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PREFACE

A computer can be viewed from many different levels. Many people are interested only

in using applications such as word processing or games. A computer programmer, how-

ever, often sees the computer as an instrument to create new applications software. A

high-level language programmer’s image of the computer is provided by the language

compiler, which gives the impression that the computer stores object types like inte-

ger, real, and array of char in named memory locations, calculates values of expres-

sions, calls procedures, executes while loops, and so forth.

However, an actual computer works at even lower levels. This book emphasizes

the architectural level, that is, the level defined by the machine instructions that the

processor can execute. Assembly-language instructions translate directly into machine-

language instructions, so that when you write an assembly-language program, you gain

an understanding of how the computer works at the machine-language level.

Although this book emphasizes the assembly-language/machine-language level

of computer operations, it also looks at other levels. For instance, it describes how high-

level language concepts such as if statements are realized at the machine level. It dis-

cusses some of the functions of the operating system. It briefly describes the logic gates

that are used at the hardware level. It also looks at how assembly language is translated

into machine language.

To program effectively at any level, programmers must understand certain fun-

damental principles at the machine level. These apply to most computer architectures.

Introduction to 80x86 Assembly Language and Computer Architecture teaches these

fundamental concepts:

• memory addressing, CPU registers and their uses

• representation of data in a computer in numeric formats and as

character strings

• instructions to operate on 2’s complement integers

• instructions to operate on individual bits

• instructions to handle strings of characters

TEAM LinG - Live, Informative, Non-cost and Genuine!



• instructions for branching and looping

• coding of procedures: transfer of control, parameter passing, local

variables, and preserving the environment for the calling program

The primary architecture covered is the Intel 80x86 CPU family used in many

personal computers. However, almost every chapter includes information about other

architectures, or about different computer levels. Programming in assembly language

and studying related concepts in Introduction to 80x86 Assembly Language and Com-

puter Architecture prepares the student to program effectively in any programming lan-

guage, to pursue advanced studies in computer design and architecture, or to learn

more about system details for specific computers.

Text Organization and Content

Much of the material in this book is based on my previous book, Fundamentals of

Assembly Language Programming Using the IBM PC and Compatibles. While teaching

this material through the years, I have increasingly come to the conclusion that an

assembly language course is the best place to introduce computer architecture to most

students. This book reflects a stronger emphasis on architecture than on programming.

It also concentrates on general concepts as opposed to the details of a particular com-

puter system.

The minimal prerequisite for my assembly language class is a good understand-

ing of a structured high-level language. Chapters 3 through 6 and Chapter 8 form the

core of my one-semester course. I normally cover Chapters 1–8 thoroughly, Chapter 9

quickly, and then choose topics from Chapters 10–12 depending on time and resources

available. For instance, I sometimes introduce floating-point operations via in-line

assembly statements in a C++ program.

Style and Pedagogy

The text primarily teaches by example. A complete assembly-language program is pre-

sented very early, in Chapter 3, and its components are carefully examined at a level that

the student is able to understand. Subsequent chapters include many examples of assem-

bly language code along with appropriate explanations of new or difficult concepts.

The text uses numerous figures and examples. Many series of “before” and

“after” examples are given for instructions. Examples are included that illustrate the use

of a debugger. These examples give the student a stronger sense of what is happening

inside the computer.

Exercises appear at the end of each section. Short-answer exercises reinforce

understanding of the material just covered, and programming exercises offer an opportu-

nity to apply the material to assembly-language programs.

vi Preface
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Software Environment

The “standard” 80x86 assembler is Microsoft’s Macro Assembler (MASM), version 6.11.

Although this assembler can produce code for 32-bit flat memory model programming

appropriate to a Windows 95, Windows NT, or other 32-bit Microsoft operating system

environment, the linker and debugger that come with this software package are not

suitable for use in such an environment. This book comes with a CD containing the

assembler program from MASM (ML), a more recent Microsoft linker, the 32-bit full-

screen debugger WinDbg (also from Microsoft), and necessary supporting files. This

software package provides a good environment for producing and debugging console

applications.

The CD included with the book also contains a package designed to simplify

input/output for the student, so that the emphasis remains on architecture rather than

operating system details. This I/O package is used extensively through most of the book.

Finally, the CD contains source code for each program that appears as a figure in the

book.

Instructor’s Support

Supplementary materials for this book include an Instructor’s Guide that contains some

teaching tips and solutions to many exercises. In addition, the author can be contacted

at rdetmer@mtsu.edu with questions or comments.
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CHAPTER

1.1 Binary and 

hexadecimal numbers

1.2 Character codes

1.3 2’s complement 

representation for 

signed integers

1.4 Addition and 

subtraction of 2’s 

complement numbers

1.5 Other systems for 

representing numbers

1
Representing Data
in a Computer

When programming in a high-level language like

Java or C++, you use variables of different types

(such as integer, float, or character). Once you

have declared variables, you don’t have to worry

about how the data are represented in the com-

puter. When you deal with a computer at the

machine level, however, you must be more con-

cerned with how data are stored. Often you have

the job of converting data from one representa-

tion to another. This chapter covers some common

ways that data are represented in a microcom-

puter. Chapter 2 gives an overview of microcom-

puter hardware and software. Chapter 3 illustrates

how to write an assembly language program that

directly controls execution of the computer’s

native instructions.
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2 Representing Data in a Computer

1.1 Binary and Hexadecimal Numbers

A computer uses bits (binary digits, each an electronic state representing zero or one) to

denote values. We represent such binary numbers using the digits 0 and 1 and a base 2

place-value system. This binary number system is like the decimal system except that

the positions (right to left) are 1’s, 2’s, 4’s, 8’s, 16’s (and higher powers of 2) instead of

1’s, 10’s, 100’s, 1000’s, 10000’s (powers of 10). For example, the binary number 1101 can

be interpreted as the decimal number 13,

Binary numbers are so long that they are awkward to read and write. For

instance, it takes the eight bits 11111010 to represent the decimal number 250, or the fif-

teen bits 111010100110000 to represent the decimal number 30000. The hexadecimal

(base 16) number system represents numbers using about one-fourth as many digits as

the binary system. Conversions between hexadecimal and binary are so easy that hex

can be thought of as shorthand for binary. The hexadecimal system requires sixteen dig-

its. The digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are used just as in the decimal system; A, B, C,

D, E, and F are used for the decimal numbers 10, 11, 12, 13, 14, and 15, respectively.

Either uppercase or lowercase letters can be used for the new digits.

The positions in hexadecimal numbers correspond to powers of 16. From right

to left, they are 1’s, 16’s, 256’s, etc. The value of the hex number 9D7A is 40314 in dec-

imal since

9 � 4096 36864 [ 4096 = 163 ]

+ 13 � 256 3328 [ D is 13, 256 = 162 ]

+  7 � 16 112

+ 10 � 1 10 [ A is 10 ]

= 40314

Figure 1.1 shows small numbers expressed in decimal, hexadecimal, and binary

systems. It is worthwhile to memorize this table or to be able to construct it very quickly.

You have seen above how to convert binary or hexadecimal numbers to deci-

mal. How can you convert numbers from decimal to hex? From decimal to binary? From

binary to hex? From hex to binary? We’ll show how to do these conversions manually,

but often the easiest way is to use a calculator that allows numbers to be entered in deci-

1 1 0 1

one 8 + one 4 + no 2 + one 1 = 13

TEAM LinG - Live, Informative, Non-cost and Genuine!



1.1 Binary and Hexadecimal Numbers 3

Decimal Hexadecimal Binary

0 0 0

1 1 1

2 2 10

3 3 11

4 4 100

5 5 101

6 6 110

7 7 111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Figure 1.1 Decimal, hexadecimal, and binary numbers

mal, hexadecimal, or binary. Conversion between bases is normally a matter of pressing

a key or two. These calculators can do arithmetic directly in binary or hex as well as dec-

imal and often have a full range of other functions available. One warning: Many of these

calculators use seven segment displays and display the lowercase letter b so that it looks

almost like the numeral 6. Other characters may also be difficult to read.

A calculator isn’t needed to convert a hexadecimal number to its equivalent

binary form. In fact, many binary numbers are too long to be displayed on a typical calcu-

lator. Instead, simply substitute four bits for each hex digit. The bits are those found in

the third column of Fig. 1.1, padded with leading zeros as needed. For example,

3B8E216 = 11 1011 1000 1110 00102

The subscripts 16 and 2 are used to indicate the base of the system in which a number is

written; they are usually omitted when there is little chance of confusion. The extra

spaces in the binary number are just to make it more readable. Note that the rightmost
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4 Representing Data in a Computer

hex digit 2 was converted to 0010, including leading zeros. While it’s not necessary to

convert the leading 3 to 0011, the conversion would have been correct since leading

zeros do not change the value of a binary number.

To convert binary numbers to hexadecimal format, reverse the above steps:

Break the binary number into groups of four bits, starting from the right, and substitute

the corresponding hex digit for each group of four bits. For example,

1011011101001101111 = 101 1011 1010 0110 1111 = 5BA6F

You have seen how to convert a binary number to an equivalent decimal num-

ber. However, instead of converting a long binary number directly to decimal, it is faster

to convert it to hex, and then convert the hex number to decimal. Again, using the above

19-bit-long number,

10110111010011011112
= 101 1011 1010 0110 1111

= 5BA6F16
= 5 � 65536 + 11 � 4096 + 10 � 256 + 6 � 16 + 15 � 1

= 37540710

The following is an algorithm for converting a decimal number to its hex equiv-

alent. It produces the hex digits of the answer right to left. The algorithm is expressed in

pseudocode, which is the way that algorithms and program designs will be written in

this book.

until DecimalNumber = 0 loop

divide DecimalNumber by 16, getting Quotient and Remainder;

Remainder (in hex) is the next digit (right to left);

DecimalNumber := Quotient;

end until;

Example

As an example, the decimal-to-hex algorithm is traced for the decimal number

5876:

• Since this is an until loop, the controlling condition is not checked until after

the body has been executed the first time.
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1.1 Binary and Hexadecimal Numbers 5

• Divide 16 into 5876 (DecimalNumber).

• 367 is not zero. Divide it by 16.

• 22 is not zero. Divide it by 16.

• 1 is not zero. Divide it by 16.

• 0 is zero, so the until loop terminates. The answer is 16F416

000

16)100

000

100

Quotient the new value for DecimalNumber

Remainder the next digit of the answer

Result so far: 16F4

10
16)220

160

60 Remainder the next digit of the answer

Quotient the new value for DecimalNumber

Result so far: 6F4

22

16 )367

352

15

Quotient the new value for DecimalNumber

Remainder the second digit of the answer

Result so far: F4

367

16 )5876

5872

4

Quotient the new value for DecimalNumber

Remainder the rightmost digit of the answer

Result so far: 4

The octal (base 8) number system is used with some computer systems. Octal

numbers are written using digits 0 through 7. Most calculators that do hex arithmetic

also handle octal values. It is easy to convert a binary number to octal by writing the

octal equivalent for each group of three bits, or to convert from octal to binary by replac-

ing each octal digit by three bits. To convert from decimal to octal, one can use an algo-

rithm that is the same as the decimal to hex scheme except that you divide by 8 instead

of 16 at each step.
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6 Representing Data in a Computer

1 Some computers, including the IBM PC and compatible systems, use an extended character set, addi-

tionally assigning characters to hex numbers 80 to FF (decimal 128 to 255). Extended character sets will

not be used in this book.

Exercises 1.1

Complete the table below by supplying the missing two forms for

each number.

Binary Hexadecimal Decimal

1. 100 ________ ________

2. 10101101 ________ ________

3. 1101110101 ________ ________

4. 11111011110 ________ ________

5. 10000000001 ________ ________

6. ________ 8EF ________

7. ________ 10 ________

8. ________ A52E ________

9. ________ 70C ________

10. ________ 6BD3 ________

11. ________ ________ 100

12. ________ ________ 527

13. ________ ________ 4128

14. ________ ________ 11947

15. ________ ________ 59020

1.2 Character Codes

Letters, numerals, punctuation marks, and other characters are represented in a com-

puter by assigning a numeric value to each character. Several schemes for assigning

these numeric values have been used. The system commonly used with microcomputers

is the American Standard Code for Information Interchange (abbreviated ASCII and pro-

nounced ASK-ee).

The ASCII system uses seven bits to represent characters, so that values from

000 0000 to 111 1111 are assigned to characters. This means that 128 different characters

can be represented using ASCII codes. The ASCII codes are usually given as hex numbers

from 00 to 7F or as decimal numbers from 0 to 127.1 Appendix A has a complete listing of

ASCII codes. Using this table, you can check that the message

Computers are fun.
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1.2 Character Codes 7

can be coded in ASCII, using hex numbers, as

Note that a space, even though it is invisible, has a character code (hex 20).

Numbers can be represented using character codes. For example, the ASCII

codes for the date October 21, 1976 are

with the number 21 represented using ASCII codes 32 31, and 1976 represented using 31

39 37 36. This is very different from the binary representation in the last section, where

2110 = 101012 and 197010 = 111101110002. Computers use both of these representations

for numbers: ASCII for input and output, and binary for internal computations.

The ASCII code assignments may seem rather arbitrary, but there are certain

patterns. The codes for uppercase letters are contiguous, as are the codes for lowercase

letters. The codes for an uppercase letter and the corresponding lowercase letter differ

by exactly one bit. Bit 5 is 0 for an uppercase letter and 1 for the corresponding lower-

case letter while other bits are the same. (Bits in most computer architectures are num-

bered right to left, starting with 0 for the rightmost bit.) For example,

• uppercase M codes as 4D16 = 10011012

• lowercase m codes as 6D16 = 11011012

The printable characters are grouped together from 2016 to 7E16. (A space is

considered a printable character.) Numerals 0, 1, ..., 9 have ASCII codes 3016, 3116, ...,

3916, respectively.

The characters from 0016 to 1F16, along with 7F16, are known as control charac-

ters. For example, the ESC key on an ASCII keyboard generates a hex 1B code. The

abbreviation ESC stands for extra services control but most people say “escape.” The

ESC character is often sent in combination with other characters to a peripheral device

like a printer to turn on a special feature. Since such character sequences are not stan-

dardized, they will not be covered in this book.

4F 63 74 6F 62 65 72 20 32 31 2C 20 31 39 37 36

O c t o b e r 2 1 , 1 9 7 6

43 6F 6D 70 75 74 65 72 73 20 61 72 65 20 66 75 6E 2E

C o m p u t e r s a r e f u n .
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8 Representing Data in a Computer

The two ASCII control characters that will be used the most frequently in this

book are 0D16 and 0A16, for carriage return (CR) and line feed (LF). The 0D16 code is

generated by an ASCII keyboard when the Return or Enter key is pressed. When it is

sent to an ASCII display, it causes the cursor to move to the beginning of the current

line without going down to a new line. When carriage return is sent to an ASCII printer

(at least one of older design), it causes the print head to move to the beginning of the

line. The line feed code 0A16 causes an ASCII display to move the cursor straight down,

or a printer to roll the paper up one line, in both cases without going to the beginning

of the new line. To display a message and move to the beginning of a new line, it is

necessary to send the message characters plus CR and LF characters to the screen or

printer. This may be annoying sometimes as you program in assembly language, but

you will also have the option to not use CR and/or LF when you want to leave the cur-

sor on a line after prompting for input, or to piece together a line using several output

instructions.

Lesser-used control characters include form feed (0C16), which causes many

printers to eject a page; horizontal tab (0916), which is generated by the tab key on the

keyboard; backspace (0816) generated by the Backspace key; and delete (7F16) generated

by the Delete key. Notice that the Backspace and Delete keys do not generate the same

codes. The bell character (0716) causes an audible signal when output to the display.

Good programming practice is to sound the bell only when really necessary.

Many large computers represent characters using Extended Binary Coded Dec-

imal Information Code (abbreviated EBCDIC and pronounced ib-SEE-dick or eb-SEE-

dick). The EBCDIC system will only be used in this book as an example of another coding

scheme when translation from one coding system to another is discussed.

Exercises 1.2

1. Each of the following hexadecimal numbers can be interpreted as

representing a decimal number or a pair of ASCII codes. Give both

interpretations.

(a) 2A45 (b) 7352 (c) 2036 (d) 106E

2. Find the ASCII codes for the characters in each of the following strings.

Don’t forget spaces and punctuation. Carriage return and line feed are

shown by CR and LF, respectively (written together as CRLF so that it will

be clear that there is no space character between them).

(a) January 1 is New Year’s Day.CRLF
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1.3 2’s Complement Representation for Signed Integers 9

2 Some early computer systems used byte sizes different than eight bits.

(b) George said, “Ouch!”

(c) R2D2 was C3P0’s friend.CRLF [”0” is the numeral zero]

(d) Your name? [put two spaces after the question mark]

(e) Enter value: [put two spaces after the colon]

3. What would be displayed if you output each of the following sequences

of ASCII codes to a computer’s screen?

(a) 62 6C 6F 6F 64 2C 20 73 77 65 61 74 20 61 6E 64 20 74 65 61 72 73

(b) 6E 61 6D 65 0D 0A 61 64 64 72 65 73 73 0D 0A 63 69 74 79 0D 0A

(c) 4A 75 6E 65 20 31 31 2C 20 31 39 34 37 0D 0A

(d) 24 33 38 39 2E 34 35

(e) 49 44 23 3A 20 20 31 32 33 2D 34 35 2D 36 37 38 39

1.3 2’s Complement Representation for Signed Integers

It is now time to look more carefully at how numbers are actually represented in a com-

puter. We have looked at two schemes to represent numbers—by using binary integers

(often expressed in hex) or by using ASCII codes. However, these methods have two

problems: (1) the number of bits available for representing a number is limited, and (2) it

is not clear how to represent a negative number.

Chapter 2 will discuss computer hardware, but for now you need to know that

memory is divided into bytes, each byte containing eight bits.2 Suppose you want to use

ASCII codes to represent a number in memory. A single ASCII code is normally stored in

a byte. Recall that ASCII codes are seven bits long; the extra (left-hand, or high order) bit

is set to 0. To solve the first representation problem mentioned above, you can simply

include the code for a minus sign. For example, the ASCII codes for the four characters

�817 are 2D, 38, 31, and 37. To solve the first problem, you could always agree to use a

fixed number of bytes, perhaps padding on the left with ASCII codes for zeros or spaces.

Alternatively, you could use a variable number of bytes, but agree that the number ends

with the last ASCII code for a digit, that is, terminating the string with a nondigit.

Suppose you want to use internal representations for numbers corresponding to

their binary values. Then you must choose a fixed number of bits for the representation.
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10 Representing Data in a Computer

3 Other computer architectures use a word size different than 16 bits.

Most central processing units can do arithmetic on binary numbers having a few chosen

lengths. For the Intel 80x86 family, these lengths are 8 bits (a byte), 16 bits (a word),3 32

bits (a doubleword), and 64 bits (a quadword).

As an example, look at the word-length binary representation of 697.

69710 = 10101110012 = 00000010101110012

Leading zeros have been added to make 16 bits. Writing this in hex in a word, you have

This illustrated convention will be followed throughout this book. Strips of boxes will rep-

resent sequences of bytes. The contents of a single byte will be represented in hex, with

two hex digits in each byte since a single hex digit corresponds to four bits. The double-

word representation of 697 simply has more leading zeros.

What we now have is a good system of representing nonnegative, or unsigned,

numbers. This system cannot represent negative numbers. Also, for any given length, there

is a largest unsigned number that can represented, for example FF16 or 25510 for byte length.

The 2’s complement system is similar to the above scheme for unsigned num-

bers, but it allows representation of negative numbers. Numbers will be a fixed length, so

that you might find the “word-length 2’s complement representation” of a number. The 2’s

complement representation for a nonnegative number is almost identical to the unsigned

representation; that is, you represent the number in binary with enough leading zeros to fill

up the desired length. Only one additional restriction exists—for a positive number, the left-

most bit must be zero. This means, for example, that the most positive number that can be

represented in word-size 2’s complement form is 01111111111111112 or 7FFF16 or 3276710.

As you have probably already guessed, the leftmost bit is always one in the 2’s-

complement representation of a negative number. You might also guess that the rest of

the representation is just the same as for the corresponding positive number, but unfor-

00 00 02 B9

02 B9
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1.3 2’s Complement Representation for Signed Integers 11

tunately the situation is more complicated than that. That is, you cannot simply change

the leading bit from 0 to 1 to get the negative version of a number.

A hex calculator makes it easy to convert a negative decimal number to 2’s

complement form. For instance, if the decimal display shows �565 and the convert-to-

hex key is pressed, a typical calculator will display FFFFFFFDCB (perhaps with a differ-

ent number of leading F’s). For a word-size representation, ignore all but the last four hex

digits; the answer is

or 1111 1101 1100 1011 in binary. (Note the leading 1 bit for a negative number.) The

doubleword representation is

which is almost too long to write in binary.

The 2’s complement representation of a negative number can also be found

without a calculator. One method is to first express the unsigned number in hex, and

then subtract this hex number from 1000016 to get the word length representation. The

number you subtract from is, in hex, a 1 followed by the number of 0’s in the length of the

representation; for example, 10000000016 to get the doubleword length representation.

(What would you use for a byte-length 2’s complement representation? For a quadword-

length 2’s complement representation?) In binary, the number of zeros is the length in

binary digits. This binary number is a power of two, and subtraction is sometimes called

“taking the complement,” so this operation is the source of the term “2’s complement.”

FF FF FD CB

FD CB

Example

The word-length 2’s complement representation of the decimal number �76 is

found by first converting the unsigned number 76 to its hex equivalent 4C, then

by subtracting 4C from 10000.

1 0 0 0 0

– 4 C

TEAM LinG - Live, Informative, Non-cost and Genuine!



12 Representing Data in a Computer

Since you cannot subtract C from 0, you have to borrow 1 from 1000, leaving

FFF.

F F F 10

– 4 C

F F B 4

After borrowing, the subtraction is easy. The units digit is

1016 � C16 = 1610 � 1210 = 4 (in decimal or hex),

and the 16’s position is

F16 � 4 = 1510 � 410 = 1110 = B16

It is not necessary to convert the hex digits to decimal to subtract them if you learn the

addition and subtraction tables for single hex digits.

The operation of subtracting a number from 1 followed by an appropriate num-

ber of 0’s is called taking the 2’s complement, or complementing the number. Thus

“2’s complement” is used both as the name of a representation system and as the name

of an operation. The operation of taking the 2’s complement corresponds to pressing the

change sign key on a hex calculator.

Since a given 2’s complement representation is a fixed length, obviously there

is a maximum size number that can be stored in it. For a word, the largest positive num-

ber stored is 7FFF, since this is the largest 16 bit long number that has a high order bit

of 0 when written in binary. The hex number 7FFF is 32767 in decimal. Positive num-

bers written in hex can be identified by a leading hex digit of 0 through 7. Negative

numbers are distinguished by a leading bit of 1, corresponding to hex digits of 8

through F.

How do you convert a 2’s complement representation to the corresponding dec-

imal number? First, determine the sign of a 2’s complement number. To convert a posi-

tive 2’s complement number to decimal, just treat it like any unsigned binary number

and convert it by hand or with a hex calculator. For example, the word-length 2’s com-

plement number 0D43 represents the decimal number 3395.

Dealing with a negative 2’s complement number—one starting with a 1 bit or 8

through F in hex—is a little more complicated. Note that any time you take the 2’s com-
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1.3 2’s Complement Representation for Signed Integers 13

plement of a number and then take the 2’s complement of the result, you get back to the

original number. For a word size number N, ordinary algebra gives you

N = 10000 � (10000 � N)

For example, using the word length 2’s complement value F39E

10000 � (10000 � F39E) = 10000 � C62 = F39E

This says again that the 2’s complement operation corresponds to negation. Because of

this, if you start with a bit pattern representing a negative number, the 2’s complement

operation can be used to find the positive (unsigned) number corresponding it.

Example

The word-length 2’s complement number E973 represents a negative value

since the sign bit (leading bit) is 1 (E = 1110). Taking the complement finds the

corresponding positive number.

10000 � E973 = 168D = 577310

This means that the decimal number represented by E973 is �5773.

The word-length 2’s complement representations with a leading 1 bit range

from 8000 to FFFF. These convert to decimal as follows:

10000 � 8000 = 8000 = 3276810,

so 8000 is the representation of �32768. Similarly,

10000 � FFFF = 1,

so FFFF is the representation of �1. Recall that the largest positive decimal integer that can

be represented as a word-length 2’s complement number is 32767; the range of decimal

numbers that can be represented in word-length 2’s complement form is �32768 to 32767.

Using a calculator to convert a negative 2’s complement representation to a

decimal number is a little tricky. For example, if you start with the word length represen-

tation FF30 and your calculator displays 10 hex digits, you must enter the 10 hex digit
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14 Representing Data in a Computer

long version of the number FFFFFFFF30, with six extra leading F’s. Then push the con-

vert to decimal button(s) and your calculator should display �208.

Exercises 1.3

1. Find the word-length 2’s complement representation of each of the fol-

lowing decimal numbers:

(a) 845

(b) 15000

(c) 100

(d) �10

(e) �923

2. Find the doubleword-length 2’s complement representation of each of

the following decimal numbers:

(a) 3874

(b) 1000000

(c) �100

(d) �55555

3. Find the byte-length 2’s complement representation of each of the fol-

lowing decimal numbers:

(a) 23

(b) 111

(c) �100

(d) �55

4. Find the decimal integer that is represented by each of these word-

length 2’s complement numbers:

(a) 00 A3

(b) FF FE

(c) 6F 20

(d) B6 4A

5. Find the decimal integer that is represented by each of these double-

word-length 2’s complement numbers:

(a) 00 00 F3 E1

(b) FF FF FE 03

(c) 98 C2 41 7D
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1.4 Addition and Subtraction of 2’s Complement Numbers 15

6. Find the decimal integer that is represented by each of these byte-

length 2’s complement numbers:

(a) E1

(b) 7C

(c) FF

7. Find the range of decimal integers that can be stored in 2’s complement

form in a byte.

8. Find the range of decimal integers that can be stored in 2’s complement

form in a doubleword.

9. This section showed how to take the 2’s complement of a number by

subtracting it from an appropriate power of 2. An alternative method is

to write the number in binary (using the correct number of bits for the

length of the representation), change each 0 bit to 1 and each 1 bit to

zero (this is called “taking the 1’s complement”), and then adding 1 to

the result (discarding any carry into an extra bit). Show that these two

methods are equivalent.

1.4 Addition and Subtraction of 2’s Complement

Numbers

One of the reasons that the 2’s complement representation scheme is commonly used to

store signed integers in computers is that addition and subtraction operations can be

easily and efficiently implemented in computer hardware. This section discusses addi-

tion and subtraction of 2’s complement numbers and introduces the concepts of carry

and overflow that will be needed later.

To add two 2’s complement numbers, simply add them as if they were unsigned

binary numbers. The 80x86 architecture uses the same addition instructions for

unsigned and signed numbers. The following examples use word-size representations.

First, 0A07 and 01D3 are added. These numbers are positive whether they are

interpreted as unsigned numbers or as 2’s complement numbers. The decimal version of

the addition problem is given on the right.

0A07 2567

+ 01D3 + 467

0BDA 3034
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16 Representing Data in a Computer

The answer is correct in this case since BDA16 = 303410.

Next, 0206 and FFB0 are added. These are, of course, positive as unsigned

numbers, but interpreted as 2’s complement signed numbers, 0206 is a positive number

and FFB0 is negative. This means that there are two decimal versions of the addition

problem. The signed one is given first, then the unsigned version.

0206 518 518

+ FFB0 + (–80) + 65456

101B6 438 65974

There certainly appears to be a problem since it will not even fit in a word. In fact, since

101B6 is the hex version of 65974, there is no way to represent the correct sum of

unsigned numbers in a word. However, if the numbers are interpreted as signed and you

ignore the extra 1 on the left, then the word 01B6 is the 2’s complement representation of

the decimal number 438.

Now FFE7 and FFF6 are added, both negative numbers in a signed interpreta-

tion. Again, both signed and unsigned decimal interpretations are shown.

FFE7 (–25) 65511

+ FFF6 + (–10) + 65526

1FFDD –35 131037

Again, the sum in hex is too large to fit in two bytes, but if you throw away the extra 1,

then FFDD is the correct word-length 2’s complement representation of �35.

Each of the last two additions have a carry out of the usual high order position

into an extra digit. The remaining digits give the correct 2’s complement representation.

The remaining digits are not always the correct 2’s complement sum, however. Consider

the addition of the following two positive numbers:

483F 18495

+ 645A + 25690

AC99 44185

There was no carry out of the high order digit, but the signed interpretation is plainly

incorrect since AC99 represents the negative number �21351. Intuitively, what went

wrong is that the decimal sum 44185 is bigger than the maximal value 32767 that can be

stored in the two bytes of a word. However, when these numbers are interpreted as

unsigned, the sum is correct.
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Carry into sign bit? Carry out of sign bit? Overflow?

no no no

no yes yes

yes no yes

yes yes no

Figure 1.2 Overflow in addition

The following is another example showing a “wrong” answer, this time result-

ing from adding two numbers that are negative in their signed interpretation.

E9FF (–5633) 59903

+ 8CF0 + (–29456) + 36080

176EF –35089 95983

This time there is a carry, but the remaining four digits 76 EF cannot be the right-signed

answer since they represent the positive number 30447. Again, intuition tells you that

something had to go wrong since �32768 is the most negative number that can be

stored in a word.

In the above “incorrect” examples, overflow occurred. As a human being,

you detect overflow by the incorrect signed answer. Computer hardware can detect

overflow as it performs addition, and the signed sum will be correct if there is no over-

flow. The computer actually performs addition in binary, of course, and the process is

logically a right-to-left pairwise addition of bits, very similar to the procedure that

humans use for decimal addition. As the computer adds a pair of bits, sometimes a

carry (of 1) into the next column to the left is generated. This carry is added to the sum

of these two bits, etc. The column of particular interest is the leftmost one: the sign

position. There may be a carry into this position and/or a carry out of this position into

the “extra” bit. This “carry out” (into the extra bit) is what was called just “carry”

above and was seen as the extra hex 1. Figure 1.2 identifies when overflow does or

does not occur. The table can be summarized by saying that overflow occurs when the

number of carries into the sign position is different from the number of carries out of

the sign position.

Each of the above addition examples is now shown again, this time in binary.

Carries are written above the two numbers.

TEAM LinG - Live, Informative, Non-cost and Genuine!



18 Representing Data in a Computer

111

0000 1010 0000 0111 0A07

+ 0000 0001 1101 0011 + 01D3

0000 1011 1101 1010 0BDA

This example has no carry into the sign position and no carry out, so there is

no overflow.

1 1111 11

0000 0010 0000 0110 0206

+ 1111 1111 1011 0000 + FFB0

1 0000 0001 1011 0110 101B6

This example has a carry into the sign position and a carry out, so there is

no overflow.

1 1111 1111 11   11

1111 1111 1110 0111 FFE7

+ 1111 1111 1111 0110 + FFF6

1 1111 1111 1101 1101 1FFDD

Again, there is both a carry into the sign position and a carry out, so there is

no overflow.

1         1111 11

0100 1000 0011 1111 483F

+ 0110 0100 0101 1010 + 645A

1010 1100 1001 1001 AC99

Overflow does occur in this addition since there is a carry into the sign position,

but no carry out.

1    1   11 111

1110 1001 1111 1111 E9FF

+ 1000 1100 1111 0000 + 8CF0

1 0111 0110 1110 1111 176EF

There is also overflow in this addition since there is a carry out of the sign bit,

but no carry in.
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1.4 Addition and Subtraction of 2’s Complement Numbers 19

In a computer, subtraction a � b of numbers a and b is usually performed by

taking the 2’s complement of b and adding the result to a. This corresponds to adding

the negation of b. For example, for the decimal subtraction 195 � 618 = �423,

00C3

� 026A

is changed to addition of FD96, the 2’s complement of 026A.

00C3

+ FD96

FE59

The hex digits FE59 do represent �423. Looking at the above addition in binary, you have

11      11

0000 0000 1100 0011

+ 1111 1101 1001 0110

1111 1110 0101 1001

Notice that there was no carry in the addition. However, this subtraction did

involve a borrow. A borrow occurs in the subtraction a � b when b is larger than a as

unsigned numbers. Computer hardware can detect a borrow in subtraction by looking at

whether on not a carry occurred in the corresponding addition. If there is no carry in the

addition, then there is a borrow in the subtraction. If there is a carry in the addition,

then there is no borrow in the subtraction. (Remember that “carry” by itself means

“carry out.”)

Here is one more example. Doing the decimal subtraction 985 � 411 = 574

using word-length 2’s complement representations,

03D9

- 019B

is changed to addition of FE65, the 2’s complement of 019B.

1 1111 1111 1      1

03D9 0000 0011 1101 1001

+ FE65 + 1111 1110 0110 0101

1023E 1 0000 0010 0011 1110
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Discarding the extra 1, the hex digits 023E do represent 574. This addition has a carry,

so there is no borrow in the corresponding subtraction.

Overflow is also defined for subtraction. When you are thinking like a person, you

can detect it by the wrong answer that you will expect when you know that the difference

is going to be outside of the range that can be represented in the chosen length for the

representation. A computer detects overflow in subtraction by determining whether or

not overflow occurs in the corresponding addition problem. If overflow occurs in the addi-

tion problem, then it occurs in the original subtraction problem; if it does not occur in the

addition, then it does not occur in the original subtraction. There was no overflow in either

of the above subtraction examples. Overflow does occur if you use word-length 2’s com-

plement representations to attempt the subtraction �29123 � 15447. As a human, you

know that the correct answer �44570 is outside the range �32,768 to +32,767. In the

computer hardware

8E3D

- 3C57

is changed to addition of C3A9, the 2’s complement of 3C57.

1    1   11  111   1

8E3D 1000 1110 0011 1101

+ C3A9 + 1100 0011 1010 1001

151E6 1 0101 0001 1110 0110

There is a carry out of the sign position, but no carry in, so overflow occurs.

Although examples in this section have use word-size 2’s complement repre-

sentations, the same techniques apply when performing addition or subtraction with

byte-size, doubleword-size, or other size 2’s complement numbers.

Exercises 1.4

Perform each of the following operations on word-size 2’s complement

numbers. For each, find the specified sum or difference. Determine

whether overflow occurs. For a sum, determine whether there is a carry.

For a difference, determine whether there is a borrow. Check your

answers by converting the problem to decimal.

1. 003F + 02A4 2. 1B48 + 39E1

3. 6C34 + 5028 4. 7FFE + 0002

5. FF07 + 06BD 6. 2A44 + D9CC
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7. FFE3 + FC70 8. FE00 + FD2D

9. FFF1 + 8005 10. 8AD0 + EC78

11. 9E58 � EBBC 12. EBBC � 9E58

13. EBBC � 791C 14. 791C � EBBC

1.5 Other Systems for Representing Numbers

Sections 1.2 and 1.3 presented two commonly-used systems for representing num-

bers in computers, strings of character codes (often ASCII), and 2’s complement

form. This section introduces three additional schemes, 1’s complement, binary

coded decimal (BCD), and floating point. The 1’s complement system is an alterna-

tive scheme for representing signed integers; it is used in a few computer systems,

but not the Intel 80x86 family. Binary coded decimal and floating point forms are

used in 80x86 computers, as well as many other systems. They will be discussed

more fully when appropriate instructions for manipulating data in these forms are

covered. The primary reason for introducing them here is to illustrate that there are

many alternative representations for numeric data, each valid when used in the cor-

rect context.

The 1’s complement system is similar to 2’s complement. A fixed length is

chosen for the representation and a positive integer is simply the binary form of the

number, padded with one or more leading zeros on the left to get the desired length.

To take the negative of the number, each bit is “complemented”; that is, each zero is

changed to one and each one is changed to zero. This operation is sometimes

referred to as taking the 1’s complement of a number. Although it is easier to negate

an integer using 1’s complement than 2’s complement, the 1’s complement system

has several disadvantages, the most significant being that it is harder to design cir-

cuitry to add or subtract numbers in this form. There are two representations for zero

(why?), an awkward situation. Also, a slightly smaller range of values can be repre-

sented; for example, �127 to 127 for an 8 bit length, instead of �128 to 127 in a 2’s

complement system.

The byte length 1’s complement representation of the decimal number 97 is just

the value 0110 0001 in binary (61 in hex). Changing each 0 to 1 and each 1 to 0 gives

1001 1110 (9E in hex), the byte length 1’s complement representation of �97.

There is a useful connection between taking the 1’s complement and taking the

2’s complement of a binary number. If you take the 1’s complement of a number and

then add 1, you get the 2’s complement. This is sometimes easier to do by hand than the
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Decimal BCD bit pattern

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Figure 1.3 Binary coded decimal representation

subtraction method presented in Section 1.3. You were asked to verify the equivalence

of these methods in Exercise 1.3.9.

In binary coded decimal (BCD) schemes, each decimal digit is coded with a

string of bits with fixed length, and these strings are pieced together to form the repre-

sentation. Most frequently four bits are used for each decimal digit; the choices for bit

patterns are shown in Fig. 1.3. Only these ten bit patterns are used.

One BCD representation of the decimal number 926708 is 1001 0010 0110 0111

0000 1000. Using one hex digit as shorthand for four bits, and grouping two hex digits

per byte, this BCD representation can be expressed in three bytes as

Notice that the BCD representation in hex looks just like the decimal number.

Often BCD numbers are encoded using some fixed number of bytes. For pur-

poses of illustration, assume a four-byte representation. For now, the question of how to

represent a sign will be ignored; without leaving room for a sign, eight binary-coded dec-

imal digits can be stored in four bytes. Given these choices, the decimal number 3691

has the BCD representation

00 00 36 91

92 67 08
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Notice that the doubleword 2’s complement representation for the same number would

be 00 00 0E 6B, and that the ASCII codes for the four numerals are 33 36 39 31.

It is not as efficient for a computer to do arithmetic with numbers in a BCD for-

mat as with 2’s complement numbers. It is usually very inefficient to do arithmetic on

numbers represented using ASCII codes. However, ASCII codes are the only method so

far for representing a number that is not an integer. For example, 78.375 can be stored as

37 38 2E 33 37 35. Floating point representation systems allow for nonintegers to be rep-

resented, or at least closely approximated.

Floating point schemes store numbers in a form that corresponds closely to

scientific notation. The following example shows how to convert the decimal number

78.375 into IEEE single format that is 32 bits long. (IEEE is the abbreviation for the

Institute of Electrical and Electronics Engineers.) This format was one of several spon-

sored by the Standards Committee of the IEEE Computer Society and approved by the

IEEE Standards Board and the American National Standards Institute (ANSI). It is one of

the floating point formats used in Intel 80x86 processors.

First, 78.375 must be converted to binary. In binary, the positions to the right of

the binary point (it is not appropriate to say decimal point for the “.” in a binary number)

correspond to negative powers of two (1/2, 1/4, 1/8, etc.), just as they correspond to neg-

ative powers of 10 (1/10, 1/100, etc.) in a decimal number. Since 0.375 = 3/8 = 1/4 + 1/8 =

.012 + .0012, 0.37510 = 0.0112. The whole part 78 is 1001110 in binary, so

78.37510 = 1001110.0112.

Next this is expressed in binary scientific notation with the mantissa written with 1

before the radix point.

1001110.0112 = 1.001110011 � 26

The exponent is found exactly as it is in decimal scientific notation, by counting the num-

ber of positions the point must be moved to the right or left to produce the mantissa. The

notation here is really mixed; it would be more proper to write 26 as 10110, but it is more con-

venient to use the decimal form. Now the floating point number can be pieced together:

• left bit 0 for a positive number (1 means negative)

• 1000 0101 for the exponent. This is the actual exponent of 6, plus a

bias of 127, with the sum, 133, in 8 bits.

• 00111001100000000000000, the fraction expressed with the leading 1

removed and padded with zeros on the right to make 23 bits
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The entire number is then 0 10000101 00111001100000000000000. Regrouping gives

0100 0010 1001 1100 1100 0000 0000 0000, or, in hex

This example worked out easily because 0.375, the noninteger part of the decimal num-

ber 78.375, is a sum of negative powers of 2. Most numbers are not as nice, and usually a

binary fraction is chosen to closely approximate the decimal fraction. Techniques for

choosing such an approximation are not covered in this book.

To summarize, the following steps are used to convert a decimal number to

IEEE single format:

1. The leading bit of the floating point format is 0 for a positive number

and 1 for a negative number.

2. Write the unsigned number in binary.

3. Write the binary number in binary scientific notation f23.f22 . . . f0 � 2e,

where f23 = 1. There are 24 fraction bits, but it is not necessary to write

trailing 0’s.

4. Add a bias of 12710 to the exponent e. This sum, in binary form, is the

next 8 bits of the answer, following the sign bit. (Adding a bias is an

alternative to storing the exponent as a signed number.)

5. The fraction bits f22f21 . . . f0 form the last 23 bits of the floating point

number. The leading bit f23 (which is always 1) is dropped.

Computer arithmetic on floating point numbers is usually much slower than

with 2’s complement integers. However the advantages of being able to represent non-

integral values or very large or small values often outweigh the relative inefficiency of

computing with them.

Exercises 1.5

Express each of the following decimal numbers as a word-length 1’s

complement number.

1. 175 2. �175

3. �43 4. 43

42 9C C0 00
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Use BCD to encode each of the following decimal numbers in four bytes.

Express each answer in hex digits, grouped two per byte.

5. 230 6. 1

7. 12348765 8. 17195

Use IEEE single format to encode each of the following decimal numbers

in floating point.

9. 175.5 10. �1.25

11. �11.75 12. 45.5

Chapter Summary

All data are represented in a computer using electronic signals. These can

be interpreted as patterns of binary digits (bits). These bit patterns can be

thought of as binary numbers. Numbers can be written in decimal, hexa-

decimal, or binary forms.

For representing characters, most microcomputers use ASCII codes.

One code is assigned for each character, including nonprintable control

characters.

Integer values are represented in a predetermined number of bits

in 2’s complement form; a positive number is stored as a binary number

(with at least one leading zero to make the required length), and the pat-

tern for a negative number can be obtained by subtracting the positive

form from a 1 followed by as many 0’s as are used in the length. A 2’s com-

plement negative number always has a leading 1 bit. A hex calculator, used

with care, can simplify working with 2’s complement numbers.

Addition and subtraction are easy with 2’s complement numbers.

Since the length of a 2’s complement number is limited, there is the possi-

bility of a carry, a borrow, or overflow.

Other formats in which numbers are stored are 1’s complement,

binary coded decimal (BCD), and floating point.
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CHAPTER 2

2.1 PC hardware: memory

2.2 PC hardware: The CPU

2.3 PC hardware:

input/output devices

2.4 PC software
1 Intel produced an 80186 CPU, but it was rarely used in commercial micro-

computers.

Parts of a Computer System

A practical computer system consists of hardware and

software. The major hardware components of a typical

microcomputer system are a central processing unit (CPU),

memory circuits, a keyboard for input, a monitor or some

other display device, specialized input/output devices like

a mouse, a modem, or a sound card, and one or more disk

drives to store programs and data. Software refers to the

programs that the hardware executes, including system

software and application software.

These basic components vary from one com-

puter system to another. This chapter discusses how the

memory and CPU look to the assembly language pro-

grammer for a particular class of microcomputers, the

IBM PC and compatible systems. These computers have

an Intel 80x86 CPU; that is, an 8086 or 8088, an 80286,

an 80386, an 80486, or a Pentium processor.1 This book

assumes a system that has an 80386 or higher processor

and a 32-bit operating system such as Windows 95 or

Windows NT. The remainder of the book is concerned

with using assembly language to program these sys-

tems, with the intent of showing how such systems

work at the hardware level.
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Figure 2.1 Logical picture of PC memory
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2.1 PC Hardware: Memory

The memory in an IBM PC or compatible microcomputer is logically a collection of

“slots,” each of which can store one byte of instructions or data. Each memory byte has a

32-bit numeric label called its physical address. A physical address can always be

expressed as eight hex digits. The first address is 0000000016 and the last address can be

as large as the unsigned number FFFFFFFF16. Figure 2.1 shows a logical picture of the

possible memory in a PC. Since FFFFFFFF16 = 4,294,967,295, a PC can contain up to

4,294,967,296 bytes of memory, or four gigabytes. In practice, the user memory in most

PCs is smaller than this.

Prior to the 80386 chip, the Intel 80x86 family of processors could only directly

address 220 bytes of memory. They used 20-bit physical addresses, often expressed as 5-

hex-digit addresses ranging from 00000 to FFFFF.

Physically a PC’s memory consists of integrated circuits (ICs). Many of these

chips provide random access memory (RAM), which can be written to or read from by

program instructions. The contents of RAM chips are lost when the computer’s power is

turned off. Other ICs are read-only memory (ROM) chips, which permanently retain

their contents and can be read from but not written to.

The assembly language programs in this book will use a flat memory model.

This means that the programs will actually encode 32-bit addresses to logically reference

locations in a single memory space where data and instructions are stored.

The Intel 80x86 architecture also provides for a segmented memory model. In

the original 8086/8088 CPU, this memory model was the only one available. With the

8086/8088, the PC’s memory is visualized as a collection of segments, each segment 64

Kbytes long, starting on an address that is a multiple of 16. This means that one segment
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starts at address 00000, another (overlapping the first) starts at address 16 (0001016),

another starts at address 32 (0002016), etc. Notice that the starting address of a segment

ends in 0 when written in hex. The segment number of a segment consists of the first

four hex digits of its physical address.

A program written for the 8086/8088 does not encode a five-hex-digit address.

Instead, each memory reference depends on its segment number and a 16-bit offset

from the beginning of the segment. Normally only the offset is encoded, and the segment

number is deduced from context. The offset is the distance from the first byte of the seg-

ment to the byte being addressed. In hex, an offset is between 0000 and FFFF16. The

notation for a segment-offset address is the four-hex-digit segment number followed by

a colon (:) followed by the four-hex-digit offset.

As an example, 18A3:5B27 refers to the byte that is 5B27 bytes from the begin-

ning of the segment starting at address 18A30. Add the starting address and the offset

to get the five-hex-digit address.

18A30 starting address of segment 18A3

+ 5B27 offset

1E557 five-hex-digit address

From the 80386 on, 80x86 processors have had both 16-bit and 32-bit seg-

mented memory models available. Segment numbers are still 16-bits long, but they do

not directly reference a segment in memory. Instead, a segment number is used as an

index into a table that contains the actual 32-bit starting address of the segment. In the

32-bit segmented model, a 32-bit offset is added to that starting address to compute the

actual address of the memory operand. Segments can be logically useful to a program-

mer: In the segmented Intel model, the programmer normally assigns different memory

segments to code, data, and a system stack. The 80x86 flat memory model is really a 32-

bit segmented model with all segment registers containing the same value.

In reality, the 32-bit address generated by a program is not necessarily the

physical address at which an operand is stored as the program executes. There is an

additional layer of memory management performed by the operating system and the

Intel 80x86 CPU. A paging mechanism is used to map the program’s 32-bit addresses

into physical addresses. Paging is useful when a logical address generated by a program

exceeds the physical memory actually installed in a computer. It can also be used to

swap parts of a program from disk as needed when the program is too large to fit into

physical memory. The paging mechanism will be transparent to us as we program in

assembly language.
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Exercises 2.1

1. Suppose that you buy a PC with 32 MBytes of RAM. What is the 8-hex-

digit address of the “last” byte?

2. Suppose that you discover that RAM addresses 000C0000 to 000C7FFF

are reserved for a PC’s video adapter. How many bytes of memory is this?

3. Suppose that you have an Intel 8086. Find the five-hex-digit address

that corresponds to each of these segment:offset pairs:

(a) 2B8C:8D21 (b) 059A:7A04 (c) 1234:5678

2.2 PC Hardware: The CPU

The original 8086/8088 CPU could execute over 200 different instructions. This instruc-

tion set has been extended as the 80x86 processor family has expanded to include the

80286, 80386, 80486, and Pentium processors. Much of this book will be concerned with

using these instructions to implement programs so that you understand the machine-

level computer capabilities. Other manufacturers make CPUs that execute essentially

the same instruction set, so that a program written for an Intel 80x86 runs without

change on such CPUs. Many other processor families execute different instruction sets.

However, most have a similar architecture, so that the basic principles you learn about

the 80x86 CPUs also apply to these systems.

A CPU contains registers, each an internal storage location that can be

accessed much more rapidly than a location in RAM. The application registers are of

most concern to the programmer. An 80x86 CPU (from 80386 on) has 16 application reg-

isters. Typical instructions transfer data between these registers and memory or perform

operations on data stored in the registers or in memory. All of these registers have

names, and some of them have special purposes. Their names are given below and

some of their special purposes are described. You will learn more special purposes later.

The EAX, EBX, ECX, and EDX registers are called data registers or general reg-

isters. The EAX register is sometimes known as the accumulator since it is the destina-

tion for many arithmetic results. An example of an instruction using the EAX register is

add eax, 158

which adds the decimal number 158 (converted to doubleword length 2’s complement

form) to the number already in EAX, replacing the number originally in EAX by the sum.
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(Full descriptions of the add instruction and others mentioned below will appear in

Chapter 4.)

Each of EAX, EBX, ECX, and EDX is 32 bits long. The Intel convention is to

number bits right to left starting with 0 for the low-order bit, so that if you view one of

these registers as four bytes, then the bits are numbered like this

Parts of the EAX register can be addressed separately from the whole. The low-order

word, bits 0–15, is known as AX.

The instruction

sub ax, 10

subtracts 10 from the word stored in AX, without changing any of the high-order bits

(16–31) of EAX.

Similarly, the low-order byte (bits 0–7) and the high-order byte (bits 8–15) of AX

are known as AL and AH, respectively.

The instruction

mov ah, '*'

copies 2A, the ASCII code for an asterisk, to bits 8–15, without changing any of the other

bits of EAX.

EAX AH AL

31 24 23 16 15 8 7 0

EAX AX

31 24 23 16 15 0

EAX

31 24 23 16 15 8 7 0
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The EBX, ECX, and EDX registers also have low-order words BX, CX, and DX,

which are divided into high-order and low-order bytes BH and BL, CH and CL, and DH

and DL. Each of these parts can be changed without altering other bits. It may be a sur-

prise that there are no comparable names for the high-order words in EAX, EBX, ECX,

and EDX—you cannot reference bits 16–31 independently by name.

The 8086 through 80286 processors had four 16-bit general registers called

AX, BX, CX, and DX. The “E” was added for “extended” with the 32-bit 80386 regis-

ters. However, the 80386 and later architectures effectively include the older 16-bit

architecture.

There are four additional 32-bit registers that Intel also calls general, ESI,

EDI, ESP, and EBP. In fact, you can use these registers for operations like arithmetic,

but normally you should save them for their special purposes. The ESI and EDI regis-

ters are index registers, where SI stands for source index and DI stands for destina-

tion index. One of their uses is to indicate memory addresses of the source and

destination when strings of characters are moved from one place to another in mem-

ory. They can also be used to implement array indexes. The names SI and DI can be

used for the low-order words of ESI and EDI, respectively, but we will have little occa-

sion to do this.

The ESP register is the stack pointer for the system stack. It is rarely changed

directly by a program, but is changed when data is pushed onto the stack or popped

from the stack. One use for the stack is in procedure (subroutine) calls. The address of

the instruction following the procedure call instruction is stored on the stack. When it is

time to return, this address is retrieved from the stack. You will learn much more about

the stack and the stack pointer register in Chapter 6. The name SP can be used for the

low-order word of ESP, but this will not be done in this book.

The EBP register is the base pointer register. Normally the only data item

accessed in the stack is the one that is at the top of the stack. However, the EBP register

is often used to mark a fixed point in the stack other than the stack top, so that data near

this point can be accessed. This is also used with procedure calls, particularly when

parameters are involved.

There are six 16-bit segment registers: CS, DS, ES, FS, GS, and SS. In the older

16-bit segmented memory model, the CS register contains the segment number of the code

segment, the area of memory where the instructions currently being executed are stored.

Since a segment is 64K long, the length of a program’s collection of instructions is often lim-

ited to 64K; a longer program requires that the contents of CS be changed while the pro-

gram is running. Similarly DS contains the segment number of the data segment, the area
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of memory where most data is stored. The SS register contains the segment number of the

stack segment, where the stack is maintained. The ES register contains the segment num-

ber of the extra data segment that could have multiple uses. The FS and GS registers were

added with the 80386 and make possible easy access to two additional data segments.

With the flat 32-bit memory model we will use, the segment registers become

essentially irrelevant to the programmer. The operating system will give each of CS, DS,

ES, and SS the same value. Recall that this is a pointer to table entry that includes the

actual starting address of the segment. That table also includes the size of your program,

so that the operating system can indicate an error if your program accidentally or delib-

erately attempts to write in another area. However, all of this is transparent to the pro-

grammer who can just think in terms of 32-bit addresses.

The 32-bit instruction pointer, or EIP register, cannot be directly accessed by

an assembly language programmer. The CPU has to fetch instructions to be executed

from memory, and EIP keeps track of the address of the next instruction to be fetched. If

this were a older, simpler computer architecture, the next instruction to be fetched

would also be the next instruction to be executed. However, an 80x86 CPU actually

fetches instructions to be executed later while it is still executing prior instructions,

making the assumption (usually correct) that the instructions to be executed next will

follow sequentially in memory. If this assumption turns out to be wrong, for example if a

procedure call is executed, then the CPU throws out the instructions it has stored, sets

EIP to contain the offset of the procedure, and then fetches its next instruction from the

new address.

In addition to prefetching instructions, an 80x86 CPU actually starts execution

of an instruction before it finishes execution of prior instructions. This use of pipelining

increases effective processor speed.

The final register is called the flags register. The name EFLAGS refers to this

register, but this mnemonic is not used in instructions. Some of its 32 bits are used to set

some characteristic of the 80x86 processor. Other bits, called status flags, indicate the

outcome of execution of an instruction. Some of the flag register’s 32 bits are named, and

the names we will use most frequently are given in Fig. 2.2.

Bit 11 is the overflow flag (OF). It is set to 0 following an addition in which no

overflow occurred, and to 1 if overflow did occur. Similarly, bit 0, the carry flag (CF), indi-

cates the absence or presence of a carry out from the sign position after an addition. Bit

7, the sign flag, contains the left bit of the result after some operations. Since the left bit

is 0 for a nonnegative two’s complement number and 1 for a negative number, SF indi-

cates the sign. Bit 6, the zero flag (ZF) is set to 1 if the result of some operation is zero,
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Bit Mnemonic Usage

0 CF carry flag

2 PF parity flag

6 ZF zero flag

7 SF sign flag

10 DF direction flag

11 OF overflow flag

Figure 2.2 Selected EFLAGS bits

and to 0 if the result is nonzero (positive or negative). Bit 2, the parity flag, is set to 1 if

the number of 1 bits in a result is even and to 0 if the number of 1 bits in the result is

odd. Other flags will be described later when their uses will be clearer.

As an example of how flags are set by instructions, consider again the instruction

add eax, 158

This instruction affects CF, OF, PF, SF, and ZF. Suppose that EAX contains the word

FF FF FF F3 prior to execution of the instruction. Since 15810 corresponds to the word

00 00 00 9E, this instruction adds FF FF FF F3 and 00 00 00 9E, putting the sum 00 00

00 91 in the EAX register. It sets the carry flag CF to 1 since there is a carry, the over-

flow flag OF to 0 since there is no overflow, the sign flag SF to 0 (the leftmost bit of the

sum 00 00 00 91), and the zero flag ZF to 0 since the sum is not zero. The parity flag PF

is set to 0 since 0000 0000 0000 0000 0000 0000 1001 0001 contains three 1 bits, an

odd number.

In summary, the 80x86 CPU executes a variety of instructions, using its 16

internal registers for operands and results of operations, and for keeping track of seg-

ment selectors and addresses. The registers are summarized in Fig. 2.3.

Exercises 2.2

1. For each add instruction below, assume that EAX contains the given

contents before the instruction is executed, and give the contents of

EAX as well as the values of the CF, OF, SF, and ZF flags after the

instruction is executed:
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Name Length (bits) Use/comments

EAX 32 accumulator, general use;

low-order-word AX, divided into bytes AH and AL

EBX 32 general use;

low-order-word BX, divided into bytes BH and BL

ECX 32 general use;

low-order-word CX, divided into bytes CH and CL

EDX 32 general use;

low-order-word DX, divided into bytes DH and DL

ESI 32 source index; source address in string moves, array index

EDI 32 destination index; address of destination, array index

ESP 32 stack pointer; address of top of stack

EBP 32 base pointer; address of reference point in the stack

CS 16 holds selector for code segment

DS 16 holds selector for data segment

ES 16 holds selector for extra segment

SS 16 holds selector for stack segment

FS 16 holds selector for additional segment

GS 16 holds selector for additional segment

EIP 32 instruction pointer; address of next instruction to be

fetched

EFLAGS 32 collection of flags, or status bits

Figure 2.3 80x86 registers

EAX before Instruction

(a) 00 00 00 45 add eax, 45

(b) FF FF FF 45 add eax, 45

(c) 00 00 00 45 add eax, –45

(d) FF FF FF 45 add eax, –45

(e) FF FF FF FF add eax, 1

(f) 7F FF FF FF add eax, 100
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2. In an 8086 program, suppose that the data segment register DS con-

tains the segment number 23D1 and that an instruction fetches a word

at offset 7B86 in the data segment. What is the five-hex-digit address of

the word that is fetched?

3. In an 8086 program, suppose that the code segment register CS con-

tains the segment number 014C and that the instruction pointer IP con-

tains 15FE. What is the five-hex-digit address of the next instruction to

be fetched?

2.3 PC Hardware: Input/Output Devices

A CPU and memory make a computer, but without input devices to get data or output

devices to display or write data, the computer is not usable for many purposes. Typical

input/output (I/O) devices include a keyboard or a mouse for input, a monitor to dis-

play output, and a disk drive for data and program storage.

An assembly language programmer has multiple ways to look at I/O devices. At

the lowest level, each device uses a collection of addresses or ports in the I/O address

space. The 80x86 architecture has 64K port addresses, and a typical I/O device uses

three to eight ports. These addresses are distinct from ordinary memory addresses. The

programmer uses instructions that output data or commands to these ports or that input

data or status information from them. Such programming is very tedious and the result-

ing programs are difficult to reuse with different computer systems.

Instead of using separate port addresses, a computer system can be designed

to use addresses in the regular memory address space for I/O device access. Such a

design is said to use memory-mapped input/output. Although memory-mapped I/O is

possible with the 80x86, it is not used with most PCs.

Because of the difficulty of low-level programming of I/O devices, a common

approach is to use procedures that do the busywork of communicating with the devices,

while allowing the programmer a higher-level, more logical view of the devices. Many

such routines are still fairly low-level; examples are procedures to display a single char-

acter on the CRT or get a single character from the keyboard. A higher-level procedure

might print a string of characters on a printer.

An assembly language programmer may write input/output procedures, using

knowledge of input/output ports and devices. Some computers have input/output proce-
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dures built into ROM. Many operating systems (see Section 2.4) also provide input/out-

put procedures.

Exercises 2.3

The previous discussion states that there are 64K port addresses.

1. How many addresses is this (in decimal)?

2. Assuming that the first address is 0, what is the last address?

3. Express the range of port addresses in hex.

2.4 PC Software

Without software, computer hardware is virtually useless. Software refers to the programs

or procedures executed by the hardware. This section discusses different types of software.

PC Software: The Operating System

A general-purpose computer system needs an operating system to enable it to run other

programs. The original IBM PC usually ran the operating system known as PC-DOS;

compatible systems used the very similar operating systems called MS-DOS. DOS

stands for disk operating system. All of these operating systems were developed by

Microsoft Corporation; PC-DOS was customized by IBM to work on the IBM PC, and the

versions of MS-DOS that ran on other computer systems were sometimes customized by

their hardware manufacturers. Later versions of PC-DOS were produced solely by IBM. 

The DOS operating systems provide the user a command line interface. DOS

displays a prompt (such as C:\>) and waits for the user to type a command. When the

user presses the Enter (or Return) key, DOS interprets the command. The command may

be to perform a function that DOS knows how to do (such as displaying the directory of

file names on a disk), or it may be the name of a program to be loaded and executed.

Many users prefer a graphical user interface that displays icons representing

tasks or files, so that the user can make a selection by clicking on an icon with a mouse.

Microsoft Windows provided a graphical user interface for PCs. The versions through

Windows 3.1 enhanced the operating environment, but still required DOS to run. Win-

dows 95 included a major revision of the operating system, which was no longer sold
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separately from the graphical user interface. In Windows 95 the graphical user interface

became the primary user interface, although a command line interface was still available.

PC Software: Text Editors

A text editor is a program that allows the user to create or modify text files that are

stored on disk. A text file is a collection of ASCII codes. The text files of most interest in

this book will be assembly language source code files, files that contain assembly lan-

guage statements. An editor is sometimes useful to prepare a data file as well.

Later versions of MS-DOS and Windows 95 provide a text editor called Edit.

Edit is invoked from the command line prompt. This full-screen editor uses all or part of

the monitor display as a window into the file. The user can move the window up or down

(or left or right) to display different portions of the file. To make changes to the file, cursor

control keys or the mouse are used to move the cursor to the place to be modified, and

the changes are entered.

Microsoft Windows includes a text editor called Notepad. It is also a full-screen

editor. Either Edit or Notepad work well for writing assembly language source programs.

Word processors are text editors that provide extra services for formatting and

printing documents. For example, when one uses a text editor, usually the Enter key

must be pressed at the end of each line. However, a word processor usually wraps words

automatically to the next line as they are typed, so that Enter or some other key is used

only at the end of a paragraph. The word processor takes care of putting the words on

each line within specified margins. A word processor can sometimes be used as an edi-

tor to prepare an assembly language source code file, but some word processors store

formatting information with the file along with the ASCII codes for the text. Such extra

information may make the file unsuitable as an assembly language source code file, so it

is safest to avoid a word processor when creating an assembly language source program.

PC Software: Language Translators and the Linker

Language translators are programs that translate a programmer’s source code into a form

that can be executed by the computer. These are usually not provided with an operating

system. Language translators can be classified as interpreters, compilers, or assemblers.

Interpreters directly decipher a source program. To execute a program, an

interpreter looks at a line of source code and follows the instructions of that line. Basic or

Lisp language programs are often executed by an interpreter. Although the interpreter

itself may be a very efficient program, interpreted programs sometimes execute rela-
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tively slowly. An interpreter is generally convenient since it allows a program to be

quickly changed and run. The interpreter itself is often a very large program.

Compilers start with source code and produce object code that consists mostly of

instructions to be executed by the intended CPU. High-level languages such as Pascal, For-

tran, Cobol, C, and C++ are commonly compiled. The object code produced by a compiler

must often be linked or combined with other object code to make a program that can be

loaded and executed. This requires a utility called a linker, usually provided with a compiler.

A debugger allows a programmer to control execution of a program, pausing

after each instruction or at a preset breakpoint. When the program is paused, the pro-

grammer can examine the contents of variables in a high-level language or registers or

memory in assembly language. A debugger is useful both to find errors and to “see

inside” a computer to find out how it executes programs.

Integrated development environments use a single interface to access an

editor, a compiler, and a linker. They also initiate execution of the program being devel-

oped and frequently provide other utilities, such as a debugger. An integrated develop-

ment environment is convenient, but may not always be available for a particular

programming language.

An assembler is used much like a compiler, but translates assembly language

rather than a high-level language into machine code. The resulting files must normally

be linked to prepare them for execution. Because assembly language is closer to

machine code than a high-level language, the job of an assembler is somewhat simpler

than the job of a compiler. Assemblers historically existed before compilers.

Using again the assembly language instruction cited in Section 2.2,

add eax, 158

is translated by the assembler into the five bytes 05 00 00 00 9E. The first byte 05 is the

op code (operation code), which says to add the number contained in the next four

bytes to the doubleword already in the EAX register. The doubleword 00 00 00 9E is the

2’s complement representation of 15810.

Chapter Summary

This chapter has discussed the hardware and software components that

make up a PC microcomputer system.

The major hardware components are the CPU and memory. The

CPU executes instructions and uses its internal registers for instruction

operands and results and to determine addresses of data and instructions
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stored in memory. Objects in memory can be addressed by 32-bit

addresses. In a flat memory model, such addresses are effectively actual

addresses. In a segmented memory model, addresses are calculated from

a starting address determined from a segment number and an offset

within the segment.

Input/output at the hardware level uses a separate collection of

addresses called ports. Input/output is often done through operating sys-

tems utilities.

An operating system is a vital software component. Through a

command line or a graphical user interface, it interprets the user’s requests

to carry out commands or to load and execute programs.

A text editor, an assembler, and a linker are necessary software

tools for the assembly language programmer. These may be separate pro-

grams or available as part of an integrated development environment. A

debugger is also a useful programmer’s tool.
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CHAPTER 3

3.1 Assembly language

statements

3.2 A complete example

3.3 How to assemble, link,

and run a program

3.4 The assembler listing

file

3.5 Constant operands

3.6 Instruction operands

3.7 Input/output using

macros defined in IO.H

Elements of Assembly
Language

Chapter 3 explains how to write assembly language

programs. The first part describes the types and

formats of statements that are accepted by MASM,

the Microsoft Macro Assembler. Then follows an

example of a complete assembly language pro-

gram, with instructions on how to assemble, link,

and execute this and other programs. The last por-

tion of the chapter fills in details about constructs

that have been illustrated in the example, laying

the groundwork for programs in future chapters.

TEAM LinG - Live, Informative, Non-cost and Genuine!



42 Elements of Assembly Language

3.1 Assembly Language Statements

An assembly language source code file consists of a collection of statements. Most

statements fit easily on an 80-character line, a good limit to observe so that source code

can easily be printed or displayed on a monitor. However, MASM 6.1 accepts statements

up to 512 characters long; these can be extended over more than one physical line using

backslash (\) characters at the end of each line except the last.

Because assembly language programs are far from self-documenting, it is

important to use an adequate number of comments. Comments can be used with any

statement. A semicolon (;) begins the comment, and the comment then extends until the

end of the line. An entire line is a comment if the semicolon is in column 1 or if a com-

ment can follow working parts of a statement. In those rare cases where you use a back-

slash character to break a statement into multiple lines, a comment can follow the

backslash.

There are three types of functional assembly language statements: instructions,

directives, and macros. An instruction is translated by the assembler into one or more

bytes of object code (machine code), which will be executed at run time. Each instruc-

tion corresponds to one of the operations that can be executed by the 80x86 CPU. The

instruction

add  eax, 158

was used as an example in Chapter 2.

A directive tells the assembler to take some action. Such an action does not

result in machine instructions and often has no effect on the object code. For example,

the assembler can produce a listing file showing the original source code, the object

code, and other information. The directive

.NOLIST

anywhere in the source file tells the assembler to stop displaying source statements in

the listing file. The object code produced is the same with or without the .NOLIST

directive. (There is a .LIST directive to resume listing source statements.) These direc-

tives and many others start with a period, but others do not.

A macro is “shorthand” for a sequence of other statements, be they instruc-

tions, directives, or even other macros. The assembler expands a macro to the state-

ments it represents and then assembles these new statements. Several macros will

appear in the example program later in this chapter.
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A statement that is more than just a comment almost always contains a

mnemonic that identifies the purpose of the statement, and may have three other fields:

name, operand, and comment. These components must be in the following order:

name  mnemonic  operand(s)  ;comment

For example, a program might contain the statement

ZeroCount:  mov  ecx, 0    ; initialize count to zero

The name field always ends with a colon (:) when used with an instruction. When used

with a directive, the name field has no colon. The mnemonic in a statement indicates a

specific instruction, directive, or macro. Some statements have no operand, others have

one, others have more. If there is more than one operand, they are separated by commas;

spaces can also be added. Sometimes a single operand has several components with

spaces between them, making it look like more than one operand.

In the instruction

add   eax, 158

the mnemonic is add and the operands are eax and 158. The assembler recognizes add

as a mnemonic for an instruction that will perform some sort of addition. The operands

provide the rest of the information that the assembler needs. The first operand eax tells

the assembler that the doubleword in the EAX register is to be one of the values added,

and that the EAX register will be the destination of the sum. Since the second operand is

a number (as opposed to another register designation or a memory designation), the

assembler knows that it is the actual value to be added to the doubleword in the EAX

register. The resulting object code is 05 00 00 00 9E, where 05 stands for “add the dou-

bleword immediately following this byte in memory to the doubleword already in EAX.”

The assembler takes care of converting the decimal number 158 to its doubleword length

2’s complement representation 0000009E. The bytes of this doubleword are actually

stored backwards in the object code, a fact that we can almost always ignore.

One use for the name field is to label what will be symbolically, following assem-

bly and linking of the program, an address in memory for an instruction. Other instruc-

tions can then easily refer to the labeled instruction. If the above add instruction needs

to be repeatedly executed in a program loop, then it could be coded

addLoop:   add  eax, 158
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The instruction can then be the destination of a jmp (jump) instruction, the assembly

language version of a goto:

jmp   addLoop     ; repeat addition

Notice that the colon does not appear at the end of the name addLoop in the jmp

instruction. High-level language loop structures like while or for are not available in

machine language although they can be implemented using jmp or other instructions.

It is sometimes useful to have a line of source code consisting of just a name,

for example

EndIfBlank:

Such a label might be used as the last line of code implementing an if-then-else-endif

structure. This name effectively becomes a label for whatever instruction follows it,

but it is convenient to implement a structure without worrying about what comes

afterwards.

It is considered good coding practice to make labels descriptive. The label

addLoop might help to clarify the assembly language code, identifying the first instruc-

tion of a program loop that includes an addition. Other labels, like EndIfBlank above, may

parallel key words in a pseudocode design.

Names and other identifiers used in assembly language are formed from letters,

digits, and special characters. The allowable special characters are underscore (_), ques-

tion mark (?), dollar sign ($), and at sign (@). In this book, the special characters will be

rarely used. A name may not begin with a digit. An identifier may have up to 247 char-

acters, so that it is easy to form meaningful names. The Microsoft Macro Assembler will

not allow instruction mnemonics, directive mnemonics, register designations, and other

words that have a special meaning to the assembler to be used as names. Appendix C

contains a list of such reserved identifiers.

The assembler will accept code that is almost impossible for a human to read.

However, since your programs must also be read by other people, you should make them

as readable as possible. Two things that help are good program formatting and use of

lowercase letters.

Recall that assembly language statements can contain name, mnemonic,

operand, and comment fields. A well-formatted program has these fields aligned as you

read down the program. Always put names in column 1. Mnemonics might all start in

column 12, operands might all start in column 18, and comments might all start in col-

umn 30—the particular columns are not as important as being consistent. Blank lines are
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allowed in an assembly language source file. Use blank lines to visually separate sections

of assembly language code, just like breaking a written narrative into paragraphs.

Assembly language statements can be entered using either uppercase or lower-

case letters. Normally the assembler does not distinguish between uppercase and lower-

case. It can be instructed to distinguish within identifiers, but this is only needed when

you are communicating with a program written in a language that is case-sensitive.

Mixed-case code is easier for people to read than code written all in uppercase or lower-

case. All uppercase code is especially difficult to read. One convention is to use mostly

lowercase source code except for uppercase directives. This is the convention that will

be followed for programs in this book.

Exercises 3.1

1. Name and describe the three types of assembly language statements.

2. For each combination of characters below, determine whether or not it

is an allowable label (name). If not, give a reason.

(a) repeat (b) exit

(c) more (d) EndIf

(e) 2much (f) add

(g) if (h) add2

(i) EndOfProcessLoop

3.2 A Complete Example

This section presents a complete example of an assembly language program. We start

with a pseudocode design for the program. It is easy to get lost in the details of assembly

language, so your programming job will be much easier if you make a design first and

then implement the design in assembly language code. This program will prompt for

two numbers and then find and display their sum. The algorithm implemented by this

program is

prompt for the first number;

input ASCII characters representing the first number;

convert the characters to a 2’s complement doubleword;

store the first number in memory;

prompt for the second number;
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1 The files IO.H, IO.OBJ, and IO.ASM are written by the author of this book and are available to the user.

input ASCII characters representing the second number;

convert the characters to a 2’s complement doubleword;

add the first number to the second number;

convert the sum to a string of ASCII characters;

display a label and the characters representing the sum;

Figure 3.1 lists the complete program which implements this design. The parts

are explained below.

The example program begins with comments identifying the purpose of the

program, the author, and the date the program was written. This is minimal documenta-

tion for any program; most organizations require much more. In the interest of saving

space, the program documentation in this book will be relatively brief, although most

lines of code will include comments.

The statements

.386

.MODEL FLAT

are both directives. Without the directive .386, MASM accepts only 8086/8088 instructions;

with it, the assembler accepts the additional instructions that are executed by 80186, 80286,

and 80386 processors. The .486 and .586 directives enable use of even more instructions,

but we will not be programming with these instructions. There is also a .386P directive that

allows the assembler to recognize privileged 80386 instructions; we will not use these

instructions. The directive .MODEL FLAT tells the assembler to generate 32-bit code using a

flat memory model. With MASM 6.1, this directive must follow the .386 directive.

The next statement

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

is another directive. The PROTO directive is used to prototype a function. In this

instance, the name of the function is ExitProcess, a system function used to terminate a

program. It has one parameter, a doubleword symbolically called dwExitCode.

The next statement

INCLUDE io.h

is yet another directive. (In spite of the way it looks at this point, a program doesn’t con-

sist of only directives!) It instructs the assembler to copy the file IO.H into your program

as the program is assembled.1 The source file is not modified: It still contains just the
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; Example assembly language program Ñ adds two numbers
; Author:  R. Detmer
; Date:    revised 7/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h            ; header file for input/output

cr      EQU     0dh     ; carriage return character
Lf      EQU     0ah     ; line feed

.STACK  4096            ; reserve 4096-byte stack

.DATA                   ; reserve storage for data
number1 DWORD   ?
number2 DWORD   ?
prompt1 BYTE    "Enter first number:  ", 0
prompt2 BYTE    "Enter second number:  ", 0
string  BYTE    40 DUP (?)
label1  BYTE    cr, Lf, "The sum is "
sum     BYTE    11 DUP (?)

BYTE    cr, Lf, 0

.CODE                           ; start of main program code
_start:

output  prompt1         ; prompt for first number
input   string, 40      ; read ASCII characters
atod    string          ; convert to integer
mov     number1, eax    ; store in memory

output  prompt2         ; repeat for second number
input   string, 40
atod    string
mov     number2, eax

mov     eax, number1    ; first number to EAX
add     eax, number2    ; add second number
dtoa    sum, eax        ; convert to ASCII characters
output  label1          ; output label and sum

INVOKE  ExitProcess, 0  ; exit with return code 0

PUBLIC _start                   ; make entry point public

END                             ; end of source code

Figure 3.1 A complete assembly language program
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INCLUDE directive, but for purposes of the assembly, the lines of IO.H are inserted at the

point of the INCLUDE directive. In order to be included, this file should be in the same

directory/folder as your source program when the assembler is invoked.

The file IO.H contains mostly definitions for macros that are described in Sec-

tion 3.7. There are also several directives. The only statements from IO.H that you will

see in your listing file are .NOLIST, .LIST, and a few comments. The .NOLIST direc-

tive, described above, suppresses listing most of the lines from IO.H. The last statement

in IO.H is the directive .LIST that instructs the assembler to resume listing source

statements. Another directive in IO.H tells the assembler to suppress listings of the

statements into which a macro expands. This results in a shorter program listing.

The next two statements

cr          EQU    0dh   ; carriage return character

Lf          EQU    0ah   ; linefeed character

use the directive EQU to equate symbols to values. Following an EQU directive, the sym-

bol can be used as a synonym for the value in subsequent source code. Using names

rather than numbers can make clearer source code. In this example, cr is being equated

to the hexadecimal number 0D, which is the ASCII code for a carriage return character;

Lf is given the hex value 0A, the ASCII code for a linefeed character. An uppercase L

has been used to avoid confusion with the number 1. Carriage return and linefeed char-

acters are needed to move down to a new output line, and are frequently used in defin-

ing data to be displayed on a monitor or printed.

In these EQU directives the assembler recognizes the values 0dh and 0ah as

hexadecimal because each has a trailing h. Numeric values in assembly language state-

ments are in decimal unless otherwise indicated in the source code. Suffixes that indi-

cate types of values other than hex will be introduced in Section 3.5. A hexadecimal

value must start with a digit, not one of the hex digits “a” through “f” so that the assem-

bler can distinguish it from a name.

The .STACK directive tells the assembler how many bytes to reserve for a run-

time stack—4096 bytes is generous for the programs we will be writing. The stack is

used primarily for procedure calls. Each macro in IO.H generates a procedure call to an

associated procedure that actually does the task, and some of these procedures in turn

call other procedures.

The directive .DATA starts the data segment of the program, the portion of the

code where memory space for variables is reserved. In this program, the BYTE and

DWORD directives are used to reserve bytes and doublewords of storage, respectively.
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The directive

number1 DWORD   ?

reserves a single doubleword of storage, associating the symbolic name number1 with

the address 00000000 since it is the first data item. The question mark (?) indicates that

this doubleword will have no designated initial value, although actually MASM 6.1 will

initialize it to zero. The statement

number2 DWORD   ?

reserves another doubleword of storage, associating the symbolic name number2 with

the next available address, 00000004, since it follows the doubleword already reserved.

The run-time addresses for number1 and number2 will be different than 00000000 and

00000004, but these doublewords will be stored consecutively in memory.

The directive

prompt1 BYTE    "Enter first number:  ", 0

has two operands, the string "Enter first number" and the number 0. It reserves

one byte for each character inside the quotation marks and one byte for the number 0.

For each character, the byte reserved is the ASCII code of the letter. For the number, it is

simply its byte-length 2’s complement representation. This directive thus reserves 22

bytes of memory containing 45 6E 74 65 72 20 66 69 72 73 74 20 6E 75 6D 62 65 72 3A 20

20 00. The name prompt1 is associated with the address 00000008 since eight previous

bytes have been allocated.

The next BYTE directive reserves 23 bytes of memory, with the name prompt2

associated with address 0000001E. Then the directive

string  BYTE    40 DUP (?)

reserves 40 uninitialized bytes of memory that will have the symbolic address string.

The DUP operator says to repeat the item(s) in parentheses. The directive

label1  BYTE    cr, Lf, "The sum is "

has three operands and reserves 13 bytes of storage. The first two bytes contain 0D and

0A since these are the values to which cr and Lf are equated. The next 11 bytes are the

ASCII codes of the characters in quotation marks. Notice that there is no trailing 0

operand for this BYTE directive or the next, so there will be no trailing 00 byte generated.

The next-to-last BYTE directive reserves 11 uninitialized bytes with address associated
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with the name sum. Even though the last BYTE directive has no label, it reserves three

initialized bytes of memory immediately following the 11 for sum.

The next segment of the program contains executable statements. It begins

with the directive

.CODE

The line of code with only the label

_start:

marks the entry point of the program, the address of the first statement to be executed.

The name used is the programmer’s choice, but we will consistently use _start for

this purpose.

Finally we come to the statements that really do something! Since this program

performs mostly input and output, the bulk of its statements are macros to perform these

functions. The macro

output  prompt1

displays characters stored at the address referenced by prompt1, using a null (00) byte

to terminate the display. In this program, the user will be prompted to enter the first

number. Since there is no carriage return or line feed character at the end of the prompt,

the cursor will remain on the line following the colon and the two blanks. The statement

input   string, 40       ; read ASCII characters

is a macro that functionally causes the computer to pause and wait for characters to

be entered at the keyboard until the user presses the Enter key to terminate the input.

The first operand (string) identifies where the ASCII codes for these characters will

be stored. The second operand (40) identifies the maximum number of characters

that can be entered. Notice that 40 uninitialized bytes were reserved at address

string. More details about the input macro are in Section 3.6, but for now just note

that you want to be fairly generous with the number of bytes you reserve in an input

area.

The input macro inputs ASCII codes, but the CPU does arithmetic with num-

bers in 2’s complement form. The atod (for “ASCII to double”) macro scans memory at

the address specified by its single operand and converts the ASCII codes there to the

corresponding 2’s complement doubleword; the result is stored in EAX. In this program

atod    string          ; convert to integer
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scans memory starting at string, skips leading blanks, notes any plus (+) or minus (� )

sign, and builds a number from ASCII codes for digits. The scan stops when any non-

digit is encountered.

The statement

mov     number1, eax    ; store in memory

is an instruction. The mnemonic mov stands for “move” but the instruction really per-

forms a copy operation like an assignment statement in a high-level language. This par-

ticular instruction copies the value in the EAX register to the doubleword of memory at

address number1.

The next four statements

output  prompt2         ; repeat for second number

input   string, 40

atod    string

mov     number2, eax

repeat the tasks just performed: prompt for the second number; input ASCII codes; con-

vert the ASCII codes to a 2’s complement doubleword; and copy the doubleword to

memory. Note that the input area is reused.

The next two instructions add the numbers. Addition must be done in a regis-

ter, so the first number is copied to the EAX register with the instruction

mov     eax, number1    ; first number to AX

and then the second is added to the first with the instruction

add     eax, number2    ; add second number

(Do you see a more efficient way to get the sum in EAX?)

The sum is now in the EAX register in 2’s complement form. For display pur-

poses we need a sequence of ASCII characters that represent this value. The dtoa

(“double to ASCII”) macro takes the doubleword specified by its second operand and

converts it to a string exactly 11 bytes long at the destination specified by the first

operand. In this program, the macro

dtoa    sum, eax        ; convert to ASCII characters
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uses the contents of EAX as the source, and fills in the 11 bytes at sum with ASCII codes

corresponding to this value. For a typical small number, leading space characters are

used fill a total of 11 bytes. The macro

output  label1          ; output label and sum

will display bytes of memory, starting at label1 and continuing until a null byte (00) is

encountered. Since the undefined bytes at sum have been replaced by ASCII codes, the

first null byte in memory will be the one following the carriage return and line feed codes

in the unlabeled BYTE directive—a total of 26 characters will be displayed.

The statement

INVOKE  ExitProcess, 0  ; exit with return code 0

is a directive that generates code to call the procedure ExitProcess with the value 0

for the parameter symbolically called dwExitCode in the prototype. Functionally this

terminates the program, with exit code value 0 telling the operating system that the pro-

gram terminated normally. (Nonzero values can be used to indicate error conditions.)

Normally the names used inside a file are visible only inside the file. The directive

PUBLIC _start                   ; make entry point public

makes the entry point address visible outside this file, so that the linker can identify the

first instruction to be executed as it constructs an executable program file. We will later

use this directive to make names of separately assembled procedures visible.

The final statement in an assembly language source file is the directive END.

This marks the physical end of the program. There should be no statement following END.

Exercises 3.2

1. Identify three directives that appear in the example program.

2. Identify three macros that appear in the example program.

3. Identify three instructions that appear in the example program.

4. In the example program, why is prompt2 associated with address

0000001E? What are the contents of the 23 bytes reserved by this

directive?

TEAM LinG - Live, Informative, Non-cost and Genuine!



3.3 How to Assemble, Link, and Run a Program 53

3.3 How to Assemble, Link, and Run a Program

This book includes a CD with software to assemble and link a program. This software

should be installed on your computer.

The source code for a program is entered using any standard text editor such as

Notepad or Edit; no text editor is included on the CD. Assembly language source code is

normally stored in a file with a .ASM type. For this section, we will assume that the

source program from Fig. 3.1 is stored in the file EXAMPLE.ASM.

We will use the ML assembler from MASM 6.1 to assemble programs. To

assemble EXAMPLE.ASM, you enter

at a DOS prompt in a MS-DOS window. Assuming there is no error in your program, you

will see a display like

Microsoft (R) Macro Assembler Version 6.11

Copyright (C) Microsoft Corp 1981–1993. All rights reserved.

Assembling: example.asm

followed by a DOS prompt. The file EXAMPLE.OBJ will be added to your directory. If

your program contains errors, error messages are displayed and no .OBJ file is produced.

There are two switches, /c and /coff, in this invocation of the assembler. The

ML product is capable of both assembly and linking, and the switch /c says to assemble

only. The /coff switch says to generate common object file format. ML switches are

case-sensitive: They must be entered exactly as shown—these are in lowercase.

The linker we will use is named LINK. For this example, invoke it at the DOS

prompt with

link /subsystem:console /entry:start /out:example.exe

example.obj io.obj kernel32.lib

ml /c /coff example.asm
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C:\AsmFiles>example

Enter first number:  98

Enter second number:  –35

The sum is          63

C:\AsmFiles>

Figure 3.2 Execution of EXAMPLE.EXE

This is entered as a single command, although it may wrap to a new line as you type.

Again, assuming no errors, you will see

Microsoft (R) 32-Bit Incremental Linker Version 5.10.7303

Copyright (C) Microsoft Corp 1992–1997. All rights reserved.

followed by a DOS prompt. This LINK command links together EXAMPLE.OBJ, IO.OBJ,

and KERNEL32.LIB to produce the output file EXAMPLE.EXE. The switch /subsys-

tem:console tells LINK to produce a console application, one that runs in a DOS win-

dow. The switch /entry:start identifies the label of the program entry point; notice

that you do not use an underscore here even though _start was the actual label for the

entry point.

A program is executed by simply typing its name at the DOS prompt. Figure 3.2

shows a sample run of EXAMPLE.EXE, with user input underlined. Once the executable

file has been produced, you can run the program as many times as you wish without

assembling or linking it again.

This book’s software package includes Microsoft’s Windbg, a symbolic debug-

ger that can be used to trace execution of an assembly language program. This is a use-

ful tool for finding errors and for seeing how the computer works at the machine level.

To use Windbg, you must add the /Zi switch (uppercase Z, lowercase i) to the

assembly with ML. This causes the assembler to add debug information to its output.

The assembly command now looks like

ml /c /coff /Zi example.asm
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Figure 3.3 Windbg opening screen

Linking is changed to add one new switch, /debug, giving

Start the debugger by typing Windbg at the DOS prompt. You will be see a win-

dow similar to the one shown in Fig. 3.3. From the menu bar choose File, then Open Exe-

cutable... Select example.exe or the name of your executable file, and click OK to get

back to a window that looks almost like the opening screen shown in Fig. 3.3 except that

example.exe appears in its title bar and a few lines appear in the Command window.

Now press the step into button

Click OK in the information window and then press the step into button again.

Your source code now appears in a Windbg child window behind the Command win-

dow. Minimize the Command window. Next select View and then Registers to open a

link /debug /subsystem:console /entry:start /out:example.exe

example.obj io.obj kernel32.lib
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Figure 3.4 Windbg ready for tracing a program

window that shows contents of the 80x86 registers. Then select View and Memory... to

open a window that shows contents of memory. For this window you must enter the

starting memory address; for the example program, use &number1 as the starting

address—the C/C++ address-of operator (&) is used to indicate the address of number1,

the first item in the data section. Finally size and rearrange windows until your screen

looks something like the screen shown in Fig. 3.4. Notice that the right edge of the

example program’s output window is visible under the Windbg window. The rest of the

desktop is covered by the window in which the assembler and linker were run, as well as

a small strip of Microsoft Word that the author was also using.

The first statement of the example program is highlighted. Clicking the step

into button causes this statement to be executed. Although this statement is a macro, it

is executed as a single instruction, and Enter first number: appears on the output

screen. (You can click on the edge of the output screen to put it on top.) Clicking step
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Figure 3.5 Windbg tracing a program

into again causes the input macro to be executed. When you enter a number and press

return, Windbg returns to the debugger screen with the third statement highlighted.

Two more clicks of the step into button causes the ASCII to double the macro to be exe-

cuted, and the first mov instruction to be executed. The Windbg window now looks like

the one shown in Fig. 3.5.

At this point, the Registers window shows that EAX contains 00000062, the 2’s

complement doubleword version of 98. The number 98 was entered in response to the

prompt. You can see its ASCII codes stored in memory on the fourth line of the Memory

window. Each line of the Memory window has three parts: its starting address, hex val-

ues for the bytes stored at that address, and printable characters that correspond to

those bytes, if any. The first five characters of the fourth line are the end of prompt2,

ASCII codes for r and colon, two spaces, and a null byte. The 40 bytes reserved for

string come next in memory, and the first four have been replaced by 39, 38, 00, and

0A, ASCII codes for 98, a null byte, and a line feed. When 98 and Enter were pressed, the
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Figure 3.6 Windbg before program termination

operating system stored 39 and 38 plus a carriage return character and a line feed char-

acter. The input macro replaced the carriage return by a null byte, but you can still see

the line feed in memory. The atod macro scanned these ASCII codes to produce the

value in EAX. The Memory window also shows a value of 62 00 00 00 for number1, the

bytes of the number stored backwards, copied there by the mov instruction.

