entire call graph to generate a minimum cost allocation spilling register. They

describe profile-based save-free as well as spilling version of their interprocedural register allocation.

In the former, no spills are generated across calls (possible only for acyclic call graphs); the cost

of allocating registers to procedures is modeled and a minimum found. The latter minimizes the

allocation plus spill cost.

In save-free register allocation, interferences are modeled between candidates in the same pro-

cedure and between candidates in separate procedures connected along a path in the acyclic call

graph. An antichain is the set of nodes that do not interfere. With k registers, the problem now

becomes that of finding a maximum weight k-antichain sequence. This is solved using dual minimum

cost flow [66].

In the spilling version, interferences are only modeled between candidates in the same procedure

because spilling can potentially make the other candidates in separate procedures reside in the same

register. The optimization problem is solved using dual minimum cost flow again. On SPEC92

benchmarks, they report an improvement between 0 to 11.2% (whereas the Steenkiste and Hennessy

approach is between −3.2 and 7.4%) with an increase in compilation time between 0.2 and 5%.

13.5.8 Region-Based Approaches

A major premise of recent VLIW/EPIC architectures is the use of frequency-based approach for

getting performance. It is advantageous to allocate optimization resources on code that take most of

the execution time. Functions and procedures reflect the structuring of a program as conceived by

a programmer but they typically have no bearing on identifying parts of the code that is most often
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executed. A region-based approach, where regions are identified through execution frequencies,

can be used to identify important fragments of code. Once important regions are identified, two

approaches can be followed. In the first approach, important regions are compiled first so that they

do not have many of the constraints that later compiled regions may have. In the second more

involved approach, differential compile time budgets are made available to regions depending on the

importance of the regions. We discuss the first approach only because almost no experience exists

yet with the second approach.

Regions can be smaller than a function and totally contained within it or they can be across

functions. We consider only the former here. In the first case, execution time may suffer because

optimizations have a more limited scope than their global counterparts and additional code at the

boundary of two regions may have to be introduced. However, the compilation time can be lower

because the time complexity of many components of a register allocation algorithm are superlinear.

Hence, splitting a function into many parts results in a lower compilation time overall.

We briefly compare the traditional function-based approach (also called horizontal model of

compilation) with region-based compilation approach (also called vertical model of compilation).

For details, see [50, 54]. Traditionally, the compilation process has been built assuming functions

as a unit of compilation. Figure 13.5 illustrates the process of compiling a program of n functions.

However, the process suffers from the following limitations: the scope of compilation and optimiza-

tion is limited to a procedure and not across critical paths spanning procedures; it lacks control of

compilation unit size; and it is not able to reuse analysis information and has restricted use of profile

information.

The drawbacks of function-based compilation can be addressed by allowing the compiler to

repartition the program into a new set of compilation units called regions. A region is defined

as an arbitrary collection of basic blocks selected to be compiled as a unit. Each region may be

compiled completely before compilation proceeds to the next region. In this sense, the fundamental

mode of compilation has not been altered and all previously proposed function-oriented compiler

transformations may be applied. The benefits are the use of dynamic behavior of a program and

control over the size of compilation unit.

13.5.8.1 Issues in Region-Based Compilation.

Region selection — A region-based compiler begins by repartitioning the program into regions.

The region selector may select one region at a time or it may select all regions a priori, before

ILP Optimization

Classical Optimization

Prepass Scheduling

Register Allocation

Postpass Scheduling

Compiler Phase FnF3F2F1 - - -

FIGURE 13.5 Block diagram of function-based compilation.
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the compilation process begins on any region. The following criteria can be used for the region

selection:

• Execution frequency information of operations

• Memory access information

• Structure of region (e.g., basic block, superblock [56] and hyperblock [80], loops)

• Maximum size of the region (to limit the complexity of region processing) [101]

Region selection can be performed on a single procedure or it can span more procedures. The

scope of region selection can also be increased beyond a procedure by performing function inlining

before region selection.

Phase ordering — In region-based compilation, the phases of compilation can be carried out on

the regions in any order. Only the constraints arising due to the properties of the phases themselves

should be obeyed. Different regions can be in two completely different phases of the compilation

process at the same time. This approach is very flexible in comparison with the function-based

approach in which each phase of compilation is applied to every basic block in the function before

the next phase begins.

Incremental analysis — Each compiler phase performs certain global analysis on all the regions

before starting the processing of individual regions. However, as the compilation proceeds, this

information might be corrupted in certain cases and would require to be updated. This requires some

form of incremental analysis.

Region boundary conditions — Separate compilation of a program using a traditional function-

based compiler is facilitated by the fact that the boundary conditions of a function are fixed. The

variables live across the single entry point and single exit point of a function are well defined by

the parameter passing convention. However, a region is an arbitrary partition of the program CFG.

The liveness and other necessary information is required at the boundary of these regions. This

information can also change dynamically as the compilation proceeds.

13.5.8.2 Various Region-Based Approaches in the Literature.

We now review some of the work on region-based approaches to register allocation. We already have

discussed register allocation at trace level in the Multiflow [28] compiler. One main weakness is that

groups of traces that are executed together frequently are not handled, which is handled better by the

notion of hyperblocks. Soffa, Gupta and Ombres [94] (Section 13.5.1.1) also use traces as regions

but focus on decomposition of the graph to reduce compilation time. Though traces use frequency

information, the clique separators (and hence the regions for register allocation) are determined by

the exigencies of when live ranges start and end instead of groups of traces that are executed together

frequently.

We have also discussed the work of Briggs [16] and Callahan and Koblenz [22]. Both of these,

in the context of Chaitin’s framework, consider many issues similar to a region-based approach but

not in a explicit region-based framework. The structure of the program graph as needed by register

allocation is derived through the use of SSA, or tiling or control trees.

Norris and Pollock [86] use the program dependence graph (PDG) representation of a program to

decide the regions but such region formation is not sensitive to actual patterns of execution (though

useful as a hierarchical organization of the program). For a given node, each subset of its control

dependences that is common with those of another node is factored out and a region is created to

represent it. Register allocation is performed hierarchically bottom up also and Chaitin’s algorithm

is used in each region. The hierarchical and PDG region-based approaches use the program structure

and tend to allocate registers to the highest frequently executed regions first, because leaf nodes of

such regions tend to correspond to the innermost loop bodies. However, the PDG region formation

is not sensitive to actual patterns of execution and frequencies of execution of the region boundaries

where patch codes are inserted. In branch-intensive code, the regions formed typically may not be
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any larger than a basic block, on the order of one C statement, resulting in unnecessary spill code

[50]. The authors report a 2.7% improvement over a standard global register allocator.

Proebsting and Fischer use probabilistic register allocation [89], which is a hybrid of the priority-

based and program structure-based approaches. The approach consists of three steps, local register

allocation, global register allocation and register assignment. The global register allocation step

partitions a program into regions based on the loop hierarchy and proceeds from the inner most loops

to the outermost loops. When a variable is assigned to a register, the shuffle codes are placed at the

entry and exit points of a loop. Like previous structure-based region formations, this is not sensitive

to actual patterns of execution and frequencies of the region boundaries.

Hanks [50] explores region-based compilation in the IMPACT compiler. The compiler selects a

region and performs classical global optimizations, instruction level parallelism (ILP) optimization,21

instruction scheduling and register allocation.

Lueh and Gross [74] consider region-based register allocation for arbitrary regions. Lueh [77]

uses graph fusion in his fusion-based register allocation. His approach starts with an interference

graph for each region of the program where a region can be basic blocks, superblocks, loop nest or

some combinations of these. Regions are merged in a bottom-up manner by the order of frequency

of edges between regions, and the interference graph is fused whereas fused live range is simplified.

Shuffle code is likely to be inserted at less frequently executed points. The split point is at region

boundaries and it does not split large superblocks or hyperblocks, even if the register pressure is very

high inside a block.

Hansoo and Gopinath [52] and Kim et al. [69] have considered a region-based approach that also

handles predication for a research compiler system called Trimaran [98]. We first present a simplified

version of this register allocator in Trimaran and then discuss in some detail refinements necessary

to make it competitive with global schemes.

13.6 Region-Based Register Allocator in Trimaran

Trimaran has a region-based register allocator [68] with the following features: frequency-based

priority coloring (in the spirit of Chow and Hennessy [18]), region-based with region reconciliation,

fine-grained live ranges with predicated instructions and live ranges. See Appendix A for a description

of Trimaran’s compiler infrastructure.

13.6.1 Region-Based Register Allocation in the Chow
and Hennessy Model

The approach in Trimaran builds on the framework of Chow and Hennessy (Figure 13.4) insofar

as a region itself provides natural live range splitting in a region-based approach, and frequency

information used in region formation can also be used in the priority function. By using this

framework, regions such as hyperblocks that contain predicated instructions and superblocks are

also handled in addition to basic blocks. However, the predicated instructions in hyperblocks [80]

pose many interesting problems to many phases of the compiler including register allocation.

13.6.1.1 Live Range Construction

Chow and Hennessy use a basic block as the unit of liveness or coloring for faster compilation.

Instead, it is also possible to use a finer granularity at the level of operations. A coarse interference

21From this point in the chapter ILP refers to instruction level parallelism; we have used ILP for integer
linear programming earlier.
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TABLE 13.1 Decrease (dec) in Percentage of Number of Edges (Rounded to 1000’s)

in Interference Graph with Basic Block (BB) or Hyperblock (HB) as Region

Prog. BBc BBf dec% HBc HBf dec%

espresso 773 678 12.2 3078 1734 43.7

eqntott 91 85 5.9 368 270 26.5

sc 270 223 17.3 513 364 29.1

gcc 4654 4268 8.3 7278 5633 22.6

m88ksim 368 284 22.7 852 504 40.9

compres 34 32 5.0 215 156 27.7

li 55 44 21.4 124 81 34.4

ijpeg 846 659 22.1 2898 1654 42.9

cccp 175 163 6.7 456 373 18.1

cmp 3 3 6.1 25 14 45.0

eqn 93 80 13.4 206 151 26.4

lex 232 218 6.2 923 746 19.2

tbl 258 248 4.1 561 425 24.2

yacc 161 149 7.2 1263 925 26.7

Note: c refers to coarse live ranges (i.e., BB or HB as unit of live range); f refers to fine grain live

ranges (i.e., operation as unit of live range).

graph may result in less efficient allocation but the penalty of coarse-grained live ranges is small if

the size of basic blocks is typically small.

For region-based compilation using hyperblocks or superblocks, this penalty can be greater for

two reasons. First, the register pressure in a basic block with coarse-grained live ranges is not as

large as in hyperblocks because the size of a basic block is usually smaller. Second, a coarse-

grained live range may have extra interferences in superblocks or hyperblocks not present in basic

blocks. Let variable x be live in blocks B1 and B3 only. Hence, it does not interfere with variable

y that is live in B2, even if we use a basic block as the unit of a live range. However, if we create a

superblock SB1 from blocks B1 and B2, a coarse-grained live range construction reports interferences

between x and y.

By constructing live ranges recursively from sublive ranges, which can go all the way down

to operation level, one can study the effect of granularity of live ranges for regions such as basic

blocks and hyperblocks. Table 13.1 from [55] shows the difference in number of interference edges

between basic block based live ranges and operation based live ranges. The reduction in interference

edges with fine-grained live ranges makes for faster register allocation and hence a reduction in

compilation time.

13.6.1.2 Interference Graph Construction

In Chow’s approach, two live ranges are said to interfere if the intersection of their live ranges is not

empty. However, Chaitin’s definition of liveness is more accurate. Two live ranges interfere if one of

them is live at the definition point of the other. This is necessary because live units can be as small as

an operation. With predicated code, the computation of accurate liveness information is necessary

to build the sparsest possible interference graph because it may have a role in reducing compilation

time, as well as in better execution performance. Otherwise, an increase in the register requirements

is possible. First, without knowledge about predicates, the data flow analysis must make conservative

assumptions about the side effects of the predicated operations. Second, the solutions of the data

flow analysis rely heavily on the connection topology among basic blocks in the flow graph, which

is altered by the if-conversion process used to construct hyperblocks.
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However, the performance improvement due to predicated analysis depends on many aspects. For

example, hyperblock formation22 is not undertaken if nested inner loops exist inside the selected

region. Thus, only programs without inner loops but with many conditional branches and many local

variables to be colored can benefit from predicate-aware liveness analysis. Also, the hyperblock

construction maximizes the potential of instruction scheduling and this may disable many of the

careful interference calculations of the predicate-aware register allocation. For example, if a branch

is heavily weighted in one direction, the block on the opposite side may not be included in the

hyperblock, so as to maximize speculation. Finally, if a block contains a function call with side effects,

the block cannot be included in a hyperblock, because this prevents code motion and instruction

scheduling suffers.

Other aspects such as coloring and splitting live ranges are broadly similar to the design in

Chow and Hennessy but different priority functions may be appropriate, as discussed later in

Section 13.6.5.3. In region-based register allocation, region boundaries provide implicit and natural

splitting points to the compiler. In this case, the patch code for the region boundaries is similar

to the shuffle code required in live range splitting. With predication, shuffle code also has to be

predicated.

13.6.2 Simplified Overview of Trimaran Register Allocator

In the following sections, we give only the details that are relevant to understanding the basic

region-based algorithm and avoid other details. The pseudo code is therefore highly schematic.

13.6.2.1 Live Range Construction

The nodes in a live range can be operations, basic blocks, superblocks or hyperblocks in the program.

The construction of live range uses data flow analysis for liveness and reaching definitions within a

region. However, here the analysis also takes predicates of operations into consideration. The live

range is thus a list of 〈Operation, Pred cookie〉, where the Operation is the operation in which

the operand is referenced and Pred cookie is the predicate expression associated with operation.

The live range also stores additional information, such as interfering live ranges, forbidden registers,

reference operands of definitions and uses and priority information that is required for register

allocation.

13.6.2.2 Classification of Live Ranges

• A live ranges. These are strictly local to the region. These are register allocated by an intraregion

register allocator and do not require global reconciliation.

• Bin/Bout live ranges. These have VRs that are live-in and live-out from or to other regions (and

may be at the same time both live-in and live-out but they cannot be pass through). These are

register allocated by an intraregion register allocator, but their bindings must be propagated for

global reconciliation.

• C live ranges. These are the transparent ones. They are resolved on the basis of the binding of

other adjacent global live ranges.

All A- and B-type live ranges are resolved (bound or spilled) during intraregion register allocation.

All bindings for C-type live ranges are delayed (i.e., decided at a later time when bindings from

adjacent regions become available).

22This refers to the front-end (IMPACT) part of the Trimaran compiler system.
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13.6.2.3 Intraregion Register Allocation

driver(Region R) {
for each subregion SR in R by frequency order

if SR is base intra-region
intra_region_register_allocation(SR)

else driver(SR)

resolve_inter_region_live_ranges(SR)
mark_callee_used_registers(SR)

reconcile_inter_region_live_ranges(R)
reconcile_callee_used_registers(R)

}

intra_region_register_allocation(Region R) {
live-range-set LRS = construct-live-ranges(R)

for each filetype F
live-range-set LRS_F = live ranges of filetype F in LRS

construct-interference-graph(LRS_F)
compute-priority(LRS_F)

for each live-range LR in LRS_F by priority order
if LR is pass-through, delay it
else if suitable reg REG is found, bind LR to REG
else if spilling is suitable, spill LR
else split LR

}

Separate register files exist that correspond to different file types. Thus, the live ranges belonging

to different file types cannot interfere. Hence, we can process the live ranges belonging to a single

file type one at a time.

First, the interference graph is formed and the priorities are assigned to the live ranges. The

unconstrained live ranges are separated and they are processed only after all constrained live ranges.

The constrained live ranges are visited in the priority order. Live ranges are bound or spilled depending

on the suitable cost function and the availability of registers.

13.6.2.4 Interregion Register Allocation

After all the A- and B-type live ranges are resolved, we resolve the interregion live ranges shown

as follows:

resolve_inter_region_live_ranges (Region R) {
for each non-intra live range LR of R

add LR to global_LR

if LR is a pass-through live range
if all adjacent live ranges of LR in global_LR

are delayed
delay LR
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else
resolve LR using most suitable adjacent live range
adj_LR of LR in global_LR

propagate_bindings(LR)
}

propagate_bindings(LiveRange LR) {
if LR is not pass-through live range

for all adjacent live ranges adj_LR of LR in global_LR
Edge E = edge corresp to LR and adj_LR

if def of value (corresp to LR) in LR or its ancestors,
SRC = LR
DEST = adj_LR

else
SRC = adj_LR
DEST = LR

if SRC is spilled and DEST is spilled
no patchup code

else if SRC is spilled and DEST is bound
add code for load on E

else if SRC is bound and DEST is spilled
add code for save on E

else if SRC is bound and DEST is bound
add code for move on E

if code added to E, add E to edges_with_unordered_ops
}

global LR is a set of all interregion live ranges and is used to find the adjacent global live ranges.

The bindings of B-type live ranges are propagated to the other adjacent global live ranges. Because

the C-type live ranges are not resolved in intraregion register allocation, we first try to resolve them.

A C-type live range is resolved if at least one adjacent global live range is already resolved; otherwise

it is marked as delayed.

The propagation of binding consists of adding the requisite patch up information between the

current live range and all its global adjacent live ranges. The patch up information is added on

the edge joining the two live ranges. edges with unordered ops is the list of all the edges on which

the patch up information is stored.

After all the regions are processed, the patch up code is generated using the patchup information

stored on the edges earlier. In the new basic blocks created, stores should be put before the loads.

Also a circular set of moves can be between registers in the code in a new basic block; a register has

to be spilled to break this cycle.

reconcile_inter_region_live_ranges (Region R) {
for each Edge E in edges_with_unordered_ops

if source operation of E is a dummy branch
add patch_up code in the region containing source
operation of E
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else if destination operation of E has only one
incoming edge
add patch_up code in the region containing

destination
operation of E

else
create a new basicblock corresponding to E and

add the patch_up
code in this new block

}

13.6.2.5 Reconciliation of Callee-Saved Registers

If the callee-saved registers are used by a procedure, it must save and store these registers at its

entry and exit, respectively. The mark callee used registers() marks all the callee-saved registers

used by the register allocation. The reconciliation code to these registers is added to the epilogue

and prologue regions of the procedure in reconcile callee used registers().

13.6.3 Region-Based Compilation and Callee and Caller Cost Models

Many standard assumptions need revision with region-based register allocation when addressing

machines with caller-saved registers and callee-saved registers. We first consider caller and callee

cost models. Caller registers do not pose major difficulties: the cost of save and load of a caller-saved

register around function calls is absorbed by the live range in the region.

There are many ways to assign the cost of callee save and restore to the live ranges that use a

callee-saved register. For example, consider a region that is a function. The first user of a callee-saved

register can bear both costs of save and reload and cost the rest of them as if allocating a caller register

[18]. Alternatively, the first user of a callee-saved register bears the save cost and the last user bears

the reload cost, but this has not been reported in the literature. Lueh [76] reports another model

that all users of a callee-saved register bear the costs. When the color assignment phase finishes, his

approach spills all live ranges that were bound to callee-saved register e if:

∑

lr∈δ(e)

spill cost (lr) < callee cost (e)

where δ(e) is the set of live ranges that were bound to e. It has been reported that this model

gives incremental performance benefits on some benchmarks compared with the first one but has no

perceptible difference in some benchmarks [74].

Now consider a region that is completely within a function. Because we process regions based on

frequency information, one possibility is that the first live range that uses a callee-saved register in a

region with the highest weight in the procedure bears all the costs. If spill cost (lr) > callee cost (e),

then we can definitely allocate a callee register to the live range in the region (R). Another

model is if:

∑

lr ∈δ(e)R

spill cost (lr) > callee cost (e)

δ(e)R = {lri |lri is the live range that were bound to e in region R}

then we can allocate a callee register to the live range in region. Otherwise, we are in a difficult

situation because with our current region based vertical model of compilation, we are not in a

position to know about the live ranges in other regions (even adjoining ones in the same function),
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as they have not yet been processed. However, we use the heuristic that live ranges in regions with

bigger weights can absorb all the callee costs due to the larger number of accesses in them.

Next, consider a region across more than one procedure. The live ranges can now be possibly

across functions. Allocating a caller register on one side of the function implicitly results in splitting

the live range on a function call whereas allocating a callee register may or may not result in splitting

the live range. It cannot result in splitting the live range if the callee register is not used in the called

function. It results in splitting if it is used in the called function but the location of the splitting

depends on whether shrink wrapping has been used. If shrink wrapping is used, the original live

range is kept as long as is feasible. Again, assigning callee costs to various live ranges in this case

is even more difficult due to the vertical model of compilation. However, it seems best to allocate

callee-registers to live ranges that straddle functions when shrink wrapping is used.

One way out of these problems is to deviate slightly from the vertical model of compilation and

first process all regions only to construct live ranges. In that case, we can compute the spill costs of

all variables beforehand and use that to decide when to allocate callee registers by using the same

formula as before, keeping in mind the function boundaries. However, many current systems can

only handle limited types of regions.

Another model that needs revision is the allocation of caller registers to live ranges in leaf proce-

dures. In function-based register allocation, caller registers are preferred for leaf procedures. As a

heuristic, we can use the same concept for regions also: if no function calls exist in the region, it is

a leaf. Strictly, all the regions have to be checked to see whether a function is a leaf but because of

the frequency-based order for processing the regions, live ranges in regions of high weight with no

function calls can be allocated caller registers and this preference is propagated in the reconcile part

of the algorithm to other less frequently executed regions.

13.6.3.1 Optimization Formulation

The caller and callee cost functions should be accurate enough that these can be negative also (i.e.,

it is cheaper to spill than to bind to a register even if registers are available). The model can be

local (considering the region alone); consider only immediate neighbors that have been processed

or all connected regions that have been processed. Because we are considering pass-through live

ranges, the benefit is negative — the difference of weighted cost of spill code (= 0) and caller

and callee cost. For a caller register bound to a pass-through live range, if we assume local cost

model, the benefit can be zero (no function calls) or negative (function calls need st/ld bracketing).

If immediate neighbors are considered, the reconciliation cost (shuffle code) comes into picture on

the edges incident on the region but they cannot in all cases be known due to the vertical model of

compilation.

Similarly, for a callee register, it involves store and load costs weighted by frequency in a local

model for the first live range using the register. Later live ranges use it at no cost (similar to [18]); or

all the live ranges in the region that use the register can share this cost.

Let the number of variables be n. Let b(k, i, j), k ∈ {ER,EE }, be the benefit of allocating a

caller-saved register (ER) or callee-saved register (EE) to the ith variable for its j th segment of the

live range. This is equal to the difference of spill cost and caller and callee cost. Let c(k, i, j) be the

cost of compensation code (weighted by frequency) for the j th live range segment of the ith variable

in all the adjacent live regions. As each variable can be split during register allocation, let the number

of split segments of a live range for a variable i be L(i).

The callee cost model can be complex and a register allocation with weighted regions has

to use heuristics. Let Ncaller, Ncallee be the number of available caller and callee regis-

ters in the architecture. Let x(k, i, j) = 1, k ∈ {ER, EE} if the ith variables j th segment is allocated
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to a caller and callee register. Otherwise, set it to zero. Then at each minimum unit of

live range:

x(ER, i, j) + x(EE, i, j) < = 1 ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , L(i)}
∑

i:1,...,n

x(ER, i, j) < = Ncaller ∀ j ∈ {1, . . . , L(i)}

∑

i:1,...,n

x(EE, i, j) < = Ncallee ∀ j ∈ {1, . . . , L(i)}

x(k, i, j) ∈ {0, 1} ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , L(i)}, k ∈ {ER, . . . , EE}

The optimization problem is to maximize:

∑

i:1,...,n,j :1,...,L(i),k∈ER,...,EE

x(k, i, j) · (b(k, i, j)− c(k, i, j))

while minimizing L(i) for each i. First, L(i) and b(k, i, j) cannot be computed straightforwardly

because the priority depends on the spill costs, caller(callee) costs and the current set of compensation

costs, but the act of splitting changes the costs and introduces new live ranges. A combinatorial or

iterative method is needed for an approximate solution. Luckily, the priority function prioritizes the

live ranges and ensures that any costs are borne by less important live ranges processed later: this

happens as the splitting comes into play only after allocation of all available registers to higher priority

live ranges and some or all the remaining interfering live ranges getting split. (All pass-through live

ranges have already been set aside as candidates for coloring by the design of the algorithm in core

register allocation.) Similarly, L(i) is minimized for the important live ranges.

Second, as c(i, k, ENDS) (where ENDS refers to segments of live ranges that are adjacent to

nearby regions) cannot be determined unless other regions have also been processed by this time, we

need again to use some combinatorial or iterative method for an exact or approximate solution. To

simplify the problem, one can ignore c(k, i, ENDS) (set it to zero) where not known and then solve.

This has the effect of incorporating costs of reconcile code only in later regions; this means that

live ranges in regions with bigger weights are given more flexibility in selecting the type of register

needed and later live ranges in other regions are “requested” to use the same type of register.

With the preceding heuristic, we can solve the preceding problem by ordering all b(k, i, j) −

c(k, i, j) in descending order (using the value of c where known and zero otherwise) and pick

only Ncaller + Ncallee of them at each minimum unit of live range while taking care to include

only one caller or callee for each variable segment and picking only Ncaller and Ncallee registers.

Other heuristics are possible: for example, compute the difference of caller or callee costs and

prioritize [77].

13.6.4 Performance Problems in a Basic Region-Based
Register Allocator

Although region-based register allocation typically has a lower compilation time compared with

global register allocation, it has a potential weakness because of the limited scope for optimization

with region types that are totally contained within function boundaries. Although we want to reduce

compilation time as much as possible, we want execution performance to be comparable to a

global (within a function) algorithm. With this mind, one can study ways of improving execution

performance of a region-based register allocator while preserving the compile time advantages. One

prime technique is the propagation of carefully selected information across regions to circumvent the

limited scope while compiling a region. It has been shown that the goal can be achieved with savings

of about 20 to 50% in compilation time whereas execution time is lower or only a few percentage
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points higher than the global algorithm [53]. The same study also provides some quantitative data

to characterize the relationship between region size and performance (execution and compile time).

Based on these data, region restructuring using frequency of execution and register pressure can be

attempted.

13.6.4.1 Compilation Time Advantage and Execution Penalty with

Region-Based Compilation.

To make region-based compilation practical, we need to reduce compile time as much as possible

without increasing the execution time. If the size of intermediate code used in the optimization

phases (e.g., reconcile code between two regions) is decreased due to execution time optimizations,

it may also result in better compilation time. Reduction in compilation time comes about primarily

due to the selection of an appropriate size of a region and the granularity of live range. Reduction

in compilation time can also come about secondarily due to reduction in the number of interference

edges in coloring, the number of live range splittings, the amount of reconcile code to be inserted

between regions, etc. on account of execution time optimizations.

13.6.4.1.1 Comparison of Region-Based with Function-Based Compilation.

To understand the impact of a region-based register allocation, consider the data on compile and

execution times for a “naive” compiler (i.e., no optimizations across regions as discussed later) on

a selected set of benchmarks chosen from SPEC95 and common UNIX utilities (Figure 13.6) for a

VLIW/EPIC machine with 4 integer units, 2 FP units, 2 memory units and 1 branch unit with 32 GPRs

and 32 FPRs run on the Trimaran system. The region granularity we have used is a hyperblock, which

is typically larger than a basic block.

From Figure 13.6, we see that the compilation time is mostly lower but also that it is larger for a few

programs. This is to be expected because an increase in reconcile code (due to poor code generated

on account of limited scope of naive region-based compilation) can also result in increased compile

time. The execution time, on the other hand, is larger in every case. The code can be worse due to

reasons such as follows:

• A live range has dissimilar register bindings across two adjacent regions.

• A pass-through live range has a binding that is inappropriate.

• Even with abundant registers available, only lower numbered registers are allocated to variables

because each region is compiled separately without knowledge of usage of registers in other

neighboring regions.

• The priority of a live range should depend on the actual cost of load and store saved. This

requires knowing how a live range is allocated in other regions. Even if it is live according to

information in this region, it may still be spilled in a neighboring region. Hence, the cost of

allocating a register to this live range depends on information in other regions.

For all the preceding reasons, we need to introduce a controlled amount of global information (across

regions) to offset the limited scope of region-based compilation.

13.6.5 Efficient Region-Based Register Allocation Framework

For efficient region-based register allocation,23 we still have to overcome the problem of suboptimal

coloring due to the limited scope in region-based register allocation, compared with a global approach

23This work is done jointly with Hansoo Kim (full details are available in his thesis [55]). We give only a
summary.
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FIGURE 13.6 Execution time penalty (first bar) and compilation time advantage (second bar) with naive

region-based compilation (function-based = 100).

(that looks typically function at a time). The enhanced region-based register allocation framework,

shown in Figure 13.7, is based on the Chow and Hennessy framework. First, use is made of delayed

binding and propagation of bindings across regions based on frequency of execution of regions. The

liveness computations across regions are conservatively taken to be nonpredicated (i.e., all nonfalse

predicates are promoted to true at region boundaries for liveness computations). This is for simplicity

in the algorithms as well as the likely limited benefit of the predicated approach across regions. A

systematic frequency-based approach to live range splitting, rematerialization and shrink wrapping is

also used. The priority function is further refined for the region-based approach: for example, accurate

live-in and live-out information is taken into account in the priority function by using data flow

information, to avoid pessimistic assumptions about the need for storing and restoring across regions.

In addition, the concept of region restructuring based on estimated register pressure is needed to

further improve the performance of region-based register allocation.

13.6.5.1 Propagation of Bindings Across Regions

With regions, one large live range can be divided into several live segments. As register allocation

in each region is performed fully before the next, coloring each segment independently may be

suboptimal because each live segment may be assigned a different register, resulting in patch up

code at each live segment boundary. Ideally, if both adjacent live ranges are assigned the same

physical register or both spilled, no compensation code is required. This requires propagation of

register bindings. In principle, this problem is equivalent to the general register allocation problem

(model each instruction as a region) and hence heuristics are needed.
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FIGURE 13.7 The framework of region-based register allocation.

To insert compensation code between two adjacent regions, another region may be required.

Creating a new block can degrade the runtime performance in two ways. First, a new block needs an

extra branch operation. Second, the ILP factor of the compensation code block is low because only

a few operations are in it. In many cases, fortunately, these compensation codes can be moved up or

down without introducing a new block.

For a good register assignment, knowing the execution frequencies of the program units such as

basic blocks, superblocks, hyperblocks and others can help in propagating in the potential candidates

for binding a pass-through live range by using the adjacent live range information and frequency

information. If a pass-through live range does not have any adjacent live range that is already bound,

register binding for that live range is delayed. If the candidates are unsuitable (forbidden, binding

benefit is not beneficial when compared with spill with patch up, caller binding unsuitable due to

presence of functions, etc.), the live range is further delayed. Otherwise, the preferred binding is

found and reconciled by using bindings of adjacent live ranges and computing benefit of using some

neighboring binding in frequency order of control flow, skipping only delayed ones. The benefit is

calculated as the difference of register binding benefit and weighted compensation cost at entry and

exit points. If delayed bindings also exist on either side of this pass through, compensation costs are

set to zero with the expectation that the actual patch up costs can be absorbed by live ranges that get

allocated later. In addition, the assignment of a binding to a delayed live range is delayed until its

highest frequency control flow edge has a register binding.

One can also propagate information on unavailable registers. If a live range for a variable in the

current region uses a register that is forbidden in some delayed live segment in some other region, a

patch up code is unavoidable. The patch up code may be avoidable by constraining register binding

for a current live segment by propagating in an exclusion list for delayed segments in neighboring

regions. When a binding is delayed, the forbidden register information is propagated as unavailable

registers from higher frequency region to lower ones. In addition, when the register binding for a

pass-through live range is decided, the information about an unavailable register is used only when

the region that passes this information has a control flow frequency larger than the frequency from

a region that has a register binding.
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Many programs show large performance improvement [52, 55] — this occurs especially in cases

when the spill codes are placed in the outer loop instead of the inner loop. As register size increases,

the performance improvement increases up to a certain point and then starts to decrease:

1. Under high register pressure (small register file size), many live segments are spilled and

propagation is not critical.

2. As register size increases, some live ranges that were spilled with smaller register sets may now

be allocated to registers. Propagation strategy is important to reduce patch up code. However,

if enough registers exist, each live range can have its own color and even a simple propagation

scheme is enough to reduce the patch up code.

13.6.5.2 Intelligent Splitting of Live Ranges

In region-based register allocation where the regions are selected before the coloring process, the

regions also provide implicit live range splitting points. However, interregion live range splitting still

plays an important role when the regions are constructed aggressively to obtain the higher level of

ILP. These regions may need further splitting because selected regions are usually large and a high

register pressure exists. Here, we explore two important strategies for improving the effectiveness

of graph coloring register allocation: live range splitting and rematerialization. Splitting divides an

uncolorable live range into several smaller and potentially more easily colorable live ranges, called

live segments later. To preserve the semantics of the program, the shuffle code is inserted at the

split points to connect the flow of values between the split live ranges. Rematerialization is another

spill code saving technique. Rematerialization recomputes a value by need instead of reloading from

memory, whenever this is possible and more profitable than spilling.

Two main issues in live range splitting and rematerialization are: (1) how to choose the right live

ranges to split and to rematerialize, and (2) how to find the right places to split and to rematerialize.

These decisions can significantly affect the quality of the generated code. The priority function

can guide the register allocator to find the live range to be split. If the splitting point is located

in a hot spot of the program, then the shuffle code can be executed often, which slows program

execution.

13.6.5.2.1 Frequency-Based Splitting.

The priority-based approach of Chow and Hennessy [18], while using execution frequencies in the

priority function, does not take into account execution frequencies when searching (breadth first) for

a split point with highest register pressure.

Their approach uses a simple heuristic to split live ranges:

1. The first component of the original live range should be as large as possible with operations

that are connected. This avoids the creation of too many small fragments.

2. The second component should be small enough to have fewer interfering live ranges than the

number of available registers, so that at least one of the components is colorable.

The region-based register allocator proposed by Hank [50] does not split live ranges in a region

but instead spills them if they are not colorable. The problem with these approaches is that the split

point may have high execution frequency (e.g., a loop back edge); any patch up code is thus costly.

Briggs [16] introduced live range splitting into the Chaitin style of register allocation. The split points

are determined using an SSA representation of the program and loop boundaries. Because live range

splitting is performed prior to the coloring phase, the decisions concerning split points and live range

selections for splitting are made prematurely. Many heuristics have been used to eliminate this extra

shuffle code, including biased coloring and conservative coalescing.
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The frequency-based splitting (FBS) approach uses frequency information to guide live range

splitting and attempts to split along the edges where the execution frequency is the lowest in the region.

From all the blocks considered in a region, the highest execution frequency block, called the

seed, is selected. This first component of the live range is then expanded by adding successor or

predecessor blocks in the order of the execution frequency of the control flow arc as long as the

following conditions are met:

1. The expanded live range is still colorable.

2. The connecting edge to the block added has the highest execution edge frequency for that

block.

The second condition is necessary to avoid cases when splitting expands too aggressively and the

split points are chosen on the higher frequency edges.

13.6.5.2.2 Rematerialization with Live Range Splitting.

Frequency-based rematerialization (FBR) is a natural extension of FBS by incorporating remateri-

alization in the splitting process. The main observation is that splitting points computed by FBS are

also good places to insert rematerialization code, for these reasons:

• First, FBS splitting points are, by definition, the program points of low execution frequency,

and rematerialization code that is inserted at these places can also be infrequently executed.

• Second, FBS always splits a live range into two live ranges such that at least one is colorable.

Rematerialized code inserted in the colorable live range is guaranteed not to be spilled.

• Finally, rematerialization can dramatically reduce the sizes of split live ranges over that of FBS,

making it more likely that these live ranges can be colored as well as other live ranges.

The basic framework of FBR is very similar to FBS. After splitting the live range (LR) into two

live ranges (LR1 and LR2), a check is made of all the cross edges (E) between LR1 and LR2
whether the value crossing E is rematerializable. If it is, the rematerialized code is inserted and the

new live range information updated. Unlike splitting, which introduces a new definition and a new

use (in the shuffle code), rematerialization introduces a definition but does not introduce a new use.

Experiments show that FBS and FBR achieve better quality of code and reduce the execution time

by 10 and 7%, respectively [52, 55]. Furthermore, a combination of these two techniques improves

performance by as much as 12%. Most of the performance improvement of FBR can be attributed

to rematerialization of function call addresses, branch target addresses and address offsets from the

stack pointer.

13.6.5.3 Enhanced Priority Functions

The priority order for coloring is an important factor in register allocation because it determines the

variables to be spilled, thereby affecting the amount of spill code. Region-based approaches need to

use more accurate priority functions as explained later.

13.6.5.3.1 Accurate Live-In and Live-Out Information.

For a given live range lr in blocks B1 to Bm, the priority function can be defined as follows:

PR(lr) =
∑

i ∈1,...,m

((Di − Ci) · ST−COST+ (Ui − Ci) · LD−COST) · wi

where Di , Ui , Ci is the number of definitions, uses and function calls, respectively, in Bi whereas

wi is its weight (assuming only caller registers for now).
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FIGURE 13.8 Priority measure dependence on region size on a four-block CFG.

In Figure 13.8, global priority PR(x) and PR(y) for live ranges x and y by Chow’s approach [18] is:

PR(x) = ST−COST · 100 + LD−COST · 2 · 90 + LD−COST · 100

PR(y) = ST−COST · 90 + LD−COST · 2 · 90

If our compiler is region based and if region B2 is the current region for register allocation, the

priority of x and y in region B2 is:

PR(xB2) = LD−COST · 2 · 90

PR(yB2) = ST−COST · 90 + LD−COST · 90 · 2

Range y has higher priority than x, and x can be spilled in region B2 if only one register is

available. If x is bound to a register in B1 and B3, we need a STORE for x on entry and a LOAD on

exit of region B2. Hence, the saving depends on the register bindings in neighboring regions.

To handle the preceding, Chow’s priority function has to be modified to include register bindings

in neighboring regions and edge frequency of live-in and live-out value of a live range. Let Bi(x)

be the live range of x in region Bi , freq(Bi, Bk) be the edge frequency between region Bi and Bk

and freq(Bi) be the region weight of Bi . Let Nin(Bi(x)) be the set of live segments that precede

Bi(x) and bound to a register and Nout(Bi(x)) be the set of live segments that succeed Bi(x) and

also bound to a register. Define priority PR(Bi(x)), the number of STORE/LOAD operations that
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can be saved by binding x to a register instead of spilling (including compensation code at region

entry or exit), as follows:

Nin(Bi(x)) = {Bj (x) | (freq(Bj ) > freq(Bi)) ∧ (Bj (x) is a preceding live segment of Bi(x))

∧ (Bj (x) is bound to register)}

Nout(Bi(x)) = {Bj (x) | (freq(Bj ) > freq(Bi)) ∧ (Bi(x) is a preceding live segment of Bj (x))

∧ (Bj (x) is bound to register)}

PR(Bi(x)) = ST−COST · DBi
+ LD−COST · UBi

+
∑

Bj (x)∈Nin(Bi (x))

ST−COST · freq(Bj , Bi)

+
∑

Bk(x)∈Nout(Bi (x))

LD−COST · freq(Bi, Bk)

13.6.5.3.2 Dynamic Priority.

Chow’s priority function is normalized by the size of the live range, approximated as the number of

live units (basic blocks) in it. However, normalization by the degree of the node in interference graph

(as in Chaitin) may be better for region-based compilation because some structural information is

already available through the formation of regions. The problem with the standard priority-based

approach is that the priority of a live range never changes throughout the coloring process unless it

is split. Thus, it may fail to capture the dynamic benefit of a register binding.

To reflect this aspect, one can update the priority function dynamically by using the vary-

ing interference degree of uncolored live ranges as normalization factor while register allocation

proceeds. Many programs show significant improvement with this optimization [52, 55].

13.6.5.3.3 Predicated Priority.

Predication can impact coloring in the following ways: the priority measure may need to take into

account predicates or the live range analysis has to be predicate aware.

Consider Figure 13.9 where the weights of B2 and B3 are 90 and 10, respectively. Hence

LiveRange(x) has a higher priority than LiveRange(y) in B2. In the corresponding hyperblock,

as in Figure 13.9(b), the priority of LiveRange(x) and LiveRange(y) is the same, even if they are

executed a different number of times dynamically. To correct this problem, the priority measure

has to be further modified to reflect frequency information through the use of predicate expressions.

Once each of Di , Ui and Ci (call it Xi) is redefined to be a summation over each of n occurrences of

any variable x multiplied with its predicated probability pj (x): Xi =
∑

j∈1,...,n pj (x), we can still

use the previous definition of priority (see Section 13.6.5.5 for details).

The performance improvement with the three changes to the priority function (accurate live-in and

live-out information, dynamic priority and predicate-aware priority function) is at least 5% improve-

ment in many programs [52, 55]. With increased complexity of priority function, it is important

that the compile time does not increase substantially. The data [52, 55] show that compilation time

overhead is marginal. In some cases, the time decreases: the extra time in priority computation has

been compensated by fewer spill code insertions.

13.6.5.4 Partitioning of Registers Across Regions

In region-based register allocation with large number of registers (the likely case with EPIC archi-

tectures), it is important to do a high-level (global) partitioning of available registers into sets of

registers for coloring in each region. This prevents reuse of registers across regions that may result

in excessive patch up code because each region may do coloring without information about coloring

in adjacent regions.
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FIGURE 13.9 Priority measures with predication.

Note that such “gratuitous” patch up code may be necessary not only with one region in between

just considered but also with two, three or more regions in between. Hence, there is a need for

intelligent precoloring so that gratuitous patch up code does not result even when plentiful registers

are present. The basic problem is that each region may independently allocate registers from the

same subset of registers even when other subsets are available.

Some graph-theoretical ideas that have been used in the past to decompose a graph into subgraphs

for register allocation are clique separators [94] and approximation through multicommodity flows

[65]. In the first approach, the maximum number of cliques in which a live range can occur, and

chosen as separators, decides the regions. In the latter approach, one finds a minimum balanced

directed cut of DAG to split DAG into roughly equal pieces G1 and G2 such that minimum number

of live ranges cross the cut and so that edges exist from G1 to G2 but not from G2 to G1. We can

now process (register allocation or scheduling) G1 before G2. However, in region-based approaches,

the partitions into regions is based on frequency information that is unlikely to be the same as the

partitions obtaining in the graph-theoretical approaches. In addition, such approaches can add to

compile time.

Due to the preceding difficulties, one simple approach can be the use of a hash function based

on variable name and register size to locate a free register. Another approach is the “clockhand”

algorithm.24 Maintain a “freelist” of registers with a clockhand. For each region, first compute its

clockhand (i.e., the starting place in the freelist from where registers get allocated) by choosing the

best noninterfering clockhand of all neighboring already allocated regions. At the end of register

24The term is borrowed from OS scheduling where the processing of certain lists is started from where last
terminated.
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allocation for this region, store the first clockhand used and the last register allocation to enable

clockhand computation by other later nearby regions. As register file size increases, the clockhand

algorithm improves performance in many cases [52, 55].

13.6.5.5 Optimizations Across Function Boundaries with Regions

13.6.5.5.1 Caller and Callee Models.

Allocating different type of registers to live ranges requires different store and reload costs, and this

needs to be reflected in the formula for priority function. For each live range, Chow and Hennessy

use the caller-saved priority function Pr(lr) and the callee-saved priority function Pe(lr). The basic

priority function given in Equation (13.8) can be redefined, therefore, as:

Priority(lr) =
max (Pr(lr), Pe(lr))

size(lr)
(13.8)

Pr(lr) =
∑

i in B1,...,Bm

(Di · ST−COST + Ui · LD−COST

− Ci · (ST−COST + LD−COST)) · Wi (13.9)

Pe(lr)d =
∑

i in B1,...,Bm

(Di · ST−COST + Ui · LD−COST

− (ST−COST + LD−COST)) · Wi (13.10)

where Di is the number of definitions, Ui is the number of uses, Ci is the number of procedure calls

in block Bi and Wi is the weight of Bi with m live units in the live range.

In the case of caller-saved priority function, the cost of store and reload of the registers around

the function calls weighted by frequency is considered in the priority function. For the callee-saved

register, the extra cost occurs only once for each callee-saved register at each procedure entry point.

Thus, only the first live range that uses a given callee-saved register needs to account for these

savings and restoring costs. Once these costs have been considered, the same callee-saved register

can be used to contain other live ranges for free. Hence, Pe(lr) for a given live range can assume two

values. By using predication as discussed in Section 13.6.5.3, the priority function for a region-based

approach can be given as:

Priority(lr) = max (Pr(lr), Pe(lr)) (13.11)

Pr(lr) =
∑

i in B1,...,Bm

(Di · ST−COST · PR(Di) + Ui · LD−COST · PR(Ui)

− Bi · (ST−COST + LD−COST) · PR(Bi)) · wi (13.12)

Pe(lr) =
∑

i in B1,...,Bm

(Di · ST−COST · PR(Di) + Ui · LD−COST · PR(Ui)

− (ST−COST + LD−COST)) · wi (13.13)

We do not need to normalize by size of live range (as in the Chow and Hennessy approach) because

region formation already has split live ranges.

13.6.5.5.2 Shrink Wrapping.

This optimization places the store and load for callee-saved registers so that they occur only over

regions where the registers are used. This ensures that the live range is split with the goal of the
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least number of dynamically executed store and load instructions for the callee register. Due to lack

of frequency information, the placement can be suboptimal and Chow [28] reports many negative

results. If the frequency of execution of a live range is less than that of the procedure, shrink wrapping

can be beneficial. By constructing dominator and postdominator trees, we can find the best place to

insert the ld/st code for a callee-saved register. The algorithm is as follows:

1. For each callee-saved register, identify all the blocks Bi using the register.

2. Create the dominator or postdominator tree (for finding the st/ld point, respectively), compute

the number of executions of each block in the tree and store it as the weight of the

block.

3. For each Bi in the dominator and postdominator tree:

a. Select the minimum weight node n on the path from root s to Bi as the st/ld point.

b. Delete each child node of n from the tree and reduce the weight of n from all nodes on the

path from s to n.

An additional optimization is the insertion of the ld/st code on edges instead of in code blocks

because the edges may be less frequently executed than the blocks. The problem of finding optimal

edges for insertion of ld/st code can be reduced to the max-flow min-cut problem [90]. In the called

procedure, consider all the blocks with the first (last) use of a variable allocated to the callee register.

Connect all these blocks to a pseudo destination (source) with infinite capacity edges. Find the

min-cut.25 This gives the store (load) locations.

CUT performs better than DOM in some cases, but worse than DOM or even the base case

sometimes [52, 55]. The latter is due to the overhead of creating a new block when we need to insert

code on control flow edges (for the same reasons when creating new blocks for inserting patch up

code between regions: see Section 13.6.5.1).

13.6.6 How to Further Reduce Execution Time

One can modify region formation also to take into account aspects important to register allocation

(in addition to current criteria such as execution frequency of operations; memory accesses; structure

of regions such as basic block, superblock, hyperblock or loop; and size of the region in operations).

Alternatively, region restructuring can use information such as the maximum bandwidth of live

variables at each program point in each region of basic block, superblack and hyperblock to form

new regions from old. This may help register allocation. Starting from a seed block (the most

frequently executed block not yet in a region), we add successor or predecessor (block n) of the

current region based on execution frequency. The block n is included as long as the register bandwidth

of n is less than the number of available registers. The expansion stops if one of the following

condition holds:

• No blocks are left that do not belong to the region.

• The selected block already belongs to the other regions.

• The selected block has higher register bandwidth than the number of available registers.

By using all the preceding optimizations, in most cases, region (block)-based register allocation

has an execution performance comparable with, or better than, function-based register allocation

[52, 55]. In addition, it has a faster compilation time, because the interference graph construction

requires O(N2) time.

25If irreducible loops are among the blocks, the preceding formulation is not efficient because it considers
some extra edges as part of the min-cut problem. A more complete solution would eliminate irreducible
loops by removing the edges corresponding to the loop in the canonical irreducible loop with three nodes.
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13.7 Region-Based Framework for Combining Register

Allocation and Instruction Scheduling

Because regions are typically subprocedure level, it is important to decide on the phase-ordering

issues, especially with respect to register allocation and instruction scheduling. We next discuss at a

high level the framework present in Trimaran.26

13.7.1 Trimaran Framework

The following is the outline of the current implementation of instruction scheduling and register

allocation in Trimaran:

horizontal_sched_RA(Procedure P) {
pre_pass_schedule_all_regions(P)

register_allocate_all_regions(P)
generate_reconcile_code(P)

post_pass_schedule_all_regions(P)
}

pre_pass_schedule_all_regions(Procedure P) {
for each region R in P

pre_pass_schedule(R)
}

register_allocate_all_regions(Procedure P) {
for each region R in P

register_allocate(R)
}

post_pass_schedule_all_regions(Procedure P) {
for each region R in P

post_pass_schedule(R)
}

Figure 13.10 shows the state of the graph at various stages of the compilation. The rectangular

blocks represent the original regions of the procedure. The small squares represent the additional

basic blocks added to accommodate the patch up code. Black regions indicate the unscheduled

portion. Figure 13.10(B) shows the code added due to intraregion register reconcile. Figure 13.10(C)

shows the patch up blocks added due to global register reconciliation.

The prepass scheduling phase is function based and is performed on all the regions of the

function at a time. This phase considers the operands to be assigned to virtual registers and not

physical registers. Register allocation follows after the prepass scheduling phase. The register

allocator itself is region based, but it cannot be mixed with the scheduling phase because of the

function-based nature of scheduling. Spill code is generated within the regions during this phase.

26This section is based on work with my former students, Pradeep Jain and Yogesh Jain [43].
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Also, new basic blocks are added to the graph to accommodate patch up code for interregion live

operands.

The graph seen by the postpass scheduling phase is different from the one seen by the prepass

scheduling phase because it contains additional spill code operations within the regions and it contains

extra basic blocks that contain patch up operations for interregion live operands. Postpass scheduling

is similar to prepass scheduling in all other respects. We briefly discuss meld scheduling next to

help in understanding the region-based framework for combined instruction scheduling and register

allocation.

13.7.1.1 Meld Scheduling

Scheduling algorithms are usually oblivious of constraints coming in from blocks or regions that

are already scheduled and hence may make scheduling decisions that lead to poor schedules. It is,

however, possible to improve the schedules if the constraints from already scheduled regions are

propagated to the regions yet to be scheduled. Meld scheduling is an example of this approach [4].

In a noninterlocked machine, the processor does not interlock to ensure that the inputs are available

before issuing an operation. For such machines, the compiler schedules code to guarantee that an

operation completes before a dependent operation issues. Within a scheduling region, the scheduler

delays the issue of a dependent operation to ensure that its inputs are available. Across scheduling

regions, a scheduler must ensure that certain constraints are satisfied on entry or exit of a region.

For instance, one convention is to assume that on entry all operations have their inputs available. In

this case, the scheduler must guarantee that all operations complete before control is transferred to

another region. In contrast, a meld scheduler generates latency constraints imposed by scheduled

regions, propagates constraints to the boundaries of a region to be scheduled and translates these

constraints to edge constraints recognized by the local region scheduler. We omit further discussion

because additional details are available in [4].

13.7.2 Stepwise Development of a Combined Region-Based Framework

We next present a region-based framework for combining instruction scheduling and register allo-

cation. Design decisions are given in the following subsection by using a stepwise refinement

approach.
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P1    ---      Px

Patch-up blocks

FIGURE 13.11 Block diagram for horizontal compilation model.

13.7.2.1 Horizontal Compilation Model

The current implementation of both register allocation and scheduling in Trimaran is based on the

horizontal compilation model as discussed in Section 13.7 (see also Figure 13.11). In this model, the

compilation phases are completely decoupled. This has the following drawbacks:

• If the register allocator wants to use any information from the prepass scheduler, such infor-

mation should be stored for all the regions. This increases memory requirements. The same

occurs if the postpass scheduler wants to use any information from the register allocator.

• Most of the flow analysis and liveness analysis is common for prepass and postpass scheduling

phase. To reuse this information, it should be stored for all the regions. This again increases

memory requirements. Currently, this analysis is undergoing recalculation for the postpass

scheduler phase. This increases the compilation time. The difference is considerable because

most of the analysis is complex, especially in the context of predicated code.

13.7.2.2 Vertical Compilation Model I

To avoid storing the information for all the regions between the successive use of information, we

run all three phases on a region in sequence. This reduces memory requirements. The Figure 13.12

shows the order of execution of compilation phases in this model. The following is the outline

of this model:

vertical_sched_RA_model_1(Procedure P) {
for each region R in Procedure P

pre_pass_schedule(R)
register_allocate(R)
post_pass_schedule(R)

generate_reconcile_code(P)
schedule_patch_up_blocks(P)

}

During the register allocation phase, the actual reconcile code is not generated; only the information

for reconcile code is stored on the corresponding edges. After all the original regions are processed,

the reconcile code for interregion live ranges is generated. The new patch up basic blocks generated

are then scheduled separately. In this model, the original regions are not scheduled after adding the

patch up blocks. This could result in an inferior schedule if meld scheduling is enabled.
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FIGURE 13.12 Block diagram for vertical compilation model I.
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FIGURE 13.13 Block diagram for vertical compilation model II.

13.7.2.3 Vertical Compilation Model II

To ensure that the presence of patch up blocks is reflected in the scheduling of the original regions,

an additional postpass scheduling phase is introduced. The outline of the model is given as follows

(Figure 13.13):

vertical_sched_RA_model_2(Procedure P) {
for each region R in Procedure P

pre_pass_schedule(R)
register_allocate(R)
post_pass_schedule(R)

generate_reconcile_code(P)

for each region R in Procedure P
post_pass_schedule(R)

}
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FIGURE 13.14 Block diagram for vertical compilation model III.

The final schedule of this model is as good as the horizontal model. However, the scheduling of

each region is done three times in this model in contrast to two times in the previous model. This is

obviously costly in terms of compile time.

13.7.2.4 Vertical Compilation Model III

In the final model (Figure 13.14), a reconcile code corresponding to a region is run immediately after

its register allocation. The outline of this model is given next:

vertical_sched_RA_model_3(Procedure P) {
for each region R in Procedure P

pre_pass_schedule(R)

register_allocate(R)
generate_inter_region_reconcile_code(R)

post_pass_schedule(R)
}

13.7.3 Problems in Vertical Compilation Model III and Solutions

13.7.3.1 Eager Propagation of Interregion Reconcile Information

The register reconcile information is generated immediately after the register allocation of the

region. It is desired that this information be propagated completely so that further processing can

make use of it.

The postpass scheduling of the region takes care of the intraregion patch up code added during

the register allocation of the region. Under certain conditions, the interregion reconciliation code

may be added to either of the two regions. This is possible when the exit-op of the region is a

dummy-branch or when only one edge is incoming to the region. Postpass scheduling takes care of

such reconciliation code also.
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In all other cases, extra patch up blocks are added to accommodate the reconciliation code. These

patch up blocks are made similar to the original blocks in all respects, so that the meld scheduling

of the remaining regions takes into account the latency produced by these regions. Thus, the meld

scheduling works with the most accurate latency information.

13.7.3.2 Handling of Patch Up Basic Blocks

When should we schedule the patch up basic blocks? For calculating the meld constraints, the paths

consisting of only scheduled blocks are considered. As shown in Figure 13.15, the meld constraints

from region A are propagated to region B if patch up block P is scheduled. Otherwise, it is assumed

that the scheduling of P can absorb the latency constraints of both regions A and B.

In the absence of P, the meld constraints of region A are propagated to region B. This is not possible

if P is present and is unscheduled. In short, the meld constraints become more restricted if the patch

up blocks are left unscheduled. Thus, the patch up basic blocks should be scheduled as soon as they

are created.

13.7.3.3 Handling the Pass-Through Live Ranges

Consider Figure 13.16. The dark line represents a global live range that consists of local live ranges

L1, L2, L3 and L4. Assume that L2 and L3 are pass-through live ranges and the regions are register

allocated in the order B, C, A and D.

In the original horizontal model of register allocation in Trimaran, the pass-through live range is

left unresolved until at least one of its adjacent global live ranges is resolved. Thus, when B is register

FIGURE 13.15 Meld constraint propagation through patch up basic block.
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FIGURE 13.16 Reconciliation of pass-through live ranges.
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allocated, L2 is left unresolved. Similarly, when C is register allocated, L3 is left unresolved. When

A is register allocated, this binding is propagated to L2 and then to L3. This propagation only adds

the corresponding patch up code on the edge and does not generate any patch up block in the graph

until the end of register allocation of all the regions.

In a vertical model, the new patch up block P is added corresponding to edge e1 when C is

processed. When A is register allocated, the propagation of binding of L1 might result in additional

patch up code in P . This would require rescheduling of P . This cannot be allowed because earlier

regions have used the meld constraints based on the old schedule of P .

One can avoid the preceding problem by not allowing the binding of the pass-through live ranges

to be delayed. For a pass-through live range, if an already resolved global adjacent live range is

not found, we can spill it. This could result in spilling of some pass-through live ranges that are

successfully bound in the horizontal model in Trimaran. However, the performance is not affected

much, as shown by experimental results.

13.7.3.4 Hiding Patch Up Basic Blocks from Register Allocator

with Delayed Pass Throughs

As pointed out earlier, the meld scheduling considers the patch up basic blocks to be similar to the

original blocks. However, how should the register allocator view the patch up basic blocks? When the

resolution of pass-through live ranges is delayed, as in the horizontal model in Trimaran as pointed

out in the previous section, it is possible for a patch up code to be added to an edge in more than

one visit.

Again consider Figure 13.16. If P is considered to be similar to the original blocks by the register

allocator, then the patch up block for the pass-through live range is required on the edge e3 and e4.

Because P is already scheduled, new basic blocks would be required corresponding to e3 and e4.

This is obviously not a practical solution.

Thus, for the purpose of register allocator, the patch up blocks should be dealt differently. One

simple solution is to assume that the register allocator views only the original edges of the graph

and the patch up blocks are added only corresponding to the original edges. However, the original

edges must be deleted; otherwise the meld scheduling bypasses the patch up block. Thus, the original

edges of the graph are stored in a map and hash structure before beginning to process the regions.

The register allocator reads the edges for the operations from the preceding data structures instead

of the actual edges of the operations.

The preceding approach is not required if we use the spilling technique as described in

Section 13.7.3.3. If that technique is not used, this design allows the handling of pass-through

live ranges properly.

13.7.3.5 Prologue and Epilogue Regions

If the callee-saved registers are used by the register allocator, a reconcile code must be generated for

them. It consists of adding the load and store operation in the prologue region and epilogue region of

the procedure, respectively. Because the callee-saved registers used are known only after the register

allocation of all the regions, the reconcile code is added to the epilogue and prologue region after

processing all the region. As a result, these prologue and epilogue regions should be scheduled at the

end. The same care is not required for these regions in the horizontal model because the reconcile

code for the callee-saved registers is added in the global–register allocation phase and the postpass

scheduling of the prologue and the epilogue takes place later.

13.7.4 Final Design

All the preceding issues can be incorporated in a framework for combined region-based instruction

scheduling and register allocation. The outline of this model is given as follows:
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vertical_sched_RA_model_final(Procedure P) {
form a sorted list of original regions of the procedure P,
called initial_regions

for each region R in initial_regions
for each entry_op OP of R

bind < OP, list of in_edges of OP > to
initial_inedges

for each exit_op OP of R
bind < OP, list of out_edges of OP > to

initial_outedges

for each region R in initial_regions
pre_pass_schedule(R)

register_allocate(R)
generate_inter_region_reconcile_code(R)

post_pass_schedule(R)

generate_spill_code_for_used_callee_registers()
schedule_prolog_and_epilog(R)

}

13.8 Toward Integrating Instruction Scheduling and

Register Allocation

As mentioned earlier (Section 13.1.4), a full-blown combined algorithm requires the region to be

as small as an instruction itself but that requires a very tight coupling between the two optimiza-

tions as in the Multiflow compiler [36] or in mutation scheduling [86].27 Some not very tightly

coupled approaches are as follows. Goodman and Hsu [40] use an on-the-fly approach that detects

excessive register pressure during instruction scheduling and spills live ranges to reduce it. When

register pressure is not high, instruction scheduling exploits ILP. Once register pressure builds up,

it switches to a new state that gives preference to instructions that reduce register pressure and

possibly results in lower ILP. Spilling is also used by Norris and Pollock [85]; they use a parallel

interference graph, which represents all interferences that can occur in legal schedules, to detect

excessive register pressure. Live range splitting is used by Berson, Gupta and Soffa to reduce

register pressure: when the register pressure is high and no ready instructions that reduce register

pressure exist, a live range is split by putting a store into the ready list, putting the corresponding

load into the not ready list and moving all dependencies of all unscheduled uses of the value from

the original definition to the load. They use reuse dags that help identify excessive sets: these

27Mutation scheduling attempts to unify code selection, register allocation and instruction scheduling, into a
single framework in which trade-offs between functional, register and memory bandwidth resources of the
target architecture are on the fly in response to changing resource constraints and availability.
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represent groups of instructions with parallel scheduling that requires more resources than are

available.

Here we discuss a register constraint aware or register pressure aware scheduling as opposed to

performing scheduling and register allocation in one pass.28 Using the framework in the previous

section, we attempt to integrate instruction scheduling and register allocation by first using a profile-

insensitive list scheduler, then incorporating register pressure to make it sensitive to register allocation

costs and finally making it profile sensitive.

The outline of the approach is as follows:

• Use a profile-insensitive list scheduler, such as a critical path scheduler. This is equivalent

to the list scheduling with the distance from the last exit as the list priority. This gives us a

scheduling rank.

• Compute a register rank using, for example, the CRISP model from [81].

• Combine the two ranks to get a schedule sensitive to register pressure.

• Convert this profile-insensitive schedule to a profile-sensitive schedule that is also sensitive to

register pressure, for example, using Chekuri’s heuristic [27].

13.8.1 Combined Register Allocation and Instruction Scheduling
Problem Priority Model

The CRISP priority model is based on the following two rank functions [81]:29

Register rank γR — For each instruction v, define:

Thick2(v) = |{(i, j, Vr)|(i, v) ∈ DG∗ ∧ (v, j) /∈ DG∗ ∧ (j, v) /∈ DG∗ ∧ i and

j access virtual register Vr}|

= ♯ value ranges from an unrelated instruction to a descendant of v

Thick1(v) = |{(i, j, Vr)|(v, j) ∈ DG∗ ∧ (i, v) /∈ DG∗ ∧ (v, i) /∈ DG∗ ∧ i and

j access virtual register Vr}|

= ♯ value ranges from an ancestor of v to an unrelated instruction

The instructions are then sorted in increasing order of 	v = (Thick1(v)−Thick2(v)). The register

rank γR(v) is the rank of instruction v in this sorted order. Instructions with the same 	 value are

assigned the same rank. 	v is helpful because it can prioritize a node v relative to nodes that are

incomparable to v (i.e., those that are neither an ancestor nor a descendant of v).

When Thick1(v) is large, a large number of nodes are independent of node v and it would be

beneficial from register considerations to schedule node v later so as to shorten the live ranges

of these nodes. Thus, we make a larger Thick1(v) value lead to a larger 	v rank. Conversely, if

Thick2(v) is large, it would be beneficial to schedule v earlier. Thus, we make a larger Thick2(v)

value lead to a smaller 	v rank.

Scheduling rank γS — We can use the rank function from any suitable instruction scheduling

algorithm as the scheduling rank. We assume the critical path rank function as the scheduling rank,

γS . For any choice of parameters α, β ∈ [0, 1] such that α + β = 1, we now have the following

heuristic.

28This section is based on work with my former students, Pradeep Jain and Yogesh Jain [43].
29There is also one more model for the rank functions that takes into account the number of functional units;
we use the one given as more intuitive.
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(α, β)-Combined algorithm — This heuristic creates a combined rank function γ = αγS +βγR ,

and orders the instructions into a list in increasing order of rank. It then runs the greedy list scheduling

algorithm using this list to obtain a schedule.

The heuristic described earlier is for a fixed α or β value. The parameter α (or β) can be viewed

as a tuning parameter, and can be set differently for different processor architectures, size of basic

blocks, superblocks and hyperblocks.

By using the preceding two ranks, we can schedule and allocate registers in each region, using both

a prepass and an optimized postpass as described in the previous section. However, this schedule is

not profile sensitive. We next discuss Chekuri’s heuristic [27] for generating a schedule that is profile

sensitive.

13.8.2 Chekuri’s Heuristic

Let G = (V , E)30 denote the precedence graph derived from the source program. Each vertex in

the graph represents an operation τi with specified execution time ti , which is the time required to

execute τi . Each vertex also carries a weight wi . The weight wi is the probability that the program

exits at vertex i. We are to schedule the vertices of the graph on the functional units to minimize the

weighted execution time, F = �iwifi , where fi = si + ti is the finish time of operation τi and si
is its start time.

A subgraph is said to be closed under precedence if for every vertex u of the subgraph, all vertices

preceding u are also in the subgraph. We define the rank of a vertex i to be the ratio ri = ti/wi .

For any set of vertices A ⊆ V , we define its weight as w(A) = �vi∈Awi , and its execution time as

t (A) = �vi∈Ati ; based on this the rank is r(A) = t (A)/w(A). The notion of the rank of a set of

vertices is meant to capture their relative importance comparing the sum of their weights to the cost

of executing them. Intuitively, the sum of the weights is the contribution made by the set of vertices

to the weighted finish time, whereas the sum of their execution times is the delay suffered by the

rest of the graph as a result of scheduling the set of vertices first. A schedule for the case where the

number of functional units is one is termed a sequential schedule.

Given a weighted precedence graph G, define G∗ to be the smallest precedence-closed proper

subgraph of G of minimum rank. Chekuri et al. [27] prove that, for any graph G, there exists an

optimal sequential schedule where the optimal schedule for G∗ occurs as a segment that starts at time

zero. Given G∗, we can recursively schedule G∗ and the graph formed by removing G∗ and putting

their schedules together to obtain an optimal schedule for the entire graph. Though the problem of

finding G∗ for an arbitrary precedence graph is NP-hard, for the case where the precedence graph

is an superblock or hyperblock, G∗ may be easily computed by a greedy method for superblocks or

exhaustive enumeration (when there are a small number of exits) for hyperblocks [27].

Thus, we may obtain an optimal sequential schedule for a given precedence graph G, which in

turn may be used to obtain a schedule for the multiple functional unit case. Chekuri et al. [27] also

show that list scheduling, using the optimal sequential schedule as the list, gives a good approximate

solution for the hyperblock case. They show that, if all operations have equal execution time, the list

scheduling algorithm, using the optimal sequential schedule as the list, is an approximation algorithm

with a performance ratio of 2.

The modified rank of any schedule A is defined as:

mrank(A) =
length of schedule for A

sum of exit probabilities in A
(13.14)

30The notation and terms are borrowed from [27].
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The intuition behind the modified rank is that the numerator is the time required to retire A, whereas

the denominator is the benefit in retiring A. Thus, the ratio reflects the amount of computational time

required per unit of exit probability. Minimizing this ratio in selecting G∗ (which uses the modified

rank) has the effect of maximizing the “return on investment” in the schedule. Given a graph G, G∗

can be found by the following simple procedure.

Algorithm — Finding G∗ under modified rank:

For each branch b of the G,

Construct a list schedule for subgraph Gb rooted at b,

ignoring profile info

Let T be the length of the schedule and let W be

sum of exit probabilities of all exits in Gb.

rank(Gb) = T /W

G∗ is Gb for the earliest b in control order that has the minimum modified rank.

The heuristic converts any list scheduler for precedence graphs, to one that is sensitive to profile

information for G. The heuristic takes a profile-insensitive list scheduling algorithm, and bootstraps

it to be profile sensitive. To start, the heuristic finds G∗ under modified rank, using the insensitive

list scheduler. It then makes the list for G∗ the initial portion of the list for G. The heuristic deletes

G∗ from G, and iterates, appending the lists each time until all G is consumed.

Algorithm — Profile-sensitive scheduler:

1. Profile-list=empty.
2. Find G∗ under modified rank using the insensitive scheduler.
3. Append the scheduler list of G∗ to Profile-list.
4. Remove G∗ from the DAG.

5. If there are branches remaining, then goto step 2.
6. List schedule using Profile-list.

13.8.3 Performance Evaluation

Table 13.2 gives the percentage of improvement of combined instruction scheduling and register

allocation priority model over the phase-ordered approach using (α, β) algorithm for values of

TABLE 13.2 Execution Time Percentage of Improvement of (α, β)-Combined

Algorithm over Phase-Ordered Horizontal Approach

Program α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

a5 −0.3 0.2 0.2 0.2 0.2 0.7

bmm 22.3 23.1 24.1 24.2 24.2 24.2

dag 0.9 0.9 0.9 0.9 0.9 0.9

fir 6.3 6.3 6.4 6.4 6.4 6.4

hyper 3.6 3.6 3.6 3.6 3.6 3.6

idct 5.8 11.7 13.5 13.5 13.5 13.5

mm double 16.2 19.1 19.9 19.9 19.9 19.9

nbradar 3.9 4.2 4.2 4.2 4.2 4.2

Nested 0.08 0.2 0.3 0.3 0.3 0.3

Polyphase −1.5 −4.5 5.6 5.9 6.1 6.1

strcpy 0.0 0.0 0.0 0.0 0.0 0.0

Wave 12.8 18.8 19.4 19.4 19.4 19.4
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TABLE 13.3 Execution Time Percentage Improvement of Profile-Sensitive

Instruction Scheduling with (α, β)-Combined Algorithm over Phase-Ordered

Horizontal Approach

Program α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

a5 8.8 4.5 2.1 0.5 0.4 0.2

dag 18.2 18.9 11.1 12.1 23.7 21.8

fir 20.6 19.7 20.4 3.5 −2.3 −2.4

idct 31.1 28.2 25.8 27 21.5 21.2

Nested 15.9 13.0 10.6 10.7 0.2 0.2

Polyphase 6.7 0.9 −3.4 −9.1 −10.1 −3.6

Wave 29.3 27.0 14.8 8.6 9.3 9.3

wc 21.0 21.0 17.2 15.1 10.8 4.3

α = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 on some benchmarks on a machine with 64 GPR, 64 FPR, 2 integer

units, 2 floating point units, 2 memory units and 1 branch units with latencies of 2 and 4 for integer

and floating point units, 4 for integer and floating multiply, 12 for integer and floating divide, 3 for

load, 1 for store and 1 for branch. Performance improvement occurs in most cases with a maximum

improvement of 24.2%. Figure 13.17 is a percentage of improvement graph between (α, β)-combined

algorithm and phase-ordered horizontal approach. This graph is made by taking the best rank function

value for each benchmark in Table 13.2 in order.

Table 13.3 gives the improvement of region-based combined profile-sensitive and register pressure-

sensitive instruction scheduling and register allocation model over profile-insensitive horizontal

model. Critical path scheduling is used as the profile-insensitive scheduling algorithm to derive the

heuristic and compare its performance against critical path scheduling. From Table 13.3, positive

performance improvement occurs in most cases with a maximum improvement of 31.1%. A per-

formance improvement of more than 15% in more than 75% of the cases occurs, showing that

the (α, β) ranks do a good job of incorporating register pressure sensitivity into the profile-sensitive

instruction scheduling algorithm. Figure 13.17 shows the improvement of profile-sensitive instruction

scheduling that is register pressure sensitive over the phase-ordered horizontal approach. This graph

is drawn by taking the best rank function value for each benchmark in Table 13.3 in order.

13.9 Case Studies

13.9.1 Gcc

We first discuss version gcc 2.7.2.3 (1997) and later discuss changes in the recent version 3.0.2 (2001).

Gcc first does a local nongraph-coloring register allocation. This is followed by a global graph-

coloring allocation. Unlike a Chaitin-style graph-coloring allocation, it spills a real register during

the reload phase instead of a symbolic register during the simplification phase. Foster and Grossman

[32, 71] show that the gcc allocator is competitive with the Chaitin-style approach.

In the most basic register allocation (stupid allocation: selected when no optimization flag is

chosen), only user-defined variables can go in registers that are declared “register.” They are assumed

to have a life span equal to their scope. Other user variables are given stack slots in the register

transfer list (RTL)-generation pass and are not represented as pseudo registers. A compiler-generated

temporary is assumed to live from its first mention to its last mention. Because each pseudo register

life span is just an interval, it can be represented as a pair of numbers, each of which identifies an
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FIGURE 13.17 Execution time percentage of improvement over phase-ordered horizontal approach of

(a) (α, β)-combined algorithm; (b) profile-sensitive instruction scheduling that is sensitive to register pressure.

insn by its position in the function (number of insns before it). These pseudo registers are ordered

by priority and assigned hard registers in priority order.

If the optimization flag is chosen, it runs the following register allocation-related phases (we also

give phases related to instruction scheduling for completeness):

Register scan (regclass.c). This pass finds the first and last use of each register, as a guide for

common subexpression elimination (CSE). Gcc uses value numbering in its CSE pass.
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Register movement (regmove.c). This pass looks for cases where matching constraints would

force an instruction to need a reload, and this reload would be a register to register

move. It then attempts to change the registers used by the instruction to avoid the move

instruction.

Instruction scheduling (sched.c). Instruction scheduling is performed twice. The first time is

immediately after instruction combination and the second is immediately after reload. Gcc

supports both single-issue and multiissue instruction scheduling. It also supports critical path

scheduling. Both basic block and critical path scheduling are performed using forward list

scheduling algorithms. Gcc also supports delay slot scheduling for processors, which have

branch and call delay slots.

Register class preferencing (regclass.c). The intermediate code (RTL) is scanned to find out which

register class is best for each pseudo register.

Local register allocation (local-alloc.c). This pass allocates hard registers to pseudo registers that

are used only within one basic block. It uses weighted counts to allocate values into registers,

which live in a single basic block. It also performs coalescing.

Global register allocation (global.c). This pass allocates hard registers for the remaining pseudo

registers (those whose life spans are not contained in one basic block) using weighted counts.

Reloading. This pass renumbers pseudo registers with the hardware registers numbers they were

allocated. Pseudo registers that did not get hard registers are replaced with stack slots. Then it

finds instructions that are invalid because a value has failed to end up in a register, or has ended

up in a register of the wrong kind. The technique used is to free up a few hard registers that are

called reload regs, and for each place where a pseudo register must be in a hard register, copy

it temporarily into one of the reload regs.

All the pseudos that were formerly allocated to the hard registers that are now in use as reload

registers must be spilled. This means that they go to other hard registers, or to stack slots if no other

available hard registers can be found. Spilling can invalidate more insns, requiring additional need for

reloads, so we must keep checking until the process stabilizes. Gcc attempts to generate optimized

spill code whenever possible. For example, it runs a small CSE pass after register allocation and

spilling to remove redundant spill code.

The reload pass also optionally eliminates the frame pointer and inserts instructions to save and

restore call-clobbered registers around calls. Instruction scheduling is repeated here to try to avoid

pipeline stalls due to memory loads generated for spilled pseudo registers. Conversion from usage

of some hard registers to usage of a register stack may be done at this point (reg-stack.c). Currently,

this is supported only for the FP registers of the Intel 80387 coprocessor that is organized as a stack

in the hardware.

Some specialized register-related optimizations in gcc are:

Scalar replacement of aggregates involves treating fields in an array, structure or union as unique

entities, which can be optimized like normal scalar variables. Of particular importance is the

ability to hold aggregates in registers.

Loop unrolling occurs through command line driven loop unrolling with register splitting (variable

expansion).

Leaf routine optimizations enable better register allocation with more efficient prologues or

epilogues.

Caller-save optimizations support allocation of variables to call-clobbered registers in the presence

of calls (with lazy save or restores around call points).

Conditional move or predication support traditional conditional move instructions as well as

simple instruction predication (nullification).
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The new target-independent register allocation enhancements in gcc 3.0.2 are as follows:

Constant equivalence handling for multiply-set pseudos is the same as rematerialization.

Reload inheritance attempts to optimize spill code, particularly unnecessary memory loads or

stores caused by register spilling.

New regmove optimizations include improvements to reduce register pressure for 2 address

machines such as the IA32, Motorola 68K and Hitachi SH/H8 series. Reduced register pressure

leads to more efficient code, particularly in routines where the number of user variables and

compiler-generated temporaries is larger than the physical register set for the target processor.

Local spilling in reload and postreload flow analysis involves postreload flow analysis allowing

the compiler to detect and eliminate dead code that was created or exposed by register allocation

and reloading.

13.9.2 Jalapeno

Jalapeno [58] is a Java virtual machine (JVM) for servers. Its interoperable compilers enable

quasi-preemptive thread switching and precise location of object references. The Jalapeno dynamic

optimizing compiler is designed to obtain high-quality code for methods that are observed to be

frequently executed or computationally intensive. The Jalapeno quick compiler primary register

allocator uses Chaitin’s graph-coloring algorithm. Coloring is not appropriate (due to long compile

time) for some methods (e.g., long one-basic-block static initializers that need many symbolic

registers). For such methods, the quick compiler has a simpler, faster algorithm.

However, the optimizing compiler employs the linear scan global register-allocation algorithm

[97] to assign physical machine registers to symbolic machine-specific intermediate representation

registers. This algorithm is not based on graph coloring, but greedily allocates physical to symbolic

registers in a single linear time scan of the symbolic register live ranges. This algorithm is said to be

several times faster than graph-coloring algorithms and resulting in code that is almost as efficient.

13.A Appendix: Definitions and Terms

• Basic block means maximal branch-free sequence of instructions.

• Predication is a feature of many recent architectures in which an instruction is executed only if

a predicate that is supplied as part of the instruction is true. Predication [59] has been included

in EPIC-style architectures because it helps in many ways. It enables modulo scheduling [92]

to reduce code expansion with a schedule that may only have kernel code. More commonly,

predication handles branch-intensive programs better because trace scheduling or superblock

scheduling cannot handle clusters of traces that should be considered together.

• Superblock is a single entry block but with multiple exits. Superblock scheduling avoids

compensation code for simplicity, for example, an instruction can move past a side exit E

only if any values computed by it are not live out E.

• Hyperblock is a predicated version of a superblock. Hyperblock formation substitutes a single

block of predicated instructions for a set of basic blocks containing conditional control-flow

between those blocks [80].

• Control tree gives the nesting of (minimal) intervals obtained by interval analysis on a flow

graph [82].

• Virtual registers are variables and temporaries that are promotable to reside in a register. These

typically exclude variables that can be aliased or whose pointers have been taken.

• Scratch registers are registers that are always available for temporary use.

• Register pressure means that at a program point, the number of variables are live and potentially

assignable to registers.
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• Live range is the range of instructions, basic blocks, etc. over which a variable is live.

• Reaching definitions mean at a program point, all the definitions defined elsewhere are valid.

13.B Appendix: Trimaran Compiler Infrastructure

The Trimaran compiler infrastructure (Figure 13.18) is composed of the following components [98]:

• A machine description facility, MDES, is for describing ILP architectures [42].

• A parametrized ILP architecture is called HPL-PD [70].

• A compiler front end, called IMPACT, is for C. It performs parsing, type checking and a large

suite of high-level (i.e., machine-independent) optimizations.

• A compiler back end, called ELCOR, is parametrized by a machine description, performing

instruction scheduling, register allocation and machine-dependent optimizations. Each stage

of the back end may easily be replaced or modified by a compiler researcher [47].

• An extensible IR (intermediate representation) has both an internal and a textual representation,

with conversion routines between the two. The textual language is called Rebel. This IR supports

modern compiler techniques by representing control flow, data and control dependence and

many other attributes. It is easy to use in its internal representation and its textual representation.

• A cycle-level simulator of the HPL-PD architecture is configurable by a machine description

and provides runtime information on execution time, branch frequencies and resource utiliza-

tion. This information can be used for profile-driven optimizations as well as for provision of

validating of new optimizations.

• An integrated graphical user interface (GUI) is used for configuring and running the Trimaran

system. Included in the GUI are tools for the graphic visualization of the program IR and of

the performance results.

Post-pass

Scheduling

Region-based

Register Allocator
SIMULATOR

Statistics

Execution

To

IR

K&R/ANSI-C Parsing

Renaming & Flattening

Control-Flow Profiling

Splitting and Inlining

Classical Optimizations

Code Layout  

SuperBlock Formation

ILP Transformations

IMPACT

Dependence

Graph

Construction

Acyclic

Scheduling

Modulo

Scheduling

ELCOR

Machine

Description

C

Program

FIGURE 13.18 Trimaran compiler infrastructure.



Register Allocation 529

From a register allocation point of view, the following infrastructure is relevant.

Modulo scheduling of counted loops — A loop scheduler consists of two parts. Modulo

scheduler allocates resources for the loop kernel subject to an initiation interval. Stage scheduler

moves operations across stages to reduce register usage of the loop. The existing implementation

of loop scheduling generates kernel only code, which requires support for predication and rotating

register files.

Acyclic scheduling of superblocks and hyperblocks — The three variations of acyclic schedul-

ing in ELCOR are, namely, cycle scheduler, backtracking scheduler and meld scheduler. A cycle

scheduler generates a schedule by constructing instructions from operations for each issue cycle

in order. A backtracking scheduler is a modified version of the cycle scheduler that can either do

limited backtracking to only support scheduling of branch operations with branch delay slots, or

do unlimited backtracking. A meld scheduler is a modified version of the cycle scheduler that can

propagate operation latency constraints across scheduling region boundaries. This results in tighter

scheduling of operations across region boundaries.

Rotating register allocator — When a counted loop is software pipelined, a set of virtual registers

in the loop are designated as rotating registers. A rotating register allocator allocates such registers to

the rotating register files right after modulo scheduling. Stage scheduling can be used after modulo

scheduling to reduce the rotating register requirements of a loop. The remaining registers are allocated

to the static register file after scalar scheduling of the rest of the program.

Region-based scalar register allocator — This allocator is based on the Chow and Hennessy

approach [68].
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14.1 Introduction

Retargetable compilation has been the subject of some study over the years. This work is motivated

by the need to develop a single compiler infrastructure for a range of possible target architectures.

Technology trends point to the growth of application-specific programmable systems, which makes

it doubly important that we develop efficient retargetable compilation infrastructures. The first need

for this is in directly supporting the different target architectures that are likely to be developed to

fuel these trends. The second, and possibly more important, need is in the design space exploration

for the instruction set architecture and microarchitecture of the processor under development. The

evaluation of any candidate architecture needs a compiler to map the applications to the architecture

and a simulator to measure the performance. Because it is desirable to evaluate multiple candidates,

a retargetable compiler (and simulator) is highly valuable.

The retargetability support largely needs to be provided for the back end of the compiler. Com-

piler back ends can be classified into the following three types: customized, semiretargetable and

retargetable. Customized back ends have little reusability. They are usually written for high-quality

proprietary compilers or developed for special architectures requiring nonstandard code generation

flow. In contrast, semiretargetable and retargetable compilers aim to reuse at least part of the compiler

back end by factoring out target-dependent information into machine description systems. The

difference between customization and retargetability is illustrated in Figure 14.1.

In semiretargetable compilers (e.g., lcc [31] and gcc [37]), back ends for different targets share

a significant amount of code. This reduces the time needed to port the compilers to new target

machines. However, they still require a nontrivial amount of programming effort for each target due

0-8493-1240-7/03/$0.00+$1.50
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to the idiosyncrasies of the target architectures or their calling conventions. In a semiretargetable

compiler implementation, the instruction set of the target is usually described in tree patterns as is

required by popular code generation algorithms [1]. General-purpose register files and usages of the

registers also need to be specified. This type of machine description system serves as the interface

between the machine-independent and the machine-dependent part of the compiler implementation.

It typically involves a mixture of pattern descriptions and C interface functions or macros. It is the

primitive form of an architecture description language.

A fully retargetable compiler is aimed at minimizing the coding effort for a range of targets

by providing a friendlier machine description interface. Retargetable compilers are important for

application-specific instruction-set processor (ASIP) (including digital signal processor [DSP])

designs. These cost-sensitive processors are usually designed for specialized application domains

and have a relatively narrow market window. It is costly for vendors to customize compiler back

ends and other software tools for each one of these processors. Moreover, for code density or

manufacturing cost concerns, these architectures are often designed to be irregular. Their irregularity

prevents general-purpose semiretargetable compilers from generating good quality code because

those compilers lack the optimization capability for irregular architectures. As a result, for most ASIP

designs, programmers have to fall back on assembly programming that suffers from poor productivity

and portability. As architectures with higher degrees of parallelism are gaining popularity, it is

increasingly hard for assembly programmers to produce high-quality code. A fully retargetable

optimizing compiler is called for to alleviate this software development bottleneck.

To provide sufficient information for optimizing retargetable compiler back ends as well as other

software tools including assemblers and simulators, architecture description languages (ADLs) are

developed. ADLs also enable design space exploration (DSE) by providing a formalism for modeling

processing elements. DSE is important in computer architecture design because no single design is

optimal in every aspect. Designers have to try a number of alternative designs and quantitatively

estimate or calculate their performance and various other metrics of interest before reaching an

acceptable trade-off. The common metrics of interest include power consumption, transistor count,

memory size and implementation complexity (it affects time to market). DSE is especially important

in the design of ASIPs due to their sensitivity to cost.

Figure 14.2 shows the Y chart [2] of a typical ASIP DSE flow. In such a flow, a designer, or possibly

even an automated tool, tunes the architecture description. The retargetable compiler compiles the

applications, usually a set of benchmark programs, into architecture-specific code. The simulator

executes the code and produces performance metrics such as cycle count and power consumption. The

metrics are analyzed and used to guide the tuning of the architecture description. The process iterates

until a satisfactory cost-effective architectural trade-off is found. In an embedded system development

environment, DSE also helps to determine the optimal combination of hardwired components and
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programmable elements. For both purposes, DSE over a reasonably large architecture space is

prohibitive if significant manual coding effort to port the compiler and simulator for each target is

involved. A retargetable software tool chain driven by an ADL is indispensable for DSE.

Over the past decade, several interesting ADLs have been introduced together with their sup-

porting software tools. These ADLs include MIMOLA [3], UDL/I [4], n-metalanguage (nML)

[5], instruction set description language (ISDL) [6], Maril [7], HMDES [8], target description

language (TDL) [33], language of instruction set architecture (LISA) [9, 10], Rockwell architec-

ture description language (RADL) [11], EXPRESSION [12], Philips research machine description

language (PRMDL) [13] and computer system description language (CSDL) [34]. Usually an ADL-

driven tool chain contains a retargetable compiler, an assembler, a disassembler and a functional

simulator. In some cases, a cycle accurate simulator and even microarchitecture synthesis tools are

included.

In this chapter, we start with a survey of the existing ADLs. Next, we compare and analyze

the ADLs to highlight their relative strengths and weaknesses. A characterization of the necessary

elements that form an ADL follows, and a generic structural organization of the information within

an ADL is given. This study then forms the basis for describing the difficulties faced by ADL

designers and users. Finally, we briefly discuss future architecture trends and their implications for

requirements of good ADLs.

14.2 Architecture Description Languages

Traditionally, architecture description languages have been classified into three categories: structural,

behavioral and mixed. The classification is based on the nature of the information provided by the

language.

14.2.1 Structural Languages

An important trade-off in the design of an ADL is the level of abstraction vs. the level of generality.

Because of the increasing diversity of computer architectures, it is very difficult to find a formalism at

a high abstraction level to capture the interesting characteristics of all types of processors. A common

way to obtain a higher level of generality is to lower the abstraction level. A lower abstraction level

can capture concrete structural information in more detail. Register transfer (RT) level is a popular

abstraction level. It is low enough to model concrete behaviors of synchronous digital logic and

high enough to hide gate-level implementation details. It is a formalism commonly used in hardware
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design. In an RT-level description, data movement and transformation between storage units is

specified on a clock cycle basis. Several early ADLs were based on RT-level descriptions.

It is worth noting that the RT-level abstraction should not be confused with the RT lists, though

both are often abbreviated to RTL. The latter is a higher level of abstraction used for operation

semantics specification. The major difference between the two is the treatment of time. Cycle time

is an essential element in an RT-level description. All RT-level events are associated with a specific

time stamp and are fully ordered. In contrast, for RT lists, time is not a concern. Only causality is of

interest and events are only partially ordered.

14.2.1.1 MIMOLA

One RT-level ADL is MIMOLA [3], an interesting computer hardware description language and

high-level programming language developed at the University of Dortmund, Germany. It was

originally proposed for microarchitecture design. Over the years, MIMOLA has undergone many

revisions and a number of software tools have been developed based on it. The major advantage of

a MIMOLA architecture description is that a single description can be used for hardware synthesis,

simulation, test generation and code generation purposes. A tool chain including the MSSH hardware

synthesizer, the MSSQ code generator, the MSST self-test program compiler, the MSSB functional

simulator and the MSSU RT-level simulator were developed based on the MIMOLA language [3].

MIMOLA has also been used by the RECORD [14] compiler as its architecture representation

language.

MIMOLA contains two parts: the hardware part where microarchitectures are specified in the

form of a component netlist and the software part where application programs are written in a

PASCAL-like syntax.

Hardware structures in MIMOLA are described as a netlist of component modules each of which

is defined at the RT level. The following is a simple arithmetic unit module, slightly adapted from

an example in [3]:

MODULE Alu

(IN i1, i2: (15:0); OUT outp: (15:0));

IN ctr: (1:0));

CONBEGIN

outp <− CASE ctr OF

0: i1 + i2 ;

1: i1 - i2 ;

2: i1 AND i2 ;

3: i1 ;

END AFTER 1;

CONEND;

The module declaration style is similar to that of the Verilog hardware description language [15].

The starting line declares a module named Alu. The following two lines describe the module port

names, directions and widths. The port names can be used as variables in the behavior statements as

references to the signal values on the ports. If more than one statement exists between CONBEGIN and

CONEND, they are evaluated concurrently during execution. The AFTER statement in the preceding

example describes the timing information.
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For a complete netlist, CONNECTIONS need to be declared to connect the ports of the module

instances, for example [3]:

CONNECTIONS Alu.outp -> Accu.inp

Accu.outp -> alu.i1

The MSSQ code generator can extract instruction set information from the module netlist for use

in code generation. It can transform the RT-level hardware structure into a connection operation

graph (COG). The nodes in a COG represent hardware operators or module ports whereas the

edges represent the data flow through the nodes. The instruction tree (I tree) that maintains a record

of the instruction encoding is also derived from the netlist and the decoder module. During code

generation, the PASCAL-like source code is transformed into an intermediate representation. Then

pattern matching is done from the intermediate code to the COG. Register allocation is performed

at the same time. The MSSQ compiler directly outputs binary code by looking up the I tree.

For the compiler to locate some important hardware modules, linkage information needs to be

provided to identify important units such as the register file, the instruction memory and the program

counter. The program counter and the instruction memory location can be specified as follows [3]:

LOCATION−FOR−PROGRAMCOUNTER PCReg;

LOCATION−FOR−INSTRUCTIONS IM[0..1023];

where PC and IM are previously declared modules. However, even with the linkage information,

it is still a very difficult task to extract the COG and the I trees due to the flexibility of an RT-level

structural description. Extra constraints need to be imposed for the MSSQ code generator to work

properly. The constraints limit the architecture scope of MSSQ to microprogrammable controllers

in which all control signals originate directly from the instruction word [3].

The MIMOLA software programming model is an extension of PASCAL. It is different from

typical high-level programming languages in that it allows programmers to designate variables to

physical registers and to refer to hardware components through procedures calls. For example, to

use an operation performed by a module called Simd, programmers can write

x: = Simd(y,z);

This special feature helps programmers to control code generation and to map intrinsics effectively.

Compiler intrinsics are assembly instructions in the form of library functions. They help programmers

to utilize complex machine instructions while avoiding writing in-line assembly. Common instrinsics

candidates include single instruction multiple data [SIMD] parallel instructions.

14.2.1.2 UDL/I

Another RTL hardware description language used for compiler generation is UDL/I [4] developed

at Kyushu University in Japan. It describes the input to the COACH ASIP design automation

system. A target-specific compiler can be generated based on the instruction set extracted from

the UDL/I description. An instruction set simulator can also be generated to supplement the cycle

accurate RT-level simulator. As in the case of MIMOLA, hints need to be supplied by the designer

to locate important machine states such as the program counter and the register files. To avoid

confusing the instruction set extractor, restrictions are imposed on the scope of supported target

architectures. Superscalar and very-long-instruction-word (VLIW) architectures are not supported

by the instruction set extractor [4].

In general, RT-level ADLs enable flexible and precise microarchitecture descriptions. The same

description can be used by a series of electronic design automation (EDA) tools such as logic

synthesis, test generation and verification tools; and software tools such as retargetable compilers
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and simulators at various abstraction levels. However, for users interested in retargetable compiler

development only, describing a processor at the RT level can be quite a tedious process. The instruc-

tion set information is buried under enormous microarchitecture details about which only the logic

designers care. Instruction set extraction from RT-level descriptions is difficult without restrictions

on description style and target scope. As a result, the generality of the RT-level abstraction is very

hard for use in the development of efficient compilers. The RT-level descriptions are more amicable

to hardware designers than to retargetable compiler writers.

14.2.2 Behavioral Languages

Behavioral languages avoid the difficulty of instruction set extraction by abstracting behavioral

information out of the microarchitecture. Instruction semantics are directly specified in the form of

RT lists and detailed hardware structures are ignored. A typical behavioral ADL description is close

in form to an instruction set reference manual.

14.2.2.1 nML

nML is a simple and elegant formalism for instruction set modeling. It was proposed at the Technical

University of Berlin, Germany. It was used by the retargetable code generator CBC [16] and

the instruction set simulator SIGH/SIM [17]. It was also used by the CHESS [18] code genera-

tor and the CHECKERS instruction set simulator at IMEC. CHESS and CHECKERS were later

commercialized [38].

Designers of nML observed that in a real-life processor, usually several instructions share some

common properties. Factorization of these common properties can result in a simple and compact

representation. Consequently, they used a hierarchical scheme to describe instruction sets. The top-

most elements of the hierarchy are instructions, and the intermediate elements are partial instructions

(PI). Two composition rules can be used to specify the relationships among the elements: the AND

rule that groups several PIs into a larger PI and the OR rule that enumerates a set of alternatives

for one PI. Thus, instruction definitions in nML can be in the form of an and-or tree. Each possible

derivation of the tree corresponds to an actual instruction.

The instruction set description of nML utilizes attribute grammars [39]. Each element in the

hierarchy has a few attributes and the attribute values of a nonleaf element can be computed based

on its children’s attribute values. Attribute grammar was adopted by ISDL and TDL too.

An example illustrating nML instruction semantics specification is provided as follows:

op num_instruction(a:num_action, src:SRC, dst:DST)
action {

temp_src = src;
temp_dst = dst;
a.action;
dst = temp_dst;

}
op num_action = add | sub | mul | div
op add()
action = {

temp_dst = temp_dst + temp_src
}
...

The num−instruction definition combines three PIs with the AND rule. The first PI,

num−action, is formed through an OR rule. Any one of add, sub, mul and div is a valid option
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for num−action. The number of all possible derivations of num−instruction is the product of

the size of num−action, SRC and DST. The common behavior of all these options is defined in

the action attribute of num−instruction . Each option of num−action should have its own action

attribute defined as its specific behavior, which is referred to by the “a.action” line. Besides the action

attribute shown in the example, two additional attributes, image and syntax, can be specified in the

same hierarchical manner. Image represents the binary encoding of the instructions and syntax is the

assembly mnemonic.

Though classified as a behavioral language, nML is not completely free of structural information.

Any structural information referred to by the instruction set architecture (ISA) must be provided in the

description. For example, storage units should be declared because they are visible to the instruction

set. Three storage types are supported in nML: RAM, register and transitory storage. Transitory

storage refers to machine states that are retained only for a limited number of cycles, for instance,

values on buses and latches. The timing model of nML is simple: computations have no delay.

Only storage units have delay. Instruction delay slots can be modeled by introducing storage

units as pipeline registers and by propagating the result through the registers in the behavior

specification [5].

nML models the constraints between operations by enumerating all valid combinations. For

instance, consider a VLIW architecture with three issue slots and two types of operations A and

B. If, due to some resource contention, at most one type A operation can be issued at each

cycle, then the user has to enumerate all the possible issue combinations including ABB, BAB,

BBA and BBB. The enumeration of all the valid cases can make nML descriptions lengthy. More

complicated constraints, which often appear in DSPs with irregular instruction level parallelism

(ILP) constraints or VLIW processors with a large number of issue slots, are hard to model with

nML. For example, nML cannot model the constraint that operation X cannot directly follow

operation Y.

14.2.2.2 ISDL

The problem of constraint modeling is tackled by ISDL with explicit specification. ISDL was

developed at Massachusetts Institute of Technology (MIT) and used by the Aviv compiler [19] and

the associated assembler. It was also used by the retargetable simulator generation system GENSIM

[20]. ISDL was designed to assist hardware–software codesign for embedded systems. Its target

scope is VLIW ASIPs.

ISDL mainly consists of five sections:

• Storage resources

• Instruction-word format

• Global definition

• Instruction set

• Constraints

Similar to the case of nML, storage resources are the only structural information modeled by

ISDL. The register files, the program counter and the instruction memory must be defined for each

architecture. The instruction–word format section describes the composing fields of the instruction–

word. ISDL assumes a simple treelike VLIW instruction model: the instruction–word contains a

list of fields and each field contains a list of subfields. Each field corresponds to one operation. For

VLIW architectures, an ISDL instruction corresponds to an nML instruction and an ISDL operation

corresponds to a PI in nML.

The global definition section describes the addressing modes of the operations. Production rules

for tokens and nonterminals can be defined in this section. Tokens are the primitive operands
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of instructions. For each token, assembly format and binary encoding information must be defined.

An example token definition of a register operand is:

Token ‘‘RA’’[0..15] RA {[0..15];}

In this example, following the keyword Token is the assembly format of the operand. Here any one

of RA0 to RA15 is a valid choice. Next, RA is the name of the token for later reference. The second

[0..15] is the return value. It is to be used for behavioral definition and binary encoding assignment

by nonterminals or operations.

Nonterminal is a mechanism provided to exploit commonalities among operations. It can be

used to describe complex addressing modes. A nonterminal typically groups a few tokens or other

nonterminals as its arguments, whose assembly formats and return values can be used when defining

the nonterminal. An example nonterminal specification is:

Non_Terminal SRC:
RA {$$ = 0x00000 | RA;} {RFA[RA]} {} {} {} |
RB {$$ = 0x10000 | RB;} {RFB[RB]} {} {} {};

The example shows a nonterminal named SRC. It refers to token RA and RB as its two options.

The first pair of braces in each line defines binary encoding as a bit-or result. The $$ symbol indicates

the return value of the current nonterminal, a usage probably borrowed from Yacc [21]. The second

pair of braces contains the action. Here the SRC operand refers to the data value in the register

RFA[RA] or RFB[RB] as its action. The following three empty pairs of braces specify side effects,

cost and time. These three exist in the instruction set section as well.

The instruction set section of ISDL describes the instruction set in terms of its fields. For each

field, a list of alternative operations can be described. Similar to nonterminals, an operation contains

a name, a list of tokens or nonterminals as its arguments, the binary encoding definition, the action

definition, the side effects and the costs. Side effects refer to behaviors such as the setting or clearing

of a carry bit. Three types of cost can be specified: execution cycles, encoding size and stall. Stall

models the cycle number of pipeline stalls if the next instruction uses the result of the current

instruction. The timing model of ISDL contains two parameters: latency and usage. Latency is the

number of instructions to be fetched before the result of the current operation becomes available

and usage is the cycle count that the operation spends in its slot. The difference or the relationship

between the latency and the stall cost is not clear in the available publications of ISDL.

The most interesting part of ISDL is its explicit constraint specification. In contrast to nML,

which enumerates all valid combinations, ISDL defines invalid combinations in the form of Boolean

expressions. This often results in a much simpler constraint specification. It also enables ISDL to

capture much more irregular ILP constraints. Recall the constraint example that instruction X cannot

directly follow Y, which cannot be modeled by nML. ISDL can describe the constraint as follows [6]:

˜(Y *) & ([1] X *, *)

The “[1]” indicates a cycle time delay of one fetch bundle. The “∼” is a symbol for not and “&”

for logical and. Such constraints cannot be specified by nML. Details of the Boolean expression

syntax are available in the ISDL publication [19]. The way ISDL models constraints affects the code

generation process: a constraint checker is needed to check whether the selected instructions meet

the constraint. Iterative code generation is required in case of checking failure.

Overall, ISDL provides the means for compact, hierarchical instruction set specification of

instruction sets. Its Boolean expression based constraint specification helps to model irregular

ILP effectively. A shortcoming of ISDL is that the simple treelike instruction format forbids the

description of instruction sets with multiple encoding formats.
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14.2.2.3 CSDL

CSDL [34] is a family of machine description languages developed for the Zehpyr compiler

infrastructure mainly at the University of Virginia. The CSDL family currently includes a function

calling convention specification language (CCL) [22], specification language for encoding and

decoding (SLED) [35], a formalism describing instruction assembly syntax and binary encoding

and λ-RTL [36], a register transfer lists language for instruction semantics description.

SLED was developed as part of the New Jersey Machine-Code toolkit that assists programmers to

build binary editing tools. A retargetable linker mld [42] and a retargetable debugger ldb [43] based

on the toolkit have been reported.

Similar to ISDL, SLED uses a hierarchical model for machine instructions. An instruction is

composed of one or more tokens and each token is composed of one or more fields. The directive

patterns help to group the fields together and to bind them to binary values. The directive constructor

helps to connect the fields into instruction words. A detailed description of the syntax can be found

in SLED publications [35].

SLED does not assume a single format of the instruction set. Thus, it is flexible enough to describe

the encoding and assembly syntax of both reduced instruction set computer (RISC) and complex

instruction set computer (CISC) instruction sets. Like nML, SLED enumerates legal combinations of

fields. There is neither a notion of hardware resources nor explicit constraint descriptions. Therefore,

without significant extension, SLED is not suitable for use in VLIW instruction-word description.

The very portable optimizer (vpo) in the Zephyr system provides the capability of instruction

selection, instruction scheduling and global optimization. Instruction sets are represented in RT-lists

form in vpo. The raw RT-lists form is verbose. To reduce description effort, λ-RTL was developed.

A λ-RTL description can be translated into RT lists for the use of vpo.

According to the developers [36], λ-RTL is a high-order, strongly typed, polymorphic, pure

functional language based largely on Standard ML [40]. It has many high-level language features

such as name space (through the module and import directives) and function definition. Users can

even introduce new semantics and precedence to basic operators. This functional language has several

elegant properties [36], that are beyond the scope of this chapter.

CSDL descriptions describe only storage units as hardware resources. Timing information such as

operation latencies is not described. Thus, the languages themselves do not supply enough informa-

tion for VLIW processor code generation and scheduling. They are more suitable for conventional

general-purpose processor modeling.

The behavioral languages share one common feature: hierarchical instruction set description based

on attribute grammars [39]. This feature helps to simplify the instruction set description by exploiting

the common components between operations. However, the lack of detailed pipeline and timing

information prevents the use of these languages as an extensible architecture model. Information

required by resource-based scheduling algorithms cannot be obtained directly from the description.

Also, it is impossible to generate cycle accurate simulators based on the behavioral descriptions

without some assumptions of the architecture control behavior (i.e., an implied architecture template

has to be used).

14.2.3 Mixed Languages

Mixed languages extend behavioral languages by including abstract hardware resources in the

description. As in the case of behavioral languages, RT lists are used in mixed languages for semantics

specification.

14.2.3.1 Maril

Maril is a mixed architecture description language used by the retargetable compiler Marion [7].

It contains both instruction set information as well as coarse-grained structural information. Maril
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descriptions are intended for use in code generation for RISC-style processors only. So unlike the

case with ISDL, no distinction is made between an instruction and an operation in Maril. The

structural information contains storage units as well as highly abstract pipeline units. The compiler

back ends for the Motorola 88000 [44], the MIPS R2000 [45] and the Intel i860 [46] architectures

were developed based on Maril descriptions.

Maril contains three sections:

14.2.3.1.1 Declaration.

The declaration section describes structural information such as register files, memory and abstract

hardware resources. Abstract hardware resources include pipeline stages and data buses. The

resources are used for reservation table description. In the compiler community, the term reservation

table has been used as a mapping from operation to architecture resources and time. It captures

the operation resource usage at every cycle starting with the fetch. The reservation table is often a

one-to-many mapping because there can be multiple alternative paths for one instruction.

Beside hardware structures, the declaration section also contains information such as the range of

immediate operands or relative branch offset. This is necessary information to generate correct code.

14.2.3.1.2 Runtime Model.

The runtime model section specifies the conventions of the generated code. It deals mostly with the

function calling convention. This section is the parameter system of the Marion compiler. It is not

intended to be a general framework for calling convention specification that is complex enough to

qualify as a description language by itself [22]. Calling conventions are not the primary interest of

this chapter and are not discussed further.

14.2.3.1.3 Instruction.

The instruction section describes the instruction set. Each instruction definition in Maril contains

five parts. The first part is the instruction mnemonics and the operands that can be used to format

assembly code. The optional second part declares data-type constraints of the operation for code

selection use. The third part describes, for each instruction, a single expression. The patterns used

by the tree-pattern matching code generator are derived from this expression. A limitation on the

expression is that it can contain only one assignment. This limitation is reasonable because the code

generator can usually handle tree-patterns only. However, it forbids Maril from describing instruction

behavior such as side effects on machine flags and postincrement memory references, because those

involve multiple assignments. Consequently, a Maril description is generally not accurate enough

for use by a functional simulator. The fourth part of the instruction declaration is the reservation

table of the instruction. The abstract resources used in each cycle can be described here, starting

from instruction fetch. The last part of an instruction specification is a triple of (cost, latency, slot).

Cost is used to distinguish actual operations from dummy instructions that are used for some type

conversions. Latency is the number of cycles before the result of this instruction can be used by other

operations. Slot specifies the delay slot count. Instruction encoding information is not provided

in Maril.

An example of the integer Add instruction definition of Maril is as follows [7]:

%instr Add r, r, r (int)
{$3 = $1+$2;}
{IF; ID; EX; MEM; WB} (1,1,0)

The operands of the Add instruction are all general-purpose registers, as denoted by the r’s. The “;”

in the reservation table specification delimits the cycle boundary. The Add instruction goes through

five pipeline stages in five cycles. It has a cost of one, takes one cycle and has no delay slot.
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In general, Maril is designed for use in RISC processor code generation and scheduling. Some

of its information is tool specific. It cannot describe a VLIW instruction set, and does not provide

enough information for accurate simulation. It does not utilize a hierarchical instruction set descrip-

tion scheme as is done by most behavioral languages. Nonetheless, compared with the behavioral

languages, it carries more structural information than just storage units. The structural resource-

based reservation table description enables resource-based instruction scheduling, which can bring

significant performance improvement for deeply pipelined architectures.

14.2.3.2 HMDES

Another language with emphasis on scheduling support is HMDES [8] developed at UIUC for the

IMPACT research compiler. IMPACT mainly focuses on ILP exploration. As a result, the instruction

reservation table information is the major content of HMDES. Although there is no explicit notion

of instruction or operation bundle in HMDES, it can be used for VLIW scheduling purposes by

representing VLIW issue slots as artificial resources. The designers of IMPACT are interested in

wide issue architectures in which a single instruction can have numerous scheduling alternatives.

For example, if in an 8-issue architecture an Add instruction can go through any of the 8 decoding

slots into any of the 8 function units, there are in total 64 scheduling alternatives for it. To avoid

laboriously enumerating the alternatives, an and-or tree structure is used in HMDES to compress

reservation tables. Figure 14.3 shows the reservation table description hierarchy of HMDES. The

leaf node resource usage is a tuple of (resource, time).

A special feature of HMDES is its preprocessing constructs. C-like preprocessing capabilities

such as file inclusion, macroexpansion and conditional inclusion can be used. Complex structures

such as loop and integer range expansion are also supported. The preprocessing does not provide

extra description power, but it helps to keep the description compact and easy to read.

Instruction semantics, assembly syntax and binary encoding information are not part of HMDES

because IMPACT is not designed to be a fully retargetable code generator. It has a few manually

written code generation back ends. After machine specific code is generated, IMPACT queries the

machine database built through HMDES to do ILP optimization.

An HMDES description is the input to the MDES machine database system of the Trimaran

compiler infrastructure that contains IMPACT as well as the ELCOR research compiler from HP

Labs. The description is first preprocessed, and then optimized and translated to a low-level repre-

sentation file. A machine database reads the low-level files and supplies information to the compiler

back end through a predefined query interface. A detailed description of the interface between

the machine description system and the compiler back end can be found in the documentation for

ELCOR [23].
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FIGURE 14.3 HMDES reservation table description hierarchy.
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14.2.3.3 TDL

TDL has been developed at Saarland University in Germany. The language is used in a retargetable

postpass assembly-based code optimization system called PROPAN [33].

In PROPAN, a TDL description is transformed into a parser for target-specific assembly language

and a set of ANSI C files containing data structures and functions. The C files are included in the

application as a means of generic access to architecture information. A TDL description contains

four parts: resource section, instruction set section, constraints section and assembly section.

14.2.3.3.1 Resource Section.

Storage units such as register files and memory have built-in syntax support in this section. Moreover,

TDL allows the description of the cache, which partially exposes the memory hierarchy to the

compiler and allows for more optimization opportunities. Function units are also described in this

section. TDL also provides flexible syntax support for the user to define generic function units that

do not belong to any predefined category.

14.2.3.3.2 Instruction Set Section.

Like those of the behavioral languages, the TDL organization is based on attribute grammars [39].

TDL supports VLIW architectures, thus distinguishing the notions of operation and instruction. No

binary encoding information is provided by TDL.

An example of a TDL operation description adapted from [50] is:

DefineOp IAdd “%s = %s + %s”{

dst1 = “$1”in{gpr}, src1 = “$2”in{gpr}, src2 = “$3”in{gpr}},

{ALU1(latency=1, slots=0, exectime=1)

|ALU2(latency=1, slots=0, exectime=2);

WbBus(latency=1)},

{dst1 := src1 + src2;}.

The operation definition contains the name, the assembly format, a list of the predefined attributes

such as source and destination operand position and type, the reservation table and the semantics

in RT-lists form. In this example, the destination operand $1 corresponds to the first “%s” in the

assembly format and is from the register file named gpr. The operation can be scheduled on either

function unit ALU1 or ALU2. It also uses the result write back bus (WbBus) resource. The operation

performs addition. A very detailed TDL version of the RT-lists semantics description rule can be found

in [50].

This section also contains operation class definition that groups operations into groups for the ease

of reference. Instruction-word formats can be described using the operation classes. For instance,

the declaration [50] “InstructionFormat ifo2 [opclass3, opclass4];” means that the instruction format

ifo2 contains one operation from opclass3 and one from opclass4.

Similar to ISDL, TDL also provides a nonterminal construct to capture common components

between operations.

14.2.3.3.3 Constraints Section.

Recall that ISDL has a constraint specification section. The Boolean expression used in ISDL is based

on lexical elements in the assembly instruction. TDL also uses Boolean expressions for constraint

modeling, but the expressions are based on the explicitly declared operation attributes from the

preceding sections.
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A constraint definition includes a premise part followed by a rule part, separated by a colon. An

example definition from [50] is as follows:

op1 in {MultiAluFixed} & op2 {MultiMulFixed} :

!(op1 && op2) | op1.src1 in {iregC} & op1.src2 in {iregD}

&op2.src1 in {iregA} & op2.src2 in {iregB}

The example specifies the issue constraint for two operations, one from the MultiAluFixed class

and the other from the MultiMulFixed class. Either they do not coexist in one instruction-word or

their operands have to be in specific register files. The constraint specification is as powerful as that

of ISDL and has a cleaner syntax. The Boolean expression can be transformed into an integer linear

programming constraint to be used in the PROPAN system.

14.2.3.3.4 Assembly Section.

This section describes the lexical elements in the assembly file including comment syntax, operation

and instruction delimiters and assembly directives.

On the whole, TDL provides a well-organized formalism for VLIW DSP assembly code descrip-

tion. Preprocessing is supported. Description of various hardware resources including caches is also

supported. The RT-lists description rules are exhaustively defined. A hierarchical scheme is used to

exploit common components among operations. Both resource based (function units) and explicit

Boolean expression based constraint modeling mechanisms are provided. However, the timing model

and the reservation table model of TDL seem to be restricted by the syntax. No mechanism is

available for users to flexibly specify operand latencies — the cycle time when operands are read and

written. These restrictions prevent the use of TDL for accurate RISC architecture modeling. Another

limitation is that register ports or data transfer paths are not explicitly modeled in the resource

section. The two are often resource bottlenecks in VLIW DSPs. The limitations can be overcome

with extensions to the current TDL.

A related but more restrictive machine description formalism for assembly code analysis and

transformation applications can be found in the SALTO framework [48]. The organization of the

SALTO machine description is similar to that of TDL.

14.2.3.4 EXPRESSION

A problem of an explicit reservation table description in the preceding mixed languages is that it

may not be natural and intuitive enough. A translation from pipeline structures to abstract resources

has to be done by description writers. Such manual translation can be annoying in the case of

DSE. The architecture description language EXPRESSION [12] avoids human effort in doing the

translation. Instead, it describes a netlist of pipeline stages and storage units directly and automatically

generates reservation tables based on the netlist. In contrast to MIMOLA that uses fine-grained

netlists, EXPRESSION uses a much coarser representation. A netlist-style specification is friendly

to architects and makes graphic input possible.

EXPRESSION was developed at University of California at Irvine. It is used by the research

compiler EXPRESS [24] and the research simulator SIMPRESS [25] developed there. A GUI front

end for EXPRESSION has also been developed [25]. EXPRESSION takes a balanced view of

behavioral and structural descriptions and consists of a distinct behavioral section and a structural

section.

The behavioral section is similar to that of ISDL in that it distinguishes instructions and operations.

However, it does not cover assembly syntax and binary encoding and does not use a hierarchical

structure for instruction semantics. The behavioral section contains three subsections: operation,

instruction and operation mapping. The operation subsection is in the form of RT lists. Detailed

semantics description rules are not publicly available. A useful feature of EXPRESSION is that it
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groups similar operations together for ease of later reference. Operation addressing modes are also

defined in the operation subsection.

The instruction subsection describes the bundling of operations that can be issued in parallel.

Instruction width, slot widths and function units that correspond to the slots are declared in this

section. This information is essential for VLIW modeling.

The operation mapping subsection specifies the transformation rules for code generation. Two

types of mapping can be specified: mapping from a compiler’s intermediate generic operations to

target-specific operations and mapping from target-specific operations to target-specific operations.

The first type of mapping is used for code generation. The second type is required for optimization

purposes. Predicates can be specified for conditional mappings. Providing the mapping subsection

in EXPRESSION makes the code generator implementation much easier, but it also makes the

EXPRESSION language tool dependent. The most interesting part of EXPRESSION is its netlist

based structural specification. It contains three subsections: component declaration, path declaration

and memory subsystem declaration.

In the component subsection, coarse-grained structural units such as pipeline stages, memory

controllers, memory banks, register files and latches are specified. Linkage resources including

ports and connections can also be declared in this part. A pipeline stage declaration for the example

architecture in Figure 14.4 is:

(DECODEUnit ID
(LATCHES decodeLatch)
(PORTS ID_srcport1 ID_srcport2)
(CAPACITY 1)
(OPCODES all)
(TIMING all 1)

)

The example shows the declaration of the instruction decoding stage. The LATCHES statement

refers to the output pipeline register of the unit. The PORTS statement refers to the abstract data

ports of the unit. Here the ID unit has two register read ports. CAPACITY describes the number of

instructions that the pipeline stage can hold at a time. Common function units have a capacity of one,

whereas fetching and decoding stages of VLIW or superscalar processors can have a capacity as wide

as its issue width. OPCODES describes the operations that can go through this stage. All here refers

to an operation group containing all operations. TIMING is the cycle count that operations spend in

the unit. Each operation takes one cycle. TIMING can also be described on a per operation basis.

In the path subsection, pipeline paths and data paths between pipeline stages and storage units are

specified. This part connects the components together into a netlist. The pipeline path declaration

stitches together the pipeline stages to form a directed acyclic pipeline graph, in which the pipeline

stages are vertices and paths are directed edges. An example path declaration for the simple DLX

architecture [26] shown in Figure 14.4 is:

(PIPELINE FE ID EX MEM WB)

(PIPELINE FE ID F1 F2 F3 F4 WB)

Recall that the OPCODES attribute of pipeline stages declares the operations that can go through

each stage. So for each operation, the possible paths that it can go through can be inferred by

looking for paths every node of which can accommodate the operation. Each path corresponds to

a scheduling alternative. Because the time spent by each operation at each stage is specified in the

TIMING declaration in the component subsection, a reservation table can be generated from the paths.
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FIGURE 14.4 Example DLX pipeline.

Register file ports and data transfer path usage information can also be derived from the operands of

the operations and the connections between the pipeline stages and the storage units. The ports and

the data transfer paths can also be resources in the reservation tables.

Compared with the explicit reservation table specification style of HMDES and Maril, the

EXPRESSION netlist style is more attractive. However, the way that EXPRESSION derives reserva-

tion tables [12] excludes cases in which an operation can occupy two pipeline stages in the same cycle.

This may happen in floating point pipelines or when artificial resources [27] need to be introduced

for irregular ILP constraint modeling.

The last structural part is the memory model. A parameterized memory hierarchy model is provided

in EXPRESSION. Memory hierarchy specification is important, especially as we go from single

processing element descriptions toward system-on-chip descriptions. Advanced compilers can make

use of the memory hierarchy information to improve cache performance. EXPRESSION and TDL

are the only ADLs that address memory hierarchy.

In general, EXPRESSION captures the data path information in the processor. However, as with

all the preceding mixed languages, EXPRESSION does not explicitly model the control path. Thus,

it actually does not contain complete information for cycle accurate simulation. An architecture

template is needed to supplement the control path information for simulation purposes. The behav-

ioral model of EXPRESSION does not utilize hierarchical operation specification. This can make it

tedious to specify a complete instruction set. The VLIW instruction composition model is simple.

It is not clear if interoperation constraints such as sharing of common fields can be modeled. Such

constraints can be modeled by ISDL through cross-field encoding assignment.

14.2.3.5 LISA

The emphasis of the behavioral languages is mostly on instruction set specification. Beyond that,

mixed languages provide coarse-grained data path structural information. However, control path

specification is largely ignored by both the behavioral languages and the preceding mixed languages.

This is probably due to the lack of formalism in control path modeling. Complex control-related

behaviors such as speculation and zero-overhead loops are very difficult to model cleanly. Control

behavior modeling is important for control code generation (e.g., branch and loop code generation),

as well as for cycle-accurate simulation. As the pipeline structures of high-end processors get

increasingly complicated, branching and speculation can take up a significant portion of program

execution time. Correct modeling of control flow is crucial for accurate simulation of such behaviors

with feedback that can provide important guidance to ILP compiler optimizations.

The architecture description language LISA [9] was initially designed with a simulator centric

view. It was developed at Aachen University of Technology in Germany. The development of LISA

accompanies that of a production quality cycle-accurate simulator [10]. A compiler based on LISA

is undergoing development at this moment.

Compared with all the preceding languages, LISA is closer to an imperative programming lan-

guage. Control-related behavior such as pipeline flush or stall can be specified explicitly. These
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operation primitives provide the flexibility to describe a diversity of architectural styles such as

superscalar, VLIW and SIMD.

LISA contains mainly two types of top-level declarations: resource and operation. Resource

declarations cover hardware resources including register files, memories, program counters, pipeline

stages, etc. The PIPELINE definition declares all the possible pipeline paths that the operations can

go through. A PIPELINE description corresponding to the example shown in Figure 14.4 is as

follows:

PIPELINE pipe = {FE; ID; EX; MEM; WB}

PIPELINE pipe_fp = {FE; ID; F1; F2; F3; F4; WB}

Similar to the case of Maril, the preceding “;” symbols are used to delimit the cycle boundary.

Machine operations are defined stage by stage in LISA. OPERATION is the basic unit defining

operation behavior, encoding, and assembly syntax on a per stage basis. At some pipeline stages

such as the instruction fetch or decoding stage, several operations may share some common behavior.

LISA exploits the commonality by grouping the specifications of similar operations into one. As a

slightly modified version of an example in [10], the decoding behavior for arithmetic operations at

the DLX ID stage can be described as follows:

OPERATION arithmetic IN pipe.ID {
DECLARE {

GROUP opcode={ADD || ADDU || SUB || SUBU}
GROUP rs1, rs2, rd = {fix_register};

}
CODING {opcode rs1 rs2 rd}
SYNTAX {opcode rd ‘‘,’’ rs1 ‘‘,’’ rs2}
BEHAVIOR {

reg_a = rs1;
reg_b = rs2;
cond = 0;

}
ACTIVATION {opcode, writeback}

}

The example captures the common behavior of the four arithmetic operations ADD, ADDU, SUB

and SUBU in the decoding stage and their common assembly syntax and binary encoding.

To capture the complete behavior of an operation, its behavior definition in other pipeline stages

has to be taken into account. As shown in the example, an operation declaration can contain several

parts:

• DECLARE, where local identifiers are specified

• CODING, where the binary encoding of the operation is described

• SYNTAX, where the assembly syntax of the operation is declared

• BEHAVIOR, where the exact instruction semantics including side effects are specified in a

C-like syntax

• ACTIVATION, where the dependence relationship of the other OPERATIONs is specified

An extra SEMANTICS part can be defined too. Although both SEMANTICS and BEHAVIOR define

the function performed by an operation, SEMANTICS is reserved for use by the code generator during
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mapping and BEHAVIOR is for use in simulation. Recall that similar redundancy can be found in

EXPRESSION in which both operation subsection and mapping subsection are dedicated to semantics

specification.

ACTIVATION is part of the execution model of LISA. In LISA, one OPERATION can activate

another OPERATION. The firing time of the activated OPERATION depends on the distance between

the two OPERATIONs in the pipeline path. The preceding example activates one of the opcodes that

is declared at the EX stage. Because EX directly follows ID, it executes in the following cycle. One

opcode ADD can be declared as follows [10]:

OPERATION ADD IN pipe.EX
{

CODING {0b001000}
SYNTAX {‘‘ADD’’}
BEHAVIOR {alu = reg_a + reg_b;}

}

Each LISA description contains a special main OPERATION that can be activated in every cycle.

It serves as a kernel loop in simulation. Pipeline control functions including shift, stall and flush can

be used in the main loop.

One advantage of LISA is that the user can describe detailed control path information with the

activation model. Control path description is important in generating a cycle accurate simulator. A

fast and accurate simulator for the Texas Instrument (TI) TMS320C6201 VLIW DSP [28] based on

LISA has been reported [10].

To use LISA for retargetable code generation, the instruction set has to be extracted. This is an

easier job than instruction extraction from RT-level languages. The semantics of most arithmetic,

logical and memory operations can be directly obtained by combining their OPERATION definitions

at different stages. For complicated and hard-to-map instruction behaviors, the SEMANTICS keyword

can be used as a supplement.

