

Title Page

1 of 1

1. First Concepts

Like most interesting subjects, assembly language programming requires a little
background knowledge before you can start to appreciate it. In this chapter, we explore
these basics. If terms such as two's complement, hexadecimal, index register and byte are
familiar to you, the chances are you can skip to the next chapter, or skim through this one
for revision. Otherwise, most of the important concepts you will need to understand to
start programming in assembler are explained below.

One prerequisite, even for the assembly language beginner, is a familiarity with some
high-level language such as BASIC or Pascal. In explaining some of the important
concepts, we make comparisons to similar ideas in BASIC, C or Pascal. If you don't have
this fundamental requirement, you may as well stop reading now and have a bash at
BASIC first.

1.1 Machine code and up...

The first question we need to answer is, of course, 'What is assembly language'. As you
know, any programming language is a medium through which humans may give
instructions to a computer. Languages such as BASIC, Pascal and C, which we call high-
level languages, bear some relationship to English, and this enables humans to represent
ideas in a fairly natural way. For example, the idea of performing an operation a number
of times is expressed using the BASIC FOR construct:

FOR i=1 TO 10 : PRINT i : NEXT i

Although these high-level constructs enable us humans to write programs in a relatively
painless way, they in fact bear little relationship to the way in which the computer
performs the operations. All a computer can do is manipulate patterns of 'on' and 'off',
which are usually represented by the presence or absence of an electrical signal.

To explain this seemingly unbridgable gap between electrical signals and our familiar
FOR...NEXT loops, we use several levels of representation. At the lowest level we have our
electrical signals. In a digital computer of the type we're interested in, a circuit may be at
one of two levels, say 0 volts ('off') or 5 volts ('on').

Now we can't tell very easily just by looking what voltage a circuit is at, so we choose to
write patterns of on/off voltages using some visual representation. The digits 0 and 1 are
used. These digits are used because, in addition to neatly representing the idea of an
absence or presence of a signal, 0 and 1 are the digits of the binary number system, which
is central to the understanding of how a computer works. The term binary digit is usually
abbreviated to bit. Here is a bit: 1. Here are eight bits in a row: 11011011

ARM Assembly Language Programming - Chapter 1 - First Concepts

1 of 20

Machine code

Suppose we have some way of storing groups of binary digits and feeding them into the
computer. On reading a particular pattern of bits, the computer will react in some way.
This is absolutely deterministic; that is, every time the computer sees that pattern its
response will be the same. Let's say we have a mythical computer which reads in groups
of bits eight at a time, and according to the pattern of 1s and 0s in the group, performs
some task. On reading this pattern, for example

10100111

the computer might produce a voltage on a wire, and on reading the pattern

10100110

it might switch off that voltage. The two patterns may then be regarded as instructions to
the computer, the first meaning 'voltage on', the second 'voltage off'. Every time the
instruction 10100111 is read, the voltage will come on, and whenever the pattern 10100110
is encountered, the computer turns the voltage off. Such patterns of bits are called the
machine code of a computer; they are the codes which the raw machinery reacts to.

Assembly language and assemblers

There are 256 combinations of eight 1s and 0s, from 00000000 to 11111111, with 254 others
in between. Remembering what each of these means is asking too much of a human: we
are only good at remembering groups of at most six or seven items. To make the task of
remembering the instructions a little easier, we resort to the next step in the progression
towards the high-level instructions found in BASIC. Each machine code instruction is
given a name, or mnemonic. Mnemonics often consist of three letters, but this is by no
means obligatory. We could make up mnemonics for our two machine codes:

ON means 10100111

OFF means 10100110

So whenever we write ON in a program, we really mean 10100111, but ON is easier to
remember. A program written using these textual names for instructions is called an
assembly language program, and the set of mnemonics that is used to represent a
computer's machine code is called the assembly language of that computer. Assembly
language is the lowest level used by humans to program a computer; only an incurable
masochist would program using pure machine code.

It is usual for machine codes to come in groups which perform similar functions. For

ARM Assembly Language Programming - Chapter 1 - First Concepts

2 of 20

example, whereas 10100111 might mean switch on the voltage at the signal called 'output
0', the very similar pattern 10101111 could mean switch on the signal called 'output 1'.
Both instructions are 'ON' ones, but they affect different signals. Now we could define two
mnemonics, say ON0 and ON1, but it is much more usual in assembly language to use the
simple mnemonic ON and follow this with extra information saying which signal we want
to switch on. For example, the assembly language instruction

ON 1

would be translated into 10101111, whereas:

ON 0

is 10100111 in machine code. The items of information which come after the mnemonic
(there might be more than one) are called the operands of the instruction.

How does an assembly program, which is made up of textual information, get converted
into the machine code for the computer? We write a program to do it, of course! Well, we
don't write it. Whoever supplies the computer writes it for us. The program is called an
assembler. The process of using an assembler to convert from mnemonics to machine code
is called assembling. We shall have more to say about one particular assembler - which
converts from ARM assembly language into ARM machine code - in Chapter Four.