The rest of the program is traced similarly. Figure 3.6 shows Windbg just before

program termination. The Memory window has been scrolled to show the part contain-

ing the output label. At this point, � 35 has been entered for the second number, the sum

98 + (� 35) has been calculated as a 2’s complement number still visible in EAX, and this

sum has been converted to an 11-byte-long string by the dtoa macro. You can see ten

ASCII space characters (20) in memory prior to the codes for 6 and 3, 36 and 33.
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Exercises 3.3

1. Suppose that EXAMPLE.ASM is assembled and linked according to the

first instructions (non-debugging) in this section. What additional files

are generated by the assembler? By the linker?

2. Suppose that EXAMPLE.ASM is assembled and linked according to the

second instructions (debugging) in this section. What additional files

are generated by the assembler? By the linker?

Programming Exercises 3.3

1. Run the example program given in this section. Use a text editor to cre-

ate the source code file EXAMPLE.ASM or copy it from the book’s CD.

Assemble, link, and execute it without generating debugging code. Run

the program several times with different data.

2. Trace the example program given in this section. Use a text editor to

create the source code file EXAMPLE.ASM or copy it from the book’s

CD. Assemble, link, and execute it, generating debugging code. Trace

the program several times with different data.

3. Modify the example program given in this section to prompt for, input,

and add three numbers. Call the source code file ADD3.ASM. Follow

steps parallel to those of this section to assemble and link the pro-

gram, producing ADD3.EXE. Run ADD3 several times with different

data. Use the debugger if you have any trouble or if you want to trace

the execution.

4. The instruction

sub   eax, label

will subtract the word at label from the word already in the EAX regis-

ter. Modify the example program given in this section to prompt for and

input two numbers, and then subtract the second number from the

first. Call the source code file SUBTRACT.ASM. Follow steps parallel to

those of this section to assemble and link the program, producing SUB-

TRACT.EXE. Run SUBTRACT several times with different data.
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3.4 The Assembler Listing File

The ML assembler can produce a listing file as part of the assembly process. This .LST

file shows the source code, the object code to which it is translated, and additional infor-

mation. Examination of the listing file can help you understand the assembly process.

When your source file contains errors, this .LST file displays error messages at the points

of the errors, helping to locate the offending statements.

Suppose that we modify the example program EXAMPLE.ASM from Fig. 3.1,

changing

atod    string          ; convert to integer

mov     number1, eax    ; store in memory

to

atod    eax, string     ; convert to integer

mov     number1, ax     ; store in memory

This introduces two errors: The atod macro only allows one operand, and the source and

destination operands for the mov instruction are different sizes. Suppose that this

revised file is stored in EXAMPLE1.ASM.

An additional switch, /Fl (uppercase F, lowercase letter l), is needed to generate

a listing file during assembly

ml /c /coff /Fl example1.asm

When this command is entered at a DOS prompt, the console shows

Assembling: example1.asm

example1.asm(32): error A2022: instruction operands must be the

same size

example1.asm(31): error A2052: forced error : extra operand(s) in

ATOD

atod(7): Macro Called From

example1.asm(31): Main Line Code

These error messages are fairly helpful—they indicate errors on lines 32 and 31 of the

source file and describe the errors. However, if you look at the corresponding part of

EXAMPLE1.LST, you see
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with the error messages under the statements with the errors. Viewing the listing file

frequently makes it easier to find errors in source code.

Figure 3.7 shows a listing file for EXAMPLE.ASM, the original example program

without errors. Parts of this file will be examined to better understand the assembly process.

The listing begins by echoing comments and directives at the beginning of the

source code file. Following the INCLUDE directive, several lines from IO.H are shown.

These lines are marked with the letter C to show they come from an included file. In par-

ticular, you see the .NOLIST directive that suppressed listing of most of IO.H, and the

.LIST directive that resumed listing of the rest of the source file.

For each EQU directive the assembler shows the value to which the symbol is

equated as eight hex digits. This listing shows 0000000D for cr and 0000000A for Lf.

The leftmost column for the rest of the listing shows the offset (distance) of each

directive or instruction from the beginning of the segment that contains it. This offset is

in bytes. The line

00000000 00000000           number1 DWORD   ?

shows an offset of 00000000 since this statement is the first in the data segment. The assem-

bler then shows the object code, a doubleword with value 00000000. Since this DWORD direc-

tive reserves four bytes, the assembler uses 00000004 for the offset of the next statement.

00000004 00000000          number2 DWORD   ?

Again four bytes are reserved with contents 00000000.

00000000                        _start:

output  prompt1         ; prompt for first number

input   string, 40      ; read ASCII characters

atod    eax, string          ; convert to integer

1              .ERR <extra operand(s) in ATOD>

example1.asm(31): error A2052: forced error : extra operand(s) in ATOD

atod(7): Macro Called From

example1.asm(31): Main Line Code

mov     number1, ax    ; store in memory

example1.asm(32): error A2022: instruction operands must be the same size

output  prompt2         ; repeat for second number
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Microsoft (R) Macro Assembler Version 6.11                  08/04/97 21:21:16
example.asm                                                  Page 1 - 1

; Example assembly language program -- adds two numbers
; Author:  R. Detmer
; Date:    revised 7/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h            ; header file for input/output
C ; IO.H -- header file for I/O macros
C ; 32-bit version for flat memory model
C ; R. Detmer   July 1997
C .NOLIST     ; turn off listing
C .LIST        ; begin listing
C 

= 0000000D                     cr      EQU     0dh     ; carriage return character
= 0000000A                     Lf      EQU     0ah     ; line feed

.STACK  4096            ; reserve 4096-byte stack

00000000                       .DATA                   ; reserve storage for data
00000000 00000000              number1 DWORD   ?
00000004 00000000              number2 DWORD   ?
00000008 45 6E 74 65 72        prompt1 BYTE    "Enter first number:  ", 0

20 66 69 72 73
74 20 6E 75 6D
62 65 72 3A 20
20 00

Figure 3.7 EXAMPLE.LST listing file
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0000001E 45 6E 74 65 72        prompt2 BYTE    "Enter second number:  ", 0
20 73 65 63 6F
6E 64 20 6E 75
6D 62 65 72 3A
20 20 00

00000035  00000028 [           string  BYTE    40 DUP (?)
00
]

0000005D 0D 0A 54 68 65        label1  BYTE    cr, Lf, "The sum is "
20 73 75 6D 20
69 73 20

0000006A  0000000B [           sum     BYTE    11 DUP (?)
00
]

00000075  0D 0A 00                     BYTE    cr, Lf, 0

00000000                       .CODE                           ; start of main program code
00000000                       _start:

output  prompt1         ; prompt for first number
input   string, 40      ; read ASCII characters
atod    string          ; convert to integer

0000002E  A3 00000000 R                mov     number1, eax    ; store in memory

output  prompt2         ; repeat for second number
input   string, 40
atod    string

00000061  A3 00000004 R                mov     number2, eax

00000066  A1 00000000 R                mov     eax, number1    ; first number to EAX
0000006B  03 05 00000004 R             add     eax, number2    ; add second number

dtoa    sum, eax        ; convert to ASCII characters
output  label1          ; output label and sum

INVOKE  ExitProcess, 0  ; exit with return code 0

PUBLIC _start                   ; make entry point public

END                             ; end of source code

Figure 3.7 (continued)
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Microsoft (R) Macro Assembler Version 6.11                  08/04/97 21:21:16
example.asm                                                  Symbols 2 - 1

Macros:

N a m e                 Type

atod . . . . . . . . . . . . . .        Proc
atoi . . . . . . . . . . . . . .        Proc
dtoa . . . . . . . . . . . . . .        Proc
input  . . . . . . . . . . . . .        Proc
itoa . . . . . . . . . . . . . .        Proc
output . . . . . . . . . . . . .        Proc

Segments and Groups:

N a m e                 Size     Length   Align   Combine Class

FLAT . . . . . . . . . . . . . .        GROUP
STACK  . . . . . . . . . . . . .        32 Bit   00001000 Dword   Stack   'STACK'
_DATA  . . . . . . . . . . . . .        32 Bit   00000078 Dword   Public  'DATA'
_TEXT  . . . . . . . . . . . . .        32 Bit   00000097 Dword   Public  'CODE'

Procedures,  parameters and locals:

N a m e                 Type     Value    Attr

ExitProcess  . . . . . . . . . .        P Near   00000000 FLAT  Length= 00000000 External STDCALL

Figure 3.7 (continued)
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Symbols:

N a m e                 Type     Value    Attr

@CodeSize  . . . . . . . . . . .        Number   00000000h
@DataSize  . . . . . . . . . . .        Number   00000000h
@Interface . . . . . . . . . . .        Number   00000000h
@Model . . . . . . . . . . . . .        Number   00000007h
@code  . . . . . . . . . . . . .        Text     _TEXT
@data  . . . . . . . . . . . . .        Text     FLAT
@fardata?  . . . . . . . . . . .        Text     FLAT
@fardata . . . . . . . . . . . .        Text     FLAT
@stack . . . . . . . . . . . . .        Text     FLAT
Lf . . . . . . . . . . . . . . .        Number   0000000Ah
_start . . . . . . . . . . . . .        L Near   00000000 _TEXT Public
atodproc . . . . . . . . . . . .        L Near   00000000 FLAT  External
atoiproc . . . . . . . . . . . .        L Near   00000000 FLAT  External
cr . . . . . . . . . . . . . . .        Number   0000000Dh   
dtoaproc . . . . . . . . . . . .        L Near   00000000 FLAT  External
inproc . . . . . . . . . . . . .        L Near   00000000 FLAT  External
itoaproc . . . . . . . . . . . .        L Near   00000000 FLAT  External
label1 . . . . . . . . . . . . .        Byte     0000005D _DATA
number1  . . . . . . . . . . . .        Dword    00000000 _DATA
number2  . . . . . . . . . . . .        Dword    00000004 _DATA
outproc  . . . . . . . . . . . .        L Near   00000000 FLAT  External
prompt1  . . . . . . . . . . . .        Byte     00000008 _DATA
prompt2  . . . . . . . . . . . .        Byte     0000001E _DATA
string . . . . . . . . . . . . .        Byte     00000035 _DATA
sum  . . . . . . . . . . . . . .        Byte     0000006A _DATA

0 Warnings
0 Errors

Figure 3.7 (continued)
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66 Elements of Assembly Language

Now eight bytes have been reserved, so the offset of the next item is 00000008.

The next two entries show the initial values assigned by the BYTE directives at prompt1

and prompt2.

00000008 45 6E 74 65 72      prompt1 BYTE    "Enter first"

20 66 69 72 73

74 20 6E 75 6D

62 65 72 3A 20

20 00

0000001E 45 6E 74 65 72      prompt2 BYTE    "Enter second"

20 73 65 63 6F

6E 64 20 6E 75

6D 62 65 72 3A

20 20 00

The offset for prompt2 can be calculated by taking the offset 00000008 of prompt1 plus

the number of bytes reserved for prompt1, 22 (1616); and finding the sum 0000001E.

Similarly, the offset of the statement following prompt2 will be at 0000001E + 17 =

00000035 since there are 23 (1716) bytes generated in the second prompt.

The notation

00000035  00000028 [      string  BYTE    40 DUP (?)

00

]

shows that this BYTE directive generates 2816 (4010) bytes of storage, each initialized to

00. The remaining statements in the data segment illustrate no new concepts.

The assembly listing for the code segment shows, in hex, the offset and the

object code of each instruction. Some assemblers may also show the offset for a macro,

that is, the address of the first instruction to which it expands. The first byte of the

machine code for each instruction is called its opcode (operation code). By looking at an

opcode as the program executes, the 80x86 knows what kind of operation is to be done

and whether or not there are more bytes of the instruction. The object code for a single

instruction can be from one to 16 bytes long.

The line

0000002E  A3 00000000 R        mov     number1, eax

shows that this instruction starts at an offset of 0000002E and has five bytes of object

code, beginning with the opcode A3. The opcode A3 tells the 80x86 to copy the contents
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of the EAX register to the address given in the next four bytes of the instruction. The

notation R indicates that the address is relocatable, that is, the linker and loader will

determine the run-time address, substituting it for 00000000 in this instruction in the

code that is actually executed at run time. Figure 3.5 showed that address as 00404000

for one run of the program—it may be different every time the program is executed.

The add instruction

0000006B  03 05 00000004 R     add     eax, number2

starts at an offset of 0000006B and has an opcode of 03, one of several opcodes used for

different add instructions. The 03 opcode itself is used for add instructions with several

different formats, and the CPU must also look at the next byte to determine what the

operands are. The 05 byte tells the 80x86 that the EAX register is the destination for the

sum (and one source) and that the other source is in memory at the address given in the

next four bytes. Chapter 9 provides more details about formats of 80x86 instructions and

how they are assembled.

The final part of the assembly listing shows all the symbols that are used in the

program. The first few lines show the macro names that are defined by including IO.H

even though not all are used in this program. After listing segment and procedure

names, the assembler shows the remaining symbols. This list includes familiar symbols

such as Lf, number2, and _start. It also shows several symbols starting with an at

sign (@); these give information about the assembly process. Some of the remaining

symbols are names of procedures that are called by the macros in IO.H; for instance,

atoiproc is called by the atod macro.

Exercises 3.4

Answer the following questions by looking at the assembly listing in

Fig. 3.7.

1. What are the ASCII codes for characters in the string “The sum is”?

2. What is the offset of the label sum in the data section?

3. If the following statements were added at the end of the data section

(just before .CODE), what offsets and values would appear for them in

the assembly listing?

extra     DWORD 999

label2    BYTE  "The End", cr, Lf, 0

(Hint: An ASCII/hexadecimal conversion chart is useful for this problem.)
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4. How many bytes of object code are generated by the first three state-

ments in the example program (the output, input, and atod macros)?

3.5 Constant Operands

This section discusses formats of constant operands used in BYTE, DWORD, and WORD

directives. The information also applies to instructions since constants are written the

same way in directives and in instructions.

Numeric operands can be expressed in decimal, hexadecimal, binary, or octal

notations. The assembler assumes that a number is decimal unless the number has a

suffix indicating another base or a .RADIX directive (not used in this book) changes the

default number base. The suffixes that may be used are

Suffix Base Number System

H 16 hexadecimal

B 2 binary

O or Q 8 octal

none 10 decimal

Any of these suffixes can be coded in uppercase or lowercase. Octal is not used

often, but when it is used, Q is easier to read than O, although either letter will designate

that the number is octal.

The directive

mask     BYTE   01111101b

reserves one byte of memory and initializes it to 7D. This is equivalent to any of the fol-

lowing directives

mask     BYTE   7dh

mask     BYTE   125

mask     BYTE   175q

since 11111012 = 7D16 = 12510 = 1758. The choice of number systems often depends on

the use planned for the constant. A binary value is appropriate when you need to think of

the value as a sequence of eight separate bits, for instance in a logical operation (cov-

ered in Chapter 8).
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A BYTE directive reserves storage for one or more bytes of data. If a data value is

numeric, it can be thought of as signed or unsigned. The decimal range of unsigned val-

ues that can be stored in a single byte is 0 to 255. The decimal range of signed values that

can be stored in a single byte is � 128 to 127. Although the assembler will allow larger or

smaller values, normally you restrict numeric operands for BYTE directives to � 128 to

255. The comments in the following examples indicate the initial values of the bytes that

are reserved.

byte1      BYTE   255      ; value is FF

byte2      BYTE   127      ; value is 7F

byte3      BYTE   91       ; value is 5B

byte4      BYTE   0        ; value is 00

byte5      BYTE   –1       ; value is FF

byte6      BYTE   –91      ; value is A5

byte7      BYTE   –128     ; value is 80

The situation for DWORD and WORD directives is similar. A DWORD directive

reserves a doubleword of storage; since eight bytes can store a signed number in the

range � 2,147,483,648 to 2,147,483,647 or an unsigned number from 0 to 4,294,967,295, it

makes sense to restrict operand values to the range � 2,147,483,648 to 4,294,967,295. Sim-

ilarly, operands for a WORD directive should be restricted to the range � 32,768 to 65,535.

The examples below give the initial values reserved for a few doublewords and words.

double1    DWORD   4294967295  ; value is FFFFFFFF

double2    DWORD   4294966296  ; value is FFFFFC18

double3    DWORD   0           ; value is 00000000

double4    DWORD   –1          ; value is FFFFFFFF

double5    DWORD   –1000       ; value is FFFFFC18

double6    DWORD   –2147483648 ; value is 80000000

word1      WORD   65535    ; value is FFFF

word2      WORD   32767    ; value is 7FFF

word3      WORD   1000     ; value is 03E8

word4      WORD   0        ; value is 0000

word5      WORD   –1       ; value is FFFF

word6      WORD   –1000    ; value is FC18

word7      WORD   –32768   ; value is 8000
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One of the points of the previous examples is that different operands can result in the same

stored value. For instance, note that the WORD directives with operands 65535 and � 1 both

generate words containing FFFF. This value can be thought of as either the unsigned num-

ber 65,535 or the signed number � 1, depending on the context in which it is used.

As previously stated, the bytes of a word or doubleword are actually stored

backwards so that, for example, the initial value of word6 previous is actually 18FC. This

book will concentrate on the logical values rather than the way that they are stored.

The BYTE directive allows character operands with a single character or string

operands with many characters. Either apostrophes (') or quotation marks (") can be used

to designate characters or delimit strings. They must be in pairs; you can not put an apos-

trophe on the left and a quotation mark on the right. A string delimited with apostrophes

can contain quotation marks, and one delimited with quotation marks can contain apos-

trophes, making it possible to have strings containing these special characters. Unless

there is reason to do otherwise, this book will follow the convention of putting single char-

acters between apostrophes and strings of characters between quotation marks.

Each of the following BYTE directives is allowable.

char1      BYTE   'm'      ; value is 6D

char2      BYTE   6dh      ; value is 6D

string1    BYTE   "Joe"    ; value is 4A 6F 65

string2    BYTE   "Joe's"  ; value is 4A 6F 65 27 73

If you are trying to store the letter m rather than the number 6D16, then there is no reason

to look up the ASCII code and enter it as in char2—the assembler has a built-in ASCII

chart! Notice that the delimiters, the apostrophes or quotation marks on the ends of the

character or string, are not themselves stored.

The assembler allows restricted usage of character operands in DWORD or WORD

directives. However, there is little reason to do this.

You have already seen examples of BYTE directives with multiple operands sepa-

rated by commas. DWORD and WORD directives also allows multiple operands. The directive

words      WORD    10, 20, 30, 40

reserves four words of storage with initial values 000A, 0014, 001E, and 0028. The DUP

operator can be used to generate multiple bytes or words with known values as well as

uninitialized values. Its use is limited to BYTE, DWORD, WORD, and other directives that

reserve storage. The directive

DblArray   DWORD   100 DUP(999)
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reserves 100 doublewords of storage, each initialized to 000003E7. This is an effective

way to initialize elements of an array. If one needs a string of 50 asterisks, then

stars      BYTE    50 DUP('*')

will do the job. If one wants 25 asterisks, separated by spaces,

starsAndSpaces BYTE 24 DUP("* "), '*'

reserves these 49 bytes and assigns the desired initial values.

An operand of a BYTE, DWORD, WORD, or other statement can be an expression

involving arithmetic or other operators. These expressions are evaluated by the assem-

bler at assembly time, not at run time, with the resulting value used for assembly. It is

usually not helpful to use an expression instead of the constant of equivalent value, but

sometimes it can contribute to clearer code. The following directives are equivalent,

each reserving a word with an initial hex value of 0090.

gross     WORD    144

gross     WORD    12*12

gross     WORD    10*15 – 7 + 1

Each symbol defined by a BYTE, DWORD, or WORD directive is associated with

a length. The assembler notes this length and checks to be sure that symbols are

used appropriately in instructions. For example, the assembler will generate an error

message if

char       BYTE   'x'

is used in the data segment and

mov  ax, char

appears in the code segment—the AX register is a word long, but char is associated

with a single byte of storage.

The Microsoft assembler recognizes several additional directives for reserving

storage. These include QWORD for reserving a quadword, TBYTE for a 10-byte integer,

REAL4, for reserving a 4-byte floating point number, REAL8 for 8-byte floating point, and

REAL10 for 10-byte floating point. It also has directives to distinguish signed bytes,

words, and doublewords from unsigned. We will rarely use these directives.
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Exercises 3.5

Find the initial values that the assembler will generate for each direc-

tive below.

1. byte1     BYTE    10110111b

2. byte2     BYTE    33q

3. byte3     BYTE    0B7h

4. byte4     BYTE    253

5. byte5     BYTE    108

6. byte6     BYTE    –73

7. byte7     BYTE    'D'

8. byte8     BYTE    'd'

9. byte9     BYTE    "John's program"

10. byte10    BYTE    5 DUP("<>")

11. byte11    BYTE    61 + 1

12. byte12    BYTE    'c' – 1

13. dword1    DWORD   1000000

14. dword2    DWORD   1000000b

15. dword3    DWORD   1000000h

16. dword4    DWORD   1000000q

17. dword5    DWORD   –1000000

18. dword6    DWORD   –2

19. dword7    DWORD   –10

20. dword8    DWORD   23B8C9A5h

21. dword9    DWORD   0, 1, 2, 3

22. dword10   DWORD   5 DUP(0)

23. word1     WORD    1010001001011001b

24. word2     WORD    2274q

25. word3     WORD    2274h

26. word4     WORD    0ffffh

27. word5     WORD    5000

28. word6     WORD    –5000

29. word7     WORD    –5, –4, –3, –2, –1

30. word8     WORD    8 DUP(1)

31. word9     WORD    6 DUP(–999)

32. word10    WORD    100/2
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3.6 Instruction Operands

There are three basic types of instruction operands; some are constants, some designate

CPU registers, and some reference memory locations. There are several ways of referenc-

ing memory; two simpler ways will be discussed in this section, and more complex

methods will be introduced as needed later in the book.

Many instructions have two operands. In general, the first operand gives the

destination of the operation, although it may also designate one of the sources. The sec-

ond operand gives the source (or a source) for the operation, never the destination. For

example, when

mov   al, '/'

is executed, the byte 2F (the ASCII code for the slash /) will be loaded into the AL reg-

ister, replacing the previous byte. The second operand ‘/’ specifies the constant

source. When

add   eax, number1

is executed, EAX gets the sum of the doubleword designated by number1 and the old

contents of EAX. The first operand EAX specifies the source for one doubleword as well

as the destination for the sum; the second operand number1 specifies the source for the

other of the two doublewords that are added together.

Figure 3.8 lists the addressing modes used by the Intel 80x86 microprocessor,

giving the location of the data for each mode. Memory addresses can be calculated sev-

eral ways; Fig. 3.9 lists the two most common.

Mode Location of data

immediate in the instruction itself

register in a register

memory at some address in memory

Figure 3.8 80x86 addressing modes
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Memory mode Location of data

direct at a memory location whose address (offset) is built

into the instruction

register indirect at a memory location whose address is in a register

Figure 3.9 Two 80x86 memory addressing modes

2 One can write self-modifying code; that is, code that changes its own instructions as it executes. This

is considered a very poor programming practice.

For an immediate mode operand, the data to be used is built into the instruc-

tion before it is executed; once there it is constant.2 Normally the data is placed there by

the assembler, although it can be inserted by the linker or loader, depending on the

stage at which the value can be determined. The programmer writes an instruction

including an actual value, or a symbol standing for a constant value. For a register

mode operand, the data to be used is in a register. To indicate a register mode operand,

the programmer simply codes the name of the register. A register mode operand can

also specify a register as a destination, but an immediate mode operand cannot be a

destination.

In each of the following examples, the first operand is register mode and the

second operand is immediate mode. The object code (taken from the assembler listing

file) is shown as a comment. For the instruction

mov   al, '/'   ; B0 2F

the ASCII code 2F for the slash is the second byte of the instruction, and is placed there

by the assembler. For the instruction

add   eax, 135  ; 05 00000087

the doubleword length 2’s complement version of 135 is assembled into the last four

bytes of the instruction.

Any memory mode operand specifies using data in memory or specifies a des-

tination in memory. A direct mode operand has the 32-bit address built into the

instruction. Usually the programmer will code a symbol that is associated with a BYTE,
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Figure 3.10 Register indirect addressing

. . .

memory

operand . . .

address of operandEDX

DWORD, or WORD directive in the data segment or with an instruction in the code segment.

The location corresponding to such a symbol will be relocatable so that the assembler

listing shows an assembly-time address that may be adjusted later. In the statement

add     eax, number2    ; 05 00000004

from the example program in Fig. 3.1, the first operand is register mode and the second

operand is direct mode. The memory operand has been encoded as the 32-bit address

00000004, the offset of number2 in the data segment.

The first operand of the instruction

add     eax, [edx]      ; 03 02

is register mode, and the second operand is register indirect mode. We will later dis-

cuss how the assembler gets the object code 03 02 for this instruction, but for now

notice that it is not long enough to contain a 32-bit memory address. Instead, it con-

tains bits that say to use the address in the EDX register to locate a doubleword in

memory to add to the doubleword already in EAX. In other words, the second number is

not in EDX, but its address is. The square bracket notation ([]) indicates indirect

addressing with MASM 6.11. Figure 3.10 illustrates how register indirect addressing

works in this example.

Any of the general registers EAX, EBX, ECX, and EDX or the index registers ESI

and EDI can be used for register indirect addressing. The base pointer EBP can also be

used, but for an address in the stack rather than for an address in the data segment.

Although the stack pointer ESP can be used for register indirect addressing in certain

special circumstances, we will have no need to do so.
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With register indirect mode, the register serves like a pointer variable in a high-

level language. The register contains the location of the data to be used in the instruc-

tion, not the data itself. When the size of the memory operand is ambiguous, the PTR

operator must be used to give the size to the assembler. For example, the assembler will

give an error message for

mov  [ebx], 0

since it cannot tell whether the destination is a byte, word, or doubleword. If it is a byte,

you can use

mov  BYTE PTR [ebx], 0

For a word or doubleword destination, use WORD PTR or DWORD PTR, respectively. In an

instruction like

add     eax, [edx]

it is not necessary to use DWORD PTR [edx] since the assembler assumes that the

source will be a doubleword, the size of the destination EAX.

A few instructions have no operands. Many have a single operand. Sometimes

an instruction with no operands requires no data to operate on or an instruction with one

operand needs only one value. Other times the location of one or more operands is

implied by the instruction and is not coded. For example, one 80x86 instruction for multi-

plication is mul; it might be coded

mul   bh

Only one operand is given for this instruction; the other value to be multiplied is always

in the AL register. (This instruction will be explained more fully in the next chapter.)

Exercises 3.6

Identify the mode of each operand in the following instructions.

Assume that the instructions are in a program also containing the code

cr       EQU         0dh

.DATA

value    DWORD       ?

char     BYTE        ?
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1. mov   value, 100

2. mov   ecx, value

3. mov   ah, cr

4. mov   eax, [esi]

5. mov   [ebx], ecx

6. mov   char, '*'

7. add   value, 1

8. add   WORD PTR [ecx], 10

3.7 Input/Output Using Macros Defined in IO.H

In order to write useful programs, you need to be able to input and output data. Operat-

ing systems provide routines to aid in these tasks. A typical input routine might wait for

a character to be pressed on the keyboard, and then return the ASCII code for that char-

acter in a register. An output routine might display at the terminal the characters in a

string up to some terminating character like a dollar sign.

High-level languages usually provide for input or output of numeric data in addi-

tion to character or string data. A numeric input routine in a high-level language accepts a

string of character codes representing a number, converts the characters to a 2’s comple-

ment or floating point form, and stores the value in a memory location associated with

some variable name. Conversely, output routines of high-level languages start with a 2’s

complement or floating point number in some memory location, convert it to a string of

characters that represent the number, and then output the string. Operating systems usu-

ally do not provide these services, so the assembly language programmer must code them.

The file IO.H provides a set of macro definitions that make it possible to do

input, output, and numeric conversion fairly easily. Each macro looks much like an 80x86

instruction, but actually expands to several instructions, including a call to an external

procedure to do most of the work. The source code for these external procedures is in the

file IO.ASM; the assembled version of this file is IO.OBJ. We will examine the code in

IO.ASM in later chapters of this book.
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Name Parameter(s) Action Flags affected

Figure 3.11 Macros in IO.H

dtoa

atod

itoa

atoi

output

input

destination,

source

source

destination,

source

source

source

destination,

length

Converts the doubleword at source (regis-

ter or memory) to an eleven-byte-long

ASCII string at destination.

Scans the string starting at source for + or

� followed by digits, interpreting these

characters as an integer. The correspon-

ding 2’s complement number is put in

EAX. The offset of the terminating

nondigit character is put in ESI. For input

error, 0 is put in EAX. Input error occurs if

the number has no digits or is out of the

range � 2,147,483,647 to 2,147,483,647.

Converts the word at source (register or

memory) to a six-byte-long ASCII string at

destination.

Similar to atod, except that the resulting

number is placed in AX. The range

accepted is � 32,768 to 32,767.

Displays the string starting at source. The

string must be null-terminated.

Inputs a string up to length characters

long and stores it at destination.

None

OF = 1 for input error; OF = 0

otherwise. Other flag values

correspond to the result in

EAX.

None

similar to atod

None

None

Figure 3.11 lists the macros defined in IO.H and briefly describes them. Addi-

tional explanation then follows. The macros will be used in programs in subsequent

chapters.

The output macro is used to output a string of characters to the monitor. Its

source operand references a location in the data segment, usually the name on a BYTE

directive. Characters starting at this address are displayed until a null character is

reached; the null character terminates the output. It is important that source string

contains ASCII codes for characters that can be displayed. Most of these will be print-

able characters, although it makes sense to include carriage return, line feed, and a

few other special characters. If you attempt to use the output macro to display non-
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ASCII data (such as a doubleword integer in 2’s complement form), there will be

strange results.

The output macro does not change any register contents, including the flag

register.

The input macro is used to input a string of characters from the keyboard. It

has two parameters, destination and length. The destination operand references a string

of bytes in the data segment and the length operand references the number of bytes

reserved in that string. The destination string should be at least two bytes longer than

the actual number of characters to be entered; this allows for the operating system to

add carriage return and linefeed characters when you press Enter. The input macro

replaces the carriage return character by a null byte, so that the result is a null-termi-

nated string stored at destination.

The input macro changes only memory at the specified destination. It does not

change any register contents, including the flag register.

The name dtoa (double to ASCII) describes the function of this macro. It takes

a doubleword length source containing a 2’s complement integer, and produces a

string of exactly 11 ASCII characters representing the same integer in the decimal num-

ber system. The source operand is normally a register or memory operand. The destina-

tion will always be a 11-byte area of storage in the data segment reserved with a BYTE

directive. The string of characters produced will have leading blanks if the number is

shorter than 11 characters. If the number is negative, a minus sign will immediately pre-

cede the digits. Since the decimal range for a word-length 2’s complement number is

� 2147483648 to 2147483647, there is no danger of generating too many characters to fit

in a 11-byte-long field. A positive number will always have at least one leading blank.

The dtoa macro alters only the 11-byte area of memory that is the destination

for the ASCII codes. No registers are changed, including the flag register.

The atod (ASCII to double) macro is in many ways the inverse of the dtoa

macro. It has only a single operand, the address of a string of ASCII character codes in stor-

age, and it scans this area of memory for characters that represent a decimal number. If it

finds characters for a decimal number in the range � 2,147,483,648 to 2,147,483,647, then

the doubleword-length 2’s complement form of the number is placed in the EAX register.

The source string may contain any number of leading blanks. These are skipped by

atod. There may then be the ASCII code for � (minus) or the ASCII code for + (plus). A num-

ber is assumed positive if there is no leading sign. Codes for digits 0 through 9 must immedi-

ately follow the optional sign. Once a digit code is encountered, atod continues scanning

until any character other than a digit is encountered. Such a character terminates the scan.
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Problems may arise when the atod macro is used. The macro may find no digit

code; this would be the case if a space character were between a minus sign and the first

digit of a number, or if the source string began with the code for a letter. The decimal num-

ber could be too large to store in doubleword-length 2’s complement form. If any of these

things occurs, a value of 00000000 is placed in EAX and the overflow flag OF is set to 1.

If atod is able to successfully convert a string of ASCII characters, then the

overflow flag OF is set to 0. In all cases, the SF, ZF, and PF flags are set according to the

value returned in EAX as follows:

• SF is 1 if the number is negative, and 0 otherwise

• ZF is 1 if the number is 0, and 0 if the number is nonzero

• PF reflects the parity of the number returned in EAX

In addition, CF is 0 and DF is unchanged. No registers other than EAX and the flag regis-

ter are changed.

The atod macro will typically be used immediately after the input macro. The

input macro produces a string of ASCII codes, including a trailing null character. When

atod is applied to this string, the null character serves as a terminating character for the

scan. If atod is applied to a string that comes from some source other than input, the

programmer must ensure that it has some trailing nondigit character to prevent atod

from scanning too far.

The atoi (ASCII to integer) and itoa (integer to ASCII) macros are the word-

length versions of atod and dtoa. The atoi macro scans a string of characters and pro-

duces the corresponding word-length 2’s complement value in AX. The itoa macro

takes the 2’s complement value stored in a word-length source and produces a string of

exactly six characters representing this value in decimal. These macros are useful if you

are dealing with values in the range � 32,768 to 32,767.

Exercises 3.7

1. Why wasn’t the dtoa macro designed to produce a smaller number of

ASCII codes? What is important about the number 11?

2. Why wasn’t the itoa macro designed to produce a smaller number of

ASCII codes? What is important about the number six?

3. Given the data segment definition

response1 BYTE     10 DUP(?)
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and the code segment macro

input     response1, 10

(a) What ASCII codes will be stored in the data segment if

–578<Enter>

is typed at run time?

(b) If the macro

atod      response1

follows the above input macro, what will be in the EAX register

and what will be the values of the OF, SF, and ZF flags?

4. Given the data segment definition

response2 BYTE     10 DUP(?)

and the code segment macro

input     response2, 10

(a) what ASCII codes will be stored in the data segment if

123456<Enter>

is typed at run time?

(b) If the macro

atoi      response2

follows the above input macro, what will be in the AX register and

what will be the values of the OF, SF, and ZF flags?

5. Suppose a program contains the data segment definitions

value1    DWORD    ?

result1   BYTE     11 DUP(?)

BYTE     ' sum', 0dh, 0ah, 0

and the code segment macro

dtoa      result1, value1
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(a) Assuming that at run time the doubleword referenced by value1

contains FFFFFF1A, what codes will be placed in storage at

result1 by the dtoa macro?

(b) If the dtoa macro is followed by

output    result1

what will be displayed on the monitor?

6. Suppose a program contains the data segment definitions

result2   BYTE     6 DUP(?)

BYTE     ' total', 0dh, 0ah, 0

and the code segment macro

itoa     result2, BX

(a) Assuming that at run time the BX register contains 1AFF, what

codes will be placed in storage at result2 by the itoa macro?

(b) If the itoa macro is followed by

output   result5

what will be displayed on the monitor?

Chapter Summary

Chapter 3 introduced 80x86 assembly language as translated by the

Microsoft MASM assembler.

An assembly language comment always starts with a semicolon.

Other statements have the format

name  mnemonic  operand(s)  ;comment

where some of these fields may be optional.

The three types of assembly language statements are:

• instructions—each corresponds to a CPU instruction

• directives—tell the assembler what to do

• macros—expand into additional statements
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An assembly language program consists mainly of a data segment

in which variables are defined and a code segment that contains state-

ments to be executed at run time. To get an executable program, one must

translate the program to object code using an assembler and then link the

program using a linker. An executable program can be traced with a

debugger like Windbg.

BYTE, DWORD, or WORD directives reserve bytes, doublewords, or

words of storage and optionally assign initial values.

Instruction operands have three modes:

• immediate—data built into the instruction

• register—data in a register

• memory—data in storage

Memory mode operands come in several formats, two of which are

• direct—at an address in the instruction

• register indirect—data at an address in a register

Several macros for input and output are defined in the file IO.H.

They call procedures whose assembled versions are in the file IO.OBJ. The

macros are:

• output—to display a string on the monitor

• input—to input a string from the keyboard

• atod—to convert a string to a doubleword-length 2’s complement

number

• dtoa—to convert a doubleword-length 2’s complement number to a

string

• atoi—to convert a string to a word-length 2’s complement number

• itoa—to convert a word-length 2’s complement number to a string
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CHAPTER 4

4.1 Copying Data

4.2 Integer Addition and

Subtraction

Instructions

4.3 Multiplication

Instructions

4.4 Division Instructions

4.5 Addition and

Subtraction of Larger

Numbers

4.6 Something Extra:

Levels of Abstraction

and Microcode

Basic Instructions

This chapter covers instructions used to copy data

from one location to another and instructions

used for integer arithmetic. It specifies what types

of operands are allowed for the various instruc-

tions. The concepts of time and space efficiency

are introduced. Finally, some methods are given

for accomplishing equivalent operations even

when the desired operand types are not allowed.

After studying this chapter you will know how to

copy data between memory and CPU registers,

and between two registers. You will also know

how to use 80x86 addition, subtraction, multipli-

cation, and division instructions, and how execu-

tion of these instructions affects flags.
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4.1 Copying Data

Most computer programs copy data from one location to another. With 80x86 machine

language, this copying job is done by mov (move) instructions. Each mov instruction

has the form

mov  destination, source

and copies a byte, word, or doubleword value from the source operand location to the

destination operand location. The value stored at the source location is not changed. The

destination location must be the same size as the source. A mov instruction is similar to

a simple assignment statement in a high-level language. For example, the Pascal or Ada

assignment statement

Count := Number

might correspond directly to the assembly language instruction

mov  Count, ecx        ; Count := Number

assuming that the ECX register contains the value of Number and that Count references a

doubleword in memory. The analogy between high-level language assignment statements

and mov instructions cannot be carried too far. For example, the assignment statement

Count := 3*Number + 1

cannot be coded with a single mov instruction. Multiple instructions are required to evaluate

the right-hand expression before the resulting value is copied to the destination location.

One limitation of the 80x86 architecture is that not all “logical” combinations of

source and destination operands are allowed. In particular, you cannot have both source

and destination in memory. The instruction

mov  Count, Number    ; illegal for two memory operands

is not allowed if both Count and Number reference memory locations.

All 80x86 mov instructions are coded with the same mnemonic. The assembler

selects the correct opcode and other bytes of the machine code by looking at the

operands as well as the mnemonic.

Figure 4.1 lists mov instructions that have an immediate source operand and a

register destination operand. The number of clock cycles it takes to execute each instruc-

tion is given for 80386, 80486, and Pentium processors. Although little production pro-

gramming is actually done in assembly language, some assembly language code is

written in the interest of obtaining very efficient procedures. Time efficiency is often
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Destination Clock Cycles Number

Operand Source Operand 386 486 Pentium of Bytes Opcode

register 8 immediate byte 2 1 1 2

AL B0

CL B1

DL B2

BL B3

AH B4

CH B5

DH B6

BH B7

register 16 immediate word 2 1 1 3 (plus prefix byte)

AX B8

CX B9

DX BA

BX BB

SP BC

BP BD

SI BE

DI BF

register 32 immediate doubleword 2 1 1 5

EAX B8

ECX B9

EDX BA

EBX BB

ESP BC

EBP BD

ESI BE

EDI BF

Figure 4.1 Immediate-to-register mov instructions

measured by the length of time it takes to execute a program, and this depends on the

number of clock cycles it takes to execute its instructions. Space efficiency refers to the

size of the code—a small executable file may be important if the program must be stored

in ROM, for example. Figure 4.1 also shows the number of bytes for each instruction.
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The length of time an instruction takes to execute is measured in clock cycles.

To determine the actual time, you must know the clock speed of the processor. The Intel

8088 in the original IBM PC had a clock speed of 4.77 MHz; that is, 4,770,000 cycles per

second. Many 80x86 personal computers now operate at speeds higher than 200 MHz;

that is, 200,000,000 cycles per second. These rates translate into about 210 ns (ns =

nanosecond, 10� 9 seconds) per clock cycle for the original IBM PC or 5 ns per clock cycle

for a 200 MHz machine. Microcomputers have gotten faster not only because of faster

clock speeds, but because the same instructions often execute in fewer clock cycles for

later members of the same processor family.

The number of bytes for each instruction is the same for the Intel 80386, 80486,

and Pentium processors, which is because the object code is identical. It would also be

the same for 8086, 8088, 80186, and 80286 processors except that no 32-bit registers

were available, so the last third of Fig. 4.1 would not apply.

It may be surprising that the op codes for word and doubleword immediate-to-

register mov instructions are identical. The 80x86 processor maintains a segment

descriptor for each active segment. One bit of this descriptor determines whether

operands are 16-bit or 32-bit length by default. With the assembler directives and link

options used in this book, this bit is set to 1 to indicate 32-bit operands. Therefore, the

B8 opcode means, for instance, to copy the immediate doubleword following the opcode

to EAX, not an immediate word to AX. If you code the 16-bit instruction

mov  ax, 0

then the assembler inserts the prefix byte 66 in front of the object code B8 0000, so that

the code generated is actually 66 B8 0000. In general, the prefix byte 66 tells the assem-

bler to switch from the default operand size (32-bit or 16-bit) to the alternative size (16-

bit or 32-bit) for the single instruction that follows the prefix byte.

As was discussed in Chapter 2, instructions sometimes affect various flag bits

in the EFLAGS register. In general, an instruction may have one of three effects:

• no flags are altered

• specific flags are given values depending on the results of the

instruction

• some flags may be altered, but their settings cannot be predicted

All mov instructions fall in the first category: No mov instruction changes any flag.

Figure 4.2 lists the mov instructions that have an immediate source and a mem-

ory destination. Again, the 80486 and Pentium processors execute these instructions in a
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Destination Clock Cycles Number

Operand Source Operand 386 486 Pentium of Bytes Opcode

memory byte immediate byte 2 1 1 C6

direct 7

register indirect 3

other 3–8

memory word immediate word 2 1 1 C7

direct 8

register indirect 4

other 4–9

memory doubleword immediate doubleword 2 1 1 C7

direct 10

register indirect 6

other 6–11

Figure 4.2 Immediate-to-memory mov instructions

single clock cycle, while the 80386 takes two clock cycles. This is a relatively minor

improvement compared to the original 8088, which took at least 14 clock cycles for each

of these instructions.

The number of bytes taken by a memory operand depends on the type of

operand. A direct operand must be encoded as a 32-bit address, four bytes. A register indi-

rect operand is encoded as three bits in the second object code byte. We will later examine

encodings of other types of memory operands. The 66 prefix byte is again required for 16-

bit operands; it is not shown in the table since it is technically not part of the instruction.

The C6 and C7 opcodes listed in Fig. 4.2 for immediate-to-memory moves can

also be used for immediate-to-register moves. However, these forms require an extra

byte of object code, and an assembler normally chooses the shorter form given in Fig. 4.1.

Figure 4.3 lists most of the remaining 80x86 mov instructions. This table intro-

duces some new terminology. Register 32 refers to one of the 32-bit registers EAX,

EBX, ECX, EDX, EBP, ESI, EDI, or ESP. Similarly register 16 refers to one of the 16 bit

registers AX, BX, CX, DX, SP, BP, SI or DI, and register 8 refers to an eight bit register,

AL, AH, BL, BH, CL, CH, DL, or DH.
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Destination Clock Cycles Number

Operand Source Operand 386 486 Pentium of Bytes Opcode

register 8 register 8 2 1 1 2 8A

register 16 register 16 2 1 1 2 8B

register 32 register 32 2 1 1 2 8B

register 8 memory byte 4 1 1 2–7 8A

register 16 memory word 4 1 1 2–7 8B

register 32 memory doubleword 4 1 1 2–7 8B

AL direct memory byte 4 1 1 5 A0

AX direct word 4 1 1 5 A1

EAX direct doubleword 4 1 1 5 A1

memory byte register 8 2 1 1 2–7 88

memory word register 16 2 1 1 2–7 89

memory doubleword register 32 2 1 1 2–7 89

direct memory byte AL 2 1 1 5 A2

direct word AX 2 1 1 5 A3

direct doubleword EAX 2 1 1 5 A3

segment register register 16 2 3 1 2 8E

register 16 segment register 2 3 1 2 8C

segment register memory word 2 3+ 2+ 2–7 8E

memory word segment register 2 3 1 2–7 8C

Figure 4.3 Additional mov instructions

Note that sometimes the same opcode is used for what appear to be distinct

instructions, for example for a register 8 to register 8 move and for a memory byte to reg-

ister 8 move. In these cases the second byte of the instruction determines not only the

destination register, it also encodes the source register or indicates the mode of a mem-

ory source byte. The structure of this byte will be considered more in Chapter 9.

Two distinct instructions copy a memory operand to the accumulator. For

example, either of opcodes A1 and 8B could be used to encode the instruction mov

eax,Number. The difference is that the 8B instruction opcode can also be used to copy

doublewords to other destination registers, while the A1 opcode is specific to the accu-

mulator. An assembler normally uses the A1 version since it is one byte shorter.

It is important to realize that, particularly with older processors, instructions that

access memory are slower than instructions that use data in registers. It should also be
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noted that instructions that access memory may require more than the number of clock

cycles listed. One reason this can occur is memory that does not respond rapidly enough; in

this case wait states, wasted clock cycles, are inserted until the memory responds. Even

with fast memory, extra cycles can be required to access a word or doubleword that is not

aligned in memory—that is, stored on an address that is a multiple of two or four, respec-

tively. A programmer should plan to keep frequently-used data in registers when possible.

This book does not discuss mov instructions that copy data to and from special

registers used primarily in systems programming.

When you first look at all the mov instructions summarized in Figs. 4.1–4.3, you

may think that you can use them to copy any source value to any destination location.

However, many seemingly logical combinations are not available. These include

• a move with both source and destination in memory

• immediate source to segment register destination

• any move to or from the flag register

• any move to the instruction pointer register

• a move from one segment register to another segment register

• any move where the operands are not the same size

• a move of several objects

You may need to do some of these operations. We describe below how to accomplish

some of them.

Although there is no mov instruction to copy from a memory source to a memory

destination, two moves using an intermediate register can accomplish the same thing.

For doubleword length data referenced by Count and Number, the illegal instruction

mov  Count, Number      ; illegal for two memory operands

can be replaced by

mov  eax, Number         ; Count := Number

mov  Count, eax

each using the accumulator EAX and one direct memory operand. Some register other

than EAX could be used, but each of these instructions using the accumulator requires

five bytes, while each of the corresponding instructions using some other register takes

six bytes—EAX is chosen in the interest of space efficiency.

To load an immediate value into a segment register, one can use an immediate

to register 16 move, followed by a register 16 to segment register move. This sequence

is needed to initialize the data segment register DS when coding with segmented

memory models.

TEAM LinG - Live, Informative, Non-cost and Genuine!



92 Basic Instructions

Although the flag register and the instruction pointer cannot be set by mov

instructions, other instructions do change their values. The instruction pointer register is

routinely updated as new instructions are fetched and it is automatically changed by

jump, call, and return instructions. Individual flags are set by a variety of instructions,

and it is possible and occasionally desirable to set all bits in the flag register to specified

values; some techniques will be covered later.

To change the size of data from a word to a byte, it is legal, for example, to

transfer a word to a register 16, and then move out just the high-order or low-order byte

to a destination. Going the other way, one can piece together two bytes in the high and

low bytes of a 16-bit register and then copy the resulting word to some destination.

These techniques are occasionally useful, and others will be discussed in Chapter 8. It is

sometimes necessary to extend a byte-length number to word or doubleword length, or a

word length number to four bytes; instructions for doing this are covered in Section 4.4.

Suppose that you have source and destination locations declared as

source    DWORD 4 DUP(?)

dest      DWORD 4 DUP(?)

and that you want to copy all four doublewords from the source to the destination. One

way to do this is with four instructions

mov  eax, source         ; copy first doubleword

mov  dest, eax

mov  eax, source+4       ; copy second doubleword

mov  dest+4, eax

mov  eax, source+8       ; copy third doubleword

mov  dest+8, eax

mov  eax, source+12      ; copy fourth doubleword

mov  dest+12, eax 

An address like source+4 refers to the location four bytes (one doubleword) after the

address of source. Since the four doublewords reserved at source are contiguous in

memory, source+4 refers to the second doubleword. This code clearly would not be

space efficient if you needed to copy 40 or 400 doublewords. In Chapter 5 you will learn

how to set up a loop to copy multiple objects and in Chapter 7 you will learn how to use

string operations to copy large blocks of data.

The 80x86 has a very useful xchg instruction that exchanges data in one loca-

tion with data in another location. It accomplishes in a single instruction the operation

that often requires three high-level language instructions. Suppose Value1 and Value2

are being exchanged. In a design or a high-level language, this might be done using

Temp := Value1;     { swap Value1 and Value2 }

Value1 := Value2;

Value2 := Temp;
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Assuming that Value1 is stored in the EAX register and Value2 is stored in the EBX

register, the above swap can be coded as

xchg   eax, ebx        ; swap Value1 and Value2

Instead of using the xchg instruction, one could code

mov    ecx, eax        ; swap Value1 and Value2

mov    eax, ebx

mov    ebx, ecx

However, each of these mov instructions takes one clock cycle and two bytes for a total

of three clock cycles and six bytes of code; the xchg instruction requires only one byte

and two clock cycles (on a Pentium). In addition, it is much easier to write one instruc-

tion than three, and the resulting code is easier to understand.

Figure 4.4 lists the various forms of the xchg instruction. Since 16-bit and 32-bit

instructions are the same, distinguished by a prefix byte, they are shown together in the

table. Although the table does not show it, the first operand can be a memory operand

when the second operand is a register; the assembler effectively reverses the order of the

operands and uses the form shown in the table.

The xchg instructions illustrate again that the accumulator sometimes plays a

special role in a computer’s architecture. There are special instructions for swapping

Clock Cycles Number

Operand1 Operand2 386 486 Pentium of Bytes Opcode

register 8 register 8 3 3 3 2 86

register 8 memory byte 5 5 3 2–7 86

EAX/AX register 32/16 3 3 2 1

ECX/CX 91

EDX/DX 92

EBX/BX 93

ESP/SP 94

EBP/BP 95

ESI/SI 96

EDI/DI 97

register 32/16 register 32/16 3 3 3 2 87

register 32/16 memory 32/16 5 5 3 2–7 87

Figure 4.4 xchg instructions
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another register with the accumulator that are both faster than and require fewer bytes

than the corresponding general-use register-to-register exchanges. These instructions

can be also be used with the accumulator as the second operand.

Note that you cannot use an xchg instruction to swap two memory operands.

In general, 80x86 instructions do not allow two memory operands.

Like mov instructions, xchg instructions do not alter any status flag; that is,

after execution of an xchg instruction, the contents of the EFLAGS register remains the

same as it was before execution of the instruction.

Exercises 4.1

1. For each part of this problem, assume the “before” values when the

given mov instruction is executed. Give the requested “after” values.

Before Instruction After

(a) BX:  FF 75

CX:  01 A2 mov  bx, cx BX, CX

(b) AX:  01 A2 mov  ax, 100 AX

(c) EDX:  FF 75 4C 2E

Value:  DWORD � 1 mov  edx, Value EDX, Value

(d) AX:  01 4B mov  ah, 0 AX

(e) AL:  64 mov  al, –1 AL

(f) EBX:  00 00 3A 4C

Value:  DWORD  ? mov  Value, ebx EBX, Value

(g) ECX:  00 00 00 00 mov  ecx, 128 ECX

2. Give the opcode for each instruction in Exercise 1.

3. For each part of this problem, assume the “before” values when the

given xchg instruction is executed. Give the requested “after” values.

Before Instruction After

(a) BX:  FF 75

CX:  01 A2 xchg  bx, cx BX, CX

(b) AX:  01 A2

Temp:  WORD  � 1 xchg  Temp, ax AX, Temp

(c) DX:  FF 75 xchg  dl, dh DX

(d) AX:  01 4B

BX:  5C D9 xchg  ah, bl AX, BX

(e) EAX:  12 BC 9A 78 xchg  eax, edx EAX, EDX

EDX:  56 DE 34 F0
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4. Give the opcode for each instruction in Exercise 3.

5. Suppose that number references a doubleword in the data segment of a

program, and you wish to swap the contents of that doubleword with

the contents of the EDX register. Two possible methods are

xchg   edx, number

and

mov    eax, edx

mov    edx, number

mov    number, eax

(a) What is the total number of clock cycles and the total number of

bytes required by each of these methods assuming you are using a

Pentium computer? Assuming you are using a 80386 computer?

(b) How many nanoseconds would it take to execute each set of

instructions using a 166 MHz Pentium computer? Using a 20 MHz

80386 computer?

(c) What difference would it make in the answers to (a) if the EBX reg-

ister rather than the accumulator EAX were used in the “three-

move” method?

6. Note that xchg cannot swap two values in memory. Write a sequence

of mov and/or xchg instructions to swap doublewords stored at Value1

and Value2. Assume that any register 32 you want to use is available,

and make your code as time efficient and space efficient as possible.

7. How many clock cycles and how many bytes are required for the follow-

ing instruction? Assume a Pentium system.

mov    dx, [ebx]        ; copy table entry

4.2 Integer Addition and Subtraction Instructions

The Intel 80x86 microprocessor has add and sub instructions to perform addition and

subtraction using byte, word, or doubleword length operands. The operands can be

interpreted as unsigned numbers or 2’s complement signed numbers. The 80x86 archi-

tecture also has inc and dec instructions to increment (add 1 to) and decrement
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(subtract 1 from) a single operand, and a neg instruction that negates (takes the 2’s com-

plement of) a single operand.

One difference between the instructions covered in this section and the mov

and xchg instructions of Section 4.1 is that add, sub, inc, dec, and neg instructions all

update flags in the EFLAGS register. The SF, ZF, OF, PF, and AF flags are set according

to the value of the result of the operation. For example, if the result is negative, then the

sign flag SF will be set to one; if the result is zero, then the zero flag ZF will be set to one.

The carry flag CF is also given a value by each of these instructions except inc and dec.

Each add instruction has the form

add   destination, source

When executed, the integer at source is added to the integer at destination and the sum

replaces the old value at destination. The sub instructions all have the form

sub   destination, source

When a sub instruction is executed, the integer at source is subtracted from the integer

at destination and the difference replaces the old value at destination. For subtraction, it

is important to remember that the difference calculated is

destination – source

or “operand 1 minus operand 2.” With both add and sub instructions the source (second)

operand is unchanged. Here are some examples showing how these instructions func-

tion at execution time.

Example

Before Instruction executed After

AX: 00 75 add  ax, cx
CX: 01A2

AX

CX

SF 0  ZF 0  CF 0  OF 0

02

01

17

A2
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EAX: 00 00 00 75 sub  eax, ecx
ECX: 00 00 01 A2

AX: 77 AC add  ax, cx
CX: 4B 35

EAX: 00 00 00 75 sub  ecx, eax
ECX: 00 00 01 A2

BL:  4B add  bl, 4

DX:  FF 20 sub  dx, Value
word at value: FF 20

EAX:  00 00 00 09 add  eax, 1

doubleword at Dbl: sub   Dbl, 1
00 00 01 00

Dbl

SF 0  ZF 0  CF 0  OF 0

00 00 00 FF

EAX

SF 0  ZF 0  CF 0  OF 0

00 00 00 0A

DX

Value

SF 0  ZF 1  CF 0  OF 0

00

FF

00

20

BL

SF 0  ZF 0  CF 0  OF 0

4F

EAX

ECX

SF 0  ZF 0  CF 0  OF 0

00

00

00

00

00

01

75

2D

AX

CX

SF 1  ZF 0  CF 0  OF 1

C2

4B

E1

35

EAX

ECX

SF 1  ZF 0  CF 0  OF 0

FF

00

FF

00

FE

01

D3

A2
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Addition and subtraction instructions set the sign flag SF to be the same as the

high-order bit of the result. Thus, when these instructions are used to add or subtract 2’s

complement integers, SF=1 indicates a negative result. The zero flag ZF is 1 if the result

is zero, and 0 if the result is nonzero. The carry flag CF records a carry out of the high

order bit with addition or a borrow with subtraction. The overflow flag OF records over-

flow, as discussed in Chapter 2.

One reason that 2’s complement form is used to represent signed numbers is

that it does not require special hardware for addition or subtraction; the same circuits

can be used to add unsigned numbers and 2’s complement numbers. The flag values

have different interpretations, though, depending on the operand type. For instance,

if you add two large unsigned numbers and the high order bit of the result is 1, then

SF will be set to 1, but this does not indicate a negative result, only a relatively large

sum. For an add with unsigned operands, CF=1 would indicate that the result was

too large to store in the destination, but with signed operands, OF=1 would indicate a

size error.

Figure 4.5 gives information for both addition and subtraction instructions. For

each add there is a corresponding sub instruction with exactly the same operand types,

number of clock cycles, and number of bytes of object code, so that it is redundant to

make separate tables for add and sub instructions.

Figure 4.5 makes it easy to see that addition or subtraction operands are the

fastest when both operands are in registers and the slowest when the destination

operand is in memory. It is interesting to note that it is faster to add an operand in mem-

ory to the contents of a register than to add the value in a register to a memory operand;

this is true since memory must be accessed twice in the latter case, once to get the first

addend and once to store the sum. With the 80x86, only one operand can be in memory.

Many computer architectures do not have instructions for arithmetic when the destina-

tion is a memory operand. Some other processors allow two memory operands for arith-

metic operations.

With add and sub, the accumulator again has special instructions, this time

when EAX, AX, or AL is the destination and the source is immediate. These instructions

are not any faster than the other immediate-to-register instructions but do take one less

byte of object code.

The total number of object code bytes for instructions with “+” entries in Fig.

4.5 can be calculated once you know the memory operand type. In particular, for direct

mode, you add four bytes for the 32-bit address. For register indirect mode, no additional

byte is required.
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Destination Clock Cycles Number Opcode

Operand Source Operand 386 486 Pentium of Bytes add sub

register 8 immediate 8 2 1 1 3 80 80

register 16 immediate 8 2 1 1 3 83 83

register 32 immediate 8 2 1 1 3 83 83

register 16 immediate 16 2 1 1 4 81 81

register 32 immediate 32 2 1 1 6 81 81

AL immediate 8 2 1 1 2 04 2C

AX immediate 16 2 1 1 3 05 2D

EAX immediate 32 2 1 1 5 05 2D

memory byte immediate 8 7 3 3 3+ 80 80

memory word immediate 8 7 3 3 3+ 83 83

memory doubleword immediate 8 7 3 3 3+ 83 83

memory word immediate 16 7 3 3 4+ 81 81

memory doubleword immediate 32 7 3 3 6+ 81 81

register 8 register 8 2 1 1 2 02 2A

register 16 register 16 2 1 1 2 03 2B

register 32 register 32 2 1 1 2 03 2B

register 8 memory byte 6 2 2 2+ 02 2A

register 16 memory word 6 2 2 2+ 03 2B

register 32 memory doubleword 6 2 2 2+ 03 2B

memory byte register 8 7 3 3 2+ 00 28

memory word register 16 7 3 3 2+ 01 29

memory doubleword register 32 7 3 3 2+ 01 29

Figure 4.5 add and sub instructions

Notice that an immediate source can be a single byte even when the destina-

tion is a word or doubleword. Since immediate operands are often small, this makes the

object code more compact. Byte-size operands are sign-extended to word or double-

word size at run time before the addition or subtraction operation. If the original operand

is negative (viewed as 2’s complement number), then it is extended with one or three FF

bytes to get the corresponding word or doubleword-length value. A non-negative
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Destination Clock Cycles Number Opcode

Operand 386 486 Pentium of Bytes inc dec

register 8 2 1 1 2 FE FE

register 16 2 1 1 1

AX 40 48

CX 41 49

DX 42 4A

BX 43 4B

SP 44 4C

BP 45 4D

SI 46 4E

DI 47 4F

register 32 2 1 1 1

EAX 40 48

ECX 41 49

EDX 42 4A

EBX 43 4B

ESP 44 4C

EBP 45 4D

ESI 46 4E

EDI 47 4F

memory byte 6 3 3 2+ FE FE

memory word 6 3 3 2+ FF FF

memory doubleword 6 3 3 2+ FF FF

Figure 4.6 inc and dec instructions

operand is simply extended with one or three 00 bytes. In both cases this is equivalent to

copying the original sign bit to the high order 8 or 24 bit positions.

It may be surprising that some add and sub instructions have the same

opcode. In such cases, one of the fields in the second instruction byte distinguishes

between addition and subtraction. In fact, these same opcodes are used for additional

instructions that are covered later in this book.

The inc (increment) and dec (decrement) instructions are special-purpose addi-

tion and subtraction instructions, always using 1 as an implied source. They have the forms

TEAM LinG - Live, Informative, Non-cost and Genuine!



4.2 Integer Addition and Subtraction Instructions 101

inc  destination

and

dec   destination

Like the add and sub instructions, these instructions are paired with respect to allow-

able operand types, clock cycles, and bytes of object code. They are summarized

together in Fig. 4.6.

The inc and dec instructions treat the value of the destination operand as an

unsigned integer. They affect the OF, SF, and ZF flags just like addition or subtraction of

one, but they do not change the carry flag CF. Here are examples showing the execution

of a few increment and decrement instructions:

Example

Before Instruction executed After

ECX:  00 00 01 A2 inc  ecx

AL:  F5 dec  al

word at Count:  00 09 inc  Count

BX:  00 01 dec   bx

EDX:  7F FF FF FF inc   edx EDX

SF 1  ZF 0  OF 1

80 00 00 00

BX

SF 0  ZF 1  OF 0

00 00

Count

SF 0  ZF 0  OF 0

00 0A

AL

SF 1  ZF 0  OF 0

F4

ECX

SF 0  ZF 0  OF 0

00 00 01 A3
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Destination Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

register 8 2 1 1 2 F6

register 16 2 1 1 2 F7

register 32 2 1 1 2 F7

memory byte 6 3 3 2 + F6

memory word 6 3 3 2 + F7

memory doubleword 6 3 3 2 + F7

Figure 4.7 neg instructions

The inc and dec instructions are especially useful for incrementing and

decrementing counters. They sometimes take fewer bytes of code and execute in fewer

clock cycles than corresponding addition or subtraction instructions. For example, the

instructions

add   cx, 1        ; increment loop counter

and

inc   cx           ; increment loop counter

are functionally equivalent. The add instruction requires three bytes (three bytes instead

of four since the immediate operand will fit in one byte), while the inc instruction

requires one byte. Either executes in two clock cycles on an 80386 machine or in one

clock cycle on an 80486 or Pentium, so execution times are identical.

In Fig. 4.6, note the fast, single-byte inc and dec instructions for word or dou-

bleword-size operands stored in registers. A register is the best place to keep a counter,

if one can be reserved for this purpose.

A neg instruction negates, or finds the 2’s complement of, its single operand.

When a positive value is negated the result is negative; a negative value will become

positive. Zero remains zero. Each neg instruction has the form

neg   destination

Figure 4.7 shows allowable operands for neg instructions.

Following are four examples illustrating how the neg instructions operate. In

each case the “after” value is the 2’s complement of the “before” value.
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Example

Before Instruction executed After

BX:  01 A2 neg  bx

DH:  F5 neg  dh

word at Flag:  00 01 neg  Flag

EAX:  00 00 00 00 neg   eax EAX

SF 0  ZF 1 

00 00 00 00

Flag

SF 1  ZF 0 

FF FF

DH

SF 0  ZF 0  

0B

BX

SF 1  ZF 0  

FE 5E

This section ends with an example of a complete, if unexciting, program that uses

these new instructions. The program inputs values for three numbers, x, y and z, evaluates

the expression � (x + y � 2z + 1) and displays the result. The design implemented is

prompt for and input value for x;

convert x from ASCII to 2’s complement form;

expression := x;

prompt for and input value for y;

convert y from ASCII to 2’s complement form;

add y to expression, giving x + y;

prompt for and input value for z;

convert z from ASCII to 2’s complement form;

calculate 2*z as (z + z);

subtract 2*z from expression, giving x + y � 2*z;
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add 1 to expression, giving x + y � 2*z + 1;

negate expression, giving � (x + y � 2*z + 1);

convert the result from 2’s complement to ASCII;

display the result;

To write an assembly language program, you need to plan how registers and

memory will be used. In this program the values of x, y, and z are not needed after they

are incorporated into the expression. Therefore they are not stored in memory. We will

assume that the numbers are not very large, so that values can be stored in words. A log-

ical place to keep the expression value would be the accumulator AX since some opera-

tions are faster with it, but this choice is impossible since the atoi macro always uses

AX as its destination. This leaves the general registers BX, CX, and DX; this program will

use DX. It is very easy to run out of registers when designing assembly language pro-

grams. Memory must often be used for values even though operations are slower. Some-

times values must be moved back and forth between registers and memory.

Figure 4.8 shows the source program listing. This program follows the same

general pattern of the example in Fig. 3.1. In the prompts, note the use of cr,Lf,Lf to

; program to input values for x, y and z

; and evaluate the expression – (x + y – 2z + 1)

; author:  R. Detmer

; date:  revised 8/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

include io.h            ; header file for input/output

cr      equ     0dh     ; carriage return character

Lf      equ     0ah     ; line feed

.STACK  4096             ; reserve 4096-byte stack

(continued)

Figure 4.8 Program to evaluate � (x + y � 2z + 1)
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.DATA                   ; reserve storage for data

Prompt1     BYTE   "This program will evaluate the expression",cr,Lf,Lf

BYTE   "    – (x + y – 2z + 1)",cr,Lf,Lf

BYTE   "for your choice of integer values.",cr,Lf,Lf

BYTE   "Enter value for x:  ",0

Prompt2     BYTE   "Enter value for y:  ",0

Prompt3     BYTE   "Enter value for z:  ",0

Value       BYTE   16 DUP (?)

Answer      BYTE   cr,Lf,"The result is "

Result      BYTE   6 DUP (?)

BYTE   cr,Lf,0

.CODE                           ; start of main program code

_start:

output Prompt1          ; prompt for x

input  Value,16         ; read ASCII characters

atoi   Value            ; convert to integer

mov    dx,ax            ; x

output Prompt2          ; prompt for y

input  Value,16         ; read ASCII characters

atoi   Value            ; convert to integer

add    dx,ax            ; x + y

output Prompt3          ; prompt for z

input  Value,16         ; read ASCII characters

atoi   Value            ; convert to integer

add    ax,ax            ; 2*z

sub    dx,ax            ; x + y – 2*z

inc    dx               ; x + y – 2*z + 1

neg    dx               ; – (x + y – 2*z + 1)

itoa   Result,dx        ; convert to ASCII characters

output Answer           ; output label and result

INVOKE ExitProcess, 0   ; exit with return code 0

PUBLIC _start                       ; make entry point public

END                                 ; end of source code

Figure 4.8 (continued)
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This program will evaluate the expression

– (x + y – 2z + 1)

for your choice of integer values.

Enter value for x:  10

Enter value for y:  3

Enter value for z:  5

The result is     –4

Figure 4.9 Sample run of program

skip to a new line and to leave an extra blank line; it is not necessary to put in a second

cr since the cursor will already be at the beginning of the new line after one carriage

return character is displayed. The value of 2*z is found by adding z to itself; multiplica-

tion will be covered in the next section, but it is more efficient to compute 2*z by addi-

tion. Finally, note that the comments in this program do not simply repeat the

instruction mnemonics; they help the human reader figure out what is really going on.

Figure 4.9 illustrates a sample run of this program. As in the previous example,

user input is underlined.

Exercises 4.2

1. For each instruction, give the opcode, the number of bytes of object

code, and the number of clock cycles required for execution on a Pen-

tium system. Assume that Value references a word in memory and that

Double references a doubleword.

(a) add  ax,Value (b) sub  Value,ax

(c) sub  eax,10 (d) add  Double,10

(e) add  eax,[ebx] (f) sub  [ebx],eax

(g) sub  dl,ch (h) add  bl,5

(i) inc  bx (j) dec  al

(k) dec  Double (l) inc  BYTE PTR [esi]

(m) neg  eax (n) neg  bh

(o) neg  Double (p) neg  WORD PTR [ebx]
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2. For each part of this problem, assume the “before” values when the

given instruction is executed. Give the requested “after” values.

Before Instruction After

(a) EBX:  FF FF FF 75

ECX:  00 00 01 A2 add  ebx,ecx EBX, ECX, SF, ZF, CF, OF

(b) EBX:  FF FF FF 75

ECX:  00 00 01 A2 sub  ebx,ecx EBX, ECX, SF, ZF, CF, OF

(c) BX:  FF 75

CX:  01 A2 sub  cx,bx BX, CX, SF, ZF, CF, OF

(d) DX:  01 4B add  dx,40h DX, SF, ZF, CF, OF

(e) EAX:  00 00 00 64 sub  eax,100 EAX, SF, ZF, CF, OF

(f) AX:  0A 20 word at Value,

word at Value:  FF 20 add  ax,Value AX, SF, ZF, CF, OF

(g) AX:  0A 20 word at Value,

word at Value:  FF 20 sub  Value,ax AX, SF, ZF, CF, OF

(h) CX:  03 1A inc  cx CX, SF, ZF

(i) EAX:  00 00 00 01 dec  eax EAX, SF, ZF

(j) word at Count:  00 99 inc  Count word at Count,

SF, ZF

(k) word at Count:  00 99 dec  count word at Count,

SF, ZF

(l) EBX:  FF FF FF FF neg  ebx EBX, SF, ZF

(m) CL:  5F neg  cl CL, SF, ZF

(n) word at Value:  FB 3C neg  Value word at Value,

SF, ZF

Programming Exercises 4.2

For complete programs, prompts for input must make it clear what is to

be entered, and output must be appropriately labeled.

1. Write a complete 80x86 assembly language program to prompt for val-

ues of x, y, and z and display the value of the expression x � 2y + 4z.

Allow for 16-bit integer values.

2. Write a complete 80x86 assembly language program to prompt for val-

ues of x, y, and z and display the value of the expression 2(� x + y � 1) +

z. Allow for 32-bit integer values.

TEAM LinG - Live, Informative, Non-cost and Genuine!



108 Basic Instructions

3. Write a complete 80x86 assembly language program to prompt for the

length and width of a rectangle and to display its perimeter (2*length

+ 2*width).

4.3 Multiplication Instructions

The 80x86 architecture has two multiplication instruction mnemonics. Any imul

instruction treats its operands as signed numbers; the sign of the product is determined

by the usual rules for multiplying signed numbers. A mul instruction treats its operands

as unsigned binary numbers; the product is also unsigned. If only non-negative num-

bers are to be multiplied, mul should usually be chosen instead of imul since it is a lit-

tle faster.

There are fewer variants of mul than of imul, so we consider it first. The mul

instruction has a single operand; its format is

mul   source

The source operand may be byte, word, or doubleword-length, and it may be in a register or

in memory. The location of the other number to be multiplied is always the accumulator—AL

for a byte source, AX for a word source, and EAX for a doubleword source. If source has byte

length, then it is multiplied by the byte in AL; the product is 16 bits long, with a destination

of the AX register. If source has word length, then it is multiplied by the word in AX; the

product is 32 bits long, with its low order 16 bits going to the AX register and its high order

16 bits going to the DX register. If source is a doubleword, then it is multiplied by the double-

word in EAX; the product is 64 bits long, with its low order 32 bits in the EAX register and its

high order 32 bits in the EDX register. For byte multiplication, the original value in AX is

replaced. For word multiplication, the original values in AX and DX are both wiped out. Simi-

larly, for doubleword multiplication the values in EAX and EDX are replaced by the product.

In each case the source operand is unchanged unless it is half of the destination location.

At first glance, it may seem strange that the product is twice the length of its

two factors. However, this also occurs in ordinary decimal multiplication; if, for example,

two four-digit numbers are multiplied, the product will be seven or eight digits long.

Computers that have multiplication operations often put the product in double-length

locations so that there is no danger that the destination location will be too small.

Even when provision is made for double-length products, it is useful to be able

to tell whether the product is the same size as the source; that is, if the high-order half is

zero. With mul instructions, the carry flag CF and overflow flag OF are set to 1 if the high
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Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

register 8 9–14 13–18 11 2 F6

register 16 9–22 13–26 11 2 F7

register 32 9–38 13–42 10 2 F7

memory byte 12–17 13–18 11 2 + F6

memory word 12–25 13–26 11 2 + F7

memory doubleword 12–41 13–42 10 2 + F7

Figure 4.10 mul instructions

order half of the product is not zero, but are cleared to 0 if the high order half of the prod-

uct is zero. These are the only meaningful flag values following multiplication operations;

previously set values of AF, PF, SF, and ZF flags may be destroyed. In Chapter 5, instruc-

tions checking flag values will be covered; it is possible to check that the high order half

of the product can be safely ignored.

Figure 4.10 summarizes the allowable operand types for mul instructions. No

immediate operand is allowed in a mul. Note the number of clock cycles required is

appreciably larger than for addition or subtraction instructions. The actual number of

clock cycles for the 80386 and 80486 depends on the numbers being multiplied.

Here are some examples to illustrate how the mul instructions work.

Example

Before Instruction executed After

AX: 00 05 mul  bx

BX: 00 02

DX: ?? ??

EAX: 00 00 00 0A mul  eax

EDX: ?? ?? ?? ??

EDX

EAX

CF, OF 0

00

00

00

00

00

00

00

64

DX

AX

CF, OF 0

00

00

00

0A
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AX:  ?? 05 mul  Factor

byte at Factor:  FF

AX

CF, OF 1 

04 FB

The first example shows multiplication of words in AX and BX. The contents

of DX are not used in the multiplication but are replaced by the high-order 16 bits of

the 32-bit product 0000000A. The carry and overflow flags are cleared to 0 since DX

contains 0000. The second example shows multiplication of EAX by itself, illustrating

that the explicit source for the multiplication can be the same as the other implicit fac-

tor. The final example shows multiplication of the byte in AL by a byte at Factor in

memory with value equivalent to the unsigned number 25510. The product is the

unsigned 16-bit number 04 FB, and since the high-order half is not zero, both CF and

OF are set to 1.

The signed multiplication instructions use mnemonic imul. There are three for-

mats, each with a different number of operands. The first format is

imul   source

the same as for mul, with source containing one factor and the accumulator the other.

Again, the source operand cannot be immediate. The destination is AX, DX:AX, or

EDX:EAX, depending on the size of the source operand. The carry and overflow flags are

set to 1 if the bits in the high-order half are significant, and cleared to 0 otherwise.

Notice the high-order half may contain all 1 bits for a negative product. Single-operand

imul instructions are summarized in Fig. 4.11. Notice that this table is identical to Fig.

Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

register 8 9–14 13–18 11 2 F6

register 16 9–22 13–26 11 2 F7

register 32 9–38 13–42 10 2 F7

memory byte 12–17 13–18 11 2 + F6

memory word 12–25 13–26 11 2 + F7

memory doubleword 12–41 13–42 10 2 + F7

Figure 4.11 imul instructions (single-operand format)
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4.10. Even the opcodes are the same for mul and single-operand imul instructions, with

a field in the second byte of the instruction distinguishing the two.

The second imul format is

imul   register, source

Here the source operand can be in a register, in memory, or immediate. The other factor

is in the register, which also serves as the destination. Operands must be words or dou-

blewords, not bytes. The product must “fit” in same size as the factors; if it does, CF and

OF are cleared to 0, if not they are set to 1.

Figure 4.12 summarizes two-operand imul instructions. Note that some of

these instructions have two byte long opcodes. Immediate operands can be either the

size of the destination register or a single byte. Single-byte operands are sign-

extended before multiplication—that is, the sign bit is copied to leading bit positions,

giving a 16 or 32-bit value that represents the same signed integer as the original 8-

bit operand.

The third imul format is

imul   register, source, immediate

With this version, the first operand, a register, is only the destination for the product; the

two factors are the contents of the register or memory location given by source and the

immediate value. Operands register and source are the same size, both 16-bit or both

Clock Cycles Number

Operand 1 Operand 2 386 486 Pentium of Bytes Opcode

register 16 register 16 9–22 13–26 11 3 0F AF

register 32 register 32 9–38 13–42 10 3 0F AF

register 16 memory word 12–25 13–26 11 3 + 0F AF

register 32 memory doubleword 12–41 13–42 10 3 + 0F AF

register 16 immediate byte 9–14 13–18 11 3 6B

register 16 immediate word 9–22 13–26 11 4 69

register 32 immediate byte 9–14 13–18 11 3 6B

register 32 immediate doubleword 9–38 13–42 10 6 69

Figure 4.12 imul instructions (two-operand format)
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Register Immediate Clock Cycles Number

Destination Source Operand 386 486 Pentium of Bytes Opcode

register 16 register 16 byte 9–14 13–18 10 3 6B

register 16 register 16 word 9–22 13–26 10 4 69

register 16 memory 16 byte 12–17 13–18 10 3+ 6B

register 16 memory 16 word 12–25 13–26 10 4+ 69

register 32 register 32 byte 9–14 13–18 10 3 6B

register 32 register 32 doubleword 9–38 13–42 10 6 69

register 32 memory 32 byte 12–17 13–18 10 3+ 6B

register 32 memory 32 doubleword 12–41 13–42 10 6+ 69

Figure 4.13 imul Instructions (three-operand format)

32-bit. If the product will fit in the destination register, then CF and OF are cleared to 0; if

not, they are set to 1. The three-operand imul instructions are summarized in Fig. 4.13.

Some examples will help show how the imul instructions work.

Example

Before Instruction executed After

AX: 00 05 imul  bx
BX: 00 02

DX: ?? ??

AX:  ?? 05 imul  Factor
byte at Factor:  FF

EBX:  00 00 00 0A imul  ebx, 10 EBX

CF, OF 0 

00 00 00 64

AX

CF, OF 0

FF FB

DX

AX

CF, OF 0

00

00

00

0A
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ECX:  FF FF FF F4 imul  ecx, Double
doubleword at Double:

FF FF FF B2

word at Value:  08 F2 imul  bx,Value,1000
BX: ?? ??

BX

CF, OF 1

F1 50

ECX

CF, OF 0 

00 00 03 A8

The first two examples are the single-operand format and the products are

twice the length of the operands. The first example shows words in AX (the implied

operand) and BX being multiplied, with the result in DX:AX. The second example shows

5 in AL being multiplied by � 1 in the memory byte at Factor, giving a word-size prod-

uct equivalent to � 5 in AX. The third example shows the two-operand format, with 10

in EBX multiplied by the immediate operand 10, and the result of 100 in EBX. In the

fourth example, two negative numbers are multiplied, giving a positive result. In the last

example, the product is 22F15016, too large to fit in BX. The flags CF and OF are set to 1

to indicate that the result was too large, and the low-order digits are saved in BX.

Earlier, the discussion with the example program in Fig. 4.8 stated that it was

faster to calculate 2z by adding z to itself than by using a multiplication instruction. In

that situation, z was in the AX register, so

add   ax, ax       ; compute 2z

did the job. This instruction is two bytes long, and on an 80486 or Pentium system takes

one clock cycle. To do the same task using multiplication, you can code

imul   ax, 2      ; compute 2z

This instruction (from Fig. 4.12) is three bytes long since the immediate operand 2 is

short enough to fit in a single byte; it takes 13–18 clock cycles on an 80486 or 10 clock

cycles on a Pentium, much longer than the addition instruction.

This section concludes with an example of a program that will input the length

and width of a rectangle and calculate its area (length*width). (Admittedly, this is a job

much better suited for a hand calculator than for a computer program in assembly lan-

guage or any other language.) Figure 4.14 shows the source code for the program. Note
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; program to find the area of a rectangle

; author:  R. Detmer

; date:  revised 9/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h

cr          EQU    0dh   ; carriage return character

LF          EQU    0ah   ; linefeed character

.STACK  4096             ; reserve 4096-byte stack

.DATA                    ; reserve storage for data

prompt1     BYTE   "This program will find the area of a 

rectangle",cr,Lf,Lf

BYTE   "Width of rectangle?  ",0

prompt2     BYTE   "Length of rectangle?  ",0

value       BYTE   16 DUP (?)

answer      BYTE   cr,Lf,"The area of the rectangle is "

area        BYTE   11 DUP (?)

BYTE   cr,Lf,0

.CODE                               ; start of main program code

_start:

Prompt:     output prompt1          ; prompt for width

input  value,16         ; read ASCII characters

atod   value            ; convert to integer

mov    ebx,eax          ; width

output prompt2          ; prompt for length

input  value,16         ; read ASCII characters

atod   value            ; convert to integer

mul    ebx              ; length * width

dtoa   area,eax         ; convert to ASCII characters

output answer           ; output label and result

INVOKE ExitProcess, 0   ; exit with return code 0

PUBLIC _start                       ; make entry point public

END

Figure 4.14 Program to find the area of a rectangle
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that the program uses mul rather than imul for finding the product; lengths and widths

are positive numbers. Interesting errors occur in this program if a negative length or

width is entered, or if a large width and length (say 200 and 300) are entered. Why? Such

errors are unfortunately common in software.

As you have seen in this section, the 80x86 architecture includes multiplication

instructions in three formats. You may have noted that the destination of the product

cannot be a memory operand. This may sound restrictive, but some processors have

even greater limitations. In fact, most 8-bit microprocessors, including the Intel 8080, had

no multiplication instruction; any multiplication had to be done using a software routine.

Exercises 4.3

1. For each part of this problem, assume the “before” values when the

given instruction is executed. Give the requested “after” values.

Before Instruction After

(a) EAX:  FF FF FF E4

EBX:  00  00  00  02 mul  ebx EAX, EDX, CF, OF

(b) AX:  FF E4

word at Value:  FF 3A mul  Value AX, DX, CF, OF

(c) AX:  FF FF mul  ax AX, DX, CF, OF

(d) AL:  0F

BH:  4C mul  bh AX, CF, OF

(e) AL:  F0

BH:  C4 mul  bh AX, CF, OF

(f) AX:  00 17

CX:  00 B2 imul  cx AX, DX, CF, OF

(g) EAX:  FF FF FF E4

EBX:  00 00 04 C2 imul  ebx EAX, EDX, CF, OF

(h) AX:  FF E4

word at Value:  FF 3A imul  Value AX, DX, CF, OF

(i) EAX:  FF FF FF FF imul  eax EAX, EDX, CF, OF

(j) AL:  0F

BH:  4C imul  bh AX, CF, OF

(k) AL:  F0

BH:  C4 imul  bh AX, CF, OF

2. Give the opcode for each instruction in Exercise 1.
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3. For each part of this problem, assume the “before” values when the

given instruction is executed. Give the requested “after” values.

Before Instruction After

(a) BX:  00 17

CX:  00 B2 imul  bx,cx BX, CF, OF

(b) EAX:  FF FF FF E4

EBX:  00 00 04 C2 imul  eax,ebx EAX, CF, OF

(c) AX:  0F B2 imul  ax, 15 AX, CF, OF

(d) ECX:  00 00 7C E4

doubleword at Mult: imul  ecx,Mult ECX, CF, OF

00 00 65 ED

(e) DX:  7C E4

BX:  49 30 imul  dx,bx DX, CF, OF

(f) DX:  0F E4

word at Value:  04 C2 imul  dx,Value DX, CF, OF

(g) EBX:  00 00 04 C2 imul  ebx,–10 EBX, CF, OF

(h) ECX:  FF FF FF E4 imul  ebx,ecx,5 EBX, CF, OF

(i) DX:  00 64 imul  ax,dx,10 AX, CF, OF

4. Give the opcode for each instruction in Exercise 3.

5. Suppose that the value for x is in the AX register and you need the

value of 5x in AX. Compare the number of clock cycles for execution on

a Pentium system and the number of bytes of object code for each of

the following schemes.

mov   bx,ax        ; copy value of x

add   ax,ax        ; x + x gives 2x

add   ax,ax        ; 2x + 2x gives 4x

add   ax,bx        ; 4x + x gives 5x

and

imul  ax,5         ; 5x

6. Suppose you need to evaluate the polynomial

p(x) = 5x3 � 7x2 + 3x � 10

for some value of x. If this is done in the obvious way, as

5*x*x*x � 7*x*x + 3*x � 10
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there are six multiplications and three additions/subtractions. An equiv-

alent form, based on Horner’s scheme for evaluation of polynomials, is

((5*x � 7)*x + 3)*x � 10

This has only three multiplications.

Suppose that the value of x is in the EAX register.

(a) Write 80x86 assembly language statements that will evaluate p(x)

the “obvious” way, putting the result in EAX.

(b) Write 80x86 assembly language statements that will evaluate p(x)

using Horner’s scheme, again putting the result in EAX.

(c) Assuming a Pentium system, compare the number of clock cycles

for execution and the number of bytes of object code required for

the code fragments in (a) and in (b) above.

7. The 80x86 architecture has distinct instructions for multiplication of

signed and unsigned numbers. It does not have separate instructions

for addition of signed and unsigned numbers. Why are different instruc-

tions needed for multiplication but not for addition?

Programming Exercises 4.3

1. Write a complete 80x86 assembly language program to prompt for the

length, width, and height of a box and to display its volume (length *

width * height).

2. Write a complete 80x86 assembly language program to prompt for the

length, width, and height of a box and to display its surface area

2*(length*width + length*height + width*height).

3. Suppose that someone has a certain number of coins (pennies, nickels,

dimes, quarters, fifty-cent pieces, and dollar coins) and wants to know

the total value of the coins, as well as how many coins there are. Write

a program to help. Specifically, follow the design below.

prompt for and input the number of pennies;

total := number of pennies;

numberOfCoins := number of pennies;

prompt for and input the number of nickels;

total := total + 5 * number of nickels;

add number of nickels to numberOfCoins;
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prompt for and input the number of dimes;

total := total + 10 * number of dimes;

add number of dimes to numberOfCoins;

prompt for and input the number of quarters;

total := total + 25 * number of quarters;

add number of quarters to numberOfCoins;

prompt for and input the number of fifty-cent pieces;

total := total + 50 * number of fifty-cent pieces;

add number of fifty-cent pieces to numberOfCoins;

prompt for and input the number of dollars;

total := total + 100 * number of dollars;

add number of dollars to numberOfCoins;

display “There are “, numberOfCoins, “  coins worth”;

display total div 100, “  dollars and”, total mod 100,”  cents”;

Note that you are displaying dollars and cents for the total. Assume

that all values will fit in doublewords.

4.4 Division Instructions

The Intel 80x86 instructions for division parallel those of the single-operand multiplica-

tion instructions; idiv is for division of signed 2’s complement integers and div is for

division of unsigned integers. Recall that the single-operand multiplication instructions

start with a multiplier and multiplicand and produce a double-length product. Division

instructions start with a double-length dividend and a single-length divisor, and produce

a single-length quotient and a single-length remainder. The 80x86 has instructions that

can be used to produce a double-length dividend prior to division.

The division instructions have formats

idiv   source

and

div    source
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source (divisor) size other operand (dividend) quotient remainder

byte AX AL AH

word DX:AX AX DX

doubleword EDX:EAX EAX EDX

Figure 4.15 Operands and results for 80x86 division instructions

The source operand identifies the divisor. The divisor can be in a register or memory, but not

immediate. Both div and idiv use an implicit dividend (the operand you are dividing into).

If source is byte length, then the double-length dividend is word size and is assumed to be in

the AX register. If source is word length, then the dividend is a doubleword and is assumed

to have its low order 16 bits in the AX register and its high order 16 bits in the DX register. If

source is doubleword length, then the dividend is a quadword (64 bits) and is assumed to

have its low order 32 bits in the EAX register and its high order 32 bits in the EDX register.

The table in Fig. 4.15 summarizes the locations of the dividend, divisor, quo-

tient, and remainder for 80x86 division instructions.

The source operand (the divisor) is not changed by a division instruction. After a

word in AX is divided by a byte length divisor, the quotient will be in the AL register half

and the remainder will be in the AH register half. After a doubleword in DX and AX is

divided by a word length divisor, the quotient will be in the AX register and the remain-

der will be in the DX register. After a quadword in EDX and EAX is divided by a double-

word length divisor, the quotient will be in the EAX register and the remainder will be in

the EDX register.

For all division operations, the dividend, divisor, quotient, and remainder must

satisfy the equation

dividend = quotient*divisor + remainder

For unsigned div operations, the dividend, divisor, quotient, and remainder are all

treated as non-negative numbers. For signed idiv operations, the sign of the quotient is

determined by the signs of the dividend and divisor using the ordinary rules of signs; the

sign of the remainder is always the same as the sign of the dividend.

The division instructions do not set flags to any significant values. They may

destroy previously set values of AF, CF, OF, PF, SF, and ZF flags.

Some examples show how the division instructions work.
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Example

Before Instruction executed After

EDX: 00 00 00 00 div  ebx

EAX: 00 00 00 64

EBX: 00 00 00 OD

DX: 00 00 idiv  cx

AX: 00 64

CX: 00 0D

AX:  00 64 div   Divisor

byte at Divisor: 0D

AX 09 07

AX 00 07

DX 00 09

EAX 00 00 00 07

EDX 00 00 00 09

In each of these examples, the decimal number 100 is divided by 13. Since

100 = 7 * 13 + 9

the quotient is 7 and the remainder is 9. For the doubleword length divisor, the quotient

is in EAX and the remainder is in EDX. For the word length divisor, the quotient is in AX

and the remainder is in DX. For the byte length divisor, the quotient is in AL and the

remainder is in AH.