14.2.3.6 Miscellaneous

A language similar to LISA is RADL [11]. It was developed at Rockwell, Inc. as a follow-up of

some earlier work on LISA. The only goal of RADL is to support cycle accurate simulation. Control-

related APIs such as stall and kill can also be used in RADL descriptions. However, no information

is available on the simulator utilizing RADL.

Beside RADL, another architecture description language developed in the industry is PRMDL [13].

PRMDL is intended to cover a range of VLIW architectures, including clustered VLIW architectures

in which incomplete bypass networks and functional units are shared among different issues slots

[13]. A PRMDL description separates the software view (the virtual machine) and the hardware

view (the physical machine) of the architecture. The separation ensures code portability by keeping

application programs independent of changes in hardware. However, information is not available on

how PRMDL maps elements in the virtual machine to the physical machine.

14.3 Analysis of Architecture Description Languages

14.3.1 Summary of Architecture Description Languages

ADLs as a research area are far from mature. In contrast to the situation with other computer languages

such as programming languages or hardware description languages, neither any kind of standard nor

any dominating ADL exists. Most of the ADLs are designed specifically for software tools under
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development by the same group of designers and are thus tightly affiliated with the tools. The only

languages that have been used by multiple compilers are MIMOLA and nML. However, they have

limited popularity, and have no recent adopters. The stage is wide open for new efforts and it is not

surprising that new ADLs are constantly emerging.

An apparent reason for the lack of an ADL standard is the lack of formalism in general computer

architecture modeling. Modern computer architectures range from simple DSP and ASIPs with small

register files and little control logic to complex out-of-order superscalar machines [26] with deep

memory hierarchy and heavy control and data speculation. As semiconductor processes evolve, more

and more transistors are squeezed onto a single chip. The drive for high performance leads to the

birth of even more sophisticated architectures such as multithreading processors [26]. It is extremely

hard for a single ADL to describe the vast range of computer architectures accurately and efficiently.

A practical and common approach is for the designers to use a high-level abstraction committed

to a small range of architectures. Usually one or more implicit architecture templates are behind a

high-level ADL to bridge the gap between the abstraction and the physical architecture.

A second reason is probably the different design purposes of ADLs. Some ADLs were originally

designed as a hardware description language (e.g., MIMOLA and UDL/I). The major design goal of

those languages was accurate hardware modeling. Cycle accurate simulators and hardware synthesis

tools are natural outcomes of such languages. It is nontrivial to extract instruction set information

from these languages for use in a compiler. Some ADLs such as nML, LISA and EXPRESSION

were initially developed to be high-level processor modeling languages. The important design con-

siderations of these languages are general coverage over an architecture range and support for both

compilers and simulators. Due to the divergent needs of compilers and simulators, a language usually

can provide good description support for only one of them at a time.

Furthermore, the designers of the ADLs are often interested in the research value of the software

tools. They are interested in different parts of the compilers or the simulators. As a result, the ADLs

are usually biased toward the parts of interest. It is hard for a single ADL to satisfy the needs of

all researchers. The remaining ADLs such as Maril, HMDES, TDL and PRMDL were developed

as configuration systems for their accompanying software tools. In a sense these languages can be

viewed as by-products of the software tools that were designed as compiler research infrastructure or

as architecture exploration tools. The goal of these languages is flexibility within the configuration

space. Generality is a secondary concern though it is desirable for extensibility considerations.

However, if the generality of an ADL significantly exceeds that of its accompanying software tools,

it may become a source of ambiguity. Moreover, generality often means less efficiency in modeling.

There is little value in describing features that the software tools cannot support after all.

Thus, we see that ADLs can differ along many dimensions. Different ADLs are designed for differ-

ent purposes, at different abstraction levels, with emphasis on different architectures of interest and

with different views on the software tools. They reflect the designer’s view of computer architectures

and software tools.

The design of an ADL usually accompanies the development of software tools. The overall design

effort on an ADL is often only a small fraction of the development effort on the software tools

utilizing the ADL. So very often the developers of new software tools tend to design new ADLs.

Though many ADLs have been introduced in the past decade, as mentioned earlier, this is not yet a

mature research field. However, this is likely to change in the near future. Because programmable

parts are playing an increasingly important role in the development of systems, this field is attracting

the increased attention of researchers and engineers.

Table 14.1 summarizes and compares the important features of various ADLs. A few entries in

the table were left empty, because information either is not available (no related publications) or is

not applicable. The “( )” symbol in some entries indicates support with significant limitation.
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TABLE 14.1 Comparison between ADLs

MIMOLA UDL/I nML ISDL SLED/ λ-RTL Maril HMDES TDL EXPRESSION LISA RADL PRMDL

category HDL HDL behavioral behavioral behavioral mixed mixed mixed mixed mixed mixed mixed

compiler MSSQ, COACH CBC, Aviv Zephyr Marion IMPACT PROPAN EXPRESS
Record CHESS

simulator MSSB/U COACH Sign/Sim, GENSIM SIMPRESS LISA
Checkers

behavioral RT-level RT-level RT-lists RT-lists RT-lists RT-lists RT-lists RT-lists, RT-lists RT-lists mapping
representation mapping

hierarchical yes yes yes no yes yes no yes yes no

behavioral
representation

structural netlist netlist resource resource resource netlist pipeline pipeline netlist
representation

ILP compiler yes yes yes yes yes yes yes yes
support

cycle simulation yes yes (yes) (yes) no no (yes) no yes yes yes yes
support

control path yes yes no nos no no no no no yes yes no

constraint model Boolean resource resource resource, Boolean resource resource

other features preprocessing preprocessing memory interrupt
support support hierarchy
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14.3.2 Basic Elements of an Architecture Description Language

Modern retargetable compiler back ends normally consist of three phases: code selection, register

allocation and operation scheduling. The phases and various optimization steps [41] may sometimes

be performed in different order and in different combinations. The first two phases are always

necessary to generate working code. They require operation semantics and addressing mode infor-

mation. Operation scheduling to minimize potential pipeline hazards in code execution, including

data, structural and control hazards [26]. Scheduling also helps to pack operations into instruction-

words for VLIW processors and tries to minimize unused empty slots. It is traditionally viewed as

an optimization phase. As deeper pipelines and wider instruction-words are gaining more popularity

in processor designs, scheduling is increasingly important to the quality of a compiler. A good ILP

scheduler can improve performance and reduce code size greatly. Thus, we assume that the ILP

scheduler is an essential part of the compiler back end in this chapter.

The data model of a common scheduler contains two basic elements: operand latency and reser-

vation table. The first element models data and control hazards and is used to build a directed

acyclic dependency graph. The second element models structural hazards between operations. The

instruction-word packing problem does not always fit into the data model directly. A solution is

to convert the packing conflicts to artificial resources and let conflicting operations require the use

of such resources at the same time. By augmenting the reservation table with artificial resource

usages, we prevent the scheduler from scheduling conflicting operations simultaneously. Thus, we

can incorporate the packing problem into normal reservation table based scheduling [27].

Each machine operation performs some type of state transition in the processor. A precise descrip-

tion of the state transition has to include three elements: what, where and when. Correspondingly,

information required by a compiler back end contains three basic elements: behavior, resource

and time. In this context behavior means semantic actions including reading of source operands,

calculation and writing of destination operands. Resource refers to abstract hardware resources

used to model structural hazards or artificial resources used to model instruction packing. Common

hardware resources include pipeline stages, register file ports, memory ports and data transfer paths.

The last element, namely, time, is the cycle number when the behavior occurs and when resources

are used. It is usually described relative to the operation fetch time or issue time. In some cases,

phase number can be used for even more accurate modeling.

With the three basic elements, we can easily represent each machine operation in a list of triples.

Each triple is in the form of (behavior, resource, time). For example, an integer Add operation in the

pipeline depicted by Figure 14.4 can be described as:

(read operand reg[src1], through register file port a,

at the 2nd cycle since fetch);

(read operand reg[src2], through register file port b,

at the 2nd cycle since fetch);

(perform addition, in alu,

at the 3rd cycle since fetch);

(write operand reg[dst], through register

file write port, at the 5th cycle since fetch).

From the triple list, the compiler can extract the operation semantics and addressing mode by

combining the first elements in order. It can also extract operand latency and reservation table

information for the scheduler. Operand latency is used to schedule against data hazards, whereas

reservation table can be used to schedule against structural hazards.
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The triple list is a simple and general way of operation description. In practice, some triples

may sometimes be simplified into tuples. For instance, most architectures contain sufficient register

read ports so that no resource hazard can ever occur due to them. As a result, the scheduler does

not need to take the ports into consideration. One can simplify the first two triples by omitting the

resource elements. On the other hand, when resources exist that may cause contention and when no

visible behavior is associated with the resource, the behavior can be omitted. In the same integer

Add example, if for some reason the MEM stage becomes a source of contention, one may want to

model it as a tuple of (MEM stage, at the 4th cycle since fetch).

The triple/tuple list can be found in all mixed languages in some form. For instance, the HMDES

language is composed of these two types of tuples: the (behavior, time) tuple for operand latency

and the (resource, time) tuple for reservation table. In LISA, operations are described in terms of

pipeline stages. Each pipeline stage has an associated time according to its position in the path. Thus,

a LISA description contains the triple list in some form too.

The final pieces of information left out from the triple list that are needed by the compilers are

assembly syntax and binary encoding. These two can be viewed as attached attributes of the operation

behavior. It is relatively straightforward to describe them.

14.3.3 Structuring of an Architecture Description Language

It is possible to turn the aggregation of triple lists directly into an ADL. However, describing a

processor based on such an ADL can be a daunting task if it is to be written by humans. A typical

processing element can contain around 50 ∼ 100 operations. Each of the operations may have

multiple issue alternatives, proportional to the issue width of the architecture. Each issue alternative

corresponds to one triple list whose length approximates the pipeline depth. As a result, the total

number of tuples is about the product of operation count, issue width and pipeline depth, which

may be of the order of thousands. Moreover, as mentioned earlier, artificial resources can be used to

model instruction-word packing or irregular interoperation constraints. A raw triple list representation

requires the user to do the artificial resource formation prior to the description. This process can be

laborious and error prone for humans.

Thus, the task of an ADL design is to find a simple, concise and intuitive organization to capture

the required information. Conceptually, a complete ADL should contain three parts.

14.3.3.1 Behavioral Part

This part contains operation addressing modes, operation semantics, assembly mnemonics and binary

encoding. It corresponds to the first element in the triple. Behavior information is most familiar to

compiler writers and can be found directly in architecture reference manuals. As a result, in many

ADLs, if not all, behavioral information constitutes an independent section by itself.

In common processor designs, operations in the same category usually share many common

properties. For instance, usually all three-operand arithmetic operations and logic operations share

the same addressing modes and binary encoding formats. They differ only in opcode and semantics.

Exploitation of the commonalities among operations can make the description compact, as has

been demonstrated by nML and ISDL among others. Both languages adopt hierarchical description

schemes under which common behaviors are described at the root of the hierarchy whereas specifics

are kept in the leaves.

Beside commonality sharing, another powerful capability of hierarchical description is factor-

ization of suboperations. A single machine operation can be viewed as the aggregation of several

suboperations each of which has a few alternatives. Take, for example, the Load operation of TI

TMS320C6200 family DSP [26]. The operation contains two suboperations: the load action and the

addressing mode. Five versions of load action exist: load byte, load unsigned byte, load half word,

load unsigned half word and load word. The addressing mode can further be decomposed into two
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parts: the offset mode and the address calculation mode. Two offset modes exist: register offset and

constant offset. For the address calculation mode, six alternatives are possible: plus offset, minus

offset, preincrement, predecrement, postincrement and postdecrement. Overall, the single Load

operation contains 5*2*6 = 60 versions. Under a flat description scheme, it could be a nightmare when

one finds a typographical error in the initial version after cutting, pasting and modifying 59 times.

In contrast to the geometric complexity of a flat description, a hierarchical description scheme

factorizes suboperations and keeps the overall complexity linear. The resulting compact description

is much easier to verify and modify. Conciseness is a very desirable feature for ADLs.

14.3.3.2 Structural Part

This part describes the hardware resources. It corresponds to the second element in the triple

representation. Artificial resources may also be included in this part. The level of abstraction in

this part can vary from fine-grained RT-level to coarse-grained pipeline stage level, though for

use in a compiler, a coarse-grained description is probably more suitable. Two schemes exist for

coarse-grained structural descriptions: resource based and netlist based.

Maril, TDL and HMDES utilize the resource-based description scheme. The advantage of the

resource-based scheme is flexibility in creating resources. When creating a resource, the description

writer does not have to worry about the corresponding physical entity and its connection with other

entities. The resource may comfortably be an isolated artificial resource used for constraint modeling.

In contrast, EXPRESSION and PRMDL utilize the netlist-based scheme. A significant advantage

of a netlist-based description is its intuitiveness. A netlist is more familiar to an architect than a list

of unrelated abstract resource names. A netlist description scheme also enables friendly GUI input.

A reservation table can be extracted from the netlist through some simple automated translation. The

disadvantage is that the modeling capability may not be as flexible as the resource-based scheme.

Architectures with complex dynamic pipeline behaviors are hard to model as a simple coarse-grained

netlists. Also, netlists of commercial superscalar architectures may not be available to researchers.

Based on this comparison, the resource-based scheme seems more suitable as an approximation

to complex high-end architecture descriptions, whereas the netlist-based scheme is better suited as

an accurate model for simple ASIP/DSP designs for which netlists are available and control logic is

minimal.

14.3.3.3 Linkage Part

This part completes the triple. The linkage information maps operation behavior to resources and

time. It is usually not an explicit part of ADLs.

Linkage information is represented by different ADLs in different ways. No one way has an obvious

advantage over another. In Maril, TDL or HMDES, linkage is described in the form of an explicit

reservation table. For each operation, the resources it uses and the time of each use are enumerated.

HMDES further exploits the commonality of resource uses through a hierarchical representation.

In EXPRESSION, the linkage information is expressed in multiple ways: operations are mapped to

pipeline stages by the OPCODES attribute associated with the pipeline stages, whereas data transfer

resources are mapped to operations according to the operands and netlist connections. Grouping of

operations into groups helps to simplify the mapping in EXPRESSION.

In summary, the desirable features of an architecture description include simplicity, conciseness

and generality. These features may conflict with one another. A major task of the ADL design process

is to find a good trade-off among the three for the architecture family in consideration. A good ADL

should not be tied to internal decisions made by the software tools and it should minimize redundancy.

14.3.4 Difficulties

The triple list model looks simple and general. However, real-world architectures are never as

simple and as straightforward to describe. ADL designers are constantly plagued with the trade-off
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of generality and abstraction level: low abstraction level brings high level of generality, whereas

high abstraction level provides better efficiency. As for the software tools using the ADL, compi-

lers prefer a high level of abstraction whereas cycle accurate simulators expect concrete detailed

microarchitecture models. It is hard to find a clean and elegant representation satisfying both. Also,

the idiosyncrasies of various architectures make general ADL design an even more agonizing process.

When modeling a new processor, designers have to evaluate the ability of the ADL to accommodate

the processor without disrupting the existing architecture model supported by the ADL. If this is

not possible, then some new language constructs may need to be added. If the new construct is

not orthogonal to the existing ones, the entire language may have to be revised. This also means

that all written architecture descriptions and the parser need to be revised. The emergence of new

“weird” architectural features keeps the designers busy struggling with evaluations, decisions and

rewriting. Comparatively speaking, tool-specific ADL designers are much better off because they

can comfortably exclude those architectures if the tools cannot handle them.

A few common problems faced by ADL designers and users are discussed next. Most of them

do not have a clean solution and trade-offs have to be made depending on the specific needs in

each case.

14.3.4.1 Ambiguity

The most common problem of an ADL is ambiguity, or inability to define precise behavior. As a

side effect of abstraction, ambiguity exists in most ADLs, especially in modeling control related

behavior. Take the common control behavior of interlocking, for example. Superscalar architectures

have the capability to detect data and control hazards and stall the pipeline when a hazard exists.

VLIW architectures, on the other hand, may not have the interlocking mechanism. The difference

between the two obviously imposes different requirements on the simulator. It also results in different

requirements for the operation scheduler: for superscalar, the scheduler only needs to remove as many

read-after-write (RAW) data hazards as possible; whereas for VLIW, the scheduler should ensure the

correctness of the code by removing all hazards. For two architectures differing in interlocking policy

only, it is expected that the two would result in different structural descriptions. However, for many

ADLs, actually no difference exists between the two due to the lack of control path specification.

Among the mixed languages, only LISA and RADL can model the interlocking mechanism accurately

because they put emphasis on accurate simulator generation.

Generally speaking, dynamic pipeline behaviors such as out-of-order issue and speculation are

very hard to model cleanly. The use of microinstructions [26] in CISC machines makes modeling

even harder. Such complicated behaviors can be ignored for compiler-oriented ADLs. However, an

ADL with support for both compiler and cycle accurate simulator may need to address them.

Another common example of ambiguity is VLIW instruction-word packing. Some architectures

allow the packing of only one issue bundle into an instruction-word (i.e., only operations scheduled

to issue at the same cycle can appear in the same instruction-word) whereas other architectures allow

multiple issue bundles in one instruction-word. The architecture dispatches the issue bundles at

different cycles according to stop bits encoded in the instruction-word [28] or according to instruction-

word templates [29]. Among the mixed ADLs, few can capture such instruction bundling behavior

because it is related to the control path. The problem of code compression [47, 49] is more difficult

than simple bundling and is not addressed by the ADLs at all.

Ambiguity is the result of abstraction. RT-level languages have the lowest level of ambigu-

ity whereas highly abstract behavioral level ADLs have the highest level of ambiguity. Among

mixed ADLs, simulator-oriented ADLs are less ambiguous than compiler-oriented ADLs. A good

architecture description language design involves clever abstraction with minimal ambiguity.

In practice, ambiguity can be resolved by using an architecture template (i.e., the compiler or

simulator presumes some architecture information left out from the ADL descriptions). This strategy
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FIGURE 14.5 A two-issue integer pipeline with forwarding.

has been adopted by the tool-specific ADLs. The general-purpose ADLs can resolve the ambiguity

while preserving generality by using multiple architecture templates.

14.3.4.2 Variable Latency

In many processors, operations or their operands may have variable latency. Many compiler-oriented

ADLs can describe the nominal latency but not accurate variable latency. Consider again the example

of an integer Add in Figure 14.4. By default, the source operands can be read at the ID stage and

destination operand written at the WB stage. Thus, the source operand has a latency of 1, whereas

the destination operand latency is 4, relative to the fetch time. However, if a forwarding path exists,

which allows the operation to bypass its results from MEM to EX, then its destination operand latency

is equivalent to 3. This is still fine if we fool the compiler by telling it the equivalent latency, though

to the cycle accurate simulator we should tell the truth.

Now consider a multi-issue version of the same architecture in which interpipeline forwarding is

forbidden, as is shown in Figure 14.5. Inside each pipeline, forwarding can occur and we have an

equivalent destination operand latency of 3, whereas between pipelines, no forwarding is allowed

and the destination latency is 4. Here we see a variable latency for the same operand. The variable

latency is hard to describe explicitly in the triple list, unless the forwarding path and its implication

become part of the ADL. Reservation table based ADLs normally do not capture forwarding paths.

A common practice is to inform the scheduler about only the worst-case latency, which means

no distinction exists for the compiler between the intra- and interpipeline case. As a result, some

optimization opportunity is lost if the compiler has some control over operation issue.

Another type of variable latency resides in the operations themselves. Operations such as floating

point division or square root can have a variable number of execution cycles depending on the exact

source operands. In the triple list model, the variable operation latency means that the time element

should be a variable, which could complicate the ADL greatly. To avoid the complication, usually a

pessimistic latency is used in the description.

Memory operations can also result in variable latency in the presence of memory hierarchy. Most

ADLs ignore the memory hierarchy by specifying a nominal latency for load and store operations

because the emphasis of the ADLs is only on the processing elements. Memory hierarchy modeling

is nontrivial due to the existence of various modules including ROM, SRAM, DRAM, nonvolatile

memory and numerous memory hierarchy options and memory management policies. As the speed

discrepancy between digital logic and memory keeps increasing, it will be more and more important

for the compiler to be aware of the memory hierarchy. Thus far, only EXPRESSION and TDL provide

a parameterized memory hierarchy model. Research has indicated that memory aware optimization

in some cases yields an average profit of 24% reduction of execution time [30].

Overall, it is useful to specify structural information such as the pipeline diagram, forwarding path

and memory hierarchy for use in the compiler.

14.3.4.3 Irregular Constraints

Constraints exist in computer architectures due to the limitation of resources including instruction-

word width resources and structural resources. Common constraints include the range of constant
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operands and the number of issue slots. These constraints are familiar to compiler writers and can

be handled with standard code generation and operation scheduling techniques.

ASIP designs often have extra-irregular constraints, because they are extra cost sensitive. Clustered

and special register files with incomplete data transfer paths are commonly used to conserve chip

area and power. Irregular instruction-word encoding is also used as a means to save instruction-word

size, and therefore instruction memory size.

Typical operation constraints include both intra-operation and inter-operation constraints. An

example of intra-operation constraint from a real proprietary DSP design is that in operation ADD

D1, S0, S1, if D1 is AX, then S0 and S1 must be chosen from B0 and B1. If D1 is otherwise,

no constraint is imposed on S0 and S1. Interoperation constraints occur similarly for operands in

different operations. These operand-related constraints are hard to convert to artificial resource-based

constraints. Special compiler techniques are needed to handle them, such as an extra constraint-

checking phase in Aviv [19] or integer linear programming-based code optimization techniques

[33].

The irregular constraints create new challenges for compilers as well as ADLs. Most existing

ADLs cannot model irregular constraints. ISDL and TDL utilize Boolean expressions for constraint

modeling, an effective model to supplement the triple list.

14.3.4.4 Operation Semantics

Both the code generator and the instruction set simulator need operation semantics information. For

use in the code generator, simple treelike semantics would be most desirable due to the popularity of

tree-pattern based dynamic programming algorithms [1]. Operation side effects such as the setting

of machine flags are usually not part of the tree pattern and may be omitted. Similarly, operations

unsuitable for code generation can be omitted too. In contrast, for the simulator, precise operation

semantics of all operations should be provided. It is not easy to combine the two semantic specifica-

tions into one, while still keeping the result convenient for use in the compiler and simulator. ADLs

such as LISA and EXPRESSION separate the two semantic specifications but result in redundancy.

This leads to the additional problem of ensuring consistency between the redundant parts of the

description.

For use in compilers, two schemes of operation semantics specification exist in ADLs. The first

scheme is a simple mapping from machine-independent generic operations to machine-dependent

operations. Both EXPRESSION and PRMDL use this scheme. The mapping scheme makes code

generation a simple table lookup. This is a practical approach. The disadvantage is that the description

cannot be reused for simulation purposes, and the description becomes dependent on compiler

implementation.

The second description scheme defines for each operation one or more statements based on a

predefined set of primitive operators. nML, ISDL and Maril all use this approach. The statements

can be used for simulation, and for most operations, the compiler can derive tree pattern semantics

for its use. However, difficulties exist because some of the compiler’s intermediate representations

(IRs) may fail to match any single operation.

For example, in lcc [31] IRs, comparison and branch are unified in the same node. An operator EQ

compares two of its children and jumps to the associated label if they are equal. Many processors do

not have a single operation performing this task. Take the x86 family, for example [32]. A comparison

followed by a conditional branch operation is used to perform this task. The comparison operation

sets machine flags and the branch operation reads the flags and alters control flow conditionally.

The x86 floating point comparison and branch is even more complicated: the flags set by floating

point comparison have to be moved through an integer register to the machine flags that the branch

operation can read. As a result, a total of four operations need to be used to map the single EQ node.

It would be a nontrivial job for the compiler to understand the semantics of each of the operations and

the semantics associated with the flags to derive the matching. Some hints to the compiler should be
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provided for such cases. For these purposes, Maril [7] contains the “glue” and “*func” mechanisms.

Glue allows the user to transform the IR tree for easier pattern matching and *func maps one IR node

to multiple operations. However, such mechanisms expose the internals of the software tools to the

ADL and make the ADL tool dependent.

14.3.4.5 Debugging ADL Descriptions

Debugging support is an important feature for any programming language because code written by

humans invariably contains bugs. Retargetable compilers and simulators are difficult to write and

debug themselves. The bugs inside an ADL description make the development process harder.

An initial ADL description often involves thousands of lines of code and may end up with hundreds

of errors. Among the errors, syntax errors can be easily detected by ADL parsers. Some other forms

of errors such as redefinition of the same operation can be detected by careful validity checking in

the compiler. However, the trickiest errors can pass both tests and remain in the software for a long

time. The experience of LISA developers shows that it takes longer to debug a machine description

than to write the description itself [10].

Thus far, no formal methodology exists for ADL debugging. An ADL description itself does not

execute on the host machine. It is usually interpreted or transformed into executable C code. In the

interpretation case, debugging of the ADL description is actually the debugging of the retargetable

software tool using the description. In the executable transformation case, debugging might be

performed on the generated C, which probably looks familiar only to the tool writer.

The task of debugging would be easier if a usable target-specific compiler and a simulator for the

architecture to be described exist. Comparison of emitted assembly code or simulation traces helps

detect errors. Unfortunately, this is impossible for descriptions of new architecture designs. The

ADL writer probably has to iterate in a trial-and-error process for weeks before getting a working

description.

Though it takes a long time to get the right description, it is still worthwhile because it would

take even longer to customize a compiler. After the initial description is done, mutation can then be

performed on it for the purpose of design space exploration (DSE).

14.3.4.6 Others

Other issues in ADL design include handling of register overlap and mapping of intrinsics. These

issues are not too hard and have been addressed by many ADL designs. They are worth the attention

of all new ADL designers.

Register overlap, or alias, is common to many architectures. For example, in x86 architecture, the

lower 16-b of the 32-b register EAX can be used independently as AX. The lower and upper half of

AX can also be used as 8-b registers AH and AL. Register overlap also commonly exists in floating

point register files of some architectures [45] where a single precision register is half of a double

precision register.

Most architectures contain a few operations that cannot be automatically generated by compilers

or that cannot be expressed by predefined RT- lists operators. For example, the TI TMS320C6200

family implements bit manipulation operations such as reverse operation BITR. Such operations are

useful to special application families. However, no C operator can be mapped to such operations.

Intrinsics mapping is a cleaner way to utilize these operations than in-line assembly. Thus, it is

helpful for ADL to provide intrinsics support.

Description capability of operating system related operations may also be of interest to ADLs with

accurate simulation support. Examples of such operations include the ARM branch and exchange

operations that switches the processor between normal 32-b instruction width mode and the 16-b

compressed instruction width mode [52]. Another example is the TI TMS320C6200 family MVC

operation that updates the addressing mode or control status of the processor [28].
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14.3.5 Future Directions

Driven by market demands, increasingly complex applications are implemented on semiconductor

systems today. As both chip density and size increases, the traditional board-level functionality

can now be performed on a single chip. As a result, processing elements are no longer privileged

central components in electronic systems. A modern system-on-chip (SOC) may contain multiple

processors, buses, memories and peripheral circuits. As electronic design automation (EDA) tools

start to address SOC design issues, system-level modeling becomes a hot research area.

A processing element model now becomes part of the system model. It is desirable that the same

ADL modeling the processing element can be extended to model the whole system. Hardware descrip-

tion language-based ADLs such as MIMOLA may be naturally used for this purpose. However, due

to the large size of a typical SOC, description of the entire system at the RT-level inevitably suffers

from poor efficiency. When analog or mixed-signal parts are involved in the system, it is impossible

to model the entire system even at the RTL level. Abstraction at different levels for different parts of

the system is a more practical approach.

To reuse the existing tools and ADLs for system-level description, an effective approach is to

extend the ADLs with communication interface models. Communication interface models include

the modeling of bus drivers, memory system interfaces, interrupt interfaces, etc.

The system-level interface is important for processing element simulators to interact with system

simulators. It is also important for the design of advanced compilers. For instance, a system-

level compiler can partition tasks and assign the tasks to multiple processing elements according

to the communication latency and cost. Compilers can also schedule individual transactions to avoid

conflicts or congestion according to the communication model.

Among the existing mixed ADLs, LISA is capable of modeling interrupts and EXPRESSION has

a parameterized memory hierarchy model. Both of these can be viewed as important steps toward

the specification of a system-level communication interface.

On the whole, systematic modeling of the communication interface for processing elements is an

interesting though difficult research direction. It helps form the basis of a system-level retargetable

compiler and simulator, which are desirable tools for modern SOC design.

14.4 Conclusion

ADLs provide machine models for retargetable software tools including the compiler and the

simulator. They are crucial to DSE of ASIP designs.

In terms of requirements for an optimizing compiler, a tool-independent ADL should contain

several pieces of information:

• Behavioral information in the form of RT lists. Hierarchical behavioral modeling based on

attribute grammars is a common and effective means. For VLIW architectures, instruction-word

formation should also be modeled.

• Structural information in the form of reservation table or coarse-grained netlists. Essential

information provided by this section includes abstract resources such as pipeline stages and

data transfer paths.

• Mapping between the behavioral and structural information. Information in this aspect includes

the time when semantic actions take place and the resources used by the action.

In addition, irregular ILP constraint modeling is useful for ASIP-oriented ADLs. The desirable

features of an ADL include simplicity for the ease of understanding, conciseness for description

efficiency, generality for wide architecture range support, minimal ambiguity and redundancy and

tool independence. Trade-off of abstraction levels needs to be made if a single ADL is used for
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both a retargetable compiler and a cycle-accurate simulator for a range of architectures. As ASIP

design gains popularity in the SOC era, ADLs as well as retargetable software tool sets will become

an important part of EDA tools. They will encompass not only single processors but also system

interfaces.
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15.1 Introduction and Background

15.1.1 Introduction

One of the final phases in a typical compiler is the instruction selection phase. This traverses an

intermediate representation of the source code and selects a sequence of target machine instructions

that implement the code. There are two aspects to this task. The first one has to do with finding

efficient algorithms for generating an optimal instruction sequence with reference to some measure

of optimality. The second has to do with the automatic generation of instruction selection programs

from precise specifications of machine instructions. Achieving the second aim is a first step toward

retargetabiltiy of code generators. We confine our attention to instruction selection for basic blocks.

An optimal sequence of instructions for a basic block is called locally optimal code.

Early techniques in code generation centered around interpretive approaches where code is

produced for a virtual machine and then expanded into real machine instructions. The interpretive

approach suffers from the drawback of having to change the code generator for each machine.

The idea of code generation by tree parsing replaced the strategy of virtual machine interpretation.

The intermediate representation (IR) of the source program is in the form of a tree and the target

machine instructions are represented as productions of a regular tree grammar augmented with

semantic actions and costs. The code generator parses the input subject tree and, on each reduction,

outputs target code. This is illustrated in Figure 15.1 for a subject tree generated by the grammar of

Example 15.1.

0-8493-1240-7/03/$0.00+$1.50
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FIGURE 15.1 A sequence of tree replacements for an IR tree for the grammar of Example 15.1.

Example 15.1

Consider the tree grammar that follows where the right-hand sides of productions represent trees using

the usual list notation. Each production is associated with a cost and a semantic action enclosed in

braces. The operator := is the assignment operator, deref is the deferencing operator that dereferences
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FIGURE 15.2 Derivation tree for the IR tree of Figure 15.1.

an address to refer to its contents. Subscripts on symbols are used to indicate attributes. For example,

cj indicates a constant with value j . Costs are assumed to be additive.

S →:= (+(cj , Gk), Ri) [3] {emit(“store R%s, %s[%s]”), i, j, k)}

R → +(deref (+(cj , Gk), Ri) [3] {emit(“add %s[%s], R%s”), j, k, i}

Ri → cj [2] {i = allocreg(); emit(“mov #%s, R%s”), j, i}

Gi → sp [0] {i = sp}

Consider the source level statement b := b + 1, where b is a local variable stored in the current

frame pointed at by the stack pointer sp. The IR tree is shown as the first tree in Figure 15.1 with

nodes numbered from 1 to 10. The IR tree is processed using the replacements shown in Figure 15.1.

Each nonterminal replacing a subtree has its cost shown alongside.

The tree is said to have been reduced to S by a tree-parsing process, which implicitly constructs

the derivation tree shown in Figure 15.2 , for the subject tree. The set of productions used is a cover

for the tree. In general, there are several covers, given a set of productions, and we aim to obtain

the best one according to some measure of optimality. The semantic actions also include a call to

a routine to allocate a register. This can go hand in hand with the tree parsing and the selection of

the register is independent of the parsing process. For the sequence of replacements shown, the code

emitted is:

move #1, R0

add b[sp], R0

store R0, b[sp]

Fraser [19] and Cattell [12] employed tree-pattern matching along with heuristic search for code

generation. Fraser used knowledge-based rules to direct pattern matching, whereas Cattell suggested

a goal-directed heuristic search. Graham and Glanville [23] opened up new directions in the area of

retargetable code generation. They showed that if the intermediate code tree is linearized and the
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target machine instructions are represented as context free grammar productions, then bottom-up

parsing techniques could be used to generate parsers that parse the linearized intermediate code tree

and emit machine instructions while performing reductions. This was a purely syntactic approach

to the problem of instruction selection, and suffered from the drawback that the effective derivation

has a left bias, in that the code for the subtree corresponding to the left operand is selected without

considering the right operand. As a result, the code generated is suboptimal in many instances.

A second problem with the Graham–Glanville approach is that there are many architectural

restrictions that have to be taken into account when generating code, such as register restrictions on

addressing modes and so on. A purely syntactic approach to such semantics yields a very large number

of productions in the specifications. Several implementations of the Graham–Glanville technique

have been described, and the technique has been applied to practical compilers, [24, 30] Ganapathi

and Fischer [22] suggested using attribute grammars instead of context-free grammars to handle

the problem of semantics. Attributes are used to track multiple instruction results, for example, the

setting of condition codes. Further, predicates are used to specify architectural restrictions on the

programming model. Instruction selection is therefore performed by attributed parsing. Although

this solves the problem of handling of semantic attributes, it is still not able to overcome the problem

of left bias in the mode of instruction selection. A good survey of early work in this area is [21].

The seminal work of Hoffman and O’Donnell (HOD) [28] provided new approaches that could be

adopted for retargetable code generation. They considered the general problem of pattern matching

in trees with operators of fixed arity and presented algorithms for both top-down and bottom-up

tree-pattern matching. The fact that choices for patterns that are available can be stored, and decisions

can be deferred until an optimal choice can be made, overcomes the problem of left bias in the

Graham–Glanville approach. The basic idea is that a tree automaton can be constructed from a

specification of the machine instructions in terms of tree patterns during a preprocessing phase, and

this can be used to traverse an intermediate code tree during a matching phase to find all matches,

and finally generate object code. HOD showed that if tables encoding the automaton could be

precomputed, then matching could be achieved in linear time. The size of the tables precomputed

for bottom-up tree-pattern matching automata can be exponential in the product of the arity and the

number of sub-patterns.

Chase [13] showed that table compression techniques that could be applied as the tables were under

construction could greatly reduce auxiliary space requirements while performing pattern matching.

This important observation actually made the HOD technique practically useful. Several bottom-up

tools for generating retargetable code generators were designed. Some of these are hard-coded in that

their control structure mirrors the underlying regular tree grammar [17, 20]. Such techniques have

been employed in the tools BEG [17] and iburg [20], where the dynamic programming strategy

first proposed by Aho and Johnson [4] is used in conjunction with tree parsing to obtain locally

optimal code. Aho and Ganapathi [2] showed that top-down tree parsing combined with dynamic

programming can be used for generating locally optimal code. Their technique is implemented in

the code-generator generators twig [42] and olive [43].

The advantage of a top-down technique is that the tables describing the tree-parsing automaton

are small. The disadvantage stems from the fact that cost computations associated with dynamic

programming are performed at code generation time, thus slowing down the code generator. Dynamic

programming using a top-down traversal was also used by Christopher, Hatcher and Kukuk [14].

Appel [7] has generated code generators for the VAX and Motorola 68020 using twig. Weisgerber

and Wilhelm [44] describe top-down and bottom-up techniques to generate code. Henry and Damron

[27] carried out an extensive comparison of Graham–Glanville style code generators and those based

on tree parsing. Hatcher and Christopher [26] showed that costs could be included in the states

of the finite state tree pattern matching automaton so that optimal instruction selection could be

performed without incurring the extra overhead of the cost computations on-line. Static cost analysis

exemplified in the approach of Hatcher and Christopher makes the code-generator generator more
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complex and involves large space overheads. However, the resultant code generator is simple and

fast, which implies faster compilation. The technique of Hatcher and Christopher does not guarantee

that the statically selected code can always be optimal and requires interaction from the user.

Pelegri-Llopart and Graham [37] combined static cost analysis with table compression techniques

from Chase, and used term rewrite systems instead of tree patterns to develop a bottom-up rewrite

system (BURS). A BURS is more powerful than a bottom-up pattern-matching system because it can

incorporate algebraic properties of terms into the code generation system. However, systems based on

BURS are generally more complex than those based on tree parsing. Balachandran, Dhamdhere and

Biswas [9] used an extension of the work of Chase to perform static cost analysis and produce optimal

code. Proebsting [39] used a simple and efficient algorithm for generating tables with static costs, in

which new techniques called triangle trimming and chain rule trimming are used for state reduction.

This technique is used in the bottom-up tool burg. Ferdinand, Seidl and Wilhelm [18] reformulated

the static bottom-up tree-parsing algorithm based on finite tree automata. This generalized the work

of Chase to work for regular tree grammars and included table compression techniques.

More recently, Nymeyer and Katoen [36] describe an implementation of an algorithm based on

BURS theory, which computes all pattern matches, and which does a search that results in optimal

code. Heuristics are used to cut down the search space. Shankar et al. [41] construct a linear regular

(LR)-like parsing algorithm for regular tree parsing, which can be used for code generation with

dynamic cost computation. The static cost computation technique of Balachandran et al. and the

LR-like parsing approach of Shankar et al. have been combined into a technique for locally optimal

code generation in [34]. A treatment of tree parsing for instruction selection is given in [45].

The bottom-up techniques mentioned earlier all require at least two passes over the intermediate

code tree, one for labeling the tree with matched patterns and costs and the next for selecting the

least-cost parse based on the information collected during the first pass. Thus, an explicit IR tree

needs to be built. A technique that avoids the building of an explicit IR tree is proposed by Proebsting

and Whaley [40]. The tool wburg generates parsers that can find an optimal parse in a single pass.

An IR tree is not built explicitly, because the tree structure is mirrored in the sequence of procedure

invocations necessary to build the tree in a bottom-up fashion. The class of grammars handled by

this technique is a proper subset of the grammars that the two-pass system can handle. However,

Proebsting and Whaley have claimed that optimal code can be generated for most major instruction

sets including the SPARC, the MIPS R3000 and the x86.

We restrict our attention in this chapter to instruction selection techniques based on tree parsing.

The techniques based on term-rewriting systems [15, 36, 37] are more powerful, but not as practical.

15.1.2 Dynamic Programming

Aho and Johnnson [4] used dynamic programming to generate code for expression trees. The

algorithm presented by them generates optimal code for a machine with r interchangeable registers

and instructions of the form Ri := E; Ri is one of the registers and E is any expression involving

operators, registers and memory locations. The dynamic programming algorithm generates optimal

code for evaluation of an expression contiguously. If T is an expression tree with op at its root and

T1 and T2 as its subtrees, then a program is said to evaluate the tree contiguously if it first evaluates

the subtrees of T that need to be computed into memory, and then evaluates the remainder of the

tree either in the order T1, T2 and then the root, or T2, T1 and then the root. Aho and Johnson proved

that for a uniform register machine, optimal code would always be generated by their algorithm.

The implication of the property is that for any expression tree there is always an optimal program

that consists of optimal programs for subtrees of the root followed by an instruction to evaluate the

root. The original dynamic programming algorithm uses three phases. In the first bottom-up phase
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it computes a vector of costs for each node n of the expression tree, in which the ith component

of the vector is the cost of computing the subtree at that node into a register, assuming i registers

are available for the computation 0 ≤ i ≤ r . The “zeroth” component of the vector is the minimal

cost of computing the subtree into memory. In the second phase the algorithm traverses the tree top

down to determine which subtrees should be computed into memory. In the third phase the algorithm

traverses each tree using the cost vectors to generate the optimal code.

A simplified form of the dynamic programming algorithm is used in most code generator tools

where what is computed at each node is a set of (rule, scalar cost) pairs. Register allocation is not part

of the instruction selection algorithm though it can be carried out concurrently. The cost associated

with a subtree is computed either at compile time (i.e., dynamically), by using cost rules provided in

the grammar specification, or by simply adding the costs of the children to the cost of the operation

at the root, or at compiler generation time (i.e., statically) by precomputing differential costs and

storing them along with the instructions that match, as part of the state information of a tree pattern

matching automaton. How exactly this is done will become clear in the following sections.

15.2 Regular Tree Grammars and Tree Parsing

Let A be a finite alphabet consisting of a set of operators OP and a set of terminals T . Each operator

op in OP is associated with an arity, arity(op). Elements of T have arity 0. The set TREES(A)

consists of all trees with internal nodes labeled with elements of OP, and leaves with labels from T .

Such trees are called subject trees in this chapter. The number of children of a node labeled op is

arity(op). Special symbols called wild cards are assumed to have arity of zero. If N is a set of wild

cards, the set TREES(A ∪ N) is the set of all trees with wild cards also allowed as labels of leaves.

We begin with a few definitions drawn from [9] and[18]:

Definition 15.1. A regular cost augmented tree grammar G is a four tuple (N, A, P, S) where:

1. N is a finite set of nonterminal symbols.

2. A = T ∪ OP is a ranked alphabet, with the ranking function denoted by arity. T is the set of

terminal symbols and OP is the set of operators.

3. P is a finite set of production rules of the form X → t [c] where X ∈ N and t is an encoding

of a tree in TREES(A ∪ N), and c is a cost, which is a nonnegative integer.

4. S is the start symbol of the grammar.

A tree pattern is thus represented by the right-hand side of a production of P in the preceding

grammar. A production of P is called a chain rule, if it is of the form A → B, where both A and B

are nonterminals.

Definition 15.2. A production is said to be in normal form if it is in one of the following three forms.

1. A → op(B1, B2 . . . , Bk)[c] where A, Bi, i = 1, 2, . . . , k are all nonterminals, and op has

arity k.

2. A → B [c], where A and B are nonterminals. Such a production is called a chain rule.

3. B → b [c], where b is a terminal.

A grammar is in normal form if all its productions are in normal form.

Any regular tree grammar can be put into normal form by the introduction of extra nonterminals

and zero-cost rules.

An example of a cost augmented regular tree grammar in normal form follows, with arities of

symbols in the alphabet shown in parentheses next to the symbol:
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Example 15.2

G = ({V, B, G}, {a(2), b(0)}, P , V )

P :

V → a(V, B) [0]

V → a(G, V ) [1]

V → G [1]

G → B [1]

V → b [7]

B → b [4]

Definition 15.3. For t, t ′ ∈ TREES(A ∪ N), t directly derives t ′, written as t ⇒ t ′ if t ′ can be

obtained from t by replacement of a leaf of t labeled X by a tree p where X → p ∈ P . We write

⇒r if we wish to specify that rule r is used in a derivation step. The relations ⇒+ and ⇒∗ are the

transitive closure and reflexive–transitive closure respectively of ⇒.

An X-derivation tree, DX, for G has the following properties:

• The root of the tree has label X.

• If X is an internal node, then the subtree rooted at X is one of the following three types (for

describing trees we use the usual list notation):

1. X(DY ) if X → Y is a chain rule and DY is a derivation tree rooted at Y .

2. X(a) if X → a, a ∈ T is a production of P .

3. X(op(DX1 , DX2 , . . . , DXk
)) if X → op(X1, X2, . . . , Xk) is an element of P .

The language defined by the grammar is the set:

L(G) = (t) | t ∈ TREES(A)

and

S �⇒∗ t

With each derivation tree is associated a cost, namely, the sum of the costs of all the productions

used in constructing the derivation tree. We label each nonterminal in the derivation tree with the

cost of the subtree below it. Four cost augmented derivation trees for the subject tree a(a(b, b), b)

in the language generated by the regular tree grammar of preceding Example 15.2 are displayed in

Figure 15.3.

Definition 15.4. A rule r : X → p matches a tree t if there exists a derivation X ⇒r p ⇒∗ t .

Definition 15.5. A nonterminal X matches a tree t if there exists a rule of the form X → p that

matches t .

Definition 15.6. A rule or nonterminal matches a tree t at node n if the rule or nonterminal matches

the subtree rooted at the node n.

Each derivation tree for a subject tree thus defines a set of matching rules at each node in the subject

tree (a set because there may be chain rules that also match at the node).

Example 15.3

For all the derivation trees of Figure 15.3 the rule V → a(V, B) matches at the root.
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FIGURE 15.3 Four cost-augmented derivation trees for the subject tree a(a(b, b), b) in the grammar of

Example 15.2.

For a rule r : X → p matching a tree t at node n, where t1 is the subtree rooted at node n, we

define:

1. The cost of rule r matching t at node n is the minimum of the cost of all possible derivations

of the form X ⇒r p ⇒∗ t1.

2. The cost of nonterminal X matching t at node n is the minimum of the cost of all rules r of

the form X → p that match t1.

Typically, any algorithm that does dynamic cost computations compares the costs of all possible

derivation trees and selects one with minimal costs while computing matches. To do this it has to

compute for each nonterminal that matches at a node the minimal cost of reducing to that nonterminal

(or equivalently, deriving the portion of the subject tree rooted at that node from the nonterminal.)

In contrast to this are algorithms that perform static cost computations, precompute relative costs

and store differential costs for nonterminals. Thus, the cost associated with a rule r at a particular

node in a subject tree is the difference between the minimum cost of deriving the subtree of the

subject tree rooted at that node using rule r at the first step, and the minimum cost of deriving it

using any other rule at the first step. Figure 15.4 shows the matching rules with relative costs at the

nodes of the subject tree for which derivation trees are displayed in Figure 15.3. By assuming such

differences are bounded for all possible derivation trees of the grammar, they can be stored as part

of the information in the states of a finite state tree-parsing automaton. Thus, no cost analysis need

be done at matching time. Clearly, tables encoding the tree automaton with static costs tend to be

larger than those without cost information in the states.

The tree-parsing problem we address in this chapter is:

Given a regular tree grammar G = (N, T , P, S), and a subject tree t in TREES(A), find (a

representation of) all S-derivation trees for t .
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FIGURE 15.4 Subject tree of Figure 15.3 shown with 〈matching rule, relative cost〉 pairs.

The problem of computing an optimal derivation tree has to take into account costs as well. We

discuss both top-down, as well as bottom-up strategies for solving this problem. All the algorithms

we present can solve the following problem, which we will call the optimal tree-parsing problem:

Given a cost augmented regular tree grammar G and a subject tree t in TREES(A), find a

representation of a cheapest derivation tree for t in G.

Given a specification of the target machine by a regular tree grammar at the semantic level of a

target machine, and an IR tree, we distinguish between the following two times when we solve the

optimal tree-parsing problem for the IR tree:

1. Preprocessing time. This is the time required to process the input grammar, independent of

the IR tree. It typically includes the time taken to build the matching automaton or the tables.

2. Matching time. This involves all IR tree-dependent operations, and captures the time taken by

the driver to match a given IR tree using the tables created during the preprocessing phase.

For the application of code generation, minimizing matching time is important because it adds to

compile time, whereas preprocessing is done only once at compiler generation time.

15.3 Top-Down Tree-Parsing Approach

The key idea with this approach is to reduce tree-pattern matching to string pattern matching. Each

root to leaf path in a tree is regarded as a string in which the symbols in the alphabet are interleaved with

numbers indicating which branch from father to son has been followed. This effectively generates a

set of strings. The well-known Aho–Corasick multiple-keyword pattern-matching algorithm [1] is

then adapted to generate a top-down, tree-pattern-matching algorithm. The Aho–Corasick algorithm

converts the set of keywords into a trie; the trie is then converted into a string pattern-matching

automaton that performs a parallel search for keywords in the input string. If K is the set of keywords,

then each keyword has a root leaf path in the trie, whose branch labels spell out the keyword. This trie

is then converted into a string pattern-matching automaton as follows. The states of the automaton

are the nodes of the trie, with the root the start state. All states that correspond to complete keywords

are final states. The transitions are just the branches of the trie with the labels representing the input

symbols on which the transition is made. There is a transition from the start state to itself on every

symbol that does not begin a keyword. The pattern-matching automaton has a failure function for

every state other than the start state. For a state reached on input w, this is a pointer to the state

reached on the longest prefix of a keyword that is a proper suffix of w. The construction of both

the trie as well as the pattern-matching automaton has complexity linear in the sum of the sizes of

the keywords. Moreover, matches of the keywords in an input string w are found in time linearly

proportional to the length of w. Thus, the string pattern-matching problem can be solved in time
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O(|K| + |w|), where K is the sum of the lengths of the keywords and w is the length of the input

string [1].

HOD generalized this algorithm for tree-pattern matching by noting that a tree can be defined

by its root to leaf paths. A root-to-leaf path contains, alternately, root labels and branch numbers

according to a left to right ordering. Consider the tree patterns on the right-hand sides of the regular

tree grammar in Example 15.4. Arities of various terminals and operators are given in parentheses

next to the operators and terminals, and rules for computing costs shown along with the productions.

Actions to be carried out at each reduction are omitted.

Example 15.4

G = ({S, R}, {:= (2), +(2), deref(1), sp(0), c(0)}, P , S) where P consists of the following

productions:

1. S →:= (deref (sp), R) cost = 3 + cost(R)

2. R → deref (sp) cost = 2

3. R → +(R, c) cost = 1 + cost(R)

4. R → +(c, R) cost = 1 + cost(R)

5. R → c cost = 1

Thus, the patterns on the right-hand sides of productions in Example 15.4 are associated with the

following set of path strings:

1. := 1 deref 1 sp

2. := 2 R

3. deref 1 sp

4. + 1 R

5. + 2 c

6. + 1 c

7. + 2 R

8. c

By using the Aho–Corasick algorithm we can construct the pattern-matching automaton shown in

Figure 15.5. The final states are enclosed in double circles and the failure function pointers that do

not point to state 0 are shown as dashed lines. Path strings that match at final states are indicated by

specifying the trees they belong to next to the state, ti , indicating the right-hand side of rule i. Once

the pattern-matching automaton is constructed the subject tree is traversed in preorder, computing

automaton states as we visit nodes and traverse edges.

The top-down, tree-pattern-matching algorithm was adapted to the problem of tree parsing

by Aho and Ganapathi, and the presentation that follows is based on [3]. First, the subject tree is

traversed in depth-first order using the routine MarkStates(n) and the automaton state reached at

each node is kept track of. This is displayed in Figure 15.6, where δ is the transition function of

the underlying string pattern-matching automaton. The routine also determines the matching string

patterns. The scheme described by HOD [28] using bit vectors to decide whether there is a match

at a node is used here. With each node of the subject tree, a bit string bi is associated with every

right-hand side pattern ti, 1 ≤ i ≤ m, where m is the total number of patterns. At any node n of the

subject tree, bit j of the bit string bi is 1 iff every path from the ancestor of n at distance j through n

to every descendant of n has a prefix which is a path string of the pattern we wish to match. The bit

string does not need to be longer than the height of the corresponding pattern. To find a cover of the

intermediate code tree, it is necessary to keep track of reductions that are applicable at a node. The

routine Reduce shown in Figure 15.7 does this. Because we are looking for an optimal cover there is

the need to maintain a cost for each tree ti that matches at a node n. The implementation in [3] allows

general cost computation rules to be used in place of simple additive costs. The function cost(ti, n)
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FIGURE 15.5 The tree-pattern-matching automaton for the tree grammar of Example 15.2.

computes this cost for each node n. For each node n, there is an array n.cost of dimension equal to

the number of nonterminals. The entry corresponding to a nonterminal is the cost of the cheapest

match of a rule with that nonterminal on the left-hand side. The index of that rule is stored in the

array n.match that also has dimension equal to the number of nonterminals. Thus, after the parsing

is over, the least cost covers at each node along with their associated costs are available. The result

of applying MarkStates to the root of the subject tree shown in Figure 15.8 is shown in Figure 15.9.

We trace through the first few steps of this computation.
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procedure MarkStates (n)

if n is the root then

n.state = δ(0, n.symbol)

else

n.state = δ(δ(n.parent.state, k), n.symbol)

where n is the kth child of n.parent

end if

for every child c of n do

MarkStates(c)

end for

n.bi = 0

if n.state is accepting then

for each path string of ti of length 2j + 1 recognized at n.state do

n.bi = n.bi or 2j

end for

end if

for every righthandside tree pattern ti do do

n.bi = n.bi or �C∈C(n)right−shif t (c.bi)

where C(n) is the set of all children of node n

end for

Reduce(n)

end procedure

FIGURE 15.6 The procedure for visiting nodes and computing states.

procedure Reduce(n)

list = set of productions li → ti such that the zeroth bit of n.bi is 1

while list =/ ∅ do

choose and remove next element li → ti from list

if cost (ti , n) < n.cost[li ] then

n.cost[li ] = cost (ti , n)

n.match[li ] = i

if n is the root then

q = δ(0, li)

else

q = δ(δ(n.parent.state, k), li)

where n is the kth child of n.parent

end if

if q is an accepting state then

for each path string of tk of length 2j + 1 recognized at q do

n.bk = n.bk or 2j

if the zeroth bit of n.bk is a 1 then

add lk → tk to list

end if

end for

end if

end if

end while

end procedure

FIGURE 15.7 Procedure for reducing IR trees.

Example 15.5

We use the subject tree of Figure 15.8 with the nodes numbered as shown, and the automaton of

Figure 15.5 whose transition function is denoted by δ:

1. The start state is 0.

2. node(1).state = δ(0, :=) = 11.

3. node(2).state = δ(δ(11, 1), deref ) = 13.
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FIGURE 15.8 A subject tree generated by the tree grammar of Example 15.2.

4. node(3).state = δ(δ(13, 1), sp) = 15.

5. Path strings corresponding to patterns t1 and tz are matched at node(3). Bit strings node(3).

b1 = 100, node(3).b2 = 10 and all the other bit strings are 0.

6. The routine Reduce(node(3)) does nothing because no reductions are called for.

7. We now return to node(2) and update the bit string node(2).b1 = 10 and node(2).b2 = 1 to

reflect the fact that we have moved one level up in the tree.

8. The call to Reduce(node(2)) notes the fact that the zeroth bit of node(2).b2 = 1. Thus, a

reduction by the rule R → deref(sp) is called for. The cost of this rule is 2 and the rule

number is 2; thus Cost(R) = 2 and Match(R) = 2 at node(2).

9. We return to node(1) and call MarkState(node(7)) ; node(7) is the second child of its parent,

the failure function is invoked at state 16 on which a transition is made to state 0, and then

from state 0 to state 4 on the symbol +. Thus, node(7).state = 4.

10. node(5).state = δ(δ(4, 1), deref) = 1. (Note, the failure function is invoked here again at

state 5.)

11. node(4).state = δ(δ(1, 1), sp) = 3.

12. A path string corresponding to pattern t2 is matched at node(4). The bit string node(4).b2 = 10

and all other bit strings are 0.

13. The routine Reduce(node(4)) does nothing because no reductions are called for.

14. We return to node(5); the bit string node(5).b2 = 1 to reflect the fact that we have moved one

level up in the tree.

15. The call to Reduce(node(5)) notes the fact that the zeroth bit of node(5).b2 is a 1. Thus, a

reduction by the rule R → deref (sp) is called for. The cost of this rule is 2, and the number

of the rule is 2. Thus Cost(R) = 2 and Match(R) = 2 at node(5).

16. The variable q at node(5) is updated to reflect the state after reduction. Thus, q =

δ(δ(4, 1), R) = 6. The state 6 is an accepting state, which matches a string pattern of t3.

Therefore node(5).b3 = 10.

17. Continuing in this manner we obtain the labels in Figure 15.9.

Once a cover has been found, the reductions are performed during which time the action parts

of the productions constituting the cover are executed. As we observed earlier, a reduction may be

viewed as replacing a subtree corresponding to the right-hand side of a production with the left-hand

side nonterminal. In addition, the action part of the rule is also executed. Usually actions associated

with reductions are carried out in depth-first order.

15.4 Bottom-Up Tree-Parsing Approaches

We begin with cost-augmented regular tree grammars in normal form. We first describe a strategy for

the generation of tables representing a tree automaton with states that do not encode cost information.
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FIGURE 15.9 The information at each node after MarkStates is applied to the subject tree of Figure 15.8.

By using such an automaton, cost computations for generating locally optimal code have to be

performed at code generation time (i.e., dynamically).

Our aim is to find at each node n in the subject tree, minimal cost rules for each nonterminal that

matches at the node. We call such a set of nonterminals matching nonterminals at node n. If the inter-

mediate code tree is in the language generated by the tree grammar, we expect one of the nonterminals
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that matches at the root to be the start symbol of the regular tree grammar. The information about

rules and nonterminals that match as we go up the tree can be computed with the help of a bottom-up,

tree-pattern-matching automaton built from the specifications. Thus, during the matching or code

generation phase, we traverse the intermediate code tree bottom up, computing states and costs as we

go along. For a given nonterminal in a set we retain only the minimal cost rule associated with that

nonterminal. Finally, when we reach the root of the tree, we have associated with the start symbol the

minimal cost of deriving the tree from the start nonterminal. Next in a top-down pass we select the

nonterminals that yield the minimal cost tree and generate code as specified in the translation scheme.

We present both, an iterative algorithm and a work list-based algorithm drawing from the work of

Balachandran, Dhamdhere and Biswas [9] and Proebsting [39].

15.4.1 Iterative Bottom-Up Preprocessing Algorithm

Let G = (N, A, P, S) be a regular tree grammar in normal form. Before describing the algorithm,

we describe some functions that we use in the computation. Let maxarity be the maximum arity of

an operator in A. Let Il be the set of positive integers of magnitude at most maxarity:

1. rules : T ∪ OP �→ 2P

For a ∈ T , rules(a) = {r|r : n → a ∈ P }

For op ∈ OP , rules(op) = {r : |r : n → op(n1, n2, . . . nk) ∈ P }

The set rules(a) contains all production rules of the grammar whose right-hand side

tree-patterns are rooted at a.

2. child−rules : N × Il �→ 2P

child−rules(n, i) = {r|r : nl → op(n1, n2, . . . , nk) and ni = n}
The set child−rules(n, i) contains all those productions such that the ith nonterminal on the

right-hand side is n. The function can be extended to a set of nonterminals N1 as follows:

child−rules(N1, i) =
⋃

n∈N1
child−rules(n, i)

3. child−NT : OP × Il �→ 2N

child−NT(op, j) = {nj |r : nl → op n1n2, . . . , nj , . . . , nk ∈ P }

In other words child−NT(op, j) is the set of all nonterminals that can appear in the j th

position in the sequence of nonterminals on the right-hand side of a production for operator

op. (If j exceeds arity(op) the function is not defined.)

4. nt : P �→ 2N

nt(r) = {n|r : n → α ∈ P }

The set nt(r) contains the left-hand side nonterminal of the production. The function can

be extended to a set R of rules as follows:

nt (R) =
⋃

r∈Rnt (r)

5. chain−rule−closure : N �→ 2P

chain−rule−closure(n) = {r|r ∈ P, r : n1 → n2, n1 ⇒ n2 ⇒∗ n}

The set chain−rule−closure of a nonterminal is the set of all rules that begin derivation

sequences that derive that nonterminal and that contain only chain rules. The function can be

extended to a set of nonterminals as follows:

chain−rule−closure(N1) =
⋃

n∈N1
chain−rule−closure(n)

Given a regular tree grammar in normal form and a subject tree, function Match in Figure 15.10

computes the rules that match at the root. For the time being, we ignore the costs of the rules.
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function Match(t)

begin

if t = a ∈ T then

match−rules = rules(a);

match−NT = nt (match−rules);

Match = match−rules ∪ chain−rule−closure(match−NT );

else

let t = op(t1, t2, . . . , tk) where arity(op) = k

for i = 1 to k do

mri = Match(ti)

nti = nt (mri)

end for

match−rules = rules(op) ∩ child−rules(nt1, 1) ∩ child−rules(nt2, 2) . . . ∩

child−rules(ntk, k)

match−NT = nt (match−rules);

Match = match−rules ∪ chain−rule−closure(match−NT )

end if

end function

FIGURE 15.10 Function that computes matching rules and nonterminals.

function T ableMatch(t)

begin

if t = a ∈ T then

T ableMatch = τa

else

let t = op(t1, t2, . . . , tk) where arity(op) = k

T ableMatch = τop(T ableMatch(t1), T ableMatch(t2) . . . T ableMatch(tk))

end if

end function

FIGURE 15.11 Function that computes matches using precomputed tables.

The function computes the matching rules at the root of the subject tree by recursively computing

matching rules and hence matching nonterminals at the children. This suggests a bottom-up strategy

that computes matching rules and nonterminal sets at the children of a node before computing the

sets at the node. Each such set can be thought of as a state. The computation that finds the matching

rules at a node from the nonterminals that match at its children does not need to be performed at

matching time because all the sets under consideration are finite and can be precomputed and stored

in the form of tables, one for each operator and terminal. This set of tables is actually an encoding of

the transition function of a finite state bottom-up, tree-pattern-matching automaton, which computes

the state at a node corresponding to an operator, from the states of its children. For a terminal symbol

a ∈ T , the table τa contains just one set of rules. For an operator op ∈ OP , of arity k, the table

τop is a k-dimensional table. Each dimension is indexed with indices corresponding to the states

described earlier. Assume that such tables are precomputed and stored as auxiliary information to

be used during matching. Function TableMatch shown in Figure 15.11 can find the matching rules

at the root of a subject tree.

The function TableMatch computes transitions in a bottom-up fashion performing a constant

amount of computation per node. Thus, matching time with precomputed tables is linear in the size

of the subject tree. The size of the table for an operator of arity k is O(2|N |× maxarity). The table sizes

computed in this manner are huge and can be reduced in the following way.

Assume that States is the set of states that is precomputed and indexed by integers from the set

I . Let us call each element of States an itemset. Each such set consists of a set of rules, satisfying

the property that there is some subject tree matched by exactly this set of rules. Let itemset(i) denote

the set indexed by i. We define for each operator op and each dimension j , 1 ≤ j ≤ arity(op) an



Instruction Selection Using Tree Parsing 581

equivalence relationR
j
op as follows: for ip and iq ∈ I , ip R

j
op iq if nt(itemset(ip))∩child−NT(op, j) =

nt(itemset(iq)) ∩ child−NT(op, j). In other words, two indices are put into the same equivalence

class of operator op in dimension j if their corresponding nonterminal sets project onto the same

sets in the j th dimension of operator op. If ip and iq are in the same equivalence class of R
j
op,

then it follows that for all (i1, i2, . . . , ij−1, ij+1, . . . , ik), τop(i1, i2, . . . , ij−1, ip, ij+1, . . . , ik) =

τop(i1, i2, . . . , ij−1, iq , ij+1, . . . , ik). For the case k = 2 what this means is that ip and iq correspond

to the indices of identical rows or columns. This duplication can be avoided by storing just one copy.

We therefore use index maps as follows. The mapping from the set of indices in I to the set of indices

of equivalence classes of R
j
op denoted by I

j
op is denoted by µ

j
op. Thus we have the mapping:

µ
j
op : I �→ I

j
op, 1 ≤ j ≤ k, arity(op) = k

The table τop is now indexed by elements of I
j
op in dimension j instead of those of I . At matching

time one extra index table lookup is necessary in each dimension to obtain the resulting element of

States. This is expressed by the following relation that replaces the table lookup statement of function

TableMatch:

τop(i1, i2, . . . , ik) = θop(µ1
op(i1), µ

2
op(i2), . . . , µ

k
op(ik))

where θop is the compressed table.

The next step is the generation of compressed tables directly. Informally, the algorithm works as

follows. It begins by finding elements of States for all symbols of arity 0. It then finds elements of

States that result from derivation trees of height increasing by one at each iteration until there is

no change to the set States. At each iteration, elements of States corresponding to all operators that

contribute to derivation trees of that height are computed. For each operator op and each dimension

j of that operator, only nonterminals in child−NT(op, j) that are also members of a set in States

computed so far can contribute to new sets associated with op. Such a collection of subsets for

op in the j th dimension at iteration i is called repset(op, j, i). Thus, choices for a sequence of

children of op are confined to elements drawn from a tuple of sets in the Cartesian product of

collections at each iteration. Each such tuple is called a repset−tuple. (In fact, iteration is confined

only to elements drawn from new tuples formed at the end of every iteration.) At the end of each

iteration, the new values of repset(op, j, i) are computed for the next iteration. The computation

is complete when there is no change to repset(op, j, i) for all operators in all dimensions, for

then no new tuples are generated. The procedure for precomputing compressed tables is given in

Figure 15.12.

We illustrate with the help of an example (adapted from [20]).

Example 15.6

Let the following be the rules of a regular tree grammar. The rules and nonterminals are numbered

for convenience:

1. stmt →:= (addr, reg) [1]

2. addr → +(reg, con) [0]

3. addr → reg [0]

4. reg → +(reg, con) [1]

5. reg → con [1]

6. con → CONST [0]

The nonterminals are numbered as follows: stmt = 1, addr = 2, reg = 3 and con = 4.
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procedure MainNoCost()

States = ∅

itemset = ∅

for each a ∈ T do

mrules = rules(a)

mnonterminals = nt (mrules(a))

match−rules = mrules ∪ chain−rule−closure(mnonterminals)

itemset = match−rules

States = States ∪ {itemset}

end for

generate child−NT (op, j) for each op ∈ OP and j, 1 ≤ j ≤ arity(op);

generate repset (op, j, 1) for each op ∈ OP and j, 1 ≤ j ≤ arity(op) and

update index maps;

i = 1; repset−product0 = ∅

repeat

for each op ∈ OP do

let repset−producti = �j=1... arity(op)repset (op, j, i)

for each repset−tuple = (S1, S2, . . . Sk) ∈ repset−producti −repset−producti−1

do

itemset = ∅

for each (n1, n2 . . . nk) with ni ∈ Si , 1 ≤ i ≤ k do

mrules = {r : n → op(n1, n2 . . . nk) ∈ P }

mnonterminals = nt (mrules)

match−rules = mrules ∪ chain−rule−closure(mrules)

itemset = itemset ∪ match−rules

end for

θop(S1, S2 . . . Sk) = itemset

States = States ∪ {itemset}

end for

end for

i = i + 1;

generate repset (op, j, i) for each op ∈ OP and j, 1 ≤ j ≤ arity(op) and

update index maps

until repset (op, j, i) = repset (op, j, i − 1)∀op∀j, 1 ≤ j ≤ arity(op)

end

FIGURE 15.12 Algorithm to precompute compressed tables without costs.

The operators are := and + both of arity 2, and there is a single terminal CONST of arity 0.

The results of the first iteration of the algorithm follow:

1. There is only one symbol of arity 0, namely, CONST.

mrules = {con → CONST}.

mnonterminals = {con}.

match−rules = {con → CONST, reg → con, addr → reg}.

Thus after processing symbols of arity zero

States = {con → CONST, reg → con, addr → reg}. Assume this set has index 1. Thus

I = {1}.

Referring to the state by its index, nt(1) = {con,reg,addr}.

2. Consider the operator +.

The set child−NT(+, 1) = {reg} and child−NT(+, 2) = {con}.

Thus, repset(+, 1, 1) = child−NT(+, 1) ∩ nt(1) = {{reg}}, µ1
+(1) = 1, I 1

+ = {1}.

Here the projection onto the first dimension of operator + gives the set containing a single set

{reg} assigned index 1. For ease of understanding, we use the indices and the actual sets they

represent interchangeably.

repset(+, 2, 1) = child−NT(+, 2) ∩ nt(1) = {{con}}, µ2
+ = 1, I 2

+ = {1}.

Thus, for i = 1 repset−product for + = {{{reg}}, {{con}}}.
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For repset−tuple = ({reg}, {con}), i = 1.

mrules = {reg → +(reg, con), addr → +(reg, con)}.

mnonterminals = {reg, addr}.

match−rules = {reg → +(reg, con), addr → +(reg, con), addr → reg}.

This set match−rules is added as a new element of States with index 2.

Thus, θ+(1, 1) = 2.

There are no more states added due to operator + at iteration 1.

3. Consider the operator :=.

The set child−NT(1, :=) = {addr} and child−NT(2, :=) = {reg}.

Thus, repset(:=, 1, 1) = {{addr}} and µ1
:= = 1, I 1

:= = {1}.

repset(:=, 2, 1) = {{reg}} and µ2
:= = 1, I 1

:= = {1}.

Thus, for i = 1 repset−product for operator := = { {{addr}}, {{reg}}}.

For repset−tuple = ({addr}, {reg}) and i = 1.

mrules = {stmt → := (addr, reg)}, mnonterminals = {stmt}.

match−rules = {stmt → := (addr, reg)}.

A new state corresponding to match−rules is added to States with index 3. Thus, θ:=(1, 1) = 3.

There are no more states added due to operator := at iteration 1.

4. At the end of the iteration for i = 1, States = {1, 2, 3}.

5. It turns out that no more states can be added to States.

We next show how costs can be included in the states of the bottom-up, tree-pattern-matching

automaton. The information we wish to capture is the following. Supposing we had a subject tree

t and we computed all matching rules and nonterminals as well as minimal costs for each rule and

each nonterminal that matched at a node. If we now compute the difference between the cost of each

rule and that of the cheapest rule matching at the same node in the tree, we obtain the differential

cost. If these differential costs are bounded, they can be precomputed and stored as part of the item

in the itemset. Likewise, we can store differential costs with each nonterminal:

Let as before match−rules(t) be the set of rules matching at the root of a subject tree t . We now

define the set of (rule,cost) pairs, itemset matching the root of t :

itemset = {(r, �r)|r ∈ match−rules(t), �r = cost(r) − min{cost(r ′)|r ′ ∈ match−rules(t)}}

If the costs are bounded for all such pairs, we can precompute them by augmenting the procedure

in Figure 15.12.

The function that performs the computation for arity zero symbols is given in Figure 15.13.

Given this procedure we present the algorithm for precomputing tables with costs. We note that

repset(op, i, j ) is a collection of sets whose elements are 〈nonterminal, cost〉 pairs. The iterative

procedure IterativeMain, for precomputation of itemsets, first calls IterativeArityZeroTables to create

the tables for symbols of arity zero. It then iterates over patterns of increasing height until no further

items are generated. Procedure IterativeComputeTransitions creates the new states for each operator

at each iteration and updates States.

We illustrate the procedure for the grammar of Example 15.6.

Example 15.7

The following steps are carried out for the only symbol CONST of arity zero.

1. mrules = {6 : con → CONST}, mnonterminals = {con}.

2. match−rules = {6 : con → CONST, 5 : reg → con, 3 : addr → con}, match−NT =

{con,reg,addr}.

3. �6 = ∞, �5 = ∞, �3 = ∞.
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procedure IterativeArityZeroTables

States = ∅

for each a ∈ T do

itemset = ∅

mrules = rules(a)

mnonterminals = nt (rules(a))

match−rules = mrules ∪ chain−rule−closure(mnonterminals)

match−NT = nt (match−rules)

�r = ∞, r ∈ match−rules

Dn = ∞, n ∈ match−NT

COSTmin = min{rule−cost(r)|r ∈ mrules}

for each r in mrules do

�r = COST r − COSTmin

end for

for each n in mnonterminals do

Dn = min{�r |∃r ∈ mrules, n ∈ nt (r)}

end for

repeat

for each r : n → n1 such that r ∈ chain−rule−closure(mnonterminals)

do

Dn = min{Dn, Dn1
+ rule−cost (t)}

�r = min{�r , Dn1
+ rule−cost (r)}

end for

until no change to any Dn or �r

itemset = {(r, �r )}|r ∈ match−rules}

τa = itemset

States = States ∪ {itemset}

end for

end procedure

FIGURE 15.13 Computation of arity zero tables with static costs.

4. D4 = ∞, D3 = ∞, D2 = ∞.

5. COSTmin = min{rule−cost(con → CONST)} = 0.

6. �6 = rule−cost(con → CONST) − COSTmin = 0.

7. D4 = 0.

8. After the first iteration of the repeat-until loop D4 = 0, D3 = 1, D2 = ∞, �6 = 0, �5 = 1,

�3 = ∞.

9. After the second iteration of the repeat-until loop D4 = 0, D3 = 1, D2 = 1, �6 = 0, �5 = 1,

�3 = 1.

10. There is no change at the next iteration so States = {{〈con → CONST, 0〉, 〈reg → con, 1〉,

〈addr → reg, 1〉}}.

We next consider operator + of arity 2. child−NT(+, 1) = {reg}, child−NT(+, 2) = {con}.

repset(+, 1, 1) = {{〈reg, 0〉}}, repset(+, 2, 1) = {{〈con, 0〉}}. The following steps are then carried

out for operator + at the first iteration:

1. repset−product1 = {{〈reg, 0〉}} × {{〈con, 0〉}}.

2. repset−tuple = ({〈reg, 0〉}, {〈con, 0〉}).

3. mrules = {2 : addr → + (reg con), 4 : reg → + (reg con)}.

4. Crhs,2 = 0, Crhs,4 = 0.

5. mnonterminals = {addr, reg}.

6. match−rules = {2 : addr → + (reg con), 4 : reg → + (reg con), 3 : addr → reg}.

7. match−NT = {addr, reg}.

8. �2 = �4 = �3 = ∞.

9. D3 = D2 = ∞.
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10. COST2 = 0 + 0 = 0, COST4 = 0 + 1 = 1, COSTmin = 0.

11. �2 = 0, �4 = 1, D2 = 0, D3 = 1.

12. There is no change to these sets during the first iteration of the while loop, hence the value of

itemset after discarding more expensive rules for the same nonterminal is: itemset = {〈addr →

+ (reg con), 0〉, 〈reg → + (reg con), 1〉}.

13. Thus States = {{〈con → CONST, 0〉, 〈reg → con, 1〉, 〈addr → reg, 1〉}} ∪ {{〈addr →

+ (reg con), 0〉, 〈reg → + (reg con), 1〉}}.

After processing the operator := in a similar manner we get the following three itemsets

in States:

1. {〈con → CONST, 0〉, 〈reg → con, 1〉, 〈addr → reg, 1〉}.

2. {〈addr → + (reg con), 0〉, 〈reg → + (reg con), 1〉}.

3. {〈stmt →:= (addr, reg), 0〉}.

15.4.2 Work List-Based Approach to Bottom-Up
Code-Generator Generators

Proebsting [39] employs a work list approach to the computation of itemsets; the presentation that

follows is based on [39]. A state is implemented as a set of tuples, each tuple containing:

1. A nonterminal that matches a node

2. The normalized cost of this nonterminal

3. The rule that generated this nonterminal at minimal cost

A tuple structured as shown earlier is called an item; a collection of such items is termed an itemset.

Each itemset represents a state of the underlying cost augmented tree-pattern-matching automaton

whose set of states is States. Each itemset is represented as an array of (rule,cost) pairs indexed by

nonterminals. Thus itemset[n].cost refers to the normalized cost of nonterminal n of the itemset,

and itemset[n].rule gives a rule that generates that nonterminal at minimal cost. A cost of ∞ in any

position indicates that no rule derives the given nonterminal. The empty state (∅) has all costs equal

to infinity.

procedure IterativeMain()

IterativeArityZeroTables

generate repset (op, j, 1) for each op ∈ OP and j, 1 ≤ j ≤ arity(op)

i = 1; repset−product0 = ∅

repeat

for each op ∈ OP do

IterativeComputeTransition(op, i)

end for

i = i + 1

generate repset (op, j, i) for each op ∈ OP and j, 1 ≤ j ≤ arity(op) and

update index maps

until repset (op, j, i) = repset (op, j, i − 1)∀op∀j, 1 ≤ j ≤ arity(op)

end

FIGURE 15.14 Procedure to precompute reduced tables with static costs.
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procedure IterativeComputeTransition(op, i)

let repset−producti = �j=1...arity(op)repset (op, j, i)

for each repset−tuple = (S1, S2, . . . Sk) ∈ repset−producti − repset−producti−1

do

itemset = ∅; mrules = ∅

for each (〈n1, Dn1
〉, 〈n2, Dn2

〉 . . . 〈nk, Dnk
〉), 〈ni , Di〉 ∈ Si

do

if r : n → op(n1, n2, . . . nk) ∈ p then

Crhs,r = Dn1
+ Dn2

+ . . . Dnk
mrules = mrules ∪ {r}

end if

end for

mnonterminals = nt (mrules)

match−rules = mrules ∪ chain−rule−closure(mrules)

mtach−NT = nt (match−rules)

�r = ∞, r ∈ match−rules; Dn = ∞, n ∈ match−NT

for each r in mrules do

COSTr = Crhs,r + rule−cost (r)

end for

COSTmin = min{COSTr |r ∈ mrules}

for each r in mrules do

�r = COST r − COSTmin

end for

for each n in mnonterminals do

Dn = min{�r |n ∈ nt (r)}

end for

repeat

for each r : n → n1 such that r ∈ chain−rule−closure(match−NT )

do

Dn = min{Dn, Dn1
+ rule−cost (r)}

�r = min{�n1
+ rule−cost (r)}

end for

until no change to any Dn or �n

itemset = itemset ∪ {(r, �r )}|r ∈ match−rules, �r ≤ �r′ if nt (r) =

nt (r ′)}

θop(S1, S2 . . . Sk) = itemset

States = States ∪ {itemset}

end for

end procedure

FIGURE 15.15 Procedure for computing transitions on operators.

procedure WorklistMain()

States = ∅

WorkList = ∅

WorklistArityZeroTables

while WorkList =/ ∅ do

itemset = next itemset from WorkList

for op ∈ OP do

WorklistComputeTransition(op, itemset)

end for

end while

end procedure

FIGURE 15.16 Work list processing routine.

The procedure WorklistMain() in Figure 15.16 manipulates a work list that processes item-

sets. Assume that States is a table that maintains a one-to-one mapping from itemsets to

nonnegative integers. The routine WorklistArityZeroTables in Figure 15.17 computes the tables for all

terminals in T .
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procedure WorklistArityZeroTables

for a ∈ T do

itemset = ∅

for each r ∈ rules(a) do

itemset[nt (r)] = (r, rule−cost (r))

end for

// normalize costs

for all n ∈ N do

itemset[n].cost = itemset[n].cost − mini{itemset[i].cos}

end for

// compute chain rule closure

repeat

for all r such that r : n → m is a chain rule do

cost = rule−cost (r) + itemset[m].cost

if cost < itemset[n].cost then

itemset[n] = (r, cost)

end if

end for

until no changes to itemset

Append itemset toWorkList

States = States ∪ {itemset}

τa = itemset

end for

end procedure

FIGURE 15.17 The computation of tables of arity zero.

The routine WorklistComputeTransition shown in Figure 15.18 augments the operator tables with a

new transition computed from an itemset in the work list. The itemset is projected in each dimension

of each operator and combined with other representer sets for that operator to check whether the

combination leads to a new state. The closure is computed only if this is a new state. Finally, the

itemset is added to the work list and the set of states, and the appropriate transition table is updated.

Proebsting has shown that an optimization he calls state trimming considerably reduces table sizes.

We briefly explain one of the optimizations called triangle trimming. Consider the two derivation

trees shown in Figure 15.19. Both these have the same root and leaves except for a single leaf

nonterminal. Both trees use different rules for the operator op to reduce to A. Let r1 : A → op(X, Q)

and r2 : B → op(Y, R) with A → B , R → Q and Y → Z the chain rules. Triangle trimming

notes that both reductions to A involve different nonterminals for a left child state related to operator

op that occur in the same state. Let that state be state. If state[X].cost exceeds or equals state[Z].cost

in all contexts, then we can eliminate nonterminal X from all such states. Considerable savings in

storage have been reported using this optimization.

15.4.3 Hard Coded Bottom-Up Code-Generator Generators

Hard coded code-generator generators are exemplified in the work of Fraser, Hanson and Proebsting

[20] and Emmelmann, Schroer and Landwehr [17]. They mirror their input specifications in the same

way that recursive descent parsers mirror the structure of the underlying LL(1) grammar. Examples

of such tools are BEG [17] and iburg [20]. Code generators generated by such tools are easy to

understand and debug because the underlying logic is simple. The code generator that is output

typically works in two passes on the subject tree. In a first bottom-up, left-to-right pass it labels each

node with the set of nonterminals that match at the node. Then in a second top-down pass, it visits

each node, performing appropriate semantic actions, such as generating code. The transition tables

used in the techniques described earlier in this section are thus encoded in the flow of control of the

code generator, with cost computations performed dynamically.
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procedure WorklistComputeTransition(op, itemset)

for i = 1 to arity(op) do

repstate = ∅

for n ∈ N do

if child−rules(n, i) ∩ rules(op) =/ ∅ then

repstate[n].cost = itemset[n].cost

end if

end for

for all n ∈ N do

repstate[n].cost = repstate[n].cost − mini{repstate[i].cost}

end for

µi
op(itemset) = repstate

if repstate /∈ I i
op then

I i
op = I i

op ∪ {repstate}

for each repset−tuple = (S1, S2, . . . Si−1, repstate, Si+1, . . . Sk) where Sj ∈

I
j
op, j =/ i do

newitemset = ∅

for each rule r of the form n → opn1n2 . . . narity(op) in rules(op) do

cost = rule−cost (r) + repstate[ni ].cost + �j =/ iSj [nj ].cost

if cost < newitemset[n].cost then

newitemset[n] = (r, cost)

end if

end for

for all n ∈ N do

newitemset[n].cost = newitemset[n].cost − mini{newitemset[i].cost}

end for

if newitemset /∈ States then

repeat

for all r such that r : n → m is a chain rule do

cost = rule−cost (r) + newitemset[m].cost

if cost < newitemset[n].cost then

newitemset[n] = (r, cost)

end if

end for

until no change to newitemset

append newitemset to WorkList

States = States ∪ {newitemset}

end if

θop(S1, S2, . . . , Si−1, repset, Si+1, . . . Sk) = newitemset

end for

end if

end for

end procedure

FIGURE 15.18 Procedure to compute transitions on operators.

15.4.4 Code Generation Pass

Following the first pass, where all the nodes of the IR tree are labeled with a state, a second pass

over the tree generates the optimal code. Each rule has associated with it a case number that specifies

a set of actions to be executed when the rule is matched. The actions could include allocation of a

register, emission of code or computation of some attribute. During this phase each node n can be

assigned a list of case numbers stored in n.caselist in the reverse order of execution. This is described

in procedures GenerateCode and TopDownTraverse in Figures 15.20 and 15.21, respectively.
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FIGURE 15.19 Two derivation trees to illustrate triangle trimming.

procedure GenerateCode

top−down−traverse(root, S)

execute actions in root.caselist in reverse order of the list

end procedure

FIGURE 15.20 Code generation routine.

procedure TopDownTraverse(node, nonterminal)

if node is a leaf then

if node.state[nonterminal].rule is r : X → Y, Y ∈ N then

append case number of r to node.caselist

TopDownTraverse(node, Y )

else

if node.state[nonterminal].rule is r : X → a, a ∈ T then

append case number of r to node.caselist

execute actions in node.caselist in reverse order

end if

end if

else

if node.state[nonterminal].rule is r : X → Y, Y ∈ N then

append case number of r to node.caselist

TopDownTraverse(node, Y )

else

if node.state[nonterminal].rule is r : X → op(X1, X2, . . . Xk) then

append case number of r to node.caselist

for i = 1 to k do

T opDownT raverse(child(i, node), Xi)

end for

end if

execute actions in node.caselist in reverse order

end if

end if

end procedure

FIGURE 15.21 Top-down traversal for code generation.

15.5 Techniques Extending LR Parsers

The idea of LR-based techniques for table-driven code generation had been proposed earlier by

Graham and Glanville [23]. However, their approach cannot be applied in general, to the problem

of regular tree parsing for ambiguous tree grammars, because it does not carry forward all possible
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choices to be able to report all matches. The technique described here can be viewed as an exten-

sion of the LR(0) parsing strategy and is based on the work reported in Shankar et al. [41] and

Madhavan et al. [34]. Let G′ be the context-free grammar obtained by replacing all right-hand sides

of productions of G by postorder listings of the corresponding trees in TREES(A ∪ N). Note that

G is a regular tree grammar whose associated language contains trees, whereas G′ is a context-free

grammar whose language contains strings with symbols from A. Of course, these strings are just the

linear encodings of trees.

Let post(t) denote the postorder listing of the nodes of a tree t . The following (rather obvious)

claim underlies the algorithm:

A tree t is in L(G) if and only if post(t) is in L(G′). Also any tree α in TREES(A ∪ N) that has

an associated S-derivation tree in G has an unique sentential form post(α) of G′ associated

with it.

The problem of finding matches at any node of a subject tree t is equivalent to that of parsing

the string corresponding to the postorder listing of the nodes of t . Assuming a bottom-up parsing

strategy is used, parsing corresponds to reducing the string to the start symbol, by a sequence of

shift and reduce moves on the parsing stack, with a match of rule r reported at node j whenever r

is used to reduce at the corresponding position in the string. Thus, in contrast with earlier methods

that seek to construct a tree automaton to solve the problem, a deterministic pushdown automaton is

constructed for the purpose.

15.5.1 Extension of the LR(0)-Parsing Algorithm

We assume that the reader is familiar with the notions of rightmost derivation sequences, handles,

viable prefixes of right sentential forms and items valid for viable prefixes. Definitions may be found

in [29]. The meaning of an item in this section corresponds to that understood in LR-parsing theory.

By a viable prefix induced by an input string is the stack contents that result from processing the input

string during an LR-parsing sequence. If the grammar is ambiguous, then several viable prefixes may

be induced by an input string.

The key idea used in the algorithm is contained in the following theorem [41]:

Theorem 15.1. Let G′ be a normal form context-free grammar derived from a regular tree grammar.

Then all viable prefixes induced by an input string are of the same length.

To apply the algorithm to the problem of tree-pattern matching, the notion of matching is refined to

one of matching in a left context.

Definition 15.7. Let n be any node in a tree t . A subtree ti is said to be to the left of node n in the

tree, if the node m at which the subtree ti is rooted occurs before n in a postorder listing of t . Subtree

ti is said to be a maximal subtree to the left of n if it is not a proper subtree of any subtree that is

also to the left of n.

Definition 15.8. Let G = (N, T , P, S) be a regular tree grammar in normal form, and t be a

subject tree. Then rule X → β matches at node j in left context α, α ∈ N∗ if:

1. X → β matches at node j or equivalently, X ⇒ β ⇒∗ t ′ where t ′ is the subtree rooted at j .

2. If α is not ǫ, then the sequence of maximal complete subtrees of t to the left of j , listed

from left to right is t1, t2, . . . , tk , with ti having an Xi-derivation tree,1 ≤ i ≤ k, where

α = X1X2, . . . , Xk .

3. The string X1X2, . . . , XkX is a prefix of the postorder listing of some tree in TREES(A ∪ N)

with an S-derivation.
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FIGURE 15.22 A derivation tree for a subject tree derived by the grammar of Example 15.8.

Example 15.8

We reproduce the tree grammar of Example 15.6 as a context-free grammar that follows:

1. stmt → addr reg := [1]

2. addr → reg con + [0]

3. addr → reg [0]

4. reg → reg con+ [1]

5. reg → con [1]

6. con → CONST [0]

Consider the subject tree of Figure ?? and the derivation tree alongside. The rule con → CONST

matches at node 2 in left context ǫ. The rule con → CONST matches at node 3 in left context addr.

The rule reg → reg con + matches at node 5 in left context addr.

The following property forms the basis of the algorithm. Let t a subject tree with postorder listing

a1, . . . , ajw, ai ∈ A, w ∈ A∗. Then rule X → β matches at node j in left context α if and only if

there is a rightmost derivation in the grammar G′ of the form:

S ⇒∗ αXz ⇒∗ α post(β)z ⇒∗ αah, . . . , ajz ⇒∗ a1, . . . , ajz, z ∈ A∗

where ah, . . . , aj is the subtree rooted at node j .

Because a direct correspondence exists between obtaining rightmost derivation sequences in G′

and finding matches of rules in G, the possibility of using an LR-like parsing strategy for tree parsing

is obvious. Because all viable prefixes are of the same length a deterministic finite automaton (DFA)

can be constructed that recognizes sets of viable prefixes. We call this device the auxiliary automaton.

The grammar is first augmented with the production Z → S$ to make it prefix free. Next, the auxiliary

automaton is constructed; this plays the role that a DFA for canonical set of LR items does in an

LR-parsing process. We first explain how this automaton is constructed without costs. The automaton

M is defined as follows:

M = (Q, �, δ, q0, F )
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where each state of Q contains a set of items of the grammar, � = A ∪ 2N , q0 ∈ Q is the start state,

F is the state containing the item Z −→ S$ and δ : Q × (A ∪ 2N ) �→ Q.

Transitions of the automaton are thus either on terminals or on sets of nonterminals. A set of

nonterminals can label an edge iff all the nonterminals in the set match some subtree of a tree in

the language generated by the regular tree grammar in the same left context. The precomputation of

M is similar to the precomputation of the states of the DFA for canonical sets of LR(0) items for

a context-free grammar. However, there is one important difference. In the DFA for LR(0) items,

transitions on nonterminals are determined just by looking at the sets of items in any state. Here

we have transitions on sets of nonterminals. These cannot be determined in advance because we do

not know a priori which rules are matched simultaneously when matching is begun from a given

state. Therefore, transitions on sets of nonterminals are added as and when these sets are determined.

Informally, at each step, we compute the set of items generated by making a transition on some

element of A. Because the grammar is in normal form, each such transition leads to a state, termed

a matchset that calls for a reduction by one or more productions called match−rules. Because all

productions corresponding to a given operator are of the same length (because operator arities are

fixed and the grammar is in normal form), a reduction involves popping off a set of right-hand sides

from the parsing stack, and making a transition on a set of nonterminals corresponding to the left-hand

sides of all productions by which we have performed reductions, from each state (called an LCset)

that can be exposed on stack after popping off the set of handles. This gives us, perhaps, a new state,

which is then added to the collection if it is not present. Two tables encode the automaton. The first,

δA, encodes the transitions on elements of A. Thus, it has, as row indices, the indices of the LCsets,

and as columns, elements of A. The second, δLC, encodes the transitions of the automaton on sets of

nonterminals. The rows are indexed by LCsets, and the columns by indices of sets of nonterminals.

The operation of the matcher, which is effectively a tree parser, is defined in Figure 15.23. Clearly,

the algorithm is linear in the size of the subject tree. It remains to describe the precomputation of the

auxiliary automaton coded by the tables δA and δLC.

procedure TreeParser(a, M, matchpairs)

// The input string of length n + 1 including the end marker is in array a

// M is the DFA (constructed from the context free grammar) which

controls the parsing process with transition functions δA and δLC .

// matchpairs is a set of pairs (i, m) such that the set of rules in m matches

at node i in a left context induced by the sequence of complete subtrees

to the left of i.

stack = q0; matchpairs = ∅

current−state = q0

for i = 1 to n do

current−state := δA(current−state, a[i]);

match−rules = current−state.match−rules

// The entry in the table δA directly gives the set of rules matched.

pop(stack)arity(a[i]) + 1 t imes;

current−state := δLC(topstack, Sm);

//Sm is the set of nonterminals matched after chain rule application

match−rules = match−rules ∪ current−state.match−rules

// add matching rules corresponding to chain rules that are matched

matchpairs = matchpairs ∪ {(i, match−rules)}

push(current−state)

end for

end procedure

FIGURE 15.23 Procedure for tree parsing using bottom-up context-free parsing approach.
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15.5.2 Precomputation of Tables

The start state of the auxiliary automaton contains the same set of items as would the start state of

the DFA for sets of LR(0) items. From each state, say q, identified to be a state of the auxiliary

automaton, we find the state entered on a symbol of A, say a. (This depends only on the set of

items in the first state). The second state, say m (which we refer to as a matchstate), may contain

only complete items. We then set δA(q, a) to the pair (match−rules(m), Sm), where match−rules(m)

is the set of rules that match at this point, and Sm is the set of left-hand side nonterminals of the

associated productions of the context-free grammar. Next we determine all states that have paths

of length arity(a) + 1 to q. We refer to such states as valid left context states for q. These are the

states that can be exposed on stack while performing a reduction, after the handle is popped off the

stack. If p is such a state, then we compute the state r corresponding to the itemset got by making

transitions on elements of Sm augmented by all nonterminals that can be reduced to because of chain

rules. These new item sets are computed using the usual rules that are used for computing sets of

LR(0) items. Finally, the closure operation on resulting items completes the new item set associated

with r . The closure operation here is the conventional one used for constructing canonical sets of

LR items [6].

Computing states that have paths of the appropriate length to a given state is expensive. A very

good approximation is computed by the function Validlc in Figure 15.24. This function just examines

the sets of items in a matchstate and a candidate left context state and decides whether the candidate

is a valid left context state. For a matchstate m let rhs(m) be the set of right-hand sides of productions

corresponding to complete items in m.

For a matchstate m and a candidate left context state p, define:

NTSET(p, rhs(m)) = {B | B → .α ∈ itemset(p), α ∈ rhs(m)}

Then a necessary, but not a sufficient condition for p to be a valid left context state for a matchstate

corresponding to a matchset m is NTSET(p, rhs(m)) = Sm. (The condition is only necessary,

because there may be another production that always matches in this left context when the others

do, but which is not in the matchset.)

Before we describe the preprocessing algorithm, we have to define the costs that we can associate

with items. The definitions are extensions of those used in Section 15.4 and involve keeping track

of costs associated with rules partially matched (as that is what an item encodes) in addition to costs

associated with rules fully matched.

Definition 15.9. The absolute cost of a nonterminal X matching an input symbol a in left context

ǫ is represented by abscost (ǫ, X, a). For a derivation sequence d represented by X ⇒ X1 ⇒

X2, . . . , ⇒ Xn ⇒ a, let (Cd = rulecost(Xn → a) +
∑n−1

i=1 rulecost(Xi → Xi+1) + rulecost(X →

X1 ); then abscost (ǫ, X, a) = mind(Cd).

function Validlc(p, m)

if NT SET (p, rhs(m)) = Sm then

Validlc := true

else

Validlc := f alse

end if

end function

FIGURE 15.24 Function to compute valid left contexts.
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function Goto(itemsets, a)

Goto = {[A → αa., c]|[A → α.a, c′] ∈ itemset and

c = c′ + rule−cost (A → αa)−

min{c′′ + rule−cost (B → βa)| [B → β.a, c′′] ∈ itemset}}

end function

FIGURE 15.25 The function to compute transitions on elements of A.

Definition 15.10. The absolute cost of a nonterminal X matching a symbol a in left context α is

defined as follows:

abscost(α, X, a) = abscost(ǫ, X, a) if X matches in left context α

abscost(α, X, a) = ∞ otherwise

Definition 15.11. The relative cost of a nonterminal X matching a symbol a in left context α is

cost (α, X, a) = abscost(α, X, a) − miny∈N {abscost(α, Y, a)}.

After defining costs for trees of height one we next look at trees of height greater than one. Let t

be a tree of height greater than one.

Definition 15.12. The cost abscost (α, X, t) = ∞ if X does not match t in left context α. If X

matches t in left context α, let t = a(t1, t2, . . . , tq) and X −→ Y1Y2, . . . , Yqa where Yi matches

ti, 1 ≤ i ≤ q.

Let abscost(α, X → Y1Y2, . . . , Yqa, t) = rulecost(X → Y1, . . . , Yqa) + cost(α, Y1, t1) +

cost(αY1, Y2, t2) + · · · + cost(αY1Y2, . . . , Yq−1, Yq , tq). Hence define:

abscost(α, X, t) = minX⇒β⇒∗t {abscost(α, X ⇒ β, t)}

Definition 15.13. The relative cost of a nonterminal X matching a tree t in left context α is

cost(α, X, t) = abscost(α, X, t) − minY⇒∗t {abscost(α, Y, t)}.

We now proceed to define a few functions that can be used by the algorithm. The function Goto

makes a transition from a state on a terminal symbol in A and computes normalized costs. Each such

transition always reaches a match state because the grammar is in normal form.

The reduction operation on a set of complete augmented items itemset1 with respect to another

set of augmented items, itemset2, is encoded in the function Reduction in Figure 15.26

The function Closure is displayed in Figure 15.27 and encodes the usual closure operation on sets

of items. The function ClosureReduction is shown in Figure 15.28.

With these functions defined, we now present the routine for precomputation in Figure 15.29. The

procedure LRMain produces the auxiliary automaton for states with cost information included in the

items. Equivalence relations that can be used to compress tables are described in [34]. We next look

at an example with cost precomputation. The context-free grammar obtained by transforming the

grammar of Example 15.2 is displayed in Example 15.9.

Example 15.9

G = (V , B, G, a(2), b(0), P, V )

P :
V → V Ba [0]

V → GV a [1]

V → G [1]

G → B [1]

V → b [7]

B → b [4]

The automaton is shown in Figure 15.30.
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function Reduction(itemset2, itemset1)

// First compute costs of nonterminals in matchsets

S = Sitemset1
cost (X) = min{ci |[X → αi ., ci ] ∈ itemset1} if X ∈ S∞ otherwise

// Process chain rules and obtain updated costs of nonterminals

temp =
⋃

{[A → B., c]| ∃[A → .B, 0] ∈ itemset2 ∧ [B → γ., c1] ∈

itemset1 ∧ c = c1 + rule−cost (A → B)}

repeat

S = S ∪ {X| [X → Y., c] ∈ temp}

for X ∈ S do

cost (X) = min(cost (X), min{ci | ∃[X → Yi ., ci ] ∈ temp})

temp = {[A → B., c]| ∃[A → .B, 0] ∈ itemset2 ∧ [B → Y., c1] ∈

temp ∧ c = c1 + rule−cost (A → B)}

end for

until no change to cost array or temp = φ

// Compute reduction

Reduction =
⋃

{[A → αB.β, c]| [A → α.Bβ, c1] ∈ itemset2 ∧ B ∈ S∧

c = cost (B) + c1 if β =/ ǫ else

// This is a complete item corresponding to a chain rule

c = rule−cost (A → B) − min{ci | ∃[X → .Y, 0] ∈ itemset2, ∧ci =

rule−cost (X → Y )}

end function

FIGURE 15.26 Function that performs reduction by a set of rules given the LC state and the matchstate.

function Closure(itemset)

repeat

itemset = itemset
⋃

{[A → .α, 0]|[B → .Aβ, c] ∈ itemset}

until no change to itemset

Closure = itemset

end function

FIGURE 15.27 Function to compute the closure of a set of items.

function ClosureReduction (itemset)

ClosureReduction = Closure(Reduction(itemset))

end function

FIGURE 15.28 Function to compute ClosureReduction of a set of items.

Example 15.10

Let us look at a typical step in the preprocessing algorithm. Let the starting state be q0, i.e., the first

LCset.

q0 = {[S → .V $, 0], [V → . V B a, 0], [V → . G V a, 0], [V → . G, 0], [G → . B, 0],

[V → . b, 0], [B → . b, 0] }

By using the definition of the Goto operation, we can compute the matchset q1 as:

q1 = Goto(q0, b) = { [V → b ., 3], [B → b ., 0] }

In the matchset, the set of matching nonterminals Sq1 is:

Sq1 = {V, B}

with costs 3 and 0, respectively.
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procedure LRMain()

lcsets := ∅

matchsets := ∅

list := Closure({[S → .α, 0] | S → α ∈ P })

while list is not empty do

delete next element q from list and add it to lcsets

for each a ∈ A such there is a transition on a from q do

m := Goto(q, a)

δA(q, a) := (match(m), Sm)

if m is not in matchsets then

matchsets := matchsets ∪ {m}

for each state r in lcsets do

if V alidlc(r, m) then

p := ClosureReduction(r, m)

δLC(r, Sm) := (match(p), p)

if p is not in list or lcsets then

append p to list

end if

end if

end for

end if

end for

for each state t in matchsets do

if Validlc(q, t) then

s := ClosureReduction(q, t)

δLC(q, St ) := (match(s), s)

if s is not in list or lcsets then

append s to list

end if

end if

end for

end while

end procedure

FIGURE 15.29 Algorithm to construct the auxiliary automaton.

Now, we can compute the set ClosureReduction(q0, q1). First, we compute Reduction(q0, q1):

Initialization

S = Sq1 = {V, B}

cost(V) = 3

cost(B) = 0

cost(G) = ∞

temp = {[G → B ., 1]}

Processing chain rules

Iteration 1

S = S ∪ {G} = {V, B, G}

cost(V) = 3

cost(B) = 0

cost(G) = 1

temp = {[V → G ., 2]}

Iteration 2

S = S ∪ {V } = {V, B, G}

cost(V) = 2

cost(B) = 0
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V       . V B a , 0

V       . G V a , 0

V       . b ,        0

B       . b ,        0

0

V       . V B a ,  0

V       V . B a ,  2 

V       . G V a ,  0

V       G . V a ,  1

V       . b ,         0

B       . b ,         0

2

V       . V B a ,   0

V       V . B a ,   2

V       V B . a ,   2

V       . G V a ,   0

V       G . V a ,   1

V       G V . a ,   3

V       . b ,          0

B       . b ,          0

3

V       V B a . ,  0

V       G V a . ,  2

4

V       b . ,   3

B       b . ,   0

1

V       V . B a ,  0

V       G V . a ,  1

5

V       V B . a ,  0

8

V       V B a . ,  0

10

V       V . B a ,  0

B       . b ,         0

6

V       G V a . ,  0

9

B       b . ,   0

7

b

{(V,2),(B,0),(G,1)}

{(V,0)}

b

b
b

a

a

a

b

{(V,2),(B,0),(G,1)}

{(V,0)}

{(V,0)}

{(V,2),(B,0),(G,1)}

{(B,0)}

{(B,0)}

G       . B ,        0

V       . G ,        0

B       . b ,         0

G       B . ,        0

V       G . ,        1

V       . G ,        0

G       . B ,        0

G       B . ,         0

V       G . ,         1

V       . G ,         0

G       . B ,         0

S        . V$ ,     0

S        V . $ ,     2

S      V$ . , 0

11

$
S        V . $ ,     0 $

FIGURE 15.30 Auxiliary automaton for grammar of Example 15.9.

cost(G) = 1

temp = φ

Computing reduction

Reduction = {[S → V.$, 2], [V → V . B a, 2], [V → G . V a, 1], [V → G ., 1],

[G → B ., 0]}

Once we have Reduction(q0, q1), we can use the function Closure and compute ClosureReduction.

Therefore:

q2 = ClosureReduction(q0, q1)

= Closure(Reduction(q0, q1))

= Closure({[S → V.$, 2], [V → V . B a, 2], [V → G . V a, 1],

[V → G ., 1], [G → B ., 0], })

= {[S → V.$, 2], [V → . V B a, 0], {[V → V . B a, 2], [V → . G V a, 0],

[V → G . V a, 1], [V → . G, 0], [V → G ., 1], [G → . B, 0],

[G → B ., 0], [V → . b, 0], [B → . b, 0]}

The auxiliary automaton for the grammar of Example 15.6 is shown in Figure 15.31. Though

the number of states for this example exceeds that for the conventional bottom-up, tree-pattern-

matching automaton, it has been observed that for real machines, the tables tend to be smaller than

those for conventional bottom-up, tree-pattern-matching automata [34]. This is perhaps because

separate tables do not need to be maintained for each operator. An advantage of this scheme is that

it allows the machinery of attribute grammars to be used along with the parsing.
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9
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reg

reg
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con
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6

addr

reg

4
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7
reg

5
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stmt 
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reg

reg
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addr
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addr

reg

reg

reg

con

reg con  +[1]

 CONST[0]

con
1

CONST

addr  reg:=[1]

[1]

CONST[0]

reg con  +[1]

reg con+[0]

reg [0]

reg con+[0]

 reg con+[0]

 con

  reg[0]

  reg con+[0]

reg  con+[1]

con [0]

 reg con[0]

reg con  +[0]

reg

stmt 

reg

stmt 

reg

con

stmt addr reg:=  [0]

 con[0]

addr reg:=[0]

 CONST[0]

reg con+  [0]

addr reg :=[1]

reg con+[1]

addr reg :=[0]

reg con+[0]

 CONST[0]

 CONST[0]

addr reg :=[2]

reg con +[1]

To  1

To 5

11

reg con  +[0]

reg con+  [0]

reg con+  [0]

reg con  +[1]

con [0]

CONST
To 1

  CONST

con  +[0]

To 1
CONST

reg  con+[1]

FIGURE 15.31 Auxiliary automaton for the grammar of Example 15.6.

15.6 Related Issues

A question that arises when generating a specification for a particular target architecture is the

following: can a specification for a target machine produce code for every possible intermediate

code tree produced by the front end? (We assume here, of course, that the front end generates a

correct intermediate code tree.) This question has been addressed by Emmelmann [16], who refers

to the property that is desired of the specification as the completeness property. The problem reduces

to one of containment of the language L(T ) of all possible intermediate code trees in L(G) the

language of all possible trees generated by the regular tree grammar constituting the specification.

Thus, the completeness test is the problem of testing the subset property of two regular tree grammars,

which is decidable. An algorithm is given in [16].

A second question has to do with whether a code-generator generator designed to compute normal-

ized costs statically terminates on a given input. If the grammar is such that relative costs diverge,

the code-generator generator cannot halt. A sufficient condition for ensuring that code-generator

generators based on extensions of LR-parsing techniques halt on an input specification is given in

[34]. However, it is shown that there are specifications that can be handled by the tool but fail the test.

An important issue is the generation of code for a directed acyclic graph (DAG) where shared

nodes represent common subexpressions. The selection of optimal code for DAGs has been shown

to be intractable [5], but heuristics exist that can be employed to generate code [6]. The labeling
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phase of a bottom-up tree parser can be modified to work with DAGs. One possibility is that the

code generator could, in the top-down phase, perform code generation in the normal way but count

visits for each node. For the first visit it could evaluate the shared subtree into a register and keep

track of the register assigned. On subsequent visits to the node it could reuse the value stored in

the register. However, assigning common subexpressions to registers is not always a good solution,

especially when addressing modes in registers provide free computations associated with offsets and

immediate operands. One solution to this problem involves adding a DAG operator to the intermediate

language [10].

15.7 Conclusion and Future Work

We have described various techniques for the generation of instruction selectors from specifications in

the form of tree grammars. Top down, bottom up and LR-parser based techniques have been described

in detail. Instruction selection using the techniques described in this chapter is useful and practical,

but the formalism is not powerful enough to capture features like pipelines, clustered architectures and

so on. Although it would be useful to have a single formalism for specification from which a complete

code generator can be derived, no commonly accepted framework exists as yet. Instruction selection

is important for complex instruction set computer (CISC) architectures, but for reduced instruction

set computer (RISC) architectures there is a shift in the functional emphasis from code selection

to instruction scheduling. In addition, because computation must be done in registers and because

the ratio of memory access time to cycle time is high, some form of global register allocation is

necessary. The interaction between instruction scheduling and register allocation is also important.

Bradlee [11] has implemented a system that integrates instruction scheduling and global register

allocation into a single tool. The advent of embedded processors with clustered architectures and very

long instruction word (VLIW) instruction formats has added an extra dimension to the complexity

of code-generator generators. The impact of compiler techniques on power consumption has been

the subject of research only recently. Considerable work on retargetable compilers for embedded

processors is already available, including MSSQ [35], RECORD [32], SPAM [8], CHESS [31, 38],

CodeSyn [33] and AVIV [25]. Much more work is needed to address related problems on a sound

theoretical basis.
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16.1 Introduction

Digital signal processors (DSP) are used in a wide variety of embedded systems ranging from safety

critical flight navigation systems to common electronic items such as cameras, printers and cellular

phones. DSPs are also some of the more popular processing element cores available in the market

today for use in system-on-a-chip (SOC)-based design methodology for embedded processors. These

systems not only have to meet the real-time constraints and power consumption requirements of the

application domain, but also need to adapt to the fast-changing applications for which they are used.

Thus, it is very important that the target processor be well matched to the particular application to

meet the design goals. This in turn requires that DSP compilers need to produce good quality code

and be highly retargetable to enable a system designer to quickly evaluate different architectures for

the application on hand.

Unlike their general-purpose counterparts, an important requirement for embedded system soft-

ware is that it has to be sufficiently dense so as to fit within the limited quantity of silicon area,

either random-access memory (RAM) or read-only memory (ROM), dedicated to program memory

0-8493-1240-7/03/$0.00+$1.50

c© 2003 by CRC Press LLC 603
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on the chip. This requirement arises because of the limited and expensive on-chip program memory.

To achieve this goal, and at the same time not sacrifice dynamic performance, DSPs have often been

designed with special architectural features such as address generation units, special addressing

modes useful for certain applications, special computation units, accumulator-based data paths and

multiple memory banks. Hence, to produce good quality code, DSP compilers must also incorporate

a large set of optimizations to support and exploit these special architectural features.

In this chapter, we take a look at DSP architectures from a compiler developer’s view. The

organization of this chapter is as follows. The different types of DSP architectures are detailed

in Section 16.2. Section 16.3 provides an overview of the different constraints imposed by DSP

architectures using an illustrative example. The need for retargetable methodologies and those

proposed thus far are discussed in Section 16.4. Some of the retargetable code generation and

optimization techniques that have been developed to exploit the special DSP features are discussed

in Section 16.5. Finally, summary and conclusions are provided in Section 16.6.

16.2 Digital Signal Processor Architectures

A close examination of DSP architectures and the requirements for a DSP compiler suggests that

DSPs can be modeled as very long instruction word (VLIW) processors. A VLIW processor is a fully

statically scheduled processor capable of issuing multiple operations per cycle. Figure 16.1 shows a

simplified overview of the organization of instruction set architectures (ISAs) of VLIW processors.

The ISA of a VLIW processor comprises multiple instruction templates that define the set of

operations that can be issued in parallel. Each slot in an instruction can be filled with one operation

from a set of possible operations. Each operation in turn consists of an opcode that defines the

operation’s resource usage when it executes, and a set of operands each of which can be a register,

a memory address or an immediate operand. The register operand in an operation can be a single

machine word register, a part of a machine word register or a set of registers. Although the mem-

ory address is shown as a single operand, in general, the address itself can be multiple operands

depending on the addressing mode used in the operation. Compilers for VLIW architectures also

need optimizations to exploit the application’s instruction level parallelism (ILP) to primarily obtain

good dynamic performance and this is often achieved at the expense of increased static code size. For

DSPs, however, static code size is equally or even more important than the dynamic performance.

FIGURE 16.1 VLIW instruction set architecture.
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Because both VLIW processors and DSPs rely more on compilers and less on hardware for

performance and VLIW compilation is well known, the limitations of DSPs and the constraints

posed by them for the compiler can be better understood by modeling the DSP architectures as

VLIW architectures. Some specific examples of the architectural constraints in DSPs are presented

in Section 16.3.

This section gives an overview of the features of different classes of DSP architectures from a

compiler perspective. The basic architecture of DSPs is a Harvard architecture with separate data and

program memories. Some of the architectural features of DSPs are motivated by the applications:

• Because DSP applications often work with multiple arrays of data, DSPs feature multiple data

memory banks to extract ILP from memory operations.

• Because vector products and convolutions are common computations in signal processing, a

fast single cycle multiply and multiply-accumulate based data paths are common.

• Multiple addressing modes, including special modes such as circular addressing, are used to

optimize variable access.

• Fixed or floating point architectures are used depending on the application’s requirements such

as precision, cost and scope.

• Hardware to support zero overhead loops is present for efficient stream-based iterative

computation.

For the discussion in the rest of this chapter, we define a VLIW instruction in an ISA as a set

of operations allowed by the ISA to be issued in parallel in a single cycle. ISAs of DSPs can be

classified based on the following attributes:

• Fixed operation width ISA or a variable operation width ISA. A fixed operation width ISA is

an ISA in which all the operations are encoded using a constant number of bits. A variable

operation width ISA is any ISA that does not use a fixed operation width for all operations.

• Fixed operation issue ISA or variable operation issue ISA. A fixed operation issue ISA is an

ISA in which the number of operations issued in each cycle remains a constant. A variable

operation issue ISA can issue a varying number of operations in each cycle.

• Fixed instruction width ISA or a variable instruction width ISA. A fixed instruction width ISA

is an ISA in which the number of bits used to encode all the VLIW instructions is a constant.

A variable instruction width ISA is any ISA whose instruction encoding size is not a constant.

Of these three attributes, operation width and the instruction width are more important because

the issue width of a DSP is usually dependent on these two attributes. Hence, programmable DSP

architectures can be broadly classified into four categories as shown in Figure 16.2, namely:

1. ISAs with fixed operation width (FOW) and fixed instruction width, Figure 16.2(a)

2. ISAs with FOW and variable instruction width, Figure 16.2(b)

3. ISAs with variable operation width (VOW) and fixed instruction width, Figure 16.2(c), and

4. ISAs with VOW and variable instruction width, Figure 16.2(d)

Because the architectural features of the first two categories of DSPs are more due to the FOW

attribute, we combine the two categories into a single FOW category. Similarly, because compiling

for architectures in the last category is similar to VOW and fixed instruction width architectures, we

assume VOW architectures to include the last two categories.

16.2.1 Fixed Operation Width Digital Signal Processor Architectures

The ISA of an FOW architecture consists of reduced instruction set computer (RISC) style operations,

all of which are encoded using a constant number of bits, typically 16 or 32 b. From Figure 16.2(a)
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FIGURE 16.2 Different classes of DSP architectures: (a) fixed operation width and fixed instruction width;

(b) fixed operation width and variable instruction width; (c) variable operation width and fixed instruction width;

(d) variable operation width and variable instruction width.

and 16.2(b), we can see that the issue width and instruction width of these processors are tied

to one another. As the issue width is increased to get more ILP, the instruction width to be

decoded also increases proportionally. Examples in this category include the Texas Instruments

(TI) TIC6X series DSPs. Most of the high-end DSPs, and, in particular, most floating point DSP

architectures also fall into this category. Some of the features of these architectures are described in

this section:

• These architectures are regular with less instruction level constraints on operands and operations

when compared with the other categories of DSPs. The primary reason for this regularity is

the encoding of the instructions. Not only is the encoding of each operation in an instruction

independent but also the encoding of opcode and operands within an operation are also separate.

• A large general-purpose register set, which is a key to exploiting ILP, is an important feature

of these architectures. This set may even be organized into multiple register files.

• The regularity and the large register set together make these DSPs more compiler friendly

and easier to program than their VOW counterparts. This also stems from the fact that these

architectures tend to have an orthogonal set of operands, operations and instructions.

• Due to the general nature of operations and increased ILP, these processors are capable

of handling a wider variety of applications and the applications themselves can be large.

Specialized functional units are sometimes used to improve a group of applications.

• To extract more ILP, there is a trend in these architectures to support speculation and predication,

which are features in general-purpose processors. Because a discussion of speculation and

predication is beyond the scope of this chapter, we refer the readers to [6, 42].

• One of the drawbacks of fixed instruction-width FOW DSPs is that of code size. For every VLIW

slot in an instruction that the compiler is not able to fill with a useful operation, no-operations

(NO-OPs) need to be filled in. This often leads to an increase in code size because the instruction

width remains constant. To overcome this problem, some processors allow a compiler to signal

the end of an instruction in each operation by turning on a flag in the last operation of an instruc-

tion. This prevents any unnecessary NO-OPs from being inserted and it is the responsibility of

the hardware to separate the instructions before or during issue. With this feature enabled,

fixed instruction width FOW processors transform into variable instruction width FOW

processors.

Because the features of these processors are very similar to VLIW processors, the compilers of

these processors mostly leverage the work done in VLIW compilation. Thus, the DSP compiler
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techniques and optimizations described in this chapter may not be applicable or useful to most

processors in this category.

16.2.2 Variable Operation Width Digital Signal Processor Architectures

The features of VOW architectures shown in Figures 16.2(c) and 16.2(d) are in sharp contrast to

those of FOW-style architectures. These DSPs are used in applications such as cellular telephones.

Hence, the binary code size of applications running on these processors needs to be extremely dense

because cost of on-chip program memory increases nonlinearly with code size. Also, a conflicting

requirement of good dynamic performance exists because these applications usually run on battery.

Most of the features of VOW DSPs described in this chapter reflect the decisions made by hardware

architects to meet these conflicting requirements. Examples in this category include Fujitsu Hiperion,

TI TMS320C25, Motorola DSP56000, etc.

• To contain the code size of applications, but still exploit ILP, VOW DSP instructions are

encoded such that the instruction width does not change with issue width. This leads to a

situation where all the operations in an instruction are encoded together and operands within an

operation are also tied together in an encoding that leads to irregular architectures with restricted

ILP support.

• These DSPs feature only a small number of registers with many constraints on how each register

can and cannot be used.

• The irregular architecture and the heterogeneous register set pose a challenge to DSP compilers

that have to tackle the numerous constraints and yet meet the conflicting requirements. This is

primarily due to the irregular operation and instruction encoding in VOW DSPs. This leads to

nonorthogonal operands within operations, nonorthogonal operations within instructions and a

nonorthogonal instruction set.

• The DSPs in this class have traditionally been programmed in assembly. This drastically restricts

the domain of applications to small programs that are usually kernels of larger applications that

can be accelerated using DSPs.

• To compensate for the lack of a rich register set and to utilize the data memory banks effectively,

these DSPs have an address register set and an address generation unit that enable address

computations to be performed in parallel with other operations.

Section 16.3 discusses how some of these features affect the development of compilers for

DSPs. For a more detailed discussion on DSP architectures, we refer the readers to DSP Processor

Fundamentals [23].

16.3 Compilation for Digital Signal Processors

In this section, we use examples to describe some of the constraints posed by DSP architectures to

compilers due to the features of VOW DSPs described in Section 16.2.2.

Some of the common DSP ISA constraints are shown in 16.3. The constraints between the

different entries are represented in dotted lines. Figure 16.3(a) shows operation ILP constraints in the

instruction template that restrict the set of operations that can be performed in parallel. Figure 16.3(b)

shows operand constraints that exist between operands within an operation. This can be of different

types such as register-register constraints or register-addressing mode or register-immediate size

constraints and so on. Finally, Figure 16.3(c) extends the operand constraints across operations

within an instruction.
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FIGURE 16.3 DSP constraints.

FIGURE 16.4 (a) A DSP datapath; (b) some operation ILP constraints.

The DSP data path shown in Figure 16.4(a) is a fixed point DSP core. It is a fixed instruction

width VOW DSP. Its data path consists of dual memory banks, an arithmetic and logic unit (ALU)

comprising a shift unit, an add unit, a multiply unit and an address generation unit. There are 8

address registers (ARs) and 4 accumulators each with 32 b, each of which can also be accessed

as 2 general-purpose registers, each with 16 b. The two memory banks allow two memory access
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operations to be issued in parallel. In addition to instructions with parallel memory access operations,

restricted ILP also exists between arithmetic and memory operations. However, this ILP requires

several conditions to be satisfied due to the small fixed instruction width. Some of the constraints

are briefly described and explained with examples, as follows:

• Because addressing modes occupy more instruction bits, many restrictions exist on the

addressing mode that a memory operation can use in different instructions. This includes the

set of ARs that can be used by a particular addressing mode in a particular instruction.

• The fixed instruction width and the VOW together enforce several constraints on what set of

operations can be performed in parallel as explained in Section 16.3.1.

• Operations in a single instruction share operands due to lack of bits to encode the operations

independently. This may or may not affect data flow as explained in Section 16.3.2.

• Operations in a single instruction have to split an already small number of instruction bits to

encode their operands leading to register allocation constraints that arise not due to lack of

registers, but lack of bits to encode more registers, as pointed out in the second example in

Section 16.3.2.

• Large immediate operands require multiple instruction words to encode them leading to larger

code size and a potentially extra operation execution time.

The constraints described in this section are representative of constraints found in most commercial

DSPs and are difficult to capture in both behavior description-based machine descriptions (MDs)

(MDs based on ISA descriptions) and structural description-based MDs (MDs that extract ISA

information from description of a processor data path). It is also important to note that the internal

data paths of a processor are seldom transparent to the application developer; thus, the latter may

not even be an option.

16.3.1 Operation Instruction Level Parallelism Constraints

These constraints describe what set of operations can and cannot be issued in parallel. Figure 16.4(b)

shows the set of ILP constraints. MEMop stands for either a LOAD or a STORE operation, ALU

stands for operations that use the ALU such as ADD, SUB and Shift operations and MAC stands for

all operations associated with the MAC unit such as Multiply and Multiply-Accumulate. Although

two LOAD operations can be issued in parallel with a MAC operation, only one LOAD can be issued

in parallel with an ALU operation. Hence, these constraints do not need to be limited by physical

resources alone.

16.3.2 Operand Instruction Level Parallelism Constraints

These constraints describe how registers should be assigned to operands of operations issued in

parallel. These constraints may or may not affect data flow.

Example 16.1: Constraint Affecting Data Flow

Constraint MUL dest, source1, source2; LOAD dest1, [M1] ; LOAD dest2, [M2] is a valid

single-cycle schedule only if dest1 and dest2 are assigned the same registers as source1 and source2.

It is the responsibility of the compiler to ensure that the two sources of the multiply operation are not

used after this instruction. Hence, these constraints are data flow affecting constraints. In addition,

there can also be restrictions on what registers can be assigned to each operand in an operation or

instruction.
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Example 16.2: Constraint Not Affecting Data Flow

Constraint: ADD dest1, source1, source2; LOAD dest2, [M] is a valid single cycle schedule only if

the following conditions are satisfied. If dest1 is assigned the register CX, then:

1. Condition: dest2 can be assigned a register only from the following set of registers

{A0, A1, B0, B1, D0, D1, CX, DX}.

2. Condition source1 can be assigned only one of {CX, A0}.

3. Condition source2 must be assigned register A1.

Although the first constraint is an example of operand constraints across operations, the other two

are examples of operand constraints within an operation.

Most of these constraints can be attributed to the nonorthogonality property of VOW DSP

architectures. Apart from the lack of orthogonality in operand, operation and instruction encodings,

this also includes difficulty in classifying arithmetic operations into similar classes, for example,

an ADD and SUB may have completely different sets of constraints. Because the same operation

has different constraints under different instances, we define each such instance as an operation

version and the problem of picking the right version for an operation as the operation version-

ing problem.