Compilers and interpreters

As the subject of this book is ARM assembly language programming, we could halt the
discussion of the various levels of instructing the computer here. However, for
completeness we will briefly discuss the missing link between assembly language and,
say, Pascal. The Pascal assignment

a := a+12

looks like a simple operation to us, and so it should. However, the computer knows
nothing of variables called a or decimal numbers such as 12. Before the computer can do
what we've asked, the assignment must be translated into a suitable sequence of
instructions. Such a sequence (for some mythical computer) might be:

LOAD a
ADD 12
STORE a

Here we see three mnemonics, LOAD, ADD and STORE. LOAD obtains the value from the place
we've called a, ADD adds 12 to this loaded value, and STORE saves it away again. Of course,
this assembly language sequence must be converted into machine code before it can be
obeyed. The three mnemonics above might convert into these instructions:

ARM Assembly Language Programming - Chapter 1 - First Concepts

3 of 20

00010011
00111100
00100011
Once this machine code has been programmed into the computer, it may be obeyed, and
the initial assignment carried out.

To get from Pascal to the machine code, we use another program. This is called a compiler.
It is similar to an assembler in that it converts from a human-readable program into
something a computer can understand. There is one important difference though: whereas
there is a one-to-one relationship between an assembly language instruction and the
machine code it represents, there is no such relationship between a high-level language
instruction such as

PRINT "HELLO"

and the machine code a compiler produces which has the same effect. Therein lies one of
the advantages of programming in assembler: you know at all times exactly what the
computer is up to and have very intimate control over it. Additionally, because a compiler
is only a program, the machine code it produces can rarely be as 'good' as that which a
human could write.

A compiler has to produce working machine code for the infinite number of programs that
can be written in the language it compiles. It is impossible to ensure that all possible high-
level instructions are translated in the optimum way; faster and smaller human-written
assembly language programs will always be possible. Against these advantages of using
assembler must be weighed the fact that high-level languages are, by definition, easier for
humans to write, read and debug (remove the errors).

The process of writing a program in a high-level language, running the compiler on it,
correcting the mistakes, re-compiling it and so on is often time consuming, especially for
large programs which may take several minutes (or even hours) to compile. An alternative
approach is provided by another technique used to make the transition from high-level
language to machine code. This technique is know as interpreting. The most popular
interpreted language is BASIC.

An interpreted program is not converted from, say, BASIC text into machine code. Instead,
a program (the interpreter) examines the BASIC program and decides which operations to
perform to produce the desired effect. For example, to interpret the assignment

LET a=a+12

in BASIC, the interpreter would do something like the following:

ARM Assembly Language Programming - Chapter 1 - First Concepts

4 of 20

1. Look at the command LET
2. This means assignment, so look for the variable to be assigned
3. Check there's an equals sign after the a
4. If not, give a Missing = error
5. Find out where the value for a is stored
6. Evaluate the expression after the =
7. Store that value in the right place for a

Notice at step 6 we simplify things by not mentioning exactly how the expression after the
= is evaluated. In reality, this step, called 'expression evaluation' can be quite a complex
operation.

The advantage of operating directly on the BASIC text like this is that an interpreted
language can be made interactive. This means that program lines can be changed and the
effect seen immediately, without time-consuming recompilation; and the values of
variables may be inspected and changed 'on the fly'. The drawback is that the interpreted
program will run slower than an equivalent compiled one because of all the checking (for
equals signs etc.) that has to occur every time a statement is executed. Interpreters are
usually written in assembler for speed, but it is also possible to write one in a high-level
language.

Summary

We can summarise what we have learnt in this section as follows. Computers understand
(respond to) the presence or absence of voltages. We can represent these voltages on paper
by sequences of 1s and 0s (bits). The set of bit sequences which cause the computer to
respond in some well-defined way is called its machine code. Humans can't tell 10110111
from 10010111 very well, so we give short names, or mnemonics, to instructions. The set of
mnemonics is the assembly language of the computer, and an assembler is a program to
convert from this representation to the computer-readable machine code. A compiler does
a similar job for high-level languages.

1.2 Computer architecture

So far we have avoided the question of how instructions are stored, how the computer
communicates with the outside world, and what operations a typical computer is actually
capable of performing. We will now clear up these points and introduce some more
terminology.

The CPU

In the previous section, we used the word 'computer' to describe what is really only one
component of a typical computer system. The part which reads instructions and carries

ARM Assembly Language Programming - Chapter 1 - First Concepts

5 of 20

them out (executes them) is called the processor, or more fully, the central processing unit
(CPU). The CPU is the heart of any computer system, and in this book we are concerned
with one particular type of CPU - the Acorn RISC Machine or ARM.

In most microcomputer systems, the CPU occupies a single chip (integrated circuit),
housed in a plastic or ceramic package. The ARM CPU is in a square package with 84
connectors around the sides. Section 1.4 describes in some detail the major elements of the
ARM CPU. In this section we are more concerned with how it connects with the rest of the
system.

Computer busses

The diagram below shows how the CPU slots into the whole system:

This is a much simplified diagram of a computer system, but is shows the three main
components and how they are connected. The CPU has already been mentioned.
Emanating from it are two busses. A bus in this context is a group of wires carrying
signals. There are two of them on the diagram. The data bus is used to transfer
information (data) in and out of the CPU. The address bus is produced by the CPU to tell
the other devices (memory and input/output) which particular item of information is
required.