For operations where the dividend or divisor is negative, equations analogous

to the one above are

100 = (�7) * (�13) + 9

�100 = (�7) * 13 + (�9)

�100 = 7 * (�13) + (�9)

Note that in each case the sign of the remainder is the same as the sign of the dividend.

The following examples reflect these equations for word size divisors of 13 or �13.

Example

Before Instruction executed After

DX:  00 00 idiv  cx

AX:  00 64

CX: FF F3 AX FF F9

DX 00 09
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In the second and third examples, the dividend �100 is represented as the 32 bit num-

ber FF FF FF 9C in the DX and AX registers.

Finally, here are two examples to help illustrate the difference between signed

and unsigned division.

Example

Before Instruction executed After

AX: FE 01 idiv  bl

BL: E0

AX: FE 01 div   bl

BL: FF

AX 00 FF

AX E1 0F

DX:  FF FF idiv  cx

AX:  FF 9C

CX:  00 0D

DX:  FF FF idiv  cx

AX:  FF 9C

CX:  FF F3
AX 00 07

DX FF F7

AX FF F9

DX FF F7

With the signed division, �511 is divided by �32, giving a quotient of 15 and a remain-

der of �31. With the unsigned division, 65025 is divided by 255, giving a quotient of 255

and a remainder of 0.

With multiplication, the double length destination in each single-operand for-

mat guarantees that the product will fit in the destination location—nothing can go

wrong during a single-operand multiplication operation. There can be errors during divi-

sion. One obvious cause is an attempt to divide by zero. A less obvious reason is a quo-

tient that is too large to fit in the single-length destination; if, say, 00 02 46 8A is divided
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Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

register 8 19 19 22 2 F6

register 16 27 27 30 2 F7

register 32 43 43 48 2 F7

memory byte 22 20 22 2 + F6

memory word 30 28 30 2 + F7

memory doubleword 46 44 48 2 + F7

Figure 4.16 idiv instructions

Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

register 8 14 16 17 2 F6

register 16 22 24 25 2 F7

register 32 38 40 41 2 F7

memory byte 17 16 17 2 + F6

memory word 25 24 25 2 + F7

memory doubleword 41 40 41 2 + F7

Figure 4.17 div instructions

by 2, the quotient 1 23 45 is too large to fit in the AX register. If an error occurs during the

division operation, the 80x86 generates an exception. The routine, or interrupt handler,

that services this exception may vary from system to system. Windows 95 on the author’s

Pentium system pops up a window with the message “This program has performed an

illegal operation and will be shut down.” When the Details button is pressed, it displays

“TEST caused a divide error...” The 80x86 leaves the destination registers undefined fol-

lowing a division error.

Figure 4.16 lists the allowable operand types for idiv instructions and Fig. 4.17

lists the allowable operand types for div instructions. The only differences in the two

tables are in the number of clock cycles columns; div operations are slightly faster than

idiv operations.
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Clock Cycles Number

Instruction 386 486 Pentium of Bytes Opcode

cbw 3 3 3 1 98

cwd 2 3 2 1 99

cdq 2 3 2 1 99

cwde 3 3 3 1 98

Figure 4.18 cbw and cwd instructions

When arithmetic is being done with operands of a given length, the dividend

must be converted to double length before a division operation is executed. For

unsigned division, a doubleword-size dividend must be converted to quadword size

with leading zero bits in the EDX register. This can be accomplished many ways, two

of which are

mov   edx, 0

and

sub   edx, edx

Similar instructions can be used to put a zero in DX prior to unsigned division by a word

operand or to put a zero in AH prior to unsigned division by a byte operand.

The situation is more complicated for signed division. A positive dividend

must be extended with leading 0 bits, but a negative dividend must be extended with

leading 1 bits. The 80x86 has three instructions for this task. The cbw, cwd, and cdq

instructions are different from the instructions covered before in that these instructions

have no operands. The cbw instruction always has AL as its source and AX as its desti-

nation, cwd always has AX as its source and DX and AX as its destination, and cdq

always has EAX as its source and EDX and EAX as its destination. The source register

is not changed, but is extended as a signed number into AH, DX, or EDX. These

instructions are summarized together in Fig. 4.18, which also includes the cwde instruc-

tion that extends the word in AX to its signed equivalent in EAX, paralleling the job

that cbw does.

The cbw (convert byte to word) instruction extends the 2’s complement number

in the AL register half to word length in AX. The cwd (convert word to double) instruc-

tion extends the word in AX to a doubleword in DX and AX. The cdq (convert double to

quadword) instruction extends the word in EAX to a quadword in EDX and EAX. The
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cwde (convert word to double extended) instruction extends the word in AX to a double-

word in EAX; this is not an instruction that would normally be used to prepare for divi-

sion. Each instruction copies the sign bit of the original number to each bit of the high

order half of the result. None of these instructions affect flags. Some examples are

Example

Before Instruction executed After

AX:  07 0D cwd
DX:  ??  ??

EAX: FF FF FA 13 cdq
EDX: ?? ?? ?? ??

AL:  53 cbw

AL:  C6 cbw

AX:  FF 2A cwde EAX FF FF FF 2A

AX FF C6

AX 00 53

EAX FF FF FF 13

EDX FF FF FF FF

AX 07 0D

DX 00 00

Two “move” instructions are somewhat similar to the above “convert” instruc-

tions. These instructions copy an 8-bit or 16-bit source operand to a 16-bit or 32-bit des-

tination, extending the source value. The movzx instruction always extends the source

value with zero bits. It has the format

movzx   register, source

The movsx instruction extends the source value with copies of the sign bit. It has a simi-

lar format

movsx   register, source
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Clock Cycles Number Opcode

Destination Source 386 486 Pentium of Bytes movsx movzx

register 16 register 8 3 3 3 3 0F BE 0F B6

register 32 register 8 3 3 3 3 0F BE 0F B6

register 32 register 16 3 3 3 3 0F BF 0F B7

register 16 memory byte 6 3 3 3+ 0F BE 0F B6

register 32 memory byte 6 3 3 3+ 0F BE 0F B6

register 32 memory word 6 3 3 3+ 0F BF 0F B7

Figure 4.19 movsx and movzx instructions

Data about these instructions is in Fig. 4.19. With either instruction the source operand

can be in a register or in memory. Neither instruction changes any flag value.

Here are a few examples showing how these instructions work.

Example

Before Instruction executed After

word at value:  07 0D movsx  ecx,value

word at Value:  F7 0D movsx  ecx,value

word at Value:  07 0D movzx  ecx,value

word at Value:  F7 0D movzx  ecx,value ECX 00 00 F7 0D

ECX 00 00 07 0D

ECX FF FF F7 0D

ECX 00 00 07 0D

This section concludes with another simple program, this one to convert Cel-

sius (centigrade) temperatures to Fahrenheit. Figure 4.20 gives the source code. The for-

mula implemented is

F = (9/5) * C + 32
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; program to convert Celsius temperature to Fahrenheit

; uses formula  F = (9/5)*C + 32

; author:  R. Detmer

; date:  revised 9/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h

cr          EQU    0dh   ; carriage return character

Lf          EQU    0ah   ; linefeed character

.STACK  4096             ; reserve 4096-byte stack

.DATA                    ; reserve storage for data

Prompt1     BYTE   CR,LF,"This program will convert a Celsius "

BYTE   "temperature to the Fahrenheit scale",cr,Lf,Lf

BYTE   "Enter Celsius temperature:  ",0

Value       BYTE   10 DUP (?)

Answer      BYTE   CR,LF,"The temperature is"

Temperature BYTE   6 DUP (?)

BYTE   "   Fahrenheit",cr,Lf,0

.CODE                               ; start of main program code

_start:

Prompt:     output Prompt1          ; prompt for Celsius temperature

input  Value,10         ; read ASCII characters

atoi   Value            ; convert to integer

imul   ax,9             ; C*9

add    ax,2             ; rounding factor for division

mov    bx,5             ; divisor

cwd                     ; prepare for division

idiv   bx               ; C*9/5

add    ax,32            ; C*9/5 + 32

itoa   Temperature,ax   ; convert to ASCII characters

output Answer           ; output label and result

INVOKE ExitProcess, 0   ; exit with return code 0

PUBLIC _start                       ; make entry point public

END

Figure 4.20 Convert Celsius temperature to Fahrenheit
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where F is the Fahrenheit temperature and C is the Celsius temperature. Since the arith-

metic instructions covered so far perform only integer arithmetic, the program gives the

integer to which the fractional answer would round. It is important to multiply 9 and C

before dividing by 5; the integer quotient 9/5 would be simply 1. Dividing C by 5 before

multiplying by 9 produces larger errors than if the multiplication is done first. Why? To

get a rounded answer, half the divisor is added to the dividend before dividing. Since the

divisor in this formula is 5, the number 2 is added for rounding. Notice that the cwd

instruction is used to extend the partial result before division.

Exercises 4.4

1. For each part of this problem, assume the “before” values when the

given instruction is executed. Give the requested “after” values. Some of

these instructions will cause division errors; identify such instructions.

Before Instruction After

(a) EDX:  00 00 00 00

EAX:  00 00 00 9A

EBX:  00 00 00 0F idiv  ebx EDX, EAX

(b) AX:  FF 75

byte at Count:  FC idiv  Count AX

(c) AX:  FF 75

byte at Count:  FC div  Count AX

(d) DX:  FF FF

AX:  FF 9A

CX:  00 00 idiv  cx DX, AX

(e) EDX:  FF FF FF FF

EAX:  FF FF FF 9A

ECX:  FF FF FF C7 idiv  ecx EDX, EAX

(f) DX:  00 00

AX:  05 9A

CX:  FF C7 idiv  cx DX, AX

(g) DX:  00 00

AX:  05 9A

CX:  00 00 idiv  cx DX, AX

(h) EDX: 00 00 00 00

EAX:  00 00 01 5D

EBX:  00 00 00 08 idiv  ebx EDX, EAX
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2. Give the opcode for each instruction in Exercise 1.

3. This section mentioned two methods of zeroing EDX prior to unsigned

division, using

mov  edx,0

or

sub  edx,edx

Which instruction would give more compact code? Which instruction

would execute in fewer clock cycles on a Pentium?

4. The Celsius to Fahrenheit temperature conversion program (Fig. 4.20)

works for Celsius temperatures that have fairly large magnitude and

are either positive or negative. Suppose that you limit the Celsius tem-

perature to the range 0–100 degrees, yielding Fahrenheit temperatures

from 32–212. How can the program be modified to take advantage of

these limited numeric ranges?

Programming Exercises 4.4

1. The formula for converting a Fahrenheit to a Celsius temperature is

C = (5/9) * (F � 32)

Write a complete 80x86 assembly language program to prompt for a

Fahrenheit temperature and display the corresponding Celsius temper-

ature.

2. Write a complete 80x86 assembly language program to prompt for four

grades and then display the sum and the average (sum/4) of the grades.

3. Write a complete 80x86 assembly language program to prompt for four

grades. Suppose that the last grade is a final exam grade that counts

twice as much as the other three. Display the sum (adding the last

grade twice) and the average (sum/5).
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4. Write a complete 80x86 assembly language program to prompt for four

pairs of grades and weighting factors. Each weighting factor indicates

how many times the corresponding grade is to be counted in the sum.

The weighted sum is

WeightedSum =  Grade1 * Weight1

+ Grade2 * Weight2

+ Grade3 * Weight3

+ Grade4 * Weight4

and the sum of the weights is

SumOfWeights = Weight1 + Weight2 + Weight3 + Weight4

Display the weighted sum, the sum of the weights, and the weighted

average (WeightedSum/SumOfWeights).

A sample run might look like

grade 1?  88

weight 1?  1

grade 2?  77

weight 2?  2

grade 3?  94

weight 3?  1

grade 4?  85

weight 4?  3

weighted sum:   591

sum of weights:     7

weighted average:    84

5. Write a complete 80x86 assembly language program to prompt for four

grades, and then display the sum and the average (sum/4) of the grades

in ddd.dd format (exactly three digits before and two digits after a deci-

mal point).

6. Write a short program that causes a division by zero to discover how

the interrupt handler in your 80x86 system responds.
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4.5 Addition and Subtraction of Larger Numbers

The add and sub instructions covered in Section 4.2 work with byte-length, word-

length, or doubleword-length operands. Although the range of values that can be stored

in a doubleword is large, � 2,147,483,648 (8000000016) to 2,147,483,647 (7FFFFFFF16), it is

sometimes necessary to do arithmetic with even larger numbers. Very large numbers

can be added or subtracted a group of bits at a time.

We will illustrate the technique for adding large numbers by adding two 64-bit

long numbers. The idea is to start with the low-order 32 bits from each number and add

them using an ordinary add instruction. This operation sets the carry flag CF to 1 if

there is a carry out of the high order bit and to 0 otherwise. Now the next 32 bits are

added using a special addition instruction adc (add with carry). The two high-order 32-

bit numbers are added as usual, but if CF is set to 1 from the prior addition, then 1 is

added to their sum before it is sent to the destination location. The adc instruction also

sets CF, so this process could be continued for as additional groups of bits.

Assume that the two numbers to be added are in four doublewords in the

data segment.

Nbr1Hi  DWORD  ?     ; High order 32 bits of Nbr1

Nbr1Lo  DWORD  ?     ; Low order 32 bits of Nbr1

Nbr2Hi  DWORD  ?     ; High order 32 bits of Nbr2

Nbr2Lo  DWORD  ?     ; Low order 32 bits of Nbr2

The following code fragment adds Nbr2 to Nbr1, storing the sum at the doublewords

reserved for Nbr1.

mov  eax, Nbr1Lo     ; Low order 32 bits of Nbr1

add  eax, Nbr2Lo     ; add Low order 32 bits of Nbr2

mov  Nbr1Lo, eax     ; sum to destination

mov  eax, Nbr1Hi     ; High order 32 bits of Nbr1

adc  eax, Nbr2Hi     ; add High order 32 bits of Nbr2 & carry

mov  Nbr1Hi, eax     ; sum to destination

One thing making this code work is that the mov instructions that come between the

add and adc instructions do not alter the carry flag. If an intervening instruction did

change CF, then the sum could be incorrect.

The adc instructions are identical to corresponding add instructions except

that the extra 1 is added if CF is set to 1. For subtraction, sbb (subtract with borrow)
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instructions function like sub instructions except that if CF is set to 1, an extra 1 is sub-

tracted from the difference. Large numbers can be subtracted in groups of bits, working

right to left. Figure 4.21 lists the allowable operand types for adc and sbb instructions.

This table is identical to Fig. 4.5 except for a few opcodes.

To apply similar techniques to longer numbers, often a loop of identical instruc-

tions is used. If CF is known to be 0 before the loop begins, even the first addition can

be done using adc. The 80x86 architecture has three instructions that let the program-

mer manipulate the carry flag. They are summarized in Fig. 4.22. There are no separate

Destination Source Clock Cycles Number Opcode

Operand Operand 386 486 Pentium of Bytes adc sbb

register 8 immediate 8 2 1 1 3 80 80

register 16 immediate 8 2 1 1 3 83 83

register 32 immediate 8 2 1 1 3 83 83

register 16 immediate 16 2 1 1 4 81 81

register 32 immediate 32 2 1 1 6 81 81

AL immediate 8 2 1 1 2 14 1C

AX immediate 16 2 1 1 3 15 1D

EAX immediate 32 2 1 1 5 15 1D

memory byte immediate 8 7 3 3 3+ 80 80

memory word immediate 8 7 3 3 3+ 83 83

memory doubleword immediate 8 7 3 3 3+ 83 83

memory word immediate 16 7 3 3 4+ 81 81

memory doubleword immediate 32 7 3 3 6+ 81 81

register 8 register 8 2 1 1 2 12 1A

register 16 register 16 2 1 1 2 13 1B

register 32 register 32 2 1 1 2 13 1B

register 8 memory byte 6 2 2 2+ 12 1A

register 16 memory word 6 2 2 2+ 13 1B

register 32 memory doubleword 6 2 2 2+ 13 1B

memory byte register 8 7 3 3 2+ 10 18

memory word register 16 7 3 3 2+ 11 19

memory doubleword register 32 7 3 3 2+ 11 19

Figure 4.21 adc and sbb instructions
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Clock Number

Instruction Operation Cycles of Bytes Opcode

clc clear carry flag 2 1 F8

(CF := 0)

stc set carry flag 2 1 F9

(CF := 1)

cmc complement carry flag 2 1 F5

(if CF = 0 then CF := 1 else CF := 0)

Figure 4.22 Control of carry flag CF

columns for the number of clock cycles on different processors since these instructions

take two clock cycles on each of 30386, 80486, and Pentium processors.

Multiplication and division operations with longer numbers are even more

involved than addition and subtraction. Often techniques for adding and subtracting

longer numbers are used to implement algorithms that are similar to grade school multi-

plication and division procedures for decimal numbers.

If one really needs to use longer numbers, it takes more than a set of arithmetic

procedures. One may also need procedures like itoa and atoi in order to convert long

numbers to and from ASCII character format.

Exercises 4.5

1. Suppose that two 96 bit long numbers are to be added.

(a) Show how storage for three such numbers can be reserved in the

data segment of a program.

(b) Give a fragment of 80x86 code that will add the second number to the

first, storing the sum at the locations reserved for the first number.

(c) Give a fragment of 80x86 code that will add the second number to the

first, storing the sum at the locations reserved for the third number.

2. Suppose that two 64 bit numbers are stored as shown in the example in

this section. Give a fragment of 80x86 code that will subtract Nbr2 from

Nbr1, storing the difference at the locations reserved for Nbr1.
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3. For each part of this problem, assume the “before” values when the

given instruction is executed. Give the requested “after” values.

Before Instruction After

(a) EAX:  00 00 03 7D

ECX:  00 00 01 A2

CF:  0 adc  eax,ecx EAX, CF

(b) EAX:  00 00 03 7D

ECX:  00 00 01 A2

CF:  1 adc  eax,ecx EAX, CF

(c) EAX:  FF 49 00 00

ECX:  03 68 00 00

CF:  0 adc  eax,ecx EAX, CF

(d) EAX:  FF 4900 00

ECX:  03 6800 00

CF:  1 adc  eax,ecx EAX, CF

(e) EAX:  00 00 03 7D

ECX:  00 00 01 A2

CF:  0 sbb  eax,ecx EAX, CF

(f) EAX:  00 00 01 A2

ECX:  00 00 03 7D

CF:  1 sbb  eax,ecx EAX, CF

4.6 Something Extra: Levels of Abstraction and

Microcode

In computer science, we look at computers and computation at many levels. When using

an application program like a word processing package or a game, we just want its vari-

ous features to work and we typically do not care how it is written. When we are writing

programs in a high-level language, we tend to view the computer as say, an Ada

machine or a C++ machine, and often do not think about how various language con-

structs are implemented. The application level and the high-level language level are

two levels of abstraction. As used here, the word “abstraction” can be thought of as

“ignoring the details.”
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This book deals primarily with the machine-language level of abstraction.

One of the book’s primary objectives is to relate this level to the high-level language level

of abstraction. To a hardware designer, it is even more important to relate the machine-

language level to lower levels of abstraction.

What lower levels are there? Obviously the hardware of the computer somehow

has to execute an instruction like add or imul. The hardware level of a machine is often

viewed as a collection of logic circuits, although you can take an even lower view of

these as constructed with transistors, etc. For relatively simple architectures, electronic

circuits can be designed to implement each possible instruction directly.

For more complex instruction sets, there is usually another level of abstraction

between the machine language that the user sees and the digital circuitry of the machine.

This microcode level consists of a collection of routines that actually implement the

instructions. The microinstructions are normally stored in permanent memory in the CPU

itself. A CPU that uses microcode has a collection of internal scratchpad registers that are

not directly accessible to the user and simple circuitry such as an adder. A machine lan-

guage instruction is implemented by a series of microinstructions that do have access to

these scratchpad registers. Microcode resembles machine language. However, there are

many differences. Microinstructions typically have bits that directly control circuits. Often

there is no program counter—each instruction contains the address of the next instruction.

In general, microprogramming is more complex than assembly language programming.

Chapter Summary

The Intel 80x86 mov instruction is used to copy data from one location to

another. All but a few combinations of source and destination locations

are allowed. The xchg instruction swaps the data stored at two locations.

The 80x86 architecture has a full set of instructions for arithmetic

with byte-length, word-length, and doubleword-length integers. The add

and sub instructions perform addition and subtraction; inc and dec add

and subtract 1, respectively. The neg instruction negates its operand.

There are two multiplication and two division mnemonics. The

imul and idiv instructions assume that their operands are signed 2’s com-

plement numbers; mul and div assume that their operands are unsigned.

Many multiplication instructions start with single-length operands and

produce double-length products; other formats form a product the same

length as the factors. Division instructions always start with a double-
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length dividend and single-length divisor; the outcome is a single-length

quotient and a single-length remainder. The cbw, cwd, and cdq instructions

aid in producing a double-length dividend before signed division. Flag set-

tings indicate possible errors during multiplication; an error during divi-

sion produces a hardware exception that invokes a procedure to handle

the error.

Instructions that have operands in registers are generally faster

than those that reference memory locations. Multiplication and division

instructions are slower than addition and subtraction instructions.

The adc and sbb instructions make it possible to add numbers

longer than doublewords a group of bits at a time, incorporating a carry or

borrow from one group into the addition or subtraction of the next group

to the left. The carry or borrow is recorded in the carry flag CF. The 80x86

clc, stc, and cmc instructions enable the programmer to clear, set, and

complement the carry flag when necessary.

The machine language level is just one level of abstraction at

which a computer can be viewed. Above this level are the high-level lan-

guage level and the application level. Below the machine language level

are the microcode level and the hardware level.
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CHAPTER 5

5.1 Unconditional Jumps

5.2 Conditional Jumps,

Compare Instructions,

and if Structures

5.3 Implementing Loop

Structures

5.4 for Loops in Assembly

Language

5.5 Arrays

5.6 Something Extra:

Pipelining

Branching and Looping

Computers derive much of their power from their

ability to execute code selectively and from the

speed at which they execute repetitive algorithms.

Programs in high-level languages like Ada, C++, or

Pascal use if-then, if-then-else, and case structures

to execute code and loop structures selectively, such

as while (pre-test) loops, until (post-test) loops, and

for (counter-controlled) loops to repetitively exe-

cute code. Some high-level languages have a goto

statement for unconditional branching. Somewhat

more primitive languages (like older versions of

BASIC) depend on fairly simple if statements and an

abundance of goto statements for both selective

execution and looping.

The 80x86 assembly language program-

mer’s job is similar to the old BASIC programmer’s

job. The 80x86 microprocessor can execute some

instructions that are roughly comparable to for

statements, but most branching and looping is done

with 80x86 statements that are similar to, but even

more primitive than, simple if and goto statements.

The objective of this chapter is to describe the

machine implementation of language structures

such as if-then, if-then-else, while, until, and for.
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The 80x86 jmp (jump) instruction corresponds to goto in a high-level language. As

coded in assembly language, jmp usually has the form

jmp    StatementLabel

where StatementLabel corresponds to the name field of some other assembly language

statement. Recall that the name field is followed by a colon (:) when used to label an exe-

cutable statement. The colon is not used in the jmp statement itself. As an example, if

there were alternative conditions under which a program should be terminated, the code

might contain

jmp    quit                    ; exit from program

.

.

quit:  INVOKE ExitProcess, 0   ; exit with return code 0

.

.

Figure 5.1 shows a complete example: a program that will input numbers

repeatedly and, after each number is entered, display the count of the numbers so far,

the cumulative sum, and the average. The program implements the following

pseudocode design.

display instructions;

sum := 0;

count := 0;

forever loop

prompt for number;

input ASCII characters for number;

convert number to 2’s complement form;

add number to sum;

add 1 to count;

convert count to ASCII;

display label and count;

convert sum to ASCII;

display label and sum;

average := sum / count;

display label and average;

end loop;

138 Branching and Looping
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; program to input numbers and display running average and sum

; author:  R. Detmer

; date:  revised 9/97

.386

.MODEL FLAT

INCLUDE io.h

cr          EQU    0dh   ; carriage return character

Lf          EQU    0ah   ; linefeed character

.STACK  4096             ; reserve 4096-byte stack

.DATA                    ; reserve storage for data

sum         DWORD    ?

explain     BYTE     cr,Lf,"As you input numbers one at a time, this",cr,Lf

BYTE     "program will report the count of numbers so far,",cr,Lf

BYTE     "the sum so far, and the average.",cr,Lf,Lf,0

prompt      BYTE     "number?  ",0

number      BYTE     16 DUP (?)

countLabel  BYTE     "count",0

sumLabel    BYTE     "       sum",0

avgLabel    BYTE     "       average",0

value       BYTE     11 DUP (?), 0

nextPrompt  BYTE     cr,Lf,Lf,"next ",0

.CODE                               ; start of main program code

_start:

output explain          ; initial instructions

mov    sum,0            ; sum := 0

mov    ebx,0            ; count := 0

forever:    output prompt           ; prompt for number

input  number,16        ; read ASCII characters

atod   number           ; convert to integer

add    sum,eax          ; add number to sum

inc    ebx              ; add 1 to count

(continued)

Figure 5.1 Program with forever loop
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dtoa   value,ebx        ; convert count to ASCII

output countLabel       ; display label for count

output value            ; display count

dtoa   value,sum        ; convert sum to ASCII

output sumLabel         ; display label for sum

output value            ; display sum

mov    eax,sum          ; get sum

cdq                     ; extend sum to 64 bits

idiv   ebx              ; sum / count

dtoa   value,eax        ; convert average to ASCII

output avgLabel         ; display label for average

output value            ; output average

output nextPrompt       ; skip down, start next prompt

jmp    forever          ; repeat

PUBLIC _start                       ; make entry point public

END

Figure 5.1 (continued)

This program must store values for count and sum, and all registers except EBX

and ECX are used by the input/output macros and/or the division instruction. The value

of count is kept in EBX, and sum is stored in a doubleword reserved in the data segment.

Note that sum could have been initialized to zero by the DWORD directive instead of by

the mov statement; as implemented, the code is more consistent with the design, but is

slightly wasteful of time and space since sum only needs to be initialized once.

This program has several faults. One slight shortcoming is that it does not

round the average. The major fault, however, is that it contains a forever loop with no

way to get out. In fact, the usual termination code for a program is not even included

since it could not be reached anyway. Fortunately there is a way to stop this program

without turning off or resetting the computer; simply press control-C when the prompt

for a number appears. This works because the input macro uses a Kernel32 service for

input, and this function gives special treatment to control-C. Figure 5.2 shows a sample

run of this program.

The one jmp in the program in Fig. 5.1 transfers control to a point that precedes

the jmp statement itself. This is called a backward reference. The code
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As you input numbers one at a time, this
program will report the count of numbers so far,
the sum so far, and the average.

number?  75
count          1       sum         75       average         75

next number?  93
count          2       sum        168       average         84

next number?  78
count          3       sum        246       average         82

next number? (control-C pressed)

Figure 5.2 Sample run of program

jmp    quit                    ; exit from program

.

.

quit:  INVOKE ExitProcess, 0   ; exit with return code 0

illustrates a forward reference.

There are several 80x86 jmp instructions, in two major groups. All work by

changing the value in the instruction pointer register EIP, so that the next instruction to

be executed comes from a new address rather than from the address immediately follow-

ing the current instruction. Jumps can be intersegment, changing the code segment

register CS as well as EIP. However, this does not happen with flat memory model pro-

gramming, so these instructions will not be covered. The intrasegment jumps are sum-

marized in Fig. 5.3; the first two are the most commonly used.

Each relative jump instruction contains the displacement of the target from the

jmp statement itself. This displacement is added to the address of the next instruction to

find the address of the target. The displacement is a signed number, positive for a for-

ward reference and negative for a backward reference. For the relative short version of

the instruction, only a single byte of displacement is stored; this is changed to a sign-

extended to a doubleword before the addition. The relative near format includes a 32-bit

displacement.
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Clock Cycles Number

Type 386 486 Pentium of Bytes Opcode

relative near 7+ 3 1 5 E9

relative short 7+ 3 1 2 EB

register indirect 10+ 5 2 2 FF

memory indirect 10+ 5 2 2+ FF

Figure 5.3 jmp instructions

The 8-bit displacement in an relative short jump can serve for a target state-

ment up to 128 bytes before or 127 bytes after the jmp instruction. This displacement is

measured from the byte following the object code of the jmp itself since at the time an

instruction is being executed, EIP logically contains the address of the next instruction

to be executed. The 32-bit displacement in a relative near jump instruction can serve for

a target statement up to 2,147,483,648 bytes before or 2,147,483,647 bytes after the jmp

instruction.

There is no difference in the coding for a relative short jump and for a relative

near jump. The assembler uses a short jump if the target is within the small range in

order to generate more compact code. A near jump is used automatically if the target is

more than 128 bytes away.

The indirect jump instructions use a 32-bit address for the target rather than a

displacement. However, this address is not encoded in the instruction itself. Instead, it is

either in a register or in a memory doubleword. Thus the format

jmp   edx

means to jump to the address stored in EDX. The memory indirect format can use any

valid reference to a doubleword of memory. If Target is declared as a DWORD in the data

section, then

jmp   Target

jumps to the address stored in that doubleword, not to that point in the data section.

Using register indirect addressing, you could have

jmp   DWORD PTR [ebx]
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that causes a jump to the address stored at the doubleword whose address is in EBX!

Fortunately, these indirect forms are rarely needed.

Exercises 5.1

1. If the statement

hardLoop:   jmp   hardLoop

is executed, it continues to execute “forever.” What is the object code

for this statement?

2. Identify the type (relative near, relative short, register indirect, or mem-

ory indirect) of each jmp instruction in the following code fragment.

.DATA

...

addrStore DWORD  ?

...

.CODE

...

doAgain:

... (3 instructions)

jmp  doAgain

... (200 instructions)

jmp  doAgain

...

jmp  addrStore

...

jmp  eax

...

jmp  [edi]

Programming Exercise 5.1

1. Modify the program in Fig. 5.1 so that the prompt rather than the

response to it tells which number is being entered. That is, the sample

run in Fig. 5.2 would be changed to

As you input numbers one at a time, this program

will report the sum so far and the average.
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number          1 ?  10

sum         10       average         10

number          2 ?  50

sum         60       average         30

and so forth.

5.2 Conditional Jumps, Compare Instructions, and

if Structures

Conditional jump instructions make it possible to implement if structures, other selec-

tion structures, and loop structures in 80x86 machine language. There are many of these

instructions. Each has the format

jÑ    targetStatement

where the last part of the mnemonic identifies the condition under which the jump is to

be executed. If the condition holds, then the jump takes place; otherwise, the next

instruction (the one following the conditional jump) is executed.

With one exception (the jcxz/jecxz instruction, covered in Section 5.4), the

“conditions” considered by the conditional jump instructions are settings of various flags

in the flag registers. For example, the instruction

jz     endWhile

means to jump to the statement with label endWhile if the zero flag ZF is set to 1; other-

wise fall through to the next statement.

Conditional jump instructions do not modify the flags; they only react to previ-

ously set flag values. Recall how the flags in the flag register get values in the first place.

Some instructions (like mov) leave some or all flags unchanged, some (like add) explicitly

set some flags according to the value of a result, and still others (like div) unpredictably

alter some flags, leaving them with unknown values.

Suppose, for example, that the value in the EAX register is added to a sum

representing an account balance, and three distinct treatments are needed, depending

on whether the new balance is negative, zero, or positive. A pseudocode design for

this could be
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add value to balance;

if  balance < 0

then

... { design for negative balance }

elseif  balance = 0

then

... { design for zero balance }

else

... { design for positive balance }

end if;

The following 80x86 code fragment implements this design.

add   balance,eax  ; add value to balance

jns   elseIfZero   ; jump if balance not negative

...                ; code for negative balance

jmp   endBalanceCheck

elseIfZero: jnz   elsePos      ; jump if balance not zero

...                ; code for zero balance

jmp   endBalanceCheck

elsePos:    ...                ;code for positive balance

endBalanceCheck:

Appropriate flags are set or cleared by the add instruction. No other instruction

shown in the above code fragment changes the flags. The design checks first for (bal-

ance < 0). The code does this with the instruction

jns   elseIfZero

which says to jump to elseIfZero if the sign flag is not set; that is, if (balance < 0) is

not true. The code following this instruction corresponds to statements following the first

then in the design. The statement

jmp   endBalanceCheck

at the end of this block of statements is necessary so that the CPU skips the statements

that correspond to the other cases. If the first conditional jump transfers control to
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elseIfZero, then the balance must be non-negative. The design checks to see if the

balance is zero; the instruction

elseIfZero: jnz   elsePos

jumps to elsePos if the zero flag ZF=0. The last instruction that set flags is the add at the

beginning, so the jump occurs of the balance was not zero. The code for the (balance=0)

case must again end with an unconditional jump to endBalanceCheck. Finally, the code

that corresponds to the else in the design is at elsePos. This last block of code does not

need a jump to endBalanceCheck since execution will fall through to this point.

The 80x86 code above directly corresponds to the order of statements in the

design. If you are actually doing production coding in assembly language, a good tech-

nique is to initially code following a careful design and then reexamine the code to see if

there are places where you can make it more efficient if there is a need to do so. This

corresponds to what happens in many high-level language compilers. Most initially pro-

duce machine language that corresponds to the order of the high-level language state-

ments being translated. Some compilers may then optimize the code, rearranging some

statements for efficiency.

In the previous code, the label endBalanceCheck is on a line by itself. Techni-

cally this label will reference the address of whatever statement follows it, but it is far

simpler to treat it as the part of the current design structure without worrying about what

comes next. If what comes after this structure is changed, the code for this structure can

remain the same. If the next statement requires another label, that is perfectly okay—

multiple labels can reference the same spot in memory. Labels are not part of object code,

so extra labels do not add to the length of object code or to execution time.

When writing code to mirror a design, one often wants to use labels like if, then,

else, and endif. Unfortunately, IF, ELSE, and ENDIF are MASM directives, so they cannot

be used as labels. In addition, IF1, IF2, and several other desirable labels are also reserved for

use as directives. One solution is to use long descriptive labels like elseIfZero in the above

example. Since no reserved word contains an underscore, another solution is to use labels

like if_1 and endif_2 that parallel keywords in the original design.

The terms set a flag and reset a flag are often used to mean “give the value 1”

to a flag and “give the value 0” to a flag, respectively. (Sometimes the word clear is used

instead of reset.) As you have seen, many instructions set or reset flags. However, the

cmp (compare) instructions are probably the most common way to establish flag values.

Each cmp instruction compares two operands and sets or resets AF, CF, OF, PF,

SF, and ZF. The only job of a cmp instruction is to fix flag values; this is not just a side

effect of some other function. Each has the form

cmp    operand1, operand2
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A cmp executes by calculating operand1 minus operand2, exactly like a sub

instruction; the value of the difference and what happens in doing the subtraction deter-

mines the flag settings. A cmp instruction is unlike sub in that the value at the operand1

location is not changed. The flags that are of most interest in this book are CF, OF, SF,

and ZF. The carry flag CF is set if there is a borrow for the subtraction and reset if no bor-

row is required. The overflow flag OF is set if there is an overflow and reset otherwise.

The sign flag SF is set if the difference represents a negative 2’s complement number

(the leading bit is one) and is reset if the number is zero or positive. Finally, the zero flag

ZF is set if the difference is zero and is reset if it is nonzero.

Here are a few examples showing how the flags are set or reset when some repre-

sentative byte length numbers are compared. Recall that the subtraction operation is the

same for unsigned and signed (2’s complement) values. Just as a single bit pattern can be

interpreted as a unsigned number or a signed number, flag values have different interpre-

tations after comparison of unsigned or signed values. The “interpretation” columns below

show the relationship of the operands under both signed and unsigned interpretations.

What flag values characterize the relations equal, less than, and greater than?

Equality is easy; the ZF flag is set if and only if operand1 has the same value as operand2

no matter whether the numbers are interpreted as signed or unsigned. This is illustrated

by Example 1 below. Less than and greater than take a bit more analysis.

flags interpretation

operand1 operand2 difference CF OF SF ZF signed unsigned

1 3B 3B 00 0 0 0 1 op1=op2 op1=op2

2 3B 15 26 0 0 0 0 op1>op2 op1>op2

3 15 3B DA 1 0 1 0 op1<op2 op1<op2

4 F9 F6 03 0 0 0 0 op1>op2 op1>op2

5 F6 F9 FD 1 0 1 0 op1<op2 op1<op2

6 15 F6 1F 1 0 0 0 op1>op2 op1<op2

7 F6 15 E1 0 0 1 0 op1<op2 op1>op2

8 68 A5 C3 1 1 1 0 op1>op2 op1<op2

9 A5 68 3D 0 1 0 0 op1<op2 op1>op2

When one first thinks about less than, it seems as if the carry flag should be set for a

borrow whenever operand1 is less than operand2. This logic is correct if one interprets the

operands as unsigned numbers. Examples 3, 5, 6, and 8 all have operand1 < operand2 as

unsigned numbers, and these are exactly the examples where CF=1. Therefore, for unsigned

numbers, CF=0 means that operand1 ≥ operand2. Strict inequality for unsigned numbers is

characterized by CF=0 and ZF=0, that is operand1 ≥ operand2 and operand1 ≤ operand2.
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Examples 3, 5, 7, and 9 have operand1 < operand2 as signed numbers. What char-

acterizes this situation is that SF≤OF. In the remaining examples, SF=OF, and operand1 ≥

operand2 are signed numbers. Strict inequality for unsigned numbers is characterized by

SF=OF and ZF=0, that is operand1 ≥ operand2 and operand1 ≤ operand2.

The cmp instructions are listed in Fig. 5.4. Looking back at Fig. 4.5, one sees that

the entries in the various columns are almost all the same as for sub instructions. When

the first operand is in memory, the cmp instructions require fewer clock cycles than corre-

Clock Cycles Number

Destination Operand Source Operand 386 486 Pentium of Bytes Opcode

register 8 immediate 8 2 1 1 3 80

register 16 immediate 8 2 1 1 3 83

register 32 immediate 8 2 1 1 3 83

register 16 immediate 16 2 1 1 4 81

register 32 immediate 32 2 1 1 6 81

AL immediate 8 2 1 1 2 3C

AX immediate 16 2 1 1 3 3D

EAX immediate 32 2 1 1 5 3D

memory byte immediate 8 5 2 2 3+ 80

memory word immediate 8 5 2 2 3+ 83

memory doubleword immediate 8 5 2 2 3+ 83

memory word immediate 16 5 2 2 4+ 81

memory doubleword immediate 32 5 2 2 6+ 81

register 8 register 8 2 1 1 2 38

register 16 register 16 2 1 1 2 3B

register 32 register 32 2 1 1 2 3B

register 8 memory byte 6 2 2 2+ 3A

register 16 memory word 6 2 2 2+ 3B

register 32 memory doubleword 6 2 2 2+ 3B

memory byte register 8 5 2 2 2+ 38

memory word register 16 5 2 2 2+ 39

memory doubleword register 32 5 2 2 2+ 39

Figure 5.4 cmp instructions
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sponding sub instructions since the result need not be stored. There are alternative

opcodes for some operand combinations—the ones listed are those chosen by MASM 6.11.

A few reminders are in order about immediate operands. These can be coded in

your choice of bases or as characters. Assuming that pattern references a word in the

data segment, each of the following is allowable.

cmp   eax, 356

cmp   pattern, 0d3a6h

cmp   bh, '$'

Note that an immediate operand must be the second operand. The instruction

cmp   100, total     ; illegal

is not acceptable since the first operand is immediate.

Finally it is time to list the conditional jump instructions; they are shown in Fig.

5.5. Many of these have alternative mnemonics that generate exactly the same machine

code; these describe the same set of conditions a different way. Often one mnemonic is

more natural than the other for implementation of a given design.

Conditional jump instructions always compare the first operand to the second

operand. For example, for the instruction jg, “jump if greater” means to jump if operand1

> operand2.

Appropriate for use after comparison of unsigned operands

opcode

mnemonic description flags to jump short near

ja jump if above CF=0 and ZF=0 77 OF 87

jnbe jump if not below or equal

jae jump if above or equal CF=0 73 OF 83

jnb jump if not below

jb jump if below CF=1 72 OF 82

jnae jump if not above or equal

jbe jump if below or equal CF=1 or ZF=1 76 OF 86

jna jump if not above

(continued)

Figure 5.5 Conditional jump instructions
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Appropriate for use after comparison of signed operands

opcode

mnemonic description flags to jump short near

jg jump if greater SF=OF and ZF=0 7F OF 8F

jnle jump if not less or equal

jge jump if greater or equal SF=OF 7D OF 8D

jnl jump if not less

jl jump if less SF≤OF 7C OF 8C

jnge jump if not greater or equal

jle jump if less or equal SF≤OF or ZF=1 7E OF 8E

jng jump if not greater

Other conditional jumps

opcode

mnemonic description flags to jump short near

je jump if equal ZF=1 74 OF 84

jz jump if zero

jne jump if not equal ZF=0 75 OF 85

jnz jump if not zero

js jump if sign SF=1 78 OF 88

jns jump if not sign SF=0 79 OF 89

jc jump if carry CF=1 72 0F 82

jnc jump if not carry CF=0 73 0F 83

jp jump if parity PF=1 7A OF 8A

jpe jump if parity even

jnp jump if not parity PF=0 7B OF 8B

jpo jump if parity odd

jo jump if overflow OF=1 70 OF 80

jno jump if not overflow OF=0 71 OF 81

Figure 5.5 (continued)
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Each conditional jump instruction takes a single clock cycle for execution.

No conditional jump instruction changes any flag value. Each instruction has a

short version and a near version. Just as with short unconditional jump instructions, a

short conditional jump encodes a single-byte displacement and can transfer control 128

bytes before or 127 bytes after the address of the byte following the instruction itself. A

short conditional jump requires two bytes of object code, one for the opcode and one for

the displacement. A near conditional jump encodes a 32-bit displacement in addition to

a two-byte opcode, giving a total length of six bytes. It can transfer control up to

2,147,483,648 bytes backward or 2,147,483,647 forward. The number of bytes and num-

ber of clock cycles for conditional jump instructions is summarized in Fig. 5.6.

One more pair of examples will illustrate the difference between the conditional

jumps appropriate after comparison of signed and unsigned numbers. Suppose a value is

stored in EAX and some action needs to be taken when that value is larger than 100. If

the value is unsigned, one might code

cmp     eax, 100

ja      bigger

The jump would be chosen for any value bigger than 0000006416, including values

between 8000000016 and FFFFFFFF16, which represent both large unsigned numbers

and negative 2’s complement numbers. If the value in EAX is interpreted as signed, then

the instructions

cmp     ax,100

jg      bigger

Clock Cycles Number

386 486 Pentium of Bytes

short conditional jump 7+, 3 3, 1 1 2

near conditional jump 7+, 3 3, 1 1 6

For the 80386 and 80486 the longer time is when the jump is executed; the

shorter time is for no jump.

Figure 5.6 Timing and size of conditional jump instructions
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are appropriate. The jump will only be taken for values between 00000064 and

7FFFFFFF, not for those bit patterns that represent negative 2’s complement numbers.

We now look at three examples showing implementation of if structures. The

implementations are consistent with what a high-level language compiler would use.

First consider the design

if value < 10

then

add 1 to smallCount;

else

add 1 to largeCount;

end if;

Suppose that value is stored in the EBX register and that smallCount and largeCount ref-

erence words in memory. The following 80x86 code implements this design.

cmp  ebx, 10         ; value < 10 ?

jnl  elseLarge

inc  smallCount      ; add 1 to small_count

jmp  endValueCheck

elseLarge: inc  largeCount      ; add 1 to large_count

endValueCheck:

Note that this code is completely self-contained; you do not need to know what comes

before or after in the overall design to implement this portion. You must have a plan for

making labels, though, to avoid duplicates and reserved words. A compiler often pro-

duces a label consisting of a letter followed by a sequence number, but most of the time

we can do better as humans writing code.

Now consider the design

if (total ≥ 100) or (count = 10)

then

add value to total;

end if;

Assume that total and value reference doublewords in memory and that count is stored

in the CX register. Here is assembly language code to implement this design.
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cmp  total, 100      ; total >= 100 ?

jge  addValue

cmp  cx, 10          ; count = 10 ?

jne  endAddCheck

addValue: mov  ebx, value      ; copy value

add  total, ebx      ; add value to total

endAddCheck:

Notice that the design’s or requires two cmp instructions. If either of the corresponding

tests is passed, then the addition is performed. (Why was the addition done with two

statements? Why not use add total,value?) This code implements a short-cut or —

if the first condition is true, then the second is not checked at all. The code imple-

mented for some languages always checks both operands of an or operation, even if the

first is true.

Finally consider the design

if (count > 0) and (ch = backspace)

then

subtract 1 from count;

end if;

For this third example, assume that count is in the CX register, ch is in the AL register

and that backspace has been equated to 0816, the ASCII backspace character. This

design can be implemented as follows.

cmp  cx, 0           ; count > 0 ?

jng  endCheckCh

cmp  al, backspace   ; ch a backspace?

jne  endCheckCh

dec  count           ; subtract 1 from count

endCheckCh:

This compound condition uses and, so both parts must be true in order to execute the

action. This code implements a short-cut and — if the first condition is false, then the

second is not checked at all. The code implemented for some languages always checks

both operands of an and operation, even if the first is false.
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This section ends with an example implementing a simple game program.

The computer asks one player to enter a number. After it is typed in, the screen is

cleared, and the other player tries to guess the number. After each guess the com-

puter reports “too low,” “too high,” or “you got it.” After the number is finally

guessed, the number of attempts is reported, and the players are asked if they want

to play another game. The pseudocode design in Fig. 5.7 gives a more precise

description.

until response='N' or response='n' loop

prompt first player for target;

input target and convert to 2's complement form;

clear screen;

count := 0;

until guess=target loop

add 1 to count;

prompt second player for guess;

input guess and convert to 2's complement;

if guess=target

then

display "you got it";

elseif guess<target

then

display "too low";

else

display "too high";

end if;

end until;  { guess=target }

convert count to ASCII;

display count;

display "Do you want to play again?";

input response;

end until;  { response= 'N' or response='n' }

Figure 5.7 Design for game program
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The assembly language source code for the game program is shown in Fig.

5.8. Note that screen is cleared by writing 24 line feed characters. The loop and selec-

tion structures in the program faithfully follow the design. Recall that an until loop is a

; program to implement number guessing game

; author:  R. Detmer

; date:  revised 9/97

.386

.MODEL FLAT

INCLUDE io.h

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

cr          EQU    0dh   ; carriage return character

Lf          EQU    0ah   ; linefeed character

.STACK  4096             ; reserve 4096-byte stack

.DATA                    ; reserve storage for data

prompt1     BYTE   cr,Lf,Lf,"Player 1, please enter a number:  ", 0

target      DWORD  ?

clear       BYTE   24 DUP (Lf), 0

prompt2     BYTE   cr,Lf,"Player 2, your guess?   ", 0

stringIn    BYTE   20 DUP (?)

lowOutput   BYTE   "too low", cr, Lf, 0

highOutput  BYTE   "too high", cr, Lf, 0

gotItOutput BYTE   "you got it", cr, Lf, 0

countLabel  BYTE   Lf, "Number of guesses:"

countOut    BYTE   6 DUP (?)

BYTE   cr, Lf, Lf, Lf, "Do you want to play again?  ",0

.CODE                               ; start of main program code

_start:

untilDone:  output prompt1          ; ask player 1 for target

input  stringIn, 20     ; get number

(continued)

Figure 5.8 Game program
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atod   stringIn         ; convert to integer

mov    target,eax       ; store target

output clear            ; clear screen

mov    cx, 0            ; zero count

untilMatch: inc    cx               ; increment count of guesses

output prompt2          ; ask player 2 for guess

input  stringIn, 20     ; get number

atod   stringIn         ; convert to integer

cmp    eax, target      ; compare guess and target

jne    ifLess           ; guess = target ?

equal:      output gotItOutput      ; display "you got it"

jmp    endCompare

ifLess:     jnl    isGreater        ; guess < target ?

output lowOutput        ; display "too low"

jmp    endCompare

isGreater:  output highOutput       ; display "too high"

endCompare:

cmp    eax, target      ; compare guess and target

jne    untilMatch       ; ask again if guess not = target

itoa   countOut, cx     ; convert count to ASCII

output countLabel       ; display label, count and prompt

input  stringIn, 20     ; get response

cmp    stringIn, 'n'    ; response = 'n' ?

je     endUntilDone     ; exit if so

cmp    stringIn, 'N'    ; response = 'N' ?

jne    untilDone        ; repeat if not

endUntilDone:

INVOKE ExitProcess, 0   ; exit with return code 0

PUBLIC _start                       ; make entry point public

END                     ; end of source code

Figure 5.8 (continued)

post-test loop. The next section carefully describes how to implement both until and

while loops.

The outside until loop in the game program is terminated by either a “N” or “n”

response to a query to the players. The input macro is used to get the response in the
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same input area as used for numbers earlier. Since the address of a multibyte object is

the address of its first byte, the instruction

cmp    stringIn, 'n'    ; response = 'n' ?

is really comparing the first (and probably only) character of input to the letter “n”. This is

not a comparison of two strings.

Exercises 5.2

1. Assume for each part of this problem that the EAX register contains 00

00 00 4F and the doubleword referenced by value contains FF FF FF 38.

Determine whether or not each of the conditional jump statements

causes a jump to dest.

(a) cmp   eax, value (b) cmp   eax, value

jl    dest jb    dest

(c) cmp   eax, 04fh (d) cmp   eax, 79

je    dest jne   dest

(e) cmp   value, 0 (f) cmp   value, –200

jbe   dest jge   dest

(g) add   eax, 200 (h) add   value, 200

js    dest jz    dest

2. Each part of this problem gives a design with an if structure and some

assumptions about how the variables are stored in an assembly lan-

guage program. Give a fragment of assembly language code that imple-

ments the design.

(a) design:

if count = 0

then

count := value;

end if;

Assumptions:  count is in ECX; value references a doubleword in memory

(b) design:

if count > value

then

count := 0;

end if;
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Assumptions:  count is in ECX; value references a doubleword in memory

(c) design:

if a + b = c

then

check := 'Y';

else

check := 'N';

end if;

Assumptions: each of a, b, and c references a doubleword in memory;

the character check is in the AL register

(d) design:

if (value ( � 1000) or (value ≥ 1000)

then

value := 0;

end if;

Assumption: value is in EDX

(e) design:

if (ch ≥ 'a') and (ch ( 'z')

then

add 1 to lowerCount;

else

if (ch ≥ 'A') and (ch ( 'Z')

then

add 1 to upperCount;

else

add 1 to otherCount;

end if;

end if;

Assumptions: ch is in AL; each of lowerCount, upperCount, and other-

Count references a doubleword in memory

Programming Exercises 5.2

1. Modify the game program to accept only numbers between 0 and 1000

from either player. A design for the new code section is
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until (value ≥ 0) and (value ( 1000) loop

input value and convert to 2's complement;

if (value < 0) or (value > 1000)

then

display "enter value 0 to 1000";

end if;

end until;

2. Modify the game program so that it only allows Player 2 five attempts

at guessing the number entered by Player 1. If the fifth attempt is incor-

rect, display “Sorry, the number is value of target” and proceed to ask-

ing the players if they want another game.

5.3 Implementing Loop Structures

Most programs contain loops. Commonly used loop structures include while, until, and

for loops. This section describes how to implement all three of these structures in 80x86

assembly language. The next section describes additional instructions that can be used

to implement for loops.

A while loop can be indicated by the following pseudocode design.

while continuation condition loop

... { body of loop }

end while;

The continuation condition, a Boolean expression, is checked first. If it is true,

then the body of the loop is executed. The continuation condition is then checked again.

Whenever the value of the Boolean expression is false, execution continues with the

statement following end while.

An 80x86 implementation of a while loop follows a pattern much like this one.

while:       .           ; code to check Boolean expression

.

.

body:        .           ; loop body

.

.

jmp  while   ; go check condition again

endWhile:
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It often takes several statements to check the value of the Boolean expression. If it is

determined that the value is false, then there will be a jump to endWhile. If it is deter-

mined that the continuation condition is true, then the code will either fall through to

body or there will be a jump to its label. Notice that the body of the loop ends with a jmp

to go check the condition again. Two common mistakes are to omit this jump or to jump

to the body instead.

The label while in this model is not allowed in actual code since while is a

reserved word in MASM. In fact, MASM 6.11 has a while directive that simplifies writ-

ing code for while loops. It is not used in this book since our main concern is under-

standing how structures are implemented at the machine language level.

For an example, suppose that the design

while (sum < 1000) loop

... { body of loop }

end while;

is to be coded in 80x86 assembly language. Assuming that sum references a doubleword

in memory, one possible implementation is

whileSum:    cmp   sum, 1000      ; sum < 1000?

jnl   endWhileSum    ; exit loop if not

.                   ; body of loop

.

.

jmp   whileSum       ; go check condition again

endWhileSum:

The statement

jnl   endWhileSum

directly implements the design. An alternative would be to use

jge  endWhileSum

which transfers control to the end of the loop if sum ≥ 1000. This works since the

inequality (sum ≥ 1000) will be true exactly when the (sum < 1000) is false, but the jnl

mnemonic makes it easier to implement the design without having to reverse the

inequality.
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For a short example showing a complete loop body, suppose that the integer

base 2 logarithm of a positive number needs to be determined. The integer base 2 loga-

rithm of a number is the largest integer x such that

2x ( number

The following design does the job.

x := 0;

twoToX := 1;

while twoToX ( number

multiply twoToX by 2;

add 1 to x;

end while;

subtract 1 from x;

Assuming that number references a doubleword in memory, the following 80x86 code

implements the design, using the EAX register for twoToX and the CX register for x.

mov   cx, 0       ; x := 0

mov   eax, 1      ; twoToX := 1

whileLE:    cmp   eax, number ; twoToX <= number?

jnle  endWhileLE  ; exit if not

body:       add   eax, eax    ; multiply twoToX by 2

inc   cx          ; add 1 to x

jmp   whileLE     ; go check condition again

endWhileLE:

dec   cx          ; subtract 1 from x

Often the continuation condition in a while is compound, having two parts

connected by Boolean operators and or or. Both operands of an and must be true for a

true conjunction. With an or, the only way the disjunction can be false is if both

operands are false.

Changing a previous example to include a compound condition, suppose that

the following design is to be coded.

while (sum < 1000) and (count ( 24) loop

... { body of loop }

end while;
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Assuming that sum references a doubleword in memory and the value of count is in CX,

an implementation is

whileSum:   cmp   sum, 1000      ; sum < 1000?

jnl   endWhileSum    ; exit if not

cmp   cx, 24         ; count <= 24

jnle  endWhileSum    ; exit if not

.                   ; body of loop

.

.

jmp   whileSum       ; go check condition again

endWhileSum:

Modifying the example another time, here is a design with an or instead of an and.

while (sum < 1000) or (flag = 1) loop

... { body of loop }

end while;

This time, assume that sum is in the EAX register and that flag is a single byte in the DH

register. Here is 80x86 code that implements the design.

whileSum:   cmp   eax, 1000      ; sum < 1000?

jl    body           ; execute body if so

cmp   dh,1           ; flag = 1?

jne   endWhileSum    ; exit if not

body:        .                   ; body of loop

.

.

jmp   whileSum       ; go check condition again

endWhileSum:

Notice the difference in the previous two examples. For an and the loop is exited if

either operand of the compound condition is false. For an or the loop body is executed

if either operand of the compound condition is true.

Sometimes processing in a loop is to continue while normal values are encoun-

tered and to terminate when some sentinel value is encountered. If data are being

entered from the keyboard, this design can be written
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get value from keyboard;

while (value is not sentinel) loop

... { body of loop }

get value from keyboard;

end while;

In some high-level languages, implementation code must exactly parallel this design.

One of the advantages of assembly language is that one has more flexibility. An equiva-

lent design is

while (value entered from keyboard is not sentinel) loop

... { body of loop }

end while;

This design does not require two separate instructions to input data. It can be coded in

some high-level languages and also in 80x86 assembly language.

For a concrete example illustrating implementation of such a design, suppose

that non-negative numbers entered at the keyboard are to be added, with any negative

entry serving as a sentinel value. A design looks like

sum := 0;

while (number keyed in is not negative) loop

add number to sum;

end while;

Assuming appropriate definitions in the data segment, the 80x86 code could be

mov    ebx, 0        ; sum := 0

whileNotNeg: output prompt        ; prompt for input

input  number,10     ; get number from keyboard

atod   number        ; convert to 2's complement

js     endWhile      ; exit if negative
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add    ebx, eax      ; add number to sum

jmp    whileNotNeg   ; go get next number

endWhile:

Recall that the atod macro affects the sign flag SF, setting it if the ASCII characters are

converted to a negative number in the EAX register and clearing it otherwise.

The body of a for loop, a counter-controlled loop, is executed once for each

value of a loop index (or counter) in a given range. In some high-level languages, the loop

index can be some type other than integer; in assembly language the index is usually an

integer. A for loop can be described by the following pseudocode.

for index := initialValue to finalValue loop

... { body of loop }

end for;

A for loop can easily be translated into a while structure.

index := initialValue;

while index ( finalValue loop

... { body of loop }

add 1 to index;

end while;

Such a while is readily coded in 80x86 assembly language.

As an example, suppose that a collection of numbers needs to be added and no

value is convenient as a sentinel. Then one might want to ask a user how many numbers

are to be entered and loop for that many entries. The design looks like

prompt for tally of numbers;

input tally;

sum := 0

for count := 1 to tally loop

prompt for number;

input number;

add number to sum;

end for;
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Making straightforward assumptions about definitions in the data segment, here is an

80x86 implementation of the design.

output prompt1        ; prompt for tally

input  value, 20      ; get tally (ASCII)

atoi   value          ; convert to 2's complement

mov    tally, ax      ; store tally

mov    edx, 0         ; sum := 0

mov    bx, 1          ; count := 1

forCount:   cmp    bx, tally      ; count <= tally?

jnle   endFor         ; exit if not

output prompt2        ; prompt for number

input  value, 20      ; get number (ASCII)

atod   value          ; convert to 2's complement

add    edx, eax       ; add number to sum

inc    bx             ; add 1 to count

jmp    forCount       ; repeat

endFor:

In a for loop implementation where one is sure that the body of the loop will be

executed at least once (i.e., initialValue ( finalValue), one can check the index against the

final value at the end of the loop body rather than prior to the body. Other variations are also

possible. Additional instructions for implementing for loops will be covered in Section 5.4.

You have already seen examples of until loops. In general, an until loop can be

expressed as follows in pseudocode.

until termination condition loop

... { body of loop }

end until;

The body of the loop is executed at least once; then the termination condition is

checked. If it is false, then the body of the loop is executed again; if true, execution con-

tinues with the statement following end until.
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An 80x86 implementation of an until loop usually looks like the following

code fragment.

until:     .           ; start of loop body

.           .

.           .

.           ; code to check termination condition

endUntil:

If the code to check the termination condition determines that the value is false, then

there will be a jump to until. If it is determined that the value is true, then the code will

either fall through to endUntil or there will be a jump to that label.

The game program implemented in Fig. 5.8 contained two simple until loops.

Here is an example with a compound terminating condition. Given the design

count := 0;

until (sum > 1000) or (count = 100) loop

... { body of loop }

add 1 to count;

end until;

the following 80x86 code provides an implementation. Assume that sum references a

word in the data segment and that count is stored in CX.

mov   cx, 0      ; count := 0

until:       .               ; body of loop

.

.

inc   cx         ; add 1 to count

cmp   sum, 1000  ; sum > 1000 ?

jg    endUntil   ; exit if sum > 1000

cmp   cx, 100    ; count = 100 ?

jne   until      ; continue if count not = 100

endUntil:

Other loop structures can also be coded in assembly language. The forever loop

is frequently useful. As it appears in pseudocode, it almost always has an exit loop

statement to transfer control to the end of the loop; this is often conditional—that is, in

an if statement. Here is a fragment of a typical design.
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forever loop

.

.

.

if (response = ‘s’) or (response = ‘S’)

then

exit loop;

end if;

.

.

.

end loop;

Assuming that the value of response is in the AL register, this can be implemented as

follows in 80x86 assembly language.

forever:     .

.

.

cmp   al, 's'       ; response = 's'?

je    endLoop       ; exit loop if so

cmp   al, 'S'       ; response = 'S'?

je    endLoop       ; exit loop if so

.

.

.

jmp   forever       ; repeat loop body

endLoop:

Exercises 5.3

1. Each part of this problem contains a design with a while loop. Assume

that sum references a doubleword in the data segment and that the

value of count is in the ECX register. Give a fragment of 80x86 code that

implements the design.

(a) sum := 0;

count := 1;
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while (sum < 1000) loop

add count to sum;

add 1 to count;

end while;

(b) sum := 0;

count := 1;

while (sum < 1000) and (count ( 50) loop

add count to sum;

add 1 to count;

end while;

(c) sum := 0;

count := 100;

while (sum < 1000) or (count ≥ 0) loop

add count to sum;

subtract 1 from count;

end while;

2. Each part of this problem contains a design with a until loop. Assume

that sum references a doubleword in the data segment and that the

value of count is in the ECX register. Give a fragment of 80x86 code that

implements the design.

(a) sum := 0;

count := 1;

until (sum > 5000) loop

add count to sum;

add 1 to count;

end until;

(b) sum := 0;

count := 1;

until (sum > 5000) or (count = 40) loop

add count to sum;

add 1 to count;

end until;

(c) sum := 0;

count := 1;

until (sum ≥ 5000) and (count > 40) loop

add count to sum;

add 1 to count;

end until;
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3. Each part of this problem contains a design with a for loop. Assume

that sum references a doubleword in the data segment and that the

value of count is in the ECX register. Give a fragment of 80x86 code that

implements the design.

(a) sum := 0;

for count := 1 to 100 loop

add count to sum;

end for;

(b) sum := 0;

for count := –10 to 50 loop

add count to sum;

end for;

(c) sum := 1000;

for count := 100 downto 50 loop

subtract 2*count from sum;

end for;

Programming Exercises 5.3

1. Write a complete 80x86 assembly language program that will accept

numbers from the keyboard and report the minimum and maximum of

the numbers. Implement the following design, adding appropriate

labels to output.

display "First number?  ";

input number;

minimum := number;

maximum := number;

while (response to "Another number? " is 'Y' or 'y') loop

input number;

if (number < minimum)

then

minimum := number;

end if;

if (number > maximum)

then

maximum := number;

end if;

end while;
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display the minimum value;

display the maximum value;

2. Write a complete 80x86 assembly language program that will accept

numbers from the keyboard and report the sum and average of the

numbers. The count of numbers is not known in advance; use the value

� 999999 as a sentinel to terminate input. Implement the following

design, adding appropriate prompts for input and labels for output.

sum := 0;

count := 0;

while (number entered from keyboard ≤ –999999) loop

add number to sum;

add 1 to count;

end while;

if (count = 0)

then

display "No numbers entered";

else

average := sum/count;

display sum and average;

end if;

3. Write a complete 80x86 assembly language program to help your over-

worked instructor analyze examination grades. The program will input

an unknown number of examination grades, using any negative grade

as a sentinel, and then report the number of As (90–100), Bs (80–89), Cs

(70–79), Ds (60–69), and Fs (under 60). Implement the following design.

Prompt for input as appropriate.

ACount := 0;

BCount := 0;

CCount := 0;

DCount := 0;

FCount := 0;

while (grade entered at keyboard ≥ 0) loop

if (grade ≥ 90)
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then

add 1 to ACount;

elseif (grade ≥ 80)

then

add 1 to BCount;

elseif (grade ≥ 70)

then

add 1 to CCount;

elseif (grade ≥ 60)

then

add 1 to DCount;

else

add 1 to FCount;

end if;

end while;

display "Number of As", ACount;

display "Number of Bs", BCount;

display "Number of Cs", CCount;

display "Number of Ds", DCount;

display "Number of Fs", FCount;

4. The greatest common divisor of two non-negative integers is the

largest integer that evenly divides both numbers. The following algo-

rithm will find the greatest common divisor of number1 and number2.

gcd := number1;

remainder := number2;

until (remainder = 0) loop

dividend := gcd;

gcd := remainder;

remainder := dividend mod gcd;

end until;

Write a complete 80x86 assembly language program that implements the

following design, with appropriate prompts for input and labels for output.

until (number1 > 0) loop

input number1;
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end until;

until (number2 > 0) loop

input number2;

end until;

find gcd of number1 and number2;    (see design above)

display gcd;

5. Write a complete 80x86 assembly language program to simulate a sim-

ple calculator. The calculator does addition and subtraction operations

and also accepts commands to clear the accumulated value or to quit.

Implement the following design.

total := 0;

forever loop

display "number? ";

input number;

display "action (+, -, c or q) ? ";

input action;

if (action = '+')

then

add number to total;

elseif (action = '-')

then

subtract number from total;

elseif (action = 'c') or (action = 'C')

then

total := 0;

elseif (action = 'q') or (action = 'Q')

then

exit loop;

else

display "Unknown action";
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end if;

display "total", total;

end loop;

5.4 for Loops in Assembly Language

Often the number of times the body of a loop must be executed is known in advance,

either as a constant that can be coded when a program is written, or as the value of a

variable that is assigned before the loop is executed. The for loop structure is ideal for

coding such a loop.

The previous section showed how to translate a for loop into a while loop. This

technique always works and is frequently the best way to code a for loop. However, the

80x86 microprocessor has instructions that make coding certain for loops very easy.

Consider the following two for loops, the first of which counts forward and the

second of which counts backward.

for index := 1 to count loop

... { body of loop }

end for;

and

for index := count downto 1 loop

... { body of loop }

end for;

The body of each loop executes count times. If the value of index is not needed for dis-

play or for calculations within the body of the loop, then the loop that counts down is

equivalent to the loop that counts up, although the design may not be as natural. Back-

ward for loops are very easy to implement in 80x86 assembly language with the loop

instruction.

The loop instruction has the format

loop  statementLabel
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where statementLabel is the label of a statement that is a short displacement (128 bytes

backward or 127 bytes forward) from the loop instruction. The loop instruction causes

the following actions to take place:

• the value in ECX is decremented

• if the new value in ECX is zero, then execution continues with the

statement following the loop instruction

• if the new value in ECX is nonzero, then a jump to the instruction at

statementLabel takes place

In addition to the loop instruction, there are two conditional loop instructions

that are less frequently used. Features of all three instructions are summarized in Fig.

5.9. Each requires two bytes of object code; the first byte is the opcode and the second

byte is the displacement to the destination statement. Two times are given for 80486

and Pentium instructions, the first showing how many clock cycles are required if the

jump is not taken, and the second showing how many clock cycles are required if it is

taken. The situation is more complex for the 80386, but it also has two distinct execution

times. None of these instructions changes any flag.

Although the ECX register is a general register, it has a special place as a

counter in the loop instruction and in several other instructions. No other register can

be substituted for ECX in these instructions. In practice this often means that when a

loop is coded, either ECX is not used for other purposes or a counter value is put in ECX

before a loop instruction is executed but is saved elsewhere to free ECX for other uses for

most of the body of the loop.

The backward for loop structure

for count := 20 downto 1 loop

... { body of loop }

end for;

Clock Cycles Number

Mnemonic 386 486 Pentium of Bytes Opcode

loop 11+ 6/7 5/6 2 E2

loope/loopz 11+ 6/9 7/8 2 E1

loopne/loopnz 11+ 6/9 7/8 2 E0

Figure 5.9 loop instructions
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can be coded as follows in 80x86 assembly language.

mov   ecx, 20       ; number of iterations

forCount:    .                  ; body of loop

.

.

loop  forCount      ; repeat body 20 times

The counter in the ECX register will be 20 the first time the body of the loop is executed

and will be decremented to 19 by the loop instruction. The value 19 is not zero, so con-

trol transfers to the start of the loop body at label forCount. The second time the body

of the loop is executed, the ECX register will contain 19. The last time the value in ECX

will be one; it will be decremented to zero by the loop instruction, and the jump to for-

Count will not be taken.

The obvious label to mark the body of a for loop is for. Unfortunately this is a

reserved word in MASM. It is used for a directive that simplifies coding of for loops.

Again, our primary interest is in learning how the computer works at the machine level,

so this directive will not be used.

Now suppose that the doubleword in memory referenced by number contains

the number of times a loop is to be executed. The 80x86 code to implement a backward

for loop could be

mov   ecx, number   ; number of iterations

forIndex:    .                  ; body of loop

.

.

loop  forIndex      ; repeat body number times

This is safe code only if the value stored at number is not zero. If it is zero,

then the loop body is executed, the zero value is decremented to FFFFFFFF (a borrow

is required to do the subtraction), the loop body is executed again, the value FFFFFFFF

is decremented to FFFFFFFE, and so forth. The body of the loop is executed

4,294,967,296 times before the value in ECX gets back down to zero! To avoid this

problem, one could code

mov   ecx, number   ; number of iterations

cmp   ecx, 0        ; number = 0 ?

je    endFor        ; skip loop if number = 0

forIndex:    .                  ; body of loop

.

.
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loop  forIndex      ; repeat body number times

endFor:

If number is a signed value and might be negative, then

jle   endFor       ; skip loop if number <= 0

is a more appropriate conditional jump.

There is another way to guard a for loop so that it is not executed when the

value in ECX is zero. The 80x86 instruction set has a jecxz conditional jump instruction

that jumps to its destination if the value in the ECX register is zero. Using the jecxz

instruction, the example above can be coded as

mov   ecx, number   ; number of iterations

jecxz endFor        ; skip loop if number = 0

forIndex:    .                  ; body of loop

.

.

loop  forIndex      ; repeat body number times

endFor:

There is also a jcxz instruction that checks the CX register rather than the

ECX register. Both instructions are two bytes long, the opcode E3 plus a single-byte

displacement; the prefix byte 67 distinguishes between the 16-bit size and the 32-bit

versions. Like the other conditional jump instructions, jcxz/jecxz affects no flag

value. They do take longer to execute, six clock cycles on a Pentium if the jump takes

place (if the value in ECX is zero), and five clock cycles to fall through to the next state-

ment otherwise.

The jecxz instruction can be used to code a backward for loop when the loop

body is longer than 127 bytes, too large for the loop instruction’s single-byte displace-

ment. For example, the structure

for counter := 50 downto 1 loop

... { body of loop }

end for;

could be coded as

TEAM LinG - Live, Informative, Non-cost and Genuine!



5.4 for Loops in Assembly Language 177

mov   ecx, 50       ; number of iterations

forCounter:  .                  ; body of loop

.

.

dec   ecx           ; decrement loop counter

jecxz endFor        ; exit if counter = 0

jmp   forCounter    ; otherwise repeat body

endFor:

However, since the dec instruction sets or resets the zero flag ZF, the faster condi-

tional jump

jz  endFor

can be used instead of the jecxz instruction.

It is often convenient to use a loop statement to implement a for loop, even

when the loop index increases and must be used within the body of the loop. The loop

statement uses ECX to control the number of iterations, while a separate counter serves

as the loop index.

For example, to implement the for loop

for index := 1 to 50 loop

...{ loop body using index }

end for;

the EBX register might be used to store index counting from 1 to 50 while the ECX regis-

ter counts down from 50 to 1.

mov   ebx, 1     ; index := 1

mov   ecx, 50    ; number of iterations for loop

forNbr:  .

.               ; use value in EBX for index

.

inc   ebx        ; add 1 to index

loop  forNbr     ; repeat
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Figure 5.9 listed two variants of the loop instruction, loopz/loope and

loopnz/loopne. Each of these work like loop, decrementing the counter in ECX.

However, each examines the value of the zero flag ZF as well as the new value in the

ECX register to decide whether or not to jump to the destination location. The

loopz/loope instruction jumps if the new value in ECX is nonzero and the zero flag is

set (ZF=1). The loopnz/loopne instruction jumps if the new value in ECX is nonzero

and the zero flag is clear (ZF=0).

The loopz and loopnz instructions are useful in special circumstances. Some

programming languages allow loop structures such as

for year := 10 downto 1 until balance = 0 loop

... { body of loop }

end for;

This confusing structure means to terminate loop execution using whichever loop con-

trol is satisfied first. That is, the body of the loop is executed 10 times (for year = 10,

9,...,1) unless the condition balance = 0 is true at the bottom of some execution of the

loop body, in which case the loop terminates with fewer than 10 iterations. If the value of

balance is in the EBX register, the following 80x86 code could be used.

mov    ecx, 10 ; maximum number of iterations

forYear:    .             ; body of loop

.

.

cmp    ebx, 0  ; balance = 0 ?

loopne forYear ; repeat 10 times if balance not 0

Exercises 5.4

1. Each part of this problem has a for loop implemented with a loop state-

ment. How many times is each loop body executed?

(a)

mov  ecx, 10

forA:  .

.             ; body of loop

.

loop forA
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(b)

mov  ecx, 1

forB:  .

.             ; body of loop

.

loop forB

(c)

mov  ecx, 0

forC:  .

.             ; body of loop

.

loop forC

(d)

mov  ecx, –1

forD:  .

.             ; body of loop

.

loop forD

2. Each part of this problem contains a design with a for loop. Assume

that sum references a doubleword in the data segment. Give a fragment

of 80x86 code that uses a loop statement to implement the design. Use

the dtoa and output macros for display, assuming that the data seg-

ment contains

ASCIIcount   BYTE  11 DUP (?)

ASCIIsum     BYTE  11 DUP (?)

BYTE  13, 10, 0    ; carriage return, linefeed

(a) sum := 0;

for count := 50 downto 1 loop

add count to sum;

display count, sum;

end for;

(b) sum := 0;

for count := 1 to 50 loop

add count to sum;

display count, sum;

end for;
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(c) sum := 0;

for count := 1 to 50 loop

add (2*count � 1) to sum;

display count, sum;

end for;

Programming Exercises 5.4

1. Write a complete 80x86 program to input a positive integer value N and

to display a table of integers from 1 to N and their squares. Use a two-

column format such as

number     square

1          1

2          4

3          9

4         16

5         25

2. A Pythagorean triple consists of three positive integers A, B, and C

such that A2 + B2 = C2. For example, the numbers 3, 4, and 5 form a

Pythagorean triple since 9 + 16 = 25. Write a complete 80x86 program to

input a value for C and then display all possible Pythagorean triples

with this value for C, if any. For example, if 5 is entered for the value of

C, then the output might be

A          B          C

3          4          5

4          3          5

5.5 Arrays

Programs frequently use arrays to store collections of data values. Loops are commonly

used to manipulate the data in arrays. This section shows one way to access 1-dimen-

sional arrays in 80x86 assembly language; other techniques will appear in Chapter 9 with

discussion of additional memory addressing modes.

This section contains a complete program to implement the design below. The

program first accepts a collection of positive numbers from the keyboard, counting them

and storing them in an array. It then calculates the average of the numbers by going

back through the numbers stored in the array, accumulating the total in sum. Finally the
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numbers in the array are scanned again, and this time the numbers larger than the aver-

age are displayed. The first two loops could be combined, of course, with the sum being

accumulated as the numbers are keyed in. As a general programming philosophy,

clearer code results from separating tasks; they should be combined only if there is a real

need to save execution time or bytes of object code.

nbrElts := 0;                 { input numbers into array }

get address of first item of array;

while (number from keyboard > 0) loop

convert number to 2's complement;

store number at address in array;

add 1 to nbrElts;

get address of next item of array;

end while;

sum := 0;                          { find sum and average }

get address of first item of array;

for count := nbrElts downto 1 loop

add doubleword at address in array to sum;

get address of next item of array;

end for;

average := sum/nbrElts;

display average;

get address of first item of array;  { list big numbers }

for count := nbrElts downto 1 loop

if doubleword of array > average

then

convert doubleword to ASCII;

display value;

end if;

get address of next item of array;

end for;

This design contains the curious instructions “get address of first item of array”

and “get address of next item of array.” These reflect the particular assembly language

implementation, one which works well if the task at hand involves moving sequentially
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through an array. The 80x86 feature which makes this possible is register indirect

addressing, first discussed in Chapter 3. The example will use the EBX register to con-

tain the address of the word currently being accessed; then [ebx] references the double-

word at the address in the EBX register rather than the doubleword in the register itself.

In the 80x86 architecture any of the general registers EAX, EBX, ECX, and EDX or the

index registers EDI and ESI are appropriate for use as a “pointer.” The ESI and EDI regis-

ters are often reserved for use with strings, which are usually arrays of characters. String

operations are covered in Chapter 7. The program listing appears in Fig. 5.10.

; input a collection of numbers

; report their average and the numbers which are above average

; author:  R. Detmer

; date:  revised 9/97

.386

.MODEL FLAT

INCLUDE io.h

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

cr          EQU    0dh   ; carriage return character

Lf          EQU    0ah   ; linefeed character

maxNbrs     EQU    100   ; size of number array

.STACK      4096

.DATA

directions  BYTE     cr, Lf, 'You may enter up to 100 numbers'

BYTE     ' one at a time.',cr,Lf

BYTE     'Use any negative number to terminate 

input.',cr,Lf,Lf

BYTE     'This program will then report the average and 

list',cr,Lf

BYTE     'those numbers which are above the 

average.',cr,Lf,Lf,Lf,0

prompt      BYTE     'Number?  ',0

number      BYTE     20 DUP (?)

nbrArray    DWORD    maxNbrs DUP (?)

nbrElts     DWORD    ?

avgLabel    BYTE     cr,Lf,Lf,'The average is'

(continued)

Figure 5.10 Program using array

TEAM LinG - Live, Informative, Non-cost and Genuine!



5.5 Arrays 183

outValue    BYTE     11 DUP (?), cr,Lf,0

aboveLabel  BYTE     cr,Lf,'Above average:',cr,Lf,Lf,0

.CODE

_start:

; input numbers into array

output directions    ; display directions

mov    nbrElts,0     ; nbrElts := 0

lea    ebx,nbrArray  ; get address of nbrArray

whilePos:   output prompt        ; prompt for number

input  number,20     ; get number

atod   number        ; convert to integer

jng    endWhile      ; exit if not positive

mov    [ebx],eax     ; store number in array

inc    nbrElts       ; add 1 to nbrElts

add    ebx,4         ; get address of next item of array

jmp    whilePos      ; repeat

endWhile:

; find sum and average

mov    eax,0         ; sum := 0

lea    ebx,nbrArray  ; get address of nbrArray

mov    ecx,nbrElts   ; count := nbrElts

jecxz  quit          ; quit if no numbers

forCount1:  add    eax,[ebx]     ; add number to sum

add    ebx,4         ; get address of next item of array

loop   forCount1     ; repeat nbrElts times

cdq                  ; extend sum to quadword

idiv   nbrElts       ; calculate average

dtoa   outValue,eax  ; convert average to ASCII

output avgLabel      ; print label and average

output aboveLabel    ; print label for big numbers

; display numbers above average

lea    ebx,nbrArray  ; get address of nbrArray

mov    ecx,nbrElts   ; count := nbrElts

(continued)

Figure 5.10 (continued)
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The design statement “get address of first item of array” is implemented by the

80x86 statement

lea  ebx, nbrArray

The mnemonic lea stands for “load effective address.” The lea instruction has the format

lea   destination, source

The destination will normally be a 32-bit general register; the source is any reference to

memory. The address of the source is loaded into the register. (Contrast this with mov

destination, source where the value at the source address is copied to the destina-

tion.) The lea instruction has opcode 8D takes one clock cycle on a Pentium, one or two

on an 80486, and two on an 80386.

The design statement “get address of next item of array” is implemented using

the 80x86 statement

add  ebx, 4

Since each doubleword occupies four bytes of storage, adding 4 to the address of the

current element of an array gives the address of the next element of the array.

forCount2:  cmp    [ebx],eax        ; doubleword > average ?

jng    endIfBig         ; continue if average not less

dtoa   outValue,[ebx]   ; convert value from array to 

; ASCII

output outValue         ; display value

endIfBig:

add    ebx,4            ; get address of next item of array

loop   forCount2        ; repeat

quit:       INVOKE ExitProcess, 0   ; exit with return code 0

PUBLIC _start                       ; make entry point public

END                     ; end of source code

Figure 5.10 (continued)
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If one were planning to code this program in a high-level language, then the

design of the first two loops might be

nbrElts := 0;                   { input numbers into array }

while number from keyboard > 0 loop

add 1 to nbrElts;

store number in nbrSrray[nbrElts];

end while;

sum := 0;                       { find sum and average }

for count := 1 to nbrElts loop

add nbrArray[count] to sum;

end for;

This design exploits one of the principal features of arrays, namely that any ele-

ment can be accessed at any time by simply giving its index; the elements do not have

to be accessed sequentially. Such random access can be implemented using register

indirect addressing. For example, the design statement “add nbrArray[count] to sum”

can be implemented as follows, assuming the same register usage as before—the ECX

register for count and the EAX register for sum.

mov   edx,ecx         ; count

dec   edx             ; count–1

add   edx,edx         ; 2*(count–1)

add   edx,edx         ; 4*(count–1)

lea   ebx,nbrArray    ; starting address of array

add   ebx,edx         ; address of nbrArray[count]

add   eax,[ebx]       ; add array[count] to sum

The technique here is to calculate the number of bytes in the array prior to the desired

element and add this number to the starting address. There are more efficient ways to

directly access an array element; these will be covered in later chapters.

Exercises 5.5

1. Modify the program in Fig. 5.10, adding a loop that will display those

elements of the array that are smaller than the average. (The numbers

that are equal to the average should not be displayed by either loop.)
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2. Modify the program in Fig. 5.10, replacing the last loop by one that dis-

plays all numbers that are within 5 of the average. Include values equal

to average–5 or to average+5.

3. Modify the program in Fig. 5.10, adding a loop that will display the list

of numbers backwards. (Hint: Find the address of nbrArray[nbrElts],

display the element at this address first, and subtract 4 repeatedly until

all elements are displayed.)

4. Modify the program in Fig. 5.10 to ensure that the user gives at most

maxNbrs values.

Programming Exercises 5.5

1. It is often necessary to search an array for a given value. Write a com-

plete program that inputs a collection of integers and then sequentially

searches for values stored in the array. Implement the following design.

nbrElts := 0;

get address of first item of array;

while (number from keyboard > 0) loop

convert number to 2's complement;

store number at address in array;

add 1 to nbrElts;

get address of next item of array;

end while;

until (response = 'N') or (response = 'n')

display "Search for?  ";

input keyValue;

convert keyValue to 2's complement;

get address of first item of array;

count := 1;

forever loop

if count > nbrElts

then

display keyValue, "not in array";

exit loop;

end if;
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if keyValue = current element of array

then

display keyValue, "is element", count;

exit loop;

end if;

add 1 to count;

get address of next item of array;

end loop;

display "Search for another number?  ";

input response;

end until;

2. Programming Exercise 1 above shows one way to search an array. An

alternative way is to put the value you are searching for at the end of

the array. A search then always finds the value, and success or failure

depends on whether the value was found before or after position

nbrElts. Write a complete program that uses this technique. The design

is the same as in Exercise 1 except for the body of the search loop; it is

replaced by the following.

until (response = 'N') or (response = 'n')

display "Search for?  ";

input keyValue;

convert keyValue to 2's complement;

store keyValue at position (nbrElts+1) in array;

get address of first item of array;

count := 1;

while keyValue not equal to current array element loop

add 1 to count;

get address of next word of array;

end while;

if count > nbrElts

then

display keyValue, "not in array";

exit loop;
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else

display keyValue, "is element", count;

exit loop;

end if;

display "Search for another number?  ";

input response;

end until;

3. There are many ways to determine prime numbers. Here is a design for

one way to find the first 100 primes. Implement this design in 80x86

assembly language.

prime[1] := 2; { first prime number }

prime[2] := 3; { second prime number }

primeCount := 2;

candidate := 4; { first candidate for a new prime }

while primeCount < 100 loop

index := 1;

while (index ≤ primeCount)

and (prime[index] does not evenly divide candidate) loop

add 1 to index;

end while;

if (index > primeCount)

then {no existing prime evenly divides the candidate, so it is a new prime}

add 1 to primeCount;

prime[primeCount] := candidate;

end if;

add 1 to candidate;

end while;

display "Prime Numbers";

for index := 1 to 100 loop {display the numbers 5 per line }

display prime[index];

if index is divisible by 5 then skip to a new line; 

end if;

end for;
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5.6 Something Extra: Pipelining

Chapter 2 discussed the central processing unit’s basic operation cycle:

• fetch an instruction from memory

• decode the instruction

• execute the instruction

A CPU must have circuitry to perform each of these functions. One of the things that

computer designers have done to speed up CPU operation is to design CPUs with stages

that can carry out these (and other) operations almost independently.

The first stage of the CPU might have the job of fetching the next instruction

from memory, perhaps doing just enough decoding to recognize the number of bytes

the instruction has and update the program counter PC. The first stage passes on

information to the second stage whose job might be to finish decoding the instruction,

perhaps also computing some operand addresses. Meanwhile the first stage can be

fetching the next instruction from memory. The second stage could pass a fully-

decoded instruction to the third stage for execution. Meanwhile, the first stage could

have passed on its second instruction to stage two, so that the first stage can be

fetching a third instruction. This sort of design is called a pipeline. If the pipeline is

kept full, the resulting throughput of the CPU is three times faster than if it had to fin-

ish the complete fetch-decode-execute process for each instruction before proceeding

to the next one.

Figure 5.11 illustrates the operation of a pipeline. The instructions being

processed are shown as horizontal strips of three boxes labeled with 1, 2, and 3 to indi-

cate stages. The horizontal axis shows time. You can see that at any given time parts of

three instructions are being executed.

CPU Stage Instruction being processed

1 1 2 3 4 5 6 7 8 9 10 11

2 1 2 3 4 5 6 7 8 9 10

3 1 2 3 4 5 6 7 8 9

Time interval 1 2 3 4 5 6 7 8 9 10 11

Figure 5.11 Instructions in a pipeline
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A pipelined CPU is not as simple as illustrated above. One problem may occur

if, say, stage 2 needs to compute an address based on the contents of a register modified

by stage 3 of the previous instruction; the register might not yet contain the correct

address. A CPU can be designed to avoid such problems, usually at the cost of a “hole” in

the pipeline.

A more serious problem occurs when the CPU executes a conditional jump

instruction. With a conditional jump the CPU cannot tell which of two possible

sequences of instructions will be executed next until the condition itself is evaluated by

the last stage. Earlier stages may be working on one instruction stream, only to be forced

to discard all this work and refill the pipeline from the beginning with instructions from

the alternative stream.

Chapter Summary

This chapter introduced 80x86 instructions that can be used to implement

many high-level design or language features including if statements, vari-

ous loops structures, and arrays.

The jmp instruction unconditionally transfers control to a destina-

tion statement. It has several versions, including one that jumps to a short

destination 128 bytes before or 127 bytes after the jmp and one that jumps

to a near destination a 32-bit displacement away. The jmp instruction is

used in implementing various loop structures, typically transferring control

back to the beginning of the loop, and in the if-then-else structure at the

end of the “then code” to transfer control to endif so that the else code is

not also executed. A jmp statement corresponds directly to the goto state-

ment that is available in most high-level languages.

Conditional jump instructions examine the settings of one or more

flags in the flag register and jump to a destination statement or fall

through to the next instruction depending on the flag values. Conditional

jump instructions have short and near displacement versions. There is a

large collection of conditional jump instructions. They are used in if state-

ments and loops, often in combination with compare instructions, to check

Boolean conditions.

The cmp (compare) instructions have the sole purpose of setting

or resetting flags in the EFLAGS register. Each compares two operands
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and assigns flag values. The comparison is done by subtracting the sec-

ond operand from the first. The difference is not retained as it is with a

sub instruction. Compare instructions often precede conditional jump

instructions.

Loop structures like while, until, and for loops can be imple-

mented using compare, jump, and conditional jump instructions. The

loop instruction provides another way to implement many for loops. To

use the loop instruction, a counter is placed in the ECX register prior to

the start of the loop. The loop instruction itself is at the bottom of the

loop body; it decrements the value in ECX and transfers control to a des-

tination (normally the first statement of the body) if the new value in

ECX is not zero. This results in the body of the loop being executed the

number of times originally placed in the ECX register. The conditional

jump jecxz instruction can be used to guard against executing such a

loop when the initial counter value is zero.

Storage for an array can be reserved using the DUP directive in the

data segment of a program. The elements of an array can be sequentially

accessed by putting the address of the first element of the array in a regis-

ter and adding the size of an array element repeatedly to get to the next

element. The current element is referenced using register indirect address-

ing. The lea (load effective address) instruction is commonly used to load

the initial address of the array.