16.4 Retargetable Compilation

Section 16.2 described the architectural features of DSPs that were designed by hardware architects

with the intent of meeting application demands and Section 16.3 described the constraints posed by

the architectures for compiler developers that are in addition to traditional compiler issues. From

these two discussions, we can see that the compiler developers need a clean abstraction of the

architecture that allows them to develop reusable or synthesizable compilers that do not need to

know the actual architecture they are compiling for, and the hardware architects need a configurable

abstraction of the compiler that allows them to quickly evaluate the architectural feature that they have

designed without much knowledge of how the feature is supported by the compiler. Traditionally, the

compiler has been split into two phases, namely, the front end that converts the application program

into a semantically equivalent common intermediate representation and the back end that takes the

intermediate representation as input and emits the assembly code for the given target. This partially

eases the job of the compiler developer and the hardware designer of having to match the application to

the target.

However, this coarse grain reusability is not sufficient, because the growing number of applications

and the increasing number of processor designs both require an efficient fine grain reusability of

components that is often referred to as retargetability. This is shown in Figure 16.5 where a retar-

getable interface captures the hardware artifacts, exports them to the compiler developer, captures the

ability to parameterize the compiler (masking the algorithms, complexity, etc.) and exports it to the

architecture designer. In this design, each phase of the compiler may be individually configurable or

each phase itself may be divided into configurable components as shown by dotted lines within each

phase in Figure 16.5. An interesting side effect of such a retargetable design is that the abstraction

does not require the user to be an expert in both architectures and compilers.

For an SOC design, an architect may be faced with many options for the cores that meet the

demands of the application on hand. The designer then needs the software tool set such as a compiler

and a simulator to quickly evaluate the set of DSP cores available, pick the optimum core and reduce

the time to market the design. This set of DSP cores includes programmable cores that may still have

to be developed for a set of applications, therefore also requiring the development of the necessary
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FIGURE 16.5 Retargetable interface.

tool set; and off-the-shelf processor cores that are readily available with the tool set. Although

in the second case, the architectures are predefined and the necessary compilers for the specific

processors may be readily available, in the former, the architecture itself is not defined and it is

not practically possible to develop an architecture-specific compiler for every potential architecture

solution. Hence, clearly a need exists to design the compiler framework so that it is easy either to

synthesize a new compiler for every potential architecture or to reuse parts of the compiler to the

maximum extent possible by minimizing the amount of architecture-specific components. Based on

this need for retargetability, different types of retargetability have been defined with respect to the

extent of reuse [53].

16.4.1.1 Automatic Retargetability

An automatically retargetable compiler framework has built-in support for all potential architectures

that meet the demands of the applications on hand. Compilers for specific architectures can then be

generated by configuring a set of parameters in the framework. Although this is an attractive solution

for retargetability, it is limited in scope to a regular set of parameterizable architectures and is not

capable of supporting a wide variety of specialized architectural features found in DSPs.

16.4.1.2 User Retargetability

A user retargetable compiler framework relies on an architectural description to synthesize a compiler

for a specific architecture. Although support exists for a wide variety of machine-independent
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optimizations, this type of framework also suffers from the drawback of not having the ability

to automatically generate machine-dependent optimizations. This level of retargetability has been

achieved only in the instruction selection phase of the back ends. Some examples in this category

include Twig [1] and Iburg [14], both of which automatically generate instruction selectors from a

given specification.

16.4.1.3 Developer Retargetability

A developer is an experienced compiler designer and a developer retargetable framework is based on a

library of parameterized optimizations for architectural features. A compiler for a specific architecture

can be synthesized in this framework by stringing together the set of relevant optimizations from the

developer’s library with the correct set of parameters. If the library lacks an optimization that can

be applied to a certain new architectural feature, then the developer is responsible for developing a

parameterized optimization module, the associated procedure interface and the insertion of it into

the library. The new optimization module can then be used for designs in the future that have the new

architectural feature. The success of this framework lies in the extent of code reuse or optimization

module reuse. Hence, this type of retargetability is best suited for evaluation of architectures in a

single family.

Figure 16.6 shows a potential retargetable compiler development methodology that can be used

to design DSP compilers. The methodology starts either by hand-coding DSP kernels in assembly,

or, if possible, by using a simple machine specific compiler that produces correct code with no

optimizations. For example, this compiler can be obtained from a simple modification of a compiler

developed for a closely related processor, or it can be a first cut of the compiler or one of the publicly

available retargetable research compilers that fits the domain of the applications. The developer then

examines the assembly code for inefficiencies and suggests optimizations for the various regular

and irregular parts of the DSP architecture. This includes efficient capture of the processor ISA

and microarchitecture using machine descriptions and general-purpose performance optimizations

for the regular parts. For the special architectural features, a parameterized optimization library

is developed and the optimizations are added to this library as and when they are developed.

An optimizing compiler is then assembled together using the different components and the cycle

is repeated until satisfactory code quality is achieved. Conventionally, retargetability has always

been achieved with some kind of a MD that describes the processor ISA and/or structure. This

database is then queried by the different phases of compilation to generate code specific to the target

processor.

The success of a retargetable methodology can be evaluated or measured based on several qualities

such as nature, parameterizable or synthesizable components; modularity, fine or coarse grain

capture of hardware artifacts; accuracy, accurate modeling of architecture; efficiency, quality of

code generated for a set of processors, time taken to produce the code in the first place; visibility,

what part and how much of the compiler is visible to the user; usability, how easily one can use the

methodology; extent, the processor space that is covered; extensibility, ability to add new modules

or optimizations and ability to extend the framework to other domains; independence, what fraction

of the code is compiler specific and what fraction is architecture domain specific. These are not all

independent or arranged in any order of preference.

16.5 Retargetable Digital Signal Processor Compiler Framework

In this section, we describe the flow of a retargetable DSP compiler for an architecture with various

constraints mentioned in Section 16.3. The DSP code generator flow is shown in Figure 16.7.

Because the compiler flow shown in Figure 16.7 is very similar to a general-purpose compiler flow,

we address only the issue of DSP-specific optimizations in this section. In general, the wide variety



Retargetable Very Long Instruction Word Compiler Framework for Digital Signal Processors 613

FIGURE 16.6 Retargetable compiler methodology.

of machine-independent compiler optimizations used in compilers for general-purpose processors

can also be applied to DSP compilers [2]. However, certain precautions need to be taken before

directly applying an optimization due to the nature of the DSP architectures. For example, in most

VOW-style DSPs, an extra instruction word is needed to store large constants if the operation uses

one. Because this may also cause a one-cycle fetch penalty, constant propagation1 must be applied

selectively. Other examples that can potentially have a negative effect include common subexpression

elimination2 and copy propagation3. These sets of optimizations tend to increase the register pressure

by extending live ranges that can lead to negative results in architectures with small register sets.

However, some of the most beneficial optimizations for DSPs are the loop optimizations such as

loop invariant code motion,4 induction variable elimination,5 strength reduction,6 etc. Optimizations

such as loop unrolling7 increase static code size and some loop optimizations also tend to increase

register pressure, but the trade-off in either case is the gain in reduction of execution time. Most DSP

applications involve some kind of kernel loops that account for the majority of their execution time.

Hence, optimizing loops is an important task in a successful DSP compiler framework. However,

optimizations such as loop induction variable elimination can prevent efficient utilization of zero

overhead looping features in DSPs.

1If a MOV operation occurs that moves a constant c to a virtual register u, then the uses of u may be replaced
by c.
2If a program computes an expression more than once with exactly the same sources, it may be possible to
remove redundant expressions.
3If a MOV operation occurs that moves one virtual register v to another virtual register u, then the uses of
u may be replaced by use of v.
4Loop invariant code motion is moving loop invariant computations outside the loop.
5Induction variable elimination is removing the loop induction variable from inside the loop.
6Strength reduction is replacing expensive computations such as multiply and divide with simpler operations
such as shift and add.
7Loop rolling is placing two or more copies of the loop body in a row to improve efficiency.
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FIGURE 16.7 DSP code generator flow.

In general, aggressive machine-independent optimizations can also destroy information needed

by DSP optimizations such as array reference allocation and offset assignment. Similar to

general-purpose compilation, DSP compilation also suffers from the interplay between the various

optimizations that is commonly known as the phase-ordering problem. For example, the most

commonly used example of the phase-ordering problem is that between scheduling and register

allocation. If scheduling is done prior to register allocation, then the variable live ranges can be long,

which can increase register pressure and cause excessive spills (stores to memory). This may require

another scheduling phase to be introduced after the allocation to take care of the spill (store to memory)

and fill (load from memory) code. On the other hand, if register allocation is performed first, then

several false dependencies are introduced that can lead to extended static schedules. The situation is

no different in the case of DSP compilation. In the examples given in Sections 16.3.1 and 16.3.2, the

constraints can be viewed as the problems of the scheduler, thereby creating unnecessary constraints

for the register allocator; or they can be viewed as constraints for the register allocator, leading to

bad schedules that do not exploit the ILP features of DSPs. Although the different phases in DSP

compilation are listed in Figure 16.7, they may not necessarily be performed in the order shown.

Another concern with regard to optimizations is in terms of the compilation time. Most

optimizations described in this section have been shown to be NP-complete. Given this, only a

few options are available to a user — sacrifice optimality and convert the problem to a problem

that can be solved in polynomial (preferably linear) time, or attempt to solve smaller versions of the

problem optimally or use good heuristics. Hence, the user often needs to make a time vs. performance

trade-off. This is an important issue in a retargetable design space exploration environment where
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faster techniques can be used to eliminate large chunks of the search space and longer near-optimal

solutions can be applied to arrive at the final choice. Due to the large number of constraints in

DSP compilation, some of the techniques use methods such as simulated annealing and linear

programming, to solve the problems, and more often attempt to solve multiple problems or phases

at a time. This leads to an increase in complexity and potentially increase in compilation time. In

such cases, the trade-off is between optimality with some generality within an architecture class; and

compilation time, complexity and scalability. Heuristics can result in completely different behavior

even for small changes in the constraints, whereas an exact method can still produce robust solutions.

This is another reason why a compiler framework and an MD need to be tied to one another.

In this section, we describe some of the common DSP optimizations performed to either exploit

specialized architectural features or merely to satisfy data path constraints such as those men-

tioned in Section 16.3. For details on the conventional phases of general-purpose compilation such

as scheduling and register allocation, we refer the readers to the corresponding chapters in this

book.

16.5.1 Instruction Selection

Instruction selection corresponds to the task of selecting the sequence of appropriate target

architecture opcodes from the intermediate representation of the application program. The output of

most front ends of compilers is a forest of directed acyclic graphs (DAGs) semantically equivalent to

the input program. It has been shown that the problem of covering the DAG with target opcodes is an

NP-complete problem even for a single register machine [9, 15, 51]. However, optimal solutions exist

when the intermediate representation is in the form of a sequence of expression trees (e.g., Iburg [14]

and Twig [1]). Some of the DSP compilers use heuristics that convert a forest of DAGs to expression

trees, potentially losing overall optimality, followed by locally (per tree) optimal pattern-matching

algorithms to do instruction selection. Araujo et al. proposed a heuristic to transform a DAG into a

series of expression trees [3] for acyclic architectures, classifying the ISA of DSPs as either cyclic

or acyclic based on a register transfer graph (RTG) model.

The RTG model of an ISA describes how the different instructions utilize the transfer paths

between the various storage locations to perform computations. The registers transparent to the

developer through the processor ISA are divided into register classes, where each class has a specific

function in the data path. For example, a typical DSP data path consists of an address register class,

an accumulator class and a general-purpose register class.

16.5.1.1 Register Transfer Graph

An RTG is a directed acyclic multigraph where each node represents a register class and an edge

between nodes ri and rj is labeled with instructions in the ISA that take operands from location ri
and store the result in location rj . Memory is assumed to be infinitely large and not represented in

the RTG. However, an arrowhead is added to the register class nodes for memory transfer operations

with the arrowhead indicating the direction of memory transfer.

Figure 16.8(a) shows a simple processor data path and the corresponding RTG for this data path

is shown in Figure 16.8(b). For clarity, the operations are not shown in the RTG. The accumulator

ACC, register set Ri and register set Rj are the three register classes in the data path and hence have

a vertex each in the RTG. Because the data path allows the accumulator to be both a source operand

and a destination operand of some ALU operations, a self-edge exists around ACC in Figure 16.8(b).

Because some ALU operations have Ri and Rj as sources and ACC as the destination, a directed

edge exists from Ri and Rj each to ACC. The remaining arrowheads in the RTG represent memory

operations. Load operations can be performed only with Ri or Rj as destinations and store operations

can be performed using only the accumulator.
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FIGURE 16.8 (a) Processor data path; (b) RTG for the data path.

An architecture is said to be cyclic (acyclic) if its RTG has (no) cycles where a cycle comprises at

least two distinct vertices in the RTG. Acyclic ISAs have the property that any data path cycle, which

is not a self-loop, including a path between two nodes ri and rj in the RTG, goes through memory.

Hence, the data path shown in Figure 16.8(a) is acyclic because the RTG in Figure 16.8(b) does not

have a cycle with two distinct vertices. Araujo and Malik show that spill-free code can be generated

from expression trees for architectures with acyclic RTGs and provide a linear time algorithm for

optimal scheduling for such architectures [4].

To transform the DAG into a series of expression trees, they use a heuristic with four phases:

• Partial register allocation is done for operands of operations for which the ISA itself clearly

specifies the allocation. For example, for the data path in Figure 16.8(a), the results of all the

ALU operations are always written to the accumulator.

• The architectural information and the set of constraints imposed by ISA are used to determine

the set of edges in the DAG that can be broken without loss of optimality in the subsequent

phases. For example, for the data path in Figure 16.8(a), the result of an ALU operation cannot

be used as the left operand of a dependent operation. Such dependencies have to go through

memory and thus the corresponding DAG edge, called natural edge, can be broken without any

loss. Similarly, if an ALU operation is dependent on the results of two other ALU operations,

then at least one of the dependencies has to go through memory. Such edges are called pseudo-

natural edges and breaking such an edge does not guarantee optimality, but there is a reasonable

probability that this is the case.

• Selective edges of the DAG are then marked and disconnected from the DAG to generate a

forest of trees, while preserving the data flow constraints of the DAG.

• Optimal code is finally generated and scheduled for each expression tree.

Because the conversion of a DAG to expression trees potentially sacrifices optimality, Liao

et al. proposed a technique using a combinatorial optimization algorithm called binate covering

for instruction selection of DAGs. This can be solved either exactly or heuristically using branch

and bound techniques [31]. This method, briefly summarized here, primarily involves the following

steps for each basic block:

• Obtain all matching patterns of each node in the subject program graph and their corresponding

costs. This phase does not take into account the data path constraints and assumes that the

associated data transfers necessary are for free.



Retargetable Very Long Instruction Word Compiler Framework for Digital Signal Processors 617

• Construct the covering matrix with a Boolean variable for each of the matched patterns as

columns and the clauses and conditions that need to be satisfied for a legal cover of the program

graph using the patterns as rows. This set of conditions are twofold, namely:

• Each node must be covered by at least one pattern. This is represented as a set of clauses,

one for each node in the program DAG, each of which is the inclusive OR of the Boolean

variables that cover the node. For each row, or clause, an entry of 1 is made in the columns

of Boolean variables included in the clause.
• For each match, all the nonleaf inputs to the match must be outputs of other matches. This

is represented by a set of implication clauses. For each nonleaf input, I , of each match, M ,

the set of all matches, MI , that can generate I are determined. If M is chosen to cover a

node or a set of nodes in the program DAG, then at least one of the matches from the set

MI must be chosen to obtain the input, I , to M . This needs to be true for each of the inputs

of M and for all such matches chosen to cover the program graph. In the covering matrix,

this is captured by entering a 0 in the column corresponding to M for all the implication

clauses generated by M , and in each row corresponding to an implication clause of M , a 1

is entered in the columns of the variables included in the clause apart from M .

• A binate covering of the covering matrix that minimizes the cost and satisfies all the covering

constraints — every row either has a 1 in the entry corresponding to a selected column or a 0

in the corresponding unselected column. The cost of a cover is the total cost of the selected

columns. The main purpose of this covering is to generate complex instructions in the ISA from

the program DAG that may not be possible by transforming to expression trees.

• The program graph is then modified into a new graph based on the obtained covering to reflect

the complex instructions that have been generated.

• Additional clauses and costs corresponding to the irregular data path constraints, such as register

class constraints of the selected instructions, and the consequent data transfer constraints and

costs are added.

• A new binate covering of the modified graph using the new set of clauses is then obtained. The

two-phase approach is used to contain the size of the code generation problem by solving for

a smaller number of clauses.

A two-phase linear programming based method was developed by Leupers and Marwedel for

DSPs with complex instructions [27, 29]. In the first phase, a tree-pattern matcher is used to obtain

a cover on expression trees. In the second phase, complex instructions, which include a set of

operations that can be issued in parallel, are generated from the cover (i.e., code scheduling is

performed using linear programming). A constraint logic programming based code selection tech-

nique was developed by Leupers and Bashford for DSPs and media processors [24]. This technique

addresses two potential drawbacks of tree-based methods. The first is that splitting DAGs into

trees can potentially prevent generation of chained operations. For example, a multiply-accumulate

operation cannot be generated if the result of the multiply is used by multiple operations, and

covering expression trees with operation patterns does not take into account the available ILP in

the ISA. Hence, the instruction selection algorithm takes the data flow graphs as input, keeps

track of the set of all alternatives (both operation and instruction patterns that are possible) and

then uses constraint logic programming to arrive at a cover. In addition, the authors also incorpo-

rate support for single instruction multiple data (SIMD)-style operations where a SIMD operation

is essentially multiple-independent operations operating on independent virtual subregisters of a

register.
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In CodeSyn, Paulin et al. use a hierarchical treelike representation of the operations in the ISA to

cover a control and data flow graph (CDFG) [39, 40]. If an operation in the tree does not match, then

the search space for the matching patterns is reduced by pruning the hierarchical tree at the operation

node. Once all the matching tree patterns are found, dynamic programming is used to select the cover

of the CDFG.

Van Praet et al. use their instruction set graph (ISG) model of the target architecture, along with the

control and data flow graph representation of the program in a branch-and-bound-based instruction

selection algorithm in the CHESS compiler [22, 44]. The ISG is a mixed model of structural and

behavioral models that captures the connectivity, ILP and constraints of the target processor. CHESS

also performs instruction selection on the program DAG by covering the DAG with patterns called

bundles. Bundles are partial instructions in the target processor that are generated dynamically for

a DAG from the ISG as and when required. This is a key difference between other techniques that

statically determine all possible bundles. Initially nodes in the DAG may be covered by more than

one bundle that is then reduced to the minimum number of bundles required to cover the DAG by a

branch and bound strategy.

In addition, there are also systems that solve multiple code generation problems in a combined

manner. Hanono and Devadas provide a branch-and bound-based solution for performing instruction

selection, and partial register allocation in a parallelism aware manner on DAGs [18]. At the core of

this method is the split-node DAG representation of the program DAG. The split-node DAG is used

to represent the program DAG with the set of all alternatives available for the nodes in the program

DAG along with the corresponding data transfers. The algorithm then searches for a low-cost solution

with the maximal parallelism among nodes in the split-node DAG while at the same time looking

for the minimal number of instructions that cover the program DAG, on which graph coloring based

register allocation is then performed. The valid operations, instructions and various constraints of

the ISA are represented using the ISDL description.

Novack et al. developed the mutation scheduling framework, which is a unified method to perform

instruction selection, register allocation and scheduling [36, 37]. This is achieved by defining a

mutation set for each expression generating a value. The mutation set keeps track of all the possible

machine-dependent methods of implementing an expression and this set is dynamically updated as

scheduling is performed. For example, the references to a value depend on the register or memory

assigned to it and the expression that records this information is added into the corresponding mutation

set. During scheduling, an expression used to implement the corresponding value may be changed

to better adapt to the processor resource constraints by replacing it with another expression in the

mutation set.

Wilson et al. provide a linear programming-based integrated solution that performs instruction

selection, register allocation and code scheduling on a DFG [62] and Wess provides another code

generation technique based on trellis diagrams, an alternate form of representing instructions [60].

For more work in code generation, we refer readers to [8, 11, 19, 21, 30, 35, 43, 45, 48, 52].

16.5.2 Offset Assignment Problem

As stated in Section 16.2, DSPs provide special ARs, various addressing modes and address

generation units. The address generation units are used by auto increment or auto decrement

arithmetic operations, which operate on ARs used in memory accesses. The offset assignment (OA)

problem addresses the issue of finding an ordering of variables within a memory bank that can reduce

the amount of address computation code to a minimum by optimally utilizing the auto increment

and auto decrement feature. This is shown in the example in Figure 16.10 taken from [32, 55].

Figure 16.10(b) and 16.10(d) shows the simple OA (SOA) optimized code sequence and the SOA

unoptimized code sequence, respectively, for the piece of code in Figure 16.9(a). There are five

additional address modification operations that are needed by the unoptimized version that places
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FIGURE 16.9 (a) Code sequence; (b) access sequence; (c) access graph [32, 55].

FIGURE 16.10 (a) Optimized memory placement; (b) optimized code sequence; (c) unoptimized memory

placement; (d) unoptimized code sequence.

variables in the order in which they are accessed in the code. Whereas simple offset assignment

(SOA) addresses the offset assignment problem with one AR and increments and decrements by 1,

the multiple AR and the l increment and decrement variant are addressed by general offset assignment

(GOA) and l-SOA, respectively.
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The following sequence of steps summarizes the work done by Liao et al. to solve the SOA

problem [32] at the basic block level:

• For the sequence of arithmetic computations shown in Figure 16.9(a), the first step in SOA is

to construct the access sequence shown in Figure 16.9(b). This is done by adding the source

variables in each operation, from left to right, to the access sequence followed by the destination

operand to the access.

• The next step is the construction of the access graph shown in Figure 16.9(c). Each vertex in this

graph corresponds to a variable in the access sequence. An edge with weight w exists between

two vertices if and only if the corresponding two variables are adjacent to each other w times

in the access sequence.

• From the access graph, the cost of an assignment is equal to the sum of the weights of all edges

connecting pairs of vertices that are not assigned adjacent locations in memory. Hence, the

variables should be assigned memory locations in such a way that the sum of the weights of all

edges connecting variables not assigned contiguous locations in memory is minimized. Liao

et al. [32] have shown that this problem is equivalent to finding the maximum-weighted path

covering (MWPC) of the access graph [32]. Because MWPC is NP hard, heuristics are used to

find a good assignment of variables to memory locations. In Figure 16.9(c), the dark edges form

an MWPC of the access graph with a cost of 4. Figure 16.10(a) shows the memory placement

using the SOA path cover shown in Figure 16.9(c) and the consequent pseudo-assembly for

a data path like the one shown in Figure 16.8(a). Additional optimizations such as memory

propagation can be applied to the pseudo-assembly to prevent some unnecessary loads and

stores. The heuristic given by Liao to find the MWPC is a greedy approach that looks at the

edges in the access graph in decreasing order of weight, and adds an edge to the cover if it does

not form a cycle with the edges already in the cover and if it does not increase the degree of a

node in the cover to more than two.

• A heuristic to solve the general offset assignment problem with k address registers based on

the simple offset assignment problem was also provided by Liao. This heuristic recursively

partitions the accessed variables into two partitions, solves the simple assignment problem on

each partition and then decides to either partition further or return the current partition based

on the costs of each assignment. The total number of partitions generated is dependent on the

number of address registers k in the architecture.

In the presence of control flow, the exact access sequence in a procedure can be known only during

execution time. To perform offset assignment optimization at the procedure level instead of at the

basic block level, they merge the access graphs of the basic blocks with equal weighting and the

variables connected by control flow edges. After including the increments and decrements for each

basic block, a separate phase decides whether to include an increment or a decrement across basic

blocks.

Bartley was the first to address the SOA problem [7]. Leupers and Marwedel have also addressed

the SOA problem [28]. Their work includes an improvement to the MWPC heuristic by introducing

a tie-breaking function when the MWPC heuristic is faced with edges of equal weights and another

heuristic to partition the vertices of the access graph for the GOA problem.

Sudarsanam, Liao and Devadas address the issue of l-SOA problem that corresponds to the case

with one AR and an offset of +/− l and the l, k-GOA problem with k address registers and a maximum

offset of l [54]. In this work, the authors note that with an offset of more than 1, some of the edges

in the access graph but not in the MWPC cover do not contribute to the cost of the cover. To identify

these edges, called induced edges, they define an induced (l + 1) clique of a cover C of the access

graph G. Intuitively, if there is a path P of length l in G, then using the free 1-l autoincrement and

decrement feature, it is possible to cover every edge that is a part of the complete subgraph induced
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by the (l + 1) vertices of the path P in cover C on G. Hence, edges in G that are induced by a cover

C are called induced edges; the sum of the weights of all edges in C and the edges induced by C is

defined as the induced weight; and the sum of the weights of all edges that are in G, but are neither

in C nor in the induced edges of C is defined as the l-induced cost of C. The l-SOA problem now

reduces to finding a cover of an access graph G with the minimum l-induced cost. They define the

(k, l)-GOA problem as given an access sequence L for a set of variables V , partition V into at most

k partitions so that the total sum of the induced cost of each l-SOA and the associated setup costs is

minimized.

Other work in offset assignment includes [26, 57, 61].

16.5.3 Reference Allocation

The DSP compiler phases of memory bank allocation and register allocation together constitute

reference allocation. Memory bank allocation is performed to exploit the ILP between arithmetic

operations and memory operations, and between memory operations themselves. The register alloca-

tor is similar to the general-purpose register allocator that decides which variables should be assigned

to registers and which register each variable should be assigned to. As described in Section 16.3,

DSPs can potentially have numerous operand and operation constraints that directly affect reference

allocation. A general technique developed by Sudarsanam and Malik for reference allocation is

presented here [55]. This is a simulated annealing-based technique that simultaneously performs

memory bank allocation and register allocation phases while taking into account various constraints

similar to those described in Section 16.3. The assumptions made by this technique include statically

allocating all static and global variables to one memory bank and only compiling applications that

are nonrecursive in nature. Also, the reference allocation technique described is performed after code

compaction, or scheduling.

The first step involved in the algorithm is to generate the constraint graph. The constraint graph

has a vertex for each symbolic register and variable. The problem of reference allocation is then

transformed to a graph-labeling problem where every vertex representing a symbolic register must

be labeled with a physical register and every vertex representing a variable must be labeled with a

memory bank. The different types of constraint-weighted edges, where the weight corresponds to

the penalty of not satisfying the constraint, are:

• A red edge is added between two symbolic registers if and only if they are simultaneously

live [2]. The only exception to adding this edge is between two symbolic registers that are

accessed in the same instruction by two memory operations. In this case, another type of edge

ensures correctness. This edge ensures that the two symbolic registers connected by the edge

are not assigned the same physical register. The cost of this edge is the amount of spill code

that needs to be inserted if this constraint is violated. In their algorithm, this cost is assumed

to be a large constant that reduces the chances of assigning two symbolic registers the same

architectural register significantly. Hence, they do not compute the spill cost for each symbolic

register.

• A green edge is added between two symbolic registers accessed by parallel memory operations to

take into account any constraints that may exist between them. For example, for the instruction:

MOV vari, regj MOV vark regl

a green edge would be added in the constraint graph between the vertices corresponding to

regj and regl to take care of any register constraints between the two symbolic registers.

If a restriction exists on the two variables vari and vark concerning the memory banks to

which they can be allocated, then this is captured by a pointer to vari and vark from regj and

regl , respectively. The cost of this edge is the statically estimated instruction execution count
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because the two operations have to be issued in separate instructions if this constraint is not

satisfied.

• Similar to green edges, blue, brown, yellow edges are added to the constraint graph with appro-

priate costs to represent constraints between parallel memory and register transfer operations.

Blue edges are added for instructions involving a register transfer and a load operation. Brown

edges are added for instructions involving an immediate load and a register transfer. Yellow

edges are added for instructions involving a register transfer and a store operation.

• A black edge is added to represent operand constraints within an operation. These edges are

added between symbolic registers and global vertices, which correspond to the register set of

the DSP architecture. A black edge prevents the assignment of a symbolic register to the archi-

tectural register that it connects, due to the encodings of the ISA. Each black edge has cost ∞

because an unsatisfied black edge constraint is not supported by the hardware. For example, the

accumulator cannot be a destination operand of load operations in the processor data path shown

in Figure 16.9(a) and hence black edges would be added between symbolic registers representing

the destination operands of load operations and the global vertex representing the accumulator.

Once the constraint graph has been constructed, the reference allocation algorithm uses simulated

annealing to arrive at a low-cost labeling of the constraint graph. As an observation, they found that a

greedy solution implemented to solve the constraint graph produced results that are very close to that

produced by the simulated annealing algorithm [55]. The problem, however, with this approach is

that for more varieties of constraints between operands, more complex formulations and additional

colored edges would be needed.

Saghir, Chow and Lee have developed an algorithm to exploit the dual memory banks in DSPs using

compaction-based partitioning and partial data duplication [49, 50]. In this method, an interference

graph is constructed for each basic block with the variables accessed in the program as vertices and

an edge is added between every pair of memory operations that can be legally performed, based

on both the ISA and the data flow in the program. The edges are labeled with a cost that signifies

the performance penalty if the corresponding two variables are not accessed simultaneously. The

interference graph is then partitioned into two sets corresponding to the two memory banks such

that the overall cost is minimum. During the interference graph construction, memory operations

accessing the same variables and locations may be marked for duplication; these are placed in both

memory banks and operations to preserve data integrity are inserted.

For more work on reference allocation, we refer the readers to [20, 41, 59].

16.5.4 Irregular Instruction Level Parallelism Constraints

Pressures to reduce code size and yet meet the power and execution time constraints of embedded

applications often force designers to design processors, such as DSPs, with irregular architectures.

As a consequence, DSPs are designed with small instruction widths and nonorthogonal opcode

and operand encodings. This poses several problems to a compiler as illustrated in Section 16.3.

In this section, we describe the artificial resource allocation (ARA) algorithm for the operation

ILP problem developed by Rajagopalan, Vachharajani and Malik [47]. Conventional VLIW com-

pilers use a reservation table-based scheduler that keeps track of the processor’s resource usage as

operations are scheduled. One of the highlights of the ARA algorithm is to allow compilers for

irregular DSP architectures to use processor independent table-based schedulers instead of writing

processor-specific schedulers. This is achieved by transforming the set of irregular operation ILP

constraints to a set of artificial regular constraints that can subsequently be used by conventional

VLIW schedulers.
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The ARA algorithm takes as input the set of all possible combinations of operations that can be

issued in parallel, and produces as output, an augmented resource usage of the MD such that the

following constraints are satisfied:

Constraint 1: Every pair of operations that cannot be issued in parallel must share an artificial

resource.

Constraint 2: Every pair of operations that can be issued in parallel must not share a resource.

Constraint 3: The total number of artificial resources generated must be minimum. This condition

is used to reduce the size of the reservation table and potentially the scheduler time.

The ARA algorithm is explained next with an example from the Fujitsu Hiperion DSP ISA, as

shown in Figure 16.11 taken from [46].

• The first step of ARA algorithm is construction of a Compatibility graph G. A vertex in

the compatibility graph corresponds to an operation in the ISA. An edge exists between two

vertices only if the two corresponding operations can be performed in parallel. For example, in

Figure 16.11 there are five vertices in the compatibility graph, one each for ADD, Shift, Multiply

and two Loads. The parallel combinations shown in the right of Figure 16.11 are captured by

the straight-line edges in the compatibility graph.

• The complement G′ of the compatibility graph shown in dotted lines in Figure 16.11 is then

constructed. An edge between two vertices in G′ implies that the two operations cannot be

performed in parallel. An immediate solution that follows is to assign an artificial resource

to each edge in G′. Because this solution can cause the size of reservation table to grow

significantly, a better solution is obtained in the next step.

• The minimum number of artificial resources needed to satisfy the operation ILP constraints is

obtained by performing the minimum edge clique cover on G′ [47]. The problem of finding

the minimum edge clique cover on G′ is first converted to an equivalent problem of finding the

minimum vertex clique cover on graph G1. G1 is obtained from G′ as follows. A vertex in G1

corresponds to an edge in G′ and an edge exists between two vertices in G1 if and only if the

vertices connected by the corresponding edges in G′ form a clique. Hence, a vertex clique cover

of G1 identifies larger cliques in G′. This problem in turn is transformed to graph coloring [15]

on the complement of G1. In the Figure 16.11 example, 3 cliques C1, C2 and C3 are required

to obtain the minimum edge clique cover.

• The final step in the ARA algorithm translates the result of the minimum edge clique cover

algorithm into the resource usage section of the processor machine description.

The advantages of using this algorithm are that it is a highly retargetable solution to the operation

ILP problem and it helps avoid processor-specific schedulers when such irregular constraints exist.

Eichenberger and Davidson have provided techniques to compact the size of machine descrip-

tions [13] of general-purpose processors. Gyllenhaal and Hwu provided methods to optimize not

v1:ADD

(C1,C2)

v2: LOAD1

(C3)

v3: MPY (C1)

v4: LOAD2

(C2)

v5: SFT

(C1,C2)

Ops that can be issued
in parallel in this
example

SFT LOAD

ADD LOAD

MPY LOAD LOAD

FIGURE 16.11 ARA Algorithm applied to a subset of Hiperion ISA [46].
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only the size of the MDs but also the improvement of the efficiency of queries [17]. For more work

on MDs, we refer the readers to the chapter on machine descriptions.

16.5.5 Array Reference Allocation

The ISA of DSPs provides special address modifying instructions that update address registers

used by memory operations. Because many signal-processing applications contain kernels that

operate on arrays, one of the most important DSP optimizations is to assign ARs to array refer-

ences so that a majority of the address computation operations can be replaced by auto increment

and decrement address modifying operations that are free. This can significantly affect the static

code size and the dynamic performance of the assembly code because address computation for

successive memory operations is performed in parallel with current memory operations. In this

section, we describe the array reference allocation algorithm developed by Cintra and Araujo [10] and

Ottani et al. [38].

Global reference allocation (GRA) is defined as the problem of allocating ARs to array references

such that the number of simultaneously live ARs is kept below the maximum number of such registers

available in the processor, and the number of instructions required to update them is minimized. The

local version of this problem, called local reference allocation (LRA), has all references restricted

to basic block boundaries. There are known efficient graph based solutions for LRA [16, 25]. Araujo,

Sudarsanam and Malik proposed a solution for optimizing array references within loops based on an

index graph structure [5]. The index graph is constructed as follows. A vertex exists for each array

access in the loop. An edge exists between two accesses only if the indexing distance between the

two accesses is less than the limit of the auto increment and decrement limit in hardware. The array

reference allocation problem then deals with finding the disjoint path cycle cover that minimizes

the number of paths and cycles. This is similar to the offset assignment algorithm explained in

Section 16.5.2.

Whereas general-purpose register allocation concerns itself with allocating a fixed set of general-

purpose registers to a potentially much larger set of virtual registers in the program, reference

allocation pertains to assigning a fixed set of address registers to the various memory access references

in the program. When two virtual registers are assigned the same general register, the allocator’s

responsibility is to insert the appropriate spill (store to memory) code and fill code (load from

memory). Similarly, when reference allocation combines two references using a single AR, it is the

reference allocator’s responsibility to insert appropriate update operations.

We now describe the GRA algorithm developed by Cintra and Araujo [10] called live range growth

(LRG) to assign ARs to array references:

• The set of array reference ranges is first initialized to all the independent array references in

the program.

• The next step involves reducing the number of array reference ranges in the program to the

number of ARs in the processor. This involves combining array reference ranges and at the same

time minimizing the number of reference update operations. To quantify the cost of combining

reference ranges, the notion of an indexing distance is defined as follows:

Definition 16.1. Let a and b be array references and s the increment of the loop containing these

references. Let index(a) be a function that returns the subscript expression of reference a. The

indexing distance between a and b is the positive integer:

d(a, b) =

{

|index(b) − index(a)| if a < b

|index(b) − index(a) + s| if a > b

where a < b (a > b) if a (b) precedes b (a) in the schedule order.



Retargetable Very Long Instruction Word Compiler Framework for Digital Signal Processors 625

FIGURE 16.12 (a) Two array reference live ranges R, S; (b) after merging live ranges R and S into a single

live range [46].

An update operation is required when combining two reference ranges whenever the indexing

distance is greater (lesser) than the maximum (minimum) allowed automatic increment (decrement)

value. Hence, the cost of combining two ranges is the number of update instructions that needs to

be inserted. This is shown in the example in Figure 16.12(b) taken from [46] where the two live

ranges R and S in Figure 16.12(a), with an indexing distance of 1, have been merged into a single

live range. To maintain correctness, necessary AR update operations have been inserted both within

basic blocks and along the appropriate control flow edges.

To facilitate the computation of the indexing distances, an important requirement is that the

references in the control flow graph are in single reference form [10], a variation of static single

assignment (SSA) form [12].

Although GRA is a typical DSP optimization, it is implemented along with machine-independent

optimizations. Actually, it is performed before most of the classical optimizations. This is because

techniques such as common subexpression elimination (CSE) may destroy some opportunities for

applying GRA.

Leupers, Basu and Marwedel have proposed an optimal algorithm for AR allocation to array

references in loops [25]. Liem, Paulin and Jerraya have developed an array reference analysis tool

that takes, as input, the C program with array references and the address resources of the hardware,

and produces an equivalent C program output in which the array references have been converted to

optimized pointer references for the given hardware [33].

16.5.6 Addressing Modes

16.5.6.1 Paged Absolute Addressing

A consequence of reducing instruction width to reduce static code size, as noted in Sections 16.2

and 16.5.4, is that memory operations using absolute addressing mode (i.e., using physical address

of memory location) to access data have to be encoded in more than one instruction word. To

overcome this extra word penalty and potentially an extra cycle penalty, architectures such as the

TI TMS320C25 [58] feature a paged absolute addressing mode. In these architectures, a single

data memory space is partitioned into N nonoverlapping pages numbered 0 through N − 1 and

a special page pointer register is dedicated to storing the ordinal of the page that is currently
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accessed. The absolute address can then be specified by loading the page pointer register with

the appropriate page number and specifying the offset within the page in the memory operation.

This can potentially save instruction memory words and reduce execution time for a sequence

of memory operations accessing the same page. In addition, because a machine register is used

instead of ARs or general-purpose registers, a better register assignment of the program code

is also possible. Because DSP programs are nonrecursive in nature, the automatic variables are

statically allocated in memory to exploit absolute addressing and relieve ARs. In this section, we

describe some optimizations developed by Sudarsanam et al. to exploit absolute paged addressing

modes [56].

The LDPK operation is used in the TI TMS320C25 DSP to load the page pointer register. To

justify the use of absolute addressing for automatic variables, the LDPK operation overhead should

be minimum. Hence, this algorithm tries to reduce the number of LDPK operations using data flow

analysis [2]. The main steps in this algorithm are as follows:

• Assuming that code is generated on a per basic block basis, the algorithm conservatively assumes

that the first operation to use absolute addressing in each basic block should be preceded by an

LDPK operation.

• Another conservative assumption is that the value of the page pointer register is not preserved

across procedure calls and hence must be restored after each procedure call.

• An LDPK operation can be suppressed before an operation using absolute addressing if the

new value of the page pointer register is the same as the current value of the page pointer

register.

• By using data flow analysis [2] on the assembly code, the set of unnecessary LDPK operations

are determined across basic blocks. For each basic block B and a page pointer register DP, the

data flow equations and the variables used by this optimization are:

• IN(B): value of DP at the entry of B.

• OUT(B): value of DP at the exit of B.

• LAST(B): ordinal of the last referenced page in B.

• While traversing B, LAST(B) is assigned the value UNKNOWN after a procedure call and

prior to an LDPK operation.

• LAST(B) is assigned the ordinal of the last LDPK operation prior to a procedure call while

traversing B.

• Finally, LAST(B) is assigned PROPAGATE if neither an LDPK operation nor a procedure

call is encountered after the traversal of B.

• While (OUT values have changed) {

for each basic block B {

IN(B) =
⋂

OUT(P) for all P, predecessor of B;

if (LAST(B) == PROPAGATE)

OUT(B) = IN(B);

else

OUT(B) = LAST(B);

}

}

• After computing the data flow variables for each basic block, if the first LDPK operation of a

basic block B is not preceded by a procedure call, then it can be removed if the ordinal of the

LDPK operation is the same as IN(B).
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An extension of this algorithm for interprocedural optimization was also provided by Sudarsanam

et al. [56]. Lin provides a simple postpass algorithm that removes redundant LDPK instructions

within basic blocks, assuming that an LDPK is generated for each access of a statically allocated

variable [34].

16.6 Summary and Conclusions

DSPs are a significant fraction of the processor market today and, in particular, the low-cost embedded

DSPs find themselves in a wide variety of products and applications of daily use. Hence, it is important

not only to design the necessary tools to program these processors but also to develop tools that can

help in an automatic cooperative synthesis of both the architecture and the associated software tool

set for a given set of applications. A first step in this direction is the design of a highly reusable

and retargetable compiler for DSPs. In this chapter, we first classified DSP architectures into two

classes: FOW DSPs and VOW DSPs. Although DSPs in the former category are more regular with

orthogonal instruction sets, the ones in the latter category are the low-end processors with highly

optimized irregular architectures. VOW DSPs are also more cost sensitive, require special algorithms

to exploit their hardware features and thus are the focus of this chapter. Sections 16.2 and 16.3 explain

the consequences of a VOW-based design and point out the nature of constraints that a DSP compiler

must solve. In Section 16.4, retargetable compilation is classified into three categories: automatic

retargetability, user retargetability and developer retargetability depending on the following criteria,

namely, the level of automation, the level of user interaction in retargeting and the level of architecture

coverage provided by the compiler framework. Retargetability is a key factor in design automation

and reduction of time to market. A potential approach for retargetable compiler development is also

presented along with some qualitative measures.

Finally, in Section 16.5, we discuss some DSP architecture-specific issues that a compiler

framework developer must solve to achieve a high level of retargetability and good efficiency. We

have presented some of the common DSP optimizations that have been developed. In addition to the

architecture constraints described, new features are available such as media operations that usually

pack multiple identical operations into a single operation operating on smaller bit-width operands.

Hence, DSP compiler frameworks also need to be extensible in that it should be easy to add new

architectural features and new algorithms to exploit such features to the framework.

References

[1] A. Aho, M. Ganapathi and S. Tjiang, Code generation using tree matching and dynamic

programming, ACM Trans. Programming Languages Syst., 11(4), 491–516, October 1989.

[2] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-

Wesley, Reading, MA, 1988.

[3] G. Araujo, Code Generation Algorithms for Digital Signal Processors, Ph.D. thesis, Princeton

University, Princeton, NJ, 1997.

[4] G. Araujo and S. Malik, Code generation for fixed-point DSPs, ACM Trans. Design Automation

Electron. Syst., 3(2), 136–161, April 1998.

[5] G. Araujo, A. Sudarsanam and S. Malik, Instruction Set Design and Optimizations for Address

Computation in DSP Processors, in 9th International Symposium on Systems Synthesis, IEEE,

November 1996, pp. 31–37.

[6] D.I. August, D.A. Connors, S.A. Mahlke, J.W. Sias, K.M. Crozier, B.-C. Cheng, P.R. Eaton,

Q.B. Olaniran and W.W. Hwu, Integrated Predicated and Speculative Execution in the IMPACT

EPIC Architecture, in Proceedings of the 25th International Symposium on Computer Architecture,

July 1998.



628 The Compiler Design Handbook: Optimizations and Machine Code Generation

[7] D.H. Bartley, Optimizing stack frame accesses for processors with restricted addressing modes,

Software Pract. Exp., 22(2), February 1992.

[8] S.Bashford and R. Leupers, Phase-coupled mapping of data flow graphs to irregular data paths,

Design Automation Embedded Syst., 4(2/3), 1999.

[9] J.L. Bruno and R. Sethi, Code generation for one-register machine, J. ACM, 23(3), 502–510,

July 1976.

[10] M. Cintra and G. Araujo, Array Reference Allocation Using SSA-Form and Live Range Growth, in

Proceedings of the ACM SIGPLAN LCTES 2000, June 2000, pp. 26–33.

[11] C. Liem, Retargetable Code Generation for Digital Signal Processors, Kluwer Academic,

Dordrecht, 1997.

[12] R. Cytron, J. Ferrante, B. Rosen, M. Wegman and F. Zadeck, An Efficient Method of Computing

Static Single Assignment Form, in Proceedings of the ACM POPL ’89, 1989, pp. 23–25.

[13] A.E. Eichenberger and E.S. Davidson, A Reduced Multipipeline Machine Description that Preserves

Scheduling Constraints, in Proceedings of the Conference on Programming Language Design and

Implementation, 1996.

[14] C. Fraser, D. Hanson and T. Proebsting, Engineering a simple, efficient code-generator generator,

ACM Lett. Programming Languages Syst., 1(3), 213–226, September 1992.

[15] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H. Freeman, San Francisco, 1979.

[16] C. Gebotys, DSP Address Optimization Using a Minimum Cost Circulation Technique, in

Proceedings of the International Conference on Computer-Aided Design, IEEE, November

1997, pp. 100–103.

[17] J.C. Gyllenhaal and W.W. Hwu, Optimization of Machine Description for Efficient Use, in

Proceedings of the 29th International Symposium on Microarchitecture, 1996.

[18] S. Hanono and S. Devadas, Instruction Selection, Resource Allocation, and Scheduling in the

AVIV Retargetable Code Generator, in Proceedings of the 35th Design Automation Conference,

June 1998, pp. 510–515.

[19] R. Hartmann, Combined Scheduling and Data Routing for Programmable ASIC Systems, in

European Conference on Design Automation (EDAC), 1992, pp. 486–490.

[20] D.J. Kolson, A. Nicolau, N. Dutt and K. Kennedy, Optimal Register Assignment to Loops for

Embedded Code Generation, in Proceedings of 8th International Symposium on System Synthesis,

1995.

[21] D. Lanneer, M. Cornero, G. Goossens and H.D. Man, Data Routing: A Paradigm for Efficient Data-

Path Synthesis and Code Generation, in 7th International Symposium on High Level Synthesis,

1994, pp. 17–21.

[22] D. Lanneer, J.Van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen and G. Goossens, CHESS:

Retargetable code generation for embedded DSP processors, in Code Generation for Embedded

Processors, Kluwer Academic Dordrecht, 1995, pp. 85–102.

[23] P. Lapsley, J. Bier, A. Shoham and E.A. Lee, DSP Processor Fundamentals, IEEE Press,

Washington, 1997.

[24] R. Leupers and S. Bashford, Graph based code selection techniques for embedded processors, ACM

Trans. Design Automation Electron. Syst., 5(4), October 2000.

[25] R. Leupers, A. Basu and P. Marwedel, Optimized Array Index Computation in DSP Programs, in

Proceedings of the ASP-DAC, 1998.

[26] R. Leupers and F. David, A Uniform Optimization Technique for Offset Assignment Problems, in

International Symposium on System Synthesis, 1998.

[27] R. Leupers and P. Marwedel, Time-Constrained Code Compaction for DSPs, in Proceedings of the

8th International Symposium on System Synthesis, September 1995.

[28] R. Leupers and P. Marwedel, Algorithms for Address Assignment in DSP Code Generation, in

Proceedings of International Conference on Comptuer Aided Design, 1996.



Retargetable Very Long Instruction Word Compiler Framework for Digital Signal Processors 629

[29] R. Leupers and P. Marwedel, Instruction Selection for Embedded DSPs with Complex Instructions,

in European Design and Automation Conference (EURO-DAC), September 1996.

[30] R. Leupers and P. Marwedel, Retargetable code generation based on structural processor descrip-

tions, Design Automation Embedded Syst., 3(1), 1–36, January 1998.

[31] S. Liao, S. Devadas, K. Keutzer and S. Tjiang, Instruction Selection Using Binate Covering for

Code Size Optimization, in Proceedings International Conference on Computer Aided Design,

1995, pp. 393–399.

[32] S. Liao, S. Devadas, K. Keutzer, S. Tjiang and A. Wang, Storage assignment to decrease code size,

ACM Trans. Programming Languages Syst., 18, 235–253, May 1996.

[33] C. Liem, P. Paulin and A. Jerraya, Address Calculation for Retargetable Compilation and Exploration

of Instruction-Set Architectures, in Proceedings of the 33rd Design Automation Conference, 1996.

[34] W. Lin, An Optimizing Compiler for the TMS320C25 DSP Processor, Master’s thesis, University

of Toronoto, Canada, 1995.

[35] P. Marwedel and G. Goossens, Eds., Code Generation for Embedded Processors, Kluwer

Academic, Dordrecht, 1995.

[36] S. Novack and A. Nicolau, Mutation Scheduling: A Unified Approach to Compiling for Fine-Grain

Parallelism, in Languages and Compilers for Parallel Computing, 1994, pp. 16–30.

[37] S. Novack, A. Nicolau and N. Dutt, A unified code generation approach using mutation scheduling,

in Code Generation for Embedded Processors, Kluwer Academic, Dordrecht, 1995, pp. 65–84.

[38] G. Ottoni, S. Rigo, G. Araujo, S. Rajagopalan and S. Malik, Optimal Live Range Merge for

Address Register Allocation in Embedded Programs, in Proceedings of the CCO1 — International

Conference on Compiler Construction, April 2001.

[39] P. Paulin, C. Liem, T. May and S. Sutarwala, CodeSyn: A Re-targetable Code Synthesis System, in

Proceedings of the 7th International High-Level Synthesis Workshop, 1994.

[40] P. Paulin, C. Liem, T. May and S. Sutarwala, Flexware: A flexible firmware development environ-

ment for embedded sytems, in Code Generation for Embedded Processors, Kluwer Academic,

Dordrecht, 1995, pp. 65–84.

[41] D. Powell, E. Lee and W. Newman, Direct synthesis of optimized DSP assembly code from signal

flow block diagrams, in Proceedings of the International Conference on Acoustics, Speech and

Signal Processing, Vol. 5, 1992, pp. 553–556.

[42] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Warter and W.W. Hwu, IMPACT: An Architectural

Framework for Multiple-Instruction-Issue Processors, in Proceedings of the 18th International

Symposium on Computer Architecture, May 1991, pp. 266–275; www.crhc.uiuc.edu/IMPACT.

[43] J.V. Praet, G. Goossens, D. Lanneer and H.D. Man, Instruction Set Definition and Instruction

Selection for ASIPs, in 7th International Symposium on High Level Synthesis, 1994, pp. 11–16.

[44] J.V. Praet, D. Lanneer, W. Geurts and G. Goossens, Processor modeling and code selection for

retargetable compilation, ACM Trans. Design Automation Electron. Syst., 6(2), 277–307, July

2001.

[45] J.V. Praet, D. Lanneer, G. Goossens and W.G.D. Man, A Graph Based Processor Model for

Retargetable Code Generation, in European Design and Test Conference, 1996.

[46] A. Rajagopalan, S.P. Rajan, S. Malik, S. Rigo, G. Araujo and K. Takayama, A retargetable VLIW

compiler framework for DSPs with instruction-level-parallelism, IEEE Trans. Comput. Aided

Design Integrated Circuits Syst., 20(11), 1319–1328, November 2001.

[47] S. Rajagopalan, M. Vachharajani and S. Malik, Handling Irregular ILP within Conventional VLIW

Schedulers Using Artificial Resource Constraints, in Proceedings of International Conference on

Compilers Architecture and Synthesis for Embedded Systems, November 2000.

[48] K. Rimey and P.N. Hilfinger, Lazy Data Routing and Greedy Scheduling for Application Specific

Signal Processors, in 21st Annual Workshop on Microprogramming and Microarchitecture

(MICRO-21), 1988, pp. 111–115.



630 The Compiler Design Handbook: Optimizations and Machine Code Generation

[49] M.A.R. Saghir, P. Chow and C.G. Lee, Automatic Data Partitioning for HLL DSP Compilers, in

Proceedings of the 6th International Conference on Signal Processing Applications and Technology,

October 1995, pp. 866–871.

[50] M.A.R. Saghir, P. Chow and C.G. Lee, Exploiting Dual Data-Memory Banks in Digital Signal

Processors, in Proceedings of the 7th International Conference on Architectural Support for

Programming Languages and Operating Systems, October 1996, pp. 134–243.

[51] R. Sethi, Complete register allocation problems, SIAM J. Comput., 4(3), 226–248, September 1975.

[52] M. Strik, J. van Meerbergen, A. Timmer and J. Jess, Efficient Code Generation for in-House DSP

Cores, in European Design and Test Conference, 1995, pp. 244–249.

[53] A. Sudarsanam, Code Generation Libraries for Retargetable Compilation for Embedded Digital

Signal Processors, Ph.D. thesis, Princeton University, Princeton, NJ, November 1998.

[54] A. Sudarsanam, S. Liao and S. Devadas, Analysis and Evaluation of Address Arithmetic Capabilities

in Custom DSP Architectures, in Proceedings of ACM/IEEE Design Automation Conference, 1997.

[55] A. Sudarsanam and S. Malik, Memory Bank and Register Allocation in Software Synthesis for

ASIPs, in Proceedings of International Conference on Computer-Aided Design, 1995.

[56] A. Sudarsanam, S. Malik, S. Tjiang and S. Liao, Optimization of Embedded DSP Programs Using

Post-Pass Data-Flow Analysis, in Proceedings of 1997 International Conference on Acoustics,

Speech, and Signal Processing, 1997.

[57] N. Sugino, H. Miyazaki, S. Iimure and A. Nishihara, Improved Code Optimization Method

Utilizing Memory Addressing Operation and Its Application to DSP Compiler, in International

Symposium on Circuits and Systems, 1996.

[58] Texas Instruments, TMS320C2x User’s Guide, c edition, January 1993.

[59] B. Wess, Automatic Code Generation for Integrated Digital Signal Processors, in Proceedings of

the International Symposium on Circuits and Systems, 1991, pp. 33–36.

[60] B. Wess, Code generation based on trellis diagrams, in Code Generation for Embedded

Processors, Kluwer Academic, Dordrecht, 1995, pp. 188–202.

[61] B. Wess and M. Gotschlich, Constructing Memory Layouts for Address Generation Units

Supporting Offset 2 Access, in Proceedings of ICASSP, 1997.

[62] T. Wilson, G. Grewal, S. Henshall and D. Banerji, An ILP based approach to code generation, in

Code Generation for Embedded Processors, Kluwer Academic, Dordrecht, 1995, pp. 103–118.



17
Instruction Scheduling

R. Govindarajan
Indian Institute of Science

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

17.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
Definitions • Directed Acyclic Graph • Performance Met-
rics for Scheduling Methods

17.3 Instruction Scheduling for Reduced Instruction Set
Computing Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 637
Architecture Model • Simple Instruction Scheduling
Method • Combined Code Generation and Register Allo-
cation Method • Other Pipeline-Scheduling Methods

17.4 Basic Block Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Preliminaries • List-Scheduling Method • Operation
Scheduling Method • Optimal Instruction Scheduling
Method • Resource Usage Models • Case Studies

17.5 Global Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
Global Acyclic Scheduling • Cyclic Scheduling

17.6 Scheduling and Register Allocation . . . . . . . . . . . . . . . . 669
Phase-Ordering Issues • Integrated Methods • Phase Order-
ing in Out-of-Order Issue Processors

17.7 Recent Research in Instruction Scheduling . . . . . . . . 676
Instruction Scheduling for Application-Specific Processors
• Instruction Scheduling for Low Power

17.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

17.1 Introduction

Ever since the advent of reduced instruction set computers (RISC) [65, 113] and their pipelined

execution of instructions, instruction scheduling techniques have gained importance because they

rearrange instructions to “cover” the delay or latency that is required between an instruction and its

dependent successor. Without such reordering, pipelines would stall, resulting in wasted processor

cycles. Pipeline stalls would also occur while executing control transfer instructions, such as branch

and jump instructions. In architectures that support delayed branching, where the control transfers

are effected in a delayed manner [66], instruction reordering is again useful to cover the stall cycles

with useful instructions. Instruction scheduling can be limited to a single basic block — a region of

straight-line code with a single point of entry and a single point of exit, separated by decision points

and merge points [3, 71, 101] — or to multiple basic blocks. The former is referred as basic block

scheduling whereas the latter as global scheduling [3, 71, 101].
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A significant amount of research conducted in industry and academia has resulted in processors

that issue multiple instructions per cycle, and hence exploit instruction-level parallelism (ILP) [121].

Exploiting ILP has lent itself as a viable approach for providing continuously increasing perfor-

mance without having to rewrite applications. ILP processors have been classified into two broad

categories, namely, very long instruction word (VLIW) processors [31, 45, 126] and superscalar

processors [75, 135, 136] depending on whether the parallelism is exposed at compile time or at

runtime by dynamic instruction scheduling hardware. In VLIW machines, a compiler identifies

independent instructions and communicates it to the hardware by packing them in a single long

word instruction. At runtime, a long word instruction is fetched and decoded, and the independent

instructions in it are executed in parallel in the multiple functional units available in the VLIW

architecture. In a superscalar machine, on the other hand, a complex hardware identifies independent

instructions and issues them in parallel at runtime.

Multiple instruction issue per cycle has become a common feature in modern processors (see,

e.g., [69, 79, 106, 131, 156]). The success of ILP processors has placed even more pressure on

instruction scheduling methods, because exposing ILP is the key for the performance of ILP pro-

cessors. Instruction scheduling can be done by hardware at runtime [66, 136] or by software at

compile time [50, 64, 85, 121, 151]. In this discussion, we concentrate on compile-time instruction

scheduling methods. Such compile-time instruction scheduling is solely responsible for exposing

and exploiting the parallelism available in a program in a VLIW architecture. Thus, without the

instruction scheduler, the (early) VLIW processors could not have achieved an ILP of 7 to 14

operations that they are capable of issuing in a cycle [31, 126].

In superscalar processors, instruction scheduling hardware determines at runtime the independent

instructions that can be issued in parallel. However, the scope of the runtime scheduler is limited

to a narrow window of 16 or 32 instructions [136]. Hence, compile-time techniques may be needed

to expose parallelism beyond this window size. Further, in a certain class of superscalar processors,

namely, the in-order issue processors [66, 136], instructions are issued in program order. Hence,

when an instruction is stalled due to data dependence, instructions beyond the stalled one are also

stalled. Instruction scheduling can be beneficially applied for these in-order issue architectures to

rearrange instructions and hence exploit higher ILP. Thus, even superscalar processors can benefit

from the parallelism exposed by a compile-time scheduler.

Instruction scheduling methods for basic blocks may result in a moderate improvement (less than

5 to 10%) in performance, in terms of the execution time of a schedule, for simple pipelined RISC

architectures [64]. However the performance improvement achieved for multiple instruction issue

processors could be significant (more than 20 to 50%) [97]. Instruction scheduling beyond basic

blocks can achieve even higher performance improvement, ranging from 50 to 300% [71, 72, 95].

Instruction scheduling is typically performed after machine-independent optimizations, such as

copy propagation, common subexpression elimination, loop-invariant code motion, constant fold-

ing, dead-code elimination, strength reduction and control flow optimizations [3, 101]. Instruction

scheduling is performed either on the target machine assembly code or on a low-level code that is very

close to the machine assembly code. In certain implementations, instruction scheduling is performed

after register allocation — another important compiler optimization that determines which variables

are stored in registers and which remain in memory. When instruction scheduling follows register

allocation, it is referred to as the postpass scheduling approach [3, 101]. In the prepass scheduling or

prescheduling approach, instruction scheduling precedes register allocation. In prepass scheduling,

because register allocation is performed subsequently, any code introduced due to register spills is

not scheduled by the scheduler. Hence, in prepass scheduling, to handle the spill code, the instruction

scheduler may be invoked again after register allocation. Instruction scheduling and register phases

influence each other and hence the ordering between the two phases in a compiler is an important

issue. A number of methods integrate the two phases to produce efficient register allocated instruction

schedules [15, 18, 52, 100, 107, 117].
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Early work on instruction scheduling related it to the problem of code compaction in

microprogramming [44]. This relationship between microprogram compaction and instruction

scheduling has been beneficially used in local or basic block scheduling. In fact, as pointed out

in [121], this mindset remained as a serious obstacle to achieve good performance in global scheduling

(instruction scheduling beyond basic blocks) until trace scheduling [45] and other approaches were

proposed. These latter approaches minimize the execution time of the most likely trace or control path,

instead of obtaining a compact schedule. Further, the similarities between job shop scheduling [29]

and instruction scheduling was also well understood. Instruction scheduling borrows a number

of concepts and algorithms from scheduling theory. Many of the theoretical results in instruction

scheduling owe their origin to job scheduling.

The objective of this chapter is more to provide an overview of instruction scheduling methods

than to provide a comprehensive survey of all existing techniques. The following section presents

the necessary background. Simple scheduling methods for covering pipeline delays are discussed

in Section 17.3. Subsequently, we describe basic block instruction scheduling methods for VLIW

and superscalar processors in Section 17.4. Section 17.5 deals with global scheduling techniques.

In Section 17.6, phase-ordering issues relating to instruction scheduling and register allocation are

presented. Section 17.7 discusses recent research in instruction scheduling. Finally, we provide a

concluding summary in Section 17.8.

17.2 Background

In this section we review the relevant background. The following subsection presents a number of

definitions. In Section 17.2.2 we describe a representation for data dependences, used by instruction

scheduling methods, and its construction. Finally, we discuss various performance metrics for

instruction scheduling methods in Section 17.2.3.

Before we proceed further, let us clarify the use of various notations in the programming examples.

We use t1, t2, etc. to represent temporaries or symbolic registers, and r1, r2, etc. to represent

(logical) registers assigned to temporaries. Symbols, such as x, y or a, b, etc., represent variables

stored in memory locations.

17.2.1 Definitions

Two instructions i1 and i2 are said to be data dependent on each other if they share a common

operand (register or memory operand), and the shared operand appears as a destination operand1 in

at least one of the instructions [3, 71, 101]. Consider the following sequence of instructions:

i1: r1 ← load (r2)

i2: r3 ← r1+ 4

i3: r1 ← r4− r5

Instruction i2 has r1 as one of its source operands, which is written by i1. This dependence from

i1 to i2 is said to be a flow dependence, or true data dependence. Thus, in any legal execution of

the preceding sequence, the operand read of register r1 in instruction i2 must take place after the

1If the shared operand appears as a source operand in both instructions, then there is an input dependence
between the two instructions. Because an input dependence does not constrain the execution order, we do
not consider this any further in our discussion.
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result value of instruction i1 is written. The dependence between instructions i2 and i3 due to

register r1 is an antidependence. Here, instruction i3 must write the result value in r1 only after

i2 has read its operand from r1. Finally, there is an output dependence between instructions i1
and i3, where the order in which they write to the destination must be the same as the program order

(i.e., i1 before i3) for correct program behavior.

As mentioned earlier, a data dependence could also arise through a memory operand. Detecting

such a data dependence accurately at compile time is hard, especially if the memory operands are

accessed using indirect addressing modes. The problem becomes harder in the presence of memory

aliasing, where two or more variables point to the same memory location. As a consequence, a

conservative analysis of data dependence must assume a true dependence from each previous store

to every subsequent load instruction. For the same reason, there is an antidependence from each load

to every previous store instruction. Finally, an output dependence is from each store to all subsequent

stores.

Anti- and output dependences together are referred to as false dependences. These dependences

arise due to the reuse of the same register variable or memory location. By appropriately renaming the

destination register of i3 (i.e., using a different destination register, the anti- and output dependences

can be eliminated). If the dependences are analyzed before register allocation, then the code sequence

uses only temporaries. Because no limit exists on the number of temporaries that can be used,

anti- and output dependences on the temporaries do not normally occur. However, anti- and output

dependences on memory variables accessed through load and store operations can still occur.

A basic block is a region of straight-line code [3, 71, 101]. The execution control, also referred to

as control flow, enters a basic block at the beginning (i.e., the first instruction in the basic block), and

exits at the end (i.e., the last instruction). A control flow transfer or jump occurs from one program

point to another due to control transfer instructions such as branch, procedure call and return.

The control flow in a program is represented by a control flow graph whose nodes represent

basic blocks. An arc exists between two blocks if a control transfer between them is possible. An

instruction i is said to be control dependent on a conditional branch instruction b (or the predicate

associated with it), if the outcome of the conditional branch determines whether instruction i is

executed. For the sequence:

b1: if (t1 > 0) goto i2

i1: t2 ← t3+ t4

i2: t2 ← t3− t4

In the preceding sequence, instructions use temporaries, or symbolic registers. Instruction i1 is

executed only if the condition associated with b1 evaluates to false. Thus, instruction i1 is control

dependent on b1, whereas instruction i2, which is executed irrespective of what b1 evaluates to, is

control independent.

Finally, we informally define the notion of the live range of a variable or a temporary that is used

in register allocation. A variable or a temporary is said to be defined when it is assigned a value (i.e.,

when the variable or temporary is the destination of an instruction). A variable is said to be used

when it appears as a source operand in an instruction. The last use of a variable is a program point or

instruction where the variable is used for the last time in the program, or used for the last time before

it is redefined at a subsequent program point. The live range of a variable starts from its definition

point and ends at its last use. A variable is said to be live during its live range. For the example code

shown in Figure 17.1(a), the live ranges are depicted in Figure 17.1(b). The temporary t2 is defined

in instruction i2 and its last use is at i4. Thus, the live range of t2 is from i2 to i4. We follow the

convention that the live range ends just before the last use so that the last use instruction can reuse

the same register as destination register.
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t2

t1

t3

t4

t5

(a) Instruction Sequence (b) Live Ranges

i1 :  t1  <--  ld x;

i2 :  t2  <--  ld  i

i5 :  t5  <--  t3 * t4

i3 :  t3  <--  t2 - 4 

i4 :  t4  <--  t1 + t2

i6 :  x   <--  st t5 

FIGURE 17.1 Example of code sequence and live ranges.

When the live ranges of two variables do not overlap, they can share the same register. The number

of variables that are live simultaneously indicates the number of registers that would be required.

Informally, the number of simultaneously live variables is referred to as the register pressure at a

given program point. For our example, assuming that no other variable is live into this basic block,

the number of simultaneously live variables is 3 at instruction i3. When the number of available

registers is less than the number of simultaneously live variables, the register allocation phase decides

which variables or temporaries do not reside in registers. Load and store instructions are introduced,

respectively, to load these temporaries from memory when necessary and spill them to memory

locations subsequently. This is referred to as register spills and the load and store instructions are

referred to as spill code.

17.2.2 Directed Acyclic Graph

The data dependence among instructions in an instruction sequence can be represented by means of

a dependence graph. The nodes of the dependence graph represent the instructions and a directed

edge between a pair of nodes represents a data dependence. The dependence graph for instructions

in a basic block is acyclic. Such a dependence graph is termed as directed acyclic graph (DAG).

In a DAG, node v is said to be a successor (or immediate successor) of u, if an edge (u, v) exists.

Similarly, node u is the predecessor (or immediate predecessor) of node v if an edge (u, v) exists in

the DAG. We use the term descendents to refer to all nodes that can be reached from a node.

Next, let us discuss DAG construction for a basic block. A DAG can be constructed either in a

forward pass or in a backward pass of the basic block [137]. In a forward pass method, at each step, a

new node corresponding to an instruction in the sequence is added to the graph. By comparing against

all previous instructions, the dependences among the instructions are determined, and appropriate

dependence arcs between the corresponding nodes are added. This approach requires O(n2) steps,

where n is the number of instructions. The dependences among instructions can also be determined

using a table-building approach where a list of definitions and current uses are maintained [137].

The dependences checked for could be through general-purpose registers (or temporaries), memory

locations and special purpose registers such as condition code registers.

Consider the example code given in Figure 17.2(a). The DAG for this example code sequence is

shown in Figure 17.2(b). (Often a DAG is also drawn in a bottom-up manner [3]. A DAG drawn in this

manner is shown later in Figure 17.7.) Because this code uses temporaries instead of register values,

no anti- and output dependences occur through register variables or temporaries. The dependence
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FIGURE 17.2 Instruction sequence and its dependence graph.

arc from node i2 to i9 is due to antidependence on memory variable b. Because the dependences

due to memory locations could not be analyzed accurately (i.e., the memory references could not

be disambiguated) the antidependence arcs (i1, i8), (i1, i9) and (i2, i8) are also added. These

antidependence edges are represented as broken lines in Figure 17.2. Finally, in the absence of

memory disambiguation, also an output dependence exists from i8 to i9. The output dependence

arc is indicated by means of a dash-dot line.

Each arc (u, v) in the dependence graph is associated with a weight that is the execution latency

of u. In a DAG, a node that has no incoming arc is referred to as a source node. Similarly, a node

that has no outgoing arc is termed as a sink node. A DAG could have multiple source nodes and sink

nodes. In our example DAG, nodes i1 and i2 are source nodes and i8 and i9 are sink nodes. For

convenience, it is typical to add a fictitious source node, and edges from this node to every other

node in the DAG are introduced. This fictitious node is henceforth referred to as the source node in

the DAG. Similarly, there is a fictitious sink node, referred to as the sink node. Edges are added from

each node in the DAG to the sink node. A weight 0 is associated with each of these newly introduced

edges from the source node or to the sink node. To avoid clutter in Figure 17.2, we do not normally

show the fictitious source and sink nodes and the associated edges.

A path in a DAG is said to be a critical path if the sum of the weights associated with the arcs

in this path is (one of) the maximum among all paths. In our example, if the execution latency of

each instruction is 1 cycle, then the path involving nodes i1, i4, i6, i7 and i8 is a critical path.

Instructions in the critical path need to be given higher priority while scheduling, so that the execution

time of the schedule is reduced.

17.2.3 Performance Metrics for Scheduling Methods

Typically, the objective of an instruction scheduling method is to reduce the execution time of a

schedule, also referred to as the schedule length. Among the different scheduling methods, one

that achieves the shortest schedule length is said to have the best performance or the best quality

schedule. A schedule with the shortest schedule length is referred to as an optimal schedule (in terms

of schedule length). Note that schedule length or execution time of a schedule is a static measure,

because it refers to the execution of the schedule once. The overall execution time of a program is a

dynamic measure that is also of interest.

Because obtaining an optimal schedule is an NP-complete problem [86, 111], the time taken to

construct a schedule, referred to as the schedule time, is also an important performance metric.
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Scheduling methods that have unacceptably long schedule time could not be used in a production

compiler. Often, a scheduling method in a production compiler is expected to produce a reasonable

quality schedule for a basic block within a few milliseconds. However, in certain application domains,

such as digital signal processing (DSP), or in embedded applications, where the code is compiled once

(at design time) and run subsequently, the schedule time is less of a constraint; in these applications,

the compilation process itself may take several hours.

Apart from schedule length and schedule time, a performance metric that is of interest in an

instruction scheduling method is the register pressure of the constructed schedule. Because schedules

with higher register pressure are likely to incur more register spills, these spills, in turn, may increase

the schedule length. Thus, beside having a lower execution time, a schedule having lower register

pressure is often preferred. Many global scheduling methods, which schedule instructions beyond

basic blocks, often cause an increase in the code size. Hence, code size of the scheduled code

is another metric that is of interest when comparing different schedules. Code size is especially

important in embedded applications, where an increase in code size increases the on-chip program

memory; this, in turn, increases the system cost.

Finally, in embedded systems [114], power dissipated or energy consumed by the schedule is

critical. In fact, schedules that consume lower power without incurring significant performance

penalty, in terms of execution time, are often preferred in embedded applications.

The initial sections of this chapter focus on instruction scheduling methods for high performance,

where schedule length is the main performance metric. Subsequently, in Section 17.6 we discuss

issues relating to register pressure. Finally, in Section 17.7 we discuss instruction scheduling methods

for a specific application domain, namely, DSP, and for low-power embedded applications, where

code size, power and performance are important.

17.3 Instruction Scheduling for Reduced Instruction Set

Computing Architectures

In this section we discuss early instruction scheduling methods proposed for handling pipeline stalls.

First, we present a simple, generic architecture model and the need for instruction scheduling in

this architecture model. In Section 17.3.2, we present the instruction scheduling method due to

Gibbons and Muchnick [50] in detail. An alternative approach that combines register allocation and

scheduling for pipeline stalls is discussed in Section 17.3.3. Finally, a brief review of other instruction

scheduling methods is presented in Section 17.3.4.

17.3.1 Architecture Model

In a simple RISC architecture instructions are executed in a pipelined manner. Instruction execution

in a simple 5-stage RISC pipeline is shown in Figure 17.3. Briefly, the instruction fetch (IF) stage

is responsible for fetching instructions from memory. Instruction decode and operand fetch takes

place in the decode (ID) stage. In the execute stage (EX), the specified operation is performed; for

memory operations, such as load or store, address calculation takes place in this stage. The memory

stage (MEM) is for load and store operations. Finally, in the write-back (WB) stage the result of

an arithmetic instruction or the value loaded from memory for a load instruction is stored in the

destination register.

Let instruction (i+1) be dependent on instruction i (i.e., (i+1) reads the result produced by

instruction i. It can be seen that instruction i+1 may read the operand value (in ID stage) before

instruction i completes, that is, before i finishes the WB in the destination register. This dependence

should cause the execution of instruction(i+1) to stall until instructioniwrites the result, to ensure

correct program behavior. This is known as a data hazard [66].
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FIGURE 17.3 Instruction execution in a five-stage pipeline.

Another situation that may warrant stalls in the pipeline is due to control hazards [66]. If

instruction i is a control transfer instruction, such as a conditional branch, unconditional branch,

subroutine call or return instruction, then the subsequent instruction to be fetched may not be the

instruction immediately following i. The location, or target address, from where the next instruc-

tion has to be fetched is not known until instruction i completes execution. Thus, fetch, decode

and execution of subsequent instructions should be stalled until the control transfer instruction is

complete.

In either situation (i.e., when we have a data or control hazard), the pipeline needs to be stalled

to ensure correct program execution. The pipeline may include hardware support, referred to as

pipeline interlock, to detect such occurrences and stall the subsequent instructions appropriately [66].

With a pipeline interlock, the dependent instruction and all subsequent instructions are stalled for

a few cycles. The number of stall cycles required depends on the latency of instruction i and

pipeline implementation, as well as whether other hardware mechanisms, such as result forwarding

or bypassing, exist [66]. Pipeline forwarding reduces the number of stalls required. In a typical

pipeline only certain pairs of consecutive instructions cause such a stall, and typically these stalls are

for one or two cycles, except in cases where there is a dependency from either a multicycle operation

such as a floating point multiply or a memory load that causes a data cache miss.

In processors that do not have pipeline interlocks, for example, in the MIPS R2000 processor [76],

either the compiler or the programmer has to explicitly introduce no operation (NO-OP) instructions

to ensure correct program execution. Alternatively, either the compiler or the programmer could

reorder instructions, preserving data dependences, such that dependent instructions appear a few

instructions apart. Such reordering would be useful for architectures with or without pipeline interlock

hardware because it avoids pipeline stalls. It is easy to see how instruction reordering is useful in

avoiding stalls due to data dependence. For control hazard stalls, reordering is useful only if the

pipeline supports delayed branching, a common feature in most of the RISC pipelines [66]. Under

delayed branching, a few (typically one or two) instructions following the branch are executed

irrespective of the control transfer. The instructions following a branch or control transfer instruction

are said to occupy the branch delay slots. The instructions that appear in the delay slot must preserve

both control and data dependences. If such instructions cannot be found, the delay slots should be

filled with NO-OP instructions.

17.3.2 Simple Instruction Scheduling Method

Optimal instruction scheduling to minimize the number of stalls under arbitrary pipeline constraints

is known to be an NP-complete problem [63, 86, 111]. Several heuristic methods have been proposed

in the literature [50, 63, 64, 111, 118, 151]. All these methods deal with instruction reordering within
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a basic block. We shall discuss two of the methods (due to Gibbons and Muchnick [50] and Proebsting

and Fischer [118]) in detail and compare the rest.

The method proposed by Gibbons and Muchnick [50] assumes that (1) there must be 1 cycle stall

between a load and an immediately following dependent instruction (which uses the loaded value),

and (2) the architecture has hardware interlocks. Thus, the goal of the scheduling method is to reduce

the pipeline stalls as far as possible; it is neither mandatory to remove all the stalls nor necessary to

insert NO-OPS where stalls could not be avoided.

As mentioned earlier, the instruction reordering must preserve the data dependences present in the

original instruction sequence. The dependences among instructions in a basic block are represented

by means of a DAG.

Consider the evaluation of a simple statement

d = (a + b) · (a + b − c)

The code sequence to compute the expression on a RISC architecture is shown in Figure 17.4(a).

The DAG for the sequence of instructions is shown in Figure 17.4(b). The given instruction order

incurs two stall cycles: one at instruction i3 because i3 immediately follows a dependent load i2,

and another at instruction i5 that immediately follows the dependent load instruction i4. We shall

now discuss how the Gibbons and Muchnick method obtains an instruction schedule with reduced

number of stalls while preserving program dependences.

If instructions in the basic block are scheduled in the topological order of the DAG, then the

dependences are preserved. An instruction is said to be ready if all its immediate predecessors in the

DAG have been scheduled. Ready instructions are kept in a ReadyList. Among the instructions from

the ReadyList, the best instruction is selected based on the following two guidelines:

1. An instruction that will not interlock with the one just scheduled

2. An instruction that is most likely to cause interlock with the instructions after it

Whereas the first guideline tries to reduce the stalls, the second guideline attempts to schedule early

those instructions that may cause stalls, so that there is possibly a wider choice of instructions to

FIGURE 17.4 Instruction sequence for d = (a + b) · (a + b − c) and its DAG.
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Input: The DAG for the basic block
Output: The reordered instruction sequence.

Form the ReadyList of instructions by including all source nodes

while (there are instructions to be scheduled in the DAG) do

{

choose a ready instruction based on guidelines (1) and (2)

and also based on the static heuristics (1) -- (3);

schedule the instruction, and remove it from ReadyList;

add newly enabled instructions to ReadyList;

}

FIGURE 17.5 Gibbons–Muchnick scheduling method.

i1: r1 ← load a

i2: r2 ← load b

i4: r4 ← load c

i3: r3 ← r1 + r2

i5: r5 ← r3 − r4

i6: r6 ← r3 * r5

i7: d ← st r6

FIGURE 17.6 Schedule for the instruction sequence in Figure 17.4.

follow them. In addition to these guidelines, the method uses the following three heuristics, applied

in the specified order, to select the next instruction to be scheduled:

1. Choose an instruction that causes a stall with any of its immediate successors in the DAG; this

is somewhat similar to preceding guideline 2.

2. Choose an instruction that has the largest number of immediate successors in the DAG because

this can potentially make many successor instructions ready.

3. Schedule an instruction that is farthest from the sink node in the DAG. This enables the schedule

process to be balanced among various paths toward the sink node.

After scheduling each instruction, the list of ready instructions is updated including any successor

instruction that has now become ready. The scheduling process proceeds in this way until all instruc-

tions in the basic block are scheduled. The scheduling algorithm is shown in Figure 17.5. The schedule

generated by the preceding method for the example is depicted in Figure 17.6. This schedule incurs

no stalls, because none of the load instructions is immediately followed by a dependent (arithmetic)

instruction.

The worst-case complexity of the instruction scheduling method is O(n2). This happens in the

degenerated case when all remaining instructions are in the ready list at each time step.

17.3.3 Combined Code Generation and Register Allocation Method

Proebsting and Fischer propose a linear time code scheduling algorithm, which integrates code

scheduling and register allocation for a simple RISC architecture [118]. The scheduling method,

known as the delayed load scheduling (DLS) method, assumes that the leaf nodes are memory loads.

It produces optimal code, in terms of both the schedule length and the number of registers used, for

a restricted architecture when the delay stalls due to load instructions are one cycle and when the
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DAG is a tree. The method produces an efficient, near-optimal, schedule for the general case (i.e.,

when the delay is greater than one or when the dependence graph is a DAG).

The DLS method is an adaptation of the Sethi–Ullman (SU) method [3, 130] for generating code

(instruction sequence) for basic blocks from its DAG representation. To understand the DLS method,

first we shall explain the SU method with the help of an example. Unlike the RISC instruction

scheduling method discussed in Section 17.3.2, the SU and DLS methods are applied at the time

of code generation. These methods are applied to low-level intermediate form, typically the three-

address code, and can produce code sequence with register allocation. Hence, these methods can be

considered as integrated methods for code generation and register allocation.

17.3.3.1 Sethi–Ullman Method

The objective of the SU method is to generate a code sequence that either has minimum (sequence)

length or uses the minimum number of temporaries. The SU method does not deal with pipeline stalls

and hence may schedule a dependent instruction immediately after the load instruction on which it

is dependent. Further, the SU method considers basic blocks with no live-in registers (i.e., all values

are available in memory). Hence, the DAG representation of the basic block consists of leaf nodes

that correspond to memory values must be loaded in registers (through load instructions) to perform

any operation on them. The interior nodes of a DAG are all arithmetic operations.

Let us once again consider the basic block for the statement:

d = (a + b) · (a + b − c)

The 3-address code for the basic block is shown in Figure 17.7(a). This code sequence uses tem-

poraries and is unoptimized. In the three-address code, the evaluation of (a + b) takes place twice.

This would be eliminated by common subexpression elimination optimization. Hence, we call the

three-address code given here unoptimized code. Without common subexpression elimination, the

DAG for the basic block is a tree, as shown in Figure 17.7(b).

The code sequence shown in Figure 17.8(a) has a higher register pressure. A register allocated

code for this sequence requires 4 registers. If the architecture has fewer than four registers, then

a few values need to be spilled and reloaded at subsequent points in the computation. The spill

loads and stores can increase the length of the code sequence. Let us now describe how the SU

method generates a code sequence from the DAG that minimizes the length of the code sequence or

the number of registers used. The method finds the optimal solution when the DAG is a tree. The

FIGURE 17.7 3-address code and expression tree for d = (a + b) ∗ (a + b − c).
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i1: r1 ← load a

i2: r2 ← load b

i3: r1 ← r1 + r2

i4: r2 ← load c

i5: r3 ← load a

i6: r4 ← load b

i7: r3 ← r3 + r4

i8: r2 ← r3 − r2

i9: r1 ← r1 ∗ r2

i10: d ← st r1

(a) Code Sequence using 4 Registers

i5: r1 ← load a

i6: r2 ← load b

i7: r1 ← r1 + r2

i4: r2 ← load c

i8: r1 ← r1 − r2

i1: r2 ← load a

i2: r3 ← load b

i3: r2 ← r2 + r3

i9: r1 ← r1 ∗ r2

i10: d ← st r1

(b) Optimal Code Sequence with 3 Registers

FIGURE 17.8 Register allocated code sequences.

optimal solution for the DAG is shown in Figure 17.8(b). Let us describe the method for the special

case when the DAG is a tree.

The SU method has two phases: the first phase assigns a label for each node of the tree, and the

second phase is a tree traversal that generates code as the nodes and subtrees of the DAG are visited.

Intuitively, the label of a node represents the number of registers or temporaries that are needed

to compute the subtree rooted under the node. In the tree traversal phase, a subtree is completely

traversed before proceeding to other sibling subtrees. The traversal order among the siblings is based

on the labels, and the node with a larger label is visited first. Thus, the method generates code first

for the subtree that requires more registers.

The labeling phase traverses the tree in postorder, visiting all children before visiting a node. The

label assigned for a node n corresponding to a binary operator is given by:

label(n) =

{

max(l1, l2) if l1 =/ l2

l1 + 1 if l1 = l2

where l1 and l2 are the labels assigned to the left and right children of n. The label assignments for

the nodes are shown in Figure 17.7(b).

The label assigned to a nonbinary operator n, having k children, with l1, l2, . . . , lk as the labels

of the children nodes arranged in nonincreasing order, is:

label(n) = max
1≤ i≤ k

(li + i − 1)

Intuitively, when there are r children with the same label li (i.e., requiring the same number li
registers for computing the subtrees rooted under them), then li + r − 1 registers are required for

computing the subtree rooted under the parent node.

Each leaf node is assigned the label value 1. For architectures supporting register–memory

operands, only the leftmost child of each node that are leaf nodes need be assigned the label

value 1. Other leaf nodes are assigned the label 0. The intuitive reasoning behind this is that the

operand corresponding to the right child (in the case of a binary operator), which is a leaf node,

can be used directly as a memory operand (without requiring it to be loaded in a register) in the

instruction corresponding to the parent node. Whereas for RISC architectures where all arithmetic

operators have only register operands, all leaf nodes that are memory locations must first be loaded

in a register. Hence, they are assigned a label one.

Next we describe the second phase of the SU method, the generate code sequence phase. This

phase traverses the labeled tree recursively, first generating the code for the child having the higher

label. When the children have the same label value, they can be traversed in any order. The method
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maintains a register stack of the available registers. If the node visited is a leaf node (or a node having

a label one), then the code, a load instruction, is generated for the node. The register on the top of the

stack is used as the destination register. For machines that support register–memory operands, a load

instruction is generated only for the leftmost child that has a label value one. The right child (assuming

the parent node to be a binary operator) can be used directly as a memory operand when the code for

the parent node is generated. Because we concentrate on RISC architectures with register–register

operands in this discussion, we omit further details for complex instruction set computer (CISC)

architectures. The interested reader is referred to [3, 130].

The code for an interior node is generated by emitting the corresponding instruction, with the

source operands the same as the destination operand of the children nodes, and the destination

register the same as that of the left child. In the special case that the DAG is a tree, while generating

the code for the parent node, it is always possible to free the destination registers of the children

nodes. This is because the value produced by a node is used only by its parent, and in a tree, each

node has at most one parent. The destination registers of the right children can be freed and are

pushed into the register stack so that they can be reused subsequently. The original algorithm also

uses a swap operation on the register stack to ensure that a left child and its parents are evaluated on

the same register. We leave out these details as well in our discussion. Finally, because the code is

generated by traversing the tree recursively, generating code for the children nodes before generating

the code for a parent node, the dependences are easily satisfied. For the tree used in our motivating

example, the instruction sequence generated by the SU method is shown in Figure 17.8(b). This

sequence uses three registers.

In the general case where the dependence graph is a DAG (and not a tree), the optimal code

generation problem is known to be NP complete [2]. A near-optimal solution is obtained by par-

titioning the DAG into trees. A node having more than one parent is called a shared node. The

partitioning is done in such a way that each root or shared node forms the root of the tree, with the

maximal subtree that includes no shared nodes except as leaves. Shared nodes with more than one

parent can be turned into as many leaves as necessary. More details can be found in [3, 130].

In the expression used in our example, (a + b) is common to the left and right subtrees of the

expression tree. More specifically, the subtrees rooted on i3 and i7 compute the same expression.

On performing common subexpression elimination, one of these subtrees is eliminated, resulting in

a DAG. By splitting the DAG into a set of subtrees, it is possible to obtain a code sequence using

three registers.

17.3.3.2 Delayed Load Scheduling Method

Next we shall discuss the DLS method that integrates code generation and register allocation for

pipelined architectures that incur delays [118]. As before, we shall first discuss the method when

the DAG is a tree. The main idea behind the DLS method is to produce a canonical form of the

instruction sequence. Suppose the sequence consists of L memory load instructions (referred to as

loads) and (L − 1) arithmetic operations2 (referred to as operations) and uses R registers. Then

the canonical form consists of R load instructions followed by an alternating sequence of (L − R)

〈operation, load〉 pairs, followed by (R − 1) operations. The canonical form is generated from the

sequence generated by the SU method.

The DLS method is a three-phase method, starting with a labeling phase where the nodes in the

expression tree are assigned the minReg value. The minReg value is the label given by the labeling

phase of the SU method. The second phase, order, generates the relative order of loads and operations

in two separate data structures. The ordering is accomplished by recursively generating the order for

2There are (L − 1) (binary) operations in a binary tree with L leaf nodes.
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i5: r1 ← load a

i6: r2 ← load b

i7: r1 ← r1 + r2 % 1 stall

i4: r2 ← load c

i8: r1 ← r1 − r2 % 1 stall

i1: r2 ← load a

i2: r3 ← load b

i3: r2 ← r2 + r3 % 1 stall

i9: r1 ← r1 * r2

i10: d ← st r1

(a) Stalls in Sethi-Ullman Sequence

i5: r1 ← load a

i6: r2 ← load b

i4: r3 ← load c

i1: r4 ← load a

i7: r1 ← r1 + r2

i2: r2 ← load b

i8: r1 ← r1 − r3

i3: r4 ← r4 + r2

i9: r1 ← r1 * r4

i10: d ← st r1

(b) DLS Sequence with No Stalls

FIGURE 17.9 Instruction sequences with and without stalls.

the left and right subtrees, starting with the one that has the higher register requirement. The ordering

phase is also similar to that in the SU method discussed in the previous subsection. The schedule

phase also assigns registers for all the instructions as discussed in the SU method. The number of

registers R used is one more than the minReg value of the root of the expression tree.

Finally, the schedule phase of the DLS method essentially generates the canonical order, listing

R loads followed by an alternating sequence of 〈operation,load〉 pairs. The DLS method generates

optimal instruction sequence without any pipeline stall except in two special cases. The two cases

are (1) where the expression tree consists of a single load, or (2) where the expression tree consists

of a single operation and two leaf nodes (load instructions).

Let us consider the example expression introduced in Section 17.3.3.1. As discussed earlier, an

optimal schedule for this code considering no pipeline delays is shown in Figure 17.8(b). Then let

us consider an architecture with delay D = 1 between a load and a dependent instruction. In this

example, we have L = 5 loads, (L − 1) = 4 (binary) operations, and finally an unary operation

(store). The sequence obtained from the SU method, causes 3 stall cycles, at instructions i7, i8 and

i3, as shown in Figure 17.9(a). The SU schedule uses three registers. To avoid the stalls completely,

the DLS sequence uses one more register than in SU schedules; hence, R = 3 + 1 = 4. The

sequence shown in Figure 17.9(b) is obtained from the DLS method that incurs no stall cycle. In

this sequence, initially we have R = 4 loads, followed by an alternating sequence of (L − R) =

(5 − 4) = 1 〈operation, load〉 pair, followed by 4 arithmetic operations.3 This sequence is optimal

in terms of the number of execution cycles. It uses one more register than that used by the SU

method, but completely avoids all stall cycles. It should be noted here that among the sequences

that incur the lowest execution cycles, this sequence uses the minimum number of registers (i.e.,

no other instruction sequence incurs the minimum number of execution cycles and requires fewer

registers).

The complexity of the DLS method is O(n), as the labeling and ordering phases can be performed

by traversing through the nodes once (bottom up), and the schedule phase visits each node exactly

once. Not only is this superior to the O(n2) complexity of the instruction scheduling method due

to Gibbons and Muchnick [50] (discussed in Section 17.3.2) but also it performs scheduling and

register allocation together in a single framework. The DLS method also serves as an excellent

heuristic when the dependence graph is an arbitrary DAG or when the delay is greater than one.

3In this sequence, due to the additional unary store operation, we have R, instead of (R − 1), arithmetic
operations at the end of the sequence.
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Finally, recall that the DLS method requires that the leaf nodes be memory load operations. This

precludes register variables, or live-in registers, in the expression tree. An extension that relaxes this

constraint is presented in [83, 146].

17.3.4 Other Pipeline-Scheduling Methods

A heuristic pipeline-scheduling method that is performed during the code generation was imple-

mented in the PL-8 compiler [10]. A major advantage of this method is that it performs code

scheduling before register allocation and hence avoids false dependences. Hennessy and Gross

describe a heuristic method that is applied after code generation and register allocation [63, 64].

This method uses a dependence graph representation that eliminates false dependences. However,

to accomplish this, their method needs to check for deadlocks in scheduling. It uses a look-ahead

window to avoid deadlock. The worst-case running time of this method is O(n4).

Finally, we briefly discuss filling the delay slot of a branch instruction. As mentioned earlier, if

a processor supports delayed branching [66], then moving independent instructions in the branch

delay slots helps to reduce the number of control hazard stalls. Some of the instruction scheduling

methods discussed in this section (e.g., the Gibbons–Muchnick method [50] or the Hennessy–Gross

method [63]) can be used to fill the branch delay slot with an useful instruction. It is most desirable

to fill the branch delay slot with an instruction from the basic block that the branch terminates.

Otherwise, an instruction from either the target block (of the branch) or the fall-through block,

whichever is most likely to be executed, is selected to be placed in the delay slot. The selected

instruction either occurs as a source node in both (target and fall-through) basic blocks, or has a

destination register that is not live-in in the other block or has a destination register that can be

renamed.

The instruction scheduling methods discussed in this section do not consider (functional unit)

resource constraints. They merely try to reorder instructions to reduce the NO-OP instructions or

the pipeline stalls needed to ensure correct program behavior. In contrast, the instruction scheduling

methods to be discussed in the following section for VLIW and superscalar architectures take into

consideration the resource constraints.

17.4 Basic Block Scheduling

Instruction scheduling can be broadly classified based on whether the scheduling is for a single basic

block, multiple basic blocks, or control flow loops involving single or multiple basic blocks [121].

Algorithms that schedule single basic blocks are termed as local-scheduling algorithms, which is

the topic of discussion in this section. Algorithms that deal with multiple basic blocks or basic

blocks with cyclic control flow are termed as global-scheduling algorithms and are dealt with in

Section 17.5. The term cyclic scheduling is used to refer to methods that schedule single or multiple

basic blocks with cyclic control flow. Cyclic scheduling overlaps the execution of multiple instances

of a static basic block corresponding to different iterations.

In this section we discuss local or basic block scheduling methods for VLIW and superscalar

processors. First, we present the necessary preliminaries in the following section. In Section 17.4.2

we present the basic list-scheduling algorithm. Operation based instruction-scheduling methods are

discussed in Section 17.4.3. An exact approach to obtain an optimal schedule using an integer

linear programming formulation is presented in Section 17.4.4. Section 17.4.5 deals with resource

usage models that are used in instruction-scheduling methods. We present a few case studies in

Section 17.4.6.
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17.4.1 Preliminaries

With the advent of multiple instruction issue processors, namely, superscalar processors [66, 75, 136]

and VLIW architectures [46, 126], it has become important to expose instruction level parallelism at

compile time. Both VLIW and superscalar architectures have a number of functional units and are

capable of executing multiple independent operations in a single cycle. Hence, instruction scheduling

for these architectures must identify the instructions that can be executed in parallel in the same cycle.

In a VLIW architecture, the identification of independent instructions and their reordering to expose

instruction level parallelism must be done at compile time. Multiple independent instructions and

operations that can be issued in the same cycle should be packed in a single long word instruction

for a VLIW architecture.

Superscalar processors provide hardware mechanisms to detect dependences between instructions

at runtime and to schedule multiple independent instructions in a single cycle. In-order issue super-

scalar processors are capable of issuing multiple independent instructions in each cycle; however,

once they encounter an instruction for which the source operands are not yet ready (i.e., the instruction

producing the source operand has not completed execution), the dependent instruction as well as

all future instructions are stalled until the dependent instruction becomes data ready. Out-of-order

issue superscalar processors, on the other hand, are capable of issuing independent instructions, even

beyond a dependent stalled instruction. In other words, they can issue instructions out of the order

in which they appear in the program. Both in-order and out-of-order issue processors benefit by

a runtime register renaming mechanism [136] that helps to eliminate false dependences (anti- and

output dependences). Due to the hardware support available in superscalar processors, instruction

reordering to expose ILP is not mandatory, although such a reordering would certainly benefit

both in-order and out-of-order superscalar processors. This is especially the case for in-order issue

superscalar processors.

The instruction schedule constructed for a VLIW or a superscalar processor must satisfy both

dependence constraints and resource constraints. Dependence constraints ensure that an instruction

is not executed until all the instructions on which it is dependent on are scheduled, and their execution

are complete. Once again, dependences among instructions are represented by means of a DAG —

because local instruction scheduling deals only with basic blocks, the dependence graph is acyclic. In

our discussion we shall assume that register allocation is performed after instruction scheduling and

that the DAG is constructed from an instruction sequence that uses temporaries (instead of registers)

and hence avoids all anti- and output-dependence arcs for all nonmemory operations.

Resource constraints enforce that the constructed schedule does not require more resources (func-

tional units) than available in the architecture. The resource usage model in a realistic instruction

scheduling method needs to take into consideration the finite resources available in the architecture,

the actual (nonunit) execution latencies incurred by some of the instructions and simple or complex

resource usage patterns. In a simple resource usage pattern, each instruction uses one resource for a

single cycle and thus multiple instructions scheduled on different cycles do not cause any structural

hazard. With such a simple resource usage pattern, it is possible to schedule a new instruction in the

functional unit in each cycle. Whereas when the resource usage pattern is complex, a single resource

could be used for multiple cycles.

The resource usage model specifies the usage pattern of resources for different classes of instruc-

tions (such as integer, load/store, multiply, floating point (FP) add, FP multiply, and FP divide

instruction classes) as well as the available functional units. A simple representation for resource

usage is a reservation table, which is an r × l matrix, where l is the latency of the instruction and

r is the number of stages in the functional unit [81]. An entry R[r, t] is 1 if resource r is used t

time steps after the initiation of an instruction in the functional unit and 0 otherwise. The resource

usage pattern is simple when the functional unit is fully pipelined. A pipelined functional unit can
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initiate a new operation in every cycle. We defer discussion on complex resource usage and more

sophisticated resource usage models to Section 17.4.5.

The resource requirements of a schedule can be modeled using a global reservation table (GRT),

an M × T matrix, where M is the number of resources (including all stages of all functional units as

well as other resources such as memory ports) for which contention must be explicitly modeled in the

schedule, and T is an upper bound on the length of the schedule (i.e., the number of time steps taken

by the schedule). An entry GRT[r, t] is 1 if resource r is used at time step t in the current schedule,

and 0 otherwise. As a schedule is constructed, the GRT represents the resource requirements of the

partial schedule of instructions that are already scheduled. Any new instruction scheduled should

not cause a resource contention, i.e., is two or more instructions requiring the same resource at the

same time step, with the partial schedule. Resource contention is checked by a contention query

model that checks whether scheduling an instruction at time step t causes any conflicting resource

requirements with instructions that are already scheduled. We shall return to the contention query

model in greater detail in Section 17.4.5.

An instruction-scheduling method assumes a fixed execution latency for each instruction. However,

this does not cover variations in latency caused by events such as cache misses. A schedule constructed

with an underestimated or optimistic value of the latency may cause unnecessary stalls when a cache

miss occurs. This would be the case even though enough parallelism may be in the basic block to

hide the latency. On the other hand, when a pessimistic latency value is used, the schedules are

unnecessarily stretched, even for cache hit cases. Balanced scheduling [78] and improved balanced-

scheduling methods [94] generate schedules that can adapt more readily to uncertainties in memory

latencies. These methods use a load latency estimate that is based on the number of independent

instructions that are available in the basic block to mask the load latency. All other instruction-

scheduling methods assume an optimistic estimate for the execution latency, which is followed in

our discussion in the rest of this chapter.

17.4.2 List-Scheduling Method

The list-scheduling method schedules instructions from time step zero, starting with the source

instructions in the basic block. At each time step t , it maintains a list of ready instructions (ReadyList)

that are data ready, i.e., instructions whose predecessors have already been scheduled and would

produce the result value in the destination register by time t . List scheduling is a greedy heuristic

method that always schedules a ready instruction in the current time step whenever no resource

conflict occurs.

The list-scheduling algorithm is similar to the Gibbons and Muchnick instruction-scheduling

method discussed in Section 17.3.2, except that multiple instructions can be scheduled in the same

step. The resource requirements of scheduled instructions are maintained in the GRT. At each time

step, among the set of ready instructions from ReadyList, instructions are scheduled one at a time

based on certain priority ordering of instructions. The priorities assigned to different instructions are

decided by heuristics. Different list scheduling methods differ in the way they assign priorities to the

instructions. We shall discuss some of the important heuristics that have been used in various instruc-

tion scheduling methods in Section 17.4.2.1. It should be noted here that the priorities assigned to

instructions could be either static (i.e., assigned once and remains constant throughout the instruction

scheduling), or dynamic (i.e., change during the instruction scheduling), and hence require that the

priorities of unscheduled instructions be recomputed after scheduling each instruction. Although the

basic list-scheduling algorithm discussed later assumes a static priority, it can easily be adapted for

a heuristic that assigns dynamic priority values.

After scheduling all instructions that are in the ReadyList that do not cause a resource conflict,

the time step is incremented by one. Any instruction that has now become data ready is included

in the ReadyList. The ReadyList is sorted on decreasing order of priority. The scheduling process
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Input: DAG
Output: Instruction Schedule
AssignPriority (DAG); /* assigns priority to each instruction

in the DAG based on the priority policy */
ReadyList = source nodes in the DAG;
timestep = 0;

while (there exists an unscheduled instruction in the DAG) do
{

Sort ReadyList in non-decreasing priority order;
while (not all instructions in ReadyList are tried)
{

pick next instruction i from ReadyList;
check for resource conflict;
if (instruction can be scheduled)
{

update GRT (i,timestep);
remove instruction i from ReadyList;

}
}
increment timestep by 1;
add instructions that have now become data ready in ReadyList;

}

FIGURE 17.10 Generic list scheduling algorithm.

FIGURE 17.11 Example code, three-address representation and DAG.

continues in this way until all the instructions are scheduled. The complete algorithm is shown in

Figure 17.10.

We illustrate the list-scheduling method with the help of a simple example. Consider the code

sequence and its 3-address representation shown in Figures 17.11(a) and 17.11(b), respectively. Its

DAG is depicted in Figure 17.11(c). Assume that the target architecture consists of two integer

functional units, which can execute integer instructions as well as load and store instructions, and

one multiply and divide unit. All functional units are fully pipelined. Further, assume that the

execution latencies of add, mult, load and store instructions are one, three, two and one

cycles, respectively. These latency values also imply that there should be one stall cycle between a

load and a dependent instruction and two stall cycles between a mult and a dependent instruc-

tion. No stall cycles are required between an add and a dependent instruction. Further, the path

i1 → i4 → i6 → i7 → i8 is the critical path in the DAG.
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Time Int. Unit 1 Int. Unit 2 Mult. Unit

0 t1 ← load a t2 ← load b

1

2 t4 ← t1 − 2 t5← t2 + 3

3 t3 ← t1 + 4 b ← st t5 t6 ← t4 ∗ t2

4

5

6 t7 ← t6 + t3

7 c ← st t7

FIGURE 17.12 Schedule for the example code in Figure 17.11.

A list schedule for the example code is shown in Figure 17.12. Instructions that are on the critical

path are scheduled at their earliest possible start time to achieve this schedule whose length is eight.

Note that if the 2 add instructions (i3 and i5) are scheduled ahead of sub instruction in time

step 2, it would have delayed the execution of instructions on the critical path, namely, i4, i6, i7
and i8 instructions and hence would have increased the schedule length. To achieve schedules that

require fewer execution cycles, the scheduling method should use an efficient heuristic that gives

priorities to instructions on the critical path.

The schedule is presented as a parallel schedule, as shown in Figure 17.12, to a VLIW architecture,

where multiple instructions that can be executed in the same cycle are packed into a single long word

instruction. For a superscalar architecture, the parallel instructions in each cycle are linearized in

a simple way, say from left to right. It is shown in [133] that the linearizing order could have a

performance impact on out-of-order issue superscalar processors [66, 136]. We defer a discussion

on the linearization order to Section 17.6.3.3.

It has been shown that the worst-case performance of a list-scheduling method is within twice the

optimal schedule [86, 111]. That is, if Tlist is the execution time of a schedule constructed by a list

scheduler, and Topt is the minimal execution time that would be required by any schedule for the

given resource constraint, then Tlist/Topt is less than two. The quality of list scheduling can degrade

and approach the above bound as the number of resources increases or the maximum of the latencies

of all instructions increases.

In this example, the list scheduling method uses a greedy approach, trying to schedule instructions

as soon as possible. If enough resources exist, then in the list scheduling method each instruction

would get scheduled at the earliest start time (Estart) possible. Further, the list scheduling method

described earlier makes a forward pass of the DAG, starting from a source node. It is possible to have

a backward pass list scheduling method that schedules instructions starting from the sink node to the

source node. Whereas forward pass schedulers attempt to schedule an instruction at the earliest time

possible, backward pass schedulers typically attempt to schedule each instruction as late as possible.

The instruction scheduler of the GNU C compiler (version 2) [141] and the local instruction scheduler

of the Cydra 5 compiler [34] are backward pass schedulers whereas the scheduler in the IBM XL

compiler family makes a forward pass [151].

17.4.2.1 Heuristics Used

The list-scheduling method uses heuristics to assign priorities to instructions. These priorities are

used in selecting the ready instructions for scheduling in each time step. This section briefly discusses

some of the heuristics used. An extensive survey and a classification of the various heuristics used

in instruction-scheduling methods are presented in [137].
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A commonly used heuristic is based on the maximum distance of a node to the fictitious sink node.

The maximum distance (MaxDistance) of the sink node to itself is zero. The MaxDistance of a node

u is defined as:

MaxDistance (u) = max
i=1,...,k

(MaxDistance (vi) + weight (u, vi))

where v1, v2, . . . , vk are the successors of node u in the DAG. MaxDistance is calculated using

a backward pass on the DAG, and is a static priority. Priority is given to nodes having larger

MaxDistance. A variation of this heuristic is to consider the maximum distance to the sink node,

where distance is measured in terms of the path length (number of edges in the path), and not as the

sum of execution latencies of the instructions in the path.

Another heuristic used in list scheduling method is to give priority to instructions that have larger

execution latency. The maximum number of children heuristic gives priority to instructions that have

more successors. A refinement of this is to consider only successors for which this instruction is the

only parent. An alternative is to consider not only the immediate successors but all the descendents

of the instruction. In all these cases, giving higher priority to instructions having larger number

of descendents may enable a larger number of instructions to be added to the ReadyList. All these

heuristics are static in nature and are computationally inexpensive compared with dynamic heuristics.

Many list scheduling methods give higher priority to instructions that have the smallest Estart.

The Estart value of the fictitious source node is zero. The Estart value of an instruction v is

defined as:

Estart (v) = max
i=1,...,k

(Estart (ui) + weight (ui, v))

where u1, u2, . . . , uk are the predecessors of v. Similarly, priorities can be given to instructions

having the smallest latest start time (Lstart), which is defined as:

Lstart (u) = min
i=1,..., k

(Lstart (vi) − weight (u, vi))

where v1, v2, . . . , vk are the successors of u. The a start value or of the sink node is set the same as

its Estart value. Estart and Lstart are computed using a forward or backward pass of the DAG. The

Estart and Lstart values of the instructions in our example DAG are also shown in Figure 17.11(c).

The difference between Lstart(u) and Estart(u), referred to as slack, or mobility, can also be used to

assign priorities to the nodes. Instructions having lower slack are given higher priority. Instructions

that are on the critical path may have a slack zero, and hence get priority over instructions that are

on the off-critical path. Instructions on the critical path of the DAG shown in Figure 17.11, namely,

i1, i4, i6 and i8, have a slack 0, indicating that there is no slack or freedom in scheduling them.

Many list scheduling methods use Estart and Lstart as static measures, although their values can be

calculated after scheduling instructions in each step. Instructions that are scheduled in the current

time step may affect the Estart (or Lstart) values of successor (or predecessor) nodes, and hence these

values need to be recomputed in each time step. Slack can also be treated as a static or a dynamic

measure. The list-scheduling method described in [111] uses a combination of weighted path length

and Lstart values.

A heuristic based on computing a force metric is used in scheduling data path operations in

behavioral synthesis [115]. The self force of each instruction u at time step t reflects the effect of

an attempted time step assignment t to instruction u on the overall instruction concurrency. The

force is positive if the time step causes an increase in the concurrency and negative otherwise. The

predecessor and successor forces refer to the effect of scheduling an instruction at a time step on its

predecessors and successors, respectively. The force metric is a product, K · x, where K represents

the extent of concurrency of each type of instruction at a given time step t , and x is a function of

the slack of the instruction u. Instructions having the lowest force are given the highest priority.
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For further details on calculating the force metric, the reader is referred to [115]. Although the

objective of the force-directed scheduling method in behavioral synthesis is to minimize the resources

while minimizing the execution time, it still obtains an efficient schedule for the instructions. In

this sense, the force-directed heuristic may serve as a useful heuristic in an instruction scheduling

method as well.

Finally, priorities can be given to instructions that define fewer registers (or temporaries) defined

(i.e., instructions that start fewer new live ranges). Intuitively, it is advantageous to defer the

scheduling of an instruction that defines new temporaries to a later time step, because it would defer

the increase in register pressure. Such a heuristic is typically used in prepass scheduling methods.

Likewise, it is advantageous to give higher priority to instructions that end the live range of a variable

or temporary. Version 2 of the GNU C compiler uses this heuristic [141].

17.4.3 Operation Scheduling Method

Whereas a list scheduling method schedules instructions on a cycle-by-cycle basis, an operation-

scheduling method attempts to schedule instructions one after another, trying to find the first time

step at which each instruction can be scheduled. Operation-driven schedulers sort the instructions in

the DAG in a topological order, giving priority to instructions that are on the critical path [128]. An

operation scheduling method could be nonbacktracking or backtracking. We discuss a backtracking

method next.

In a backtracking operation scheduling method, at each iteration, an instruction i is selected,

based on certain priority function. An attempt is made to schedule instruction i at time t that is

between Estart (i) and Lstart (i) and that does not cause a resource conflict. The scheduling of an

instruction at time step t may affect the Estart and Lstart values of other unscheduled instructions. If

dynamic priority is used to select the instruction, then the priorities of unscheduled instructions are

recomputed.

If no time step t is between the Estart (i) and Lstart (i) at which the instruction can be scheduled,

an already scheduled instruction j that has conflicting resource requirement with this instruction is

descheduled, making room for this instruction. The descheduled instruction j is put back in the list of

unscheduled instructions and is scheduled subsequently. For the method not to get into a loop where

a set of instructions deschedule each other, a threshold on the number of descheduled instructions

is kept. When this threshold exceeds, the partial schedule is discarded, and new Lstart values for

instructions are computed by increasing the Lstart value of the sink node.

17.4.4 Optimal Instruction Scheduling Method

The resource-constrained, instruction scheduling problem is known to be NP complete [86, 111].

The instruction scheduling problem has been formulated as an integer linear programming

problem [9, 23, 28]. Such an approach is attractive for the evaluation of (performance) bounds that

can be achieved by any heuristic method. Also, more recently Wilken, Liu and Heffernan [155] have

shown that optimal schedules can be obtained in a reasonable time even for large basic blocks; and

hence, such an optimal scheduling method can potentially be applied to even production compilers.

In this section we illustrate an integer linear programming formulation for resource-constrained

basic block instruction scheduling. We assume a simple resource model in which all functional

units are fully pipelined. Altman, Govindarajan and Gao [7] present methods for modeling func-

tional units with complex resource usage pattern in integer linear programming formulation, in

the context of software pipelining — an instruction scheduling method for iterative computa-

tion [70, 84, 121, 122, 125]. Our discussion considers an architecture consisting of functional units

of different types (e.g., Integer ALU, Load/Store Unit, FP Add Unit and FP Mult/Divide Units), and

the execution latency of instructions in these functional units can be different. Further, we assume

that there are Rr instances in functional unit type r .
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Let σi represent the time step at which instruction i is scheduled, and d(i,j) represent the weight

of edge (i, j). To satisfy dependence constraints, for each arc (i, j) in the DAG:

σj ≥ σi + d(i,j) (17.1)

To represent the schedule in a form that can be used in the integer linear programming formulation,

a matrix K of size n × T is used, where n is the number of instructions or nodes in the DAG, and

T is an estimate of the (worst-case) execution time of the schedule. Typically, T is the sum of the

execution times of all the instructions in the basic block. Note that T is a constant and can be obtained

from the DAG. An element of K , say K[i, t], is one if instruction i is scheduled at time step t and

zero otherwise. The schedule time σi of instruction i can be expressed using K as:

σi = ki,0 · 0 + ki,1 · 1 + · · · + ki,T −1 · (T − 1)

This can be written in the matrix form for all σi’s as:
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(17.2)

To express that each instruction is scheduled exactly once within the schedule, the constraint:

∑

t

ki,t = 1, ∀i (17.3)

is included in the formulation.

Finally, the resource constraint that no more than Rr instructions are scheduled in any time step,

where Rr is the number of functional units of type r , can be enforced through the equation:

∑

i ∈ F(r)

ki,t ≤ Rr , ∀t and ∀ r (17.4)

where F(r) represents the set of instructions that can be executed in functional unit type r .

The objective function is to minimize the execution time or schedule length. That is:

minimize (max
i

(σi + d(i,j)))

To express this in the linear form, we introduce

z ≥ σi + d(i,j). (17.5)

Now, the objective is to minimize z subject to Equations (17.1) to (17.5).

17.4.5 Resource Usage Models

This subsection deals with different resource usage models used in instruction scheduling. First, we

motivate the need for sophisticated resource usage models. In the subsequent subsection, we review

some of the existing resource usage models.
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17.4.5.1 Motivation

Modern processors implement very aggressive arithmetic and instruction pipelines. With aggres-

sive multiple instruction issue, structural hazard resolution in modern processors is expected to

be more complex. Furthermore, in certain emerging application areas, such as mobile computing

or space vehicle on-board computing, the size, weight and power consumption may put tough

requirements on the processor architecture design; this, in turn, may result in more resource sharing.

All these lead to pipelines with more structural hazards. With such complex resource usage, the

scheduling method must check and avoid any structural hazard (e.g., contention for hardware

resources by instructions). Such a check for resource contention is done by a contention query

module [38].

The contention query module uses a resource usage model that specifies the resource usage patterns

of various instructions in the target architecture. The contention query module answers the query:

“Given a target machine and a partial schedule, can a new instruction be placed in time slot t without

causing any resource conflicts?” Because a resource contention check needs to be performed before

scheduling every instruction and for each instruction several timesteps of the schedule need to be

examined, a significant part of the schedule time is spent in the contention query module. This is

especially the case when the resource usage pattern is complex due to many structural hazards. Thus,

an efficient resource usage model is critical for reducing the contention check time in instruction

scheduling.

Portability and preciseness are two important aspects in choosing a resource model. Compilers

designed to support a wide range of processors usually define the machine details to the scheduler

in a form that can be easily modified when porting the compiler across different processors [60]. A

model portable can only approximately model the complex execution constraints that are typical in

modern-day superscalar and VLIW processors. Precise modeling of machine resources is important

to avoid some of the stalls in the pipeline. Precise modeling of resource usages often involves a very

low level representation of the machine description that is generally coded directly into the compiler.

As a result, it is tedious and time consuming to modify the code every time the compiler is targeted

for a new processor.

17.4.5.2 Reservation Table Model

Traditionally, the resource usage pattern of an instruction i is represented using a reservation table.

Instructions having identical resource usage patterns are said to belong to the same instruction class.

The resource usage of any instruction in instruction class I has a single reservation table (RT) RTI ,

which is an mI × lI bit matrix, where mI is the number of resources needed by the instruction

for its execution in the pipeline and lI is the execution latency of the instruction [121]. An entry

RTM [r, t] = 1 indicates that the resource r is needed by this instruction t cycles after it is launched.

Typically, each row of the reservation table is stored as a bit vector. The reservation tables for two

instruction classes I1 and I2 are shown in Figure 17.13.

Apart from storing the reservation tables for each instruction class, the contention query module

also maintains a GRT that is used to keep track of the machine state at every point in the schedule.

Resources Time Steps

0 1 2 3

r0 1 0 0 0

r1 0 1 1 0

r2 0 0 0 1

(a) Reservation Table for I1

Resources Time Steps

0 1 2 3

r0 1 0 0 0

r3 0 1 0 0

r4 0 0 1 1

(b) Reservation Table for I2

FIGURE 17.13 Reservation table (RT) for the example machine.
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The GRT is an M × T bit matrix, where M is the total number of resources in the target machine

and T is an upper bound on the length of the schedule.

To answer the query: “Can an instruction of class I be scheduled in the current cycle?,” the

scheduler performs bitwise AND operations of the nonzero bit vectors of RTI with the corresponding

bit vectors in the GRT, starting from the current cycle. If the results of the AND operations are all

zeros, then the instruction can be scheduled in the current cycle; otherwise it cannot be scheduled.

On scheduling the instruction, similar bitwise OR operations are performed on the GRT to reflect

the resource usages of the scheduled instruction.

17.4.5.3 Reduced Reservation Table Model

The reduced reservation table (RRT) approach, due to Eichenberger and Davidson [38], for answering

contention query is similar to the RT approach, except that the RRT uses a simplified reservation

table. This simplified table is derived by eliminating much of the redundant information in the

original reservation table. However, the scheduling constraints present in the original reservation

table are preserved in the RRT. The resource usages are modeled using logical resources unlike the

RT model, in which the actual resources of the target architecture are used. This offers a compact

form of representing the reservation table, thus reducing the space required to store the tables and

also the time spent in contention queries.

First, we define forbidden latency. For an ordered pair of instruction classes, A and B, a latency

value f is said to be forbidden if two instructions, one belonging to instruction class A and another

to B, when initiated on the respective functional unit types with a latency f between them cause a

structural hazard. Such a structural hazard occurs if at least one resource r exists and a time step t such

that RTA[r] and RTB [r, t + f ] are both 1. The forbidden latency set FA,A consists of the forbidden

latencies between two initiations of the same instruction class. Similarly, the forbidden latency set

FA,B consists of the forbidden latencies between two initiations of two different instruction classes.

For example, for the reservation tables shown in Figure 17.13, latency 0 is in the forbidden set

FI1,I2 , as two instructions, one each from these two instruction classes, initiated with a latency 0

(i.e., initiated in the same time step t) requires the resource r0 at time step t . Similarly latency 1 is

in FI1,I1 and latency 1 is in FI2,I2 , as resource r1 for instruction class I1 and r4 for instruction class

I2 are required for two consecutive time steps.

Construction of the RRT is explained in detail in [38]. The RRT approach uses a set of logical

resources to model all the forbidden latencies of the original resource usage. We shall illustrate the

RRT approach using the example machine considered in Section 17.4.5.2 (refer to Figure 17.13).

The RRTs for this machine are shown in Figure 17.14. Logical resources r ′
0, r ′

1 and r ′
2 are used to

model the resource usages. Note that the resource r ′
0 models the forbidden latencies 0 ∈ FI1,I2 and

0 ∈ FI2,I1 . Further, the resource r ′
1 models the forbidden latency 1 ∈ FI1,I1 and the resource r ′

2
models the forbidden latency 1 ∈ FI2,I2 . Finally, forbidden latency 0 ∈ FI1,I1 and 0 ∈ FI2,I2 are

modeled by every resource. It can be verified that these RRTs model all and only those forbidden

latencies that are present in the original RT. Compared with the reservation table in Figure 17.13, the

RRT in Figure 17.14 is compact. The advantage of the RRT model is that it is likely to have fewer

logical resources than physical resources. For the example machine, the number of logical resources

are three whereas the number of physical resources in the RT model are five. As a consequence,

both the space requirements of the resource model and the contention check computation become

efficient.

The contention query module of the instruction scheduler uses the RRT in the same manner as in

the case of the original RT. The differences, however, are in the size of the GRT and the individual

reservation tables. The GRT in this case consists only of M ′ rows, where M ′ is the total number

of logical resources in the machine. For the considered example, M ′ is three, which is significantly

less compared with the number of physical resources. As a consequence, the size of the GRT also

reduces significantly.
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Logical Time Steps

Resources 0 1

r'0 1 0

r'0 1 1

(a) RRT for I1 

Logical Time Steps

Resources 1

r'0 0

r'2

0

1

1 1

(b) RRT for I2 

FIGURE 17.14 Reduced reservation table (RRT) for the example machine.

CMI1
=

I1

I2

[

1 1

1 0

]

; CMI2
=

I1

I2

[

1 0

1 1

]

FIGURE 17.15 Collision matrices for instruction classes I1 and I2.

17.4.5.4 Automaton-Based Approaches

The automaton approach models the resource usage using a finite state automaton. This approach

processes the RTs off-line to generate all possible legal initiation sequences in the architecture. The

states of the automaton correspond to machine states at different points in the scheduling process.

The automaton is constructed just once for the target architecture and thereafter the compiler uses

this during the instruction scheduling phase.

The Muller method constructs the automaton directly using the RTs [102]. Each state in this

automaton is essentially a snapshot of the GRT (refer to Section 17.4.5.2) in the partial schedule.

Proebsting and Fraser [119] improved on the Muller technique by using collision matrices (to be

defined later) for constructing the automaton. Bala and Rubin [11] extended the Proebsting technique

to complex machines and introduced the notion of factoring. Although the Proebsting method directly

produces the minimal automaton, it is still large for complex machines. Instead of building one large

automaton, Bala and Rubin [11] used a factoring scheme to create multiple smaller automatons, the

sum total of whose states is less than the number of states in the original automaton. The factoring

scheme is based on the observation that modern-day processors typically divide the instruction set

into different classes and each class is executed by a different functional unit. For instance, the integer

and floating point units have different pipelines and use separate resources. As such, these resources

can be divided into separate factors and the automaton can be constructed separately for each of

the factors.

Before we proceed with the construction of the automaton, we define collision matrix [81]. A

collision matrix CMI for the instruction class I is a bit matrix of size n × l′, where n is the number

of instruction classes and l′ is the longest repeat latency of an instruction class. The repeat latency of

an instruction class is the minimum value such that any latency of greater than or equal to the repeat

latency is permissible for the instruction class [81]. The collision matrix CMI specifies whether a

resource conflict can occur in initiating instructions of various classes, including itself, at different

time steps. The rows of the collision matrix represent various instruction classes and the columns

represent different time steps. More specifically, the entry CMI [J, t] = 1, if t is a forbidden latency

between the instructions classes I and J (i.e., t ∈ FI,J ). The collision matrices for the instruction

classes considered in Section 17.4.5.2 are shown in Figure 17.15.

The construction of the finite state automaton proceeds as follows: each state F in the automaton

is associated with a state matrix SMF , which is an n× l′ bit matrix. Given a state F and an instruction

of class I , it is legal to issue I in the current cycle from state F , if SMF [I, 0] is 0. A legal issue

causes a state transition F
I

−→ F ′. The state matrix SMF ′ is computed by ORing the respective

rows of SMF with the collision matrix CMI . The automaton for the motivating example is shown

in Figure 17.16(a). When the automaton reaches a state where all the entries in the first column are
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FIGURE 17.16 Automaton for the example machine.

1, it means that no more instructions of any instruction class can be issued from the current cycle.

State F2 is an example of such a state. Hence, the state is cycle advanced, or the automaton moves

to the next time step, which results in shifting the state matrix left by one column [11]. This pseudo

instruction class is marked as CA in Figure 17.16(a). When the automaton-based resource model is

used in conjunction with a simple list scheduler (such as the one discussed in Section 17.4.2), which

schedules instructions on a cycle by cycle basis, it suffices to examine only transition latency zero,

provided cycle-advancing transitions are considered.

The automaton is represented in the form of a transition table that is used by the scheduler. The

transition table is a two-dimensional matrix of size N × r , where N is the number of states in

the automaton and r is the number of instruction classes including the pseudo instruction class

CA. The entries in the transition table are either state numbers or null (denoting illegal transi-

tions). The transition table corresponding to the automaton for our motivating example is shown in

Figure 17.16(b). Thus, in the automaton-based approach, answering a contention query corresponds

to a transition table lookup; updating the machine state on scheduling an instruction is changing to

a new state. Both of these are constant time operations.