Busses are said to have certain widths. This is just the number of signals that make up the
bus. For a given processor the width of the data bus is usually fixed; typical values are 8,
16 and 32 bits. On the ARM the data bus is 32 bits wide (i.e. there are 32 separate signals
for transferring data), and the ARM is called a 32-bit machine. The wider the data bus, the
larger the amount of information that can be processed in one go by the CPU. Thus it is
generally said that 32-bit computers are more powerful than 16-bit ones, which in turn are
more powerful than 8-bit ones.

The ARM's address bus has 26 signals. The wider the address bus, the more memory the
computer is capable of using. For each extra signal, the amount of memory possible is
doubled. Many CPUs (particularly the eight-bit ones, found in many older home and
desk-top micros) have a sixteen-bit address bus, allowing 65,536 memory cells to be
addressed. The ARM's address bus has 26 signals, allowing over 1000 times as much
memory.

As we said above, the ARM has 84 signals. 58 of these are used by the data and address

ARM Assembly Language Programming - Chapter 1 - First Concepts

6 of 20

busses; the remainder form yet another bus, not shown on the diagram. This is called the
control signal bus, and groups together the signals required to perform tasks such as
synchronising the flow of information between the ARM and the other devices.

Memory and I/O

The arrows at either end of the data bus imply that information may flow in and out of the
computer. The two blocks from where information is received, and to where it is sent, are
labelled Memory and Input/output. Memory is where programs, and all the information
associated with them, are held. Earlier we talked about instructions being read by the
CPU. Now we can see that they are read from the computer's memory, and pass along the
data bus to the CPU. Similarly, when the CPU needs to read information to be processed,
or to write results back, the data travels to and fro along the data bus.

Input/output (I/O) covers a multitude of devices. To be useful, a computer must
communicate with the outside world. This could be via a screen and keyboard in a
personal computer, or using temperature sensors and pumps if the computer happened to
be controlling a central heating system. Whatever the details of the computer's I/O, the
CPU interacts with it through the data bus. In fact, to many CPUs (the ARM being one) I/O
devices 'look' like normal memory; this is called memory-mapped I/O.

The other bus on the diagram is the Address Bus. A computer's memory (and I/O) may be
regarded as a collection of cells, each of which may contain n bits of information, where n
is the width of the data bus. Some way must be provided to select any one of these cells
individually. The function of the address bus is to provide a code which uniquely
identifies the desired cell. We mentioned above that there are 256 combinations of eight
bits, so an 8-bit address bus would enable us to uniquely identify 256 memory cells. In
practice this is far too few, and real CPUs provide at least 16 bits of address bus: 65536
cells may be addressed using such a bus. As already mentioned the ARM has a 26-bit
address bus, which allows 64 million cells (or 'locations') to be addressed.

Instructions

It should now be clearer how a CPU goes about its work. When the processor is started up
(reset) it fetches an instruction from some fixed location. On the ARM this is the location
accessed when all 26 bits of the address bus are 0. The instruction code - 32 bits of it on the
ARM - is transferred from memory into the CPU. The circuitry in the CPU figures out
what the instruction means (this is called decoding the instruction) and performs the
appropriate action. Then, another instruction is fetched from the next location, decoded
and executed, and so on. This sequence is the basis of all work done by the CPU. It is the
fact that the fetch-decode-execute cycle may be performed so quickly that makes
computers fast. The ARM, for example, can manage a peak of 8,000,000 cycles a second.
Section 1.4 says more about the fetch-decode-execute cycle.

ARM Assembly Language Programming - Chapter 1 - First Concepts

7 of 20

What kind of instructions does the ARM understand? On the whole they are rather simple,
which is one reason why they can be performed so quickly. One group of instructions is
concerned with simple arithmetic: adding two numbers and so on. Another group is used
to load and store data into and out of the CPU. One particular instruction causes the ARM
to abandon its usual sequential mode of fetching instructions and start from somewhere
else in the memory. A large proportion of this book deals with detailed descriptions of all
of the ARM instructions - in terms of their assembly language mnemonics rather than the
32-bit codes which are actually represented by the electric signals in the chips.

Summary

The ARM, in common with most other CPUs, is connected to memory and I/O devices
through the data bus and address bus. Memory is used to store instructions and data. I/O
is used to interface the CPU to the outside world. Instructions are fetched in a normally
sequential fashion, and executed by the CPU. The ARM has a 32-bit data bus, which
means it usually deals with data of this size. There are 26 address signals, enabling the
ARM to address 64 million memory or I/O locations.

1.3 Bits, bytes and binary

Earlier we stated the choice of the digits 0 and 1 to represent signals was important as it
tied in with the binary arithmetic system. In this section we explain what binary
representation is, and how the signals appearing on the data and address busses may be
interpreted as binary numbers.

All data and instructions in computers are stored as sequences of ones and zeros, as
mentioned above. Each binary digit, or bit, may have one of two values, just as a decimal
digit may have one of the ten values 0-9.

We group bits into lots of eight. Such a group is called a byte, and each bit in the byte
represents a particular value. To understand this, consider what the decimal number 3456
means:

3000 + 400 + 50 + 6 = 3456

Each digit position represents a power of ten. The rightmost one gives the number of units
(ten to the zeroth power), then the tens (ten to the one) and so on. Each column's
significance is ten times greater than the one on its right. We can write numbers as big as

103 102 101 100

Thousands Hundreds Tens Units

3 4 5 6

ARM Assembly Language Programming - Chapter 1 - First Concepts

8 of 20

we like by using enough digits.