Pipelining is done by a CPU with multiple stages that work on

more than one instruction at a time, doing such tasks as fetching one, while

decoding another, while executing a third. This can greatly speed up CPU

operation.
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CHAPTER 6

6.1 The 80x86 Stack

6.2 Procedure Body, Call

and Return

6.3 Parameters and Local

Variables

6.4 Recursion

6.5 Other Architectures:

Procedures Without a

Stack

Procedures

The 80x86 architecture enables implementation of

procedures that are similar to those in a high-level

language. Procedures use the hardware stack for

several purposes. This chapter begins with a dis-

cussion of the 80x86 stack and then turns to

important procedure concepts—how to call a pro-

cedure and return from one, parameter passing,

local data, and recursion. The concluding section

describes how procedures are implemented in one

architecture that does not have a hardware stack.
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Programs in this book have allocated stacks with the code

.STACK   4096

This .STACK directive tells the assembler to reserve 4096 bytes of uninitialized storage.

The operating system initializes ESP to the address of the first byte above the 4096 bytes

in the stack. A larger or smaller stack could be allocated, depending on the anticipated

usage in the program.

The stack is most often used by pushing words or doublewords on it or by pop-

ping them off it. This pushing or popping is done automatically as part of the execution

of call and return instructions (Section 6.2). It is also done manually with push and pop

instructions. This section covers the mechanics of push and pop instructions, describ-

ing how they affect the contents of the stack.

Source code for a push instruction has the syntax

push source

The source operand can be a register 16, a register 32, a segment register, a word in

memory, a doubleword in memory, an immediate byte, an immediate word, or an imme-

diate doubleword. The only byte-size operand is immediate, and as you will see, multiple

bytes are pushed on the stack for an immediate byte operand. Figure 6.1 lists the allow-

able operand types. The usual mnemonic for a push instruction is just push. However, if

there is ambiguity about the size of the operand (as would be with a small immediate

value), then you can use pushw or pushd mnemonics to specify word or doubleword-

size operands, respectively.

When a push instruction is executed for a word-size operand, the stack pointer

ESP is decremented by 2. Recall that initially ESP contains the address of the byte just

above the allocated space. Subtracting 2 makes ESP point to the top word in the stack.

The operand is then stored at the address in ESP; that is, at the high-memory end of the

stack space. Execution is similar for a doubleword-size operand, except that ESP is

decremented by 4 before the operand is stored. The immediate byte operand is interest-

ing. Although a single byte is stored in the instruction, it is sign-extended to a double-

word that is actually stored on the stack. The byte-size operand saves three bytes of

object code, but no stack space at execution time.

194 Procedures
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Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

register 2 1 1 1

EAX or AX 50

ECX or CX 51

EDX or DX 52

EBX or BX 53

ESP or SP 54

EBP or BP 55

ESI or SI 56

EDI or DI 57

segment register 2 3 1

CS 1 0E

DS 1 1E

ES 1 06

SS 1 16

FS 2 0F A0

GS 2 0F A8

memory word 5 4 2 2+ FF

memory doubleword 5 4 2 2+ FF

immediate byte 2 1 1 2 6A

immediate word 2 1 1 3 68

immediate doubleword 2 1 1 5 68

Figure 6.1 push instructions

Example

We now show an example of execution of two push instructions. It assumes

that ESP initially contains 00600200. The first push instruction decrements ESP

to 006001FE and then stores the contents of AX at that address. Notice that the
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low and high-order byte are reversed in memory. The second push decrements

ESP to 006001FA and stores FFFFFF10 (� 24010) at that address.

Before

increasing

addresses

Instructions After

Stack

AX: 83 B5

ESP: 00600200

ESP: 006001FE

ESP: 006001FA

Stack

AX: 83 B5

10

FF

FF

FF

B5

83

pushd —240

push  ax

As additional operands are pushed onto the stack, ESP is decremented further

and the new values are stored. No push instruction affects any flag bit.

Notice that a stack “grows downward,” contrary to the image that you may

have of a typical software stack. Also notice that the only value on the stack that is read-

ily available is the last one pushed; it is at the address in ESP. Furthermore, ESP

changes frequently as you push values and as procedure calls are made. In Section 6.3

you will learn a way to establish a fixed reference point in the middle of the stack using

the EBP register, so that values near that point can be accessed without having to pop

off all the intermediate values.
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Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

register 4 1 1 1

EAX or AX 58

ECX or CX 59

EDX or DX 5A

EBX or BX 5B

ESP or SP 5C

EBP or BP 5D

ESI or SI 5E

EDI or DI 5F

segment register 7 3 3

DS 1 1F

ES 1 07

SS 1 17

FS 2 0F A1

GS 2 0F A9

memory word 5 6 3 2+ 8F

memory doubleword 5 6 3 2+ 8F

Figure 6.2 pop instructions

Pop instructions do the opposite job of push instructions. Each pop instruction

has the format

pop destination

where destination can reference a word or doubleword in memory, any register 16, any

register 32, or any segment register except CS. (The push instruction does not exclude

CS.) The pop instruction gets a word-size value from the stack by copying the word at

the address in ESP to the destination, then incrementing ESP by 2. Operation for a dou-

bleword value is similar, except that ESP is incremented by 4. Figure 6.2 gives informa-

tion about pop instructions for different destination operands.
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Example

This example shows how pop instructions work. The doubleword at the address

in ESP is copied to ECX before ESP is incremented by 4. The values popped

from the stack are physically still there even though they logically have been

removed. Note again that the bytes of a doubleword are stored backward in

memory in the 80x86 architecture, but forward in the ECX register.

Before

increasing

addresses

Instructions After

Stack

ECX: ?? ?? ?? ??

ESP: 006001FA

ESP: 006001FE

Stack

ECX: 33 44 55 66

66

55

44

33

22

11

66

55

44

33

22

11

pop  ecx

One use of push and pop instructions is to save the contents of a register tem-

porarily on the stack. We have noted previously that registers are a scarce resource

when programming. Suppose, for example, that you are using EDX to store some pro-

gram variable but need to do a division that requires you to extend a dividend into EDX-

EAX prior to the operation. One way to avoid losing your value in EDX is to push it on

the stack.
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push  edx      ; save variable

cdq            ; extend dividend to quadword

idiv  Divisor  ; divide

pop   edx      ; restore variable

This example assumes that you don’t need the remainder the division operation puts in

EDX. If you do need the remainder, it could be copied somewhere else before popping

the value stored on the stack back to EDX.

As the above example shows, push and pop instructions are often used in pairs.

When we examine how the stack is used to pass parameters to procedures, you will see a

way to discard values from the stack without copying them to a destination location.

In addition to the ordinary push and pop instructions, special mnemonics push

and pop flag registers. These mnemonics are pushf (pushfd for the extended flag regis-

ter) and popf (popfd for the extended flag register). These are summarized in Fig. 6.3.

They are often used in procedure code. Obviously popf and popfd instructions change

flag values; these are the only push or pop instructions that change flags.

The 80x86 architecture has instructions that push or pop all general purpose

registers with a single instruction. The pushad instruction pushes EAX, ECX, EDX,

EBX, ESP, EBP, ESI and EDI, in this order. The value pushed for ESP is the address it

contains before any of the registers are pushed. The popad instruction pops the same

registers in the opposite order, except that the value for ESP is discarded. Popping the

registers in the reverse order ensures that if these instructions are used in a pushad-

popad pair, each register (except ESP) will get back its original value. Figure 6.4 shows

the push all and pop all instructions, including the pusha and popa instructions that

push and pop the 16-bit registers.

Clock Cycles Number

Instruction 386 486 Pentium of Bytes Opcode

pushf 4 4 3 1 9C

pushfd

popf 5 9 4 1 9D

popfd

Figure 6.3 pushf and popf instructions
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Finally, a note of caution. Although the Intel architecture allows 16-bit or 32-bit

quantities to be pushed on the stack, some operating systems (including Microsoft Win-

dows NT) require parameters used in system calls to be on doubleword boundaries, that

is, a parameter’s address must be a multiple of 4. The stack starts on a doubleword

boundary, but to maintain this alignment, only doublewords should be pushed on the

stack prior to a system call. (See Chapter 12 for examples of system calls.)

Exercises 6.1

1. For each instruction, give the opcode, the number of clock cycles for

execution, and the number of bytes of object code. Assume that Double

references a doubleword in memory. Assume a Pentium system for the

number of clock cycles.

(a) push  ax (b) pushd  10

(c) pusha (d) pop  ebx

(e) pop  Double (f) popad

(g) pushf

2. For each part of this problem, assume the “before” values when the

given instructions are executed. Give the requested “after” values.

Trace execution of the instructions by drawing a picture of the stack

Before Instructions After

(a) ESP:  06 00 10 00 push  ecx ESP, ECX

ECX:  01 A2 5B 74 pushw 10

Clock Cycles Number

Instruction 386 486 Pentium of Bytes Opcode

pusha 18 11 5 1 60

pushad

popa 24 9 5 1 61

popad

Figure 6.4 Push all and pop all instructions
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(b) ESP:  02 00 0B 7C pushd 20 ESP, EBX

EBX:  12 34 56 78 push  ebx

(c) ESP:  00 00 F8 3A push  eax ESP, EAX, BX, ECX

EAX:  12 34 56 78 pushw 30

pop   bx

pop   ecx

3. Many microprocessors do not have an instruction equivalent to xchg.

With such systems, a sequence of instructions like the following can be

used to exchange the contents of two registers:

push  eax

push  ebx

pop   eax

pop   ebx

Explain why this sequence works to exchange the contents of the EAX

and EBX registers. Compare the number of bytes of code and clock

cycles required to execute this sequence with those required for the

instruction xchg eax,ebx.

4. Another alternative to the xchg instruction is to use

push  eax

mov   eax, ebx

pop   ebx

Explain why this sequence works to exchange the contents of the EAX

and EBX registers. Compare the number of bytes of code and clock

cycles required to execute this sequence with those required for the

instruction xchg eax,ebx.

6.2 Procedure Body, Call and Return

The word procedure is used in high-level languages to describe a subprogram that is

almost a self-contained unit. The main program or another subprogram can call a proce-

dure by including a statement that consists of the procedure name followed by a paren-

thesized list of arguments to be associated with the procedure’s formal parameters.
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Many high-level languages distinguish between a procedure that performs an

action and a function that returns a value. A function is similar to a procedure except

that it is called by using its name and argument list in an expression. It returns a value

associated with its name; this value is then used in the expression. All subprograms in

the C/C++ language are technically functions in this sense, but the language allows for

functions that return no value.

In assembly language and in some high-level languages the term procedure is

used to describe both types of subprograms, those that return values and those that do

not. The term procedure will be used in both senses in this book.

Procedures are valuable in assembly language for the same reasons as in high-

level languages. They help divide programs into manageable tasks and they isolate code

that can be used multiple times within a single program or that can be saved and reused

in several programs.

This section describes how to write 80x86 procedures, as well as how to assem-

ble and link them using Microsoft software. Information is included on how to define a

procedure, and how to transfer execution control to a procedure and back to the calling

program. We show how the stack is used to save register contents, so that a procedure

returns to the caller with almost all registers unchanged. Other important concepts to be

considered with procedures are how to pass arguments to a procedure and how to

implement local variables in a procedure body; these topics are covered in later sections.

The code for a procedure always follows a .CODE directive. The body of each pro-

cedure is bracketed by two directives, PROC and ENDP. Each of these directives has a label

that gives the name of the procedure. With the Microsoft Macro Assembler, the PROC

directive allows several attributes to be specified; we are only going to use one, NEAR32.

This attribute says that the procedure will be located in the same code segment as the call-

ing code and that 32-bit addresses are being used. These choices are normal for flat 32-bit

memory model programming. Figure 6.5 shows relevant parts of a program that incorpo-

rates a procedure named Initialize. The job of the procedure is to initialize several vari-

ables; the calling program is sketched, but the code for the procedure itself is complete.

In Fig. 6.5 the procedure Initialize is bracketed by PROC and ENDP. The distance

attribute NEAR32 declares this to be a near procedure. Although this example shows the

procedure body prior to the main code, it could also have been placed afterwards. Recall

that execution of a program does not necessarily begin at the first statement of the code

segment; the statement identified by the label _start marks the first instruction to be

executed.

Most of the statements of procedure Initialize are ordinary mov instructions.

These could have been used in the main program at the two places that the call
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; procedure structure example

; Author:  R. Detmer

; Date:    revised 10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

.STACK  4096             ; reserve 4096-byte stack

.DATA                    ; reserve storage for data

Count1      DWORD   11111111h

Count2      DWORD   22222222h

Total1      DWORD   33333333h

Total2      DWORD   44444444h

;           other data here

.CODE                           ; program code

Initialize  PROC   NEAR32

mov    Count1,0         ; zero first count

mov    Count2,0         ; zero second count

mov    Total1,0         ; zero first total

mov    Total2,0         ; zero second total

mov    ebx,0            ; zero balance

ret                     ; return

Initialize  ENDP

_start:                             ; program entry point

call   Initialize       ; initialize variables

; — other program tasks here

call   Initialize       ; reinitialize variables

; — more program tasks here

INVOKE ExitProcess, 0   ; exit with return code 0

PUBLIC _start                   ; make entry point public

END                             ; end of source code

Figure 6.5 Procedure structure
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statements are coded; however, using the procedure makes the main code both shorter

and clearer. The procedure affects doublewords defined in the program’s data segment

and the EBX register; it has no local variables.

When the main program executes, the instruction

call  Initialize

transfers control from the main code to the procedure. The main program calls the procedure

twice; in general, a procedure may be called any number of times. The return instruction

ret

transfers control from the procedure back to the caller; there is almost always at least one

ret instruction in a procedure and there can be more than one. If there is only one ret,

it is ordinarily the last instruction in the procedure since subsequent instructions would

be unreachable without “spaghetti code.” Although a call instruction must identify its

destination, the ret does not—control will transfer to the instruction following the most

recent call. The 80x86 uses the stack to store the return address.

When the example program in Fig. 6.5 is assembled, linked, and executed, there

is no visible output. However, it is informative to trace execution with a tool like

WinDbg. Figure 6.6 show WinDbg’s initial display. Note that ESP contains 0063FE3C.

The memory window has been opened to start at address 0063FE30, 12 bytes down into

the stack. The EIP register contains 0040103E, the address of the first instruction to be

executed (the first call). Figure 6.7 shows the new state after this statement is executed.

The EIP register now contains 00401010, the address of the first statement in procedure

Initialize. The ESP register contains 0063FE38, so four bytes have been pushed onto the

stack. Looking in memory at this address, you see 43 10 40 00—that is, 00401043, an

address five bytes larger than the address of the first call. If you examine the listing file

for the program, you see that the each call instruction takes five bytes of object code, so

that 00401043 is the address of the instruction following the first call.

In general, a call instruction pushes the address of the next instruction (the one

immediately following the call) onto the stack and then transfers control to the procedure

code. A near call instruction works by pushing the EIP to the stack and then changing

EIP to contain the address of the first instruction of the procedure.

Return from a procedure is accomplished by reversing the above steps. A ret

instruction pops EIP, so that the next instruction to be executed is the one at the address

that was pushed on the stack.

Recall that 80x86 programming can be done using either a flat memory model or

a segmented memory model. With a segmented memory model a procedure may be in a
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Figure 6.6 State prior to procedure call

Figure 6.7 State after procedure call
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Clock Cycles Number

Operand 386 486 Pentium of Bytes Opcode

near relative 7+ 3 1 5 E8

near indirect FF

using register 7+ 5 2 2

using memory 10+ 5 2 2+

far direct 17+ 18 4 7 9A

far indirect 22+ 17 5 6 FF

Figure 6.8 call instructions

different segment from the calling code. In fact, with 16-bit segmented programming,

segments were limited to 65,536 bytes, so procedures were often in separate segments.

The 80x86 architecture uses a far call to transfer control to a procedure in a different

memory segment: A far call pushes both EIP and CS onto the stack. A far return pops

both off the stack. With 32-bit flat memory model programming, there is no need for any-

thing other than near calls.

The syntax of the 80x86 call statement is

call destination

Figure 6.8 lists some of the available 80x86 call instructions, omitting 16-bit forms and

forms used primarily for systems programming. The “+” notations on the timings for the

80386 processor indicate that there are additional clock cycles that depend on the next

instruction. The program in Fig. 6.6 included a near procedure, designated by the PROC

operand NEAR32. In general, the assembler determines whether destination references a

near or far procedure from the PROC directive or from some other directive or operand.

No call instruction modifies any flag.

All of the procedures used in this book will be the first type, near relative. For a

near relative procedure, the assembler calculates a 32-bit displacement to the destina-

tion, and the E8 opcode plus this displacement comprise the five bytes of the instruc-
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tion. The transfer of control when a procedure is called is similar to the transfer of a rela-

tive jump, except that the old contents of EIP are pushed, of course.

Near indirect calls encode a register 32 or a reference to a doubleword in mem-

ory. When the call is executed, the contents of that register or doubleword are used as

the address of the procedure. This makes it possible for a call instruction to go to differ-

ent procedures different times.

All far calls must provide both new CS contents and new EIP contents. With far

direct calls, both of these are coded in the instruction, adding six bytes to the opcode.

With far indirect calls, these are located at a six-byte block in memory, and the address

of that block is coded in the instruction.

The return instruction ret is used to transfer control from a procedure body

back to the calling point. Its basic operation is simple; it pops the address previously

stored on the stack and loads it into the instruction pointer EIP. Since the stack contains

the address of the instruction following the call, execution will continue at that point. A

near return just has to restore EIP. A far return instruction reverses the steps of a far call,

restoring both EIP and CS; both of these values are popped from the stack.

There are two formats for the ret instruction. The more common form has no

operand and is simply coded

ret

An alternative version has a single operand and is coded

ret   count

The operand count is added to the contents of ESP after completion of the other steps of

the return process (restoring EIP and, for a far procedure, CS). This can be useful if other

values (parameters in particular) have been saved on the stack just for the procedure call,

and can be logically discarded when the procedure is exited. (Parameters are discussed

further in the next section.) Figure 6.9 lists the various formats of ret instructions.

If a procedure’s PROC directive has the operand NEAR32, then the assembler

generates near calls to the procedure and near returns to exit from it. The Microsoft

Macro Assembler also has retn (return near) and retf (return far) mnemonics to force

near or far returns; we will not need these mnemonics.

To construct building blocks for large programs, it is often desirable to assemble

a procedure or group of procedures separately from the code that calls them; that is, with

procedures and calling programs in separate files. There are a few additional steps
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Clock Cycles Number

Type Operand 386 486 Pentium of Bytes Opcode

near none 10+ 5 2 1 C3

near immediate 10+ 5 3 3 C2

far none 18+ 13 4 1 CB

far immediate 18+ 14 4 3 CA

Figure 6.9 ret instructions

required to do this. First, you must assemble the procedures so that their names are visi-

ble outside the file containing them. Second, you must let the calling program know nec-

essary information about the external procedures. Finally, you must link the additional

.OBJ files to get an executable program.

The PUBLIC directive is used to make procedure names visible outside the file

containing them. This is the same directive we have been using to make the symbol

_start visible. In general, its syntax is

PUBLIC   symbol1 [, symbol2]...

A file may contain more than one PUBLIC directive.

The EXTRN directive gives the calling program information about external sym-

bols. It has many options, including

EXTRN   symbol1:type [, symbol2:type]

A file may contain more than one EXTRN directive. Figure 6.10 outlines how this all fits

together for two procedures, Procedure1 and Procedure2, which are assembled in a file

separate from the main code. Note that .386 and .MODEL FLAT directives will also be

required, and INCLUDE directives may be needed.

You assemble each of the above files just as if it were the main program. Each

assembly produces a .OBJ file. To link the files, simply list all .OBJ files in the link com-

mand—you already have been linking your programs with the separately assembled

file IO.OBJ.

We conclude this section with a procedure that will calculate the integer square

root of a positive integer Nbr; that is, the largest integer SqRt such that SqRt*SqRt ≤ Nbr.
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File containing procedure definitions

PUBLIC      Procedure1, Procedure2

.CODE

Procedure1  PROC  NEAR32

...

Procedure1  ENDP

Procedure2  PROC  NEAR32

...

Procedure2  ENDP

END

File containing procedure calls

EXTRN Procedure1:NEAR32, Procedure2:NEAR32

...

.CODE

...

call  Procedure1

...

call  Procedure2

...

END

Figure 6.10 Code for external procedures

The procedure code is in Fig. 6.11. This is not a complete file ready for assembly; the pro-

cedure code could be assembled separately with the addition of the directives shown in

Fig. 6.10, or it could be included in a file with a calling program.

Procedure Root implements the following design.

Sqrt := 0;

while Sqrt*Sqrt  ≤ Nbr loop

add 1 to SqRt;

end while;

subtract 1 from Sqrt;
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This algorithm works by trying larger and larger integer candidates for SqRt; after it

overshoots the correct value, it backs up one unit. This is not a very efficient technique,

but it is easy to code.

The calling program must put the value for Nbr in the EAX register; the next

section discusses a more common way of passing parameters to procedures. Procedure

Root will return the value of SqRt in the EAX register; functions that return a single inte-

ger value frequently use the accumulator for this purpose.

In addition to the code that implements the design, the procedure contains two

push instructions at the beginning, with corresponding pops immediately before the

return. The purpose of these instructions is to preserve the contents of the EBX and ECX

registers; that is, to return to the calling program with the same values in the registers as

they had before call Root. This makes the procedure relatively independent of the

calling program since someone using procedure Root does not have to worry about

unexpected side-effects. This technique is extended in the next section.

; procedure to compute integer square root of number Nbr
; Nbr is passed to the procedure in EAX
; The square root SqRt is returned in EAX
; Other registers are unchanged.
; author:  R. Detmer    revised:  10/97

Root      PROC  NEAR32
push  ebx          ; save registers
push  ecx
mov   ebx, 0       ; SqRt := 0

WhileLE:  mov   ecx, ebx     ; copy SqRt
imul  ecx, ebx     ; SqRt*SqRt
cmp   ecx, eax     ; SqRt*SqRt <= Nbr ?
jnle  EndWhileLE   ; exit if not
inc   ebx          ; add 1 to SqRt
jmp   WhileLE      ; repeat

EndWhileLE:
dec   ebx          ; subtract 1 from SqRt
mov   eax, ebx     ; return SqRt in AX
pop   ecx          ; restore registers
pop   ebx
ret               ; return

Root      ENDP

Figure 6.11 Procedure to find integer square root

TEAM LinG - Live, Informative, Non-cost and Genuine!



6.3 Parameters and Local Variables 211

Exercises 6.2

1. Suppose that the NEAR32 procedure Exercise1 is called by the instruction

call  Exercise1

If this call statement is at address 00402000 and ESP contains

00406000 before the call, what return address will be on the stack

when the first instruction of procedure Exercise1 is executed? What

will the value in ESP be?

2. Why is the PUBLIC directive used when procedures are separately

compiled? Why is the EXTRN directive used when procedures are sepa-

rately compiled?

Programming Exercises 6.2

1. Write a main program that will input an integer, call procedure Root

(Fig. 6.11) to find the integer square root, and display the value of the

square root. Include this program in the same file as procedure Root

and assemble them together.

2. Repeat Exercise 1, except assemble procedure Root and your main pro-

gram in separate files.

3. Write a procedure GetValue that prompts for and inputs an integer

between 0 and a specified size MaxValue. A main program must send

MaxValue to the procedure in the EAX register. Procedure GetValue

will return the integer it inputs in EAX. Procedure GetValue will repeat-

edly prompt for input until the user enters a value in the specified

range. Write procedure GetValue so that EAX is the only register

changed upon return to the calling program; even the flags register

must be unchanged.

6.3 Parameters and Local Variables

Using a high-level language, a procedure definition often includes parameters or formal

parameters that are associated with arguments or actual parameters when the procedure

is called. For the procedure’s in (pass-by-value) parameters, values of the arguments,

which may be expressions, are copied to the parameters when the procedure is called,

and these values are then referenced in the procedure using their local names, which are

the identifiers used to define the parameters. In-out (pass-by-location or variable)
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parameters associate a parameter identifier with an argument that is a single variable

and can be used to pass a value either to the procedure from the caller or from the proce-

dure back to the caller. A common technique for passing parameters is discussed in this

section. This technique can be used to pass word-size or doubleword-size values for in

parameters, or addresses of data in the calling program for in-out parameters.

Although simple procedures can be written using only registers to pass param-

eters, most procedures use the stack to pass parameters. The stack is also frequently

used to store local variables. As you will see, the techniques for using the stack for

parameters and for local variables are closely related.

We start with a simple example to show how the stack is used to pass parame-

ters. Suppose that the job of a NEAR32 procedure Add2 is to add two doubleword-size

integers, returning the sum in EAX. If the calling program passes these parameters by

pushing them on the stack, then its code might look like

push   Value1      ; first argument value

push   ecx         ; second argument value

call   Add2        ; call procedure to find sum

add    esp,8       ; remove parameters from stack

Before we look at how the parameter values are accessed from the stack, notice how

they are removed from the stack following the call. There is no need to pop them off the

stack to some destination; we simply add eight to the stack pointer to move ESP above

the parameters. It is important to remove parameters from the stack since otherwise

repeated procedure calls might exhaust the stack space. Even more serious, if procedure

calls are nested and the inside call leaves parameters on the stack, then the outside

return will not find the correct return address on the stack. An alternative to adding n to

the stack pointer in the calling program is to use ret n in the procedure, the version of

the return instruction that adds n to ESP after popping the return address. Both forms

will be illustrated in this book.

Figure 6.12 shows how the procedure Add2 can retrieve the two parameter

values from the stack. The procedure code uses the based addressing mode. In this

mode, a memory address is calculated as the sum of the contents of a base register and

a displacement built into the instruction. The Microsoft assembler accepts several alter-

native notations for a based address; this book will use [register+number], for

example, [ebp+6]. Any general register (e.g., EAX, EBX, ECX, EDX, ESI, EDI, EBP, or

ESP) can be used as the base register; EBP is the normal choice for accessing values in

the stack.
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This method of passing argument values works as follows. Upon entry to the pro-

cedure, the stack looks like the left illustration in Fig. 6.13. After the procedure’s instructions

push   ebp                 ; save EBP

mov    ebp,esp             ; establish stack frame

are executed, the stack looks like the right illustration in Fig. 6.13.

Eight bytes are stored between the address stored in EBP (and also ESP) and the

second parameter value. Therefore parameter 2 can be referenced by [bp+8]. The first

parameter value is four bytes higher on the stack; its reference is [bp+12]. The code

mov    eax,[bp+8]          ; copy second parameter

add    eax,[bp+12]         ; add first parameter

uses the values from memory locations in the stack to compute the desired sum.

You may wonder why EBP is used at all. Why not just use ESP as a base regis-

ter? The principal reason is that ESP is likely to change, but the instruction mov

ebp,esp loads EBP with a fixed reference point in the stack. This fixed reference point

will not change as the stack used for other purposes—for example, to push additional

registers or to call other procedures.

Some procedures need to allocate stack space for local variables, and most pro-

cedures need to save registers as illustrated in Fig. 6.11. Instructions to accomplish

these tasks, along with the instructions

push   ebp                 ; save EBP

mov    ebp,esp             ; establish stack frame

Add2        PROC NEAR32  ; add two words passed on the stack
; return the sum in the EAX register

push   ebp               ; save EBP
mov    ebp,esp           ; establish stack frame
mov    eax,[ebp+8]       ; copy second parameter 

; value
add    eax,[ebp+12]      ; add first parameter value
pop    ebp               ; restore EBP
ret                      ; return

Add2        ENDP

Figure 6.12 Using parameter values passed on stack
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Figure 6.13 Locating parameters in the stack
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make up the entry code for a procedure. However, the two instructions here are always

the first entry code instructions. Because they are, you can count on the last parameter

being exactly eight bytes above the reference point stored in EBP. The EBP register itself

is always the first pushed and last popped so that upon return to the calling program it

has the same value as prior to the call.

We now show how the stack can provide space for local variables. For this pur-

pose, we revisit the algorithm for computing the greatest common divisor of two inte-

gers that appeared in Programming Exercises 5.3.

gcd := number1;

remainder := number2;

until (remainder = 0) loop

dividend := gcd;

gcd := remainder;

remainder := dividend mod gcd;

end until;

Figure 6.14 shows this design implemented as a NEAR32 procedure that computes the

greatest common divisor of two doubleword-size integer values passed to the procedure

on the stack, returning the GCD in EAX. Figure 6.14 includes more than the procedure

itself. It shows a complete file, ready for separate assembly.

In this procedure, gcd is stored on the stack until it is time to return the value in

EAX. The instruction

sub    esp,4       ; space for one local doubleword

moves the stack pointer down four bytes, reserving one doubleword of space below

where EBP was stored and above where other registers are stored. After EDX and the

flags register are pushed, the stack has the contents shown in Fig. 6.15. Now the local

variable gcd can be accessed as [ebp–4], since it is four bytes below the fixed refer-

ence point stored in EBP.

The rest of the procedure is a straightforward implementation of the design. In

this example, a register could have been used to store gcd, but many procedures have

too many local variables to store them all in registers. Within reason, you can reserve as

many local variables on the stack as you wish, accessing each by [ebp-offset].

Notice that registers are saved after local variable space is reserved, so that the number

of registers saved does not affect the offset down to a variable. Note also that most
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PUBLIC GCD

; Procedure to compute the greatest common divisor of two

; doubleword-size integer parameters passed on the stack.

; The GCD is returned in EAX.

; No other register is changed.  Flags are unchanged.

; Author:  R. Detmer    Revised:  10/97

GCD     PROC   NEAR32

push   ebp         ; establish stack frame

mov    ebp,esp

sub    esp,4       ; space for one local doubleword

push   edx         ; save EDX

pushf              ; save flags

mov    eax,[ebp+8] ; get Number1

mov    [ebp–4],eax ; GCD := Number1

mov    edx,[ebp+8] ; Remainder := Number2

until0: mov    eax,[ebp–4] ; Dividend := GCD

mov    [ebp–4],edx ; GCD := Remainder

mov    edx,0       ; extend Dividend to doubleword

div    DWORD PTR [ebp–4]   ; Remainder in EDX

cmp    edx, 0      ; remainder = 0?

jnz    until0      ; repeat if not

mov    eax,[ebp–4] ; copy GCD to EAX

popf               ; restore flags

pop    edx         ; restore EDX

mov    esp,ebp     ; restore ESP

pop    ebp         ; restore EBP

ret    8           ; return, discarding parameters

GCD     ENDP

END

Figure 6.14 Greatest common divisor procedure
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Figure 6.15 Stack usage with local variables
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procedures will need to save more than two registers if register contents are to be

unchanged upon return to the calling program.

Finally, consider the exit code for the procedure.

popf               ; restore flags

pop    edx         ; restore EDX

mov    esp,ebp     ; restore ESP

pop    ebp         ; restore EBP

ret    8           ; return, discarding parameters

The first two pop instructions simply restore the flag register and EDX; these instruc-

tions are popped in the opposite order in which they were pushed. It may seem that the

next instruction should be add sp,4 to undo the effects of the corresponding subtrac-

tion in the entry code. However, the instruction mov esp,ebp accomplishes the same

objective more efficiently, working no matter how many bytes of local variable space

were allocated, and without changing flags like an add instruction. Finally, we are using

the ret instruction with operand 8, so that for this procedure the calling program must

not remove parameters from the stack; this task is accomplished by the procedure.

Figure 6.16 summarizes typical entry code and exit code for a procedure. High-

level language compilers generate similar code for subprograms. In fact, you can usually

Entry code:

push   ebp         ; establish stack frame
mov    ebp,esp
sub    esp,n ; n bytes of local variables space
push   ...         ; save registers
...
push   ...
pushf              ; save flags

Exit code:

popf               ; restore flags
pop    ...         ; restore registers
...
pop    ...
mov    esp,ebp     ; restore ESP if local variables used
pop    ebp         ; restore EBP
ret                ; return

Figure 6.16 Typical procedure entry and exit code
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write an assembly language procedure that is called by a high-level language program

with code like this. Check reference materials for the compiler before beginning since

there are many variations of these techniques.

How can a high-level language implement variable parameters? How can large

parameters such as an array, a character string, or a record be efficiently passed to a pro-

cedure? Either of these can be implemented by passing the address of an argument

rather than the value of the argument to the procedure. The procedure can then either

use the value at the address or store a new value at the address. Figure 6.17 shows a pro-

cedure that might implement the Pascal procedure with header

PROCEDURE Minimum(A : IntegerArray;

Count : INTEGER;

VAR Min : INTEGER);

(* Set Min to smallest value in A[1], A[2], ..., A[Count] *)

In this implementation the addresses of arguments corresponding to A and Min are

passed to procedure Minimum. The procedure uses register indirect addressing, first to

examine each array element, and at the end to store the smallest value.

The instructions pushad and popad save and restore all general registers.

These instructions are convenient, but they cannot be used if the procedure generates a

value to be returned in a register. Note that since the Count parameter is word-size, the

address of the first parameter is 14 bytes above the fixed base point—four bytes for EBP,

four bytes for the return address, four bytes for the address of Min, and two bytes for the

value of Count. (Draw the stack picture.)

Calling code for procedure Minimum could look like the following.

lea    eax, Array      ; Parameter 1:  address of Array

push   eax

push   Count           ; Parameter 2:  value of Count

lea    eax, Min        ; Parameter 3:  address of Min

push   eax

call   Minimum         ; call procedure

add    esp, 10         ; discard parameters

After this code is executed, the smallest value from Array will be in the word refer-

enced by Min.

It is perfectly legal for a procedure to store local variables in the data segment.

The .DATA directive can be included in a file used for separate assembly of procedures.

In fact, a program may have multiple .DATA directives, although this is generally not

necessary. You should normally keep variables as local as possible, stored on the stack or
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; Procedure to find the smallest word in array A[1..Count]

; Parameters:  (1)  address of array A

;              (2)  value of Count (word)

;              (3)  address of Min (destination for smallest)

; No register is changed.  Flags are unchanged

Minimum PROC   NEAR32

push   ebp           ; establish stack frame

mov    ebp,esp

pushad               ; save all registers

pushf                ; save flags

mov    ebx,[ebp+14]  ; get address of array A

mov    ecx, 0        ; ensure high order 0s in ECX

mov    cx,[ebp+12]   ; get value of Count

mov    eax,7fffffffh ; smallest so far (MaxInt)

jecxz  endForCount   ; exit when no elements to check

forCount:

cmp    [ebx],eax     ; element < smallest so far ?

jnl    endIfLess     ; exit if not

mov    eax,[ebx]     ; new smallest

endIfLess:

add    ebx,4         ; address of next array element

loop   forCount      ; iterate

endForCount:

mov    ebx,[ebp+8]   ; get address of Min

mov    [ebx],eax     ; move smallest to Min

popf                 ; restore flags

popad                ; restore registers

pop    ebp           ; restore EBP

ret                  ; return

Minimum ENDP

Figure 6.17 Procedure using address parameters
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in part of the data segment that is visible only during assembly of the file containing the

definitions. Even when a procedure and a calling program are assembled in a single file,

you should avoid referencing the calling code’s variables directly in the procedure.

Because 80x86 instructions are often the output of a compiler, the 80x86 archi-

tecture includes additional instructions to facilitate implementation of procedures. The

enter instruction has syntax

enter  localBytes, nestingLevel

When nestingLevel is zero, this does precisely the job of the following familiar instructions:

push   ebp

mov    ebp,esp

sub    esp, localBytes

that is, it establishes a stack frame and reserves the requested numbers of local bytes of

storage. If nestingLevel > 0, the enter instruction also pushes the stack frame pointers

from nestingLevel–1 levels back onto the stack above the new frame pointer. This gives

this procedure easy access to the variables of procedures in which it is nested. If used,

an enter instruction would normally be the first instruction in a procedure.

The leave instruction reverses the actions of the enter instruction. Specifically,

it does the same thing as the instruction pair

mov    esp,ebp     ; restore ESP

pop    ebp         ; restore EBP

and normally would be used immediately before a return instruction. We will not use the

enter or leave instructions for procedures in this book.

You have observed that each program we write exits with the statement

INVOKE ExitProcess, 0   ; exit with return code 0

INVOKE is not an instruction—MASM references call it a directive. However, it acts

more like a macro. In fact, if the directive .LISTALL precedes the above line of code, you

see the expansion

push   +000000000h

call   ExitProcess

This is clearly a call to procedure ExitProcess with a single doubleword parameter

with value 0.
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Exercises 6.3

1. Suppose that a NEAR32 procedure begins with

push  ebp         ; save EBP

mov   ebp,esp     ; new base pointer

push  ecx         ; save registers

push  esi

...

Assume that this procedure has three parameters passed on the stack,

(1) a doubleword, (2) a word, and (3) a second word. Draw a picture of

the stack following execution of the above code. Include parameters,

return address, and show the bytes to which EBP and ESP point. How

can each parameter be referenced?

2. Give entry code (Fig. 6.16) for a NEAR32 procedure that reserves eight

bytes of storage on the stack for local variables. Assuming that this space

is used for two doublewords, how can each local variable be referenced?

3. Explain why you cannot use pushad and popad in a procedure that

returns a value in EAX.

Programming Exercises 6.3

Write a NEAR32 procedure to perform each task specified below. For

each procedure, use the stack to pass arguments to the procedure.

Except for those problems that explicitly say to return a result in a regis-

ter, register contents should be unchanged by the procedure; that is,

registers, including the flags register, which are used in the procedure

should be saved at the beginning of the procedure and restored before

returning. Allocate stack space as needed for local variables. Use the

ret instruction with no operand. For each problem, write a separately

assembled test driver, a simple main program that will input appropriate

values, call the procedure, and output results. The main program must

remove arguments from the stack. Link and run each complete program.

1. Write a procedure Min2 to find the minimum of two word-size integer

parameters. Return the minimum in the AX register.

2. Write a procedure Max3 to find the maximum of three doubleword-size

integer parameters. Return the maximum in the EAX register.
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3. Write a procedure Avg to find the average of collection of doubleword-

size integers in an array. Procedure Avg will have three parameters:

(1) the address of the array

(2) the number of integers in the array (passed as a doubleword)

(3) the address of a doubleword at which to store the result.

4. Write a procedure Search to search an array of doublewords for a speci-

fied doubleword value. Procedure Search will have three parameters:

(1) the value for which to search (a doubleword)

(2) the address of the array

(3) the number N of doublewords in the array (passed as a doubleword)

Return in EAX the position (1,2,...,N) at which the value is found, or

return 0 if the value does not appear in the array.

6.4 Recursion

A recursive procedure or function is one that calls itself, either directly or indirectly. The

best algorithms for manipulating many data structures are recursive. It is frequently very dif-

ficult to code certain algorithms in a programming language that does not support recursion.

It is almost as easy to code a recursive procedure in 80x86 assembly language

as it is to code a nonrecursive procedure. If parameters are passed on the stack and local

variables are stored on the stack, then each call of the procedure gets new storage allo-

cated for its parameters and local variables. There is no danger of the arguments passed

to one call of a procedure being confused with those for another call since each call has

its own stack frame. If registers are properly saved and restored, then the same registers

can be used by each call of the procedure.

This section gives one example of a recursive procedure in 80x86 assembly lan-

guage. It solves the Towers of Hanoi puzzle, pictured in Fig. 6.18 with four disks. The

object of the puzzle is to move all disks from source spindle A to destination spindle B,

one at a time, never placing a larger disk on top of a smaller disk. Disks can be moved to

spindle C, a spare spindle. For instance, if there are only two disks, the small disk can be

moved from spindle A to C, the large one can be moved from A to B, and finally the small

one can be moved from C to B.

In general, the Towers of Hanoi puzzle is solved by looking at two cases. If there

is only one disk, then the single disk is simply moved from the source spindle to the des-

tination. If the number of disks NbrDisks is greater than one, then the top (NbrDisks–1)
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disks are moved to the spare spindle, the largest one is moved to the destination, and

finally the (NbrDisks–1) smaller disks are moved from the spare spindle to the destina-

tion. Each time (NbrDisks–1) disks are moved, exactly the same procedure is followed,

except that different spindles have the roles of source, destination, and spare. Figure

6.19 expresses the algorithm in pseudocode.

Figure 6.18 Towers of Hanoi puzzle

Spindle A Spindle B Spindle C

procedure Move(NbrDisks, Source, Destination, Spare);

begin

if NbrDisks = 1

then

display “Move disk from “, Source, “ to “, Destination

else

Move(NbrDisks – 1, Source, Spare, Destination);

Move(1, Source, Destination, Spare);

Move(NbrDisks – 1, Spare, Destination, Source);

end if;

end procedure Move;

begin {main program}

prompt for and input Number;

Move(Number, ‘A’, ‘B’, ‘C’);

end;

Figure 6.19 Pseudocode for Towers of Hanoi Solution
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Figure 6.20 shows 80x86 code that implements the design. The stack is used to

pass parameters to procedure Move, which is a NEAR32 procedure referencing the data

segment for output only. A standard stack frame is established, and registers used by

the procedure are saved and restored. The code is a fairly straightforward translation of

the pseudocode design. The operator DWORD PTR is required in the statement

cmp    DWORD PTR [bp+14],1

so that the assembler knows whether to compare words or byte size operands. Similarly,

the pushw mnemonic is used several places so that the assembler knows to push word-

size parameters. Notice that the recursive calls are implemented exactly the same way

as the main program call, by pushing four parameters on the stack, calling procedure

Move, then removing the parameters from the stack. However, in the main program the

spindle parameters are constants, stored as the low order part of a word since single

bytes cannot be pushed on the 80x86 stack.

; program to print instructions for “Towers of Hanoi” puzzle

; author:  R. Detmer   revised:  10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

include io.h            ; header file for input/output

cr      equ     0dh     ; carriage return character

Lf      equ     0ah     ; line feed

.STACK  4096            ; reserve 4096-byte stack

.DATA                   ; reserve storage for data

prompt      BYTE   cr,Lf,’How many disks?  ',0

number      BYTE   16 DUP (?)

message     BYTE   cr,Lf,’Move disk from spindle ’

source      BYTE   ?

BYTE   ' to spindle ’

dest        BYTE   ?

BYTE   '.’,0

(continued)

Figure 6.20 Towers of Hanoi solution
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.CODE

Move        PROC NEAR32

; procedure Move(NbrDisks : integer; { number of disks to move }

;          Source, Dest, Spare : character { spindles to use }  )

; parameters are passed in words on the stack

push   ebp           ; save base pointer

mov    ebp,esp       ; copy stack pointer

push   eax           ; save registers

push   ebx

cmp    WORD PTR [ebp+14],1  ; NbrDisks = 1?

jne    elseMore      ; skip if more than 1

mov    bx,[ebp+12]   ; Source

mov    source,bl     ; copy character to output

mov    bx,[ebp+10]   ; destination

mov    dest,bl       ; copy character to output

output message       ; print line

jmp    endIfOne      ; return

elseMore:   mov    ax,[ebp+14]   ; get NbrDisks

dec    ax            ; NbrDisks – 1

push   ax            ; parameter 1: NbrDisks–1

pushw  [ebp+12]      ; parameter 2: source does not change

pushw  [ebp+8]       ; parameter 3: old spare is new destination

pushw  [ebp+10]      ; parameter 4: old destination is new spare

call   Move          ; Move(NbrDisks–1,Source,Spare,Destination)

add    esp,8         ; remove parameters from stack

pushw  1             ; parameter 1: 1

pushw  [ebp+12]      ; parameter 2: source does not change

pushw  [ebp+10]      ; parameter 3: destination unchanged

pushw  [ebp+8]       ; parameter 4: spare unchanged

call   Move          ; Move(1,Source,Destination,Spare)

add    esp,8         ; remove parameters from stack

push   ax            ; parameter 1: NbrDisks–1

pushw  [ebp+8]       ; parameter 2: source is original spare

pushw  [ebp+10]      ; parameter 3: original destination

pushw  [ebp+12]      ; parameter 4: original source is spare

call   Move          ; Move(NbrDisks–1,Spare,Destination,Source)

(continued)

Figure 6.20 (continued)
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add    esp,8         ; remove parameters from stack

endIfOne:

pop    ebx           ; restore registers

pop    eax

pop    ebp           ; restore base pointer

ret                  ; return

Move        ENDP

_start:     output prompt       ; ask for number of disks

input  number,16    ; read ASCII characters

atoi   number       ; convert to integer

push   ax           ; argument 1: Number

mov    al,’A’       ; argument 2: ' A'

push   ax

mov    al,’B’       ; argument 3: ' B'

push   ax

mov    al,’C’       ; argument 4: ' C'

push   ax

call   Move         ; Move(Number,Source,Dest,Spare)

add    esp,8        ; remove parameters from stack

INVOKE  ExitProcess, 0  ; exit with return code 0

PUBLIC _start                   ; make entry point public

END                             ; end of source code

Figure 6.20 (continued)

Exercises 6.4

1. What will go wrong in the Towers of Hanoi program if EAX is not saved

at the beginning of procedure Move and restored at the end?

2. Suppose that the Towers of Hanoi program is executed and 2 is

entered for the number of disks. Trace the stack contents from the first

push in the main program through the instruction add esp,8 in the

main program.

Programming Exercises 6.4

1. The factorial function is defined for a non-negative integer argument n by

factorial n
n

n factorial n n
( ) =

=

× −( ) >







1 if 

 if 

0

1 0
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Write a recursive assembly language procedure named Factorial that

implements this recursive definition. Use the stack to pass the single

doubleword integer argument; return the value of the function in the

EAX register. The calling program should remove the parameter from

the stack. Test your function by calling it from a main program that

inputs an integer, calls the Factorial function, and displays the value

returned by the function. Why is it better to use doubleword-size than

word-size integers for this function?

2. The greatest common divisor (GCD) of two positive integers m and n can

be calculated recursively by the function described below in pseudocode.

function GCD(m, n : integer) : integer;

if n = 0

then

return m;

else

Remainder := m mod n;

return GCD(n, Remainder);

end if;

Implement this recursive definition in assembly language. Use the stack

to pass the two doubleword-size argument values. Return the value of

the function in the EAX register. The procedure should remove the

parameters from the stack. Test your function with a main program that

inputs two integers, calls the greatest common divisor function GCD,

and displays the value returned.

6.5 Other Architectures: Procedures Without a Stack

Not all computer architectures provide a hardware stack. One can always implement a

software stack by setting aside a block of memory, thinking of it as a stack, maintaining

the stack top in a variable, and pushing or popping data by copying to or from the stack.

However, this is much less convenient than having an architecture like the 80x86 that

automatically adjusts the stack top for you as you push values, pop values, call proce-

dures, and return from procedures.

Obviously the stack plays a large role in 80x86 procedure implementation. How

can you reasonably implement procedures in an architecture that has no stack? This
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section gives a brief description of one system for doing this. It is based on the conven-

tions commonly used in IBM mainframe computers whose architecture is derived from

the System/360 (S/360) systems first introduced in the 1960s.

The S/360 architecture includes sixteen 32-bit general purpose registers (GPRs),

numbered 0 to 15. Addresses are 24 bits long and an address can be stored in any regis-

ter. The architecture includes addressing modes comparable to direct, register indirect,

and indexed.

A procedure is usually called by loading its address into GPR 15 and then exe-

cuting a branch and link instruction that jumps to the procedure code after copying the

address of the next instruction into GPR 14. This makes return easy; simply jump to the

address in GPR 14.

Parameter passing is more challenging. Normally GPR 1 is used to pass the

address of a parameter address list. This is a list of 32-bit storage locations (32 bits is

called a word in the S/360 architecture), the first word containing the address of the first

parameter, the second word containing the address of the second parameter, etc. To

retrieve a word-size parameter, one must first get its address from the parameter address

list, then copy the word at that address.

Since the same general purpose registers are normally used for the same tasks

each time a procedure is called, problems may occur if one procedure calls another. For

instance, a second procedure call would put the second return address into GPR 14, wip-

ing out the first return address. To avoid this problem, the main program and each pro-

cedure allocates a block of storage for a register save area and puts its address in GPR 13

prior to a procedure call. The procedure then saves general purpose registers 0–12, 14,

and 15 in the register save area of the calling program and GPR 13 in its own register

save area. This system is relatively complicated compared to using a stack, but it works

well except for recursive procedure calls. Since there is only one register save area per

procedure, recursive procedure calls are impossible without modifying the scheme.

Exercises 6.5

1. If you translate the IBM S/360 parameter passing scheme into 80x86

assembly language, you get code that looks like the following in the

calling program.

Double1     DWORD  ?

...

Value1      DWORD  ?

Value2      DWORD  ?

...
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AddrList    DWORD  OFFSET Value1   ; address of parameter 1

DWORD  OFFSET Value2   ; address of parameter 2

DWORD  OFFSET Double1  ; address of parameter 3

...

lea    ebx,AddrList    ; get address of AddrList

call   Proc1

Note that the parameters do not need to be in consecutive storage loca-

tions, but their addresses are in consecutive words at AddrList. Give

code to show how the values of the three parameters can be accessed

from within procedure Proc1.

2. Describe what happens if you attempt a recursive procedure call using

the system described in this section.

Chapter Summary

This chapter has discussed techniques for implementing procedures in the

80x86 architecture. The stack serves several important purposes in proce-

dure implementation. When a procedure is called, the address of the next

instruction is stored on the stack before control transfers to the first instruc-

tion of the procedure. A return instruction retrieves this address from the

stack in order to transfer control back to the correct point in the calling

program. Argument values or their addresses can be pushed onto the stack

to pass them to a procedure; when this is done, the base pointer EBP and

based addressing provide a convenient mechanism for accessing the values

in the procedure. The stack can be used to provide space for a procedure’s

local variables. The stack is also used to “preserve the environment”—for

example, register contents can be pushed onto the stack when a procedure

begins and popped off before returning to the calling program so that the

calling program does not need to worry about what registers might be

altered by the procedure.

Recursive algorithms arise naturally in many computing applica-

tions. Recursive procedures are no more difficult than nonrecursive proce-

dures to implement in the 80x86 architecture.

Some computer architectures do not have a hardware stack. Non-

recursive procedures can be implemented using registers to store addresses,

and memory to save registers when one procedure calls another.
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CHAPTER 7

7.1 Using String

Instructions

7.2 Repeat Prefixes and

More String

Instructions

7.3 Character Translation

7.4 Converting a 2’s

Complement Integer to

an ASCII String

7.5 Other Architectures:

CISC versus RISC

Designs

String Operations

Computers are frequently used to manipulate

characters strings as well as numeric data. In data

processing applications names, addresses, and so

forth must be stored and sometimes rearranged.

Text editor and word processor programs must be

capable of searching for and moving strings of

characters. An assembler must be able to separate

assembly language statement elements, identify-

ing those that are reserved mnemonics. Even

when computation is primarily numerical, it is

often necessary to convert either a character string

to an internal numerical format when a number is

entered at the keyboard or an internal format to a

character string for display purposes.

An 80x86 microprocessor has instructions

to manipulate character strings. The same instruc-

tions can manipulate strings of doublewords or

words. This chapter covers 80x86 instructions that

are used to handle strings, with emphasis on char-

acter strings. A variety of applications are given,

including procedures that are similar to those in

some high-level languages and the procedure

called by the dtoa macro.
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7.1 Using String Instructions

Five 80x86 instructions are designed for string manipulation: movs (move string), cmps

(compare string), scas (scan string), stos (store string), and lods (load string). The

movs instruction is used to copy a string from one memory location to another. The cmps

instruction is designed to compare the contents of two strings. The scas instruction can

be used to search a string for one particular value. The stos instruction can store a new

value in some position of a string. Finally, the lods instruction copies a value out of

some position of a string.

A string in the 80x86 architecture refers to a contiguous collection of bytes,

words, or doublewords in memory. Strings are commonly defined in a program’s data

segment using such directives as

response     BYTE   20 DUP (?)

label1       BYTE   'The results are ', 0

wordString   WORD   50 DUP (?)

arrayD       DWORD  60 DUP (0)

Note that strings and arrays are actually the same except for the way we look at them.

Each string instruction applies to a source string, a destination string, or

both. The bytes, words, or doublewords of these strings are processed one at a time by

the string instruction. Register indirect addressing is used to locate the individual

byte, word, or doubleword elements. The 80x86 instructions access elements of the

source string using the address in the source index register ESI. Elements in the desti-

nation string are accessed using the address in the destination index register EDI. If

you program using a segmented memory model, then you also must know that the

source element is in the data segment (at address DS:ESI) while the destination ele-

ment is in the extra segment (at address ES:EDI). With flat memory model program-

ming, both segment registers contain the same segment number and no distinction

between segments.

Since the source and destination addresses of string elements are always given

by ESI and EDI, respectively, no operands are needed to identify these locations. Without

any operand, however, the assembler cannot tell the size of the string element to be

used. For example, just movs by itself could say to move a byte, a word, or a doubleword.

The Microsoft Macro Assembler offers two ways around this dilemma. The first method

is to use destination and source operands; these are ignored except that MASM notes

their type (both operands must be the same type) and uses that element size. The sec-

ond method is to use special versions of the mnemonics that define the element size—
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Clock Cycles Number

Instruction 386 486 Pentium of Bytes Opcode

cld 2 2 2 1 FC

std 2 2 2 1 FD

Figure 7.1 cld and std instructions

instructions that operate on bytes use a b suffix, word string instructions use a w suffix,

and doubleword string instructions use a d suffix. For example, movsb is used to move

byte strings, movsw is used to move word strings, and movsd is used to move double-

word strings. Any of these instructions assemble as a movs and none uses an operand

since the assembler knows the element size from the mnemonic. This book will use

mnemonics with b, w, and d suffixes rather than operands for string instructions.

Although a string instruction operates on only one string element at a time, it

always gets ready to operate on the next element. It does this by changing the source

index register ESI and/or the destination index register EDI to contain the address of the

next element of the string(s). When byte-size elements are being used, the index regis-

ters are changed by one; for words, ESI and EDI are changed by two; and for double-

words, the registers are changed by four. The 80x86 can move either forward through a

string, from lower to higher addresses, or backward, from higher to lower addresses. The

movement direction is determined by the value of the direction flag DF, bit 10 of the

EFLAGS register. If DF is set to 1, then the addresses in ESI and EDI are decremented by

string instructions, causing right to left string operations. If DF is clear (0), then the val-

ues in ESI and EDI are incremented by string instructions, so that strings are processed

left to right.

The 80x86 has two instructions whose sole purpose is to reset or set the direc-

tion flag DF. The cld instruction clears DF to 0 so that ESI and EDI are incremented by

string instructions and strings are processed left to right. The std instruction sets DF to

1 so that strings are processed backward. Neither instruction affects any flag other than

DF. Technical data about these instructions appear in Fig. 7.1.

Finally it is time to present all the details about a string instruction. The move

string instruction movs transfers one string element (byte, word, or doubleword) from a

source string to a destination string. The source element at address DS:ESI is copied to

address ES:EDI. After the string element is copied, both index registers are changed by

the element size (1, 2, or 4), incremented if the direction flag DF is 0 or decremented if
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Element Clock Cycles Number

Mnemonic size 386 486 Pentium of bytes Opcode

movsb byte 7 7 4 1 A4

movsw word 7 7 4 1 A5

movsd doubleword 7 7 4 1 A5

Figure 7.2 movs instructions (use ESI and EDI)

DF is 1. The movs instruction does not affect any flag. It comes in movsb, movsw, and

movsd versions; Fig. 7.2 gives information about each form.

Figure 7.3 gives an example of a program that uses the movs instruction. The

important part of the example is the procedure strcopy. This procedure has two parameters

; test of "strcopy" procedure

; author:  R. Detmer   revised:  10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h            ; header file for input/output

cr      equ     0dh     ; carriage return character

Lf      equ     0ah     ; line feed

.STACK  4096            ; reserve 4096-byte stack

.DATA                   ; reserve storage for data

prompt      BYTE   cr, Lf, "Original string?  ",0

stringIn    BYTE   80 DUP (?)

display     BYTE   cr, Lf, "Your string was...", cr, Lf

stringOut   BYTE   80 DUP (?)

.CODE

_start:     output prompt            ; ask for string

input  stringIn, 80      ; get source string

lea    eax, stringOut    ; destination address

push   eax               ; first parameter

(continued)

Figure 7.3 String copy program
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lea    eax, stringIn     ; source

push   eax               ; second parameter

call   strcopy           ; call string copy procedure

output display           ; print result

INVOKE  ExitProcess, 0   ; exit with return code 0

PUBLIC _start                        ; make entry point public

strcopy     PROC NEAR32

; Procedure to copy string until null byte in source is copied.

; It is assumed that destination location is long enough for copy.

; Parameters are passed on the stack:

;    (1)  address of destination

;    (2)  address of source

push   ebp               ;save base pointer

mov    ebp,esp           ;copy stack pointer

push   edi               ;save registers and flags

push   esi

pushf

mov    esi,[ebp+8]       ;initial source address

mov    edi,[ebp+12]      ;destination

cld                      ;clear direction flag

whileNoNull:

cmp    BYTE PTR [esi],0  ;null source byte?

je     endWhileNoNull    ;stop copying if null

movsb                    ;copy  one byte

jmp    whileNoNull       ;go check next byte

endWhileNoNull:

mov    BYTE PTR [edi],0  ;terminate destination string

popf                     ;restore flags and registers

pop    esi

pop    edi

pop    ebp

ret    8                 ;exit procedure, discarding parameters

strcopy     ENDP

END

Figure 7.3 (continued)
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passed on the stack, which give the destination and source addresses of byte or character

strings. The source string is assumed to be null-terminated. Procedure strcopy produces an

exact copy of the source string at the destination location, terminating the destination

string by a null byte.

The procedure only uses registers ESI and EDI. It saves each of these and the

flag register on the stack so that the procedure will return with them unchanged. The

index registers ESI and EDI must be initialized to the addresses of the first string bytes

to be processed. The values for ESI and EDI are the arguments that were pushed on the

stack. The direction flag is cleared for left-to-right copying.

After initialization, the procedure executes the following pseudocode design:

while next source byte is not null

copy source byte to destination;

increment source index;

increment destination index;

end while;

put null byte at end of destination string;

To check whether the next source byte is null, the statement

cmp    BYTE PTR [esi],0  ; null source byte?

is used. Recall that the notation [esi] indicates register indirect addressing, so that the

element at the address in ESI is used, that is, the current byte of the source string. The

operator BYTE PTR is necessary since MASM cannot tell from the operands [esi] and 0

whether byte, word, or doubleword comparison is needed. Copying the source byte and

incrementing both index registers is accomplished by the movsb instruction. Finally,

mov    BYTE PTR [edi],0  ; terminate destination string

serves to move a null byte to the end of the destination string since EDI was incre-

mented after the last byte of the source was copied to the destination. Again, the opera-

tor BYTE PTR tells MASM that the destination is a byte rather than a word or

doubleword.

The program to test strcopy simply inputs a string from the keyboard, calls str-

copy to copy it somewhere else, and finally displays the string copy. The most interest-

ing part of the code is the collection of instructions needed to call the procedure. The

arguments are not removed from the stack since the procedure does that job.
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Normally the source string for a movs instruction does not overlap the destina-

tion string. However, occasionally this is useful. Suppose that you want to initialize a 80

character-long string at starSlash with the pattern */, repeated 40 times. The following

code can do this task.

starSlash   BYTE  80 DUP (?)

...

mov   starSlash, '*'     ; first *

mov   starSlash+1, '/'   ; first /

lea   esi, starSlash     ; source address

lea   edi, starSlash+2   ; destination

cld                      ; process left to right

mov   ecx, 78            ; characters to copy

forCount:   movsb                    ; copy next character

loop  forCount           ; repeat

In this example, the first time movsb is executed, a * from the first string position is

copied to the third position. The next iteration, a / is copied from the second to the

fourth position. The third time, a * is copied from the third to the fifth position, and so on.

The next section introduces an easier way to repeat a movs instruction.

Exercises 7.1

1. What will be the output of the following program?

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h            ; header file for input/output

cr      equ     0dh     ; carriage return character

Lf      equ     0ah     ; line feed

.STACK  4096            ; reserve 4096-byte stack

.DATA                   ; global data

string  BYTE  'ABCDEFGHIJ'

BYTE  cr, Lf, 0
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.CODE

setup1  PROC NEAR32

lea   esi, string    ; beginning of string

lea   edi, string+5  ; address of 'F'

cld                  ; forward movement

ret

setup1  ENDP

_start: call   setup1   ; set source, destination, direction

movsb           ; move 4 characters

movsb

movsb

movsb

output string   ; display modified string

INVOKE  ExitProcess, 0  ; exit with return code 0

PUBLIC _start           ; make entry point public

END

2. Repeat Problem 1, replacing the procedure setup1 by

setup2  PROC NEAR32

lea   esi, string    ; beginning of string

lea   edi, string+2  ; address of 'C'

cld                  ; forward movement

ret

setup2  ENDP

3. Repeat Problem 1, replacing the procedure setup1 by

setup3  PROC NEAR32

lea   esi, string+9  ; end of string

lea   edi, string+4  ; address of 'E'

std                  ; backward movement

ret

setup3  ENDP
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4. Repeat Problem 1, replacing the procedure setup1 by

setup4  PROC NEAR32

lea   esi, string+9  ; end of string

lea   edi, string+7  ; address of 'H'

std                  ; backward movement

ret

setup4  ENDP

Programming Exercises 7.1

1. Write a program that copies strings read in one at a time from the key-

board into a large storage area for later processing. Specifically, use the

input macro to input a string, then copy the string to the first of a 1024

byte block of storage that has been reserved in the data segment. (Recall

that the input macro produces a null-terminated string.) Follow the

string by a carriage return and a linefeed character in this storage area.

Repeat the process with additional strings, copying each subsequent

string to the storage area so that it immediately follows the linefeed after

the last string. Exit the loop when the first character of the source string

is $—do not copy this last string to the storage area. Do, however, place a

null byte after the linefeed of the last string in the storage area. Finally,

use the output macro to display all the characters in the data area. The

result should be the strings that were entered, one per line.

7.2 Repeat Prefixes and More String Instructions

Each 80x86 string instruction operates on one string element at a time. However, the

80x86 architecture includes three repeat prefixes that change the string instructions into

versions that repeat automatically either for a fixed number of iterations or until some

condition is satisfied. The three repeat prefixes actually correspond to two different sin-

gle-byte codes; these are not themselves instructions, but supplement machine codes

for the primitive string instructions, making new instructions.

Figure 7.4 shows two program fragments, each of which copies a fixed num-

ber of characters from sourceStr to destStr. The number of characters is loaded into the

ECX register from count. The code in part (a) uses a loop. Since the count of characters

might be zero, the loop is guarded by a jecxz instruction. The body of the loop uses

movsb to copy one character at a time. The loop instruction takes care of counting

loop iterations. The program fragment in part (b) is functionally equivalent to the one
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lea   esi, sourceStr  ; source string

lea   edi, destStr    ; destination

cld                   ; forward movement

mov   ecx, count      ; count of characters to copy

jecxz endCopy         ; skip loop if count is zero

copy:   movsb                 ; move 1 character

loop   copy           ; decrement count and continue

endCopy:

(a) movsb iterated in a loop

lea   esi, sourceStr  ; source string

lea   edi, destStr    ; destination

cld                   ; forward movement

mov   ecx, count      ; count of characters to copy

rep movsb             ; move characters

(b) repeat prefix with movsb

Figure 7.4 Copying a fixed number of characters of a string

in part (a). After the count is copied into ECX, it uses the repeat prefix rep with a

movsb instruction; the rep movsb instruction does the same thing as the last four

lines in part (a).

The rep prefix is normally used with the movs instructions and with the stos

instruction (discussed below). It causes the following design to be executed:

while count in ECX > 0 loop

perform primitive instruction;

decrement ECX by 1;

end while;

Note that this is a while loop. The primitive instruction is not executed at all if ECX con-

tains zero. It is not necessary to guard a repeated string instruction as it often is with an

ordinary for loop implemented with the loop instruction.

The other two repeat prefixes are repe, with equivalent mnemonic repz, and

repne, which is the same as repnz. The mnemonic repe stands for “repeat while
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equal” and repz stands for “repeat while zero.” Similarly repne and repnz mean

“repeat while not equal” and “repeat while not zero,” respectively. Each of these repeat

prefixes is appropriate for use with the two string instructions cmps and scas, which

affect the zero flag ZF.

The names of these mnemonics partially describe their actions. Each instruc-

tion works the same as rep, iterating a primitive instruction while ECX is not zero. How-

ever, each also examines ZF after the string instruction is executed. The repe and repz

continue iterating while ZF=1, as it would be following a comparison where two

operands were equal. The repne and repnz continue iterating while ZF=0, as it would

be following a comparison where two operands were different. Repeat prefixes them-

selves do not affect any flag. The three repeat prefixes are summarized in Fig. 7.5. Note

that rep and repz (repe) generate exactly the same code.

The repz and repnz prefixes do not quite produce true while loops with the

conditions shown in Fig. 7.5. The value in ECX is checked prior to the first iteration of

the primitive instruction, as it should be with a while loop. However, ZF is not checked

until after the primitive instruction is executed. In practice, this is very convenient since

the instruction is skipped for a zero count, but the programmer does not have to do any-

thing special to initialize ZF prior to repeated instructions.

Figure 7.6 shows how the repeat prefix rep combines with the movs instruc-

tions. In the clock cycles columns, there is a “set up” time plus a time for each iteration.

Mnemonic Loop while Number of bytes Opcode

rep ECX>0 1 F3

repz/repe ECX>0 and ZF=1 1 F3

repnz/repne ECX>0 and ZF=0 1 F2

Figure 7.5 Repeat prefixes

Element Clock Cycles Number

Mnemonic size 386 486 Pentium of bytes Opcode

rep movsb byte 7+4n 12+3n 13+4n 2 F3 A4

rep movsw word F3 A5

rep movsd doubleword F3 A5

Figure 7.6 rep movs instructions
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The n in the table represents the number of iterations, so that, for example, a rep

movsb takes 33 (13+4� 5) clock cycles on a Pentium to move five bytes. (The table

entries are not strictly accurate since there are special timings for the 486 and Pentium

when n=0 or n=1.)

The cmps instructions, summarized in Fig. 7.7, compare elements of source and

destination strings. Chapter 5 explained how a cmp instruction subtracts two operands

and sets flags based on the difference. Similarly, cmps subtracts two string elements and

sets flags based on the difference; neither operand is changed. If a cmps instruction is

used in a loop, it is appropriate to follow cmps by almost any of the conditional jump

instructions, depending on the design being implemented.

Repeat prefixes are often used with cmps instructions. In fact, for the task of

finding if two strings are identical, the repe prefix is a perfect companion for cmps. Fig-

ure 7.7 summarizes all the cmps instructions, including repeated ones. Again, the tim-

ings are not strictly accurate for 486 and Pentium CPUs; for rep cmps there are special

timings when n=0.

It is often necessary to search for one string embedded in another. Suppose that

the task at hand is to find the position, if any, at which the string at key appears in the

string at target. One simple algorithm to do this is

Element Clock Cycles Number

Mnemonic size 386 486 Pentium of bytes Opcode

cmpsb byte 10 8 5 1 A6

cmpsw word A7

cmpsd doubleword A7

repe cmpsb byte 5+9n 7+7n 9+4n 2 F3 A6

repe cmpsw word F3 A7

repe cmpsd doubleword F3 A7

repne cmpsb byte 5+9n 7+7n 9+4n 2 F2 A6

repne cmpsw word F2 A7

repne cmpsd doubleword F2 A7

Figure 7.7 cmps instructions
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position := 1;

while position ≤ (targetLength – keyLength + 1) loop

if key matches the substring of target starting at position

then

report success;

exit process;

end if;

add 1 to position;

end while;

report failure;

This algorithm checks to see if the key string matches the portion of the target

string starting at each possible position. Using 80x86 registers, checking for one match

can be done as follows:

ESI := address of key;

EDI := address of target + position – 1;

ECX := length of key;

forever loop

if ECX = 0 then exit loop; end if;

compare [ESI] and [EDI] setting ZF;

increment ESI;

increment EDI;

decrement ECX;

if ZF = 0 then exit loop; end if;

end loop;

if ZF = 1

then

match was found;

end if;
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The forever loop is exactly what is done by the repeated string instruction repe cmpsb.

Since the loop is terminated when either ECX = 0 or when ZF = 0, it is necessary to be

sure that the last pair of characters compared were the same; this is the reason for the

extra if structure at the end of the design. Figure 7.8 shows a complete program that

implements this design.

The scan string instruction scas is used to scan a string for the presence or

absence of a particular string element. The string that is examined is a destination

string; that is, the address of the element being examined is in the destination index reg-

ister EDI. With a scasb instruction, the element searched for is the byte in the AL regis-

ter; with a scasw, it is the word in the AX register; and with a scasd, it is the

doubleword in the EAX register. The scasb, scasw, and scasd instructions use no

; program to search for one string embedded in another

; author:  R. Detmer     revised:  10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h

cr          EQU    0dh   ; carriage return character

Lf          EQU    0ah   ; linefeed character

.STACK  4096             ; reserve 4096-byte stack

.DATA

prompt1     BYTE  "String to search?  ", 0

prompt2     BYTE  cr, Lf, "Key to search for?  ", 0

target      BYTE  80 DUP (?)

key         BYTE  80 DUP (?)

trgtLength  DWORD ?

keyLength   DWORD ?

lastPosn    DWORD ?

failure     BYTE  cr,Lf,Lf,"The key does not appear in the string.",cr,Lf,0

success     BYTE  cr,Lf,Lf,'The key appears at position'

(continued)

Figure 7.8 String search program
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position    BYTE  11 DUP (?)

BYTE  "   in the string.", cr, Lf, 0

PUBLIC _start                       ; make entry point public

.CODE

_start:     output prompt1          ; ask for

input  target,80        ;   and input target string

lea    eax, target      ; find length of string

push   eax              ; length parameter

call   strlen

mov    trgtLength,eax   ; save length of target

output prompt2          ; ask for

input  key,80           ;   and input key string

lea    eax, key         ; find length of string

push   eax              ; length parameter

call   strlen

mov    keyLength,eax    ; save length of key

; calculate last position of target to check

mov    eax,trgtLength

sub    eax,keyLength

inc    eax              ; trgtLength – keyLength + 1

mov    lastPosn, eax

cld                     ; left to right comparison

mov    eax,1            ; starting position

whilePosn:  cmp    eax,lastPosn     ; position <= last_posn?

jnle   endWhilePosn     ; exit if past last position

lea    esi,target       ; address of target string

add    esi,eax          ; add position

dec    esi              ; address of position to check

lea    edi,key          ; address of key

mov    ecx,keyLength    ; number of positions to check

repe cmpsb              ; check

jz     found            ; exit on success

inc    eax              ; increment position

jmp    whilePosn        ; repeat

endWhilePosn:

(continued)

Figure 7.8 (continued)
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output failure          ; the search failed

jmp    quit             ; exit

found:      dtoa   position,eax     ; convert position to ASCII

output success          ; search succeeded

quit:

INVOKE  ExitProcess, 0  ; exit with return code 0

strlen      PROC    NEAR32

; find length of string whose address is passed on stack

; length returned in EAX

push    ebp             ; establish stack frame

mov     ebp, esp

pushf                   ; save flags

push    ebx             ; and EBX

sub     eax, eax        ; length := 0

mov     ebx, [ebp+8]    ; address of string

whileChar:  cmp     BYTE PTR [ebx], 0  ; null byte?

je      endWhileChar    ; exit if so

inc     eax             ; increment length

inc     ebx             ; point at next character

jmp     whileChar       ; repeat

endWhileChar:

pop     ebx             ; restore registers and flags

popf

pop     ebp

ret     4               ; return, discarding parameter

strlen      ENDP

END

Figure 7.8 (continued)

operand since the mnemonics tell the element size. Figure 7.9 summarizes the scas

instructions; as with the previous repeated instructions, there are special timings for n=0

on the 486 and Pentium.

The program shown in Fig. 7.10 inputs a string and a character and uses repne

scasb to locate the position of the first occurrence of the character in the string. It then

displays the part of the string from the character to the end. The length of the string is

calculated using the strlen procedure that previously appeared in Fig. 7.8; this time we

assume that strlen is separately assembled. The lea instruction is used to load the offset

of the string to be searched and cld ensures a forward search.
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Element Clock Cycles Number

Mnemonic size 386 486 Pentium of bytes Opcode

scasb byte 7 6 4 1 AE

scasw word AF

scasd doubleword AF

repe scasb byte 5+8n 7+5n 9+4n 2 F3 AE

repe scasw word F3 AF

repe scasd doubleword F3 AF

repne scasb byte 5+8n 7+5n 9+4n 2 F2 AE

repne scasw word F2 AF

repne scasd doubleword F2 AF

Figure 7.9 scas instructions (use EDI)

; Program to locate a character within a string.

; The string is displayed from the character to the end.

; author:  R. Detmer     revised:  10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

INCLUDE io.h

EXTRN strlen:NEAR32

PUBLIC _start

cr          EQU    0dh   ; carriage return character

Lf          EQU    0ah   ; linefeed character

.STACK  4096             ; reserve 4096-byte stack

.DATA

prompt1     BYTE   "String?  ", 0

prompt2     BYTE   cr, Lf, Lf, "Character?  ", 0

string      BYTE   80 DUP (?)

char        BYTE   5 DUP (?)

(continued)

Figure 7.10 Program to find character in string

TEAM LinG - Live, Informative, Non-cost and Genuine!



248 String Operations

label1      BYTE   cr, Lf, Lf, "The rest of the string is—", 0

crlf        BYTE   cr, Lf, 0

.CODE

_start:     output prompt1        ; prompt for string

input  string,80      ; get string

lea    eax, string    ; find length of string

push   eax            ; length parameter

call   strlen

mov    ecx, eax       ; save length of string

inc    ecx            ; include null in string length

output prompt2        ; prompt for character

input  char,5         ; get character

mov    al, char       ; character to AL

lea    edi, string    ; offset of string

cld                   ; forward movement

repne scasb           ; scan while character not found

dec    edi            ; back up to null or matching character

output label1         ; print label

output [edi]          ; output string

output crlf           ; skip to new line

INVOKE  ExitProcess, 0  ; exit with return code 0

END

Figure 7.10 (continued)

After the search, the destination index EDI will be one greater than desired

since a string instruction always increments index registers whether or not flags were

set. If the search succeeded, EDI will contain the address of the character following the

one that matched with AL, or the address of the character after the end of the string if

ECX was decremented to zero. The dec edi instruction takes care of both cases, back-

ing up to the position of the matching character if there was one, or to the null byte at

the end of the string otherwise. The string length was incremented so that the null char-

acter would be included in the search. The output macro displays the last portion of the

string, whose address is in EDI.
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The store string instruction stos copies a byte, a word, or a doubleword from

AL, AX, or EAX to an element of a destination string. A stos instruction affects no

flag, so that when it is repeated with rep, it copies the same value into consecutive

positions of a string. For example, the following code will store spaces in the first 30

bytes of string.

mov   ecx,30              ; 30 bytes

mov   al, ' '             ; character to store

lea   edi, string         ; address of string

cld                       ; forward direction

rep stosb                 ; store spaces

Information about the stos instructions is in Fig. 7.11. As with previous

repeated string instructions, the 80486 and Pentium have special timings when n=0.

The load string instruction lods is the final string instruction. This instruction

copies a source string element to the AL, AX, or EAX register, depending on the string

element size. A lods instruction sets no flag. It is possible to use a rep prefix with lods

but it is not helpful—all values except for the last string element would be replaced as

successive values were copied to the destination register. A lods instruction is useful in

a loop set up with other instructions, making it possible to easily process string elements

one at a time. The lods instructions are summarized in Fig. 7.12. Repeated versions are

not included since they are not used.

Element Clock Cycles Number

Mnemonic size 386 486 Pentium of bytes Opcode

stosb byte 4 5 3 1 AA

stosw word AB

stosd doubleword AB

rep stosb byte 5+5n 7+4n 9n 2 F3 A6

rep stosw word F3 A7

rep stosd doubleword F3 A7

Figure 7.11 stos instructions (use EDI)
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Exercises 7.2

For each exercise below, assume that the data segment contains

source    BYTE   "brown"

dest      BYTE   "brine"

1. Suppose that the following instructions are executed:

lea   esi, source

lea   edi, dest

cld

mov   ecx, 5

repne cmpsb

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what

will be the values stored in ESI and EDI following the repne cmpsb

instruction? What will be stored in ECX?

2. Suppose that the following instructions are executed:

lea   esi, source

lea   edi, dest

cld

mov   ecx, 5

repe cmpsb

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what

will be the values stored in ESI and EDI following the repe cmpsb

instruction? What will be stored in ECX?

Element Clock Cycles Number

Mnemonic size 386 486 Pentium of bytes Opcode

lodsb byte 5 5 2 1 AC

lodsw word AD

lodsd doubleword AD

Figure 7.12 lods instructions (use ESI)
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3. Suppose that the following instructions are executed:

mov   al, 'w'

lea   edi, dest

cld

mov   ecx, 5

repe scasb

Assuming that EDI starts at 00010005, what will be the value stored in

EDI following the repe scasb instruction? What will be stored in ECX?

4. Suppose that the following instructions are executed:

mov   al, 'n'

lea   edi, dest

cld

mov   ecx, 5

repne scasb

Assuming that EDI starts at 00010005, what will be the value stored in

EDI following the repne scasb instruction? What will be stored in ECX?

5. Suppose that the following instructions are executed:

mov   al, '*'

lea   edi, dest

cld

mov   ecx, 5

rep stosb

Assuming that EDI starts at 00010005, what will be the value stored in

EDI following the rep stosb instruction? What will be stored in ECX?

What will be stored in the destination string?

6. Suppose that the following instructions are executed:

lea   esi, source

lea   edi, dest

cld

mov   ecx, 5

for6: lodsb

inc   al
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stosb

loop  for6

endFor6:

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what

will be the values stored in ESI and EDI following the for loop? What

will be stored in ECX? What will be stored in the destination string?

7. Suppose that the following instructions are executed:

lea   esi, source

lea   edi, dest

cld

mov   ecx, 3

rep   movsb

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what

will be the values stored in ESI and EDI following the rep movsb

instruction? What will be stored in ECX? What will be stored in the des-

tination string?

8. Suppose that the following instructions are executed:

lea   esi, source+4

lea   edi, dest+4

std

mov   ecx, 3

rep   movsb

Assuming that ESI starts at 00010010 and EDI starts at 00010015, what

will be the values stored in ESI and EDI following the rep movsb

instruction? What will be stored in ECX? What will be stored in the des-

tination string?

Programming Exercises 7.2

1. Write a NEAR32 procedure index to find the position of the first occur-

rence of a character in a null-terminated string. Specifically, the proce-

dure must have two parameters: (1) a character and (2) the address of a

string in the data segment. Use the stack to pass the parameters: For the

character, use an entire word with the character in the low-order byte.
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Use the EAX register to return the position of the character within the

string; return zero if the character is not found. No other register should

be altered. Procedure index will not remove parameters from the stack.

2. Write a NEAR32 procedure append that will append one null-terminated

string to the end of another. Specifically, the procedure must have two

parameters: (1) the address of string1 in the data segment and (2) the

address of string2 in the data segment. Use the stack to pass the

parameters. The procedure should copy the characters of string2 to the

end of string1 with the first character of string2 replacing the null byte

at the end of string1, and so on. (Warning: In the data section, enough

space must be reserved after the null byte of the first string to hold the

characters from the second string.) All registers used by the procedure

should be saved and restored. Procedure append will not remove

parameters from the stack.

3. Write a complete program that prompts for and inputs a person’s name

in the “LastName, FirstName” format and builds a new string with the

name in the format “FirstName LastName.” A comma and a space sepa-

rate the names originally and there is no character except the null fol-

lowing FirstName; only a space separates the names in the new string.

After you generate the new string in memory, display it.

4. Write a complete program which prompts for and inputs a person’s

name in the “LastName, FirstName” format and builds a new string

with the name in the format “FirstName LastName.” One or more

spaces separate the names originally and there may be spaces follow-

ing FirstName. Only a single space separates the names in the new

string. After you generate the new string in memory, display it.

5. Write a complete program that prompts for and inputs a string and a

single character. Construct a new string that is identical to the old one

except that it is shortened by removing each occurrence of the charac-

ter. After you generate the new string in memory, display it.

6. Write a complete program that prompts for and inputs a sentence and a

single word. Construct a new sentence that is identical to the old one

except that it is shortened by removing each occurrence of the word.

After you generate the new sentence in memory, display it.
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7. Write a complete program that prompts for and inputs a sentence and

two words. Construct a new sentence that is identical to the old one

except that each occurrence of the first word is replaced by the second

word. After you generate the new sentence in memory, display it.

7.3 Character Translation

Sometimes character data are available in one format but need to be in another format

for processing. One instance of this occurs when characters are transmitted between

two computer systems, one normally using ASCII character codes and the other normally

using EBCDIC character codes. Another time character codes need to be altered is to

transmit them to a device that cannot process all possible codes; it is sometimes easier

to replace the unsuitable codes by acceptable codes than to delete them entirely.

The 80x86 instruction set includes the xlat instruction to translate one charac-

ter to another character. In combination with other string-processing instructions, it can

easily translate all the characters in a string.

The xlat instruction requires only one byte of object code, the opcode D7. It

takes five clock cycles to execute on an 80386, and four clock cycles on an 80486 or a

Pentium. Prior to execution, the character to be translated is in the AL register. The

instruction works by using a translation table in the data segment to look up the transla-

tion of the byte in AL. This translation table normally contains 256 bytes of data, one for

each possible 8-bit value in AL. The byte at offset zero in the table—the first byte—is the

character to which 00 is translated. The byte at offset one is the character to which 01 is

translated. In general xlat uses the character being translated as an offset into the

table, and the byte at that offset then replaces the character in AL.

The xlat instruction has no operand. The EBX register must contain the

address of the translation table. 

Figure 7.13 illustrates a short program which translates each character of string in

place; that is, it replaces each character by its translation using the original location in

memory. The heart of the program is the translation table and the sequence of instructions

mov    ecx, strLength ; string length

lea    ebx, table     ; address of translation table

lea    esi, string    ; address of string
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lea    edi, string    ; destination also string

forIndex:   lodsb                 ; copy next character to AL

xlat                  ; translate character

stosb                 ; copy character back into string

loop   forIndex       ; repeat for all characters

; Translate uppercase letters to lowercase; don't change lower
; case letters and digits.  Translate other characters to spaces.
; author:  R. Detmer    revised: 10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD
INCLUDE io.h
PUBLIC _start
cr          EQU    0dh   ; carriage return character
Lf          EQU    0ah   ; linefeed character

.STACK  4096             ; reserve 4096-byte stack

.DATA
string      BYTE   'This is a #!$& STRING',0
strLength   EQU    $ – string – 1
label1      BYTE   'Original string   ->',0
label2      BYTE   cr, Lf, 'Translated string ->',0
crlf        BYTE   cr, Lf, 0
table       BYTE   48 DUP (' '), '0123456789', 7 DUP (' ')

BYTE   'abcdefghijklmnopqrstuvwxyz', 6 DUP (' ')
BYTE   'abcdefghijklmnopqrstuvwxyz', 133 DUP (' ')

.CODE
_start:     output label1       ; display original string

output string
output crlf

(continued)

Figure 7.13 Translation program
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mov    ecx, strLength ; string length

lea    ebx, table     ; address of translation table

lea    esi, string    ; address of string

lea    edi, string    ; destination also string

forIndex:   lodsb                 ; copy next character to AL

xlat                  ; translate character

stosb                 ; copy character back into string

loop   forIndex       ; repeat for all characters

output label2         ; display altered string

output string

output crlf

INVOKE  ExitProcess, 0

END

Figure 7.13 (continued)

These instructions implement a for loop with the design

for index := 1 to stringLength loop

load source character into AL;

translate character in AL;

copy character in AL to destination;

end for;

One new feature in this program is the use of the location counter symbol $.

Recall that the assembler calculates addresses as if they start at 00000000, and in-

crements a counter every time it generates bytes of object code. The dollar sign symbol

refers to the value of this counter at the time it is encountered in assembly. In this

particular program, it will be at the address just beyond the null byte of the string. Since

the symbol string actually references its address, the expression string – $ is

the length of string, including the null byte. The value equated to strLength is $ –

string – 1, which excludes the null byte. The assembly process will be discussed

more in Chapter 9.
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Each ASCII code is translated to another ASCII code by this program. Upper-

case letters are translated to lowercase, lowercase letters and digits are unchanged, and

all other characters are translated to spaces. Construction of such a table involves look-

ing at a table of ASCII codes (see Appendix A). For this program the translation table is

defined by

table       BYTE   48 DUP (' '), '0123456789', 7 DUP (' ')

BYTE   'abcdefghijklmnopqrstuvwxyz', 6 DUP (' ')

BYTE   'abcdefghijklmnopqrstuvwxyz', 133 DUP (' ')

Careful counting will show that exactly 256 bytes are defined. Recall that a BYTE direc-

tive stores the ASCII code of each character operand. Each of the first 48 bytes of the

table will contain the ASCII code for a space (i.e., blank), 2016. Therefore if the code in the

AL register represents any of the first 48 ASCII characters—a control character, or one of

the printable characters from 2016 (space) to 2F16 (/)—it will be translated to a space.

Note that it is legal to translate a character to itself. Indeed, this is what will

happen for digits; the ASCII codes 3016 to 3916 for digits 0 through 9 appear at offsets 3016

to 3916. The codes for the seven characters : through @ are next in an ASCII chart; each

of these will be translated to a space. The next ASCII characters are the uppercase let-

ters and the next entries in the table are codes for the lowercase letters. For example, the

table contains 6116 at offset 4116, so an uppercase A (ASCII code 4116) will be translated

to a lower case a (ASCII code 6116). The next six blanks are at the offsets 9116 ([) through

9616 (‘), so that each of these characters is translated to a blank. The ASCII code for each

lowercase letter is assembled at an offset equal to its value, so each lowercase letter is

translated to itself. Finally, the translation table contains 133 ASCII codes for blanks;

these are the destinations for {, |, }, ~, DEL, and each of the 128 bit patterns starting with

a one, none of them codes for ASCII characters.

Figure 7.14 shows the output of the program in Fig. 7.13. Notice that “strange”

characters are not deleted, they are replaced by blanks.

Original string   ->This is a #!$& STRING

Translated string ->this is a      string

Figure 7.14 Output from translation program
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Exercises 7.3

1. Here is a partial hexadecimal/EBCDIC conversion table:

81 a C1 A 40 space

82 b C2 B 4B .

83 c C3 C 6B ,

84 d C4 D

85 e C5 E F0 0

86 f C6 F F1 1

87 g C7 G F2 2

88 h C8 H F3 3

89 i C9 I F4 4

91 j D1 J F5 5

92 k D2 K F6 6

93 l D3 L F7 7

94 m D4 M F8 8

95 n D5 N F9 9

96 o D6 O

97 p D7 P

98 q D8 Q

99 r D9 R

A2 s E2 S

A3 t E3 T

A4 u E4 U

A5 v E5 V

A6 w E6 W

A7 x E7 X

A8 y E8 Y

A9 z E9 Z

Give a translation table that would be suitable for xlat translation of

EBCDIC codes for letters, digits, space, period, and comma to the corre-

sponding ASCII codes, translating every other EBCDIC code to a null

character.

2. Give a translation table that would be suitable for xlat translation of

ASCII codes for lowercase letters to the corresponding uppercase let-

ters, leaving all other characters unchanged.
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3. Here is an alternative to the xlat instruction.

movzx   eax, al       ; clear high order bits in EAX

mov     al, [ebx+eax] ; copy new character from table to AL

Given that [ebx+eax] references the memory byte at the address that

is the sum of the contents of EBX and EAX, explain why this pair of

instructions is equivalent to a single xlat instruction.

Programming Exercises 7.3

1. In the United States, decimal numbers are written with a decimal point

separating the integral part from the fractional part and with commas

every three positions to the left of the decimal point. In many European

countries, decimal numbers are written with the roles of commas and

decimal points reversed. For example, the number 1,234,567.89 would

be written 1.234.567,89. Write a program that will interchange commas

and periods, translating a string of characters representing either for-

mat of number to the other format. Use the xlat instruction with a

translation table that translates a period to a comma, a comma to a

period, each digit to itself, and any other character to a space. Prompt

for and input the number to be translated. Translate the string. Display

the new number format with an appropriate label.

7.4 Converting a 2’s Complement Integer to an

ASCII String

The dtoa and itoa macros have been used to convert 2’s complement integers to

strings of ASCII characters for output. The code for these operations is similar. In this

section we examine the slightly shorter code for itoa.

The itoa macro expands into the following sequence of instructions.

push   ebx                 ; save EBX

mov    bx, source

push   bx                  ; source parameter

lea    ebx, dest           ; destination address

push   ebx                 ; destination parameter

call   itoaproc            ; call itoaproc(source,dest)

pop    ebx                 ; restore EBX

TEAM LinG - Live, Informative, Non-cost and Genuine!



260 String Operations

These instructions call procedure itoaproc after pushing the source value and the destina-

tion address on the stack. The actual source and destination are used in the expanded

macro, not the names source and dest. So that the user does not need to worry about any

register contents being altered, EBX is initially saved on the stack and is restored at the end

of the sequence. The parameters are removed from the stack by procedure itoaproc since

the alternative add esp,6 following the call instruction potentially changes the flags.