Two major concerns in using the automaton-based approach are the construction time of the

automaton and the space requirements of the transition table. The construction of the automaton,

though a one time cost incurred at the time of compiler construction for this target architecture,

could be significant because the number of states in the automaton can grow very large, with an

increase in either the number of instruction classes or the latencies of instructions. For example, for

the DEC Alpha architecture, Bala and Rubin report 13,254 states when the automaton is constructed

for integer and floating point instruction classes together. When separate automatons are constructed,

the number of states decrease to 237 and 232. For the Cydra 5 architecture [126], the number of

states in the factored automaton is 1127. Thus, the number of states is still large, which directly

contributes to the increase in space requirements. This is because the transition table is an N × n

matrix, where N is the number of states in the automaton and n is the number of instruction classes.

In [73, 74], the automaton model is further extended to a group automaton model that reduces the

space requirements by observing and eliminating certain symmetry in the constructed automaton. It

identifies instruction groups, a set of instruction classes, which exhibit this symmetrical behavior.

The work also proposes a resource model based on collision matrices, referred to as the dynamic

collision matrix model. This resource model combines collision matrices with an RT-based approach

to strike a good balance between space and time requirements of the resource usage model. Finally,

a classification of resource usage models is also presented in [74].
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An automaton-based resource model for software pipelining has been proposed independently

by Govindarajan, Altman and Gao for instruction classes that do not share any resource [55]. It is

subsequently extended to instruction classes that share resources in [56, 158]. The state diagram

of the automaton, referred to as modulo-scheduled (MS) state diagram, though similar to the Bala

and Rubin automaton, has two important differences. First, the MS-state diagram is specialized for

software pipelining, or modulo scheduling (MS), which takes into account the repetitive scheduling

of different instances of the same instruction, corresponding to different iterations. It is argued

in [55, 56] that the Bala and Rubin automaton could not be directly used in a software pipelining

method. Second, in the MS-state diagram, for each state, a state transition corresponds to each

permissible latency, including latency of 0; whereas in the Bala and Rubin automaton, the state

transitions in a state correspond only to latency value of 0.

17.4.5.5 AND/OR-Tree Model

Gyllenhaal, Hwu and Rau have proposed a two-tier model for resource usage representation [60].

It allows the user to specify the resource usage or machine description in a high-level language.

The high-level language is designed to specify the machine description in an easy to understand,

maintainable and retargetable manner. The high-level description is translated into a low-level

representation for efficient use by the instruction scheduler. The two-tier model helps to easily

retarget the scheduler for different architectures.

They have also proposed a new representation for machine description based on the AND/OR tree

concept used in search algorithms, which is especially useful when a single instruction class has

multiple options or resource usage patterns to choose from. This happens, for example, when there

are two decode units, and an instruction can use either one of them in the decode stage. The new

representation is an AND tree of OR trees: whereas the OR trees encode the multiple options available

within a stage, the AND tree represents the usage of different stages. The AND/OR tree model uses

the short-circuit property of the AND/OR trees to detect the resource conflicts quickly. This reduces

the space complexity of the RT-based approaches and also the computation time required to answer

contention queries.

17.4.6 Case Studies

In this section we review the instruction scheduling methods used in (1) the compiler for Cydra 5

VLIW architecture [13, 34], (2) the GNU C compiler [141] and (3) the IBM XL compiler family [151]

as case studies.

17.4.6.1 Instruction Scheduling in Cydra 5 Compiler

The scheduler implemented in the Cydra 5 compiler is a backward pass list scheduler. It works

bottom up, scheduling from the sink node of the DAG. For each instruction i from the priority list,

the scheduler attempts to schedule the instruction starting from the largest possible start time, based

on its (already) scheduled successors. The priority algorithm ensures that all successor instructions

are placed in the list ahead of an instruction. In addition, the priority algorithm can give greater

priority either to instructions with the least slack or to instructions that reduce register lifetimes. The

former heuristic results in schedules with low execution time, but may increase the register pressure.

This may cause register spills. The second heuristic is used to counter this effect. In the Cydra 5

compiler instruction scheduling is performed prior to register allocation.

17.4.6.2 Instruction Scheduling in GNU C Compiler

The instruction scheduling method used in the GNU C compiler (version 2) also follows backward

pass list scheduling [141]. The method orders instructions based on a priority algorithm that gives

relatively higher priority to all successor instructions compared with the parent instruction. By placing
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instructions with higher priority later in the schedule than ones with lower priority, the scheduler

preserves dependence constraints. Further, instructions with larger execution time are also given

higher priority, exposing instructions on the critical path.

The algorithm then starts scheduling by issuing the instruction with the highest priority, scheduling

from the last instruction in the basic block to the first. Each time an instruction is scheduled, a check

is performed on each predecessor instruction p to see if it has no more unscheduled successors. Such

instructions are marked “ready,” and added to the ready list in priority order. When all instructions are

scheduled, the algorithm terminates. The preceding scheduling method works well to produce good

schedules, but generally increases the register pressure, and results in poor performance when the

number of available registers is less than the required number. For this purpose, the list scheduling

method also gives higher priority to instructions that end live ranges of variables.

17.4.6.3 Instruction Scheduling in the IBM XL Compiler Family

The XL family compiler of IBM uses a forward pass list scheduling method [151]. The primary

priority heuristic used is based on the maximum distance to the sink node. In addition, it also uses

a combination of smallest Estart value, minimum liveness and greatest uncovering — corresponds

to how many (ready) instructions can be added to the ReadyList — heuristics. The list scheduling

algorithm starts scheduling from the source node, attempting to schedule instructions at time steps

closer to its Estart time. The scheduling method is applied both as a Prepass method (before register

allocation) and as a Postpass method (after register allocation). It takes care of a number of types

of delay stalls, and schedules fixed and floating point instructions in an alternating sequence for the

RS/6000 processor.

17.5 Global Scheduling

Instruction scheduling within a basic block has limited scope because the average size of a basic block

is quite small, typically in the range of 5 to 20 instructions. Thus, even if the basic block scheduling

method produces optimal schedules, the performance, in terms of the exploited ILP, is low. This is

especially a serious concern in architectures that support greater ILP (e.g., VLIW architectures with

several functional units or superscalar architectures that can issue multiple instructions every cycle).

The reason for the low ILP, especially near the beginning and end of basic blocks, is that basic block

boundaries act like barriers, not allowing the movement of instructions past them.

Global instruction scheduling techniques, in contrast to local scheduling, schedule instructions

beyond basic blocks (i.e, overlapping the execution of instructions from successive basic blocks).

These global scheduling methods are either for a set of basic blocks with acyclic control flow among

them [34, 45, 72, 97], or for single or multiple basic blocks of a loop [24, 30, 44, 84, 122]. The

former case is referred to as global acyclic scheduling and the latter as cyclic scheduling. First, we

discuss a few global acyclic scheduling methods. Section 17.5.2 deals with cyclic scheduling.

17.5.1 Global Acyclic Scheduling

Early global scheduling methods performed local scheduling within each basic block and then tried

to move instructions from one block to an empty slot in a neighboring block [24, 145]. However,

these methods followed an ad hoc approach in moving instructions. Further, the local compaction

or scheduling that took place in each of the blocks resulted in several instruction movements

(reorderings) that were done without understanding the opportunities available in neighboring blocks.

Hence, some of these reorderings may have to be undone to get better performance. In contrast, global

acyclic scheduling methods, such as trace scheduling [45], percolation scheduling [105], superblock

scheduling [72], hyperblock scheduling [97], and region scheduling [61], take a global view in
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scheduling instructions from different basic blocks. In the following subsections we describe these

approaches.

17.5.1.1 Trace Scheduling

Trace scheduling attempts to minimize the overall execution time of a program by identifying

frequently executed traces — acyclic sequences of basic blocks in the control flow graph — and

scheduling the instructions in each trace as if they were in a single basic block. The trace scheduling

method first identifies the most frequently executed trace, a single path in the control flow graph,

by first identifying the unscheduled basic block that has the highest execution frequency; the trace

is then extended forward and backward along the most frequent edges. The frequency of edges

and basic blocks are obtained by a linear combination of branch probabilities and loop trip counts

obtained either through heuristics or through profiling [12]. Various profiling methods are discussed

in greater detail in [58].

The instructions in the selected trace (including branch instructions) are then scheduled using a list

scheduling method. The objective of the scheduling is to reduce the schedule length, and hence the

execution time of the instructions in the trace. During the scheduling, instructions could move above

or below a branch instruction. Such movement of instructions may warrant compensation code to be

inserted at the beginning or end of the trace. After scheduling the most frequently executed trace, the

next trace (involving unscheduled basic blocks) is selected and scheduled. This process continues

until all the basic blocks are considered.

Let us illustrate the trace scheduling method with the help of the example code shown in

Figure 17.17(a), adapted from [71]. The instruction sequence and the control flow graph for the

code are shown in Figure 17.17(b) and 17.17(c). Consider a simple two-way issue architecture with

two integer units. Let us assume that the latency of an integer instruction, such as add, sub or mov
instruction, is one cycle, and that of a load instruction is two cycles. Thus, a stall of one cycle is

required between a load and a dependent instruction. For simplicity, we assume here that branch

instructions do not require any stall cycle.

A basic block scheduling method achieves the schedule shown in Figure 17.18. Because

instructions cannot be moved beyond basic block boundaries, this is the best schedule that can

be achieved for the given machine. The first column in Figure 17.18 represents the time steps at

which the instructions can be issued. The time steps shown in parentheses for instructions i9 to i11

FIGURE 17.17 Multiple basic blocks example.
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Time Int. Unit 1 Int. Unit 2

r2       load a(r1) 

r3       load b(r1) 

r4       r3 + r7 

r5       r5 + r4 

if (r2 != 0) goto i7

if (r1 < r6) goto i1

0

1

2

i1:

i2:

3

4

5

6

i3:

i4:

i5: b(r1)    r4 i6: goto i9

i7: r4       r2 i8: b(r1)     r23

4

i10: r1        r1 + 47 (5)

8 (6)

i9:

i11:

←

←

←

←

←

←

←

←

FIGURE 17.18 Basic block schedule for the instruction sequence of Figure 17.17.

correspond to the schedule time when the control flow is B1 → B3 → B4. Note that the extra cycle

(time step 4) in the schedule (after instruction i7 and i8) in basic block B3 is due to the stall for

load instruction (i8) at the basic block boundary. It takes 9 cycles for the path B1 → B2 → B4
and 7 cycles for B1 → B3 → B4.

Assume that basic blocks B1, B2 and B4 are frequently executed, and they form the main trace.

By allowing the instructions in basic block B2 to be moved above the split point in the control

flow graph, a compact schedule for the most frequently executed trace can be obtained. For example,

instruction i3 can be moved to block B1. Such movement of instructions above a conditional branch

instruction is referred to as speculative code motion. Moving an instruction that could potentially

raise an exception, such as a memory load or a divide instruction, speculatively above a control split

point, requires additional hardware support as discussed in [22]. This is to avoid raising unwanted

exceptions.

The original program semantics must be ensured under speculative code motion. For this, the

destination register of an instruction i should not be live on entry on alternative paths on which i
is control dependent. The reason is, when execution proceeds on an alternative path, instruction i
that was speculatively executed would have modified the destination register that is live on entry in

this path. Suppose register r3 is live on entry for basic block B3 in our example. (That is, some

instruction j is in B3 for which r3 is a source operand and no instructions are in B3, before j, that

defines r3). Then speculative motion of i3 from basic block B2 to B1 destroys the live-in value

of r3 for instruction j. Thus, to perform speculative code motion of an instruction whose destination

register is live-in on an alternative path, the destination register must be renamed appropriately at

compile time.

A schedule for the main trace is shown in Figure 17.19. In this schedule, the main trace consisting

of basic blocks B1, B2 and B4 can be executed in 6 cycles whereas the off-trace path involving B1,

B3 and B4 can be executed in 7 cycles. By scheduling instructions across basic blocks, the execution

time of the main trace is reduced from nine to six cycles.

When execution goes through the less frequently executed path, off-trace path, to preserve correct

program execution, some of the instructions may be duplicated. The code inserted to ensure correct

program behavior and thus compensate for the code movement is known as compensation code. For

example, if an instruction from basic block B1 is moved down below the control split point to B2,

then a compensation code has to be inserted in B3. Several other examples of code movement and

the required compensation code are illustrated in [95].

The trace-scheduling algorithm should maintain the need for introducing such compensation code

at various program points. This is known as bookkeeping. The compensation code may increase the
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Time Int. Unit 1 Int. Unit 2

r2       load a(r1) 

r5       r5 + r4 

if (r2 != 0) goto i7

if (r1 < r6) goto i1

0

1

2

i1:

i2:

3

4 (5)

5 (6)

i5:

i9:

b(r1)    r4

i3:

i4:

i10:

i11:

r4       r2

goto i9

i8: b(r1)     r23

4

i7:

i12:

← r3       load b(r1) ←

←

←

←

←

r4       r3 + r7 ←

r1       r1 + 4 ←

FIGURE 17.19 Trace schedule for the instruction sequence of Figure 17.17.

schedule length of other traces. Because the objective is to reduce the overall execution time and

the trace that is scheduled first is the most frequently executed one, compacting the schedule of the

instructions in this trace is desirable, even if this increases the schedule length of other traces. A key

property of trace scheduling, as pointed out in [121], is that the decisions as to whether to move an

instruction from one basic block to another, where to schedule it, etc. are all made jointly in the same

compiler phase. The trace-scheduling method was implemented in the Bulldog compiler [41]. The

work was later enhanced into a production quality Multiflow compiler [95].

17.5.1.2 Superblock Scheduling

Hwu et al. propose a variant of trace scheduling called superblock scheduling [72] in the IMPACT

project [22]. The motivation and the basic idea behind superblocks comes from the observation

that the complexities involved in maintaining bookkeeping information in trace scheduling arise due

to several incoming control flow edges at various points in a trace. The bookkeeping associated

with these entrances, known as side entrances, can be avoided if the side entrances themselves are

eliminated in the trace. For example, in the trace shown in Figure 17.17(c), there is a side entrance

into basic block B4. Thus, by eliminating the side entrances, the (control flow) join points, as well

as the associated bookkeeping, can be eliminated in a superblock. To summarize, a superblock trace

consists of a sequence of basic blocks with a single entry (at the beginning of the superblock) and

multiple exits. Superblocks are formed in two steps: in the first step traces are identified using profile

information; the second step performs tail duplication to eliminate side entrances.

We explain the construction of superblocks with the help of the example discussed in

Section 17.5.1.1. Once again, let us assume that basic blocks B1, B2 and B4 constitute the main

trace as shown in Figure 17.17(c). As explained earlier, the second trace in the control flow graph

makes a control flow entry to B4, and hence a side entrance to the main trace. To form superblocks

for this trace, the tail block B4 is replicated to eliminate the side entrance. The superblocks for the

control flow graph are shown in Figure 17.20(a).

Three optimizations to enlarge the size of a superblock have been proposed in [72], which, in

turn, enhance the scope for exploiting higher ILP. Additional dependence-removing optimizations

are subsequently performed to expose greater ILP. After these optimizations, the instructions in

enlarged superblocks are scheduled using a list scheduling method. A schedule for the superblock

is shown in Figure 17.20(b). Although no bookkeeping code is needed in this example, avoiding

the side entrance enables further compaction of the schedule for the main trace or superblock 1. It

can be seen that superblock 1 can be executed in 5 cycles. When the control flows to superblock 2,

execution takes 6 cycles.

Both trace and superblock scheduling consider a linear sequence of basic blocks from a single

control flow path. Both methods can move instructions from one basic block to another. However,
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FIGURE 17.20 Superblock formation and scheduling.

store instructions that write into memory locations are not speculatively moved above branches,

because this would modify a memory location whose old contents may be needed in an alternative

path when execution proceeds on an off-trace path. Likewise, instructions that could potentially

cause an exception, such as load, store, integer divide and floating point instructions, are typically not

speculatively moved; otherwise, additional hardware support, in the form of nontrapping instructions,

would be required [22].

17.5.1.3 Hyperblock Scheduling

Trace scheduling and superblock scheduling rely on the existence of a main trace, the most frequently

executed path in the control flow graph. Although this is likely in scientific computations, it may not

be the case in control-intensive symbolic computing that dominates integer benchmark programs. To

handle multiple control flow paths simultaneously, Mahlke et al. propose hyperblock scheduling [97].

In this approach, the control flow graph is IF converted [6] so as to eliminate conditional branches.

IF conversion replaces conditional branches with corresponding comparison instructions each of

which sets a predicate. Instructions that are control dependent on a branch are replaced by predicated

instructions that are dependent on the corresponding predicate. For example, an instructiont1←t2
+ t3 that is control dependent on the condition (t4 = 0) is converted to:

i : p1 ← (t4 == 0)

i’: t1 ← t2 + t3, if p1

Instructioni’ is predicated onp1 andt1←t2 + t3 is performed only ifp1 is true. Thus by using

IF conversion, a control dependence can be changed to a data dependence. In architectures supporting

predicated execution [22, 77, 126], a predicated instruction is executed as a normal instruction if the

predicate is true; it is treated as a NO-OP otherwise.

A hyperblock is a set of predicated basic blocks, and as with superblocks, has a single entry and

multiple exits. However, unlike a superblock that consists of instructions from only one path of

control, a hyperblock may consist of instructions from multiple paths of control. The presence of

multiple control flow paths in a hyperblock enables better scheduling for programs with heavily biased

branches. The region of blocks chosen to form a hyperblock is from an innermost loop, although

a hyperblock is not necessarily restricted only to loops. Whereas conventional IF conversion can

predicate all basic blocks in an innermost loop, hyperblocks selectively predicate only those that

would improve program performance. A heuristic based on the frequency of execution, size and

characteristics (such as whether they contain function calls) of basic blocks is used in selecting the

blocks for predication. The reason for selectivity in predication is that combining unnecessary basic

blocks (from different control flow paths) results in wasting the available resources, leading to poor

performance.
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FIGURE 17.21 Hyperblock formation and scheduling.

The selected set of basic blocks should (1) not have a side entrance and (2) not contain an inner

loop. Tail duplication is done to eliminate side entrances in a hyperblock. Loop peeling is performed

on a nested inner loop that iterates only a few times to enable including both inner and outer loops in

the hyperblock. Finally, when basic blocks from different control paths are included in a hyperblock,

and when the execution times of the control paths are vastly different, node splitting is performed

on nodes subsequent to the merge point (corresponding to the multiple control path). Node splitting

duplicates the merge and its successor nodes.

Once the blocks are selected for a hyperblock, they are IF converted. Then certain hyperblock

specific optimizations are performed [97]. Finally the instructions in a hyperblock are scheduled

using a list scheduling method. In hyperblock scheduling, two instructions that are in mutually

exclusive control flow paths may be scheduled on the same resource. If the architecture does not

support predicated execution, reverse IF conversion [153] is performed to regenerate the control

flow paths.

Let us once again consider the control flow graph shown in Figure 17.17(c). If basic blocks B2 and

B3 are both equally likely to be executed, then the superblock scheduling method can choose only

one of the two basic blocks, whereas both can appear in a hyperblock as shown in Figure 17.21(a). A

new instruction i2’ that sets a predicate is introduced in the code. Instructions i3, i4 and i5 are

predicated on p1 whereas i7 and i8 are predicated on the complement of p1 (i.e., !p1). Because

instructions i3 and i4 are now data dependent on i2’, they can be scheduled only after time

step 2. This results in a lengthier schedule. However, by identifying that these two instructions can

be speculatively executed, predicate promotion can be performed on these instructions [97], and

they can be scheduled earlier. The resulting schedule is shown in Figure 17.21(b). Note, however,

that the resulting hyperblock schedule takes 6 cycles, and hence actually results in a performance

degradation if the control flow path B1 → B2 → B4 is taken.

Tail duplication and node splitting performed to form hyperblocks result in duplication of code.

This may increase the code size significantly. Another concern in hyperblock scheduling is that an

aggressive selection for alternate control flow paths may unnecessarily increase the resource usage

and hence may result in degenerated schedules. For hyperblock scheduling to be effective, both code

duplication and inclusion of alternate control flow paths must be kept under check.
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17.5.1.4 Other Global Acyclic Scheduling Methods

In [98], global acyclic scheduling methods have been classified as either a profile-driven or a

structure-driven approach. The global acyclic methods discussed in the earlier subsections fall under

the profile-driven approach. They identify the most frequently executed paths using profile infor-

mation and coalesce them into an extended basic blocks. In contrast, the structure-driven approach

identifies and attempts to increase parallelism along all execution paths by moving operations between

basic blocks, considering program structure and without using profile information. Examples of

structure-driven approaches are region scheduling [59], percolation scheduling [105] and global

scheduling [14]. In this section we briefly review some of the structure-driven global scheduling

methods, as well as a few other profile-driven scheduling methods.

Trace scheduling is generalized to deal with general control flow in percolation scheduling [105].

Percolation scheduling uses four transformations, namely, delete, move, move conditional and unify.

For each node in the control flow graph, it tries to apply each of the four transformations and repeats the

transformation until none can be applied. Three out of four of these transformations move operations

upward in the control flow graph. Delete removes a node when it is empty. Percolation scheduling

originally assumed unbounded resources. It is then extended to nonunit execution latencies, but still

with unbounded resources, in [104]. Trailblazing [103] is another extension to percolation scheduling

that exploits the structure of the hierarchical task graph representation to move instructions across

large blocks of code in a nonincremental way (i.e., without having to move instructions in a step-by-

step manner through every block in the control flow path). This facilitates both efficient code motion

and elimination of code explosion in certain cases.

Meld scheduling is a simple but effective instruction-scheduling method across basic blocks that

was used in the Cydra 5 compiler [34]. It follows a simple basic block scheduling approach, except that

during the scheduling of a basic block B, if either the predecessor (or the successor block), say B ′,

has already been scheduled, then the resource usage information at the end (or, respectively, the

beginning) of schedule for B ′ is used as the resource usage at the start (or end) of the the basic block B.

The resource usage entering into the basic block should take into account the multiple basic blocks

from where (to which) control flow could enter (leave) block B. Taking into account the resource

usage at the boundary of neighboring basic blocks and scheduling instructions from the current basic

block allows the overlap of instructions across basic blocks. The work of Abraham, Kathail and

Deitrich generalizes this idea and quantitatively evaluates the benefits of meld scheduling [1].

Another global code scheduling, called region scheduling, has been discussed in [59]. This

approach is based on extended program dependence graph representation allowing code motion

between regions consisting of control equivalent statements [43]. Regions are classified accord-

ing to their parallelism content that is used to drive a set of powerful code transformations.

Golumbic and Rainish propose several simple schemes for scheduling instructions beyond basic

blocks [51].

A global instruction scheduling method, also based on program dependence graph, has been

implemented in the IBM XL family of compilers for the IBM RS/6000 systems [14]. The scheduling

method proceeds by processing one basic block at a time. However, when scheduling instructions in

a basic block B, consideration is given to instructions from control equivalent blocks, instructions

from successors of B and successors of control equivalent blocks. Whereas the latter two categories

of instructions (from successor blocks) are considered speculative instructions, instructions from

control equivalent blocks are considered as useful instructions. During a scheduling step, speculative

instructions can be scheduled, provided they are data ready, resources for them are available and they

are schedulable across basic blocks. However, preference is given to useful instructions as opposed

to speculative ones. This is especially important in machines having a small number of functional

units, such as the RS/6000 system.
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Next we turn our attention to a few other profile-driven scheduling methods. Hank, Hwu and Rau

have proposed region-based compilation, an approach that allows an arbitrary collection of basic

blocks, possibly extending over multiple function bodies, to be considered as a compilation unit [61].

The region formation approach is a generalization of profile-based trace selection. A region can

expand across more than one control path. Region formation considers aggressive function inlining

to extend regions across function bodies. The region formation approach is proposed as a generalized

technique that is applicable to the entire compilation process, including ILP optimizations, instruction

scheduling and register allocation. A global scheduling technique that operates over a restricted

region, a single entry subgraph, has been proposed in [96]. A region-based register allocation

approach has been discussed in [80].

As mentioned earlier, trace scheduling and superblock scheduling operate on linear sequences

of basic blocks from a single control flow path, and favor the current trace path at the expense of

instructions in the off-trace trace. Hsu and Davidson [68] and, more recently, Havanaki, Banerjia and

Conte [62] have proposed global scheduling methods that operate on a tree of basic blocks, possibly

involving multiple control flow paths. A treeregion, as the name suggests, is a tree in the control flow

graph, where, except for the root node, all other nodes (basic blocks) have a single incoming edge.

Scheduling of instructions in the tree of basic blocks can benefit from profile information. Further, a

tree of regions, referred to as treegion [62], can be enlarged by performing tail duplication of merge

nodes (and its successors). Compile-time register renaming is used to allow speculative code motion

of instructions above their control-dependent branches.

The integrated global local scheduling (IGLS) approach [98] is a hybrid of profile-driven and

structure-driven scheduling approaches. This method avoids the tail duplication and bookkeeping

overheads of profile-driven approaches. IGLS orders the selection of blocks using profile information.

However, in applying the code-reordering transformation, it follows a structure-driven approach and

does not necessarily restrict code reordering to any trace or extended block. Also, the selection of

the appropriate code motion and the target block selection are made flexible and depends on the

current properties of the block such as the available parallelism within the block. The method has

been implemented in the SGI MIPSpro compiler.

An important consequence of aggressive speculative scheduling of instructions in a global instruc-

tion scheduling method is that it may unduly delay some of the paths in the global region (such as a

superblock) considered for schedule. This happens especially when the resources (functional units)

are limited. The reason for this is that the profile information is used only during the formation of

the global region and not while scheduling the instructions. Fisher proposed the use of speculative

yield — probability that a speculatively scheduled instruction produces useful work — along with

dependence height (similar to MaxDistance defined in Section 17.4.2.1) in scheduling instructions

in the global region [47]. Successive retirement is another profile-independent scheduling heuristic

that attempts to retire each path (or exit) in order, as early as possible [26]. This heuristic, applied

to superblock regions, minimizes speculation, so that it only speculates when no nonspeculative

instructions are available. The speculative hedge heuristic attempts to ensure that no path gets

delayed unnecessarily by accounting for different processor resources while scheduling, and not

just using a common scheduling priority function based on dependence height [35]. Finally, the

treegion-scheduling method [62], by virtue of scheduling multiple paths in parallel, also avoids

unduly penalizing the off-trace paths.

17.5.2 Cyclic Scheduling

To exploit higher ILP in loops, several cyclic-scheduling methods have been proposed to overlap the

execution of instructions from multiple basic blocks, where the multiple blocks could be multiple

instances of the same static basic block corresponding to different iterations. Early cyclic-scheduling

methods unrolled the loop several times and performed some form of global scheduling on the
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FIGURE 17.22 Software pipelining example.

unrolled loop [44]. Although this approach exploits greater ILP within the unrolled iteration, very

little or no overlap occurs across the iterations of the unrolled loop.

Software pipelining [5, 84, 121, 122] overlaps the execution of instructions from multiple

iterations of a loop. The objective here is to sustain a high initiation rate, where the initiation of

a subsequent iteration may start even before the previous iteration is complete. We discuss software

pipelining only briefly here, because this is the topic of discussion of Chapter 18 [4] in this book.

Let us first explain software pipelining with the help of the example (refer to Figure 17.22) adapted

from [54, 124]. The dependences among the instructions in the loop are represented by means of

a data dependence graph (DDG). The DDG, unlike the DAG used thus far for acyclic scheduling,

may be cyclic. In particular, a dependence from an instruction i to i’ could be across iterations.

That is, the value produced by i in the j th iteration could be used by i’ in iteration (j + d). Such

a dependence is known as a loop-carried dependence with a dependence distance d . A loop-carried

dependence is marked in the DDG by means of tokens on the dependence arc. The number of tokens

present in an arc indicates the dependence distance.

For the instruction sequence shown in Figure 17.22(b), the dependence graph is depicted in

Figure 17.22(c). In this graph, we assume that the possible dependence from store to load can

be disambiguated, and hence omitted. We shall assume an architecture with two integer functional

units and two floating point units. Let the latencies of instructions in these functional units be one

and two cycles, respectively. Further, we assume that load and store instructions are executed by a

load and store unit with execution times of 2 and 1 time units, respectively. An acyclic-scheduling

approach is able to achieve a schedule in which the execution time of each iteration is five cycles.

This corresponds to an initiation rate of 1
5 iterations per cycle.

Software pipelining overlaps successive iterations of the loop and hence can exploit higher ILP.

Successive iterations of a loop are initiated with an initiation interval (II) and initiation rate (1/II). The

minimum initiation interval (MII) achievable for a given loop is governed by resource constraints

and recurrences or cyclic data dependences. The MII of a loop is the maximum of Resource MII

(ResMII) and Recurrence MII (RecMII).

RecMII is determined from the dependence cycles in the DDG [127]. Specifically:

RecMII = max
∀ cycles C

⌈

sum of execution latencies of instructions in C

sum of dependence distances in C

⌉
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ResMII, for simple resource usage patterns (fully pipelined functional units), is given by:

ResMII = max
r

⌈

Nr

Fr

⌉

where Nr is the number of instructions that can be executed in functional unit of type r and Fr is the

number of instances of type r functional unit. For our target architecture:

ResMII = max(ResMIIInt, ResMIIFP, ResMIILd/St)

ResMII = max

(

3

2
,

1

2
,

2

1

)

= 2

For the DDG in Figure 17.22(b) there are two self-cycles on instructions i3 and i4. Hence, RecMII

for the loop is:

RecMII = max

(

1

1
,

1

1

)

= 1

Thus:

MII = max(RecMII, ResMII) = max(1, 2) = 2

In our discussion we consider periodic linear schedules, under which various instructions begin

their execution at time steps given by a simple linear relationship. The j th iteration of an instruction

i begins execution at time II · j + ti , where ti ≥ 0 is an integer offset and II is the initiation

interval of the given schedule. It can be seen that ti is also the schedule time of instruction i in

iteration 0.

Figure 17.23 gives a resource constrained schedule with II = 2 for our example loop. This schedule

is obtained with II = 2, ti0 = 0, ti1 = 2, ti2 = 5, ti3 = 3, ti4 = 4 and ti5 = 5. The schedule has a

prologue (from time step 0 to time step 3), a repetitive pattern (at time steps 4 and 5) and an epilogue

code starting from time step 6 to 9 as shown in Figure 17.23. Further, at the first time step in the

repetitive pattern (time step 4), instructions i0, i1 and i4 are scheduled. Instructions i2, i3 and

i5 are scheduled at the second time step (time step 5). The repetitive kernel is executed (n−2) times

in this case and hence t1 must be appropriately set. It can be seen that the resource requirement

in both cycles in the repetitive kernel is within the available resources. Further, the schedule shown

earlier is one of those resource-constrained schedules that achieves the lowest initiation interval

(MII = 2). Hence, the schedule is a rate-optimal schedule.

Obtaining a rate-optimal resource constrained software pipelined schedule is known to be NP

complete [84, 121]. Hence, many of the proposed methods for software pipelining attempt to obtain

a near-optimal resource constrained schedule. A number of heuristic methods for software pipelining

have been proposed [34, 36, 49, 84, 99, 120, 125, 138, 150], starting with the work of Rau and

Glaeser [122] and its application in the FPS compiler and Cydra 5 compiler [33, 34]. Some of

these algorithms backtrack some of the scheduling decisions to obtain efficient schedules.

A resource-constrained software pipelining method using list scheduling and hierarchical reduc-

tion of cyclic components has been proposed by Lam [84]. Her approach identifies strongly connected

components — the maximal connected subgraph of the underlying undirected graph, where a path

exists between every pair of nodes — and schedules the instructions in them. The strongly connected

component is then treated as a single pseudo operation with a complex resource usage pattern.

Like this, the remaining DDG is reduced in a hierarchical way. Other heuristic-based scheduling

methods have been proposed by Gasperoni and Schwiegelshohn [49], Wang and Eisenbeis [150] and

Rau [125]. The problem of obtaining a rate-optimal resource constrained software pipelined schedule

is formulated as an integer linear programming problem in [42, 53, 55]. Altman, Govindarajan and



668 The Compiler Design Handbook: Optimizations and Machine Code Generation

FIGURE 17.23 Software pipelined schedule with II = 2.

Gao have extended their integer linear program formulation to handle complex resource usage

patterns by unifying the scheduling and mapping problem in a single framework [7]. Efficient

integer linear program formulation has been proposed in [39] which makes use of structured 1-0

formulation [25].

In [54, 56], a novel scheduling method, called co-scheduling, has been proposed, which is

a heuristic method that uses MS-state diagram, an automaton-based resource usage model. The

MS-state diagram model, proposed independently, is similar to the finite state automaton approach

proposed by Bala and Rubin [11]; the main difference is that the former incorporates information

about the initiation interval (II).

In addition to obtaining efficient schedules, in terms of low II, many software pipelining

methods also attempt to reduce the register requirements of the constructed schedule. The Huff slack

scheduling method [70] is an iterative solution that gives priority to scheduling instructions with

minimum slack (as defined in Section 17.4.2.1) and tries to schedule an instruction at a time step that

minimizes register pressure. Stage scheduling constructs a schedule with lower register requirements

from an already constructed resource constrained software pipeline schedule either using a number

of heuristics [37] or solving a linear programming problem [40]. The newly constructed schedule

and the original schedule have the same repetitive kernel and ti values (the schedule time of

instruction i in iteration 0). The hypernode reduction modulo scheduling (HRMS) method [93],

register-sensitive software pipelining [32] and swing modulo scheduling [92] are some of the

other software pipelining methods that reduce the register requirements of the software pipelined

schedule.

Register allocation of software pipelined schedules has been studied in [124]. A number of register

allocation strategies were discussed and evaluated for architectures with and without specific hard-

ware support. Zalamea et al. have studied register spills in software pipelining [157]. An important
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issue in software pipelining is that of handling the live ranges of the same variable corresponding to

different iterations that overlap with themselves. For example, the value produced by instruction i1
at time step 2 in the schedule shown in Figure 17.23 is used by instruction i2 only at time step 5.

However, another instance of i1 corresponding to the next iteration is executed (at time step 4),

which could overwrite the destination register. Modulo variable expansion is a technique that unrolls

the schedule a required number of times, and renames the destination register appropriately to handle

multiple simultaneously live values [84, 122]. Hardware support in the form of rotating registers was

proposed in Cydra 5 [126] as a solution to this problem. With rotating registers, unrolling of loop

schedules as in modulo variable expansion is not necessary. A software pipelining method that is

sensitive to modulo variable expansion has been proposed in [147]. This method first unrolls the

loop an estimated number of times and schedules it in such a way as to avoid overlapping live ranges

of the same variable.

Loops consisting of multiple basic blocks with arbitrary acyclic control flow in the loop body

pose another important challenge for software pipelining. The hierarchical reduction approach that

schedules strongly connected components and reduces them as a single pseudo operation can handle

conditionals as well [84]. In this approach, the two branches of a conditional are first scheduled

independently. The entire conditional is then represented as a single node whose resource usage at

each time step is the union of resource usages of the two branches, with the length of the schedule

equal to the maximum of the lengths of the branches. After the entire loop is scheduled, the explicit

control structure is regenerated by inserting conditionals. Another approach to handle conditionals

in a loop body is by performing IF conversion [6]. The IF-converted (or predicated) code can be

scheduled [33] for architectures that support predicated execution [22, 77, 126] as if it were a single

basic block. However, the resource usage for predicated code is the sum of the resource usages

instead of their union.

The enhanced modulo-scheduling method [152] follows an approach similar to software pipe-

lining predicated code. However, it regenerates the explicit control structure as in the hierarchical

reduction method [84]. This not only eliminates the disadvantage on resource requirements of

predicated methods, but also does not require hardware support for predicated execution. In [154], a

software pipelining method that uses multiple II values has been proposed. The scheduling procedure

is reminiscent of trace scheduling; the most likely trace of execution is chosen and scheduled

separately with the smallest possible II. The next trace is scheduled on top of this trace, filling

in holes with an II that is a multiple of the smallest II and so on.

A comprehensive survey of various software-pipelining methods can be found in [5, 121].

17.6 Scheduling and Register Allocation

In this section we discuss the interaction between instruction scheduling and register allocation,

another important phase in an optimizing compiler. Register allocation determines which frequently

used variables are kept in registers to reduce memory references. Instruction scheduling and register

allocations phases influence each other and hence the ordering of these two phases in a compiler is

an important issue.

17.6.1 Phase-Ordering Issues

In many early compilers, instruction scheduling and register allocation phases were performed

separately, with each phase ignorant of the requirements of the other, leading to degradation of

performance. The performance degradation can be explained as follows: in postpass scheduling

where register allocation precedes instruction scheduling [50, 64], the register allocator, in an attempt

to reduce the register requirements, may reuse the same register for different variables. This reuse of
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registers could result in anti- and output dependences, which in turn limit the reordering opportunities.

On aggressive multiple instruction issue processors, especially those that are statically scheduled,

the parallelism lost may far outweigh any penalties incurred due to spill code.

On the other hand, in a prepass method [10, 52, 151], instruction scheduling is performed before

register allocation. This typically increases the lifetimes of registers, possibly leading to more spills

and hence degrading performance. Further, any spill code generated after the register allocation pass

may go unscheduled because scheduling was done before register allocation. This may even lead to

illegal schedules in statically scheduled processors, if the resources required for the spill code are

not available. Therefore, it is customary that prepass scheduling is followed by register allocation

and postpass scheduling.

17.6.2 Integrated Methods

A number of integrated techniques have been proposed in the literature to introduce some communica-

tion between the two phases [16, 18, 52, 117]. These integrated techniques increase the ILP exposed

to the processor without drastically increasing the number of spills and hence improve performance

considerably. We discuss two of these integrated methods, namely, integrated prepass scheduling

(IPS) [52] and parallel interference graph method [117] in detail. A number of other integrated

methods have also been proposed in the literature [15, 18, 100, 107], which are reviewed briefly.

17.6.2.1 Integrated Prepass Scheduling

In IPS [52], instruction scheduling precedes register allocation; however, the scheduler is given a

bound on the number of registers that guides it to increase parallelism when the register pressure is

low and to limit the parallelism otherwise.

The basic idea is to keep track of the number of available registers during the scheduling phase.

Each issued instruction may create a new live register and terminate the lifetime of some registers.

Hence, the method keeps track of the number of available registers at each schedule step. The main

algorithm switches between two schedulers. When there are enough registers, the scheduler uses code

scheduler to avoid pipeline (CSP) delays, which schedules instructions to avoid delays in pipelined

machines. When the number of registers falls below a threshold, the scheduler switches to code

scheduling to minimize registers usage (CSR), which essentially controls the use of registers.

Switching between CSP and CSR is driven by the number of available registers, AVLREG.

AVLREG is increased when a live range ends, and decreased when an instruction creates live

registers. CSP is responsible for code scheduling most of the time. When AVLREG falls below

a threshold (say one), CSR is invoked. The goal of CSR at this point is to find the next instruction

that will not increase the number of live registers, or if possible, decrease that number. That is, CSR

tries to schedule an instruction that frees more registers than the number of live registers it creates.

After AVLREG is restored to an acceptable value, CSP resumes scheduling. Thus, IPS performs

prepass scheduling without excessively increasing the register requirements of the schedule.

The scheduling phase is subsequently followed by the global register allocation phase. The IPS

scheduler is similar to the list scheduler described in Section 17.4.2. The IPS scheduler uses the data

dependence graph of a basic block to perform the scheduling in each basic block.

17.6.2.2 Parallel Interference Graph Method

The integrated technique developed by Pinter is based on the coloring of a graph called the parallel

interference graph [117]. The graph provides a single framework within which the considerations of

both register allocation and instruction scheduling can be applied simultaneously. In this technique,

the parallel interference graph — an interference graph that also takes into account scheduling

constraints — is first constructed. By using this graph, register allocation is carried out, which is

then followed by instruction scheduling. Hence, this is a postpass method.
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The parallel interference graph combines properties of the traditional interference graph and the

scheduling graph. However, a simple combination of the two graphs is not possible because the

vertices in the two graphs represent different aspects: the vertices in the interference graph stand for

symbolic or virtual registers in the program whereas the vertices in the scheduling graph correspond

to instructions in the program. Likewise, an edge in the interference graph indicates an interference

of live ranges of two symbolic registers, whereas an edge in the scheduling graph represents a

precedence constraint between two instructions.

To see how the two graphs are combined, consider the example code sequence shown in

Figure 17.24(a). The live ranges of variables are also shown in the same figure. Figure 17.24(b)

shows the DAG for the code. The DAG gives the precedence constraints of the program. The transitive

closure of this graph is generated and the edge directions are removed — refer to Figure 17.24(c).

The transitive closure edges are shown as dash–dot lines in the graph in Figure 17.24(c). To this new

graph all the machine-related dependencies that are not of precedence type are added. For example,

consider a target machine with only one integer unit and one load and store unit. Then, instructions

i1, i2 and i6 that execute on the load and store unit form a group. Similarly, instructions i3, i4
and i5 that execute on the integer unit form another group. Any pair of instructions in the same

group cannot be executed in parallel. This constraint is represented by adding an edge between

each pair of instructions in a group. A machine constraint edge, shown as a dashed line, is added

only if neither a dependency edge nor a transitive closure edge already exists between that pair

of instructions. Figure 17.24(c) shows the graph after transitive closure and machine-related edges

are added. For example, edges (i1,i2) and (i3,i4) are machine-related edges. The edges in

the complement of this graph represent the actual parallelism available in the given program. The

complement graph consists of only two edges, namely, (i1,i3) and (i2,i4). If we can ensure

that the two definitions corresponding to each edge in the complement graph are given different

registers, then no false dependence can be introduced by the register allocator. For example, the live

ranges for t1 and t3, corresponding to the complement edge (i1,i3), should be given different

registers to ensure that no false dependences are introduced between i1 and i3.

In the interference graph, nodes represent symbolic or virtual registers. An edge is added between

a pair of nodes in the interference graph if their live ranges overlap. The interference graph for the

code sequence is shown in Figure 17.24(d). Now, the parallel interference graph is built by adding

edges from the complement graph to the interference graph, if they are not already present. In our

example, the complement edge (i2,i4) should be added to the parallel interference graph. The

resulting parallel interference graph is shown in Figure 17.24(e). An optimal coloring of this graph

ensures that no false dependence can be introduced. While coloring the graph, if it is found that spill

code has to be added, the scheduling edges in the interference graph are removed one at a time to

avoid spilling, thus giving up some possible parallelism.

17.6.2.3 Other Integrated Methods

The unified resource allocator (URSA) method deals with function unit and register allocation simul-

taneously [15]. The method uses a three-phase measure–reduce–assign approach, where resource

requirements are measured and program regions of excess requirements are identified in the first

phase. The second phase reduces the requirements to what is available in the architecture, and

the final phase carries out resource assignment. Norris and Pollock [107] proposed a cooperative

scheduler-sensitive global-register allocator, which is followed by local instruction scheduling. The

scheduler-sensitive global register allocator is a graph-coloring allocator that takes into consideration

the scheduler’s objectives throughout each phase of its allocation. The potential for code reordering

is reflected in the construction of the interference graph. Scheduling constraints and possibilities are

also taken into consideration when the allocator cannot find a coloring and decides to spill.

Bradlee, Eggers and Henry [18] developed an integrated approach called RASE in which a

prescheduling phase is run to calculate cost estimates for guiding the register allocator. A global
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FIGURE 17.24 Construction of parallel interference graph.
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register allocator then uses the cost estimates and spill costs to obtain an allocation and to determine

a limit on the number of local registers for each block. A final scheduler is run using the register

limit from allocation and inserting spill code as it schedules.

Combined register allocation and instructions scheduling problem (CRISP) has been studied by

Motwani et al. in [100]. They formulate the problem as a single optimization problem and proposed

an efficient heuristic algorithm, called (α, β)-combined algorithm. The parameters α and β provide

relative weightage for register pressure and instruction-level parallelism.

17.6.2.4 Evaluation of Integrated Methods

Several studies have compared the prepass and postpass scheduling methods with integrated

techniques [16, 18, 21, 108]. In [18], Bradlee, Eggers and Henry compared three code generation

strategies, namely, postpass, integrated prepass scheduling and their own integrated technique called

RASE. Their study, conducted for a statically scheduled in-order issue processor, demonstrated

that while some level of integration is necessary to produce efficient schedules, the implementation

and compilation expense of strategies that very closely couple the two phases is unnecessary. Chang

et al. studied the importance of prepass scheduling using the IMPACT compiler in [22]. Their method

applies both prepass and postpass scheduling to control-intensive nonscientific applications. Their

study considers single issue, superscalar and superpipelined processors. Further their evaluation also

included superblock scheduling [72]. Their study reveals that prepass scheduling does not improve

the performance in control-intensive applications, when a restricted percolation model was used.

With a more general code motion, scheduling before register allocation is important to achieve good

speedup, especially for machines with 48 or more registers.

In [108], Norris and Pollock describe a strategy for providing cooperation between register

allocation and instruction scheduling. They considered both global and local instruction scheduling

techniques. They experimentally compared their strategy with other cooperative and noncoop-

erative techniques. Their results suggest either cooperative or noncooperative global instruction

scheduling phase, followed by register allocation that is sensitive to the subsequent local instruction

scheduling, and local instruction scheduling yields good performance over noncooperative methods.

Berson, Gupta and Soffa [16] compared two previous integrated strategies [52, 107] with their

strategy [15], which is based on register reuse dags for measuring the register pressure. They

have evaluated register spilling and register-splitting methods for reducing register requirements.

They studied the performance of the preceding methods on a six-issue VLIW architecture. Their

results reveal that (1) the importance of integrated methods is more significant for programs with

higher register pressure, (2) methods that use precomputed information (prior to instruction schedul-

ing) on register demands perform better than the ones that compute register demands on-the-fly

(e.g., using register pressure as an index for register demands) and (3) live range splitting is more

effective than live-range spilling.

17.6.3 Phase Ordering in Out-of-Order Issue Processors

Many modern processors (e.g., MIPS R10000 [156], DEC Alpha 21264 [79] and the AMD K5 [134]),

support out-of-order (o-o-o) issue. In an o-o-o issue processor, instructions are scheduled dynamically

with the help of complex hardware support mechanisms such as register renaming and instruction

window. Register renaming is a technique by which logical registers are mapped to hardware physical

registers or locations in the reorder buffer [136]. Such mapping removes anti- and output dependences

and hence exposes greater ILP in the program. Further, the number of available physical registers is

typically larger (roughly twice) than the number of logical registers visible to the register allocator.

The instruction window holds the fetched and decoded instructions; the dynamic issue hardware

selects data-ready instructions from the window and issues them. Instructions may be issued in an

order different from the original program order. The register renaming mechanism and the reorder
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buffer together remove anti- and output dependences. This, in spirit, is similar to what the integrated

register allocation and instruction scheduling techniques do at compile time. This makes the issues in

phase ordering for o-o-o issue processors to be different from that for statically scheduled processors,

namely, in-order issue and VLIW processors.

17.6.3.1 Evaluation of Phase Ordering in Out-of-Order Processors

The phase-ordering problem in the context of o-o-o issue has been studied in [148, 149]. The study

investigates (1) whether complex compile-time techniques do improve the overall performance and

(2) whether a prepass-like or a postpass-like approach should be followed for o-o-o issue processors.

The study observes an insignificant improvement in performance due to integrated methods, when

scheduling is limited to basic blocks. Further, it advocates postpass-like methods, because it is

important to minimize register spills in o-o-o issue processors, even at the expense of obscuring

some instruction-level parallelism [148, 149].

17.6.3.2 Minimum Register Instruction Sequencing

Recall the optimal code generation problem and a solution to it, the SU method for integrated code

generation and register allocation, discussed in Section 17.3.3.1. This problem is revisited in the

context of o-o-o issue superscalar processors in [57]. The problem addressed in this work is that

of obtaining an instruction sequence for a DAG that uses the minimum number of registers. This

problem, termed as minimum register instruction sequencing (MRIS), is motivated by the fact that

in o-o-o issue processors it is important to reduce the number of register spills, even at the expense

of not exposing instruction level parallelism. The MRIS problem and its solution take into account

neither the resource constraints in the architecture nor the execution latencies of instructions. The

emphasis of this method is to generate an instruction sequence instead of a schedule.

Let us motivate the MRIS problem with the help of an example. Consider the computation

represented by the DAG shown in Figure 17.25. Two possible instruction sequences for this DAG

are also shown in the figure along with the live ranges of the variables t1 to t7. For the instruction

sequence A shown in Figure 17.25(b) four variables are simultaneously live during instruction i5;

therefore, 4 registers are required for sequence A. If the number of available registers is fewer than

4, sequence A results in spill loads and stores. However, for sequence B shown in Figure 17.25(c),

only three variables are simultaneously live and therefore this sequence requires only 3 registers. In

this particular example, the minimum register requirement is three. Hence, the sequence shown in

Figure 17.25(c) is one of the minimum register sequences.

A solution to the MRIS problem proposed in [57] proceeds by identifying which instructions can

share the same register in any legal instruction sequence. A complete answer to this question is

FIGURE 17.25 Instruction sequences with different register requirements.
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known to be NP-hard [48]. The approach proposed in [57] uses the notion of an instruction lineage,

which corresponds to a sequence of instructions that forms a path in the DAG. That is, a sequence

of instructions {i1, i2, i3, . . . , in} in the DAG where i2 is the successor of i1, i3 is the

successor of i2 and so on. When {i1, i2, . . . , in} forms a lineage, the instructions in a lineage

share the same register. That is, the register assigned to i1 is passed on to i2 (i1’s heir), which is

passed on to i3, and so on. Due to data dependence between pairs of instructions in the lineage, any

legal sequence orders the instructions as i1, i2, . . . , in. Hence, the instructions in a lineage can

certainly share the same destination register.

When an instruction i1 has more than one successor, one of the successors, say i2, is chosen as

the legal heir. To make i2 as the last use instruction of i1, and hence reuse the destination register,

sequencing arcs are added from each successor of i1 to the chosen heir i2. For example, for the

DAG shown in Figure 17.25(a), L1 = [i1,i3,i7,i8) forms a lineage. Typically the last node

in a lineage is either a store node (in this case, i8) or is already in some other lineage. Thus, all

instructions in a lineage except the last one share the same destination register. To emphasize this fact

that the last instruction in a lineage does not use the same destination register, a semiopen interval

notation is used for a lineage, as in L1 = [i1,i3,i7,i8). Because instruction i3 is chosen as the

heir of i1, a sequencing edge is added from i2 to i3. A simple but efficient heuristic based on the

maximum distance (MaxDistance), measured in terms of the path length to the sink node, is used to

select heirs. If the MaxDistance heuristic used is dynamic (i.e., it is calculated after the introduction

of each set of sequencing edges), then the introduction of sequencing edges does not introduce cycles

in the DAG [57]. The remaining lineages for the DAG are: L2 = [i2,i6,i8), L3 = [i5,i7) and

L4 = [i4,i6).

To address the question whether the live ranges of two lineages definitely overlap in any legal

schedule, a sufficient condition is established in [57]. The sufficient condition tests whether there

exists a path from the start node of lineage L1 to the end node of L2 and vice versa. If such paths

exist, then the live ranges of two lineages overlap in all legal sequences and the lineages cannot

share the same register. In our example, lineages L1 and L2 overlap, as do the pairs of lineages

(L1, L3), (L1, L4), (L2, L3) and (L2, L4). However, lineages L3 and L4 do not necessarily overlap in

all sequences. Hence, they can be made to share the same register. Doing so would result in sequencing

the execution of some of the instructions due to false dependences. However, in an o-o-o issue

processor, these false dependences would be removed at runtime, and hence the parallelism exposed.

Based on the overlap relation, a lineage interference graph is constructed and colored using a

traditional graph-coloring algorithm. The number of colors required to color the graph is a heuristic

lower bound on the minimum registers required. By using this lower bound as a guideline, a modified

list-scheduling method is used to generate a sequence that results in a near-optimal solution to the

MRIS problem. This approach to the MRIS problem was found to be very effective in reducing

the register pressure and in reducing the number of spill loads and stores in a number of SPEC

benchmarks. Although the sequencing method does not take into consideration resource constraints

and execution latencies, the execution time of the generated sequence was found to be comparable

with that generated by a production quality compiler.

17.6.3.3 Linearization of Instruction Schedule

A superscalar processor expects a linear sequence of instructions. Hence, a parallel instruction

schedule, such as the one shown in Figure 17.12, is presented to a superscalar processor by linearizing

it in a simple way. The linearization method sequences the instructions in each cycle of the schedule

in a left to right order. However, simple linearization methods are not aware of the register renaming

capabilities of o-o-o issue superscalar processors and may generate a sequence that would have higher

register pressure. As a consequence it may result in spill code. Further, the linearization does not take

into account the size of the instruction window [136], the register renaming capabilities of superscalar

architecture and the in-order graduation mechanism. These may result in certain inefficiencies in
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the form of stall cycles. An efficient linearization method that is sensitive to register pressure and is

aware of the architectural features of o-o-o issue superscalar processors has been proposed in [133].

The linearization proposed in [133] uses a set of matching conditions that ensure the ILP available

in the given parallel schedule is not lost in the linearization process. The linearization method is an

extension of the list scheduling method and adds instructions to the linear sequence in such a way

that it reduces the register pressure without losing any parallelism compared with the given parallel

schedule. The method was applied to basic blocks.

17.7 Recent Research in Instruction Scheduling

In this section we report some of the recent research work on instruction scheduling.

17.7.1 Instruction Scheduling for Application-Specific Processors

Instruction scheduling methods have been proposed for application-specific processors, such as DSP.

Originally most DSP applications, or their important kernels, were hand coded in assembly language.

The application programmer is required to perform the necessary instruction reordering to take full

advantage of the parallelism that is available in these processors. With the increasing complexity of

the processors and their programmability, programming in higher level languages and compilation

techniques to produce efficient code automatically are becoming increasingly important. A major

challenge in applying existing instruction scheduling methods arises due to the irregularities of

DSP processors [88]. These irregularities include having special-purpose registers in the data path;

heterogeneous registers; dedicated memory address generation units; and chained instructions such

as multiply-and-accumulate, saturation arithmetic, multistage functional units and parallel memory

banks. Further, in most cases, code running on a DSP processor also has to meet real-time constraints.

Thus, instruction scheduling for DSP processors, which needs to take into account the irregularities

of the architectures and the real-time constraints in resource usage, poses a major challenge.

Several instruction scheduling methods for DSP processors have been proposed. A DSP-specific

code compaction technique has been developed in [142], which considers both resource and timing

constraints. Instruction scheduling for the TriMedia VLIW processor [116] has been reported in [67].

The instruction scheduling problem is transformed into an integer linear program problem in [89].

Another integer linear program formulation for integrated instruction scheduling and register allo-

cation has been proposed in [19]. Methods for simultaneous register allocation and instruction

scheduling for DSP processors (involving heterogeneous registers) have been proposed in [27, 91].

An extensive survey of code generation for signal-processing systems has been presented in [17].

Certain DSP processors (e.g., the Texas Instruments TMS320C series [140]) support multiple

operating modes, such as the sign–extension mode and product–shift mode, which provide slightly

different execution semantics for instructions [8]. Multiple operating modes raise another interesting

instruction scheduling problem. Here the objective is to schedule instructions, making use of the

multiple modes, while reducing the number of mode-setting instructions required, and hence the

associated overhead cost.

Code size is another key concern in application-specific processors. Because code size relates to

on-chip program memory in these processors, code size can directly influence the cost of the system.

Hence, compilation methods in general, and instruction scheduling methods in particular, optimize

the code not only for performance, but also for code size. In the presence of code size constraints,

the scope of global code-scheduling methods is limited, because these methods are known for their

code-bloating problem.

The TMS C6x DSP processor, well known for its compiler-friendly architecture, has a cluster of

functional units [140]. Each cluster has a register file of its own. Each functional unit in a cluster can
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access two read ports and one write port to its local register file. In addition, at most one functional

unit in a cluster can access a register file in a cross cluster in any given time step. If more than one

functional unit need to access data across clusters, or multiple accesses to a cross register file are

needed, it is desirable to explicitly copy these data to a local register.

In this type of architecture, known as clustered architecture, associated with the instruction

scheduling is the problem of mapping, which assigns an instruction and its destination operand

to a cluster. Methods that perform instruction scheduling before mapping [20] or mapping before

scheduling [123] could result in poor schedules, because the first phase makes certain decisions

without knowing their consequences on the subsequent phase. To take full advantage of the ILP that

can be exploited in this architecture, a compiler needs to perform instruction scheduling along with

instruction mapping. This requires that the two problems, assignment and scheduling, be solved

in a unified framework as in [90, 110]. A modulo-scheduling method for clustered architecture is

discussed in [109, 129].

17.7.2 Instruction Scheduling for Low Power

Another area that has been receiving increasing attention is instruction scheduling for low power in

embedded processors [114]. Embedded processors are used in many handheld devices, such as cell

phones, pagers, digital cameras and toys, in which battery longevity and its size are key factors that

determine system cost. Because the overall power dissipated or energy consumed directly relates

to battery life, embedded processors generally have low-power requirements. In these systems, it is

quite common that an application is compiled more for power efficiency than for performance. By

reordering instructions the power dissipated can be decreased.

The transition or switching activities — toggling of signals from zero to one or vice versa — that

take place on the system bus, more specifically on the instruction bus, can be reduced by instruction

reordering methods, which in turn help to reduce power. Su, Tsui and Despain [139] propose a

technique that reorders instructions in such a way that the toggles between the encodings or machine

codes of adjacent instructions are reduced. This is accomplished by a simple list scheduling method

that uses a priority function that gives a higher priority to an instruction in the ReadyList that has the

lowest power cost. Power cost of an instruction is estimated based on the last scheduled instruction

in the partial schedule and a power cost table. The essential idea of this method is to reduce the

amount of switching activities between adjacent instructions to reduce the power consumed.

Another scheduling method for reducing power consumption is presented by Tiwari, Malik and

Wolfe [143]. The goal in this work is to judiciously select instructions as opposed to reordering them

to reduce power consumption. This approach uses a power table that contains power consumed by

individual instructions as well as certain commonly paired instructions. By using this power table,

code is rescheduled to use instructions that result in less power consumption. In [144], a method

to reduce the peak power dissipation has been proposed. This method uses a predefined per cycle

energy dissipation threshold, and limits the number of instructions that can be scheduled in a given

cycle based on this threshold. A method to reduce the power consumption on the instruction bus of

a VLIW architecture has been proposed in [87]. Each VLIW instruction, referred to as a long word

instruction, consists of a number of instructions or operations. This method uses a greedy approach

to reschedule operations within a long instruction word and across long instruction words, but

within a limited instruction window size, to reduce the switching activities among the instruction.

When the operations are rescheduled across long word instructions, dependence constraints are

preserved. The method attempts to obtain a schedule that consumes low power, without sacrificing

performance. Several scheduling strategies that attempt to reduce the energy consumption with and

without sacrificing performance have been evaluated in [112].

More recently, a number of scheduling methods [82, 132] have been proposed that deal with

voltage and frequency scaling, an approach in which the operating voltage or the operating frequency

is scaled down to reduce the power consumption.
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17.8 Summary

Instruction-scheduling methods rearrange instructions in a code sequence to expose ILP for multiple

instruction issue processors and to reduce the number of stall cycles incurred in a single-issue,

pipelined processor. Simple scheduling methods that cover pipeline stalls use information on the

number of stall cycles required between dependent instructions. Basic block instruction scheduling

methods are limited to rearranging instructions in a straight-line code sequence with a single control

flow entry and exit. In this chapter, we have reviewed several approaches to basic block instruction

scheduling, including list scheduling, operation scheduling, and integer linear programming based

methods. The heuristics used in list-scheduling methods and resource models used for modeling

complex resource usage patterns have also been discussed.

Global scheduling refers to instruction scheduling that extends beyond instructions in a basic

block. In the case of global acyclic scheduling, the control flow graph on which the scheduling

method is applied is acyclic. Trace scheduling and superblock scheduling consider acyclic control

flow subgraphs that consist of a single control flow path. In hyperblock scheduling and treegion

scheduling, multiple control flow paths can be explored in a single trace. Software-pipelining methods

schedule multiple instances of either single or multiple static basic blocks, corresponding to multiple

iterations, of a cyclic control flow graph.

Register allocation is a closely related ILP compilation issue. Instruction scheduling and register

allocation phases in an optimizing compiler mutually influence each other. Issues related to the

phase ordering of instruction scheduling and register allocation in both statically scheduled and

dynamically scheduled multiple instruction issue processors have been discussed in this chapter.

The need to reduce register spills, even at the expense of obscuring some ILP, has resulted in new

approaches for instruction sequencing. Finally, recent research on the application of instruction

scheduling methods for application-specific processors and low-power embedded systems has been

briefly discussed.
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[92] J. Llosa, A. González, E. Ayguadé and M. Valero, Swing Modulo Scheduling: A Lifetime-Sensitive

Approach, in Proceedings of the 1996 Conference on Parallel Architectures and Compilation

Techniques (PACT ’96), Boston, MA, October 1996, pp. 80–86.
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18.1 Introduction

Software pipelining is an excellent method for improving the parallelism in loops even when other

methods fail. Emerging architectures often have support for software pipelining [36, 41, 65].

Many approaches exist for improving the execution time of an application program. One approach

involves improving the speed of the processor, whereas another, termed parallel processing, involves

using multiple processing units. Often, both techniques are used. Parallel processing takes various

forms, including processors that are physically distributed, processors that are physically close but

asynchronous, synchronous multiple processors or multiple functional units. Fine grain, or instruc-

tion level, parallelism deals with the utilization of synchronous parallelism at the operation level.

Several methods are available for creating code to take advantage of the power of the parallel

machines. From a theoretical perspective, forcing the user to redesign the algorithm is a superior
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choice. However, there is always a need to take sequential code and parallelize it. Regular loops,

such as for loops, lend themselves to parallelization techniques. Many techniques are available

for parallelizing nested loops [79]. Techniques such as loop distribution, loop interchange, skewing,

tiling, loop reversal and loop bumping are readily available [75, 76]. However, when the dependences

of a loop do not permit vectorization or simultaneous execution of iterations, other techniques are

required. Software pipelining restructures loops so that code from various iterations are overlapped

in time. This type of optimization does not unleash massive amounts of parallelism, but creates

modest amounts of parallelism.

18.2 Background Information

18.2.1 Modeling Resource Usage

Two operations conflict if they require the same resource. For example, if operations O1 and O2

each need the floating point adder (and there is only one floating point adder), the operations cannot

execute simultaneously. Any condition that disallows the concurrent execution of two operations can

be modeled as a conflict. This is a fairly simple view of resources. A more general view uses the

following to categorize resource usage:

1. Homogeneous or heterogeneous. The resources are homogeneous if they are identical, and

the operation does not need to specify which resource is needed. Otherwise, the resources are

heterogeneous.

2. Specific or general. If resources are heterogeneous and duplicated, we say the resource request

is specific if the operation requests a specific resource instead of any one of a given class.

Otherwise, the resource request is general.

3. Persistent or nonpersistent. A resource request is persistent if one or more resources are

required after the cycle in which an instruction is issued (the issue cycle). Otherwise, the

request is nonpersistent.

4. Regular or irregular. We say a resource request is regular if it is persistent, but the resource

use is such that only conflicts at the issue cycle need to be considered. In other words, two

operations that begin at different instruction cycles cannot conflict, so no history of operations

previously scheduled is required. Otherwise, the request is irregular.

A common model of resource usage (heterogeneous, specific, persistent, regular) indicates which

resources are required by each operation over the duration of the operation. The resource reservation

table proposed by some researchers models persistent, irregular resources [19, 70]. A reservation

table is illustrated in Figure 18.1 in which the needed resources for a given operation are modeled

as a table in which the rows represent time (relative to instruction issue) and the columns represent

resources (adapted from [55]). For this reservation table, a series of multiplies or adds can proceed

one after another, but an add cannot follow a multiply by two cycles because the result bus cannot

be shared. This low-level model of resource usage is extremely versatile in modeling a variety of

machine conflicts.

18.2.2 Data Dependence Graph

In scheduling, it is important to know which operations must follow other operations. We say a

conflict exists if two operations cannot execute simultaneously, but it does not matter which one

executes first. A dependence exists between two operations if interchanging their order changes the

results. Dependences between operations constrain what can be done in parallel. A data dependence

graph (DDG) is used to illustrate the must follow relationships between various operations. Let the

DDG be represented by DDG(N, A), where N is the set of all nodes (operations) and A is the set of
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FIGURE 18.1 Possible reservation tables for (a) pipelined add and (b) pipelined multiply.

all arcs (dependences). Each directed arc represents a must follow relationship between the incident

nodes. The DDG for software-pipelining algorithms contain true dependences, antidependences and

output dependences. Let O1 and O2 be operations such that O1 precedes O2 in the original code. O2

must follow O1 if any of the following conditions hold: (1) O2 is data dependent on O1 if O2 reads

data written by O1; (2) O2 is antidependent on O1 if O2 destroys data required by O1 [12]; or (3)

O2 is output dependent on O1 if O2 writes to the same variable as does O1. The term dependence

refers to data dependences, antidependences and output dependences.

There is another reason one operation must wait for another operation. A control dependence exists

between a and b if the execution of statement a determines whether statement b is executed [79].

Thus, although b is able to execute because all the data are available, it may not execute because it is

not known whether it is needed. A statement that executes when it is not supposed to execute could

change information used in future computations. Because control dependences have some similarity

with data dependences, they are often modeled in the same way [24].

When several copies of an operation exist (representing the operation in various iterations), several

modeling choices present themselves. We can let a different node represent each copy of an operation,

or we can let one node represent all copies of an operation. We use the latter method. As suspected,

this convention makes the graph more complicated to read and requires the arcs be annotated.

Dependence arcs are categorized as follows. A loop-independent arc represents a must follow

relationship among operations of the same iteration. A loop-carried arc shows relationships between

the operations of different iterations. Loop-carried dependences may turn traditional DDGs into cyclic

graphs [79]. (Obviously, dependence graphs are not cyclic when operations from each iteration are

represented distinctly. Cycles are caused by the representation of operations.)

18.2.3 Generating a Schedule

Consider the loop body of Figure 18.2(a).1 Although each operation of an iteration depends on the

previous operation, as shown by the DDG of Figure 18.2(b), no dependence exists between the various

1We use pseudo code to represent the operations. Even though array accessing is not normally available at
the machine operation level, we use this high-level machine code to represent the dependences because it is
more readable than reduced instruction set computer (RISC) code or other appropriate choices. We are not
implying our target machine has such operations.
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O1:  a[i] = a[i] + 1 

O2:  b[i] = a[i] / 2

O3:  c[i] = b[i] + 3

O4:  d[i] = c[i]

for i

end for

FIGURE 18.2 (a) Loop body pseudo code; (b) data dependence graph in which arcs are labeled with

dependence information (dif, min); (c) schedule.

iterations; the dependences are loop independent. This type of loop is termed a doall loop because

each iteration can be given an appropriate loop control value and may proceed in parallel [18, 42].

The assignment of operations to a particular time slot is termed a schedule. A schedule is a rectangular

matrix of sets of operations in which the rows represent time and the columns represent iterations.

Figure 18.2(c) indicates a possible schedule. A set of operations that executes concurrently is termed

an instruction. All copies of operation 1 from all iterations execute together in the first instruction.

Similarly, all copies of operation 2 execute together in the second instruction. Although it is not

required that all iterations proceed in lockstep, it is possible if sufficient functional units are present.

Doall loops often represent massive parallelism and hence are relatively easy to schedule. A

doacross loop is one in which some synchronization is necessary between operations of various

iterations [75]. The loop of Figure 18.3(a) is an example of such a loop. Operation O1 of one iteration

must precede O1 of the next iteration because the a[i] used is computed in the previous iteration.

Although a doall loop is not possible, some parallelism can be achieved between operations of

various iterations. A doacross loop allows parallelism between operations of various loops when

proper synchronization is provided.

The idea behind software pipelining is that the body of a loop can be reformed so that one iteration of

the loop can start before previous iterations finish executing, potentially unveiling more parallelism.

Numerous systems completely unroll the body of the loop before scheduling to take advantage

of parallelism between iterations. Software pipelining achieves an effect similar to unlimited loop

unrolling without as much of a code space penalty.

Because adjacent iterations are overlapped in time, dependences between operations of different

iterations must be identified. To see the effect of the dependences in Figure 18.3(a), it is often helpful

(for the human reader) to unroll a few iterations as in Figure 18.3(b). Figure 18.3(c) shows the DDG

of the loop body. In this example, all dependences are true dependences. The arcs 1 → 2, 2 → 3 and

3 → 4 are loop independent whereas the arc 1 → 1 is a loop-carried dependence. The difference (in

iteration number) between the source operation and the target operation is denoted as the first value

of the pair associated with each arc, and is termed the dif.2 Figure 18.4 shows a similar example in

2The second value of the pair is termed min and is to be explained shortly.



Software Pipelining 693

}
} Prelude

Postlude

min

ITERATIONS

dif

2 1

1

4 3 2 1

3 2

3 24

1

4 3

4

T
I

M
E

I2:

I3:

I4:

I5:

I6:
I7:

I1:

(d)

(a)

O2:  b[i] = a[i + 1] / 2

for (i=1;i<=n;i++)

O1:  a[i + 1] = a[i] + 1
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FIGURE 18.3 (a) Loop body pseudo code; (b) first three iterations of unrolled loop; (c) DDG; (d) execution

schedule of iterations. Time (min) is vertical displacement. Iteration (dif) is horizontal displacement. In this

example, min = 1 and dif = 1. The slope (min/dif) of the schedule is then 1. The new loop body is shown in

the rectangle.

which the loop-carried dependence is between iterations that are two apart. With this less restrictive

constraint, the iterations can be overlapped more.

It is common to associate a delay with an arc, indicating that a specified number of cycles must

elapse between the initiation of the incident operations. Such delay is used to specify that some

operations are multicycle, such as a floating point multiply. An arc a → b is annotated with a min

time that is the time that must elapse between the time the first operation is executed and the time

the second operation is executed. Because each node represents the operation from all iterations, a

dependence from node a in the first iteration to b in the third iteration must be distinguished from

a dependence between a and b of the same iteration. Thus, in addition to annotation with min time,

each dependence is annotated with the dif that is the difference in the iterations from which the

operations come. To characterize the dependence, a dependence arc, a → b, is annotated with a

(dif, min) dependence pair. The dif value indicates the number of iterations the dependence spans,

termed the iteration difference. If we use the convention that am is the version of a from iteration

m, then (a → b, dif, min) indicates a dependence exists between am and bm+dif , ∀m. For loop

independent arcs, dif is zero. The minimum delay intuitively represents the number of instructions

that an operation takes to complete. More precisely, for a given value of min, if am is placed in

instruction t (denoted It ) then bm+dif can be placed no earlier than It+min.
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FIGURE 18.4 (a) Loop body code; (b) first three iterations of unrolled loop; (c) DDG; (d) execution schedule

of iterations.

Table 18.1 shows examples of code that contain loop carried dependences. For the code shown,

a precedes b in the loop. The loop control variable is i, y is a variable, m is an array and x is any

expression. For example, the first row indicates that m[i] is assigned a value two iterations before it

is used. Thus, it has a true dependence with a dif of 2.

If each iteration of the loop in Figure 18.3(a) is scheduled without overlap, four instructions are

required for each iteration because no two operations can be done in parallel (due to the dependences).

However, if we consider operations from several iterations, there is a dramatic improvement.3 In

3Scheduling in a parallel environment is sometimes called compaction because the schedule produced is
shorter than the sequential version.
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TABLE 18.1 Dependence Examples

Instruction DDG Arc

Label Instruction Arc Type Dif

a m[i + 2] = x

b y = m[i] a → b True 2

a y = m[i + 3]

b m[i] = x a → b Anti 3

a m[i] = x]

b y = m[i − 2] a → b True 2

a y = m[i]

b m[i − 3] = x a → b Anti 3

a y = t a → b Anti 0

b t = x + i b → a True 1

a t = x + i a → b True 0

b y = t b → a Anti 1

a y = x + i

b y = t a → b Output 0

Figure 18.3(d), we assume four operations can execute concurrently, allowing all four operations

(from four different iterations) to execute concurrently in I4.

One seeks to minimize the code needed to represent the improved schedule by locating a repeating

pattern in the newly formed schedule. The instructions of a repeating pattern are called the kernel,

K, of the pipeline. In this chapter, we indicate a kernel by enclosing the operations in a box as shown

in Figure 18.3(d). The kernel is the loop body of the new loop. Because the work of one iteration is

divided into chunks and executed in parallel with the work from other iterations, it is termed a pipeline.

Numerous complications can arise in pipelining. In Figure 18.5(a), O3 and O4 from the same

iteration can be executed together as indicated by 3, 4 in the schedule of Figure 18.5(c). Note, that

no loop carried dependence occurs between the various copies of O1. When scheduling operations

from successive iterations as early as dependences allow (termed greedy scheduling), as shown in

Figure 18.5(c), O1 is always scheduled in the first time step I1. Thus, the distance between O1 and the

rest of the operations increases in successive iterations. A cyclic pattern (such as those achievable in

other examples) never forms. In the example of Figure 18.6(b),4 a pattern does emerge and is shown

in the box. Notice, it contains two copies of every operation. The double-sized loop body is not a

serious problem, but does increase code size. Note that delaying the execution of every operation to

once every second cycle would eliminate this problem without decreasing throughput as shown in

Figure 18.6(d).

In Figure 18.6(c), a random (nondeterministic) scheduling algorithm prohibits a pattern from form-

ing quickly. Care is required when choosing a scheduling algorithm for use with software pipelining.

18.2.4 Initiation Interval

In Figure 18.3(d), a schedule is achieved in which an iteration of the new loop is started in every

instruction. The delay between the initiation of iterations of the new loop is called the initiation

4It is assumed that a maximum of three operations can be performed simultaneously. General resource
constraints are possible, but we assume homogeneous functional units in this example for simplicity of
presentation.
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schedule achieved by delaying execution.

interval (II ) and has length | K |. This delay is also the slope of the schedule that is defined to be

min/dif, where min and dif are the labels on the arcs that control the II . The new loop body must

contain all the operations in the original loop. When the new loop body is shortened, execution time

is improved. This corresponds to minimizing the effective initiation interval that is the average time

one iteration takes to complete. The effective initiation interval is ( II
iteration−ct

), where iteration−ct is

the number of copies of each operation in the loop on length | K |.

Figure 18.4(d) shows a schedule in which two iterations can be executed in every time cycle

(assuming functional units are available to support the 8 operations). The slope of this schedule is

min/dif = 1
2 . Notice that this slope indicates how many time cycles it takes to perform an iteration

(on average).

Because K does not start or finish in exactly the same manner as the original loop L, instruction

sequences α (for prelude) and � (for postlude) are required to fill and empty the pipeline, respectively.

Prelude and postlude are sometimes referred to as prologue and epilogue. If the earliest iteration

represented in the new loop body is iteration c, and the last iteration represented in the new loop

body is iteration d , the span of the pipeline is d −c+1. If K spans n iterations, the prelude must start
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n − 1 iterations preparing for the pipeline to execute, and the postlude must finish n − 1 iterations

from the point where the pipeline terminates. Thus, Lk = α Km� where k is the number of times L

is executed, m is the number of times K is executed (m = (k − n + 1)/iteration−ct, for k ≥ n) and

α and � together execute n − 1 copies of each operation.

18.2.5 Factors Affecting the Initiation Interval

18.2.5.1 Resource Constrained II

Some methods of software pipelining require an estimate of the initiation interval. The initiation

interval is determined by both data dependences and the contention for resources that exists between

operations. The resource usage imposes a lower bound on the initiation interval (IIres). For each

resource, we compute the schedule length necessary to accommodate uses of that resource without

regard to dependences or other resource usage; a lower bound on II due to resources. For the example

of Figure 18.7(a), O1 requires resource 1 at cycle 1 (from the time of issue) and resource 3 at cycle

3. If we count all resource requirements for all nodes, it is clear that resource 1 is required 3 times,

resource 2 is required 4 times, and resource 3 is required 4 times. Thus, at least four cycles are

required for a kernel containing all nodes. The relative scheduling of each operation of the original

iteration is termed a flat schedule, denoted F and is shown in Figure 18.7(b). The schedule with a

kernel size of 4 is shown in Figure 18.7(c).

18.2.5.2 Dependence Constrained II

Another factor that contributes to an estimate of the lower bound on the initiation interval is cyclic

dependences. Several approaches exist for estimating the cycle length due to dependences, IIdep. We

extend the concept of (dif, min) to a path. Let θ represent a cyclic path from a node to itself. Let minθ

be the sum of the min times on the arcs that constitute the cycle and let difθ be the sum of the dif

times on the constituent arcs. In Figure 18.8, we see that the time between the execution of a node

and itself (over three iterations, in this case) depends on II. In general, the time that elapses between

the execution of a and another copy of a that is difθ iterations away is II·dif θ . II must be large

enough so that II·dif θ ≥ minθ . Because each iteration is offset dif θ , after II iterations, II·dif θ time

steps have passed. Arcs in the DDG follow the transitive law; therefore, a path θ containing a series
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FIGURE 18.7 (a) DDG with reservation style resource constraints denoted by boxes; (b) flat schedule;

(c) final schedule, stretched because of resource constraints.
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of arcs with a sum of the minimum delays (minθ ) and a sum of the iteration differences (dif θ ) is

functionally equivalent to a single arc from the source node of the path to the destination node with a

dependence pair (dif θ , minθ ). Becuase the cyclic dependences must also be satisfied, the transitive

arc a → a, representing a cycle, must satisfy the dependence constraint inequality (below) where

the function σ(x) returns the sequence number of the instruction in which the operation sequence x

begins in F . Let Time(xi) represent the actual time in which operation x from iteration i is executed.

Then, the following formula results:

∀ cycles θ, Time(ai+dif θ ) − Time(ai) ≥ minθ

In other words, the time difference in which cyclically dependent operations are scheduled must

not be less than the min time. Let i = 1. Because Time(a1) = σ(a) and Time(a1+dif θ ) = σ(a)+

II·dif θ , this formula becomes:

∀ cycles θ, σ (a) + II · dif θ − σ(a) ≥ minθ

This can be rewritten as:

∀ cycles θ, 0 ≥ minθ − II · dif θ

The lower bound on the initiation interval due to dependence constraints (IIdep) can be found by

solving for the minimum value of II.

∀ cycles θ, 0 ≥ minθ − IIdep · dif θ (18.1)

IIdep = max(∀ cycles θ)

⌈

minθ

dif θ

⌉

(18.2)

For the example of Figure 18.7, IIdep = 3 because the only cycle has a min of 3 and a dif of 1.

The actual lower bound on the initiation interval is then II= max(IIdep,IIres), which is four for this

example. Any cycle having min or dif equal to II is termed a critical cycle.
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one iteration of the original loop. (a) A positive value for Ma,b indicates a precedes b; (b) a negative value for

Ma,b indicates a follows b.

18.2.6 Methods of Computing II

18.2.6.1 Enumeration of Cycles

One method of estimating IIdep simply enumerates all the simple cycles [47, 68]. The maximum min
dif

for all cycles is then the IIdep [20].

18.2.6.2 Iterative Shortest Path

The method for computing IIdep can be simplified if one is willing to recompute the transitive closure

for each possible II. For a given II, it is clear which of two (dif, min) pairs is more restrictive. Thus,

the processing is much simpler as the cost table needs to contain only one (dif, min) pair [37, 77].

Because the cost of computing transitive closure grows as the square of the number of values at a

cost entry, this is a sizable savings.

Path algebra is an attempt to formulate the software pipelining problem in rigorous mathematical

terms [77]. Zaky constructs a matrix M that indicates for each entry Mi,j the min time between the

nodes i and j . This construction is simple in the event that the dif value between two nodes is zero.

Let all nodes be labeled ni . Assume a = ni and b = nj . If there is an arc (a → b, 0, min), Mi,j =

min. As is shown in Figure 18.9, we see that an arc (a → b, 1, min) implies that b must follow a by

min − II time units. In general, an arc (ni → nj , dif , min) represents the distance min − dif · II.

This computation gives the earliest time nj can be placed with respect to ni in the flat schedule.

The drawback is that before we are able to construct this matrix, we must estimate II. The technique

allows us to tell if the estimate for II is large enough and iteratively try larger II until an appropriate

II is found.

Consider the graph of Figure 18.10. For an estimate of II = 2, the matrix M is shown in

Figure 18.11(a). According to this matrix (for restrictions due to paths of length one), n3 and n4

can execute together (M3,4 = 0). Even though there must be a min time of 2 between n3 of one

iteration and n4 from the next, as given by (n3 → n4, 1, 2), the delay between iterations (II) is two.

Hence, no farther distance between n3 and n4 is required in the flat schedule.

Zaky defines a type of matrix multiply operation, termed path composition, such that M2 = M⊗M

represents the minimum time difference between nodes that is required to satisfy paths of length two.

For two vectors (a1, a2, a3, a4) and (b1, b2, b3, b4), (a1, a2, a3, a4) ⊗ (b1, b2, b3, b4) = a1 ⊗ b1 ⊕

a2 ⊗ b2 ⊕ a3 ⊗ b3 ⊕ a4 ⊗ b4. Notice this is similar to an inner product. Symbol ⊗ has precedence
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FIGURE 18.10 Sample graph.

FIGURE 18.11 Closure computation, in which infinity is represented by ∞.
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for (k = 0; k < nodect; k + +)

for (i = 0; i < nodect; i + +)

if (M[i][k] > −∞)

for (j = 0; j < nodect; j + +)

{ t = M[i][k] + M[k][j];

if (t > M[i][j])

M[i][j] = t;

}

FIGURE 18.12 A variant of Floyd’s algorithm for path closure.

over ⊕. Symbol ⊗ is addition, and ⊕ is maximum.5 For example, to get M2(1, 6) we compose row

1 of the matrix of Figure 18.11(b) with column 6 as follows:

[−∞, 1, −∞, −∞, −∞, −∞, −∞] ⊗ [−∞, 1, −∞, −∞, −∞, −∞, −3]

= max(−∞, 2, −∞, −∞, −∞, −∞, −∞) = 2

Thus, a path composed of two edges (indicated by the superscript on M) is between n1 and n6 such

that n6 must follow n1 by two time steps. We can verify this result by noting the path that requires

n6 to follow n1 by two is the path 1 → 2 → 6 that has a (dif, min) of (0, 2).

The matrix M is a representation of the graph in which all dif values have been converted to

zero. Therefore, edges of the transitive closure are formed from adding the min times of the edges

that compose the path. Path composition, as just defined, adds transitive closure edges. Edges of

the transitive closure are added by summing both the dif and min values composing the path. Zaky

does the same thing by simply adding the minimum values on each arc of the path. This is identical

as difs in Zaky’s method are always zero. Because multiple paths can be between the same two

nodes, we must store the maximum distance between the two nodes. Thus, the matrix M2 is shown

in Figure 18.11(b). Formally, we perform regular matrix multiplication, but replace the operations

(·,+) with (⊗,⊕), where ⊗ indicates the min times must be added, and ⊕ indicates the need to retain

the largest time difference required.

Clearly, we need to consider constraints on placement dictated by paths of all lengths. Let the

closure of M be Ŵ(M) = M ⊕ M2 ⊕ M3 ⊕ · · · ⊕ Mn−1 where n is the number of nodes and M i

indicates i copies of M path multiplied together. Only paths of length n − 1 need to be considered,

because paths that are composed of more arcs must contain cycles and give no additional information.

We propose using a variant of Floyd’s algorithm as shown in Figure 18.12 to make closure more

efficient. Ŵ(M) represents the maximum distance between each pair of nodes after considering paths

of all lengths.

A legal II produces a closure matrix in which entries on the main diagonal are nonpositive. For

this example, an II of 2 is clearly minimal because of IIdep. The closure matrix contains nonpositive

entries on the diagonal, indicating an II of 2 is sufficient. If an II of 1 is used, the matrix of

Figure 18.13(b) results. The positive values on the diagonal indicate II is too small.

Suppose we repeat the example with II = 3 as shown in Figure 18.14. All diagonals are negative

in the closure table. For instance, O1 must follow O1 by at least −4 time units. In other words, O1

can precede O1 from the next iteration by 4 time units. Because all values along the diagonal are

nonpositive, II = 3 is adequate. Methods that use an iterative technique to find an adequate II try

various values for II in increasing order until an appropriate value is found.

5It may seem strange that ⊗ is addition, but the notation was chosen to show the similarity between path
composition and inner product.
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FIGURE 18.13 (a) Original matrix; (b) closure for II = 1.

FIGURE 18.14 (a) Original matrix; (b) closure for II = 3.



Software Pipelining 703

For i = 1 to 4 a For i = 1 to 2

a b a

b a’ b

b’ a’

a” b’
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b”’

(a) (b) (c)

FIGURE 18.15 (a) Loop code; (b) completely unrolled loop; (c) replicated loop.

18.2.6.3 Linear Programming

Yet another method for computing IIdep is to use linear programming to minimize II given the

restrictions imposed by the (dif, min) pairs [31].

18.2.7 Unrolling and Replication

The term unrolling has been used by various researchers to mean different transformations. A loop

is completely unrolled if all iterations are concatenated as in Figure 18.15(b) in which primes are

added to indicate which iteration the operation is from. We use the term replicated when the body

of the loop is copied a number of times and the loop count adjusted as in Figure 18.15c. We use

the term unrolling to represent complete unrolling and replication to represent making copies of the

loop body. All replicated copies must exist in the newly formed schedule.

Replication allows fractional initiation intervals by letting adjacent iterations be scheduled differ-

ently. Time optimality is possible because the new loop body can include more than one copy of each

operation. This is an advantage that can be achieved by any technique by using simple replication,

but is complicated by the fact that (1) any replication increases complexity and (2) it is not known

how much replication is helpful. Unrolling is used to find a schedule (see Section 18.5) in many

methods. Many iterations may be examined to find a naturally occurring loop, but it is not required

that more than one copy of each operation be in the new loop body.

18.2.8 Support for Software Pipelining

Software-pipelining algorithms sometimes require that the loop limit be a runtime constant. Thus,

the pipeline can be stopped before it starts to execute operations from a future iteration that should

not be executed. Speculative execution refers to the execution of operations before it is clear that

they should be executed. For example, consider the loop of Figure 18.16 that is controlled by

for (i = 0;d[i] < MAX; i++). Suppose that five iterations execute before d[i] is greater than

MAX. The operations from the succeeding iterations should not have been executed. Because

we are executing operations from several iterations, when the condition becomes false, we have

executed several operations that would not have executed in the original loop. Because these

operations change variables, there must be some facility for “backing out” of the computations.

When software pipelining is applied to general loops, the parallelism is not impressive unless

support exists for speculative execution. Such speculative execution is supported by various mechan-

isms, including variable renaming or delaying speculative stores until the loop condition has been

evaluated.
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FIGURE 18.16 (a) Loop body code; (b) schedule (part enclosed in triangle should not have been executed).

18.3 Modulo Scheduling

Historically, early software pipelining attempts consisted of scheduling operations from several

iterations together and looking for a pattern to develop. Modulo scheduling uses a different approach

in that operation placement is done so that the schedule is legal in a cyclic interpretation [60, 61].

In other words, when operation a is placed at a given location, one must ensure that if the schedule

is overlapped with other iterations, no resource conflicts or data dependence violations occur.

In considering the software pipeline of Figure 18.17(b), a schedule for one iteration (shown in

Figure 18.17(a)) is offset and repeated in successive iterations. If the schedule for one iteration

is of length f , there are ⌈f/II⌉ different iterations represented in the kernel (new loop body).

Recall, this is termed the span. For the example of Figure 18.17(b), the span is 3 (⌈6/2⌉) because

operations in the kernel come from three different iterations. The difficulty is in making sure the

placement of operations is legal given that successive iterations are scheduled identically. In making

that determination, it is clear that the offset (which is just the initiation interval) is known before

scheduling begins. Because of the complications due to resource conflicts, we can only guess at an

achievable initiation interval. Because the problem is a difficult one, no polynomial time algorithm

exists for determining an optimal initiation interval; the problem has been shown to be NP complete

[35, 43]. This problem is solved by estimating II (using IIres and IIdep) and then repeating the

algorithm with increasing values for II until a solution is found.

Locations in the flat schedule (the relative schedule for the original iteration) are denoted F1,

F2, . . . , Ff . The pipelined loop, K, is formed by overlapping copies of F that are offset by II.

Figure 18.17(a) illustrates a flat schedule and Figure 18.17(b) shows successive iterations offset by

the initiation interval to form a pipelined loop body of length two. This is termed modulo scheduling

in that all operations from locations in the flat schedule that have the same value modulo II are

executed simultaneously. This type of pipeline is called a regular pipeline in that each iteration of the

loop is scheduled identically (i.e., F is created so that if a new iteration is started every II instructions,

no resource conflicts exists and all dependences are satisfied).

Most scheduling algorithms use list scheduling in which some priority is used to select which of

the ready operations is scheduled next. Scheduling is normally as early as possible in the schedule,

though some algorithms have tried scheduling as late as possible or alternating between early and late

placement [37] (which some term bidirectional slack scheduling). In modulo scheduling, operations

are placed one at a time. Operations are prioritized by difficulty of placement (a function of the

number of legal locations for an operation). Operations that are more difficult to place are scheduled
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FIGURE 18.17 (a) Flat schedule F with II = 2; (b) The resulting regular pipeline.

first to increase the likelihood of success. Conceptually, when you place operation a into a partially

filled flat schedule, you consider that the partial schedule is repeated at the specified offset. A legal

location for a must not violate dependences between previously placed operations and a. In addition,

resource conflicts must not be between operations that execute simultaneously in this schedule.

Consider the example of Figure 18.18 in which the dependence graph governing the placement is

shown along with the schedule. Suppose operation 6 is the last operation to be placed. We determine

a range of locations in the flat schedule in which 6 can be placed. Clearly, operation 6 cannot

be placed earlier than F5 (I5 and I9) because it must follow operation 4 that is located in F4 (I4

and I8). However, this is also the latest it can be scheduled. When we consider iteration 2 (that is

offset by the initiation interval of 4), operation 1 from iteration 2 (scheduled in I5) must not precede

operation 6 from iteration 1. Thus, only one legal location exists for operation 6 (assuming all other

operations have been scheduled). All loop-carried dependences and conflicts between operations

are considered as the schedule is built. The newly placed operation must be legal in the series

of offset schedules represented by the previously placed operations. This is much different from

other scheduling techniques. Other techniques schedule an operation from a particular iteration with

previously scheduled operations from specific iterations. This technique schedules an operation from

all iterations with previously scheduled operations from all iterations. In other words, one cannot

schedule operation a from iteration 1 without scheduling operation a from all iterations.

Several different algorithms have been derived from the initial framework laid out by Rau and

Glaeser [60] and Rau, Glaeser and Greenwalt [61].

18.3.1 Modulo Scheduling via Hierarchical Reduction

Several important improvements over the basic modulo-scheduling technique were proposed by Lam

[44]. Her use of modulo variable expansion, in which one variable is expanded into one variable per

overlapped iteration, has the same motivation as architectural support of rotating registers (which is

discussed later). Rau originally included the idea as adapted to polycyclic architectures as part of

the Cydra 5, but the ideas were not published until later due to proprietary considerations [14, 59].

The handling of predicates by taking the or (rather than the sum) of resource requirements (termed

hierarchical reduction) of disjoint branches is a goal incorporated into state-of-the-art algorithms.
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FIGURE 18.18 (a) DDG; (b) schedule; (c) schedule after renaming to eliminate loop-carried antidependence.

Hsu’s stretch scheduling developed concurrently [34]. This algorithm is a variant of modulo

scheduling in which strongly connected components6 are scheduled separately [43, 44]. Although

Lam uses a traditional list-scheduling algorithm, several modifications must be made to create the

flat schedule.

Lam’s model allows multiple operations to be present in a given node of the dependence graph.

Because her method breaks the problem into smaller problems that are scheduled separately, she needs

a way to store the schedule for a subproblem at a node. Each strongly connected component is reduced

to a single node, representing its resulting schedule; this graph is termed a condensation. Because

the condensed graph is acyclic, a standard list-scheduling algorithm is used to finish scheduling the

loop body.

18.3.2 Path Algebra

Path algebra is an attempt to formulate the software-pipelining problem in rigorous mathematical

terms [77]. In Section 18.2.6.2, path algebra was used to determine a viable II using the matrix M.

This same matrix can also be used to determine a modulo schedule for software pipelining. Nodes that

are on the critical cycle (having maximum min/dif ) have a zero on the diagonal of Ŵ(M) indicating

the node must be exactly zero locations from itself.7

18.3.3 Predicated Modulo Scheduling

Predicated modulo scheduling has all the advantages of other techniques discussed in this section, but

represents an improvement of known defects. It is an excellent technique that has been implemented

in commercial compilers.

6A strongly connected component of a digraph is a set of nodes such that a directed path exists from every
node in the set to every other node in the set. Strongly connected components can be found with Tarjan’s
algorithm [67].
7This is a little confusing in that it seems obvious that every node must be exactly zero locations from itself
or II locations from itself in the next iteration. The point is that if dependence constraints force this distance,
the techniques of path algebra can compute the required schedule.
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Many researchers have embraced modulo scheduling for architectures with hardware support for

modulo scheduling [20, 37, 46, 56–59, 69, 73] and have modified the resulting code to work on

architectures without hardware support [74]. The Cydra 5 work is described in [20, 21]. We use the

term predicated modulo scheduling to represent this general category of algorithms. In all but [37],

the precise method for scheduling operations is not discussed, probably because of the complexity of

explaining the process. One must assume the method used is similar to that employed by Lam except

that the hierarchical reduction of schedules produced for strongly connected components (which

generates suboptimal results) is circumvented.

18.3.3.1 Register Renaming

When iterations are overlapped, the reuse of registers becomes a concern. In the example of

Figure 18.18(a) suppose operation 1 writes to a register (call it x) that is not used for the last

time until operation 6 of the same iteration, and operation 3 writes to a register (call it y) that is not

used for the last time until operation 7. In the DDG, these lifetimes manifest themselves not only in

the dependence chain from 1 to 6 and from 3 to 7 but also in the antidependences of 7 → 3 and 6 → 1

(shown by dotted arcs in the graph). The antidependences have a (1, 0) annotation indicating they

are loop carried (dif > 0) and the operation that writes to the register can be executed in the same

instruction as the last use (min = 0). This is possible if we assume the fetch of a value precedes

the write within a machine cycle. The dependence from operation 1 to 2 has a (0, 2) annotation

indicating that the operation takes two cycles to complete (min = 2). The antidependences force the

maximum min/dif to be 4. Thus, the schedule shown in Figure 18.18(b) is of length 4.

Let IIanti be the length of the longest cycle involved in a dependence cycle containing a loop-carried

antidependence. Let II be the initiation interval for the schedule when antidependences are ignored.

If we replicate the loop so that IIanti/II copies of the loop body exists, we can use different registers

in each copy. This replicated loop is scheduled and shown in Figure 18.18(c). Operations that write

to different registers are indicated with a prime (e.g., 1′). In this case, because there are two copies

of each operation, two versions exist for each register whose lifetime extends beyond II.

Table 18.2 shows the same schedule with renamed versions of a register differing by a prime.

Writes of an operation are shown by the register name appearing to the left of an equal sign.

Reads from a register are shown by the register name appearing to the right of an equal sign.

For simplicity, only registers x and y are shown. Operation 1 writes to x in the first iteration and

x′ in the second iteration. In the third iteration, x is used again. Similarly operation 3 writes to y

in the first and third iterations and writes to y′ in the second iteration. Even though I5 uses x and

writes x, there is no problem as fetches precede stores within the cycle. Instead of two registers, four

(x, x′, y, y′) are required and code space has increased, but the effective initiation interval is halved

because two versions of each original operation are in the kernel. This is termed modulo variable

expansion [44].

Hardware support for modulo scheduling simplifies register renaming. With the advent of rotat-

ing register files ([58, 59]), loop-carried antidependences can be ignored without code expansion.

Variables that are not redefined in the loop or whose lifetime is less than II can be assigned static

general purpose registers. Variables involved in loop-carried dependence cycles can take advantage

of rotating register files. A rotating register file is a file whose current pointer rotates. Thus, register

specifier n does not always refer to the same physical register, but rotates over the set of registers.

This is accomplished by treating the register specifier as an offset from the iteration control pointer

(ICP) that points to the beginning of the registers for the current iteration. Every register reference

is computed as the sum of the register specifier and the ICP (modulo the register file size). The ICP

is decremented (modulo register file size) at the end of each iteration execution. In this way, each

iteration accesses different registers even though the code remains identical for each iteration. This

provides hardware-managed renaming.



708 The Compiler Design Handbook: Optimizations and Machine Code Generation

TABLE 18.2 Modulo Variable Expansion

Time Iterations

I1 1(x =)

I2

I3 2, 3(y =) 1′(x′ =)

I4 4, 5

I5 6(= x) 2′, 3′(y′ =) 1(x =)

I6 7(= y) 4′, 5′

I7 6′(= x′) 2, 3(y =) 1′(x′ =)

I8 7′(= y′) 4, 5

I9 6(= x) 2′, 3′(y′ =)

I10 7(= y) 4′, 5′

I11 6′(= x′)

I12 7′(= y′)

By using a rotating register file for our example, the schedule of Figure 18.17(b), instead of

Figure 18.18(c), is achieved. Operation 1 always writes the same register specifier (0 in this case),

but because the registers rotate there is no problem. Similarly, operation 2 always writes to register

specifier 1.8

18.3.3.2 Predicated Execution

When code contains conditionally executed code, modulo scheduling becomes more complicated.

Consider the example of Figure 18.17. Suppose that operation 2 computes a predicate (Boolean

value). If the predicate is true, operations 4 and 6 are executed. If the predicate is false, operations 5

and 7 are executed. Clearly, the schedule of Figure 18.17(b) is misleading because 4 and 5 are never

both executed. We would need two versions of the code for each iteration of the replicated schedule.

Because code from three iterations is overlapped, eight combinations could result in complicated code

expansion. Let the notation (true, false, true) correspond to the values of the predicate in successive

iterations that are true, then false, then true. Clearly, eight combinations of three Boolean values

exists. One solution to this problem, hierarchical reduction, has already been mentioned [43]. Instead

of scheduling each branch of a conditional separately, the code for both branches is scheduled with

the understanding that only one of the branches is actually executed at runtime. In other words, the

schedule is created so that it is legal regardless of which branch is taken; the needs of both branches

are considered. The resource conflicts must be adjusted so that at any point in time, the union9 of the

resources required by different branches is available instead of requiring the sum of the resources to

be available. The disadvantage is that even when we can use the union of the resource requirements,

we are limited to the scheduling length of the longest path.

A hardware implementation of this idea involves the use of predicated execution. Predicated

execution makes it possible to execute an operation conditionally. Instead of jumping around an

operation that should not be executed, the hardware can just ignore the effects of the operation. For

example, the floating point multiply specified by r1 = fmpy(r2, r3) 〈p1〉 is executed only if predicate

p1 is true. If p1 is false, either the operation is ignored (treated as a NO-OP) or is executed but the

8In general, register specifiers are not adjacent but are spaced to reflect the lifetime of the registers.
9The term union is used to indicate that two operations that cannot both execute (due to opposite values of
their predicates) do not compete for resources.
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result register is not changed. The former implementation saves effort, but the latter implementation

allows the operation to be executed in the same instruction as the predicate is computed. Because

the results of predicate evaluation are known before the target register is written, such overlap is

possible. Such hardware support may eliminate a physical jump. It also makes it possible to modulo

schedule loops containing conditionals without code expansion as well as reduce the code expansion

caused by a distinct prelude and postlude.

For the same reasons registers are stored in a rotating file, predicates are also stored in a rotating file.

Predicates can either share the regular rotating register file or have a dedicated predicate register file

[58]. The process of converting code into predicate code is termed if-conversion and is an integral

part of enhanced modulo scheduling (EMS) [73]. Conditional branches are removed and control

dependences become data dependences because conditionally executed operations are data dependent

on the operation that generates the predicate on which they depend. The proposed technique has

more flexibility than hierarchical reduction in that hierarchical reduction completely schedules the

conditional code before it attempts to schedule other operations. An arbitrary decision made in

scheduling the branch can negatively impact the placement of other operations that are not even

considered during this prescheduling phase.

In predicated execution schemes, all operations in an instruction are fetched and only those with

true predicates complete execution. However, in EMS and hierarchical reduction, one is limited by

the number of operations that physically execute for a given predicate value instead of the number

of operations for all predicate values. In both cases, operations that execute under disjoint predicate

values can be scheduled at the same time even if they require the same nonsharable resource.

Proponents of this method are so enthusiastic they even recommend using this same technique

for processors that do not support predicated execution. The proposed technique, called reverse if-

conversion, simplifies the process of global scheduling [74]. EMS has an advantage over hierarchical

reduction in that no prescheduling of paths in done. This increased flexibility produces superior code.

A side effect of predicated execution is that one avoids having special instructions for prelude and

postlude. This is termed kernel-only code [57].

18.3.4 Enhanced Modulo Scheduling

Although all modulo-scheduling techniques are basically the same, they differ in how they handle

predicates. Hierarchical reduction schedules operations on each branch of a conditional construct

before combining, using the union of the requirements. This prescheduling and unioning of require-

ments creates complicated pseudo operations that are difficult to schedule efficiently with other

operations. EMS uses if-conversion to convert all operations into straight-line, predicated code. In

this form, scheduling is done, noting that disjoint operations do not conflict. There is no need to

preschedule the various parts of the conditional construct. After modulo scheduling, modulo variable

expansion is used to rename registers lifetimes from distinct iterations.

Predicated execution has the disadvantage that all operations from taken and untaken branches are

scheduled for execution (even if the results are just thrown away). Thus, the resource requirements

required is the sum of the requirements of each branch. EMS recreates the branching structure,

reverse if-conversion, by inserting conditional branch instructions to eliminate predicated execution.

In other words, predicated execution is used to allow operations to be scheduled independently of

the branching structure and then the branching structure is reinserted. This method has some real

benefits in terms of simplicity, but is also hampered by the fact that such a technique is prone to code

explosion. If a predicated operation (predicated by p) happens to be scheduled early, all operations

that are between the first predicated operation scheduled and the last operation predicated on p must

be cloned to appear on each branch. If code that is predicated by p is overlapped n times, there can be

code expansion of order 2n. Clearly, this is unacceptable. Various techniques are employed to limit
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code explosion, the most important being the restriction of which blocks are scheduled together. The

term hyperblock is used to denote which set of blocks are scheduled together [73, 74].

The initial simplicity of scheduling without regard to predicates results in the complexity of

introducing conditionals back into the code. Because the insertion of branches is done after code

scheduling, various code inefficiencies can be introduced as is common whenever phases are seg-

mented. According to [73], EMS performs 18% better than hierarchical reduction with up to 105%

increase in code size. Although some of the increase in code size undoubtedly results from the fact

that tighter code overlaps more conditional constructs, some of the increase results from unnecessary

elongation of the predicated region.

18.3.5 Other Techniques

Calland, Darte and Robert [17] revisit the technique of decomposed software pipelining [30, 72] in

which the NP-complete problem of software pipelining is divided into two pieces to simplify the algo-

rithms. One schedule considers cyclic scheduling ignoring resource requirements, whereas another

schedule considers resources but ignores the cyclic requirements of the graph. Both approaches

preprocess the graph by removing some of the data-dependence edges. Calland, Darte and Robert

use a very simple resource model (nonpipelined and identical) but justify this approach because of

the need to give an upper bound on the worst initiation interval that they may derive.

The basic approach is to create a schedule that is concerned with cyclic dependencies (but not

resources) and then to modify it to deal with resources.

Govindarajan, Altman and Gao [33] combine the design of hardware pipeline schedules with

software pipelining. In [32], they use a mathematical formulation of the problem using integer

programming to compute a periodic schedule. They use a graph-coloring technique to form a schedule

using minimal registers. This technique is time consuming and might only be used for time critical

loops. It may also be used to evaluate other heuristic methods.

López et al. [45] describe a compilation technique that packs independent loads and stores of

adjacent memory locations into a wide load and store. They indicate that doubling the width of the

bus is as effective as doubling the number of buses, but is much cheaper. However, this option does

require sophisticated compilation support. Although it was feared that wide buses would increase

register pressure and would hence be undesirable, this work indicates that the negative effects

are minimal.

18.3.6 Evaluation

Instead of waiting for a pattern to form, modulo techniques analyze the DDG and create a desirable

schedule. The tight coupling of scheduling and pipelining constraints results in a pipeline that is near

optimal. The ability to adjust the scheduling technique to control register pressure or prioritize by

various attributes gives great flexibility. The regular pipeline that is produced simplifies the formation

of the prelude, kernel and postlude. With the replication suggested, fractional rates can be achieved

[39]. The trial-and-error approach of finding the achievable II increases the compile time, but no

software pipelining algorithm has a tight bound on compile time.

Zaky uses a technique that produces results very similar to other modulo-scheduling techniques,

but uses path algebra as a framework [77]. Zaky’s algorithm is impractical because it cannot handle

resource constraints, but is important because of the elegant way it formulates and solves the problem.

Because of the concise algorithm, this technique provides an excellent conceptual model.

The modulo-scheduling techniques have continued to improve by using hardware support to reduce

code expansion and allow tighter schedules by the use of rotating register files. These methods

represent an excellent choice for software pipelining, with their only drawback the fact that fractional

rates are not achieved without replication before scheduling.
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The work of Ruttenberg et al. [62] presents a valuable comparison between heuristic modulo-

scheduling techniques (implemented at Silicon Graphics, Inc. [SGI]) and the exhaustive integer

linear programming (ILP) approach of Gao. Both SGI and ILP are variants of modulo scheduling but

the former is heuristic whereas the latter is exhaustive. Although the ILP version is known to be NP

complete (and thus too inefficient for practical consideration), it does serve as a means of evaluating

other techniques.

Ruttenberg et al. use the term rate optimal to indicate a schedule with a minimal II and a valid

register assignment. The heuristics suggested by SGI were shown to be highly effective. Software

pipelining was improved by the following analysis and optimizations before software pipelining:

1. Array dependence analysis, loop interchange and outer loop unrolling

2. Common subexpression elimination, copy propagation, constant folding and strength

reduction

3. If-conversion, common memory reference elimination and construction of the data dependence

graph

Several improvements are used in the SGI variant of modulo scheduling. Instead of increasing the

II by one each time a failure is encountered, a system of exponential backoff is used. In other words,

the system successively tries II, II+1, II+2, II+4, II+8, etc. Once a successful schedule is found,

it uses a binary search between the first success and the last failure to narrow down the correct II .

This method assumes that if you can find a schedule at II, you can find a schedule at II+1. Although

it can be shown that exceptions to this assumption exist, these researchers indicate that they never

found a real case that violated this principle.

The SGI method uses regular branch-and-bound scheduling with severe pruning. When unschedul-

ing, they do not unschedule operations with identical resource requirements that are not related

by data dependencies. Similarly, the failure of operation X does not trigger the unscheduling of

operations that do not overlap with X in resource requirements. Pruning of the search space is

facilitated by limiting which operations can trigger unscheduling. An operation that is tried at the next

possible location (after unscheduling all its successors in the scheduling list) is termed a catch point.

Thus, pruning is accomplished by limiting what the catch points can be. Such restrictions include

(1) only the first element in a strongly connected component can catch; (2) operation j may catch the

backtrack caused by operation i failing to be scheduled, if i and j do not require identical operations

and unscheduling i makes scheduling of j possible.

This research indicates that the ordering of operations for scheduling exerts a profound effect on

the efficiency of the schedule produced, but which order was best varied from loop to loop. Instead of

committing themselves to one ordering, they try four different orderings for each loop. The orderings

used are variants of the following:

1. Folded depth-first ordering. This technique primarily uses the roots (stores of the calculations)

as a beginning point to regular depth-first ordering; however, when some operations are very

difficult to schedule, they can be treated as a root and scheduling proceeds outward from these

new roots (hence the term, folded depth-first ordering).

2. Order based on height. The height in the DDG, in terms of the sum of all latencies on the path

from the node in question to the root, is used to determine preference.

3. Reversal of ordering. Simply reverse the ordering generated by another technique.

4. Delayed scheduling. Schedule stores with no successors or loads with no predecessors at the

end of the list (giving them lowest priority).

Ruttenberg et al. combined these ideas to come up with four orderings.

When the number of available registers is exceeded, one option is to reschedule with a longer

initiation interval, but this solution normally results in less efficiency. A second solution is to move
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a register value to memory (and then restore it when needed, termed spilling) to save registers. The

code generated due to spilling is termed spill code. Earlier research indicates that rescheduling after

increasing the II tends to generate worse schedules, but this is not always the case.

Ruttenberg et al. [62] performed some valuable tests with spill candidates. Spills are added in an

exponential manner (on failure): first spill one value, then two, then four and so on. They decide

which value to spill based on the shortest legal schedule for which no register allocation could be

done. For each live value, they compute the number of cycles for which the value is live divided by

the number of times it is referenced in that range. The larger the references per cycle ratio are, the

less the benefit of keeping the value in a register. Thus, values with the largest such ratio are picked

for spilling.

ILP was adjusted slightly before the two methods were compared. The maximum running time

of 3 minutes for ILP was used, but this did not appear to change the results much. Finding a register

optimal schedule was too time consuming because of the involved mathematical specifications, so

the goal was adjusted to finding a legal resource-constrained schedule. In addition, ILP was allowed

to try several orders of instruction scheduling, just as SGI does.

Tests indicate that once a schedule has a valid register assignment, no real advantage results

from reducing the number of registers used. The size of the prelude and postlude are particularly

important for loops with a small loop count. In these results, they show that among loops having

fewer registers there is not necessarily less pipelining overhead. Thus, as long as you can assign

registers, minimizing the number of register used is not important to optimization.

In comparing the SGI heuristic method with ILP, SGI was obviously more efficient (because it

is near linear time compared with exponential time of ILP). However, ILP generated a superior

schedule to SGI in only one case, and that case could be eliminated with slight increases in allowed

backtracking. ILP was not able to guarantee register optimality for many loops. With short loop counts

and severe register pressure, ILP may have something to offer, but more tests would be needed.

18.4 Architectural Support for Software Pipelining

Software pipelining can be dramatically improved if architectures provide support for it. In [36],

a description of the IA-64 architecture is given that can be used to provide a guide as to the ways

architecture can support software pipelining. In addition to having 128 general-purpose registers,

each with 65-bit (64-bit of data plus 1-bit for control), the IA-64 has 128 floating point registers each

with 32-bit, space for 128 special-purpose registers each with 64-bit (for a register stack, for example),

and 64 predicate registers each with 1-bit. The architecture also provides for a deferred exception

flag (termed not a thing (NaT) bit) to aid with exceptions thrown during out-of-order execution.

Hardware in modern processors can perform branch prediction, determine instruction depen-

dences, extract parallelism, modify the order of instructions, decide when to execute each (and even

on which functional unit) and manage caches (controlling prefetching, instruction caching and data

caching). However, such out-of-order processors still require significant software support to achieve

the best speeds. In the case of the IA-64, the compiler provides instruction groups that can all be

executed simultaneously. The instruction set of the IA-64 allows the expression of such parallelism

[36]. Not only can independent instructions be performed in parallel, but the clauses of a compound

condition can be executed simultaneously and their results combined in a single instruction.

Many processors use branch prediction to support speculative execution: operations that occur

after the branch are moved before the branch and executed (but not committed) before the result

of the branch is known. Once the results of the branch instruction are known, the results that are

speculatively executed are either committed or discarded (depending on whether the prediction was

correct). Obviously, if the prediction is incorrect, a heavy penalty is paid because all the speculative

work is wasted.
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The high degree of parallelism of the IA-64 allows operations from both branches to be executed

simultaneously. The compiler is able to help by determining whether there are sufficient resources

to execute instructions from both the true and the false branch.

Load instructions often have a longer latency than many other operations. If a load moves before a

branch (to minimize the wasted time caused by the delay required to wait for the results), a problem

can exist if the early load accesses data that the program does not yet have access to. Such an

illegal action can cause an exception to be thrown, which is a serious problem for a speculatively

executed operation because the executed version of the program must not have exceptions that

would not have occurred in the original instruction ordering. The IA-64 prevents this problem by

allowing a speculative load to set an NaT (deferred exception) bit in the target register. Then when

the code tries to use that register (which was not successfully loaded), it branches to code to reload

the value.

Similarly, the IA-64 allows a possible dependence to be ignored until it is actually determined

that a dependence exists. When a load follows a store from the same location, the load must wait

for the store to complete. However, with pointer arithmetic, it is difficult to reorder any loads and

stores because they may possibly point to the same location — even though that aliasing is unlikely.

Various memory disambiguation techniques are used to try to determine whether two locations could

be the same, but many times it is impossible to determine.

With the IA-64, the loads are allowed to move before stores (via an advanced load instruction

[ld.a]) and if it is discovered that the store wrote to the same location as the load, the load and its

dependent operations are reexecuted. The advanced load instruction is made possible by using an

advanced load address table (ALAT) to record speculatively executed instructions. The ALAT is a

cache with content addressable memory. Whenever a store is executed, the hardware compares the

address to all the ALAT entries. Any address that conflicts with a speculatively executed load causes

the load to be removed from the ALAT table.

When an inquiry is made about the validity of an operation relying on an advanced load, the ALAT

is searched. When no entry is present, the operation chain leading to the check must be recomputed

via fix-up code. (The same action takes place if an item is removed from the ALAT because no room

is available to store it because of too many subsequent advanced loads.) If the entry is found, the ld.a

has succeeded and nothing needs to be done.

Note that this fix-up code is generated at compile time so no special hardware is required to support

fix-up code. The ability to ignore a potential data dependence makes a huge difference in software

pipelining. For example, consider the loop adapted from [41] that is illustrated in Figure 18.19. This

example assumes a load delay of five cycles. The code using an advance load allows an II of 2

instead of 7.

The predicate register file allows for up to 64 predicates to be set and used to control the execution

of statements, including branches. The rotating predicate file allows the engine to treat them as

“isValidStage” bits, which allow the pipe to be filled and drained without special prelude and postlude

code. Thus, little code expansion occurs with software pipelining. This sophisticated predication

support is a huge benefit to software pipelining because small basic blocks are replaced by a large

composite block that can be scheduled as a basic block.

The IA-64 uses a rotating register file to give the user the illusion of an infinite register stack.

The first 32 registers are static, and the last 96 are used as a stack. Actually, hardware saves and

restores on-chip registers to and from memory. Allocated registers are divided into local and output

registers. At call time, the registers are renamed so that the output registers from the previous call

become the first local registers (starting with r32). See [36] for more information. A similar register

renaming can also be used for software pipelining via modification of the register rename base (rrb),

thus eliminating the overhead of software register renaming [41].

Stotzer and Leiss [65] cite a example of software pipelining for the Texas Instrument TMS320C6X

(hereafter referred to as C6X) for digital signal processing (DSP). DSP includes such areas as disk
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FIGURE 18.19 Speculative loads allow for a tighter loop. (a) Possible data dependence forces the load to

execute after the store of the preceding loop. (b) Speculative executed load allows the load and multiply to be

executed before the store as long as the nondependence of the load and store is checked before the actions are

committed.

drive controllers, video conferencing, adaptive filtering and communication, as well as medical, sonar

and equipment health monitoring. Speech, audio, image and video compression are also popular DSP

applications.

The C6X processor is designed to be used in embedded systems, and hence has increased

requirements both in terms of code size and register limitations. The register file is medium sized

making reducing register pressure a priority. In addition, the code size is restricted, motivating the

control of code expansion. Because changes to code are infrequent, more time can be taken to get

an optimal schedule.

The C6X processor has a variety of features that make it an ideal candidate for software pipelining.

The processor allows for eight operations to be performed simultaneously. Such power allows

the processor to be used for embedded real-time applications that had previously required super-

computers to run.

There are two identical data paths in the C6X, each having 16 registers and four functional units.

The four functional units (on each data path) are a multiplier, a logical adder, a shifter/logical and

an address generator/adder. Each path can access a 32-bit data value from/to memory in each cycle.

There is a limited ability to pass information between data paths.

The C6X supports predicated execution by allowing 5 of the 32 general registers to be used

as registers whose value controls whether a given instruction executes. As discussed earlier, this

capability allows for larger basic blocks because instructions from multiple blocks can be executed

concurrently with proper predication.

Instructions on the C6X require various amounts of time to complete. For example, a multiply

takes two cycles, a load takes five cycles, a branch takes six cycles and a shift takes one cycle. Once

an instruction begins, it is considered to be in-flight until it finishes. To reduce the number of registers

required, the C6X allows in-flight instructions to write to the same register as long as they actually

do the write in different cycles. This is enormously beneficial in reducing register pressure. For
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}due to load latency
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nop }due to load latency

ldh *a6, a1  : a1=*a6

add a1,a3,a3 : a3 +=a1

nop
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(b) one intermediate register

(a) two intermediate registers
(c) one register, multiple assignment

FIGURE 18.20 Multiple assignment reduces register pressure without increasing code length. (a) Using two

intermediate registers (a0 and a1); (b) using one intermediate register (a1); (c) using one intermediate register

(a1) but relying on the fact that it can be assigned in different cycles.

example, in Figure 18.20 we are attempting to perform the following: add the contents of the address

stored in register a5 to a2 and add the contents of the address stored in register a6 to the contents

of a3. Figure 18.20(a) shows the schedule resulting from the five-cycle load latency when we use

two different intermediate registers to store the loaded values. Note that the two load operations are

overlapped in time. Figure 18.20(b) shows the increased schedule length required if a single register

is used as a temporary register, allowing no overlap of the load instructions. Figure 18.20(c) shows

the same code only utilizing the processor feature of two in-flight instructions that are allowed to

write to the same register. The example illustrates that the multiple assignment feature can yield

results equivalent to the two register case while only requiring one intermediate register. In this

example, a1 is loaded and used before the second load is completed.

In the work of Stotzer and Leiss [65], instructions are assigned, by hand, to one of the two data

paths to simplify the scheduling. However, their approach does not assign a specific functional unit

until scheduling. This gives needed flexibility in that functional units that are in less demand can be

used. For example, because an add can be performed by the logical/shift, the logical/adder or the

address generation/adder, the functional unit that competing operations do not need can be selected

to avoid scheduling conflicts. An add is needed but a commitment as to how the add is performed is

not made until the resource needs of other operations are known.

In adapting the scheduling algorithm to this architecture, Stotzer and Leiss [65] use the modulo-

scheduling algorithm, modified to eject all operations of the same type when a conflict arises. We term

this policy eager ejection. This decision allows for maximum flexibility because the scheduler is then

able to use a different functional unit when those operations are rescheduled. They use bidirectional

slack scheduling.

In addition, the priority an operation is given in the list-scheduling algorithm is increased if an

operation uses a critical resource (one used 90% of the time in the initiation interval) and is based on

the range of legal locations in which it can be placed. However, when the functional unit is unknown,

it is not clear how this determination is made.

In the results of Stotzer and Leiss, the scheduler always finds optimal results. The ability to find

optimal schedules is as much a function of the input as of the scheduler. Many of the loop kernels in

the test suite had trivial cyclic dependences.

One interesting measurement taken in this research [65] is to tally the number of times an operation

is placed, which measures the amount of effort performed in unscheduling operations. As compared
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with other software-pipelining algorithms, this method results in a much higher average attempt ratio

(2.65 compared with 1.03). This is attributed partly to the difference in the latencies of the actual

operations scheduled in the two tests, but is likely a direct result of the eager ejection used to permit

the late binding of an operation to a specific functional unit. Thus, we have a compromise — a tighter

schedule at the cost of greater effort.

18.5 Kernel Recognition

Although modulo-scheduling algorithms create a kernel by scheduling one iteration such that it is

legal when overlapped by II cycles, other techniques schedule various iterations and must recognize

when a kernel has been formed. Some authors term this type of software-pipelining algorithm an

unrolling algorithm [56], but the term kernel recognition is more accurate because no physical

unrolling may be present. Proponents of modulo scheduling point to the need to search for a kernel

as a flaw, whereas proponents of kernel recognition counter that searching for a pattern can be

done with hashing10 and is much more efficient than repeating the scheduling for various goal

initiation intervals. Kernel recognition proponents also argue that the ability to achieve fractional

rates effortlessly makes their algorithms superior. Modulo-scheduling algorithm enthusiasts claim

that the II rarely has to be incremented over its original minimum initiation interval [55]. Obviously,

modulo scheduling can achieve fractional rates by replicating the loop body before scheduling.

However, this increases complexity and may result in full iterations in prelude and postlude (that

would be removed).

A first attempt at kernel recognition techniques is as follows:

1. Unroll the loop and note dependences.

2. Schedule the various operations as early as data dependences allow.

3. Look for a block of consecutive instructions that are identical to the blocks after it. This block

represents the new loop body. Rewrite the unrolled iterations as a new loop containing the

repetitive block as the loop body.

18.5.1 Perfect Pipelining

Perfect pipelining combines code motion with scheduling. It achieves fractional rates and handles

general (dif, min) pairs. Techniques to assist the formation of a pattern are somewhat ad hoc.

Historically, the effectiveness of local scheduling has been limited due to the small size of basic

blocks. Architectural models in which multiple tests can be performed within a single instruction

greatly enhance the degree of parallelism achieved. Aiken and Nicolau introduce the perfect pipelin-

ing algorithm11 for use with this more general machine model [2, 4–6, 16, 51]. This method is

important in that it reframes the problem by changing the parameters. It answers the question, “How

would software pipelining be effected if the architectures were modified to support it better?”

Perfect pipelining is somewhat similar to the method of Su, Ding and Xia [66] in that the loop

is prescheduled, unrolled and overlapped, but it is more sophisticated in that operations may move

10For the general resource model, hashing must be done on an encoding of the entire state of the scheduler
at each point in time.
11Aiken does not consider perfect pipelining to be an algorithm but instead a framework upon which
algorithms can be built. Thus, for every reference to “the perfect pipelining algorithm,” the reader should sub-
stitute “one of many possible algorithms using the perfect pipelining framework.” The algorithm referenced
is one that Aiken considers in [2].
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FIGURE 18.21 Perfect pipelining instruction model.

independently after the prescheduling and loops that span multiple blocks are easily accommodated.

Perfect pipelining (as EMS) is more powerful than previous techniques in that it can take advantage of

an architecture with multiway branching. A multiway branching architecture allows an instruction to

have several branch target locations based on multiple Boolean conditions. Figure 18.21 illustrates a

basic instruction executable in one time unit in this model. In one cycle, O1, O2 and O3 are executed

and control is transferred to one of I2, I3 or I4, depending on the values of cc1 and cc2 (which

are predicates set before this instruction). Such instructions are called tree instructions [23]. All the

assignment operations are executed and a destination is selected simultaneously. To take advantage

of this type of architecture, a type of global code motion, called migration, is implemented [3].