Now look at the binary number 1101:

8 + 4 + 0 + 1 = 13

Once again the rightmost digit represents units. The next digit represents twos (two to the
one) and so on. Each column's significance is twice as great as the one on its right, and we
can represent any number by using enough bits.

The way in which a sequence of bits is interpreted depends on the context in which it is
used. For example, in section 1.1 we had a mythical computer which used eight-bit
instructions. Upon fetching the byte 10100111 this computer caused a signal to come on. In
another context, the binary number 10100111 might be one of two values which the
computer is adding together. Here it is used to represent a quantity:

1*2 7 + 0*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20 =

128 + 32 + 4 + 2 + 1 = 167

If we want to specify a particular bit in a number, we refer to it by the power of two which
it represents. For example, the rightmost bit represents two to the zero, and so is called bit
zero. This is also called the least significant bit (LSB), as it represents the smallest
magnitude. Next to the LSB is bit 1, then bit 2, and so on. The highest bit of a N-bit number
will be bit N-1, and naturally enough, this is called the most significant bit - MSB.

As mentioned above, bits are usually grouped into eight-bit bytes. A byte can therefore
represent numbers in the range 00000000 to 11111111 in binary, or 0 to
128+64+32+16+8+4+2+1 = 255 in decimal. (We shall see how negative numbers are
represented below.)

Where larger numbers are required, several bytes may be used to increase the range. For
example, two bytes can represent 65536 different values and four-byte (32-bit) numbers
have over 4,000,000,000 values.

As the ARM operates on 32-bit numbers, it can quite easily deal with numbers of the
magnitude just mentioned. However, as we will see below, byte-sized quantities are also
very useful, so the ARM can deal with single bytes too.

2
3

2
2

2
1

2
0

Eights Fours Twos Units

1 1 0 1

ARM Assembly Language Programming - Chapter 1 - First Concepts

9 of 20

In addition to small integers, bytes are used to represent characters. Characters that you
type at the keyboard or see on the screen are given codes. For example, the upper-case
letter A is given the code 65. Thus a byte which has value 65 could be said to represent the
letter A. Given that codes in the range 0-255 are available, we can represent one of 256
different characters in a byte.

In the environment under which you will probably be using the ARM, 223 of the possible
codes are used to represent characters you can see on the screen. 95 of these are the usual
symbols you see on the keyboard, e.g. the letters, digits and punctuation characters.
Another 128 are special characters, e.g. accented letters and maths symbols. The remaining
33 are not used to represent printed characters, but have special meanings.

Binary arithmetic

Just as we can perform various operations such as addition and subtraction on decimal
numbers, we can do arithmetic on binary numbers. In fact, designing circuits to perform,
for example, binary addition is much easier than designing those to operate on 'decimal'
signals (where we would have ten voltage levels instead of two), and this is one of the
main reasons for using binary.

The rules for adding two decimal digits are:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 carry 1

To add the two four-bit numbers 0101 and 1001 (i.e. 5+9) we would start from the right
and add corresponding digits. If a carry is generated (i.e. when adding 1 and 1), it is added
to the next digit on the right. For example:

= 8 + 4 + 2 = 14

Binary subtraction is defined in a similar way:

0101

+1001

c 1

1110

ARM Assembly Language Programming - Chapter 1 - First Concepts

10 of 20

0 - 0 = 0
0 - 1 = 1 borrow 1
1 - 0 = 1
1 - 1 = 0

An example is 1001 - 0101 (9-5 in decimal):

= 4

So far we have only talked about positive numbers. We obviously need to be able to
represent negative quantities too. One way is to use one bit (usually the MSB) to represent
the sign - 0 for positive and 1 for negative. This is analogous to using a + or - sign when
writing decimal numbers. Unfortunately it has some drawbacks when used with binary
arithmetic, so isn't very common.

The most common way of representing a negative number is to use 'two's complement'
notation. We obtain the representation for a number -n simply by performing the
subtraction 0 - n. For example, to obtain the two's complement notation for -4 in a four-bit
number system, we would do:

So -4 in a four-bit two's complement notation is 1100. But wait a moment! Surely 1100 is
twelve? Well, yes and no. If we are using the four bits to represent an unsigned (i.e.
positive) number, then yes, 1100 is twelve in decimal. If we are using two's complement
notation, then half of the possible combinations (those with MSB = 1) must be used to
represent the negative half of the number range. The table below compares the sixteen
possible four bit numbers in unsigned and two's complement interpretation:

1001

- 0101
b 1

0100

0000

- 0100
b 1

1100

Binary Unsigned
Two's

complement

0000 0 0

0001 1 1

0010 2 2

ARM Assembly Language Programming - Chapter 1 - First Concepts

11 of 20

One of the advantages of two's complement is that arithmetic works just as well for
negative numbers as it does for positive ones. For example, to add 6 and -3, we would use:

Notice that when the two MSBs were added, a carry resulted, which was ignored in the
final answer. When we perform arithmetic on the computer, we can tell whether this
happens and take the appropriate action.