The real work of 2’s complement integer to ASCII conversion is done by the pro-

cedure itoaproc. The assembled version of this procedure is contained in the file IO.OBJ.

The source code from file IO.ASM is shown in Fig. 7.15. The procedure begins by saving

all of the registers that it alters on the stack; the flag register is also saved so that the pro-

cedure call to itoaproc will not change flag settings. The flag register and other registers

are restored immediately before returning from the procedure.

The basic idea of the procedure is to build a string of characters right to left by

repeatedly dividing the number by 10, using the remainder to determine the rightmost

; itoaproc(source, dest)

; convert integer (source) to string of 6 characters at destination address

itoaproc    PROC   NEAR32

push   ebp                  ; save base pointer

mov    ebp, esp             ; establish stack frame

push   eax                  ; Save registers

push   ebx                  ;   used by

push   ecx                  ;   procedure

push   edx

push   edi

pushf                      ; save flags

mov    ax, [ebp+12]        ; first parameter (source integer)

mov    edi, [ebp+8]        ; second parameter (dest address)

ifSpecial:  cmp    ax,8000h            ; special case –32,768?

jne    EndIfSpecial        ; if not, then normal case

mov    BYTE PTR [edi],'-'  ; manually put in ASCII codes

mov    BYTE PTR [edi+1],'3'  ;   for –32,768

(continued)

Figure 7.15 Integer to ASCII conversion procedure
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mov    BYTE PTR [edi+2],'2'

mov    BYTE PTR [edi+3],'7'

mov    BYTE PTR [edi+4],'6'

mov    BYTE PTR [edi+5],'8'

jmp    ExitIToA            ; done with special case

EndIfSpecial:

mov    dx, ax              ; save source number

mov    al,' '              ; put blanks in

mov    ecx,5               ;   first five

cld                        ;   bytes of

rep stosb                  ;   destination field

mov    ax, dx              ; copy source number

mov    cl,' '              ; default sign (blank for +)

IfNeg:      cmp    ax,0                ; check sign of number

jge    EndIfNeg            ; skip if not negative

mov    cl,'-'              ; sign for negative number

neg    ax                  ; number in AX now >= 0

EndIfNeg:

mov    bx,10               ; divisor

WhileMore:  mov    dx,0                ; extend number to doubleword

div    bx                  ; divide by 10

add    dl,30h              ; convert remainder to character

mov    [edi],dl            ; put character in string

dec    edi                 ; move forward to next position

cmp    ax,0                ; check quotient

jnz    WhileMore           ; continue if quotient not zero

mov    [edi],cl            ; insert blank or "-" for sign

ExitIToA:   popf                       ; restore flags and registers

pop    edi

pop    edx

pop    ecx

pop    ebx

pop    eax

pop    ebp

ret    6                   ;exit, discarding parameters

itoaproc    ENDP

Figure 7.15 (continued)

TEAM LinG - Live, Informative, Non-cost and Genuine!



262 String Operations

character. For instance, dividing the number 2895 (0B4F16) by 10 gives a remainder of 5

and a quotient of 289 (012116), the last digit of the number and a new number with

which to repeat the process. This scheme works nicely for positive numbers, but a neg-

ative number must be changed to its absolute value before starting the division loop. To

complicate things further, the bit pattern 800016 represents the negative number

�32,76810, but +32,768 cannot be represented in 2’s complement form in a 16-bit word.

After standard entry code, the value parameter is copied to AX and the destina-

tion address to EDI. The procedure then checks for the special case 800016. If this is the

value, then the ASCII codes for �32768 are moved one at a time to the destination, using

the fact that the destination address is in EDI. The location for the minus sign is in the

EDI register, so register indirect addressing can be used to put this character in the cor-

rect memory byte. The location for the character 3 is one byte beyond the address con-

tained in EDI; this address is referenced by [edi+1]. The remaining four characters are

similarly put in place, and the procedure is exited.

The next step of the procedure is to put five leading blanks in the six-byte-long

destination field. The procedure does this with a rep stosb, which uses EDI to point to

successive bytes in destination field. Note that EDI is left pointing at the last byte of the

destination field.

The procedure next stores the correct “sign” in the CL register. A blank is used

for a number greater than or equal to zero, and minus character (�) is used for a negative

number. A negative number is also negated, giving its absolute value for subsequent

processing.

Finally the main idea is executed. The divisor 10 is placed in the BX register.

The non-negative number is extended to a doubleword by moving zeros to DX. Division

by 10 in BX gives a remainder from 0 to 9 in DX, the last decimal digit of the number.

This is converted to the corresponding ASCII code by adding 3016; recall that the ASCII

codes for digits 0 through 9 are 3016 through 3916. A mov using register indirect address-

ing puts the character in place in the destination string, and EDI is decremented to point

at the next position to the left.

This process is repeated until the quotient is zero. Finally the “sign” stored in

CL (blank or �) is copied to the immediate left of the last code for a digit. Other positions

to the left, if any, were previously filled with blanks.

Exercises 7.4

1. Why does itoaproc use a destination string six bytes long?

2. Suppose that negative numbers are not changed before the division

loop of itoaproc begins and that an idiv instruction is used rather than
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a div instruction in this loop. Recall that when a negative number is

divided by a positive number, both quotient and remainder will be neg-

ative. For instance, �1273 = 10*(�127) + (�3). How could the rest of the

division loop be modified to produce the correct ASCII codes for both

positive and negative numbers?

Programming Exercises 7.4

1. Rewrite itoaproc, adding a length parameter. Specifically, the new

itoaNew will be a NEAR32 procedure with three parameters, passed on

the stack:

(1) the 2’s complement number to convert to ASCII characters (a word)

(2) the address of the ASCII string (a doubleword)

(3) the desired length of the ASCII string (a word)

The number will be converted to a string of ASCII characters starting at

the offset in the data segment. Do not use a blank in front of a positive

number. If the length is less than the actual number of characters

needed to display the number, fill the entire field with pound signs (#).

If the length is larger than needed, pad with extra spaces to the left of

the number. The procedure will remove parameters from the stack and

must modify no register.

2. Write a NEAR32 procedure hexString that converts a 32-bit integer to a

string of exactly eight characters representing its value as a hexadecimal

number. (That is, the output characters will be 0–9 and A–F, with no

blanks.) The procedure will have two parameters, passed on the stack:

(1) the number

(2) the address of the destination string

The procedure will remove parameters from the stack and must modify

no register. (The remainder upon division by 16 produces a decimal

value corresponding to the rightmost hex digit.)

3. Write a NEAR32 procedure binaryString that converts a 32-bit integer to

a string of exactly 32 characters representing its value as a binary num-

ber. The procedure will have two parameters, passed on the stack:

(1) the number

(2) the address of the destination string

The procedure will remove parameters from the stack and must modify

no register. (The remainder upon division by 2 gives the rightmost bit.)
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7.5 Other Architectures: CISC versus RISC Designs

Early digital computers had very simple instruction sets. When designers began to use

microcode to implement instructions in the 1960s, it became possible to have much

more complex instructions. At the same time high-level programming languages were

becoming popular, but language compilers were fairly primitive. This made it desirable

to have machine language statements that almost directly implemented high-level lan-

guage statements, increasing the pressure to produce computer architectures with

many complex instructions.

The Intel 80x86 machines use complex instruction set computer (CISC)

designs. Instructions such as the string instructions discussed in this chapter would never

have appeared in early computers. CISC machines also have a variety of memory address-

ing modes, and the 80x86 family is typical in this respect, although you have only seen a

few of its modes so far. Often CISC instructions take several clock cycles to execute.

Reduced instruction set computer (RISC) designs began to appear in the

1980s. These machines have relatively few instructions and few memory addressing

modes. Their instructions are so simple that any one can be executed in a single clock

cycle. As compiler technology improved, it became possible to produce efficient code for

RISC machines. Of course, it often takes many more instructions to implement a given

high-level language statement on a RISC than on a CISC machine, but the overall opera-

tion is often faster because of the speed with which individual instructions execute.

In RISC architectures, instructions are all the same format; that is, the same

number of bytes are encoded in a common pattern. This is not the case with CISC archi-

tectures. If the 80x86 chips were RISC designs, then this book would have no questions

asking “How many clock cycles?” or “How many bytes?” When we look at the many 80x86

instruction formats in Chapter 9, you may wish for the simplicity of a RISC machine.

One unusual feature of many RISC designs is a relatively large collection of reg-

isters (sometimes over 500), of which only a small number (often 32) are visible at one

time. Registers are used to pass parameters to procedures, and the registers that are

used to store arguments in the calling program overlap the registers that are used to

receive the parameter values in the procedure. This provides a simple but very efficient

method of communication between a calling program and a procedure.

There are proponents of both CICS and RISC designs. At this point in time it is

not obvious that one is clearly better than the other. However, the popular Intel 80x86

and Motorola 680x0 families are both CISC designs, so we will be dealing with CISC sys-

tems at least in the near future.
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Chapter Summary

The word string refers to a collection of consecutive bytes, words, or dou-

blewords in memory. The 80x86 instruction set includes five instructions for

operating on strings: movs (to move or copy a string from a source to a des-

tination location), cmps (to compare two strings), scas (to scan a string for

a particular element), stos (to store a given value in a string), and lods (to

copy a string element into EAX, AX, or AL). Each of these has mnemonic

forms ending with b, w, or d to give the size of the string element.

A string instruction operates on one string element at a time.

When a source string is involved, the source index register ESI contains the

address of the string element. When a destination string is involved, the

destination index register EDI contains the address of the string element.

An index register is incremented or decremented after the string element is

accessed, depending on whether the direction flag DF is reset to zero or set

to one; the cld and std instructions are used to give the direction flag a

desired value.

Repeat prefixes rep, repe (repz), and repne (repnz) are used with

some string instructions to cause them to repeat automatically. The number

of times to execute a primitive instruction is placed in the ECX register. The

conditional repeat forms use the count in ECX but will also terminate

instruction execution if the zero flag gets a certain value; these are appro-

priate for use with the cmps and scas instructions that set or reset ZF.

The xlat instruction is used to translate the characters of a string.

It requires a 256-byte-long translation table that starts with the destination

byte to which the source byte 00 is translated and ends with the destina-

tion byte to which the source byte FF is translated. The xlat instruction can

be used for such applications as changing ASCII codes to EBCDIC codes or

for changing the case of letters within a given character coding system.

The itoa macro expands to code that calls a procedure itoaproc.

Basically this procedure works by repeatedly dividing a non-negative num-

ber by 10 and using the remainder to get the rightmost character of the

destination string.

The 80x86 chips are examples of complex instruction set com-

puter (CISC) architecture. They include many complex instructions and

offer many different addressing modes. Reduced instruction set
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computer (RISC) architectures implement fewer and simpler instructions

and have more limited addressing options. Even though RISC computers

take more instructions to accomplish a task, they are usually quite fast

since they execute their simple instructions very rapidly.

266 String Operations
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CHAPTER 8

8.1 Logical Operations

8.2 Shift and Rotate

Instructions

8.3 Converting an ASCII

String to a 2’s

Complement Integer

8.4 The Hardware Level—

Logic Gates

Bit Manipulation

A computer contains many integrated circuits that enable it

to perform its functions. Each chip incorporates from a few

to many thousand logic gates, each an elementary circuit

that performs Boolean and, or, exclusive or, or not oper-

ations on bits that are represented by electronic states. The

CPU is usually the most complex integrated circuit in a PC.

Previous chapters have examined the 80x86 micro-

processors’ instructions for moving data, performing arith-

metic operations, handling strings, branching, and

utilizing subroutines. The 80x86 (and most other CPUs)

can also execute instructions that perform Boolean opera-

tions on multiple pairs of bits at one time. This chapter

defines the Boolean operations and describes the 80x86

instructions that implement them. It also covers the

instructions that cause bit patterns to shift or rotate in a

byte, word, or doubleword, or to shift from one location

to another. Although bit manipulation instructions are

very primitive, they are widely used in assembly language

programming, often because they provide the sort of con-

trol that is rarely available in a high-level language. The

chapter contains several application examples, including

the procedure that is called by the atoi macro; this proce-

dure uses bit manipulation instructions in several places.
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Figure 8.1 Definitions of logical operations

bit1 bit2 bit1 and bit2 (a) and operation

0 0 0

0 1 0

1 0 0

1 1 1

bit1 bit2 bit1 or bit2 (b) or operation

0 0 0

0 1 1

1 0 1

1 1 1

bit1 bit2 bit1 xor bit2 (c) xor operation

0 0 0

0 1 1

1 0 1

1 1 0

bit not bit (d) not operation

0 1

1 0

8.1 Logical Operations

Many high-level languages allow variables of Boolean type; that is, variables that are

capable of storing true or false values. Virtually all high-level languages allow expressions

with Boolean values to be used in conditional (if) statements. In assembly language the

Boolean value true is identified with the bit value 1 and the Boolean value false is identi-

fied with the bit value 0. Figure 8.1 gives the definitions of the Boolean operations using

bit values as the operands. The or operation is sometimes called “inclusive or” to distin-

guish it from “exclusive or” (xor). The only difference between or and xor is for two 1

bits; 1 or 1 is 1, but 1 xor 1 is 0; that is, “exclusive” or corresponds to one operand or the

other true, but not both.
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The 80x86 has and, or, xor, and not instructions that implement the logical

operations. The formats of these instructions are

and  destination, source 

or    destination, source 

xor   destination, source

not   destination

The first three instructions act on pairs of doublewords, words, or bytes, per-

forming the logical operations on the bits in corresponding positions from the two

operands. For example, when the instruction and bx,cx is executed, bit 0 from the BX

register is “anded” with bit 0 from the CX register, bit 1 from BX is “anded” with bit 1

from CX, and so forth to bit 15 from BX and bit 15 from CX. The results of these 16 and

operations are put in the corresponding positions in the destination.

The not instruction has only a single operand. It changes each 0 bit in that

operand to 1 and each 1 bit to 0. For example, if the AH register contains 10110110 and

the instruction not ah is executed, then the result in AH will be 01001001. This is some-

times called “taking the one’s complement” of the operand.

The not instruction does not affect any flag. However, each of the other three

Boolean instructions affects CF, OF, PF, SF, ZF, and AF. The carry flag CF and overflow

flag OF flags are both reset to 0; the value of the auxiliary carry flag AF may be changed

but is undefined. The parity flag PF, the sign flag SF, and the zero flag ZF are set or reset

according to the value of the result of the operation. For instance, if the result is a pattern

of all 0 bits, then ZF will be set to 1; if any bit of the result is not 0, then ZF will be reset to 0.

The and, or, and xor instructions all accept the same types of operands, use

the same number of clock cycles for execution, and require the same number of bytes of

object code. They are summarized together in Fig. 8.2. Information about the not

instruction is given in Fig. 8.3.

It is interesting to note that Fig. 8.2 is almost identical to Fig. 4.5, which

showed add and sub instructions. Also, Fig. 8.3 is almost identical to Fig. 4.7,

which showed neg instructions. In both cases, the available operand formats are identi-

cal, the timings are identical, and even many of the opcodes are the same. (Recall that

when the opcodes are the same, the second byte of the instruction distinguishes

between add, sub, and, or, and xor instructions.)

Here are some examples showing how the logical instructions work. To com-

pute the results by hand, it is necessary to expand each hex value to binary, do the logi-

cal operations on corresponding pairs of bits, and convert the result back to hex. These
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Destination Source Clock Cycles Number Opcode

Operand Operand 386 486 Pentium of Bytes and or xor

register 8 immediate 8 2 1 1 3 80 80 80

register 16 immediate 8 2 1 1 3 83 83 83

register 32 immediate 8 2 1 1 3 83 83 83

register 16 immediate 16 2 1 1 4 81 81 81

register 32 immediate 32 2 1 1 6 81 81 81

AL immediate 8 2 1 1 2 24 0C 34

AX immediate 16 2 1 1 3 25 0D 35

EAX immediate 32 2 1 1 5 25 0D 35

memory byte immediate 8 7 3 3 3+ 80 80 80

memory word immediate 8 7 3 3 3+ 83 83 83

memory doubleword immediate 8 7 3 3 3+ 83 83 83

memory word immediate 16 7 3 3 4+ 81 81 81

memory doubleword immediate 32 7 3 3 6+ 81 81 81

register 8 register 8 2 1 1 2 22 0A 32

register 16 register 16 2 1 1 2 23 0B 33

register 32 register 32 2 1 1 2 23 0B 33

register 8 memory byte 6 2 2 2+ 22 0A 32

register 16 memory word 6 2 2 2+ 23 0B 33

register 32 memory doubleword 6 2 2 2+ 23 0B 33

memory byte register 8 7 3 3 2+ 20 08 30

memory word register 16 7 3 3 2+ 21 09 31

memory doubleword register 32 7 3 3 2+ 21 09 31

Clock Cycles Number

Destination Operand 386 486 Pentium of Bytes Opcode

register 8 2 1 1 2 F6

register 16 2 1 1 2 F7

register 32 2 1 1 2 F7

memory byte 6 3 3 2 + F6

memory word 6 3 3 2 + F7

memory doubleword 6 3 3 2 + F7

Figure 8.3 not instruction

Figure 8.2 and, or, and xor instructions
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expansions are shown in the examples. Most hex calculators perform the logical opera-

tions directly.

Example

Before Instruction Bitwise Operation After

AX: E2 75 and ax,cx 1110 0010 0111 0101

CX: A9 D7 1010 1001 1101 0111

1010 0000 0101 0101

DX: E2 75 or dx,value 1110 0010 0111 0101

value: A9 D7 1010 1001 1101 0111

1110 1011 1111 0111

BX: E2 75 xor bx,0a9d7h 1110 0010 0111 0101

1010 1001 1101 0111

0100 1011 1010 0010

AX: E2 75 not ax 1110 0010 0111 0101

0001 1101 1000 1010

AX 1D 8A

BX

SF 0      ZF 0

4B A2

DX

SF 1      ZF 0

EB F7

AX

SF 1      ZF 0

A0 55

Each of the logical instructions has a variety of uses. One application of the and

instruction is to clear selected bits in a destination. Note that if any bit value is “anded”

with 1, the result is the original bit. On the other hand, if any bit value is “anded” with 0,

the result is 0. Because of this, selected bits in a byte or word can be cleared by “anding”

the destination with a bit pattern that has 1s in positions that are not to be changed and

0s in positions that are to be cleared.

For example, to clear all but the last four bits in the EAX register, the following

instruction can be used.

and   eax, 0000000fh      ; clear first 28 bits of EAX

If EAX originally contained 4C881D7B, this and operation would yield 0000000B:

0100 1100 1000 1000 0001 1101 0111 1011 4C881D7B

0000 0000 0000 0000 0000 0000 0000 1111 0000000F

0000 0000 0000 0000 0000 0000 0000 1011 0000000B
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Only one of the leading zeros is needed in 0000000fh, but coding seven zeros helps clar-

ify the purpose of this operand. The trailing hex digit f corresponds to 1111 in binary,

providing the four 1s that will leave the last four bits in EAX unchanged.

A value that is used with a logical instruction to alter bit values is often

called a mask. The Microsoft assembler MASM accepts numeric values in decimal,

hexadecimal, binary, and octal formats. Hex and binary are preferred for constants

used as masks since the bit pattern is obvious for binary values or easy to figure out

for hex values.

As illustrated above, the and instruction is useful when selected bits of a

byte or word need to be cleared. The or instruction is useful when selected bits of a

byte or word need to be set to 1 without changing other bits. Observe that if the value

1 is combined with either a 0 or 1 using the or operation, then the result is 1. How-

ever, if the value 0 is used as one operand, then the result of an or operation is the

other operand.

The exclusive or instruction will complement selected bits of a byte or word

without changing other bits. This works since 0 xor 1 is 1 and 1 xor 1 is 0; that is,

combining any operand with 1 using an xor operation results in the opposite of the

operand value.

A second use of logical instructions is to implement high-level language

Boolean operations. One byte in memory could be used to store eight Boolean values. If

such a byte is at flags, then the statement

and   flags, 11011101b    ; flag5 := false;  flag1 := false

assigns value false to bits 1 and 5, leaving the other values unchanged. (Recall that bits

are numbered from right to left, starting with zero for the rightmost bit.)

If the byte in memory at flags is being used to store eight Boolean values, then

an or instruction can assign true values to any selected bits. For instance, the instruction

or   flags, 00001100b    ; flag3 := true;  flag2 := true

assigns true values to bits 2 and 3 without changing the other bits.

If the byte in memory at flags is being used to store eight Boolean values, then

an xor instruction can negate selected values. For instance, the design statement

flag6 := NOT flag6;
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can be implemented as

xor  flags, 01000000b      ; flag6 := not flag6

A third application of logical instructions is to perform certain arithmetic opera-

tions. Suppose that the value in the EAX register is interpreted as an unsigned integer. The

expression (value mod 32) could be computed using the following sequence of instructions.

mov   edx,0       ; extend value to quadword

mov   ebx,32      ; divisor

div   ebx         ; divide value by 32

Following these instructions, the remainder (value mod 32) will be in the EDX register.

The following alternative sequence leaves the same result in the EDX register without,

however, putting the quotient in EAX.

mov   edx,eax         ; copy value to DX

and   edx,0000001fh   ; compute value mod 32

This choice is much more efficient than the first one (see Exercise 2). It works because

the value in EDX is a binary number; as a sum it is

Since each of these terms from bit31*231 down to bit5*25 is divisible by 32 (25), the

remainder upon division by 32 is the bit pattern represented by the trailing five bits,

those left after masking by 0000001F. Similar instructions will work whenever the second

operand of mod is a power of 2.

A fourth use of logical instructions is to manipulate ASCII codes. Recall that the

ASCII codes for digits are 3016 for 0, 3116 for 1, and so forth, to 3916 for 9. Suppose that the

AL register contains the ASCII code for a digit, and that the corresponding integer value

is needed in EAX. If the value in the high-order 24 bits in EAX are known to be zero,

then the instruction

sub   eax, 00000030h       ; convert ASCII code to integer

will do the job. If the high-order bits in EAX are unknown, then the instruction

and   eax, 0000000fh       ; convert ASCII code to integer

bit31*231 + bit30*230 + ... + bit2*22 + bit1*2 + bit0
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is a much safer choice. It ensures that all but the last four bits of EAX are cleared. For

example, if the EAX register contains 5C3DF036, junk in the high order bits, and the

ASCII code for the character 6 in AL, then and eax,0000000fh produces the integer

00000006 in EAX.

The or instruction can be used to convert an integer value between 0 and 9 in a

register to the corresponding ASCII character code. For example, if the integer is in BL,

then the following instruction changes the contents of BL to the ASCII code.

or   bl,30h      ; convert digit to ASCII code

If BL contains 04, then the or instruction will yield 34:

0000 0100 04

0011 0000 30

0011 0100 34

With the 80x86 processors, the instruction add bl,30h does the same job using the

same number of clock cycles and object code bytes. However, the or operation is more

efficient than addition with some CPUs.

An xor instruction can be used to change the case of the ASCII code for a let-

ter. Suppose that the CL register contains the ASCII code for some upper- or lowercase

letter. The ASCII code for an uppercase letter and the ASCII code for the corresponding

lowercase letter differ only in the value of bit 5. For example, the code for the upper-

case letter S is 5316 (010100112) and the code for lowercase s is 7316 (011100112). The

instruction

xor   cl, 00100000b     ; change case of letter in CL

“flips” the value of bit 5 in the CL register, changing the value to the ASCII code for the

other case letter.

The 80x86 instruction set includes test instructions that function the same as

and instructions except that destination operands are not changed. This means that the

only job of a test instruction is to set flags. (Remember that a cmp instruction is essen-

tially a sub instruction that sets flags but does not change the destination operand.) One

application of a test instruction is to examine a particular bit of a byte or word. The fol-

lowing instruction tests bit 13 of the DX register.

test   dx, 2000h   ; check bit 13

Note that 2000 in hex is the same as 0010 0000 0000 0000 in binary, with bit 13 equal to

1. Often this test instruction would be followed by a jz or jnz instruction, and the

effect would be to jump to the destination if bit 13 were 0 or 1, respectively.
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The test instruction can also be used to get information about a value in a reg-

ister. For example,

test   cx, cx    ; set flags for value in CX

“ands” the value in the CX register with itself, resulting in the original value. (“Anding”

any bit with itself gives the common value.) The flags are set according to the value in

CX. The instruction

and   cx, cx     ; set flags for value in CX

will accomplish the same goal and is equally efficient. However, using test makes it

clear that the only purpose of the instruction is testing.

The various forms of the test instruction are listed in Fig. 8.4. They are almost

the same as for and, or, and xor instructions. Only the accumulator can be the destina-

tion when the source is in memory, but MASM lets you specify any register as the desti-

nation and transposes the operands to have the memory operand first, one of the

allowable formats.

Destination Source Clock Cycles Number

Operand Operand 386 486 Pentium of Bytes Opcode

register 8 immediate 8 2 1 1 3 F6

register 16 immediate 16 2 1 1 4 F7

register 32 immediate 32 2 1 1 6 F7

AL immediate 8 2 1 1 2 A8

AX immediate 16 2 1 1 3 A9

EAX immediate 32 2 1 1 5 A9

memory byte immediate 8 5 2 2 3+ F6

memory word immediate 16 5 2 2 4+ F7

memory doubleword immediate 32 5 2 2 6+ F7

register 8 register 8 2 1 1 2 84

register 16 register 16 2 1 1 2 85

register 32 register 32 2 1 1 2 85

memory byte register 8 5 2 2 2+ 84

memory word register 16 5 2 2 2+ 85

memory doubleword register 32 5 2 2 2+ 85

Figure 8.4 test instructions

TEAM LinG - Live, Informative, Non-cost and Genuine!



276 Bit Manipulation

Exercises 8.1

1. For each part of this problem, assume the “before” values when the

given instruction is executed. Give the requested “after” values.

Before Instruction After

(a) BX:  FA 75

CX:  31 02 and  bx,cx BX, SF, ZF

(b) BX  FA 75

CX  31 02 or    bx,cx BX, SF, ZF

(c) BX  FA 75

CX  31 02 xor   bx,cx BX, SF, ZF

(d) BX  FA 75 not   bx BX

(e) AX  FA 75 and   ax,000fh AX, SF, ZF

(f) AX  FA 75 or    ax,0fff0h AX, SF, ZF

(g) AX  FA 75 xor   ax,0ffffh AX, SF, ZF

(h) AX  FA 75 test  ax,0004h AX, SF, ZF

2. Recall the two methods given in this section for computing (value mod

32) when value is an unsigned integer in the EAX register:

mov   edx,0       ; extend value to quadword

mov   ebx,32      ; divisor

div   ebx         ; divide value by 32

and

mov   edx,eax         ; copy value to DX

and   edx,0000001fh   ; compute value mod 32

Find the total number of clock cycles required for execution on a Pen-

tium and the number of bytes of object code necessary for each of

these methods.

3. Suppose that value is an unsigned integer in the EAX register. Give

appropriate instructions to compute (value mod 8) putting the result in

the EBX register and leaving EAX unchanged.

4. Suppose that each bit of the doubleword at flags represents a Boolean

value, with bit 0 for flag0, and so forth, up to bit 31 for flag31. For each

of the following design statements, give a single 80x86 instruction to

implement the statement.
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(a) flag2 := true;

(b) flag5 := false;  flag16 := false;  flag19 := false;

(c) flag12 := NOT flag12

5. (a) Suppose that the AL register contains the ASCII code for an upper-

case letter. Give a logical instruction (other than xor) that will change

its contents to the code for the corresponding lowercase letter.

(b) Suppose that the AL register contains the ASCII code for a lowercase

letter. Give a logical instruction (other than xor) that will change its

contents to the code for the corresponding uppercase letter.

Programming Exercises 8.1

1. The Pascal programming language includes the predefined function

odd, which has a single doubleword integer parameter and returns true

for an odd integer and false for an even integer. Write a NEAR32 proce-

dure that implements this function in assembly language, returning � 1

in EAX for true and 0 in EAX for false. The procedure must not change

any register other than EAX. Use an appropriate logical instruction to

generate the return value. The procedure is responsible for removing

the parameter from the stack.

2. In 2-dimensional graphics programming a rectangular region of the

plane is mapped to the display; points outside this region are clipped.

The region, bounded by four lines x = xmin, x = xmax, y = ymin, and y =

ymax, can be pictured

An outcode (or region code) is associated with each point (x,y) of the

plane. This 4-bit code is assigned according to the following rules:

• bit 0 (rightmost) is 1 if the point is to the right of the region, that is 

x > xmax; it is 0 otherwise

• bit 1 is 1 if the point is left of the region (x < xmin)

0110 0100 0101

0010 0000 0001

1010 1000 1001

y = y
max

y = y
min

x = x
maxx = x

min
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• bit 2 is 1 if the point is above the region (y > ymax)

• bit 3 is 1 if the point is below the region (y < ymin)

The previous diagram shows the outcodes for each of the nine regions

of the plane.

(a) Suppose that the outcode for point (x1,y1) is in the low order four

bits of AL, that the outcode for point (x2,y2) is in the low order four

bits of BL, and that other bits of these registers are reset to 0. Give

a single 80x86 statement that will set ZF to 1 if the two points are

both inside the rectangular region and to 0 otherwise. The value in

AL or BL may be changed.

(b) Suppose that the outcode for point (x1,y1) is in the low order four bits

of AL, that the outcode for point (x2,y2) is in the low order four bits of

BL, and that other bits of these registers are reset to 0. Give a single

80x86 statement that will set ZF to 0 if the two points are both on

the same side of the rectangular region. (“Both on the same side”

means both right of x=xmax, both left of x=xmin, both above y=ymax, or

both below y=ymin.) The value in AL or BL may be changed.

(c) Write a NEAR32 procedure setcode that returns the outcode for a

point (x,y). Specifically, setcode has six word-size integer parame-

ters: x, y, xmin, xmax, ymin, and ymax that are passed on the stack in

the order given. Return the outcode in the low order four bits of the

AL register, assigning 0 to each of the higher order bits in EAX.

8.2 Shift and Rotate Instructions

The logical instructions introduced in the previous section enable the assembly lan-

guage programmer to set or clear bits in a word or byte stored in a register or memory.

Shift and rotate instructions enable the programmer to change the position of bits within

a doubleword, word, or byte. This section describes the shift and rotate instructions and

gives examples of some ways they are used.

Shift instructions slide the bits in a location given by the destination operand to

the left or to the right. The direction of the shift can be determined from the last charac-

ter of the mnemonic—sal and shl are left shifts; sar and shr are right shifts. Shifts are

also categorized as logical or arithmetic—shl and shr are logical shifts; sal and sar

are arithmetic shifts. The difference between arithmetic and logical shifts is explained

below. The table in Fig. 8.5 summarizes the mnemonics.
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Figure 8.5 Shift instructions

shl shr

sal sararithmetic

logical

left right

The source code format of any shift instruction is

s-   destination, count

There are three versions of the count operand. This operand can be the number 1,

another number serving as a byte-size immediate operand, or the register specification

CL. The original 8086/8088 CPU had only the first and third of these options.

An instruction having the format

s-  destination, 1

causes a shift of exactly one position within the destination location. With the format

s-   destination, immediate8

an immediate operand of 0 to 255 can be coded. However, most of the 80x86 family mask

this operand by 000111112; that is they reduce it mod 32 before performing the shift.

This makes sense because you cannot do over 32 meaningful shift operations to an

operand no longer than a doubleword. In the final format,

s-   destination, cl

the unsigned count operand is in the CL register. Again, most 80x86 CPUs reduce it

modulo 32 before beginning the shifts.

Arithmetic and logical left shifts are identical; the mnemonics sal and shl are

synonyms that generate the same object code. When a left shift is executed, the bits in

the destination slide to the left and 0 bits fill in on the right. The bits that fall off the left

are lost except for the very last one shifted off; it is saved in the carry flag CF. The sign

flag SF, zero flag ZF, and parity flag PF are assigned values corresponding to the final

value in the destination location. The overflow flag OF is undefined for a multiple-bit

shift; for a single-bit shift (count=1) it is reset to 0 if the sign bit of the result is the same
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as the sign bit of the original operand value, and set to 1 if they are different. The auxil-

iary carry flag AF is undefined.

Arithmetic and logical right shifts are not the same. With both, the bits in

the destination slide to the right and the bits that fall off the right are lost except for

the very last one shifted off, which is saved in CF. For a logical right shift (shr) 0 bits

fill in on the left. However, with an arithmetic right shift (sar) the original sign bit is

used to fill in on the left. Therefore, for an arithmetic right shift, if the original operand

represents a negative 2’s complement number, then the new operand will have lead-

ing 1 bits for each position shifted and will also be negative. As with left shifts, the

values of SF, ZF, and PF depend on the result of the operation, and AF is undefined.

The overflow flag OF is undefined for a multiple-bit shift. For a single-bit logical right

shift shr, OF is reset to 0 if the sign bit in the result is the same as the sign bit in the

original operand value, and set to 1 if they are different. (Notice that this is equivalent

to assigning OF the sign bit of the original operand.) With a single-bit arithmetic

right shift, sar, OF is always cleared—the sign bits of the original and new value are

always the same.

Some hex calculators can directly do shift operations. Hand evaluation requires

writing the operand in binary, shifting or regrouping the bits (filling in with 0s or 1s as

appropriate), and then translating the new bit pattern back to hex. Things are a little

simpler for a multiple-bit shift, which shifts four positions or some multiple of four posi-

tions; in this case each group of four bits corresponds to one hex digit, so one can think

of shifting hex digits instead of bits. Here are a few examples that illustrate execution of

shift instructions; each example begins with a word containing the hex value A9 D7

(1010 1001 1101 0111 in binary). The bit(s) shifted off are separated by a line in the origi-

nal value. The bit(s) added are in bold in the new value.

Example

Before Instruction Operation in binary After

CX:  A9 D7 sal cx,1

AX:  A9 D7 shr ax,1

AX

SF 0   ZF 0

CF 1   OF 1

54 EB

1010 1001 1101 0111

0101 0100 1110 1011

CX

SF 0    ZF 0

CF 1    OF 1

53 AE1010 1001 1101 0111

0101 0011 1010 1110
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BX:  A9 D7 sar bx,1

ace: A9 D7 sal ace,4

DX:  A9 D7 shr dx,4

AX: A9 D7 sar ax,cl

CL: 04 AX

SF 1  ZF 0

CF 0   OF ?

FA 9D

1010 1001 1101 0111

1111 1010 1001 1101

DX

SF 0    ZF 0

CF 0   OF ?

0A 9D

1010 1001 1101 0111

0000 1010 1001 1101

ace

SF 1    ZF 0

CF 0   OF ?

9D 70

1010 1001 1101 0111

1001 1101 0111 0000

BX

SF 1   ZF 0

CF 1   OF 0

D4 EB

1010 1001 1101 0111

1101 0100 1110 1011

Figure 8.6 gives the number of clock cycles and number of bytes required using

various operand types in shift instructions. All four types of shifts discussed so far, as

well as the rotate instructions discussed below, share opcodes. The size of the destina-

tion and the type of the count operand are implied by the opcode. As with some other

instructions, the second byte of the object code is used to choose among the different

types of shifts and rotates, as well as between register and memory destinations. Notice

that the single-bit shifts are faster than the multiple-bit shifts—often it is more time-effi-

cient to use several single-bit shifts than one multiple-bit shift.

The shift instructions are quite primitive, but they have many applications. One

of these is to do some multiplication and division operations. In fact, for processors with-

out multiplication instructions, shift instructions are a crucial part of routines to do mul-

tiplication. Even with the 80x86 architecture, some products are computed more rapidly

with shift operations than with multiplication instructions.

In a multiplication operation where the multiplier is 2, a single-bit left shift of

the multiplicand results in the product in the original location. The product will be cor-

rect unless the overflow flag OF is set. It is easy to see why this works for unsigned
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numbers; shifting each bit to the left one position makes it the coefficient of the next

higher power of two in the binary representation of the number. A single-bit left shift

also correctly doubles a signed operand. In fact, one can use multiplication by 2 on a hex

calculator to find the result of any single-bit left shift.

A single-bit right shift can be used to efficiently divide an unsigned operand by

2. Suppose, for example, that the EBX register contains an unsigned operand. Then the

logical right shift shr ebx,1 shifts each bit in EBX to the position corresponding to the

next lower power of two, resulting in half the original value. The original units bit is

copied into the carry flag CF, and is the remainder for the division.

If EBX contains a signed operand, then the arithmetic right shift sar ebx,1

does almost the same job as an idiv instruction with a divisor of 2. The difference is

that if the dividend is an odd negative number, then the quotient is rounded down; that

is, it is one smaller than it would be using an idiv instruction. For a concrete example,

suppose that the DX register contains FFFF and the AX register contains FFF7, so that

DX-AX has the doubleword size 2’s complement representation for � 9. Assume also that

CX contains 0002. Then idiv cx gives a result of FFFC in AX and FFFF in DX; that is, a

quotient of � 4 and a remainder of � 1. However, if FFFFFF7 is in EBX, then sar ebx,1

Clock Cycles Number

Destination Operand Count Operand 386 486 Pentium of Bytes Opcode

register 8 1 3 3 1 2 D0

register 16/32 1 3 3 1 2 D1

memory byte 1 7 4 3 2+ D0

memory word/doubleword 1 7 4 3 2+ D1

register 8 immediate 8 3 2 1 3 C0

register 16/32 immediate 8 3 2 1 3 C1

memory byte immediate 8 7 4 3 3+ C0

memory word/doubleword immediate 8 7 4 3 3+ C1

register 8 CL 3 3 4 2 D2

register 16/32 CL 3 3 4 2 D3

memory byte CL 7 4 4 2+ D2

memory word/doubleword CL 7 4 4 2+ D3

Figure 8.6 Shift and rotate instructions
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gives a result of FFFFFFFB in EBX and 1 in CF, a quotient of � 5 and a remainder of +1.

Both quotient-remainder pairs satisfy the equation

dividend = quotient*divisor + remainder

but with the � 5 and +1 combination, the sign of the remainder differs from the sign of

the dividend, contrary to the rule followed by idiv.

Instead of multiplying an operand by 2, it can be doubled by either adding it to

itself or by using a left shift. A shift is sometimes slightly more efficient than addition

and either is much more efficient than multiplication. To divide an operand by 2, a right

shift is the only alternative to division and is much faster; however, the right shift is not

quite the same as division by 2 for a negative dividend. To multiply or divide an operand

by 4, 8, or some other small power of two, either repeated single-bit shifts or one multi-

ple-bit shift can be used.

Shifts can be used in combination with other logical instructions to combine

distinct groups of bits into a byte or a word or to separate the bits in a byte or word into

different groups. The program shown in Fig. 8.7 prompts for an integer, uses the atod

macro to convert it to 2’s complement form in the EAX register, and then displays the

word in the EAX register as eight hexadecimal digits. To accomplish this display, eight

; program to display integer as 8 hex digits
; Author:  R. Detmer
; Date:    revised 11/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

include io.h            ; header file for input/output

cr      equ     0dh     ; carriage return character
Lf      equ     0ah     ; line feed

.STACK  4096             ; reserve 4096-byte stack

(continued)

Figure 8.7 Program to display an integer in hex
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.DATA                               ; reserve storage for data
prompt      BYTE   "Enter a number:  ",0
number      BYTE   20 DUP (?)
result      BYTE   cr,Lf,"The 2's complement representation is "
hexOut      BYTE   8 DUP (?),cr,Lf,0

.CODE                               ; start of main program code
_start:

output prompt           ; prompt for number
input  number,20        ; read ASCII characters
atod   number           ; convert to integer

lea    ebx,hexOut+7     ; address for last character
mov    ecx,8            ; number of characters

forCount:   mov    edx,eax          ; copy pattern
and    edx,0000000fh    ; zero all but last hex digit
cmp    edx,9            ; digit?
jnle   elseLetter       ; letter if not
or     edx,30h          ; convert to character
jmp    endifDigit

elseLetter: add    edx,'A'–10       ; convert to letter
endifDigit:

mov    BYTE PTR [ebx],dl ; copy character to memory
dec    ebx              ; point at next character
shr    eax,4            ; shift one hex digit right
loop   forCount         ; repeat

output result           ; output label and hex value

INVOKE  ExitProcess, 0  ; exit with return code 0
PUBLIC _start                       ; make entry point public
END                                 ; end of source code

Figure 8.7 (continued)

groups of four bits must be extracted from the value in EAX. Each group of four bits rep-

resents a decimal value from 0 to 15, and each group must be converted to a character

for display. This character is a digit 0 through 9 for integer value 0 (00002) through 9

(10012) or a letter A through F for integer value 10 (10102) through 15 (11112).

The eight characters are stored right to left in contiguous bytes of memory as

they are generated; the EBX register is used to point at the destination byte for each

character. The design for the middle of the program is
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for count := 8 downto 1 loop

copy EAX to EDX;

mask off all but last 4 bits in EDX;

if value in EDX ≤ 9

then

convert value in EDX to a character 0 through 9;

else

convert value in EDX to a letter A through F;

end if;

store character in memory at address in EBX;

decrement EBX to point at next position to the left;

shift value in EAX right four bits;

end for;

To implement this design, the instruction

and    edx,0000000fh    ; zero all but last hex digit

masks off all but the last four bits in EDX. The if is implemented by

cmp    edx,9            ; digit?

jnle   elseLetter       ; letter if not

or     edx,30h          ; convert to character

jmp    endifDigit

elseLetter: add    edx,'A'–10       ; convert to letter

endifDigit:

A value from 0 to 9 is converted to the ASCII code for a digit using the or instruction;

add edx,30h would work just as well here. To convert numbers 0A to 0F to the corre-

sponding ASCII codes 41 to 46 for letters A to F, the value 'A'–10 is added to the num-

ber. This actually adds the decimal number 55, but the code used is clearer than add

edx,55. The shr instruction shifts the value in EAX right four bits, discarding the hex

digit that was just converted to a character.

Programming Exercise 2 of Section 7.4 asked for a procedure to do a job similar to

that done by the program in Fig. 8.7. That procedure was to use the remainder upon division
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by 16 to produce a value corresponding to the rightmost hex digit. Notice that the shr and

and instructions used in this example program are both easier to code and more efficient.

The shift instructions discussed above shift the bits of an operand in place,

except that one bit affects the carry flag. The 80x86 architecture has two additional dou-

ble shift instructions, shld and shrd. Each of these instructions has the format

sh-d  destination, source, count

where the destination may be a word or a doubleword in a register or memory, the source is

a word or doubleword in a register, and the count is either immediate or in CL. A shld

instruction shifts the destination left exactly like a shl instruction, except that the bits

shifted in come from the left end of the source operand. The source operand is not changed.

A shrd instruction shifts the destination right exactly like a shr instruction, except that

the bits shifted in come from the right end of the source operand. For both double shifts, the

last bit shifted out goes to CF, and SF, ZF, and PF are given values corresponding to the

result in the destination location. The overflow flag OF is left undefined by a double shift.

The following two examples illustrate double shift instructions. The one with

shld shifts off the leading three hex digits (12 bits) of ECX, filling from the right with the

leftmost three hex digits from EAX. The carry flag CF is 1 since the last bit shifted off

was the rightmost bit of 3 (00112). The example using shrd shifts off the trailing two hex

digits (8 bits) of ECX, filling from the left with the rightmost two hex digits from EAX.

The carry flag CF is 0 since the last bit shifted off was the leftmost bit of 7 (01112).

Example

Before Instruction After

ECX:  12  34  56  78 shld ecx,eax,12

EAX:  90 AB CD EF

ECX:  12  34  56  78 shrd ecx,eax,CL

EAX:  90 AB CD EF

CL: 08 EAX

CF 0      ZF 0      SF 1

90 AB

EF 12ECX 34 56

CD EF

EAX

CF 1      ZF 0      SF 0

90 AB

45 67ECX 89 0A

CD EF
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Figure 8.8 lists the various double shift instructions. The source operand is not

shown since it is always a register 16 or register 32, the same size as the destination.

A double shift instruction can be used to get a slightly cleaner version of the pro-

gram in Fig. 8.7. The following code generates the hex digits left-to-right instead of right-

to-left. Each time through the loop, a shld copies the leading hex digit from EAX into EDX.

lea    ebx,hexOut       ; address for first character

mov    ecx,8            ; number of characters

forCount:   shld   edx,eax,4        ; get leading hex digit

and    edx,0000000fh    ; zero all but last hex digit

cmp    edx,9            ; digit?

jnle   elseLetter       ; letter if not

or     edx,30h          ; convert to character

jmp    endifDigit

elseLetter: add    edx,'A'–10       ; convert to letter

endifDigit:

mov    BYTE PTR [ebx],dl ; copy character to memory

inc    ebx              ; point at next character

shl    eax,4            ; shift one hex digit left

loop   forCount         ; repeat

Rotate instructions are very similar to single shift instructions. With shift

instructions the bits that are shifted off one end are discarded while vacated space at the

other end is filled by 0s (or 1s for a right arithmetic shift of a negative number). With

rotate instructions the bits that are shifted off one end of the destination are used to fill

in the vacated space at the other end.

Clock Cycles Number Opcode

Destination Operand Count Operand 386 486 Pentium of Bytes shld shrd

register 16/32 immediate 8 3 2 4 4 0F 04 0F AC

memory word/doubleword immediate 8 7 4 4 4+ 0F 04 0F AC

register 16/32 CL 3 3 4 3 0F 05 0F AD

memory word/doubleword CL 7 4 5 3+ 0F 05 0F AD

Figure 8.8 Double shift instructions
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Rotate instruction formats are the same as single shift instruction formats. A

single-bit rotate instruction has the format

r-   destination, 1

and there are two multiple-bit versions

r-  destination, immediate8

r-   destination, cl

The instructions rol (rotate left) and ror (rotate right) can be used for byte, word, or

doubleword operands in a register or in memory. As each bit “falls off” one end, it is

copied to the other end of the destination. In addition, the last bit copied to the other end

is also copied to the carry flag CF. The overflow flag OF is the only other flag affected by

rotate instructions. It is undefined for multibit rotates, and familiarity with its definition

for single-bit rotate instructions is not needed in this book.

As an example, suppose that the DX register contains D25E and the instruction

rol  dx, 1

is executed. In binary, the operation looks like

resulting in 1010 0100 1011 1101 or A4BD. The carry flag CF is set to 1 since a 1 bit

rotated from the left end to the right.

Timings and opcodes for rotate instructions are identical to those for shift

instructions. They are given in Fig. 8.6.

A rotate instruction can be used to give yet another version of the program in

Fig. 8.7. This one produces the hex digits in a left-to-right order and has the advantage

of leaving the value in EAX unchanged at the end since eight rotations, four bits each

time, result in all bits being rotated back to their original positions.

lea    ebx,hexOut       ; address for first character

mov    ecx,8            ; number of characters

forCount:   rol    eax,4            ; rotate first hex digit to end

mov    edx,eax          ; copy all digits

and    edx,0000000fh    ; zero all but last hex digit

1 1 0 1  0 0 1 0  0 1 0 1  1 1 1 0
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cmp    edx,9            ; digit?

jnle   elseLetter       ; letter if not

or     edx,30h          ; convert to character

jmp    endifDigit

elseLetter: add    edx,'A'Ð10       ; convert to letter

endifDigit:

mov    BYTE PTR [ebx],dl ; copy character to memory

inc    ebx              ; point at next character

loop   forCount         ; repeat

There is an additional pair of rotate instructions, rcl (rotate through carry left)

and rcr (rotate through carry right). Each of these instructions treats the carry flag CF

as if it were part of the destination. This means that rcl eax,1 shifts bits 0 through 30

of EAX left one position, copies the old value of bit 31 into CF and copies the old value of

CF into bit 0 of EAX. The rotate through carry instructions obviously alter CF; they also

affect OF, but no other flag. The opcodes for rotate through carry instructions are the

same as the corresponding shift instructions and can be found in Fig. 8.6. However, the

timings are different and are not given in this book.

Exercises 8.2

1. For each part of this problem, assume the “before” values when the

given instruction is executed. Give the requested “after” values.

Before Instruction After

(a) AX:  A8 B5 shl  ax, 1 AX, CF, OF

(b) AX:  A8 B5 shr  ax, 1 AX, CF, OF

(c) AX:  A8 B5 sar  ax, 1 AX, CF, OF

(d) AX:  A8 B5 rol  ax, 1 AX, CF

(e) AX:  A8 B5 ror  ax, 1 AX, CF

(f) AX:  A8 B5

CL:  04 sal  ax, cl AX, CF

(g) AX:  A8 B5 shr  ax, 4 AX, CF

(h) AX:  A8 B5

CL:  04 sar  ax, cl AX, CF

(i) AX:  A8 B5

CL:  04 rol  ax, cl AX, CF
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(j) AX:  A8 B5 ror  ax, 4 AX, CF

(k) AX:  A8 B5 rcl  ax, 1 AX, CF

CF: 1

(l) AX:  A8 B5 rcr  ax, 1 AX, CF

CF: 0

(m) AX:  A8 B5

CX:  FE 40 shrd  ax,cx,4 AX, CF

(n) AX:  A8 B5

CX:  FE 40 shld  ax,cx,4 AX, CF

2. Using clock cycles for the Pentium, compare the total number of clock

cycles and bytes of object code for each of these alternative ways of

dividing the unsigned integer in the EAX register by 32:

(a) mov  edx,0    ; extend value to doubleword

mov  ebx,32   ; divisor

div  ebx      ; value div 32

(b) shr  eax,1    ; divide by 2

shr  eax,1    ; divide by 2

shr  eax,1    ; divide by 2

shr  eax,1    ; divide by 2

shr  eax,1    ; divide by 2

(c) shr  eax,5    ; divide by 32

3. Using clock cycles for the Pentium, compare the total number of clock

cycles and bytes of object code for each of these alternative ways of

multiplying the value in the EAX register by 32:

(a) mov  ebx,32   ; multiplier

mul  ebx      ; value * 32

(b) imul eax,32   ; value * 32

(c) shl  eax,1    ; multiply by 2

shl  eax,1    ; multiply by 2

shl  eax,1    ; multiply by 2

shl  eax,1    ; multiply by 2

shl  eax,1    ; multiply by 2

(d) shl  eax,5    ; multiply by 32

4. Suppose that each of value1, value2, and value3 references a byte in

memory and that an unsigned integer is stored in each byte. Assume
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that the first value is no larger than 31 so that it has at most five signifi-

cant bits and at least three leading 0 bits. Similarly assume that the sec-

ond value is no larger than 15 (four significant bits) and the third value

is no larger than 127 (seven bits).

(a) Give code to pack all three of these numbers into a 16-bit word in

the AX register, copying the low order five bits from value1 to bits

11–15 of AX, the low order four bits from value2 to bits 7–10 of AX,

and the low-order seven bits from value3 into bits 0–6 of AX.

(b) Give code to unpack the 16 bit number in the AX register into five-

bit, four-bit, and seven-bit numbers, padding each value with zeros

on the left to make eight bits, and storing the resulting bytes at

value1, value2, and value3 respectively.

5. The instructions

mov   ebx, eax     ; value

shl   eax, 1       ; 2*value

add   eax, ebx     ; 3*value

multiplies the value in EAX by 3. Write similar code sequences that use

shift and addition instructions to efficiently multiply by 5, 7, 9, and 10.

Programming Exercises 8.2

1. Write a NEAR32 procedure binaryString that converts a 32-bit integer to

a string of exactly 32 characters representing its value as a binary num-

ber. The procedure will have two parameters, passed on the stack:

(1) the number

(2) the address of the destination string

The procedure will remove parameters from the stack and must

modify no register. Use a rotate instruction to extract the bits one at a

time, left-to-right, recalling that jc or jnc instructions look at the carry

bit. (This exercise is the same as Programming Exercise 3 in Section 7.4

except for the method of producing the bits.)

2. An eight-bit number can be represented using three octal digits. Bits 7

and 6 determine the left octal digit, which is never larger than 4, bits 5,

4, and 3 the middle digit, and bits 2, 1, and 0 the right digit. For

instance, 110101102 is 11 010 1102 or 3268. The value of a 16-bit number
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is represented in split octal by applying the 2–3–3 system to the high-

order and low-order bytes separately. Write a NEAR32 procedure split-

Octal which converts an 16-bit integer to a string of exactly six

characters representing the value of the number in split octal. The pro-

cedure will have two parameters, passed on the stack:

(1) the number

(2) the address of the destination string

The procedure will remove parameters from the stack and must modify

no register.

8.3 Converting an ASCII String to a 2’s Complement

Integer

The atoi and atod macros have been used to scan an area of memory containing an

ASCII representation of an integer, producing the corresponding word-length 2’s com-

plement integer in the EAX register. These macros and the procedures they call are very

similar. This section uses atod as an example.

The atod macro expands into the following sequence of instructions.

lea    eax,source          ; source address to EAX

push   eax                 ; source parameter on stack

call   atodproc            ; call atodproc(source)

These instructions simply call procedure atodproc using a single parameter, the address

of the string of ASCII characters to be scanned. The EAX register is not saved by the

macro code since the result is to be returned in EAX. The actual source identifier is used

in the expanded macro, not the name source.

The actual ASCII to 2’s complement integer conversion is done by the proce-

dure atodproc. The assembled version of this procedure is contained in the file IO.OBJ.

Source code for atodproc is shown in Fig. 8.9. The procedure begins with standard entry

code. The flags are saved so that flag values that are not explicitly set or reset as prom-

ised in the comments can be returned unchanged. The popf and pop instructions at

AToDExit restore these values; however, the word on the stack that is popped by popf

will have been altered by the body of the procedure, as discussed below.

The first job of atodproc is to skip leading spaces, if any. This is implemented

with a straightforward while loop. Note that BYTE PTR [esi] uses register indirect
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; atodproc(source)

; Procedure to scan data segment starting at source address, interpreting

; ASCII characters as an integer value that is returned in EAX.

; Leading blanks are skipped.  A leading – or + sign is acceptable.

; Digit(s) must immediately follow the sign (if any).

; Memory scan is terminated by any nondigit, and the address of

; the terminating character is in ESI.

; The following flags are affected:

;   AF is undefined

;   PF, SF, and ZF reflect sign of number returned in EAX.

;   CF reset to 0

;   OF set to indicate error.  Possible error conditions are:

;     – no digits in input

;     – value outside range –2,147,483,648 to 2,147,483,647

;   (EAX) will be 0 if OF is set.

atodproc    PROC   NEAR32

push   ebp                 ; save base pointer

mov    ebp, esp            ; establish stack frame

sub    esp, 4              ; local space for sign

push   ebx                 ; Save registers

push   ecx

push   edx

pushf                      ; save flags

mov    esi,[ebp+8]         ; get parameter (source addr)

WhileBlankD:cmp    BYTE PTR [esi],' '  ; space?

jne    EndWhileBlankD      ; exit if not

inc    esi                 ; increment character pointer

jmp    WhileBlankD         ; and try again

EndWhileBlankD:

mov    eax,1               ; default sign multiplier

IfPlusD:    cmp    BYTE PTR [esi],'+'  ; leading + ?

je     SkipSignD           ; if so, skip over

IfMinusD:   cmp    BYTE PTR [esi],'-'  ; leading – ?

jne    EndIfSignD          ; if not, save default +

mov    eax,–1              ; –1 for minus sign

SkipSignD:  inc    esi                 ; move past sign

EndIfSignD:

(continued)

Figure 8.9 ASCII to doubleword integer conversion
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mov    [ebpÐ4],eax         ; save sign multiplier

mov    eax,0               ; number being accumulated

mov    cx,0                ; count of digits so far

WhileDigitD:cmp    BYTE PTR [esi],'0'  ; compare next character to '0'

jl     EndWhileDigitD      ; not a digit if smaller than '0'

cmp    BYTE PTR [esi],'9'  ; compare to '9'

jg     EndWhileDigitD      ; not a digit if bigger than '9'

imul   eax,10              ; multiply old number by 10

jo     overflowD           ; exit if product too large

mov    bl,[esi]            ; ASCII character to BL

and    ebx,0000000Fh       ; convert to single-digit integer

add    eax,ebx             ; add to sum

jc     overflowD           ; exit if sum too large

inc    cx                  ; increment digit count

inc    esi                 ; increment character pointer

jmp    WhileDigitD         ; go try next character

EndWhileDigitD:

cmp    cx,0                ; no digits?

jz     overflowD           ; if so, set overflow error flag

; if value is 80000000h and sign is '-',  want to return 80000000h (Ð2^32)

cmp    eax,80000000h       ; 80000000h ?

jne    TooBigD?

cmp    DWORD PTR [ebpÐ4],Ð1 ; multiplier Ð1 ?

je     ok1D                ; if so, return 8000h

TooBigD?:   test   eax,eax             ; check sign flag

jns    okD                 ; will be set if number > 2^32 Ð 1

overflowD:  pop    ax                  ; get flags

or     ax,0000100001000100B  ; set overflow, zero & parity flags

and    ax,1111111101111110B  ; reset sign and carry flags

push   ax                  ; push new flag values

mov    eax,0               ; return value of zero

jmp    AToDExit            ; quit

okD:        imul   DWORD PTR [ebpÐ4]   ; make signed number

ok1D:       popf                       ; get original flags

test   eax,eax             ; set flags for new number

pushf                      ; save flags

(continued)

Figure 8.9 (continued)
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addressing to reference a byte of the source string. Following the while loop, ESI points

at some nonblank character.

The main idea of the procedure is to compute the value of the integer by imple-

menting the following left-to-right scanning algorithm.

value :=0;

while pointing at code for a digit loop

multiply value by 10;

convert ASCII character code to integer;

add integer to value;

point at next byte in memory;

end while;

This design works for an unsigned number; a separate multiplier is used to give the correct

sign to the final signed result. The second job of the procedure, after skipping blanks, is to

store this multiplier, 1 for a positive number or � 1 for a negative number. The multiplier,

stored in local variable space on the stack, is given the default value 1 and changed to � 1 if

the first nonblank character is a minus sign. If the first nonblank character is either plus or

a minus sign, then the address in ESI is incremented to skip over the sign character.

Now the main design is executed. The value is accumulated in the EAX regis-

ter. If multiplication by 10 produces an overflow, then the result is too large to represent

in EAX. The jc overflowD instruction transfers control to the code at overflowD that

takes care of all error situations.

To convert a character to a digit, the character is loaded into the BL register

and the instruction and ebx,0000000Fh clears all bits except the low-order four in the

EBX register. Thus, for example, the ASCII code 3716 for 7 becomes 00000007 in the EBX

AToDExit:   popf                       ; get flags

pop    edx                 ; restore registers

pop    ecx

pop    ebx

mov    esp, ebp            ; delete local variable space

pop    ebp

ret    4                   ; exit, removing parameter

atodproc    ENDP

Figure 8.9 (continued)
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register. If adding the digit to the accumulated value produces a carry, the sum is too

large for EAX; the jc instruction transfers control to overflowD.

The main loop terminates as soon as ESI points at any character code other

than one for a digit. Thus an integer is terminated by a space, comma, letter, null, or any

nondigit. In order to determine if a valid integer has been entered, the main loop keeps a

count of decimal digits in the CX register. When the loop terminates, this count is

checked. If it is zero, there was no digit and the jz instruction jumps to overflowD for

error handling. There is no need to check for too many digits; this would already have

been caught by overflow in the main loop.

If the accumulated value in the AX register is larger than 8000000016

(2,147,483,648 as an unsigned number), then the magnitude of the number is too great to

be represented in doubleword-length 2’s complement form. If it is equal to 8000000016,

then the multiplier must be � 1 since � 2,147,483,648 can be represented (as 8000000016),

but +2,147,483,648 is too large. The next section of code checks for 800000016 in EAX

and a multiplier of � 1; in this case the work is almost done. Otherwise, the instruction

test eax,eax is used to see if the accumulated value is larger than 800000016; the sign

bit will be 1 for a value of this magnitude.

If any of the error conditions occur, the instructions starting at overflowD are

executed. The original flags are popped into the AX register. The bit corresponding to

the overflow flag is set to 1 to indicate an error, and a value of 00000000 will be

returned in EAX; other flags are set or reset to correspond to the zero value. The

instruction

or  ax,0000100001000100b  ; set overflow, zero & parity flags

sets bit 11 (the position of overflow flag), bit 6 (zero flag), and bit 2 (parity flag). The zero

flag is set since the result returned will be zero; the parity flag is set since 0000000016 has

even parity (an even number of 1 bits). The instruction

and    ax,1111111101111110b  ; reset sign and carry flags

clears bit 7 (sign flag) since 00000000 is not negative and bit 0 (carry), which is always

cleared. The bit pattern resulting from these or and and instructions is pushed back on

the stack to be popped into the flags register by popf before exiting the procedure.

When no exceptional condition exists, an imul instruction finds the product of

the unsigned value and the multiplier (�1) giving the correct signed result. Flag values

are set in this normal situation by using popf to recover the original flag values; test

eax,eax clears CF and OF and assigns appropriate values to PF, SF, and ZF. The new
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flag values are then pushed back on the stack with another pushf to be recovered by

the normal popf in the exit code. The test instruction leaves AF undefined; this is why

the comments at the beginning of the procedure mention AF.

Exercises 8.3

1. The code for atodproc includes

TooBigD?:   test   eax,eax ; check sign flag

jns    okD    ; will be set if number > 2^32 – 1

An alternative sequence would be

TooBigD?:   cmp    eax,80000000h      ; EAX < 2,147,483,648

jb     okD                ; OK if so

Compare the number of clock cycles and number of bytes of object code

for the test and the cmp instructions.

2. The procedure atodproc checks for zero digits in the number it is con-

verting, but not for too many digits. Show why this is unnecessary by

tracing the code for 100,000,000,000, the smallest possible 11-digit num-

ber. (Another valid reason not to limit the number of digits is that any

number of leading zeros would be valid.)

Programming Exercises 8.3

1. Write a NEAR32 procedure hexToInt that has a single parameter passed

on the stack, the address of a string. This procedure will be similar to

atodproc except that it will convert a string of characters representing

an unsigned hexadecimal number to a doubleword-length 2’s comple-

ment integer in EAX. The procedure should skip leading blanks and

then accumulate a value until a character that does not represent a hex

digit is encountered. (Valid characters are 0 through 9, A through F, and

a through f.) If there are no hex digits or the result is too large to fit in

EAX, then return 0 and set OF; these are the only possible errors. Clear

OF if no error occurs. In all cases set SF, ZF, and PF according to the

value returned in EAX and clear CF.
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8.4 The Hardware Level—Logic Gates

Digital computers contain many integrated circuits and many of the components on

these circuits are logic gates. A logic gate performs one of the elementary logical opera-

tions described in Section 8.1: and, or, xor, or not. Each type of gate has a simple dia-

gram that represents its function. These diagrams are pictured in Fig. 8.10, with inputs

shown on the left and output on the right.

These simple circuits operate by getting logic 0 or 1 inputs and putting the correct

value on the output. For example, if the two inputs of the or circuit are 0 and 1, then the

output will be 1. Logic values 0 and 1 are often represented by two distinct voltage levels.

These simple circuits are combined to make the complex circuits that perform a

computer’s operations. For example, Fig. 8.11 pictures a half adder circuit. The logic val-

ues at inputs x and y of this circuit can be thought of as two bits to add. The desired

results are 0+0=0, 1+0=1, and 0+1=1, each with a carry of 0, and 1+1=0 with a carry of 1.

These are exactly the results given by a half adder circuit.

Exercises 8.4

Addition of multibit numbers is performed much like decimal addition

learned in grade school; pairs of bits are added starting with the right-

most pair, but after the first pair, you must also add the carry from the

previous result. To do this takes a series of full adder circuits. One full

Figure 8.10 Logic Gates

and gate or gate

not gate xor gate
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adder circuit has three inputs x, y, and carry in, and two outputs, sum

and carry out.

1. Make a chart similar to the one in Fig. 8.11 showing the inputs and out-

puts for a full adder. The chart will have five columns (x, y, carry in, sum,

and carry out) and eight rows below the header row.

2. Draw a full adder circuit. Hint: Use two half adders and an or gate to

combine their carry outputs.

3. Use three full adders and a half adder to draw a circuit that can add two

four bit numbers. This circuit will have eight inputs (four pairs of bits) and

five outputs (four sum bits and a carry bit). For simplicity, you can draw

each adder or half adder as a block diagram, without showing all its gates.

Chapter Summary

This chapter has explored the various 80x86 instructions that allow bits in a

byte, word, or doubleword destination to be manipulated. The logical

instructions and, or, and xor perform Boolean operations using pairs of

Figure 8.11 Half adder circuit
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bits from a source and destination. Applications of these instructions

include setting or clearing selected bits in a destination. The not instruction

takes the one’s complement of each bit in its destination operand, chang-

ing each 0 to a 1 and each 1 to a 0. The test instruction is the same as the

and instruction except that it only affects flags; the destination operand is

unchanged.

Shift instructions move bits left or right within a destination

operand. These instructions come in single-bit and multiple-bit versions.

Single-bit shifts use 1 for the second operand; multiple-bit versions use CL

or an immediate value for the second operand and shift the destination the

number of positions specified. Vacated positions are filled by 0 bits in all

single shift operations except for the arithmetic right shift of a negative

number, for which 1 bits are used. Shift instructions can be used for effi-

cient, convenient multiplication or division by 2, 4, 8 or some higher power

of two. Double shift instructions get bits to shift in from a source register.

Rotate instructions are similar to shift instructions. However, the

bit that falls off one end of the destination fills the void on the other end.

Shift or rotate instructions can be used in combination with logical instruc-

tions to extract groups of bits from a location or to pack multiple values

into a single byte or word.

The atod macro generates code that calls the procedure atodproc.

This procedure scans a string in memory, skipping leading blanks, noting a

sign (if any), and accumulating a doubleword integer value as ASCII codes

for digits are encountered. Logical instructions are used in several places in

the procedure.

Logic gates are the primitive building blocks for digital computer

circuits. Each gate performs one of the elementary Boolean operations.

300 Bit Manipulation
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CHAPTER 9

9.1 Two-Pass and One-

Pass Assembly

9.2 80x86 Instruction

Coding

9.3 Macro Definition and

Expansion

9.4 Conditional Assembly

9.5 Macros in IO.H

The Assembly Process

The job of an assembler is to turn assembly lan-

guage source code into object code. With simpler

computer systems this object code is machine

language, ready to be loaded into memory and

executed. With more complex systems, object

code produced by the assembler must be “fixed

up” by a linker and/or loader before it can be

executed. The first section of this chapter

describes the assembly process for a typical

assembler and gives some details particular to

the Microsoft Macro Assembler. The second sec-

tion is very specific to the 80x86 microprocessor

family; it details the structure of its machine lan-

guage. The third and fourth sections discuss

macros and conditional assembly, respectively.

Most assemblers have these capabilities, and

these sections describe how MASM implements

them. The final section describes the macros in

the header file IO.H.
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9.1 Two-Pass and One-Pass Assembly

One of the many reasons for writing assembly language rather than machine language is

that assemblers allow the use of identifiers or symbols to reference data in the data seg-

ment and instructions in the code segment. To code in machine language, a program-

mer must know run-time addresses for data and instructions. An assembler maintains a

symbol table that associates each identifier with various attributes. One attribute is a

location, typically relative to the beginning of a segment, but sometimes an absolute

address to be used at run time. Another attribute is the type of the symbol, where possi-

ble types include labels for data or instructions, symbols equated to constants, procedure

names, macro names, and segment names. Some assemblers start assembling a source

program with a symbol table that includes all the mnemonics for the language, all regis-

ter names, and other symbols with reserved usage.

The other main job of an assembler is to output object code that is close to the

machine language executed when a program is run. A two-pass assembler scans the

source code once to produce a symbol table and a second time to produce the object

code. A one-pass assembler only scans the source code one time, but often must patch

the object code produced during this scan. A simple example shows why: If the segment

jmp   endLoop

add   eax, ecx

endLoop: 

is scanned, the assembler finds a forward reference to endLoop in the jmp instruction.

At this point the assembler cannot tell the address of endLoop, much less whether this

destination is short (within 27 bytes of the address of the add instruction) or near (within

232 bytes). The first option would use an EB opcode and a single-byte displacement. The

second option would use an E9 opcode and a doubleword displacement. Clearly the final

code must wait at least until the assembler reaches the source code line with the end-

Loop label.

Typical assemblers use two passes, and some actually use three or more passes.

The Microsoft Macro Assembler is a one-pass assembler. This book will not attempt to cover

details of how it fixes up object code. You can see part of MASM’s symbol table by looking at

the end of an assembly listing. The remainder of this section concentrates on a typical sym-

bol table, drawing examples from the program and listing file that appear in Chapter 3.

If a symbol is a label for data, then the symbol table may include the size of the

data. For instance, the program in Fig. 3.1 contains the directive

number2 DWORD   ?
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and the corresponding line in the listing file (Fig. 3.7) is

number2  . . . . . . . . . . . .    Dword    00000004 _DATA

This shows that the size of number2 has been recorded as a doubleword. Having the size

recorded enables MASM to detect incorrect usage of a symbol—with this definition of

number2, MASM would indicate an error for the instruction

mov   bh, number2

since the BH register is byte size while the symbol table identifies number2 as double-

word size. In addition to the size, if a symbol is associated with multiple objects, a sym-

bol table may contain the number of objects or the total number of bytes associated with

the symbol. The MASM symbol listing does not show this.

If a symbol is equated to a value, then the value is usually stored in the symbol

table. When the assembler encounters the symbol in subsequent code, it substitutes the

value recorded in the symbol table. In the example program, the source code line

cr      EQU     0dh     ; carriage return character

is reflected in the listing file line

cr . . . . . . . . . . . . . . .     Number   0000000Dh

If a symbol is a label for data or an instruction, then its location is entered in the

symbol table. An assembler keeps a location counter to compute this value. With a typi-

cal assembler, the location counter is set to zero at the beginning of a program or at the

beginning of each major subdivision of the program. The Microsoft Macro Assembler

sets the location counter to zero at the beginning of each segment. As an assembler

scans source code, the location of each datum or instruction is the value of the location

counter before the statement is assembled. The number of bytes required by the state-

ment is added to the location counter to give the location of the next statement. Again

looking at the line

number2 DWORD   ?

the listing file shows

number2  . . . . . . . . . . . .     Dword    00000004 _DATA

with 00000004 in the Value column. This is the value of the location counter at the time

number2 is encountered in the data segment. The value is 00000004 since the only item

preceding number2 was number1, and it took four bytes.
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while1: cmp  ecx, 100      ; count <= 100 ?

jnle endWhile1     ; exit if not

add  eax, [ebx]    ; add value to sum

add  ebx, 4        ; address of next value

inc  ecx           ; add 1 to count

jmp  while1

endWhile1:

Figure 9.1 Code with forward reference

The location counter is used the same way when instructions are assembled.

Suppose that the location counter has value 0000012E when MASM reaches the code

fragment shown in Fig. 9.1. The location for the symbol while1 will be 0000012E. The

cmp instruction requires three bytes of object code. (Section 9.2 details how to determine

the object code of an 80x86 instruction.) Therefore the location counter will have value

00000131 when MASM reaches the jnle instruction. The jnle instruction requires two

bytes of object code, so the location counter will increase to 00000133 for the first add

instruction. The first add instruction takes two bytes of object code, so the location

counter is 00000135 when MASM reaches the second add instruction. Three bytes are

required for add ebx,2 so the location counter is 00000138 for the inc instruction. The

inc instruction takes a single byte, so the location counter is 00000139 for the jmp

instruction. The jmp instruction requires two bytes, making the location counter

0000013B when the assembler reaches the label endWhile1. Therefore 0000013B is

recorded in the symbol table as the location of endWhile1.

The location of a symbol is needed for a variety of purposes. Suppose that

MASM encounters the statement

mov   eax, number

where number is the label on a DWORD directive in the data section. Since the address-

ing mode for number is direct, the assembler needs the offset of number for the object

code; this offset is precisely the location of number recorded in the symbol table.

The primary job of an assembler is to generate object code. However, a typical

assembler does many other tasks. One duty is to reserve storage. A statement like

WORD   20 DUP(?)
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sets aside 20 words of storage. This storage reservation is typically done one of two ways:

• the assembler may write 40 bytes with some known value (like 00) to

the object file, or

• the assembler may insert a command that ultimately causes the

loader to skip 40 bytes when the program is loaded into memory

In the latter case, storage at run time will contain whatever values are left over

from execution of other programs.

In addition to reserving storage, assemblers can initialize the reserved memory

with specified values. The MASM statement

WORD   10, 20, 30

not only reserves three words of storage, it initializes the first to 000A, the second to

0014 and the third to 001E. Initial values may be expressed in a variety of ways using

MASM and most other assemblers. Numbers may be given in different number systems,

often binary, octal, decimal, and hexadecimal. The assembler converts character values

to corresponding ASCII or EBCDIC character codes. Assemblers usually allow expres-

sions as initial values. The Microsoft Macro Assembler is typical in accepting expres-

sions that are put together with addition, subtraction, negation, multiplication, division,

not, and, or, exclusive or, shift, and relational operators. Such an expression is evaluated

at assembly time, producing the value that is actually used in the object code.

Most assemblers can produce a listing file that shows the original source code

and some sort of representation of the corresponding object code. Another responsibility

of an assembler is to produce error messages when there are errors in the source code.

Rudimentary assemblers just display a line number and an error code for each error.

Slightly less primitive assemblers produce a separate page with line numbers and error

messages. Most assemblers can include an error message in the listing file at the point

where the error occurs. The Microsoft Macro Assembler includes messages in the

optional listing file and also displays them on the console.

In addition to the listing that shows source and object code, an assembler often

can generate a listing of symbols used in the program. Such a listing may include infor-

mation about each symbol’s attributes—taken from the assembler’s symbol table—as

well as cross references that indicate the line where the symbol is defined and each line

where it is referenced.

Some assemblers begin assembling instructions with the location counter set to

a particular actual memory address and thus generate object code that is ready to be
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loaded at that address. This is the only way to generate object code with some simpler

systems. Generally such code is not linked; it is ready to load and run.

One file can reference objects in another. Recall that the EXTRN directive facili-

tates this for MASM. A linker combines separate object code files into a single file. If one

file references objects in the other, the linker changes the references from “to be deter-

mined” to locations in the combined file.

Most assemblers produce object code that is relocatable; that is, it can be

loaded at any address. One way to do this is to put a map in the object code file that

records each place in the program where an address must be modified. Address modifi-

cations are usually carried out by the loader. The loader finally produces true machine

language, ready for execution.

Another way to get relocatable code is to write it with only relative references;

that is, so that each instruction only references an object at some distance from itself, not

at a fixed address. In an 80x86 system, most jump instructions are relative, so if a program-

mer stores data in registers or on the stack, it is fairly easy to produce such a program.

With MASM, a programmer can actually directly reference the location counter

using the $ symbol. The code fragment from Fig. 9.1 could be rewritten as

cmp  ecx, 100      ; count <= 100 ?

jnle $+10          ; exit if not

add  eax, [ebx]    ; add value to sum

add  ebx, 4        ; address of next value

inc  ecx           ; add 1 to count

jmp  $–11

This works since the value of the location counter $ is the location of the beginning of the

jnle statement as it is assembled. Its two bytes and the eight bytes of the next four state-

ments need to be skipped to exit the loop. Similarly the backward reference must skip the

inc statement and the four other statements back through the beginning of the cmp state-

ment, a total of eleven bytes. Although MASM allows use of $ to reference the location

counter, obviously this can produce confusing code and should normally be avoided.

Exercises 9.1

1. Describe the differences between object code and machine language.

2. Suppose that every symbol reference in an assembly language program

is a backward reference. Would a one-pass assembler ever have to “fix

up” the code it produced? Explain your answer.
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3. Assemble the following code fragment

Array   DWORD  10 DUP(?)

ArrSize EQU    SIZE Array

To what value is ArrSize equated? What conclusion can you draw about

whether or not MASM records an attribute that tracks the number of

bytes associated with a variable?

4. This section states that storage reservation with a directive like WORD

can work by putting the correct number of some known byte value in

the object file or by inserting a command that ultimately causes the

loader to skip the correct number of bytes. State one advantage and one

disadvantage of each design.

9.2 80x86 Instruction Coding

This section describes the structure of 80x86 machine language. From this information

one could almost assemble an 80x86 assembly language program by hand. However, the

primary purpose here is to acquire a better understanding of the capabilities and limita-

tions of the 80x86 microprocessor family.

An 80x86 instruction consists of several fields, which are summarized in Fig.

9.2. Some instructions have only an opcode, while others require that other fields be

included. Any included fields always appear in this order. Each of these components is

discussed below.

The repeat prefixes for string instructions were discussed in Chapter 7. There

you learned that adding a repeat prefix to one of the basic string instructions effec-

tively changes it into a new instruction that automatically iterates a basic operation. The

repeat prefix is coded in the instruction prefix byte, with the opcode of the basic string

instruction in the opcode byte. Repeat prefix bytes can be coded only with the basic

string instructions.

The LOCK prefix is not illustrated in this book’s code. It can be used with a few

selected instructions and causes the system bus to be locked during execution of the

instruction. Locking the bus guarantees that the 80x86 processor has exclusive use of

shared memory.

All the code in this book uses 32-bit memory addresses. In a 32-bit address

environment it is possible to have an instruction that only contains a 16-bit address.
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Number 

Field of bytes Purpose

instruction prefix

address size

operand size

segment override

opcode

mod-reg-r/m

scaled index base byte

displacement

immediate

Figure 9.2 80x86 instruction fields

0 or 1

0 or 1

0 or 1

0 or 1

1 or 2

0 or 1

0 or 1

0 to 4

0 to 4

F316 for REP, REPE, or REPZ

F216 for REPNE or REPNZ

F016 for LOCK

value 6716 if present; indicates that a dis-

placement is a 16-bit address rather than the

default 32-bit size

value 6616 if present; indicates that a mem-

ory operand is 16-bit if in 32-bit mode or 32-

bit if in 16-bit mode

indicates that an operand is in a segment

other than the default segment

operation code

indicates register or memory operand,

encodes register(s)

additional scaling and register information

an address

an immediate value

When an address size byte of 6716 is coded, a two-byte rather than a four-byte dis-

placement is used in the displacement field. This prefix byte will not appear in machine

code generated from the assembly language code shown in this book.

On the other hand, the operand size byte has frequently been generated from

this book’s assembly language code. The 80x86 CPU has a status bit that determines

whether operands are 16-bit or 32-bit. With the assembly and linking options we have

used, that bit is always set to indicate 32-bit operands. Each time you code a word-size

operand, the generated instruction includes the 6616 prefix byte to indicate the 16-bit

operand. Other assembly and linking options—not used in this book—cause the default

operand size to be 16-bit; in this case a 6616 prefix byte indicates a 32-bit operand.

What indicates a byte-size operand? A different opcode. Why don’t 16-bit and

32-bit operands use distinct opcodes? This design decision was made by Intel. The orig-
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reg field

000 001 010 011 100 101 110 111

80, 81, 82, 83 ADD OR ADC SBB AND SUB XOR CMP

D0, D1, D2, D3 ROL ROR RCL RCR SHL SHR SAR

F6, F7 TEST NOT NEG MUL IMUL DIV IDIV

FE, FF INC DEC PUSH

Figure 9.3 reg field for specified opcodes

inal 8086 processor design had 16-bit registers and used separate opcodes for 8-bit and

16-bit operand sizes; no instruction used 32-bit operands. When the 80386 was designed

with 32-bit registers, the choice was made to “share” opcodes for 16-bit and 32-bit

operand sizes rather than to introduce many new opcodes.

The mod-reg-r/m byte has different uses for different instructions. When pres-

ent it always has three fields, a two-bit mod field (for “mode”), a three-bit reg field (for

“register,” but sometimes used for other purposes), and a 3-bit r/m field (for

“register/memory”). The mod-reg-r/m byte is examined below.

The opcode field completely identifies many instructions, but some require

additional information—for example, to determine the type of operand or even to

determine the operation itself. You have previously seen the latter situation. For

example, each of the instructions add, or, adc, sbb, and, sub, xor, and cmp having

a byte-size operand in a register or memory and an immediate operand uses the

opcode 80. Which of these eight instructions is determined by the reg field of the

mod-reg-r/m byte. For the particular case of the 80 opcode, the reg field is 000 for

add, 001 for or, 010 for adc, 011 for sbb, 100 for and, 101 for sub, 110 for xor, and

111 for cmp.

The opcode 80 is one of twelve in which the reg field of the mod-reg-r/m byte

actually determines the instruction. The others are 81, 82, 83, D0, D1, D2, D3, F6, F7, FE,

and FF. The table in Fig. 9.3 gives reg field information for the most common instructions.

Each two-operand, nonimmediate 80x86 instruction has at least one register

operand. The reg field contains a code for this register. Figure 9.4 shows how the eight

possible register codes are assigned. The meaning of a reg code varies with the operand

size and with the instruction, so that, for example, the same code is used for ECX and

O
p

co
d

e
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CL. These codes are used any time information about a register is encoded in an instruc-

tion, whether in the reg field or other places.

The mod field is also used to determine the type of operands an instruction has.

Often the same opcode is used for an instruction that has two register operands or one

register operand and one memory operand. The choice mod=11 means that the instruc-

tion is a register-to-register operation or an immediate-to-register operation. For a regis-

ter-to-register operation, the destination register is coded in the reg field and the source

register is coded in the r/m field. Both use the register codes shown in Fig. 9.4. For an

immediate-to-register operation, the operation is coded as shown in Fig. 9.3 and the des-

tination register is coded in the r/m field. The situation is complicated for the other pos-

sible mod values and depends on the r/m field as well as the mod field. For r/m=100, it

also depends on the scaled index base (SIB) byte.

The SIB byte consists of three fields, a two-bit scaling field, a three-bit index

register field, and a three-bit base register field.

The index and base register encodings are as shown in Fig. 9.4, except that 100 cannot

appear in the index register field since ESP cannot be an index register. Figure 9.5

shows the different encodings. The mod field in these formats tells how many bytes

there are in the displacement. A value of 00 means that there is no displacement in the

machine code, except when r/m=101 when there is only a displacement. This special

case is for direct memory addressing, so is frequently used. A mod value of 01 means

The scale values are 00 for 1, 01 for 2, 10 for 4, and 11 for 8.

reg code register 32 register 16 register 8 segment register

000 EAX AX AL ES

001 ECX CX CL CS

010 EDX DX DL SS

011 EBX BX BL DS

100 ESP SP AH FS

101 EBP BP CH GS

110 ESI SI DH

111 EDI DI BH

Figure 9.4 80x86 register codes
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operand

mod r/m base from SIB (scale and index from SIB)

00 000 DS:[EAX]

001 DS:[ECX]

010 DS:[EDX]

011 DS:[EBX]

100 000 DS:[EAX + (scale*index)]

(use SIB) 001 DS:[ECX + (scale*index)]

010 DS:[EDX + (scale*index)]

011 DS:[EBX + (scale*index)]

100 SS:[ESP + (scale*index)]

101 DS:[displacement32 + (scale*index)]

110 DS:[ESI + (scale*index)]

111 DS:[EDI + (scale*index)]

101 DS:displacement32

110 DS:[ESI]

111 DS:[EDI]

01 000 DS:[EAX + displacement8]

001 DS:[ECX + displacement8]

010 DS:[EDX + displacement8]

011 DS:[EBX + displacement8]

100 000 DS:[EAX + (scale*index) + displacement8]

(use SIB) 001 DS:[ECX + (scale*index) + displacement8]

010 DS:[EDX + (scale*index) + displacement8]

011 DS:[EBX + (scale*index) + displacement8]

100 SS:[ESP + (scale*index) + displacement8]

101 SS:[EBP + (scale*index) + displacement8]

110 DS:[ESI + (scale*index) + displacement8]

111 DS:[EDI + (scale*index) + displacement8]

101 SS:[EBP + displacement8]

110 DS:[ESI + displacement8]

111 DS:[EDI + displacement8]

(continued)

Figure 9.5 80x86 instruction encodings
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operand

mod r/m base from SIB (scale and index from SIB)

10 000 DS:[EAX + displacement32]

001 DS:[ECX + displacement32]

010 DS:[EDX + displacement32]

011 DS:[EBX + displacement32]

100 000 DS:[EAX + (scale*index) + displacement32]

(use SIB) 001 DS:[ECX + (scale*index) + displacement32]

010 DS:[EDX + (scale*index) + displacement32]

011 DS:[EBX + (scale*index) + displacement32]

100 SS:[ESP + (scale*index) + displacement32]

101 SS:[EBP + (scale*index) + displacement32]

110 DS:[ESI + (scale*index) + displacement32]

111 DS:[EDI + (scale*index) + displacement32]

101 SS:[EBP + displacement32]

110 DS:[ESI + displacement32]

111 DS:[EDI + displacement32]

mod reg r/m operands

11 dest source source register, destination register

operation dest destination register, immediate operand

Figure 9.5 (continued)

that there is a displacement byte in the machine code; this byte is treated as a signed

number and is extended to a doubleword before it is added to the value from the base

register and/or index register. A value of 10 means that there is a displacement double-

word in the machine code; this doubleword is added to the value that comes from the

base register and/or scaled index register. The scaling factor is multiplied times the

value in the index register.

It is time for some examples. The first example shows the kind of instruction

seen frequently in this book.

add ecx, value
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Suppose that at execution time value references the memory doubleword at address

1B27D48C. From Fig. 4.5 or Appendix D, this add instruction has opcode 03. The direct

address consists only of the 32-bit displacement—there is no index register or base reg-

ister used. Therefore the components of the mod-reg-r/m byte are mod=00, reg=001 (for

ECX), and r/m=101 (for direct addressing), giving 00 001 101 or 0D after regrouping and

converting to hexadecimal. The final part of the instruction is the displacement, so the

entire instruction is encoded as 03 0D 1B27D48C (where the bytes of the address will

actually be stored backwards).

Now consider the instruction

add ecx, eax

This instruction also has opcode 03. The mod field is 11 since there are two register

operands. The reg field specifies the destination register, 001 for ECX. The r/m field

gives the source register, 000 for EAX. The mod-reg-r/m byte of the instruction is there-

fore 11 001 000, or C8 in hex. The machine code for the instruction is 03 C8.

Next consider the instruction

mov edx, [ebx]

Figure 4.3 or Appendix D gives the opcode as 8B. Since the operand [ebx] is indirect

addressing using no displacement, the mod field is 00. The reg field contains 010, the

code for EDX. The fourth line of the mod=00 group shows address DS:[EBX], that is, reg-

ister indirect addressing in the data segment using the address in EBX. Therefore the

r/m field is 011. Putting these fields together gives a mod-reg-r/m byte of 00 010 011 or

13, and the entire instruction assembles to 8B 13.

Now look at

xor ecx, [edx+2]

Figure 8.2 or Appendix D gives the opcode of this instruction as 33. The memory

operand uses indirect addressing and a displacement of 2, small enough to encode in a

single byte 02. Therefore the mod field is 01. The reg field contains 001 for ECX. Figure

9.5 gives the r/m field as 010. Putting this together gives a mod-reg-r/m byte of 01 001

010 or 4A, so this instruction has machine code 33 4A 02.

Next consider an instruction that uses scaling.

add eax, [ebx + 4*ecx]
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This type of instruction is useful to process an array almost as in a high level language.

You can store the starting address of the array in EBX, and the array index in ECX

(assuming that indexing starts at 0). The index is multiplied by the scaling factor 4 (the

size of a doubleword), and added to the base address to get the address of the array ele-

ment. Figure 4.5 gives the opcode as 03. The mod-reg-r/m byte is 00 000 100 or 04 for no

displacement, destination register EAX, and SIB byte used. The SIB byte is required

since the instruction includes both base and index registers. Its fields are scale=10 for 4,

index=001 for ECX, and base=011 for EBX, giving a SIB byte of 10 001 011 or 8B. The

object code is therefore 03 04 8B.

Next we look at

sub ecx, value[ebx + 2*edi]

where value references an address in the data segment. The opcode for this sub instruction

is 2B. This address is treated as a 32-bit displacement, and there is both a base and an index

register. Therefore mod=10, reg=001 (for ECX), and r/m=100 (for SIB needed). The fields of

the SIB byte are 01 (for scaling factor 2), 111 (for index register EDI), and 011 (for base regis-

ter EBX). The displacement doubleword will contain the run-time address of value. The

machine code is therefore 2B 8C 7B xxxxxxxx, where the x’s represent the address of value.

If the second operand in the last example is changed to value[EBX+2*EDI+10],

then the displacement/address (represented above by xxxxxxxx) is simply 10 larger. That is,

the assembler combines the displacement 10 and the displacement corresponding to value.

You may have noticed that the first group in Fig. 9.5 does not show how to encode

the operand [ebp]. It is encoded as [ebp+0], using a byte-size displacement. For example

mov eax, [ebp]

is encoded as 8B 45 00, opcode 8B, mod-reg-r/m byte 01 000 101 (1-byte displacement,

destination EAX, base register EBP), and displacement 00.