Migration is an improvement over early trace scheduling [25] in that copies can be merged, and code

motion is tied to code-correcting compensation for that motion directly so that the cost benefit can

be considered. Later versions of trace scheduling have adopted these improvements [27].

The types of code motion are enumerated in [26]. The addition of the ability to join multiple copies

of an operation as they move past a branch point, termed unification, is important in that it reduces

code explosion. The importance of unification is that the multiple copies of an operation generated

by moving past branch points can often be recombined.

Aiken and Nicolau perform global code motion within the loop, before software pipelining, to

simplify the initial schedule. Once global code motion has been performed, the loop is unrolled

an unspecified number of times, and the result is scheduled assuming infinite resources. In a loop,

performing code motion before unrolling significantly speeds up pipelining. The pipelining algorithm

does not need to repeatedly perform similar code motions within each copy.

The assumption of infinite resources in the initial scheduling step is made because the algorithm

requires unhampered motion. If the constraint of finite resources is enforced and I1, I2 and I3 are

sequentially ordered, motion of an operation between instructions I3 and I1 would be limited by that

fact that the operation may not be able to temporarily reside in instruction I2, because of resource

conflicts with the operations that are placed there first. Thus, instead of allowing free code motion,

the algorithm would be hindered by the race condition: which operation got to node I2 first.

Perfect pipelining allows the pattern to form naturally. As each successive instruction is scheduled,

one must determine whether the schedule has begun to repeat itself. Let the state of the schedule at a

specific instruction represent the set of information that controls which operations may be scheduled

in succeeding instructions. For a general resource model, state must include resources committed

by the previous scheduling of operations with persistent resource requirements. For operations with
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nonunit latencies, the state must include the concept of elapsed time between dependent operations. If

two nodes can be reduced to the same state, they are said to be functionally equivalent. An instruction

that is functionally equivalent to an earlier node can be replaced with a branch to the first instruction,

thus creating a loop. The problem of determining when two nodes are functionally equivalent is

discussed in [9].

18.5.2 Petri Net Model

The Petri net algorithm uses the rich graph theoretical foundation of Petri nets to solve the problem

of kernel recognition. It achieves fractional rates, works for general (dif, min) pairs and is extendible.

It has the power of perfect pipelining, but has replaced ad hoc techniques with mathematically sound

approaches.

The Petri net model of Allan, Rajagopalan and Lee provides a valuable solution to the problems

associated with the formation of a pattern, both in terms of forcing a pattern to occur and recognizing

a pattern has formed [10, 54]. The ability to recognize when a pattern has formed and to aid the

efficient formation of such a pattern is essential to kernel recognition-type software pipelining.

In other techniques, kernel development needs to be assisted by manipulating the final schedule

or look-alike instructions may masquerade as loop entry points when a repeating pattern has not

been achieved [39]. Both problems are elegantly eliminated using Petri nets. This algorithm is an

improvement over the Gau, Wong and Ning [28, 29] algorithm, which suffers from the following

limitations:

1. Dif values greater than one are not handled in the Gao algorithm except by replicating the code

so all difs are zero or one.

2. Initiation intervals of less than two cannot be achieved without replication because the

acknowledgment arcs create cycles and thus force an initiation interval of two.

3. Gao’s method is complicated by the addition of superfluous arcs and frequently achieves non-

optimal initiation intervals due to the fact that cycles having minθ/dif θ > II are inadvertently

created.

A Petri net G(P, T , A, M) is a bipartite graph having two types of nodes, places P and transitions

T , and arcs A between transitions and places. Figure 18.22(a) shows a Petri net. The transitions

are represented by horizontal bars whereas places are represented by circles. An initial mapping M

associates with each place p, M(p) number of tokens such that M(p) ≥ 0. A place p is said to

be marked if M(p) > 0. Associated with each transition t is a set of input places Si(t) and a set

of output places So(t). The set Si(t) consists of all places p such that there is an arc from p to t

in the Petri net. Similarly So(t) consists of all places p such that there is an arc from t to p in the

Petri net.

FIGURE 18.22 Petri net. (a) Concurrency: transitions T1 and

T2 are independent of each other and can fire simultaneously;

(b) conflict: transitions T2, T3 and T4 cannot fire simultaneously

because the input place p1 can pass the token to only one successor.
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The marking at any instant defines the state of the Petri net. The Petri net changes state by firing

transitions. A transition t is ready to fire if for all p belonging to Si(t), M(p) ≥ wp, where wp

is the weight of the arc between p and t. The reader may see some similarity between transitions

and runners in a relay race. One runner cannot run (fire) until that runner has been given the baton

(token). However, in this case, a runner can pass a baton to several teammates simultaneously and

one runner may have to receive a baton from each of several teammates before continuing.

When a transition fires, the number of tokens in each input place is decremented by the weight

of the input arc whereas the number of tokens in each output place is incremented by the weight of

the arc from the transition to that place. All transitions fire according to the earliest firing rule; that

is, they fire as soon as all their input places have sufficient tokens. In Figure 18.22(a), no arcs exist

between transitions T1 and T2. These transitions are independent of each other and hence can be fired

concurrently. However, T4 cannot fire until T1 has fired and placed a token in place p4. Therefore, T4

is dependent on T1. In Figure 18.22(b), place p1 contains only one token that can be used to fire one

of transitions T2, T3 or T4. This represents a conflict that can be resolved using a suitable algorithm.

The Petri net models the cyclic dependences of a loop. A DDG shows the must-follow relation-

ship between operations (nodes). However, a DDG cannot show which operations are ready to be

scheduled at a given point in time. A Petri net is like a DDG with the current scheduling status

embedded. Each operation is represented by a transition. Places show the current scheduling status.

Each pair of arcs between two transitions represents a dependence between the two transitions. When

the place (between the transitions) contains a token, it is a signal that the first operation has executed,

but the second has not.

The firing of a transition can be thought of as passing the result of an operation performed at a

node to other nodes that are waiting for this result. If the Petri net is cyclic, a state may be reached

when a series of firings of the Petri net take it to a state through which it has already passed. The

state of the Petri net is represented by the token count at each place. Because all decisions are

deterministic, an identical state (with an identical reservation table) means the behavior of the Petri

net repeats.

Min values of greater than one are handled by inserting dummy nodes so that no min is greater

than one. For example, an arc (a → b, dif, 3) is replaced by arcs (a → t1, dif, 1), (t1 → t2, 0, 1) and

(t2 → b, 0, 1), where t1 and t2 are dummy nodes. This implementation increases the node count,

but greatly simplifies the recognition of equivalent states because the marking contains all delay

information. This algorithm handles min values of zero by doing a special firing check for nodes

connected to predecessors by min times of zero. Thus, compile time is increased by accommodating

min times of zero.

Arcs are added to the DDG to make the graph strongly connected. The benefit is that the rate of

each firing is controlled; no node is allowed to sustain a rate faster than the slowest cycle dictates. As

arcs are added, new cycles are created. If a new cycle θ ′ has a larger minθ ′/dif θ ′ than that contained

in the original graph, the schedule is necessarily slowed down (II increased).

18.5.3 Vegdahl’s Technique

Unlike all other techniques discussed in this survey, Vegdahl’s [71] represents an exhaustive method

in which all possible solutions are represented and the best is selected. Because software pipelining

is NP complete, this makes the algorithm impractical for real code.

18.5.4 Evaluation

Perfect pipelining is important from a historical perspective due to the early work in exploration of

pipelining involving branches within the body of the loop. Unification is an important addition to

earlier global code motion techniques.



720 The Compiler Design Handbook: Optimizations and Machine Code Generation

Conceptually, perfect pipelining has an advantage in that it is not forced to consider all paths

through the loop simultaneously. In other words, various paths through the loop are able to achieve

a different initiation interval. The frequency of achieving optimal overall results is hampered by the

ad hoc nature of the scheduling.

The main disadvantage of perfect pipelining is the difficultly of determining when two nodes are

functionally equivalent. Other problems include the generation of loops that contain more copies of

the original iteration than needed and the need to help the pattern develop.

The Petri net model is another excellent choice for software pipelining due to its strong mathe-

matical orientation and flexibility in adapting to a wide variety of constraints. General reservation

models pose no problem for this adaptable method. It produces excellent schedules, with its only

drawback the need to search for a pattern.

Vegdahl’s method is an interesting theoretical tool. Because of its exponential complexity, it

is not a practical technique, but serves as an “optimal” solution for small code size. The method

could be adapted for use with persistent resources, but would significantly increase the runtime.

Perhaps Vegdahl’s method could be used in combination with other techniques. For example, if

modulo scheduling was used to determine span and II, Vegdahl’s exhaustive technique could be

greatly restricted to explore solutions with span and II slightly better than the achieved. A parallel

implementation of a greatly reduced search space could make the algorithm reasonable for a broader

class of problems.

18.6 Enhanced Pipeline Scheduling

18.6.1 The Algorithm

Enhanced pipeline scheduling (EPS) [22, 23, 49] integrates code transformation with scheduling to

produce excellent results. One important benefit is the ability to schedule various branches of a loop

with different II.

Nakatani and Ebcioğlu [50] propose an algorithm unlike either modulo scheduling or kernel

recognition algorithms. EPS uses a completely different approach to software pipelining, building

on code motion (like perfect pipelining), but retaining the loop structure so no kernel recognition is

required. This algorithm is quite complicated both to understand and to produce the code. However,

it has benefits no other algorithm achieves because it combines code transformation with software

pipelining. In a more recent version of the algorithm [49], the algorithm is termed selective scheduling

with software pipelining.

Nonnumerical programs typically have many branches, resulting in small basic blocks. Some

techniques [38] use branch probability techniques to determine which parts of the code to optimize.

Although a loop control branch is generally taken (because we spent more time in the loop than

skipping it), other branches are executed in approximately half the time, making optimization more

difficult. For some types of algorithms static branch prediction falls far short as a reliable tool.

Mispredicted branches can actually slow execution because of the speculative code that was generated

to make a nontaken branch more efficient. Thus, selective scheduling tries to limit the amount of

speculatively executed code.

Techniques with a fixed initiation interval may be less than desirable if one path through the loop is

significantly longer than another path (due to data dependences). In traditional software pipelining,

all paths through the loop have the same length. The goal of the selective scheduling algorithm is

to allow various paths through the loop to take different amounts of time, instead of penalizing all

paths because of the length of the longest one. Requiring all paths to take the same amount of time

makes the initiation interval the worst case (based on dependences and resources) and is, therefore,

inefficient. For example, consider the example of Figure 18.23, adapted from [49]. In this case, when
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while (true)

   x = x + x

   p1 = x < MAX

  if (p1) x = x*y

{

}

Instruction 1

Instruction 2

  x = x + z go to I2

Instruction 3: if p1 go to I4

Instruction 4:  x = x"+x"  go to I2

false branch

                      p1 = x < MAX;  x" = x’*y;   x’ = x’+x’     go to I3

p1= x < MAX;  x" = x*y;   x’ = x+x   go to I3

true

branch(a)

(b)

FIGURE 18.23 (a) Original loop; (b) results of pipelining.

the condition is true, the loop takes three instruction cycles (instructions 2, 3 and 4); however, when

the condition is false, the loop only takes one instruction (instruction 3).

Code motion pipelining can be described as the process of shifting operations forward in the

execution schedule. Because operations are shifted through the loop control predicate, they move

ahead of the loop, into the loop prelude and they move back into the bottom of the loop, as operations

from a later iteration. The degree to which shifting is able to compact the loop depends on both the

resources available and the data dependence structure of the original loop. The algorithm has some

similarity to perfect pipelining, in that it uses a modification of the perfect pipelining global code

motion algorithm, but differs significantly because EPS manipulates the original flow graph to create

the pipelined loop and does not require searching for a pattern in unrolled code. Because the loop

is manipulated as a whole instead of individual iterations, EPS does not encounter the problems of

pattern identification inherent in perfect pipelining.

Selective scheduling is accomplished by the following steps:

1. “Cut” selected edges in the loop so that the code becomes acyclic.

2. Compute the set of all right-hand sides that can move to the top of the DDG. Right-hand

sides are used instead of entire operations because more parallelism is exposed. Thus, for

example, a sequence of operations m = x + 1; x = y + z; n = x + 2 might be trans-

formed as x′ = y + z; m = x + 1; x = x′; n = x + 2. Separating x = y + z into

x′ = y + z; x = x′ allows the y + z to move ahead of the assignment to m (perhaps much

earlier). The residual copy operations (such as x = x′) can often be done cheaply or even

eliminated.

Notice that we can move the assignment to n past the copy operation (x = x′) by renaming.

This operation is very important due to the large number of copy operations generated. Thus,

the code sequence becomes x′ = y + z; n = x′ + 2; m = x + 1; x = x′.

3. Compute a set of available right-hand sides over all execution paths, combining those that

occur on all successors of a point.

4. Evaluate the available right-hand sides in terms of how speculative they are.

Consider the example of Figure 18.24 in which available expressions have been accumulated at

the beginning of the block. In this example, the operation if cc1 is nonspeculative because it is always

executed. Similarly, d + 1 is nonspeculative. The operations a∗b and b∗b are both speculative. The

operation a∗b is used if the true branch is taken. However, if the false branch is taken, the value of

a has been reassigned. By substituting the assignment to a along the false branch, the expression

becomes b∗b.

The computation of available instructions is computed each time a parallel instruction is to

be scheduled. However, the recomputation of available expressions is inexpensive because of

incremental computation. To reduce overhead, an intermediate availability set (which is computed
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Available:

{if cc1, non-spec}

{d+1, non-spec}

{a*b, spec if true}

if cc1

a=b

c=d+1

x = load(c)

e=a*b

{b*b, spec if false}

T F

FIGURE 18.24 Original code labeled with the set of available expressions.

as part of the data flow computations for available sets) is left at the beginning of every basic

block, making incremental computation of available sets simpler. Also, because operations from

different branches are combined, code explosion is reduced. In this example, the available expression

d + 1 is replicated as it passes the join point, but the copies are recombined as it moves past the

branch point.

To determine the scheduling preference between operations of the availability set, a numerical

speculative attribute (spec) is assigned; the higher the value assigned, the more speculative is the

operation (and the less desirable for scheduling). Initially all operations are assigned a spec value of

0. Available operations are computed using standard data flow techniques, examining the blocks in

reverse topological order.

As the operations are moved in the data flow graph, the speculative attribute is updated as follows:

all operations in the basic block n that are not data dependent on each other are moved to the

availability set for n with their spec attribute unchanged. If an operation exists in all the available

sets of n’s immediate successor blocks, it can be moved to available(n) (the available set for basic

block n) and is assigned the highest of its spec attributes in the successor blocks. If an operation is

present in only one of the successor blocks, its spec attribute is incremented by one. For example,

consider Figure 18.25. Notice that operation y + 1 has a speculative value of 0 because it is useful

all on paths. Operation a + f has a higher speculative value than b + e because it is useful on fewer

paths. The idea is that nonspeculative operations (spec value is 0) should be scheduled first (as they

are guaranteed to be useful). Operations that are more speculative are less desirable, because their

chance to be productive is less.

Other methods [15] define the degree of speculativeness of an operation as the number of branches

that control its execution. However, this is not accurate. For example, in Figure 18.25, operation

a + e is not control dependent on any branch, yet it becomes speculative as it moves past branch

points and values are substituted.

Each basic block header stores the set of live registers (using regular data flow techniques).

To reduce the amount of code expansion (as well as scheduling time), a software look ahead

window is used to limit the distance operations that are moved to reach the availability set. This

also reduces register pressure because code that moves long distances tends to increase register

lifetimes.

Once an operation from the available set has been scheduled, only the available sets and live

register sets on that path from which the operation came need to be recomputed. Restricting the

updates to the paths involved is a significant reduction in effort.
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if cc1

if cc2

a = b

a = b
e = f

x = a+e

if cc1

if cc2

a = b

a = b
e = f

x = a+e

{b+e [1]}

y = y+1 y = y+1

{a+f [0]}

{y+1[0]}

{y+1[0]}

if cc1

if cc2

a = b

a = b
e = f

x = a+e

y = y+1

{a+f [2]}

(a) (b) (c)

{b+e [0]}

{y+1[0]}
{a+f [1]}

{b+e [0]}

{y+1[0]}

{b+e [1]}

{y+1[0]}

FIGURE 18.25 (a) Original code; (b) availability sets along branches, with speculative values in square

brackets; (c) availability sets for initial basic block.

In the original form of this algorithm, software pipelining occurred when operations were moved

across the back edge,12 allowing them to enter the loop body as operations from future iterations.

The pipelining algorithm iterated until all the loop-carried dependences had been considered. The

pipeline prelude and postlude were generated by the automatic code duplication that accompanied

the global code motion.

In the current form [49], this algorithm attacks the problem more aggressively by deciding which

edges of a loop to consider as back edges. The algorithm cuts some edges to turn the cyclic graph

into an acyclic one. The availability set is computed and a parallel operation group is formed. This

parallel operation group is placed on each edge that was cut. Then, the old edges are restored, new

edges are cut and the process repeats again. Forward and backward edges are identified elegantly by

manipulating the sequence number of each operation. An edge from a higher to a lower sequence

number is considered to be a back edge. After a parallel group is scheduled, all the operations of the

group are given new (higher) sequence numbers, effectively moving the instructions at the end of

the next iteration’s acyclic graph.

The prelude and postlude is generated automatically as code is moved to cut edges. The technique

can be extended to nested loops by first applying software pipelining to the inner loop, and then

treating the inner loop as fixed, allowing the prelude and postlude code to become software pipelined

into the outer loop.

This model can handle min times of greater than 1 by inserting dummy nodes. However, this

increases the complexity of the algorithm because of the increased number of nodes. It should be

noted that the basic algorithm cannot handle persistent, irregular resources, but the authors contend

that it could be done using reservation tables [49].

12A back edge of a data dependence graph is an edge whose head dominates its tail in the flow graph and is
used to locate a natural loop [1]. A node a dominates a node b in a graph if every path from the source to b
must contain a.
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FIGURE 18.26 A tree instruction used in enhanced pipeline scheduling.

18.6.2 Instruction Model

EPS is a powerful algorithm that can utilize a multiway branching architecture with conditional

execution. The conditional execution feature makes this machine model more powerful than the

original perfect pipelining machine model that includes only multiway branching. Recent versions

of perfect pipelining have included multipredicated execution [51]. To take advantage of multi-

predicated execution, a more powerful software pipelining algorithm is required.

Figure 18.26 shows a typical control flow graph (CFG) node, I1,13 termed a tree instruction. I2

through I4 are labels of other CFG nodes. The condition codes cc1 and cc2 are computed before the

node is entered, and only those statements along one path from the root to a leaf are executed. All

the operations on the selected path are executed concurrently, using the old values for all operands.

Operations in a tree instruction have no dependences on each other. For example, in Figure 18.26,

one possible path is shown with dashed arrows. If cc1 is true (left branch) and cc2 is false when I1 is

executed, operations O1, O3, O7 and O8 are executed simultaneously, then control is transferred to

I4. (This path is shown by a heavy, dashed path in the diagram.) Thus, the assignment to t by O7 does

not affect the use of t by O8. Two types of resource constraints are placed on this machine model.

One is limited by the total number of operations that can be contained within the tree instruction.

Another is limited to a fixed number of different paths through the tree instruction.

With conditional execution, operations can be placed on any branch of a CFG node, unlike a

traditional machine model in which all operations must precede any conditional branch operations.

Although EPS can utilize such features, the scheduling technique does not require this powerful of

an architecture. Other architectures can be represented by the tree instruction by restricting the form

of the instruction.

18.6.3 Global Code Motion with Renaming and Forward Substitution

Nakatani and Ebcioğlu use renaming and forward substitution to move operations past predicates

and shorten dependence chains involving antidependences [50]. Renaming involves replacing an

operation such as x = y op z with two operations x′ = y op z; x = x′. Because x′ = y op z

defines a variable that is only used by the copy statement x = x′, the assignment to x′ is free to move

outside the predicate. When x′ = y op z moves before the predicate that controls its execution, the

13A control flow graph (CFG) is a graph in which nodes represent computations and edges represent the
flow of control [1].
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(a) (b) (c) (d)

5

2

4

t=a+b

1

2

3

5

4 6

t=a+b

m=t*a

a = b + c

t=a+b

d = 2 * a

a=a’

m=t*a

d=2*a’
a=a’

d=d’

t=a+b

a‘=b+c

3

5

4

4

1

3

2 2

1 1

3

m=t*a

a=a’

m=t*a

a‘=b+c

d’=2*a’

d = 2 * a

a’ = b + c

FIGURE 18.27 (a) Original dependence graph; (b) dependence graph after renaming a = b + c; (c) after

forward substitution; (d) dependence graph after renaming d = 2 · a.

statement is said to be speculative. Figure 18.27 illustrates the shortening of a data dependence chain

(involving an antidependence) and a control dependence chain using renaming of a. Figure 18.27(a)

shows the original dependence graph whereas Figure 18.27(b) shows the graph after renaming.

The dependence between n5 and n4 can be eliminated by forward substitution. For an assignment

statement var = expr, when uses of var in subsequent instructions are replaced by expr, it is

termed forward substitution. This is particularly useful if, as a result of the forward substitution,

the operations can be executed simultaneously. In Figure 18.27(c), forward substitution is used to

change d = 2 · a to d = 2 · a′ because the a referenced has the value of a′. Figure 18.27(d) shows

that d = 2 · a is renamed. Notice that in this case, the length of the dependence chain for the graph is

decreased.

To see the flexibility of this model, node 2 could also represent a predicate and the same

transformations used on the data dependences can also be applied to the control dependences.

Forward substitution may collapse true dependences that prevent code motion. A true dependence

between two operations O1 and O2 may be collapsible with forward substitution if (1) O1 is a

copy operation or (2) both operations involve a constant immediate operand. Forward substitution is

performed if a true dependence can be collapsed.

Figure 18.28 shows an example in which both forward substitution and renaming are required to

move an operation. The diagram shows part of a CFG before and after operation O6 (shown in bold

type) is moved from instruction I4 to instruction I2. Multiple tree instructions are shown in the figure.

Each rectangular node is the entry point of a tree instruction. O6 has a true dependence on O4 that

involves an immediate operand, making this dependence a candidate for forward substitution. First,

y is renamed giving O6 : ya = z + 6 and O6a : y = ya . Next, forward substitution is performed

giving O6 : y = z + 4 + 2. Constant folding is then performed giving O6 : y = z + 6.

18.6.4 Pipelining the Loop

To perform pipelining, code is moved backward along the control flow arcs. The algorithm consists

of two phases that repeat until all operations have an opportunity to move. In phase one, code from

within the current loop body is moved as early as dependences allow. The first parallel instructions

of the loop are termed fences. The name is derived from the fact that code is moved from the rest of

the loop to a position as early as possible in the loop, but not past the fence. Hence, the fence bounds

the code motion. In phase two, the fence instruction is duplicated and moved. Code from the loop

body is duplicated as it moves past the top of the loop because there are two control predecessors.
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O2: if cc1

O1: y = b[i]

I1

O5: if cc2

I4

I3I2

O3: cc2 = z < y

O4: x = z + 4

I6

O8: y = a[x]

O7: z = a[y]

I5

O6: y = x + 2

O5: if cc2

I4

I2 I3

O3: cc2 = z < y

O4: x = z + 4

O6: y  = z + 6

I6I5

O7: z = a[y]

O8: y = a[x]

I1

O1: y = b[i]

O2: if cc1

a

O6  : y = y 
a a

FIGURE 18.28 Example of code motion of O6 with renaming and forward substitution of x = z + 4 for the

x in O6a .
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a = b[i] + c

d[i] = a + e[i]
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(1,1)

FIGURE 18.29 Selective scheduling. (a) Data dependence graph of loop; (b) control flow graph of loop;

(c) after filling first instruction; (d) after filling second instruction; (e) after filling third instruction; (f) final

software pipeline.

The code that moved out of the loop forms a prelude. The code that joins code at the bottom of the

loop body represents work originally performed in a different iteration.

18.6.5 Extensions

The original EPS work is modified in [40] to remove some of the extra copies that are generated by

EPS. The first step performs the code motion (which generates many copy instructions). The second

step unrolls the loop a sufficient number of times so that the copies can be combined. Coalescing
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(a) (b)

x1c=x3a +4

x1b=x1c

x1a=x1b

x=x1b

y = x1a

t = x1b

x=x1c

y = x1c

t = x1c

x1c=x3a +4

FIGURE 18.30 (a) Situation where coalescing can be done;

(b) resulting code after coalescing.

eliminates copies by allocating the same register to both the source and the target of a copy. Obviously

this can only be done if the live tracks do not overlap. For example, in Figure 18.30(a), various adjacent

live chains are shown that are produced during the course of code motion, and have subsequently been

unrolled. In Figure 18.30(b), the live tracks are combined and the variable names are substituted. All

the variables involved in the chains can be stored in the same register if we rename all the uses. This

technique has quite a special purpose, in that it eliminates the copies generated by this technique.

One would also wonder if the unrolling were done before the code motion were performed, whether

the need for coalescing would be reduced.

The work of Shim and Moon [64] adjusts EPS by duplicating common blocks to permit more

efficient schedules when the same path is executed repeatedly. They use the term cross-path pipelining

to refer to a schedule that is tuned to changes between the execution paths of a loop and the term

intrapath pipelining for schedules that are tuned to repeated execution of the same path. Earlier

versions of the EPS algorithm focused more on tight cross-path pipelining to the detriment of

intrapath pipelining. The new algorithm, termed split-path enhanced pipeline scheduling (SP-EPS),

first computes a modulo schedule for each path separately and then the schedules are combined.

To facilitate separate pipelining of paths, the paths need to be separate — so they are first split via

code duplication until the code becomes a treelike graph. This step can cause considerable code

expansion. Intrapath pipelining is achieved through code motion. Cross-path pipelining is done only

when the scheduling does not conflict with intrapath operations. Loop unrolling is performed to

reduce antidependences caused from overlapping of iterations. Consistent with the goal, this method

produces better schedules (approximately 6% speedup) than EPS when the transition between paths

is low, but this is accompanied by a code expansion of about 15%. Interestingly, the improvement

over EPS disappears when the number of processors is doubled.

18.6.6 Evaluation

EPS is unique. Not only does it deal with multiblock loops but also it always maintains a legal loop

structure instead of trying to rebuild the loop. EPS handles general loops. Although renaming and

forward substitution have been utilized for years, the degree to which they have been successfully

employed in this technique is noteworthy.
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EPS has several advantages over perfect pipelining. The algorithm increases the speed of con-

vergence by retaining the loop construct and reducing the resulting code size. These techniques

can also cause problems, because prematurely forcing operations to remain together can restrict the

parallelism. These disadvantages are lessened if a majority of the loop dependences can be removed

by the automatic renaming and combining. The most serious drawback is the unsuitability of the

method for use with persistent resources. Because instructions are inserted or removed during the

scheduling, persistent resources (that require a fixed set of resources a given offset from instruction

initiation) cannot be accommodated. Fractional rates are not achieved.

18.7 Adapting Software Pipelining to Other Concerns

18.7.1 Reducing Cache Misses

Many of the pipelining techniques isolate the need for exploiting parallelism from the requirements

of a real machine. Prefetching of data can minimize the effects of cache misses. However, capacity

misses (which occur because the needed data exceed the capacity of the cache) can be reduced by

considering the contents of the loop, referred to as loop blocking or loop tiling. Panda et al. [53]

examine this issue. Although they do not specifically consider loop tiling with software pipelining,

much could be gained by combining the techniques. Conflict misses occur in limited-associativity

caches when several data elements compete for the same cache location. Conflict misses can seriously

hamper the effectiveness of software pipelining by increasing the initiation interval.

Panda et al. [53] introduce a technique for data alignment that is termed padding. Basically,

elements that compete for the same cache location are controlled. Thus, the concern is with conflicts

between data in the same array (self-interference) and data between arrays.

Sánchez and González [63] consider the interaction between software prefetching and software

pipelining. They point out that, although achieving high throughput or low-register pressure has

been considered by a variety of researchers, the effect of cache memory is often disregarded. The

cache performance is a critical factor in performance due to the fact that memory speeds are so much

slower than processor clock speeds.

Whereas a lockup free cache is advantageous because it allows the processor to continue after a

cache miss, the advantages are limited because in software pipelining, stalls occur after the cache miss

due to data dependencies on the missing data. Cache misses are normally dealt with via prefetching,

either by moving the memory operations away from the code that uses the fetched data (termed

binding prefetching) or by inserting special prefetch instructions that perform a cache lookup but

do not actually store the data in a register (terming nonbinding prefetching). Binding prefetching

increases the lifetime of the variable and hence affects register pressure. Nonbinding prefetching

increases the number of memory requests and may cause the initial interval of the software pipeline

to increase to accommodate the extra instructions. Sánchez and González illustrate that common

software-pipelining techniques that fail to account for normal cache memory behavior produce far

from optimal results.

Sánchez and González propose a technique that is based on early scheduling of carefully chosen

operations. Operations involved in recurrences are monitored closely because modifications to the

recurrence code can increase register pressure as well as increase the length of the initiation interval

due to the cyclic dependencies. They compute two alternative schedules, one of which affects the

stall time whereas another affects the length of the prologue and epilogue. If the number of times the

loop is executed (termed the trip count) is large, having more prologue and epilogue code is not as

serious because the code expansion is considered to be worth the space penalty to obtain loop code

that is efficient due to the amortized cost. Thus, the number of iterations to be performed affects the

choice of which schedule is preferred, because the costs are amortized.
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To determine the best way of reducing cache misses, locality analysis is conducted by considering

the following factors:

1. Determine which type of reuse is present. Self-dependence is when the same operation

repeatedly accesses the same cache location, whereas group dependence is when elements

are repeatedly accessed that were most recently used by different instructions.

2. Determine whether two static instructions always interfere with each other in the cache.

3. Determine which references cannot take advantage of reuse because they have been displaced

from the cache.

From this information, a schedule that minimizes the effect of recurrences is constructed.

Sánchez and González compare their proposed technique with various strategies for using prefetch

instructions: (1) always insert prefetch instructions, (2) insert prefetch instructions for references

without temporal locality and (3) insert prefetch instructions only for references with no locality.

They show that their technique is superior to others with prefetching and that among the prefetching

strategies, one is not superior to another, but varies with the particular program and architecture.

Thus, it appears that more work is needed to identify when prefetching is advantageous.

18.7.2 Itemization of All States

Milićev and Jovanović [48] propose a formal model for software pipelining in the presence of

conditionals. Predicated execution allows for code from multiple blocks to be scheduled as one

block. Their observation is as follows. Suppose operation Oj from iteration 2 is dependent on

operation Oi that is conditionally executed. If Oi does not really need to be executed, a better

schedule could likely be produced.

In the movement of predicated code, it could happen that the execution of an operation is condi-

tional on the value of a predicate computed for a previous iteration. Similarly, if we allow speculative

execution, a predicated operation in one iteration could be predicated on a predicate computed in a

different iteration. They use a predicate matrix in which the column indicates the iteration for which

the predicate is of interest, and the row is the number of different predicates contained in the code.

In the code segment Figure 18.31, let 〈p1 0〉 indicate that the operation is predicated on predicate

p1 from the current iteration and 〈p2 − 1〉 indicate that the operation is predicated on predicate p2

from the prior iteration. A predicate matrix (also termed a state matrix) for a single iteration that

depends on two predicates (p1 and p2) from three iterations (previous, current and next) may look

something like that of Figure 18.32.

The next state matrix is obtained by shifting all values one place to the left: the left edge elements

are discarded and right edge values become the next predicate values. Some values may be blank.

For example, if the value of p2 from a previous iteration was not used, 〈p2 −1〉 would be blank.

Operation Predicate

x = a + b 〈p1 0〉

a = b 〈p2 −1〉

b = t 〈p2 −1〉

m = b − 1 〈p1 1〉

FIGURE 18.31 Example of predicated code.

〈p1 −1〉 〈p1 0〉 〈p1 1〉

〈p2 −1〉 〈p2 0〉 〈p2 1〉

FIGURE 18.32 Predicate matrix.
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FFF TFF FTF TTF

FFT TFT FTT TTT

FIGURE 18.33 Finite state machine for a single predicate.

There are 2k possible state matrices, where k is the number of nonblank values in the matrix. The

idea is to let each possible state matrix be a node in a finite state machine (FSM) so that we can

schedule each unique state individually.

For a simple example, consider a single predicate used over three iterations:

〈p1 −1〉 〈p1 0〉 〈p1 1〉

The FSM is shown in Figure 18.33, in which each node is labeled with the contents of the predicate

matrix. Note that arcs mark possible next states for the following iteration.

Associated with each node in the FSM is the DDG given those values for the predicates. Thus,

operations that would not be performed due to the specific predicate assignment of an iteration are

eliminated from the DDG. Now code motion between nodes of the FSM is performed. For example,

if the dependence graphs of two adjacent nodes are concatenated, the critical path may be shorter

than the sum of their individual critical paths. In this case, moving code between them may reduce

the critical path of one or both of them. As is common with code motion, one needs to be careful

to preserve proper semantics. Consider an operation from state TTF named Oi that is predicated by

〈p1 0〉. If this operation is moved to a successor of TTF, it would be predicated by 〈p1 − 1〉. For this

to be legal, we must move Oi to both successors of TTF (states TFF and TFT).

Similarly, consider an operation from state FTF named Oj that is predicated by 〈p1 0〉. If this

operation is moved to a predecessor of FTF, it would be predicated by 〈p1 1〉. For this to be legal,

we must move Oj to both predecessors of FTF (states FFT and TFT).

Some of the resulting states may have some code in common that can be combined with a type of

unification. Although this technique may be very expensive, due to the exponential code explosion,

it is an interesting idea. The key idea is that particular paths through the code should be optimized.

In this case, every path is allowed to be optimized separately.

18.7.3 Register Pressure

One major concern with software pipelining is the high register demand. Although each loop invariant

needs only to be stored once for all iterations, loop-dependent variables have a separate value for each

iteration. When multiple iterations overlap, more registers are needed to store the variable values.

In the work by Zalamea et al. [78], the problem of using spill code to reduce register pressure is

considered.

Many software-pipelining methods are not sensitive to the limited number of registers available.

When the number of available registers is exceeded, one option is to reschedule with a longer

initiation interval, but this solution normally results in less efficiency. A second solution (spilling)

is to move a register value to memory (and then restore it when needed) to save registers. Earlier

research indicates that rescheduling after increasing the II tends to generate worse schedules, but

this is not always the case.
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Def: X=

Use2:  =X

Use3:  =X

Store: C=X

Load: X=C

Load: X=C

Use1:  =X

Def: X=

Use1:  =X

Use2:  =X

Use3:  =X

Store: C=X

Load: X=C

Load: X=C

Load: X=C

(a) (b) (c)

Def: X=

Use3:  =X

Use2:  =X

Use1:  =X

FIGURE 18.34 (a) Original code; (b) total spilling of variable; (c) spilling based on use.

One way of inserting spill code is to spill a variable totally, which means that there is a store after

the generation of a variable value and a load of the value before every use of that value. Another,

less aggressive technique spills individual uses of a variable. Thus, instead of requiring every use

of a spilled value to have an associated load, one might decide to let some uses of the value use the

original value and only restore values for uses that are further from the definition. For example, in

Figure 18.34(b) when spilling X, all uses of register X have an associated load of the stored value

of register X; whereas in Figure 18.34(c), we let Use1 use the value of X that is still in memory

(because data flow analysis does not allow X to be reused until Use1 is done with it) but Use2 must

load a stored value of X.

In producing spill code, one must decide how many variables to spill and how to decide which

ones to spill. This is a bit tricky to do, because the introduction of spill code may increase the II,

but a larger II may make the spill code less necessary. Thus, the process is normally iterative. You

generate spill code and then reschedule to make sure the II is not increased. If the II is increased,

you remove the spill code and determine anew what spill code is required at the new II.

Some techniques try to spill as many variables as possible without increasing the II. The problem

with this approach is that memory traffic may be increased unnecessarily, and little benefit may result

from reducing register use below that required for scheduling.

Zalamea et al. [78] propose several ideas for spill value determination. They find the instruction

cycle during which the largest number of registers are simultaneously live, and then spill only registers

that are live during this critical instruction. Instead of spilling all the registers needed at once, they spill

only part of them (as controlled by a quantity factor, which is a parameter to the algorithm). The idea

is that you do not introduce so much spill code at one time that II is increased. When II is increased,

the spilling needs are altered, and you have to start the scheduling over anyway. Similarly, a traffic

factor is used to allow the algorithm to experiment with various amounts of increased memory traffic.

The idea in the Zalamea work is to allow the compiler to try several approaches to handling register

pressure and pick the best solution. The results of this approach are good, but the scheduler can take

almost twice as long to perform the scheduling. In addition, some evidence shows that a dynamic

way of adjusting specific values of the parameters to their algorithm would be beneficial.

Altemose and Morris [11] have modified modulo scheduling for an IA-64 type of architecture

to incorporate sensitivity to register pressure. In their experiments on 880 loop bodies, they were

able to reduce the number of registers required in 52% of the 880 loop bodies. Many modulo

schedulers place operations as early as possible, causing an increase in the number of values that
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are live simultaneously. Their pressure responsive pipelining (PRP) looks at the changes in register

pressure that result from various placement locations. Basically, they just minimize the length of the

lifetime of the variable affected by the scheduled operation based on predecessors or successors (in

the dependence relationship) that have already been scheduled. Unscheduled operations are ignored.

Evidently, scheduling based solely on lifetime length may increase the failure rate as they double

the number of attempts at operation placement over what is normally allowed. They monitor the

number of placements that have been attempted. When half of the total number of placements have

been made, they turn off the PRP scheduling.

Because values that are loop invariant (stored in the static register file) are not affected by PRP

scheduling, Altemose and Norris [11] chose only to consider the registers in the rotating files instead

of all registers. Although the rotating register usage of many loops was unaffected by PRP scheduling,

the average decrease over all loops in register usage was 6.6%. A 14% decrease occurred for those

loops that had reduced register requirements. Interestingly enough, however, they state that the

floating point register usage was unaffected in the vast majority of the cases because of the “higher

difficulty in scheduling floating point operations” caused by increased latency of floating point

operations and fewer floating point functional units.

In scheduling for embedded very long instruction word (VLIW) machines, both register and

memory space are at a premium. Akturan and Jacome [7] propose a technique, termed the register-

sensitive force-directed retiming algorithm (RS-FDRA), for coping with register constraints and

code space constraints. The algorithm is similar in spirit to the modulo-scheduling algorithms in that

a specific initiation interval is attempted, but the initiation interval is increased in the face of failure.

The main focus is in the pipelining of inner loops of single basic blocks.

The RS-FDRA algorithm deals with two optimization problems:

1. Minimize register pressure and initiation delay.

2. Minimize register pressure and number of overlapped iterations.

The solutions manager generates several good solutions, which are evaluated based on smallest

code size. Next possible schedules are considered based on reducing register pressure. Several

heuristics are used to facilitate this selection. Register pressure is reduced by selecting solutions that

have larger delays on edges connecting shared objects. They look at the earliest possible scheduling

location for a node and the latest possible scheduling location (similar to what other algorithms do)

but prune the search by identifying infeasible locations and eliminating locations with no available

resources. Each operation is given an associated force function, which measures the change of

concurrency associated with scheduling the operation in a given cycle. This function helps the

scheduler decide which operation to schedule next. Those operations that need to be scheduled

in the most sought after instructions are scheduled first. The locations that give minimal register

requirements are given first priority. When the scheduler is unable to meet the demands of the

schedule, either the total number of iterations executing concurrently is incremented or the initiation

interval is incremented, depending on priority. Early tests indicate that this technique is very effective

in reducing both code space and register pressure.

18.8 Conclusions

Software pipelining is an effective technique for extracting parallelism from loops that thwart attempts

to vectorize or divide the work across processors. Although the speedup is modest, it should be

noted that software pipelining succeeds where other methods fail and can be applied after other

techniques have extracted coarse grain parallelism. The variety of architectures benefiting from

software pipelining underscores its importance.
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Although an NP-complete scheduling problem, software pipelining has numerous effective

heuristics that have been developed. Both resource conflicts and cyclic dependences produce a

lower bound on the initiation interval. Such lower bounds can be computed in polynomial time. In

considering algorithmic features such as low complexity, ability to deal with conditionals, accom-

modation of resource conflicts and achievement of fractional initiation intervals, the current methods

have various degrees of success.

Some researchers are applying artificial intelligence techniques to the problem of software

pipelining. Beaty uses genetic algorithms for instruction scheduling [13]. O’Neill and Allan use

genetic algorithms and simulated annealing to solve the problem of software pipelining [8, 52].
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[49] S.-M. Moon and K. Ebcioğlu, Parallelizing nonnumerical code with selective scheduling and

software pipelining, ACM Trans. Programming Languages Syst., 19(6), 853–898, November

1997.
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19.1 Introduction

The term dynamic compilation refers to techniques for runtime generation of executable code. The

idea of compiling parts or all the application code while the program is executing challenges our

intuition about overheads involved in such an endeavor. Yet, recently a number of different approaches

have evolved that effectively manage this challenging task.

The ability to dynamically adapt executing code addresses many of the existing problems with

traditional static compilation approaches. One such problem is the difficulty for a static compiler to

fully exploit the performance potential of advanced architectures. In the drive for greater performance,

today’s microprocessors provide capabilities for the compiler to take on a greater role in performance

delivery, ranging from predicated and speculative execution (e.g., for the Intel Itanium processor)

to various power consumption control models. To exploit these architectural features, the static

compiler usually has to rely on profile information about the dynamic execution behavior of a

program. However, collecting valid execution profiles ahead of time may not always be feasible or

practical. Moreover, the risk of performance degradation that may result from missing or outdated

profile information is high.

Current trends in software technology create additional obstacles to static compilation. These

are exemplified by the widespread use of object-oriented programming languages and the trend

toward shipping software binaries as collections of dynamically linked libraries, instead of monolithic

binaries. Unfortunately, the increased degree of runtime binding can seriously limit the effectiveness

of traditional static compiler optimization, because static compilers operate on the statically bound

scope of the program.

Finally, the emerging Internet and mobile communications marketplace create the need for the

compiler to produce portable code that can efficiently execute on a variety of machines. In an

environment of networked devices, where code can be downloaded and executed on the fly, static

0-8493-1240-7/03/$0.00+$1.50

c© 2003 by CRC Press LLC 739



740 The Compiler Design Handbook: Optimizations and Machine Code Generation

      Compiler 

High-level 
language 
program 

      Linker      Loader 
Dynamic 

Compiler 

Object  

code 

Executable 
code 

Loaded  

image 

Feedback 

FIGURE 19.1 Dynamic compilation pipeline.

compilation at the target device is usually not an option. However, if static compilers can only be

used to generate platform-independent intermediate code, their role as a performance delivery vehicle

becomes questionable.

This chapter discusses dynamic compilation, a radically different approach to compilation that

addresses and overcomes many of the preceding challenges to effective software implementation.

Dynamic compilation extends our traditional notion of compilation and code generation by adding

a new dynamic stage to the classical pipeline of compiling, linking and loading code. The extended

dynamic compilation pipeline is depicted in Figure 19.1.

A dynamic compiler can take advantage of runtime information to exploit optimization oppor-

tunities not available to a static compiler. For example, it can customize the running program

according to information about actual program values or actual control flow. Optimization may

be performed across dynamic binding, such as optimization across dynamically linked libraries.

Dynamic compilation avoids the limitations of profile-based approaches by directly utilizing runtime

information. Furthermore, with a dynamic compiler, the same code region can be optimized multiple

times should its execution environment change. Another unique opportunity of dynamic compilation

is the potential to speedup the execution of legacy code that was produced using outdated compilation

and optimization technology.

Dynamic compilation provides an important vehicle to efficiently implement the “write-once-run-

anywhere” execution paradigm that has recently gained a lot of popularity with the Java programming

language [23]. In this paradigm, the code image is encoded in a mobile platform-independent format

(e.g., Java bytecode). Final code generation that produces native code takes place at runtime, as part

of the dynamic compilation stage.

In addition to addressing static compilation obstacles, the presence of a dynamic compilation stage

can create entirely new opportunities that go beyond code compilation. Dynamic compilation can be

used to transparently migrate software from one architecture to a different host architecture. Such

a translation is achieved by dynamically retargeting the loaded nonnative guest image to the host

machine native format. Even for machines within the same architectural family, a dynamic compiler

may be used to upgrade software to exploit additional features of the newer generation.

As indicated in Figure 19.1, the dynamic compilation stage may also optionally include a feedback

loop. With such a feedback loop, dynamic information, including the dynamically compiled code

itself, may be saved at runtime to be restored and utilized in future runs of the program. For example,

the FX!32 system for emulating x86 code on an Alpha platform [27] saves runtime information

about executed code, which is then used to produce translations off-line that can be incorporated

in future runs of the program. It should be noted that FX!32 is not strictly a dynamic compilation

system, in that translations are produced in between executions of the program instead of on-line

during execution.

Along with its numerous opportunities, dynamic compilation also introduces a unique set of

challenges. One such challenge is to amortize the dynamic compilation overhead. If dynamic com-

pilation is sequentially interleaved with program execution, the dynamic compilation time directly

contributes to the overall execution time of the program. Such interleaving greatly changes the cost-

benefit compilation trade-off that we have grown accustomed to in static compilation. Although in

a static compiler increased optimization effort usually results in higher performance, increasing the

dynamic compilation time may actually diminish some or all the performance improvements that
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were gained by the optimization in the first place. If dynamic compilation takes place in parallel with

program execution on a multiprocessor system, the dynamic compilation overhead is less important,

because the dynamic compiler cannot directly slow down the program. It does, however, divert

resources that could have been devoted toward execution. Moreover, long dynamic compilation

times can still adversely affect performance. Spending too much time on compilation can delay the

employment of the dynamically compiled code and diminish the benefits. To maximize the benefits,

dynamic compilation time should therefore always be kept to a minimum.

To address the heightened pressure for minimizing overhead, dynamic compilers often follow an

adaptive approach [24]. Initially, the code is optimized with little or no optimization. Aggressive

optimizations are considered only later, when more evidence has been found that added optimization

effort is likely to be of use.

A dynamic compilation stage, if not designed carefully, can also significantly increase the

space requirement for running a program. Controlling additional space requirements is crucial in

environments where code size is important, such as embedded or mobile systems. The total space

requirements of execution with a dynamic compiler include not only the loaded input image but also

the dynamic compiler itself, plus the dynamically compiled code. Thus, care must be taken to control

both the footprint of the dynamic compiler and the size of the currently maintained dynamically

compiled code.

19.2 Approaches to Dynamic Compilation

A number of different approaches to dynamic compilation have been developed. These approaches

differ in several aspects, including the degree of transparency, the extent and scope of dynamic

compilation and the assumed encoding format of the loaded image. On the highest level, dynamic

compilation systems can be divided into transparent and nontransparent systems. In a transparent

system, the remainder of the compilation pipeline is oblivious to the fact that a dynamic compi-

lation stage has been added. The executable produced by the linker and loader is not specially

prepared for dynamic optimization and it may execute with or without a dynamic compilation stage.

Figure 19.2 shows a classification of the various approaches to transparent and nontransparent

dynamic compilation.

Transparent dynamic compilation systems can further be divided into systems that operate on

binary executable code (binary dynamic compilation) and systems that operate on an intermediate

platform-independent encoding (just-in-time [JIT] compilation). A binary dynamic compiler starts

out with a loaded fully executable binary. In one scenario, the binary dynamic compiler recompiles

the binary code to incorporate native-to-native optimizing transformations. These recompilation

systems are also referred to as dynamic optimizers [3, 5, 7, 15, 36]. During recompilation, the

binary is optimized by customizing the code with respect to specific runtime control and data flow

values. In dynamic binary translation, the loaded input binary is in a nonnative format, and dynamic

compilation is used to retarget the code to a different host architecture [19, 35, 39]. The dynamic

code translation may also include optimization.

JIT compilers present a different class of transparent dynamic compilers [11, 12, 18, 28, 29].

The input to a JIT compiler is not a native program binary; instead, it is code in an intermediate,

platform-independent representation that targets a virtual machine. The JIT compiler serves as an

enhancement to the virtual machine to produce native code by compiling the intermediate input

program at runtime, instead of executing it in an interpreter. Typically, semantic information is

attached to the code, such as symbol tables or constant pools, which facilitates the compilation.

The alternative to transparent dynamic compilation is the nontransparent approach, which inte-

grates the dynamic compilation stage explicitly within the earlier compilation stages. The static

compiler cooperates with the dynamic compiler by delaying certain parts of the compilation to
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FIGURE 19.2 Software dynamic compilation classification.

runtime, if their compilation can benefit from runtime values. A dynamic compilation agent is

compiled (i.e., hardwired) into the executable to fill and link in a prepared code template for the

delayed compilation region. Typically, the programmer indicates adequate candidate regions for

dynamic compilation via annotations or compiler directives. Several techniques have been developed

to perform runtime specialization of a program in this manner [9, 24, 31, 33].

Runtime specialization techniques are tightly integrated with the static compiler, whereas trans-

parent dynamic compilation techniques are generally independent of the static compiler. However,

transparent dynamic compilation can still benefit from information that the static compiler passes

down. Semantic information, such as a symbol table, is an example of compiler information that is

beneficial for dynamic compilation. If the static compiler is made aware of the dynamic compilation

stage, more targeted information may be communicated to the dynamic compiler in the form of code

annotations to the binary [30].

The remainder of this chapter discusses the various dynamic compilation approaches shown in

Figure 19.2. We first discuss transparent binary dynamic optimization as a representative dynamic

compilation system. We discuss the mechanics of dynamic optimization systems and their major

components, along with their specific opportunities and challenges. We then discuss systems in each

of the remaining dynamic compilation classes and point out their unique characteristics.

Also a number of hardware approaches are available to dynamically manipulate the code of a

running program, such as the hardware in out-of-order superscalar processors or hardware dynamic

optimization in trace cache processors [21]. However, in this chapter, we limit the discussion to

software dynamic compilation.

19.3 Transparent Binary Dynamic Optimization

A number of binary dynamic compilation systems have been developed that operate as an optional

dynamic stage [3, 5, 7, 15, 35]. An important characteristic of these systems is that they take full

control over the execution of the program. Recall that in the transparent approach, the input program

is not specially prepared for dynamic compilation. Therefore, if the dynamic compiler does not

maintain full control over the execution, the program may escape and simply continue executing
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natively, effectively bypassing dynamic compilation altogether. The dynamic compiler can afford to

relinquish control only if it can guarantee to regain control later, for example, via a timer interrupt.

Binary dynamic compilation systems share the general architecture shown in Figure 19.3. Input to

the dynamic compiler is the loaded application image as produced by the compiler and linker. Two

main components of a dynamic compiler are the compiled code cache that holds the dynamically

compiled code fragments and the dynamic compilation engine. At any point in time, execution takes

place either in the dynamic compilation engine or in the compiled code cache. Correspondingly, the

dynamic compilation engine maintains two distinct execution contexts: the context of the dynamic

compilation engine itself and the context of the application code.

Execution of the loaded image starts under control of the dynamic compilation engine. The

dynamic compiler determines the address of the next instruction to execute. It then consults a lookup

table to determine whether a dynamically compiled code fragment starting at that address already

exists in the code cache. If so, a context switch is performed to load the application context, and to

continue execution in the compiled code cache until a code cache miss occurs. A code cache miss

indicates that no compiled fragment exists for the next instruction. The cache miss triggers a context

switch to reload the dynamic compiler’s context and reenter the dynamic compilation engine.

The dynamic compiler decides whether a new fragment should be compiled starting at the next

address. If so, a code fragment is constructed based on certain fragment selection policies, which

are discussed in the next section. The fragment may optionally be optimized and linked with other

previously compiled fragments before it is emitted into the compiled code cache.

The dynamic compilation engine may include an instruction interpreter component. With an

interpreter component, the dynamic compiler can choose to delay the compilation of a fragment

and instead interpret the code until it has executed a number of times. During interpretation, the

dynamic compiler can profile the code to focus its compilation efforts on only the most profitable

code fragments [4]. Without an interpreter, every portion of the program that is executed during the

current run can be compiled into the compiled code cache.
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Figure 19.3 shows a code transfer arrow from the compiled code cache to the fragment selection

component. This arrow indicates that the dynamic compiler may choose to select new code fragments

from previously created code in the compiled code cache. Such fragment reformation may be

performed to improve fragment shape and extent. For example, several existing code fragments

may be combined to form a single new fragment. The dynamic compiler may also reselect an

existing fragment for more aggressive optimization. Reoptimization of a fragment may be indicated

if profiling of the compiled code reveals that it is a hot (i.e., frequently executing) fragment.

In the following sections, we discuss the major components of the dynamic compiler in detail:

fragment selection, fragment optimization, fragment linking, management of the compiled code

cache and exception handling.

19.3.1 Fragment Selection

The fragment selector proceeds by extracting code regions and passing them to the fragment optimizer

for optimization and eventual placement in the compiled code cache. The arrangement of the extracted

code regions in the compiled code cache leads to a new code layout, which has the potential of

improving the performance of dynamically compiled code. Furthermore, by passing isolated code

regions to the optimizer, the fragment selector dictates the scope and kind of runtime optimization

that may be performed. Thus, the goal of fragment selection is twofold: to produce an improved

code layout and to expose dynamic optimization opportunities.

New optimization opportunities or improvements in code layout are unlikely if the fragment

selector merely copies static regions from the loaded image into the code cache. Regions such as

basic blocks or entire procedures are among the static regions of the original program and have been

already exposed to, and possibly optimized by, the static compiler. New optimization opportunities

are more likely to be found in the dynamic scope of the executing program. Thus, it is crucial to

incorporate dynamic control flow into the selected code regions.

Because of the availability of dynamic information, the fragment selector has an advantage over a

static compiler in selecting the most beneficial regions to optimize. At the same time, the fragment

selector is more limited because high-level semantic information about code constructs is no longer

available. For example, without information about procedure boundaries and the layout of switch

statements, it is generally impossible to discover the complete control flow of a procedure body in a

loaded binary image.

In the presence of these limitations, the units of code commonly used in a binary dynamic

compilation system is a partial execution trace, or trace for short BD [4, 7]. A trace is a dynamic

sequence of consecutively executing basic blocks. The sequence may not be contiguous in memory;

it may even be interprocedural, spanning several procedure boundaries, including dynamically linked

modules. Thus, traces are likely to offer opportunities for improved code layout and optimization.

Furthermore, traces do not need to be computed; they can be inferred simply by observing the runtime

behavior of the program.

Figure 19.4 illustrates the effects of selecting dynamic execution traces. The graph in

Figure 19.4(a) shows a control flow graph representation of a trace, consisting of blocks A, B,

C, D and E that forms a loop containing a procedure call. The graph in Figure 19.4(b) shows the

same trace in a possible noncontiguous memory layout of the original loaded program image. The

graph in Figure 19.4(c) shows a possible improved layout of the looping trace in the compiled code

cache as a contiguous straight-line sequence of blocks. The straight-line layout reduces branching

during execution and offers better code locality for the loop.

19.3.1.1 Adaptive Fragment Selection

The dynamic compiler may select fragments of varying shapes. It may also stage the fragment

selection in a progressive fashion. For example, the fragment selector may initially select only basic
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FIGURE 19.4 Traces in the control flow graph and in memory layout.

block fragments. Larger composite fragments, such as traces, are selected as secondary fragments

by stringing together frequently executing block fragments [4]. Progressively larger regions, such as

tree regions, may then be constructed by combining individual traces [19]. Building composite code

regions can result in potentially large amounts of code duplication because code that is common across

several composite regions is replicated in each region. Uncontrolled code duplication can quickly

result in excessive cache size requirements, the so-called code explosion problem. Thus, a dynamic

compiler has to employ some form of execution profiling to limit composite region construction to

only the (potentially) most profitable candidates.

19.3.1.2 On-line Profiling

Profiling the execution behavior of the loaded code image to identify the most frequently executing

regions is an integral part of dynamic compilation. Information about the hot spots in the code is used

in fragment selection and for managing the compiled code cache space. Hot spots must be detected

on-line as they are becoming hot, which is in contrast to conventional profiling techniques that operate

off-line and do not establish relative execution frequencies until after execution. Furthermore, to be

of use in a dynamic compiler, the profiling techniques must have very low space and time overheads.

A number of off-line profiling techniques have been developed for use in feedback systems, such

as profile-based optimization. A separate profile run of the program is conducted to accumulate

profile information that is then fed back to the compiler. Two major approaches to off-line profiling

are statistical PC sampling and binary instrumentation for the purpose of branch or path profiling.

Statistical PC sampling [1, 10, 40] is an inexpensive technique for identifying hot code blocks

by recording program counter hits. Although PC sampling is efficient for detecting individual hot

blocks, it provides little help in finding larger hot code regions. One could construct a hot trace by

stringing together the hottest code blocks. However, such a trace may never execute from start to

finish because the individual blocks may have been hot along disjoint execution paths. The problem

is that individually collected branch frequencies do not account for branch correlations, which occur

if the outcome of one branch can influence the outcome of a subsequent branch.

Another problem with statistical PC sampling is that it introduces nondeterminism into the dynamic

compilation process. Nondeterministic behavior is undesirable because it greatly complicates

development and debugging of the dynamic compiler.

Profiling techniques based on binary instrumentation record information at every execution

instance. They are more costly than statistical sampling, but can also provide more fine-grained

frequency information. Like statistical sampling, branch profiling techniques suffer the same problem

of not adequately addressing branch correlations. Path-profiling techniques overcome the correlation
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problem by directly determining hot traces in the program [6]. The program binary is instrumented

to collect entire path (i.e., trace) frequency information at runtime in an efficient manner.

A dynamic compiler could adopt these techniques by inserting instrumentation in first-level code

fragments to build larger composite secondary fragments. The drawback of adapting off-line tech-

niques is the large amount of profile information that is collected and the overhead required to process

it. Existing dynamic compilation systems have employed more efficient, but also more approximate,

profiling schemes that collect a small amount of profiling information, either during interpretation

[5] or by instrumenting first-level fragments [19]. Ephemeral instrumentation is a hybrid profiling

technique [38] based on the ability to efficiently enable and disable instrumentation code.

19.3.1.3 On-line Profiling in the Dynamo System

As an example of a profiling scheme used in a dynamic compiler, we consider the next executing tail

(NET) scheme used in the Dynamo system [17]. The objective of the NET scheme is to significantly

reduce profiling overhead while still providing effective hot path predictions. A path is divided into a

path head (i.e., the path starting point, and the path tail, which is the remainder of the path following

the starting point. For example, in path ABCDE in Figure 19.4(a), block A is the path head and

BCDE is the path tail. The NET scheme reduces profiling cost by using speculation to predict path

tails, while maintaining full profiling support to predict hot path heads. The rationale behind this

scheme is that a hot path head indicates that the program is currently executing in a hot region, and

the next executing path tail is likely to be part of that region.

Accordingly, execution counts are maintained only for potential path heads, which are the targets

of backward taken branches or the targets of cache exiting branches. For example, in Figure 19.4(a),

one profiling count is maintained for the entire loop at the single path head at the start of block A.

Once the counter at block A has exceeded a certain threshold, the next executing path is selected as

the hot path for the loop.

19.3.2 Fragment Optimization

After a fragment has been selected, it is translated into a self-contained location-independent inter-

mediate representation (IR). The IR of a fragment serves as a temporary vehicle to transform the

original instruction stream into an optimized form and to prepare it for placement and layout in the

compiled code cache. To enable fast translation between the binary code and the IR, the abstraction

level of the IR is kept close to the binary instruction level. Abstraction is introduced only when

needed, such as to provide location independence through symbolic labels and to facilitate code

motion and code transformations through the use of virtual registers.

After the fragment is translated into its intermediate form, it can be passed to the optimizer.

A dynamic optimizer is not intended to duplicate or replace conventional static compiler optimization.

On the contrary, a dynamic optimizer can complement a static compiler by exploiting optimization

opportunities that present themselves only at runtime, such as value-based optimization or opti-

mization across the boundaries of dynamically linked libraries. The dynamic optimizer can also

apply path-specific optimization that would be too expensive to apply indiscriminately over all paths

during static compilation. On a given path, any number of standard compiler optimizations may be

performed, such as constant and copy propagation, dead code elimination, value numbering and

redundancy elimination [4, 15]. However, unlike in static compiler optimization, the optimization

algorithm must be optimized for efficiency instead of generality and power. A traditional static opti-

mizer performs an initial analysis phase over the code to collect all necessary data flow information

that is followed by the actually optimization phase. The cost of performing multiple passes over the

code is likely to be prohibitive in a runtime setting. Thus, a dynamic optimizer typically combines

analysis and optimization into a single pass over the code [4]. During the combined pass all necessary
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FIGURE 19.5 Code sinking example. Code sinking before (i) and after (ii) fragment linking.

data flow information is gathered on demand and discarded immediately if it is no longer relevant

for current optimization [16].

19.3.2.1 Control Specialization

The dynamic compiler implicitly performs a form of control specialization of the code by producing a

new layout of the running program inside the compiled code cache. Control specialization describes

optimizations whose benefits are based on the execution taking specific control paths. Another

example of control specialization is code sinking [4], also referred to as hot–cold optimization [13].

The objective of code sinking is to move instructions from the main fragment execution path into

fragment exits to reduce the number of instructions executed on the path. An instruction can be sunk

into a fragment exit block if it is not live within the fragment. Although an instruction appears dead

on the fragment, it cannot be removed entirely because it is not known whether it is also dead after

exiting the fragment.

An example of code sinking is illustrated in Figure 19.5. The assignment X: = Y in the first block

in fragment 1 is not live within fragment 1 because it is overwritten by the read instruction in the

next block. To avoid useless execution of the assignment when control remains within fragment 1,

the assignment can be moved out of the fragment and into a so-called compensation block at every

fragment exit at which the assigned variable may still be live, as shown in Figure 19.5(i). Once

the exit block is linked to a target fragment (fragment 2 in Figure 19.5) the code inside the target

fragment can be inspected to determine whether the moved assignment becomes dead after linking.

If it does, the moved assignment in the compensation block can safely be removed, as shown in

Figure 19.5(ii).

Another optimization is prefetching, which involves the placement of prefetch instructions along

execution paths prior to the actual usage of the respective data to improve the memory behavior of

the dynamically compiled code. If the dynamic compiler can monitor data cache latency, it can easily

identify candidates for prefetching. A suitable placement of the corresponding prefetch instructions

can be determined by consulting collected profile information.

19.3.2.2 Value Specialization

Value specialization refers to an optimization that customizes the code according to specific runtime

values of selected specialization variables. The specialization of a code fragment proceeds like a

general form of constant propagation and attempts to simplify the code as much as possible.
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Unless it can be established for certain that the specialization variable is always constant, the

execution of the specialized code must be guarded by a runtime test. To handle specialization variables

that take on multiple values at runtime, the same region of code may be specialized multiple times.

Several techniques, such as polymorphic in-line caches [25], have been developed to efficiently

select among multiple specialization versions at runtime.

A number of runtime techniques have been developed that automatically specialize code at runtime

given a specification of the specialization variables [9, 24, 31]. In code generated from object-oriented

languages, virtual method calls can be specialized for a common receiver class [25]. In principle,

any code region can be specialized with respect to any number of values. For example, traces may

be specialized according to the entry values of certain registers. In the most extreme case, one can

specialize individual instructions, such as complex floating point instructions, with respect to selected

fixed input register values [34].

The major challenge in value specialization is to decide when and what to specialize. Overspe-

cialization of the code can quickly result in code explosion, and may severely degrade performance.

In techniques that specialize entire functions, the programmer typically indicates the functions to

specialize through code annotations prior to execution [9, 24]. Once the specialization regions

are determined, the dynamic specializer monitors the respective register values at runtime to trig-

ger the specialization. Runtime specialization is the primary optimization technique employed by

nontransparent dynamic compilation systems. We revisit runtime specialization in the context of

nontransparent dynamic compilation in Section 19.6.

19.3.2.3 Binary Optimization

The tasks of code optimization and transformation are complicated by having to operate on executable

binary code instead of a higher level intermediate format. The input code to the dynamic optimizer

has previously been exposed to register allocation and possibly also to static optimization. Valuable

semantic information that is usually incorporated into compilation and optimization, such as type

information and information about high-level constructs (i.e., data structures), is no longer available

and is generally difficult to reconstruct.

An example of an optimization that is relatively easy to perform on intermediate code but difficult

on the binary level is procedure inlining. To completely inline a procedure body, the dynamic compiler

has to reverse engineer the implemented calling convention and stack frame layout. Doing this may

be difficult, if not impossible, in the presence of memory references that cannot be disambiguated

from stack frame references. Thus, the dynamic optimizer may not be able to recognize and entirely

eliminate instructions for stack frame allocation and deallocation or instructions that implement

caller and callee register saves and restores.

The limitations that result from operating on binary code can be partially lifted by making certain

assumptions about compiler conventions. For example, assumptions about certain calling or register

usage conventions help in the procedure inlining problem. Also, if it can be assumed that the stack

is only accessed via a dedicated stack pointer register, stack references can be disambiguated from

other memory references. Enhanced memory disambiguation may then in turn enable more aggressive

optimization.

19.3.3 Fragment Linking

Fragment linking is the mechanism by which control is transferred among fragments without exit-

ing the compiled code cache. An important performance benefit of linking is the elimination of

unnecessary context switches that are needed to exit and reenter the code cache.

The fragment-linking mechanism may be implemented via exit stubs that are initially inserted at

every fragment exiting branch, as illustrated in Figure 19.6. Prior to linking, the exit stubs direct

control to the context switch routine to transfer control back to the dynamic compilation engine.
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FIGURE 19.6 Fragment linking.

If a target fragment for the original exit branch already exists in the code cache, the dynamic

compiler can patch the exiting branch to jump directly to its target inside the cache. For example, in

Figure 19.6, the branches A to E and G to A have been directly linked, leaving their original exit stubs

inactive. To patch exiting branches, some information about the branch must be communicated to

the dynamic compiler. For example, to determine the target fragment of a link, the dynamic compiler

must know the original target address of the exiting branch. This kind of branch information may be

stored in a link record data structure, and a pointer to it can be embedded in the exit stub associated

with the branch [4].

The linking of an indirect computed branch is more complicated. If the fragment selector has

collected a preferred target for the indirect branch, it can be inlined directly into the fragment code.

The indirect target is inlined by converting the indirect branch into a conditional branch that tests

whether the current target is equal to the preferred target. If the test succeeds, control falls through

to the preferred target inside the fragment. Otherwise, control can be directed to a special lookup

routine that is permanently resident in the compiled code cache. This routine implements a lookup

to determine whether a fragment for the indirect branch target is currently resident in the cache. If

so, control can be directed to the target fragment without having to exit the code cache [4].

Although its advantages are obvious, linking also has some disadvantages that need to be kept in

balance when designing the linker. For example, linking complicates the effective management of

the code cache, which may require the periodic removal or relocation of individual fragments. The

removal of a fragment may be necessary to make room for new fragments, and fragment relocation

may be needed to periodically defragment the code cache. Linking complicates both the removal

and relocation of individual fragments because all incoming fragment links have to be unlinked first.

Another problem with linking is that it makes it more difficult to limit the latency of asynchronous

exception handling. Asynchronous exceptions arise from events such as keyboard interrupts and

timer expiration. Exception handling is discussed in more detail in Section 19.3.5.

Linking may be performed on either a demand basis or a preemptive basis. With on-demand

linking, fragments are initially placed in the cache with all their exiting branches targeting an exit

stub. Individual links are inserted as needed each time control exits the compiled code cache via an

exit stub. With preemptive linking, all possible links are established when a fragment is first placed

in the code cache. Preemptive linking may result in unnecessary work when links are introduced that

are never executed. On the other hand, demand-based linking causes additional context switches and

interruptions of cache execution each time a delayed link is established.

19.3.4 Code Cache Management

The code cache holds the dynamically compiled code and may be organized as one large contiguous

area of memory, or it may be divided into a set of smaller partitions.
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Managing the cache space is a crucial task in the dynamic compilation system. Space consumption

is primarily controlled by a cache allocation and deallocation strategy. However, it can also be

influenced by the fragment selection strategy. Cache space requirements increase with the amount of

code duplication among the fragments. In the most conservative case, the dynamic compiler selects

only basic block fragments, which avoids code duplication altogether. However, the code quality and

layout in the cache is likely to be unimproved over the original binary. A dynamic compiler may use

adaptive strategy that permits unlimited duplication if sufficient space is available but moves toward

shorter, more conservatively selected fragments as the available space in the cache diminishes. Even

with an adaptive strategy, the cache may eventually run out of space and the deallocation of code

fragments may be necessary to make room for future fragments.

19.3.4.1 Fragment Deallocation

A fragment deallocation strategy is characterized by three parameters: the granularity, the timing

and the replacement policy that triggers deallocation. The granularity of fragment deallocation may

range from an individual fragment deallocation to an entire cache flush. Various performance trade-

offs are to be considered in choosing the deallocation granularity. Individual fragment deallocation

is costly in the presence of linking because each fragment exit and entry has to be individually

unlinked. To reduce the frequency of cache management events, one might choose to deallocate a

group of fragments at a time. A complete flush of one of the cache partitions is considerably cheaper

because individual exit and entry links do not have to be processed. Moreover, complete flushing

does not incur fragmentation problems. However, uncontrolled flushing may result in loss of useful

code fragments that may be costly to reacquire.

The timing of a deallocation can be demand or preemptive based. A demand-based deallocation

occurs simply in reaction to an out-of-space condition of the cache space. A preemptive strategy

is used in the Dynamo system for cache flushing [4]. The idea is to time a cache flush so that the

likelihood of losing valuable cache contents is minimized. The Dynamo system triggers a cache flush

when it detects a phase change in the program behavior. When a new program phase is entered, a new

working set of fragments is built, and it is likely that most of the previously active code fragments

are no longer relevant. Dynamo predicts phase changes by monitoring the fragment creation rate.

A phase change is signaled if a sudden increase in the creation rate is detected.

Finally, the cache manager has to implement a replacement policy. A replacement policy is

particularly important if individual fragments are deallocated. However, even if an entire cache

partition is flushed, a decision has to be made as to which partition to free. The cache manager can

borrow simple common replacement policies from memory paging systems, such as first-in, first-out

(FIFO) or least recently used (LRU). Alternatively, more advanced garbage collection strategies, such

as generational garbage collection strategies, can be adopted to manage the dynamic compilation

cache.

Beside space allocation and deallocation, an important code cache service is the fast lookup of

fragments that are currently resident in the code cache. Fragment lookups are needed throughout

the dynamic compilation system and even during the execution of cached code fragments when it is

necessary to look up an indirect branch target. Thus, fast implementation of fragment lookups, for

example, via hash tables, is crucial.

19.3.4.2 Multiple Threads

The presence of multithreading can greatly complicate the cache manager. Most of the complication

from multithreading can simply be avoided by using thread-private caches. With thread-private

caches, each thread uses its own compiled code cache and no dynamically compiled code is shared

among threads. However, the lack of code sharing with thread-private caches has several disadvan-

tages. The total code cache size requirements are increased by the need to replicate thread-shared
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code in each private cache. Beside additional space requirements, the lack of code sharing can also

cause redundant work to be carried out when the same thread-shared code is repeatedly compiled.

To implement shared code caches, every code cache access that deletes or adds fragment code

must be synchronized. Operating systems usually provide support for thread synchronization. To

what extent threads actually share code and, correspondingly, to what extent shared code caches are

beneficial are highly dependent on the application behavior.

Another requirement for handling multiple threads is the provision of thread-private state. Storage

for thread-private state is needed for various tasks in the dynamic compiler. For example, during

fragment selection a buffer is needed to hold the currently collected fragment code. This buffer must

be thread private to avoid corrupting the fragment because multiple threads may be simultaneously

in the process of creating fragments.

19.3.5 Handling Exceptions

The occurrence of exceptions while executing in the compiled code cache creates a difficult issue for

a dynamic compiler. This is true for both user-level exceptions, such as defined in the Java language,

and system-level exceptions, such as memory faults. An exception has to be serviced as if the original

program is executing natively. To ensure proper exception handling, the dynamic compiler has to

intercept all exceptions delivered to the program. Otherwise, the appropriate exception handler may

be directly invoked and the dynamic compiler may lose control over the program. Losing control

implies that the program has escaped and can run natively for the remainder of the execution.

The original program may have installed an exception handler that examines or even modifies the

execution state passed to it. In binary dynamic compilation, the execution state includes the contents

of machine registers and the program counter. In JIT compilation, the execution state depends on the

underlying virtual machine. For example, in Java, the execution state includes the contents of the

Java runtime stack.

If an exception is raised when control is inside the compiled code cache, the execution state may

not correspond to any valid state in the original program. The exception handler may fail or operate

inadequately when an execution state has been passed to it that was in some way modified through

dynamic compilation. The situation is further complicated if the dynamic compiler has performed

optimizations on the dynamically compiled code.

Exceptions can be classified as asynchronous or synchronous. Synchronous exceptions are

associated with a specific faulting instruction and must be handled immediately before execution

can proceed. Examples of synchronous exceptions are memory or hardware faults. Asynchronous

exceptions do not require immediate handling, and their processing can be delayed. Examples of

asynchronous exceptions include external interrupts (e.g., keyboard interrupts) and timer expiration.

A dynamic compiler can deal with asynchronous exceptions by delaying their handling until a

safe execution point is reached. A safe point describes a state at which the precise execution state of

the original program is known. In the absence of dynamic code optimization, a safe point is usually

reached when control is inside the dynamic compilation engine. When control exits the code cache,

the original execution state is saved by the context switch routine prior to reentering the dynamic

compilation engine. Thus, the saved context state can be restored before executing the exception

handler.

If control resides inside the code cache at the time of the exception, the dynamic compiler can

delay handling the exception until the next code cache exit. Because the handling of the exception

must not be delayed indefinitely, the dynamic compiler may have to force a code cache exit. To force

a cache exit, the fragment that has control at the time of the exception is identified, and all its exit

branches are unlinked. Unlinking the exit branches prevents control from spinning within the code

cache for an arbitrarily long period of time before the dynamic compiler can process the pending

exception.
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19.3.5.1 Deoptimization

Unfortunately, postponing the handling of an exception until a safe point is reached is not an option

for synchronous exceptions. Synchronous exceptions must be handled immediately, even if control

is at a point in the compiled code cache. The original execution state must be recovered as if the

original program had executed unmodified. Thus, at the very least, the program counter address,

currently a cache address, has to be set to its corresponding address in the original code image.

The situation is more complicated if the dynamic compiler has applied optimizations that change

the execution state. This includes optimizations that eliminate code, remap registers or reorder

instructions. In Java JIT compilation, this also includes the promotion of Java stack locations to

machine registers. To reestablish the original execution state, the fragment code has to be deoptimized.

This problem of deoptimization is similar to one that arises with debugging optimized code, where

the original unoptimized user state has to be presented to the programmer when a break point is

reached.

Deoptimization techniques for runtime compilation have previously been discussed for JIT com-

pilation [26] and binary translation [22]. Each optimization requires its own deoptimization strategy,

and not all optimizations are deoptimizable. For example, the reordering of two memory load

operations cannot be undone once the reordered earlier load has executed and raised an exception. To

deoptimize a transformation, such as dead code elimination, several approaches can be followed. The

dynamic compiler can store sufficient information at every optimization point in the dynamically

compiled code. When an exception arises, the stored information is consulted to determine the

compensation code that is needed to undo the optimization and reproduce the original execution state.

For dead code elimination, the compensation code may be as simple as executing the eliminated

instruction. Although this approach enables fast state recovery at exception time, it can require

substantial storage for deoptimization information.

An alternative approach, which is better suited if exceptions are rare events, is to retrieve the

necessary deoptimization information by recompiling the fragment at exception time. During the

initial dynamic compilation of a fragment, no deoptimization information is stored. This information

is recorded only during a recompilation that takes place in response to an exception.

It may not always be feasible to determine and store appropriate deoptimization information, for

example, for optimizations that exploit specific register values. To be exception-safe and to faithfully

reproduce original program behavior, a dynamic compiler may have to suppress optimizations that

cannot be deoptimized were an exception to arise.

19.3.6 Challenges

The previous sections have discussed some of the challenges in designing a dynamic optimization

system. A number of other difficult issues still must be dealt with in specific scenarios.

19.3.6.1 Self-Modifying and Self-Referential Code

One such issue is the presence of self-modifying or self-referential code. For example, self-referential

code may be inserted for a program to compute a check sum on its binary image. To ensure that

self-referential behavior is preserved, the loaded program image should remain untouched, which is

the case if the dynamic compiler follows the design illustrated in Figure 19.3.

Self-modifying code is more difficult to handle properly. The major difficulty lies in the detection

of code modification. Once code modification has been detected, the proper reaction is to invalidate

all fragments currently resident in the cache that contain copies of the modified code. Architectural

support can make the detection of self-modifying code easy. If the underlying machine architecture

provides page–write protection, the pages that hold the loaded program image can simply be write

protected. A page protection violation can then indicate the occurrence of code modification and
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can trigger the corresponding fragment invalidations in the compiled code cache. Without such

architectural support, every store to memory must be intercepted to test for self-modifying stores.

19.3.6.2 Transparency

A truly transparent dynamic compilation system can handle any loaded executable. Thus, to qualify

as transparent a dynamic compiler must not assume special preparation of the binary, such as explicit

relinking or recompilation with dynamic compilation code. To operate fully transparently, a dynamic

compiler should be able to handle even legacy code. In a more restrictive setting, a dynamic compiler

may be allowed to make certain assumptions about the loaded code. For example, an assumption

may be made that the loaded program was generated by a compiler that obeys certain software

conventions. Another assumption could be that it is equipped with symbol table information or stack

unwinding information, each of which may provide additional insights into the code that can be

valuable during optimization.

19.3.6.3 Reliability

Reliability and robustness present another set of challenges. If the dynamic compiler acts as an

optional transparent runtime stage, robust operation is of even higher importance than in static com-

pilation stages. Ideally, the dynamic compilation system should reach hardware levels of robustness,

though it is not clear today how this can be achieved with a piece of software.

19.3.6.4 Real-Time Constraints

Handling real-time constraints in a dynamic compiler has not been sufficiently studied. The execution

speed of a program that runs under the control of a dynamic compiler may experience large variations.

Initially, when the code cache is nearly empty, dynamic compilation overhead is high and execution

progress is correspondingly slow. Over time, as a program working set materializes in the code cache,

the dynamic compilation overhead diminishes and execution speed picks up. In general, performance

progress is highly unpredictable because it depends on the code reuse rate of the program. Thus,

it is not clear how any kind of real-time guarantees can be provided if the program is dynamically

compiled.

19.4 Dynamic Binary Translation

The previous sections have described dynamic compilation in the context of code transformation

for performance optimization. Another motivation for employing a dynamic compiler is software

migration. In this case, the loaded image is native to a guest architecture that is different from the host

architecture, which runs the dynamic compiler. The binary translation model of dynamic compilation

is illustrated in Figure 19.7. Caching instruction set simulators [8] and dynamic binary translation

systems [19, 35, 39] are examples of systems that use dynamic compilation to translate nonnative

guest code to a native host architecture.

An interesting aspect of dynamic binary translation is achieving separation of the running

software from the underlying hardware. In principle, a dynamic compiler can provide a soft-

ware implementation of an arbitrary guest architecture. With the dynamic compilation layer

acting as a bridge, both software and hardware may evolve independently. Architectural advances

can be hidden and remain transparent to the user. This potential of dynamic binary transla-

tion has recently been commercially exploited by Transmeta’s code morphing software [14] and

Transitive’s emulation software layer [37].

The high-level design of a dynamic compiler, if used for binary translation, remains the same as

illustrated in Figure 19.3, with the addition of a translation module. This additional module translates
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FIGURE 19.7 Binary translation.

FIGURE 19.8 Dynamic translation pipeline.

fragments selected from guest architecture code into fragments for the host architecture, as illustrated

in Figure 19.8.

To produce a translation from one native code format to another, the dynamic compiler may

choose to first translate the guest architecture code into an intermediate format and then generate the

final host architecture instructions. Going through an intermediate format is especially helpful if the

differences in host and guest architecture are large. To facilitate the translation of instructions, it is

useful to establish a fixed mapping between guest and host architecture resources, such as machine

registers [19].

Although the functionality of the major components in the dynamic compilation stage, such as

fragment selection and code cache management, is similar to the case of native dynamic optimization,

a number of important challenges are unique to binary translation.

If the binary translation system translates code not only across different architectures but also

across different operating systems, then it is called full system translation. The Daisy binary

translation system that translates from code for the PowerPC under IBM’s UNIX system, AIX,

to a customized very long instruction word (VLIW) architecture is an example of full system

translation [19]. Full system translation may be further complicated by the presence of a virtual

address space in the guest system. The entire virtual memory address translation mechanism has to be

faithfully emulated during the translation, which includes the handling of such events as page faults.

Furthermore, low-level boot code sequences must also be translated. Building a dynamic compiler

for full system translation requires in-depth knowledge of both the guest and host architectures and

operating systems.

19.5 Just-In-Time Compilation

JIT compilation refers to the runtime compilation of intermediate virtual machine code. Thus, unlike

binary dynamic compilation, the process does not start out with already compiled executable code.

JIT compilation was introduced for Smalltalk-80 [18], but has recently been widely popularized with

the introduction of the Java programming language and its intermediate bytecode format [23].

The virtual machine environment for a loaded intermediate program is illustrated in Figure 19.9. As

in binary dynamic compilation, the virtual machine includes a compilation module and a compiled

code cache. Another core component of the virtual machine is the runtime system that provides

various system services that are needed for the execution of the code. The loaded intermediate code

image is inherently tied to, and does not execute outside, the virtual machine. Virtual machines are an

attractive model to implement a “write-once-run-anywhere” programming paradigm. The program

is statically compiled to the virtual machine language. In principle, the same statically compiled

program may run on any hardware environment, as long as the environment provides an appropriate
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FIGURE 19.9

virtual machine. During execution in the virtual machine, the program may be further (JIT) compiled

to the particular underlying machine architecture. A virtual machine with a JIT compiler may or may

not include a virtual machine language interpreter.

JIT compilation and binary dynamic compilation share a number of important characteristics.

In both cases, the management of the compiled code cache is crucial. Just like a binary dynamic

compiler, the JIT compiler may employ profiling to stage the compilation and optimization effort

into several modes, from a quick base compilation mode with no optimization to an aggressively

optimized mode.

Some important differences between JIT and binary dynamic compilation are due to the different

levels of abstraction in their input. To facilitate execution in the virtual machine, the intermediate

code is typically equipped with semantic information, such as symbol tables or constant pools. A

JIT compiler can take advantage of the available semantic information. Thus, JIT compilation more

closely resembles the process of static compilation than does binary recompilation.

The virtual machine code that the JIT compiler operates on is typically location independent, and

information about program components, such as procedures or methods, is available. In contrast,

binary dynamic compilers operate on fully linked binary code and usually face a code recovery

problem. To recognize control flow, code layout decisions that were made when producing the binary

have to be reverse engineered, and full code recovery is in general not possible. Because of the code

recovery problem, binary dynamic compilers are more limited in their choice of compilation unit.

They typically choose simple code units, such as straight-line code blocks, traces or tree-shaped

regions. JIT compilers, on the other hand, can recognize higher level code constructs and global

control flow. They typically choose whole methods or procedures as the compilation unit, just as a

static compiler would do. However, recently it has been recognized that there are other advantages

to considering compilation units at a different granularity than whole procedures, such as reduced

compiled code sizes [2].

The availability of semantic information in a JIT compiler also allows for a larger optimization

repertoire. Except for overhead concerns, a JIT compiler is just as capable of optimizing the code as

a static compiler. JIT compilers can even go beyond the capabilities of a static compiler by taking

advantage of dynamic information about the code. In contrast, a binary dynamic optimizer is more

constrained by the low-level representation and the lack of a global view of the program. The aliasing

problem is worse in binary dynamic compilation because the higher level type information that may

help to disambiguate memory references is not available. Furthermore, the lack of a global view of

the program forces the binary dynamic compiler to make worst-case assumptions at entry and exit

points of the currently processed code fragment, which may preclude otherwise safe optimizations.

The differences in JIT compilation and binary dynamic compilation are summarized in Table 19.1.

A JIT compiler is clearly more able to produce highly optimized code than a binary compiler.

However, consider a scenario where the objective is not code quality but compilation speed. Under

these conditions, it is no longer clear that the JIT compiler has an advantage. A number of com-

pilation and code generation decisions, such as register allocation and instruction selection, have

already been made in the binary code and can often be reused during dynamic compilation. For
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TABLE 19.1 Differences in JIT Compilation and Binary Dynamic Compilation

JIT Compilation Dynamic Binary Compilation

Semantic information available Lack of semantic information

Full code recovery Limited code recovery;

limited choice in compilation unit

Full optimization repertoire Limited optimization potential

example, binary translators typically construct a fixed mapping between guest and host system

machine registers. Consider the situation where the guest architecture has fewer registers, say 32,

than the host architecture, say 64, so that the 32 guest registers can be mapped to the first 32 host

register. When translating an instruction opcode, op1, op2, the translator can use the fixed mapping

to directly translate the operands from guest to host machine registers. In this fashion, the translator

can produce code with globally allocated registers without any analysis, simply by reusing register

allocation decisions from the guest code.

In contrast, a JIT compiler that operates on intermediated code has to perform a potentially costly

global analysis to achieve the same level of register allocation. Thus, what appears to be a limitation

may prove to have its virtues depending on the compilation scenario.

19.6 Nontransparent Approach: Runtime Specialization

A common characteristic among the dynamic compilation systems discussed so far is transparency.

The dynamic compiler operates in complete independence from static compilation stages and does

not make assumptions about, or require changes to, the static compiler.

A different, nontransparent approach to dynamic compilation has been followed by staged runtime

specialization techniques [9, 31, 33]. The objective of these techniques is to prepare for dynamic

compilation as much as possible at static compilation time. One type of optimization that has been

supported in this fashion is value-specific code specialization. Code specialization is an optimiza-

tion that produces an optimized version by customizing the code to specific values of selected

specialization variables.

Consider the code example shown in Figure 19.10. Figure 19.5(i) shows a dot product function

that is called from within a loop in the main program, such that two parameters are fixed (n = 3 and

row = [5, 0, 3]) and only a third parameter (col) may still vary. A more efficient implementation

can be achieved by specializing the dot function for the two fixed parameters. The resulting function

spec doc, which retains only the one varying parameter, is shown in Figure 19.10(ii).

In principle, functions that are specialized at runtime, such as spec dot, could be produced

in a JIT compiler. However, code specialization requires extensive analysis and is too costly to

be performed fully at runtime. If the functions and the parameters for specialization are fixed

at compile time, the static compiler can prepare the runtime specialization and perform all the

required code analyses. Based on the analysis results, the compiler constructs code templates

for the specialized procedure. The code templates for spec dot are shown in Figure 19.11(ii)

in C notation. The templates may be parameterized with respect to missing runtime values.

Parameterized templates contain holes that are filled in at runtime with the respective values.

For example, template T2 in Figure 19.11(ii) contains two holes for the runtime parameters

row[0] . . . row[2] (hole h1) and the values 0, . . . , (n − 1) (hole h2).

By moving most of the work to static compile time, the runtime overhead is reduced to initialization

and linking of the prepared code templates. In the example from Figure 19.10, the program is statically
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dot(int n, int row[], int
col[])

{

int i, sum;

sum = 0;

  for (i=0; i<n; i++)

sum += row[i]* col[i];

return sum;

}

main() {

read(&n, row);

. . .

while (. . .) {

/* n=3, row={5,0,3} */

dot(n, row, col);

. . .

}

}

(i)

spec_dot(int col[]) {

int sum = 0;

sum += 5* col[0];

sum += 3* col[2];

return sum;

}

main{} {

read(&n, row);

make_spec_dot(n,
row);

. . .

while (. . .) {

spec_dot(col);

. . . 

}

}

(ii)

FIGURE 19.10 Code specialization example. A dot–product function before (i) and after specialization (ii).

compiled so that in place of the call to routine dot, a call to a specialized dynamic code gener-

ation agent is inserted. The specialized code generation agent for the example from Figure 19.10,

make spec dot, is shown in Figure 19.11(i). When invoked at runtime, the specialized dynamic

compiler looks up the appropriate code templates for spec dot, fills in the holes for parameters n and

row with their runtime values, and patches the original main routine to link in the new specialized

code.

The required compiler support renders these runtime specialization techniques less flexible than

transparent dynamic compilation systems. The kind, scope and timing of dynamic code generation

are fixed at compile time and hardwired into the code. Furthermore, runtime code specialization

techniques usually require programmer assistance to choose the specialization regions and variables

(e.g., via code annotations or compiler directives). Because overspecialization can easily result in

code explosion and performance degradation, the selection of beneficial specialization candidates

is likely to follow an interactive approach, where the programmer explores various specialization

opportunities. Recently, a system has been developed toward automating the placement of compiler

directives for dynamic code specialization [32].

The preceding techniques for runtime specialization are classified as declarative. Based on the

programmer declaration, templates are produced automatically by the static compiler. An alternative

approach is imperative code specialization. In an imperative approach, the programmer explicitly

encodes the runtime templates. ‘C is an extension of the C languages that allows the programmer to

specify dynamic code templates [33]. The static compiler compiles these programmer specifications

into code templates that are initiated at runtime in a similar way to the declarative approach. Imperative

runtime specialization is more general because it can support a broader range of runtime code

generation techniques. However, it also requires deeper programmer involvement and is more error

prone, due to the difficulty of specifying the dynamic code templates.
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make_spec_dot(int n, int row[]) {
buf = alloc(); /* allocate buffer space for spec_dot */

copy_temp(buf,T1); /* copy template T1 into buffer */
for (i=0; i<n; i++) {

copy_temp(buf, T2); /* copy template T2 */
fill_hole(buf, h1, row[i]); /* fill hole h1 in T2 */

fill_hole(buf, h2, i); /* file hole h2 in T2 */
}
copy_temp(buf, T3); /* copy template T3 */
return buf;

}

(i)

Template T1:  spec_dot(int col[]) { int sum = 0;

Template T2:  sum += {hole h1} * col[{hole h2}];

Template T3:  return sum; }

(ii)

FIGURE 19.11 Runtime code generation function (i) and code templates (ii) for specializing function dot

from Figure 19.10.

19.7 Summary

Dynamic compilation is a growing research field fueled by the desire to go beyond the traditional

compilation model that views a compiled binary as a static immutable object. The ability to manipu-

late and transform code at runtime provides the necessary instruments to implement novel execution

services. This chapter discussed the mechanisms of dynamic compilation systems in the context of

two applications: dynamic performance optimization and transparent software migration. However,

the capabilities of dynamic compilation systems can go further and enable such services as dynamic

decompression and decryption or the implementation of security policies and safety checks.

Dynamic compilation should not be viewed as a technique that competes with static compilation.

Instead, dynamic compilation complements static compilation, and together they make it possible

to move toward a truly write-once-run-anywhere paradigm of software implementation.

Although dynamic compilation research has advanced substantially in recent years, numerous

challenges remain. Little progress has been made in providing effective development and debugging

support for dynamic compilation systems. Developing and debugging a dynamic compilation system

is particularly difficult because the source of program bugs may be inside transient dynamically

generated code. Break points cannot be placed in code that has not yet materialized and symbolic

debugging of dynamically generated code is not an option. The lack of effective debugging support

is one of the reasons that make the engineering of dynamic compilation systems such a difficult

task. Another area that needs further attention is code validation. Techniques are needed to assess
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the correctness of dynamically generated code. Unless dynamic compilation systems can guarantee

high levels of robustness, they are not likely to achieve widespread adoption.

This chapter surveys and discusses the major approaches to dynamic compilation with a focus on

transparent binary dynamic compilation. For more information on the dynamic compilation systems

that have been discussed, we encourage the reader to explore the sources cited in the Reference

Section.
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20.1 Introduction

This chapter deals with checking the safety of executing code obtained from an untrusted source.

Such a scenario is fairly common with the increasing popularity of the Internet. In addition, with the

arrival of the programming language Java it is likely to become even more common. Applets and

plug-ins are routinely downloaded and executed. The characteristic feature of this kind of activity, as

far as this chapter is concerned, is that the code comes very often from a third party who may be an

untrusted source. We call the person who has produced the code the code producer1 and the person

who uses the program the code consumer. The problem that is the topic of this chapter is as follows:

1It is possible that the code producer is another program.
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how does the code consumer ensure that the code producer’s code either maliciously or inadvertently

does not corrupt the former’s system resources? Note that we allow a weaker interpretation of the

word corrupt: it is possible that the foreign code may just acquire resources without releasing it

instead of proactively causing harm to the consumer’s system. The process of ensuring the safety of

the code consumer’s system is called safety checking.

Safety checking of code has always been a significant problem. Code consumers in the past have

used code obtained from a third party. In recent years, it is just that the problem has become more

significant due to the increase in scale in the usage of code written by third parties.

There is yet another reason why the problem has become more important now. Software projects

are increasingly executed by using a component-based design methodology. Commercial products

for facilitating this have become available (e.g., COM, CORBA, JavaBeans, etc.). In such a situation,

it becomes imperative to verify the safety of the components that are used to build the application.

Component-based design improves flexibility and reuse in software projects, but the risk of harm to

computer resources has correspondingly increased.

Another reason exists as to why it is imperative to have a good technology for safety checking

of code. System software design has evolved to allow user-defined extensions to the functionality

and services provided. For example, many operating systems provide extensible kernel where the

user is allowed to write customized services and have them executed in the kernel address space.

The BSD packet filter [23] is an early example of this trend. The user can write packet filters that

filter out network packets based on this user’s specification. Other examples are application-specific

virtual memory management [8] and active messages [23]. Active networks [22] allow user-defined

networking code such as routing algorithms to be injected into intermediate nodes of the network to

optimize on parameters such as network congestion and load. The POSTGRES database manager

has an extensible type system. Languages such as metalanguage (ML) allow the user to extend its

type system.

At this point, let us say a few words that are aimed at restricting the scope of the chapter. Cardelli

[2] draws a distinction between mobile code and mobile computation. When one refers to mobile

code, one is referring to only the code as the mobile entity. This is exactly the situation with the Java

programming language. When a Java source program is compiled to bytecode, transferred over the

network and interpreted by a Java virtual machine (JVM) at another network node, we may claim that

the bytecode is mobile. In mobile computation, not only the code but its associated state or context

is mobile. In this case, the situation is that the execution of a piece of code moves from one node to

another (i.e., the code as well as the state moves from one place to another). A piece of computation

that is mobile is also called a mobile ambient. In this chapter, we do not consider safety checking of

mobile ambients at all. This is an emerging area of study and [3, 4] are some of the references that

deal with this problem. We restrict ourselves to safety checking of mobile code.

To a large extent, we discuss only those techniques that are general in nature. (However, in

discussing these techniques we present examples from the corresponding references that deal with

specific languages and processor architectures; this is just to make the techniques clearer to the reader.)

For instance, we do not discuss Java bytecode verification because this would require us to get into

the details of the Java bytecode specification. We also concentrate on techniques that are, in some

way, related to compiler technology. The techniques that we discuss use principles of programming

languages (types and type checking), logic, semantics of assembly language instructions, etc., all of

which are relevant to compiler technology in one form or the other. For instance, we do not discuss

at all techniques such as digital signatures that may be used in authenticating the foreign code.

We also make no claim on the completeness of this survey. The goal of this chapter is to give a

flavor of the problem tackled and some of the solutions that are possible. The field is still developing

and it is too early to claim the superiority of one solution over the other. It is hoped that after reading

this chapter, the reader will realize that a lot of issues are involved in safety checking that may be

resolved by borrowing techniques from compilers, programming languages and formal methods.
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20.2 A Rough Classification

We now present a rough classification of the techniques of mobile code checking that are relevant

for this chapter. A similar classification appears in [25].

Safety checking techniques are either static, dynamic or hybrid. Static methods ensure the safety

of foreign code through some form of static analysis. These techniques have the advantage that

the number of runtime checks for safety may be reduced in the code. The problems associated

with static methods are scalability, conservativeness of the analysis applied and preexecution

overhead involved. The static methods that we consider in this chapter are proof carrying code

(PCC) [16], typed assembly languages [13], safety checking of machine code [25] and certifying

compilation [9, 18].

Dynamic methods work by inserting runtime checks into the code that check for the safety of the

program during execution. These methods scale to large programs, but may slow down the execution

of the program. Also, some mechanism must be provided for the program to recover from an unsafe

state. Software-based fault isolation [24] is the technique that we present as an example of a dynamic

safety checking method.

Hybrid methods employ a combination of both static checking and runtime checking. This

allows fewer runtime checks than a purely dynamic safety checking method. Many languages

use hybrid techniques to ensure the safety of code written in these languages. Examples are Java

and Modula 3.

Let us mention another way of looking at safety-checking techniques. Some techniques ensure

safety checking by restricting the kind of programs that can be written in the language. For example,

in the BSD packet filter approach a special-purpose language exists in which to write the packet

filter specification such that only memory associated with a packet or legitimately allowed scratch

memory is used. Techniques that work by restricting the languages to a safe subset include the typed

assembly language (TAL) approach [13] and certifying compilation [9, 18]. Other techniques do not

need the language to be restricted. These techniques check for the validity of safety predicates on

the assembly language without requiring the language to be typed. An example of this approach is

PCC [16]. Type-state checking of machine code [25, 26] may also be put in this category; although,

in this case, it is required that the user supply some type and state information of host data and

constraints.

The rest of this chapter is structured as follows. Section 20.3 discusses a dynamic scheme for

safety checking, namely, software-based fault isolation. Section 20.4 describes the TAL approach to

safety checking. In Section 20.5 we describe the PCC approach. Safety checking can also be done

directly on the assembly code irrespective of the source language or the compiler and this technique

is described in Section 20.6. Section 20.7 describes one approach to the design of a certifying

compiler. In Section 20.8 we describe a certifying compiler that works on dynamically generated

code. Section 20.9 concludes this brief survey.

20.3 Software-Based Fault Isolation

One approach to ensure that an untrusted code module does not tamper with the address space

of another module is to isolate individual modules within disjoint address spaces. A particular

module may access the code or data contained only within its address space. This technique is called

sandboxing. A distrusted code module interacts with other modules through the remote procedure

call (RPC) interface [1]. RPC provides a normal procedure call interface for cooperating modules

to interact among one another. Code safety is ensured by using hardware means (perhaps hardware

page tables) to ensure that one module does not corrupt the address space of another module.
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For a particular RPC call from one module to another, expensive context switching is involved. The

steps involved are trapping into the operating system (OS) kernel, copying the RPC call arguments

from the caller to the callee, saving and restoring of registers, switching hardware address spaces

and then switching back to the user level. When a large number of RPC calls occur (in other words,

when the cooperating modules form a tightly coupled system), this method of ensuring safety may

prove expensive. This is because the overhead is incurred at runtime. This is a drawback associated

with any dynamic scheme for code safety.

Software-based fault isolation is a dynamic scheme for code safety but attempts to reduce some

of the overhead involved in hardware-based context switching. In this approach, the cooperating

modules all operate within the same address space, which, however, is partitioned into what are

called fault domains. Each module is associated with a distinct fault domain. The code that it accesses

and the data space that it reads or writes are restricted to lie in the same fault domain. Thus, software

fault isolation implements the sandboxing approach within a single address space. As a result,

the expense associated with hardware-based context-switching schemes is avoided. Instructions are

inserted just before potentially unsafe instructions in untrusted modules that check whether the target

address lies within the fault domain of the untrusted module. This has the effect of slowing down the

execution of distrusted modules to a certain extent, but the execution time of trusted modules is not

affected.

The virtual address space of an application is divided into segments. A segment is identified by

a unique pattern in the upper bits of the address used in the program. A fault domain for a module

consists of two segments — one, for the code and one for the data that it uses. Those addresses that

can be statically verified by the compiler to lie within the fault domain are deemed safe. The other

addresses are potentially unsafe.

Two subproblems need to be solved for achieving efficient software-based fault isolation. The first

is to ensure that each module is sandboxed within its fault domain. This implies ensuring that all

addresses used within the module are restricted to the two segments that constitute the fault domain

for that module.

This, in turn, is achieved by segment matching. Segment matching is the process of checking,

for each potentially unsafe target address, whether it is, in fact, restricted to the fault domain. If the

target address refers to a location outside the fault domain, then a trap to an error routine occurs.

This also allows one to identify the offending piece of code.

If the runtime overhead incurred in identifying the offending instruction is unacceptable, then

address sandboxing can be used to ensure that the target address used by a potentially unsafe

instruction is always within the fault domain. This is done by inserting code that sets the upper

bits of the address to the associated segment identifier.

The second subproblem is to develop a scheme for low-latency communication across the fault

domains. Wahbe et al. [24] give the assembly language pseudo code for segment matching. Four

instructions are required for doing this. Table 20.1 reproduces the pseudo code from [24].

TABLE 20.1 Assembly Pseudo Code for Segment Matching

dedicated – register ⇐ targetaddress

/∗ Move target address into dedicated register ∗/

scratch – register ⇐ (dedicated – register ≫ shift – register)

/∗ Right – shift address to get segment identifier. shift – register is a

dedicated register ∗/

compare scratch – register and segment – register

/∗ segment – register is a dedicated register ∗/

trap if not equal
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TABLE 20.2 Assembly Pseudo Code for Address Sandboxing

dedicated – register ⇐ target – register & and – mask – register

/∗ Clearing the bits which will store the segment identifier ∗/

dedicated – register ⇐ (dedicated – register | segment – register)

/∗ Storing the bits representing the segment identifier ∗/

Table 20.2 gives the pseudo code from [24] for doing the address sandboxing.

Wahbe et al. [24] describe two ways in which these assembly language instructions may be

generated. The first way is the one adopted by the implementation described in the same paper. In

this method, the compiler generates these instructions. The second method is binary patching, which

is a method to rewrite the original binary into a form that implements segment matching or address

sandboxing as the case may be.

Wahbe et al. [24] also describe the scheme for generating cross-fault domain calls. According

to this scheme, a fault domain can safely call a trusted stub routine outside its domain, which, in

turn, safely calls a routine in the destination domain. The scheme includes mechanisms for efficient

passing of arguments from the called domain to the callee domain. The stub is also responsible

for saving the machine state and registers during the procedure call. The details may be obtained

from [24].

20.4 Typed Assembly Language

20.4.1 Introduction

One way to ensure the safety of a mobile code is that the user should not express, in a source program,

anything that is unsafe for the machine on which the code runs. This can be achieved by making the

source language safe (i.e., by the source language not allowing anything unsafe to be expressed in

it). Thus, if nothing bad can be expressed in the source language and if the compiler ensures that it

does not add anything bad while compiling the source code to the assembly code, we can be sure

that the target assembly code is safe. This approach requires the following:

1. A source language that does not allow the user to (intentionally or inadvertently) express

anything harming the safety of the machine on which the code will run

2. A compiler that translates a “safe” source code to a “safe” assembly code

The main goal of any traditional type-checking system is to ensure that all operations in a program

are type safe. Extending this notion further, we can view the problem of safety checking of a mobile

code as a type-checking problem. Of course, in this case, we have to model the external environment

(static as well as runtime environment in which the code will run) as an entity having type. Also,

we need to define runtime activities (like stack allocation and heap allocation) as operations that

operate on the environment entities (like program stack and heap). Having done this, we should be

able to determine and define what is safe and what is unsafe with respect to each operation. If we

can model the external environment entities as program entities having types, then the problem of

checking whether a mobile code conforms to the safety conditions or not reduces to a traditional

type-checking problem.

The TAL framework that is used for safety checking of machine code is based on the preceding

philosophy. TAL provides an automatic way to verify that the source program is safe. This is done

by ensuring that the basic (high-level) types are preserved at the assembly language level. The TAL

system gives types to the target assembly language and to all the intermediate languages used by the

compiler while generating the target code. At every level, the types are preserved and the type safety
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is ensured. In short, the TAL system provides a framework for converting well-typed source programs

to well-typed assembly programs. The type checking is done statically (i.e., it is off-line).

Most of the traditional compilers work on untyped intermediate languages. The type structure of

program entities present at the higher level is lost at the lower levels when the code goes through

multiple translations done by the compiler. The absence of types not only makes type checking

difficult at the lower levels, but also restricts the range of optimizations that can be applied at the

lower levels. For example, the presence of the type structure facilitates optimizations (for higher order

languages) such as closure conversion, unboxing and region inference at lower levels. More impor-

tantly, as the typing structure is preserved at the lower levels, the program can be type checked even

at the assembly level. This can be useful in checking whether the compilation process itself is safe,

in the sense that whether it produces type-safe assembly language. This is very useful to cross-check

the correctness of newly introduced program transformation and optimization techniques.

One main issue in a TAL-like framework is to develop a type structure for the assembly language.

The typing structure should be able to define higher level abstract types. At the same time, this

additional structure on the assembly language should not be a hindrance to low-level optimizations.

To make the typed assembly language more useful, it is required that we should be able to compile

any source language program to the typed assembly language program. Thus, the typing structure

on the assembly language should be general enough to represent important abstractions in various

high-level languages; at the same time, the target code should not be inefficient.

20.4.2 Overview of the Typed Assembly Language Framework

We describe here a TAL framework developed by Morrisett et al. [13, 14]. It takes advantage of typing

information present at the assembly language level. TAL is a statically typed assembly language.

Low-level optimizations such as global register allocation, copy propagation, constant folding and

dead code elimination are supported by the TAL framework. The TAL system can be used to check

untrusted code. Specifically, irrespective of the compiler that produced it, the TAL framework can

check for the type safety of the program. The type-checking system is a conventional typing system.

It also achieves flow sensitivity by giving types to the registers in a code block. Also, the TAL system

supports higher level programming features such as tuples, polymorphism, existentials and restricted

form of function pointers. In essence, the TAL framework gives an automatic way to convert a well-

typed source term to a well-typed target term and, in doing so, opens up a lot of avenues for more

efficient low-level optimizations and more efficient safety checking. It provides an automatic way to

produce proof-carrying code that we describe later in this chapter.

The TAL system provides a set of abstractions such as integers, pointers to tuples, code labels,

modules [11] and runtime stacks [12]. Not all the operations are permitted on these abstractions.

A program is said to be stuck if it tries to do an operation that is not permitted by the system. The

TAL-type system has to ensure that all well-typed programs do not get stuck. Integers are considered

to be different from pointers by the abstraction. Arithmetic operations are allowed only on integers

whereas only pointers can be dereferenced. This strong typing property helps in checking many

safety conditions.

This section is organized as follows. First, we describe in brief some of the important issues to

be tackled while putting a type structure on an assembly language. This is based on [14] where the

source language is a type-safe C-like language (called Popcorn) and the target assembly language

is TALx86, an assembly language based on Intel IA32 architecture. Popcorn can be compiled to

TALx86 [14]. Then we illustrate the typical stages of a compiler that generates a typed intermediate

language program at every stage as given in [13]. The assembly language used for this illustration is

known as TAL (the original typed assembly developed by Morrisett et al.), which is developed for

a reduced instruction set computer (RISC)-like machine. We describe the design of a compiler that

converts programs in a higher level language (a variant of polymorphic λ calculus) to TAL. It also
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demonstrates the expressiveness of TAL. Finally, we see how TAL-like languages are helpful even

in some other methods of safety checking.

20.4.3 TALx86: Example of a Typed Assembly Language

The source language we consider here is a C-like language called Popcorn whereas the target language

is known as TALx86. TALx86 is an assembly language based on IA32 architecture. The type system

for TALx86 provides support for stack allocation, higher order and recursive-type constructors and

polymorphism. It also provides support for separate-type checking and linking. Popcorn is a C-like

higher level language. Though the Popcorn language is based on C, it provides support for higher

level constructs such as polymorphism, abstract types and tagged unions and exceptions. At the same

time, it does not support pointer arithmetic and pointer casts. TALx86 is a generic language in the

sense that programs written in languages other than Popcorn can also be compiled into it.

20.4.3.1 TALx86 System

First, we give an example of a small Popcorn program and its conversion to a well-typed TALx86

program [14]. The program calculates the sum of the first n natural numbers:

int i = n + 1;

int s = 0;

while(− − i > 0)

s+ = i;

The preceding code fragment after translation into TALx86 looks like this:

mov eax, ecx ; i = n

inc eax ; ++i

mov ebx,0 ; s = 0

jmp test

body: {eax: B4, ebx: B4}

add ebx, eax ; s+ = i

test: {eax: B4, ebx: B4}

dec eax ; --i

cmp eax,0 ; i > 0

jg body

The argument n is stored initially in the register ecx. The code labels are annotated with type

conditions. The annotation on the code label body require eax and ebx to have 4-byte integers (B4).

These are preconditions that are checked when the control is transferred to the block. The register

type can be polymorphic and it can be represented using abstract types. The type-checking system

verifies that all instructions in a code block obey the typing conditions. In this way, the TAL system

achieves flow sensitivity at the block level.

Similarly, data items can also be annotated to specify the type of the data item. Other features of

TALx86 are the use of type coercions on instructions and the use of macro instructions to encapsulate

a code sequence.

Some other important issues handled by TALx86 are:

• Stack modeling. To model the runtime environment, the type system should provide a facility

to handle function calling using stacks. TALx86 has a stack abstraction for control flow stacks.
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The stack can be given polymorphic types, which helps in abstracting a part of the stack. It also

supports a form of polymorphic recursion. Exceptions can be handled by using a limited form

of pointers into the middle of the stack.

• Heap memory allocation. The target assembly language should be able to handle runtime

memory allocation if it is provided in the source language. Popcorn provides a facility for

runtime memory allocation. TALx86 handles the corresponding heap memory allocation using

a malloc construct to allocate memory and then uses a sequence of instructions to initialize it.

Because the type-checking system does not typically have a provision to track aliasing, it cannot

know the aliasing information and can give some approximate results. Because of limited flow

sensitivity of the type-checking system and lack of aliasing information, some optimizations

cannot be performed and the resulting code is not fully optimized.

Arrays are also supported in TALx86. The size of the array can be easily tracked. Array bound

checks are done during subscript or update operation. Pointers into the middle of the array are not

supported. TALx86 also support lists that have sum and recursive type.

Other enhancements to TALx86 are floating point and object abstraction support. Also, data

flow analysis can be used to get more optimized code. The standard data flow analysis and shape

analysis can help in discovering facts such as aliasing memory, removing some redundant checks

and producing more correct results.

20.4.4 Illustrating the Compiler Construction

In this section, we describe construction and stages of a compiler that ensure a well-typed source

term is converted to a well-typed target term. Also, all the intermediate terms generated are well

typed. This section is based on [11, 13] and should give the reader an idea of the issues involved in

the construction of such a compiler.

The source language for the compiler, λF , is a variant of the polymorphic λ-calculus (also known

as system F) and the target language is TAL. The compiler is structured as four translations between

five-typed calculi. Each translation accepts a well-typed program of its input calculus and produces

a well-typed program of its output calculus. It does not depend on the fact that the input program is

an output of the preceding translation. In this sense, each calculus acts as a first-class programming

language. The compilation of λF to TAL is represented as follows [13]:

λF −→ λK −→ λC −→ λA −→ TAL

λK , λC and λA are intermediate well-typed languages generated during the compilation process.

The translations used earlier are as follows:

1. Continuation passing style (CPS) conversion (λF −→ λK ). This is the first translation stage in

the compiler. Continuation is a method used in higher order languages to express the semantics

of control operations. The CPS conversion is considered to be an elegant and useful compilation

technique for compiling higher order functional languages [7]. The CPS conversion stage here

fixes the order of evaluation and then names the intermediate computations. This translation

stage also performs some optimizations on the CPS converted term.

2. Closure conversion (λK −→ λC). A closure is a data structure representing a function as

a piece of code for the function and data containing free variables in the original function.

Closure conversion stage does function rewriting to form closures and achieves separation

between code and data.

3. Allocation (λC −→ λA). This translation makes heap memory allocation explicit. It makes

the language very close to the TAL language.

4. Code generation (λA −→ TAL). Code generation is the last compilation stage to generate the

TAL code.
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20.4.4.1 CPS Conversion

The input language for the compilation process is λF , which is a variant of system F. It is a call by

value variant also implementing products and recursion on terms. The syntax of λF is as follows:

types τ ::= α | int | τ1 → τ2 | ∀α.τ | 〈τ1, . . . , τn〉

terms e ::= x | i | fix x(x1 : τ1) : τ2.e | e1e2 | �α.e | e[τ ]

| 〈e1, . . . , en〉 | πi(e) | e1 p e2 | if 0(e1, e2, e3)

prims p ::= + | − | ×

The preceding syntax definition has the following characteristics:

• The only base type is integer. The operations on the base type are given by primitives p.

• The term fix x(x1 : τ1) : τ2.e denotes the definition of a function x with its argument as x1 of

type τ1 with the body being e having type τ2.

• 〈τ1, . . . , τn〉 represents a tuple.

• For �α.e, α is bound in e and for ∀α.τ , it is bound in τ .

• Projection is denoted as πe. It represents the ith element of the tuple e.

• Term if 0(e1, e2, e3) evaluates to e2 if e1 is 0 and to e3 otherwise.

Call-by-value operational semantics are used to interpret the language λF . It gives a set of rules.

The judgments concluded are of the form �; Ŵ ⊢F e : τ . Here, e is of type τ ; Ŵ is a context

assigning types to free variables of e and � is a context that contains free type variables of Ŵ, e and

τ .

As an example (taken from [13]), a term that computes the factorial of 6 is given as:

( fix f (n : int) : int. if 0(n, 1, n × f (n − 1))) 6

The first stage converts a term in λF to a CPS-style term. It identifies all intermediate evaluations.

All control transfers like function invocation and return are achieved through a function call. Instead

of returning a value, function calls invoke continuations that model the control operations. Hence,

there is no need for the control stack. This phase produces a term in λK . The syntax of λK is given as:

types τ ::= α | int | ∀[−→α ].(−→τ ) → void | 〈−→τ 〉

terms e ::= v[−→τ ](−→v ) | if 0(v, e1, e2) | halt[τ ]v

| let x = v in e

| let x = πi(v) in e

| let x = v1 p v2 in e

values v ::= x | i | 〈−→v 〉 | fix x[−→α ](x1 : τ1, . . . , xk : τk).e

In the preceding definition of λK :

• The code in λK consists of a series of let bindings followed by the term except for the term if 0,

which is an expression having tree form.

• The only abstraction mechanism is fix.

• Type −→τ represents a tuple 〈τ1, . . . , τn〉 and −→v represents a vector of values.

• The functions do not return a value. The function calls invoke continuations that model semantics

of control operations. In other words, the function calls are jumps.

• The term halt[τ ]v is used to terminate the execution.

In [11], the authors use the CPS-type conversion based on [7]. It transforms a well-typed term in

λF to a well-typed term in λK . The first phase of CPS conversion also optimizes the resulting code
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by removing tail recursion. The factorial example considered earlier gets translated to the following

λK term [13]:

(fix f [ ] (n : int, k : (int) → void)

if 0 (n, k[ ](1),

let x = n − 1 in

f [ ](x, fix−[ ] (y : int)

let z = n × y

in k[ ](z))))

[ ] (6, fix −[ ] (n : int).halt[int]n)

20.4.4.2 Closure Conversion

Closure conversion is a compilation technique used for compiling higher order languages to achieve

a separation between code and data. A function with free variables is converted to a closure, which

represents a piece of code for the function and a representation of its environment. Free variables in

the body of a function are replaced by references to the environment and thus a function with free

variables is replaced by a code abstracted on the environment parameter. The actual binding to the

environment parameter is provided only when the function is applied to its arguments; until then, the

application is delayed. Function calls are replaced by closures (invocation of the code part as well

as values for the free variables).

The closure conversion stage here converts a well-formed λK term to a well-formed λC term. It

is required that, after closure conversion, two functions with same types but different free variables

should have closures with the same type. For this, during polymorphic instantiation, a copy of the

code is made with type variables given their types. Before execution, types on the terms are erased

and the copies can be represented by the same term. This is known as type erasure mechanism,

which does not have any runtime cost; at the same time it prohibits some optimizations and it has

side effects. The syntax of λC is the same as that of λK except for the fact that partial instantiation

of types is considered as a value.

Closure conversion separates program code and data by making the closures explicit. Closure

conversion consists of two steps:

1. Closure conversion proper. This step rewrites all function terms to their appropriate closures.

As mentioned earlier, this is achieved through the type erasure mechanism. The closure

is represented as a pair, one element of which denotes the code instantiated with the type

environment and the other with the value environment. The type and value arguments of the

original abstraction and value environment of the closure forms the input for the instantiated

code.

2. Hoisting. Most of the work is done in the previous step. In this step, the closures are hoisted

to the top level. After hoisting, programs get converted to terms similar to those in λC . In

this target calculus, code is referred to by labels and code blocks are denoted by letrec prefix

that binds labels to blocks. In this calculus, all fix expressions are replaced by new variables

(labels) that are bound to the code blocks in the heap.

20.4.4.3 Allocation

The intermediate language λC contains a constructor for tuples. The space allocation and initialization

of tuples is made explicit in this phase. The allocation for an (n-element) tuple is done by creating

space for n elements. This step is followed by n initialization steps, one for each element of the tuple.

This translation from λC to the target calculus λA adds initialization flags for each field of the tuple.
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20.4.4.4 Code Generation

This stage converts terms in λA calculus to TAL syntax. Most of the TAL features are present in λA.

TAL uses register names whereas λA uses α-varying variables. The registers are spilled into tuples

and values from the tuple are loaded whenever required. The code-calling convention is made explicit

in the code generation phase. Each code block is described by an entry condition that describes the

types of values in the registers to be used in the code block. In this way, flow sensitivity is achieved

in the system. Also, TAL makes the data layout of memory explicit by heap allocating tuples and

code blocks.

20.4.4.5 TAL Syntax

The TAL syntax in [13] is given later. A TAL program consists of a heap H , a register file R and a

sequence of instructions I . The heap is a mapping from labels (which are word values) to code blocks

and tuples. The heap values do not need to be word values. The notation H {l 	→ h} indicates that

the binding of l is replaced by binding h in the heap. The word values are labels, integers, existential

packages and junk values (represented as ?τ ). The instruction set has jmp and halt instructions along

with other instructions like arithmetic instructions (add, sub, etc), load and store instructions and

unpack instruction for evaluating packages.

types τ ::= α | int | ∀[−→α ].Ŵ | 〈τ
ϕ1

1 , . . . , τ
ϕn
n 〉 | ∃α.τ

initialization flags ϕ ::= 0 | 1

heap types 	 ::= {l1 : τ1, . . . , ln : τn}

register file types Ŵ ::= {r1 : τ1, . . . , rn : τn}

type contexts � ::= −→α

registers r ∈ {r1, r2, r3, . . . }

word values w ::= l | i |?τ | w[τ ] | pack[τ, w] as τ ′

small values v ::= r | w | v[τ ] | pack[τ, v] as τ ′

heap values h ::= 〈w1, . . . , wn〉 | code[−→α ]Ŵ.S

heaps H ::= {l1 	→ h1, . . . , ln 	→ hn}

register files R ::= {r1 	→ w1, . . . , rn 	→ wn}

instructions ι ::= add rd , rs, v | bnz r, v | ld rd , rs[i]

| malloc rd [−→τ ] | mov rd , v | mul rd , rs, v

| sto rd [i], rs | sub rd , rs, v | unpack [α, rd ], v

instruction sequences S ::= ι; S | jmp v | halt[τ ]

programs P ::= (H, R, S)

20.4.4.6 TAL Semantics

The detailed TAL operational semantics are given in [11]. The term represented as (H, R{r1 	→

w}, halt[τ ]) denotes a machine state with the result of the evaluation in r1. This is a term for which

the evaluation terminates. For all other (terminal) configurations, the computation is said to be stuck.

Two instructions of TAL that are not supported in most of the machine languages are unpack and

malloc. If v is of the form pack [τ ′, v′] as τ , then the instruction unpack [α, rd ] substitutes τ ′ for

α in the remaining code sequence. The malloc instruction malloc rd [τ1, . . . , τn] allocates memory

for a tuple. The register rd is bound to the new tuple. The instruction malloc can be considered

as an instruction that can be expanded into an (abstract) sequence of instructions allocating the

required space.
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The static semantics of TAL [11] ensures the type safety of TAL programs by proving that

well-formed TAL programs always reduce to the terminal configuration (H, R{r1 	→ w}, halt[τ ]).

The compiler thus produces a well-typed TAL term starting from a well-typed λF term.

20.4.4.7 Stack-Based Typed Assembly Language

As seen earlier, continuation passing style is used in compilation of higher order languages to

eliminate the control stack. Stack-based typed assembly language (STAL) is an extension of TAL

[12], which provides support for stack types and constructs. It can support Java, Pascal and ML. It

provides typing support for procedure calling. Also, optimizations like tail recursion optimization

can be handled by STAL. The work in [12] also explores the similarities in continuation passing

style and stack-based evaluation. The authors conclude that both styles are essentially similar with

minor differences and can be transformed from one form to the other.

20.4.5 Type-Safe Linking

To ensure the type safety of the code, it is desirable that a safety check is done during linking also.

The work presented in [5] describes a set of inference rules to guarantee the safety of linking. To

do this, an object file calculus known as MTAL has been developed by Glew and Morrisett [5]. It

supports abstract types and higher level (abstract) type constructors. It models real-life linkers by

making low-level tasks explicit. The notion of link compatibility is built in MTAL. Dynamic linking

support is not provided by MTAL, but it can be extended to do that. This requires a balance of

(type) information sharing between program control and OS control. Extensible systems can be type

checked during linking for safety.

20.4.6 Use of Typed Assembly Language Framework

TAL framework is also useful in other safety checking methods such as PCC. PCC system uses

first-order logic to encode the operational semantics of the type systems. The TAL system provides

a higher level abstraction mechanism but is less expressible than the PCC system. TAL abstractions

can be useful to provide compact encoding for a PCC-like system. The TAL framework is also used

in certifying compilation and runtime code specialization. The TAL framework provides a formal

framework to reason about the object code generation in runtime specialization [9]. It has also been

found that the use of TAL assembly language reduces the work to be done by the type-state system

described later in the chapter.

20.5 Proof Carrying Code

PCC [16] is another static method for ensuring mobile code safety. In this method, the code consumer

publishes a safety policy that is assumed to assure the safety of the consumer’s system. The code

producer considers this safety policy, and supplies with the code that is produced a proof or certificate

that the code respects the safety policy. The code that arrives at the consumer’s site comes with the

safety policy bundled along with it. The consumer then checks the supplied proof and ensures that

the proof is valid with respect to the mobile code as well as the published policy.

The technique is well grounded in formal methodology and draws heavily on language theory

(types for representation of the proof and type checking for checking the validity of the proof) and

logic (the specification mechanism to specify the safety policy and the proof).

This method of ensuring code safety is attractive for a number of reasons:

1. It does not need the intervention of any third party to ensure trust between the code producer

and the customer.