Some final notes about two's complement. The width of the number is important. For
example, although 1100 represents -4 in a four-bit system, 01100 is +14 is a five-bit system.
-4 would be 11100 as a five bit number. On the ARM, as operations are on 32-bit numbers,
the two's complement range is approximately -2,000,000,000 to +2,000,000,000.

The number -1 is always 'all ones', i.e. 1111 in a four-bit system, 11111111 in eight bits etc.

To find the negative version of a number n, invert all of its bits (i.e. make all the 1s into 0s
and vice versa) and add 1. For example, to find -10 in an eight-bit two's complement form:

Hexadecimal

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

0110
+1101

c 1

0011

10 is 00001010

inverted is 11110101
plus 1 is 11110110

ARM Assembly Language Programming - Chapter 1 - First Concepts

12 of 20

It is boring to have to write numbers in binary as they get so long and hard to remember.
Decimal could be used, but this tends to hide the significance of individual bits in a
number. For example, 110110 and 100110 look as though they are connected in binary,
having only one different bit, but their decimal equivalents 54 and 38 don't look at all
related.

To get around this problem, we often call on the services of yet another number base, 16 or
hexadecimal. The theory is just the same as with binary and decimal, with each
hexadecimal digit having one of sixteen different values. We run out of normal digits at 9,
so the letters A-F are used to represent the values between 11 and 15 (in decimal). The
table below shows the first sixteen numbers in all three bases:

Hexadecimal (or hex, as it is usually abbreviated) numbers are preceded by an ampersand
& in this book to distinguish them from decimal numbers. For example, the hex number

&D9F is 13*16
2

+ 9*16 + 15 or 3487.

The good thing about hex is that it is very easy to convert between hex and binary
representation. Each hexadecimal digit is formed from four binary digits grouped from the
left. For example:

11010110 = 1101 0110 = D 6 = &D6

Binary Decimal Hexadecimal

0000 0 00

0001 1 01

0010 2 02

0011 3 03

0100 4 04

0101 5 05

0110 6 06

0111 7 07

1000 8 08

1001 9 09

1010 10 0A

1011 11 0B

1100 12 0C

1101 13 0D

1110 14 0E

1111 15 0F

ARM Assembly Language Programming - Chapter 1 - First Concepts

13 of 20

11110110 = 1001 0110 = F 6 = &F6

The examples show that a small change in the binary version of a number produces a
small change in the hexadecimal representation.

The ranges of numbers that can be held in various byte multiples are also easy to represent
in hex. A single byte holds a number in the range &00 to &FF, two bytes in the range
&0000 to &FFFF and four bytes in the range &00000000 to &FFFFFFFF.

As with binary, whether a given hex number represents a negative quantity is a matter of
interpretation. For example, the byte &FE may represent 254 or -2, depending on how we
wish to interpret it.

Large numbers

We often refer to large quantities. To save having to type, for example 65536, too
frequently, we use a couple of useful abbreviations. The letter K after a number means
'Kilo' or 'times 1024'. (Note this Kilo is slightly larger than the kilo (1000) used in
kilogramme etc.) 1024 is two to the power ten and is a convenient unit when discussing,
say, memory capacities. For example, one might say 'The BBC Micro Model B has 32K
bytes of RAM,' meaning 32*1024 or 32768 bytes.

For even larger numbers, mega (abbr. M) is used to represent 1024*1024 or just over one
million. An example is 'This computer has 1M byte of RAM.'

Memory and addresses

The memory of the ARM is organised as bytes. Each byte has its own address, starting
from 0. The theoretical upper limit on the number of bytes the ARM can access is
determined by the width of the address bus. This is 26 bits, so the highest address is (deep
breath) 11111111111111111111111111 or &3FFFFFF or 67,108,863. This enables the ARM to
access 64M bytes of memory. In practice, a typical system will have one or four megabytes,
still a very reasonable amount.

The ARM is referred to as a 32-bit micro. This means that it deals with data in 32-bit or
four-byte units. Each such unit is called a word (and 32-bits is the word-length of the
ARM). Memory is organised as words, but can be accessed either as words or bytes. The
ARM is a byte-addressable machine, because every single byte in memory has its own
address, in the sequence 0, 1, 2 , and so on.

When complete words are accessed (e.g. when loading an instruction), the ARM requires a
word-aligned address, that is, one which is a multiple of four bytes. So the first complete
word is at address 0, the second at address 4, and so on.

ARM Assembly Language Programming - Chapter 1 - First Concepts

14 of 20

The way in which each word is used depends entirely on the whim of the programmer.
For example, a given word could be used to hold an instruction, four characters, or a
single 32-bit number, or 32 one-bit numbers. It may even be used to store the address of
another word. The ARM does not put any interpretation on the contents of memory, only
the programmer does.

When multiple bytes are used to store large numbers, there are two ways in which the
bytes may be organised. The (slightly) more common way - used by the ARM - is to store
the bytes in order of increasing significance. For example, a 32-bit number stored at
addresses 8..11 will have bits 0..7 at address 8, bits 8..15 at address 9, bits 16..23 at address
10, and bits 24..31 at address 11.

If two consecutive words are used to store a 64-bit number, the first word would contain
bits 0..31 and the second word bits 32..63.