Figure 9.5 points out again that indirect addresses using ESP and EBP are in

the stack segment, not the data segment. One would rarely want to override this. How-

ever, you might want to reference data in, say, the extra segment. To do this, you might

code an instruction like

This example has been chosen to involve almost all of the possible components of an

80x86 instruction. It uses operand size prefix since word-size operands are being used. It

uses a segment override prefix for ES. It uses base and index registers and a 32-bit dis-

cmp ax, WORD PTR es:[edx + 2*esi + 512]
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placement. The code generated is 66 26 3B 84 72 00000200, operand size prefix 66, seg-

ment override 26 (for ES), opcode 3B, mod-reg-r/m byte 84, SIB 72, and displacement

00000200. The possible segment override bytes are in Fig. 9.6.

While it may seem that opcode assignments are completely random, there are

actually several patterns. For example, given a doubleword operand referenced by value,

the opcode for the memory-to-register instruction mov eax,value is A1 and the opcode

for the register-to-memory instruction mov value,eax is A3. In binary, these differ only

in bit position 1, the next-to-last bit. Bit 1 often serves as a direction bit, having value 1

when the first operand is in memory and 0 when the first operand is in a register.

Similarly, corresponding instructions with doubleword operands and byte-size

operands often have opcodes that differ only in bit position 0, the last bit. For example,

given a byte referenced by bVal and a doubleword referenced by dVal, then the opcode

for cmp bVal,dl is 38 and for cmp dVal,edx is 39. Bit 0 often serves as a size bit,

having value 1 for doubleword (or word) operands and value 0 for byte operands.

Another set of patterns occurs in some single byte instructions where the same

instruction is available for each of the registers—the opcode ends in the appropriate reg-

ister code. For instance, the inc instructions for register32 operands (Fig. 4.6) have

opcodes 40 through 47, and the last three bits are 000 through 111, the register codes for

the registers to be incremented. Another way of looking at this is that the opcodes for

this class of inc instructions are obtained by adding 40 and the register code.

Exercises 9.2

1. Why can no 80x86 assembly language instruction specify two mem-

ory operands?

Prefix Segment

2E CS

3E DS

26 ES

36 SS

64 FS

65 GS

Figure 9.6 Segment override prefixes
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2. Find the machine code for each of the following instructions. Make the

following assumptions:

dbl  DWORD  ?     ; run-time location 1122AABB

wrd  WORD   ?     ; run-time location 3344CCDD

byt  BYTE   ?     ; run-time location 5566EEFF

(a) add  dbl, ecx

(b) add  wrd, cx

(c) add  byt, cl

(d) add  edx, ebx

(e) add  dx, bx

(f) add  dl, bh

(g) push  ebp

(h) cmp  ecx, dbl

(i) cmp  al, byt

(j) inc  ecx

(k) inc  cx

(l) pop  eax

(m) push  dbl

(n) or  al, 35

(o) sub  dbl, 2 (byte-size immediate operand)

(p) and  ebx, 0ff000000h (doubleword-size immediate operand)

(q) xchg  ebx, ecx

(r) xchg  eax, ecx (note accumulator operand)

(s) cwd

(t) shl  edx, 1

(u) neg  WORD PTR [EBX]

(v) imul  ch

(w) div  dbl

(x) dec  DWORD PTR [ebx+esi]

(y) and  ecx, [ebx+4*edi]

(z) sub  ebx, dbl[4*eax]

Programming Exercises 9.2

1. Assuming that arr[0..nbr] contains a collection of doublewords in

increasing order. The following design describes a binary search for

keyValue, returning the index of keyValue if it is present in the array

and � 1 if it is absent.
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procedure binarySearch(arr : array, nbr: integer, keyValue : integer) : integer

topIndex := nbr;

bottomIndex := 0;

while (bottomIndex ≤ topIndex) loop

midIndex := (bottomIndex + topIndex) div 2;

if (keyValue = arr[midIndex])

then

return midIndex;

elseif (keyValue < arr[midIndex])

then

topIndex := midIndex—1;

else

bottomIndex := midIndex + 1;

end if;

end loop;

return � 1;

Implement this design as an 80x86 NEAR32 procedure binarySearch

with three parameters, (1) the address of an array of doublewords, (2) a

doubleword nbr, and (3) a doubleword keyValue. Return the appropriate

result in EAX. The procedure will change no register other than EAX,

and it will be responsible for removing parameters from the stack. Use

scaled and indexed addressing appropriately to address array elements.

Write a short test driver program to test your procedure binarySearch.

2. The first nbrElts values in an array a[1..maxIndex] can be sorted into

increasing order using the selection sort algorithm.

procedure selectionSort(arr : array, nbr: integer)

for position := 1 to nbrElts–1 loop

smallSpot := position;

smallValue := a[position];

for i := position+1 to nbrElts loop

if a[i] < smallValue

then

smallSpot := i;

smallValue := a[i];

end if;
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end for;

a[smallSpot] := a[position];

a[position] := smallValue;

end for;

Implement this algorithm in a NEAR32 procedure selectionSort with two

parameters: (1) the address of an array a of doubleword integers, and

(2) a doubleword nbrElts. The procedure will change no register and it

will be responsible for removing parameters from the stack. Use scaled

and indexed addressing appropriately to address array elements, not-

ing that the algorithm as written starts with index 1, not index 0. Write

a short test driver program to test your procedure.

3. The quick sort algorithm sorts an array slice a[leftEnd..rightEnd] into

increasing order by identifying a middle value in the array and moving

elements of the array so that all elements on the left are smaller than

the middle value and all on the right are larger than the middle value.

Then the procedure is recursively called to sort the left and right sides.

The recursion terminates when the portion to be sorted has one or

fewer elements. Here is a design.

procedure quickSort(a:array, leftEnd:integer, rightEnd:integer)

if leftEnd < rightEnd

then

left := leftEnd;

right := rightEnd;

while left < right loop

while (left < right) and (a[left] ≤ a[right]) loop

add 1 to left;

end while;

swap a[left] and a[right];

while (left < right) and (a[left] ≤ a[right]) loop

subtract 1 from right;

end while;
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swap a[left] and a[right];

end while;

quickSort(a, leftEnd, left–1);

quickSort(a, right+1, rightEnd);

end if;

Implement this algorithm in a NEAR32 procedure quickSort with three

parameters: (1) the address of an array a of doubleword integers, (2) a

doubleword leftEnd, and (3) a doubleword rightEnd. The procedure will

change no register and it will be responsible for removing parameters

from the stack. Use scaled and indexed addressing appropriately to

address array elements. Write a short test driver program to test your

procedure.

9.3 Macro Definition and Expansion

A macro was defined in Chapter 3 as a statement that is shorthand for a sequence of

other statements. The assembler expands a macro to the statements it represents, and

then assembles these new statements. Many previous chapters have made extensive use

of macros defined in the file IO.H. This section explains how to write macro definitions

and tells how MASM uses these definitions to expand macros into other statements.

A macro definition resembles a procedure definition in a high-level language.

The first line gives the name of the macro being defined and a list of parameters; the

main part of the definition consists of a collection of statements that describe the action

of the macro in terms of the parameters. A macro is called much like a high-level lan-

guage procedure, too; the name of the macro is followed by a list of arguments.

These similarities are superficial. A procedure call in a high-level language is

generally compiled into a sequence of instructions to push parameters on the stack fol-

lowed by a call instruction, whereas a macro call actually expands into statements

given in the macro, with the arguments substituted for the parameters used in the macro

definition. Code in a macro is repeated every time a macro is called, but there is just one

copy of the code for a procedure. Macros often execute more rapidly than procedure calls
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pause   MACRO

; prompt user and wait for [Enter] to be pressed

output pressMsg    ; "Press [Enter]"

input  stringIn,5  ; input

ENDM

Figure 9.7 pause macro

since there is no overhead for passing parameters or for call and ret instructions, but

this is usually at the cost of more bytes of object code.

Every macro definition is bracketed by MACRO and ENDM directives. The format

of a macro definition is

name MACRO    list of parameters

assembly language statements

ENDM

The parameters in the MACRO directive are ordinary symbols, separated by commas. The

assembly language statements may use the parameters as well as registers, immediate

operands, or symbols defined outside the macro. These statements may even include

macro calls.

A macro definition can appear anywhere in an assembly language source

code file as long as the definition comes before the first statement that calls the macro.

It is good programming practice to place macro definitions near the beginning of a

source file.

The remainder of this section gives several examples of macro definitions and

macro calls. Suppose that a program design requires several pauses where the user is

prompted to press the [Enter] key. Rather than write this code every time or use a proce-

dure, a macro pause can be defined. Figure 9.7 gives such a definition.

The pause macro has no parameter, so a call expands to almost exactly the

same statements as are in the definition. If the statement

pause
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add2     MACRO  nbr1, nbr2

; put sum of two doubleword parameters in EAX

mov    eax, nbr1

add    eax, nbr2

ENDM

Figure 9.8 Macro to add two integers

is included in subsequent source code, then the assembler expands this macro call into

the statements

output pressMsg    ; "Press [Enter]"

input  stringIn,5  ; input

Of course, each of these statements is itself a macro call and will expand to additional

statements. Notice that the pause macro is not self-contained; it references two fields in

the data segment:

pressMsg BYTE "Press [Enter] to continue", 0

stringIn BYTE 5 DUP (?)

Note again that the definition and expansion for the pause macro contain no

ret statement. Although macros look much like procedures, they generate in-line code

when the macro call is expanded at assembly time.

Figure 9.8 gives a definition of a macro add2 that finds the sum of two parame-

ters, putting the result in the EAX register. The parameters used to define the macro are

nbr1 and nbr2. These labels are local to the definition. The same names could be used for

other purposes in the program, although some human confusion might result.

The statements to which add2 expands depends on the arguments used in a

call. For example, the macro call

add2  value, 30   ; value + 30

expands to

; put sum of two doubleword parameters in EAX

mov    eax, value

add    eax, 30

TEAM LinG - Live, Informative, Non-cost and Genuine!



322 The Assembly Process

The statement

add2  value1, value2   ; value1 + value2

expands to

; put sum of two doubleword parameters in EAX

mov    eax, value1

add    eax, value2

The macro call

add2  eax, ebx     ; sum of two values

expands to

; put sum of two doubleword parameters in EAX

mov    eax, eax

add    eax, ebx

The instruction mov eax,eax is legal, even if it accomplishes nothing.

In each of these examples, the first argument is substituted for the first parame-

ter nbr1 and the second argument is substituted for the second parameter nbr2. Each

macro results in two mov instructions, but since the types of arguments differ, the object

code will vary.

If one of the parameters is missing the macro will still be expanded. For

instance, the statement

add2  value

expands to

; put sum of two doubleword parameters in EAX

mov    eax, value

add    eax,

The argument value replaces nbr1 and an empty string replaces nbr2. The assembler will

report an error, but it will be for the illegal add instruction that results from the macro

expansion, not directly because of the missing argument.

Similarly, the macro call

add  , value
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swap     MACRO  dword1, dword2

; exchange two doublewords in memory

push   eax

mov    eax, dword1

xchg   eax, dword2

mov    dword1, eax

pop    eax

ENDM

Figure 9.9 Macro to swap two memory words

expands to

; put sum of two doubleword parameters in EAX

mov    eax,

add    eax, value

The comma in the macro call separates the first missing argument from the second argu-

ment value. An empty argument replaces the parameter nbr1. The assembler will again

report an error, this time for the illegal mov instruction.

Figure 9.9 shows the definition of a macro swap that will exchange the contents

of two doublewords in memory. It is very similar to the 80x86 xchg instruction that will

not work with two memory operands.

As with the add2 macro, the code generated by calling the swap macro

depends on the arguments used. For example, the call

swap  [ebx], [ebx+4]    ; swap adjacent words in array

expands to

; exchange two doublewords in memory

push   eax

mov    eax, [ebx]

xchg   eax, [ebx+4]

mov    [ebx], eax

pop    eax
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It might not be obvious to the user that the swap macro uses the EAX register, so the

push and pop instructions in the macro protect the user from accidentally losing the con-

tents of this register.

Figure 9.10 gives a definition of a macro min2, which finds the minimum of two

doubleword signed integers, putting the smaller in the EAX register. The code for this

macro must implement a design with an if statement, and this requires at least one

assembly language statement with a label. If an ordinary label were used, then it would

appear every time a min2 macro call was expanded and the assembler would produce

error messages because of duplicate labels. The solution is to use a LOCAL directive to

define a symbol endIfMin that is local to the min2 macro.

The LOCAL directive is used only within a macro definition and must be the

first statement after the MACRO directive. (Not even a comment can separate the

MACRO and LOCAL directives.) It lists one or more symbols, separated by commas,

which are used within the macro definition. Each time the macro is expanded and

one of these symbols is needed, it is replaced by a symbol starting with two question

marks and ending with four hexadecimal digits (??0000, ??0001, etc.) The same

??dddd symbol replaces the local symbol each place the local symbol is used in one

particular expansion of a macro call. The same symbols may be listed in LOCAL direc-

tives in different macro definitions or may be used as regular symbols in code outside

of macro definitions.

The macro call

min2   [ebx], ecx   ; find smaller of two values

min2     MACRO  first, second

LOCAL  endIfMin

; put smaller of two doublewords in the EAX register

mov    eax, first

cmp    eax, second

jle    endIfMin

mov    eax, second

endIfMin:

ENDM

Figure 9.10 Macro to find smaller of two memory words
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might expand to the code

LOCAL  endIfMin

; put smaller of two doublewords in the EAX register

mov    eax, [ebx]

cmp    eax, ecx

jle    ??000C

mov    eax, ecx

??000C:

Here endIfMin has been replaced the two places it appears within the macro definition

by ??000C in the expansion. Another expansion of the same macro would use a different

number after the question marks.

The MASM assembler has several directives that control how macros and other

statements are shown in .LST files. The most useful are

• .LIST that causes statements to be included in the listing file

• .NOLIST that completely suppresses the listing of all statements, and

• .NOLISTMACRO that selectively suppresses macro expansions while

allowing the programmer’s original statements to be listed

The file IO.H ends starts with a .NOLIST directive so that macro definitions do not clut-

ter the listing. Similarly IO.H ends with .NOLISTMACRO and .LIST directives so that

macro expansion listings do not obscure the programmer’s code, but original statements

are listed.

Exercises 9.3

1. Using the macro definition for add2 given in Fig. 9.8, show the sequence

of statements to which each of the following macro calls expands.

(a) add2  25, ebx

(b) add2  ecx, edx

(c) add2            ; no argument

(d) add2  value1, value2, value3

(Hint: the third argument is ignored since it has no matching parameter.)

2. Using the macro definition for swap given in Fig. 9.9, show the sequence

of statements to which each of the following macro calls expands.

(a) swap  value1, value2

(b) swap  temp, [ebx]

(c) swap  value
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3. Using the macro definition for min2 given in Fig. 9.10, show the sequence

of statements to which each of the following macro calls expands.

(a) min2  value1, value2

(Assume the local symbol counter is at 000A)

(b) min2  cx, value

(Assume the local symbol counter is at 0019)

Programming Exercises 9.3

1. Write a definition of a macro add3 that has three doubleword integer

parameters and puts the sum of the three numbers in the EAX register.

2. Write a definition of a macro max2 that has two doubleword integer

parameters and puts the maximum of the two numbers in the EAX reg-

ister.

3. Write a definition of a macro min3 that has three doubleword integer

parameters and puts the minimum of the three numbers in the EAX

register.

4. Write a definition of a macro toUpper with one parameter, the address

of a byte in memory. The code generated by the macro will examine the

byte, and if it is the ASCII code for a lowercase letter, will replace it by

the ASCII code for the corresponding uppercase letter.

9.4 Conditional Assembly

The Microsoft Macro Assembler can observe various conditions that can be tested at

assembly time and alter how the source code is assembled on the basis of these condi-

tions. For instance, a block of code may be assembled or skipped based on the definition

of a constant. This ability to do conditional assembly is especially useful in macro defi-

nitions. For example, two macros using the same mnemonic may be expanded into dif-

ferent sequences of statements based on the number of operands present. This section

describes some of the ways that conditional assembly can be used.

Figure 9.11 shows a definition for a macro addAll that will add one to five dou-

bleword integers, putting the sum in the EAX register. It employs the conditional assem-

bly directive IFNB (“if not blank”). This directive is most often used in macro definitions,

although it is legal in open code, that is, regular code outside a macro. When an addAll
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macro call is expanded and one of its IFNB directives is encountered, MASM examines

the value of the macro parameter whose name is enclosed between < and >. If that

parameter has a corresponding argument passed to it, then it is “not blank” and the add

instruction for that argument is included in the expansion of the macro. If a parameter

does not have a corresponding argument, the add instruction is not assembled.

Given the macro call

addAll  ebx, ecx, edx, number, 1

each of the five macro parameters has a corresponding argument, so the macro expands to

mov   eax, ebx    ; first operand

add   eax, ecx    ; second operand

add   eax, edx    ; third operand

add   eax, number    ; fourth operand

add   eax, 1    ; fifth operand

addAll MACRO  nbr1, nbr2, nbr3, nbr4, nbr5

; add up to 5 doubleword integers, putting sum in EAX

mov   eax, nbr1    ; first operand

IFNB  <nbr2>

add   eax, nbr2    ; second operand

ENDIF

IFNB  <nbr3>

add   eax, nbr3    ; third operand

ENDIF

IFNB  <nbr4>

add   eax, nbr4    ; fourth operand

ENDIF

IFNB  <nbr5>

add   eax, nbr5    ; fifth operand

ENDIF

ENDM

Figure 9.11 addAll macro using conditional assembly
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The macro call

addAll  ebx, ecx, 45        ; value1 + value2 + 45

has only three arguments. The argument ebx becomes the value for parameter nbr1, ecx

is substituted for nbr2, and 45 will be used for nbr3, but the parameters nbr4 and nbr5

will be blank. Therefore the macro expands to the statements

mov   eax, ebx    ; first operand

add   eax, ecx    ; second operand

add   eax, 45    ; third operand

Although it would be unusual to do so, arguments other than trailing ones can

be omitted. For example, the macro call

addAll  ebx, ,ecx

has ebx corresponding to nbr1 and ecx matched to nbr3, but all other parameters will be

blank. Therefore the macro expands to

mov   eax, ebx    ; first operand

add   eax, ecx    ; third operand

If the first argument is omitted in an addAll macro call, the macro will still be expanded.

However, the resulting statement sequence will contain a mov instruction with a miss-

ing operand, and this statement will cause MASM to issue an error message. For exam-

ple, the macro call

addAll  , value1, value2

expands to

mov    eax,    ; first operand

add    eax, value1    ; second operand

add    eax, value2    ; third operand

An unusual use of the addAll macro is illustrated by the call

addAll  value, eax, eax, value, eax     ; 10 * value
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that expands to

mov   eax, value    ; first operand

add   eax, eax    ; second operand

add   eax, eax    ; third operand

add   eax, value    ; fourth operand

add   eax, eax    ; fifth operand

The comment “10 * value” explains the purpose of this call.

The Microsoft assembler provides several conditional assembly directives. The

IFNB directive has a companion IFB (“if blank”) that checks if a macro parameter is blank.

The IF and IFE directives examine an expression whose value can be deter-

mined at assembly time. For IF, MASM assembles conditional code if the value of the

expression is not zero. For IFE, MASM includes conditional code if the value is zero.

The IFDEF and IFNDEF are similar to IF and IFE. They examine a symbol and

MASM assembles conditional code depending on whether or not the symbol has previ-

ously been defined in the program.

Each conditional assembly block is terminated by the ENDIF directive. ELSEIF

and ELSE directives are available to provide alternative code. In general, blocks of condi-

tional assembly code look like

IF...  [operands]

statements

ELSEIF ...

statements

ELSE

statements

ENDIF

Operands vary with the type of IF and are not used with all types. The ELSEIF directive

and statements following it are optional, as are the ELSE directive and statements fol-

lowing it. There can be more than one ELSEIF directive, but at most one ELSE directive.

The above syntax strongly resembles what appears in many high-level lan-

guages. It is important to realize, however, that these directives are used at assembly

time, not at execution time. That is, they control assembly of statements that are later

executed, not the order of statement execution.

The EXITM directive can be used to make some macro definitions simpler to

write and understand. When MASM is processing a macro call and finds an EXITM
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directive, it immediately stops expanding the macro, ignoring any statements following

EXITM in the macro definition. The design

if condition

then

process assembly language statements for condition;

else

process statements for negation of condition;

end if;

and the alternative design

if condition

then

process assembly language statements for condition;

terminate expansion of macro;

end if;

process statements for negation of condition;

are equivalent, assuming that no macro definition statements follow those sketched in

the designs. These alternative designs can be implemented using

IF... [operands]

assembly language statements for condition

ELSE

assembly language statements for negation of condition

ENDIF

and

IF... [operands]

assembly language statements for condition

EXITM

ENDIF

assembly language statements for negation of condition

Notice that the EXITM directive is not needed when the ELSE directive is used. A macro

definition using EXITM appears in Fig. 9.12 on the next page.
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Examples in the previous section showed macro calls that expanded to illegal

statements as a result of missing arguments. Such illegal statements are detected by

MASM during subsequent assembly rather than as the macro is expanded. The

designer of a macro definition may wish to include safeguards to ensure that the cor-

rect number of arguments is included in a macro call, or that the call is valid in other

ways. Conditional assembly directives make this possible. If, however, assembly errors

are eliminated by avoiding generation of illegal statements, a user may not know

when a macro call is faulty. It requires additional effort to inform the user of an error.

min2      MACRO  value1,value2,extra

LOCAL  endIfLess

; put smaller of value1 and value2 in EAX

IFB   <value1>

.ERR  <first argument missing in min2 macro>

EXITM

ENDIF

IFB   <value2>

.ERR  <second argument missing in min2 macro>

EXITM

ENDIF

IFNB   <extra>

.ERR  <more than two arguments in min2 macro>

EXITM

ENDIF

mov  eax, value1   ;; first value to EAX

cmp  eax, value2   ;; value1 <= value2?

jle  endIfLess     ;; done if so

mov  eax, value2   ;; otherwise value2 smaller

endIfLess:

ENDM

Figure 9.12 Improved min2 macro
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One way to do this is with the .ERR directive. This directive generates a forced error

at assembly time, resulting in a message to the console and a message to the listing

file, if any. It also ensures that no .obj file is produced for the assembly. The .ERR

directive is often followed by a string enclosed by < and >. This string is included in

the error message.

The min2 macro definition in Fig. 9.12 incorporates safeguards to ensure that

the macro is called with the correct number of parameters. The conditional block

IFB   <value1>

.ERR  <first argument missing in min2 macro>

EXITM

ENDIF

examines the first argument. If it is missing, then the .ERR directive displays the mes-

sage “first argument missing in min2 macro.” Note that the conditional block ends with

an EXITM directive, so that if the first argument is missing, no further expansion of the

macro is done. An alternative way to suppress additional macro expansion would be to

nest the rest of the macro definition between an ELSE directive and the ENDIF directive

for this first conditional block.

The conditional block

IFB   <value2>

.ERR  <second argument missing in min2 macro>

EXITM

ENDIF

examines the second argument, generating an error if it is missing. The conditional block

IFNB   <extra>

.ERR  <more than two arguments in min2 macro>

EXITM

ENDIF

tells MASM to check to see if a third argument was listed in the macro call that is being

expanded. Since there should be no third argument, an error is generated if the argu-

ment is not blank.
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Exercises 9.4

1. Using the macro definition for min2 given in Fig. 9.12, show the sequence

of statements to which each of the following macro calls expands.

(a) min2  nbr1, nbr2

(Assume the local symbol counter is at 0004.)

(b) min2  , value

(Assume the local symbol counter is at 0011.)

(c) min2  ecx

(Assume the local symbol counter is at 000B.)

(d) min2  nbr1, nbr2, nbr3

(Assume the local symbol counter is at 01D0.)

Programming Exercises 9.4

1. Rewrite the macro definition for swap from Fig. 9.9, so that a swap

macro call must have exactly two arguments; use .ERR with appropri-

ate messages if there are missing or extra arguments.

2. Write a definition of a macro min3 that has exactly three doubleword

integer parameters and that puts the minimum of the three numbers in

the EAX register. Use .ERR with appropriate messages if there are

missing or extra arguments in a min3 call.

9.5 Macros in IO.H

Macros in the file IO.H are designed to provide simple, safe access to standard input and

output devices. Figure 9.13 shows the contents of IO.H and the remainder of the section

discusses the directives and macros in the file.

Most of the file IO.H consists of macro definitions that, when used, generate

code to call external procedures. However, the file does contain other directives. It

begins with a .NOLIST directive; this suppresses the listing of all source code, in partic-

ular the contents of IO.H. It then has EXTRN directives that identify the external proce-

dures called by the macros. The file ends with a .NOLISTMACRO directive to suppress

listing of any macro expansions and an .LIST directive so that the user’s statements fol-

lowing the directive INCLUDE io.h will again be shown in the listing file.
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; IO.H Ñ header file for I/O macros

; 32-bit version for flat memory model

; R. Detmer   last revised 8/2000

.NOLIST     ; turn off listing

.386

EXTRN  itoaproc:near32, atoiproc:near32

EXTRN  dtoaproc:near32, atodproc:near32

EXTRN  inproc:near32, outproc:near32

itoa        MACRO  dest,source,xtra    ;; convert integer to ASCII string

IFB    <source>

.ERR <missing operand(s) in ITOA>

EXITM

ENDIF

IFNB   <xtra>

.ERR <extra operand(s) in ITOA>

EXITM

ENDIF

push   ebx                  ;; save EBX

mov    bx, source

push   bx                   ;; source parameter

lea    ebx,dest             ;; destination address

push   ebx                  ;; destination parameter

call   itoaproc             ;; call itoaproc(source,dest)

pop    ebx                  ;; restore EBX

ENDM

atoi        MACRO  source,xtra          ;; convert ASCII string to integer in AX

;; offset of terminating character in ESI

IFB    <source>

.ERR <missing operand in ATOI>

EXITM

ENDIF

IFNB   <xtra>

.ERR <extra operand(s) in ATOI>

EXITM

ENDIF

(continued)

Figure 9.13 IO.H
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push   ebx                 ;; save EBX

lea    ebx,source          ;; source address to EBX

push   ebx                 ;; source parameter on stack

call   atoiproc            ;; call atoiproc(source)

pop    ebx                 ;; parameter removed by ret

ENDM

dtoa        MACRO  dest,source,xtra    ;; convert double to ASCII string

IFB    <source>

.ERR <missing operand(s) in DTOA>

EXITM

ENDIF

IFNB   <xtra>

.ERR <extra operand(s) in DTOA>

EXITM

ENDIF

push   ebx                 ;; save EBX

mov    ebx, source

push   ebx                 ;; source parameter

lea    ebx,dest            ;; destination address

push   ebx                 ;; destination parameter

call   dtoaproc            ;; call dtoaproc(source,dest)

pop    ebx                 ;; restore EBX

ENDM

atod        MACRO  source,xtra         ;; convert ASCII string to integer in EAX

;; offset of terminating character in ESI

IFB    <source>

.ERR <missing operand in ATOD>

EXITM

ENDIF

IFNB   <xtra>

.ERR <extra operand(s) in ATOD>

EXITM

ENDIF

lea    eax,source          ;; source address to EAX

push   eax                 ;; source parameter on stack

(continued)

Figure 9.13 (continued)
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call   atodproc            ;; call atodproc(source)

;; parameter removed by ret

ENDM

output      MACRO  string,xtra         ;; display string

IFB    <string>

.ERR <missing operand in OUTPUT>

EXITM

ENDIF

IFNB   <xtra>

.ERR <extra operand(s) in OUTPUT>

EXITM

ENDIF

push   eax                 ;; save EAX

lea    eax,string          ;; string address

push   eax                 ;; string parameter on stack

call   outproc             ;; call outproc(string)

pop    eax                 ;; restore EAX

ENDM

input       MACRO  dest,length,xtra    ;; read string from keyboard

IFB    <length>

.ERR <missing operand(s) in INPUT>

EXITM

ENDIF

IFNB   <xtra>

.ERR <extra operand(s) in INPUT>

EXITM

ENDIF

push   ebx                 ;; save EBX

lea    ebx,dest            ;; destination address

push   ebx                 ;; dest parameter on stack

mov    ebx,length          ;; length of buffer

push   ebx                 ;; length parameter on stack

call   inproc              ;; call inproc(dest,length)

pop    ebx                 ;; restore EBX

ENDM

.NOLISTMACRO ; suppress macro expansion listings

.LIST        ; begin listing

Figure 9.13 (continued)
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The bulk of the file IO.H consists of definitions for itoa, atoi, dtoa, atod, output,

and input macros. These definitions have similar structures. Each uses IFB and IFNB

directives to check that a macro call has the correct number of arguments. If not, .ERR

directives are used to generate forced errors and appropriate messages. Actually, the

checks are not quite complete.

Assuming that its arguments are correct, an input/output macro call expands to

a sequence of instructions that call the appropriate external procedure, for instance

itoaproc for the macro itoa. Parameters are passed on the stack, but some code

sequences use a register to temporarily contain a value, with push and pop instructions

to ensure that these registers are not changed following a macro call.

Exercises 9.5

1. Notice that itoa has only one error message that is used if either or both

argument is missing. Rewrite the definition of itoa to provide complete

argument checking. That is, check separately for missing source and

dest arguments, generating specific messages for each missing argu-

ment. Allow for the possibility that both are missing.

Chapter Summary

This chapter has discussed the assembly process. A typical two-pass assem-

bler scans an assembly language program twice, using a location counter to

construct a symbol table during the first pass, and completing assembly

during the second pass. The symbol table contains information about each

identifier used in the program, including its type, size, and location. Assem-

bly can be done in a single pass if the object code is “fixed up” when for-

ward references are resolved.

A machine instruction may have one or more prefix bytes. How-

ever, the main byte of machine code for each 80x86 instruction is its

opcode. Some instructions are a single byte long, but most consist of

multiple bytes. The next byte often has the format mod reg r/m where

reg indicates a source or destination register, and the other two fields

combine to describe the addressing mode. Other instruction bytes con-

tain additional addressing information, immediate data, or the address

of a memory operand.
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Macros are defined using MACRO and ENDM directives. Macros may

use parameters that are associated with corresponding arguments in macro

calls. A call is expanded at assembly time. The statements in the expansion

of a macro call appear in the macro definition, with arguments substituted

for parameters. A macro definition may declare local labels that MASM

expands to different symbols for different macro calls.

Conditional assembly may be used in regular code or in macro defi-

nitions to generate different statements, based on conditions that can be

checked at assembly time. The IFB and IFNB directives are used in macros

to check for the absence or presence of arguments. Several other condi-

tional assembly directives are also available, including IF, IFE, IFDEF, and

IFNDEF. An ELSE directive may be used to provide two alternative blocks of

code, and the ENDIF directive ends a conditional assembly block.

If the assembler encounters an EXITM directive when expanding a

macro definition, it immediately terminates expansion of the macro. The

.ERR directive triggers a forced error so that MASM displays an error mes-

sage and produces no .OBJ file for the assembly.

The file IO.H contains definitions for a collection of input/output

macros, and a few directives. These macro definitions use conditional

assembly to check for missing or extra arguments and generate code that

calls external procedures.

TEAM LinG - Live, Informative, Non-cost and Genuine!



CHAPTER 10

10.1 80x86 Floating-point

Architecture

10.2 Programming with

Floating-point

Instructions

10.3 Floating-point

Emulation

10.4 Floating point and In-

line Assembly

Floating-Point Arithmetic

This book has concentrated on integer representa-

tions of numbers, primarily 2’s complement since

all 80x86 microprocessors have a variety of instruc-

tions to manipulate 2’s complement numbers.

Many 80x86 microprocessor systems—including all

Pentium systems, systems with a 486DX, and other

systems equipped with a floating-point coproces-

sor—also have the capability to manipulate num-

bers stored in floating-point format.

Section 1.5 described the IEEE format used

to store floating-point values in 32 bits. The MASM

assembler has directives that accept decimal

operands and initialize storage using the IEEE for-

mat. There are two ways to do floating-point arith-

metic with a PC. If you have a microprocessor with

a floating-point unit built in or a floating-point

coprocessor, then you can simply use the floating-

point instructions. Otherwise, you can employ a

collection of procedures that implement arithmetic

operations such as addition and multiplication.
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Section 10.1 describes the 80x86 floating-point architecture. Section

10.2 describes how to convert floating-point values to and from other for-

mats, including ASCII. Section 10.3 shows floating-point emulation routines of

addition, subtraction, multiplication, division, negation, and comparison

operations—these routines are useful for floating-point operations on an

80x86 system without built-in floating-point instructions. The procedures in

this section serve as examples of assembly language implementation of mod-

erately complex, useful algorithms and also illustrate some techniques not

covered earlier in this book. Section 10.4 gives a brief introduction into using

in-line assembly code in C++ code, with C++ for input/output operations, and

assembly language for floating-point operations. In-line assembly code is not

restricted to floating-point instructions, however.

10.1 80x86 Floating-Point Architecture

As stated above, some 80x86 microprocessors do not have built-in floating point capabil-

ity, depending instead on a floating-point coprocessor chip to execute floating-point

instructions. Even with the ones that do, the floating-point unit (FPU) of the chip is almost

independent of the rest of the chip. It has its own internal registers, completely separate

from the familiar 80x86 registers. It executes instructions to do floating-point arithmetic

operations, including commonplace operations such as addition or multiplication, and

more complicated operations such as evaluation of some transcendental functions. Not

only can it transfer floating-point operands to or from memory, it can also transfer integer

or BCD operands to or from the coprocessor. Nonfloating formats are always converted to

floating point when moved to a floating-point register; a number in internal floating-point

format can be converted to integer or BCD format as it is moved to memory.

The FPU has eight data registers, each 80 bits long. A ten-byte floating-point

format (also specified by IEEE standards) is used for values stored in these registers. The

registers are basically organized as a stack; for example, when the fld (floating load)

instruction is used to transfer a value from memory to the floating point unit, the value is

loaded into the register at the top of the stack, and data stored in the stack top and other

registers are pushed down one register. However, some instructions can access any of

the eight registers, so that the organization is not a “pure” stack.

340 Floating-Point Arithmetic
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The names of the eight floating-point registers are

• ST, the stack top, also called ST(0),

• ST(1), the register just below the stack top,

• ST(2), the register just below ST(1),

• ST(3), ST(4), ST(5), ST(6), and

• ST(7), the register at the bottom of the stack.

In addition to the eight data registers, the floating-point unit has several 16-bit control

registers. Some of the status word bits are assigned values by floating-point compari-

son instructions, and these bits must be examined in order for the 80x86 to execute con-

ditional jump instructions based on floating-point comparison. Bits in the FPU control

word must sometimes be set to ensure certain modes of rounding.

Before considering the floating-point instructions, a few notes are in order.

Each floating-point mnemonic starts with the letter F, a letter that is not used as the

10.1 80x86 Floating-Point Architecture 341

Mnemonic Operand Action

fld memory (real) real value from memory pushed onto stack

fild memory (integer) integer value from memory converted to

floating point and pushed onto stack

fbld memory (BCD) BCD value from memory converted to float-

ing point and pushed onto stack

fld st(num) contents of floating-point register pushed

onto stack

fld1 (none) 1.0 pushed onto stack

fldz (none) 0.0 pushed onto stack

fldpi (none) � (pi) pushed onto stack

fldl2e (none) log2(e) pushed onto stack

fldl2t (none) log2(10) pushed onto stack

fldlg2 (none) log10(2) pushed onto stack

fldln2 (none) loge(2) pushed onto stack

Figure 10.1 Floating-point load instructions
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first character of any nonfloating instruction. Most floating-point instructions act on the

stack top ST and one other operand in another floating-point register or in memory. No

floating-point instruction can transfer data between an 80x86 general register (such as

EAX) and a floating-point register—transfers must be made using a memory location

for intermediate storage. (There are, however, instructions to store the status word or

the control word in AX.)

The floating-point instructions will be examined in groups, starting with

instructions to push operands onto the stack. Figure 10.1 lists these mnemonics.

Some examples illustrate how these instructions work. Suppose that the float-

ing-point register stack contains

with values shown in decimal rather than in IEEE floating-point format. If the data seg-

ment contains

fpValue   REAL4  10.0

intValue  DWORD  20

bcdValue  TBYTE     30

then the values assembled will be 41200000 for fpValue, 00000014 for intValue, and

00000000000000000030 for bcdValue. If the instruction fld fpValue is executed, the

register stack will contain

1.0 ST

2.0 ST(1)

3.0 ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

342 Floating-Point Arithmetic
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The original values have all been pushed down one register position on the stack. Starting

with these values, if the instruction fld st(2) is executed, the register stack will contain

Notice that the value 2.0 from ST(2) has been pushed onto the top of the stack, but not

removed from the stack. Starting with these values, assume that the instruction fild

intValue is executed. The new contents of the register stack will be

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

2.0

10.0

1.0

2.0

3.0

ST

1.0 ST(1)

2.0 ST(2)

3.0 ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

10.0
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What is not obvious here is that the 32-bit value 00000014 is converted to an 80-bit float-

ing-point value. An integer operand must be word length, doubleword length, or quad-

word length—byte length integer operands are allowed. This chapter does not show

opcodes for floating-point instructions.

If the instruction fbld bcdValue is now executed, the stack values will become

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

30.0

20.0

2.0

10.0

1.0

2.0

3.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

20.0

2.0

10.0

1.0

2.0

3.0
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where the 80 bit BCD value is converted to the very different 80 bit floating-point format.

Finally, if the instruction fldz is executed, the register stack will contain

The stack is now full. No further value can be pushed onto the stack unless

some value is popped from the stack, or the stack is cleared. The instruction finit ini-

tializes the floating-point unit and clears the contents of all eight registers. Often a pro-

gram that uses the floating-point unit will include the statement

finit     ; initialize the math processor

near the beginning of the code. It may be desirable to reinitialize the floating-point unit

at points in the code, but normally this is not required since values will be popped from

the stack, not allowed to accumulate on the stack.

You can trace floating-point operations using Windbg. Figure 10.2 shows a

screen dump following execution of the code on the left pane. A floating-point window is

shown in the right pane.

Figure 10.3 lists the floating-point instructions that are used to copy data from

the stack top to memory or to another floating-point register. These instructions are

mostly paired: One instruction of each pair simply copies ST to its destination while the

other instruction is identical except that it copies ST to its destination and also pops ST

off the register stack.

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

0.0

30.0

20.0

2.0

10.0

1.0

2.0

3.0
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Figure 10.2 Windbg view of floating point execution

Mnemonic Operand Action

fst

fstp

fst

fstp

fist

fistp

fbstp

Figure 10.3 Floating-point data store instructions

st(num)

st(num)

memory (real)

memory (real)

memory (integer)

memory (integer)

memory (BCD)

replaces contents of ST(num) by copy of value from ST; only

ST(num) is affected

replaces contents of ST(num) by copy of value from ST; ST

popped off the stack

copy of ST stored as real value in memory; the stack is not

affected

copy of ST stored as real value in memory; ST popped off the

stack

copy of ST converted to integer and stored in memory

copy of ST converted to integer and stored in memory; ST

popped off the stack

copy of ST converted to BCD and stored in memory; ST

popped off the stack
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A few examples illustrate the actions of and the differences between these

instructions. Assume that the directive

intValue  DWORD ?

is coded in the data segment. Suppose that the floating-point register stack contains

The left diagram below shows the resulting stack if fist intValue is executed and

the right diagram shows the resulting stack if fistp intValue is executed. In both

cases, the contents of intValue will be 0000000A, the doubleword length 2’s complement

integer version of the floating-point number 10.0.

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

10.0

20.0

30.0

40.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

20.0

30.0

40.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

10.0

20.0

30.0

40.0
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The situation is a bit more confusing when the destination is one of the float-

ing-point registers. Suppose that at execution time the floating register stack contains

The left diagram below shows the resulting stack if fst st(2) is executed and the

right diagram shows the resulting stack if fstp st(2) is executed. In the first case, a

copy of ST has been stored in ST(2). In the second case, the copy has been made, and

then the stack has been popped.

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

1.0

2.0

1.0

4.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

2.0

1.0

4.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

1.0

2.0

3.0

4.0
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In addition to the load and store instructions listed above, the floating-point unit

has an fxch instruction that will exchange the contents of two floating-point registers.

With no operand,

fxch         ; exchange ST and ST(1)

will exchange the contents of the stack top and ST(1) just below ST on the stack. With a

single operand, for example,

fxch  st(3)  ; exchange ST and ST(3)

will interchange ST with the specified register.

Figure 10.4 shows the floating-point addition instructions. There are versions

for adding the contents of ST to another register, contents of any register to ST, a real

number from memory to ST, or an integer number from memory to ST. No version uses a

BCD number. The faddp instruction pops the stack top after adding it to another regis-

ter, so that both operands are destroyed.

A few examples illustrate how the floating-point addition instructions work.

Suppose that the data segment contains the directives

fpValue   REAL4  5.0

intValue  DWORD  1
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Mnemonic Operand Action

fadd

fadd

fadd

fadd

fiadd

faddp

Figure 10.4 Floating-point addition instructions

(none)

st(num), st

st,st(num)

memory (real)

memory (integer)

st(num),st

pops both ST and ST(1); adds these values; pushes sum onto

the stack

adds ST(num) and ST; replaces ST(num) by the sum

adds ST and ST(num); replaces ST by the sum

adds ST and real number from memory; replaces ST by the

sum

adds ST and integer from memory; replaces ST by the sum

adds ST(num) and ST; replaces ST(num) by the sum; pops ST

from stack
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and that the floating-point register stack contains

After the instruction

fadd  st,st(3)

is executed, the stack contains

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

50.0

20.0

30.0

40.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

10.0

20.0

30.0

40.0
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Starting with these stack values, after the two instructions

fadd   fpValue

fiadd  intValue

are executed, the contents of the stack are

Finally, if the instruction

faddp  st(2),st

is executed, the stack will contain

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

20.0

86.0

40.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

56.0

20.0

30.0

40.0
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Subtraction instructions are displayed in Fig. 10.5. The first six instructions are

very similar to the corresponding addition instructions. The second six subtraction

instructions are the same except that the operands are subtracted in the opposite order.

This is convenient since subtraction is not commutative.
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Mnemonic Operand Action

fsub

fsub

fsub

fsub

fisub

fsubp

fsubr

fsubr

fsubr

fsubr

fisubr

fsubpr

(none)

st(num), st

st,st(num)

memory (real)

memory (integer)

st(num),st

(none)

st(num),st

st,st(num)

memory (real)

memory (integer)

st(num),st

Figure 10.5 Floating-point subtraction instructions

An example illustrates the difference between the parallel subtraction instruc-

tions. Suppose that the floating-point register stack contains

pops ST and ST(1); calculates ST(1) � ST; pushes difference

onto the stack

calculates ST(num) � ST; replaces ST(num) by the difference

calculates ST � ST(num); replaces ST by the difference

calculates ST � real number from memory; replaces ST by the

difference

calculates ST � integer from memory; replaces ST by the dif-

ference

calculates ST(num) � ST; replaces ST(num) by the difference;

pops ST from the stack

pops ST and ST(1); calculates ST � ST(1); pushes difference

onto the stack

calculates ST � ST(num); replaces ST(num) by the difference

calculates ST(num) � ST; replaces ST by the difference

calculates real number from memory � ST; replaces ST by the

difference

calculates integer from memory � ST; replaces ST by the dif-

ference

calculates ST � ST(num); replaces ST(num) by the difference;

pops ST from the stack
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The two diagrams below show the results after executing the instructions fsub

st,st(3) and fsubr st,st(3).

after after

fsub st,st(3) fsubr st,st(3)

Multiplication and division instructions are listed in Figs. 10.6 and 10.7, respec-

tively. Multiplication instructions have the same forms as the addition instructions in

Fig. 10.4. Division instructions have the same forms as subtraction instructions in Fig.

10.5, that is, the R versions reverse the operands’ dividend and divisor roles.

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

–30.0

25.0

35.0

45.0

55.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

30.0

25.0

35.0

45.0

55.0

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

15.0

25.0

35.0

45.0

55.0
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Mnemonic Operand Action

fdiv

fdiv

fdiv

fdiv

fidiv

fdivp

fdivr

fdivr

fdivr

fdivr

fidivr

fdivpr

(none)

st(num), st

st,st(num)

memory (real)

memory (integer)

st(num),st

(none)

st(num),st

st,st(num)

memory (real)

memory (integer)

st(num),st

Figure 10.7 Floating-point division instructions

pops ST and ST(1); calculates ST(1) / ST; pushes quotient onto

the stack

calculates ST(num) / ST; replaces ST(num) by the quotient

calculates ST / ST(num); replaces ST by the quotient

calculates ST / real number from memory; replaces ST by the

quotient

calculates ST / integer from memory; replaces ST by the quo-

tient

calculates ST(num) / ST; replaces ST(num) by the quotient; pops

ST from the stack

pops ST and ST(1); calculates ST / ST(1); pushes quotient onto

the stack

calculates ST / ST(num); replaces ST(num) by the quotient

calculates ST(num) / ST; replaces ST by the quotient

calculates real number from memory / ST; replaces ST by the

quotient

calculates integer from memory / ST; replaces ST by the quo-

tient

calculates ST / ST(num); replaces ST(num) by the quotient; pops

ST from the stack

Mnemonic Operand Action

fmul

fmul

fmul

fmul

fimul

fmulp

(none)

st(num), st

st,st(num)

memory (real)

memory (integer)

st(num),st

Figure 10.6 Floating-point multiplication instructions

pops ST and ST(1); multiplies these values; pushes product

onto the stack

multiplies ST(num) and ST; replaces ST(num) by the product

multiplies ST and ST(num); replaces ST by the product

multiplies ST and real number from memory; replaces ST by

the product

multiplies ST and integer from memory; replaces ST by the

product

multiplies ST(num) and ST; replaces ST(num) by the product;

pops ST from stack
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Figure 10.8 describes four additional floating-point instructions. Additional

instructions that calculate tangent, arctangent, exponent, and logarithm functions are

not covered in this book.

The floating-point unit provides a collection of instructions to compare the

stack top ST to a second operand. These are listed in Fig. 10.9. Recall that the floating

point has a 16-bit control register called the status word. The comparison instructions
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Mnemonic Operand Action

fabs (none) ST := | ST | (absolute value)

fchs (none) ST := – ST (change sign)

frndint (none) rounds ST to an integer value

fsqrt (none) replace the contents of ST by its square root

Figure 10.8 Additional floating-point instructions

Mnemonic Operand Action

fcom (none) compares ST and ST(1)

fcom st(num) compares ST and ST(num)

fcom memory (real) compares ST and real number in memory

ficom memory (integer) compares ST and integer in memory

ftst (none) compares ST and 0.0

fcomp (none) compares ST and ST(1); then pops stack

fcomp st(num) compares ST and ST(num); then pops stack

fcomp memory (real) compares ST and real number in memory;

then pops stack

ficomp memory (integer) compares ST and integer in memory; then

pops stack

fcompp (none) compares ST and ST(1); then pops stack

twice

Figure 10.9 Floating-point comparison instructions
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assign values to bits 14, 10, and 8 in the status word; these “condition code” bits are

named C3, C2, and C0, respectively. These flags are set as follows:

result of comparison C3 C2 C0

ST > second operand 0 0 0

ST < second operand 0 0 1

ST = second operand 1 0 0

Another possibility is that the operands are not comparable. This can occur if one of the

operands is the IEEE representation for infinity or NaN (not a number). In this case, all

three bits are set to 1.

If a comparison is made in order to determine program flow, simply setting flags

in the status word is no help. Conditional jump instructions look at bits in the flag regis-

ter in the 80x86, not the status word in the floating-point unit. Consequently, the status

word must be copied to memory or to the AX register before its bits can be examined by

an 80x86 instruction, perhaps with a test instruction. The floating-point unit has two

instructions to store the status word; these are summarized in Fig. 10.10. This table also

shows the instructions for storing or setting the control word.

The 80x86 floating-point and integer units can actually execute instructions

concurrently. Under certain circumstances this requires special care in assembly lan-

guage programming. However, these techniques are not discussed in this book.

Exercises 10.1

1. Suppose that a program’s data segment contains

fpValue    REAL4   0.5

intValue   DWORD   6
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Mnemonic Operand Action

fstsw memory word copies status register to memory word

fstsw AX copies status register to AX

fstcw memory word copies control word register to memory word

fldcw memory word copies memory word to control word register

Figure 10.10 Miscellaneous floating-point instructions
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and that code executed so far by the program has not changed these

values. Suppose also that the floating-point register stack contains

Assume that these values are correct before each instruction below is

executed; do not use the “after” state of one problem as the “before”

state of the next problem. Give the contents of the floating-point register

stack of fpValue and of intValue following execution of the instruction.

(a) fld    st(2)

(b) fld    fpValue

(c) fild   intValue

(d) fldpi

(e) fst    st(4)

(f) fstp   st(4)

(g) fst    fpValue

(h) fistp  intValue

(i) fxch   st(3)

(j) fadd

(k) fadd   st(3),st

(l) fadd   st,st(3)

(m) faddp  st(3),st

(n) fsub   fpValue

(o) fisub  intValue

(p) fisubr intValue

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

9.0

12.0

23.0

24.0

35.0
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(q) fsubp  st(3),st

(r) fmul   st, st(4)

(s) fmul

(t) fmul   fpValue

(u) fdiv

(v) fdivr

(w) fidiv  intValue

(x) fdivp  st(2),st

(y) fchs

(z) fsqrt

2. Suppose that a program’s data segment contains

fpValue    REAL4   1.5

intValue   DWORD   9

and that code executed so far by the program has not changed these

values. Suppose also that the floating-point register stack contains

Assume that these values are correct before each instruction below is

executed. Give the contents of the status word flags C3, C2, and C0 fol-

lowing execution of the instruction.

(a) fcom

(b) fcom  st(3)

(c) fcom  fpValue

(d) ficom intValue

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

9.0

12.0

23.0

24.0

35.0
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For the next two parts, also give the contents of the stack following

execution of the instructions.

(e) fcomp

(f) fcompp

10.2 Programming with Floating-Point Instructions

This section gives three examples of coding with floating-point instructions. The first is

a program that calculates the square root of the sum of the squares of two numbers.

Although we do not yet have any procedures to facilitate input/output of floating-point

values, FPU operations can be viewed through Windbg. The second and third examples

show procedure to facilitate input/output of floating-point numbers.

Figure 10.11 has a listing of the first example. Floating-point values are assem-

bled at value1 and value2. The first instruction copies value1 from memory to ST. The

second instruction copies it from ST to ST, pushing down the first stack entry to ST(1).

The third instruction gives value1*value1 in ST, with “nothing” in ST(1). (Of course,

there is always some value in each floating-point register.) The same sequence of

instructions is repeated for value2. Figure 10.12 shows Windbg’s view of the CPU just

before the second fmul is executed. At this point, there are copies of value2 in both ST

and ST(1) and value1*value1 in ST(2). After the result is calculated in ST, it is stored in

sqrt and popped from the stack, leaving the stack in its original state.
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; find the sum of the squares of two floating-point numbers
; Author:  R. Detmer
; Date:    4/98

.386

.MODEL FLAT

.STACK  4096             ; reserve 4096-byte stack

.DATA                    ; reserve storage for data
value1  REAL4   0.5
value2  REAL4   1.2
sqrt    REAL4   ?

(continued)

Figure 10.11 Floating-point computations
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.CODE
_start:

fld    value1   ; value1 in ST
fld    st       ; value1 in ST and ST(1)
fmul            ; value1*value1 in ST
fld    value2   ; value2 in ST (value1*value1 in ST(1))
fld    st       ; value2 in ST and ST(1)
fmul            ; value2*value2 in ST
fadd            ; sum of squares in ST
fsqrt           ; square root of sum of squares in ST
fstp   sqrt     ; store result

PUBLIC _start
END

Figure 10.11 (continued)

Figure 10.12 Execution of floating-point example
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Notice that the value 1.2 is shown in Fig. 10.12 as 1.2000000476837158e+0000.

The reason that there are nonzero digits after the decimal point is that 1.2 does not have

an exact representation as a floating point number. The approximation used by the 32-

bit REAL4 directive translates back to the number shown in 17-decimal-digit precision.

You can get a better approximation by using a REAL8 or a REAL10 directive, but at the

cost of extra bytes of storage.

The second example is an implementation of a simple ASCII to floating-point

conversion algorithm. This algorithm, given in Fig. 10.13, is similar to the one used by
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value := 0.0;

divisor := 1.0;

point := false;

minus := false;

point at first character of source string;

if source character = ‘-’

then

minus := true;

point at next character of source string;

end if;

while (source character is a digit or a decimal point) loop

if source character = ‘.’

then

point := true;

else

convert ASCII digit to 2’s complement digit;

value := 10*value + float(digit);

if point

then

multiply divisor by 10;

end if;

end if;

point at next character of source string;

end while;

value := value/divisor;

if minus

then

value := – value;

end if;

Figure 10.13 ASCII to floating-point algorithm
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the atoi and atod macros—it scans memory at the address given by its parameter, inter-

preting the characters as a floating point.

This algorithm is implemented in a NEAR32 procedure atofproc. This procedure

has one parameter—the address of the string. It returns the floating-point value in ST.

No flags are set to indicate illegal conditions, such as multiple minus signs or decimal

points. The code appears in Fig. 10.14.

362 Floating-Point Arithmetic

; ASCII to floating-point code

; author:  R. Detmer

; revised:  4/98

.386

.MODEL FLAT

PUBLIC atofproc

false     EQU  0

true      EQU  1

.DATA

ten       REAL4  10.0

point     BYTE   ?

minus     BYTE   ?

digit     WORD   ?

.CODE

atofproc  PROC NEAR32  ; convert ASCII string to floating-point number

; Parameter passed on the stack:  address of ASCII source string

; After an optional leading minus sign, only digits 0–9 and a decimal

; point are accepted Ñ the scan terminates with any other character.

; The floating-point value is returned in SP.

push ebp              ; establish stack frame

mov  ebp, esp

push eax              ; save registers

push ebx

push esi

fld1                 ; divisor := 1.0

fldz                 ; value := 0.0

mov  point, false    ; no decimal point found yet

mov  minus, false    ; no minus sign found yet

(continued)

Figure 10.14 ASCII to floating-point conversion
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mov  esi, [ebp+8]    ; address of first source character

cmp  BYTE PTR [esi], '-'    ; leading minus sign?

jne  endifMinus      ; skip if not

mov  minus, true     ; minus sign found

inc  esi             ; point at next source character

endifMinus:

whileOK:  mov  bl, [esi]       ; get next character

cmp  bl, '.'         ; decimal point?

jne  endifPoint      ; skip if not

mov  point, true     ; found decimal point

jmp  nextChar

endifPoint:

cmp  bl, '0'         ; character a digit?

jl   endwhileOK      ; exit if lower than '0'

cmp  bl, '9'

jg   endwhileOK      ; exit if higher than '9'

and  bx, 000fh       ; convert ASCII to integer value

mov  digit, bx       ; put integer in memory

fmul ten             ; value := value * 10

fiadd digit          ; value := value + digit

cmp  point, true     ; already found a decimal point?

jne  endifDec        ; skip if not

fxch                 ; put divisor in ST and value in ST(1)

fmul ten             ; divisor := divisor * 10

fxch                 ; value back to ST; divisor back to ST(1)

endifDec:

nextChar: inc  esi             ; point at next source character

jmp  whileOK

endwhileOK:

fdivr                ; value := value / divisor

cmp  minus, true     ; was there a minus sign?

jne  endifNeg

fchs                 ; value := -value

endifNeg:

pop  esi             ; restore registers

pop  ebx

pop  eax

pop  ebp

ret  4

atofproc  ENDP

END

Figure 10.14 (continued)
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This implementation of the ASCII to floating-point algorithm uses ST(1) for divi-

sor and ST for value except for one short segment where they are reversed in order to

modify divisor. After the procedure entry code, the instructions

fld1          ; divisor := 1.0

fldz          ; value := 0.0

initialize these two variables. Note that the value 1.0 for divisor ends up in ST(1) since it

is pushed down by the fldz instruction.

The design element

value := 10*value + float(digit);

is implemented by the code

fmul ten         ; value := value * 10

fiadd digit      ; value := value + digit

Note that a word-length 2’s complement integer version of digit is stored in memory.

The floating-point unit takes care of converting it to floating point as part of the fiadd

instruction.

To implement “multiply divisor by 10,” the number to be multiplied must be in

ST. The instructions

fxch           ; put divisor in ST and value in ST(1)

fmul ten       ; divisor := divisor * 10

fxch           ; value back to ST; divisor back to ST(1)

take care of swapping divisor and value, carrying out the multiplication in ST, and then

swapping back.

When it is time to execute “value := value / divisor” the instruction

fdivr          ; value := value / divisor

pops value from ST and divisor from ST(1), computes the quotient, and pushes it back to ST.

Notice that the fdiv version of this instruction would incorrectly compute “divisor/value.”

After the division instruction, ST(1) is no longer in use by this procedure. The instruction

fchs changes the sign of value if a leading minus sign was noted in the ASCII string.

You can test atofproc with a simple test driver program such as the one shown

in Fig. 10.15. The “output” of the procedure can be viewed using Windbg.
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; test driver for atofproc

; Author:  R. Detmer

; Date:    4/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

EXTRN atofproc:NEAR32

.STACK  4096             ; reserve 4096-byte stack

.DATA                    ; reserve storage for data

String      BYTE    "435.75", 0

.CODE                           ; program code

_start:

pushd  NEAR32 PTR String

call   atofproc

INVOKE ExitProcess, 0

PUBLIC _start

END

Figure 10.15 Test driver for atofproc

Finally we come to a procedure to convert a floating-point parameter to “E nota-

tion.” The procedure generates a 12-byte long ASCII string consisting of

• a leading minus sign or a blank

• a digit

• a decimal point

• five digits

• the letter E

• a plus sign or a minus sign

• two digits

This string represents the number in base 10 scientific notation. For example, for the

decimal value 145.8798, the procedure would generate the string b1.45880E+02, where b

represents a blank. Notice that the ASCII string has a rounded value.
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Figure 10.16 displays the design for the floating to ASCII procedure. After the

leading space or minus sign is generated, most of the work necessary to get the remain-

ing characters is done before they are actually produced. The value is repeatedly multi-

plied or divided by 10 until it is at least 1.0 but less than 10.0. Multiplication is used if the

point at first destination byte;

if value ≤ 0

then

put blank in destination string;

else

put minus in destination string;

value := –value;

end if;

point at next destination byte;

exponent := 0;

if value ( 0

then

if value > 10

then

until value < 10 loop

divide value by 10;

add 1 to exponent;

end until;

else

while value < 1 loop

multiply value by 10;

subtract 1 from exponent;

end while;

end if;

end if;

(continued)

Figure 10.16 Floating-point to ASCII conversion algorithm
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add 0.000005 to value;    { for rounding }

if value > 10

then

divide value by 10;

add 1 to exponent;

end if;

digit := int(value);          { truncate to integer }

convert digit to ASCII and store in destination string;

point at next destination byte;

store “.” in destination string;

point at next destination byte;

for i := 1 to 5 loop

value := 10 * (value – float(digit));

digit := int(value);

convert digit to ASCII and store in destination string;

point at next destination byte;

end for;

store E in destination string;

point at next destination byte;

if exponent ≤ 0

then

put + in destination string;

else

put – in destination string;

exponent := –exponent;

end if;

point at next destination byte;

convert exponent to two decimal digits;

convert two decimal digits of exponent to ASCII;

store characters of exponent in destination string;

Figure 10.16 (continued)
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value is initially less than 1; the number of multiplications gives the negative power of 10

required for scientific notation. Division is used if the value is initially 10.0 or more; the

number of divisions gives the positive power of 10 required for scientific notation.

Only five digits are going to be displayed after the decimal point. The value

between 1.0 and 10.0 is rounded by adding 0.000005; if the sixth digit after the decimal

point is 5 or greater, this will be reflected in the digits that are actually displayed. It is

possible that this addition gives a sum of 10.0 or more; if this happens, the value is

divided by 10 again and the exponent is incremented.

With a value at least 1.0 but under 10.0, truncating to an integer gives the digit to

go before the decimal point. This digit and the decimal point are generated. Then the

remaining five digits can be generated by repeatedly subtracting the whole part from the

value, multiplying the remaining fraction by 10, and truncating the new value to an integer.

After the “fraction” of the ASCII string is generated, the letter E, a plus or minus

sign for the exponent, and the exponent digits are generated. The exponent will contain

at most two digits—the single IEEE notation provides for numbers as large as 2128,

which is less than 1039.

Figure 10.17 shows this design implemented in a procedure named ftoaproc.

The procedure has two parameters: first, the floating-point value to be converted and

second, the address of the destination string.

The program opens with directives that make it easy to refer to the control bits

by name. The 1’s for C3, C2, and C0 are in positions 14, 10, and 8 respectively.

C3 EQU 0100000000000000b

C2 EQU 0000010000000000b

C0 EQU 0000000100000000b

After normal procedure entry code, the FPU control word is copied to memory

and then pushed on the stack so that it can be restored at the end of the procedure. Bits

10 and 11 of the control word are used for rounding control. The next two instructions set

them to 11 so that a floating point to integer store will result in chopping of the fractional

part of the number.

fstcw controlWd       ; get control word

push controlWd        ; save control word

or   controlWd, 0000110000000000b

fldcw controlWd       ; set control to chop
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; floating point to ASCII code

; author:  R. Detmer

; revised:  4/98

.386

.MODEL FLAT

PUBLIC ftoaproc

C3 EQU 0100000000000000b

C2 EQU 0000010000000000b

C0 EQU 0000000100000000b

.DATA

value     REAL4  ?

ten       REAL4  10.0

one       REAL4  1.0

round     REAL4  0.000005

digit     WORD   ?

exponent  WORD   ?

controlWd WORD   ?

byteTen   BYTE   10

.CODE

ftoaproc  PROC NEAR32  ; convert floating-point number to ASCII string

; Parameters passed on the stack:

;   (1) 32-bit floating point value

;   (2) address of ASCII destination string

; ASCII string with format [blank/-]d.dddddE[+/-]dd is generated.

; (The string is always 12 characters long.)

push ebp              ; establish stack frame

mov  ebp, esp

push eax              ; save registers

push ebx

push ecx

push edi

fstcw controlWd       ; get control word

push controlWd        ; save control word

or   controlWd, 0000110000000000b

fldcw controlWd       ; set control to chop

(continued)

Figure 10.17 Floating point to ASCII conversion procedure
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mov  edi, [ebp+8]     ; destination string address

mov  eax, [ebp+12]    ; value to convert

mov  exponent, 0      ; exponent := 0

mov  value, eax       ; value to ST via memory

fld  value

ftst                  ; value >= 0?

fstsw  ax             ; status word to AX

and  ax, C0           ; check C0

jnz  elseNeg          ; skip if set (value negative)

mov  BYTE PTR [edi], ' '  ; blank for positive

jmp  endifNeg

elseNeg:  mov  BYTE PTR [edi], '-'  ; minus for negative

fchs                  ; make number positive

endifNeg:

inc  edi              ; point at next destination byte

mov  exponent, 0      ; exponent := 0

ftst                  ; value = 0?

fstsw ax              ; status word to AX

and  ax, C3           ; check C3

jne  endifZero        ; skip if zero

fcom ten              ; value > 10?

fstsw ax              ; status word to AX

and  ax, C3 or C2 or C0   ; check for all C3=C2=C0=0

jnz  elseLess         ; skip if value not > 10

untilLess:

fdiv ten              ; value := value/10

inc  exponent         ; add 1 to exponent

fcom ten              ; value < 10

fstsw ax              ; status word to AX

and  ax, C0           ; check C0

jnz  untilLess        ; continue until value < 10

jmp  endifBigger      ; exit if

elseLess:

whileLess:

fcom one              ; value < 1

fstsw ax              ; status word to AX

and  ax, C0           ; check C0

jz   endwhileLess     ; exit if not less

fmul ten              ; value := 10*value

dec  exponent         ; subtract 1 from exponent

jmp  whileLess        ; continue while value < 1

(continued)

Figure 10.17 (continued)
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endwhileLess:

endifBigger:

endifZero:

fadd round            ; add rounding value

fcom ten              ; value > 10?

fstsw ax              ; status word to AX

and  ax, C3 or C2 or C0  ; C3=C2=C0=0? (value > 10?)

jnz  endifOver        ; skip if not

fdiv ten              ; value := value/10

inc  exponent         ; add 1 to exponent

endifOver:

; at this point 1.0 <= value < 10.0

fist digit            ; store integer part

mov  bx, digit        ; copy integer to BX

or   bx, 30h          ; convert digit to character

mov  BYTE PTR [edi], bl  ; store character in destination

inc  edi              ; point at next destination byte

mov  BYTE PTR [edi], '.'     ; decimal point

inc  edi              ; point at next destination byte

mov  ecx, 5           ; count of remaining digits

forDigit: fisub digit           ; subtract integer part

fmul ten              ; multiply by 10

fist digit            ; store integer part

mov  bx, digit        ; copy integer to BX

or   bx, 30h          ; convert digit to character

mov  BYTE PTR [edi], bl  ; store character in destination

inc  edi              ; point at next destination byte

loop forDigit         ; repeat 5 times

mov  BYTE PTR [edi], 'E'  ; exponent indicator

inc  edi              ; point at next destination byte

mov  ax, exponent     ; get exponent

cmp  ax, 0            ; exponent >= 0 ?

jnge NegExp

mov  BYTE PTR [edi], '+'  ; non-negative exponent

jmp  endifNegExp

NegExp:   mov  BYTE PTR [edi], '-'  ; negative exponent

neg  ax               ; change exponent to positive

(continued)

Figure 10.17 (continued)
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endifNegExp:

inc  edi              ; point at next destination byte

div  byteTen          ; convert exponent to 2 digits

or   ax, 3030h        ; convert both digits to ASCII

mov  BYTE PTR [edi+1], ah  ; store characters in destination

mov  BYTE PTR [edi], al

pop  controlWd        ; restore control word

fldcw controlWd

pop  edi              ; restore registers

pop  ecx

pop  ebx

pop  eax

pop  ebp

ret  8

ftoaproc  ENDP

END

Figure 10.17 (continued)

Most of the code in the procedure is a straightforward implementation of the

design. However, the floating-point comparisons need some explanation. The first

sequence is

ftst                  ; value >= 0?

fstsw  ax             ; status word to AX

and  ax, C0           ; check C0

jnz  elseNeg          ; skip if set (value negative)

The ftst instruction compares value to 0, setting the flags in the status word. To test

these bits, the status word is copied to AX. The C0 flag is set only when ST < 0. The and

instruction masks all bits but the one corresponding to C0, and the jnz instruction

branches if the remaining bit is nonzero, that is, the value is negative.

A similar but more complicated check comes when “value > 10” is imple-

mented with

fcom ten              ; value > 10?

fstsw ax              ; status word to AX

and  ax, C3 or C2 or C0   ; check for all C3=C2=C0=0

jnz  elseLess         ; skip if value not > 10
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Since ST > operand results in all C3 = C2 = C0 = 0, all three control bits must be zero. The

program masks with C3 or C2 or C0, a descriptive way of writing 0100010100000000.

This or operation combines operands at assembly time, not at execution time.

Conversion of the exponent to two ASCII characters uses a slightly new technique.

The exponent in AX is non-negative and less than 40 when the following code is executed.

div  byteTen          ; convert exponent to 2 digits

or   ax, 3030h        ; convert both digits to ASCII

mov  BYTE PTR [edi+1], ah  ; store characters in destination

mov  BYTE PTR [edi], al

Dividing by 10 puts the quotient (the high-order base ten digit) in AL and the remainder

(the low-order digit) in AH. These are simultaneously converted to ASCII by the or

instruction, and are then stored in the destination string.

Programming Exercises 10.2

1. Write a complete program that will prompt for and input a decimal

value for the radius of a circle and will calculate and display (appropri-

ately labeled) the circumference and the area of the circle. Use the input

and output macros to input and output character strings, the atofproc

and ftoaoproc procedures to convert between floating point and ASCII,

and FPU instructions for floating-point operations.

2. Write a NEAR32 procedure ftoaproc1 that will convert a floating-point

number to an ASCII string in fixed point format. Specifically, the proce-

dure must have four parameters pushed on the stack:

• a 32-bit floating point value

• the address of the destination string

• a word containing the total number n of characters in the string to

be generated

• a word containing the number of digits d to be generated after the

decimal point

The output string will consist of a leading blank or minus sign, the inte-

ger part of the value in n-d–2 positions (with leading blanks as needed),

a decimal point, and the fractional part of the value rounded to d posi-

tions. The procedure will preserve all registers and will remove parame-

ters from the stack.

TEAM LinG - Live, Informative, Non-cost and Genuine!



374 Floating-Point Arithmetic

3. The following algorithm approximates the cube root of a real number x

root := 1.0;

until (|root – oldRoot| < smallValue) loop

oldRoot := root;

root := (2.0*root + x/(root*root)) / 3.0;

end until;

Implement this design in a NEAR32 procedure cuberoot, using 0.001 for

smallValue. Assume there is one parameter passed on the stack, the

value of x. Return the result in ST. The procedure will preserve all regis-

ters and will remove parameters from the stack.

Write a short test driver for your procedure, viewing the results

with WinDbg.

10.3 Floating-Point Emulation

Some 80x86 computer systems have no floating-point unit. Such a system can still do

floating-point arithmetic. However, floating-point operations must be performed by soft-

ware routines using memory and the general purpose registers, rather than by a floating-

point unit. This section describes procedures for multiplication and for addition of

floating-point numbers. These could be useful for floating-point emulation, and they also

provide a better understanding of the floating-point representation.

The procedures in this section manipulate floating-point values in the IEEE sin-

gle format. Recall from Section 1.5 that this scheme includes the pieces that describe a

number in “base two scientific notation”:

• a leading sign bit for the entire number, 0 for positive and 1 for neg-

ative

• an 8-bit biased exponent (or characteristic). This is the actual expo-

nent plus a bias of 12710

• 23 bits that are the fraction (or mantissa) expressed with the lead-

ing 1 removed

This is the format produced by the REAL4 directive.

Each procedure combines the components of its parameters to yield a result in

the structure fp3. Often this result is not normalized; that is, there are not exactly 24 sig-
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nificant fraction bits. The NEAR procedure normalize adjusts the fraction and exponent

to recover the standard format.

Notice that there is a problem representing the number 0.0 using the normal IEEE

scheme. There is no “binary scientific notation” zero with a 1 bit preceding the binary

point of the fraction. The best that can be done is 1.0 � 2�127, which is small, but nonzero.

According to the rules given previously, this value would have an IEEE representation con-

sisting of 32 zero bits. However, the two bit patterns that end with 31 zeros are considered

special cases, and each is interpreted as 0.0 instead of plus or minus 1.0 � 2�127. These

special cases will be considered in the following multiplication and addition code.

In addition to a special bit pattern to represent 0.0, the IEEE standard describes

three other distinctive situations. The pattern

s 11111111 00000000000000000000000

(sign bit s, biased exponent 255, and fraction 0) represents plus or minus infinity. These

values are used, for example, as quotients when a nonzero number is divided by zero.

Another special case is called NaN (not a number) and is represented by any bit pattern

with a biased exponent of 255 and a nonzero fraction. The quotient 0/0 should result in

NaN, for example. The final special case is a denormalized number; when the biased

exponent is zero and the fraction is nonzero, then no leading 1 is assumed for the frac-

tion. This allows for representation of extra small numbers. Code in this section’s float-

ing-point procedures looks for the special zero representations wherever needed.

However, other special number forms are ignored.

We will frequently need to extract the sign, exponent, and fraction of a floating-

point number. For this purpose we will use a macro expand. This macro will have four

parameters

1. a 32-bit floating point number

2. a byte to hold the sign (0 for positive, 1 for negative)

3. a word to hold the unbiased (actual) exponent

4. a doubleword to hold the fraction, including the leading 1 for a

nonzero number.

Code for the macro expand appears in Fig. 10.18.

The expand macro code illustrates how useful the bit manipulation operations

can be. The sign bit is isolated by rotating it left to bit position 0, saving the byte con-
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expand    MACRO  source, sign, exponent, fraction

LOCAL  addOne, endAddOne

; take the 32-bit floating-point value source and expand it into

; separate pieces:

;   sign: byte

;   exponent: word (bias removed)

;   fraction: doubleword (with leading 1)

push eax             ; save EAX

mov  eax, source     ; get source

rol  eax, 1          ; sign to bit 0

mov  sign, 0         ; clear sign

mov  sign, al        ; get byte with sign bit

and  sign, 1         ; mask all but sign bit

rol  eax, 8          ; shift exponent to bits 0–7

mov  exponent, ax    ; get word with biased exponent

and  exponent, 0ffh  ; mask all but exponent

sub  exponent, 127   ; subtract bias

shr  eax, 9          ; shift fraction to right

test eax, eax        ; is fraction zero?

jnz  addOne          ; add leading 1 bit if nonzero

cmp  exponent, –127  ; was original exponent 0?

je   endAddOne       ; if so, leave fraction at zero

AddOne:   or   eax, 800000h    ; add leading 1 bit

endAddOne:

mov  fraction, eax   ; store fraction

pop  eax             ; restore EAX

ENDM

Figure 10.18 expand macro

taining it, and then masking by 1 (=00000001b) to zero all bits except the sign bit. Then

the additional eight exponent bits are rotated to the right end of EAX and saved as a

word before the leading bits are masked off. The bias of 127 is subtracted to get the true

signed exponent. Finally the fraction is shifted back to the right of EAX. Before it is

saved, a check for the IEEE 0.0 representation is made. If the original number was not

0.0, then the leading 1 bit of the scientific notation is inserted with the or operation.
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The plan is to take floating-point numbers apart into their sign-fraction-exponent

forms, implement an operation by manipulating the parts, and then combine the resulting

sign-fraction-exponent pieces back into a floating-point result. The combine operation

will also be done with a macro, called combine. Code for this macro appears in Fig. 10.19.

The design for the combine macro assumes that each of the pieces of repre-

senting a floating-point value is legal, with a zero fraction the only special case consid-

ered. With these assumptions, the fraction will be normalized; that is, bit 24 will be the

one and no bit to the left will be one. The operations that we will do with floating-point

combine  MACRO  destination, sign, exponent, fraction

LOCAL  endZero

; take the separate pieces:

;   sign: byte

;   exponent: word (bias removed)

;   fraction: doubleword (with leading 1)

; of a floating-point value and combine them into a 32-bit

; IEEE result at destination

push eax             ; save EAX

push ebx             ;   and EBX

mov  eax, 0          ; zero result

cmp  fraction, 0     ; zero value?

je   endZero         ; skip if so

mov  al, sign        ; get sign

ror  eax, 1          ; rotate sign into position

mov  bx, exponent    ; get exponent

add  bx, 127         ; add bias

shl  ebx, 23         ; shift to exponent position

or   eax, ebx        ; combine with sign

mov  ebx, fraction   ; get fraction

and  ebx, 7fffffh    ; remove leading 1 bit

or   eax, ebx        ; combine with sign and exponent

endZero:

mov  destination, eax ;store result

pop  ebx             ; restore registers

pop  eax

ENDM

Figure 10.19 combine macro
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representations may leave a non-normalized result. We need a third macro, this one to

normalize a floating-point representation. The code is in Fig. 10.20. It implements the fol-

lowing design:

if the fraction is zero then exit; end if;

while there is a non-zero bit in the left-hand byte of the fraction loop

shift fraction bits one position to the right;

add 1 to exponent;

end loop;

while bit 23 is not 1 loop

shift fraction bits one position to the left;

subtract one from exponent;

end loop;

normalize  MACRO sign, exponent, fraction

LOCAL  endZero, while1, while2, endWhile1, endWhile2

; Normalize floating-point number represented by separate pieces:

;   sign: byte

;   exponent: word (bias removed)

;   fraction: doubleword (with leading 1)

push eax             ; save EAX

cmp  fraction, 0     ; zero fraction?

je   endZero         ; exit if so

while1:   mov  eax, fraction   ; copy fraction

and  eax, 0ff000000h ; nonzero leading byte?

jz   endWhile1       ; exit if zero

shr  fraction, 1     ; shift fraction bits right

inc  exponent        ; subtract 1 from exponent

jmp  while1          ; repeat

endWhile1:

while2:   mov  eax, fraction   ; copy fracton

and  eax, 800000h    ; check bit 23

jnz  endWhile2       ; exit if 1

shl  fraction, 1     ; shift fraction bits left

dec  exponent        ; subtract 1 from exponent

jmp  while2          ; repeat

endWhile2:

endZero:

pop  eax             ; restore EAX

ENDM

Figure 10.20 normalize macro
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Multiplication is the easiest floating-point operation to implement. It is based

on the usual method of multiplying numbers in scientific notation:

• multiply the fractions to get the fraction of the result

• add the exponents to get the exponent of the result

• follow customary rules of signs to get the sign of the result

This method is implemented in the code displayed in Fig. 10.21. The procedure fMult-

Proc has three parameters pushed on the stack—the two operands and the address for

; procedure fMultProc(Operand1, Operand2 : float;
;                     Result : address of float)
; parameters are passed in doublewords on the stack
; parameters are removed by the procedure
; author:  R. Detmer  4/98

.DATA
sign1      BYTE  ?
exponent1  WORD  ?
fraction1  DWORD ?
sign2      BYTE  ?
exponent2  WORD  ?
fraction2  DWORD ?
sign3      BYTE  ?
exponent3  WORD  ?
fraction3  DWORD ?

.CODE
fMultProc  PROC NEAR32

push    ebp            ; save base pointer
mov     ebp,esp        ; copy stack pointer
push    eax            ; save registers
push    edx

expand  [ebp+16], sign1, exponent1, fraction1
expand  [ebp+12], sign2, exponent2, fraction2
mov     al, sign1      ; combine signs
xor     al, sign2
mov     sign3, al      ; and save
mov     ax, exponent1  ; add exponents
add     ax, exponent2
mov     exponent3, ax  ; and save

(continued)

Figure 10.21 fMultProc procedure
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the result. The sign is computed with using an exclusive or of the operands’ signs. Addi-

tion of the exponents is straightforward. Multiplication of the fractions is followed by

shifting off the low-order 23 bits; recall that each fraction is logically a 1, followed by a

binary point, followed by 23 binary fraction bits. Multiplying two such fractions gives 46

fraction bits, and the extra 23 must be discarded.

The macros used by fMultProc are shown in previous figures. Although macros

are convenient here, note that there are some dangers. You could not, for instance, use

the statements

mov     eax, [ebp+8]   ; address for result

combine [eax], sign3, exponent3, fraction3

to combine the result pieces. The reason is that the combine macro uses the EAX regis-

ter internally. It would have been safer to implement each of expand, combine, and nor-

malize as procedures rather than macros.

Next we implement an algorithm for floating-point addition. This is somewhat

more difficult than multiplication, but again follows the same sort of procedure that you

would use to add two numbers in scientific notation, namely to adjust them to have the

same exponent, and then add the fractions. One additional complication is that for a

negative number, the fraction must be negated prior to adding it to the other fraction.

The following algorithm is implemented in the code in Fig. 10.22.

expand each number into sign, exponent, and fraction components;

mov     eax, fraction1 ; multiply fractions
mul     fraction2
shrd    eax, edx, 23   ; discard extra bits
mov     fraction3, eax ; and save

normalize sign3, exponent3, fraction3
mov     edx, [ebp+8]   ; address for result
combine [edx], sign3, exponent3, fraction3

pop    edx             ; restore registers
pop    eax
pop    ebp             ; restore base pointer
ret    12              ; return, removing parameters

fMultProc  ENDP

Figure 10.21 (continued)
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; procedure fAddProc(Operand1, Operand2 : float;

;                    Result : address of float)

; parameters are passed in doublewords on the stack

; parameters are removed by the procedure

; author: R. Detmer   4/98

.DATA

sign1      BYTE  ?

exponent1  WORD  ?

fraction1  DWORD ?

sign2      BYTE  ?

exponent2  WORD  ?

fraction2  DWORD ?

sign3      BYTE  ?

exponent3  WORD  ?

fraction3  DWORD ?

.CODE

fAddProc   PROC NEAR32

push    ebp            ; save base pointer

mov     ebp,esp        ; copy stack pointer

push    eax            ; save registers

push    edx

expand  [ebp+16], sign1, exponent1, fraction1

expand  [ebp+12], sign2, exponent2, fraction2

mov     ax, exponent1  ; copy exponent1

while1:    cmp     ax, exponent2  ; exponent1 < exponent2?

jnl     endWhile1      ; exit if not

inc     ax             ; add 1 to exponent1

shr     fraction1,1    ; shift fraction1 1 bit right

jmp     while1         ; repeat

endWhile1: mov     exponent1, ax  ; put fraction1 back in memory

mov     ax, exponent2  ; copy exponent2

while2:    cmp     ax, exponent1  ; exponent2 < exponent1?

jnl     endWhile2      ; exit if not

inc     ax             ; add 1 to exponent1

shr     fraction2,1    ; shift fraction2 1 bit right

jmp     while2         ; repeat

endWhile2: mov     exponent2, ax  ; put fraction2 back in memory

mov     exponent3, ax  ; save common exponent

cmp     sign1, 1       ; sign1 = minus?

jne     notNeg1        ; skip if not

neg     fraction1      ; negate fraction1

(continued)

Figure 10.22 fAddProc procedure

TEAM LinG - Live, Informative, Non-cost and Genuine!



382 Floating-Point Arithmetic

notNeg1:

cmp     sign2, 1       ; sign1 = minus?

jne     notNeg2        ; skip if not

neg     fraction2      ; negate fraction2

notNeg2:

mov     eax, fraction1 ; add fractions

add     eax, fraction2

mov     fraction3, eax ; and save

mov     sign3, 0       ; plus

cmp     eax, 0         ; fraction3 < 0?

jnl     notNegResult   ; skip if not

mov     sign3, 1       ; minus

neg     fraction3      ; make fraction3 positive

notNegResult:

normalize sign3, exponent3, fraction3

mov     edx, [ebp+8]   ; address for result

combine [edx], sign3, exponent3, fraction3

pop    edx            ; restore registers

pop    eax

pop    ebp           ; restore base pointer

ret    12            ; return, removing parameters

fAddProc   ENDP

Figure 10.22 (continued)

while exponent1 < exponent2 loop

add 1 to exponent1;

shift fraction1 one bit right;

end while;

while exponent2 < exponent1 loop

add 1 to exponent2;

shift fraction2 one bit right;

end while;

exponent3 := exponent1; {the exponents are equal}

if sign1 = minus then negate fraction1; end if;

if sign2 = minus then negate fraction2; end if;

fraction3 := fraction1 + fraction2;

sign3 := plus;
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if fraction3 < 0

then

sign3 := minus;

negate fraction3;

end if;

normalize sign3, exponent3, fraction3;

combine sign3, exponent3, fraction3 into result;

Programming Exercises 10.3

Each of the exercises below are to be programmed without using float-

ing-point instructions.

1. Write a NEAR32 procedure fDivProc that has three parameters,

Operand1, Operand2, and Result. Each of the operands is a 32-bit float-

ing point value and Result gives the address for a 32-bit floating-point

result. If Operand2 ( 0.0, put the value of Operand1/Operand2 in the

address given by Result. If the second operand is zero, then use the

IEEE representation for plus or minus infinity as the result (plus or

minus will depend on the sign of Operand1). The procedure will remove

parameters from the stack and will change no register.

2. Write a NEAR32 procedure fSubProc that has three parameters,

Operand1, Operand2, and Result. Each of the operands is a 32-bit float-

ing-point value and Result gives the address for a 32-bit floating-point

result. Put the value of Operand1—Operand2 in the address given by

Result. The procedure will remove parameters from the stack and will

change no register. (Although you could do this by calling fAddProc,

write a complete procedure instead.)

3. Write a NEAR32 procedure fNegProc that has two parameters, Operand

and Result. Operand is a 32-bit floating-point value and Result gives the

address for a 32-bit floating-point result. Put the value of �Operand1 in

the address given by Result. The procedure will remove parameters

from the stack and will change no register.

4. Write a NEAR32 procedure fCmpProc that has two parameters,

Operand1 and Operand2. Each of the operands is a 32-bit floating-point

value. This procedure will compare the values of Operand1 and
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// square root of sum of squares of two values

#include <iostream.h>

void main()

{

float value1;

float value2;

float sum;

cout << "First value? ";

cin >> value1;

cout << "Second value? ";

cin >> value2;

__asm

{

fld    value1

fld    st

(continued)

Figure 10.23 In-line assembly code

Operand2 and will return 0 in EAX if they are equal, �1 if Operand1 <

Operand2, and +1 if Operand1 > Operand2. The procedure will remove

parameters from the stack and will change no register other than EAX.

10.4 Floating-Point and In-line Assembly

High-level language compilers sometimes have the ability to translate a program that

includes in-line assembly code. This permits most of a program to be written in the

high-level language, while a few parts are written in assembly language. These parts

may need critical optimization or may implement low-level algorithms that would be dif-

ficult or impossible to code in the high-level language.

This section contains a single example of a program that compiles using

Microsoft Visual C++. It performs the same computations as does the code in Fig. 10.11,

namely to find the square root of the sum of the squares of two floating-point values,

However, this version provides for input of the values and output of the results, with the

input and output done in C++. The code is shown in Fig. 10.23.

Notice that for this compiler the in-line assembly language code is preceded by

the __asm keyword that begins with two underscores, and that braces surround the
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fmul

fld    value2

fld    st

fmul

fadd

fsqrt

fstp  sum

}

cout << "The sum is " << sum << endl;

}

Figure 10.23 (continued)

assembly language statements. Notice also that the assembly language statements can

reference variables declared in C++ statements. Finally, although these assembly lan-

guage statements are floating-point instructions, almost any statements can appear in

in-line assembly language, including those with labels.

Programming Exercises 10.4

1. Write a complete program that will prompt for and input a decimal

value for the radius of a circle and will calculate and display (appropri-

ately labeled) the circumference and the area of the circle. Do the input

and output with C++ and the floating-point calculations with floating-

point instructions in in-line assembly.

2. The following algorithm approximates the cube root of a real number x

root := 1.0;

until (|root – oldRoot| < smallValue) loop

oldRoot := root;

root := (2.0*root + x/(root*root)) / 3.0;

end until;

Write a C++ program to declare variables, input a value for x, and dis-

play root. Implement the cube root algorithm with in-line assembly

code, using 0.001 for smallValue. 
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Chapter Summary

The Intel 80x86 floating-point unit (FPU) contains eight data 80-bit data

registers, organized as a stack. It executes a variety of instructions from

load and store to arithmetic to complex transcendental functions. Compari-

son instructions set bits in a FPU status register; this status word must be

copied to AX or to memory to check the outcome of a comparison.

Conversion between floating point and ASCII representations is

similar to that previously done for integers. The easiest ASCII format to

scan is a simple decimal format. The simplest ASCII format to produce is

E-notation.

Floating-point instructions can be emulated without a floating-

point unit. The basic techniques involve separating floating-point represen-

tations into sign, exponent, and fraction components, manipulating these

components, and then combining the resulting components back into a

floating-point representation.

Some high-level language compilers translate in-line assembly

code. One application of this is with floating-point instructions, doing

input/output in a language like C++ and computations in assembly lan-

guage. However, in-line assembly is also useful in other critical or difficult-

to-implement applications.
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CHAPTER 11

11.1 Packed BCD

Representations

11.2 Packed BCD

Instructions

11.3 Unpacked BCD

Representations and

Instructions

11.4 Other Architectures:

VAX Packed Decimal

Instructions

Decimal Arithmetic

Section 1.5 contained a brief introduction to the

integer representation systems known as binary

coded decimal (BCD). BCD representations are

especially useful for storing integers with many

digits, such as might be needed for financial

records. BCD values are easier than 2’s comple-

ment values to convert to or from ASCII format,

but only a few 80x86 instructions are available to

facilitate arithmetic with BCD numbers.

Chapter 11 describes BCD representation

schemes and the 80x86 instructions that are used

with BCD numbers. It includes code to convert BCD

representations for numbers to and from corre-

sponding ASCII representations and some proce-

dures for BCD arithmetic.
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11.1 Packed BCD Representations

The two major classifications of BCD schemes are packed and unpacked, and many vari-

ations with respect to the number of bytes used and how the sign of a value is repre-

sented. This section and Section 11.2 discuss packed BCD numbers. Section 11.3 tells

about unpacked BCD numbers.

Packed BCD representations store two decimal digits per byte, one in the

high-order four bits and one in the low-order four bits. For example, the bit pattern

01101001 represents the decimal number 69, using 0110 for 6 and 1001 for 9. One con-

fusing thing about packed BCD is that this same bit pattern is written 69 in hexadeci-

mal; however, this just means that if 01101001 is thought of as a BCD number, it

represents the decimal value 69, but if it is viewed as a signed or unsigned binary

integer, the corresponding decimal value is 105. This again makes the point that a

given pattern of bits can have multiple numeric interpretations, as well as non-

numeric meanings.