2. The method is fairly lightweight — the proof production may be done off-line. The validity

of the proof is checked on-line by an inexpensive type-checking method.
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3. The method is intrinsically tamperproof. If the proof is mutated during the transfer process

from the producer to the consumer, then it would no longer be valid for the code along with

which it is transmitted; if the code is tampered with, then again, the proof would not be valid

for the code; and if both proof and code are modified in such a way that the proof is still valid

for the code and the safety policy, then no harm would be caused to the consumer’s machine

by executing the code.

4. The method is based on sound formal principles including types, type checking and logic.

This method has been demonstrated in at least two applications. In [17] it is shown how PCC

can be used to check the safety of network packet filters written by the user to filter out unwanted

packets from arriving at a network node. PCC has also been used to check the safety of extensions

to the runtime system of a functional programming language like ML [16]. More details on these

applications of PCC are supplied later in the following sections.

20.5.1 Overview of Proof Carrying Code

Figure 20.1 shows a diagram that gives an overview of the PCC method. This diagram is taken

from [16].

The code consumer publishes a safety policy that is essentially a collection of rules that any code

running on the producer’s site should adhere to for ensuring the safety of the consumer’s machine

resources. The safety policy has two components: safety rules and an interface. The safety rules are

rules that the foreign code should follow. This is similar to type rules provided with the type system of

a language. The interface defines the calling conventions to be followed between the code consumer
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FIGURE 20.1 Overview of proof-carrying code.
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and the foreign code. These are the conventions that have to be followed by the foreign code when it

invokes any function on the consumer’s site. These conventions also define how the code consumer

can invoke the foreign code that is supplied by the producer. The interface is analogous to function

signatures or prototype declarations in a language like C.

There are three stages in the PCC life cycle. The first stage is called certification. In this stage,

the code producer studies the consumer’s safety policy and produces a proof that the code supplied

satisfies the safety policy. This stage is similar to program verification and can be facilitated if

an (operational) semantics of the machine language exists in which the code downloaded by the

consumer can be written. This stage can be done off-line and is thus not in the critical path of the

PCC life cycle. At the end of this stage the PCC binary is available with the code producer, which is

essentially the code produced by the producer together with the proof of safety.

The code consumer examines this PCC binary in the next stage, which is called validation. In

this stage the code consumer validates that the safety proof supplied along with the PCC binary is

actually a valid proof. The method used here is similar to type checking in languages and is relatively

less time consuming.

In the final stage of the PCC life cycle, the code consumer executes the foreign code whose safety

proof has been validated in the validation phase. It is possible that the foreign code may be executed

a number of times, thereby amortizing the cost of validation over the many runs of the foreign code.

In the next few sections we shall explain PCC using the same example that is used in [17]. This

is the example in which PCC is used to check the safety of user written network packet filters.

Usually packet filters are written using the Berkeley packet filter approach in which the filter is

written in a specialized language [10]. This language is a restricted accumulator-based language

in which backward jumps in the code are prevented. The interpreter explaining the filter written in

this language ensures that only valid instructions as defined in the language are used. In this way

it is ensured that the filter application uses only the packet memory and the scratch memory of

the system.

In the PCC approach to writing packet filters as described in [17], an unsafe assembly language,

the DEC Alpha assembly language, is used to code the packet filter. The PCC approach is then

used to ensure the safety of this application with respect to a published safety policy at the code

consumer’s site.

20.5.2 DEC Alpha Abstract Machine Specification for Verification
Condition Generation

We begin this subsection by describing an abstract specification of the instructions of the DEC Alpha

assembly language. In the example described in [17], the subset of instructions of the processor

considered is shown in Table 20.3. In this table n refers to a constant and ri refers to an Alpha

register. Because Alpha is a 64-b machine, the operations are on 64-b operands. The instructions

considered are ADDQ, SUBQ, AND, OR, SLL, SRL, BEQ, BNE, BGE, BLT, LDQ, STQ and RET.

The semantics of this subset are given by the operational semantics of the instructions as shown

in Table 20.4. In this table, the notation � represents the program that consists of the instructions in

the subset. The semantics are defined by a transition system with each state having two components:

TABLE 20.3 Subset of DEC Alpha Instructions Considered in the Example

op ::= n | ri i ∈ 0 . . . 10

al ::= ADDQ | SUBQ | AND | OR | SLL | SRL

br ::= BEQ | BNE | BGE | BLT

instr ::= LDQ rd , n(rs) | STQ rs , n(rd ) | al rs , op, rd | br rs , n | RET
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TABLE 20.4 Semantics of the Subset of DEC Alpha Instructions Considered

(ρ, pc) →



















































(ρ[rd ← rs ⊕ op], pc + 1), if
∏

pc = ADDQ rs , op, rd

(ρ[rd ← sel(rm, rs ⊕ n], pc + 1),

if
∏

pc = LDQ rd , n(rs) and rd(rs ⊕ n)

(ρ[rm ← upd(rm, rd ⊕ n, rs)], pc + 1),

if
∏

pc = STQ rs , n(rd ) and wr(rd ⊕ n)

(ρ, pc + n + 1), if
∏

pc = BEQ rs , n and rs = 0

(ρ, pc + 1), if
∏

pc = BEQ rs , n and rs =/ 0

ρ is the state of the machine and pc is the value of the program counter. The notation ρ[ri] refers

to the value of register ri in the state of the machine ρ. The notation ρ[rd ← rd ⊕ 1] refers to the

state obtained by replacing the contents of destination register rd with the result of the computation

rd ⊕ 1. The notation ⊕ stands for two’s-complement addition on 64-b operands. This operation is

defined as e1 ⊕ e2 = (e1 + e2) mod 264. Memory is represented by a register rm. To select the value

at a particular memory location, a, the notation used is sel(rm, a). To write into a memory location,

the notation used is upd(rm, a, rs), which means that memory location at address a is updated using

the contents of register rs . Memory operations also work on 64-b operands and the address is aligned

to 8-byte boundaries.

In Table 20.4, the underlined terms represent extensions to the DEC Alpha semantics to incorporate

safety checks. The predicate rd(a), when true, indicates that it is safe to read from memory location a.

This means that the address is aligned to an 8-byte boundary. Similarly, the predicate wr(a), when

true, indicates that it is safe to both read and write to memory location a.

The semantics define that when either rd(a) or wr(a) is false, the machine execution halts. In this

semantics, the goal of safety checking is to ensure that the machine does not halt due to the failure

of these safety checks.

Before we describe the certification for the packet filter example, let us illustrate the process using

a small application from [17]. This user application accesses a table in the OS kernel that contains

entries having data on user processes. The kernel provides an interface to the user program to access

this kernel. Essentially, the interface provides, in a designated register r0, the base address of the

table that the user application can access. Further, the kernel guarantees that the table base address

contained in r0 is a valid address.

Each entry in the table consists of two fields. The first field is a tag that defines permissions for

the user application. The second field contains the data that the application may want to access. The

tag field defines the access permissions for the application to access the corresponding data field

that it tags.

The safety policy specifies the following clauses:

1. The application should not access any table entries other than those in the table pointed to be

r0.

2. The application cannot modify the permission specified by the tag for a given field. In other

words, tags are read-only.

3. A particular data item may be written into only if its corresponding tag value is not zero.

Otherwise, it can be only read.

4. The code should not modify reserved and callee-save registers.

The safety policy described in the previous paragraph can be encoded in a predicate Pre, which

may be defined in predicate logic shown as follows:

Pre ≡ r0 mod 264 = r0 ∧ rd(r0) ∧ rd(r0 ⊕ 8) ∧ sel(rm, r0) =/ 0 ⇒ wr(r0 ⊕ 8) (20.1)
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Pre represents the precondition that has to be satisfied for the application to execute on the

consumer’s machine. In general, a postcondition may also be satisfied that represents the invariant

that has to be satisfied when the code finishes executing. In the current example, the postcondition is

trivially True.

The certification phase of the PCC methodology now consists of the following steps:

1. Given the program whose safety has to be checked, use the abstract machine specification and

Pre to generate a predicate formula. The predicate thus computed is called a safety predicate.

This step is called verification condition generation (VC generation).

2. Generate a proof of the validity of the formula computed in the previous step.

The verification condition generation proceeds on a Floyd-style verification approach. For each

instruction in the program a verification condition (VC) or invariant is generated. For an instruction at

the current program counter (pc) value, its verification condition is denoted by VCpc. VC generation

proceeds backward in the program (i.e., VCpc is computed from the VC of the next instruction

VCpc+1). The VC at the beginning of the program is denoted by VC0. It may be noted, at least for

the example under consideration, that all branches are restricted to be in the forward direction only.

Table 20.5 describes the rules used in verification condition generation for the subset of instructions

that we consider in the DEC Alpha machine. These rules are obtained from the abstract machine

specification given in Table 20.4. As before, the notation P [rd ← rs ⊕ op] stands for the predicate

obtained from P by substituting rs ⊕ op for rd .

Once the VCs for the instructions in the program have been computed and, in particular, VC0

has been computed, the safety predicate that has to be proved to ensure the safety of the program

consistent with the published safety policy is given by:

SP (�, Pre, Post) = ∀r0, . . . , ∀rk∀rm. Pre ⇒ VC0

where k is the number of machine registers that are considered for the example.

A valid proof for the preceding formula implies that program � starts from an initial state in which

Pre is satisfied and, if it terminates, it terminates in a state in which Post is satisfied. As already

mentioned, successful termination of the program implies that it passes the safety checks prescribed.

The application that we consider is a DEC Alpha program that accesses a data field in the process

table, increments the value of the field and writes back the updated value if the tag corresponding to

the fields permits write back. As is the case with this complete discussion, this example also is taken

from [17]. The program to accomplish the task is shown in Table 20.6.

TABLE 20.5 Rules to Compute the Verification Conditions for the DEC

Alpha Subset

V Cpc =



















































V Cpc+1[rd ← rs ⊕ op], if
∏

pc = ADDQ rs , op, rd

rd(rs ⊕ n) ∧ V Cpc+1[rd ← sel(rm, rs ⊕ n],

if
∏

pc = LDQ rd , n(rs)

(wr(rd ⊕ n) ∧ VCpc+1[rm ← upd(rm, rd ⊕ n, rs)],

if
∏

pc = STQ rs , n(rd )

rs = 0 ⇒ VCpc+n+1 ∧ (rs =/ 0 ⇒ VCpc+1), if
∏

pc = BEQ rs , n

Post, if
∏

pc = RET
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TABLE 20.6 DEC Alpha Assembly Language

Program Used in the Example

1 ADDQ r0, 8, r1 % Address of data in r0

2 LDQ r0, 8(r0) % Data in r0

3 LDQ r2, − 8(r1) % Tag in r2

4 ADDQ r0, 1, r0 % Increment Data in r0

5 BEQ r2, l1 % Skip if tag == 0

6 STQ r0, 0(r1) % Write back data

l1 RET

The verification conditions and hence VC0 for this program may be computed using the verification

condition rules given in Table 20.5. Pre is given by Equation (20.1) and Post is assumed to be True.

The safety predicate for this assembly language program as given in [17] is:

SPr = ∀r0.∀rm.Pre ⇒ rd(r0 ⊕ 8) ∧ rd(r0 ⊕ 8 ⊖ 8) ∧ sel(rm, r0 ⊕ 8 ⊖ 8) = 0 ⇒ true

∧ sel(rm, r0 ⊕ 8 ⊖ 8) neq 0 ⇒ wr (r0 ⊕ 8) (20.2)

The proof for this safety predicate is supplied with the PCC binary for the assembly language

program given in Table 20.6. The safety predicate expresses the safety condition that for all values

of register ro and states of memory rm satisfying the precondition Pre, the memory locations r0 ⊕ 8

and (r0 ⊕ 8 ⊖ 8) must be readable; and, if the tag value at address r0 ⊕ 8 ⊖ 8 is readable, then its

corresponding data must be writable.

The safety predicate is proved by using rules of first-order predicate logic extended with the two-

complement integer arithmetic. The proof for the safety predicate for the current example and which

is given in Equation (20.2) may be expressed as shown in Table 20.7. In this table, the extract(Pre)

operation extracts a conjunct from Pre and returns it as the term within the angular brackets 〈. . . 〉.

The u is a hypothesis introduced in the proof of the predicate sel (rm, r0 ⊕ 8 ⊖ 8) =/ 0. Otherwise,

the proof is fairly easy to understand.

In [17] it is mentioned that this proof was generated by a theorem prover written by the authors

that sometimes required manual intervention, especially to reason about the two-complement integer

arithmetic. It is, however, not difficult to envisage a theorem prover that can automatically generate

such a proof.

Having studied how the safety predicate is computed and the proof is produced, let us return to

the network packet filter application. The safety policy criteria may be enumerated as follows:

1. Memory reads are restricted to the packet and scratch memory.

2. Memory writes are limited to the scratch memory.

3. All branches are forward.

4. Reserved and callee-saves registers are not modified.

There safety criteria are derived from those safety restrictions that are imposed by the BSD packet

filter approach.

In [17], the packet filter approach is written assuming that the return value is in r0, the aligned

address of the packet is given in register r1, the length of the packet is given in r2 and the address of a
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TABLE 20.7 Steps in the Proof of the Safety Predicate for the DEC Alpha Assembly

Language Program

Step Conjunction Extraction/Assumption and Inference

1 〈rd(r0)〉 = extract(Pre)

2 〈r0 mod 264 = r0〉 = extract(Pre)

3 〈sel(rm, r0)=/ 0 ⇒ wr(r0 ⊕ 8)〉 = extract (Pre)

4 〈r0 mod 264 = r0〉 = extract (Pre)

5 r0 mod 264 = r0 (step 2)

Inference : r0 = r0 ⊕ 8 ⊖ 8

6 rd(r0) (step 1) ∧ r0 = r0 ⊕ 8 ⊖ 8 (step 5)

Inference : rd(r0 ⊕ 8 ⊖ 8)

7 u

Inference : sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0

8 r0 mod 264 = r0 (step 4)

Inference : r0 = r0 ⊕ 8 ⊖ 8

9 u

Inference : sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0

10 sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 (step 9) ∧ r0 = r0 ⊕ 8 ⊖ 8 (step 8)

Inference : sel(rm, r0)=/ 0

11 sel(rm, r0)=/ 0 ⇒ wr(r0 ⊕ 8) (step 3) ∧ sel(rm, r0)=/ 0 (step 10)

Inference : wr(r0 ⊕ 8)

12 wr(r0 ⊕ 8) (step 11)

Inference : sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 ⇒ wr(r0 ⊕ 8)

13 rd(r0 ⊕ 8 ⊖ 8) (step 6) ∧ sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 ⇒ wr(r0 ⊕ 8) (step 12)

Inference : rd(r0 ⊕ 8 ⊖ 8) ∧ (sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 ⇒ wr(r0 ⊕ 8)) ∧ . . .

14 rd(r0 ⊕ 8 ⊖ 8) ∧ (sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 ⇒ wr(r0 ⊕ 8)) ∧ . . . (step 13)

Inference: Pre ⇒ rd(r0 ⊕ 8 ⊖ 8) ∧ (sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 ⇒ wr(r0 ⊕ 8)) ∧ . . .

15 Pre ⇒ rd(r0 ⊕ 8 ⊖ 8) ∧ (sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 ⇒ wr(r0 ⊕ 8)) ∧ . . . (step 14)

Inference: ∀r0.∀Pre ⇒ rd(r0 ⊕ 8 ⊖ 8) ∧ (sel(rm, r0 ⊕ 8 ⊖ 8)=/ 0 ⇒ wr(r0 ⊕ 8)) ∧ . . .

16-byte aligned scratch memory is given in r3. The packet length is assumed to be at least 64 bytes.

Then the safety predicate for this set of criteria may be expressed as the precondition:

Pre = (r1 mod 264 = r1) ∧ (r2 mod 264 = r2) ∧ (r2 < 263) ∧ (r2 ≥ 64)

∧ (r3 mod 264 = r3) ∧ (∀i.(i ≥ 0 ∧ i < r2 ∧ (i&7) = 0) ⇒ rd(r1 ⊕ i))

∧ (∀j.(j ≥ 0 ∧ j < 16 ∧ (j&7) = 0) ⇒ wr(r3 ⊕ j))

∧ (∀i.∀j.(i ≥ 0 ∧ i < r2 ∧ j ≥ 0 ∧ j < 16) ⇒ (r1 ⊕ i =/ r3 ⊕ j))

The first five conjuncts restrict the range of values the registers can take. The next two conjuncts

specify the addresses from which it is safe to read and addresses to which it is safe to write. The

last term merely states that the packet memory and the scratch memory should be distinct. The

postcondition is taken to be true.

20.5.3 Second Example

At this point we include another canonical example that is found in the literature. This example is

taken from [16] and deals with the ML type system. ML has a type system for which it is possible to

ensure the safety of ML programs. However, in many practical situations, not all the components of
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a software project need be written in ML. It is possible that some of the components may be written

in a language such as C and hence these components fall outside the ambit of the ML type system.

Thus, a problem exists for ensuring that these components respect the invariants associated with

the ML heap.

The example considered in [16] is that of an ML type that may be an integer or a pair of integers.

The foreign code computes the sum of the elements of a list where each element of the list can be

an integer or a pair of integers. The code to do this is shown as follows and is taken from [16]:

datatype T = Int of int | Pair of int * int

fun sum(l : T list) =

let

fun foldr f nil a = a

| foldr f (h::t) a = foldr f t (f(a, h))

in

foldr (fn (acc, Int i) => acc + i

| (acc, Pair (i, j)) => acc + i + j)

l 0

end

This code fragment defines the way to compute the sum for an integer as well as a pair of integers.

The sum is accumulated in acc. The example describes how to frame a safety policy for extensions to

the runtime system of the TIL compiler for Standard ML [21]. It then shows how the hand-optimized

version of the DEC Alpha assembly code for the preceding program may be proved to be safe with

respect to this safety policy.

Consider the data-type declarations shown in Table 20.8. The heap structure for these data-type

declarations is shown in Figure 20.2.

An integer value is represented as a 32-b machine word. A pair of integer values is represented

as consecutive locations containing these values. A type that represents the union of these two

TABLE 20.8 Examples of Data Type Declarations

val r0 : int = 5

val r1 : int ∗ int = (2, 3)

val r2 : T = Pair r1

val r3 : T = Int 6

val r4 : T list = [r3, r2]

5

2 3

1

0 6

0

r

r

r

r

r

0

1

2

3

4FIGURE 20.2 Data representation in TIL. Each box represents

a machine word.
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types (i.e., it can be either an integer or a pair of integers) is represented as a pointer to a pair

of locations. The first location in the pair contains a value that indicates whether the type rep-

resented is an integer or a pair of integers. If the value of this field is 0, then it indicates that

this is an integer type and the integer is contained in the next location. If the value of this field

is 1, then it indicates that this is a type that represents a pair of integers and the next location

contains a pointer to the pair of integers. The representation for a list of values each of which

may be an integer or a pair of integers is also shown in Figure 20.2. The empty list is represented

by a zero.

The layout of the heap may also be specified by typing judgments each of which is of the form

m ⊢ e : τ where m is the state of the memory, e is the expression under consideration and τ is

the type that may be assigned to the expression. The expressions and memory states considered are

summarized as follows:

e ::= n | ri | sel(m, e) | e1 + e2 (20.3)

m ::= rm | upd(m, e1, e2)

Here, as usual, ri is a DEC Alpha machine register, rm summarizes the state of the memory, sel(m, e)

denotes the contents of location e in memory state m and upd(m, e1, e2) denotes the memory state

obtained by updating the contents of location e1 with the contents of location e2.

The typing rules that define the layout of the heap are shown in Table 20.9. These rules are defined

in [16]. These typing rules use the expression addr. This means that the expression value is a memory

address whose contents can be read.

The DEC Alpha assembly language program whose safety has to be verified is shown in

Table 20.10. This program accumulates the sum of integer values or pairs of integer values depending

on the type. It is assumed that r0 contains the argument of type T list the sum of whose elements is

computed by the program. It is also assumed that the final sum is stored in register r0. Registers r1,

r2 and r3 are stored as temporaries.

In the assembly code shown in Table 20.10, INV refers to an invariant that must be maintained at that

program point. If Inv denotes the indices of the invariants, then Inv0 represents the precondition that

the program has to satisfy before it starts executing. In this case, the precondition is rm ⊢ r0 : T list.

The postcondition is rm ⊢ r0 : int. An invariant also occurs at line number 2. This invariant is

rm ⊢ r0 : T list ∧ rm ⊢ r1 : int. In general, loop invariants can be obtained by considering the

registers that are live at that point.

TABLE 20.9 Typing Rules Defining the Heap Layout

m ⊢ e : τ1 ∗ τ2

m ⊢ e : addr ∧ m ⊢ e + 4 : addr ∧ m ⊢ sel(m, e) : τ1 ∧ m ⊢ sel(m, e + 4) : τ2

m ⊢ e : τ1 + τ2

m ⊢ e : addr ∧ m ⊢ e + 4 : addr ∧ sel(me) = 0 ⊃ m ⊢ sel(m, e + 4) : τ1

∧ sel(m, e) =/ 0 ⊃ m ⊢ sel(m, e + 4) : τ2

m ⊢ e : τ list e =/ 0

m ⊢ e : addr ∧ m ⊢ e + 4 : addr ∧ m ⊢ sel(m, e) : τ ∧ m ⊢ sel(m, e + 4) : τ list

m ⊢ e1 : int m ⊢ e2 : int

m ⊢ e1 + e2 : int

m ⊢ 0 : int
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TABLE 20.10 DEC Alpha Assembly Program to Compute the Sum

of Elements in List

0 sum: INV rm ⊢ r0 : T list %r0 is l

1 MOV r1, 0 %r1 is acc

2 L2 INV rm ⊢ r0 : T list ∧ rm ⊢ r1 : int %Intialize acc

%Loop invariant

3 BEQ r0, L14 %Is list empty?

4 LD r2, 0(r0) %Load head

5 LD r0, 4(r0) %Load tail

6 LD r3, 0(r2) %Load constructor

7 LD r2, 4(r2) %Load data

8 BEQ r3, l12 %Is an integer?

9 LD r3, 0(r2) %Load i

10 LD r2, 4(r2) %Load j

11 ADD r2, r3, r2 %Add i and j

12 L12 ADD r1, r2, r1 %Do the addition

13 BR L2 %Loop

14 L14 MOV r0, r1 %Copy result in r0

15 RET %Result is in r0

TABLE 20.11 Rules to Compute the Verification Conditions for

ML Type Example

V Ci =







































VCi+1[rd ← rs ⊕ op], if
∏

i = ADDQ rs , op, rd

rm ⊢ rs + n : addr ∧ VCi+1[rd ← sel (rm, rs ⊕ n)],

if
∏

i = LD rd , n(rs)

rs = 0 ⊃ VCi+n+1 ∧ (rs =/ 0 ⊃ VCi+1), if
∏

i = BEQ rs , n

Post, if
∏

i = RET

I, if
∏

i = INV I

As described in the earlier discussion on the network packet filter example, the verification

condition generator generates the verification condition at each program point. Table 20.11 shows

the rules for computing the verification conditions for our current example. These rules are also from

[16]. The restriction is that for the computation of the verification conditions for a program with

loops there has to be an invariant in every loop.

Now, the safety predicate may be expressed as:

VC (�, Inv, Post) = ∀ri .
∧

i∈Inv

Invi ⊃ V Ci+1

Then for the current example, the safety predicate takes the form: rm ⊢ r0 : Foo list ⊃ (rm ⊢ r0 :

Foo list ∧ rm ⊢ 0 : int).

We have now reached the end our discussion of the certification stage. The next stage in the PCC

life cycle is proof validation.

20.5.4 Proof Validation

At the consumer’s site, the safety predicate is computed using the VC rules. Then the supplied proof

is examined to see if it is valid. The PCC system uses the Edinburgh logical framework (LF) [6] to

represent the predicates and the proofs. LF is an ML for the expression of high-level specifications in
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NATIVE CODE

SECTION

RELOCATION

SECTION

PROOF

SECTION

45

0

220

340

FIGURE 20.3 The layout of the PCC binary for the resource access example. The offsets

are in bytes.

logic. The advantage of the LF representation is that checking the validity of the proof amounts to type

checking its representation in the LF framework. In other words, the validity of the proof is implied

by the well-typedness of the proof representation. The type-checking algorithm is fairly simple and

its implementation is usually small. Thus, the code consumer only needs to trust the correctness of

this small implementation to be assured of the safety of the foreign code. This also implies that proof

validation is fairly lightweight in terms of the execution time that it takes; and because this step is

in the critical path of the download and execute process, this is an added advantage. Some details

on the LF representation and a theorem expressing the adequacy of the LF framework to represent

proofs is described in [16].

20.5.5 Proof Carrying Code Binary

The PCC binary typically has three sections as illustrated in Figure 20.3.

One section is the native code section that contains the native code that may be mapped to

memory and executed. Then there is a symbol table that contains the information to reconstruct

the LF representation of the safety proof by the code consumer. Also the binary encoding of the LF

representation of the safety proof also exists. More work needs to be done on slim representations

for PCC binaries.

20.6 Safety Checking of Machine Code Using Type-State Checking

We now give a brief description of yet another static method for safety checking. This section is based

on the work done by Xu, Miller and Reps [25, 26] who have developed a safety-checking technique

known as type-state checking that relies neither on restrictions on the source language nor on the

correctness of the compiler for safety checking. Essentially, this technique allows a programmer to

write the code in any language of choice and to use any compiler of choice. The safety conditions are

enforced on the machine code. As long as the machine code is not doing anything “bad” on a system

on which it is running, it can be assumed to be safe. This approach has uncovered a lot of possibilities

because safety checking is decoupled from the expressive power of the source language. Also, the

need to depend on the correctness of a compiler is alleviated. Safety properties are specified with

respect to the host (on which the potential unsafe code can run) and hence they can be extensible.

Most of the static safety-checking techniques use traditional type checking to infer the safe or unsafe

nature of the code. Traditional type checking is a flow-insensitive technique. Type-state checking,

on the other hand, is a flow-sensitive technique. While analyzing an operation for safety, it not

only checks types of operands but also their states (hence, the name type state). This is important

because conditions under which an operation is safe or unsafe may depend not only on the types

of operands but also on their states. For example, dereferencing an initialized pointer is allowed,

but not an uninitialized pointer. Initialization or uninitialization is the state of an operand, and this

state information might help in getting more accurate safety-checking results. This implies that the

safety-checking algorithm should also take into consideration data flow properties associated with
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each operand. The type-safe-checking algorithm uses standard data flow techniques (more precisely,

abstract interpretation techniques), to derive the machine state at each program point. As the safety

checking is done using flow-sensitive type-state information, it provides a finer granularity to the

safety-checking algorithm.

20.6.1 Overview of Type State Checking of Machine Code

In essence, the type-state checking of machine code involves the following steps:

1. Extracting the source level type (i.e., type state) information from the machine code based on

annotations about initial inputs to the untrusted code

2. Determining whether the untrusted code is safe by applying techniques (or a combination of

techniques) some of which were initially developed for program verification

To extract the source level type-state information, first the global data are annotated in the trusted

host. Starting with the initial memory state at the entry point of the untrusted code, type-state analysis

abstractly interprets the untrusted machine code to produce a safe and approximate machine state at

each program point. The memory states at each program point are described in terms of type-states

and linear constraints. The linear constraints are linear equalities and inequalities that are combined

with ∧, ∨, ¬ and the quantifiers ∃ and ∀. By using the type-state information obtained in the previous

step, the control flow graph of the untrusted code is traversed to annotate each instruction with local

and global safety conditions and assertions. The conditions that can be checked by using type-state

information alone are called local safety conditions whereas global safety conditions are conditions

such as array bound exception, address alignment checks and null pointer dereferencing. These

conditions are represented as linear constraints. For array bound checks, a range analysis technique

is used that determines the safe estimates of the range of values that each variable (register) can

take at each program point. For conditions that cannot be proved using range analysis, powerful but

costly program verification techniques are used.

To do the type-state checking of machine code, the following issues need to be resolved:

• Design of a language for specifying policies

• Inference of a type state at each program point

• Overload resolution of certain machine language instructions

• Synthesis of loop invariants

The safety of an untrusted piece of code needs to be defined in terms of what is acceptable or

unacceptable for the host, on which the untrusted code can run. Some of the generic conditions such

as type violations, array out-of-bound exceptions, address alignment violations, uses of uninitialized

values and null pointer dereferences need to be satisfied irrespective of the host preferences. These

conditions provide memory protection at a finer granularity. We call these conditions default safety

conditions.

Apart from these default safety conditions, the host specifies access policies on host, which define

least privileges provided by the host to the untrusted code. It allows the host to specify data that can

be accessed and the host functions that can be called by the untrusted code. This reduces potential

damages on the host that could happen when untrusted code runs on the host. An access policy can

specify which of the pointer types are followable and thus can control the breach of security by the

untrusted code on the host side. Similarly, accessible memory locations and their contents are given

types, which specify ways to access them.

The memory state at each program point needs to be described. At the same time, the safety

checking analysis work on a finite-sized domain is needed. The abstract storage model used in

type-state checking includes an abstract store and linear constraints. An abstract store is a map from
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abstract locations to type states. An abstract location summarizes a set of physical locations so that the

analysis has a finite domain to work on. It has a name, a size, an alignment and optional attributes to

indicate whether the location is readable or writable. A type state describes the type, state and access

permissions of contents of abstract locations. Linear constraints are linear equalities and inequalities

combined using logical operations and quantifiers. They are used to represent safety requirements

such as array bound checks, address alignment checks and null pointer checks.

The inputs to the type-state-checking analysis are an untrusted code, a host-type-state specification,

an invocation specification and a safety policy. A host-type-state specification describes the type and

the state of host data before the invocation of the untrusted code. It also specifies safety pre- and

postconditions for calling host functions. An invocation specification specifies initial values passed to

the untrusted code when it is invoked by the host. The host-specified access policies define minimum

privileges given to the untrusted code by the host. All inputs except for the untrusted code are

provided by the host.

The type-safe-checking analysis can de divided into the following five phases:

1. Preparation. The input for the preparation phase is host-type-state specification, access policy

and invocation specification. The outputs of this phase are in the form of annotations and a

control flow graph. The input is translated to initial annotations that give the (initial) abstract

store at the entry of the untrusted code. These initial annotations are specified in terms of linear

constraints and type states of the inputs.

2. Type-state propagation. The inputs for this phase are the interprocedural control flow graph and

the initial annotations constructed in the previous phase. This phase abstractly interprets the

untrusted code. Each instruction is annotated using the abstract storage model with abstract

representation of memory contents where an annotation for each instruction represents the

abstract memory state before the instruction execution.

3. Annotation. The annotation phase takes the type-state information constructed in the type-state

propagation phase as an input. Then each instruction is annotated by traversing the untrusted

code. The annotations represent the safety preconditions and assertions. The safety conditions

are of two types, local safety conditions and global safety conditions.

4. Local verification. The local verification phase checks the local safety preconditions. These

conditions can be checked by using type-state information alone. A linear scan over the

instructions in the untrusted code is made for this.

5. Global verification. The global verification phase checks global safety preconditions. The

global safety conditions include array bound checks, address alignment checks and null

pointer dereference checks. These conditions can not be checked just by using the type-state

information and further (global) analysis is required. To do this analysis, program verification

techniques are used. Because program verification techniques are more costly, a technique

such as symbolic range analysis is used to speed up the analysis. It may be mentioned that

though program verification techniques are used here, the goal is much more modest than

proving total or partial correctness of the program.

The preceding five phases of the type-state checking are illustrated in Figure 20.4 as given in [25].

In the following sections, we study the type-state system and the phases of the type-state-checking

algorithm in detail.
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FIGURE 20.4 Illustrating the phases of type-state safety checking analysis.

20.6.2 Type-State System

Because the type-state-checking system is a static safety-checking methodology, it needs a finite

domain to work on. The type-state-checking system is based on an abstract storage model. The

abstract storage model consists of an abstract store and linear constraints. An abstract store maps

abstract locations to type states. Each abstract location represents a set of physical locations. This

makes abstract store a finite domain. An abstract location has the following attributes: name, size,

alignment and optional attributes r and w to denote whether the abstract location is readable or

writable by the untrusted code.

Let AbsLoc denote the set of all abstract locations and Size(l), Align(l) to denote the size and

alignment of an abstract location l. Each type state is defined a triple 〈type, state, access〉. The type,

state and access permission components of the type-state system are described next.

20.6.2.1 Type

As mentioned earlier, the type-state propagation phase of the type-state-checking algorithm uses

abstract interpretation techniques to find the memory store at every program point. This is facilitated

by defining a meet operation on the type states so that they form a meet semilattice. The type-state

propagation phase can be viewed as some kind of symbolic execution that is flow sensitive. As

in a machine level program, a register or a memory location can store values of different types at
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different program points; the type-state-checking algorithm has to infer an appropriate type state at

each program point. The type-state-checking algorithm does so by finding the greatest fixed point

of the type-state propagation equation at every program point. The type-state system uses a notion

of subtyping to achieve this. Each use of register or a memory location at a given program point is

resolved to a supertype of accepted values. The language of type expressions used by Xu is given in

Figure 20.5 [25].

The language of type expressions as in Figure 20.5 has bit level representation of integer types.

A signed integer type int(g : s : v) has g + s + v number of bits. The highest g bits are ignored,

the middle s bits are sign bits and lowest v bits represent the value. This bit level representation that

separates the sign bits from the value bits helps in maintaining the precision of integer operands.

A pointer into the middle of the array of type t and size n is denoted by t (n]. This helps in

distinguishing that whether an array pointer is pointing to the start of the array or in the middle of

the array. As these two types are separated, pointer arithmetic of advancing the array pointer to point

to another element of the array is possible and thus the analysis is more accurate.

The top and bottom types are represented as ⊤(n) and ⊥(n), respectively. They are parameterized

by the size parameter n.

The subtyping rules are given next (this subtyping is known as physical subtyping and it depends

on the layout of aggregate fields in the memory):

1. A type is a subtype of itself.

2. If type t has n bits, then the top type of n bits (i.e., ⊤(n)) is a subtype of t . This is because,

in type-state checking, ordering is reversed (i.e., in type lattice t1 ≤ t2 if and only if t2 is a

subtype of t1). Because of the same reason, the type t is a subtype of ⊥(n) where t has n

bits.

t  ::  ground                       Ground types

|   t [ Pointer to the base of an array of type t of size n 

|   t ( 

n ]                           

n ]                           Pointer into the middle of an array of type t of size n

|   t ptr Pointer to t

|   s{ m , ..., mk }      struct
1

|   

|   u { m1 , ..., mk }      union

( t1 , ..., tk ) t 

(n) 

|   

Top type of n bits|   

Function

(n) Bottom type of n bits (Type "any" of n bits) 

t, l, i ) 

ground :: | uint( g : s v: ) | ...

t stands for type and 

{ m

m stands for a structure or a union member. 

m :: ( Member labeled l of type t at offset i 

int( g : s :v )

FIGURE 20.5 Language for type expressions.
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3. An integer of type int (g : s : v) is a subtype of int (g′ : s′ : v′) if g + s + v = g′ + s′ + v′,
g ≤ g′ and v ≤ v′. In other words, an integer type t is subtype of integer type t ′ if the range

of (integer values) of t is subrange of t ′ and the sign bits of t ′ at the most are equal to that

of t .

4. A structure is a subtype of type t ′ if the first member of the structure is of type t and t is a

subtype of type t ′. This means a structure can be passed at a place where supertype of the first

member of structure is expected.

5. A structure s is a subtype of structure s′ if s′ is a prefix of s and each member of s is a subtype

of the corresponding member of s′.
6. If t is a subtype of t ′, pointer to t is a subtype of t ′.
7. A pointer to the base of an array is a subtype of a pointer into the middle of the array. Also,

a pointer to an array whose each element is of type t is a subtype of pointer to the base of an

array of size 0 and element type t .

For an assignment to be valid, it is necessary that the type on the left-hand side of the expression

is a supertype (according to the preceding rules) of the type on the right-hand side and the left-hand

side location has enough space.

Because the type-state-checking analysis is a flow-sensitive analysis, it tracks aliasing information

among the abstract locations. This avoids illegal field access. As the aliasing information is captured,

preceding rule 6 concerning subtyping of pointers is safe.

20.6.2.2 State

The conditions under which an operation is safe or unsafe is not just the function of types of its

operands but also of their states. For a scalar of type t , its state can be uninitialized (denoted by [ut ])

or initialized (denoted by [it ]). An uninitialized pointer is represented as [up] whereas state of an

initialized pointer is a nonempty set of states where one of the elements can be null. The state of an

aggregate type is given by the states of its fields. A portion of state lattice as given in [25] is shown

in Figure 20.6. In this lattice, the partial order for scalars is [ut ] ≤ [it ], for pointers it is set inclusion

and for aggregates, the partial order depends on the pairwise partial order for every field.

20.6.2.3 Access Permissions

An access permission is either a subset of f, x, o (for an individual field) or a tuple of access

permissions (for an aggregate). The properties f, x, o are the properties of value stored in the abstract

location. Here, f means followable, which determines whether the pointer can be dereferenced; x

means executable, which denotes if the function pointed to (by a pointer to the function) can be

called by the untrusted code; and o means operable, which includes operations not covered by f and

x such as copy and examine. The meet operation on the access permission sets is set intersection.

For aggregates, the meet of access permissions is defined as the meet of the individual elements of

the the access permission.

20.6.3 Overload Resolution of Machine Instructions

In machine language programs, many instructions such as add and load are overloaded instructions.

For example, add instruction can be used for addition of two scalars or for array address computation.

However, at a given program point, each overloaded instruction usage intends only one kind of use of

the instruction. Resolution of overloaded instructions at every program point to only one usage type

is termed as single-usage restriction. At every program point, type-state propagation phase (which

is a flow-sensitive phase) of type-state-checking algorithm determines the type state by taking the

greatest fixed point of all type states possible at that program point.
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FIGURE 20.6 A portion of the state lattice.

20.6.4 Type-State-Checking Algorithm

As described earlier, type-state-checking algorithm consists of five phases:

1. Preparation

2. Type-state propagation

3. Annotation

4. Local verification

5. Global verification

The input to the type-state-checking algorithm is untrusted code, a host-type-state specification, an

invocation specification and a safety policy. An example of an untrusted (SPARC assembly language)

machine code from [25] is given in Figure 20.7. This code is machine code for a program that sums

elements in the array. Host-type-state specification describes the type state of the host at the entrance

of the untrusted code. It also describes pre- and postconditions under which it is safe to call host

functions. Invocation specification describes the initial inputs to the untrusted code. The safety policy

describes (abstract) memory locations, their contents and ways to access them. For example, host-

type-state specification, invocation specification and safety policy of a host on which the untrusted

code in Figure 20.7 can run is given in Figure 20.8 [25]. The host-type-state specification describes

that e is an abstract location used to summarize all the elements in the array arr. It says that each

element in the array can be “read” and is “operable”. The array arr is of size n and pointer to the

array is “followable” (i.e., it can be dereferenced). The safety policy is described in terms of a triple

〈Region : Category : Access〉. The safety policy classifies the memory into different regions. Each

region can be as large as entire memory block (or address space). The category field is a set of types

or aggregate fields. The access policy is defined in terms of access permissions r , w, x, f and o,

which mean “readable,” “writable,” “executable,” “followable” and “operable,” respectively. As the

access policy defines access permissions for a memory location, it has r and w permissions, which
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1:  mov %o0, %o2 move %o0 into %o2//

2:  clr %o0 // %o0 = 0

3:  cmp %o0, %o1 // compare %o0 and %o1

4:  bge 12 

5:  clr %g3 // %g3 = 0

6:  sll %g3, 2, %g2 // %g2 = 4 * g3

7: ld  [%o2+%g2], %g2 // %g2 = [%o2+%g2]

8:  inc %g3 // %g3 = %g3 + 1 

 9:  add %o0, %g2, %o0 %o0 = %o0+%g2 //

10: cmp %g3, %o1

11: bl 6 // if (%g3 < %o1) goto 6

13:  nop

12:  retl 

UNTRUSTED CODE

FIGURE 20.7 An example of untrusted code.

ACCESS POLICY INVOCATIONHOST TYPESTATE

e: 〈int, initialized, ro〉

ap: 〈int[n ], {e}, rfo〉

V = {e, ap} 

[V : int : ro]

[V : int[n] : rfo]

%o0  ap

%o1 n

is an integer array of size

n, where n 

{n > 1} 

> 1. e 

abstract location that 

summarizes all elements 

of 

ap and e are in the V region. 

All integers in the V region 

are readable and operable.

All base addresses to an 

integer array of size 

V region are readable, 

operable and followable.

n in the 

ap and the size of 

will be passed through 

the registers %o0 and 

ap 

is an 

ap.

ap 

%o1, respectively

FIGURE 20.8 Host information for the code in Figure 20.7.

were absent for values as given in Section 20.6.2.3. Access permissions given in Figure 20.8 tell us

that each element of the array (of type integer) in the region V is readable and operable whereas

the array pointer in the region V is readable, operable and followable. According to the invocation

specification in Figure 20.8, the base to the array of integers is copied to the register %o0 and the

size of the array is passed in the register %o1.

The safety policy here describes the rights given to the untrusted code to access the host data. For

example, in the preceding example, the pointer to the base of an array is “readable” and “followable.”
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INITIAL TYPESTATE INITIAL CONSTRAINTS

e:〈int, initialized, ro〉

%o0:〈int[n], {e}, rwfo〉

%o1:〈int, initialized, rwo〉

n > 1 and n = %o1

FIGURE 20.9 Initial annotations.

By explicitly specifying the safety policy in terms of access permissions, a finer level of control over

the host data (by the untrusted code) can be achieved.

The five phases of the type-state-checking algorithm are preparation, type-state propagation,

annotation, local verification and global verification.

20.6.4.1 Preparation

The preparation phase is the first phase of the type-state-checking algorithm. The preparation phase

takes as input an untrusted code, a host-type-state specification, an invocation specification and the

safety policy. From the host-type-state specification, the invocation specification and the safety policy,

it finds out initial annotations. The initial annotations consist of type states and linear constraints and

they specify the abstract store at the entry of the untrusted code. For example, initial annotations for

host-type-state specification, invocation specification and safety policy described in Figure 20.8 are

given in Figure 20.9 [25]. It describes that the array address is copied to the register %o0, whereas

the size of the array is passed through the register %o1. It also denotes that each element of the array

is initialized and it cannot be overwritten (no w permission). The w permissions to %o0 and %o1

refers to the permission of the registers themselves and not of their contents. The preparation phase

also constructs the control flow graph for the untrusted code. The nodes in the control flow graph

represent instructions and the edges represent the control flow between the instructions.

20.6.4.2 Type-State Propagation

The type-state propagation state accepts the control flow graph and initial annotations constructed

in the preparation phase as its input. It then abstractly interprets the untrusted code to find out a safe

approximation of abstract memory store at every program point. This analysis is a flow-sensitive

analysis and is similar to the standard data flow techniques (which are also instances of abstract

interpretation [19].) The initial abstract store (which is a total map from abstract locations to type

states) is assigned to the start node and all other nodes in the control flow graph are assigned to the

⊤ element of the abstract store (the top element of an abstract store is a map that maps all abstract

locations to their type-state respective top element). The abstract store at the entry of each node

is calculated by taking meet of the abstract stores at the exit of its predecessors. The meet of two

abstract stores (say mapping an abstract location a to type states t1 and t2, respectively) is an abstract

store (a map) that maps to the meet of their respective elements (i.e., a map that maps a to the meet

of t1 and t2).

The actual algorithm that is used by Xu [25] is a work list-based algorithm. It puts the start node

into the work list and propagates the type-state information to its successors. One node is taken out

from the work list at a time. The start node is given the abstract store at the entry of the untrusted code,

whereas for all other nodes it is the meeting of abstract stores at the exit of their predecessors. The

abstract store at the entry of every node is interpreted with respect to the semantics of the instruction.
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e: 〈int, initialized, ro〉

%o1: 〈int, initialized, rwo〉

%o2: 〈int[n],{e}, rwfo〉

%g2: 〈int, initialized, rwo〉

%g3: 〈int,initialized, rwo〉

ABSTRACT   STORE

FIGURE 20.10 The memory state at line 7 of the program in Figure 20.7.

Every machine language instruction is statically given a semantics in terms of the effect it has on the

abstract store. By using this semantics, the abstract store at the exit of the node is computed, which

in turn may affect its successors. All affected successors are put on the work list. This process is

repeated until a fixed point is reached (i.e., abstract store at entry and exit of every node assume a

fixed-point value that do not change and essentially the work list becomes empty). The reaching of

fixed point is guaranteed if the transition function (the function that represents the effect of every

instruction on the abstract store) is a monotonic and a distributive function and the abstract store

values form a finite lattice [19] (which is the case here).

Hence, a fixed point is reached and every program point (entry and exit of every node in the

control flow graph) has an abstract store, which is a safe approximation of the actual abstract store

values that can be assumed during execution of the program. In machine language programs, as

overload resolution of instructions such as add or load is to be done, abstract store information is

not propagated through the instructions of a loop until it assumes a non-⊤ value.

For our example program in Figure 20.7, the memory state at the entry of line 7 in the example

program is shown in Figure 20.10 [25]. Here, it gives us information that %o2 is assigned to the base

address of an array and %g2 is an integer that means it is an index to the array:

• Interprocedural analysis. One way to handle function calls in the type-state propagation stage is

to propagate the information into the body of the function. In general, problem with interproce-

dural analysis is dealing with parameter passing mechanisms, especially the aliasing resulting

out of call by reference. An approximate but safer way is to treat the function as a black box (or

a single instruction) and validate safety conditions at the entry and exit of the function. Because

the conditions have to be general to cater to all call points for a function, they are weaker and

the resulting type-state information can be approximate. This is known as summarization of

function calls.

Summarizing the function calls is the chosen way to handle interprocedural analysis in the

type-state implementation of Xu, Miller and Reps [26]. The safety pre- and postconditions

are defined at the entry and exit of each function. These conditions are represented in terms

of abstract locations, type states and linear constraints. At the call site, the actual parameters

are checked against the conditions they have to satisfy. The safety postconditions help to

determine the state at the exit of the function. Aliasing information if provided at the exit

point makes the analysis more accurate. Automatic generation of aliasing information is a

difficult task and user inputs are helpful to construct the aliasing information. If the aliasing

information is not present, then the state deduced at the end of the function call is less accurate

but safe.

• Detection of higher level data structures. Because the type-state-checking algorithm operates

on the machine language program, higher level type information (whether a variable represents
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an array. etc.) is not available. Automatic deduction of such higher level types is difficult,

but not impossible. Inference rules specific to a higher level data structure can be determined.

Because each instruction is used only in one context at a given program point and the abstract

interpretation that is a flow-sensitive technique can find multiple types of operands of the same

instruction at a given program point, higher level type information can be deduced. For example,

for a given instruction at a given program point, if the abstract interpretation discovers that a

register points to two different locations in the stack, we can deduce that the register points to an

array and the size of each element of the array is the greatest common divisor of the differences

between location values. The type-state propagation algorithm makes it sure that the deduced

types are compatible and safe.

20.6.4.3 Annotation

The annotation phase takes the type-state information generated in the type-state propagation phase

as an input and annotates the machine language programs with safety conditions and assertions. The

safety conditions are generated from the safety policy for the host and the default safety conditions

for instructions. Depending on whether the safety conditions can be checked using the type-state

information alone, the safety conditions are termed as local and global safety conditions, respectively.

Assertions are the facts derived from the type state propagation values. For example, checking the type

state of an operand satisfying a given safety condition is a local safety condition, whereas checking

whether the array index reference is within the array bounds is a global safety condition (because

array index range calculation requires global information). Examples of assertion are checking for

nonnull values and address alignments.

20.6.4.4 Local Verification

Local verification stage verifies the local safety preconditions that are annotated to instructions in

the previous phase. These are the conditions that can be checked using the type-state information

alone. The type-state propagation phase infers the type state of each register and memory location

at every program point. It can also infer the type state of values stored in the register and memory

location. This information can be used to generate local safety conditions that can be checked locally.

For example, if the type-state propagation finds that a register stores an array element and if every

element of the array is readable, then the type state for the register should show that its content is

readable.

20.6.4.5 Global Verification

Global verification is used to check safety properties that cannot be checked locally using the

type-state information alone. For example, checking array bounds conditions and null pointer

dereferencing require global information to validate the safety at a given program point. These

properties can be verified using program verification techniques that are powerful but expensive.

Alternatively, approximate but efficient abstract interpretation techniques can be used. Xu [25]

first used an abstract interpretation technique known as range analysis, which is an approximate

but a safe analysis to find out array-out-of-bound errors. The safety conditions and assertions

that cannot be checked by range analysis are checked using program verification techniques.

Because many of the safety conditions are already checked using range analysis, expensive pro-

gram verification techniques are used only for the remaining conditions and the overall analysis is

less costly.

• Range analysis. The range analysis finds out the (approximate and safe) range of values a

memory location or a register may take. Because from the previous phases, we already

know which of the registers are containing array indices, range analysis technique can be

used to find whether an array out-of-bound exception exists. This is an abstract interpretation
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technique where range each memory location can take or range each register can take forms

a meet semilattice and standard fixed point algorithms can be used to achieve the fixed point.

Abstract interpretation techniques such as widening and narrowing can be used to speed up (but

approximate) the analysis.

• Program verification. Program verification is used only for the global safety conditions that

cannot be validated using the range analysis. Automatic program verification is costly for

the fact that the goal of verifying safety conditions is much more modest than checking the

correctness of the program. Hence, this technique should be used rarely and on demand.

To check the global safety conditions, program verification techniques verify the assertions at a

program point and prove that they hold whenever control passes through them. For an assertion, this is

done by generating verifying conditions at every program point and invoking theorem provers to prove

them. In case of programs with loops, one needs to synthesize loop invariants; otherwise, the analysis

may go into infinite loop. A loop invariant is an assertion that is true at the entry of a loop whenever

the control passes to the loop. By synthesizing the loop invariants, safety conditions can be checked

by invoking theorem provers. Synthesis of loop invariants can be done using a manageable program

verification technique known as induction iteration method, which checks the safety conditions one

at a time in a demand-driven fashion. Xu [25] has suggested techniques to improve on the induction

iteration method to check global safety conditions for nested and consecutive loops that are written

in terms of type states and linear constraints.

20.7 Design and Implementation of a Certifying Compiler

In this section and the next, we describe how the safety-checking process may be included as part

of the compilation process. We describe the design of compilers that produce a certificate of safety

as an output along with the machine code. Such compilers are called certifying compilers.

Necula and Lee [18] describe the design and implementation of a certifying compiler that uses

concepts drawn heavily from PCC techniques. The certifying compiler compiles a type-safe subset

of C to the DEC Alpha assembly language. It also takes the safety policy as input and produces a

proof for the safety of the generated assembly code if in fact the code is safe. Otherwise, it produces

a counterexample that points to a possible violation of the type system requirements. The proof is

then checked by a type-checking program as described in the earlier discussion on PCC. Thus, the

approach is to check the correctness of the compiler output instead of the more ambitious attempt

to verify the compiler itself. This method can be applied to optimizing compilers also. A significant

fact is that the design of the certifying compiler is quite similar to the usual design of a noncertifying

compiler.

In the context of the previous discussion on PCC, the certifying compiler may also be used as

a front end to a PCC system. In other words, it may be used as the component that automatically

produces the proof of safety.

Figure 20.11 shows an overview of the design of the certifying compiler. It consists of the compiler

component and the certifier component. The compiler produces assembly code annotated with

invariants that must hold to establish the safety of the code along with annotations. The annotations

help the certifier to understand enough of the code to verify the type safety. This is required because

the compiler performs a large number of optimizations that may break the correspondence between

the assembly language program elements and the type information. For example, global register

allocation may break the correspondence between registers and the type of the data that they may

store. As a second example, the compiler removes the array bound checks that are present in the

source code. In the absence of these checks it becomes very difficult to prove the memory safety of

the assembly language program.
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Type Specification

Annotated Code 
Proof/CounterexampleCompiler Certifier

FIGURE 20.11 Overview of the certifying compiler.

VCGen Proof CheckerProver
Safety Predicate Proof 

FIGURE 20.12 The structure of the certifier.

The certifier produces the safety predicate and uses a theorem prover to construct the proof

the safety predicate if indeed the assembly language code is safe. Otherwise, it produces a

counterexample. A proof checker verifies the validity of the proof produced by the certifying

compiler. The block diagram of the certifier component of the certifying compiler is shown on

Figure 20.12.

The VCGen block is the component that generates the verification conditions as already described.

Its design uses the rules for generating verification conditions based on the precondition, postcondi-

tion and semantics of the DEC Alpha machine instructions. The prover block as mentioned earlier is

a theorem-proving system written by the authors. As usual, the proof is encoded in the LF framework.

Thus, the proof checker is nothing but a type-checking program in the LF framework.

20.8 Cyclone Certifying Compiler

Hornof and Jim [9] describe a certifying compiler that also performs runtime code generation.

The source language for this compiler is a type-safe subset of C. For a given function in the

source language, the user identifies the arguments that can be evaluated statically. The compiler

uses the static analysis of the Tempo system [20] to produce an action annotated program. This

is then translated to the Cyclone language that is a dialect of C extended with some constructs

that facilitate run-time code generation.2 Then the Popcorn compiler [13] is modified to output

a language called TAL/T, which is a typed assembly language similar to TAL with support for

templates that aid in runtime code generation. Because the innovative features of Cyclone and the

template support in TAL/T have more to do with run-time code generation, we do not discuss these

topics any further here. Code safety is ensured by writing the code in the type safe subset of C,

compiling it to Cyclone that is verified to be type safe and then further compiling it to TAL/T,

which can be again checked for type safety. The user has the option of programming in the C

source language, in Cyclone or directly in TAL/T; and safety can be ensured through verification

at any level. Proving safety properties of a TAL/T program is akin to proving the safety predicate

for assembly code as done in the PCC approach. With respect to code safety, the contribution

of the Cyclone approach is that although PCC showed how safety can be proved for statically

generated code, the Cyclone compiler shows how it may be extended to dynamically generated

code also.

2The Cyclone language later evolved into a language that is both safe and compatible with C.
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20.9 Conclusion

This chapter gives a brief survey of a few techniques for checking mobile code safety. In particular, we

concentrate on techniques that are at the interface of compilation and mobile code safety checking. For

researchers in programming language theory and compilers, this is an exciting new area of research

that has scope for the application of techniques in these areas to a crucial problem in mobile systems.

Obviously, the topic is currently in the development stage and no one technique can be claimed to

provide a complete solution. As a yardstick to measure the relevance of any new technique proposed

in this area, let us enumerate what we think are some of the criteria a solution to this problem

may satisfy:

1. The technique should scale to real-life, complex programs.

2. The amount of code that needs to be trusted in the solution should be as small as possible.

3. The technique should be lightweight. Many of the applications of mobile code have stringent

real-time requirements. In such situations, the overhead incurred in safety checking should be

as small as possible. One example of such an application is on-line downloading and executing

of a wireless protocol onto a mobile phone such that minimum disruption is caused to a call

in progress.

4. The technique should not be so restrictive on the source language as to impair the general

applicability of the language.

5. Safety checking should involve as little manual intervention as possible.

In this chapter, we surveyed one dynamic technique (software-based fault isolation) and a few

static techniques (TAL, PCC, and type-state checking of machine code) along with a brief description

of the design of two certifying compilers ([18] and the Cyclone compiler).

Dynamic methods have the drawback that they may slow down the program that is undergoing

safety checking. Techniques such as TAL have the drawback that they restrict themselves to a safe

subset of the source language. The main drawback in the PCC approach is the size of the object

code that is to be transferred. The type-state approach requires the user to supply the type and state

information of the host data. As far as this method is concerned, further work needs to be done that

can make this technique viable for real-life programs by reducing the cost of the global verification

stage that currently uses program verification techniques. Also, the precision of the analysis can be

enhanced by extending the technique to runtime checks.

Among the prominent methods that are not described in this survey is the approach based on

information flow control [15]. In this approach, integrity of sensitive data is protected by statically

checking the information flow of the program. Myers [15] describes an extension to the Java language

called JFlow in which information flow annotations can be statically added.
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21.1 Introduction

From a typing point of view, programming languages can be statically typed, dynamically typed or

typeless. Barring very low level languages such as assembly languages, no modern programming

language is typeless. In statically typed languages, types are associated with (syntactic) entities in a

program at compile time. The language C is an example; variables, expressions and functions have

types, and programs are checked for type violations at compile time. Dynamically typed languages

support such a notion only at runtime. The Lisp language is an example. A Lisp compiler or interpreter

associates no types with the expressions in the supplied program; however, the values created at

runtime are associated with types, and at runtime care is exercised to ensure that an operation is

performed on a value only if the operation is compatible with the type of the value. Thus, a Lisp

expression that adds a number to a string can be flagged at runtime as causing a runtime type error.

Many statically typed languages — Simula, C++ and Java, for instance — also allow the inspection

of the type of runtime values, and branching based on that type, to inject some of the flexibility of

dynamic typing into an otherwise statically typed language.

This chapter discusses static typing. We consider statically typed languages and examine type

systems for them. A type system specifies a set of types and a collection of typing rules. The typing
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rules can be used to determine whether a program fragment in the language is typable — that is,

whether it can be assigned a type — and, if so, to assign one or more types to the fragment. Typing

rules are generally syntax directed; in this form, they are easier to state, understand and reason

about than type-checking algorithms. They are also much more amenable to formal analysis; there

is a wide body of literature on type theory that has had significant impact on the design of flexible

type systems.

A type system is a part of the definition of a statically typed language. An implementation of

the language includes a type-checking algorithm consistent with the type system. A language may

require that legal programs carry explicit type annotations; such a language is said to be explicitly

typed. For explicitly typed languages corresponding to the various type systems discussed in this

chapter, it is straightforward to crank out a type-checking algorithm from the typing rules. Thus, we

do not delve into the design of type checkers here. Making explicit the type of every expression is

burdensome to the programmer and useless to the reader. In a languages like C, type declaration of

key program entities — variables, function parameters, function results, etc. — is adequate; the rest

of the types can be deduced very easily. Most languages allow the programmer to supply just about

enough type information, shifting the burden of inference of the missing types to the compiler. At the

other extreme to explicitly typed languages, purely implicitly typed languages allow a programmer to

provide no type information whatsoever; for such languages, the compilers type inference algorithm

deduces the type information from the program structure. However, in most practical implicitly typed

languages, occasionally a programmer may need to supply information that helps the type inference

algorithm tide over some ambiguity.

Types in practical type systems generally have intuitive meanings. This allows one to convince

oneself that the rules in a type system make sense. In the absence of static or dynamic type checking,

the execution of a program can result in a number of errors. One particularly pernicious form of error

is where a semantically meaningless computation is performed on a runtime value: for instance,

during a computation an integer value may be treated as a pointer and dereferenced. This notion of

a computation violating type sense can be made precise; to that end, we must first describe a set of

rules — called an operational semantics — that specify the evaluation behavior of programs in the

language. Programs are evaluated by repeatedly applying rules until a value, of a specified form, is

reached. However, there may be computations where the repeated application of the evaluation rules

yields a term that is not of a form that values are required to be in, and yet no rule is applicable to

it (e.g., during evaluation of a C program we might arrive at a state where the next subexpression is

the pointer dereferencing operator applied to an integer-valued variable). Such a situation is called

a runtime type error.

A type system classifies programs as well-typed or ill-typed. A good type system must guarantee

that any program it certifies as well-typed cannot cause a runtime type error when evaluated. Such a

type system is said to be sound. However, sound systems can only be conservative. Because of the

undecidability1 of any nontrivial property of program runtime behavior, while rejecting programs that

are problematic, a type system may reject perfectly legitimate programs (i.e., programs whose exe-

cution does not cause runtime type errors). This is a major reason why investigations are continuing

into more flexible, richer-type disciplines — type systems that toss away fewer good programs.

Unfortunately, although soundness is an objective with profound engineering consequences, either

by design or by oversight, many statically typed languages have rigid type systems that reject

useful programming idioms. In such cases, language designers have admitted features to help the

programmer circumvent the type system; C-style casts are an example of this. The consequence is

1Rice’s theorem in recursion theory formalizes this idea.
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the violation of soundness. In other cases, flaws have crept into a type system because the designer

overlooked certain subtleties. The original type system for Simula suffered from the following flaw:

the type system allowed an array of type A to be a subtype of an array of type B, if A was a subtype

of type B (i.e., values of type A may be manipulated in contexts expecting values of type B). Because

arrays can be both accessed and written to, this allows an element of type A to be assigned to a cell

of an array of type B. Performing an operation on this array cell, which is applicable to B objects

but not to A objects, causes a runtime type error.

Besides the safety guarantee that a sound type system provides, static typing offers many benefits.

The original motivation for introducing types in FORTRAN was to assist in compilation, specifically,

efficient compilation; the introduction of distinct types for floating point numbers and integers helped

overcome difficulties in mixed arithmetic at runtime. Knowledge of the type of an expression helps

avoid a large amount of runtime overhead involved in performing runtime checks; for instance,

knowing that a variable is of a certain record type at compile time enables a compiler to safely

avoid generating runtime checks when compiling an expression that accesses a field of the structure.

This improves execution efficiency. In many programming languages, the type of a variable allows

precise computation of its size and this allows allocating appropriate sized memory regions to hold

their values; in the absence of types, data representations must fit a default size and may require

indirection, which in turn results in inefficiency.

In typed object-oriented languages, knowing the type of an object on which a method is invoked can

sometimes help in determining the address of the corresponding method at compile time, enabling

additional optimizations such as inlining and avoiding the runtime overhead of dynamic dispatch.

More generally, knowledge of the types of objects at compile time can enable aggressive compiler

optimizations. There appears to be a strong relationship between compiler optimization techniques

such as flow analysis and type inference. The articles found in [32, 50] describe a correspondence

between well-known type systems and various flow analysis techniques. Type systems applied to

module mechanisms enable separate compilation; they also clarify dependencies enabling parallel

development.

The aim of this chapter is to introduce type-theoretical issues in programming languages. We

outline some of the major type disciplines to be found in existing programming language designs

and algorithmic questions such as type inference for specific systems. The subject is vast and deep,

and the chapter is intended to be accessible to a broad computer science audience. Whereas concepts

have been introduced with some rigor and results have been stated where appropriate, detailed

proofs are not provided; the interested reader can locate the proofs (as well as more detail) in the

cited references. Also, we primarily look at type-theoretical issues in a functional (nonimperative)

setting. This allows us to study issues such as higher order functions, polymorphism, subtyping and

object orientation without the complexity of mutable state and nonlocal control. Most type-theoretical

issues in imperative languages already manifest themselves in their functional subsets.

For much of this chapter, the λ-calculus is our formal vehicle for exploring typing issues. It is

a syntactically minimal, yet expressive, language of (higher order) functions that is amenable to

formal analysis. Section 21.2 provides an introduction to the λ-calculus. In Section 21.3, we explore

a number of type disciplines in the λ-calculus framework, in particular, simple types, sum and

product types, recursive types, reference types, parametric polymorphism and subtyping. We study

various properties of the type system including principal typing and type inference. In Section 21.4

we examine abstract data types. In Section 21.5, we explore the type-theoretical foundations of

module systems. Section 21.6 examines type systems for object-oriented languages.

21.2 Lambda Calculus

The λ-calculus is a formalism that captures the essential computational structure of functional

programming languages. λ-Calculi have origins in the work of Church and Curry. They are simple

calculi that support the representation of, and reasoning about, functions.
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In this section we give a brief introduction to the type-free (or untyped) λ-calculus [6]. The

language of untyped λ-terms is generated by the following grammar:2

t ::= ν|(t t ′)|λx. t

Here ν is a (countably) infinite set of variable symbols; the construct (t t ′) is called an application;

and, λx. t , where x ∈ ν, is called a λ-abstraction. Intuitively, an application (t t ′) represents the

application of the function denoted by t to the argument denoted by t ′. Also, the term λx. t denotes

a function accepting an argument that is bound to the formal parameter x, and returns the value

obtained by evaluating the “function body” t . As is the case with formal parameter declarations in

statically scoped languages, all occurrences of the variable x in t are bound. That is to say, its scope

is limited to the body t . In particular, the specific variable name x is irrelevant, and replacing all

occurrences of the variable x in λx. t does not alter its meaning. By using the notation t[t ′/x] to

mean that all instances of x in t are to be substituted by the term t ′, we can say that the term λx. t

and λy. t[y/x] are equivalent, provided there is no occurrence of y in t that is not bound. This

equivalence of terms arising from the renaming of bound variables is called α-equivalence.

Variable occurrences that are not bound by a λ-abstraction are said to be free; for a term t, fv(t)

denotes the set of free3 variables. A term that contains no free variables is said to be a closed term.

An open term is a term that may have occurrences of free variables. Another notion that is used in this

chapter is the notion of a substitution. A term substitution is a map from a finite set of term variables

to the set of terms. For a term substitution θ and term t , the term tθ is obtained by replacing each

occurrence of a term variable x, that is, in the domain of θ , in t by the term θ(x). Unless otherwise

mentioned, in this chapter — subscripted or otherwise — the metavariables s and t denote terms;

x, y, z denote term variables; ν, τ and σ denote types; and α and β denote type variables.

Example 21.1

Let x, y, z ∈ ν. The following are valid terms: λx. λy. (x (x y)), (x λx. x). In the first term, all

occurrences of x are bound by the first λ-abstraction, and all variable occurrences are bound. In the

second term, the left occurrence of the variable x is free, the right occurrence of the variable x is bound

and the two occurrences should be deemed as completely unrelated; in fact, by α-equivalence, the

second term may be rewritten as (x λy. y) to emphasize this. Also, note that the variable occurring

immediately after a λ is to be regarded as belonging to the λ and should not be counted as an

occurrence.

21.2.1 Evaluation of Terms

Because λ-terms represent computational expressions we must state the rules for evaluating them.

The intuitive meaning of λ-abstractions stated earlier suggests the following λ-calculus rule, called

the β-reduction rule:

((λx. t) t ′) −→ t[t ′/x] (β)

In other words, because λx. t represents a function with formal parameter x, its application to

actual parameter t ′ should be evaluated by first replacing occurrences of the formal parameter in the

function body t by the argument (or actual parameter), and then evaluating the resulting term.

2We treat the symbol as V as a nonterminal. If {x1, x2 . . . } is the set of variable symbols, then the rule for V

is V ::= x1| x2 . . . .
3This notion makes sense for other kinds of “terms” that also have binding operators; for instance, later
we talk about type expressions containing binding operators, and for a type expression τ, fv(τ ) denotes the
free-type variables in τ .
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As satisfying as the β-reduction rule is, more there mat be needs to be said before we have a full

description of evaluation of λ-terms. On the face of it, there may be multiple loci within a term to

which β-reduction may be applied, leading to nondeterministic evaluation. For example, consider the

term ((λx. y) (λx. (x x)λx. (x x))) that contains two redexes — subterms that match the left-hand

side of the β-reduction rule and hence rewritable — and in evaluating the term we may reduce the

left redex first and then the other redex, or the other way round. Interestingly, the λ-calculus enjoys

the property that scheduling reductions in different orders cannot produce different results — the so-

called Church–Rosser theorem [6] — which somewhat mitigates the problem. However, choosing

one order might produce a result whereas choosing another can lead to an endless sequence of

reductions (a nonterminating computation). Moreover, the issue raises its head as we enrich the

λ-calculus with nonfunctional features; note that call-by-name and call-by-value evaluations can

produce different results in a conventional programming language.

Thus, a description of evaluation of λ-terms, in addition to the rewrite rules, must also spec-

ify a strategy for choosing redexes. To this end we define the notion of evaluation contexts. We

begin by defining contexts. A context, intuitively, is a λ-term with (possibly multiple occurrences)

“holes” inside which we place other λ-terms. Formally, a context is a term generated by the

following grammar:

C ::= ν | [] | λx.C| (C C)

Another way to look at a context is as follows: consider the expression tree corresponding to a

λ-term. Each node in the tree is (1) a leaf node annotated by a variable; (2) a degree 1 node annotated by

a λ-abstraction (and whose subtree is the tree corresponding to the term body); or (3) a degree 2 node

that represents a function application, and whose left and right subtrees are the trees corresponding

to the function and argument terms of an application, respectively. A context is formed by replacing

zero or more subterms (subtrees) by a leaf term annotated with the symbol []. Given a context C[]

and a term t , the term C[t] is the tree obtained by replacing all leaf nodes annotated with [] by the

tree corresponding to the term t .

Evaluation contexts are a subset of the set of all contexts. The set of evaluation contexts must

satisfy the following unique decomposition property: for any closed term t , a unique evaluation

context E[] and redex t ′ exist such that t = E[t ′]. An operational semantics specifies a collec-

tion of reduction rules and evaluation contexts. To apply one step of evaluation to a term t , we

decompose t into the form E[t ′], which is tantamount to locating the next subterm to be evaluated,

and perform a reduction on the redex t ′ to say the term t ′′. The result of the evaluation step is

the term E[t ′′]. We repeat this process by applying evaluation steps to the terms so generated

until the term obtained cannot be decomposed anymore into an evaluation context–redex pair. This

final term is the result of the evaluation. In the current case the only redexes are terms of the

form (λx.t t ′). However, as we look at various extension of λ-calculi we will encounter more

redex forms.

21.2.2 Two Operational Semantics

We now define two commonly studied operational semantics for λ-calculi. Both operational seman-

tics define the same set of reduction rules (consisting of the sole β-reduction rule) and differ only in

the evaluation contexts they specify.

The call-by-value operational semantics defines the following set of evaluation contexts:

E ::= []|(t E)

Also the sole reduction rule is a restriction of the β-rule ((λx· t) t ′) −→ t[t ′/x]; it requires that t ′

be a λ-abstraction.
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The call-by-name operational semantics defines the following set of evaluation contexts:

E ::= []| (E t)

The sole reduction rule is the β-rule. The reader should verify that for the two semantics the collection

of evaluation contexts indeed satisfies the unique decomposition property.

Example 21.2

Consider the term ((λx. y) ((λx. (x x)) λx. (x x))). Under call-by-value semantics we obtain

the following nonterminating evaluation sequence:

((λx. λy. y) ((λx. (x x)) λx. (x x)))

−→ ((λx. λy. y) ((λx. (x x)) λx. (x x))) −→ . . .

Under call-by-name semantics we obtain:

((λx. λy. y) ((λx. (x x)) λx. (x x))) −→∗ λy. y

21.3 Typed Lambda Calculi

Typed λ-calculi are λ-calculi associated with a type system. Many aspects of functional programming

languages, such as typing, and higher order functions are best studied in the stripped-down formalism

of typed λ-calculi. Nonfunctional aspects — such as the treatment of state, and local and nonlocal

control operators — have been studied in extensions of the λ-calculus where new constructs are

added to model these features.

Our goal in this section is to examine a series of increasingly sophisticated typing mechanisms.

We start with simple types, and progressively introduce various type constructions, polymorphism,

subtypes and existential types. All these type disciplines are to be found — to varying extents — in

programming languages today, though only some of these type disciplines are to be found in widely

used languages. The ML, language for example, supports a limited form of parametric polymorphism,

and its module language extension is based on existential types and higher order polymorphic

types. Object-oriented languages support subtyping and, to varying degrees, some form of subtype

polymorphism.

The specification of a typed λ-calculus starts with a description of the set of all legal type expres-

sions. Next, the language of well-formed raw terms is specified using a grammar. Such raw terms

are λ-terms embellished with type annotations. Finally, a set of typing rules is presented; these rules

determine which raw terms make type sense (such terms are said to be well-typed).

Not all raw terms make type sense. For instance, consider the term (x x), where x is assumed to

have type int, and int represents the set of integers. The term applies an integer (to itself), evidently

a meaningless computation. Typing rules play the role of weeding out terms whose evaluation can

cause type violations, as well as describing the types of acceptable terms.

The goal of a type system is to allow the conclusion of valid typing judgments. A typing judg-

ment states that a term has a certain type. Because terms may have free variables, and the type

of the term depends on the types of these variables, a typing judgment must explicitly specify

the type environment — a mapping from free variables to their types — and thus has the form

Ŵ ⊢ t : τ . Here t is a raw term and τ is a type. Ŵ is a type environment, that is, it is a partial

map from ν to the set of all types, with finite domain. It specifies the types of a finite set of

variables.
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Notation — Often we write a type environment as simply a set of its variable-type pairs, as in

{x1 : τ1, . . . , xn : τn}. The notation Ŵ[x : τ ] denotes a type environment obtained by extending the

type environment Ŵ with one more variable x and giving it the type τ .

21.3.1 Simple Types

In this section we present the types, raw terms and typing rules for the simply typed λ-calculus. This

system — denoted λ→ — forms the basis for a variety of extensions studied in later sections of this

chapter. The set of simple types is generated by the following grammar:

τ := A |τ → τ

Here A is a set of atomic (or basic) types — types such as integers and Booleans, for example. For

types τ1, τ2, the type τ1 → τ2 should be interpreted as the type of functions that accept arguments

of type τ1 and return results of type τ2.

The reader may wonder whether multiargument functions find a place in such a formulation.

One way to model such function types is using product types that we describe later. However, one

can model multiargument functions using simple types themselves — using a device called curried

function types. For instance, consider the type int → (int→int), where we have assumed an atomic

type int (denoting the set of integers). This represents the type of functions that accept an argument of

type integer, and return a function of type int→int, which itself accepts an integer argument. Thus,

a member of the type accepts two integers, acts on the first and, to the function returned, supplies the

second as an argument eventually outputting an integer; that is, it can be viewed as accepting two

integer arguments and returning an integer result.

Next, we describe the set of raw terms. These are simply terms where the λ-abstraction is annotated

with the type of the abstracted variable:

t := ν | (t t)| λx : τ . t

The typing rules for the simply typed λ-calculus appear in Table 21.1. Note that these rules

are templates; a specific instance of the rule is obtained by taking specific terms, types and type

environments. For instance, the following is an instance of the type abstraction rule:

{x : int, f : int → int} ⊢ (f x) : int

{f : int → int} ⊢ λx : int. (f x) : int → int

To establish a typing judgment one starts with the axioms — the rules without premises. In the

present case, we have one such, namely, the rule labeled (var). Then, one applies the preceding

rules repeatedly. This idea is formalized using the notion of type derivations. A type derivation is a

tree in which each node is annotated with a typing judgment; further, each leaf node is annotated

with an axiom, and for each nonleaf node labeled J there is a rule instance whose premises are the

judgments annotating the children and the conclusion is J .

TABLE 21.1 Typing Rules for Simply Typed λ-Calculus

x : τ ∈ Ŵ

Ŵ ⊢ x : τ
(var)

Ŵ, x : τ1 ⊢ t : τ2

Ŵ ⊢ λx : τ1. t : τ1 → τ2

(abs)

Ŵ ⊢ t1 : τ1 → τ2 Ŵ ⊢ t2 : τ1

Ŵ ⊢ (t1 t2) : τ2

(app)
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Example 21.3

Let ι be some type (say int). Then the following is a type derivation:

{x : ι, f : ι → ι → ι} ⊢ x : ι {x : ι, f : ι → ι → ι} ⊢ f : ι → ι → ι

{x : ι, f : ι → ι → ι} ⊢ (f x) : ι → ι
{x : ι, f : ι → ι → ι} ⊢ x : ι

{x : ι, f : ι → ι → ι} ⊢ ((f x) x) : ι

{f : ι → ι → ι} ⊢ λx : ι. ((f x) x) : ι → ι

{} ⊢ λf : ι → ι → ι. λx : ι. ((f x) x) : (ι → ι → ι) → (ι → ι)

The derivation allows us to conclude that the closed term λf : ι → ι → ι. λx : ι. ((f x) x) has

the type (ι → ι → ι) → (ι → ι).

21.3.2 Sum and Product Types

21.3.2.1 Products

A rather straightforward extension of λ→ is with product types. For any two types τ1 and τ2, the

product type τ1 × τ2 represents the type of pairs, whose first and second components are of type

τ1 and τ2, respectively. We, thus, have a new type constructor × , as well as new term constructs.

Specifically, the extended set of types is now given by the grammar:

τ := . . . | τ × τ

The raw terms, now, have constructs to construct pairs and to take them apart:

t := . . . | pair(t, t)| fst(t)| snd(t)

We also have the following typing rules in addition to the ones before:

Ŵ ⊢ t1 : τ1 Ŵ ⊢ t2 : τ2

Ŵ ⊢ pair(t1, t2) : τ1 × τ2
( × − pair)

Ŵ ⊢ t : τ1 × τ2

Ŵ ⊢ fst(t) : τ1
( × − fst)

Ŵ ⊢ t : τ1 × τ2

Ŵ ⊢ snd(t) : τ2
( × − snd)

Product types in this form are supported in many typed functional languages, including ML and

Haskell. However, in traditional imperative languages, these show up in a slightly different form as

record types, for instance, struct types in C. The difference is that records are multiary (arbitrary

arity) products, in which the components are marked with syntactic labels. Labeled products have

the potential to support an interesting form of polymorphism [60], though this is not to be found in

the widely known imperative languages.

21.3.2.2 Sums

If product types are inspired by the set-theoretical intuition of Cartesian product of sets — regarding

types as sets — then sum types are inspired by the set-theoretical notion of disjoint union of sets.

Given two types τ1 and τ2, the type τ1 + τ2 should be regarded as a type inhabited by pairs of the

following form: the first component is a marker that takes on the values “left” or “right”; the second

component is either an element of τ1 or τ2. If the first component is left (right, respectively), then

the second component must be an element of type τ1 (τ2, respectively). In conventional languages,

such as Pascal, this concept appears in the form of discriminated union types. An element of such a

type contains a discriminator field that identifies which of one of several types appears in the rest of

the union.

As before, the introduction of sum types results in the following extension to the grammar of types:

τ := . . . | τ + τ



Type Systems in Programming Languages 809

The raw terms now have constructs to construct left elements and right elements, as well as a

case-analysis construct that, given a τ1 + τ2 element, analyzes whether it is a left element or a

right element; extracts the τ1 or τ2 element contained within; and depending on the type of the

extracted element, passes that element to either a function accepting a τ1 or to a function that accepts

a τ2 element:

t := ...| inlτ1,τ2(t)| inrτ1,τ2(t)| case(s, t, u)

We also have the following typing rules in addition to the ones before:

Ŵ ⊢ u : τ1 + τ2 Ŵ ⊢ t1 : τ1 → τ Ŵ ⊢ t2 : τ2 → τ

Ŵ ⊢ case(u, t1, t2) : τ
(+ − case)

Ŵ ⊢ t : τ1

Ŵ ⊢ inlτ1,τ2(t) : τ1 + τ2
(+ − inl)

Ŵ ⊢ t : τ2

Ŵ ⊢ inrτ1,τ2(t) : τ1 + τ2
(+ − inr)

In ML, the language construct datatype is used to construct sum types. To take an example, a

financial application may want to deal with equities: an equity may either be a stock (with a string-

valued ticker symbol), or an option (with a string-valued ticker symbol, an exercise price and an

expiry date). In essence, what we have is a sum of two types: the product type int × string, and

string × real × string. In ML, the product type constructor is written ∗ and the sum type constructor

is written |; also the discriminants (called constructors in ML) can be given meaningful names. This

is illustrated in the following ML type declaration.

datatype equity = Stock of string| Option of string*real*string;

Values of the sum type can be constructed by “applying” the constructors to objects of the appropriate

type; thus, Options(’SUNW’, 15.00, ’December 2001’) is a value of this type. The ML pattern

matching mechanism [31] can be used to simulate the behavior of the case construct.

21.3.3 Type Safety

So far we have discussed a type system that admits functional, product and sum types. We now

formalize the notion of type safety outlined in the introduction to this chapter. A functional language

defines a set of values V (which are the results of program execution), and an evaluation map −→∗.

The evaluation map determines the results of evaluating any raw term; the result of such an evaluation

is a value, undefined or an error. A value is obtained when the evaluation is successful. An error

results when evaluation is blocked at some point because no operational rule is applicable, and yet

the term reached is not a value. The result can be undefined if evaluation occurs endlessly, and fails to

terminate. A type system for the language is said to be type safe if no well-typed raw term evaluates to

error. Type safety is a sanity check for a type system. The goal of type safety is sufficiently nontrivial

when it needs to be balanced against the need for language expressiveness; this is illustrated by the

fact that many of the widely used languages, in the interest of expressiveness, have sacrificed type

safety. For example, in C, type casts introduce type unsafety.

We have formulated type safety and operational semantics in this chapter, for the most part, only

for functional languages (though we do revisit this idea for a language with assignment statements in

Section 21.3.8). As we said earlier, much of the complexity of typing already appears in functional

subsets of imperative languages; hence, the focus is on functional languages, both in the literature

and in this chapter.

To make the issue of type safety concrete, we introduce a simple language based on the simply

typed λ-calculus called PCF programming language for computable functions [27] and state the

type-safety theorem for it. PCF has two base types — a type of integers and a type of Booleans.
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TABLE 21.2 Typing Rules for PCF

Ŵ ⊢ true : bool Ŵ ⊢ false : bool Ŵ ⊢ 0 : int

Ŵ ⊢ t : int

Ŵ ⊢ succ(t) : int

Ŵ ⊢ t : int

Ŵ ⊢ pred(t) : int

Ŵ, x : τ ⊢ t : τ

Ŵ ⊢ rec x : τ. t : τ

Ŵ ⊢ t : int

Ŵ zero?(t) : bool

Ŵ ⊢ t1 : bool Ŵ ⊢ t2 : τ Ŵ ⊢ t3 : τ

Ŵ ⊢ cond(t1, t2, t3) : τ

It has a constant 0, constructs for incrementing and decrementing numbers, a zero-test predicate, a

conditional and a construct (rec) for making recursive definitions. More formally, the set of types is

specified by:

τ ::= int| bool| τ → τ

Let ν be a set of term variables. The raw terms of PCF are specified by the following grammar:

t := 0| true| false| tyerr| succ(t)| pred(t)| zero?(t)| cond(t, t, t)|

ν | (t t)| λx : τ . t | rec x : τ. t

The typing rules comprise the rules stated for the λ→, extended with those given in Table 21.2. As

far as an operational semantics is concerned, we can assume call-by-name or call-by-value evaluation.

The set of evaluation contexts is defined by the following grammar:

E ::= []| (E M)| succ(E)| pred(E)| zero?(E)| cond(E, t, t)

and the evaluation rules are:

cond(true, t1, t2) −→ t1 cond(false, t1, t2) −→ t2 pred(succ(t)) −→ t

pred(0) −→ 0 zero?(succ(t)) −→ false zero?(0) −→ true

rec x : τ . t −→ t[rec x : τ . t/x]

Further, define the set of type-error terms by the set as follows:

• cond(t1, t2, t3), where t1 is not true or false.

• succ(t), pred(t), zero?(t) where t is not of the form 0 or succ(t).

• (t1 t2), where t1 is not a λ-abstraction.

A PCF term t evaluates to a type error if there is a sequence t ≡ t0 −→ . . . tn, where n ≥ 0, −→ is

the one-step evaluation relation determined by the preceding specified notion of evaluation contexts

and reduction rules, and the redex in tn is a type-error term. The type safety of PCF is formalized in

the following theorem [27]:

Theorem 21.1. If t is a raw, closed, well-typed PCF term then t does not evaluate to a type error.

21.3.4 Type Inference

Although requiring type annotations in programs considerably benefits programming practice, as type

systems get richer and richer, annotating programs with types becomes cumbersome. In addition, the

programmer may annotate symbols in a program with types that are not as general as they could be,
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thereby restricting the reusability of programs; this possibility arises when the type system supports

some form of polymorphism. For instance, consider a program in C++ with a class hierarchy in

which class B is a subclass of class A. A programmer may define a function with the declaration

void f(B), when in fact it is both meaningful and type correct to declare it to be of the more general

type void f(A).Clearly, the more general type makes the function more broadly applicable.

The process of type inference is intended to address these two issues. For many type disciplines

it is possible to construct type reconstruction algorithms that accept as input a program in which

some or all the type information is elided, and produce as output a program where the elided

information is deduced and restored. In general, however, two obstacles exist: one, the problem

of type reconstruction itself may be undecidable; two, there may be more than one — and worse

infinitely many — possible type reconstructions, with no finite way to summarize the reconstructed

type information. In these cases, we may only be able to perform incomplete type inference: in the

first case, the algorithm may fail to reconstruct the type when in fact the program is typable; in the

second case, the type information summary may be incomplete because it may not subsume one

or more of the possible types. We encounter these difficulties when we consider the second-order

polymorphic λ-calculus in Section 21.3.6. In many type systems where one or both of these obstacles

present themselves, considerable research has gone into discovering subsystems or variants where

these obstacles are absent.

In this section we consider the type reconstruction problem for the simply typed λ-calculus with

a single base type ι. For a simply typed term define erase(t) to be the type-free term obtained by

deleting all types occurring in t (note that the only occurrences of types in simply typed terms are as

annotations to the bound variables in λ-abstractions). Our goal is to design an algorithm such that

for any type-free term u, either one or the other of the following conditions exist:

1. The algorithm produces a typed term t and a type environment Ŵ such that Ŵ ⊢ t :τ is provable

for some type τ , and erase(t) = u (that is the type erasure of t is u).

2. The algorithm returns failure. In this case, no Ŵ and satisfy the property stated in 1.

In general, even if a pair (Ŵ, t) satisfies this requirement, there is not a unique one. One reason is

that Ŵ may contain type bindings for superfluous variables. Thus, we require Ŵ to only define types

for variables that occur free in u. The problem persists, however. Consider u ≡ λx. x; note that, for

any type τ , the pair Ŵ ≡ {} and t ≡ λx : τ . x satisfy the preceding property. However, this example

also demonstrates a scheme to this madness: a pattern to the various type annotations is possible.

To formalize this idea extend the set of types with a countably infinite set of variables, T , so that

types are generated by the grammar:4

τ := T | ι| τ → τ

Furthermore, it suffices to have the type reconstruction algorithm output the type environment and

the type of the (type annotated) term; the type annotation of the term can be easily recovered from

the type environment and the term type.

By revisiting our example we see that for the term λx. x, any typing can be obtained by applying a

type substitution to the type α → α. A type substitution is a map from a finite set of type variables to

types. To apply a type substitution θ , to a type τ , we replace each occurrence of a type variable α in

τ , that is in the domain of θ , by the type θ(α); the result is written τθ . This motivates the following

definition that captures the intuitive notion of the most general type for a type-free term.

4In the case of full-type reconstruction the base type ι is superfluous, but is relevant when we have term
constants, or when we perform type reconstruction for terms where a part of the type information is elided.
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Definition 21.1 (principal types). Let u be a closed type-free term. The type τ is said to be a

principal type for u, if:

• There is a typed term t such that erase(t) = u, and, {} ⊢ t : τ

• For any term t and type τ ′ such that {} ⊢ t : τ ′ and u = erase(t), a type substitution θ exists

such that τθ = τ ′.

We can extend this notion to open terms as follows: the pair (Ŵ, τ ) is called a principal type

environment-type pair for a type-free term u if:

• Ŵ ⊢ t : τ .

• For any term t , type environment Ŵ′ and type τ such that Ŵ′ ⊢ t : τ ′, a substitution θ exists

such that τ ′ = τθ , and for any variable x occurring free in u, Ŵ′(x) = Ŵ(x)θ .

Two type environment-type pairs that can be obtained from each other by merely renaming the free-

type variables occurring in them are considered equivalent. Given a type-free term that is typable,

a unique principal type environment-type pair exists. We present an algorithm that produces the

principal type environment-type pair for a type-free term u. The algorithm makes use of the notion

of unification and most general unifiers [54]. The following discussion presents the relevant ideas

for the specific case of type expressions.

Two types τ1 and τ2 are unifiable if a type substitution θ exists such that τ1θ = τ2θ ; such a

substitution is called a unifier of τ1 and τ2. In English, viewing variables in types as placeholders,

two types are deemed unifiable if those placeholders may be replaced by types in such a way that

the two types become identical. A unifier θ is said to be the most general unifier (mgu) if for any

unifier θ ′, a substitution θ ′′ exists such that for any type variable α occurring in either τ1 or τ2,

θ ′(α) = θ ′′(θ(α)).

Example 21.4

Let ι be a type constant. Consider the substitution θ = {α1 �→ ι → ι, α2 �→ ι, α3 �→ ι, α4 �→ ι}.

This substitution is defined on the set of variables {α1, α2, α3, α4}, and maps the variable to the left of

the �→ symbol to the type to the right of the symbol. Now consider type expressions τ1 = (α1 → α2)

and τ2 = (α3 → ι) → α3. Applying the substitution θ to, both, τ1 and τ2, results in the same type

expression; that is, τ1 and τ2 are unifiable. However, this substitution “overcommits” in unifying τ1

and τ2. It suffices for a unifying substitution to unify α1 and α3 → ι, and unifying α3 and α2. The

substitution θ0 = {α1 �→ α3 → ι, α2 �→ α3} achieves this. It is a unifier, and as the reader can verify,

the most general unifier. Renaming type variables that occur in the codomain of the most general

unifier — for instance replacing α3 by β in θ0 — also results in a most general unifier.

The notions of unifiability and most general unifier apply not just to a pair of types but to a set

of pairs of types. If S is a set of pairs of types, a unifier of the set is a substitution θ satisfying the

following property: for any (τ1, τ2) ∈ S, τ1θ = τ2θ . As before, a unifier θ is said to be the mgu

for S if for any unifier θ ′ of S, a substitution θ ′′ exists such that for any type variable α occurring

in some type in S, θ ′(α) = θ ′′(θ(α)). The following lemma is a corollary of the general theorem

stating existence of most general unifiers for unifiable algebraic terms [54].

Lemma 21.1. For any two unifiable types there is a most general unifier; the mgu is unique up to

renaming of the variables occurring in the codomain. More generally if S is a unifiable set of type

pairs, then there is a most general unifier for S.

For types τ1 and τ2, mgu(τ1, τ2) denotes the most general unifier (fixing some choice of variables in

the codomain). Likewise for a unifiable set S of type pairs, mgu(S) denotes the most general unifier

of the set.
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Next we describe an algorithm, H, that, given a type-free term t , returns the principal

environment-type pair for it if one exists, and fails if one does not exist. H can be defined inductively

on the structure of a type-free term u. To make the induction work we have to generalize it. We assume

that H is presented a type environment Ŵ− and a term u, where Ŵ− is an environment containing

prior type information. It returns a pair (Ŵ, τ ), where Ŵ extends Ŵ−, and τ is the reconstructed type

of u. The three cases follow:

• If u ≡ x, then Ŵ = Ŵ−[x : α], and τ = α; here α is a type variable chosen fresh, that is, one

that does not already occur in Ŵ−.

• If u ≡ λx.t ′, then choose a type variable α that does not occur in Ŵ−. Invoke H on

(Ŵ−[x : α], t ′). Let (Ŵ+, τ ′) be the pair returned. Then Ŵ is the type environment obtained

by removing the type binding for variable x from Ŵ+. If τ ′′ is the type of x in Ŵ+, the type to

be output, τ , is τ ′′ → τ ′.

• If t = (t1 t2) then invoke H on the pairs (Ŵ−, t1) and (Ŵ−, t2). If either invocation fails H
returns failure. Otherwise, let (Ŵ1, τ1) = H(Ŵ−, t1) and (Ŵ2, τ2) = H(Ŵ−, t2). Consider a

variable α that does not occur in either Ŵ1 or Ŵ2. Consider the set:

S = {(τ2 → α, τ1)} ∪ {(Ŵ1(x), Ŵ2(x))| x has a type binding in both Ŵ1 and Ŵ2}

If S is not unifiable, return failure; otherwise, let θ = mgu(S). Then set τ = θ(α).

As for Ŵ, it is defined as follows: for any variable, x, with a type binding in both Ŵ1 and Ŵ2, define

Ŵ(x) as Ŵ1(x)θ = Ŵ2(x)θ (recall that θ unifies Ŵ1(x) and Ŵ2(x)). For any variable, y, with a type

binding only in Ŵ1, (Ŵ2, respectively), define Ŵ(y) as Ŵ1(y)θ (Ŵ2(y)θ , respectively).

Theorem 21.2. For any type-free term u:

• If H returns failure, there is no type environment Ŵ, typed term t and type τ such that Ŵ ⊢ t : τ

and erase(t) = u.

• If H returns (Ŵ, τ ), then (Ŵ, τ ) is the principal type environment-type pair for u.

Algorithm H demonstrates that the inference of types actually amounts to unifiability of type

expressions. More generally, we can regard type inference algorithms as attempting to solve

constraints over algebras of types. The constraints may involve equalities (as was the case here),

subtyping relationships (more on this in Section 21.3.7), or subset inclusions [4, 20]. A constraint

solving framework can be useful even in situations where the system does not enjoy a principal

typing property; the type information deduced is, essentially, a simplified constraint set. If type

inference is performed for consumption by a programmer, an issue may result with presenting the

deduced type information in such cases. However, it makes sense to perform type inference — in

a rich type system that may not enjoy the principal type property — primarily for compilation and

compiler optimization purposes; in such cases the inability to present type information succinctly is

not problematic.

Partial type inference — Although the inference of types is a welcome objective from a practical

standpoint, efficient and complete type inference, as well as the existence of some notion of minimal

or principal types, is not possible for many rich type disciplines. One approach to overcoming this

obstacle is partial type inference. In partial type inference, the programmer provides some type

annotation and expects the type inference algorithm to discover the rest of the type information.

This opens up the possibility for implementing heuristic techniques to attempt to discover this

information. However, in practice, it is helpful to have a partial type inference framework where an

abstract description exists — more abstract than the specifics of a particular algorithm — for when

type inference can succeed in eliciting the elided information, and when it cannot. In [51], the authors

consider a (syntactic variant of) the second-order λ-calculus, and describe two algorithms — one for
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the reconstruction of the (elided) types at which polymorphic functions are instantiated; the other, for

the inference of the types of parameters of anonymous functions that appear as arguments to other

functions. They argue empirically that these programming patterns — polymorphic instantiation

and anonymous function definitions — occur very frequently in practice, and the inference of the

type information described earlier is of considerable value. Their algorithm produces a minimal

type where possible, and where no such minimal type exists it reports as such. The techniques they

describe are local, in the sense that type information is propagated only between adjacent nodes in

the abstract syntax tree. Although the algorithms are not (and cannot be) complete, they are locally

complete — that is, the missing type information is inferred if it can be done so locally.

21.3.5 Recursive Types

Recursive definitions of types are fairly common in programming languages. For instance, the

following type definition in C defines the type of list elements containing an integer field:

typedef struct List {int fld; List* next; } List

The following is a definition of complete binary trees with integer-valued leaves in ML:

datatype inttree = leaf of int| node of inttree ∗ inttree

In type theory, recursive types are introduced by way of a type recursion operator rec; the term syntax

is extended by constructs that allow elements of recursive type to be constructed and constructs that

allow recursive type elements to be taken apart. First, the grammar of types:

τ ::= T | τ → τ | rec α. τ

The type rec α. τ , where, generally, α occurs in τ , should be read as the (smallest) type that

is the solution of the equation α = τ . Consider the type rec α. int + α × α, for instance. The

corresponding type equation is α = int+α × α. It is not hard to see that the type of finite, complete

binary trees with integer-valued leaves is the least solution to this type equation: this type consists

of single-node trees labeled with integers (which can be placed in one-to-one correspondence with

the integers), and complete binary trees with more than one node; each tree of the latter form can be

regarded as a pair of complete binary trees. In other words, equality here is really to be interpreted

as isomorphism. Because a formal semantics of types is beyond the scope of this chapter, we do not

expand on this theme here.

Terms are defined by:

t ::= ν | λx : τ. t | (t t)| fold(t)| unfold(t)

To understand the fold(.) and unfold(.) operators let us briefly revisit the preceding type of complete

binary trees. If tree is the collection of complete binary trees with integer leaves, then tree is

isomorphic to int + tree × tree. fold(.) and unfold(.) represents the two maps corresponding to

this isomorphism; unfold(.) acts on an element of tree yielding as result the corresponding element

in the union type int + tree × tree. It maps each single-node tree, labeled with integer n, to the

element in the left component of the union that is labeled n; also, it maps a tree whose root node has

subtrees A and B to an element in the right component of the union that is labeled by the pair (A, B).

The operator fold(.) acts in the opposite direction and is the inverse of unfold(.). Given a binary

tree we can use unfold() to take it apart, act on the element of type int + (tree × tree) — whose

top level operator is not type recursion. We can also construct objects of the recursive type tree by

first constructing an object of type int + (tree × tree) and applying operator fold(). Here is an
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example of a function that accepts a tree as argument and returns the tree obtained by incrementing

the integers at its leaves by 1:

f (x : tree) = case(unfold(x), λx. fold(x + 1), λy. λz. fold((f y), (f z)))

We have defined the function f by recursion (and eschewed the term recursion syntax of PCF in

favor of this more readable notation). The argument x is first unfolded, and a case-based computation

is performed. One case is for when the unfolded object belongs to the left component of the union,

and the other is for when it belongs to the right component of the union.

The operational semantics for the extension by recursive types can be captured by extending the

evaluation rules of λ→ by the following rules:

fold(unfold(M)) −→ M unfold(fold(M)) −→ M

The new constructs extend the set of evaluation contexts; for the call-by-name case, the new contexts

are given by:

E[] ::= []| (E[] t)| unfold(E[])| fold(E[])

With these definitions, a type safety theorem can be proved for the system. Similarly, type safety can

be proved for a call-by-value variant as well.

Type inference — The type inference problem for a system consisting of the → type constructor

and recursive types can be formulated, as for other systems, by first defining type erasure of terms

and then asking if the type of a type-erased term can be reconstructed. Define type erasure of a term

to mean simply the removal of all types from terms; note that, in a raw term, besides λ-abstractions

the fold and unfold constructs carry type information; these constructs are also erased during type

erasure. Type inference for this system can be reduced to the problem of solving a constraint set

made up of type equations. An algorithm for this decision problem can be constructed using tech-

niques presented in [35]; in fact, [35] addresses the larger problem of type inference for systems

with recursive types and subtyping.

Name and structural equivalence — The notion of type equality assumes significance with

the addition of recursive types because type recursion introduces the possibility of nontrivial type

equality. In a number of languages type equality is determined by identity of type names instead of

type structure; in such a language, for example, two structure types with identical set of fields and

field types are not considered interchangeable. In Modula-2, 2 types are considered equal only if they

are stated to be equal. Algol-68 was the first language to rely on a structural type equality algorithm

for recursive types. In ML, a recursive type is equal to its unfolding; barring that name equivalence

prevails. However, in [5] the authors argue that name matching is problematic in languages that

support data persistence and data migration. When should two types be deemed equal? A system

of rules for proving type equations must include reflexivity, transitivity and the unfolding rule —

namely, rec α. τ = τ [(rec α. τ )/α] — and a rule for equality of function types stating that

τ1 = τ2 and ν1 = ν2 imply that τ1 → ν1 = τ2 → ν2. However, valid equality relationships

exist that cannot be validated with merely these rules. Consider the types τ ≡ rec α. int → α and

ν ≡ rec α. int → int → α. The infinitary expansions of τ and ν are identical. The rules, mentioned

earlier, for deducing type equality are not adequate to prove that τ = ν. What we need is a rule

that, in essence, states that for any nontrivial (nonvariable) type expression ν with free variable α, a

unique solution exists for the type equation α = ν. Hence, the rule schema:

ν[τ/α] = τ ν[τ ′/α] = τ ′ ν nontrivial

τ = τ ′ (= unique)
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21.3.6 Polymorphism

Consider the (type-free) definition of the function map (defined using ML notation):

fun map f [] = []|
map f (x::l) = (f x)::map f l

This defines a functional that accepts a function f and a list [x1, . . . , xn], and returns the list

[f (x1), . . . , f (xn)]. In the type inference framework studied so far (Section 21.3.4), we can assign

it any type of the form (α → β) → α list → β list. We might make this definition in the context

of a larger program, and proceed to use it at different points in the program. If map is used in a

context where it acts on an int list, the type inference algorithm H infers that α ≡ int. Once α is

determined to be int, it would be impossible to invoke map (in other contexts) on lists of any type

other than int list. The type systems studied so far do not support a crucial form of reuse, one where

a function is defined so as to be instantiable at several different types and reused as such. In contrast,

in a language supporting parametric polymorphism — ML and Haskell, for instance — map can be

assigned the polymorphic type ∀α, β. (α → β) → α list → β list. This allows any occurrence of

map in a program to have any instance of this type, completely independent of the types of the other

occurrences.

Polymorphism means having many forms; in a type-theoretical context, a polymorphic entity is

one that has many distinct types. A fairly common form of polymorphism5 is ad hoc polymorphism.

For example, the addition operator in most languages has at least a couple different types. In C, it

can be given the type int × int → int as well as the type double × double → double. We can

regard the symbol + as one that can be type instantiated to have the type int × int → int, as well

as instantiated to have the type double × double → double. This overloading mechanism is a

syntactic convenience, however; semantically the integer addition operator and the double addition

operator are unrelated. However, an element of a polymorphic type, in a system supporting parametric

polymorphism, can be instantiated at many different types and these instantiations are semantically

related; intuitively, the map function acting on integer lists and float lists “acts in the exact same way.”

21.3.6.1 Second-Order λ-Calculus

The formalism, λ∀, also called the second-order polymorphic λ-calculus [26, 53], comprises the set

of types — called polymorphic types — defined by the following grammar:

τ ::= T | τ → τ | ∀α. τ

We can add other type constructions — sum and product, for instance — without much difficulty,

but we keep the system simple at this stage. Types of the form ∀α. τ are called universally quantified

types; the type variable α is a bound variable in the type expression ∀α. τ .

The ability to have terms of polymorphic types is accompanied by two extensions to the syntax

of raw terms: one is the ability to explicitly instantiate a term of universally quantified type at some

specified type; the other is the ability to abstract over the type variables occurring in a term so that

it may receive a universally quantified type:

t ::= ν | λx : τ . t | (t t)| 
α. t | t[τ ]

For instance, the term λx : α. x has type α → α, and the term obtained by “type abstract-

ing” it, 
α. λx : α. x, receives the type ∀α. α → α. We can now “type instantiate” this last

5We do not discuss ad hoc polymorphism in the rest of this chapter. The addition of ad hoc polymorphism
to languages that support parametric polymorphism and type inference is studied in [59].
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term — obtaining the term (
α. λx : α. x)[int → int] — which gives us the identity function of

type (int → int) → (int → int).

The typing rules for λ∀can be obtained by extending the typing rules of λ→ by adding the two

rules that follow. It should be noted that in the rules carried over from λ→, the types occurring in type

environments and as the types of terms are, in general, polymorphic types. The new rules describe

how the new language constructs are to be typed:

Ŵ ⊢ t : τ α /∈ fv(Ŵ) ∪ fv(τ )

Ŵ ⊢ 
α. t : ∀α. τ
(∀ − abs)

Ŵ ⊢ t : ∀α. τ

Ŵ ⊢ t[τ ′] : τ [τ ′/α]
(∀ − inst)

The notation fv(Ŵ) refers to the type variables that occur free in the various types assigned to term

variables by Ŵ. In the type abstraction rule, we require that the variable that is abstracted over does

not occur in the types of variables that are free in the term.

A key concept here is that of type impredicativity. Note that in explaining universally quantified

types, ∀α. τ , we referred to the notion of a family of elements indexed by the set of all types. An

element of circularity exists here because the set of all types includes ∀α. τ . Impredicativity leads

to semantic complexity, and the formal analysis of impredicative systems can be nontrivial.

Some key results about this system follow:

• Given a typing judgment, the problem of deciding whether the judgment is derivable is

decidable.

• Given a closed type-free term t the problem of type reconstruction for the term is unsolvable [61];

that is, it is undecidable whether a typable raw term exists whose erasure is t .

• The principal typing property does not carry over to the λ∀.

In other words, although we have a powerful type discipline, we cannot have the benefits of

efficient type inference for such a system.

21.3.6.2 ML Polymorphism

A considerable weakening of second-order polymorphism has been implemented in the ML language.

This fragment enjoys the principal typing property, and has a decidable type inference problem [18].

In ML, polymorphism appears in a very restricted form — one that does not allow function types

(or, for that matter, any type constructors) with polymorphic argument types; hence, this restricted

form of polymorphism is also called let polymorphism. We employ a fragment λML of ML in this

section to explain the main ideas. λML defines two kinds of types: monotypes and type schemes. The

set of monotypes — denoted by the metavariable τ — is generated by the grammar:

τ ::= T | τ → τ

Type schemes — denoted by the metavariable σ and its subscripted variants — are of the form

∀α1, . . . , αn.. τ , where τ is a monotype. The variable α in the type scheme ∀α.. τ ranges over the set

of monotypes. By adopting this stratification, impredicativity is kept at bay.

The set of λML raw terms is specified by the following grammar:

t ::= νT | νS | λx : τ . t | (t t)| let X : σ = t in t end| X[τ ]

Here, we have two variable sets — the lower case metavariables x, y, z range over the set νT and

represent variables that are monotypes. The upper case metavariables X, Y, Z range over the set νS

and represent variables that are of universally quantified type. The former variables can occur as

formal parameters of functions; the latter variables are bound by the let construct, which allows the

binding of polymorphic entities to variables.
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The rules for λML comprise the rules for λ→ extended by the following two rules:

X : ∀α. σ ∈ Ŵ

Ŵ ⊢ X[τ ] : σ [τ/α]
(type inst)

Ŵ, X : ∀α1, . . . , αn. τ ′ ⊢ t : τ Ŵ, X : τ ′ ⊢ t ′ : τ ′ αi /∈ fv(Ŵ)

Ŵ ⊢ let X : ∀α1, . . . , αn. τ ′ = t ′ in t end : τ
(let)

For this system we regain the key properties that were lost in the second-order λ-calculus. Define a

type-erased λML term to be a raw λML term from which all types have been removed. The following

key results can be shown for this system [27]:

• The system λML enjoys the principal typing property.

• Type reconstruction is decidable. For any type-erased λML term t , an algorithm exists to

determine whether there is a well-typed λML term whose type-erasure is t .

The type inference algorithm is essentially the algorithm H extended to handle the let construct,

and to deal with type environments containing variables whose types are type schemes. The latter

poses no serious problems. As for the former, suppose the expression, whose type is to be inferred,

is of the form let X = t ′ in t end. For simplicity, assume that the definition X = t ′ is not recursive;

the recursive case is left as an exercise to the reader. Invoke H on t ′ to deduce its type τ ; generalize

the type, τ , to the type scheme ∀α. τ , where α is the set of type variables free in τ but not in the type

environment; assign the type ∀α. τ to X and in the extended type environment infer the type of t .

The time complexity of type inference for λML is EXPTIME [37].

Polymorphic recursion — In the let rule, it should be noted that when typing let X : σ =

t ′ in t end, although X has polymorphic type in t it must have monomorphic type while typing

t ′. In [46], this monomorphic typing rule for recursive definitions has been extended to one in

which x is used polymorphically in t ′; further, it is shown to be sound and to possess the principal

typing property. Polymorphic recursive definitions are useful, but the type inference problem for

this system — which is called the Milner–Mycroft calculus — is undecidable [33]; however, [33]

presents some reasons why type inference with polymorphic recursion appears to be practical despite

its undecidability.

21.3.7 Subtyping

Subtyping is a mechanism where, roughly speaking, the values comprising a type form a subset

of values comprising another type. Subtyping appears in many programming languages. It appears

in the form of coercions of atomic types — or automatic conversion of one type to another — in

languages like C. In the language Caml, it appears in the form of record type subsumption, where a

record of one type, τ1, can be considered to also belong to another record type τ2, provided the latter

has fewer fields than the former, and the type in τ2 of each common field is a subtype of the type

of the field in τ1. In object-oriented languages like C++ and Java, a subtyping relationship holds

between a class and any class derived from it.

The semantics of subtyping has been well studied. In such semantics a type is regarded as a

subtype of another if there is a coercion function from the semantic domain of values corresponding

to the subtype, to the semantic domain of values that constitute the supertype. Such a coercion map

“forgets” some information in its domain to yield the “coerced” element in the range. For instance,

consider record types τ1 and τ2, where τ1 has one integer-valued field, and τ2 extends the type τ1

with a Boolean valued field. We can interpret τ2 by the type of pairs whose first component is an

integer and second component is a Boolean; τ1 can be interpreted as the type of 1-tuple of integers,

or simply, integers. τ2 is a subtype of τ1, and this is written τ2 ⊑ τ1. The obvious coercion map from

τ2 to τ1 maps a pair to its first component, forgetting the rest of the contents of the pair.
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This intuitive interpretation of subtyping suggests some properties. The subtyping relation is

reflexive and transitive. How does subtyping interact with the function space operator? Suppose f

is a function of type τ → ν. If τ− ⊑ τ , then f can act on an element of τ− because this element can

be silently coerced before being acted on by f ; the result would be an element of type ν; if ν ⊑ ν+,

then the result can be coerced to type ν+. Given the coercion maps from τ− to τ , and ν to ν+, we

have arrived at a method of coercing a function of type τ → ν, to τ− → ν+. In other words, if

τ− ⊑ τ and ν ⊑ ν+, then τ → ν ⊑ τ− → ν+. This idea is described by saying that the function

type constructor, . → ., is contravariant with respect to the type argument that appears to the left of

the arrow symbol and covariant with respect to the type argument that appears to the right.

To add subtyping to a programming language, we can begin with a collection Atom of atomic

types, and a subtyping relation on the type expressions, that is, a binary relation C on type expressions.

For instance, we can take the set of atomic types to be Atom = {int, real} and the subtyping relation

to be C = {int ⊑ real}. More generally, C can be a relation over arbitrary types, not merely atomic

types. If the subtype relation is a relation over atomic types and type variables, we call the type

system an atomic subtyping system.

We proceed to develop an extension of λ→ with subtyping. Reasoning about typing in this calculus

involves two forms of judgments. One, as usual, is a form of judgment asserting that a term has a

certain type. The other is a form of judgment asserting that a type is a subtype of another. Assumptions

in the first judgment form are pairs — one component is a type environment Ŵ, and the other is a

set of assumptions stating that a type is a subtype of another. We use the metavariable C to denote

the subtyping assumptions. Thus, a judgment has either the form C; Ŵ ⊢ t : τ , or C ⊢ τ1 ⊑ τ2. The

former asserts that under the assignment Ŵ, and subtyping assumptions C, the term t has type τ . The

latter asserts that under subtyping assumption C, τ1 is a subtype of τ2. The intuitions developed in

the previous paragraphs can now be formalized using the following rules:

τ1 ⊑ τ2 ∈ C
C ⊢ τ1 ⊑ τ2

(axiom)
C ⊢ τ ⊑ τ

(reflexive)

C ⊢ τ1 ⊑ τ2 C ⊢ τ2 ⊑ τ3

C ⊢ τ1 ⊑ τ3
(transitive)

C ⊢ τ1 ⊑ τ2 C ⊢ ν1 ⊑ ν2

C ⊢ ν1 → τ2 ⊑ τ1 → ν2
(subtype →)

Finally, the rules of λ→ can be extended with the following subsumption rule:

C ⊢ τ1 ⊑ τ2 Ŵ; C ⊢ t : τ1

Ŵ; C ⊢ t : τ2
(subsumption)

21.3.7.1 Coherence

Before we get to type inference for this system we ask a simpler, but important, question. Given

an explicitly typed term in this calculus, is there an algorithm to determine whether the term is

typable? It is not hard to construct such an algorithm, but we notice that unlike other calculi we have

encountered so far, explicitly typed terms can have multiple-type derivations. For instance, using the

subtyping assumption C = {int ⊑ real}, the term λx : int. x can be assigned the type int → real

using two distinct derivations. One derivation first establishes that the term has type int → int, then

uses the rules (transitive) and (subtype →) to conclude that int → int ⊑ int → real, and finally

uses the rule (subsumption) to conclude that {x : int}; C ⊢ λx : int. x : int → real.

A different derivation uses the rule (subsumption) to prove that {x : int}; C ⊢ x : real, and

then uses the rule (abs) (see Table 21.1) to conclude that {x : int}; C ⊢ λx : int. x : int → real.

Each derivation corresponds to inserting coercion functions differently in the two terms. Inserting

coercion functions in a term is important in language implementation; a compiler for C++ needs

to determine whether a coercion has to be applied to the right-hand side of an assignment and if

so what the coercion function is; coercion applied to a pointer may translate to nontrivial pointer
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arithmetic. Consequently, if coercions can be introduced into a term in several different ways owing to

multiple-type derivations, the term may evaluate differently for the different ways to insert coercions.

The same issue arises when giving denotational semantics to terms, where differing ways of inserting

coercion functions in a term can result in potentially assigning different meanings to the term. This

has been referred to as the coherence problem for subtyping calculi.

An approach to the coherence problem of a calculus appears in [7, 17]. The general approach is

to reduce the problem of coherence for a calculus to a set of equations between terms built from

the coercion maps in the calculus. Consider the simply typed λ-calculus extended with a set of type

constants and a collection of atomic subtyping relations. Let fτ1,τ2 denote the “standard” coercion

from τ1 to τ2, where τ1 ⊑ τ2, induced by the a priori coercions between types in the subtyping

assumptions. Consider types τ1, τ2, ν1, ν2 such that τ1 ⊑ τ2 and ν1 ⊑ ν2; then coherence requires

that the equation fν1→τ2,τ1→ν2〈a〉(b) = fν1,ν2〈a(fτ1,τ2〈b〉)〉 must hold. Here a is of type ν1 → τ2,

b is of type τ1 and the notation f 〈a〉 stands for the application of the coercion function f to a.

For a semantics to be coherent, this and other coherence equations must hold. From a compilation

perspective, the coercion operators inserted by a compiler must satisfy these equations if evaluation

is not to be influenced by the specific type derivation that is constructed.

In languages that support generic operators, it is important for coercions to interact well with

generic operators. Consider a language that has types int and real, with int ⊑ real, and the generic

operator +. In the presence of generic operators we have a form of ad hoc polymorphism: the

operator + is polymorphic but its instances at the various types do not necessarily have any systematic

relationship with one another. If we have an assignment of the form x := y + z, where x is a real and

y and z are integers, then there are a couple different ways of inserting coercion operators to achieve

the requisite type casting. We must then require certain equalities to hold, for coherence reasons: one

equation, for instance, is fint,real(x) +real fint,real(y) = fint,real(x +int y). Reynolds [52] addresses

the problem of designing an imperative language supporting implicit coercions and generic operators

where the necessary coherence conditions are realized.

21.3.7.2 Extending Subtyping to Richer Type Disciplines

It is easy to see that given τ ⊑ τ ′ and ν ⊑ ν′, τ × ν ⊑ τ ′ × ν′. Likewise, τ + ν ⊑ τ ′ + ν′. Now

consider polymorphic types: when does subtyping hold between two universally quantified types?

Suppose C ⊢ τ ⊑ ν, and consider a type variable α that possibly occurs free in τ , ν or both. Also,6

there is a coercion map, definable by the term fα that coerces τ to ν. Then the term 
α. fα defines

the coercion map from ∀α. τ to ∀α. ν. This informal argument shows that ∀α. τ ⊑ ∀α. ν.

An interesting type construction called bounded quantification has been studied extensively in

the literature [11]. As stated earlier, an element, e, of the type ∀α. τ represents a family of entities

indexed by the collection of all types; the entity indexed by type τ ′ is the type instantiation of e at

type τ ′ and has the type τ [τ ′/α]. In like fashion, each element of the type ∀α ⊑ ν. τ is a family of

entities indexed by the family of types that are subtypes of ν. For a concrete example, suppose we

have a language with record types and record subtyping, and bounded and unbounded quantification.

Then the type ∀α. α → int is populated by polymorphic functions that can take arguments of any

type and return an integer (barring constant-valued functions one would be hard put to come up with

any functions of this type). Each member of the type ∀α ⊑ {b : int}. α → int, on the other hand, is

a function that takes an argument whose type is a subtype of the record type with an integer-valued

field labeled b, and returns an integer result. An example of a function of this type is the function

that returns the value in the b field of its argument.

6We can make this more precise by arguing by induction on the derivation of C ⊢ τ ⊑ ν that a term exists
for witnessing C ⊢ τ ⊑ ν.
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As with unbounded universally quantified types, we can deduce the rule for subtyping bounded

quantified types:

C, ν1 ⊑ ν2 ⊢ τ ⊑ ν

C ⊢ ∀α ⊑ ν1. τ ⊑ ∀α ⊑ ν2. ν
(subtype − ∀ bounded)

For recursive types the situation is more subtle. In analogy with polymorphic types we might

consider the rule (†): if τ1 ⊑ τ2 then rec α. τ1 ⊑ rec α. τ2. Consider types ν− and ν+, and suppose

ν− ⊑ ν+. By rule (†), ≡ rec α. α → ν− ⊑ rec α. α → ν+. However, we can unwind these latter

two recursive types, which gives us the equality rec α. α → ν− = (rec α. α → ν−) → ν−, and

rec α. α → ν+ = (rec α. α → ν+) → ν+. Therefore, we can conclude that (rec α. α → ν−) →

ν− ⊑ (rec α. α → ν+) → ν+. In light of the rule, (subtype →), the subtype relation is contravariant

with respect to the argument that appears to the left of the → constructor. In particular, this last

subtyping assertion is false.

Define an occurrence of a type variable in a type to be negative (positive) if it occurs to the left

of an even (odd) number of → symbols. The problem with the rule (†) comes from the negative

occurrence of the type variable bound by the type recursion operator. Notice that the (sole) occurrence

of the variable in both rec α. α → ν+ and rec α. α → ν− is negative. If no occurrence of the bound

variable α, in the types τ1 and τ2, is negative, the rule (†) is sound; in the general case the following

rule applies [5]:

C, α ⊑ β ⊢ τ ⊑ ν

C ⊢ rec α. τ ⊑ rec β. ν
(subtype rec)

For types built from the function type constructor and type recursion, we have presented a collection

of rules for deducing subtyping relationships: these include (axiom), (reflexivity), (transitivity),

(subtype →) and (subtype rec). We also need a rule that captures the interaction of subtyping and

equality: a rule that states that if τ1 = τ2, τ2 ⊑ τ3 and τ3 = τ4, then τ1 ⊑ τ4. This in turn means

that we must have rules to reason about type equality. Rules for reasoning about type equality were

presented in Section 21.3.5.

21.3.7.3 Type Inference

A number of different calculi with subtyping have been the subject of study, from a type inference

viewpoint. The typability problem for the simply typed λ-calculus with an arbitrary subtyping relation

can be reduced to the problem of solving a system of subtyping constraints [13]. The computational

characteristics of the solvability of these constraints depends on whether subtyping is atomic; and,

if it is atomic, then it depends on the structure of the subtyping order relation on the atoms.

In practice, the subtyping relation is often atomic. An interesting example of a calculus where

the subtyping relation is not atomic is the system of partial types [57], where there is a type

constant denoted ⊤ (the catchall type) and every type is given to be a subtype of ⊤; the type ⊤

can be used to type certain subterms, which though meaningful may not be typable within the

rigid confines of the type system. Many variants assume a type ⊥ that is a subtype of all types in

the system.

We say that the judgment C′; Ŵ′ ⊢ t ′ : τ ′ is an instance of C; Ŵ ⊢ t : τ if a type substitution

θ exists such that C ⊢ C′θ , Ŵθ ⊆ Ŵ′ and τ ′ = τθ . A variant of the preceding instance relation

has been studied in [25] in the context of atomic typing. The problem of type inference for this

calculus — independent of the specific subtyping relation — can be reduced to the problem of

solving a set of subtype constraints over type expressions. Call a constraint set C-consistent if a

type substitution θ exists such that for each τ1 ⊑ τ2 ∈ C, C ⊢ τ1θ ⊑ τ2θ . The following results

follow from [12]:
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Theorem 21.3. Let C be a subtyping relation. An algorithm exists that accepts a type-free term t0
and returns a quadruple (C, Ŵ, t, τ ). Here C is a solvable constraint set, Ŵ is a type assignment,

t is an explicitly typed term whose type erasure is t0 and τ is a type. If for some term t ′, such

that erase(()t ′) = t0, some C-consistent constraint set C′, assignment Ŵ′ and type τ ′, the judgment

C′; Ŵ′ ⊢ t ′ : τ ′ is derivable, then C is C-consistent, and C′; Ŵ′ ⊢ t ′ : τ ′ is an instance of C; Ŵ ⊢ t : τ .

Thus, given a subtyping relation over types, determining typability requires determining whether

a system of constraints is solvable. This issue has been studied widely in the literature on subtyping

[4, 35]. Type inference amounts to returning a C-consistent constraint set that satisfies the minimality

property stated in the preceding theorem. For atomic subtyping without recursive types the problem

of type inference is PSPACE complete; if the atomic subtyping relation is a disjoint union of lattice

or trees, it is solvable in polynomial time. In the presence of recursive types, there is an EXPTIME

solution to the problem. For simply typed λ-calculus with partial types, an algorithm was given by

[48]; when the system is extended with recursive types, the problem is in PTIME. For λ→ extended

with the types ⊤ and ⊥ an O(n3) algorithm is available. For recursive types extended with ⊤, ⊥ and

for discretely ordered base types the problem is solvable in O(n3).

21.3.8 Typing Imperative Features

An interesting interplay occurs between polymorphism and imperative features. Consider a simple

extension of λML with mutable types — specifically, heap allocated reference types — and assume

a call-by-value operational semantics. We introduce a new constructor for types, Ref :

τ ::= ... | Ref τ

For any type τ the type Ref τ denotes a mutable cell on the heap that can store a value of type τ .

We, therefore, introduce operations to create (and initialize) a mutable cell, dereference (extract the

value stored in) a mutable cell and assign a value to a mutable cell:

t ::= ... | ref(t) | deref(t)| t := t

An operational semantics for this language extension can be given. We simply sketch the semantics

(the reader interested in a rigorous definition may consult, e.g., [27]). The set of values is obtained by

extending the set of values of λML by values denoting locations. The operational semantics defines

a rewrite relation on term–state pairs; a rewrite step has the form:

(spre, t) −→ (spost , t
′)

where spre is the state prior to the one step evaluation and spost is the state after the one-step

evaluation. States are defined as partial functions defined on a finite domain of initialized locations;

a state maps each location in its domain to the value contained therein. The dereferencing operation

results in a rewrite where spost = spre. The evaluation of a term ref(t), starting at state s, comprises

(1) the (many step) evaluation of t to a value v and state s′; (2) extending the state s′ with a new

mutable cell containing the value v to yield the state s′′; and (3) terminating in a term–state pair

where the term part is a value denoting the newly created location, and the state is s′′. Of course, (1)

may not terminate at all. The evaluation of t1 := t2 comprises the evaluation of t1 to a value denoting

a location L, the evaluation of t2 to a value v, and updating location L in the state, reached after the

evaluation of t1 and t2, to contain the value v.