There are two main types of memory. The programs you will write and the data associated
with them are stored in read/write memory. As its name implies, this may be written to
(i.e. altered) or read from. The common abbreviation for read/write memory is RAM. This
comes from the somewhat misleading term Random Access Memory. All memory used by
ARMs is Random Access, whether it is read/write or not, but RAM is universally accepted
to mean read/write.

RAM is generally volatile, that is, its contents are forgotten when the power is removed.
Most machines provide a small amount of non-volatile memory (powered by a
rechargeable battery when the mains is switched off) to store information which is only
changed very rarely, e.g. preferences about the keyboard auto-repeat rate.

The other type of memory is ROM - Read-only memory. This is used to store instructions
and data which must not be erased, even when the power is removed. For example the
program which is obeyed when the ARM is first turned on is held in ROM.

Summary

We have seen that computers use the binary number system due to the 'two-level' nature
of the circuits from which they are constructed. Binary arithmetic is simple to implement
in chips. To make life easier for humans we use hexadecimal notation to write down
numbers such as addresses which would contain many bits, and assembly language to
avoid having to remember the binary instruction codes.

The memory organisation of the ARM consists of 16 megawords, each of which contains
four individually addressable bytes.

1.4 Inside the CPU

ARM Assembly Language Programming - Chapter 1 - First Concepts

15 of 20

In this section we delve into the CPU, which has been presented only as a black box so far.
We know already that the CPU presents two busses to the outside world. The data bus is
used to transfer data and instructions between the CPU and memory or I/O. The address
contains the address of the current location being accessed.

There are many other signals emanating from CPU. Examples of such signals on the ARM
are r/w which tells the outside world whether the CPU is reading or writing data; b/w
which indicates whether a data transfer is to operate on just one byte or a whole word; and
two signals which indicate which of four possible 'modes' the ARM is in.

If we could examine the circuitry of the processor we would see thousands of transistors,
connected to form common logic circuits. These go by names such as NAND gate, flip-
flop, barrel shifter and arithmetic -logic unit (ALU).

Luckily for us programmers, the signals and components mentioned in the two previous
paragraphs are of very little interest. What interests us is the way all of these combine to
form an abstract model whose behaviour we can control by writing programs. This is
called the 'programmers' model', and it describes the processor in terms of what appears to
the programmer, rather than the circuits used to implement it.

The next chapter describes in detail the programmers' model of the ARM. In this section,
we will complete our simplified look at computer architecture by outlining the purpose of
the main blocks in the CPU. As mentioned above, a knowledge of these blocks isn't vital to
write programs in assembly language. However, some of the terms do crop up later, so
there's no harm in learning about them.

The instruction cycle

We have already mentioned the fetch-decode-execute cycle which the CPU performs
continuously. Here it is in more detail, starting from when the CPU is reset.

Inside the CPU is a 24-bit store that acts as a counter. On reset, it is set to &000000. The
counter holds the address of the next instruction to be fetched. It is called the program
counter (PC). When the processor is ready to read the next instruction from memory, it
places the contents of the PC on to the address bus. In particular, the PC is placed on bits
2..25 of the address bus. Bits 0 and 1 are always 0 when the CPU fetches an instruction, as
instructions are always on word addresses, i.e. multiples of four bytes.

The CPU also outputs signals telling the memory that this is a read operation, and that it
requires a whole word (as opposed to a single byte). The memory system responds to
these signals by placing the contents of the addressed cell on to the data bus, where it can
be read by the processor. Remember that the data bus is 32 bits wide, so an instruction can
be read in one read operation.

ARM Assembly Language Programming - Chapter 1 - First Concepts

16 of 20

From the data bus, the instruction is transferred into the first stage of a three-stage storage
area inside the CPU. This is called the pipeline, and at any time it can hold three
instructions: the one just fetched, the one being decoded, and the one being executed.
After an instruction has finished executing, the pipeline is shifted up one place, so the just-
decoded instruction starts to be executed, the previously fetched instruction starts to be
decoded, and the next instruction is fetched from memory.

Decoding the instruction involves deciding exactly what needs to be done, and preparing
parts of the CPU for this. For example, if the instruction is an addition, the two numbers to
be added will be obtained.

When an instruction reaches the execute stage of the pipeline, the appropriate actions take
place, a subtraction for example, and the next instruction, which has already been
decoded, is executed. Also, the PC is incremented to allow the next instruction to be
fetched.

In some circumstances, it is not possible to execute the next pipelined instruction because
of the effect of the last one. Some instructions explicitly alter the value of the PC, causing
the program to jump (like a GOTO in BASIC). When this occurs, the pre-fetched
instruction is not the correct one to execute, and the pipeline has to be flushed (emptied),
and the fetch-decode-cycle started from the new location. Flushing the pipeline tends to
slow down execution (because the fetch, decode and execute cycles no longer all happen at
the same time) so the ARM provides ways of avoiding many of the jumps.

The ALU and barrel shifter

Many ARM instructions make use of these two very important parts of the CPU. There is a
whole class of instructions, called the data manipulation group, which use these units. The
arithmetic-logic unit performs operations such as addition, subtraction and comparison.
These are the arithmetic operations. Logical operations include AND, EOR and OR, which
are described in the next chapter.