If single bytes were used for packed BCD representations, then decimal num-

bers from 0 to 99 could be stored. This would not be very useful, so typically several

bytes are used to store a single number. Many schemes are possible; some use a fixed

number of bytes and some have variable length, incorporating a field for length as part of

the representation. The bit pattern for a number often includes one or more bits to indi-

cate the sign of the number.

As mentioned in Chapter 10, the Microsoft Macro Assembler provides a DT direc-

tive that can be used to define a 10 byte packed decimal number. Although other repre-

sentation systems are equally valid, this book concentrates on this scheme. The directive

DT 123456789

reserves ten bytes of storage with initial values (in hex)

89 67 45 23 01 00 00 00 00 00

Notice that the bytes are stored backward, low order to high order, but within each byte

the individual decimal digits are stored forward. This is consistent with the way that

high-order and low-order bytes are reversed in 2’s complement integers. The tenth byte

in this representation is used to indicate the sign of the entire number. This byte is 00 for

a positive number and 80 for a negative number. Therefore the DT directive

DT  –1469
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produces

69 14 00 00 00 00 00 00 00 80

Notice that only the sign indicator changes for a negative number; other digits of the

representation are the same as they would be for the corresponding positive number.

Since an entire byte is used for the sign indicator, only nine bytes remain to

store decimal digits. Therefore the packed BCD scheme used by the DT directive stores

a signed number up to decimal 18 digits long. With MASM 6.11, extra digits are trun-

cated without warning.

Although DT directives can be used to initialize packed BCD numbers in an

assembly language program and arithmetic can be done on these numbers with the aid

of the instructions covered in the next section, packed BCD numbers are of little service

unless they can be displayed for human use. Figure 11.1 gives the source code for a pro-

cedure ptoaProc that converts a packed BCD number to the corresponding ASCII string.

This procedure does the same job for packed BCD numbers as itoaProc and dtoaProc do

for 2’s complement integers.

The procedure ptoaProc has two parameters: a 10-byte-long packed BCD

source and a 19-byte-long ASCII destination string, each passed by location. The desti-

nation is 19 bytes long to allow for a sign and 18 digits. The sign will be a space for a

positive number and a minus sign for a negative number. For the digits, leading zeros

rather than spaces are produced. The procedure implements the following design:

copy source address to ESI;

copy destination address to EDI;

add 18 to EDI to point at last byte of destination string;

for count := 9 down to 1 loop { process byte containing two digits }

copy next source byte to AL;

duplicate source byte in AH;

mask out high-order digit in AL;

convert low-order digit in AL to ASCII code;

store ASCII code for low-order digit in destination string;

decrement EDI to point at next destination byte to left;

shift AH 4 bits to right to get only high-order digit;

convert high-order digit in AH to ASCII code;

store ASCII code for high-order digit in destination string;

decrement EDI to point at next destination byte to left;
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ptoaProc  PROC NEAR

; convert 10-byte BCD number to a 19-byte-long ASCII string

; parameter 1:  address of BCD number

; parameter 2:  destination address

; author:  R. Detmer     revised: 5/98

push ebp       ; establish stack frame

mov  ebp, esp

push esi       ; save registers

push edi

push eax

push ecx

mov  esi, [ebp+12]  ; source address

mov  edi, [ebp+8]   ; destination address

add  edi, 18   ; point to last byte of destination

mov  ecx, 9    ; count of bytes to process

for1:     mov  al, [esi] ; byte with two bcd digits

mov  ah, al    ; copy to high-order byte of AX

and  al, 00001111b       ; mask out higher-order digit

or   al, 30h   ; convert to ASCII character

mov  [edi], al ; save lower-order digit

dec  edi       ; point at next destination byte to left

shr  ah, 4     ; shift out lower-order digit

or   ah, 30h   ; convert to ASCII

mov  [edi], ah ; save higher-order digit

dec  edi       ; point at next destination byte to left

inc  esi       ; point at next source byte

loop for1      ; continue for 9 bytes

mov  BYTE PTR [edi], ' '  ; space for positive number

and  BYTE PTR [esi], 80h  ; check sign byte

jz   nonNeg               ; skip if not negative

mov  BYTE PTR [edi], '-'  ; minus sign

nonNeg:

pop ecx        ; restore registers

pop eax

pop esi

pop edi

pop ebp

ret 8          ; return, removing parameters

ptoaProc  ENDP

Figure 11.1 Packed BCD to ASCII conversion
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increment ESI to point at next source digit to right;

end for;

move space to first byte of destination string;

if source number is negative

then

move minus sign to first byte of destination string;

end if;

The most interesting part of the design and code is the portion that splits a sin-

gle source byte into two destination bytes. Two copies of the source byte are made, one

in AL and one in AH. The byte in AL is converted to the ASCII code for the low-order

digit using an and instruction to mask the left four bits and an or instruction to put 0011

(hex 3) in their place. The high-order digit is processed similarly. A shr instruction dis-

cards the low-order digit in AH, moves the high-order digit to the right four bits and zeros

the left four bits. Another or instruction produces the ASCII code for the high-order digit.

Once a packed BCD number is converted to an ASCII string it can be displayed

using the output macro or by some other means. Since BCD numbers are often used for

financial calculations, some other ASCII representation may be more desirable than that

generated by ptoaProc. Some exercises at the end of this section specify alternatives.

Sometimes it is necessary to convert an ASCII string to a corresponding packed

BCD value. Figure 11.2 shows a procedure atopProc that accomplishes this task in a

atopProc  PROC NEAR32

; Convert ASCII string at to 10-byte BCD number

; parameter 1: ASCII string address    parameter 2: BCD number address

; null-terminated source string consists only of ASCII codes for digits,

; author:  R. Detmer     revised: 5/98

push ebp       ; establish stack frame

mov  ebp, esp

push esi                   ; save registers

push edi

push eax

push ecx

mov  esi, [ebp+12]         ; source address

(continued)

Figure 11.2 ASCII to packed BCD conversion
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mov  edi, [ebp+8]          ; destination address

mov  DWORD PTR [edi], 0    ; zero BCD destination

mov  DWORD PTR [edi+4], 0

mov  WORD PTR [edi+8], 0

; find length of source string and move ESI to trailing null

mov  ecx, 0                ; count := 0

while1:   cmp  BYTE PTR [esi], 0     ; while not end of string (null)

jz   endwhile1

inc  ecx                   ; add 1 to count of characters

inc  esi                   ; point at next character

jmp  while1                ; check again

endwhile1:

; process source characters a pair at a time

while2:   cmp  ecx, 0                ; while count > 0

jz   endwhile2

dec  esi                   ; point at next ASCII byte from right

mov  al, BYTE PTR [esi]    ; get byte

and  al, 00001111b         ; convert to BCD digit

mov  BYTE PTR [edi], al    ; save BCD digit

dec  ecx                   ; decrement count

jz   endwhile2             ; exit loop if out of source digits

dec  esi                   ; point at next ASCII byte from right

mov  al, BYTE PTR [esi]    ; get byte

shl  al, 4                 ; shift to left and convert to digit

or   BYTE PTR [edi], al    ; combine with other BCD digit

dec  ecx                   ; decrement count

inc  edi                   ; point at next destination byte

jmp  while2                ; repeat for all source characters

endwhile2:

pop ecx                    ; restore registers

pop eax

pop esi

pop edi

pop ebp

ret 8                      ; return, removing parameters

atopProc  ENDP

Figure 11.2 (continued)
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restricted setting. The procedure has two parameters, the addresses of an ASCII source

string and a 10 byte BCD destination string. The ASCII source string is very limited. It

can consist only of ASCII codes for digits terminated by a null byte; no sign, no space,

nor any other character code is permitted.

The design of procedure atopProc is quite different from atodProc (Fig. 8.9) that

produces a doubleword integer from an ASCII string. The ASCII-to-doubleword routine

scans source characters left to right one at a time, but the ASCII-to-packed BCD proce-

dure scans the source string right to left, two characters at a time, in order to pack two

decimal digits into one byte. The procedure must begin by locating the right end of the

string. If there is an odd number of source characters, then only one character will con-

tribute to the last BCD byte. The design for atopProc appears below.

copy source address to ESI;

copy destination address to EDI;

initialize all 10 bytes of destination, each to 00;

counter := 0;

while ESI is not pointing at trailing null byte of ASCII source loop

add 1 to counter;

increment ESI to point at next byte of source string;

end while;

while counter > 0 loop

decrement ESI to point at next source byte from right;

copy source byte to AL;

convert ASCII code to digit by zeroing leftmost 4 bits;

save low-order digit in destination string;

subtract 1 from counter;

if counter = 0

then

exit loop;

end if;

decrement ESI to point at next source byte from right;

copy source byte to AL;

shift AL 4 bits left to get digit in high order 4 bits;

or AL with destination byte to combine with low-order digit;

subtract 1 from counter;

increment EDI to point at next destination byte;

end while;
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The first while loop in the design simply scans the source string left to right,

counting digits preceding the trailing null byte. Although this design allows only ASCII

codes for digits, an extra loop could be included to skip leading blanks and a leading

minus or plus (� or +) could be noted. (These and other enhancements are specified in

programming exercises.)

The second while loop processes the ASCII codes for digits that have been

counted in the first loop. Two digits, if available, must be packed into a single destina-

tion byte. At least one source byte is there each time through the loop, so the first is

loaded into AL, changed from an ASCII code to a digit, and stored in the destination

string. (An alternative way to convert the ASCII code to a digit would be to subtract

3016.) If source characters are exhausted, then the while loop is exited. Otherwise a sec-

ond ASCII character is loaded into AL, a left shift instruction converts it to a digit in the

left four bits of AL, and an or combines it with the right digit already stored in memory

in the destination string.

The atopProc procedure could be used to convert a string obtained from the

input macro. If some other method were used, one would have to ensure that the string

has a trailing null byte.

Exercises 11.1

1. Find the initial values that MASM will generate for each DT directive

below:

(a) DT 123456

(b) DT –123456

(c) DT 345

(d) DT –345

(e) DT 102030405060708090

(f) DT –102030405060708090

2. Explain how you could use floating-point instructions to convert a num-

ber stored as a 2’s complement doubleword integer to a 10-byte packed

decimal equivalent value. From packed BCD to doubleword integer?

3. Define a macro ptoa similar to the itoa macro described in Section 9.5.

Use two parameters, dest and source, dest referencing a 19-byte-long

ASCII string and source referencing a 10-byte packed BCD string in

memory. Include safeguards to ensure that the correct number of argu-

ments is used in a call. Code in the macro will call ptoaProc.
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Programming Exercises 11.1

1. Modify the code for the ptoaProc procedure so that it produces leading

spaces instead of zeros, and so that the minus sign, if any, is placed to

the immediate left of the first nonzero digit. If the value of the entire

number is zero, the units-position (rightmost) zero is not replaced by a

space. The total string length will remain 19 characters. The procedure

will remove parameters from the stack.

2. Modify the code for the ptoaProc procedure so that it produces a 22-

byte-long ASCII string giving a monetary representation of the source

value. Use leading spaces instead of leading zeros (if any) in the first 16

positions. Character 17 is always a decimal point. Characters 18 and 19

are always digits, even if they have value zero. Character 20 is a space.

Characters 21 and 22 are ASCII codes for “CR” if the value is positive

and “DB” if the value is negative. The procedure will remove parame-

ters from the stack.

3. (a) Modify the code for the atopProc procedure so that it will skip

leading spaces in the source string, accept a leading plus or

minus (+ or � ) immediately before the first digit, and terminate

scanning when any nondigit (rather than only a null byte) is

encountered in the string. If a minus sign is encountered, the sign

byte of the BCD representation is set to 8016. The procedure will

remove parameters from the stack.

(b) Define a macro atop similar to the atoi macro described in Section

9.5. Use two parameters, dest and source, dest referencing a 10-

byte packed BCD string in memory and source referencing a 19-

byte-long ASCII string. Include safeguards to ensure that the

correct number of arguments is used in a call. Code in the macro

will call the modified atopProc from part (a).

4. Write a procedure editProc that has two parameters, (1) the address of

a pattern string and (2) the address of a 10-byte packed BCD value. The

procedure selectively replaces some characters in the pattern string by

spaces or by ASCII codes for digits extracted from the BCD value.

Except for a terminating null byte, the only allowable characters in a

pattern string are a pound sign (#), a comma (,) and a period (.). A

period is always unchanged. Each # is replaced by a digit. There will be
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at most 18 pound signs and if there are fewer than 18, then lower-order

digits from the BCD value are used. Leading zeros in the resulting

string are changed to spaces unless they follow a period, in which case

they remain zeros. A comma is unchanged unless it is adjacent to a

space; such a comma is changed to a space. The following examples

(with b indicating a space) illustrate how editProc works. Note that the

original pattern is destroyed by the procedure. The procedure will

remove parameters from the stack.

Before After

pattern BCD value pattern

##,###.## 123456 b1,234.56

##,###.## 12345 bbb123.45

##,###.## 1 bbbbbb.01

11.2 Packed BCD Instructions

Addition and subtraction operations for packed BCD numbers are similar to those for

multicomponent 2’s complement numbers (Section 4.5). Corresponding bytes of the two

operands are added, and the carry-from-one addition is added to the next pair of bytes.

BCD operands have no special addition instruction; the regular add and adc instructions

are used. However, these instructions are designed for binary values, not BCD values, so

for many operands they give the wrong sums.

The 80x86 architecture includes a daa (decimal adjust after addition) instruc-

tion used after an addition instruction to correct the sum. This section explains the oper-

ation of the daa instruction and its counterpart das for subtraction. Procedures for

addition and subtraction of non-negative 10-byte packed BCD numbers are developed;

then a general addition procedure is given.

A few examples illustrate the problem with using binary addition for BCD

operands. The AF column gives the value of the auxiliary carry flag, the significance of

which is discussed below.

Before After add al,bl
AL BL AL AF CF

34 25 59 0 0

37 25 5C 0 0

93 25 B8 0 0

28 39 61 1 0

79 99 12 1 1
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Although each answer is correct as the sum of two unsigned binary integers,

only the first result is correct as a BCD value. The second and third sums contain bit pat-

terns that are not used in BCD representations, C16 in the second example and B16 in the

third. The last two sums contain no invalid digit—they are simply wrong as decimal sums.

The daa instruction is used after an addition instruction to convert a binary

sum into a packed BCD sum. The instruction has no operand; the sum to be converted

must be in the AL register. A daa instruction examines and sets both the carry flag CF

and the auxiliary carry flag AF (bit 4 of the EFLAGS register). Recall that the carry flag is

set to 1 during addition of two eight bit numbers if there is a carry out of the leftmost

position. The AF flag similarly is set to 1 by add or adc instructions if there is a carry

resulting from addition of the low-order four bits of the two operands. One way of think-

ing of this is that the sum of the two low-order hex digits is greater than F16.

A daa instruction first examines the right hex digit of the binary sum in AL. If

this digit is over 9 (that is, A through F), then 6 is added to the entire sum and AF is set

to 1. Notice that this would correct the result in the second example above since 5C + 6

= 62, the correct packed BCD sum of 37 and 25. The same correction is applied if AF=1

when the daa instruction is executed. Thus in the fourth example, 61 + 6 = 67.

After correcting the right digit, daa examines the left digit in AL. The action is

similar: If the left digit is over 9 or CF=1, then 6016 is added to the entire sum. The carry flag

CF is set to 1 if this correction is applied. In the third example, B8 + 60 = 18 with a carry of 1.

Both digits must be corrected in the last example, 12 + 6 = 18 and 18 + 60 = 78

(since CF=1). The chart below completes the above examples, assuming that both of the

following instructions are executed.

add  al, bl

daa

Before After add After daa

AL: 34 AL: 59 AL: 59

BL: 25 AF: 0   CF: 0 AF: 0   CF: 0

AL: 37 AL: 5C AL: 62

BL: 25 AF: 0   CF: 0 AF: 1   CF: 0

AL: 93 AL: B8 AL: 18

BL: 25 AF: 0   CF: 0 AF: 0   CF: 1

AL: 28 AL: 61 AL: 67

BL: 39 AF: 1   CF: 0 AF: 1   CF: 0

AL: 79 AL: 12 AL: 78

BL: 99 AF: 1   CF: 1 AF: 1   CF: 1
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The das instruction (decimal adjust after subtraction) is used after a sub or sbb

instruction. It acts like the daa except that 6 or 6016 is subtracted from rather than added

to the value in AL. The following examples show how das works following sub al,bl.

In the first example, both CF and AF are set to 1 since the subtraction requires borrows

in both digit positions. When 6 and 6016 are subtracted from BC, the result is 56, and

both CF and AF remain set to 1. This is the correct answer since 25 – 69 = 56 (borrowing

1 to change 25 into 125.)

Before After sub After das

AL: 25 AL: BC AL: 56

BL: 69 AF: 1   CF: 1 AF: 1   CF: 1

AL: 37 AL: 12 AL: 12

BL: 25 AF: 0   CF: 0 AF: 0   CF: 0

AL: 93 AL: 6E AL: 68

BL: 25 AF: 1   CF: 0 AF: 1   CF: 1

AL: 92 AL: 59 AL: 53

BL: 39 AF: 1   CF: 0 AF: 1   CF: 0

AL: 79 AL: E4 AL: 84

BL: 95 AF: 0   CF: 1 AF: 0   CF: 1

Each of the daa and das instructions encodes in a single byte. The daa instruc-

tion has opcode 27 and the das instruction has opcode 2F. Each requires three clock

cycles to execute on a Pentium. In addition to modifying AF and CF, the SF, ZF and PF

flags are set or reset by daa or das instructions to correspond to the final value in AL.

The overflow flag OF is undefined and other flags are not affected.

The first BCD arithmetic procedure in this section adds two non-negative 10-byte

numbers. This procedure will have two parameters, addresses of destination and source

values, respectively. Each will serve as an operand, and the destination will be replaced by

the sum, consistent with the way that ordinary addition instructions use the destination

operand. We will not be concerned about setting flags; the exercises specify a more com-

plete procedure that assigns appropriate values to SF, ZF, and CF. A design for the proce-

dure is given below. This design is implemented in the procedure addBcd1 (see Fig. 11.3).

point at first source and destination bytes;

for count := 1 to 9 loop

copy destination byte to AL;

add source byte to AL;
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use daa to convert sum to BCD;

save AL in destination;

point at next source and destination bytes;

end for;

addBcd1   PROC NEAR32

; add two non-negative 10 byte packed BCD numbers

; parameter1:  address of operand1 (and destination)

; parameter2:  address of operand2

; author:  R. Detmer     revised: 5/98

push ebp            ; establish stack frame

mov  ebp, esp

push esi            ; save registers

push edi

push ecx

push eax

mov  edi, [ebp+12]  ; destination address

mov  esi, [ebp+8]   ; source address

clc                 ; clear carry flag for first add

mov  ecx, 9         ; count of bytes to process

forAdd:   mov  al, [edi]      ; get one operand byte

adc  al, [esi]      ; add other operand byte

daa                 ; adjust to BCD

mov  [edi], al      ; save sum

inc  edi            ; point at next operand bytes

inc  esi

loop forAdd         ; repeat for all 9 bytes

pop  eax            ; restore registers

pop  ecx

pop  edi

pop  esi

pop  ebp

ret  8              ; return to caller

addBcd1   ENDP

Figure 11.3 Addition of non-negative packed BCD numbers
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A subtraction procedure for 10-byte packed BCD numbers is more difficult.

Even with the operands restricted to non-negative values, subtracting the source

value (address in parameter 2) from the destination (address in parameter 1) will pro-

duce a negative result if the source is larger than the destination. A design for the pro-

cedure is below.

point at first source and destination bytes;

for count := 1 to 9 loop

copy destination byte to AL;

subtract source byte from AL;

use das to convert difference to BCD;

save AL in destination string;

point at next source and destination bytes;

end for;

if source > destination

then

point at first destination byte;

for count := 1 to 9 loop

put 0 in AL;

subtract destination byte from AL;

use das to convert difference to BCD;

save AL in destination string;

increment DI;

end for;

move sign byte 80 to destination string;

end if;

The first part of this design is almost the same as the design for addition. The

condition (source > destination) is true if the carry flag is set after the first loop, and the

difference is corrected by subtracting it from zero. If this were not done, then, for exam-

ple, 3 � 7 would produce 999999999999999996 instead of � 4. This design is imple-

mented as procedure subBcd1 in Fig. 11.4.
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subBcd1   PROC NEAR32
; subtract 2 non-negative 10 byte packed BCD numbers
; parameter1:  address of operand1 (and destination)
; parameter2:  address of operand2
; operand1 – operand2  stored at destination
; author:  R. Detmer     revised: 5/98

push ebp            ; establish stack frame
mov  ebp, esp
push esi            ; save registers
push edi
push ecx
push eax
mov  edi, [ebp+12]  ; destination address (operand 1)
mov  esi, [ebp+8]   ; source address (operand 2)
clc                 ; clear carry flag
mov  ecx, 9         ; count of bytes to process

forSub:   mov  al, [edi]      ; get one operand byte
sbb  al, [esi]      ; subtract other operand byte
das                 ; adjust to BCD
mov  [edi], al      ; save difference
inc  edi            ; point at next operand bytes
inc  esi
loop forSub         ; repeat for all 9 bytes

jnc  endIfBigger    ; done if destination >= source
sub  edi, 9         ; point at beginning of destination
mov  ecx, 9         ; count of bytes to process

forSub1:  mov  al, 0          ; subtract destination from zero
sbb  al, [edi]
das
mov  [edi], al
inc  edi            ; next byte
loop forSub1
mov  BYTE PTR [edi], 80h   ; negative result

endIfBigger:
pop  eax            ; restore registers
pop  ecx
pop  edi
pop  esi
pop  ebp
ret  8              ; return to caller

subBcd1   ENDP

Figure 11.4 Subtraction of non-negative packed BCD numbers
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Once you have the addBcd1 and subBcd1 procedures that combine non-nega-

tive operands, it is not too difficult to construct the general packed BCD addition and

subtraction procedures. The design for addition is

if operand1 ≤ 0

then

if operand2 ≤ 0

then

addBcd1(operand1, operand2);

else

subBcd1(operand1, operand2);

end if;

else {operand1 < 0}

if (operand2 < 0)

then

addBcd1(operand1, operand2);

else

change sign byte of operand1;

subBcd1(operand1, operand2);

change sign byte of operand1;

end if;

end if;

The design for negative operand1 is a little tricky. When operand2 is also negative, the

result will be negative. Since addBcd1 does not affect the sign byte of the destination

(operand1), the result after adding operand2 will be negative with no special adjustment

required. Adding a non-negative operand2 can result in either a positive or negative

result. The reader should verify that this design and corresponding code produces the

correct sign for the result. This design is implemented in procedure addBcd, shown in

Fig. 11.5. A general procedure for subtraction is left as an exercise.
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addBcd    PROC NEAR32

; add two arbitrary 10 byte packed BCD numbers

; parameter1:  address of operand1 (and destination)

; parameter2:  address of operand2

; author:  R. Detmer     revised: 5/98

push ebp            ; establish stack frame

mov  ebp, esp

push esi            ; save registers

push edi

mov  edi, [ebp+12]  ; destination address

mov  esi, [ebp+8]   ; source address

push edi            ; parameter1 for next call

push esi            ; parameter2 for next call

cmp  BYTE PTR [edi+9], 80h   ; operand1 >= 0?

je   op1Neg

cmp  BYTE PTR [esi+9], 80h   ; operand2 >= 0?

je   op2Neg

call addBcd1        ; add (>=0, >=0)

jmp  endIfOp2Pos

op2Neg:   call subBcd1        ; sub (>=0, <0)

endIfOp2Pos:

jmp  endIfOp1Pos    ; done

op1Neg:   cmp  BYTE PTR [esi+9], 80h   ; operand2 < 0 ?

jne  op2Pos

call addBcd1        ; add (<0, <0)

jmp  endIfOp2Neg

op2Pos:   xor  BYTE PTR [edi+9], 80h  ; change sign byte

call subBcd1        ; sub (<0, >=0)

xor  BYTE PTR [edi+9], 80h  ; change sign byte

endIfOp2Neg:

endIfOp1Pos:

pop  edi            ; restore registers

pop  esi

pop  ebp

ret  8              ; return to caller

addBcd    ENDP

Figure 11.5 General BCD addition procedure
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Exercises 11.2

1. In each part below, assume that the instructions

add  al, bl

daa

are executed. Give the values in the AL register, carry flag CF, and aux-

iliary flag AF: (1) after the add and before the daa and (2) after the daa.

(a) AL: 35   BL: 42

(b) AL: 27   BL: 61

(c) AL: 35   BL: 48

(d) AL: 47   BL: 61

(e) AL: 35   BL: 92

(f) AL: 27   BL: 69

(g) AL: 75   BL: 46

(h) AL: 00   BL: 61

(i) AL: 85   BL: 82

(j) AL: 89   BL: 98

(k) AL: 76   BL: 89

(l) AL: 27   BL: 00

2. Repeat the parts of Exercise 1 for the instructions

sub  al, bl

das

Programming Exercises 11.2

1. Modify the addBcd procedure to set SF, ZF, and CF. The sign flag will be

set according to the sign of the sum, and ZF will be set for a zero result.

The carry flag CF will be set if there are more than 18 digits in the sum.

2. Design and code a general subtraction procedure subBcd with two

parameters: (1) the address of operand1 and (2) the address of operand2.

The difference operand1—operand2 will be stored at the address of

operand1. The procedure will remove parameters from the stack.

11.3 Unpacked BCD Representations and Instructions

Unpacked BCD numbers differ from packed representations by storing one decimal digit

per byte instead of two. The bit pattern in the left half of each byte is 0000. This section
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describes how to define unpacked BCD numbers, how to convert this representation to

and from ASCII, and how to use 80x86 instructions to do some arithmetic operations

with unpacked BCD numbers.

Unpacked BCD representations have no standard length. In this book each

value will be stored in eight bytes, with high-order digits on the left and low-order digits

on the right (opposite to the way a DT directive stores packed BCD numbers). No sign

byte will be used, so only non-negative numbers will be represented. An ordinary BYTE

directive can be used to initialize an unpacked BCD value. For example, the statement

BYTE 0,0,0,5,4,3,2,8

reserves eight bytes of storage containing 00 00 00 05 04 03 02 08, the unpacked BCD

representation for 54328. The directive

BYTE 8 DUP (?)

establishes an eight-byte-long area that can be used to store an unpacked BCD value.

It is simple to convert an unpacked BCD value to or from ASCII. Suppose that

the data segment of a program includes the directives

ascii      DB  8 DUP (?)

unpacked   DB  8 DUP (?)

If unpacked already contains an unpacked BCD value, the following code fragment will

produce the corresponding ASCII representation at ascii.

lea  edi, ascii            ; destination

lea  esi, unpacked         ; source

mov  ecx, 8                ; bytes to process

for8: mov  al, [esi]             ; get digit

or   al, 30h               ; convert to ASCII

mov  [edi], al             ; store ASCII character

inc  edi                   ; increment pointers

inc  esi

loop for8                  ; repeat for all bytes

Converting from an ASCII string to an unpacked BCD representation is equally

easy. The same loop structure can be used with the roles of EDI and ESI reversed, and

with the or instruction replaced by

and  al, 0fh       ; convert ASCII to unpacked BCD
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to mask the high-order four bits. Conversions between ASCII and unpacked BCD are

even simpler if they are done “in place” (see Exercise 3).

The 80x86 architecture includes four instructions to facilitate arithmetic with

unpacked BCD representations. Each mnemonic begins with “aa” for “ASCII adjust”—

Intel uses the word ASCII to describe unpacked BCD representations, even though the

ASCII representation for a digit has 0011 in the left half byte and the unpacked represen-

tation has 0000. The four instructions are aaa, aas, aam, and aad. Information about

these instructions is given in Fig. 11.6.

The aaa and aas instructions are similar to their packed BCD counterparts daa

and das. For addition, bytes containing unpacked BCD operands are combined using an

add or adc instruction, yielding a sum in the AL register. An aaa instruction then corrects

the value in AL if necessary. An aaa instruction sets flags and may also affect AH; recall

that a daa affects only AL and flags. The following algorithm describes how aaa works.

if (right digit in AL > 9) or (AF=1)

then

add 6 to AL;

increment AH;

AF := 1;

end if;

CF := AF;

left digit in AL := 0;

Number Clocks

Instruction Mnemonic of bytes Opcode (Pentium)

ASCII adjust after addition aaa 1 37 3

ASCII adjust for subtraction aas 1 3F 3

ASCII adjust after multiplication aam 2 D4 0A 18

ASCII adjust before division aad 2 D5 0A 10

Figure 11.6 Unpacked BCD instructions

TEAM LinG - Live, Informative, Non-cost and Genuine!



11.3 Unpacked BCD Representations and Instructions 407

The action of an aas instruction is similar. The first two operations inside the if are

replaced by

subtract 6 from AL;

decrement AH;

The OF, PF, SF, and ZF flags are left undefined by aaa and aas instructions.

Here are some examples of showing how add and aaa work together. In each

example, assume that the following pair of instructions is executed.

add  al, ch

aaa

Before After add After aaa

AX: 00 04 AX: 00 07 AX: 00 07

CH: 03 AF: 0 AF: 0   CF: 0

AX: 00 04 AX: 00 0B AX: 01 01

CH: 07 AF: 0 AF: 1   CF: 1

AX: 00 08 AX: 00 11 AX: 01 07

CH: 09 AF: 1 AF: 1   CF: 1

AX: 05 05 AX: 05 0C AX: 06 02

CH: 07 AF: 0 AF: 1   CF: 1

Another set of examples illustrates how sub and aas find differences of sin-

gle byte unpacked BCD operands. This time assume that the following instructions

are executed.

sub  al, dl

aas

Before After sub After aas

AX: 00 08 AX: 00 05 AX: 00 05

DL: 03 AF: 0 AF: 0   CF: 0

AX: 00 03 AX: 00 FC AX: FF 06

DL: 07 AF: 1 AF: 1   CF: 1

AX: 05 02 AX: 05 F9 AX: 04 03

DL: 09 AF: 1 AF: 1   CF: 1

Figure 11.7 displays a procedure addUnp that adds two eight-byte unpacked

BCD numbers whose addresses are passed as parameters. This procedure is simpler
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addUnp    PROC NEAR32

; add two 8-byte unpacked BCD numbers

; parameter 1:  operand1 and destination address

; parameter 2:  operand2 address

; author:  R. Detmer   revised:  5/98

push ebp            ; establish stack frame

mov  ebp, esp

push esi            ; save registers

push edi

push eax

push ecx

mov  edi, [ebp+12]  ; destination address

mov  esi, [ebp+8]   ; source address

add  esi, 8         ; point at byte after source

add  edi, 8         ; byte after destination

clc                 ; clear carry flag

mov  ecx, 8         ; count of bytes to process

forAdd:   dec  edi            ; point at operand bytes to left

dec  esi

mov  al, [edi]      ; get one operand byte

adc  al, [esi]      ; add other operand byte

aaa                 ; adjust to unpacked BCD

mov  [edi], al      ; save sum

loop forAdd         ; repeat for all 8 bytes

pop  ecx            ; restore registers

pop  eax

pop  edi

pop  esi

pop  ebp

ret  8         ; return, discarding paramters

addUnp    ENDP

Figure 11.7 Addition of two 8-byte unpacked BCD numbers

than the similar addBcd1 procedure in Fig. 11.3. No effort is made to produce significant

flag values. Since low-order digits are stored to the right, the bytes are processed right to

left. (Programming Exercise 1 specifies the corresponding procedure for subtraction.)

One interesting feature of the procedure addUnp is that it will give the correct

unpacked BCD sum of eight byte ASCII (not unpacked BCD) numbers—Intel’s use of
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“ASCII” in the unpacked BCD mnemonics is not as unreasonable as it first seems. The

procedure is successful for ASCII strings since the action of the aaa instruction depends

only on what add does with low-order digits, and aaa always sets the high-order digit in

AL to zero. However, even if the operands are true ASCII character strings, the sum is

not ASCII; it is unpacked BCD.

Two single byte unpacked BCD operands are multiplied using an ordinary mul

instruction, resulting in a product in the AX register. Of course, this product will be cor-

rect as a binary number, not usually as a BCD value. The aam instruction converts the

product in AX to two unpacked BCD digits in AH and AL. In effect, an aam instruction

divides the number in AL by 10, putting the quotient in AH and the remainder in AL.

The following examples assume that the instructions

mul  bh

aam

are executed.

Before After mul After aam

AX: 00 09 AX: 00 51 AX: 08 01

BH: 06

AX: 00 05 AX: 00 1E AX: 03 00

BH: 06

AX: 00 06 AX: 00 2A AX: 04 02

BH: 07

Some flags are affected by an aam instruction. The PF, SF, and ZF flags are

given values corresponding to the final value in AX; the AF, CF, and OF flags are

undefined.

Multiplication of single-digit numbers is not very useful. Figure 11.8 gives a pro-

cedure mulUnp1 to multiply an eight-byte unpacked BCD number by a single-digit

unpacked BCD number. The procedure has three parameters: (1) the destination

address, (2) the address of the BCD source, and (3) a word containing the single-digit

unpacked BCD number as its low-order byte.

The algorithm implemented is essentially the same one as used by grade

school children. The single digit is multiplied times the low-order digit of the multi-

digit number, the units digit is stored, and the tens digit is recorded as a carry to add

to the next product. All eight products can be treated the same by initializing a last-

Carry variable to zero prior to beginning a loop. Here is the design that is actually

implemented.
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mulUnp1   PROC NEAR32

; multiply 8 byte and 1 byte unpacked BCD numbers

; parameter 1:  destination address

; parameter 2:  address of 8 byte unpacked BCD number

; parameter 3:  word w/ low-order byte containing 1-digit BCD nbr

push ebp            ; establish stack frame

mov  ebp, esp

push esi            ; save registers

push edi

push eax

push ebx

push ecx

mov  edi, [ebp+14]  ; destination address

mov  esi, [ebp+10]  ; source address

mov  bx, [ebp+8]    ; multiplier

add  esi, 8         ; point at byte after source

add  edi, 8         ; byte after destination

mov  bh, 0          ; lastCarry := 0

mov  ecx, 8         ; count of bytes to process

forMul:   dec  esi            ; point at operand byte to left

dec  edi            ; and at destination byte

mov  al, [esi]      ; digit from 8 byte number

mul  bl             ; multiply by single byte

aam                 ; adjust to unpacked BCD

add  al, bh         ; add lastCarry

aaa                 ; adjust to unpacked BCD

mov  [edi], al      ; store units digit

mov  bh, ah         ; store lastCarry

loop forMul         ; repeat for all 8 bytes

pop  ecx            ; restore registers

pop  ebx

pop  eax

pop  edi

pop  esi

pop  ebp

ret  10             ; return, discarding paramters

mulUnp1   ENDP

Figure 11.8 Multiplication of unpacked BCD numbers
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{ multiply X7X6X5X4X3X2X1X0 times Y giving Z7Z6Z5Z4Z3Z2Z1Z0}

lastCarry := 0;

for i := 0 to 7 loop

multiply Xi times Y;

add lastCarry;

Zi := units digit;

lastCarry := tens digit;

end for;

In the code for mulUnp1, the value for lastCarry is stored in the BH register.

After a digit from the eight-byte BCD value is multiplied by the single digit in BL, the

product is adjusted to unpacked BCD and lastCarry is added. It is then necessary to

adjust the sum to unpacked BCD.

The aad instruction essentially reverses the action of the aam instruction. It

combines a two-digit unpacked BCD value in AH and AL into a single binary value in

AX, multiplying the digit in AH by 10 and adding the digit in AL. The AH register is

always cleared to 00. The PF, SF, and ZF flags are given values corresponding to the

result; AF, CF, and OF are undefined.

The aad instruction is used before a div instruction, contrary to the other

ASCII adjust instructions that are used after the corresponding arithmetic instructions.

The examples below assume that the instructions

aad

div  dh

are executed.

Before After aad After div

AX: 07 05 AX: 00 4B AX: 03 09

DH: 08 DH: 08

AX: 06 02 AX: 00 3E AX: 02 0F

DH: 04 DH: 04

AX: 09 03 AX: 00 5D AX: 01 2E

DH: 02 DH: 02

In the first example, the quotient and remainder are in BCD format in AL and AH,

respectively, following the div instruction. However, the second and third examples show
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that this is not always the case. The remainder is correct in AH because it is a binary

remainder following division by a number 9 or smaller. The remainder must be 0 through 8,

and for numbers in this range a single byte binary value agrees with the unpacked BCD

representation. The quotient in AL is obviously a binary number, not a BCD representation.

To convert it to unpacked BCD, an aam instruction needs to follow the div. In the second

example, this would change AX to 01 05, the correct quotient for 62 ÷ 4. In the third exam-

ple, aam would yield 0406 in AX, again the correct quotient. Notice that the remainder from

the division is lost, so if it is needed, it must be copied from AH before aam is executed.

Notice that the problems illustrated by the previous examples cannot occur

when the original digit in AH is smaller than the divisor in DH. The elementary school

algorithm for dividing a single digit into a multidigit number works left to right through

the dividend, dividing a two digit number by the divisor. The first of the two digits is the

remainder from the previous division, which must be smaller than the divisor. The fol-

lowing design formalizes the grade school algorithm.

{ divide X7X6X5X4X3X2X1X0 by Y giving Z7Z6Z5Z4Z3Z2Z1Z0 }

lastRemainder := 0;

for i := 7 downto 0 loop

dividend := 10*lastRemainder + Xi;

divide dividend by Y getting quotient & lastRemainder;

Zi := quotient;

end for;

Code that implements this design is given in Fig. 11.9. The AH register is ide-

ally suited to store lastRemainder since that is where the remainder ends up following

division of a 16-bit binary number by an 8-bit number.

Exercises 11.3

1. In each part below, assume that the instructions

add  al, bl

aaa

are executed. Give the values in the AX register, carry flag CF, and aux-

iliary flag AF: (1) after the add and before the aaa and (2) after the aaa.

(a) AX: 00 05  BL: 02

(b) AX: 02 06  BL: 03
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divUnp1   PROC NEAR32

; parameter 1: destination address

; parameter 2: address of 8 byte unpacked BCD number

; parameter 3: word w/ 1-digit BCD number as low-order byte

; author:  R. Detmer    revised:  5/98

push ebp            ; establish stack frame

mov  ebp, esp

push esi            ; save registers

push edi

push eax

push ebx

push ecx

mov  edi, [ebp+14]  ; destination address

mov  esi, [ebp+10]  ; source address

mov  bx, [ebp+8]    ; divisor

mov  ah, 0          ; lastRemainder := 0

mov  ecx, 8         ; count of bytes to process

forDiv:   mov  al, [esi]      ; digit from 8 byte number

aad                 ; adjust to binary

div  bl             ; divide by single byte

mov  [edi], al      ; store quotient

inc  esi            ; point at next digit of dividend

inc  edi            ; and at next destination byte

loop forDiv         ; repeat for all 8 bytes

pop  ecx            ; restore registers

pop  ebx

pop  eax

pop  edi

pop  esi

pop  ebp

ret  10             ; return, discarding paramters

divUnp1   ENDP

Figure 11.9 Division of unpacked BCD numbers
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(c) AX: 03 05  BL: 08

(d) AX: 00 07  BL: 06

(e) AX: 00 09  BL: 08

(f) AX: 02 07  BL: 09

(g) AX: 04 01  BL: 09

(h) AX: 00 00  BL: 01

2. Repeat the parts of Exercise 1 for the instructions

sub  al, bl

aas

3. Both parts of this problem assume the definition

value  BYTE  8 DUP(?)

(a) Assume that value contains ASCII codes for digits 0 through 9. Write

a code fragment to replace these bytes “in place” (without copying

bytes to another location) by the corresponding unpacked BCD val-

ues.

(b) Assume that value contains an eight-byte-long unpacked BCD

value. Write a code fragment to replace these bytes in place by the

corresponding ASCII codes for digits 0 through 9.

4. In each part below, assume that the instructions

mul  ch

aam

are executed. Give the values in the AX register: (1) after the mul and

before the aam and (2) after the aam.

(a) AL: 05  CH: 02

(b) AL: 06  CH: 03

(c) AL: 03  CH: 08

(d) AL: 07  CH: 06

(e) AL: 09  CH: 08

(f) AL: 07  CH: 09

(g) AL: 04  CH: 09

(h) AL: 08  CH: 01
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5. In each part below, assume that the instructions

aad

div  dl

aam

are executed. Give the values in the AX register: (1) after the aad and

before the div, (2) after the div and before the aam, and (3) after the aam.

(a) AX: 07 05  DL: 08

(b) AX: 05 06  DL: 09

(c) AX: 02 07  DL: 08

(d) AX: 04 07  DL: 06

(e) AX: 05 09  DL: 06

(f) AX: 03 07  DL: 07

(g) AX: 07 04  DL: 03

(h) AX: 05 00  DL: 04

Programming Exercises 11.3

1. Write a procedure subUnp to find the difference of two eight-byte

unpacked BCD numbers. The procedure will have two parameters: (1)

the address of operand1 and destination and (2) the address of

operand2. The value of operand1 � operand2 will be stored at destina-

tion. The procedure will set CF to 1 if the source is larger than the desti-

nation and clear it to 0 otherwise. Other flag values will not be changed.

The procedure will remove parameters from the stack.

2. Here is one possible variable-length representation for multibyte

unpacked BCD numbers. An unsigned binary value in the first byte tells

how many decimal digits are in the number. Then digits are stored right

to left (low order to high order). For example, the decimal number

1234567890 could be stored 0A 00 09 08 07 06 05 04 03 02 01. This sys-

tem allows for decimal numbers up to 255 digits long to be stored.

Write a procedure addVar that adds two unpacked BCD numbers

stored in this variable length format. The procedure will have two

parameters: (1) the address of operand1 and destination and (2) the

address of operand2. The value of operand1 + operand2 will be stored at

destination. The two numbers are not necessarily the same length. The
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sum may be the same length as the longer operand, or one byte longer.

Assume that sufficient space has been reserved in the destination field

for the sum, even if operand1 is the shorter operand. The procedure will

remove parameters from the stack.

11.4 Other Architectures: VAX Packed Decimal

Instructions

Since the 80x86 architecture provides very limited support for packed decimal opera-

tions, a large procedure library is necessary to use packed decimal types. Some other

architectures provide extensive hardware support for packed decimal. This section

briefly examines packed decimal instructions defined in the VAX architecture, although

not necessarily implemented in all VAX machines.

The VAX architecture defines a packed decimal string by its length and start-

ing address. The length gives the number of decimal digits stored in the string, not the

number of bytes. The last four bits (half byte) are always a sign indicator, normally C16 for

positive and D16 for negative. Since decimal digits are packed two per byte, the length

(in bytes) of a packed decimal string is approximately half the number of digits. More

precisely, for n decimal digits it is (n + 1)/2 if n is odd and (n + 2)/2 if n is even.

The VAX architecture includes a complete set of instructions for performing

packed decimal arithmetic: ADDP (add packed), DIVP (divide packed), MULP (multiply

packed), and SUBP (subtract packed). Each of these has at least four operands to specify

the length and address of each of the packed decimal strings involved. When just two

strings are specified, one serves both as a source and the destination. All also have six-

operand formats where the sources are specified separately from the destination. (MULP

and DIVP have only the six-operand formats.) The MOVP (move packed) instruction

copies a packed decimal string from one address to another. The CMPP (compare packed)

instruction compares two packed decimal strings, setting condition codes (flags).

Recall the difficulty of converting packed decimal to or from other formats. The

VAX architecture provides six different instructions for this purpose. There are functions

to convert between packed decimal strings and 32-bit 2’s complement integers, and oth-

ers to convert between packed decimal and numeric strings (including ASCII). There is

also an EDIT instruction that converts a packed decimal string to a character string, per-

forming many possible editing operations during the conversions. (Programming Exer-

cises 11.1, #4, describes a similar, but much simpler, editing job.)
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The COBOL language directly supports packed decimal types and operations. If

you were writing a COBOL compiler for a VAX, then the packed decimal instructions

would greatly simplify the job. The resulting compiler would yield much more compact

and efficient code than if each packed decimal operation were emulated by a software

procedure.

Chapter Summary

Integers may be stored in a computer in binary coded decimal form instead

of unsigned or 2’s complement binary form. There are two basic BCD sys-

tems, packed and unpacked. Packed BCD values store two decimal digits

per byte, and unpacked BCD values store a single decimal digit per byte.

Binary representations are much more compact than BCD repre-

sentations and the 80x86 processor has more instructions for doing arith-

metic with binary numbers. However, BCD representations can easily store

very large integers and are simple to convert to or from ASCII.

BCD systems may use a variable or a fixed number of bytes and

may or may not store a sign indicator. The MASM assembler provides a DT

directive that can produce a ten byte signed, packed BCD number.

Unpacked BCD numbers can be initialized using BYTE directives.

Arithmetic is done with BCD numbers by combining pairs of bytes

from two operands using ordinary binary arithmetic instructions. The

binary results are then adjusted to BCD. Packed decimal representations use

daa (decimal adjust for addition) and das (decimal adjust for subtraction)

instructions. Using these instructions along with binary arithmetic instruc-

tions, arithmetic procedures for packed BCD numbers can be developed.

Four instructions are used for unpacked BCD arithmetic: aaa (ASCII

adjust for addition), aas (ASCII adjust for subtraction), aam (ASCII adjust for

multiplication), and aad (ASCII adjust for division). The aad instruction is

different from the others in that it is applied to a BCD result to convert it to

binary before applying a div instruction.

Some other architectures provide a much more complete set of

packed decimal instructions. In particular, the VAX architecture includes

arithmetic, data movement, comparison, and conversion instructions.
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CHAPTER 12

12.1 Console I/O Using the

Kernel32 Library

12.2 Sequential File I/O

Using the Kernel32

Library

12.3 Lower-level

Input/Output

Input/Output

Programs in previous chapters have used the input

macro to input data from the PC console keyboard

and the output macro to output data to the con-

sole display. Input and output from an assembly

language program have been limited to the key-

board and the monitor. This chapter examines the

underlying operating system calls that are used by

the input and output macros. It then examines

similar operating system calls that make it possible

to read and write sequential files to secondary

storage. Next it looks at the 80x86 instructions

that actually do input and output and discusses

alternative I/O schemes, including memory-

mapped and interrupt-driven I/O.
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12.1 Console I/O Using the Kernel32 Library

Figure 12.1 shows a simple example illustrating how kernel32 functions can write a sim-

ple message. This example is similar to many of those seen previously in the book in its

overall structure. However, it is missing the “standard” directive INCLUDE io.h. In

addition to the familiar prototype for the ExitProcess function, it contains two new func-

tion prototypes. These functions are needed to write to the console.

The Windows 95/98/NT operating systems are similar to many others in that

they treat input/output devices and disk files in a uniform manner. Note that in Fig. 12.1,

a WriteFile call is used to display a message on the console. This same function can be

used to write to a disk file. The device or file used for I/O is identified by its handle, a

doubleword value in an assembly language program. The handle value must be obtained

before the WriteFile call is made. There is more than one way to do this for a console file;

GetStandardHandle provides an easy method.

Any GetStdHandle call has a single parameter; a numeric value, distinct from the

handle, indicates the particular device. There are three standard devices: one for input,

one for output, and one to report errors (normally the same as the standard output device).

Each device number is usually equated to a symbol, and these symbols are used in code.

We will only use the input and output devices; their numbers and names appear in Fig.

12.2. GetStdHandle is a function, returning in EAX a handle for the standard I/O device.

The handle value is usually stored in memory to be available later. In the sample program,

the returned value is immediately copied to the doubleword referenced by hStdOut.

With five parameters, a WriteFile call is more complicated. The first is the han-

dle that identifies the file—this handle is returned by GetStdHandle, not the device num-

ber. The second parameter is the address of the string—note the use of the NEAR32 PTR

operator in the example to tell the assembler to use the address of OldProg rather than

the value stored there. The third parameter is a doubleword containing the number of

bytes to be displayed. The next parameter is used to return a value to the calling pro-

gram. This value indicates how many bytes were actually written. In the case of output

to the console, this will be the length of the message unless an error occurs. The fifth and

final parameter will always be 0 in this book’s examples. It can be used to indicate non-

sequential access to some files, but we are going to deal only with sequential access.

Console input is almost as easy as output. Figure 12.3 shows a program that

inputs a string of characters, converts each uppercase letter to lowercase, and displays

the resulting string.

The new function in this example is Readfile. It is very similar to WriteFile

except that the second parameter has the address of an input buffer, the third parameter

420 Input/Output
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; Program to display a simple message
; Author:  R. Detmer
; Date:    6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

GetStdHandle PROTO NEAR32 stdcall,
nStdHandle:DWORD

WriteFile PROTO NEAR32 stdcall,
hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,
lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_OUTPUT EQU –11

cr      EQU     0dh     ; carriage return character
Lf      EQU     0ah     ; line feed

.STACK

.DATA

OldProg BYTE    "Old programmers never die.", cr, lf
BYTE    "They just lose their byte.", cr, lf

msgLng  DWORD   56   ; number of characters in above message
written DWORD   ?
hStdOut DWORD   ?

.CODE
_start:

INVOKE GetStdHandle,    ; get handle for console output
STD_OUTPUT

mov    hStdOut, eax

INVOKE WriteFile,
hStdOut,              ; file handle for screen
NEAR32 PTR OldProg,   ; address of string
msgLng,               ; length of string
NEAR32 PTR written,   ; bytes written
0                     ; overlapped mode

INVOKE  ExitProcess, 0  ; exit with return code 0

PUBLIC _start
END

Figure 12.1 Console output using kernel32 functions
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gives the maximum number of characters to read, and the fourth parameter returns the

number of characters actually read.

The number of characters read will normally be smaller than the size of the

buffer to receive the characters. If it is larger, values in memory following the input buffer

may be destroyed. An additional consideration with console input is that carriage return

and linefeed characters are added to the characters that you key in. That is, if you type

six characters and then press Enter, eight characters will actually be stored in the input

buffer—the six characters plus the carriage return and linefeed.

In the program from Fig. 12.3, there is a blank line of output before the line of

lowercase characters, which is because of the CR/LF that is in memory before the input

buffer. The starting address for output includes these two additional characters and the

character count has been increased by two to include these characters. Because the

original character count includes the CR/LF at the end of the characters read in, there

will also be a skip to a new line after the characters are displayed.

The input and output macros that you have used in most of this book expand

into procedure calls that use the kernel32 console input/output functions. The relevant

portion of the file IO.ASM is shown in Fig. 12.4.

422 Input/Output

Mnemonic Equated Value

STD_INPUT –10

STD_OUTPUT –11

Figure 12.2 Standard device numbers

; Program to input a message and echo it in lowercase

; Author:  R. Detmer

; Date:    6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

GetStdHandle PROTO NEAR32 stdcall,

nStdHandle:DWORD

(continued)

Figure 12.3 Console I/O using kernel32 functions
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ReadFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,

lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,

lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_INPUT  EQU –10

STD_OUTPUT EQU –11

.STACK

.DATA

prompt  BYTE    "String to convert? "

CrLf    BYTE    0ah, 0dh

StrIn   BYTE    80 DUP (?)

read    DWORD   ?

written DWORD   ?

hStdIn  DWORD   ?

hStdOut DWORD   ?

.CODE

_start:

INVOKE GetStdHandle,    ; get handle for console output

STD_OUTPUT

mov    hStdOut, eax

INVOKE WriteFile,

hStdOut,              ; file handle for screen

NEAR32 PTR prompt,    ; address of prompt

19,                   ; length of prompt

NEAR32 PTR written,   ; bytes written

0                     ; overlapped mode

INVOKE GetStdHandle,    ; get handle for console input

STD_INPUT

mov    hStdIn, eax

INVOKE ReadFile,

hStdIn,               ; file handle for keyboard

NEAR32 PTR StrIn,     ; address of string

(continued)

Figure 12.3 (continued)
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80,                   ; maximum number to read

NEAR32 PTR read,      ; bytes read

0                     ; overlapped mode

mov    ecx, read        ; set up loop to convert

lea    ebx, StrIn       ; starting address

forCh:  cmp    BYTE PTR [ebx], 'A'  ; char < 'A' ?

jl     endIfUpper       ; skip if so

cmp    BYTE PTR [ebx], 'Z'  ; char > 'Z' ?

jg     endIfUpper       ; skip if so

add    BYTE PTR [ebx], 'a' – 'A'  ; convert to lower

endIfUpper:

inc    ebx              ; point at next character

loop   forCh            ; repeat

mov    ecx, read        ; get length to write

add    ecx, 2           ; for leading CR and LF

INVOKE WriteFile,

hStdOut,              ; file handle for screen

NEAR32 PTR crLf,      ; start with

ecx,                  ; length of output

NEAR32 PTR written,   ; bytes written

0                     ; overlapped mode

INVOKE  ExitProcess, 0  ; exit with return code 0

PUBLIC _start

END

Figure 12.3 (continued)
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STD_OUTPUT EQU –11

STD_INPUT  EQU –10

GetStdHandle PROTO NEAR32 stdcall,

nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,

lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,

lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

.DATA

written    DWORD  ?

read       DWORD  ?

strAddr    DWORD  ?

strLength  DWORD  ?

hStdOut    DWORD  ?

hStdIn     DWORD  ?

.CODE

; outproc(source)

; Procedure to display null-terminated string

; No registers are changed; flags are not affected.

outproc     PROC   NEAR32

push   ebp                 ; save base pointer

mov    ebp, esp            ; establish stack frame

pushad

pushfd                     ; save flags

mov    esi,[ebp+8]         ; source address

mov    strAddr, esi

; find string length

mov    strLength, 0        ; initialize string length

WhileChar:  cmp    BYTE PTR [esi], 0   ; character = null?

jz     EndWhileChar        ; exit if so

(continued)

Figure 12.4 Input/output procedures in IO.ASM

TEAM LinG - Live, Informative, Non-cost and Genuine!



426 Input/Output

inc    strLength           ; increment character count

inc    esi                 ; point at next character

jmp    WhileChar

EndWhileChar:

INVOKE GetStdHandle,       ; get handle for console output

STD_OUTPUT

mov    hStdOut, eax

INVOKE WriteFile,

hStdOut,                 ; file handle for screen

strAddr,                 ; address of string

strLength,               ; length of string

NEAR32 PTR written,      ; bytes written

0                        ; overlapped mode

popfd                      ; restore flags

popad                      ; restore registers

pop    ebp

ret    4                   ;exit, discarding parameter

outproc     ENDP

; inproc(dest,length)

; Procedure to input a string from keyboard.

; The string will be stored at the address given by dest.

; The length parameter gives the size of the user's buffer.  It is 

; assumed that there will be room for the string and a null byte.

; The string will be terminated by a null character (00h).

; Flags are unchanged.

inproc      PROC   NEAR32

push   ebp                 ; save base pointer

mov    ebp, esp            ; establish stack frame

pushad                     ; save all registers

pushfd                     ; save flags

INVOKE GetStdHandle,       ; get handle for console

STD_INPUT

mov    hStdIn, eax

(continued)

Figure 12.4 (continued)
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mov    ecx, [ebp+8]        ; string length

mov    strLength, ecx

mov    esi, [ebp+12]       ; source address

mov    strAddr, esi

INVOKE ReadFile,

hStdIn,                  ; file handle for keyboard

strAddr,                  ; address of string

strLength,                ; length of string

NEAR32 PTR read,          ; bytes read

0                         ; overlapped mode

mov    ecx, read           ; number of bytes read

mov    BYTE PTR [esi+ecx–2],0 ; replace CR/LF by trailing null

popfd                      ; restore flags

popad                      ; restore registers

pop    ebp

ret    8                   ; exit, discarding parameters

inproc      ENDP

Figure 12.4 (continued)

At this point there is nothing surprising in the input/output code in IO.ASM. It

starts with the same directives that appeared in the previous two examples. The data

area does not include an input buffer since this will be in the user’s calling program. It

does have the variable strAddr to locally store the input or output buffer address that is

passed as a parameter. The output procedure outproc expects this to be the address of a

null-terminated string. After standard procedure entry code, it computes the length of

that string. It then gets the handle for the console and writes to the console, exactly as in

the earlier example in Fig. 12.1.

The input procedure inproc is also simple. After standard procedure entry code,

it gets the handle for the console and copies the two parameters (length and string

address) to local variables. A ReadFile call does the actual input. The only complication
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is that the inproc procedure promises a null-terminated string, and the string read by

ReadFile is terminated by the CR/LF. The code

mov    ecx, read

mov    BYTE PTR [esi+ecx–2],0

places a null byte at the end of the string, actually replacing the carriage return character

by a null. It works because the starting address of the string is in ESI, so that when the

character count is put in ECX, ESI+ECX–2 points to the address of the next-to-last char-

acter in the input buffer.

This is an appropriate time to repeat the warning from Section 6.1: some

Microsoft operating system functions may require that the stack be doubleword-aligned.

When these functions are used in procedures, you must only push doubleword values

onto the stack. This is, for instance, why the code in Fig. 12.4 contains a pushfd

instruction even though a pushf would save all the flag values that are meaningful to

most programs.

Programming Exercises 12.1

1. Using only functions from kernel32—and without using the book’s I/O

package—write a program that will prompt for and input a name from

the console in the form last, first (that is, last name, comma, first name)

and display it with an appropriate label in the format first last (that is,

first name, space, last name).

2. Using only functions from kernel32—and without using the book’s I/O

package—write a program that will prompt for and input a phrase from

the console and will report whether or not it is a palindrome (that is,

exactly the same string when reversed).

12.2 Sequential File I/O Using the Kernel32 Library

File processing applications generally involve opening the file, reading from or writing to

the file, and finally closing the file. At the level of the kernel32 library, opening the file

means to obtain a handle for it. Closing the file that has been read may be important to

free it up for access by another user. Closing a file that has been written may be necessary

to force the operating systems to save the final characters. In this section we investigate

how to do some of these operations for sequential disk files. File operations like these are

428 Input/Output
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usually more appropriately done using a high-level language, so the primary purpose of

this section is to give you a sense of what is “under the hood” of a high-level language.

Figure 12.5 shows a program that prompts for inputs the name of a file and then

displays the contents of the file on the console. It includes two new kernel32 function

prototypes, CreateFileA and CloseHandle. In spite of its name, CreateFileA is used both

to open an existing file or to create a new file. CloseHandle is used to close a file.
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; Read sequential file and display on console

; Author:  R. Detmer

; Date:  6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

STD_OUTPUT    EQU  –11

STD_INPUT     EQU  –10

GENERIC_READ  EQU  80000000h

OPEN_EXISTING EQU  3

GetStdHandle PROTO NEAR32 stdcall,

nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,

lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,

lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

CreateFileA PROTO NEAR32 stdcall,

lpFileName:NEAR32, access:DWORD, shareMode:DWORD,

lpSecurity:NEAR32, creation:DWORD, attributes:DWORD, copyHandle:DWORD

CloseHandle PROTO NEAR32 stdcall,

fHandle:DWORD

.DATA

(continued)

Figure 12.5 Sequential file input using kernel32 functions
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written    DWORD  ?

read       DWORD  ?

fileName   BYTE   60 DUP (?)

hStdOut    DWORD  ?

hStdIn     DWORD  ?

hFile      DWORD  ?

buffer     BYTE   64 DUP (?)

prompt     BYTE   "File name?  "

.CODE

_start:

INVOKE GetStdHandle,       ; handle for console output

STD_OUTPUT

mov    hStdOut, eax

INVOKE GetStdHandle,       ; handle for console input

STD_INPUT

mov    hStdIn, eax

INVOKE WriteFile,

hStdOut,                 ; file handle for screen

NEAR32 PTR prompt,       ; address of prompt

12,                      ; length of prmpt

NEAR32 PTR written,      ; bytes written

0                        ; overlapped mode

INVOKE ReadFile,

hStdIn,                  ; file handle for keyboard

NEAR32 PTR fileName,     ; address for name

60,                      ; maximum length

NEAR32 PTR read,         ; bytes read

0                        ; overlapped mode

mov    ecx, read           ; number of bytes read

mov    BYTE PTR fileName[ecx–2],0 ; add trailing null

INVOKE CreateFileA,        ; open file

NEAR32 PTR fileName,     ; file name

GENERIC_READ,            ; access

0,                       ; no sharing

0,                       ; no predefined security

OPEN_EXISTING,           ; open only if file exists

(continued)

Figure 12.5 (continued)
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CreateFileA returns the handle of a file that it opens or creates, or returns � 1

(FFFFFFFF16) if the operation fails. It has seven parameters

1. The address of a null-terminated string giving the name of the file

2. A doubleword giving the desired access. We will only use GENERIC_READ

(8000000016) and GENERIC_WRITE (4000000016).

3. A doubleword indicating how the file can be shared. We will use 0 to

indicate that it cannot be shared.

4. This parameter is used to indicate whether this file can be used by child

processes. We will use 0 to indicate that it cannot.
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0,                       ; no special attributes

0                        ; no copied handle

mov    hFile, eax          ; handle for file

readLoop:  INVOKE ReadFile,

hFile,                   ; file handle

NEAR32 PTR buffer,       ; address for input

64,                      ; buffer length

NEAR32 PTR read,         ; bytes read

0                        ; overlapped mode

INVOKE WriteFile,

hStdOut,                 ; file handle for screen

NEAR32 PTR buffer,       ; address for output

read,                    ; write same number as read

NEAR32 PTR written,      ; bytes written

0                        ; overlapped mode

cmp    read, 64            ; were 64 characters read?

jnl    readLoop            ; continue if so

INVOKE  CloseHandle,       ; close file handle

hfile

INVOKE  ExitProcess, 0     ; exit with return code 0

PUBLIC _start                         ; make entry point public

END                                   ; end of source code

Figure 12.5 (continued)
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5. A doubleword containing flags indicating what to do if the file does not

exist. We will use OPEN_EXISTING (3) when opening an existing file; the

CreateFileA function will fail if the file does not exist. We will use CRE-

ATE_NEW (1) when creating a new file; the CreateFileA function will fail

if the file already exists. In other applications, CREATE_ALWAYS (2) may

be appropriate; this creates a new file if one does not exist and over-

writes an existing file if it does exist.

6. This parameter is used to set various file attributes. We will use a value

of 0 to indicate no special attributes.

7. The final parameter can be used to indicate the handle of a template file

whose attributes will be used for the newly created file. We will always

use 0 to indicate no template.

As we will use CreateFileA, we will specify parameters 1, 2 and 5, and supply zeros for

the other four.

The CloseHandle function is very simple. It has a single parameter, the handle

of the file to be closed.

The main read loop in Fig. 12.5 uses ReadFile to read 64 characters at a time

from the source file. End of file is detected by comparing the number of characters actu-

ally read to 64. If it is smaller, then the end of the file has been reached. However, note

that the characters read are displayed first, so that you don’t lose the last partial buffer.

In this example, there is nothing special about the number 64 except that it is a

power of two. Most operating systems maintain their own buffers for disk file access,

and since the size of such a buffer is almost always a power of two, it makes sense to

have the program’s buffer a size that is comparable.

Figure 12.6 shows a program that will create a disk file from console input. It

first prompts for and inputs the name of the file. It creates that file, fails if it already

exists, and copies lines from the console keyboard to the file until the user begins a line

with %%, a character combination chosen to be unlikely to appear at the beginning of a

line in ordinary text.

There is very little new in this example. The call to CreateFileA uses

GENERIC_WRITE and CREATE_NEW for creation of a new file. The main loop reads a

string of up to 128 characters from the keyboard and writes the string to the file. Loop

control is accomplished by checking the first two characters of the string before writing

it to the file.

432 Input/Output
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; Create sequential file from console input

; Author:  R. Detmer

; Date:  6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

STD_OUTPUT    EQU  –11

STD_INPUT     EQU  –10

GENERIC_WRITE EQU  40000000h

CREATE_NEW    EQU  1

GetStdHandle PROTO NEAR32 stdcall,

nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,

lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,

hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,

lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

CreateFileA PROTO NEAR32 stdcall,

lpFileName:NEAR32, access:DWORD, shareMode:DWORD,

lpSecurity:NEAR32, creation:DWORD, attributes:DWORD,

copyHandle:DWORD

CloseHandle PROTO NEAR32 stdcall,

fHandle:DWORD

.DATA

written    DWORD  ?

read       DWORD  ?

fileName   BYTE   60 DUP (?)

hStdOut    DWORD  ?

hStdIn     DWORD  ?

(continued)

Figure 12.6 Create a file from console input
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hFile      DWORD  ?

buffer     BYTE   128 DUP (?)

prompt1    BYTE   "File name?  "

prompt2    BYTE   "Enter text.  Start a line with %% to stop", 0dh, 0ah

.CODE

_start:

INVOKE GetStdHandle,       ; handle for console output

STD_OUTPUT

mov    hStdOut, eax

INVOKE GetStdHandle,       ; handle for console input

STD_INPUT

mov    hStdIn, eax

INVOKE WriteFile,

hStdOut,                 ; file handle for screen

NEAR32 PTR prompt1,      ; address of prompt

12,                      ; length of prompt

NEAR32 PTR written,      ; bytes written

0                        ; overlapped mode

INVOKE ReadFile,

hStdIn,                  ; file handle for keyboard

NEAR32 PTR fileName,     ; address for name

60,                      ; maximum length

NEAR32 PTR read,         ; bytes read

0                        ; overlapped mode

mov    ecx, read           ; number of bytes read

mov    BYTE PTR fileName[ecx–2],0 ; add trailing null

INVOKE CreateFileA,        ; open file

NEAR32 PTR fileName,     ; file name

GENERIC_WRITE,           ; access

0,                       ; no sharing

0,                       ; no predefined security

CREATE_NEW,              ; open if file doesn't exist

0,                       ; no special attributes

0                        ; no copied handle

mov    hFile, eax          ; handle for file

(continued)

Figure 12.6 (continued)
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Exercises 12.2

1. The examples in this section do not check to be sure that the file open

is successful. Why does the code in Fig. 12.5 “work” even if the file is

not successfully opened? How do you modify the code in Fig. 12.5 to

display a warning message and exit if the file is not opened?
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INVOKE WriteFile,

hStdOut,                 ; file handle for screen

NEAR32 PTR prompt2,      ; address of prompt

43,                      ; length of prompt

NEAR32 PTR written,      ; bytes written

0                        ; overlapped mode

readLoop:  INVOKE ReadFile,

hStdIn,                  ; read from console

NEAR32 PTR buffer,       ; address for input

128,                     ; buffer length

NEAR32 PTR read,         ; bytes read

0                        ; overlapped mode

cmp    buffer, "%"         ; first character %?

jne    continue            ; continue if not

cmp    buffer+1, "%"       ; second character %?

je     endRead             ; quit if so

continue:

INVOKE WriteFile,

hfile,                   ; file handle

NEAR32 PTR buffer,       ; address for output

read,                    ; write same number as read

NEAR32 PTR written,      ; bytes written

0                        ; overlapped mode

jmp    readLoop            ; continue if so

endRead:

INVOKE  CloseHandle,       ; close file handle

hfile

INVOKE  ExitProcess, 0     ; exit with return code 0

PUBLIC _start                         ; make entry point public

END                                   ; end of source code

Figure 12.6 (continued)
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2. The examples in this section do not check to be sure that the file open is

successful. What happens when you run the program in Fig. 12.6, speci-

fying an output file that already exists? How do you modify the code in

Fig. 12.6 to display a warning message and exit if the file is not opened?

Programming Exercises 12.2

1. A file dump program displays each byte of a file as a two-character

hexadecimal code and the corresponding printable character, if any.

Using only the kernel32 library (not IO.ASM), write a file dump program

that will input the name of a file and then dump it to the console display

using the following format:

Show 16 characters per line, first in hex with a space after each

hex pair so that this takes a total of 48 positions, then as ordinary char-

acters, substituting a period for a nonprintable character, with no

spaces between. A typical line will look like

50 72 6F 67 72 61 6D 6D 69 6E 67 20 0D 0A 69 73 Programming ..is

After 20 lines are displayed on the console, prompt the user with

“m[ore] or q[uit]?” and either continue with the next 20 lines or exit the

program based on the response.

2. Write a program to copy a source file to a destination file. Specifically,

the program must prompt for the source file name, attempt to open the

source file and exit with an error message if it cannot do so. If the

source file is opened successfully, then the user will be prompted for

the destination file name. If the destination file exists, which can be

determined by attempting to open it with CREATE_NEW, the user

should be asked if the old file is to be destroyed with

CREATE_ALWAYS, and the program should terminate if the answer is

negative. If the destination file does not exist, no warning is needed

before making the file copy. Use only input/output functions from the

kernel32 library, not macros from IO.H.

3. Write a program that will copy a source file to a destination file, chang-

ing all uppercase letters to lowercase letters, leaving other characters

unchanged. The program must prompt for both file names. It is not nec-

essary to warn the user if the destination file exists before wiping it out

with the copy. Use only input/output functions from the kernel32

library, not macros from IO.H.
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4. Write a program that will process a collection of fixed format records from

the file RECORDS.DAT. Each line of the file will consist of ASCII data with

• a person’s name in columns 1–20

• an integer right-justified in columns 21–25

Each line of the file will be terminated by a carriage return and a line-

feed character so that the total line length is 27 characters. Such a file

can be produced by a standard text editor. The program must echo the

lines of data and then report

• the number of records

• the sum of the numbers

• the person with the largest number

Use only input/output functions from the kernel32 library, not macros

from IO.H. The atod and dtoa macros from IO.H may be used.

12.3 Lower-Level Input/Output

Earlier in this book input and output have been done using macros in IO.H. In this chap-

ter, input and output have been done using function calls from the kernel32 library, a

somewhat lower-level approach. You have probably also done higher-level I/O using

high-level programming languages. This section discusses I/O at a level lower than that

offered by the kernel32 library, covering the Intel 80x86 and other architectures. Since

low-level I/O is increasingly restricted to the operating system, this section does not

show actual code.

As discussed in Chapter 2, the Intel 80x86 architecture has memory addresses

from 0000000016 to FFFFFFFF16. It also has a separate I/O address space, with port

addresses ranging from 000016 to FFFF16. Memory addresses have been used by many of

the instructions covered in this book. However, port addresses are used by only a few

instructions, the most common of which are the in and out instructions that move data

from the addressed port to or from the accumulator (e.g., AL, AX, or EAX). In this sense,

they are like limited mov instructions.

In an IBM-compatible PC, common I/O devices normally have standard port

assignments. For example, the parallel printer port known as LPT1 uses three port

addresses: 0378, 0379, and 037A. The first of these ports is used to send characters to a

printer, the second to determine its status, and the third to send control information to
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the printer. Serial ports are usually controlled by a serial input/output (SIO) chip, which

will also require several port addresses.

One of the options in the 80x86 architecture is to use memory-mapped I/O.

With memory-mapped I/O, some of the ordinary memory addresses are assigned for

input/output purposes and regular data movement instructions are used to transfer data

to or from external devices. The hardware designer chooses whether to use memory-

mapped I/O or the separate I/O address space when building the system. Other architec-

tures, for example the Motorola 680x0 designs, use only memory-mapped I/O.

Regardless of how I/O devices are addressed, there is the separate issue of how

to know when the device has a character ready for the program, or conversely, how to

ensure that the device is ready to receive a character from the program. We will look at

the situation of sending a character to an old-fashioned, slow, mechanical printer. Obvi-

ously the computer can generate characters to be printed much more rapidly than the

printer can print them. One technique is to use polling—that is, the program repeatedly

checks a status port on the device until it gets a report that the device is able to accept a

character, then it transmits the character. The design looks like

forever

get status from status port;

if clear to send character, then exit loop;

end loop;

transmit character to data port;

The loop in this design is called a busy-waiting loop for obvious reasons. Unless the

computer is otherwise set up for multitasking, it can do no useful work while waiting for

the device to accept the character.

Interrupt-driven I/O relies on hardware interrupts to inform the CPU of a

device’s change in status. An interrupt is a hardware signal generated by the device

and received by the CPU. When the CPU receives such a signal, it normally finishes exe-

cuting the current instruction, and then transfers control to an interrupt procedure.

This is very similar to a regular procedure call.

An Intel 80x86 system provides for up to 256 different interrupts. The address

for an interrupt procedure comes from a table of addresses in the very bottom of memory.

Memory locations 0 to 102410 contain 256 addresses corresponding to interrupt levels 0

through 255. In general, for interrupt type t, the interrupt procedure’s address is stored at

address 4*t.
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A computer system may be designed to generate an interrupt when a key on

the keyboard is pressed. The associated interrupt procedure would capture the charac-

ter and store it in a buffer for later processing before returning, allowing the computer to

go back to whatever it was doing.

The 80x86 architecture includes an int instruction that enables a program to

invoke an interrupt procedure. Not all interrupt types are used by hardware devices, and

some operating systems, notably Microsoft DOS, use int instructions to call operating

system functions.

80x86 interrupts 0 and 4 are always preassigned. Interrupt type 0 is automatically

called by the 80x86 CPU when division by zero is attempted. A simple program containing

the instruction int 0 also calls the divide by zero interrupt handler, showing how a par-

ticular 80x86 system is set up to handle division errors without actually doing a division.

The handler for interrupt type 4 also has an assigned purpose, namely to handle

overflow conditions that result from instructions. This interrupt handler is not called

automatically by the 80x86. It can be called using int 4 but is more commonly invoked

by the into (interrupt on overflow) instruction. This is a conditional call: The overflow

interrupt handler is called if the overflow flag OF is set, but otherwise execution contin-

ues with the next instruction. Typically an into instruction would follow an instruction

that might cause overflow to occur.

Exercises 12.3

1. What are the advantages of memory-mapped I/O? What are the advan-

tages of using a separate address space for I/O?

2. What address contains the interrupt procedure address for interrupt

1510 in an 80x86 system?

Chapter Summary

Input and output can be done at many levels, from high-level language

procedures down to in and out instructions. The kernel32 library illustrates

the operating-system level example of I/O. This library has functions for get-

ting a file or device handle, reading from a file or device, writing to a file or

device, and releasing the file or device.
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At the hardware level, I/O may either use separate port addresses

for external devices or it may use memory-mapped I/O, with a portion of

the regular memory space assigned to external devices rather than memory.

Devices may be accessed by polling or—more efficiently—by

using interrupt-driven I/O. The 80x86 architecture provides for up to 256

different interrupts, although these are often assigned other uses than

servicing I/O requests.
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APPENDIXA
Hexadecimal/ASCII
conversion

00 NUL (null)

01 SOH

02 STX

03 ETX

04 EOT

05 ENQ

06 ACK

07 BEL (bell)

08 BS (backspace)

09 HT (tab)

0A LF (line feed)

0B VT

0C FF (form feed)

0D CR (return)

0E SO

0F SI

10 DLE

11 DC1

12 DC2

13 DC3

14 DC4

15 NAK

16 SYN

17 ETB

18 CAN

19 EM

1A SUB

1B ESC (“escape”)

1C FS

1D GS

1E RS

1F US

20 space

21 !

22 "

23 #

24 $

25 %

26 &

27 '

28 (

29 )

2A *

2B +

2C ,

2D -

2E .

2F /

30 0

31 1

32 2

33 3

34 4

35 5

36 6

37 7

38 8

39 9

3A :

3B ;

3C <

3D =

3E >

3F ?

TEAM LinG - Live, Informative, Non-cost and Genuine!



40 @

41 A

42 B

43 C

44 D

45 E

46 F

47 G

48 H

49 I

4A J

4B K

4C L

4D M

4E N

4F O

50 P

51 Q

52 R

53 S

54 T

55 U

56 V

57 W

58 X

59 Y

5A Z

5B [

5C \

5D ]

5E ^

5F _

60 `

61 a

62 b

63 c

64 d

65 e

66 f

67 g

68 h

69 i

6A j

6B k

6C l

6D m

6E n

6F o

70 p

71 q

72 r

73 s

74 t

75 u

76 v

77 w

78 x

79 y

7A z

7B {

7C |

7D }

7E ~

7F DEL
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APPENDIXB
Useful MS-DOS Commands

MS-DOS (and Windows) uses a hierarchical file structure like Unix. In MS-DOS files are

identified by a drive (C:, A:, etc.), followed by a path that identifies directories (folders)

and finally a file name itself. An example of a complete file name is

A:\asm\project1\example.asm. The symbol \ is used as the separator between path com-

ponents and as the name of the root (top-level) directory. Most MS-DOS systems are set

up to display the current drive and path as part of the prompt (e.g., C:\WINDOWS>).

Default refers to the drive or directory that is used if you don’t specify a drive or

directory in a path. To change the default (current) drive, simply type the new drive let-

ter and a colon. 

To change the default (current) directory, use the CD command. The symbol ..

is shorthand for the parent of the current directory. For example, if the current directory

is \WINDOWS\Desktop, then CD .. will change the current directory to \WINDOWS.

(Note: MS-DOS is not case-sensitive – cd works just as well.)

The MD command creates a new directory. To create a new directory in the

current directory, use MD directoryName. 

The DIR command displays a directory of files in the current folder. Alterna-

tively, you can give the path of the directory in which you want, like 

DIR C:\projects. You can use * as a wildcard character. For example DIR s*.* finds all file

names beginning with the letter s.

The COPY command copies a file from one directory to another. The format is

COPY source destination. If you don’t specify a name for the destination file, then the

name of the original file will be used. You can use the COPY command to create a dupli-

cate of a file in the same directory, but with a different name. The COPY command

allows use of the wildcard character * to copy a group of files.
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The EDIT command is used to create or modify a text file. EDIT filename

invokes a simple text editor opening filename if it exists or creating it if it doesn’t. EDIT

has its own help system with more information than you need about this editor.

The REN command is used to rename files. Its format is REN oldName new-

Name.

The DOSKEY command loads an extension to the command processor that

allows you to use the up-arrow key to recall a previous command, which then can be

executed again or edited.

You can get more information about most commands by typing command /?

Note: Just because you are doing some work in MS-DOS doesn’t mean that you

can’t use other Windows tools. It is fine to use My Computer or Explorer to create direc-

tories, copy files, rename files, etc. You can use Notepad to edit files, but be careful since

Notepad likes to put a TXT extension on every file name. (You can end up with crazy

names like program.asm.txt.) In general you should avoid using a word processor to edit

text files such as assembly language source code files.
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APPENDIXC
MASM 6.11 Reserved Words

AAA 

AAD 

AAM 

AAS 

ABS

ADC 

ADD 

AH

AL

ALIGN 

.ALPHA 

AND 

AND 

ARPL 

ASSUME 

AT

AX

BH

BL

BOUND 

BP

.BREAK 

BSF 

BSR 

BSWAP

BT 

BTC 

BTR 

BTS 

BX

BYTE

CALL 

CARRY?

CASEMAP

CATSTR

@CatStr

CBW 

CDQ 

CH

CL

CLC 

CLD 

CLI

CLTS 

CMC 

CMP 

CMPS 

CMPSB 

CMPSD 

CMPSW 

CMPXCHG 

.CODE 

@code

@CodeSize

COMM 

COMMENT

COMMON

CONST

.CONTINUE

@Cpu 

.CREF

CS

@CurSeg

CWD 

CWDE

CX

DAA 

DAS 

.DATA 

@data 

.DATA? 

@DataSize 

@Date 

DEC

DH

DI

DIV 

DL

.DOSSEG 

DOTNAME 

DS

DUP

DWORD

DX

EAX

EBP

EBX

ECHO 

ECX

EDI

EDX

ELSE 

ELSEIF 

ELSEIFDIF

ELSEIFIDN

EMULATOR

END

ENDIF 

.ENDIF 

ENDM 

ENDP 

ENDS 

ENDW 

ENTER 

@Environment 

EPILOGUE 

EQ 

EQU
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ERR

.ERRB

ERRDEF

.ERRDIF

.ERRE

.ERRIDN

.ERRNB

ERRNDEF

.ERRNZ

ESI

ES

ESP

EVEN 

.EXIT

EXITM 

EXPORT

EXPR16 

EXPR32 

EXTERN 

EXTERNDEF

@F 

F2XM1

FABS 

FADD 

FADDP 

FARDATA 

@fardata 

FARDATA? 

@fardata? 

FBLD 

FBSTP 

FCHS 

FCLEX 

FCOM

FCOMP 

FCOMPP 

FCOS 

FDECSTP 

FDISI 

FDIV 

FDIVP 

FDIVR 

FDIVRP 

FENI 

FFREE 

FIADD 

FICOM 

FICOMP

FIDIV 

FIDIVR 

FILD 

@FileCur 

@FileName 

FIMUL 

FINCSTP 

FINIT 

FIST 

FISTP 

FISUB

FISUBR 

FLAT

FLD 

FLD1 

FLDCW 

FLDENV 

FLDENVD 

FLDENVW 

FLDL2E 

FLDL2T 

FLDLG2 

FLDLN2 

FLDPI

FLDZ 

FMUL 

FMULP 

FNCLEX 

FNDISI 

FNENI 

FNINIT 

FNOP 

FNSAVE 

FNSAVED 

FNSAVEW

FNSTCW 

FNSTENV 

FNSTENVD 

FNSTENVW 

FNSTSW 

FOR 

FORC 

FORCEFRAME 

FPATAN 

FPREM 

FPREM1

FPTAN 

FRNDINT 

FRSTOR 

FRSTORD 

FRSTORW 

FS

FSAVE 

FSAVED 

FSAVEW 

FSCALE 

FSETPM 

FSIN 

FSINCOS 

FSQRT 

FST 

FSTCW 

FSTENV 

FSTENVD 

FSTENVW 

FSTP 

FSTSW 

FSUB

FSUBP 

FSUBR 

FSUBRP 

FTST 

FUCOM 

FUCOMP 

FUCOMPP 

FWAIT 

FWORD 

FXAM 

FXCH 

FXTRACT 

FYL2X

FYL2XP1

GE 

GOTO 

GROUP 

GS

GT

HIGH 

HIGHWORD 

HLT

IDIV 

IF

.IF

IFB

IFDEF 

IFDIF

IFDIFI

IFE

IFIDN

IFIDNI
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IFNB 

IFNDEF 

IMUL 

IN 

INC

INCLUDE 

INCLUDELIB 

INS 

INSB 

INSD 

INSTR 

@InStr 

INSW

INT

INTO 

INVD 

INVLPG 

INVOKE 

IRET 

IRETD

JA 

JAE 

JB 

JBE 

JC 

JCXZ 

JE 

JECXZ 

JG 

JGE 

JL 

JLE 

JMP 

JNA 

JNAE 

JNB 

JNBE 

JNC 

JNE 

JNG 

JNGE 

JNL 

JNLE 

JNO 

JNP 

JNS

JNZ 

JO 

JP 

JPE 

JPO 

JS 

JZ

LABEL 

LAHF 

LANGUAGE 

LAR 

LDS 

LE 

LEA 

LEAVE 

LENGTHOF

LES 

LFS 

LGDT 

LGS 

LIDT 

@Line 

.LIST 

.LISTALL 

.LISTIF 

.LISTMACRO 

.LISTMACROALL 

LJMP

LLDT 

LMSW 

LOADDS 

LOCAL 

LOCK 

LODS 

LODSB 

LODSD 

LODSW

LOOP 

LOOPD 

LOOPW 

LOW 

LOWWORD 

LROFFSET

LSL 

LSS 

LT 

LTR

M510 

MACRO

MASK 

MEMORY

MOD 

.MODEL 

@Model 

MOV 

MOVS 

MOVSB 

MOVSD 

MOVSW 

MOVSX 

MOVZX

MUL

NE 

NEG 

.NO87 

.NOCREF 

NODOTNAME 

NOKEYWORD 

.NOLIST 

.NOLISTIF

.NOLISTMACRO 

NOLJMP 

NOM510 

NOP 

NOREADONLY

NOSCOPED

NOSIGNEXTEND

NOT

OFFSET

OPTION 

OR 

ORG 

OUT 

OUTS 

OUTSB

OUTSD 

OUTSW 

OVERFLOW?

PAGE 

PARA

PARITY? 

POP 

POPA 

POPAD

POPCONTEXT 

POPF 

POPFD 

PRIVATE

PROC

PROLOGUE 

PROTO 

PTR 
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PUBLIC

PURGE 

PUSH 

PUSHA 

PUSHAD 

PUSHCONTEXT 

PUSHD

PUSHF 

PUSHFD 

PUSHW

QWORD

.RADIX 

RCL 

RCR 

READONLY

REAL10 

REAL4 

REAL8 

RECORD

REP

REPE

REPEAT

REPNE

REPNZ

REPZ

RET 

RETF 

RETN

ROL

ROR

SAHF 

SAL 

SAR 

SBB 

SBYTE 

SCAS 

SCASB 

SCASD 

SCASW 

SCOPED 

SDWORD

SEG

SEGMENT

.SEQ 

SET

.SETIF2

SGDT

SHL 

SHL 

SHLD 

SHORT 

SHR 

SHR 

SHRD 

SI

SIDT 

SIGN?