Based on this intuitive explanation, the following rules should be clear:

Ŵ ⊢ t : Ref τ

Ŵ ⊢ deref(t) : τ

Ŵ ⊢ t : τ

Ŵ ⊢ ref(t) : Ref τ

Ŵ ⊢ t1 : Ref τ Ŵ ⊢ t2 : τ

Ŵ ⊢ t1 := t2 : unit
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unit is a type with exactly one element; from a typing point of view there is no need to distinguish

between different assignment expressions; thus, a type with exactly one element suffices.

The problematic rule is the rule (let) from Section 21.3.6.2:

Ŵ, X : ∀α1, . . . , αn. τ ′ ⊢ t : τ Ŵ, X : τ ′ ⊢ t ′ : τ ′ αi /∈ fv(Ŵ)

Ŵ ⊢ let X : ∀α1, . . . , αn. τ ′ = t ′ in t end : τ

Consider the expression7 let X : ∀α· Ref (α list) = ref([]) in X := [true]; car(deref(X))+1 end.

Here, car is a list function that returns the first element of its (list-valued) argument. The reader

can verify that this expression type checks if we admit the preceding rule; this is because [] has

type α list and ref([]) has type Ref (α list). The rule allows us to generalize the type of ref([]) to

∀α. Ref (α list). Unfortunately, if X is given the type ∀α. Ref (α list), we can give its various

occurrences in the body of the let differing instances of this type. In the preceding expression, at

one occurrence of X we assign it a value of type bool list ; at the other occurrence we dereference

X, instantiating its type to int list . Consequently, the evaluation of such an expression attempts to

perform an integer operation on a Boolean value resulting in a runtime type error! This is a general

problem that arises when imperative features interact with polymorphism. A similar example can

be constructed for control operators, such as the Scheme-style call-current-continuation operator

call/cc [28].

One solution to the problem, implemented in an earlier version of Standard ML of New Jersey,

is to treat specially type variables that occur in the types of imperative subexpressions, specifically

by restricting type generalization over such variables [31]. A different solution — value polymor-

phism — is the observation that a restricted form of the rule (let) is type safe; the restriction is that

polymorphic generalization of the let-bound variable x be allowed only if the expression t ′ (bound

to x) is a value expression, that is, an expression — such as a λ-abstraction or a list value — that

cannot be evaluated further. It has been argued empirically that this restriction does not significantly

hamper language expressiveness in practice [62].

A third point of view has been argued in [39]. Consider the term let X : ∀α. α → α =

ref(λx. x) in ... end; if we make all type information fully explicit here — as is the case

in the second-order λ-calculus — then we would have the term let X : ∀α. α → α =


α. ref(λx : α. x) in ... end. In evaluating this latter term, we must specify the operational

semantics of the type abstraction operator 
. In the terminology of [39], a call-by-name strategy

would not evaluate “beneath” the 
; a call-by-value strategy would proceed to evaluate the term

beneath the 
. If we adopt a call-by-value strategy, 
α. ref(λx : α. x) evaluates to a reference

containing the identity function; this will be bound to X and all occurrences of X in the body of

the let refer to the same cell. In contrast, under call-by-name evaluation of 
, 
α. ref(λx : α. x)

is treated as a value (much like a λ-abstraction); at each type instantiation of x in the body of the

let, 
α. ref(λx : α. x) is evaluated to a reference cell containing the identity function of the type

corresponding to the type at which X is instantiated. Thus, each occurrence of (type instantiations

of) X evaluates to a different reference cell. Such an operational semantics avoids the type safety

problem we have described. As [39] points out “polymorphism by name has been criticized on the

grounds of inefficiency and on the grounds that an imperative language with nonstrict constructs is

error prone”; however, Leroy [39] argues that efficient compilation is possible, and that in practice

rarely do programs behave differently under the two semantics.

7Here “;” is the sequencing operator. In a call-by-value language the expression t1; t2 is merely syntactic
sugaring for ((λx. t2) t1).
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21.4 Data Abstraction and Representation Independence

The use of abstract data types is very common, and many languages provide constructs for defining

abstract data types. For instance, Ada provides the package construct, CLU offers the cluster construct

and the Modula family of languages offer the module construct. The following ML code illustrates

MLs — now obsolete — abstype construct whose typing is quite similar to those for other languages:

abstype Stack = stack of int list with

fun pop : Stack → int = ..

fun push : int → Stack = .. ..

end

The preceding abstype definition defines a new type Stack and offers the functions push and pop

to compute over this type. Further, it gives a specific implementation of the type Stack, representing

it as an integer list. This representation of stacks is visible to the implementations of push and pop;

however, outside of the abstype construct the representation is not visible. That is, a function that

acts on a Stack argument cannot exploit the fact that Stack is implemented as an integer list. A

Stack object is a black box, and the only means of performing any computation over stack objects

is to use the interface functions provided.

The type system of the language enforces these restrictions. As a consequence of this enforcement,

we have encapsulation: it is possible to alter the representation type — and correspondingly the

definitions of the interface functions — of the abstract data type without breaking the typability of

the rest of the program. A specific property, called representation independence, can be established

for abstract data types: if the implementation (representation) of a data type can be replaced by an

equivalent representation, the behavior of the clients of the abstract data type remains unaltered [44].

Abstract data types can be modeled using a form of types called existential types [14]. Starting

with the type system λ→ or λ∀, we can add a new type construction of the form ∃α. τ . An element

of the type ∃α. τ should be thought of as consisting of a pair (τ0, e), where τo is a type and e is an

element of type τ [τ0/α]. The type τ0 is the representation type (like the type int list in the preceding

abstype definition), and e is the tuple consisting of the interface methods. Given such a pair, we

can construct an element of the type ∃α. τ using the pack construct. The construct unpack allows

existential type interface functions to be extracted and — in keeping with typing rules that enforce

the black box nature of abstract types — to perform computations using those functions.

The raw terms of this type system are given by adding the following two constructs:

t ::= . . . | pack∃α. τ (τ0, t)| unpack∃α. τ t as α, f : τ in t ′

The term pack∃α. τ (τ0, t) constructs an instance of the existential type ∃α. τ from a representation

type τ0 and an implementation of the interface methods t , which satisfy the typing τ [τ0/α]. Thus,

we have the typing rule:

Ŵ ⊢ t : τ [τ0/α]

Ŵ ⊢ pack∃α. τ (τ0, t) : ∃α. τ

The term unpack∃α. τ t as β, f : τ [β/α] in t ′ acts on a term t of type ∃α. τ as follows: it extracts

the tuple of functions from t — the tuple having the type τ [β] for some unknown type β, binds it

to the variable f and evaluates the term t ′ (which, possibly, contains free occurrences of f ). This

gives the typing rule:

Ŵ ⊢ t : ∃α. τ Ŵ, f : τ ⊢ t ′ : τ ′ α /∈ fv(τ ′)

Ŵ ⊢ unpack∃α. τ t as α, f : τ in t ′ : τ ′
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The type variable α may not appear in τ ′. This is to ensure that the variable α has only local

significance in the construct — serving as a placeholder for the unknown representation type used

in the construction of the term t of abstract type — does not escape.

In a realistic implementation pack and unpack are purely compile-time operations, with no

computational significance. We define the operational semantics so that unpack can only be applied

to pack. The only evaluation rule in the system is:

unpack∃α. τ (pack∃α. τ (τ0, t)) as α, f : τ in t ′ −→ t ′[τ0/α, t/f ]

We also extend the evaluation contexts as follows:

C[] ::= . . . | unpack∃α. τC[] as α, f : τ in t ′| pack∃α. τ (τ0, C[])

as well as the valid values with:

v ::= . . . | pack∃α. τ (τ0, v)

These rules can be shown to be sound with respect to the operational semantics.

21.4.1 First-Class Abstract Types

Although the abstype syntax allows the creation of abstract data types, and the abstract types so

defined can be used freely with other type constructors to construct more complex types, only one

implementation is possible for an abstract type name in a program, namely, the one given in the

abstype definition. Thus, an abstype is a composite of the implementation and interface type. The

calculus of existential types suggests a way to overcome this limitation. An extension to ML that

supports the notion of an abstract type with multiple implementation types is presented in [47]. This

is accomplished by extending ML with an implicit existential quantifier. Specifically, in a data type

declaration such as:

datatype Stack = Stack of {rep : ′a, push : ′a ∗ int → ′a, pop : ′a → int}

the type variable ′a is treated as implicitly existentially quantified; {. . . } is the ML notation for

constructing records. The expression:

Stack({rep = [], push = (fn x : int list ∗ int => . . . ),

pop = (fn x : int=> ..)})

represents a concrete stack (with custom implementation). This syntax is sugaring for:

packτ (int list, {rep = [], push = λx : int list × int → int list. , . . . , pop

= λx : int → intlist. })

where τ = ∃α. α ∗ (α × int → α) ∗ (α → int). The system enjoys principal typing and decidable

type inference, and conservatively extends the underlying type discipline. It allows construction of

heterogeneous aggregates of implementations of a given abstract type and dynamic dispatching with

respect to the implementation type.

21.5 Modules

Module mechanisms — as found in the Modula language family, for instance — are very closely

related to abstract data type mechanisms. However, their role is primarily to allow programmers to

package logically distinct program parts. An important goal in the design of module mechanisms is
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to allow the secure combination of these parts to form complete programs, and to support separate

compilation. However, as argued in [41], achieving some of these goals requires mechanisms different

from abstract type mechanisms that hide the representation of types, and existential type mechanisms

that hide the identity of the abstracted type.

Among languages offering module mechanisms, ML has one of the most sophisticated. In ML,

modules are called structures. Type definitions, value bindings and function definitions are some

of the bindings to be found in a structure. The notion analogous to types for modules is called a

signature in ML. The left expression below defines an ML structure and binds it to the name S; one

signature of this structure appears on the right:

structure S = struct sig

type char set = char list; type char set;

val empty: char set= []; empty: char set;

fun insert(x, s) = .. val insert: char * char set →

char set;

fun member(e, s) = .. val member: char * char set →

bool;

end end

The ML type definition does not create a new type; it merely creates a new type name, which is

interchangeable with the type expression it is bound to in subsequent code. As a result, if we replace

(some subset of the) occurrences of char set, in the type declarations of the values in the preceding

signature, by the type char list we still have a legitimate signature of the preceding structure. In

other words, a structure can have multiple signatures.

As with abstract data types, the types defined in the module appear in the parameter or result types

of the values and functions. Unlike abstract data types, however, it is possible (and desirable) to

let the types defined in a structure to “escape.” The type defined in the preceding structure may be

referred to in later code as S.t.

A useful language feature is parametric modules — modules that are parameterized by some

(compile-time) parameter. ML supports functors to support this mechanism; a (first-order) functor

is essentially a function from structures to structures. The preceding structure S can be generalized

to a Set functor:

functor Set(Element: ElementSig): SetSig signature ElementSig =
struct sig
type SetType = Element.T list; type t;
val empty = []; val eq: T → T → bool;
fun insert(x, s) = .. end
fun member(e, s) = .. signature SetSig =

end sig
type SetType;
val empty: SetType;
val insert: T * SetType →

SetType
val member: T * SetType → bool

end

Such a functor takes a structure of signature ElementSig as an argument — a signature comprising

a type and an equality test function at that type — and yields as result the structure representing

sets of elements of the type specified in the argument structure; the result has signature SetSig. At

compile time this functor can be applied to a structure containing the type char and the equality

function on char; it will yield the char set structure S we defined earlier.
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21.5.1 Dependent Types

Dependent types are a useful formalization of modules. The two forms of dependent types are the

general sum type and the general product type. General sum types have the form �x : τ. τ ′ and

general product types have the form �x : τ. τ ′; here, τ and τ ′ are types, and the variable x possibly

occurs free in τ ′. An element of type �x : τ. τ ′ is a pair consisting of an element a of type τ and

an element of type τ [a/x]; note the similarity with existential types then τ represents the collection

of all types. Thus, a signature with a type component t and a value component of type τ (the type τ

possibly containing occurrences of t) can be modeled by the type �t : Type. τ , where Type is the

type of all types.8 Note that we are treating individual types as values that can be computed over,

and that values can appear in type expressions. That is, the space of values and types have become

intertwined.

The type �x : τ. τ ′ represents a collection of functions indexed by the elements of type τ . An

element of type �x : τ. τ ′ is a function mapping each element a of type τ to an element of the type

τ ′[a/x]; note that if x does not occur free in τ ′ the type �x : τ. τ ′ is no different from the function

type τ → τ ′. A functor signature where the argument signature is (modeled by the type) τa and the

result signature is (modeled by the type) τr , and the argument name s possibly occurs in τr can be

modeled as the dependent product type �s : τa . τr .

Example 21.5

In a rich enough language of type expressions we might have a type expression int−or−bool(x),

where x is an integer variable, and:

int−or−bool(x) =

{

int if x > 0

bool otherwise

The type �x : int. int−or−bool(x) is populated by the elements ((Z− ∪ {0}) × {true, false}) ∪

Z+ × Z, where Z is the set of integers.

The type �x : int. int or bool(x) is populated by functions that map the positive integers to

some integer, and nonpositive integers to a Boolean value. We can also think of �x : τ. τ ′ as

representing a (possibly infinite) product of types, indexed by τ where the type indexed by element

a of type τ has the type τ ′[a/x]. We can thus regard an element of type �x : int. int or bool(x) as

a (Z-indexed) infinite sequence; the elements indexed by the positive integers are integers, and the

remaining elements are Boolean values.

We introduce the term construct [t, u] to create an element of sum type — operationally the

construct merely creates a pair comprising t and u. The constructs fst(.) and snd(.) extract the first

and second component of the pair. The corresponding typing rules are:

Ŵ ⊢ t : τ Ŵ ⊢ u : τ ′[t/x]

Ŵ ⊢ [t, u] : �x : τ. τ ′

Ŵ ⊢ t : �x : τ. τ ′

Ŵ ⊢ fst(t) : τ

Ŵ ⊢ t : �x : τ. τ ′

Ŵ ⊢ snd(t) : τ [fst(t)/x]

We generalize and reuse the λ-abstraction and application constructs for creating and manipulating

terms of generalized product types. Note that both rules generalize the corresponding rules in λ→

accounting for the possibility that the bound variable may occur free in the result type:

Ŵ, x : τ ′ ⊢ t : τ

Ŵ ⊢ λx : τ ′. t : �x : τ ′. τ

Ŵ ⊢ t : �x : τ ′. τ Ŵ ⊢ t ′ : τ ′

Ŵ ⊢ (t t ′) : τ [t ′/x]

8Momentarily, we have introduced impredicativity but as we will see shortly this can give way to a stratified
system of types.
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As we observed earlier — and the reader may wish to study Example 21.5 closely — in the

dependent types of calculus, the types of terms are inextricably linked with the values of the terms.

Up until now, the type systems have maintained a strict phase distinction: types are compile phase

entities and term evaluation occurs at runtime, and the types of terms that need to be computable at

compile time are not dependent on information — such as whether two integer values terms have the

same value — that is at best knowable only at runtime. This phase distinction is crucial for performing

compile-time type checking. In the present form of the dependent type calculus this crucial property is

lost. Because we seek to model module constructs using the dependent type calculus, we must restrict

the calculus if the property is to be recovered; this is achieved by restricting the type of indexes used

in the construction of dependent sums and products to range over entities (like structures) that are

evaluated at compile time. Further, we distinguish between different categories of terms and types.

We have two categories of terms: core language terms, and the module language terms (structure

and functor expressions). Paralleling this distinction, we have two categories of types: core language

types and the module language types (structure and functor signatures).

We start with the type of small types that are the types to be found in the underlying core

language — these consist of base types such as integers and Booleans, and are closed under various

type constructions (in particular, the ones that we have encountered so far, in this chapter). This type

will be denoted Type. Next, we define a subset of dependent sum types — those corresponding to

the signatures of structures; these are called signatures as well and the terms inhabiting these types

are called structures:

sig ::= Type| �s : sig τ | �s : sig sig′

The first case corresponds to structures that only have a type component; the second corresponds

to a structure with one structure component and one value component of type τ (which may contain

occurrences of the structure identifier naming the first component); the third corresponds to a structure

with two structure components, the signature of the second having a dependency on the first structure

by way of occurrences of the first structure identifier in the signature of the second. Corresponding

to these cases we have the following module language term syntax:

strexp ::= νs | τ | [strexp, t]| [strexp, strexp]

Here, νs is an infinite set of structure identifiers, τ is a core language type and t is a core language

term. The grammar of types has an additional production that corresponds to the extraction of the

type component of a structure; for a structure expression s that has a type component, the syntax is

fst(s). The grammar of core language terms, similarly, has a production corresponding to extracting

the value component; for a structure expression s that has a term component, the syntax is snd(s).

As for functors, the grammar of functor signatures is given by:

f sig ::= �s : sig. sig| �s : sig. f sig

The use of a distinct nonterminal f sig allows us to avoid presenting formation rules for well-formed

signatures. The first case corresponds to the case of a functor that takes an argument (structure) of

a given signature and returns a structure of the specified signature. The second case corresponds

to a curried functor: one that accepts a structure argument of the specified signature and returns a

functor of the specified signature. The corresponding module language term syntax is enriched by

the following:

strexp ::= ...| λs : sig. strexp| (strexp strexp)
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corresponding to functor abstraction and application. Given that the signatures admit only first-order

functors, the type-checking rules ensure that only first-order functors are typable.

For this system we can give an operational semantics along expected lines. The additional module

and core language term syntax contains as, usual, λ-terms, the construction of pairs and projections

(extraction of components of a pair). It can be shown that if the core language is type safe, then so

is the extension with the module type discipline described here.

It can be shown that this calculus respects the phase distinction. The module expressions (which

include the core language types) are compile-time entities and the rest are runtime entities. The

evaluation of compile-time entities does not involve the evaluation of runtime entities [30].

Two important issues are briefly mentioned here. The first is the notion of sharing constraints.

Consider a functor, compiler, that accepts several structures that perform various compilation func-

tions: the first structure is a collection of functions that perform lexical analysis yielding tokens of

a certain token type; the second accepts a stream of tokens and parses them yielding a parse tree.

Each of these structures must therefore contain a substructure that defines the type of tokens and

a suite of token manipulation functions. The compiler functor would then invoke the tokenizing

functions and pass the resulting token stream to the appropriate parsing functions. To type check the

functor, compiler, there has to be a means of specifying that the token types in the lexical analysis

and parsing modules are the same. Further, it would be reasonable to expect the token manipulation

functions to be the same in both structures. In effect, there ought to be a mechanism to specify that

certain substructures and types are the same. In ML, a mechanism called sharing specification serves

this purpose.

A second important notion relates to the notion of structure transparency. Note that the preceding

formalization does not in any way hide the definitions of the type names in a structure. It is possible

to develop alternative semantics where this is not the case [29, 38]. The preceding properties are

preserved with the addition of sharing specifications as well as adoption of these alternatives to

structure transparency.

21.5.2 Higher Order Functors

The functors we have considered are functions over structures. A natural generalization is to con-

sider higher order functions over structures. For instance, a second-order functor accepts first-order

functors as arguments. This generalization is useful in practice [42].

An important issue that arises when we consider a module system with higher order functors

is the phase distinction. A straightforward generalization to the higher order case would proceed

as follows. The two-level stratification (core language types and module language types) gives

way to an infinite hierarchy. We call each stratum a kind. The kind K1 consists of all struc-

ture signatures (and thus Type). The kind K2 consists of all types in K1, and a type Type1

whose elements are the types in K1; it is closed under the general sum and general product

constructions, that is, K2 also includes all types of the form �t : τ. τ ′ and �t : τ. τ ′, where

τ, τ ′ ∈ K2. In general, kind Kn+1 (1) contains all of Kn, (2) contains a type Typen whose

elements are the types in Kn and (3) is closed under the general sum and product constructions.

The raw structure expressions are as before — built from the λ-abstraction, pairing and projection

constructs. We can put down typing rules along obvious lines. The reader may consult [30] for

more details.

Unfortunately, as pointed out in [30], this straightforward generalization admits problematic

expressions that violate the phase distinction. Consider the following example:

((λx : fst(F ([int, t ′])). x) t)
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where t is some core language term and F is a first-order functor variable.9 Type checking this

expression involves determining whether t has the type F([int, t ′]). This type expression is very

similar to the type expression int−or−bool(x) that we encountered earlier; even at the point (during

compilation) where F is bound to an actual functor, the identity of the type F([int, t ′]) cannot be

known without knowing the value of t ′. The term t ′, however, cannot be evaluated at compile time.

Thus, type checking is no longer performable at compile time.

We outline the basic intuition underlying a solution here, referring the reader to [30] for a rigorous

treatment of the matter. Consider a (first-order) functor F that acts on a structure of signature sig type

t; val x: T end to produce a result of signature sig type t’; val y: T’ end. Given the compile-time

nature of this computation, the action of such a functor may be described as follows: the type t ′

can be a function of type t , that is, t ′ = f (t) for some function f on types. The (runtime) value

y can be a function of the value x, that is, y = g(x) for some g. Type g must be a function

polymorphic in the type t ; the type of g can be of the form ∀t. T → T ′[f (t)/t ′]. Thus, such a

functor should be regarded as belonging to the type �f : Type ⇒ Type. ∀t. T → T ′[f (t)/t ′]. Here

Type ⇒ Type is the type of type functions — specifically, unary type constructors. In other words,

the “natural” generalization of the first-order module calculus to a higher order module calculus

should preserve this interpretation of functors. As shown in [30], this interpretation of functors as

higher order structures induces a nonstandard equational theory. Specifically, these equations allow

the transformation of “mixed-phase” type expressions such as A([int, t ′] to purely compile-phase

type expressions.

21.6 Typing in Object-Oriented Languages

Broadly speaking, object-oriented languages fall in two camps: class-based languages and delegation-

based languages. Class-based languages have a notion of classes; classes are compile-time entities

that act as templates at runtime for creating objects. Classes support code reuse through inheritance;

inheritance allows the creation of new classes through modification of existing classes by overriding

their methods, or by extending them with new methods. Relatively fewer languages are delegation

based, and support the more powerful notion of prototypes. A prototype is an object that supports

method override, and extension by new methods at runtime. In such a language, objects can be

created directly or by cloning an existing object (hence, the name prototype).

21.6.1 Object Calculi

Just as the type-free and typed λ-calculi are useful formalisms for a formal study of semantics and

typing of procedural languages, object calculi [1, 3, 21, 22] are a useful formalism for studying the

semantics and typing of object-oriented languages. We begin with a presentation of an untyped

prototyping calculus. We fix a countably infinite set of variables V , and a countably infinite set of

method labels L. The symbols x and y, with or without subscripting, range over V; the symbol l,

with or without subscripts, ranges over L. V contains a distinguished variable self. Terms of the

untyped object calculus are defined by the following grammar:

t ::= V| proto self ≪ l1 = t1, ..., ln = tn ≫ |t.l|t ←+ l = t | t{l := t}

Intuitively, it is useful to think of objects as records, whose members — called methods — can

be thought of as functions that accept (a reference to) the entire object — or self in object-oriented

9By abstracting this variable we get an expression that would be permissible in a system admitting second-
order functors.
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jargon — as their sole argument; the symbol self appears in the bodies of the methods of an object

and is bound by the abstraction operator proto. The term proto self. ≪ l1 = t1, . . . , ln = tn≫

represents an object with methods l1, . . . , ln of types τ1, . . . , τn, respectively. The term t.l represents

the invocation of the method, labeled l, of the object denoted by t . The term t1 ←+ l = t2 represents

object extension; it represents the object obtained by extending the object denoted by t1 by a method

labeled l whose body is t2. The term t1{l := t2} represents method override; it represents the object

obtained by overriding the implementation of the l method of the object (denoted by) t1, by the

method body t2. Note that this is not an imperative update; it creates a new object in all ways the

same as t1, save the method labeled l that, in the new object is implemented as t2. Many object

calculi10 in the literature, and specifically the ones discussed here, are “functional” in character and

not imperative. We can construct an object with a nonzero number of methods by starting out with an

empty object and extending it method after method using the extension construct. However, later in

our discussion, we deal with a situation where method extension cannot be supported and therefore

the construct proto self. ≪ l1 = t1, . . . , ln = tn≫ is taken as primitive. It is possible to code the

untyped λ-calculus in this formalism [3]. However, to make our following examples more readable

we work with an extension of the syntax of the preceding terms with λ-calculus constructs.

The operational semantics of the untyped object calculus is given by the following rules:

proto self.≪l1 = t1, . . . , ln = tn≫ .li
−→ ti[proto self. ≪l1 = t1, . . . , ln = tn≫ /self]

proto self. ≪l1 = t1, . . . , ln = tn≫←+ ln+1 = tn+1

−→ proto self. ≪l1 = t1, . . . , ln+1 = tn+1≫

proto self. ≪l1 = t1, . . . , ln = tn≫ {li := s}

−→ proto self. ≪l1 = t1, . . . , li = s, . . . , ln = tn≫

and the following grammar of evaluation contexts:

E ::= []| E[].l| E[]{l := t}| E[] ←+ l = t

The first rewrite rule shows the invocation of method li ; this results in substituting, in the body

of the method, the entire object for the self parameter of the method. The second rule shows that

object extension results in a new object obtained by adding one more method — with the specified

name and body — added to the suite of methods that can be invoked on the object. The third rule

shows that method override results in a new object obtained by replacing the method li by a new

“implementation.”

21.6.1.1 Object Types

The question of typing objects, in an object calculus such as the preceding one, has been an important

area of study with a rich literature. One line of work has focused on regarding objects as records.

To be able to encode object extension, the calculus of records must be extensible (i.e., support a

construct to add new fields to the record). Several possible encodings are available for the untyped

object calculus in a calculus of extensible records and we merely outline the flavor of some of

the most successful encodings. The self-application model [36] encodes an object as a record and

each method as a function that accepts a self-parameter; method invocation results in applying the

corresponding function to self, that is, the object on which the method is invoked. The recursive

record model [15] regards an object as a recursive record, and methods as closures with the self

variable bound to the entire record. The treatment of inheritance relies on a calculus of records

10A calculus supporting imperative updates is studied in [2].
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that supports record concatenation; and, in the typed setting, on a typed λ-calculus with recursive

types and a form of polymorphism called F-bounded polymorphism [10]. Although these models

are successful in “encoding” the untyped object calculus, unfortunately, they cannot be successfully

carried over to typed systems. Specifically, many of the expected typabililty of object-oriented idioms

and subtyping relations between object types do not hold if we interpret objects as records according

to these encodings [3, 24]. Another attempt to study typing for object calculi by reducing them to

typed λ-calculi is the existential model [34, 51]. This model encodes class-based object-oriented

languages into Fω
≤ , an explicitly typed polymorphic λ-calculus with subtyping. The encoding is

cumbersome; for critiques see [1, 3, 21, 24].

Here we present an account based on direct typing rules. What should object types look like?

Consider the unidimensional point object:

point = proto self. ≪x = 0, move = λdx. self{x := self.x + dx}≫

This is an object with an x field that contains its location, and a move method that takes a numeric

displacement argument and moves the object by adding this displacement to the x field. If we call

the type of such an object point, and let the type of the implicit self parameters of the methods

remain implicit, then the type of the move method is int → point and the type of the field x is int.

Now, consider extending the object point by a field color . The method move is inherited by the new

object from the old; even so, operationally the result of moving a colored point is a colored point,

and if colorpoint is the type of the extended object, the type of the move method in the extended

object ought to be int → colorpoint. This phenomenon is called method specialization [45].

Unfortunately, most practical typed object-oriented languages do not support method specializa-

tion. The inexpressibility of idioms such as this in practical, typed languages is one reason untyped

languages such as Smalltalk are popular. Some languages, such as Self [58] and Eiffel [43], have

a notion of self type; this is the type of the current object. Recall that self, in a method l, denotes

the object on which a method is invoked, and this does not need to be the object that defined the

method l and from which the current object was derived. In the same vein, the self type, Self, denotes

the type of the object that self refers to in a method body l, and this does not need to be the type

of the object in which the method l is defined. Thus, the type of move should be int → Self that

formalizes the intuition that move returns an object of the same type as the object it was invoked

on. This type Self has local meaning only, and thus should be considered bound in the type of the

object. This suggests the object type syntax proto Self. ≪ l1 : τ1, . . . , ln : τn≫. This denotes

the type of objects with methods l1, . . . , ln of types τ1, . . . , τn; the presence of the type Self in

τ1, . . . , τn refers to the type of the object that inherits the method. Thus, we should consider point

as having the type proto Self. ≪x : int, move : int → Self≫; colorpoint would then receive the

type proto Self. ≪x : int, color : Color, move : int → Self≫.

21.6.1.2 Typing Rules

The set of explicitly typed raw object terms may be defined by the grammar:

t ::= V| λx : τ . t | (t t)| proto self. ≪l1 = t, . . . , ln = t≫ | t. l| t{l := t}

As with the simply typed λ-calculus, there are typing judgments of the form Ŵ ⊢ t : τ ; here Ŵ is

a type environment, t is an explicitly typed term and τ is a type. The rules for typing variables,

λ-abstractions and applications are no different from before and, so, are not repeated. The typing

rule for method invocation is unsurprising:

Ŵ ⊢ t : proto Self. ≪ l1 : τ1, ..., ln : τn ≫

Ŵ ⊢ t.li : τi
(method inv)
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Now consider the rule for object extension that motivates the use of self types. The following rule

appears to be a candidate:

Ŵ ⊢ t : proto Self. ≪ l1 : τ1, . . . , ln+1 : τn+1 ≫

Ŵ, self : τ ⊢ tn+1 : τn+1[proto Self. ≪ l1 : τ1, . . . , ln+1 : τn+1 ≫ /Self]

Ŵ ⊢ t ←+ ln+1 = tn+1 : proto Self. ≪ l1 : τ1, . . . , ln+1 : τn+1 ≫

In the same vein, we have the following rule for method override:

Ŵ ⊢ t : proto Self. ≪ l1 : τ1, . . . , ln : τn ≫

Ŵ, self : τ ⊢ t ′k : τk[proto Self. ≪ l1 : τ1, . . . , ln : τn ≫ /Self]

Ŵ ⊢ t{lk := t ′k} : proto Self. ≪ l1 : τ1, . . . , ln : τn ≫

Unfortunately, this type system is not sound. Consider the following example from [21]:

Example 21.6

Let:

p = proto self. ≪x = 3, move = λdx . self{x := self.x + dx}≫

q = proto self. ≪x = 3, move = λdx . self{x := p.move(dx)}≫

By repeated use of the preceding rules, we can assign the type proto Self. ≪x : int, move : int →

Self ≫ to both expressions. However, if q is extended to an object with a color field, and move is

invoked on the resulting object, an object without a color field is returned. This means that assigning

the type proto Self. ≪ x : int, move : int → Self ≫ to q is wrong; the return type of move is

not the type of object that q is extended to be. It is left as an exercise to the reader to complete this

argument by constructing a typable term expression that can result in a runtime type error when

evaluated.

We need some additional machinery to formulate a powerful and sound type system. We sketch

the key ideas here; a complete formalization is to be found in [21]. We introduce the notion of a row;

a row represents a collection of typed method names. A row variable is a variable symbol denoting

a row. A row R can be extended with additional typed method names; if R is an expression denoting

a row then the expression R|l : τ represents the collection of methods denoted by R extended with

the method l of type τ . The symbol [ ] denotes the empty collection of typed method names. We

can generalize the notion of row variables to variables that represent functions from types to rows,

from pairs of types to rows and so on. We can build more complex row expressions by abstracting

over type variables, and applying row expressions to types. The set of row expressions is generated

by the grammar:

R ::= νrow| [ ]| R|l : τ | λα. R| R(τ)

where νrow is an infinite set of row variables.

To extend a row by a typed method name, it must first be established that the row to be extended

does not contain the method name. This can be achieved by means of a type system. To distinguish

types of terms from the types of rows and types we call the latter kinds. The set of kinds is given by

the grammar:

K := Type| Typen → [l1, . . . , ln]

Type is the kind of all types. The kind expression Typen → [l1, . . . , ln] denotes row expressions

that take n types as arguments returning a row that lacks the methods l1, . . . , ln. A first-order row
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variable has kind Type0 → [l1, . . . , ln] — which is abbreviated as [l1, . . . , ln] — for some set of

labels l1, . . . , ln and denotes a row that lacks the methods l1, . . . , ln. Let � denote a collection of

assumptions of the form r : K , where r ∈ Vrow and K is a kind. The judgment � ⊢ R : K states

that row expression R has kind K under the set of assumptions �. The rules for inferring judgments

of this form are straightforward, and are omitted here; the interested reader may consult [21].

With this machinery in hand we can formulate the following typing rule for object extension:

Ŵ ⊢ t : proto Self. ≪R|l1 : τ1, . . . , ln : τn ≫ Ŵ, self : Type ⊢ R : [l1, . . . , ln+1]

Ŵ, r1 : Type → [l1, . . . , ln, ln+1] ⊢ tn+1 : τn+1[proto Self. ≪r1(Self)|l1 : τ1, . . . , ln+1 : τn+1 ≫ /Self]
r not in t

Ŵ ⊢ t ←+ ln+1 = tn+1 : proto Self. ≪R|l1 : τ1, . . . , ln+1 : τn+1 ≫

The first assumption says that t is an object of a type whose methods include l1, . . . , ln with

types τ1, . . . , τn, respectively; R is a row expression representing the other methods. The second

assumption (in conjunction with the first) ensures that the object denoted by t does not contain

a method labeled ln+1. The third assumption ensures that in any extension of t , the body of

the method to be added, ln+1, has the type τn+1 — where Self is replaced by the type of the

corresponding extension proto Self. ≪r(Self) |l1 : τ1, , . . . , ln+1 : τn+1≫. The reader is encour-

aged to revisit the terms p and q in Example 21.6 and to verify that the rule assigns the type

proto Self. ≪x : int, move : int → Self≫ to p, but not to q.

The rule for method override is similar in spirit. The rule is:

Ŵ ⊢ t1 : proto Self. ≪R|l1 : τ1, . . . , ln : τn ≫

r : Type → [l1, . . . , ln] ⊢ t ′ : τi[proto Self. ≪Self|l1 : τ1, . . . , ln : τn ≫ /Self]

Ŵ ⊢ t{li := t ′} : proto Self. ≪R|l1 : τ1, . . . , ln : τn ≫

Given the rule for object extension, determining the rule for typing proto Self. ≪ l1 =

t1, . . . , ln = tn ≫ is a simple exercise. This type system is type safe; type soundness is shown

in [21].

21.6.1.3 Subtyping

In the context of record and object types two kinds of subtyping relationships are observed. We call

a type τ a width subtype of τ ′ if τ has strictly more methods or fields than τ ′ and the types of the

common fields are the same. A type, τ , is said to be a depth subtype if it has the same methods or fields,

but the type of each field in τ is the same or is (recursively) a depth subtype of the corresponding field

in τ ′. Of course, both forms of subtyping can occur (and be intertwined) in a subtyping relationship.

Unfortunately, for the object calculus presented so far, no nontrivial subtyping relationships exist

among the object types. Consider a method m that is present in τ and not in τ ′; an object of type τ ′

can be extended with method m, whereas an object of type τ may not. In other words, contexts exist

where an object of type τ ′ may be used but objects of type τ may not be. That is, if τ is wider than

τ ′, then τ cannot be a subtype of τ ′. This is a fundamental consequence of allowing objects to be

extended.

Similarly, we can show that in the presence of method override depth subtyping

does not hold. Consider the types τ = proto Self. ≪a : proto Self. ≪b : int≫, d : int≫ and

τ ′ = proto Self. ≪a : proto Self. ≪b : int, c : int≫, d : int≫. Now consider the following:

• f = λy : τ. y{a := proto self. ≪b = 0≫}. The term f has type τ → τ .

• obj = proto self. ≪a = proto self. ≪b = 0, c = 0≫, d = x.a.c≫. The expression obj has

type τ ′.



Type Systems in Programming Languages 835

If τ ⊑ τ ′, the application (f obj) would be type correct. This must not be so; the evaluation:

(f obj) −→ obj{a := proto self. ≪b = 0≫}

−→ proto self. ≪a = proto self. ≪b = 0≫, d = x.a.c≫

−→ proto self. ≪b = 0≫ .c

fails because the last object does not have a c field. Intuitively, the reason that depth subtyping leads

to type unsafety is that bodies of the various methods depend on one another to possess the types

that they currently possess, and this must be preserved by method overrides. Depth subtyping allows

a field to be overridden with another whose type is strictly less than what is expected.

Varying degrees of subtyping can be achieved by limiting the object calculus. In [22] two kinds of

object types are defined — those that are extensible and those that are not. An extensible object may

be sealed — subject to certain conditions on the types involved — yielding an object that is non-

extensible. Nonextensible object types exhibit rich subtyping — they exhibit both width subtyping

and depth subtyping. In the object calculi developed in [1, 3], method overrides are supported but

not method extension. The result is a system where width subtyping is legal. Type inference has been

studied for the object calculus of [1, 3] in [49].

21.6.2 Class-Based Languages

The discussion on object-oriented languages so far has been restricted to the delegation model.

However, most commonly used object-oriented languages are class based. Many of the insights and

results on typing object-based languages can be carried over to class-based languages. A satisfactory

encoding must be able to deal with class inheritance, have access restrictions and be composi-

tional. Several different encodings of class-based languages into the object calculus presented so

far have been presented, and their relative strengths are studied in [23]. Bruce [8] describes a typed

object-oriented language that supports classes directly. POLYTOIL, presented in [9], incorporates

imperative features; the paper introduces the notion of matching, a relationship between object

types that holds whenever the first is an extension of the second, regardless of the variance of the

self-type variable. Eifrig, Smith and Trifonov [20] present a type-safe, class-based, object-oriented

language with a rich feature set called I-LOOP; the type system is based on polymorphic recursively

constrained types, for which a sound type-inferencing algorithm is presented.

21.6.3 Inheritance and Subtyping

In most commonly used languages, inheritance results in subtyping. For instance, if a Java class

B inherits from a class A, then B is a subtype of A. This tight coupling between inheritance

and subtyping requires language designers to rule out certain patterns of inheritance to avoid type

unsoundness. For instance, consider the class point that supports an equality method. Now, derive

a class, colorpoint, of colored points by adding an extra color field, and overriding the equality

method to handle the additional field. Unfortunately, colorpoint should not be allowed to be a

subtype of point; this is because the function definition f (p : Point) = p.equal(p0), where p0 is

a (colorless) point, can accept a point argument but not a colorpoint argument. The Eiffel language

originally allowed this inheritance; and because in Eiffel inheritance implies subtyping, type safety

was compromised. To allow for type safety, some languages (e.g., C++) forbid examples such as

this by requiring that the type of an (overridden) method in a derived class be the same as the type of

the method in the base class; the Trellis/Owl language only allows subclasses that are also subtypes.

This is unfortunate because it forbids a legitimate idiom for code reuse. In [16], the authors argue

that inheritance and subtyping are in fact distinct mechanisms for code reuse. They decouple the

notions of subtyping and type inheritance, and propose a powerful form of polymorphism (F-bounded

polymorphism) based on type inheritance (in contrast to one based on subtyping). The TOOPL [8]
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language, similarly, decouples inheritance from subtyping: the inheritance relation between object

types is distinct from the subtype relation; the former is used to type check whether a class can be

derived from another.

21.7 Further Reading

This chapter aims to serve as a tutorial introduction to types in programming languages. Research into

the designs of rich and flexible type systems — particularly for object-oriented languages, module

systems and languages supporting mobility [40] — are active areas of research; many references

cited in this chapter provide good starting points for study of these topics. Also a gap exists between

current language design, on the one hand, and the rich type disciplines studied in this chapter, on the

other; many of these type disciplines are not amenable to complete type inference, and supplying

explicit type information is cumbersome for the programmer. More research is needed to bridge

this gap. Significant literature is available on the formal semantics of type disciplines — a topic that

could not be covered in this chapter; the book cited in [27] is an excellent starting point. The issue

of effective use of types in compilation [19] is another topic that is not discussed in this text: the use

of types at runtime (both in the compiled code and in runtime systems such as garbage collectors)

and the use of typed intermediate languages in compilers [55, 56] are active research areas.
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22.1 Introduction

The Objective of this chapter is to introduce to compiler developers the rudimentary concepts of

operational semantics used in specifying the operational behavior of programs and systems, and for

reasoning about them. There are already various excellent comprehensive introductions to syntax-

directed approaches to operational semantics, most notably the seminal papers by Plotkin [63] and

Kahn [38]. Some of that material has already been incorporated in standard text books on the

semantics of programming languages and concurrency, such as those by Winskel [76], Gunter [25],

Watt [73] and Hennessy [30]. Yet, though the concepts and techniques employed are mathematically

simple and accessible, many compiler developers have not been exposed to them.

The material presented here is largely based on the seminal works mentioned above, and is aimed

at presenting the ideas in an integrated form. It is tutorial in nature, oriented toward those interested
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in relating language specification to compiler design. There are also several excellent surveys and

references on research aspects in operational semantics, particularly in the context of semantics

of computation [57] and of process algebra [2], intended for those who are already familiar with

semantics issues in programming languages and concurrency.

Operational semantics involves giving a precise description of the behavior of a program or

a system, namely, how it may execute or operate. As in any semantic enterprise, the intention

in developing operational semantics is to give behavioral descriptions in rigorous mathematical

terms, in a form that supports understanding and reasoning about the behavior of the systems under

consideration. A mathematical model serves as the basis for analysis and verification. In fact, the

very act of formalization can help remove misconceptions and focus attention on subtleties that may

be glossed over in an informal description.

A clear operational semantics is an invaluable reference while developing language implementa-

tions, as was recognized over a quarter of a century ago by McCarthy [45], Landin [40, 42], Hoare and

Lauer [32], Milner, Plotkin and various other researchers. Early examples of real-world languages

provided with formal operational semantics include Algol 60 [43] and PL/I [60].

Formalism, per se, is not the only goal; defining the meaning of a programming language as the

behavior induced by a particular implementation is a formal treatment. However, such an approach

is not particularly satisfactory because the intention is to provide behavioral descriptions at a high

level, divorced from implementation details to as great an extent as possible. Moreover, the high-

level formalism should be readily accessible. Indeed, the attraction of using operational semantic

approaches to programming languages is the relative simplicity of the formal mathematics and the

associated techniques.

The past 20 or so years have seen, following seminal contributions by Plotkin [63], Milner [48, 49],

Kahn [38], Hoare [35] and others, the development of syntax-directed “structural” frameworks that

provide, to quote Plotkin, a “simple and direct method for specifying the semantics of programming

languages,” which require very little mathematical background, yet provide “concise, comprehensi-

ble semantic definitions.” The definition of the mostly functional language Standard ML in a wholly

operational semantic framework [56] is an excellent example of the power and versatility as well

as the relative accessibility of these operational techniques. Other languages that have complete

operational descriptions are Esterel [7, 8, 23] and Ada, (Reference [3] contains an early definition

of Ada that employs the main ideas discussed here in a rigorous algebraic framework).

Although formalization is clearly important for research in programming language semantics,

the aim of this chapter is to make modern approaches to operational semantics accessible to those

involved in compiler design and development. It is therefore worthwhile to reiterate here why formal

operational descriptions are important in the context of compiler design and implementation. As

mentioned earlier, such descriptions provide an unambiguous definition of a language, which can

serve as a reference for implementations. A structural operational semantics (SOS) style seems to

be an increasingly favored style of providing comprehensive and comprehensible formal definitions

of programming languages. Apart from the examples of Standard ML and Esterel cited earlier, SOS

semantics have been provided for several languages including Java [17] and logic programming

languages based on Prolog [31]. Also, these formal descriptions allow us to develop theories such as

program equivalence or orderings, which serve as a semantically sound basis for assessing proposed

program optimizations and static analysis techniques. Although it may be naive to expect the

algebraic laws of equivalence (or ordering) to suggest optimizations, it is nevertheless expected

that any optimization preserves the operational behavior of a program (or at least the important

behavioral properties needed in the context of a particular computation). In addition, the operational

descriptions give us a framework in which compiler verification can be formulated and carried

out [20]. Finally, operational frameworks allow us to explore novel, alternative implementation

techniques — by studying different abstract implementations that realize the same specifications. A

noteworthy approach in this respect is that of Hannan [28] and his collaborators.
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Structural operational techniques have been employed with great success for studying the

correctness of compiler techniques and hardware implementations [70, 74, 77], for compiler verifi-

cation [20, 36], for establishing type soundness following the work of Wright and Felleisen [75], for

static program analysis [55] and for deriving proof rules for functional languages [65].

We also should mention that there are areas of crucial importance to compiler developers where

operational techniques have not been seriously applied. An example is floating point computation,

where to our knowledge, the intricacies of the numerical models proposed and used have not been

adequately addressed in an operational framework.

22.1.1 Operational Descriptions at Different Levels of Abstraction

Formal operational descriptions of program execution can be presented in several different ways. In

fact, having different descriptions may serve a useful purpose, especially because they are usually

presented at varying levels of abstraction. In the following paragraphs, we give a brief overview of

three broad levels of operational description, which have historically tended (roughly) to go from

low-level to high-level descriptions for the same language, though notable exceptions have existed

where implementations have been guided by higher-level specifications.

The very first step in providing a description of a language independent of any particular imple-

mentation is to concentrate on the abstract syntactic structure of programs in the language rather

than the concrete syntax. This also has the advantage of having the ability to abstract over different

concrete renderings of a concept in different languages (e.g., the syntax used for assignment in Pascal

vs. that used in C). A relatively higher level semantic description than a particular implementation is

achieved by translation of the abstract syntax into instructions of a simple machine, the description

of which is given in abstract terms, typically as a finite collection of rules. Such an idealized machine

is called an abstract machine.

Reasoning about programs using abstract machine descriptions consists of reasoning about the

process of translation, and then reasoning about execution sequences of the abstract machine. A

significant observation that greatly simplified the first aspect was the following: the abstract syntax

of most languages is inductively characterized, and the translation to the machine instructions tends

to be a mapping that preserves the abstract syntactic structure, often a homomorphic function.

A good early example of this kind of operational description is Landin’s use of the so-called SECD

machine to specify the operational semantics of a quintessential (call-by-value) functional language

ISWIM [41]. Also well known is the Warren abstract machine (WAM) [72], used to specify the

execution machinery for Prolog. Abstract machines are a popular (and often the first) method for

specifying the execution semantics of a proposed language as well as for outlining an implementation.

For instance, abstract machines were used in presenting the first formal operational descriptions of

various extensions to the functional paradigm such as integrations of functional programming with

concurrent programming models based on ideas from process algebra [13, 14, 22].

Although abstract machines provide higher level, implementation-independent specifications of

program execution, it is not always clear how effective such techniques are in proving program

properties, proving notions of program equivalence and developing a semantically justified algebra of

programs. Moreover, proofs about program execution are (often tedious and cumbersome) induction

arguments on execution sequences, using case analyses on which rule is employed at each step, with

little reference to the original source programs and their structure.

A second and novel step was the development of SOS, where program behavior was expressed

directly in terms of the source programs (and perhaps a few ancillary data structures) without any

intervening translation to an abstract machine. The structural approach consists of providing an

inductive definition of a relation describing program execution, which follows the inductive structure

of the abstract syntax. Thus, in the operational setting, the approach adheres to a compositionality

principle associated with Frege that “the meaning of a phrase can be obtained from the meaning

of its components in a well-defined way,” a feature of the Scott–Strachey style of denotational



844 The Compiler Design Handbook: Optimizations and Machine Code Generation

semantics. The standard presentation of the inductively defined relation is by using inference rules.

The consequent of a rule defines a transition from a compound expression, which depends on the

transitions for one or more of its components specified in the rule antecedent. This inductive approach

based on abstract syntactic structure is also appropriate for formulating static semantics. An added

bonus of using relations is that features such as nontermination and partiality, nondeterminism, error

configurations and various others can easily be accommodated into the framework without having

to resort to more difficult mathematical concepts.

The associated proof techniques are based on induction on the proof trees built using the inference

rules, or equivalently — because the inference rules are presented in a syntax-directed manner — on

the structure of the source program. Notions of program equivalence or ordering are stated directly

in terms of the source programs rather than of via any other machinery, and thus the development

of an algebra of programs gets facilitated. It is this aspect of structural induction that justifies the

moniker “structural,” because the other techniques also ultimately depend on program structure.

The pioneering works where the structural approach is articulated are those of Plotkin [63, 64],

Milner [50] and Kahn [38]. However, instances of the structural approaches predate these publica-

tions — most notably the operational semantics of various λ-calculi [6]. Structural semantics come

in a variety of flavors, and we broadly classify them as (1) “big-step,” often called natural due to its

connections with normalization in natural deduction proof systems [9, 38], and sometimes relational

[56] or proof-theoretical [46]; and (2) “small-step,” which is often called reduction following the

terminology used in the λ-calculus [63]. Big-step semantics justify a complete execution sequence

using a tree-structured proof whereas small-step semantics provide tree-structured justifications for

each step of the sequence. However, situations exist where a “mixed-step” formulation is convenient.

In contrast, abstract machine semantics consists of a sequence of steps, each justified as being an

instance of a conditional rewrite rule.

Yet another dimension in the varieties of structural operational semantics is the use of labeled

relations that allow the specification of the interaction between a program and its environment during

execution. Most examples of labeled relations are in a small-step style, and abstract machines rarely

use labeled relations at all.

One of the aims of this chapter is to convey to the reader the rudiments of these three kinds

of operational semantics and their interrelationships and important syntactic properties, such as

confluence and standardization. We endeavor to present these notions in frameworks that are as simple

and familiar as possible, and assuming minimal concepts. Various aspects of these connections have

been studied in great detail elsewhere, assuming varying degrees of familiarity with the concepts.

Plotkin [63] covers a large variety of constructs in the reduction semantics framework. Some subtle

issues arising in relating the big-step and small-step formulations are explored in [5]. Winskel’s

book [76] studies the relation between big-step and denotational semantics for simple imperative

and functional languages. Hannan and Miller [46] present a framework for constructing abstract

machines from big-step semantics for functional languages via a series of correctness-preserving

transformations. Hannan further explores concrete realizations of the machines [27]. Plotkin [61]

studies the connection between the reduction semantics of the call-by-value λ-calculus and its abstract

machine (and for call-by-name, respectively), as well as how the calculi relate to one another by

continuation-passing style (CPS) translations. An excellent reference covering much of this material

in detail is [1].

22.1.2 Disclaimers

This chapter does not attempt to survey the variety of operational semantics frameworks used in the

specification and implementation of programming languages. In particular, two major approaches

have been neglected — those of action semantics [54] and evolving algebras, or abstract state

machines [26]. Action semantics is based on ideas from universal algebra, and seeks to combine
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the salient positive features of denotational and operational approaches, without their weaknesses.

The semantic specification is given around the basic actions in a system, and the approach addresses

the important issues of readability and modularity of semantic frameworks. Even small language

extensions sometimes necessitate major changes in the semantic rules. Such wholesale changes are

avoided in Action semantic frameworks, which are naturally modular. Action semantics has been

successfully used in diverse applications, being a very significant one in the area of compilation the

work of Palsberg on provably correct compiler generation [58].

Evolving algebras, or abstract state machines as they are now called, are based on the idea of

interpreting the dynamic semantic actions of a system as operators of an algebra that evolves during

execution. The approach is very general and permits specification of a system at different levels of

abstraction. The operational framework is closely related to conditional rewriting systems, and the

theory also addresses the mathematical issue of algebraic models for rules. Furthermore, abstract

state machine descriptions admit parallelism (concurrency) in an extremely natural way. They have

been used extensively for describing a variety of systems and languages, such as Prolog [11] and

Modula-2 [53], apart from use as a vehicle for understanding various concurrency features of Ada

and other such intricacies.

We also concentrate on only three paradigms — imperative, functional and concurrent — and do

not address issues in logic programming and object-oriented programming. We also do not examine

seriously the issues that arise when different paradigms are integrated in a single language.

22.1.3 Relationship with Other Kinds of Semantics

An alternative to operational techniques for specifying the semantics of programming languages

is providing mathematical models (i.e., denotational semantics); well-known textbooks on deno-

tational semantics are [66, 68]. Denotational frameworks are also specified inductively on abstract

syntax. The attraction of denotational methods is that they provide rich mathematical theory for

reasoning about programs. Moreover, when the denoted objects are readily constructible in a com-

putational framework, the semantics can be viewed as providing an immediate implementation of the

language.

However, two questions immediately arise when providing a language with a denotational model.

First, is such a model in (complete) agreement with operational intuition? Milner was the first to

propose a criterion, called full abstraction, which formalizes this notion of complete agreement

between the two forms of semantics. He convincingly argues that the operational semantics should

be the reference (the “touchstone”) for assessing mathematical models, rather than the converse,

because operational models are (usually) set up with minimal preconceptions. The second question

is whether there is indeed a unique mathematical model? Milner points out that any mathematical

model can capture only some aspects of the operational behavior, whereas there may be diverse

aspects that can be of interest — especially in nondeterministic computations. Because operational

frameworks are relational, they can easily accommodate aspects such as nondeterminism, partiality,

and erroneous computations with minimal reworking of definitions, whereas these may necessitate

significant changes to the mathematical models used in a denotational description.

Another alternative to the operational approach is the so-called axiomatic semantics [33] in which

the meaning of a programming construct is given using proof rules within a program logic. The ori-

entation of the approach is toward proving program correctness with respect to logical specifications.

Again, one could argue for the primacy of operational techniques to interpret and justify the soundness

of the logical rules. Moreover, the formulation of operational semantics using inference rules in the

SOS approaches together with the induced algebraic notions of equivalence or ordering on programs

incorporates many aspects of the axiomatic approach into operational ones — compositionality,

syntax orientation and proof theory, in particular.
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It must be noted, however, that the three approaches are not mutually exclusive or conflictive. Each

finds use when reasoning about programs, and often while employing a particular kind of approach,

one may resort to another. For instance, while reasoning about the operational semantics (proving

metatheorems), it may be convenient to use results from the denotational semantics because this

enables one to abstract away irrelevant operational details and to use abstract mathematical concepts.

22.1.4 Structure of This Chapter

The rest of the chapter is structured as follows. In Section 22.2, we introduce various important

rudimentary concepts used in describing the operational behavior of systems. We start with the

notion of transition systems, and then proceed to providing meaning to the abstract syntax trees of

expressions. We use a simple language of expressions to illustrate three different levels of operational

description. We enrich the language with variables and then scoped local definitions. Section 22.3

presents the operational semantics for a simple imperative language. Various extensions of this

language to incorporate nondeterminism and parallel execution, block structure, simple procedures

and storage allocation are discussed. In Section 22.4, we discuss descriptions of higher order

functions, referring to the λ-calculus and two evaluation strategies — call-by-name and call-by-

value — together with environment machines for implementing these calculi. Then, in Section 22.5,

we mention features of languages involving concurrency and interaction that are naturally modeled

using labeled transitions, before concluding in Section 22.6.

22.2 Preliminaries

22.2.1 Transition Systems

The primary task involved in providing an operational description of a system is to specify the

configurations of the system and the possible transitions between configurations. A transition system

(TS) consists of a collection (usually a set) S of configurations and a binary relation on configurations

−→⊆ S × S called the transition relation. We use the metavariable s to range over configurations.

In most applications, a subset I ⊆ S, called initial, or starting configurations, is distinguished.

Terminal configurations are those from which a transition is not possible — {s ∈ S | ∄s′ : s −→ s′}.

We denote the transitive closure of the transition relation by −→+ and its reflexive transitive

closure by −→∗. Termination arguments often require showing that the transition relation is

well-founded.

A closely related notion is that of a labeled transition system (LTS). Let L be a set of labels,

with l a typical label. An LTS consists of a set of configurations S, the label set L and a relation
−
−→ ⊆ S × L × S called the labeled transition relation. We write s

l
−→ s′ to mean that

〈 s, l, s′ 〉 ∈
−
−→ . Often an LTS is presented as a collection of TSs sharing the same configurations

S, but with one transition relation for each label.

Example 22.1: Lexical Analysis

Lexical analysis can be cast as a TS. Let M = 〈Q, q0 ∈ Q, δ ⊆ Q×� ×Q, F ⊆ Q〉 be a finite

state automaton recognizing a language over alphabet �, and let ς ∈ �∗ be any string over that

alphabet. Let ǫ denote the empty string, and let aς denote the string starting with letter a followed

by the suffix string ς .

Let S = Q × �∗ and let −→ be defined as 〈q, a ς〉 −→ 〈q ′, ς〉 if and only if (q, a, q ′) ∈ δ.

I = {〈q0, ς〉 | ς ∈ �∗} is the set of initial configurations. Terminal configurations are of two kinds:

those in F ×{ǫ} are “accepting” whereas those in (Q−F ×{ǫ})
⋃

{〈q, b ς〉 |�∃q
′ : (q, b, q ′) ∈ δ}

are “nonaccepting.”
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Example 22.2: An Automaton is an LTS

Finite state (and indeed other) automata are examples of LTSs. The configurations S are the states

of the automation, the labels the alphabet � and δ the labeled transition relation.

The example of automata also motivates a bunch of concepts important in operational semantics.

We usually associate a notion of observation with a transition system (e.g., consumption of a string

and termination in an accepting state in a finite state automaton), with respect to which transition

systems are ascribed observable behaviors (e.g., strings accepted by the automaton). There can

be different notions of what is observable for even the same transition system. Any given notion

of observability yields a corresponding notion of equivalence or ordering between two transition

systems based on their observable behaviors.

Definition 22.1 (observational equivalence and ordering). TS1 is said to be observably simulat-

able by TS2, written TS1 	 TS2, if every observable behavior possible of TS1 is also possible of

TS2. TS1 and TS2 are considered equivalent, denoted TS1≈TS2, if both have the same observable

behaviors.

Equivalence of two systems does not necessarily imply that one can be replaced by the other

in any context, because some notions of equivalence may not be preserved under each and every

construction possible in a class of transition systems.

The automata example also gives an idea of how an LTS can relate to a TS. The automaton LTS

describes the control aspect of the TS in abstraction from the data (the string ς ) on which it is run.

The dichotomy between control and data is not the central issue, however. Rather, labels are used

to indicate interaction between a component of a larger system with its context. This interaction

can be of a variety of kinds, and hence diverse uses of labeled TSs exist. For example, a process

receiving signals and performing some computation in response can be specified separately from the

processes sending it signals. The use of labeled transitions permits the description of a component

behavior separately from that of its context, with the labels specifying the interaction capabilities.

Very crudely, a labeled TS can be turned into a corresponding unlabeled one by providing within the

system “enough context” — thus “closing up” a description of an open system. Conversely, contexts

can be used to label transitions. The main issue is to characterize interesting decompositions of

systems into program fragment and context. This is still very much the subject of active research,

with some recent promising results in this direction [44, 67].

Example 22.3: Parsing

We also encounter a TS in parsing. String generation can be thought of as a TS as follows. Let

G = 〈N, T, P, S ∈ N〉 be a context-free grammar. Let the configurations S = (N ∪ T)∗ and let the

transition relation −→ be defined as s −→ s′ if and only if there exists a production r ∈ P such

that r ≡ X → w for some X ∈ N and w ∈ (N ∪ T)∗, s = s1Xs2 and s′ = s1ws2. S is the unique

starting configuration, and those terminal configurations that are in T ∗ and reachable from S are the

generated strings.

This TS can be reversed to yield a TS for parsing. The production rules are used in the reverse

direction; I = T∗ is the set of initial configurations, with a single “accepting” final configuration S

and possibly many other terminal configurations that are “nonaccepting.”

Remark 22.1. Plotkin’s seminal paper [63, Chapter 1] lists several different examples of TSs or

labeled TSs that one encounters in computer science — finite state automata, transducers, grammars

of different types, k-counter machines, stack machines, Petri nets, Turing machines, Semi-Thue

systems, Post-Systems, L-systems, Conway’s Game of Life, push-down automata, tree automata,

cellular automata and neural nets. In addition, many dynamic systems we encounter in daily life may

be modeled as TSs. Games are good examples of TSs.
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22.2.1.1 Properties

TSs provide a framework on which we can drape various formal verification exercises. Many of these

involve establishing that a particular TS satisfies various kinds of properties. One such important

property is totality. A TS is total if it has no terminal configurations (i.e., for every s ∈ S there exists

s′ ∈ S such that s −→ s′. Another common property is determinism: for every s ∈ S, |{s′ | s −→

s′}| ≤ 1. These notions can also extend to labeled transitions, either “per label” or “across labels.”

A crucial property in the preceding examples for lexical and grammatical analysis is reachability

from designated initial configurations. Reachability is also used in proving safety properties of

systems — no bad configuration is reachable from specified initial configurations.

Another property is what we call properly terminating, where all terminal configurations are good.

This is an example of a liveness property — that something good can eventually happen.

Another important metaproperty is confluence: for any s, s1, s2 ∈ S, whenever s −→∗ s1 and

s −→∗ s2, then s3 ∈ S exists such that s1 −→
∗ s3 and s2 −→

∗ s3. Stronger confluence properties are

the so-called diamond properties. A TS exhibits the strong diamond property if for any s, s1, s2 ∈ S,

whenever s −→ s1 and s −→ s2 and s1 =/ s2, then s3 ∈ S exists such that s1 −→ s3 and s2 −→ s3.

A TS has a weak diamond property if whenever s −→ s1 and s −→ s2 and s1 =/ s2, then s3

is reachable from s1 and s2 via the reflexive transitive closure of the transition relation, that is,

s1 −→
∗ s3 and s2 −→

∗ s3.

Various properties follow from certain finiteness constraints on transition systems. A TS (or LTS)

is called:

• Finitely branching if for every s ∈ S, the set {s′ | s −→ s′} is finite

• Finite if it is finitely branching and −→ is a well-ordering

• Regular if it is finitely branching and for each s ∈ S, the set {s′ | s −→∗ s′} is finite, where

−→∗ is the reflexive transitive closure of −→

In general, TSs whose transition relation can be characterized in a concise but abstract manner

(usually as a set of rules) are of interest, because they usually admit effective techniques for estab-

lishing properties of those systems. Finite or inductively characterized TSs are extremely common,

with induction and case analysis on (linear) sequences of transitions the most widely wielded proof

methods for reasoning about execution sequences or, at a higher level, observable behavior.

22.2.2 Structural Operational Semantics for Expressions

22.2.2.1 Abstract Syntax

The abstract instead of the concrete syntax of a language is of interest while specifying the meaning of

programs. Operational semantics descriptions manipulate these abstract syntactic objects and work

wholly within syntax. For convenience, however, it may be necessary to augment the syntax with

extrasyntactic data structures, but these entities can be shown to correspond in some obvious way

to purely syntactic entities. The abstract syntax of programs can be inductively characterized (e.g.,

as trees). We use abstract grammars as a handy notational device for describing abstract syntactic

categories.

We present three different kinds of operational description for an extremely simple language Exp;

the presentation can be adapted to any language of first-order expressions.

Example 22.4: Simple Arithmetic Expressions

Let Num denote the denumerable set of numerals (in some radix), and let X be a denumerable set of

variables, with x, y, z typical metavariables ranging over X . Exp can be presented using the following

abstract grammar, where e, e1, e2 are metavariables ranging over Exp, and n ranges over Num:

e ∈ Exp :: = x | n | (e1 + e2)
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TABLE 22.1 Big-Step Semantics for Evaluating Simple Expressions

(var)
γ ⊢ x �⇒e γ (x)

where x ∈ dom(γ )

(num)
γ ⊢ n �⇒e n

(add)
γ ⊢ e1 �⇒e n1 γ ⊢ e2 �⇒e n2

γ ⊢ (e1 + e2) �⇒e n3
where n3 = ADD(n1, n2)

Expression evaluation consists of simplifying a given expression to a form that cannot be further

simplified, hopefully to an element in a set of “good” canonical forms that we loosely call values

(there are a variety of notions of value depending on the language). The first task in presenting

operational semantics for expressions is to identify the set V of values. In the next few examples the

set V is the set of numerals Num. The metavariable v ranges over V .

For expressions containing variables, we need to know what the variables stand for to simplify

them to values. Accordingly, we present the operational semantics with respect to a finite domain

function called an environment γ: X →fin V , that maps variables to values. Let Env denote the

set of such finite domain functions from variables to values.1 Environments are an example of

extrasyntactic constructions we employ in our operational description. We write dom(γ ) to mean

the set {x ∈ X | γ (x) defined}. We work with finite domain functions because it is inappropriate to

frame essentially syntactic ideas in terms of infinite structures. If γ1 and γ2 are finite domain functions,

we denote by γ1[γ2] the finite domain function with domain dom(γ1) ∪ dom(γ2) defined as:

γ1[γ2](x) =











γ2(x) if x ∈ dom(γ2)

γ1(x) if x ∈ dom(γ1)− dom(γ2)

undefined otherwise

22.2.2.2 Big-Step or Natural Semantics

We first present a big-step structural operational semantics, or natural semantics for Exp.

The big-step transition relation �⇒e⊆ Env × Exp × V(= Num) is defined inductively as the

smallest relation closed under the inference rules given in Table 22.1. We read the relation γ ⊢

e �⇒e n as “given environment γ , expression e can evaluate to value n.” When the environment γ

is not needed, and so can be arbitrary, we sometimes omit writing “γ ⊢.”

This relation can be viewed as a TS with configurations S = (Env × Exp). A transition γ ⊢

e �⇒e v is understood as a transition 〈γ, e〉 → 〈γ, v〉, highlighting the fact that transitions leave

γ unchanged.

The way these rules are used is that if we have an expression that matches the left side of the

consequent (denominator) of a rule via a substitution ρ for the schematic variables, and if using the

same substitution ρ, all the antecedents (statements in the numerator) can be inductively established

while also respecting any side conditions, then the expression can evaluate to an expression of the

form given on the right side of the consequent instanceed using ρ. Used in this manner, the rules can

be seen as forming tree-structured justifications, or proof trees, of why an expression e can evaluate

1It is also possible to work with environments that are finite domain functions from variables to variable-free
expressions instead of to values. The nature of the rules and results does not change, except perhaps in some
minor details.
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to a value n — the goal judgment (e �⇒e n in this case) is at the root, the leaves are axiom instances

and the internal nodes correspond to rule instances with a branch for each antecedent.

The use of proof rules to specify transition systems is itself an area of research. Aceto, Fokkink

and Verhoef [2] give an excellent summary of rule specifications, the meanings of the transition

systems they specify and of various formats and the formal properties they guarantee (see also [47]).

Observe that the rules are syntax directed, in that there is a rule for each syntactic case. Further, in

rules with antecedents, the consequent of the rule describes the evaluation of a compound expression;

this evaluation depends on the evaluation of the component subexpressions, described in the rule’s

antecedents. The base cases of the relation �⇒e are the axioms (num) and var, which state that any

numeral evaluates to itself because it is in canonical form, and that a variable evaluates to the value

associated with it in the environment, respectively. Note, however, that instances of the rule var apply

only when the side condition or proviso x ∈ dom(γ ) holds. The induction case is the rule (add).

The rule may be read as “given γ , expression (e1 + e2) can evaluate to numeral n3 if expression e1

can evaluate to a numeral n1 with respect to γ , and e2 to n2 also with respect to γ , and where adding

numerals n1 and n2 yields numeral n3.” We assume a syntactic routine ADD for adding numerals.

Note: The big-step relation is reflexive on values. The relation is not total on environments and Exp,

because the var rule does not specify how to evaluate a variable y /∈ dom(γ ).

Typical exercises involve studying various properties of this relation. For instance, assuming that

the procedure ADD is functional and total, we can show that the relation �⇒e is indeed a partial

function:

|{n | γ ⊢ e �⇒e n}| ≤ 1 for all γ ∈ Env and e ∈ Exp

If vars(e) is the set of variables in e, we can show:

Proposition 22.1. For any e ∈ Exp, γ ∈ Env , if vars(e) ⊆ dom(γ ), there exists n ∈ Num such

that γ ⊢ e �⇒e n.

Proof of this proposition is by induction on the structure of the proof tree of γ ⊢ e �⇒e n, which

amounts to induction on the structure of e, because the relation is syntax directed.

Further, we can show that the big-step operational semantics agrees with any standard denota-

tional semantics if the procedure ADD behaves in accordance with the corresponding mathematical

operation. Let ρ be an assignment of values to variables, let [[n]] denote the number represented by

numeral n and let [[e]]ρ be the denotation of e with respect to ρ.

Proposition 22.2. For any e ∈ Exp, γ, ρ such that vars(e) ⊆ dom(γ ) and for all x ∈ dom(γ ),

ρ(x) = [[γ (x)]]: γ ⊢ e �⇒e n if and only if [[e]]ρ = [[n]].

This result too is proved by induction on the structure of e.

22.2.2.3 Small-Step or Reduction Semantics

The big-step relation specifies what normal forms an expression may have. It is a high-level speci-

fication, is possibly nondeterministic and does not detail how the computation may be performed.

It is inherently parallel; for example, in simplifying (e1 + e2), no indication is given as to whether

to simplify e1 before e2 or otherwise. Nor is any hint given on how to implement the relation with

finite resources.

In contrast, a small-step, or reduction, relation is used to specify not merely what an evaluation may

return, but also a strategy to achieve it. This approach is essentially the stepwise rewriting approach

followed, for example, in junior school when teaching children to simplify arithmetic expressions,

with the strategy specifying which subexpressions may be simplified at any stage.
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TABLE 22.2 Small-Step Semantics for Arithmetic Expressions

(vbl)
γ ⊢ x −→e

1 γ (x)
provided x ∈ dom(γ )

(add0)
γ ⊢ (n1 + n2) −→

e
1 n3

where n3 = ADD(n1, n2)

(add l)
γ ⊢ e1 −→

e
1 e′1

γ ⊢ (e1 + e2) −→
e
1 (e′1 + e2)

(add r )
γ ⊢ e2 −→

e
1 e′2

γ ⊢ (e1 + e2) −→
e
1 (e1 + e′2)

Again, configurations are simple arithmetic expressions: S = Env × Exp and V = Num . The

small-step relation −→e
1⊆ Env × Exp × Exp is between two expressions, given an environment.

The important difference with big-step semantics is that expressions do not simplify “in one go” to

a value, but instead simplify one step at a time to other expressions, and perhaps finally to values.

The reduction relation is also defined inductively, using inference rules, which are syntax directed,

but in a sense slightly different from that in the big-step semantics. Several rules may exist for the

same syntactic construct, and some constructs may have no associated rules. Moreover, the case

analysis is not strictly on syntactic structure but instead on an analysis of where simplification can

take place in an expression. Small-step reduction relations are seldom transitive and are usually

irreflexive.

Table 22.2 displays a reduction relation for evaluating simple arithmetic expressions. The rule

(vbl) says that variables are simplified to the value specified in the given environment. As expected,

the rule has a proviso requiring that the variable be in the domain of the environment. Note that no

rule exists for numerals. The rule (add0) can be understood as saying that (n1 + n2) simplifies to the

result of ADD(n1, n2). The rules (add l) and (add r) are symmetrical; the former says that if e1 can

simplify to e′1, then (e1 + e2) can simplify to (e′1 + e2) in a single step (similarly for simplifying e2

first). Note also that the relation is nondeterministic, and involves localized rewriting.

Observe that it is possible for an expression, such as ((7 + 21) + y) where y /∈ dom(γ ) for

a given environment γ , to be reduced a few steps before it gets “stuck.” This is in contrast to

the big-step situation where no transition is possible for that expression with respect to such an

environment γ .

An expression of the form (n1 + n2), an instance of the left side in an axiom, is called a redex.

Any reducible expression can be shown to contain a redex. Different small-step relations may be

proposed that differ in which redex should be selected first for reduction.

Typical results about small-step semantics usually pertain to the reflexive transitive closure of the

reduction relation. For instance, we can show the agreement with the big-step semantics:

Proposition 22.3. For all e ∈ Exp, γ ∈ Env and n ∈ Num: γ ⊢ e (−→e
1)
∗ n if and only if

γ ⊢ e �⇒e n.

This and similar results are proved by induction on the number of reduction steps involved in

γ ⊢ e (−→e
1)
∗ n, and within each reduction step, by an induction on the depth of the proof tree

justifying the single reduction step. A corollary to the preceding proposition is that the reduction-

down-to-values relation is a (partial) function, though such results can be shown from first principles

without reference to the big-step semantics.

A more interesting result to show about the relation −→e
1 is whether it satisfies a strong diamond

property. The proof of this property is by structural induction on the original expression, and analysis
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on how it could reduce to different expressions using induction on these justifications. This confluence

result provides a direct proof that while reduction is nondeterministic, the input-output relation it

induces is a function. (Totality of the input-output function is often shown by proving that a reduction

relation is well-ordered.)

A confluence result can greatly simplify reasoning about program execution, because it essentially

says that we do not need to consider each possible sequence but merely any one sequence to

a point of confluence. Confluence properties can play an important role in compilation, because

confluent systems admit simplifications in any order, including strategies that involve simplification

of subexpressions in parallel or even in nondeterministic fashion; these may make sense in certain

architectures such as those involving pipelining or multiple computational units. Nonconfluence

should alert a compiler developer that a proposed optimization may in fact be unsound if it alters

reduction order and ought therefore be avoided.

The small-step framework admits various restricted versions of reduction corresponding to

specialized strategies, typically those that are deterministic or easier to implement. For instance,

we could replace the (add r) rule by more restrictive versions, for example:

(add
lseq
r )

γ ⊢ e2 −→e
1 e′2

γ ⊢ (n + e2) −→e
1 (n + e′2)

which allow simplification of the second summand only when the first is already a numeral. With

these more restrictive rules, the reduction relation becomes deterministic; for any expression at

most one reduction rule applies. The modified relation specifies a sequential left-to-right evaluation

strategy. It is then important to prove that this strategy can simulate the original relation correctly in

the sense that both relations have the same reflexive transitive closures when considering reductions

down to values. This result is an example of standardization: if an expression can be reduced to a

value by any strategy, it can be reduced by a standard sequence using a particular strategy.2

Standardization is useful in reasoning about program execution, because it allows one to transform

any sequence of reductions to another one about which it is somehow easier to reason. Standardization

results are often employed, for instance, in showing that certain reduction sequences are not possible.

They can be important to a compiler writer, because they permit the use of possibly more efficient

implementation strategies without having to sacrifice any generality. It must be emphasized that

standardization is a very important syntactic metatheorem of TSs that applies only in systems whose

extensional behavior (input–output) is deterministic.

Example 22.5

Phenomena such as nontermination sharpen the differences between various evaluation strate-

gies. Consider a simple language of possibly nonterminating Boolean expressions given by the

abstract grammar:

b := tv | � | (b1 ∨ b2) tv ∈ {true, false}

We define three different small-step relations (omitting the “γ ⊢” in the rules): −→
comp
1 that

evaluates all parts of a disjunctive Boolean expression:

� −→
comp

1 � (tv1 ∨ tv2) −→
comp

1 tv3

tv3 = OR(tv1, tv2)

b1 −→
comp

1 b′1

(b1 ∨ b2) −→
comp

1 (b′1 ∨ b2)

b2 −→
comp

1 b′2

(tv ∨ b2) −→
comp

1 (tv ∨ b′2)

2Richer languages may require more complicated standardization results.
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−→ls
1 which is a left sequential evaluation:

� −→ls
1 �

b1 −→ls
1 b′1

(b1 ∨ b2) −→ls
1 (b′1 ∨ b2)

(true ∨ b) −→ls
1 true (false ∨ b2) −→ls

1 b2

and −→
par
1 which is parallel evaluation

� −→
par

1 �

b1 −→
par

1 b′1

(b1 ∨ b2) −→
par

1 (b′1 ∨ b2)

b2 −→
par

1 b′2

(b1 ∨ b2) −→
par

1 (b1 ∨ b′2)

(b1 ∨ false) −→
par

1 b1 (false ∨ b2) −→
par

1 b2

(b1 ∨ true) −→
par

1 true (true ∨ b2) −→
par

1 true

If a Boolean expression b reaches normal form via −→
comp
1 , then it reaches the same normal form

via −→ls
1 , in which case it reaches the same normal form via −→

par
1 . However, the converse is

not true:

(true ∨ �) −→
par

1 true

and:

(� ∨ true) −→
par

1 true

but:

(true ∨ �) −→ls
1 true

whereas:

(� ∨ true) −→ls
1 (� ∨ true)

However, both:

(true ∨ �) −→
comp

1 (true ∨ �)

and:

(� ∨ true) −→
comp

1 (� ∨ true)

22.2.2.4 Environment-Free Formulations

We pause briefly to remark that the formulation of the preceding relations using environments can

be transformed to TSs that operate wholly within syntax. For this we need the notion of substitution.

Definition 22.2 (Substitution). A substitution σ is a finite domain function from X to Exp. Equi-

valently, it can be viewed as a total function that is almost everywhere identity. We write eσ to denote

applying σ to e yielding an expression obtained by simultaneously replacing in e every occurrence

of variable x by the expression σ(x) for each x ∈ vars(e).

An environment γ is a specific instance of a substitution. It can easily be shown that if

γ ⊢ e (−→e
1)
∗, n then ⊢ eγ (−→e

1)
∗ n (the variable-free case) and likewise for �⇒e.

This observation may cause you to wonder why we introduced environments in the first place. The

reason is that substitution is usually an expensive operation, whereas the environment data structure

allows the computation to “look up” the expression to be substituted for a variable as and when

it is needed. Moreover, the later sections show that environments arise naturally when we try to

implement languages with block structure and functions. The environment-less formulation eases

the presentation of the following notion of equality.
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22.2.2.5 Operational Notions of Equality

Given a small-step relation such as −→e
1, it is often natural to define a notion of equality =e on

expressions as the symmetrical reflexive transitive closure of the reduction relation. This is precisely

the idea taught in junior school to show that two arithmetic expressions are equal.

Definition 22.3 (equality). Expression e =e e′ if there is a sequence of expressions e1, . . . , en

such that e ≡ e1, e′ ≡ en and for each i : 1 ≤ i ≤ n− 1, either ei −→
e
1 ei+1 or ei+1 −→

e
1 ei .

If the −→e
1 relation is weakly confluent, e and e′ can be reduced to a common form.

22.2.2.6 Abstract Machines

A more common approach to specifying arithmetic expression evaluation, familiar to most computer

scientists after an introductory data structures course, is by using a stack machine. This semantics is

at a lower level than either the big-step or small-step semantics, because it departs from providing

a specification of evaluation directly in terms of the source syntax, and also it employs additional

data structures.

The opcodes of the machine are instructions for loading numerical constants, for adding numerals

and for looking up bindings of variables. To avoid introducing new symbols, we employ the same

symbols for the opcodes of the machine. Let OpCodes be defined as sequences (strings) over the

symbol +, numerals, variables in X , with the idea that a variable is a lookup operation.3

OpCodes = (Num ∪ X ∪ {+})∗

Consider now a postorder traversal of the abstract syntax tree of an expression in Exp. This is defined

as a recursive function compile : Exp → OpCodes . To enhance readability, we use ˆ to indicate

string catenation:

compile(n) = n

compile(x) = x

compile((e1 + e2)) = compile(e1)ˆcompile(e2)ˆ+

Configurations of the abstract machine are triples consisting of an environment, a “stack” of numerals

and a sequence of opcodes. Table 22.3 details the initialization and transitions (the relation −−

⊲) of the abstract machine. Observe that we have presented a (finite) set of possibly conditional

rewrite rules in a two-dimensional syntax. The rules are operated by taking any configuration that

matches via a substitution for the schematic variables (e.g., γ, c, S, n, . . . ), the pattern indicated

in the left side of a rule, and replacing it with the configuration obtained by applying the same

substitution to the right side of a rule. In this example the rewrite rules involved are deterministic and

“regular,” in that at most one rule applies and that no configuration can be rewritten to more than one

configuration.

The machine is initialized with a given environment γ with respect to which expression e is to be

evaluated, an empty stack and a sequence of opcodes corresponding to compile(e). (For readability

we have used the ML-like notation :: for sequence concatenation, writing e.g., + :: C′ to specify a

sequence beginning with + followed by sequence C′). Observe that no inference rules are available —

merely rewrite rules, which are applied repeatedly until no rule applies. The moves depend primarily

on the first opcode in the sequence. The “good” terminal states are those with an empty sequence

3In implementations, we can have a single opcode that is parametrized by a variable (or equivalently an
address or index corresponding to the variable), and similarly a single opcode for loading constants.
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TABLE 22.3 Evaluating Expressions Using an Abstract Stack Machine

load(γ, e) =
〈

γ,
⌊ ⌋

, compile(e)
〉

variables 〈γ, S, x :: C〉 −−⊲

〈

γ,

⌊

γ (x)

S

⌋

, C

〉

constants 〈γ, S, n :: C〉 −−⊲

〈

γ,

⌊

n

S

⌋

, C

〉

add

〈

γ,











n2

n1

S










, + :: C

〉

−−⊲

〈

γ,

⌊

n3

S

⌋

, C

〉

where n3 = ADD(n1, n2)

unload
(〈

γ,
⌊

n
⌋

, ǫ
〉)

= n

of opcodes and a single value on the stack, from which the results are “unloaded.” The operational

behavior induced by the abstract machine is exactly the same as the big-step�⇒e (and thus also the

closure of the small-step relation).

Proposition 22.4. For all e ∈ Exp, γ ∈ Env and n ∈ Num: γ ⊢ e �⇒e n if and only if there

exists a configuration s such that load(γ, e) (−−⊲)∗ s and unload(s) = n

The proof involves induction on e and on the number of −−⊲ steps in reaching the terminal

configuration. In fact, several nontrivial lemmas need to be shown, which essentially state that the

evaluation of an expression does not examine or disturb the part of the stack below its initial top, and

that any expression results in a single value on the stack.

A typical result that has to be shown is along the lines of “for any stack S and code list C′,

if:

〈

γ,
⌊

S
⌋

, compile(e)ˆC′
〉

(−−⊲)∗
〈

γ,
⌊

S′
⌋

, C′
〉

then ⌊S′⌋ =

⌊

n

S

⌋

for some n ∈ Num .” The proof is by induction on the length of the opcode

sequence, but observe that we need to explicitly involve all “contexts” in which an expression may

be evaluated — the universal quantification on all stacks S and “continuation” code C′ — in the

statement of this property.

The preceding abstract machine can be seen as an implementation of a left-to-right reduction. In

general, standardization results help mediate the relationship between the abstract machine semantics

and the reduction semantics.

22.2.2.7 Tuples, Records and Conditionals

We make a quick foray into giving rules for structured expressions. We consider pairs (the idea extends

easily to tuples and records) and a simple conditional (which generalizes to case statements). We

only point out that in the rules for conditionals, the test e1 is first evaluated to a truth value before

one of the branches e2 or e3 is selected.
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We assume that our values v ::= n | tv | 〈v1, v2〉. The big-step rules for pairs and conditionals are:

(pair)
γ ⊢ e1 �⇒e v1 γ ⊢ e2 �⇒e v2

γ ⊢ 〈e1, e2〉 �⇒e 〈v1, v2〉

(if t )
γ ⊢ e1 �⇒e true γ ⊢ e2 �⇒e v2

γ ⊢ if e1 then e2 else e3 �⇒e v2

(if f )
γ ⊢ e1 �⇒e false γ ⊢ e3 �⇒e v3

γ ⊢ if e1 then e2 else e3 �⇒e v3

One possible set of small step rules are:

(pair l)
γ ⊢ e1 −→

e
1 e′1

γ ⊢ 〈e1, e2〉 −→
e
1 〈e

′
1, e2〉

(pair r)
γ ⊢ e2 −→

e
1 e′2

γ ⊢ 〈e1, e2〉 −→
e
1 〈e1, e′2〉

(if 0)
γ ⊢ e1 −→

e
1 e′1

γ ⊢ if e1 then e2 else e3 −→
e
1 if e′1 then e2 else e3

(if l)
γ ⊢ if true then e2 else e3 −→

e
1 e2

(if r)
γ ⊢ if false then e2 else e3 −→

e
1 e3

We do not present the abstract machine rules but observe that new opcodes need to be introduced,

and the compile function extended. The rule for a n-tuple-formation opcode takes n values off the

stack forms an n-tuple that is then pushed onto the stack. A record formation operation requires a

little more jugglery, for example, by sorting the fields according to a particular order (lexicographic,

say) at the compilation stage, and traversing the abstract syntax tree accordingly. The opcode for

conditional choice picks one of two continuations based on the value on the top of the stack. At

an abstract level, it is possible to talk of compound opcodes IF (c1, c2), which are realized on

actual machines by jumps. Another trick, used by Plotkin [63, p. 18] as a motivating illustration

for advocating more structure in operational descriptions, is to take the syntax apart and stash the

continuations or markers, selecting the correct one based on the evaluation of e1.

22.2.3 Private Definitions

Tennent’s principle of qualification [69] suggests that Exp can be extended to include expressions

that employ locally scoped definitions:

e :: = · · · | let x
def
= e1 in e2

In let x
def
= e1 in e2, the scope of the definition of x to e1 is limited to e2. The occurrences of

variables in an expression are now of two kinds: those that are bound and those that are free. Define

fv : Exp → X as:

fv(x) = x fv(f (e1, . . . , ek)) =
⋃k

i=i fv(ei)

fv(c) = ∅ fv(let x
def
= e1 in e2) = fv(e1)

⋃

(fv(e2)− {x})



An Introduction to Operational Semantics 857

The big-step rules are extended with:

γ ⊢ e1 �⇒e n1 γ [x �→ n1] ⊢ e2 �⇒e n2

γ ⊢ let x
def
= e1 in e2 �⇒e n2

Possible small-step rules are:

γ ⊢ e1 −→e
1 e′1

γ ⊢ let x
def
= e1 in e2 −→e

1 let x
def
= e′1 in e2

γ [x �→ n1] ⊢ e2 −→e
1 e′2

γ ⊢ let x
def
= n1 in e2 −→e

1 let x
def
= n1 in e′2

γ ⊢ let x
def
= n1 in n2 −→e

1 n2

We postpone the presentation of an abstract machine that can correctly deal with scoping issues

to our discussion of functions in Section 22.4, because the machinery needed there subsumes that

needed here. Tennent’s principle of correspondence relates definition mechanisms to parameter-

passing and thus definition mechanisms get addressed in the operational semantics for function

definition and call. It suffices to mention at this stage that the machines will now additionally have

to stack environments (or structures containing them) to implement the lexical scoping of block

structured languages.

Instead we discuss compound definitions. Consider the syntactic category Defs with meta-

variable d:

d :: = x
def
= e | d1;d2 | d1‖d2

with dv : Defs → X returning the defined variables, and f v extended to Defs:

dv(x
def
= e) = {x} dv(d1;d2) = dv(d1)

⋃

dv(d2) dv(d1‖d2) = dv(d1) ⊎ dv(d2)

fv(x
def
= e) = fv(e) fv(d1;d2) = fv(d1)

⋃

(fv(d2)− dv(d1))

fv(d1‖d2) = fv(d1)
⋃

fv(d2)

Here ⊎ stands for disjoint union, defined only when the sets are actually disjoint.

The big-step semantics uses two mutually recursive (but nevertheless inductive) definitions:�⇒e

as before and �⇒d ⊆ Env × Defs × Env . Observe here that the values (canonical forms) for

the �⇒d transition system are environments, which are extrasyntactic. The rules for �⇒d are:

γ ⊢ e �⇒e n

γ ⊢ x
def
= e �⇒d [x �→ n]

γ ⊢ d1 �⇒d γ1 γ [γ1] ⊢ d2 �⇒d γ2

γ ⊢ d1;d2 �⇒d γ1[γ2]

γ ⊢ d1 �⇒d γ1 γ ⊢ d2 �⇒d γ2

γ ⊢ d1‖d2 �⇒d γ1 ∪ γ2

To correctly implement scoping, �⇒d returns the incremental change to the environment obtained

by processing a definition. In sequential definitions we first process d1 with respect to γ , which

we augment with the resulting environment to process d2, whereas with simultaneous definitions,

the same environment is used for elaborating the parallel definitions. In the last rule, because we

assumed that dv(d1)
⋂

dv(d2) = ∅, the union of environments is well-defined.
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Finally, because the principle of qualification may be applied to Defs, we obtain definitions that

contain auxiliary local definitions:

d :: = . . . | local d1 in d2

dv(local d1 in d2) = dv(d2) fv(local d1 in d2) = fv(d1)
⋃

(fv(d2) − dv(d1))

The big-step semantics of this construct is:

γ ⊢ d1 �⇒d γ1 γ [γ1] ⊢ d2 �⇒d γ2

γ ⊢ local d1 in d2 �⇒d γ2

The reduction semantics for Defs is somewhat more tricky (see [63, pp. 80–81]. The problem can

perhaps be understood in trying to reduce let d in e when d is irreducible. Here, the bindings of d

must somehow be augmented to the outer environment γ before e can be evaluated. Plotkin employs

the expedient of treating environments as a canonical form of definitions, clarifying that they are not

in the abstract syntax but merely in the control component in configurations:

γ [γ1] ⊢ e −→e
1 e′

γ ⊢ let γ1 in e −→e
1 let γ1 in e′

Indeed, this mixing of extrasyntactic data structures (environments) with abstract syntax is a

somewhat weak point about pure reduction semantics. Although the big-step formulations also use

extrasyntactic constructions, their use is far more disciplined (Astesiano points out that various

denotational-semantic relations can be presented in the same inductive framework employed by

big-step semantics) [5].

22.2.3.1 Relation to Types

We finish this section with an important issue of how the operational semantics relates to type check-

ing. Indeed, our presentation has avoided typing issues altogether, although they are a significant part

of any structural semantic presentation. The relationship between typing and execution is particularly

significant in strongly typed languages with compile-time type checking: Programs that type check

correctly at compile time should not raise type errors at run time. This property can be guaranteed

if expressions do not change type during execution. Such a theorem is called subject reduction. A

typical subject reduction result (stated for small-step semantics, but an analogous statement holds

for big-step semantics) is:

Let Ŵ be a set of assumptions of types of variables under which expression e has type τ (written

Ŵ ⊢ e : τ ). If γ is an environment that conforms to Ŵ (i.e., it binds variables to values having

type according to Ŵ), and if γ ⊢ e −→e
1 e′, then Ŵ ⊢ e′ : τ .

22.3 Imperative Languages

22.3.1 WHILE Language

We now move on to providing a simple imperative language WHILE with operational semantics.

WHILE has nested within it a language of expressions (boolean expressions, in particular) and the

operational semantics provides a good illustration of how semantics developed for one syntactic

category can be employed in the inductive definition of another — transitions for expressions are

employed in those for imperative commands.
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22.3.1.1 Syntax

The syntax of commands Comm in WHILE with typical metavariable c is given by the following

abstract grammar, where metavariable e ranges over Exp, which we assume includes a sublanguage

of boolean expressions:

c ::= skip

| x:=e

| c1;c2

| if e then c1 else c2

| while e do c

22.3.1.2 Big-Step Semantics

The big-step semantics of WHILE is a relational specification of command execution. The imperative

model of computation is based on the idea of making a series of small changes to a memory

state. Commands can be thought of as state transformers — the basic action is that of assigning

a value to a program variable. More complex actions are built up from the elementary ones using

constructs for sequencing, conditional execution and iteration. For convenience, we include an

identity transformation, namely, the command skip.

Let State consist of finite domain functions from X to V . For simplicity, we assume that expression

evaluation involves no side effects that change the state of memory. State is, at least as a first

approximation, the same as Env. This abstraction gets taken apart in modeling other features. The

set of configurations in the transition system is (State × Comm)
⋃

State . The big-step transition

relation �⇒⊆ (State × Comm) × State is defined as the smallest relation closed under the rules

given in Table 22.4.

Command skip leaves the state unchanged. If an expression e evaluates to a value v in a state σ

(given in terms of the big-step relation for expressions), the effect of an assignment x:=e results in a

state that is identical to σ , except that its value at variable x is now v. If c1 transforms σ to σ1 and c2

transforms σ1 to σ2, then their sequential composition achieves the composite transformation of σ to

σ2. The rules for the conditional say that if e then c1 else c2 transforms σ as would command c1 (c2,

respectively) depending on whether e evaluates to true or false in state σ . The while rules for the

TABLE 22.4 Big-Step Semantics for a Simple Imperative Language

skip
〈σ, skip〉 �⇒ σ

assign
σ ⊢ e �⇒e v

〈σ, x:=e〉 �⇒ σ [x �→ v]

seq
〈σ, c1〉 �⇒ σ1 〈σ1, c2〉 �⇒ σ2

〈σ, c1;c2〉 �⇒ σ2

if true

σ ⊢ e �⇒e true 〈σ, c1〉 �⇒ σ1

〈σ, if e then c1 else c2〉 �⇒ σ1

if false

σ ⊢ e �⇒e false 〈σ, c2〉 �⇒ σ2

〈σ, if e then c1 else c2〉 �⇒ σ2

whilefalse

σ ⊢ e �⇒e false

〈σ, while e do c〉 �⇒ σ

whiletrue
σ ⊢ e �⇒e true 〈σ, c〉 �⇒ σ1 〈σ1, while e do c〉 �⇒ σ2

〈σ, while e do c〉 �⇒ σ2
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indefinite iterator are also intuitive — if the boolean condition e evaluates to false in state σ , the loop

is not entered; if e evaluates to true then if the body c of the loop is executed to reach state σ1 and

if executing the loop while e do c starting from σ1 yields state σ2, then σ2 is the resulting state from

executing the loop. Observe that this relational specification corresponds to partial correctness.4

The �⇒ relation is deterministic:

Proposition 22.5. If 〈σ, c〉 �⇒ σ1 and 〈σ, c〉 �⇒ σ2 then σ1 = σ2.

There are some subtle technical issues about these rules that arise (e.g., in formal compiler

verification exercises). As noted in [5], the rules for the while e do c yield an inductive definition,

but one which is not structural. The two while rules can be coalesced into a single equivalent rule,

which too is not structural:

〈σ, if e then c;while e do c else skip〉 �⇒ σ ′

〈σ, while e do c〉 �⇒ σ ′

Both these formulations involve a recursive definition, which while being concise and intuitive do

not allow the use of structural induction. Fortunately, there is an equivalent formulation for the

while e do c rule which is structural; this formulation employs an auxiliary inductively defined

relation F ⊆ State × State:

〈σ, σ ′〉 ∈ F

〈σ, while e do c〉 �⇒ σ ′

where F is defined inductively by:

σ ⊢ e �⇒e false

〈σ, σ 〉 ∈ F

σ ⊢ e �⇒e true 〈σ, c〉 �⇒ σ ′′ 〈σ ′′, σ ′〉 ∈ F

〈σ, σ ′〉 ∈ F

We can now propose operational notions of equivalence and ordering between WHILE programs

according to the following definition:

Definition 22.4 (operational equivalence).

c1 	 c2 whenever for all σ : 〈σ, c1〉 �⇒ σ1 ⊃ 〈σ, c2〉 �⇒ σ1

c1 ≈ c2 whenever for all σ : 〈σ, c1〉 �⇒ σ1 if and only if 〈σ, c2〉 �⇒ σ1

These notions are instances of the concepts of Definition 22.1 — the observable behavior of a

command is how it transforms a given state to yield a resulting state.

Example 22.6

Here are some equivalences and ordering relations that can be seen as code improvements:

1. skip ≈ while false do c for all commands c.

2. while true do c 	 c′ for all c, c′ because the former is nonterminating.

3. Let W ≡ while e do c. Then W ≈ if e then c;W else skip.

4. c; skip ≈ c ≈ skip; c for all c.

5. if true then c1 else c2 ≈ c1 and if false then c1 else c2 ≈ c2.

4In fact, it is possible to read the Hoare style axiomatic semantics for WHILE as a backward operational
semantics on a nonstandard kind of state.
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TABLE 22.5 Reduction Semantics for a Simple Imperative Language

skip′
〈σ, skip〉 −→1 σ

assign ′1
σ ⊢ e −→e

1 e′

〈σ, x:=e〉 −→1 〈σ, x:=e′〉

assign ′2
〈σ, x:=v〉 −→1 σ [x �→ v]

seq ′1
〈σ, c1〉 −→1 〈σ1, c′1〉

〈σ, c1;c2〉 −→1 〈σ1, c′1;c2〉

seq ′2
〈σ, c1〉 −→1 σ1

〈σ, c1;c2〉 −→1 〈σ1, c2〉

if ′1
σ ⊢ e −→e

1 e′

〈σ, if e then c1 else c2〉 −→1 〈σ, if e′ then c1 else c2〉

if ′true
〈σ, if true then c1 else c2〉 −→1 〈σ, c1〉

if ′false
〈σ, if false then c1 else c2〉 −→1 〈σ, c2〉

while ′
〈σ, if e then c;while e do c else skip〉 −→1 〈σ

′, c′〉

〈σ, while e do c〉 −→1 〈σ
′, c′〉

22.3.1.3 Reduction Semantics

We now move on to the reduction semantics for WHILE as a possibly more detailed description on

how to realize an imperative language. The main difference now is the relation −→1⊆ (State ×

Comm)× ((State×Comm)
⋃

State). The canonical (normal) forms for this relation are naturally

those in State. Table 22.5 presents the reduction semantics.

The −→1 relation is easy to understand. Rule skip ′ says skip does nothing. Executing an

assignment first involves simplifying the expression e (repeatedly using rule assign ′1) down to

a value v, which is then associated with x (rule assign ′2). Executing a sequential composition

c1;c2 involves executing the first command c1 until it is exhausted (repeatedly using rule seq ′1),

at which stage we start the execution of c2 from the resulting state σ1 (rule seq ′2). In evaluating

a conditional, we first evaluate the expression e to a Boolean value (repeatedly using rule if ′1).

If that value is true, then c1 is executed (rule if ′true ) and if it is false, c2 is executed (rule

if ′false ). The while ′ rule is, again, somewhat harder to formalize concisely, and relies on the fact

that skip is a NO-OP.

Proposition 22.6. The big-step and reduction semantics define the same notion of program

execution, that is, for all c and σ : 〈σ, c〉 �⇒ σ ′ if and only if 〈σ, c〉 (−→1)
∗ σ ′.

Remark 22.2. In fact, in [63], Plotkin uses what Astesiano calls a “mixed step” semantics for

branching and iteration. For example, the rules for while he gives are:

σ ⊢ e (−→e
1)
∗ true

〈σ, while e do c〉 −→1 〈σ, c;while e do c〉

σ ⊢ e (−→e
1)
∗ false

〈σ, while e do c〉 −→1 σ

His small-step rules for the while command involve the transitive closure of the small-step reduction

of expressions, equivalent to a big-step expression evaluation.
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Recall that a small-step semantics can be thought of as moving “irrevocably forward” albeit

nondeterministically, whereas big-step semantics can easily incorporate temporary undoable changes

in describing subcomputations. Constructs that have a relatively simple big-step semantics but have

difficult small-step semantics usually necessitate additional data structures such as stacks in the

abstract machine for effecting the temporary changes involved in subcomputations.

22.3.1.4 Abstract Machine

The abstract machine for WHILE is a so-called stack-memory-code (SMC) machine, with a stack

for evaluating expressions, a memory, or state, component and a code list. As illustrated by Plotkin

[63, pp. 17–19], the transition semantics is somewhat messy: the transition relation is not directly in

terms of syntactic structure. The linearization of this abstract syntax via a post-order traversal that

worked well for expressions requires adjustments for constructs involving branching and iteration,

where control points need to be stacked for further use or disposal. The reason is that execution

of a program is no longer isomorphic to traversal of the abstract syntax tree, because a transition

sequence can involve executing constructs in which an entire subtree may be ignored (branching and

iteration), or may be revisited repeatedly (iteration).

22.3.2 Nondeterminism

Dijkstra’s so-called guarded choice language is a quintessential imperative language involving

nondeterminism:

c :: = . . . | if ✷
n
i=1 ei ⊲ ci fi | do ✷

n
i=1 ei ⊲ ci od

Following are the big-step and mixed-step semantics for the new constructs. We use the mixed-step

approach of Plotkin (or Astesiano) for reduction, because it yields a compact presentation (a pure

small-step presentation is replete with the problems mentioned earlier). The big-step rules are:

σ ⊢ ej �⇒e true 〈σ, cj 〉 �⇒ σ ′

〈σ, if ✷
n
i=1 ei ⊲ ci fi〉 �⇒ σ ′

(j ∈ {1, . . . , n}

σ ⊢ ej �⇒e true 〈σ, cj ;do ✷
n
i=1 ei ⊲ ci od〉 �⇒ σ ′

〈σ, do ✷
n
i=1 ei ⊲ ci od〉 �⇒ σ ′

(j ∈ {1, . . . , n}

∧n
i=1σ ⊢ ei �⇒e false

〈σ, do ✷
n
i=1 ei ⊲ ci od〉 �⇒ σ

and in the mixed-step formulation:

σ ⊢ ej (−→e
1)
∗ true

〈σ, if ✷
n
i=1 ei ⊲ ci fi〉 −→1 〈σ, cj 〉

(j ∈ {1, . . . , n}

σ ⊢ ej (−→e
1)
∗ true

〈σ, do ✷
n
i=1 ei ⊲ ci od〉 −→1 〈σ, cj ;do ✷

n
i=1 ei ⊲ ci od〉

(j ∈ {1, . . . , n}

∧n
i=1σ ⊢ ei (−→e

1)
∗ false

〈σ, do ✷
n
i=1 ei ⊲ ci od〉 −→1 σ

In each set, the first two rules are really families of rules (one for each choice of j ). The rule for

guarded choice says that if any ei evaluates to true in σ , then the corresponding ci may be executed
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from σ . The rules for guarded iteration say that if any ei evaluates to true in σ , then the corresponding

ci followed by the loop again may be executed from σ , whereas if all ei evaluate to false, control

exits the iteration construct.

An implementation (or abstract machine) has to use some mechanism for evaluating the guard

expressions down to values choosing some order. To achieve some degree of fairness, a scheduler

may be used to select the order in which guard expressions can be tried.

22.3.2.1 Parallel Execution

Many concurrent imperative languages allow parallel execution of threads, for instance in a cobegin-

coend construct:

c ::= . . . | c1‖c2

Consider the following big-step semantics:

〈σ, c1〉 �⇒ σ1 〈σ, c2〉 �⇒ σ2

〈σ, c1‖c2〉 �⇒ σ1 ∪ σ2
provided W(c1) ∩W(c2) = ∅

where W(ci) denotes the set of variables changed in ci . The proviso ensures that the union is well-

defined. Unfortunately, this rule does not correspond to our usual intuition of parallel computation.

It is correct only when both threads do not use the contents of variables modified by the other

(Bernstein’s conditions); otherwise this specification is difficult to implement.

The small-step semantics are simpler to implement (and less fussy to specify):

〈σ, ci〉 −→1 〈σ
′, c′i〉

〈σ, c1‖c2〉 −→1 〈σ
′, c′1‖c

′
2〉

i ∈ {1, 2}

〈σ, ci〉 −→1 σ ′

〈σ, c1‖c2〉 −→1 〈σ
′, c3−i〉

i ∈ {1, 2}

What this suggests is that the granularity of abstraction that the big-step semantics seeks to impose

in describing the operational behavior is inappropriate for concurrent computation. Also, using

big-step semantics makes it difficult to describe visible side effects of a computation during non-

terminating runs. Consequently, it is common to find most frameworks for concurrency (e.g., [50])

using [generally labeled] reduction semantics.

22.3.3 Blocks and Variable Declarations

Most-imperative languages are block structured, and employ scoped declarations of variables, which

are (often) initialized before any command is executed. Moreover, we have not studied any constructs

where imperative variables (which are really named storage cells) can have any structure. A more

general treatment of imperative variables is to factor the notion of State into two maps: the first is an

environment γ ∈ Env = X →fin Loc; and the second a store σ ∈ Store = Loc →fin V , where Loc

is a set of storage addresses, or locations, and V is the set of (storable) values. Environments can also

be used to model constant declarations by including V in the codomain of Env. The common practice

is to have different environment components for constants, variables, procedures, types, classes and

modules — whatever distinct nameable concepts appear in the language. In what follows, we assume

that the appropriate environment component is looked up.

We ignore the issue of the types of the declared variables, because they are usually irrelevant

for specifying the dynamic behavior. Consequently, variable declarations merely become lists of

variables:

c ::= . . . | var vd begin c end vd ::= x | vd;vd
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The big-step relations now are �⇒e⊆ ((Env × Store) × Exp) × V for expressions, �⇒c⊆

Env × (Store ×Comm)× Store for commands, �⇒d⊆ (Env × Store ×Decl)× (Env × Store)

for declarations. (This is a little more general than we need for the moment, but will allow variable

initializations during declarations, and can be invaluable in the specification of procedures).

The rules for expressions are now relative to a pair γ, σ and except for the variable lookup all other

rules are otherwise unchanged. All the previous rules given for commands are now made relative

to an environment γ , and �⇒ is now subscripted �⇒c. We now give the new and changed rules

for variable lookup, variable declarations, assignments and blocks (only for the big-step case — we

encounter the same issues in blocks as we did in local declarations when attempting a small-step

formalization):

γ, σ ⊢ x �⇒e v
where v = σ(γ (x)), if defined

γ, σ ⊢ e �⇒e v

γ ⊢ 〈σ, x:=e〉 �⇒c σ [γ (x) �→ v]
provided x ∈ dom(γ )

〈γ, σ, x〉 �⇒d 〈[x �→ l], σ [l �→ ⊥]〉
where l /∈ codom(γ )

⋃

dom(σ )

〈γ, σ, vd1〉 �⇒d 〈γ1, σ1〉 〈γ [γ1], σ1, vd2〉 �⇒d 〈γ2, σ2〉

〈γ, σ, vd1;vd2〉 �⇒d 〈γ1[γ2], σ2〉

〈γ, σ, vd〉 �⇒d 〈γ1, σ1〉 γ [γ1] ⊢ 〈σ1, c〉 �⇒c σ ′

γ ⊢ 〈σ, var vd begin c end〉 �⇒c σ ′ ≀ dom(σ )

In assignments, we now use γ to determine the location corresponding to x, which is updated in

the store. In variable declarations, fresh locations are generated and added to the store (initialized

to an undefined value ⊥), then bound to the variables in the environment. Observe that we have

(somewhat idiosyncratically) the environments returned be increment (and hence undoable), whereas

the changes to the store be cumulative (i.e., persistent). This approach is appropriate for small or

mixed step semantics, and also for any extensions to procedures. At the abstract machine level, this

hints that environments must necessarily be implemented using stacks whereas stores can be global,

with careful control on accessibility of locations.

Also, the returned state in the execution of a block purges all components of the store that were

created during execution of the block. This is to avoid the occurrence of locations inaccessible from

the environment (i.e., garbage). Likewise, we have been careful to avoid the possibility of dangling

references, namely, locations accessible from the environment but not present in the domain of the

store — which can occur if we have a command free(x).

22.3.4 Procedures and Parameter Passing

We now introduce the possibility of declaring and calling procedures in the WHILE language. We

consider only nonrecursive procedures, with a single variable. The extension to several variables and

indeed to several variables with several different parameter-passing mechanisms is at least intuitively

straightforward (though rather tedious to write as rules). The extension to recursive procedures,

however, is not quite trivial. It involves the computation of fixed points by an iterative process akin

to the case of the while command.

Indeed, we have met some of the scoping issues during our treatment of blocks (via Tennent’s

principle of correspondence, where any parameter passing mechanism corresponds to a definition

mechanism and conversely). The issues of managing control during call and return are better treated

in a more general setting of first-class abstractions in Section 22.4.
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22.3.4.1 Parameterless Procedures

We first extend the language with facilities for declaring and calling procedures without parameters.

It is then easy to extend this further to various parameter-passing conventions such as call-by-value

and call-by-reference:

d ::= . . . | sub P = c

c ::= . . . | call P

As in most programming languages, we assume that the body c of the procedure P may refer to

and modify nonlocal (free) variables that are visible by the usual rules of static scope.

Semantically a (parameterless) procedure is merely a state transformer with a name. Hence, it is

necessary to include state transformers in the codomain of semantic environments:

Proc0 = Store →p Store

Env = X →fin (Loc + Proc0 + · · · )

Operationally, however, a procedure identifier merely represents sufficient information required

to be able to execute the code of the procedure. Lexical scoping requires that variables in the body

of the procedure take their bindings in the environment that the procedure was declared, instead of

from the calling context. Hence, a procedure declaration modifies the environment by associating

with the procedure name, the environment in which the declaration occurs and the body of the

procedure. Such a data structure is called a procedural closure. We revisit closures in Section 22.4

while discussing function call in lexically scoped functional languages. As in the case of blocks and

declarations, we assume that the state has two components, an environment γ , and a store σ :

Sub0
〈γ, σ, sub P = c〉 �⇒d 〈γ [P �→ proc0〈c, γ 〉], σ 〉

Call0
γ1 ⊢ 〈σ, c〉 �⇒c σ ′

γ ⊢ 〈σ, call P 〉 �⇒c σ ′
γ (P ) = proc0〈c, γ1〉

22.3.4.2 Procedures with Parameters

Extending the treatment to procedures with parameters, we consider, for simplicity, only procedures

with a single parameter. We also consider only the call-by-value and call-by reference mechanisms.

The extended language syntax is:

d ::= . . . | sub P (val x) = c | sub P (var x) = c

c ::= . . . | call P(e)

We require that the expression e can only be a variable symbol when the procedure P uses a var

parameter. The mathematical domains for procedures of these kinds are:

Procv = (Store × V)→p Store

Procr = (Store × Loc)→p Store

Proc = Proc0 + Procv + Procr

Env = X →fin (Loc + Proc)

The corresponding closures used in the operational world now carry the formal parameters (marked

with the name of the parameter-passing mechanism) in addition to the body of the procedure and its

definition environment.
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The operational rules for the new constructs are given as follows. In the rule Callv , γ1 is the

environment of the declaration of the procedure P . It is necessary to allocate a new location l for

the formal parameter x in which the value of the actual parameter obtained by evaluating e in the

state 〈γ, σ 〉 is stored. Finally, of course, the location l needs to be made inaccessible on exit from

the procedure. Hence, the conclusion of the rule has the restriction of σ ′ to the domain of σ . The

presence of the binding for P in γ2 is a simple expedient to deal with recursion:

Subv
〈γ, σ, sub P (val x) = c〉 �⇒d 〈[P �→ proc〈val x, c, γ 〉], σ 〉

Callv
γ, σ ⊢ e �⇒e v γ2 ⊢ 〈σ [l �→ v], c〉 �⇒c σ ′

γ ⊢ 〈σ, call P(e)〉 �⇒c σ ′ ≀ dom(σ )

where γ2 = γ1[P �→ γ (P )][x �→ l], l /∈ codom(γ )∪ dom(σ ) and γ (P ) = proc〈val x, c, γ1〉.

In a similar vein we also define the semantics of procedures that use a reference parameter. Note

that the formal parameter x is now associated with the location of the actual parameter y in invocation

call P(y). There are no new locations created, hence dom(σ) = dom(σ ′). The effect of updating

the formal parameter x within the procedure body is directly reflected in the contents of the location

of the actual parameter:

Subr
〈γ, σ, sub P (var x) = c〉 �⇒d 〈[P �→ proc〈var x, c, γ 〉], σ 〉

Callr
γ2 ⊢ 〈σ, c〉 �⇒c σ ′

γ ⊢ 〈σ, call P(y)〉 �⇒c σ ′

where γ2 = γ1[P �→ γ (P )][x �→ γ (y)] and γ (P ) = proc〈var x, c, γ1〉.

22.3.5 Runtime Allocation and Deallocation

One of the most nettlesome features of most programming languages is the use of pointers — their

creation, access and disposal. Pointers are a major source of problems for users, implementors and

language designers alike. It is therefore necessary to precisely define the semantics of dynamic mem-

ory allocation and deallocation. This is also a feature easier to treat operationally than denotationally.

For simplicity, we consider pointers in isolation from block structure and procedures.

Briefly, one of the first problems with pointers is aliasing. The problem of aliasing is not an

exceptional circumstance, as it is often the case that distinct dereferencing expressions refer to the

same location on the heap. Hence, an assignment to one of the references might alter the value of

some other seemingly unrelated expression. The second major problem is that it is fairly common

to work with several logically distinct data structures in heap, where sharing of components occurs.

Third, while discussing memory allocation and deallocation, it is important to treat definedness

(a major source of runtime errors).

Calcagno, Ishtiaq and O’Hearn [16] have built on some previous work of Morris [?][10] to specify

the semantics of aliasinallocation and disposal. For simplicity, the store is assumed to consist of

two components — a stack, which holds the values of local variables, and a heap, which contains

data that are dynamically created and destroyed. Naturally any access to the heap is from the stack.

Any structure that is inaccessible from the stack is treated as garbage. The stack can be extended by

declarations of local variables. Variable values can be modified by assignments. The heap, on the

other hand, is assumed to consist of only one kind of data structure, namely, records, where each

record has a fixed number of components indexed by tags.
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We extend the language of expressions to include record component access and update. The

metavariables a, b, . . . range over tags (record components). An expression can also be a null

pointer or access to a record component:

e ::= . . . |e.a

Correspondingly, the domain of denotable values of Ada for expressions is extended to) include

locations and a special value null. The changes that are needed in the various domain definitions are

listed below:

Tag = {a, b, · · · }

V = · · · + Loc + {null}

Stack = X →fin V

Heap = Loc →fin (Tags → V)

Store = Stack × Heap

A store σ is a pair (st, hp), containing a stack st and a heap hp. Both the stack st and the heap hp

are partial functions. Their domains are denoted dom(st) and dom(hp), respectively. The domain

dom(st) includes only the variables in the current scope and dom(hp) includes only the locations

allocated so far and is finite.

Two distinct variables x and y could point to the same record on the heap (i.e., x.a and y.a could

be aliases). However, two distinct variables cannot be aliases because variables are on the stack and

not on the heap. Moreover the “l-values” of variables cannot be modified. For any variable x that

may be a pointer to a record on the heap, x.a represents access to a component a.

Example 22.7

We consider linked lists with the two constructors — hd and t l. For any list variable x (on stack)

x.hd dehis notes the value of the first element in the list (if the list is nonempty), whereas x.tl denotes

a location from which the rest of the liste. Hence, x.tl.hd is the value of the second element of the

list (if a second element exists). We also allow for a special value null to be stored in x, to denote

the empty list. Hence, if the list (written ML style) [1, 2, 3] is the value of the variable x on

stack, then we require x ∈ dom(st) and three locations {l1, l2, l3} ⊆ dom(hp) such that:

st (x) = l1

hp(l1)(hd) = 1, hp(l1)(tl) = l2

hp(l2)(hd) = 2, hp(l2)(tl) = l3

hp(l3)(hd) = 3, hp(l3)(tl) = null

Clearly, it follows that x.tl.t l.hd = 3 where “.” is left associative.

The operational rule for the new expression is given next. The rules for other expressions are as

given in Table 22.4. We use the metavariable l to range over Loc+ {null}, and v ranges over actual

values that are not locations:

refloc
(st, hp) ⊢ e �⇒e l l ∈ dom(hp)

(st, hp) ⊢ e.a �⇒e hp(l)(a)
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Because it is now possible for assignment commands to allow the assignments of pointer

expressions, we require two rules for the assignment command. The first rule defines the assignment

of values to variables on the stack. Depending on the type of the variable, it may be either an integer

value or a rather than5 We use the metavariable vl to denote that it may be drawn from either values

or Loc + {null}.

We use h[l.a �→ v] to abbreviate h[l �→ h(l)[a �→ v]]. The rules for assignment are shown

as follows:

assignvar
(st, hp) ⊢ e �⇒e vl

〈(st, hp), x := e 〉 �⇒c (st[x �→ vl], hp)

assignref
(st, hp) ⊢ e1 �⇒e l (st, hp) ⊢ e2 �⇒e vl l ∈ dom(hp)

〈(st, hp), e1.a := e2 〉 �⇒c (st, hp[l.a �→ vl])

Having defined the semantics of references, we are now ready to augment the language with

commands for allocation and deallocation of memory. We then extend the language of commands

to include the two Pascal-like commands:

c ::= . . . | new(x) | free(e)

Command new(x) nondeterministically selects a location not currently in dom(hp) and initializes

the record with the value “⊥”. We use hp[l.∗ �→⊥ ∗] to denote that all components of the record

hp(l) are initialized to⊥. Similarly, free(e) simply removes the location denoted by e from dom(h).

The rules given include:

new
l /∈ dom(hp)

〈(st, hp), new(x)〉 �⇒ (st[x �→ l], hp[l.∗ �→⊥ ∗])

free
(st, hp) ⊢ e �⇒e l l ∈ dom(hp)

〈(st, hp), free(e)〉 �⇒ (st, hp\l)

In the rule for free(e), h\l denotes the fact that the heap is no longer defined for l (as opposed

to being filled with value “⊥”). The preceding rules give us a flavor of how operational rules may

be used to specify implementation intuition to a large extent. In [16], the authors also show how

these rules may be used to justify axiomatic rules for reasoning locally about aliasing and dynamic

memory allocation and deallocation.

22.4 Functions and Higher Order Forms

Applying the principle of abstraction [69] to expressions or commands allows us to form abstracts that

may be invoked, usually with different parameters. These abstract forms are called functions and pro-

cedures, respectively. Abstract expressions (with a single parameter) are written as λx.e. λ binds the

variable x within the scope of the “body” e. An abstract a can be invoked by applying it to an argument

e, written as (a e); such calls belong to the syntactic category over which the abstract is formed.

The situation becomes more interesting in higher order languages, which admit such abstracts as

first-class values — abstracts can themselves be bound to variables, passed as arguments and returned

as results of other functions. The various issues related to functions and procedures, in particular,

the correct formulation of lexical scoping and of recursive function definitions, can be explored in

5The issue of types is something that needs to be addressed by a static semantics, as pointed out elsewhere.
It is not properly the concern of a dynamic semantics. Thus, we continue to believe that all the constructs
we use are type safe.
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a higher ordrathertthan ional language with only single paraItr funcisions. The generalizations to

procedures and multiple parameters is a matter of detailing, but does not need very much by way of

new concepts. Indeed, these two issues lexical scoping and recursion are of vital importance — early

implementations of Lisp implemented dynamic scoping because of a rather simplistic implementation

of recursion.

Exp is now extended to:

e ::= . . . λx.e | (e1 e2)

We look at an extremely simple quintessential functional language, called the λ-calculus. Indeed,

Landin explicated the block structured features of Algol by relating them to the λ-calculus. The

operational semantics for various flavors of the λ-calculus are given in a purely syntactic manner

(involving no extra-syntactic constructs such as environments). From these, various environment-

based formulations can be constructed to realize the semantics in an efficient manner.

22.4.1 λ-Calculus

The syntax of the pure λ-calculus is:

e ::= x | λx.e1 | (e1 e2)

Expressions (or terms) are variables, abstractions on expressions, or applications of one expression

(putatively a function) to another (an positivent). Other kinds of values and expressions such as those

we have examined so far can be added together with their computation rules to obtain an applied

λ-calculas. Although applied λ-calculi raise interesting issues and problems, the pure calculus itself

exhibits several important concepts. Plotkin’s seminal papers [61, 62] are good examples of detailed

studies of many of the fundamental issues.

Definition 22.5 (free and bound variables). An occurrence of a variable x in a term e is bound

if it appears in a subterm λx.e′. All occurrences of variables that are not bound or binding are free.

The function fv returns the set of free variables in a term:

fv(x) = {x} fv(λx.e) = fv(e)− {x} fv((e1 e2)) = fv(e1) ∪ fv(e2)

Bound variables may be systematically renamed without altering the intended meaning of an expres-

sion. By systematic, we mean that two hitherto different variables are not suddenly identified, in

particular, no previously free variable is suddenly “captured” and bound. We identify expressions

that differ only in the choice of names of bound variables, a notion called α-equivalence. Expressions

with no free variables are called closed.

The major metaoperation for syntactic manipulation in any λ-calculus is substitution.

Definition 22.6 (substitution). We write e[e′/x] to denote the term obtained by substituting e′ for

all free occurrences of variable x in term e. Substitution is defined using a case analysis on e:6

x[e′/x] = e′

y[e′/x] = y y ≡ x

(e1 e2)[e
′/x] = (e1[e′/x] e2[e′/x])

λy.e1[e′/x] = λz.(e1[z/y][e′/x]) z /∈ fv(e1) ∪ fv(e′)

6This version of the definition factors in α-equivalence whereas most treatments do not.
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TABLE 22.6 β-Reduction in the λ-Calculus

(β)
(λx.e1 e2) −→1 e1[e2/x]

(ξ)
e −→1 e′

λx.e −→1 λx.e′

(op)
e1 −→1 e′1

(e1 e2) −→1 (e′1 e2)

(arg)
e2 −→1 e′2

(e1 e2) −→1 (e1 e′2)

Because substitution avoids capture of free names, it perforce avoids the possibility of accidental

dynamic binding.

It is often convenient to use the notion of contexts in examining the structure of a term.

Definition 22.7 (context). A context is a λ-term with a “hole” given bthe y the followingtrathe ct

of expressions grammar:

C ::= [ ] | (C C) | λx.C | e

One-hole contexts athe re characterized as:

C1 ::= [ ] | (C1 e) | (e C1) | λx.C1

Definition 22.8 (reduction). A redex is any term of the form (λx.e1 e2). Any term containing a

redex as a subterm is called reducible. The β-reduction rule is:

C1[((λx.e1) e2)] −→1 C1[e1[e2/x]]

where C1[ ] is any one-hole context.

An alternative formulation of β-reduction is given in Table 22.6. Some important results about

β-reduction are mentioned next.

Lemma 22.1 (substitution and β-reduction). If e −→1 e′ then e1[e/x] (−→1)
∗ e1[e′/x] and

e[e1/x] −→1 e′[e1/x].

Proposition 22.7 (local confluence). β-reduction satisfies the weak diamond property.

Theorem 22.1 (Church–Rosser). β-reduction is confluent.

Theorem 22.2 (standardization). If e(−→1)
∗e′ then e(−→standard

1 )∗e′ where standard is the

reduction relation in which the leftmost outermost redux is reduced.

Proposition 22.8 (fixed points). There exists a closed λ-calculus term Y , called a fixed point

combinator, such that (Y e) −→∗1 (e (Y e)), for any e.
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TABLE 22.7 Call-by-Value β-Reduction

(βv)
(λx.e1 v) −→v

1 e1[v/x]

(op)
e1 −→v

1 e′1

(e1 e2) −→v
1 (e′1 e2)

(argv)
e2 −→v

1 e′2

(v e2) −→v
1 (v e′2)

22.4.2 Relationship with Functional Languages

Almost all functional languages disallow reduction “below” a λ — Redexes appearing in terms of the

form λx.e are not considered. In other words, such weak reduction does not have the ξ -rule. Hence,

not all results (confluence!) shown for the λ-calculus automatically transfer to functional languages

based on them. Moreover, certain results do not hold for typed frameworks. For instance, fixed point

combinators do not exist in simply typed λ-calculi.7 Finally, we should mention that programming

languages are concerned with closed terms only.

Two commonly used strategies for reducing terms are (weak) call-by-value (or eager) and (weak)

call-by-name (or lazy).8 In what follows, we present different formulations of these two strategies

and how they are realized.