The ALU can be regarded as a black-box which takes two 32-bit numbers as input, and
produces a 32-bit result. The instruction decode circuitry tells the ALU which of its
repertoire of operations to perform by examining the instruction. It also works out where
to find the two input numbers - the operands - and where to put the result from the
instruction.

The barrel shifter has two inputs - a 32-bit word to be shifted and a count - and one output
- another 32-bit word. As its name implies, the barrel shifter obtains its output by shifting
the bits of the operand in some way. There are several flavours of shift: which direction
the bits are shifted in, whether the bits coming out of one end re-appear in the other end
etc. The varieties of shift operation on the ARM are described in the next chapter.

ARM Assembly Language Programming - Chapter 1 - First Concepts

17 of 20

The important property of the barrel shifter is that no matter what type of shift it does, and
by how many bits, it always takes only one 'tick' of the CPU's master clock to do it. This is
much better than many 16 and 32-bit processors, which take a time proportional to the
number of shifts required.

Registers

When we talked about data being transferred from memory to the CPU, we didn't
mention exactly where in the CPU the data went. An important part of the CPU is the
register bank. In fact, from the programmer's point of view, the registers are more
important than other components such as the ALU, as they are what he actually 'sees'
when writing programs.

A register is a word of storage, like a memory location. On the ARM, all registers are one
word long, i.e. 32 bits. There are several important differences between memory and
registers. Firstly, registers are not 'memory mapped', that is they don't have 26-bit
addresses like the rest of storage and I/O on the ARM.

Because registers are on the CPU chip rather than part of an external memory system, the
CPU can access their contents very quickly. In fact, almost all operations on the ARM
involve the use of registers. For example, the ADD instruction adds two 32-bit numbers to
produce a 32-bit result. Both of the numbers to be added, and the destination of the result,
are specified as ARM registers. Many CPUs also have instructions to, for example, add a
number stored in memory to a register. This is not the case on the ARM, and the only
register-memory operations are load and store ones.

The third difference is that there are far fewer registers than memory locations. As we
stated earlier, the ARM can address up to 64M bytes (16M words) of external memory.
Internally, there are only 16 registers visible at once. These are referred to in programs as
R0 to 15. A couple of the registers are sometimes given special names; for example R15 is
also called PC, because it holds the program counter value that we metioned above.

As we shall see in the next chapter, you can generally use any of the registers to hold
operands and results, there being no distinction for example between R0 and R12. This
availability of a large (compared to many CPUs) number of rapidly accessible registers
contributes to the ARM's reputation as a fast processor.

1.5 A small program

This chapter would be irredeemably tedious if we didn't include at least one example of an
assembly language program. Although we haven't actually met the ARM's set of
instructions yet, you should be able to make some sense of the simple program below.

ARM Assembly Language Programming - Chapter 1 - First Concepts

18 of 20

On the left is a listing of a simple BASIC FOR loop which prints 20 stars on the screen. On
the right is the ARM assembly language program which performs the same task.

Even if this is the first assembly language program you have seen, most of the ARM
instructions should be self-explanatory. The word loop marks the place in the program
which is used by the BLE (branch if less than or equal to) instruction. It is called a label, and
fulfils a similar function to the line number in a BASIC instruction such as GOTO 20.

One thing you will notice about the ARM program is that it is a line longer than the BASIC
one. This is because in general, a single ARM instruction does less processing than a
BASIC one. For example, the BASIC IF statement performs the function of the two ARM
instructions CMP and BLE. Almost invariably, a program written in assembler will occupy
more lines than an equivalent one written in BASIC or some other high-level language,
usually by a much bigger ratio than the one illustrated.

However, when assembled, the ARM program above will occupy five words (one per
instruction) or 20 bytes. The BASIC program, as shown, takes 50 bytes, so the size of the
assembly language program (the 'source') can be misleading. Furthermore, a compiled
language version of the program, for example, one in Pascal:

for i := 1 to 20 do
write('*');

occupies even fewer source lines, but when compiled into ARM machine code will use
many more than 5 instructions - the exact number depending on how good the compiler
is.

1.6 Summary of chapter 1

For the reader new to assembly language programming, this chapter has introduced many
concepts, some of them difficult to grasp on the first reading. We have seen how
computers - or the CPU in particular - reads instructions from memory and executes then.
The instructions are simply patterns of 1s and 0s, which are manifestly difficult for
humans to deal with efficiently. Thus we have several levels of representation, each one
being further from what the CPU sees and closer to our ideal programming language,
which would be an unambiguous version of English.

BASIC ARM Assembly Language
10 i=1 MOV R0,#1 ;Initialise count

20 PRINT "*"; .loop SWI writeI+"*" ;Print a *

30 i=i+1 ADD R0,R0,#1 ;Increment count

40 IF i<=20 THEN 20 CMP R0,#20 ;Compare with limit

BLE loop

ARM Assembly Language Programming - Chapter 1 - First Concepts

19 of 20

The lowest level of representation that humans use, and the subject of this book, is
assembly language. In this language, each processor instruction is given a name, or
mnemonic, which is easier to remember than a sequence of binary digits. An assembly
program is a list of mnemonic instructions, plus some other items such as labels and
operands. The program is converted into CPU-processable binary form by a program
called an assembler. Unlike high-level languages, there is a one-to-one correspondence
between assembly instructions and binary instructions.