SIZEOF 

SIZESTR 

@SizeStr 

SLDT 

SMSW

SP

SS

.STACK

@stack

.STARTUP

STC 

STD

STDCALL

STI 

STOS 

STOSB 

STOSD 

STOSW 

STR

STRUCT 

SUB 

SUBSTR 

@SubStr 

SUBTITLE

SWORD

SYSCALL

TBYTE 

TEST

TEXTEQU 

.TFCOND 

THIS

@Time

TITLE

TYPE

TYPEDEF

UNION

.UNTIL

USE16

USE32

USES

VERR

@Version

VERW

WAIT 

WBINVD 

WHILE 

.WHILE 

WIDTH

WORD

@WordSize

XADD 

XCHG 

XLAT

XOR 

ZERO?
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APPENDIXD
80x86 Instructions 
(by Mnemonic)

Number Timing Timing Timing

Mnemonic Operand(s) Flags affected Opcode of Bytes 386 486 Pentium

aaa none AF,CF 37 1 4 3 3

SF,ZF,OF,PF ?

aad none SF,ZF,PF D5 0A 2 19 14 10

OF,AF,CF ?

aam none SF,ZF,PF D4 0A 2 17 15 18

OF,AF,CF ?

aas none AF,CF 3F 1 4 3 3

SF,ZF,OF,PF ?

adc AL,imm8 SF,ZF,OF,CF,PF,AF 14 2 2 1 1

adc AX,imm16 SF,ZF,OF,CF,PF,AF 15 3 2 1 1

EAX,imm32 5

adc reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

adc reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6

adc reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

adc mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

adc mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

mem32,imm32 6+

adc mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

mem32,imm8
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Number Timing Timing Timing

Mnemonic Operand(s) Flags affected Opcode of Bytes 386 486 Pentium

adc reg8,reg8 SF,ZF,OF,CF,PF,AF 12 2 2 1 1

adc reg16,reg16 SF,ZF,OF,CF,PF,AF 13 2 2 1 1

reg32,reg32

adc reg8,mem8 SF,ZF,OF,CF,PF,AF 12 2+ 6 2 2

adc reg16,mem16 SF,ZF,OF,CF,PF,AF 13 2+ 6 2 2

reg32,mem32

adc mem8,reg8 SF,ZF,OF,CF,PF,AF 10 2+ 7 3 3

adc mem16,reg16 SF,ZF,OF,CF,PF,AF 11 2+ 7 3 3

mem32,reg32

add AL,imm8 SF,ZF,OF,CF,PF,AF 04 2 2 1 1

add AX,imm16 SF,ZF,OF,CF,PF,AF 05 3 2 1 1

EAX,imm32 5

add reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

add reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6

add reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

add mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

add mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

mem32,imm32 6+

add mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

mem32,imm8

add reg8,reg8 SF,ZF,OF,CF,PF,AF 02 2 2 1 1

add reg16,reg16 SF,ZF,OF,CF,PF,AF 03 2 2 1 1

reg32,reg32

add reg8,mem8 SF,ZF,OF,CF,PF,AF 02 2+ 6 2 2

add reg16,mem16 SF,ZF,OF,CF,PF,AF 03 2+ 6 2 2

reg32,mem32

add mem8,reg8 SF,ZF,OF,CF,PF,AF 00 2+ 7 3 3

add mem16,reg16 SF,ZF,OF,CF,PF,AF 01 2+ 7 3 3

mem32,reg32

and AL,imm8 SF,ZF,OF,CF,PF,AF 24 2 2 1 1
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and AX,imm16 SF,ZF,OF,CF,PF,AF 25 3 2 1 1

EAX,imm32 5

and reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

and reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6

and reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

and mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

and mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

mem32,imm32 6+

and mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

mem32,imm8

and reg8,reg8 SF,ZF,OF,CF,PF,AF 22 2 2 1 1

and reg16,reg16 SF,ZF,OF,CF,PF,AF 23 2 2 1 1

reg32,reg32

and reg8,mem8 SF,ZF,OF,CF,PF,AF 22 2+ 6 2 2

and reg16,mem16 SF,ZF,OF,CF,PF,AF 23 2+ 6 2 2

reg32,mem32

and mem8,reg8 SF,ZF,OF,CF,PF,AF 20 2+ 7 3 3

and mem16,reg16 SF,ZF,OF,CF,PF,AF 21 2+ 7 3 3

mem32,reg32

call rel32 none E8 5 7+ 3 1

call reg32 none FF 2 7+ 5 2

(near indirect)

call mem32 none FF 2+ 10+ 5 2

(near indirect)

call far direct none 9A 7 17+ 18 4

call far indirect none FF 6 22+ 17 5

cbw none none 98 1 3 3 3

cdq none none 99 1 2 3 2

clc none CF F8 1 2 2 2

cld none DF FC 1 2 2 2

cmc none CF F5 1 2 2 2
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cmp AL,imm8 SF,ZF,OF,CF,PF,AF 3C 2 2 1 1

cmp AX,imm16 SF,ZF,OF,CF,PF,AF 3D 3 2 1 1

EAX,imm32 5

cmp reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

cmp reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6

cmp reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

cmp mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 5 2 2

cmp mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 5 2 2

mem32,imm32 6+

cmp mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 5 2 2

mem32,imm8

cmp reg8,reg8 SF,ZF,OF,CF,PF,AF 38 2 2 1 1

cmp reg16,reg16 SF,ZF,OF,CF,PF,AF 3B 2 2 1 1

reg32,reg32

cmp reg8,mem8 SF,ZF,OF,CF,PF,AF 3A 2+ 6 2 2

cmp reg16,mem16 SF,ZF,OF,CF,PF,AF 3B 2+ 6 2 2

reg32,mem32

cmp mem8,reg8 SF,ZF,OF,CF,PF,AF 38 2+ 5 2 2

cmp mem16,reg16 SF,ZF,OF,CF,PF,AF 39 2+ 5 2 2

mem32,reg32

cmpsb none none A6 1 10 8 5

cmpsw none none A7 1 10 8 5

cmpsd

cwd none none 99 1 2 3 2

cwde none none 98 1 3 3 3

daa none SF,ZF,PF,AF 27 1 4 2 3

OF ?

das none SF,ZF,PF,AF 2F 1 4 2 3

OF ?

dec reg8 FE 2 2 1 1
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dec AX SF,ZF,OF,PF,AF 48 1 2 1 1

EAX

dec CX SF,ZF,OF,PF,AF 49 1 2 1 1

ECX

dec DX SF,ZF,OF,PF,AF 4A 1 2 1 1

EDX

dec BX SF,ZF,OF,PF,AF 4B 1 2 1 1

EBX

dec SP SF,ZF,OF,PF,AF 4C 1 2 1 1

ESP

dec BP SF,ZF,OF,PF,AF 4D 1 2 1 1

EBP

dec SI SF,ZF,OF,PF,AF 4E 1 2 1 1

ESI

dec DI SF,ZF,OF,PF,AF 4F 1 2 1 1

EDI

dec mem8 SF,ZF,OF,PF,AF FE 2+ 6 3 3

dec mem16 SF,ZF,OF,PF,AF FF 2+ 6 3 3

mem32

div reg8 SF,ZF,OF,PF,AF ? F6 2 14 16 17

div reg16 SF,ZF,OF,PF,AF ? F7 2 22 24 25

reg32 38 40 41

div mem8 SF,ZF,OF,PF,AF ? F6 2+ 17 16 17

div mem16 SF,ZF,OF,PF,AF ? F7 2+ 25 24 25

mem32 41 40 41

idiv reg8 SF,ZF,OF,PF,AF ? F6 2 19 19 22

idiv reg16 SF,ZF,OF,PF,AF ? F7 2 27 27 30

reg32 43 43 48

idiv mem8 SF,ZF,OF,PF,AF ? F6 2+ 22 20 22

idiv mem16 SF,ZF,OF,PF,AF ? F7 2+ 30 28 30

mem32 46 44 48

imul reg8 OF,CF F6 2 9-14 13-18 11

SF,ZF, PF,AF ?
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imul reg16 OF,CF F7 2 9-22 13-26 11

reg32 SF,ZF, PF,AF ? 9-38 13-42 10

imul mem8 OF,CF F6 2+ 12-17 13-18 11

SF,ZF, PF,AF ?

imul mem16 OF,CF F7 2+ 12-25 13-26 11

mem32 SF,ZF, PF,AF ? 12-41 13-42 10

imul reg16,reg16 OF,CF 0F AF 3 9-22 13-26 11

reg32,reg32 SF,ZF, PF,AF ? 9-38 13-42 10

imul reg16,mem16 OF,CF 0F AF 3+ 12-25 13-26 11

reg32,mem32 SF,ZF, PF,AF ? 12-41 13-42 10

imul reg16,imm8 OF,CF 6B 3 9-14 13-18 10

reg32,imm8 SF,ZF, PF,AF ?

imul mem16 OF,CF F7 4 9-22 13-26 11

mem32 SF,ZF, PF,AF ? 6 9-38 13-42 10

imul reg16,reg16,imm8 OF,CF 6B 3 9-14 13-18 10

reg32,reg32,imm8 SF,ZF, PF,AF ?

imul reg16,reg16,imm16 OF,CF 69 4 9-22 13-26 10

reg32,reg32,imm32 SF,ZF, PF,AF ? 6 9-38 13-42 10

imul reg16,mem16,imm8 OF,CF 6B 3+ 9-17 13-18 10

reg32,mem32,imm8 SF,ZF, PF,AF ?

imul reg16,mem16,imm16 OF,CF 69 4+ 12-25 13-26 10

reg32,mem32,imm32 SF,ZF, PF,AF ? 6+ 12-41 13-42 10

inc reg8 SF,ZF,OF,PF,AF FE 2 2 1 1

inc AX SF,ZF,OF,PF,AF 40 1 2 1 1

EAX

inc CX SF,ZF,OF,PF,AF 41 1 2 1 1

ECX

inc DX SF,ZF,OF,PF,AF 42 1 2 1 1

EDX

inc BX SF,ZF,OF,PF,AF 43 1 2 1 1

EBX

inc SP SF,ZF,OF,PF,AF 44 1 2 1 1

ESP

inc BP SF,ZF,OF,PF,AF 45 1 2 1 1

EBP
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inc SI SF,ZF,OF,PF,AF 47 1 2 1 1

ESI

inc DI SF,ZF,OF,PF,AF 48 1 2 1 1

EDI

inc mem8 SF,ZF,OF,PF,AF FE 2+ 6 3 3

inc mem16 SF,ZF,OF,PF,AF FF 2+ 6 3 3

mem32

ja rel8 none 77 7+,3 3,1 1 2

jnbe

ja rel32 none 0F 87 7+,3 3,1 1 6

jnbe

jae rel8 none 73 7+,3 3,1 1 2

jnb

jae rel32 none 0F 83 7+,3 3,1 1 6

jnb

jb rel8 none 72 7+,3 3,1 1 2

jnae

jb rel32 none 0F 82 7+,3 3,1 1 6

jnae

jbe rel8 none 76 7+,3 3,1 1 2

jna

jbe rel32 none 0F 86 7+,3 3,1 1 6

jna

jc rel8 none 72 7+,3 3,1 1 2

jc rel32 none 0F 82 7+,3 3,1 1 6

je rel8 none 74 7+,3 3,1 1 2

jz

je rel32 none 0F 84 7+,3 3,1 1 6

jz

jecxz rel8 none E3 6,5 2

jg rel8 none 7F 7+,3 3,1 1 2

jnle

jg rel32 none 0F 8F 7+,3 3,1 1 6

jnle
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jge rel8 none 7D 7+,3 3,1 1 2

jnl

jge rel32 none 0F 8D 7+,3 3,1 1 6

jnl

jl rel8 none 7C 7+,3 3,1 1 2

jnge

jl rel32 none 0F 8C 7+,3 3,1 1 6

jnge

jle rel8 none 7E 7+,3 3,1 1 2

jng

jle rel32 none 0F 8E 7+,3 3,1 1 6

jng

jmp rel8 none EB 2 7+ 3 1

jmp rel32 none E9 5 7+ 3 1

jmp reg32 none FF 2 10+ 5 2

jmp mem32 none FF 2+ 10+ 5 2

jnc rel8 none 73 7+,3 3,1 1 2

jnc rel32 none 0F 83 7+,3 3,1 1 6

jne rel8 none 75 7+,3 3,1 1 2

jnz

jne rel32 none 0F 85 7+,3 3,1 1 6

jnz

jno rel8 none 71 7+,3 3,1 1 2

jno rel32 none 0F 81 7+,3 3,1 1 6

jnp rel8 none 7B 7+,3 3,1 1 2

jpo

jnp rel32 none 0F 8B 7+,3 3,1 1 6

jpo

jns rel8 none 79 7+,3 3,1 1 2

jns rel32 none 0F 89 7+,3 3,1 1 6

jo rel8 none 70 7+,3 3,1 1 2

jo rel32 none 0F 80 7+,3 3,1 1 6

jp rel8 none 7A 7+,3 3,1 1 2

jpe
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jp rel32 none 0F 8A 7+,3 3,1 1 6

jpe

js rel8 none 78 7+,3 3,1 1 2

js rel32 none 0F 88 7+,3 3,1 1 6

lea reg32,mem32 none 8D 2+ 2 1 1

lodsb none none AC 1 5 5 2

lodsw none none AD 1 5 5 2

lodsd

loop none none E2 11+ 6,7 5,6 2

loope none none E1 11+ 6,9 7,8 2

loopz

loopne none none E0 11+ 6,9 7,8 2

loopnz

mov AL, imm8 none B0 2 2 1 1

mov CL, imm8 none B1 2 2 1 1

mov DL, imm8 none B2 2 2 1 1

mov BL, imm8 none B3 2 2 1 1

mov AH, imm8 none B4 2 2 1 1

mov CH, imm8 none B5 2 2 1 1

mov DH, imm8 none B6 2 2 1 1

mov BH, imm8 none B7 2 2 1 1

mov AX, imm16 none B8 3 2 1 1

EAX, imm32 5

mov CX, imm16 none B9 3 2 1 1

ECX, imm32 5

mov DX, imm16 none BA 3 2 1 1

EDX, imm32 5

mov BX, imm16 none BB 3 2 1 1

EBX, imm32 5

mov SP, imm16 none BC 3 2 1 1

ESP, imm32 5

mov BP, imm16 none BD 3 2 1 1

EPB, imm32 5
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mov SI, imm16 none BE 3 2 1 1

ESI, imm32 5

mov DI, imm16 none BF 3 2 1 1

EDI, imm32 5

mov mem8, imm8 none C6 3+ 2 1 1

mov mem16,imm16 none C7 4+ 2 1 1

mem32,imm32 6+

mov reg8,reg8 none 8A 2 2 1 1

mov reg16,reg16 none 8B 2 2 1 1

reg32,reg32

mov AL, direct none A0 5 4 1 1

mov AX, direct none A1 5 4 1 1

EAX, direct

mov reg8,mem8 none 8A 2+ 4 1 1

mov reg16,mem16 none 8B 2+ 4 1 1

reg32,mem32

mov mem8,reg8 none 88 2+ 2 1 1

mov mem16,reg16 none 89 2+ 2 1 1

mem32,reg32

mov direct ,AL none A2 5 2 1 1

mov direct, AX none A3 5 2 1 1

direct, EAX

mov sreg, reg16 none 8E 2 2 3 1

mov reg16, sreg none 8C 2 2 3 1

mov sreg,mem16 none 8E 2+ 2 3* 2*

mov mem16,sreg none 8C 2+ 2 3 1

movsb none none A4 1 7 7 4

movsw none none A5 1 7 7 4

movsd

movsx reg16,reg8 none 0F BE 3 3 3 3

reg32,reg8

movsx reg16,mem8 none 0F BE 3+ 6 3 3

reg32,mem8
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movsx reg32,reg16 none 0F BF 3 3 3 3

movsx reg32,mem16 none 0F BF 3+ 6 3 3

movzx reg16,reg8 none 0F B6 3 3 3 3

reg32,reg8

movzx reg16,mem8 none 0F B6 3+ 6 3 3

reg32,mem8

movzx reg32,reg16 none 0F B7 3 3 3 3

movzx reg32,mem16 none 0F B7 3+ 6 3 3

mul reg8 OF,CF F6 2 9-14 13-18 11

SF,ZF, PF,AF ?

mul reg16 OF,CF F7 2 9-22 13-26 11

reg32 SF,ZF, PF,AF ? 9-38 13-42 10

mul mem8 OF,CF F6 2+ 12-17 13-18 11

SF,ZF, PF,AF ?

mul mem16 OF,CF F7 2+ 12-25 13-26 11

mem32 SF,ZF, PF,AF ? 12-41 13-42 10

neg reg8 SF,ZF,OF,CF,PF,AF F6 2 2 1 1

neg reg16 SF,ZF,OF,CF,PF,AF F7 2 2 1 1

reg32

neg mem8 SF,ZF,OF,CF,PF,AF F6 2+ 2 1 1

neg mem16 SF,ZF,OF,CF,PF,AF F7 2+ 2 1 1

mem32

not reg8 none F6 2 2 1 1

not reg16 none F7 2 2 1 1

reg32

not mem8 none F6 2+ 6 3 3

not mem16 none F7 2+ 6 3 3

mem32

or AL,imm8 SF,ZF,OF,CF,PF,AF 0C 2 2 1 1

or AX,imm16 SF,ZF,OF,CF,PF,AF 0D 3 2 1 1

EAX,imm32 5

or reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

or reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6
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or reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

or mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

or mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

mem32,imm32 6+

or mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

mem32,imm8

or reg8,reg8 SF,ZF,OF,CF,PF,AF 0A 2 2 1 1

or reg16,reg16 SF,ZF,OF,CF,PF,AF 0B 2 2 1 1

reg32,reg32

or reg8,mem8 SF,ZF,OF,CF,PF,AF 0A 2+ 6 2 2

or reg16,mem16 SF,ZF,OF,CF,PF,AF 0B 2+ 6 2 2

reg32,mem32

or mem8,reg8 SF,ZF,OF,CF,PF,AF 08 2+ 7 3 3

or mem16,reg16 SF,ZF,OF,CF,PF,AF 09 2+ 7 3 3

mem32,reg32

pop AX none 58 1 4 1 1

EAX

pop CX none 59 1 4 1 1

ECX

pop DX none 5A 1 4 1 1

EDX

pop BX none 5B 1 4 1 1

EBX

pop SP none 5C 1 4 1 1

ESP

pop BP none 5D 1 4 1 1

EBP

pop SI none 5E 1 4 1 1

ESI

pop DI none 5F 1 4 1 1

EDI

pop DS none 1F 1 7 3 3

pop ES none 07 1 7 3 3
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pop SS none 17 1 7 3 3

pop FS none 0F A1 2 7 3 3

pop GS none 0F A9 2 7 3 3

pop mem16 none 8F 2+ 5 6 3

mem32

popa none none 61 1 24 9 5

popad

popf none none 9D 1 5 9 4

popfd

push AX none 50 1 2 1 1

EAX

push CX none 51 1 2 1 1

ECX

push DX none 52 1 2 1 1

EDX

push BX none 53 1 2 1 1

EBX

push SP none 54 1 2 1 1

ESP

push BP none 55 1 2 1 1

EBP

push SI none 56 1 2 1 1

ESI

push DI none 57 1 2 1 1

EDI

push CS none 0E 1 2 3 1

push DS none 1E 1 2 3 1

push ES none 06 1 2 3 1

push SS none 16 1 2 3 1

push FS none 0F A0 2 2 3 1

push GS none 0F A8 2 2 3 1

push mem16 none FF 2+ 5 4 2

mem32
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push imm8 none 6A 2 2 1 1

push imm16 none 68 3 2 1 1

imm32 5

pusha none none 60 1 18 11 5

pushad

pushf none none 9C 1 4 4 3

pushfd

rep none none F3 1

repz (string instruction 

repe prefix)

rep none none F3 A4 2 7+4n 12+3n 13+4n

movsb

rep none none F3 A5 2 7+4n 12+3n 13+4n

movsw

rep

movsd

rep stosb none none F3 A6 2 5+5n 7+4n 9n

rep stosw none none F3 A7 2 5+5n 7+4n 9n

rep stosd

repe none none F3 A6 2 5+9n 7+7n 9+4n

cmpsb

repe none none F3 A7 2 5+9n 7+7n 9+4n

cmpsw

repe

cmpsd

repe none none F3 AE 2 5+8n 7+5n 9+4n

scasb

repe none none F3 AF 2 5+8n 7+5n 9+4n

scasw

repe

scasd

repne none none F2 A6 2 5+9n 7+7n 9+4n

cmpsb

repne none none F2 A7 2 5+9n 7+7n 9+4n

cmpsw

repne

cmpsd
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repne none none F2 AE 2 5+8n 7+5n 9+4n

scasb

repne none none F2 AF 2 5+8n 7+5n 9+4n

scasw

repne

scasd

repnz none none F2 1

repne (string instruction 

prefix)

ret (far) none none CB 1 18+ 13 4

ret (far) imm16 none CA 3 18+ 14 4

ret (near) none none C3 1 10+ 5 2

ret (near) imm16 none C2 3 10+ 5 3

rol reg8 SF,ZF,OF,CF,PF D0 2 3 3 1

ror AF ?

rol reg16 SF,ZF,OF,CF,PF D1 2 3 3 1

ror reg32 AF ?

rol mem8 SF,ZF,OF,CF,PF D0 2+ 7 4 3

ror AF ?

rol reg16 SF,ZF,OF,CF,PF D1 2+ 7 4 3

ror reg32 AF ?

rol reg8, imm8 SF,ZF,OF,CF,PF C0 3 3 2 1

ror AF ?

rol reg16,imm8 SF,ZF,OF,CF,PF C1 3 3 2 1

ror reg32,imm8 AF ?

rol mem8, imm8 SF,ZF,OF,CF,PF C0 3+ 7 4 3

ror AF ?

rol mem16,imm8 SF,ZF,OF,CF,PF C1 3+ 7 4 3

ror mem32,imm8 AF ?

rol reg8, CL SF,ZF,OF,CF,PF D2 2 3 2 1

ror AF ?

rol reg16,CL SF,ZF,OF,CF,PF D3 2 3 2 1

ror reg32,CL AF ?

rol mem8, CL SF,ZF,OF,CF,PF D2 2+ 7 4 4

ror AF ?
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rol mem16,CL SF,ZF,OF,CF,PF D3 2+ 7 4 4

ror mem32,CL AF ?

sbb AL,imm8 SF,ZF,OF,CF,PF,AF 1C 2 2 1 1

sbb AX,imm16 SF,ZF,OF,CF,PF,AF 1D 3 2 1 1

EAX,imm32 5

sbb reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

sbb reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6

sbb reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

sbb mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

sbb mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

mem32,imm32 6+

sbb mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

mem32,imm8

sbb reg8,reg8 SF,ZF,OF,CF,PF,AF 1A 2 2 1 1

sbb reg16,reg16 SF,ZF,OF,CF,PF,AF 1B 2 2 1 1

reg32,reg32

sbb reg8,mem8 SF,ZF,OF,CF,PF,AF 1A 2+ 6 2 2

sbb reg16,mem16 SF,ZF,OF,CF,PF,AF 1B 2+ 6 2 2

reg32,mem32

sbb mem8,reg8 SF,ZF,OF,CF,PF,AF 18 2+ 7 3 3

sbb mem16,reg16 SF,ZF,OF,CF,PF,AF 19 2+ 7 3 3

mem32,reg32

scasb none none AE 1 7 6 4

scasw none none AE 1 7 6 4

scasd

shl/sal reg8,1 SF,ZF,OF,CF,PF D0 2 3 3 1

shr AF ?

sar

shl/sal reg16,1 SF,ZF,OF,CF,PF D1 2 3 3 1

shr reg32,1 AF ?

sar
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shl/sal mem8,1 SF,ZF,OF,CF,PF D0 2+ 7 4 3

shr AF ?

sar

shl/sal reg16,1 SF,ZF,OF,CF,PF D1 2+ 7 4 3

shr reg32,1 AF ?

sar

shl/sal reg8, imm8 SF,ZF,OF,CF,PF C0 3 3 2 1

shr AF ?

sar

shl/sal reg16,imm8 SF,ZF,OF,CF,PF C1 3 3 2 1

shr reg32,imm8 AF ?

sar

shl/sal mem8, imm8 SF,ZF,OF,CF,PF C0 3+ 7 4 3

shr AF ?

sar

shl/sal mem16,imm8 SF,ZF,OF,CF,PF C1 3+ 7 4 3

shr mem32,imm8 AF ?

sar

shl/sal reg8, CL SF,ZF,OF,CF,PF D2 2 3 2 1

shr AF ?

sar

shl/sal reg16,CL SF,ZF,OF,CF,PF D3 2 3 2 1

shr reg32,CL AF ?

sar

shl/sal mem8, CL SF,ZF,OF,CF,PF D2 2+ 7 4 4

shr AF ?

sar

shl/sal mem16,CL SF,ZF,OF,CF,PF D3 2+ 7 4 4

shr mem32,CL AF ?

sar

shld reg16,reg16,imm8 SF,ZF,CF,PF 0F 04 4 3 2 4

reg32,reg32,imm8 OF,AF ?

shld mem16,reg16,imm8 SF,ZF,CF,PF 0F 04 4+ 7 4 4

mem32,reg32,imm8 OF,AF ?

shld reg16,reg16,CL SF,ZF,CF,PF 0F 05 3 3 3 4

reg32,reg32,CL OF,AF ?
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shld mem16,reg16,CL SF,ZF,CF,PF 0F 05 3+ 7 4 5

mem32,reg32,CL OF,AF ?

shrd reg16,reg16,imm8 SF,ZF,CF,PF 0F AC 4 3 2 4

reg32,reg32,imm8 OF,AF ?

shrd mem16,reg16,imm8 SF,ZF,CF,PF 0F AC 4+ 7 4 4

mem32,reg32,imm8 OF,AF ?

shrd reg16,reg16,CL SF,ZF,CF,PF 0F AD 3 3 3 4

reg32,reg32,CL OF,AF ?

shrd mem16,reg16,CL SF,ZF,CF,PF 0F AD 3+ 7 4 5

mem32,reg32,CL OF,AF ?

stc none CF F9 1 2 2 2

std none DF FD 1 2 2 2

stosb none none AA 1 4 5 3

stosw none none AB 1 4 5 3

stosd

sub AL,imm8 SF,ZF,OF,CF,PF,AF 2C 2 2 1 1

sub AX,imm16 SF,ZF,OF,CF,PF,AF 2D 3 2 1 1

EAX,imm32 5

sub reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

sub reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6

sub reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

sub mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

sub mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

mem32,imm32 6+

sub mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

mem32,imm8

sub reg8,reg8 SF,ZF,OF,CF,PF,AF 2A 2 2 1 1

sub reg16,reg16 SF,ZF,OF,CF,PF,AF 2B 2 2 1 1

reg32,reg32

sub reg8,mem8 SF,ZF,OF,CF,PF,AF 2A 2+ 6 2 2

sub reg16,mem16 SF,ZF,OF,CF,PF,AF 2B 2+ 6 2 2

reg32,mem32
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sub mem8,reg8 SF,ZF,OF,CF,PF,AF 28 2+ 7 3 3

sub mem16,reg16 SF,ZF,OF,CF,PF,AF 29 2+ 7 3 3

mem32,reg32

test AL,imm8 SF,ZF,OF,CF,PF,AF A8 2 2 1 1

test AX,imm16 SF,ZF,OF,CF,PF,AF A9 3 2 1 1

EAX,imm32 5

test reg8,imm8 SF,ZF,OF,CF,PF,AF F6 3 2 1 1

test reg16,imm16 SF,ZF,OF,CF,PF,AF F7 4 2 1 1

reg32,imm32 6

test mem8,imm8 SF,ZF,OF,CF,PF,AF F6 3+ 5 2 2

test mem16,imm16 SF,ZF,OF,CF,PF,AF F7 4+ 5 2 2

mem32,imm32 6+

test reg8,reg8 SF,ZF,OF,CF,PF,AF 84 2 2 1 1

test reg16,reg16 SF,ZF,OF,CF,PF,AF 85 2 2 1 1

reg32,reg32

test mem8,reg8 SF,ZF,OF,CF,PF,AF 84 2+ 5 2 2

test mem16,reg16 SF,ZF,OF,CF,PF,AF 85 2+ 5 2 2

mem32,reg32

xchg AX, CX none 91 1 3 3 2

EAX, ECX

xchg AX, DX none 92 1 3 3 2

EAX, EDX

xchg AX, BX none 93 1 3 3 2

EAX, EBX

xchg AX, SP none 94 1 3 3 2

EAX, ESP

xchg AX, BP none 95 1 3 3 2

EAX, EBP

xchg AX, SI none 96 1 3 3 2

EAX, ESI

xchg AX, DI none 97 1 3 3 2

EAX, EDI

xchg reg8,reg8 none 86 2 3 3 3
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xchg reg8,mem8 none 86 2+ 5 5 3

xchg reg16,reg16 none 87 2 3 3 3

reg32,mem32

xchg reg16,mem16 none 87 2+ 5 5 3

reg32,mem32

xlat none none D7 1 5 4 4

xor AL,imm8 SF,ZF,OF,CF,PF,AF 34 2 2 1 1

xor AX,imm16 SF,ZF,OF,CF,PF,AF 35 3 2 1 1

EAX,imm32 5

xor reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

xor reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

reg32,imm32 6

xor reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

reg32,imm8

xor mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

xor mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

mem32,imm32 6+

xor mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

mem32,imm8

xor reg8,reg8 SF,ZF,OF,CF,PF,AF 32 2 2 1 1

xor reg16,reg16 SF,ZF,OF,CF,PF,AF 33 2 2 1 1

reg32,reg32

xor reg8,mem8 SF,ZF,OF,CF,PF,AF 32 2+ 6 2 2

xor reg16,mem16 SF,ZF,OF,CF,PF,AF 33 2+ 6 2 2

reg32,mem32

xor mem8,reg8 SF,ZF,OF,CF,PF,AF 30 2+ 7 3 3

xor mem16,reg16 SF,ZF,OF,CF,PF,AF 31 2+ 7 3 3

mem32,reg32

* timing varies
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00 add mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

01 add mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

mem32,reg32

02 add reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

02 add reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

03 add reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

03 add reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32

04 add AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

05 add AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

06 push ES none 1 2 3 1

07 pop ES none 1 7 3 3

08 or mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

09 or mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

mem32,reg32

0A or reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

0A or reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

0B or reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

0B or reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32
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0C or AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

0D or AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

0E push CS none 1 2 3 1

0F 04 shld reg16,reg16,imm8 SF,ZF,CF,PF 4 3 2 4

reg32,reg32,imm8 OF,AF ?

0F 04 shld mem16,reg16,imm8 SF,ZF,CF,PF 4+ 7 4 4

mem32,reg32,imm8 OF,AF ?

0F 05 shld reg16,reg16,CL SF,ZF,CF,PF 3 3 3 4

reg32,reg32,CL OF,AF ?

0F 05 shld mem16,reg16,CL SF,ZF,CF,PF 3+ 7 4 5

mem32,reg32,CL OF,AF ?

0F 80 jo rel32 none 7+,3 3,1 1 6

0F 81 jno rel32 none 7+,3 3,1 1 6

0F 82 jb rel32 none 7+,3 3,1 1 6

jnae

0F 82 jc rel32 none 7+,3 3,1 1 6

0F 83 jae rel32 none 7+,3 3,1 1 6

jnb

0F 83 jnc rel32 none 7+,3 3,1 1 6

0F 84 je rel32 none 7+,3 3,1 1 6

jz

0F 85 jne rel32 none 7+,3 3,1 1 6

jnz

0F 86 jbe rel32 none 7+,3 3,1 1 6

jna

0F 87 ja rel32 none 7+,3 3,1 1 6

jnbe

0F 88 js rel32 none 7+,3 3,1 1 6

0F 89 jns rel32 none 7+,3 3,1 1 6

0F 8A jp rel32 none 7+,3 3,1 1 6

jpe

0F 8B jnp rel32 none 7+,3 3,1 1 6

jpo

0F 8C jl rel32 none 7+,3 3,1 1 6

jnge
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0F 8D jge rel32 none 7+,3 3,1 1 6

jnl

0F 8E jle rel32 none 7+,3 3,1 1 6

jng

0F 8F jg rel32 none 7+,3 3,1 1 6

jnle

0F A0 push FS none 2 2 3 1

0F A1 pop FS none 2 7 3 3

0F A8 push GS none 2 2 3 1

0F A9 pop GS none 2 7 3 3

0F AC shrd reg16,reg16,imm8 SF,ZF,CF,PF 4 3 2 4

reg32,reg32,imm8 OF,AF ?

0F AC shrd mem16,reg16,imm8 SF,ZF,CF,PF 4+ 7 4 4

mem32,reg32,imm8 OF,AF ?

0F AD shrd reg16,reg16,CL SF,ZF,CF,PF 3 3 3 4

reg32,reg32,CL OF,AF ?

0F AD shrd mem16,reg16,CL SF,ZF,CF,PF 3+ 7 4 5

mem32,reg32,CL OF,AF ?

0F AF imul reg16,reg16 OF,CF 3 9-22 13-26 11

reg32,reg32 SF,ZF, PF,AF ? 9-38 13-42 10

0F AF imul reg16,mem16 OF,CF 3+ 12-25 13-26 11

reg32,mem32 SF,ZF, PF,AF ? 12-41 13-42 10

0F B6 movzx reg16,reg8 none 3 3 3 3

reg32,reg8

0F B6 movzx reg16,mem8 none 3+ 6 3 3

reg32,mem8

0F B7 movzx reg32,reg16 none 3 3 3 3

0F B7 movzx reg32,mem16 none 3+ 6 3 3

0F BE movsx reg16,reg8 none 3 3 3 3

reg32,reg8

0F BE movsx reg16,mem8 none 3+ 6 3 3

reg32,mem8

0F BF movsx reg32,reg16 none 3 3 3 3

0F BF movsx reg32,mem16 none 3+ 6 3 3

10 adc mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3
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11 adc mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

mem32,reg32

12 adc reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

12 adc reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

13 adc reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

13 adc reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32

14 adc AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

15 adc AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

16 push SS none 1 2 3 1

17 pop SS none 1 7 3 3

18 sbb mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

19 sbb mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

mem32,reg32

1A sbb reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

1A sbb reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

1B sbb reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

1B sbb reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32

1C sbb AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

1D sbb AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

1E push DS none 1 2 3 1

1F pop DS none 1 7 3 3

20 and mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

21 and mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

mem32,reg32

22 and reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

22 and reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

23 and reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32
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23 and reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32

24 and AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

25 and AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

27 daa none SF,ZF,PF,AF 1 4 2 3

OF ?

28 sub mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

29 sub mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

mem32,reg32

2A sub reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

2A sub reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

2B sub reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

2B sub reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32

2C sub AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

2D sub AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

2F das none SF,ZF,PF,AF 1 4 2 3

OF ?

30 xor mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

31 xor mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

mem32,reg32

32 xor reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

32 xor reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

33 xor reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

33 xor reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32

34 xor AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

35 xor AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

37 aaa none AF,CF 1 4 3 3

SF,ZF,OF,PF ?
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38 cmp reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

38 cmp mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

39 cmp mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

mem32,reg32

3A cmp reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

3B cmp reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

3B cmp reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

reg32,mem32

3C cmp AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

3D cmp AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

3F aas none AF,CF 1 4 3 3

SF,ZF,OF,PF ?

40 inc AX SF,ZF,OF,PF,AF 1 2 1 1

EAX

41 inc CX SF,ZF,OF,PF,AF 1 2 1 1

ECX

42 inc DX SF,ZF,OF,PF,AF 1 2 1 1

EDX

43 inc BX SF,ZF,OF,PF,AF 1 2 1 1

EBX

44 inc SP SF,ZF,OF,PF,AF 1 2 1 1

ESP

45 inc BP SF,ZF,OF,PF,AF 1 2 1 1

EBP

47 inc SI SF,ZF,OF,PF,AF 1 2 1 1

ESI

48 dec AX SF,ZF,OF,PF,AF 1 2 1 1

EAX

48 inc DI SF,ZF,OF,PF,AF 1 2 1 1

EDI

49 dec CX SF,ZF,OF,PF,AF 1 2 1 1

ECX

4A dec DX SF,ZF,OF,PF,AF 1 2 1 1

EDX
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4B dec BX SF,ZF,OF,PF,AF 1 2 1 1

EBX

4C dec SP SF,ZF,OF,PF,AF 1 2 1 1

ESP

4D dec BP SF,ZF,OF,PF,AF 1 2 1 1

EBP

4E dec SI SF,ZF,OF,PF,AF 1 2 1 1

ESI

4F dec DI SF,ZF,OF,PF,AF 1 2 1 1

EDI

50 push AX none 1 2 1 1

EAX

51 push CX none 1 2 1 1

ECX

52 push DX none 1 2 1 1

EDX

53 push BX none 1 2 1 1

EBX

54 push SP none 1 2 1 1

ESP

55 push BP none 1 2 1 1

EBP

56 push SI none 1 2 1 1

ESI

57 push DI none 1 2 1 1

EDI

58 pop AX none 1 4 1 1

EAX

59 pop CX none 1 4 1 1

ECX

5A pop DX none 1 4 1 1

EDX

5B pop BX none 1 4 1 1

EBX

5C pop SP none 1 4 1 1

ESP

5D pop BP none 1 4 1 1

EBP
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5E pop SI none 1 4 1 1

ESI

5F pop DI none 1 4 1 1

EDI

60 pusha none none 1 18 11 5

pushad

61 popa none none 1 24 9 5

popad

68 push imm16 none 3 2 1 1

imm32 5

69 imul reg16,reg16,imm16 OF,CF 4 9-22 13-26 10

reg32,reg32,imm32 SF,ZF, PF,AF ? 6 9-38 13-42 10

69 imul reg16,mem16,imm16 OF,CF 4+ 12-25 13-26 10

reg32,mem32,imm32 SF,ZF, PF,AF ? 6+ 12-41 13-42 10

6A push imm8 none 2 2 1 1

6B imul reg16,imm8 OF,CF 3 9-14 13-18 10

reg32,imm8 SF,ZF, PF,AF ?

6B imul reg16,reg16,imm8 OF,CF 3 9-14 13-18 10

reg32,reg32,imm8 SF,ZF, PF,AF ?

6B imul reg16,mem16,imm8 OF,CF 3+ 9-17 13-18 10

reg32,mem32,imm8 SF,ZF, PF,AF ?

70 jo rel8 none 7+,3 3,1 1 2

71 jno rel8 none 7+,3 3,1 1 2

72 jb rel8 none 7+,3 3,1 1 2

jnae

72 jc rel8 none 7+,3 3,1 1 2

73 jae rel8 none 7+,3 3,1 1 2

jnb

73 jnc rel8 none 7+,3 3,1 1 2

74 je rel8 none 7+,3 3,1 1 2

jz

75 jne rel8 none 7+,3 3,1 1 2

jnz

76 jbe rel8 none 7+,3 3,1 1 2

jna

77 ja rel8 none 7+,3 3,1 1 2

jnbe
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78 js rel8 none 7+,3 3,1 1 2

79 jns rel8 none 7+,3 3,1 1 2

7A jp rel8 none 7+,3 3,1 1 2

jpe

7B jnp rel8 none 7+,3 3,1 1 2

jpo

7C jl rel8 none 7+,3 3,1 1 2

jnge

7D jge rel8 none 7+,3 3,1 1 2

jnl

7E jle rel8 none 7+,3 3,1 1 2

jng

7F jg rel8 none 7+,3 3,1 1 2

jnle

80 adc reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 adc mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 add reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 add mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 and reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 and mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 cmp reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 cmp mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 5 2 2

80 or reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 or mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 sbb reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 sbb mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 sub reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 sub mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 xor reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 xor mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

81 adc reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 adc mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

mem32,imm32 6+
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81 add reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 add mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

mem32,imm32 6+

81 and reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 and mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

mem32,imm32 6+

81 cmp reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 cmp mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 5 2 2

mem32,imm32 6+

81 or reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 or mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

mem32,imm32 6+

81 sbb reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 sbb mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

mem32,imm32 6+

81 sub reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 sub mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

mem32,imm32 6+

81 xor reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

81 xor mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

mem32,imm32 6+

83 adc reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8

83 adc mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

mem32,imm8

83 add reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8

83 add mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

mem32,imm8

83 and reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8
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83 and mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

mem32,imm8

83 cmp reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8

83 cmp mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 5 2 2

mem32,imm8

83 or reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8

83 or mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

mem32,imm8

83 sbb reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8

83 sbb mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

mem32,imm8

83 sub reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8

83 sub mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

mem32,imm8

83 xor reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

reg32,imm8

83 xor mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

mem32,imm8

84 test reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

84 test mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

85 test reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32,reg32

85 test mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

mem32,reg32

86 xchg reg8,reg8 none 2 3 3 3

86 xchg reg8,mem8 none 2+ 5 5 3

87 xchg reg16,reg16 none 2 3 3 3

87 xchg reg16,mem16 none 2+ 5 5 3

88 mov mem8,reg8 none 2+ 2 1 1

89 mov mem16,reg16 none 2+ 2 1 1

mem32,reg32

8A mov reg8,reg8 none 2 2 1 1

8A mov reg8,mem8 none 2+ 4 1 1
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8B mov reg16,reg16 none 2 2 1 1

reg32,reg32

8B mov reg16,mem16 none 2+ 4 1 1

reg32,mem32

8C mov reg16, sreg none 2 2 3 1

8C mov mem16,sreg none 2+ 2 3 1

8D lea reg32,mem32 none 2+ 2 1 1

8E mov sreg, reg16 none 2 2 3 1

8E mov sreg,mem16 none 2+ 2 3* 2*

8F pop mem16 none 2+ 5 6 3

mem32

91 xchg AX, CX none 1 3 3 2

EAX, ECX

92 xchg AX, DX none 1 3 3 2

EAX, EDX

93 xchg AX, BX none 1 3 3 2

EAX, EBX

94 xchg AX, SP none 1 3 3 2

EAX, ESP

95 xchg AX, BP none 1 3 3 2

EAX, EBP

96 xchg AX, SI none 1 3 3 2

EAX, ESI

97 xchg AX, DI none 1 3 3 2

EAX, EDI

98 cbw none none 1 3 3 3

98 cwde none none 1 3 3 3

99 cdq none none 1 2 3 2

99 cwd none none 1 2 3 2

9A call far direct none 7 17+ 18 4

9C pushf none none 1 4 4 3

pushfd

9D popf none none 1 5 9 4

popfd

A0 mov AL, direct none 5 4 1 1
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A1 mov AX, direct none 5 4 1 1

EAX, direct

A2 mov direct ,AL none 5 2 1 1

A3 mov direct, AX none 5 2 1 1

direct, EAX

A4 movsb none none 1 7 7 4

A5 movsw none none 1 7 7 4

movsd

A6 cmpsb none none 1 10 8 5

A7 cmpsw none none 1 10 8 5

cmpsd

A8 test AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

A9 test AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

EAX,imm32 5

AA stosb none none 1 4 5 3

AB stosw none none 1 4 5 3

stosd

AC lodsb none none 1 5 5 2

AD lodsw none none 1 5 5 2

lodsd

AE scasb none none 1 7 6 4

AE scasw none none 1 7 6 4

scasd

B0 mov AL, imm8 none 2 2 1 1

B1 mov CL, imm8 none 2 2 1 1

B2 mov DL, imm8 none 2 2 1 1

B3 mov BL, imm8 none 2 2 1 1

B4 mov AH, imm8 none 2 2 1 1

B5 mov CH, imm8 none 2 2 1 1

B6 mov DH, imm8 none 2 2 1 1

B7 mov BH, imm8 none 2 2 1 1

B8 mov AX, imm16 none 3 2 1 1

EAX, imm32 5

B9 mov CX, imm16 none 3 2 1 1

ECX, imm32 5
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BA mov DX, imm16 none 3 2 1 1

EDX, imm32 5

BB mov BX, imm16 none 3 2 1 1

EBX, imm32 5

BC mov SP, imm16 none 3 2 1 1

ESP, imm32 5

BD mov BP, imm16 none 3 2 1 1

EPB, imm32 5

BE mov SI, imm16 none 3 2 1 1

ESI, imm32 5

BF mov DI, imm16 none 3 2 1 1

EDI, imm32 5

C0 rol reg8, imm8 SF,ZF,OF,CF,PF 3 3 2 1

ror AF ?

C0 rol mem8, imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

ror AF ?

C0 shl/sal reg8, imm8 SF,ZF,OF,CF,PF 3 3 2 1

shr AF ?

sar

C0 shl/sal mem8, imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

shr AF ?

sar

C1 rol reg16,imm8 SF,ZF,OF,CF,PF 3 3 2 1

ror reg32,imm8 AF ?

C1 rol mem16,imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

ror mem32,imm8 AF ?

C1 shl/sal reg16,imm8 SF,ZF,OF,CF,PF 3 3 2 1

shr reg32,imm8 AF ?

sar

C1 shl/sal mem16,imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

shr mem32,imm8 AF ?

sar

C2 ret (near) imm16 none 3 10+ 5 3

C3 ret (near) none none 1 10+ 5 2

C6 mov mem8, imm8 none 3+ 2 1 1

C7 mov mem16,imm16 none 4+ 2 1 1

mem32,imm32 6+
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CA ret (far) imm16 none 3 18+ 14 4

CB ret (far) none none 1 18+ 13 4

D0 rol reg8 SF,ZF,OF,CF,PF 2 3 3 1

ror AF ?

D0 rol mem8 SF,ZF,OF,CF,PF 2+ 7 4 3

ror AF ?

D0 shl/sal reg8 SF,ZF,OF,CF,PF 2 3 3 1

shr AF ?

sar

D0 shl/sal mem8 SF,ZF,OF,CF,PF 2+ 7 4 3

shr AF ?

sar

D1 rol reg16 SF,ZF,OF,CF,PF 2 3 3 1

ror reg32 AF ?

D1 rol reg16 SF,ZF,OF,CF,PF 2+ 7 4 3

ror reg32 AF ?

D1 shl/sal reg16 SF,ZF,OF,CF,PF 2 3 3 1

shr reg32 AF ?

sar

D1 shl/sal reg16 SF,ZF,OF,CF,PF 2+ 7 4 3

shr reg32 AF ?

sar

D2 rol reg8, CL SF,ZF,OF,CF,PF 2 3 2 1

ror AF ?

D2 rol mem8, CL SF,ZF,OF,CF,PF 2+ 7 4 4

ror AF ?

D2 shl/sal reg8, CL SF,ZF,OF,CF,PF 2 3 2 1

shr AF ?

sar

D2 shl/sal mem8, CL SF,ZF,OF,CF,PF 2+ 7 4 4

shr AF ?

sar

D3 rol reg16,CL SF,ZF,OF,CF,PF 2 3 2 1

ror reg32,CL AF ?

D3 rol mem16,CL SF,ZF,OF,CF,PF 2+ 7 4 4

ror mem32,CL AF ?

D3 shl/sal reg16,CL SF,ZF,OF,CF,PF 2 3 2 1

shr reg32,CL AF ?

sar
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D3 shl/sal mem16,CL SF,ZF,OF,CF,PF 2+ 7 4 4

shr mem32,CL AF ?

sar

D4 0A aam none SF,ZF,PF 2 17 15 18

OF,AF,CF ?

D5 0A aad none SF,ZF,PF 2 19 14 10

OF,AF,CF ?

D7 xlat none none 1 5 4 4

E0 loopne none none 11+ 6,9 7,8 2

loopnz

E1 loope none none 11+ 6,9 7,8 2

loopz

E2 loop none none 11+ 6,7 5,6 2

E3 jecxz rel8 none 6,5 2

E8 call rel32 none 5 7+ 3 1

E9 jmp rel32 none 5 7+ 3 1

EB jmp rel8 none 2 7+ 3 1

F2 repnz none none 1

repne (string instruction 

prefix)

F2 A6 repne none none 2 5+9n 7+7n 9+4n

cmpsb

F2 A7 repne none none 2 5+9n 7+7n 9+4n

cmpsw

repne

cmpsd

F2 AE repne none none 2 5+8n 7+5n 9+4n

scasb

F2 AF repne none none 2 5+8n 7+5n 9+4n

scasw

repne

scasd

F3 rep none none 1

repz (string instruction

repe prefix)

F3 A4 rep none none 2 7+4n 12+3n 13+4n

movsb
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F3 A5 rep none none 2 7+4n 12+3n 13+4n

movsw

rep

movsd

F3 A6 rep stosb none none 2 5+5n 7+4n 9n

F3 A6 repe none none 2 5+9n 7+7n 9+4n

cmpsb

F3 A7 rep stosw none none 2 5+5n 7+4n 9n

rep stosd

F3 A7 repe none none 2 5+9n 7+7n 9+4n

cmpsw

repe

cmpsd

F3 AE repe none none 2 5+8n 7+5n 9+4n

scasb

F3 AF repe none none 2 5+8n 7+5n 9+4n

scasw

repe

scasd

F5 cmc none CF 1 2 2 2

F6 div reg8 SF,ZF,OF,PF,AF ? 2 14 16 17

F6 div mem8 SF,ZF,OF,PF,AF ? 2+ 17 16 17

F6 idiv reg8 SF,ZF,OF,PF,AF ? 2 19 19 22

F6 idiv mem8 SF,ZF,OF,PF,AF ? 2+ 22 20 22

F6 imul reg8 OF,CF 2 9-14 13-18 11

SF,ZF, PF,AF ?

F6 imul mem8 OF,CF 2+ 12-17 13-18 11

SF,ZF, PF,AF ?

F6 mul reg8 OF,CF 2 9-14 13-18 11

SF,ZF, PF,AF ?

F6 mul mem8 OF,CF 2+ 12-17 13-18 11

SF,ZF, PF,AF ?

F6 neg reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

F6 neg mem8 SF,ZF,OF,CF,PF,AF 2+ 2 1 1

F6 not reg8 none 2 2 1 1

F6 not mem8 none 2+ 6 3 3

F6 test reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

F6 test mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 5 2 2
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F7 div reg16 SF,ZF,OF,PF,AF ? 2 22 24 25

reg32 38 40 41

F7 div mem16 SF,ZF,OF,PF,AF ? 2+ 25 24 25

mem32 41 40 41

F7 idiv reg16 SF,ZF,OF,PF,AF ? 2 27 27 30

reg32 43 43 48

F7 idiv mem16 SF,ZF,OF,PF,AF ? 2+ 30 28 30

mem32 46 44 48

F7 imul reg16 OF,CF 2 9-22 13-26 11

reg32 SF,ZF, PF,AF ? 9-38 13-42 10

F7 imul mem16 OF,CF 2+ 12-25 13-26 11

mem32 SF,ZF, PF,AF ? 12-41 13-42 10

F7 imul mem16 OF,CF 4 9-22 13-26 11

mem32 SF,ZF, PF,AF ? 6 9-38 13-42 10

F7 mul reg16 OF,CF 2 9-22 13-26 11

reg32 SF,ZF, PF,AF ? 9-38 13-42 10

F7 mul mem16 OF,CF 2+ 12-25 13-26 11

mem32 SF,ZF, PF,AF ? 12-41 13-42 10

F7 neg reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

reg32

F7 neg mem16 SF,ZF,OF,CF,PF,AF 2+ 2 1 1

mem32

F7 not reg16 none 2 2 1 1

reg32

F7 not mem16 none 2+ 6 3 3

mem32

F7 test reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

reg32,imm32 6

F7 test mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 5 2 2

mem32,imm32 6+

F8 clc none CF 1 2 2 2

F9 stc none CF 1 2 2 2

FC cld none DF 1 2 2 2

FD std none DF 1 2 2 2

FE dec reg8 2 2 1 1

FE dec mem8 SF,ZF,OF,PF,AF 2+ 6 3 3
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FE inc reg8 SF,ZF,OF,PF,AF 2 2 1 1

FE inc mem8 SF,ZF,OF,PF,AF 2+ 6 3 3

FF call reg32 (near none 2 7+ 5 2

indirect)

FF call mem32 (near none 2+ 10+ 5 2

indirect)

FF call far indirect none 6 22+ 17 5

FF dec mem16 SF,ZF,OF,PF,AF 2+ 6 3 3

mem32

FF inc mem16 SF,ZF,OF,PF,AF 2+ 6 3 3

mem32

FF jmp reg32 none 2 10+ 5 2

FF jmp mem32 none 2+ 10+ 5 2

FF push mem16 none 2+ 5 4 2

mem32

* timing varies
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A

aaa instructions, 406, 407, 409, 417

aad instructions, 411, 417

aam instructions, 409, 412, 417

aas instructions, 406, 407

Abstraction levels, 133-134, 135

Accumulators, 93, 94

add and sub instructions, 98

Ada, 137

adc instructions, 130, 131, 135

addAll macro 

using conditional assembly, 326,

327, 328

add instructions, 95, 96, 98, 99, 100,

101, 102, 134, 269, 407

flags set/cleared by, 145

functioning of, at execution time,

96-97

Addition

algorithm for floating-point, 380

and floating-point instructions,

349

of floating-point numbers, 374,

380

in floating-point routines, 340

of hex digits, 12

instructions, 135

of larger numbers, 130-132

of non-negative packed BCD

numbers, 398, 399

overflow in, 17

for packed BCD numbers, 396

of two 8 byte unpacked BCD

numbers, 408

of 2’s complement numbers, 15-

18, 26

ADDP (add packed) instructions, 416

Addresses/addressing

80x86 modes, 73

I/O, 36

register indirect, 75

Address parameters

procedure using, 220

Address size byte, 308

addUnp procedure, 407, 408

AF flag, 96

Algorithms

for assembly language program,

45-46

AL register, 76

American National Standards

Institute, 24

American Standard Code for

Information Interchange. See

ASCII

and instructions, 270, 272, 299

and operations, 153, 267

and 80x86, 269

and logic gates, 298

and operator, 161, 162

ANSI. See American National

Standards Institute

Application level of abstraction, 133,

135

Application software, 27

Arguments

for macro calls, 331-332, 337

Argument values

passing, 213

Arithmetic shifts, 278

left, 279

right, 280, 282

Array elements

accessing, 185, 191

Arrays, 180-185, 190, 191

indexes, 32

passing to procedure, 219

processing, 314

program using, 182-184

ASCII, 6, 386

BCD representation conversions

to/from, 417

to doubleword integer

conversion, 293-295

to floating-point algorithm,

361-363, 364

floating-point to, conversion

algorithm, 366-367

floating point to, conversion

procedure, 369-372

to packed BCD conversion, 390,

391-392

procedure for integer conversion

to, 260-261

unpacked BCD value converted

to/from, 405

ASCII codes, 9, 23, 26

logical instructions for

manipulating, 273

and logical operations, 274

and macros defined in IO.H, 78-80

and text editors, 38

translating, 257

ASCII string

converting 2’s complement

integer to, 259-262

Assemblers, 38, 39, 40, 44, 74

job of, 301

listing files for, 60-67

one-pass and two-pass, 302

responsibilities of, 305

and storage, 304-305

symbol tables used by, 302

Assembly language, 82

for loops in, 173-178

procedure in, 202

statements, 42-45, 82
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Assembly language program, 83

assembling, linking, running,

53-58

complete example of, 45, 47

sample run, 106

source program listing, 104-105

Assembly process, 301-338

conditional assembly, 326-332

80x86 instruction coding, 307-

315

macro definition and expansion,

319-325

macros in IO.H, 333-337

selection sort algorithm, 317

two-pass and one-pass

assembly, 302-306

Assembly time, 305

atod macro, 50, 58, 79, 80, 83, 164,

283, 292, 300 

in file IO.H, 337

atodproc procedure, 300, 393

and ASCII to 2’s complement

integer conversion, 292

atofproc procedure

and ASCII to floating-point

conversion algorithm, 362,

364

test driver for, 365

atoi macro, 80, 83, 267, 292

in file IO.H, 337

and larger numbers, 132

atopProc procedure

design for, 393

At sign (@)

in assembly language, 44

Auxiliary carry flag

and binary addition for BCD

operands, 396-397

AX register, 32

B

Backspace, 8

Backward for loops, 173, 176

Backward reference, 140, 306

Based addressing mode, 212

Base pointer register, 32

Bases

conversion between, 2-3

BASIC, 137

Basic language, 38

BCD. See Binary coded decimal

BCD representations. See Binary

coded decimal

representations

Bell character, 8

Binary addition

for BCD operands, 396

Binary coded decimal, 21, 22, 26

Binary coded decimal representations,

23, 387. See also Packed

BCD

representations/instructions;

Unpacked BCD

representations/instructions

Binary integers/numbers, 2, 3, 26

converting to hexadecimal

format, 4

converting to octal numbers, 5

Binary scientific notation, 24

Binary values

and logical operations, 272

Bit manipulation, 267-300

ASCII string converted to 2’s

complement integer, 292-297

logical operations, 268-275

logic gates, 298-299

shift and rotate instructions,

278-289

Bit pattern

with packed BCD, 388

Bits, 2, 7, 9, 26

Blank lines

in assembly language code, 45

Blanks

ASCII codes for, 257

Boolean operations, 267, 299

Boolean values, 268, 272

Borrow, 19

Branch and link instruction, 229

Branching, 137

Busy-waiting loop, 438

BX register, 32

BYTE directives, 48, 49, 50, 52, 66, 78,

83

constant operands in, 68, 69, 70

Byte length divisor, 119, 120

Byte(s), 9

and multiplication, 108

prefix, 88, 93

string instruction, 233

Byte-size operands, 308

instructions with, 315

and push instructions, 194

C

C, 1, 39

C++, 39, 137

Calculators

for conversions, 2-3

for converting negative 2’s

complement representation

to decimal number, 13-14

call instructions, 204, 206, 207

Carriage return, 8

character, 48, 58

Carry, 15, 16, 17, 19, 20

Carry flag (CF), 33, 96, 98, 135, 147

and addition/subtraction of

larger numbers, 130, 131

and Boolean instructions, 269

control of, 132

and imul instructions, 113

and left shifts, 279

and mul instructions, 110

and rotate instructions, 289

Case-insensitivity

with assembly language, 45

Case-sensitivity

with ML switches, 53

Case structures, 137

cbw instructions, 123, 124, 135

cdq instructions, 123, 124, 135

Celsius to Fahrenheit temperature

conversion program, 125,

126, 127

Central processing unit, 27, 30-34, 39,

267

basic operation cycle, 189

and pipelining, 189-190, 191

CF. See Carry flag

Character codes, 6-7

Character controls, 26

Characters

finding, in string, 247-248

translation of, 254-257

Character strings, 231

CISC. See Complex instruction set

computer designs

clc instructions, 135

cld instructions, 233

Clipped points, 277

Clock cycles, 88, 89, 199

adc and sbb instructions, 131

add and sub instructions, 99

and, or, and xor instructions, 270

call instructions, 206

cld and std instructions, 233

cmp instructions, 148

cmps instructions, 242

for conditional jump instructions,

151, 176

div instructions, 122

double shift instructions, 287

idiv instructions, 122
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for imul instructions, 110

inc and dec instructions, 100

loop instructions, 174

movsx and movzx instructions,

125

neg instructions, 102

not instruction, 270

pop instructions, 197

push all and pop all instructions,

200

for push instructions, 195

and reduced instruction set

computer designs, 264

rep movs instructions, 241

ret instructions, 208

scas instructions, 247

shift and rotate instructions, 

282

stos instructions, 249

test instructions, 275

xchg instruction, 93

Clock speeds, 88

CloseHandle function, 429, 432

cmc instructions, 135

cmp (compare) instructions, 146, 147,

148, 190, 191

CMPP instructions, 416

cmps (compare string) instructions,

232

cmps instructions, 242, 265

COBOL language, 39

packed decimal types/operations

supported by, 417

Code

in-line assembly, 384-385, 386

relocatable, 306

.CODE directive, 202

Coding

with floating-point instructions,

359-373

Colons, 43, 138

combine macro, 377, 380

Command line, 40

Command line interface, 37

Commas, 43

in macro calls, 320, 323

Comments, 42

assembly language, 82

for assembly language program,

45, 48

Compilers, 38, 39

Complementing the number, 11-12

Complex circuits, 298

Complex instruction set computer

designs, 265

reduced instruction set

computer designs versus,

264

Computer system parts, 27-40

CPU, 30-34

input/output devices, 36-37

language translators and linker,

38-39

memory, 28-29

operating system, 37-38

text editors, 38

Conditional assembly, 326-333, 338

directives, 329

Conditional if statements

and Boolean values, 268

Conditional jump instructions, 144,

149, 176, 190, 191, 356

timing and size of, 151

Console I/O

using kernel32 functions, 421,

422-424

using Kernel32 library, 420-428

Constant operands, 68-71

Continuation condition, 159

Control characters, 7, 8

Control word, floating-point unit, 341

Conversion

between bases, 2-3. See also

ASCII

Copying

data, 85, 86-94

fixed number of characters of

string, 240

Counter

and dollar sign symbol, 256

count, 140

count operands, 207

double shift instructions, 287

shift and rotate instructions, 

282

versions of, 279

CPU. See Central processing unit

CR. See Carriage return

CreateFileA function, 429, 431, 432

CREATE_NEW, 432

CS register, 32

cwde instructions, 123, 124

cwd instructions, 123, 124, 135

CX register, 32

D

daa (decimal adjust after addition)

instructions, 396, 397, 417

das (decimal adjust after subtraction)

instructions, 396, 398, 417

Data

changing size of, 92

copying, 85, 86-94

.DATA directive, 48, 219

Data registers, 30

Data representation in computer, 1-26

addition/subtraction of 2’s

complement numbers, 15-20

binary and hexadecimal

numbers, 2-5

character codes, 6-8

other systems for representing

numbers, 21-25

2’s complement representation

for signed integers, 9-14

Debuggers, 39, 40

dec idi instructions, 248

Decimal arithmetic, 387-417

packed BCD instructions,

396-403

packed BCD representations,

388-394

unpacked BCD representations

and instructions, 404-412

VAX packed decimal

instructions, 416-417

Decimal numbers, 3, 26

binary numbers converted to, 4

converting to hex equivalent, 4

converting to IEEE single format,

23-24, 25

converting to octal numbers, 5

converting 2’s complement

representation to, 12

dec instructions, 95, 100, 134

execution of, 101

Delete, 8

Destination index, 32

Destination operands, 79

adc and sbb instructions, 131

add and sub instructions, 99

additional mov instructions, 90

and, or, and xor instructions, 270

cmp instructions, 148

double shift instructions, 287

immediate-to-memory mov

instructions, 89

immediate-to-register mov

instructions, 87

imul instructions, 110

inc and dec instructions, 100

neg instructions, 102

not instructions, 270

shift and rotate instructions, 282

test instructions, 275

Index 491

TEAM LinG - Live, Informative, Non-cost and Genuine!



Destination strings, 232

DI. See Destination index

Digital computers

and logic gates, 298, 300

Direction bit, 315

Direction flag (DF)

EDI register, 265

and string processing, 233

Directives, 42, 43, 82

for assembly language program,

45

for macros/statements in .LST

files, 325

for reserving storage, 71

strings defined with, 232

Direct memory addressing, 312

mode, 74, 83

Direct operands, 89

Disk drives, 27, 36

Disk operating system, 37

Displacement bytes, 312

Displacement doubleword, 312

Displacement field, 308

Displacements

and jump instructions, 141

Display devices, 27

Dividend, 119

div instructions, 122, 411, 417

Division

errors, 122

floating-point instructions, 354

of larger numbers, 132

of unpacked BCD numbers, 413

Division instructions, 118-127, 134,

135

operands/results for 80x86, 119

Divisor, 119

div operations, 119

DIVP instructions, 416

Dollar sign symbol ($), 44, 256, 306

DOS. See Disk operating system

Double-length dividend, 118, 119,

134-135

Double operands

instructions with, 315

Double shift instructions, 286, 287, 300

Doubleword, 10, 11

Doubleword integer conversion

ASCII to, 293-295

Double-word length divisor, 119, 120

Doublewords

in assembly language program,

49

multiplication of, 108

Doubleword-size dividend, 123

Double-word strings, 233

DS register, 32

DT directive, 388-389

dtoa macro, 51, 79, 83, 231, 259

in file IO.H, 337

DUP directive, 191

DwExitCode, 46, 52

DWORD directives, 48, 61, 83

constant operands in, 68, 69, 70

DX register, 32

E

EAX register, 30, 31, 34, 39, 43, 51, 67,

75, 91

EBCDIC. See Extended Binary Coded

Decimal Information Code

EBP base pointer

for register indirect addressing,

75

EBX register, 30, 31, 32

in program using array, 182

for register indirect addressing,

75

ECX register, 30, 31, 32

and loop instruction, 191

for register indirect addressing,

75

EDI register

for register indirect addressing,

75

and strcopy procedure, 236

and string elements, 232, 265

Edit, 38, 53

EDIT instructions, 416

EDX register, 30, 31, 32

for register indirect addressing,

75

EFLAGS bits, 34

EFLAGS register, 88, 190

flag updating in, 96

80x86. See Intel 80x86

EIP register, 204

ELSE directive, 329, 330, 332, 338

ELSEIF directive, 329

elseIfZero, 145, 146

endBalanceCheck, 146

END directive, 52

ENDIF directive, 329, 332, 338

endif, 190

ENDM directive, 338

ENDP directive, 202

endWhile, 159, 160

E-notation, 386

floating point parameter

converted to, 365

enter instruction 

syntax for, 221

Entry code, for procedure, 215, 218

EQU directives, 48, 61

.ERR directive, 332, 337, 338

Errors

and assemblers, 305

and assembly listing file, 60-61

division, 122, 135

and .ERR directive, 332

ESC. See Extra services control

ESI register

for register indirect addressing,

75

and strcopy procedure, 236

and string elements, 232, 265

ESP register

and push instructions, 195, 196

ESP stack pointer

for register indirect addressing,

75

ES register, 32

EXAMPLE.EXE

execution of, 54

EXAMPLE.LST listing file, 62-65

Examples

decimal-to-hex algorithm, 4-5

80x86 instruction, 314

logical instructions, 271

pop instructions, 198

push instructions, 195-196

shift instructions execution,

280-281

word-length 2’s complement

number, 13

word-length 2’s complement

representation, 11-12. See

also Programs

Exceptions, 122

exclusive or instruction, 272

exclusive or operation, 267, 268, 269

Exit code

for procedure, 218

exit loop, 166-167

EXITM directive, 329, 330, 332, 338

ExitProcess function, 46

ExitProcess procedure, 52, 221

expand macro, 375, 376

Extended Binary Coded Decimal

Information Code, 8

External procedures code, 209
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Extra services control, 7

EXTRN directives, 208, 306, 333

F

faddp instructions, 349

fAddProc procedure, 381-382

Fahrenheit temperature, Celsius

conversion to, 125, 126, 127

Far calls, 206

direct and indirect, 207

Far procedures, 206

Far return, 206

Fetching instructions, 33

Fields

80x86 instruction, 308

File creation

from console input, 433-435

finit instructions, 345

Flag registers, 33, 79, 190

and conditional jump

instructions, 144

setting, 92

Flags, 144, 147

and Boolean instructions, 269

and instructions, 88

and packed BCD instructions,

396-400

and status word, 356

and unpacked BCD instructions,

406-407, 409, 411, 412

updating in EFLAGS register, 96

Flag values, 144, 190, 191

and ASCII to 2’s complement

integer, 296-297

and cmp instructions, 146-147

and conditional jump

instructions, 176

Flat memory model, 28, 40, 204

Flat memory model programming

and string instructions, 232

fld (floating load) instructions, 340

Floating point, 21

to ASCII conversion algorithm,

366-367

to ASCII conversion procedure,

369-372

ASCII to, conversion, 386

Floating-point algorithm

ASCII to, 361-363, 364

Floating-point arithmetic, 339-386

80x86 floating-point architecture,

340-356

floating-point and in-line

assembly, 384-385

floating-point emulation, 374-383

programming with floating-point

instructions, 359-373

Floating-point computations, 359-360

Floating-point emulation, 374-383, 386

Floating point execution

Windbg view of, 346

Floating point format, 26

Floating-point instructions, 342

addition, 349

comparison, 355

data store, 346

division, 354

load, 341

miscellaneous, 355, 356

multiplication, 354

programming with, 359-373

registers, 341

schemes, 23-24

stacks, 342-345, 347-349, 350-351

subtraction, 352

Floating point parameter

converting to “E notation,” 365

Floating-point representation

normalizing, 378

Floating-point unit, 340, 386

fMultProc procedure, 379-380

Forced errors, 332, 337, 338

forever loops, 166, 244

program with, 139-140

for loops, 137, 159, 164, 191

in assembly language, 173-178

implementing, 176, 256

Form feed, 8

Fortran, 39

Forward for loops, 173

Forward reference, 141

code with, 304

FPU. See Floating-point unit

Fractions, normalizing, 377

FS register, 32

ftst instructions, 372

Functions, 202, 223. See also

Procedures

G

Game program, 155-156

design for, 154

General BCD procedures

addition, 402, 403

subtraction, 402, 404

General registers, 30, 32, 229

GENERIC_WRITE, 432

GetStandardHandle, 420

GetStdHandle call, 420

goto statements, 137, 190

GPRs. See General purpose registers

Graphical user interface, 37, 40

Greatest common divisor procedure,

215, 216

GS register, 32

H

Half adder circuit, 298, 299

Hardware, 27, 28-37, 40

CPU, 30-34

input/output devices, 36-37

memory, 28-29

Hardware level

logic gates, 298-299

Hardware stack, 193

procedures without, 228-229, 230

Hexadecimal digits/numbers, 2, 3, 26

addition/subtraction of, 12

decimal numbers converted to, 4

program for displaying integer

in, 283-284

and rotate instruction, 288-289

Hexadecimal values

and logical operations, 272

Hex calculators, 11, 26

shift operations with, 280

Higher-level I/O, 437

High-level languages, 1, 190

and Boolean type variables, 268

go-to statements in, 137

and in-line assembly code, 384

input/output of data in, 77

level of abstraction for, 133, 135

procedure in, 201

“Holes,” in pipeline, 190

Horizontal tab, 8

I

IBM PC, 27

memory in, 28

Icons, 37

ICs. See Integrated circuits

idiv instructions, 122, 134

idiv operations, 119

IEEE. See Institute of Electrical and

Electronics Engineers

IEEE single format, 339

decimal number converted to,

23-24, 25

floating-point values

manipulated in, 374

IFB (if blank) directive, 329, 337, 338
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IFDEF directive, 329, 338

IF directive, 338

IFE directive, 329, 338

IFNB (if not blank) directive, 326, 327,

337, 338

IFNDEF directive, 329, 338

if statements, 137, 190

if structures, 144

implementation of, 152-153

if-then-else structures, 137, 190

if-then structures, 137

Illegal statements

macro calls expanded to, 327-329

Immediate mode, 73, 74, 83

Immediate-to-memory mov

instructions, 89

Immediate-to-register moves, 89

Immediate-to-register operation, 310

Imul instructions, 1-8, 134, 296

example, 112

inc instructions, 95, 100, 134, 304, 315

execution of, 101

INCLUDE directive, 48, 61, 208, 333

INCLUDE io.h directive, 46, 48

inc statement, 306

Indexes

for arrays, 185

Index registers, 32

Indirect addressing register, 75

in instructions, 437

Initialize procedure, 202

In-line assembly code, 384-385, 386

In-line assembly language

and floating-point instructions,

384-385

in-out parameters, 211, 212

inproc procedure, 427, 428

input macro, 50, 79, 80, 83, 419

in file IO.H, 337

and kernel32 functions, 422

Input/output (I/O), 40, 419-440

console, using Kernel32 library,

420-428

devices, 36-37

lower-level, 437-439

macros in IO.H, 77-80

procedures in IO.ASM, 425-427

sequential file, using Kernel32

library, 428-435

Institute of Electrical and Electronics

Engineers, 24

Instruction operands, 73-76, 83

Instruction pointer register updates,

92

Instructions, 42, 43, 82, 85-135

addition/subtraction of larger

numbers, 130-132

constants in, 68

copying data, 86-94

division, 118-127

integer addition/subtraction,

95-106

and levels of abstraction, 133-134

microcode, 133, 134

multiplication, 108-115

operands for, 73

in pipeline, 189

Integer square root

finding, 208, 210

Integer values

representing, 26

Integrated circuits, 28

Integrated development

environments, 39

Intel 80x86, 264

CPU, 27

instruction encodings, 311-312

instruction fields, 308

instructions, 265, 267, 269, 274

machine language description,

307-314

microprocessor assembly, 301

operands and results for division

instructions, 119

register codes, 310

repeat prefixes in string

instructions, 239

stacks, 194-200

Intel 80x86 architecture, 228, 230

floating-point, 340-356

and lower-level input/output,

437-439

procedure call and return, 204-

208

recursive procedure with, 223-

227

stack, 194-200

string in, 232

Intel 80x86 instructions, 267, 269

and bit manipulation, 299

for strings, 231, 232

Intel 80x86 processors

add and sub instructions, 95, 96,

98, 99, 100, 101, 102

addressing modes, 73

floating point formats used in, 24

and mov instructions, 86, 87

Intel 80x86 registers, 35, 243

Interpreters, 38, 39

Interrupt, 438, 439, 440

handler, 122, 439

procedure, 438, 439

Interrupt-driven I/O, 419, 438, 440

Intersegment jumps, 141

int instruction, 439

into instruction, 439

Intrasegment jumps, 141

INVOKE, 221

IO.ASM

file, 77

input/output procedures in,

425-427

IO.H file, 301, 334-336, 338

input/output macros defined in,

77-80

IO.OBJ

and atodproc, 292

IO.OBJ file

and input/output macros, 83

itoa macro, 80, 83, 259, 265

in file IO.H, 337

and larger numbers, 132

itoaproc, 259, 260, 265

J

jcxz instructions, 176

jecxz instructions, 191, 239

conditional jump, 176

jmp instructions, 141, 142, 190, 304

jmp statements, 138

jnle instructions, 304

jnle statements, 306

K

kernel32 library, 439

console I/O using, 420-428

sequential file I/O using, 428-435

kernel32 service, 140

Keyboard, 27, 36

L

Labels, 44, 146, 152

for loop, 175

Language translators, 38

lea (load effective address)

instructions, 191, 246

leave instructions, 221

Left shifts, 278, 279, 283

single-bit, 282

Length operand, 79

Line feed, 8

character, 48, 58
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LINK command, 53, 54, 208

Linkers, 39, 40, 53-54, 74, 306

Lisp language, 38

.LISTALL directive, 221

.LIST directive, 48, 61, 325, 333

Load effective address (lea)

instructions, 184

Loaders, 74

LOCAL directive, 324

Local variables

and parameters, 211-221

procedure storage in data

segment, 219

space for, on stack, 215, 230

stack usage with, 217

Location counter

and assembler, 303, 304, 305

LOCK prefix, 307

lods (load string) instructions, 232,

249, 250, 265

Logical instructions, 300

uses of, 272-273

Logical operations, 268-275

definitions of, 268

example, 271

and logic gates, 298

Logical shifts, 278

left, 279

right, 280

Logic gates, 267, 298, 300

Looping, 137

loop instructions, 174, 191

loopnz instructions, 178

Loops, 190

and arrays, 180

loop statement 

loop implemented by, 176

Loop structures

implementing, 159-167

loopz instructions, 178

Lowercase letters, 44

ASCII code for, 274

and ASCII code translation, 257

codes for, 7

Lowercase source code, 45

Lower-level input/output, 437-439

Lower levels of abstraction, 134

M

Machine-language level of

abstraction, 134, 135

Macro calls, 320, 321, 322-323

expanding to illegal statements,

327-329

Macro definitions

and conditional assembly, 326

formats of, 320

in file IO.H, 333

MACRO directive, 324, 338

parameters in, 320

Macro(s), 42, 43, 82

to add two integers, 321

in assembly language program,

50

definition and expansion,

319-325

in IO.H, 78, 83, 301, 333-337

for smaller of two memory words,

324

to swap two memory words, 323

Mantissa, 24

Maps

and relocatable code, 306

Mask, 272, 279

MASM. See Microsoft Macro

Assembler

Memory, 39, 40

in assembly language program,

104

circuits, 27

logical picture of, 28

referencing, 73

Memory addresses 

and CISC machines, 264

80x86 architecture, 437, 438

two 80x86 modes, 74

Memory-mapped I/O, 36, 419, 438, 440

Memory mode, 73

formats, 74, 83

operands, 83

Memory operands

and add and sub instructions, 98

Microcode level, 133, 134, 135

Microcomputers, 1, 27

and clock speeds, 88

Microsoft Macro Assembler, 41, 42,

44, 53, 82, 207, 301, 302, 305

and conditional assembly, 326,

329

and DT directive, 388-389

PROC directive with, 202

and string instructions, 232

Microsoft Visual C++

in-line assembly code, 384, 385,

386

Microsoft Windows

graphical user interfaces, 37-38

Notepad, 38

Minimum procedure

calling code for, 219

min2 macro, 332

improved, 331

Minus character (-), 262

Mixed-case code, 45

ML assembler, 53, 60

Mnemonics, 43, 44

cmps instructions, 242

for conditional jump instructions,

149-150

80x86 mov instructions, 86

floating point, 341-342

floating-point addition

instructions, 349

floating-point comparison

instructions, 355

floating-point data store

instructions, 346

floating-point division

instructions, 354

floating-point load instructions,

341

floating-point multiplication

instructions, 354

floating-point subtraction

instructions, 352

loop instructions, 174

miscellaneous floating-point

instructions, 355, 356

multiplication instructions, 108

push and pop flag registers, 199

for push instruction, 194

repeat prefixes, 240-241

rep movs instructions, 241

scan instructions, 246

shift instructions, 278

stos instructions, 249

string instructions, 233

unpacked BCD instructions, 406

.MODEL FLAT directives, 208

Modem, 27

mod field, 310, 313

Mod reg r/m format, 309-310, 312-314,

337

mod values, 312

Monitor, 27, 36

Motorola 680x0 

and CISC design, 264

with memory-mapped I/O, 438

Mouse, 27, 36

mov instructions, 86, 87, 96, 134, 202

additional, 90

immediate-to-memory, 89
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MOVP instructions, 416

movsb instructions, 233, 234

movsd instructions, 234

movs instructions, 232, 233, 237, 265 

ESI and EDI, 234

rep prefix used with, 240

movsw instructions, 233, 234

movsx instructions, 125

movzx instructions, 124, 125

MS-DOS, 37

mul instructions, 108

example, 109-110

MULP instructions, 416

Multiple-bit shifts, 280, 300

Multiplication

floating-point instructions, 354

of floating-point numbers, 374,

379

in floating-point routines, 340

instructions, 108-115, 134, 135,

281

of larger numbers, 132

of unpacked BCD numbers, 409,

410

MulUnp1 procedure, 409, 410, 411

N

Name field, 43

Names

in assembly language, 44

NaN (not a number), 375

NEAR32 attribute, 202

near call instructions, 204

Near conditional jumps, 151

Near indirect calls, 207

Near procedures, 206

Near relative procedures, 206

NEAR32 procedure, 215, 225

Negative numbers

representation for, 10, 11

neg instructions, 96, 102, 134

nestingLevel, 221

.NOLIST directive, 48, 61, 325

.NOLISTMACRO directive, 325, 333

Non-negative packed BCD numbers

adding, 398, 399

subtracting, 400, 401

Nonrecursive procedures, 230

normalize macro, 378

Notepad, 38, 53

not instructions, 270, 299

not operations, 267

and 80x86, 269

and logic gates, 298

Null bytes, 394

Null character, 78

Numbers

character codes for representing,

7

Number systems

suffixes used in, 68

O

Object code (machine code), 42, 301

and assembler, 302

relocatable, 306

.OBJ file, 208

Octal number system, 5

OF. See Overflow flag

Offset, 29

One-pass assembler, 302

1’s complement numbers, 26

1’s complement system, 21, 22

Opcodes (operation codes), 39, 66, 67,

199, 337

adc and sbb instructions, 131

additional mov instructions, 90

and, or, and xor instructions, 270

and byte-size operands, 308

call instructions, 206

cld and std instructions, 233

cmp instructions, 148

cmps instructions, 242

conditional jump instructions,

149-150

div instructions, 122

double shift instructions, 287

idiv instructions, 122

immediate-to-memory mov

instructions, 89

immediate-to-register mov

instructions, 87

imul instructions, 110

inc and dec instructions, 100

loop instructions, 174

movsx and movzx instructions,

125

neg instructions, 102

not instructions, 270

pop instructions, 197

push all and pop all instructions,

200

push instructions, 195

reg field for specified, 309

rep movs instructions, 241

ret instructions, 208

shift and rotate instructions, 282

stos instructions, 249

sub instructions, 314

test instructions, 275

xchg instructions, 92, 93

Open code, 326

Operand(s)

call instructions, 206

constant, 68-71

instruction, 73-76

pop instructions, 197

push instructions, 195

size byte, 308

Operating system, 37-38, 40

or circuit, 298

or instructions, 270, 272, 274, 285, 299

or operations, 267, 268, 274 

and 80x86, 269

and logic gates, 298

or operator, 161, 162

Outcode (region code), 277

out instructions, 437

outproc procedure, 427

output macro, 78, 79, 83, 391, 419

in file IO.H, 337

and kernel32 functions, 422

Overflow, 15, 18, 20

in addition, 17

Overflow flag (OF), 33, 80, 96, 98, 147,

279, 439

and Boolean instructions, 269

and imul instructions, 113

and mul instructions, 110

and rotate instructions, 288, 289

Overflow interrupt handler, 439

P

Packed BCD representations, 388-394,

417

to ASCII conversion, 390

Packed decimal conversions

and VAX architecture, 416

Paging mechanism, 29

Parallel printer port (LPT1), 437

Parameter address list, 229

Parameter passing, 193

and procedures without stacks,

229

Parameters

address, 220

and local variables, 211-221

locating in stack, 214

passing, 211-212

Parameter values

accessing from stack, 212

using those passed on stack, 213
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Parity flag (PF), 34

and Boolean instructions, 269

and left shifts, 279

Pascal, 1, 39, 137

Pass-by-location parameters, 211

Pass-by-value parameters, 211

pause macro, 320, 321

PC-DOS, 37

PCs

floating-point arithmetic done

with, 339

Pentium processors, 27, 30

and mov instructions, 86, 87

Pentium systems

and floating point format, 339

PF flag, 96

Physical address, 28

Pipeline instructions, 189

Pipelining, 33, 189-191

Polling, 438, 440

popad instructions, 199, 219

pop all instructions, 200

popfd instructions, 199

popf instructions, 199, 292

Pop instructions, 194, 197, 199, 292,

337

example, 198

and exit code for procedure, 218

Popping, 194, 228

Port addresses, 437, 438, 440

Ports, 36

Positive numbers

addition of, 16

Prefix bytes, 88, 93, 337

Prefixes

segment override, 315

Printable characters, 7

PROC directive, 202, 206, 207

Procedure calls, 48

state prior to and after, 205

Procedure Root, 209, 210

Procedures, 193-230

with address parameters, 220

arrays passed to, 219

body, call and return, 201-210

calling, 204

80x86 stack, 194-200

entry and exit codes, 215, 218

greatest common divisor, 215,

216

integer to ASCII conversion,

260-261

parameters and local variables,

211-221

procedure body, call and return,

201-210

recursive, 223-226

without stacks, 228-229

strcopy, 234-235, 236

structure for, 203

Processors

clock speeds of, 88

limitations with, 115

Programming

with floating-point instructions,

359-373

in high-level languages, 1

Programs

area of rectangle, 114

on arrays, 182-184

assembling, linking, running,

53-58

assembly language, 45-46, 47,

104-106

with forever loop, 139-140

game, 154-156

integer displayed in hex, 283-284

for locating character in string,

247-248

string copy, 234-235

string search, 244-246

temperature conversion, 126

translation, 255-256. See also

Assembly language

program; Examples

Prompts, 37

PROTO directive, 46

Pseudocode, 4

for Towers of Hanoi solution, 224

ptoaProc procedure, 389, 391

PTR operator, 76

PUBLIC directive, 208

pushad instructions, 200

push all instructions, 200

pushfd instructions, 199

pushf instructions, 199

Pushing, 194, 228

push instructions, 195, 199, 337

examples, 195-196

source code syntax for, 194

pushw mnemonic 

and Towers of Hanoi, 225

Q

Quadword, 10, 11

Quadword size dividend, 123

Question mark (?), 44

Quick sort algorithm, 318

Quotient, 119

QWORD directive, 71

R

Random access memory (RAM), 28

rcl (rotate through carry left)

instructions, 289

rcr (rotate through carry right)

instructions, 289

ReadFile call, 420, 427, 432

Read-only memory, 28

REAL4 directive, 71, 374

REAL8 directive, 71

REAL10 directive, 71

Rectangle

program for finding area of, 113,

114

Recursion, 193, 223-227

Recursive procedures, 230

Reduced instruction set computer

designs, 265, 266

complex instruction set

computer designs versus,

264

reg field, 313

for specified opcodes, 309

Region code, 277

Register indirect, 83

Register indirect addressing, 191, 236,

262, 313

and arrays, 182, 185

and jump instructions, 142

and passing array to procedure,

219

and string instructions, 232

Register indirect memory addressing

mode, 74, 83

Register indirect operands, 89

Register mode, 73, 74, 83

Registers, 30, 39

in assembly language program,

104

base, 212

in 80x86 floating-point unit, 386

floating-point, 341

general purpose, 229

indirect addressing, 75

and reduced instruction set

computer designs, 264

saving on stack, 198

and string instructions, 265

Register save area, 229, 230

Register-to-register operations, 310

Relocatable address, 67
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Relocatable object code, 306

Remainder, 119

Repeat prefix, 265, 307

with cmps instructions, 242

and string instructions, 239-249

repe cmpsb instructions, 244

repe (repeat while equal) prefix, 240,

242, 265

rep movs instructions, 241

repne (repeat while not equal) prefix,

240, 265

repnz (repeat while not zero) prefix,

240, 241

rep prefix, 240, 265

repz (repeat while zero), 240, 241

Reserved identifiers, 44

reset a flag, 146

retf (return far) mnemonics, 207

ret instructions, 204, 208, 218

retn (return near) mnemonics, 207

ret (return) instructions, 207, 230

Right shifts, 278

arithmetic and logic, 280

single-bit, 282

RISC designs. See Reduced

instruction set computer

designs

rol (rotate left) instructions, 288

ROM. See Read-only memory

ror (rotate right) instructions, 288

rotate instructions, 267, 278, 282,

287-289, 300

S

sbb instructions, 130, 131, 135

Scale values, 310

Scaling, 313, 314

scasb instructions, 244

scasd instructions, 244

scas (scan string) instructions, 232,

244, 247, 265

scasw instructions, 244

Scratchpad registers, 134

Segment descriptor, 88

Segmented memory model, 28, 40, 204

programming and string

instructions, 232

Segment number, 29

Segment override prefixes, 315

Segment registers, 32

Self-modifying code, 74n2

Semicolons, 42, 82

Sequential file input

using kernel32 functions,

429-431

Sequential file input/output

using Kernel32 library, 428-435

Serial input/output (SIO) chip, 438

Serial ports, 438

set a flag, 146

Shift instructions, 267, 279, 282, 300

double, 286, 287, 300

execution of, 280-281

shld instructions, 286

Short conditional jumps, 151

shrd instructions, 286

shr instructions, 391

SI. See Source index

SIB byte, 310, 314

Signed division, 121, 123

Signed integers/numbers, 147, 148

and conditional jumps, 151

2’s complement representation

for, 9-14

Signed values

decimal range of, 69

Sign-extended operands, 99

Sign flag (SF), 96, 98, 147, 164, 279

Sign position, 17

Simple circuits, 298

Single-bit right/left shifts, 282

Single-bit rotate instructions, 288

Single-bit shifts, 300

Single byte instructions, 315

Single-length divisor, 118, 135

Single-length quotient, 118, 135

Single-length remainder, 118, 135

16-bit segmented programming, 206

Size bit, 315

Software, 27, 37-39, 40

language translators and linkers,

38-39

operating system, 37-38

stack, 228

text editors, 38

Sound card, 27

Source code

and assembler, 302

Source index, 32

Source operand, 78

adc and sbb instructions, 131

Source operands

add and sub instructions, 99

additional mov instructions, 90

and, or, and xor instructions, 270

cmp instructions, 148

immediate-to-memory mov

instructions, 89

immediate-to-register mov

instructions, 87

test instructions, 275

Source strings, 79, 232

Space efficiency, 87, 91

“Spaghetti code,” 204

Special characters

in assembly language, 44

SqRt, 210

Square bracket notation ([]), 75

SS register, 32

.STACK directive, 48, 194

Stacks, 32, 212, 230, 340

floating-point, 342-345, 347-349,

350-351

local variables usage, 217

parameters located in, 214

parameter values accessed in,

212

parameter values passed on, 213

parameter values removed from,

212

pointers, 32

procedures without, 228-229, 230

register contents saved on, 198

space for local variables in, 215

starSlash, 237

Statements, 82

assembly language, 42-45

Status bit, 308

Status flags, 33

Status word, 355, 356, 386

Status word bits, 341

stc instructions, 135

std instructions, 233

Storage, 30

and assemblers, 304-305

Stos (store string) instruction, 232,

240, 249, 265

String copy program, 234-235, 236

String elements

scanning for, 244

String instructions, 265

repeat prefixes and, 239-249

using, 232-237

String operations, 231-266

character translation, 254-257

CISC versus RISC designs, 264
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repeat prefixes and string

instructions, 239-249

string instructions, 232-237

2’s complement integer

converted to ASCII string,

259-262

Strings, 265

copying fixed number of

characters of, 240

embedded within, 242-243

program for finding character in,

247-248

String search program, 244-246

strlen procedure, 246

ST (stack top), 341

and floating-point instructions,

359

in floating-point registers,

342-345, 347-353

sub instructions, 95, 96-97, 98, 99, 100,

134, 148, 269, 407

SUBP instructions, 416

Subprograms, 201, 202, 218

Subscripts, 3

Subtraction

floating-point instructions, 352

of hex digits, 12

instructions, 135, 352-353

of larger numbers, 130-132

of non-negative packed BCD

numbers, 400, 401

of packed BCD numbers, 396

of 2’s complement numbers,

19-20, 26

Suffixes

in numeric operands, 68

for string instructions, 233

sum, 140, 180, 181

Switches, ML, 53

Symbol table, 302, 303, 305, 337

Syntax

80x86 call statement, 206

for enter instruction, 221

PUBLIC directive, 208

source code for push instruction,

194

System/360 (S/360) architecture, 229

System software, 27

T

“Taking the complement,” 11

“Taking the 2’s complement,” 11-12

TBYTE directive, 71

Temperature conversion program,

125, 126

Ten-byte floating point format, 340

test instructions, 274, 275, 297, 299

Text editors, 38, 40

32-bit flat memory model

programming, 206

32-bit memory addresses, 307

Three-bit base register field, 310

Three-bit index register field, 310

Time efficiency, 86-87

Towers of Hanoi

pseudocode for solution, 224

puzzle, 223, 224

solution, 225-227

Translation

of ASCII codes, 257

character, 254-257

Translation program, 255-256

output from, 257

Two-bit scaling field, 310

Two-pass assembler, 302, 337

2’s complement integer

ASCII string converted to, 292-

297

converting to ASCII string, 259-

262

2’s complement numbers, 339

addition of, 15-18, 26

subtraction of, 19-20, 26

2’s complement representation

for signed integers, 9-14

U

Unconditional jumps, 138-143

Underscore (_), 44

Unpacked BCD/ASCII conversions,

406

Unpacked BCD instructions, 406, 417

Unpacked BCD numbers

division of, 413

Unpacked BCD representations, 388,

417

Unsigned division, 121, 123

Unsigned numbers, 10, 16

and conditional jumps, 151

strict inequality for, 147, 148

Unsigned values

decimal range of, 69

until loops, 4, 137, 155-156, 159,

165-166, 191

Uppercase letters, 7, 257, 274

Uppercase source code, 45

V

Variable parameters, 211-212

Variables, 1

VAX packed decimal instructions,

416-417, 417

W

Wait states, 91

while loops, 137, 156, 159, 191, 240,

394

while structure, 164

Windbg (Microsoft), 54, 83, 204

opening screen, 55

before program termination, 58

ready for tracing a program, 56

tracing a program, 57

view of floating point execution,

346

Windows 95, 27, 37-38

Windows NT, 27

WORD directive, 83

constant operands in, 68, 69, 70

Word-length binary representation, 10

Word length divisor, 120

Word multiplication, 108

Word processors, 38

Word size, 10

Word-size operands

push instructions for, 194

Word-size parameter

retrieving, 229

Word strings

moving, 233

WriteFile call, 420

X

xchg instructions, 92, 93, 94, 96, 134

xlat instructions, 254, 265

xor instructions, 270, 274, 299

xor operations 

and logic gates, 298

Z

Zero flag (ZF), 33, 96, 98, 147, 178

and Boolean instructions, 269

and left shifts, 279

and repeat prefixes, 241
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