22.4.2.1 Call-by-Value

The basic notion in call-by-value (cbv) is that arguments to a function are evaluated before evaluation

of the function body commences. The notion of value is crucial — they include all abstractions:

v ∈ Val ::= λx.e. Values are irreducible, but not conversely.

We first present the big-step formulation for call-by-value evaluation:

v �⇒v v

e1 �⇒v λx.e′1 e2 �⇒v v2 e′1[v2/x] �⇒v v

(e1 e2) �⇒v v

In the small-step framework, this notion is formulated as shown in Table 22.7.

Alternatively, the cbv strategy can be explained by using the βv reduction rule in the following

cbv evaluation contexts:

E1
v ::= [ ] | (E1

v e) | (v E1
v)

22.4.2.2 Call-by-Name

Call-by-name (cbn), in contrast, does not simplify arguments before function call. The big-step cbn

rules are:

v �⇒n v

e1 �⇒n λx.e′1 e′1[e2/x] �⇒n v

(e1 e2) �⇒n v

Note that arguments are not evaluated before substituting them for the formal parameter in the

function body. This may result in an expression being evaluated multiple times — each copy of

7They can exist in languages with reflexive types or recursive types.
8Various researchers actually distinguish between call-by-value and eager (or call-by-name and lazy), which
we gloss over here.
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TABLE 22.8 Call-by-Name β-Reduction

(β)
(λx.e1 e2) −→n

1 e1[e2/x]

(op)
e1 −→n

1 e′1

(e1 e2) −→n
1 (e′1 e2)

an argument is evaluated separately. The advantage of cbn over cbv is that arguments that are not

needed are not evaluated. An important static analysis technique is strictness analysis, in which cbv

evaluation can safely be used instead of cbn. The small-step formulation of the cbn rules is given in

Table 22.8.

Alternatively, the cbn strategy can be explained by using the β rule in the following cbn

evaluation contexts:

E1
n ::= [ ] | (E1

n e)

22.4.2.3 Context Machines

The notion of evaluation context permits a simple transformation (due to Felleisen and Wright [75])

of reduction semantics into an abstract machine. We illustrate the idea for cbv reduction. A similar

machine can be constructed for cbn reduction.

We first characterize basic evaluation contexts F v:

F v ::= ([ ] e) | (λx.e [ ])

By using the fact that any nontrivial cbv evaluation context can be expressed as the composition

of basic evaluation contexts F v
1 [F v

2 [. . . F v
k [ ] . . . ]], (the trivial context [ ] can be considered as

corresponding to the case where k = 0), we define a “context stack machine” as follows. The

machine has two components — a stack of basic evaluation contexts FS, and the current expression

e. Transitions are defined by cases depending on the structure of e and then of FS:

〈⌊

([ ] e)

FS

⌋

, v

〉

−−⊲

〈⌊

(v [ ])

FS

⌋

, e

〉

〈⌊

((λx.e) [ ])

FS

⌋

, v

〉

−−⊲
〈⌊

FS
⌋

, e[v/x]
〉

〈⌊

FS
⌋

, (e1 e2)
〉

−−⊲

〈⌊

([ ] e2)

FS

⌋

, e1

〉

The machine is started in configuration
〈⌊ ⌋

, e
〉

for any closed e and terminates with context stack

empty and value v.

Now if we define function crunch as:

crunch
〈⌊ ⌋

, e
〉

= e

crunch

〈⌊

F v
n

FS

⌋

, e

〉

= crunch
〈⌊

FS
⌋

, F v
n [e]

〉

it is easy to show that:

〈⌊

FS
⌋

, e
〉

−−⊲∗
〈⌊ ⌋

, v
〉

if and only if crunch
〈⌊

FS
⌋

, e
〉

�⇒v v
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22.4.3 Closures and Environment Machines

As mentioned earlier in passing, substitution is an expensive operation, because it involves traversing

the term in which the substitution is performed (as well as α-conversion to prevent name capture).

Environments are a convenient ancillary structure used to record the bindings for variables in

substitutions.

22.4.3.1 Closures

Suppose environments were, as before, represented by finite domain functions from variables to

values. Suppose we considered an environment γ in which f was bound to λx.e and proposed a rule

for function call:

γ ⊢ e1 �⇒e v1 γ [x �→ v1] ⊢ e �⇒e v

γ ⊢ f (e1) �⇒e v

The problem with this rule is that if e contains free variables other than x, lexical scoping may be

violated if the binding for f was made in an environment other than γ , because in the call, these

free variables would take their value (if they could) from γ . Although the problem is more acute in

higher order languages, it nevertheless exists in simple block structured procedures as well, which

is why we disallowed nested procedures in Section 22.3.3. It is therefore necessary to “pack in the

prevalent environment” when making the binding for f . Such a pair is called a closure. We define:

Clos ⊆ Exp × Env Env = X →fin Clos

In an applied calculus, there can be other kinds of values apart from closures.

Closures permit a correct treatment of lexical scope, and thus remedy the lacuna in our treatment

of procedures. They can also correctly handle recursive functions (and other recursive data structures

that are possible in a lazy language). Let vcl range over closures of the form≪λx.e, γ≫. We give a

big-step description for cbn and cbv simplifications of closures, which are basically restatements of

the rules for�⇒n and�⇒v . Very roughly, the judgments used for closure evaluation under strategy

X≪e, γ≫ �⇒X
cl vcl correspond to judgments γ ⊢ e �⇒X v for expression evaluation, and where

value closure vcl “unravels” to value v:

γ (x) �⇒n
cl vcl

≪x, γ≫ �⇒n
cl vcl

≪e1, γ≫ �⇒n
cl ≪λx.e′, γ ′≫ ≪e′, γ ′[x �→≪e2, γ≫]≫ �⇒n

cl vcl

≪(e1 e2), γ≫ �⇒n
cl vcl

For cbv the rules are:

γ (x) �⇒v
cl vcl

≪x, γ≫ �⇒v
cl vcl

≪e1, γ≫ �⇒v
cl ≪λx.e′, γ ′≫ ≪e2, γ≫ �⇒v

cl vcl2

≪e′, γ ′[x �→ vcl2]≫ �⇒v
cl vcl

≪(e1 e2), γ≫ �⇒v
cl vcl

It is also possible to formulate a calculus of closures [19] and study properties such as confluence of

its reduction relation, which is weak in the sense that reduction does not occur below abstractions.

22.4.3.2 Abstract Machines

The big-step semantics suggests using a stack of closures that are yet to be simplified, or which are

awaiting their arguments. Using this insight, environment machines can be developed, manipulating

closures.
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An environment machine for cbn due to Krivine is:

〈≪x, γ≫,
⌊

S
⌋

〉 −−⊲ 〈γ (x),
⌊

S
⌋

〉

〈≪(e1 e2), γ≫, S〉 −−⊲

〈

≪e1, γ≫,

⌊

≪e2, γ≫

S

⌋〉

〈

≪λx.e, γ≫,

⌊

cl

S

⌋〉

−−⊲ 〈≪e, γ [x �→ cl ]≫,
⌊

S
⌋

〉

The machine configurations consist of a current closure to be simplified and a stack of closures that

are (yet-to-be evaluated) arguments to the current term. The first rule is a lookup. The second rule

stacks the closure consisting of argument l2 together with the current environment (in which it should

be evaluated) onto the stack of yet-to-be-evaluated closures. The third rule starts the evaluation of

the body in a closure after extending the environment with a binding of formal x to the argument

closure cl, which is atop the stack.

The corresponding environment machine for cbv is:

〈≪x, γ≫,
⌊

S
⌋

〉 −−⊲ 〈γ (x),
⌊

S
⌋

〉

〈≪(e1 e2), γ≫,
⌊

S
⌋

〉 −−⊲

〈

≪e1, γ≫,









ց

≪e2, γ≫

S









〉

〈

vcl ,









ց

≪e, γ≫

S









〉

−−⊲

〈

≪e, γ≫,









ւ

vcl

S









〉

〈

vcl ,









ւ

≪λx.e, γ≫

S









〉

−−⊲ 〈≪e, γ [x �→ vcl ]≫, S〉

The cbv machine is not much different, except that both operator and operand are to be evaluated

before application. For this, two markersց andւ are used to indicate that the closure below it on the

stack is the argument and operator of an application, respectively. The third rule swaps the evaluated

operand and unevaluated operators between the current-closure and the top-of-stack positions.

Both machines are loaded with a closure consisting of a closed term and empty environment, with

an empty stack. The unload function involves unfolding the resulting closure, using the packaged

environment to obtain the terms bound to variables (recursively unfolding closures).

22.4.3.3 SECD Machine

The prototypical machine used for cbv evaluation of a functional language was the SECD machine

[41]. This machine works with two stacks — S for already evaluated expressions and “dump” D

for managing control during function call and return — an environment E and a list of opcodes C.

Stack S is used in much the same way as the stack is used for expression evaluation — the closures

to which expressions evaluate are pushed onto it. Dump D is used as a repository for storing the

calling context (the current environment, the subexpressions already evaluated prior to the call, and

the code to be evaluated after the call) when a function call is made; this context can then be restored

from the top of the dump on completion of a function call.
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To avoid introducing new symbols, we use (following [61]) the λ-terms themselves as opcodes,

with one additional opcode for function application app. The empty sequence is denoted by E.

〈⌊

cl

S

⌋

, γ, ǫ,

⌊〈

S′, γ ′, c′
〉

D

⌋〉

−−⊲

〈⌊

cl

S′

⌋

, γ ′, c′, D

〉

〈⌊

S
⌋

, γ, x :: c,
⌊

D
⌋〉

−−⊲

〈⌊

γ (x)

S

⌋

, γ, c,
⌊

D
⌋

〉

〈⌊

S
⌋

, γ, λx.e :: c,
⌊

D
⌋〉

−−⊲

〈⌊

≪λx.e, γ≫

S

⌋

, γ, c,
⌊

D
⌋

〉

〈⌊

S
⌋

, γ, (e1 e2) :: c,
⌊

D
⌋〉

−−⊲
〈⌊

S
⌋

, γ, e1 :: e2 :: app :: c,
⌊

D
⌋〉

〈









cl

≪λx.e, γ ′≫

S







, γ, app :: c,
⌊

D
⌋

〉

−−⊲

〈

⌊

,
⌋

γ ′[x �→ cl ], e,

⌊

〈S, γ, c〉

D

⌋〉

The first rule describes function return; it says that if the current call has no remaining instructions,

the calling context is restored from the dump — the returned value placed atop the caller stack,

and the environment and code list of the caller are restored. The second rule is a variable look-up.

The third rule forms and places a closure atop the value stack. The fourth rule is really a compilation

rule that evaluates operator and operand expressions of an application (it is possible to separate the

execution and compilation phases). The fifth rule is the actual function call rule. It assumes that the

operand (argument) closure cl sits above the operator (function) closure atop the stack. Closure cl is

bound to the formal argument x in the operator closure environment, the operator closure code is now

made the code list, and the calling context is placed atop the dump. As indicated earlier, the calling

context consists of the stack below the operator and operand closures, the calling environment and

the remaining code list.

The SECD machine has been used as a template for a variety of block-structured languages, as we

discuss later. Plotkin [61] has related the abstract machine semantics with the big-step and reduction

semantics of an applied cbv λ-calculus using standardization to establish the correspondence.

22.4.3.4 Other Abstract Machines

Various other abstract machine implementations exist that we cannot describe here. One such class of

machines is based on a translation of the λ-calculus into combinatory logic and an implementation

of these combinators [71]. A special class of implementations are based on graph reduction (see

[37] and various references therein for an accessible treatment of such implementations). The main

operations of these machines involve performing rearrangements of a syntax tree (or graph) according

to certain combinators or directors [39]. Also significant is the categorical abstract machine [15],

which is based on operative features of categorical models of λ-calculi, and the closely related

machine derived by Hannan and Miller [46].

22.4.4 Implementation Issues Related to Environments

The abstract machines seem rather profligate in the structures they employ. Fortunately, there are

rather efficient implementations of environments, and closures using stacks, pointers and allocation

on stack and heap. The observation that the called function never looks at the caller’s stack in the

SECD machine suggests that the value stack does not need storing, only the (re)storing of the stack

pointer. Likewise, entire code lists and environments do not need to be stowed away on the dump;

pointers to them suffice.
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Efficient environment implementation and management are crucial. First, the environment is

maintained as a stack of references to local frames. Then variables are replaced by a fast indexing

scheme relative to a frame pointer (cf. de Bruijn indices in the λ-calculus).

22.4.4.1 Recursion

Special mention must be made about recursive functions. As mentioned earlier, simply typed

languages cannot have a Y combinator, so a special mechanism is needed to build closures for

recursive functions and recursive data structures. A simple idea is to build a circular reference into

the environment component of the closure for a recursive function. This is achieved using two

opcodes, introducing a level of indirection in environments.9 The first opcode places a reference to a

dummy closure. The closure for the recursive function is created using this augmented environment,

and a second opcode overwrites the reference to the dummy reference with a pointer to the new

closure, thus building the cycle (see [12, 29] for a simple implementation).

22.4.4.2 Local Definitions

Local definitions may be implemented in correspondence to the parameter-passing mechanism,

employing the equivalence:

(λx.e2 e1) ≈ let x
def
= e1 in e2

or its generalization to more structured definitions. However, such a crude approach is rarely followed,

because it is inefficient. Exploiting the fact that the environment used for e2 is an extension of that

used for e1, much simpler, direct methods are possible, in particular, by employing finer grain

opcodes that facilitate stack manipulation and making definitions and recursive definitions.

22.4.4.3 Extensions

The SECD framework is fairly robust, and can easily be extended to deal with a variety of

language extensions, including side effects. Adding a store component and related opcodes [13]

allows support for imperative features. Similarly, input and output streams can be accommodated,

as also can communication and concurrency primitives (a general choice operator is difficult to

incorporate) [22].

22.4.4.4 Procedures in Imperative Languages

By the principle of abstraction, the notion of closures carries over to command abstracts. Of course,

some aspects are simpler (languages with higher order procedures are rare beasts), whereas issues

pertaining to stores are somewhat more involved. In particular, showing that the allocation and

deallocation of locations is done correctly is an important part of proving that the language and

implementation are free of storage insecurities.

The typical call-stack management in traditional imperative languages can be seen as an implemen-

tation where three different stack structures — S for temporary computation, E for the environment

and D for the dump — are “multiplexed” onto one physical stack.

22.4.5 Control Operators

We briefly discuss here the operational semantics for an extension of the λ-calculus with con-

trol operators that can pass or throw away the current evaluation context. Control operators

allow functional programs to handle features such as concurrent threads, exceptions and call/cc.

9This already exists in most pointer-based implementations of environments.
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They support a technique used in modern compilers, namely, that of passing continuations [4].

Moreover, the environment machines given earlier have simple extensions to deal with these new

control operators.

The syntax is extended with two new unary operations, which are also redexes:

e ::= . . . | Ce | Ae

whose reduction rules, stated in contextual form, are:

(C)
E[Ce] −→e

1 (e (λx.AE[x]))
x /∈ f v(e)

(A)
E[Ae] −→e

1 e

In the rule (A), the abort operator throws away the current evaluation context, whereas in the rule

(C), the control operator passes an abstracted form of the current evaluation as an argument to the

expression e.

Another well-known control operator is call with current continuation (call/cc), with the following

operational rule:

(call/cc)
E[call/cc(λk.e)] −→e

1 ((λk.(k e)) (λx.AE[x]))
x /∈ f v(e)

an equivalent of which can be expressed in terms of (C) and (A).

22.4.5.1 Environment Machines for Control Operations

Recall that the stack component S of an environment machine represents the context E of the current

expression under evaluation. The control operators manipulate this evaluation context. Therefore,

operations to encapsulate and manipulate the stack are introduced: a new kind of closure retr(S) is

added that corresponds roughly to λx.AE[x].

The new rules for the Krivine machine are:

〈≪Ce, γ≫,
⌊

S
⌋

〉 −−⊲ 〈≪e, γ≫,
⌊

retr(S)
⌋

〉

〈≪Ae, γ≫,
⌊

S
⌋

〉 −−⊲ 〈≪e, γ≫,
⌊ ⌋

〉

〈

retr(S),

⌊

cl

S′

⌋〉

−−⊲ 〈cl ,
⌊

S
⌋

〉

The manipulations of the context are fairly clear: in the first rule, the current stack is encapsu-

lated and presented as an argument to the closure corresponding to e. The abort operator throws

away the current stack. In the third rule, the encapsulated stack is restored, in place of the

existing stack S′.

The cbv environment machine uses the same rules as before with three additional rules for mani-

pulating the stack. Of these, the second rule (for abort) is the same as the rule in the extension of the

Krivine machine:

〈≪Ce, γ≫,
⌊

S
⌋

〉 −−⊲ 〈≪e, γ≫,

⌊

ց

retr(S)

⌋

〉

〈≪Ae, γ≫,
⌊

S
⌋

〉 −−⊲ 〈≪e, γ≫,
⌊ ⌋

〉

〈

vcl ,









ւ

retr(S)

S′









〉

−−⊲ 〈vcl ,
⌊

S
⌋

〉
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If retr(S) corresponds to λx.AE[x], and S′ corresponds to context E′[ ], then the last rule can be

seen as implementing the reduction sequence:

E′[(λx.AE[x] v)] −→v
1 E′[AE[v]] −→v

1 E[v]

22.4.5.2 Translating the Control Operators Away

An important result [21, 24, 61] is that these control operators can be translated away by so-called

CPS transformations into purely functional languages. We introduce the idea here only to indicate

how operational techniques are used in language translations, because a proper treatment of CPS

is well beyond the scope of this chapter. We present one such translation, which lets us interpret

call-by-value reduction as call-by-name reduction [61]:

x = λk.(k x) (e1 e2) = λk.(e1 (λm.(e2 (λn.((m n) k)))))

a = λk.(k a) Ce = λk.(e (λm.((m (λn.λd.(k n))) (λx.x))))

λx.e = λk.(k (λx.e)) Ae = λk.(e (λx.x))

Various interesting theorems can be shown about this CPS translation. For example:

Theorem 22.5. For any pure λ-expression e: (e (λx.x)) �⇒n v if and only if (e (λx.x)) �⇒v v.

Theorem 22.6. For any λ-expression e without control operators, and of base type (not of a function

type):10 e (−→1)
∗ v if and only if (e (λx.x)) (−→1)

∗ v.

22.5 Labeled Transition Systems and Interactive Programs

The formulations we have presented so far have used TSs without labels. Until now we have

concentrated on programs in isolation from their operating environment. However, programs interact

with their execution environment, at the very least for input and output of data. Even in an isolated

computer, various interactions occur with peripheral devices such as disks, printers, file systems and

libraries. Also interactions take place with forked processes, interrupt handlers, etc.

The picture we have presented so far can be sustained when interaction with the environment is

clearly separated from computation. However, programming nowadays is increasingly interactive,

and all programming languages provide facilities for interaction with the environment. In addition,

several languages provide features for concurrent and distributed execution. Interactions can take

the form of remote procedure calls, or communication in a network, cluster or distributed computing

environment, interspersed in the computation. In other words, interaction becomes an integral part

of computation.

Central to this kind of interactive computing are the concepts of process and communication (the

texts [30, 35, 51] provide excellent introductions to the area). A program and its environment can be

considered two processes that communicate with each other. These two processes may themselves

consist of collections of interacting processes.

When integrating interaction into computation, certain issues arise in providing structured opera-

tional descriptions. First, the Fregean principle of compositionality should still be applicable. Second,

10Such expressions can be considered complete programs in a typed λ-calculus. The result depends on strong
normalization of the typed λ-calculus.
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the fact that processes interact while executing concurrently brings in its own complexity because

interactions may alter the state of a program nondeterministically. Third, the fact that a program

operates correctly only under circumstances where the environment fulfills certain obligations implies

that both the program and its environment (regarded as a process) cooperate in achieving certain goals.

Specifications must clearly define interfaces of interaction that constrain the kinds of inputs a process

can receive, the outputs it can produce and how it synchronizes with other components in a system.

Finally, one cannot place unreasonable restrictions on the environment. For example, it would be

unreasonable to expect a remote server to operate at the same speed as one or several of its clients.

Hence, concurrent execution, in general, implies that different processes execute at different speeds

and interactions are the only means of achieving certain synchronizations.

22.5.1 Labels and Behavior

Labels are a convenient device to indicate interaction between a program and its environment during

execution. They carry information about communication capabilities of processes and are often

crucial to the changes in state that processes incur. They are also used to determine and resolve

nondeterministic choices in the execution of a process when it has the possibility of interacting with

several other processes at the same time.

In TSs confluence, determinacy and termination are important properties and two sequential

systems are considered equal if they compute the same function between input and output states.

Concurrent systems, on the other hand, are generally nondeterministic (mostly nonconfluent), and

often infinite-state, nonterminating systems; also they may not be computing a particular relation or

function. What are the corresponding notions of behavioral properties in LTSs? The crucial properties

of such systems concern their interaction capabilities. Any equality relation on such systems must

naturally relate to the communication capabilities of the individual processes that make up the

system.

Various notions of behavior can be associated with an LTS, based on the idea that the observable

behavior of a process depends on the sequences of labeled transitions it can perform. However,

there is little consensus yet on what is the right notion of behavior. A simple, language-theoretical

notion of program behavior is the set of sequences (finite or infinite) of labels or traces. A process

p has trace ς = l1l2 . . . ∈ Lω = L∗
⋃

Linf if it can perform a sequence of labeled transitions

p
l1
−→ p1

l2
−→ p2 . . . . Two processes are considered trace equivalent if they have the same traces.

Other notions of behavior take into account the communication capabilities (and incapabilities)

at each intermediate state, thus being sensitive to the possibility of deadlock — inability to perform

a transition with a particular label — in some sequences of transitions (see Examples 22.8 and 22.9

that follow). We present only one such finer notion, called bisimulation [59].

The intuition is that this notion of equivalence identifies a pair of processes, if starting from

equivalent states they have the same interaction possibilities, the success of each of which puts them

again in states that may be considered equivalent.

Definition 22.9.

• A binary relation R on process configurations is a simulation if whenever s1Rs2, for any l ∈ L,

if s1
l
−→ s′1, then there exists a configuration s′2 such that s2

l
−→ s′2 and s′1Rs′2.

• R is a bisimulation if R and R−1 (the symmetrical inverse of R) are both simulations.

• The collection of bisimulation relations is closed under inverse, composition and arbitrary

union. The largest bisimulation called bisimilarity is denoted≈ and is an equivalence relation.

Proving two labeled transitions systems are bisimilar involves proposing and proving a particular

relation is a bisimulation. Bisimulation equivalence, or bisimilarity, is a finer notion of equivalence
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than trace equivalence, because it distinguishes more programs than trace equivalence does. In

particular, it is sensitive to the potential for deadlock behavior — two processes with the same

traces are distinguished if on some trace, one of them can reach a state where some particular

actions are possible whereas the other cannot reach such a corresponding state on that same trace.

In fact, bisimilarity is the finest deadlock-sensitive equivalence relation on processes obtained from

examining their observable behavior. In practice, a variety of notions can be considered bisimulations,

for different notions of labeled transition, for difference in the precise characterization of the labeled

actions or for difference in what exactly is observable, etc. Different characterizations may also

exist for a single notion of bisimulation, with alternative characterizations supporting different styles

of reasoning. There are also a variety of different notions of equivalence that lie between trace

equivalence and bisimulation, some of which are fairly natural notions of equivalence to work

with. A full exploration of these issues is beyond the scope of this chapter; a quick introduction is

provided in [2].

22.5.2 Communicating Sequential Processes

We illustrate the use of LTSs in semantic specification through a language based on communi-

cating sequential processes (CSP) due to Hoare [34, 35]. The language extends the language of

guarded choice (which already includes nondeterminism) with new constructs for communication

and concurrent execution. The semantics we give here is a simplification of a presentation due to

Plotkin [64].

It is often difficult to present purely big-step or purely small-step semantics for interactive

programming languages, which incorporate internal evaluation of expressions. This is because

communicating concurrent systems are best described using small-step descriptions, because they

can account for interleavings and interactions from intermediate states (particularly important in

notions of behavior sensitive to deadlock), whereas expressions are evaluated in entirety (and can

easily be specified in a big step).

The syntax for CSP is as follows:

io ::= P ?in | Q!out

g ::= e | e; io

c ::= x := e | P ?in | Q!out | c; c

| if ✷
n
i=1gi ⊲ ci fi | do ✷

n
i=1gi ⊲ ci od

S ::= [ ‖ni=1Pi :: ci ]

where io stands for input and output communication statements; g for guards, which are boolean

expressions, optionally followed by a communication. Commands include communication state-

ments, assignments and guarded choice and iteration constructs. A program S consists of a collection

of named processes. For simplicity we assume that concurrent execution takes place only at the

topmost level (i.e., processes cannot have subprocesses that themselves execute concurrently). Every

process has a name that is known to other processes. Communication between processes is by

synchronized handshaking or rendezvous, wherein two named processes that need to exchange values

wait at matching input and output commands, respectively, before consummating the communication.

The command P ?in indicates that the current process can wait to input a value from the process

named P , and Q!out represents a desire to output a value out to the process named Q; the sending

process is willing to wait until Q is ready to input the value.
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Example 22.8

Assume there is a printer shared by two processes P1 and P2. Both processes and the printer are

modeled as CSP processes, which together form a closed system:

[ P1 :: do �done1 ⊲ local1,1;PR!e od;PR!eot; local1,2

‖ P2 :: do �done2 ⊲ local2,1;PR!e; od PR!eot; local2,2

‖ PR :: do ✷
2
i=1 true;Pi?v ⊲ do v =/ eot ⊲ print (v);Pi?v; od od

]

The printer process PR waits until one of the two processes P1, P2 is ready to begin transmission,

with the first value. In case both processes want to output to the printer, PR has to make a choice.

Having chosen to communicate with one of them, the printer does not serve the other process until the

chosen one sends an end-of-transmission (eot) signal. The printer process never terminates because

it keeps waiting indefinitely for P1 or P2 to communicate with it.11 It is possible for one process

to monopolize the printer and prevent the other process from ever gaining access. The commands

locali,j represent local computation in the processes P1 and P2.

Each process has its own state and the states of the different processes are disjoint. All changes

in state σi of a process Pi are due to local assignments or receipt of input from another process. The

set of global states defined as:

State =

n
⊗

i=1

Statei

is the Cartesian product of the sets of the states of individual processes, where Statei is the set of

states of the process Pi . The metavariable σ̄ denotes the global state and each σi stands for the state of

process Pi . The labels we use for our LTS consist of the set of possible communications, defined as:

Inputs = {P ?v | P is a process name and v ∈ V}

Outputs = {P !v | P is a process name and v ∈ V}

L = Inputs ∪Outputs ∪ {ε}

The label ε signifies local computation that involves no interaction with other processes. λ is a

metavariable that ranges over L.

The semantics of the commands in a process Pi are given in Table 22.9. We assume that j =/ i.

The Input rule says that process Pi attempting to receive a value from process Pj can, on receipt of

any value v from Pj , bind v to a variable x in its local state. Expression e is evaluated to a value v

before the process attempts to send it to Pj , the statement terminating if and when Pj accepts this

communication. Assignment is considered an internal action that does not affect other processes, and

the transition is labeled with ε. In the rules Seq and Int we abstract from the internal computations

of a process by coalescing local changes of state (labeled with ε) into a single labeled transition.

The last rule abstracts from local computations and highlights an interaction, whenever there is one.

Observe that the Int rules are not syntax directed.

11This interpretation is at variance with the so-called distributed termination convention that Hoare origi-
nally proposed in the language. However, we find our interpretation more suitable for server processes.
It also illustrates that we are now in an arena where we deal with systems that do not necessarily always
terminate. Indeed in concurrent systems, guaranteeing properties such as deadlock-freedom, nontermination
and freedom from starvation may be more important.
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TABLE 22.9 Mixed-Step Semantics for CSP Commands

Input

〈σi , Pj ?x〉
Pj ?v

−→ σi [x �→ v]

Output
σi ⊢ e �⇒e v

〈σi , Pj !e〉
Pj !v

−→ σi

Assign
σi ⊢ e �⇒e v

〈σi , x := e〉
ε
−→ σi [x �→ v]

Seq
〈σi , c1〉

ε
−→ σ ′i 〈σ ′i , c2〉

ε
−→ σ ′′i

〈σi , c1; c2〉
ε
−→ σ ′i

Int1
〈σi , c〉 (

ε
−→)∗

λ
−→ (

ε
−→)∗ 〈σ ′i , c′〉

〈σi , c〉
λ
−→ 〈σ ′i , c′〉

λ =/ ε

Int2
〈σi , c〉 (

ε
−→)∗

λ
−→ (

ε
−→)∗ σ ′i

〈σi , c〉
λ
−→ σ ′i

λ =/ ε

TABLE 22.10 Labeled Semantics for CSP Processes

Processi
〈σi , ci〉

λ
−→ 〈σ ′i , c′i〉

〈σi , pi〉
λ
−→p 〈σ

′
i , p′i〉

Parinterleave

〈σi , pi〉
ε
−→p 〈σ

′
i , p′i〉

〈σ̄ , S〉
ε
−→p 〈σ̄ ′, S′〉

Parsync

〈σi , pi〉
Pj !v

−→p 〈σ
′
i , p′i〉 〈σj , pj 〉

Pi ?v
−→p 〈σ

′
j , p′j 〉

〈σ̄ , S〉
ε
−→p 〈σ̄ ′, S′〉

We now deal with the parallel composition of processes. The transitions of processes (as opposed

to commands) are also labeled (e.g.,
λ
−→p) and have a subscript p to distinguish them from the

transition relation −→ (used in Table 22.9) for command transitions.

For readability, we follow the following notational conveniences in Table 22.10.

• For any global state σ̄ , σk denote the kth component of the n-tuple (1 ≤ k ≤ n).

• For each k, 1 ≤ k ≤ n, pk ≡ Pk :: ck and p′k ≡ Pk :: c′k .

• In rules Parinterleave and Parsync :

S ≡ [‖nk=1 pk], S′ ≡ [‖nk=1 p′k]

• In rule Parinterleave :

σ ′k =

{

σ ′i if k = i

σk otherwise
, c′k ≡

{

c′i if k = i

ck otherwise



An Introduction to Operational Semantics 883

• In rule Parsync :

σ ′k =











σ ′i if k = i =/ j

σ ′j if k = j =/ i

σk otherwise

, c′k ≡











c′i if k = i =/ j

c′j if k = j =/ i

ck otherwise

In Table 22.10:

• The rule Parsync treats a closed system of processes. Hence, all communications between

components of the system are internal to the system.

• The system of processes terminates only if every process in the system terminates. In other

words, configurations of the form 〈σ̄ , [‖nk=1 Pk :: ◦]〉 (where “◦” denotes an empty continuation)

are the only terminal configurations.

• If the system reaches a stuck configuration, then it is said to be deadlocked. In other words, a

configuration 〈σ, S〉, which is not terminal and such that 〈σ̄ , S〉 /
ε
−→p is deadlocked.

Table 22.11 contains the rules for guards using yet another labeled transition system, which is

then used in giving the semantics of the conditional and iterations constructs (Table 22.12).

TABLE 22.11 Mixed-Step Semantics for Guards

σ ⊢ ej �⇒e true

〈σ, ej ⊲ cj 〉
ε
−→g σ

σ ⊢ ej �⇒e true 〈σ, ioj 〉
λ
−→ σ ′

〈σ, ej ; ioj 〉
λ
−→g σ ′

TABLE 22.12 Semantics of if − fi and do− od

Let IF ≡ if ✷
n
i=1gi ⊲ ci fi

and DO ≡ do ✷
n
i=1gi ⊲ ci od

〈σ, gj 〉
λ
−→g σ ′

〈σ, IF〉
λ
−→ 〈σ ′, cj 〉

(j ∈ {1, . . . , n})

〈σ, gj 〉
λ
−→g σ ′

〈σ, DO〉
λ
−→ 〈σ ′, cj ; DO〉

(j ∈ {1, . . . , n})

∧n

i=1
σ ⊢ ei �⇒e false

〈σ, DO〉
ε
−→ σ

The following example illustrates some of the distinctions that can arise due to nondeterminism.

Example 22.9

Compare the process PR in Example 22.8 with the following alternative version:

PR′ :: do ✷
2
i=1 true ⊲ Pi?v;do v =/ eot ⊲ print(v);Pi?v; od od
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The major difference between PR and PR′ is in their deadlock behavior. Whereas PR may wait until

one of the processes is ready to communicate with it, PR′ is forced to make a commitment to wait on

one of the two processes say P1, regardless of whether P1 wants to communicate with it. PR′ clearly

exacerbates the possibilities of deadlock in the system. Therefore, PR and PR′ cannot be considered

equivalent as processes.

22.5.3 Extensions

We conclude this discussion with some language features that can easily be modeled in the

framework of LTSs.

22.5.3.1 Input and output

Commands are extended with input and output primitives:

c ::= . . . | read(x) | write(e)

Input and output are really special cases of communication, but instead of interacting with a named

process, values are taken from and added to stream data structures. The command level rules are

(following the convention mentioned earlier):

Read

〈σi, read(x)〉
?v
−→ σi[x �→ v]

Write
σi ⊢ e �⇒e v

〈σi, write(e)〉
!v
−→ σi

Two new kinds of labels are added, for reading and writing:

l ∈ L ::= . . . | !v | ?v

At the global configuration level, (global) input and output streams are added. The labels generated

at the command level are discharged at the top level, with the corresponding manipulations of the

input and output (I/O) streams ςi, ςo:

Read
〈σi, ci〉

?v
−→ 〈σ ′i , c′i〉

〈σi, pi, vςi, ςo〉
ε
−→p

〈

σ ′i , p
′
i, ςi, ςo

〉

Write
〈σi, ci〉

!v
−→ 〈σ ′i , c′i〉

〈σi, pi, ςi, ςo〉
ε
−→p

〈

σ ′i , p
′
i, ςi, ςov

〉

22.5.3.2 Dynamic Process Creation

Consider a command fork(P, c), which dynamically creates a new process named P executing

the command c. At the command level, the effect of this command returns the state unchanged,

but generates a new kind of label �(〈σi, P :: c〉). The state σi is cloned and packaged

into the label:

〈σi, fork(P, c)〉
�(〈σi , P ::c〉)
−→ σi

where P is a new process name.
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At the global configuration level, the label �(〈σi, P :: c〉) is discharged, by creating a new process

with its own local state:

〈σi, pi〉
�(σi ,P ::c)
−→p 〈σ ′i , p′i〉

〈σ̄ , S〉
ε
−→p 〈σ̄ ′′, S′′〉

S′′ = [(‖nk=1 p′k) | P :: c] and σ̄ ′′ = σ̄ ′ ⊗ σi , where we continue with the notational convention

mentioned earlier. That is, the vector of process code has an n+1th component P :: c the local state

of which has a fresh copy of σi as its initial local state. The rule applies only under the assumption

that P is a globally fresh process name.

22.6 Conclusion

We have seen the use of structural operational semantics both as a concise formalism and as a method

of precisely defining the dynamic semantics of programming language constructs. The conciseness

of the formalism makes it far easier to study and comprehend the potential bottlenecks that an

implementor is likely to face. Because the semantics is syntax driven and the rules are essentially

syntactic, it is also possible in many cases to generate prototypical implementations of new and so far

untried constructs quickly with the help of scanning and parsing tools. One such tool for concurrent

systems is the Process Algebra compiler of North Carolina [18].

In the case of both imperative and functional languages, we have chosen the semantics of a small

core, built up new constructs and features and given them meaning. However, in general, an existing

programming language cannot be extended by adding new features to it, without first considering

how the existing features of the language interact with the new ones.

In many cases, the implementation strategies become clearer through such a rule-based exposition

of the semantics. In certain cases, of course, we have chosen to define rules that are consistent with

and model current implementation strategies.

We have not treated the semantics of structured data in general. We have also not treated the

semantics of types or static semantic analysis. Although this is a major omission and is important

for compiling, it would have taken us too far afield. Another significant omission is the semantics of

modules, classes and objects much of which is still an area of active research. The Reference Section

contains several references that the reader may consult to learn more about the work in the area.
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Index

A

ABIs, see Application binary interfaces

Abstract data types, 824

Abstract interpretation, 3, 239

interprocedural, 242

intraprocedural, 240

Abstraction

function, 184

predicates, 193

properties, 184

via truth-blurring embeddings, 190

weak, 186

Abstract machine, 843, 854, 862, 875

Abstract semantics, one-stage vs. multistage, 198

Abstract syntax, 848

Abstract syntax trees (ASTs), 5, 51, 68

Abstract transformers, applications of, 197

Access

code, 226

graph, 619

normalization, 447

permission, 789

sequence, 619

ACFG, see Augmented control flow graph

ACL, see Affine control loop

Action semantics, 845

Actual-in nodes, 275

Actual-out nodes, 275

Acyclic call graphs, 492

Acyclic singly linked list, 180

ADAPT, see Automatic data distribution and placement

tool

ADDAP system, 375

Address

profiles, 150, 151

registers (ARs), 608

sandboxing, 767

Addressing

modes, 625

paged absolute, 625

ADG, see Alignment–distribution graph

Ad hoc polymorphism, 816

ADLs, see Architecture description languages

Advanced load address table (ALAT), 713

Affine control loop (ACL), 330

automatic parallelizer for, 350

computations, 336

exact data flow analysis of, 335

sequential execution order of, 332

to solve upper triangular system of equations, 337

Affine recurrence equation (ARE), 334, 349

Aho–Corasick multiple-keyword pattern-matching

algorithm, 573

ALAT, see Advanced load address table

Aliasing, 177, 178

models, 469

tests, 178

Alignment–distribution graph (ADG), 452

All-du-paths coverage criteria, 252, 253

All-edges coverage criterion, 249

All-nodes test coverage criterion, 249

Allocation

function, 368

global, 468

hierarchical, 479

instruction level, 468

interprocedural, 468

link level, 468

local register, 526

region-based, 468

runtime, 469

All-paths criterion, 249

ALPHA, 331, 339

equation in, 343

expressions, 341, 360

language, 331

operational semantics, 359, 360

reasoning about, 344

semantics, 341

transformations, 342

ALU, see Arithmetic and logic unit

AND/OR tree model, 657

Antichain, 492

Anticipability

analysis, 24

probabilities

CFT, 158

enabling speculation using precise, 159

Anticipatable subpaths, 155

Antidependence, 90, 209

APIs, see Application program interfaces

Application

binary interfaces (ABIs), 487

program interfaces (APIs), 299, 388

-specific instruction-set processor (ASIP), 536

DSE for, 537

popularity of, 562

-specific processors, instruction scheduling for, 676

ARA algorithm, see Artificial resource allocation

algorithm

Architecture description languages (ADLs), 536, 537, 551

compiler-oriented, 557

description, debugging of, 560

designers, 552

reservation table based, 558

simulator-oriented, 557

Architecture description languages for retargetable

compilation, 535–564

analysis of architecture description languages, 551–561

basic elements of architecture description language,

554–555

difficulties, 556–560

future directions, 561
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structuring of architecture description language,

555–556

summary of architecture description languages,

551–553

architecture description languages, 537–551

behavioral languages, 540–543

mixed languages, 543–551

structural languages, 537–540

ARE, see Affine recurrence equation

Argument escape nodes, 243

Arithmetic and logic unit (ALU), 608

Arity zero

computation of tables of, 587

symbols, 583, 584

Array(s)

-bound check elimination, 100

decompositions of, 425

notation, 343

partitions, 415, 416, 420, 429

reference allocation, 624

reference matrices for, 439

two-dimensional, 418, 443

ARs, see Address registers

Artificial resource allocation (ARA) algorithm, 622, 623

ASD, see Available section descriptor

ASIP, see Application-specific instruction-set processor

Assembly code, dynamic performance of, 624

Assignment(s)

comparison of, 38

elimination of dead, 314

fixed point, 15, 16, 38

largeness of, 13

maximum safe, 19, 20

properties of, 12

safe, 14, 37

trivial, 12

unsafe, 12

ASTs, see Abstract syntax trees

Asynchronous break, 320

Asynchronous message passing, 283

Atomic subtyping system, 819

Augmented control flow graph (ACFG), 86, 87

Automatic data distribution, 409–459

communication-free partitioning, 414–417

communication-free partitioning using linear algebra,

417–431

constant offsets in reference, 422–423

generalized linear references, 427–430

minimizing communication, 430–4321

partitioning for linear references and program

transformations, 423–427

data mapping, 411–414

alignment, 411–412

distribution, 412–414

finding distributions and loop transformations using

matrix-based approach, 431–447

algorithm, 435

automatic distribution, 432–434

examples of automatic distribution, 435–441

generalized algorithm, 443–447

relaxing of owner-computes rule, 442–443

other work on data mapping, 447–453

Automatic data distribution and placement tool (ADAPT),

376

Automatic garbage collection, 237

Automatic parallelization, 329

Automatic retargetability, 627

Automaton approach models, 655

Auxiliary automaton, 591, 594, 596, 597

Availability set, computing of, 723

Available assignment statement, 314

Available expressions analysis, 6, 13, 14, 26, 29, 43

Available section descriptor (ASD), 379

Available subpaths, 155

Aviv compiler, 541

AVLREG, 670

Axiomatic semantics, 845

B

Backward edge flow functions, 26

Backward flow, 23

Backward node flow functions, 26

Backward propagation, 243

Basic block, 6, 72, 78, 527

accommodating extended, 131

extended, 136

hashing-based value numbering, 130

header, live registers stored in, 722

hoisted expression generated by, 317

instructions in, 89

loops in CFGs of, 467

patch up, 518, 518

scheduling, 631, 632

stores in long, 474

Basic induction variables (BIVs), 72

Basic linear algebra subroutines (BLAS), 439

Behavioral languages, 540

Benchmark(s), 524

code, 234

programs, set of, 536

SPEC92, 464

Bidirectional slack scheduling, 704

Big-step semantics, 849, 859, 863

Binary dynamic compilation systems, 743

Binary matrix implementation, 229

Binding prefecthing, 728

Bin packing allocators, 465

Bisimulation, 879

Bit-packed encoding, 230

Bit vector

data flow framework, 34

function space, 33

problems, 51, 159

BIVs, see Basic induction variables

Black edge, 622

BLAS, see Basic linear algebra subroutines

BLAZE, 448

Block, see also Basic block

distribution, 413

-structured languages, 875

transfers, 445, 446

Blocking, 366, 390

Blue edge, 622

Bookkeeping, 660

Boolean conjunction, 159

Boolean disjunction, 159

Boolean equations, 22, 123

Boolean expression, 69, 542

constraint modeling, 559

disjunctive, 852
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ISDL, 546

normal form, 853

TDL, 546

WHILE, 858

Boolean flags, 106

Boolean predicate, variable in, 249

Boolean properties, 121, 126, 127

Boolean values, 708, 827

Bottom-up preprocessing algorithm, iterative, 579

Bottom-up rewrite system (BURS), 569

Bounded data flow framework, 34

Bounded function space, 32

Bounded quantification, 820

Break point, 301, 309, 318, 321

Brown edge, 622

BURS, see Bottom-up rewrite system

Bytecode, Java, 240, 244, 740

C

C, 83

C++, 219, 221, 224, 801

CACAO

JIT compiler, 226

object and compact class descriptor layout, 227

object and fast class descriptor layout, 227

Cache, 466

behavior prediction, 177

blocks, 167, 168

compiled code, 743

flushing, Dynamo system for, 750

locality improvements, 382

-main memory hierarchy, 400

manager, 750

memory, 389

misses, 728

performance

improving, 549

optimization techniques aimed at improving, 164

pollution, 167

weighted, 471

CAG, see Component affinity graph

Call

edges, 276, 281

graphs (CGs), 5, 232, 242

-site nodes, 275

-stack management, 876

Called Base, 272

Callee

models, 501, 511

-saved registers, 500, 519

Caller

models, 511

-save optimizations, 526

Caml, 818

Canonical SSA form, 111

Cartesian product

algorithm (CPA), 235

of sets, 808, 881

Case-restriction dependency, 342

CCFG, see Concurrent control flow graph 

CCL, see Convention specification language

CCP, see Conditional constant propagation

CDFG, see Control and data flow graph

CDG, see Control dependence graph

CDS, see Control dependence subgraph 

CEDAR, 447

Certifier, structure of, 796

Certifying compilers, 795

CFA, see Control flow analysis

CFD, see Constant folding

CFG, see Control flow graph

CFT, see Control flow trace

CGs, see Call graphs

CHA, see Class hierarchy analysis

Chaitin algorithm, 477

Chaitin definition, 480

Chaitin graph-coloring algorithm, 527

Change of basis (COB), 305, 343, 361

CHAOS, 382, 384

CHARMM, 383, 384

Chase–Wegman–Zadeck algorithm, 213

CHECKERS instruction set simulator, 540

Chekuri heuristic, 522

CHESS, 618

Chow and Hennessy model, 495

Chow priority function, 509

CHS, see Class hierarchy subgraph

Church–Rosser theorem, 805, 870

CISC, see Complex instruction set computer

Class-based languages, 835

Class hierarchy

analysis (CHA), 231, 233

subgraph (CHS), 289

Clique separators, graph decomposition through, 479

Clockhand algorithm, 510

Closed term, 804

Closure(s), 873

computation, 700

conversion, 770, 772

yet-to-be-evaluated, 874

Clustered architecture, 677

COACH ASIP design automation system, 539

COB, see Change of basis

Code

access, 226

assembly, dynamic performance of, 624

benchmark, 234

cache management, 749

communication-free alignment of data and, 452

compensation, 484 489, 505

consumer, 763

dispatch, 228

elimination, 319

explosion problem, 745

fix-up, 713

generation, 770, 773

imperative, 361

naive, 360

pass, 588

problem of, 359

routine, 589

storage allocation and, 140

table-driven, 589

techniques, 140

hoisting, 315, 316

insertion, 320

kernel-only, 709

layout, profile-guided, 170

locally optimal, 565

location problem, 307, 318
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loop body, 694

manually written, 432

message-passing, 387

molecular dynamics, 383

motion, 313, 320

example of, 726

free, 717

global, 724

loop invariant, 109, 307, 318, 319, 632

partial redundancy elimination via speculative, 154

PDE using predicated, 153

pipelining, 721

PRE using speculative, 153

safe, 151

speculative, 162, 660

transformations, 325

optimization

system, assembly-based, 546

techniques, programming-based, 559

optimized

approaches to debugging, 308, 309

debugging of, 305

optimizers, automatic generation of, 82

parallel, 373

with partial pedundancy, 153

patch up, 489, 510

placement, 171

process, vector of, 885

producer, 763

proof carrying, 774, 775, 784

pseudo, 482, 497

assembly of for segment matching, 766

loop body, 693

reconcile, 517

sample piece of, 318

scheduling, 617

self-modifying, 752

sequence(s)

optimized, 619

register allocated, 642

unoptimized, 619

shuffle, 489

sinking example, 747

slicers, 178

source, 296, 539

specialization, 150

example, 757

-specific, 756

spill, 477, 481, 509, 635, 712

generation of, 513

problem of using, 730

straight-line, 111, 634

synchronization, 238

templates, 758

transformation, 61

main issue concerning specification of, 92

system, 82, 83, 93

transformer interface, 92

untrusted, 791, 792

useless, 68, 70

Code-generator generator, 568, 598

hard coded bottom-up, 587

work list-based approach to bottom-up, 585

Code optimizers from formal specifications, automatic

generation of, 61–97

automatic generation of code optimizers, 82–92

code transformation system, 82–92

experiments, 92

formal specification of code transformations, 63–77

formal specifications for code transformations,

68–77

framework for specification, 63–68

specification language, 77–82

language description, 77–81

lexical conventions, 81

specification for constant propagation in language,

81–82

syntax of specification language, 95–97

CodeSyn, 618

Coerce operation, 200, 205

Coercian map, 818

COG, see Connection operation graph

Cohen’s algorithm, 229

Cold objects, 165

Collision matrix, 655

Color assignment, 486

Coloring

models, 471

priority-based, 487

COM, 764

Combined register allocation and instructions scheduling

problem (CRISP), 673

feedback vertex set advocated in, 470

model, 521

restricted version of, 472

Common subexpression elimination (CSE), 6, 68, 71, 77,

325, 525, 625

Communicating sequential processes (CSP), 880, 881

commands, mixed-step semantics for, 882

processes, labeled semantics for, 882

syntax, 880

Communication, 878

detection, 378

-free decomposition, 454

-free partitions, 416, 417, 419, 421, 428

interprocessor, 415

minimizing, 430

-parallelism graph (CPG), 453

volume, 431

zero, 420

Compact encoding, 230

Compaction, 694

Compatibility

constraints, 201, 202, 203

formulas, 202, 203

graph, construction of, 623

Compensation code, 484, 489, 505

Compilation

digital signal processor, 607

for embedded systems, 110

flows, illustration of, 535

function-based, 493

horizontal, 514

region-based, 493, 500, 503

retargetable, 610, 627

strategy, 382

systems, binary dynamic, 743

vertical model of, 501

Compiler(s)

assembly of optimizing, 612

Aviv, 541

CACAO JIT, 226
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certifying, 795

construction, 770

control flow graph representation of a program, 101

Cyclone certifying, 796, 797

debug information generated by, 301

for distributed memory machines, 375, 380

dynamic, 740, 751

ELCOR, 467, 469

FORTRAN D, 377, 378

framework, automatically retargetable, 611

GNU C, 657

HPF, 387, 390

IBM

High Performance, 238

XL, 649, 658

instruction selection phase, 565

Jalapeno

dynamic optimizing, 527

quick, 465

Java, 211

just-in-time, 231, 468, 755

Multiflow, 520

optimizations, 111, 116, 305

PARADIGM, 375

pattern of code generated by, 236

profile-guided optimizing, 145

reliance of VLIW processors on, 605

retargetable, 536

semiretargetable, 535

SGI MIPSpro, 665

SmallEiffel, 228

support for debugging provided by, 300

target-specific, 560

transformations, generation of code for, 62, 93

Complete semilattice, 28

Complex instruction set computer (CISC), 465, 543, 599

architectures, 643

model, 469

Component affinity graph (CAG), 451

Compressed tables

algorithm to precompute, 582

generation of, 581

Compression

row displacement, 225

transformations, profile-guided, 169

video, 714

Computation use, 249

Computer system description language (CSDL), 537

Concurrency graph, 284, 285

Concurrent component, 284

Concurrent control flow graph (CCFG), 287

Concurrent program, 281, 282, 286

Condensation, 706

Conditional branch statement, 79

Conditional constant propagation (CCP), 111

Conditional constant propagation algorithm, 114–115, 

112, 116

Conditional expressions, 79

Conditional move, 526

Confluence

operation, 19, 23

properties, 30, 852

Conforming traversals, 49

Connection Machine computer system, 448

Connection operation graph (COG), 539

Constant folding (CFD), 68, 77, 322, 376

Constant offset(s), 433

array accesses with, 422

vectors, 435

Constant propagation (CTP), 18, 29, 59, 77, 322

algorithms, 112

definition descriptor, 323

function space of, 31

loop closure in, 33

loss of information in, 18

specification for in language, 81

with summarization, 20

without summarization, 19

Constraint(s)

defining, 9

derivation

execution-based, 264

using symbolic evaluation, 262

digital signal processor, 608

– generation process, 203

inequality, 338

instruction level parallelism, 541

irregular, 558, 622

memory, 399

nonlinear, 263

operation instruction level parallelism, 609

real-time, in dynamic compiler, 753

resolution systems, 3

resource, 652

– satisfaction procedure, 205

Context stack machine, 872

Continuation passing style (CPS)

conversion, 770, 771

transformations, 878

translations, 844

Control

operators, 876

overhead, 363

path description, 551

tree, 484, 527

Control and data flow graph (CDFG), 618

Control dependence, 63, 65

computation of, 86, 89

graph (CDG), 275

subgraph (CDS), 289

Control flow

analysis (CFA), 51, 233

based test coverage criteria, 248

graph (CFG), 5, 11, 35, 87, 146, 274, 464

augmented, 70

depth-first spanning tree of, 48

four-block, 508

node, 724

reverse, 86

single-exit, 64

threaded, 284

modeling, 549

profiles

example of, 148

relative precision of, 147

restructuring, 152

PDE using, 153

PRE using, 153

redundancy removal using, 153

trace (CFT), 146

Convention specification language (CCL), 543

Copy-in-copy-out semantics, 386
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Copy propagation (CPP), 68, 77, 324

CORBA, 764

Co-scheduling, 668

Cost-based models, 149, 151, 157, 471

CPA, see Cartesian product algorithm

CPG, see Communication-parallelism graph

CPP, see Copy propagation

CPS, see Continuation passing style 

CRISP, see Combined register allocation and instructions

scheduling problem

Critical edges, 162

Critical path

DAG, 636

scheduling, 524

Cross-path pipelining, 727

Crystal, 368

CSDL, see Computer system description language

CSE, see Common subexpression elimination

CSP, see Communicating sequential processes

CTP, see Constant propagation

Curried function types, 807

Cyclic distribution, 412

Cyclic graphs, 473

Cyclicity properties, computing of, 186

Cyclic path, traversal of, 17

Cyclic scheduling, 645, 658, 665

Cyclone certifying compiler, 796, 797

D

DAG, see Directed acyclic graph

Daisy binary translation system, 754

Data

access

matrix, 447

patterns, 382

arrays, 383

cache latency, monitoring of, 747

decomposition, automatic, 375

dependence, 63, 65, 66

analysis, 89

in loops, 66

subgraph (DDS), 289

dependence graph (DDG),67, 274, 666, 690

analysis of using modulo techniques, 710

reservation style resource constraints, 697

for software-pipelining algorithms, 691

distribution, 375, 443

hazards, 554, 557, 637

locality

issues, 382

optimization techniques, enhancing, 402

mapping, 411, 447, 454

parallel language, 331

reference matrix, 432, 433, 434

remapping, 384

reorganization costs, 415

structures

compression of partially compressible, 169, 170

heap-allocated, 183

pointer-valued fields of, 188

shape descriptors and, 179

tiles, 389, 391

transfer paths, 554

transformations, 389

value problems, 307, 308, 309, 321

variables, 332

Data flow

backward, 23

based test coverage criteria, 248

constraint, 9, 609, 610

direction of, 23

equations, 10, 23, 55, 312

forward, 23

framework, 34

graph, movement of operations in, 722

information

aggregate, 28

computation of, 17

grouping of related constraints, 18

mathematical definitions of, 30

representation of, 18

problem(s)

backward, 49

bidirectional, 25, 59

distributive, 20

forward, 49

unidirectional, 25

properties

computing of, 47

refinement of, 42

values, 23

Data flow analysis, 1–59

advances in, 24–27

background, 25

enriching of classical abstractions in data flow

analysis, 25–27

basic concepts, 5–24

defining semantic information to be captured, 6–9

generic abstractions in data flow analysis, 22–24

modeling data flow analysis, 9–11

performing data flow analysis, 20–22

program representation for data flow analysis, 5–6

solutions of data flow analysis, 11–16

soundness of data flow analysis, 16

theoretical properties of data flow analysis, 16–20

elimination methods of, 44, 46

EPA, 27

examples of advanced analyses, 55–59

data flow equations and brief descriptions, 55–57

taxonomies of data flow analysis, 57–59

generic abstractions in, 22

global, 318

iterative methods of, 40, 45, 48

MMRA, 27

program analysis, 2–5

characteristics of data flow analysis, 4–5

characteristics of semantic analysis, 2–4

solution methods, 40–52

comparison of solution methods and some practical

issues, 51–52

complexity of data flow analysis, 48–52

elimination methods of data flow analysis, 44–47

iterative methods of data flow analysis, 40–44

solving constraints, 20

taxonomy of, 24

theoretical foundations, 27–40, 52

algebra of data flow information, 28–31

data flow frameworks, 34

information flow paths and path flow function,

35–37
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instance of data flow framework, 34–35

solutions of instance of data flow framework,

37–40

world of flow functions, 31–34

work list based iterative method of, 42

Data flow testing, 247–267

complete testing, 253–255

regression testing, 256–258

test coverage criteria, 249–253

control flow coverage criteria, 249

data flow coverage criteria, 249–253

test input data generation, 259–265

automated test input generation, 259–265

manual test input generation, 259

DDG, see Data dependence graph

DDS, see Data dependence subgraph

Dead code

elimination, 13, 100, 150, 270, 307, 315

partially, 153

Debugger, 183

design, 303

modules, 302

stand-alone, 297

symbolic, 300

tables, 303

trap instruction, 299

Debuggers for programming languages, 295–327

break points, 301

code location problem, 318–322

code elimination, 319–320

code insertion, 320

code motion, 320–321

instruction scheduling, 321–322

compiler and linker support, 300–301

data value problems, 309–318

detecting endangered variables, 312–318

detecting nonresident variables, 310–311

detecting nonresident variables caused by register

allocation and register coalescing, 311–312

debugger architecture, 298–299

debugging optimized code, 305–306

design of typical debugger, 302–305

debug support interface, 305

expression interpreter, 305

query processor, 302

symbol resolver, 302–304

expression evaluation, 302

hardware support, 299

operating system support, 299–300

perturbations caused by optimizations, 306–309

approaches to debugging optimized code, 308–309

dead code elimination and loop invariant code

motion, 307–308

program stack, 301

value change problem, 322–325

advantages of allowing value change at debug time,

322

code motion transformations, 325

common subexpression elimination, 325

constant propagation and constant folding,

322–323

copy propagation, 324

Debugging, 271

code hoisting affecting, 316

information required for, 298

postmortem, 301

DEC, see Digital Equipment Corporation

DEC Alpha

architecture, 656

assembly language, 776, 779, 795

Default safety conditions, 785

Deferencing operator, 566

Deferred edge, 239, 241

Definition-clear path, 250

Definitions analysis, 7

Definition–use associations, 251

computing of, 254

identification of, 256, 257, 259

interprocedural, 254

testing of, 256, 257

Definition–use chains, 100

Delayed load scheduling (DLS), 643

algorithm, 470

method, 640, 641

De Morgan’s laws, 204

Denotational semantics, 3

Deoptimization techniques, 752

Dependence

analysis, 63

distance, 66, 666

function, 334

graph, 330

input, 91

output, 91

vector, 67

Dependence analysis and parallelizing transformations,

329–371

code generation, 359–366

alpha operational semantics, naive code generation,

360–361

exploiting static analysis, imperative code

generation, 361–362

polyhedron scanning, 359–360

scanning union of polyhedra, 362–366

exact data flow analysis of affine control loops,

335–339

limitations of polyhedral model, 366–367

memory allocation in polyhedral model, 351–358

lifetime, 356–357

next-write function, 353–354

usage set, 354–356

validity conditions for memory allocation function,

357–358

notations and mathematical foundations, 332–335

overview of parallelization process, 331–332

processor allocation in polyhedral model, 350–351

scheduling in polyhedral model, 345–350

scheduling affine recurrence equations and systems

of affine recurrence equations, 349

scheduling single uniform recurrence equation,

one-dimensional schedules, 346–347

scheduling systems of uniform recurrence

equations, 347–349

undecidability results, 349–350

system of affine recurrence equations, 339–345

alpha transformations, 342–344

reasoning about alpha programs, 344–345

semantics of alpha expressions, 341–342

Depth-first spanning tree

classification of edges in graph based on, 49

control flow graph, 48

Depth subtype, 834
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Derivation tree(s), 571, 572

subject tree, 591

triangle trimming, 589

Descendents, 635

Design space exploration (DSE), 536, 560

Destination register, 637

Deterministic finite automaton (DFA), 591, 592

functions, ECFG representing, 161

minimization, 128

Deterministic pushdown automaton, 590

Developer retargetability, 627

Devirtualization, 231, 236

DFA, see Deterministic finite automaton

Digital Equipment Corporation (DEC), 490

Digital signal processor (DSP), 536, 603

architectures, classes of, 606

basic architecture of, 605

code generator flow, 614

compiler framework, retargetable, 612

constraints, 607

datapath, 608

dual memory banks in, 622

FOW, 627

ILP features of, 614

kernels, hand-coding, 612

optimization, global reference allocation as, 625

programmer, 5

programs, nonrecursive, 626

schedule time, 637

software pipelining, 713

VOW, 627

Digital signal processors, retargetable very long instruction

word compiler framework for, 603–630

compilation for digital signal processors, 607–610

operand instruction level parallelism constraints,

609–610

operation instruction level parallelism constraints,

609

digital signal processor architectures, 604–607

fixed operation width digital signal processor

architectures, 605–607

variable operation width digital signal processor

architectures, 607

retargetable compilation, 610–612

retargetable digital signal processor compiler

framework, 612–627

addressing modes, 625–627

array reference allocation, 624–625

instruction selection, 615–618

irregular instruction level parallelism constraints,

622–624

offset assignment problem, 618–621

reference allocation, 621–622

Digital–UNIX environment, computing dynamic slices of

concurrent programs in, 288

Dining-philosophers program, 212

Directed acyclic graph (DAG), 5, 230, 235, 448, 598

bundles, 618

construction of, 635

conversion of to expression trees, 616

critical path, 636

edge, 616

pruning of, 474

selection of optimal code, for, 598

split, 510

target opcodes, 615

Disjointness relations, 178

Disjoint partitions, 418

Dispatch code, 228

Dispatch table(s)

bidirectional object layout with, 223

compression, 223

size of, 224

Distance vector, 66

Distributed memory architectures, compilation for,

373–407

automatic data decomposition, 375–376

communication detection and optimization, 378–380

local optimizations, 378–379

global optimizations, 379–380

compiling irregular applications, 382–387

computation distribution, 376–378

data locality issues, 382

future trends, 400–402

input and output compilation, 388–400

determining file layouts, 396–397

loop order, 397–398

memory allocation, 398–400

overall algorithm, 400

one-way communication, 380–382

Distributed memory machines (DMMs), 375, 380, 409,

453

Distributive data flow framework, 34

Distributive function space, 31

DLS, see Delayed load scheduling

DMMs, see Distributed memory machines

Doacross loop, 692

Doall loop, 692

DODG, see Dynamic object-oriented dependence graph

Dominance frontier, 64, 88, 104, 108

Dominator tree, 104, 137, 139, 273

Down-safe points, 162

Down-safety analysis, speculative PRE based on modified,

163

DPDG, see Dynamic program dependence graph

DSE, see Design space exploration

DSP, see Digital signal processor

Dummy nodes, 719, 723

Dynamic analysis, 3

Dynamic collision matrix model, 656

Dynamic compilation, 739–761

approaches to dynamic compilation, 741–742

dynamic binary translation, 753–754

just-in-time compilation, 754–756

nontransparent approach: runtime specialization,

756–758

transparent binary dynamic optimization, 742–753

challenges, 752–753

code cache management, 749–751

fragment linking, 748–749

fragment optimization, 746–748

fragment selection, 744–746

handling exceptions, 751–752

Dynamic compiler, 740, 751

Dynamic dispatching, 222

Dynamic object-oriented dependence graph (DODG), 290,

291

Dynamic optimizers, 741

Dynamic process creation, 884

Dynamic program dependence graph (DPDG), 286

Dynamic programming, 569, 570

Dynamic slicing, 270 278, 279
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Dynamo system, for cache flushing, 750

E

ECF, see Exploded control flow graph

EDA, see Electronic design automation

EDG, see Extended dependence graph

Edge(s)

black, 622

blue, 622

brown, 622

call, 276, 281

critical, 162

deferred, 239, 241

flow functions, 26

green, 621

induced, 620

inheritance, CHS, 289

natural, 616

numbering, 383

parameter-in, 276, 281

parameter-out, 276

placement algorithm (EPA), 25, 56, 58

profiles, 146, 147

pseudo-natural, 616

red, 621

yellow, 622

Edinburgh logical framework, 783

Edit–compile cycles, 297

Eiffel, 219

ELCOR, 469, 529, 545

Electronic design automation (EDA), 539, 561

Embedded applications, low-power, 637

Embedded systems

compilation for, 110

hardware–software codesign for, 541

Embedding Theorem, 192, 201

Empty iterations, 362, 364

EMS, see Enhanced modulo scheduling

Encoding, hierarchical, 230

Enhanced modulo scheduling (EMS), 709

Enhanced pipeline scheduling (EPS), 720

Environment

-free formulations, 853

implementation, 876

machines, 873, 874, 877

EPA, see Edge placement algorithm

EPIC architectures, 509

EPS, see Enhanced pipeline scheduling

Equality, operational notions of, 854

Equal model, 481

Equal scheduling, 481

Error(s)

array-out-of-bound, 794

routing, 766

runtime type, 801, 823

Escape analysis, 237, 238

Euler solver, 383

Evaluation context, definition of, 805

Evicting definition, 311

Exception handling, 749

Execution

order of operations, 333

state, 177

Explicitly typed language, 802

Exploded control flow graph (ECFG), 160

Expression(s)

ALPHA, 341

analysis, 7, 35, 40

anticipatable, 124

arithmetic, 848

available, 118, 123

Boolean

disjunctive, 852

normal form, 853

properties, 121

WHILE, 858

cost, 450

evaluation, 113, 115

hanging, 133

hoisted, 315, 316, 317

interpreter, 302, 305

kind, 833

Lisp, 801

mixed-phase, 830

rules for structured, 855

safe partially available, 124

semantics of, 360

totally redundant, 125

tree, 616, 641

type, language of, 788

EXPRESSION, 537, 547, 548, 556

Extended dependence graph (EDG), 345

Extensions, 884

F

False dependences, 634

Fast type analysis (FTA), 233

Fast-type inclusion tests, 228

Fault

domains, 766

isolation, software-based, 766

FBR, see Frequency-based rematerialization

FBS, see Frequency-based splitting

Fences, 725

Field reorganization, profile-guided, 167

FIFO, see First-in, first-out

File layout(s)

determining, 396

fixed column-major, 399

Finite bidistributive subset problems, 159

Finite state machine (FSM), 730

Firing transitions, 719

First-in, first-out  (FIFO), 750

Fixed operation width (FOW), 605

architecture, RISC operations of, 605

DSPs, 627

processors, 606

Fixed point assignment, 15, 16, 38

Fix-up code, 713

Flat schedule, 705

Floating point (FP), 646

architectures, 605

computation, 843

Flow

-based constraints, 3

dependence(s)

computation, 90

differences between may-aliases and, 208
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statement, 209

functions, 19, 31

construction of, 44, 46

monotonic, 17

multiple kinds, 26

graph

algorithms, 139

CCP algorithm with, 114–115

nodes in, 273

number of edges of, 104

SSA form construction for, 108

variables, 383

Floyd algorithm for path closure, 701

Focus

algorithm, 199

operation, 199

Folded depth-first ordering, 711

Forbidden latency, 654

Formal-in nodes, 276

Formal-out nodes, 276

FORTRAN, 63, 68, 82, 92, 329, 400

aliasing model, 469

arrays, 383

compilation system, 466

high-performance, 410

original motivation for introducing types in, 803

FORTRAN D, 374, 382, 385

compiler, 377, 378

copy-in-copy-out semantics, 386

dynamic remapping in, 453

irregular distribution, 386

FORTRAN H compilation system, 467

Forward edge flow functions, 26

Forward flow, 23

Forward node flow functions, 26

Forward propagation, 243

Forward substitution, 352, 353, 355, 725

Fourier–Motzkin elimination, 368

FOW, see Fixed operation width

FP, see Floating point

Fragment

deallocation, 750

linking, 748, 749

optimization, 746

selector, 744

Frame pointer, 301

Frequency-based rematerialization (FBR), 507

Frequency-based splitting (FBS), 506, 507

FSM, see Finite state machine

FTA, see Fast type analysis

Full abstraction, 845

Full system translation, 754

Function(s), 868

-based compilation, 493

composition, 46, 47

map, definition of, 816

space

bit vector, 33

distributive, 31

monotonic, 31

separable, 33

type constructor, 821

Functional language, 809, 871

Functor

compiler, 829

signature, 827

G

Gao algorithm, 718

General offset assignment (GOA), 619

Genesis, 62

GENSIM, 541

Gibbons–Muchnick scheduling method, 639, 640, 644,

645

Global acyclic scheduling, 658, 664

Global allocation, 468

Global analysis, 10, 11

Global escape nodes, 243

Global reference allocation (GRA), 624

Global register allocation, 526

Global reservation table (GRT), 647

Global scheduling, 631, 637, 658, 678

GNU C compiler, 657

GOA, see General offset assignment

Gospel, 62

GRA, see Global reference allocation

Graham–Glanville technique, 568

Grammar, context-free, 594

Graph

access, 619

call, 232, 242

coloring, 225, 465, 471, 475, 485, 479

communication-parallelism, 453

compatibility, construction of, 623

concurrency, 284, 285

concurrent control flow, 287

condensation, 706

connection, 239, 242, 539

control dependence, 275

control flow, 87, 274, 464

data dependence 274

decomposition, through clique separators, 479

dependence, 330

depth of, 49

directed, 273

dynamic program dependence, 286

entry nodes, 9, 24

extended dependence, 344

flow, 273

instruction set, 618

models, 470

modified program dependence, 280

parallel interference, 670, 672

phase control flow, 375

process, 285

program dependence, 275, 278, 494

reduced dependence, 335

reduced dynamic dependence, 279

reducible, 44, 46

reverse concurrent control flow, 288

static program dependence, 286

system dependence, 275, 280

unrestricted acyclic, 473

weighted precedence, 522

width of, 49

Graphical user interface (GUI), 296, 528, 556

Graph-reachability algorithm, 287

Graph-reachability analysis, 278

bipartite, 470

cyclic, 473

restricted acyclic, 470

unrestricted acyclic, 470
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Greedy scheduling, 695

Green edge, 621

GRT, see Global reservation table

Guarded choice language, 858

GUI, see Graphical user interface

H

Hanging expression, 133

Hardware

description language, 552

resources, 554

Hashing, 129

HashTable, 130

Heap

-allocated storage, 175, 204, 208

allocation, 767

cell(s), 180

identity loss, 183

properties, 182

contents, 176

layout, typing rules defining, 782

memory allocation, 770

-shared cell, 200

Hewlett-Packard (HP), 465

Hierarchical allocation, 479

Hierarchical encoding, 230

High-performance FORTRAN (HPF), 374, 410, 453

History information, predicates for recording, 210

HMDES, 545, 555

HOD technique, see Hoffman and O’Donnell technique

Hoffman and O’Donnell (HOD) technique, 568, 574

Hoisted expressions, 315, 316

Hoisting, 772

Horizontal compilation model, 515

Horizontal model of compilation, 493

Hot objects, 165

HP, see Hewlett-Packard

HPF, see High-performance FORTRAN

HP Labs, ELCOR research compiler from, 467

HRMS, see Hypernode reduction modulo scheduling

Hyperblock(s), 527, 710

region-based compilation using, 496

scheduling, 662, 663

Hypernode reduction modulo scheduling (HRMS), 668

Hyperplane partitioning, 449

I

IBM

360, FORTRAN H compilation system for, 467

High Performance Compiler, 238

patents held by, 465

RS/6000 systems, IBM XL family of compilers for,

664

SP-2, 378

UNIX system, PowerPC under, 754

XL compiler family, 649, 658, 664

ICM, see Invariant code motion

ICP, see Iteration control pointer

IF, see Instruction fetch

If-conversion, 464

If-then-else construct, 332

ILP, see Instruction level parallelism

IMPACT, 545

Imperative languages, 858

procedures in, 876

treatment of data flow analysis for, 1

Implicitly typed language, 802

In-core phase, 390

Incremental data flow analysis algorithms, 53

Induced edges, 620

Induction

iteration method, 795

variable(s)

detection of, 73

elimination (IVE), 68, 73, 74, 77

formal specification, 73

strength reduction on, 73

Inequality constraints, 338

Inference systems, 3

Information

constant, 192

flow paths, 35, 36

history, predicates for recording, 210

last-write, 208, 210

loss of, 18

order, 192

precision of, 39

reachability, 187

required for debugging, 298

theoretic largeness, 30

Inheritance edges, CHS, 289

Initiation internal, 695–696

factors affecting, 697

lower bound on, 698

Inlining, 236

In-order issue processors, 632, 646

Input dependence, 91

Input and output (I/O), 374

access, start-up cost for, 392

attempt to choreograph, 389

-intensive applications, 388

optimizations, 402

optimized node program, 392

reduction in, 391

streams, 884

support for, 388

Instance interleaving, 168

Instruction(s)

fetch (IF), 465, 637

level allocation, 468

overload resolution of, 793

schedule, linearization of, 675

selection, 615

set graph (ISG), 618

-set processors, 340

Instruction level parallelism (ILP), 520, 604, 632

architecture, parametrized, 528

constraints, 541, 622

optimization, 495, 545

scheduler, 554

Instruction scheduling, 175, 321, 526, 631–687

background, 633–637

definitions, 633–635

directed acyclic graph, 635–636

performance metrics for scheduling methods,

636–637

basic block scheduling, 645–658

case studies, 657–658
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list-scheduling method, 647–651

operation scheduling method, 651

optimal instruction scheduling method, 651–652

preliminaries, 646–647

resource usage models, 652–657

global scheduling, 658–669

Cyclic scheduling, 665–669

global acyclic scheduling, 658–665

instruction scheduling for reduced instruction set

computing architectures, 637–645

architecture model, 637–638

combined code generation and register allocation

method, 640–645

other pipeline-scheduling methods, 645

simple instruction scheduling method, 638–

recent research in instruction scheduling, 676–677

instruction scheduling for application-specific

processors, 676–677

instruction scheduling for low power, 677

register allocation and, 513

scheduling and register allocation, 669–676

integrated methods, 670–673

phase-ordering issues, 669–670

phase ordering in out-of-order issue processors,

673–676

Instruction set architecture (ISA), 541, 604

fixed instruction width, 605

fixed operation issue, 605

fixed operation width, 605

variable instruction width, 605

variable operation issue, 605

variable operation width, 605

Instrumentation

predicates, formulas that define, 202

principle, 193

INT, see Interrupt instruction

Integral polyhedron, 333

Integrated prepass scheduling (IPS), 670

Intel, 465

IA-64, 154

Itanium processor, 739

Interdependent nodes, grouping of, 22

Interference

definition of, 284

graph construction, 480n, 496

Intermediate representation (IR), 559, 565, 746

Interprocedural allocation, 468

Interprocessor communication, 415, 453

Interrupt instruction (INT), 296

Interval analysis, 44

Intrapath pipelining, 727

Invariant code motion (ICM), 68, 72, 77

I/O, see Input and output

IPS, see Integrated prepass scheduling

IR, see Intermediate representation

IR tree(s)

derivation tree for, 567

reducing, 576

tree-parsing problem for, 573

tree replacements for, 566

ISA, see Instruction set architecture

ISDL, 541

Boolean expression used in, 546

sections, 541

timing model of, 542

ISG, see Instruction set graph 

ISWIM, 843

Iterated dominance frontier, 104, 105

Iteration

control pointer (ICP), 707

difference, 693

domain, 332

spaces, triangular, 412

vector, 435

IVE, see Induction variable elimination

J

Jalapeno

dynamic optimizing compiler, 527

quick compiler, 465

virtual machine, 227

Java, 228, 237, 774, 801

benchmark program, 234

bytecode, 240, 244, 740, 764

call-by-value semantics, 243

class layout, 226

code, 228

execution state in, 751

programs

predictability of, 211

speedup of, 238

syntax, 219

virtual machine (JVM), 212, 527, 764

JavaBeans, 764

JIT compiler, see Just-in-time compiler

Jones–Muchnick formulation, drawbacks, 213

Just-in-time (JIT) compiler, 231, 468, 755

JVM, see Java virtual machine

K

KDM type inferencing, 25, 57, 59

Kernel

-only code, 709

recognition, 716

Keyboard interrupts, 751

Kind, 829, 833

Krivine machine, 877

L

Labeled transition

relation, 846

system (LTS), 846, 847

Lambda calculus, 803, 806, 869, 870

Language(s), see also Metalanguage

ALPHA, 331

architecture description, 536, 537, 547, 551

assembly, SPARC, 790

behavioral, 540

BLAZE, 448

block-structured, 875

C, 83, 757

C++, 219, 221, 224, 237, 469, 801

Caml, 818

class-based, 835

conditions, 79

Crystal, 368
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Cyclone, 796, 797

data parallel, 331, 341

debuggers offered with interpreted, 298

defined by grammar, 571

Eiffel, 219

explicitly typed, 802

FORTRAN, 400, 803

FORTRAN D, 382, 385

FORTRAN M, 400

functional, 809, 871

guarded choice, 858

hardware description, 552

Haskell, 808

HMDES, 555

imperative, 858, 876

implementations, developing, 842

implicitly typed, 802

ISWIM, 843

Java, 219, 228, 237, 469, 774, 801

bytecode, 740

execution state in, 751

lazy, 873

lisp-like, 212

MIMOLA, 537, 538

mixed, 543

Modula, 825

object-oriented, 288, 469

typed, 803, 830

widespread use of, 739

Pascal, 774

primitive actions, 80

PRMDL, 551

processors, analyses performed by, 4

programming

PCF, 809

pointers in, 866

semantics, 842

subtyping in, 818

RT-level, 557

Simula, 801

Smalltalk, 219

specification, 77, 82

for constant propagation in, 81

syntax of, 95–97

stack-based typed assembly, 774

Standard ML, 842

state-space exploration for, 212

syntactic categories of, 78

Theta, 219

typed assembly, 765

type safe, 809

Vienna FORTRAN, 382, 385

WHILE, 858

abstract machine for, 862

Boolean expression, 858

calling procedures in, 864

Last-in, first-out (LIFO) order, 476

Last uses before redefinition problem, 91

Last-write information, 208, 210

Last-write-tree (LWT), 377

Latency, forbidden, 654

Lattice cells, 112, 115

Lattice of constants, 112, 113

Lazy language, 873

Leaf, 501

Leaf routine optimizations, 526

Least frequently used (LFU) replacement policy, 149

Least recently used (LRU), 750

Less than equal (LTE), 481

Let polymorphism, 817

Lex, 61, 82, 83

Lexical analyzer, function of, 305

Lexical conventions, 81

LF, see Logical framework

LFU replacement policy, see Least frequently used

replacement policy

Lifetime function, 358

LIFO order, see Last-in, first-out order

Limit graph, 47

Linear algebra, communication-free partitioning using,

417

Linear constraints

execution based derivation of, 261

symbolic evaluation-based derivation of, 260

Linear programming, code scheduling performed using,

617

Linear references, generalized, 427

Line table, 303

Linkage information, 556

Link level allocation, 468

LINPACK benchmark programs, 63, 82, 92

LISA, 549

Lisp expression, 801

Lisp-like language, 212

Listness, 213

List scheduling

algorithm, generic, 648

method, 647, 649

Liveness analysis, 110

Live range(s), 528

array reference, 625

classification of, 497

coalescing of, 462

coarse-grained, 496

construction, 489, 495, 497

global, 499

growth (LRG), 624

intelligent splitting of, 506

pass-through, 518, 519

priorities of, 488

selection, 488

spilling, 673

splitting, 462, 489, 503

variables, 671

Live variables analysis, 8, 24, 26

Load-scheduling algorithms, 645

Load Store Insertion Algorithm (LSIA), 58

Local allocation, 468

Locally optimal code, 565

Local reference allocation (LRA), 24

Local register allocation, 526

Logical errors, fixing of, 295

Logical formulas, expression of semantics of statements

via, 190

Logical framework (LF), 783

Logical structures, 188

Loop(s)

back edge, 506

blocking, 728

body code, 694

body pseudo code, 693

-carried dependences, 66, 67, 666
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closure, 32, 46, 47

code, 703

completely unrolled, 703

connection graph for, 242

data dependence in, 66

doacross, 692

doall, 692

fusion, 68, 75

index, 397, 398, 399

interchange, 68, 75, 426

invariant code motion, 72, 109, 307, 318, 319

invariant movement, 55

iteration

outermost, 432

partitionings, 384

load-balanced version of, 426

modulo scheduling of counted, 529

nested, 67, 420

optimizations, 613

order, 397

parallelization, 367

performance, 438

permutation, algorithm for, 397

preheader, 80

register allocation for, 491

reversal, 68, 76

skewing, 68, 76, 392

tiling, 110, 728

transformation(s), 424

finding of using matrix-based approach, 431

generalized algorithm for, 443

transformed, 438

unrolling, 110, 335, 526, 613

LRA, see Local reference allocation

LRG, see Live range growth

LRU, see Least recently used

LSIA, see Load Store Insertion Algorithm

LTE, see Less than equal

LTS, see Labeled transition system

LWT, see Last-write-tree

M

Machine(s)

abstract, 843, 854, 855, 875

code, type state checking of, 785

communication primitives, 451

context, 872

descriptions (MDs), 609

environment, 873, 874, 877

Krivine, 877

SECD, 843, 874, 875

stack memory code, 862

Main memory, 389, 400

Manhattan metric, 450

Massachusetts Institute of Technology (MIT), 541

Matching nonterminals, 578

Matching rules, function computing, 580

Matchset, 592

Materialization process, 204

Matrix

multiplication, 335, 436

reference, 440, 441

array, 440

identification of, 444

transformed, 441

MaxDistance, 675

Max-flow min-cut problem, 512

Maximum safe assignment (MSA), 38, 39

Maximum-weighted path covering (MWPC), 620

May-aliases, 178, 207

May-not-be-X problem, 159

MDs, see Machine descriptions

Meet operator, 113

Meet over paths (MOP) solution, 15

Meld constraint propagation, 518

Meld scheduling, 514, 529, 664

Memory

access

information, 494

instructions, 226

local, 431

addresses, 332, 336

allocation

function, 352, 357, 358

heap, 770

scheme, 398

bank(s)

allocation, 621

dual, 608, 622

cache, 389

cells, 178

cleanness properties, 178

clustering, 166

constraint, 399

disambiguation, 178

faults, 751

forwarding, 166

layout

default, 167

modifying, 402

leak, 177

locations, 779

assignment of variables to, 620

sharing of, 311

main, 389, 400

model, 549

operand, data dependence arising through, 634

operations

absolute addressing mode in, 625

variable latency and, 558

optimizations

problems related to, 447

profile-guided, 164

paging systems, 750

placement

optimized, 619

unoptimized, 619

ports, 554

random access, 603

read-only, 603

reference, disambiguating of, 177

reutilization of, 330

states, 782

three-level, 447

writes, 779

Mesh generation criteria, 383

Message(s)

passing

alternatives, 283

asynchronous, 283
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code, 387

communications, 284

computers, 409, 410

machines, 414, 431

synchronous, 283

queues, 283

start-up costs, 434

vectorization, 431, 451

Metalanguage (ML), 764, 774

constructors, 809

extending, 825

parametric polymorphism, 806

polymorphism, 817

programs, safety of, 780

recursive type in, 815

sharing specification, 829

signature, 826

software project written in, 781

Standard, 842

Method specialization, 832

Microprocessors, emergence of, 99

Migration, 717

MII, see Minimum initiation interval

Milner–Mycroft calculus, 818

MIMOLA, 537, 538, 547

Minimum initiation interval (MII), 666

Minimum register instruction sequencing (MRIS), 674

MIT, see Massachusetts Institute of Technology

Mixed languages, 543

Mixed step semantics, 861

ML, see Metalanguage

MMALPHA, 331, 344

MMRA, see Modified Morel–Renvoise algorithm

Mobile ambient computation, 764

Mobile code, compiling safe, 763–799

cyclone certifying compiler, 796

design and implementation of certifying compiler,

795–796

proof carrying code, 774–784

DEC Alpha abstract machine specification for

verification condition generation, 776–780

overview of proof carrying code, 775–776

proof carrying code binary, 784

proof validation, 783–784

second example, 780–783

rough classification, 765

safety checking of machine code using type-state

checking, 784–795

overload resolution of machine instructions, 789

overview of type state checking of machine code,

785–786

type-state-checking algorithm, 790–795

type-state system, 787–789

software-based fault isolation, 765–767

typed assembly language, 767–774

illustrating compiler construction, 770–774

overview of typed assembly language framework,

768–769

TALx86, 769–770

type-safe linking, 774

use of typed assembly language framework, 774

Model(s)

aliasing, 469

AND/OR tree, 657

automaton approach, 655

callee, 501, 511

caller, 511

checking, 3

Chow and Hennessy, 495

CISC, 469

coloring, 471

combined register allocation and instruction scheduling

problem priority, 521

compilation

horizontal, 493

vertical, 493

cost-based, 471

cost-benefit, 149

dynamic collision matrix, 656

equal, 481

graph, 470

horizontal compilation, 515

instruction set graph, 618

ISDL timing, 542

memory, 549

perfect pipelining instruction, 717

Petri net, 718

polyhedral, 330

closure properties of, 367

limitations of, 366

memory allocation in, 351

processor allocation in, 350

scheduling in, 345

register transfer graph, 615

resource usage, 652

runtime, 544

self-application, 831

software programming, 539

vertical compilation, 515, 516, 517

VLIW/EPIC, 467

Modified Morel–Renvoise algorithm (MMRA), 58

Modified program dependence graph (MPDG), 280

Modula language family, 825

Module declaration style, 538

Modulo scheduling (MS), 527, 529, 657, 669

enhanced, 709

via hierarchical reduction, 705

operation placement in, 704

predicated, 706

SGI variant of, 711

Modulo variable expansion, 707, 708

Molecular dynamics codes, 383

Monotone data flow framework, 34, 39

Monotonic function space, 31

Monotonicity, implication of, 52

MOP solution, see Meet over paths solution

Morel and Renvoise algorithm, 117

Morel–Renvoise partial redundancy elimination (MR-

PRE), 25, 55, 56, 58

More table, 303

MPDG, see Modified program dependence graph

MRIS, see Minimum register instruction sequencing

MR-PRE, see Morel–Renvoise partial redundancy

elimination

MS, see Modulo scheduling

MSA, see Maximum safe assignment

msgsnd function, 283

Multiflow compiler, 520

Multiple inheritance

design of, 221

layout, 221, 222

Multiple spill heuristics, 478
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Multithreaded systems, 212

Must-aliases, 178, 206, 207

Must-availability analysis, 34

Mutation

scheduling, 520

set, 618

Mutually compatible partitions, 416, 422

MWPC, see Maximum-weighted path covering

N

Named storage cells, 863

Name-to-location mapping, 302

NameTable, 130

Natural edge, 616

Natural semantics, 849

Near-optimal register allocation (NORA), 491

NET, see Next executing tail 

Netlist-based scheme, 556

New Jersey Machine-Code toolkit, 543

Next executing tail (NET), 746

Next-write function, 353

Next-write vector, 354

n-metalanguage (nML), 537

nML, see n-metalanguage

Node(s)

actual-in, 275

actual-out, 275

argument escape, 243

branch condition, 114

CAG, 451

call-site, 275

control flow graph, 724

dummy, 719, 723

expression at, 113

formal-in, 276

formal-out, 276

global escape, 243

isolated, 125

local properties associated with, 121

matching nonterminals at, 578

matching patterns of, 616

materialization, 199

MaxDistance of, 650

no escape, 243

nonleaf, 806, 807

phantom,240, 241

profiles, 146, 147, 148

pseudo, 161

receive, 284

safe partially redundant, 118–119, 122

send, 284

shared, 643

sink, 636

source, 636

statement, 284

summary, 183, 205

visiting, 576

No escape nodes, 243

Nonbinding prefecthing, 728

Nonconforming traversals, 49

Noncurrent variables, 306

Nondeterminism, 282, 858

Nonfalse predicates, 503

Nonleaf node, 806, 807

Nonlinear constraints, 263

Nonresident variables, 306

Non-SSA program, 100

Nonterminal, 542

matching, 595

numbering of, 581

Nontrivial partition, 419

Nontrivial solution, 419

No-operations (NO-OPs), 606

insertion, 639

instructions, 638, 645

NO-OPs, see No-operations

NORA, see Near-optimal register allocation

Normalization, 342

NULL character, symbol names terminated by, 304

NULL pointers

dereferencing, 175, 181, 211

execution states, 177

O

OA, see Offset assignment

Object(s)

calculi, 830

cold, 165

compression, 164, 168

extension, rule for, 833

hot, 165

layout, 167

bidirectional, 223

techniques, 164

migration, 165

placement techniques, 164

splitting, 168, 169

types, 831, 836

Object-oriented languages, optimizations for, 219–246

devirtualization, 231–237

Cartesian product algorithm, 235–236

class hierarchy analysis, 231–232

comparisons and related work, 236

inlining and devirtualization techniques, 236–237

other fast precise-type analysis algorithms,

233–234

rapid type analysis, 232–233

variable type analysis, 234–235

escape analysis, 237–244

escape analysis by abstract interpretation, 238–244

other approaches, 244

fast-type inclusion tests, 228–231

binary matrix implementation, 229

Cohen’s algorithm, 229

further algorithms, 230

hierarchical encoding, 230

partitioning of class hierarchy, 230–231

relative numbering, 229–230

object layout and method invocation, 220–228

bidirectional object layout, 223–224

dispatch table compression, 224–226

dispatch without virtual method tables, 228

Java class layout and method invocation, 226–228

multiple inheritance, 221–223

single inheritance, 220–221

ObjectWorks library, 224, 225

Offset assignment (OA), 618

Oi-all-uses coverage criteria, 251, 252
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OIVs, see Other induction variables

One-to-one mapping, 310

One-sided analysis, 215

One-way communication, 380

On-line profiling, 745

OPDG, see Object-oriented program dependence graph

Open term, 804

Operating system (OS), 296, 393, 466

kernel, 766, 777

support, required for debugging, 299

Operation

instruction level parallelism constraints, 609

scheduling, 651

semantics, 555, 559

versioning problem, 610

Operational equivalence, 860

Operational semantics, 802, 805, 841–889

disclaimers, 844–845

functions and higher order forms, 868–878

closures and environment machines, 873–875

control operators, 876–878

implementation issues related to environments,

875–876

λ-calculus, 869–870

relationship with functional languages, 871–872

imperative languages, 858–868

blocks and variable declarations, 863–864

nondeterminism, 862–863

procedures and parameter passing, 864–866

runtime allocation and deallocation, 866–868

WHILE language, 858–8632

labeled transition systems and interactive programs,

878–885

communicating sequential processes, 880–884

extensions, 884–885

labels and behavior, 879–880

operational descriptions at different levels of

abstraction, 843–844

preliminaries, 846–858

private definitions, 856–858

structural operational semantics for expressions,

848–856

transition systems, 846–848

relationship with other kinds of semantics, 845–846

Operators, procedure for computing transitions on, 586,

588

Optimal register allocator (ORA), 491

Optimal schedules, 366, 636

Optimistic coloring, 477, 479

Optimization(s), 110

algorithm(s)

application of, 164

cost-benefit analysis, 145

definition of, 143

drawbacks, 143

formulation, 501

ignoring, 308

opportunities, 143, 144

Optimized code, debugging of, 305, 308, 309

ORA, see Optimal register allocator

OS, see Operating system

Other induction variables (OIVs), 72

Out-of-core arrays, 393, 396

Out-of-core phase, 390

Out-of-order issue processors, 646, 673, 674

Out-of-order superscalar machines, 552

Output dependences, 91, 209

Owner-computes rule, 331, 386, 432, 441

assumption of, 449

relaxing of, 442, 446, 451

P

Packed encoding, 230

Paged absolute addressing, 625

Paging, 466

PARADIGM compiler, 375

Parallel code, 373

Parallel interference graph, 670, 672

Parallelization

process, 331

techniques, design of new, 401

Parallelizing transformations, see Dependence analysis and

parallelizing transformations

Parallelograms, 430, 431

Parameter-in edges, 276, 281

Parameter-out edges, 276

Parameter-passing conventions, 865

Parametric shape analysis, 184

Parser tables, 225

Parsing, 847

Partial dead code elimination (PDE), 152

using control flow restructuring, 153

using predicated code motion, 153

Partial order relation, properties of, 30

Partial redundancy elimination (PRE), 8, 25, 58, 93, 100,

116, 152

algorithms, 117, 162, 171

control flow restructuring, 153

speculative code motion, 153, 154

Partition(s)

array, 415, 416, 420, 429

communication-free, 416, 417, 419, 421, 428

compatible, 416

disjoint, 418

examples of good, 415

mutually compatible, 416

nontrivial, 419

shapes of, 430

Partitioning, 226

communication-free, 414

computation, 451

hyperplane, 449

for linear references, 423

for program transformations, 423

technique, 129

PASCAL, 539, 530, 774, 868

Patch up basic blocks, 518, 519

Patch up code, 489, 510

Path

algebra, 699, 706

associations, 256, 257

classification, 155

closure, Floyd algorithm for, 701

composition, 699

confluences, 58

definition-clear, 250

flow function, 35, 36, 37

profiles, 146, 147, 745

strings, 574

testing, 249
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Paths that benefit vs. paths that incur a cost, 156

Pattern-matching automaton, failure function of, 573

PCC, see Proof carrying code

PCF programming language, 809

PCFG, see Phase control flow graph

PDE, see Partial dead code elimination

PDFA, see Probabilistic data flow analysis

PDG, see Program dependence graph

PDN, see Program dependence net

Pentium, 296, 490

Percolation scheduling, 664

Perfect pipelining, 716, 717, 719

Petri net model, 718

PFGs, see Program flow graphs

Phantom node, 240, 241

Phase control flow graph (PCFG), 375

Phase ordering, 494, 614

Phase-sequencing identification, 452

Phi-Function, 106

Philips research machine description language (PRMDL),

537, 551, 556

PILAR runtime library, 387

Pipeline

interlock, 638

kernel, 695

regular, 704

-scheduling method, 645

Pipelining

cross-path, 727

intrapath, 727

perfect, 716, 719

pressure responsive, 732

results of, 721

Pointer(s), 91

adjustment, 221

frame, 301

NULL, 175

dereferencing of, 181

execution states, 177

in programming languages, 866

tack, 301

Polyhedra

domain, 333

lexicographic maximum, 356

manipulation of, 342

scanning, 359, 361, 362

sorting, 365

Polyhedral model, 330

closure properties of, 367

limitations of, 366

memory allocation in, 351

processor allocation in, 350

scheduling in, 345

Polymorphism

ad hoc, 816

let, 817

ML, 817

types, definition of, 816

value, 823

POLYTOIL, 835

Popcorn, 768, 769

Postdominance frontier, 64

POSTGRES database manager, 764

Postpass scheduling, 632

Postreload flow analysis, 527

PRE, see Partial redundancy elimination

Predicated modulo scheduling, 706, 707

Predicate–update formulas, 190, 193, 197, 200, 211

Predication, 527

Preemptive linking, 749

Prefetch instructions, 729

Prepass scheduling, 632

Preprocessing algorithm 595

Prescheduling, 632

Pressure responsive pipelining (PRP), 732

Principle of correspondence, 857, 864

Principle of qualification, 856

Printer process, 881

Priority-based coloring, 487

Priority function

caller-saved, 511

Chow, 509

PRMDL, see Philips research machine description

language

Probabilistic data flow analysis (PDFA), 157

cost-benefit analysis based on, 157

probabilities provided by, 158

Probability, two-edge, 161

Procedural closure, 865

Procedure(s), 868

call, loop containing, 744

in-lining, 110

Process, 878

code, vector of, 885

graph, 285

Processor(s)

application-specific, instruction scheduling for, 676

cycles, wasted, 631

data path, 616

in-order issue, 632

Intel Itanium, 739

out-of-order issue, 673, 674

structural hazard resolution in modern, 653

workload, 430

Profile-guided compiler optimizations, 143–174

profile-guided classical optimizations, 150–164

cost of analysis, 164

optimizations, 152–154

partial redundancy elimination via speculative code

motion, 154–163

transformations, 151–152

profile-guided memory optimizations, 164–171

object compression, 168–170

object layout and placement, 167–168

object placement, 164–166

profile-guided code layout, 170

types of profile information, 146–150

address profiles, 150

control flow profiles, 146–149

value profiles, 149

Profiling

off-line, 745

on-line, 745

Program(s)

address space, parts, 164

ALPHA

equation in, 343

operational semantics, 359

reasoning about, 344

analysis, 2

shapes, 179

technique, 269
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CFG for, 214

concurrent, 282, 286

control flow trace, 146

debugging, 297

DEC Alpha, 778, 783

dependence(s)

analysis, 175

construction of, 208

graph (PDG), 5, 275, 278, 494

grouping of, 209

net (PDN), 283

dining-philosophers, 212

domain, 341

DSP, nonrecursive, 626

edits, testing following, 257

execution, enabling of, 2

fall-back strategy to compile, 350

flow graphs (PFGs), 5, 7, 35

FORTRAN, 329

forward substitution, 352, 353, 355

fragment, 209

initial, 126

integration, semantics-based, 272

interpretive execution of, 239

Java

benchmark, 234

predictability of, 211

speedup of, 238

logical errors in, 295

mathematical description of, 340

matrix multiplication, 335

need for replication of arrays, 412

number of instructions in, 149

object-oriented, 265, 289, 290

optimization, global, 55

path, execution frequency of, 147

Popcorn, 768, 769

profiling, 144

real-time, 265

representations, 5

sample, 255

scope, 4

semantics, 361

single program multiple data, 375

source code, 296

stack, 301

statements, abstract interpretation of, 193

transformation(s), 2

cost–benefit analysis of, 143

data mapping and, 454

partitioning for, 423

transformed, 127

variables, 209

verification, 331, 795

Programming

basic unit of concurrent, 281

dynamic, 569

language(s)

PCF, 809

pointers in, 866

semantics, 842

subtyping in, 818

theory, 797

patterns, 814

Programming languages, type systems in, 801–839

data abstraction and representation independence,

824–825

further reading, 836

lambda calculus, 803–806

evaluation of terms, 804–805

two operational semantics, 805–806

modules, 825–830

dependent types, 827–829

higher order functors, 829–830

typed lambda calculi, 806–823

polymorphism, 816–818

recursive types, 814–815

simple types, 807–808

subtyping, 818–822

sum and product types, 808–809

type inference, 810– 814

type safety, 809–810

typing imperative features, 822–823

typing in object-oriented languages, 830–836

class-based languages, 835

inheritance and subtyping, 835–836

object calculi, 830–835

Program slicing, 269–294

applications of program slicing, 271–273

debugging, 271–272

functional cohesion metric computation, 273

other applications of program slicing, 273

program integration, 272–273

software maintenance and testing, 272

backward and forward slicing, 271

basic slicing algorithms, 277–281

data flow analysis, 277–278

graph-reachability analysis, 278–281

intermediate program representation, 273–276

control dependence graph, 275

control flow graph, 274

data dependence graph, 274

program dependence graph, 275

system dependence graph, 275–276

parallelization of slicing, 287–288

concurrent programs, 287–288

sequential programs, 287

slicing of concurrent and distributed programs,

281–287

concurrency at operating system level, 283

program properties, 282–283

slicing of concurrent programs, 283–287

slicing of object-oriented programs, 288–291

dynamic slicing of object-oriented programs,

290–291

static slicing of object-oriented programs, 289–290

static and dynamic slicing, 270–271

Projection vectors, 358

Proof carrying code (PCC), 765, 774, 775, 784

Proof trees, 849

PROPAN, 546, 547

Property–extraction principle, 189

Propositional operators, three-valued interpretation of, 192

Proto self, 831

Protoype, 339, 830

PRP, see Pressure responsive pipelining

Pseudo code, 482, 497, 693,766

Pseudo-natural edges, 616

Pseudo node, 161

Pseudo register life span, 524
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Q

Query processor, 302, 303

R

RACFG, see Reverse augmented control flow graph

RADL, see Rockwell architecture description language

RAM, see Random-access memory

Random-access memory (RAM), 603

Range analysis, 794

Rapid type analysis (RTA), 232, 233

RASE, 671

Rational polyhedron, 333

RAW data hazards, see Read-after-write data hazards

RCCFG, see Reverse concurrent control flow graph

RCFG, see Reverse control flow graph

RCRISP, 472

RDDG, see Reduced dynamic dependence graph

RDG, see Reduced dependence graph

RE, see Recurrence equation

Reachability information, 187

Reachable uses

analysis, 258

problem, 90

Reaching definitions analysis, 13, 26, 29, 323, 325

Read-after-write (RAW) data hazards, 557

Read-only memory (ROM), 603

ReadyList, 639, 647, 650, 658

Real-time constraints, in Dynamic compiler, 753

Receive node, 284

Reconcile code, 517

Reconcile information, eager propagation of interregion,

517

Recurrence equation (RE), 334

Recursive types, 814

Red edge, 621

Reduced dependence graph (RDG), 335

Reduced dynamic dependence graph (RDDG), 279

Reduced instruction set computer (RISC), 463, 481, 543

advent of, 631

architecture, register allocation for, 640

arithmetic operators for, 642

machine, assembly language developed for, 768

operations, ISA architecture consisting of, 605

processor, 83

Reduced reservation table (RRT) model, 654

Reduction semantics, 850, 861

Redundancy removal

transformation, illegal, 145

using control flow restructuring, 153

Redundant computation, 134

Redundant recomputations, 44

Reference

allocation technique, 621

matrix, 441

array, 440

identification of, 444

transformed, 441

Region-based allocation, 468

Region-based compilation, 493, 503

Region-based register allocation, 497

Region-based scalar register allocator, 529

Region scheduling, 664

Register(s)

allocator

region-based scalar, 529

rotating, 529

banks, multiple, 487

callee-saved, 500, 519

caller-saved, 486

class preferencing, 526

destination, 637

freelist of, 510

heterogeneous, 676

intermediate, 715

– memory transfer operations, 487

movement, 526

pressure, 527, 635, 730

pseudo, 524, 525

rank, 521

renaming, 707

requirements, instruction sequences with different, 674

scan, 525

scratch, 527

spills, 635

splitting, 673

stack pointer, 748

transfer (RT), 537

graph (RTG) model, 615

list (RTL), 524

virtual, 476, 482, 527, 671

Register allocation, 461–533, 614, 669, 678

background, 468–470

interaction with pointers and call conventions,

469–470

types of register allocation, 468–469

case studies, 524–527

Gcc, 524–527

Jalapeno, 527

Chaitin style of, 506

definitions and terms, 527–528

global register allocation, 475–495, 526

efficient data structures and algorithms for graph

coloring, 479–487

integer linear programming approaches, 490–491

interprocedural register allocation, 492

linear scan and binpacking approaches, 490

priority-based coloring, 487–489

region-based approaches, 492–495

register allocation via graph coloring, 475–479

register allocation for loops, 491–492

importance and future trend, 465–466

brief history, 466–467

storage optimization, paging, caching and register

renaming, 466

instruction scheduling and, 472, 513

integrating instruction scheduling and, 520

interprocedural, 492

intraregion, 498

local register allocation, 473–475

minimization of loads and stores in long basic

blocks, 474

register allocation in basic blocks, 473–474

register allocation in traces, 474–475

loop, 491

paging and, 466

patents on, 465

region-based framework for combining register

allocation and instruction scheduling,

513–520



Index 911

final design, 519–520

problems in vertical compilation model III and

solutions, 517–519

stepwise development of combined region-based

framework, 514–517

Trimaran framework, 513–514

region-based register allocator in Trimaran, 495–512

efficient region-based register allocation

framework, 503–512

how to further reduce execution time, 512

performance problems in basic region-based

register allocator, 502–503

region-based compilation and callee and caller cost

models, 500–502

region-based register allocation in Chow and

Hennessy model, 495–497

simplified overview of Trimaran register allocator,

497–500

theoretical results, 470–473

cyclic graphs, 473

restricted acyclic graphs, 470

unrestricted acyclic graphs, 470–473

toward integrating instruction scheduling and register

allocation, 520–524

Chekuri’s heuristic, 522–523

combined register allocation and instruction

scheduling problem priority model, 521–522

performance evaluation, 523–524

Trimaran compiler infrastructure, 528–529

types of, 468

Regression testing, 256

Regular pipeline, 704

Regular section descriptors (RSD), 379

Reinterpretation principle, 194

Reload inheritance, 527

Remapping loop iterations, 384

Rematerialization, 462, 478

Remote memory access (RMA) primitives, 381

Remote procedure call (RPC), 765

Renaming algorithm, 106, 109

Representation independence, 824

Reservation table (RT) 544, 653

Resource

constraint, 652

usage

categories of, 690

common model of, 690

models, 652

Restricted acyclic graphs, 470

Retargetable compilation, categories, 627

Retargetable compilers, 536

Retargetable interface, 611

Retargetable methodology, qualities of, 612

Reuse dags, 520

Reverse augmented control flow graph (RACFG), 86, 88

Reverse concurrent control flow graph (RCCFG), 288

Reverse control flow graph (RCFG), 287

Reverse if-conversion, 709

RISC, see Reduced instruction set computer

RMA primitives, see Remote memory access primitives

Rockwell architecture description language (RADL), 537

Roll back variable, 313

Roll forward variable, 313

ROM, see Read-only memory

Root-to-leaf path, 574

Rotating register allocator, 529

Rotation latency, 393

Row displacement compression, 225

RPC, see Remote procedure call

RRT model, see Reduced reservation table model

RSD, see Regular section descriptors

RT, see Register transfer

RTA, see Rapid type analysis

RTG model, see Register transfer graph model

RTL, see Register transfer list

Runtime

allocation, 469, 866

code generation function, 758

exceptions, 306

model, 544

performance, degradation of, 505

specialization, 756

type error, 801, 823

S

SA, see Safe assignment

Safe assignment (SA), 37, 38

Safe code motion, 151

Safe partial anticipability, 124

Safety

checking, 764

conditions, default, 785

definition of, 40

policy criteria, 779

SALTO machine description, 547

Sandboxing, 765, 767

SARE, see System of affine recurrence equations

Scalar compiler optimizations on static single assignment

form and flow graph, 99–141

conditional constant propagation, 111–116

algorithm, flow graph version, 112–116

algorithm, static single assignment version, 116

lattice of constants, 112

future directions, 138–140

partial redundancy elimination, 116–128

algorithm, 125–128

Boolean properties associated with expressions,

121–125

static single assignment form, 100–111

advantages, 110

construction, 102–109

disadvantages, 110–111

value numbering, 128–138

accommodating extended basic blocks, 131–133

hashing-based value numbering, 130–131

value numbering with hashing and static single

assignment forms, 133–138

SCD, see Section communication descriptor 

Schedule

flat, 705

length, 636

optimal, 636

time, 636, 637

Scheduler, compile time, 632

Scheduling, see also Instruction scheduling

affine recurrence equations, 349

algorithm, profile-insensitive, 524

basic block, 631

bidirectional slack, 704

code, 617
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critical path, 524

cyclic, 645, 658, 665

delayed load, 470, 643

enhanced pipeline, 720

equal, 481

global, 631, 645, 678

greedy, 695

hyperblock, 662, 663

hypernode reduction modulo, 668

instruction, 526

linear time code, 640

meld, 514, 664

method, Gibbons–Muchnick, 639, 640, 644, 645

modulo, 527, 529, 657, 669

enhanced, 709

operation placement in, 704

predicated, 706, 707

SGI variant of, 711

mutation, 520

operation, 651

percolation, 664

postpass, 632

preference, 722

prepass, 632

rank, 521

region, 664

selective

data dependence graph of loop, 726

with software pipelining, 720

steps, 721

superblock, 661, 662

trace, 632, 659, 661

Scheme-style call-current-continuation operator, 823

Scratch registers, 527

SDG, see System dependence graph

SECD

framework, 876

machine, 843, 874, 875

Section communication descriptor (SCD), 379

Segment matching, 766

Selective scheduling

data dependence graph of loop, 726

with software pipelining, 720

steps, 721

Selector coloring compression, 225

Self-application model, 831

Self-dependence, 729

Self-modifying code, 752

Semantic(s)

abstract, 193, 197

actions, 84, 845

ALPHA, 341

analysis, characteristics of, 2

augmented, 208

axiomatic, 845

based program integration, 272

big-step, 849, 859, 863

call-by-value, 243

copy-in-copy-out, 386

denotational, 3

equations, 360

expression, 360

information, captured, 6

mixed-step, 861

natural, 849

operation, 555, 559, 802, 805

programming language, 842

reduction, 198, 850, 861

references, 868

small-step, 844, 850, 851, 858

structural, 842, 844

TAL, 773

Semilattice, 28

Semiretargetable compilers, 535

Send node, 284

Separable data flow framework, 34

Separable function space, 33

Serialization of reductions, 330

Sethi–Ullman (SU)

algorithm, 470, 473

method, 641

ordering phase, 644

phases of, 642

numbering, 473, 474

sequence, stalls in, 644

SGI, see Silicon Graphics, Inc.

Shape(s)

abstraction, 185

analysis, 176, 183

algorithm, 181, 187, 213

parametric, 184

analyzing programs for, 179

descriptors, 179, 181

graphs, 182, 186, 187

properties, 179

semantics, 176

Shape analysis and applications, 175–217

applications, 206–212

constructing program dependences, 208–211

identifying may- and must-aliases, 207

other applications, 211–212

overview of shape-analysis framework, 187–206

abstract interpretation of program statements,

193–206

abstraction via truth-blurring embeddings, 190–192

conservative extraction of store properties, 192–193

expressing semantics of program statements, 190

extraction of store properties, 189

representing stores via two-valued and three-valued

logical structures, 188–189

questions about heap contents, 176–183

analyzing programs for shapes, 179–180

answers as given by shape analysis, 180–183

traditional compiler analyses, 177–179

related work, 212–214

shape analysis, 183–187

abstraction functions, 184–185

design of shape abstraction, 185–187

parametric shape analysis, 184

summarization, 183

Shared-memory machines, 454

Shared nodes, 643

Sharing specification, NL, 829

Shifted linear schedules, 346

shmget function, 283

Shrink wrapping, 486, 489, 504, 511

Shuffle code insertion, 489

Silicon Graphics, Inc. (SGI), 711

instruction scheduling, 712

MIPSpro compiler, 665

SIMD, see Single instruction multiple data

Simple offset assignment (SOA), 618, 619
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Simula, 801

Simulation, 879, 880

Single inheritance layout, 220

Single instruction multiple data (SIMD), 539, 617

Single-loop nest, overall algorithm for optimizing locality

in, 401

Single program multiple data (SPMD), 375, 409

Single-usage restriction, 789

Sink node, 636

Size parameters, 332

Skewed distributions, 413

SLED, see Specification language for encoding and

decoding

Slicing

algorithms, 277, 287

computation, efficiency of, 270

static, 283

SmallEiffel compiler, 228

Small-step semantics, 844, 850, 851, 858

Smalltalk, 219

SMC, see Stack memory code

SOA, see Simple offset assignment

SOC, see System-on-a-chip

Software

deployment, 253

development bottleneck, 536

dynamic compilation classification, 742

engineering metrics, 270

maintenance and testing, 272

programming model, 539

reliability, 247

testers, safety critical code located by, 272

testing, 247

tools

development of, 552

retargetable, 561, 562

Software pipelining, 689–737

adapting software pipelining to other concerns,

728–732

itemization of all states, 729–730

reducing cache misses, 728–729

register pressure, 730–732

architectural support for software pipelining, 712–716

background information, 690–703

data dependence graph, 690–691

factors affecting initiation interval, 697–698

initiation interval, 695–697

modeling resource usage, 690

schedule generation, 691–695

decomposed, 710

effective heuristics, 733

enhanced pipeline scheduling, 720–728

algorithm, 720–723

evaluation, 727–728

extensions, 726–727

global code motion with renaming and forward

substitution, 724–725

instruction model, 724

pipelining of loop, 725–726

kernel recognition, 716–720

evaluation, 719–720

perfect pipelining, 716–718

Petri net model, 718–719

Vegdahl’s technique, 719

methods of computing II, 699–703

support for software pipelining, 703

unrolling and replication, 703

modulo scheduling, 703–712

enhanced modulo scheduling, 709–710

evaluation, 710–712

modulo scheduling via hierarchical reduction,

705–706

other techniques, 710

path algebra, 706

predicated modulo scheduling, 706–709

selective scheduling with, 720

SOS, see Structural operational semantics

Source

assignment descriptor, 313

code, 61

node, 636

statement, removal of, 319

Source-to-object mappings, 307, 319

Source-to-source transformation, 492

SP, see Stack pointer

SPARC assembly language, 790

SPDG, see Static program dependence graph

SPEC92 benchmarks, 464

Specification

language, 77, 82

for encoding and decoding (SLED), 543

syntax of, 95–97

lexical analysis of, 84

syntax analysis of, 84

useless code elimination, 85

Speculative code motion, 660

Speculative execution, 703

SP-EPS, see Split-path enhanced pipeline scheduling

Spill

candidate, 490

code, 477, 481, 509, 635, 712

generation of, 513

problem of using, 730

costs, 476, 502

value determination, 731

Split DAG, 510

Split-node DAG, 618

Split-path enhanced pipeline scheduling (SP-EPS),727

Splitting, 477

frequency-based, 506d, 507

live range, 489

purpose of, 487

SPMD, see Single program multiple data

SRE, see System or recurrence equations

SSA, see Static single assignment

Stack

allocation, 767

-based typed assembly language (STAL), 774

data, 164

information, 298

memory code (SMC), 862

modeling, 769

pointer (SP), 301, 463, 748

STAL, see Stack-based typed assembly language

Stand-alone debugger, 297

Standard ML, 842

Stanford University Intermediate Format (SUIF), 81, 82

intermediate code, 92

low-level, 83, 91

program, symbol tables in, 83

State

lattice, 790



914 The Compiler Design Handbook: Optimizations and Machine Code Generation

matrix, 729

trimming, 587

Statement

node, 284

testing, 249

Static analysis, 3

algorithms, 214

exploiting, 361

Static backward slicing, 269

Static control loops, 367

Static cost analysis, 568

Static program dependence graph (SPDG), 286

Static single assignment (SSA), 1, 99, 462

-based algorithms, 99

construction, minimal, 106

edges, 116, 139

form(s), 5, 67, 625

alternative, 111

canonical, 111

construction, 102, 105

value numbering, 133, 138, 139

graph(s)

before and after value numbering, 136

CCP algorithm with, 117–119

construction, 108

initial and final value partitions for, 129

value numbering with the partitioning technique,

129

Static slicing techniques, 270

Statistical PC sampling, problem with, 745

Storage

cells, named, 863

heap-allocated, 204, 208

optimization, 466

Store properties

conservative extraction of, 192

extraction of, 189

Strength reduction, 100

String table, 303

Strip mining redistribution, 452

Strong update, 213

Structural operational semantics (SOS), 842

Structural semantics, 844

Structural testing, 247, 248

SU, see Sethi–Ullman

Subexpression elimination, 55

Subject

reduction, 858

tree

derivation tree for, 591

generation of by tree grammar, 577

Subpath categories, 155

Subtype

depth, 834

width, 834

Subtyping

atomic, 819

inheritance and, 835

kinds of, 834

relation, 822

Successive refinement, solving constraints by, 21

Sugared syntax, 343

SUIF, see Stanford University Intermediate Format

Sum of energies, calculating, 6

Summarization, 183

Summary node, 205

Superblock(s), 527

region-based compilation using, 496

scheduling, 661, 662

Supercomputers, 329

Superglue, 273

Supernode partitioning, 366

SUPRENUM machine, 448

SUREs, see System of uniform recurrence equations

Switch statement, 108

Symbolic debugger, 295, 296, 300

Symbol resolver, 302, 304

Symbol table, 303

Synchronization

code, 238

primitives, 381

Synchronous message passing, 283

Syntactic categories, 78

Syntax

abstract, 848

analyzer, function of, 305

communicating sequential processes, 880

-directed rules, 850

PASCAL-like, 538

sugared, 343

TAL, 773

System

behavior, 842

deadlocked, 883

dependence graph (SDG), 275, 280

-on-a-chip (SOC), 561,603

System of affine recurrence equations (SARE), 331

System of uniform recurrence equations (SUREs), 345

System or recurrence equations (SRE), 334

T

Tables, precomputation of, 593

TAL, see Typed assembly language

TALx86 System, 769

Target description language (TDL), 537

Tarski’s lemma, 38

TDL, see Target description language

Temporal relationship graph (TRG), 150

Terminal configurations, 846, 847

Test

coverage criterion, 248, 251, 265

data, iterative refinement of, 265

input data generation, 259, 260, 261

Testing

following program edits, 257

goal of, 247

path, 249

process, 248

regression, 256

Texas Instruments

TIC6X series DSP, 606

TMS320C6X processor, 713, 714

Threaded-CFG, 284

Threaded-PDG, 284

Thread synchronization, 751

Three-valued logic analyzer (TVLA), 214, 215

Three-valued structures, 211, 212

Tiling, 366, 447

Timing information, 538

TNV, see Top-n-value table
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Tokens, 541, 542

Top-n-value table (TNV), 149

Trace scheduling, 659, 661

Trailblazing, 664

Trampoline, 222

Transfer functions, defining, 10

Transformation

effect of, 433

main specification of, 80

matrix

criteria for choosing the entries in, 434

inverse of, 435

Transformer generator, 83, 85

Transition system (TS), 846

labeled, 878

values for, 857

Transparent dynamic compilation systems, 741

Tree(s)

automaton, tables encoding, 572

grammar, 570, 577

instructions, 717

parsing, 570, 574

approaches, bottom-up, 577

problem, optimal, 573

process, 567

partitioning of DAG into, 643

pattern matching, 140, 580, 583

splitting of DAGs into, 617

Tree parsing, instruction selection using, 565–601

bottom-up tree-parsing approaches, 577–589

code generation pass, 588–589

hard coded bottom-up code-generator generators,

587–588

iterative bottom-up preprocessing algorithm,

579–585

work list-based approach to bottom-up code-

generator generators, 585–587

dynamic programming, 569–570

future work, 599

regular tree grammars and tree parsing, 570–573

related issues, 598–599

techniques extending LR parsers, 589–598

extension of LR(0)-parsing algorithm, 590–592

precomputation of tables, 593–598

top-down tree-parsing approach, 573–577

Treegion, 665

TRG, see Temporal relationship graph

Triangle trimming, 587, 589

Trimaran

compiler infrastructure, 528

framework, 513

horizontal model of register allocation in, 518, 519

region-based register allocator in, 495

Trip count, 728

Trivial assignment, 12

Truth-blurring embedding(s), 185, 188, 190, 196, 212

abstraction via, 190

consequence of, 201

principle behind, 191

TS, see Transition system

TVLA, see Three-valued logic analyzer

Two-dimensional arrays, 443

Two-edge probability, 161

Two-edge profiles, 146, 147

Type(s)

abstraction operator, 823

constant, 812

equality, 815

erasure mechanism, 772

expressions, language of, 788

-free term, 811, 812

inference, 810, 811, 813, 821

recursive, 814

-safe-checking analysis, phases of, 786, 787, 790

safety, 809

-state

checking, 784

propagation state, 792

system, sound, 802

univerally quantified, 816

Typed assembly language (TAL), 765, 767

framework, 768

instructions, 773

semantics, 773

syntax, 773

Typing rules, 832

U

UCE, see Useless code elimination

UGRS, see Uniformly generated reference set

Unanticipatable subpaths, 155

Unavailable subpaths, 155

Unification, importance of, 717, 719

Unified resource allocator (URSA), 671

Uniformly generated reference set (UGRS), 395

Uniform recurrence equation (URE), 345

multidimensional schedules, 348

one-dimensional schedules, 346

variable-dependent schedules, 347

Union-find algorithm, 481

Unit testing, requirements for, 255

Univerally quantified types, 816

UNIX, 283

code, debugged, 297

environment, ptrace system call, 296

system, PowerPC under IBM, 754

utilities, 503

Unreachable code elimination (URCE), 68, 70, 77

Unrestricted acyclic graphs, 470, 473

Unrolling, 703, 716

Unscheduling operations, 715

URCE, see Unreachable code elimination

URE, see Uniform recurrence equation

URSA, see Unified resource allocator

Usage set, 354, 357

Use–definition chains, 100

Useless code elimination (UCE), 68, 70, 77, 85

User

before redefinition problem, 90

interrupts, 306

retargetability, 627

V

Valid left contexts, function to compute, 593

ValnumTable, 130

Value

associations, 256, 257

bindings, 826
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location mapping (VLM), 475

polymorphism, 823

ranges, 472

specialization, major challenge in, 748

Value change problem, 322

copy propagation, 324

effects of constant folding and propagation on, 323

Value numbering, 128

algorithm, 131–133, 134

data structures for, 139

example of, 130, 135

hashing-based, 130

with hashing and SSA forms, 133

with partitioning technique, 129

Variable(s)

in Boolean predicate, 249

bound, 869

data, 332

definitions of, 6

detecting nonresident, 310

endangered, 312, 314, 315

expansion, modulo, 669, 707, 708

flow, 383

free, 869

-independent schedules, 346

interaction via shared, 282

latency, 558

lifetime of, 356

live ranges of, 671

multidimensional array, 361

noncurrent, 306

nonresident, 306

operation width (VOW), 605

architecture, RISC operations of, 605

digital signal processor architecture, 607

DSPs, 627

outer loop, 412

renaming, 107

roll back, 313

roll forward, 313

scoped declarations of, 863

single assignment to, 138

specialization, 756

suspect, 310

temporary, 102

total spilling of, 731

type analysis (VTA), 234

value of, 310

VC generation, see Verification condition generation

Verification condition (VC) generation, 778

Vertical compilation model, 515, 516, 517

Vertical model of compilation, 493

Very busy expressions analysis, 8, 26

Very high speed integrated circuit hardware description

language (VHDL), 304, 359

Very large scale integrated (VLSI) circuits, 340

Very long instruction word (VLIW), 463, 466, 487, 599

architectures, 539, 754

/EPIC

architectures, major premise of, 492

models, 467

instruction set architecture, 604

issue slots, 545

machines, scheduling for embedded, 732

processors, 632

DSPs modeled as, 604

instruction set architectures of, 604

reliance of on compilers, 605

TriMedia, 676

schedulers, 622

Very portable optimizer (vpo), 543

VHDL, see Very high speed integrated circuit hardware

description language

Video compression, 714

Vienna FORTRAN, 374, 382, 385

View command processor, 302

Virtual machine (VM), 227

Virtual method table, bidirectional object layout with, 224

Virtual-to-physical mapping, 351, 366

Virtual processors, 350, 366

Virtual register, 476, 482, 527, 671

Virtual tables, 225

Visiting nodes, 576

VLIW, see Very long instruction word

VLM, see Value location mapping

VLSI circuits, see Very large scale integrated circuits

VM, see Virtual machine

VOW, see Variable operation width

vpo, see Very portable optimizer

VTA, see Variable type analysis

W

WAM, see Warren abstract machine

Warren abstract machine (WAM), 843

Wegman–Zadeck algorithm, 112

Weighted precedence graph, 522

Weiser’s algorithm, 277

WHILE, 858

abstract machine for, 862

calling procedures in, 864

Whole program

paths (WPPs), 146

stream (WPS), 150

Width subtype, 834

Wigderson’s approximation algorithm, 471

Windows, 296

Wireless protocol, downloading of, 797

Work list

initializing of, 42, 43

iterative method, of data flow analysis, 42

WPPs, see Whole program paths

WPS, see Whole program stream

Write-once-run anywhere execution paradigm, 740, 754

Y

Yacc, 61, 82, 83

Yellow edge, 622

Z

Zephyr system, very portable optimizer in, 543

Zero communication, 420

Zero-cost rules, 570
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