We learned about binary representation of numbers, both signed and unsigned, and saw
how simple arithmetic operations such as addition and subtraction may be performed on
them.

Next, we looked inside the CPU to better understand what goes on when an instruction is
fetched from memory and executed. Major components of the CPU such as the ALU and
barrel shifter were mentioned. A knowledge of these is not vital for programming in
assembler, but as the terms crop up in the detailed description of the ARM's instruction
set, it is useful to know them.

Finally, we presented a very small assembly language program to compare and contrast it
with a functionally equivalent program written in BASIC.

ARM Assembly Language Programming - Chapter 1 - First Concepts

20 of 20

2. Inside the ARM

In the previous chapter, we started by considering instructions executed by a mythical
processor with mnemonics like ON and OFF. Then we went on to describe some of the
features of an actual processor - the ARM. This chapter looks in much more detail at the
ARM, including the programmer's model and its instruction types. We'll start by listing
some important attributes of the CPU:

Word size

The ARM's word length is 4 bytes. That is, it's a 32-bit micro and is most at home when
dealing with units of data of that length. However, the ability to process individual bytes
efficiently is important - as character information is byte oriented - so the ARM has
provision for dealing with these smaller units too.

Memory

When addressing memory, ARM uses a 26-bit address value. This allows for 226 or 64M
bytes of memory to be accessed. Although individual bytes may be transferred between
the processor and memory, ARM is really word-based. All word-sized transfers must have
the operands in memory residing on word-boundaries. This means the instruction
addresses have to be multiples of four.

I/O

Input and output devices are memory mapped. There is no concept of a separate I/O
address space. Peripheral chips are read and written as if they were areas of memory. This
means that in practical ARM systems, the memory map is divided into three areas: RAM,
ROM, and input/output devices (probably in decreasing order of size).

Registers

The register set, or programmer's model, of the ARM could not really be any simpler.
Many popular processors have a host of dedicated (or special-purpose) registers of
varying sizes which may only be used with certain instructions or in particular
circumstances. ARM has sixteen 32-bit registers which may be used without restriction in
any instruction. There is very little dedication - only one of the registers being
permanently tied up by the processor.

Instructions

As the whole philosophy of the ARM is based on 'fast and simple', we would expect the
instruction set to reflect this, and indeed it does. A small, easily remembered set of

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

1 of 11

instruction types is available. This does not imply a lack of power, though. Firstly,
instructions execute very quickly, and secondly, most have useful extras which add to
their utility without detracting from the ease of use.

2.1 Memory and addressing

The lowest address that ARM can use is that obtained by placing 0s on all of the 26
address lines - address &0000000. The highest possible address is obtained by placing 1s
on the 26 address signals, giving address &3FFFFFF. All possible combinations between
these two extremes are available, allowing a total of 64M bytes to be addressed. Of course,
it is very unlikely that this much memory will actually be fitted in current machines, even
with the ever-increasing capacities of RAM and ROM chips. One or four megabytes of
RAM is a reasonable amount to expect using today's technology.

Why allow such a large address range then? There are several good reasons. Firstly,
throughout the history of computers, designers have under-estimated how much memory
programmers (or rather their programs) can actually use. A good maxim is 'programs will
always grow to fill the space available. And then some.' In the brief history of
microprocessors, the addressing range of CPUs has grown from 256 single bytes to 4
billion bytes (i.e. 4,000,000,000 bytes) for some 32-bit micros. As the price of memory
continues to fall, we can expect 16M and even 32M byte RAM capacities to become
available fairly cheaply.

Another reason for providing a large address space is to allow the possibility of using
virtual memory. Virtual memory is a technique whereby the fast but relatively expensive
semiconductor RAM is supplemented by slower but larger capacity magnetic storage, e.g.
a Winchester disc. For example, we might allocate 16M bytes of a Winchester disc to act as
memory for the computer. The available RAM is used to 'buffer' as much of this as
possible, say 512K bytes, making it rapidly accessible. When the need arises to access data
which is not currently in RAM, we load it in from the Winchester.

Virtual memory is an important topic, but a detailed discussion of it is outside the scope of
this book. We do mention some basic virtual memory techniques when talking about the
memory controller chip in Chapter Seven.

The diagram below illustrates how the ARM addresses memory words and bytes.

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

2 of 11

The addresses shown down the left hand side are word addresses, and increase in steps of
four. Word addresses always have their least two significant bits set to zero and the other
24 bits determine which word is required. Whenever the ARM fetches an instruction from
memory, a word address is used. Additionally, when a word-size operand is transferred
from the ARM to memory, or vice versa, a word address is used.

When byte-sized operands are accessed, all 26 address lines are used, the least significant
two bits specifying which byte within the word is required. There is a signal from the
ARM chip which indicates whether the current transfer is a word or byte-sized one. This
signal is used by the memory system to enable the appropriate memory chips. We will
have more to say about addressing in the section on data transfer instructions.

The first few words of ARM memory have special significance. When certain events occur,
e.g. the ARM is reset or an illegal instruction is encountered, the processor automatically
jumps to one of these first few locations. The instructions there perform the necessary
actions to deal with the event. Other than this, all ARM memory was created equal and its
use is determined solely by the designer of the system.

For the rest of this section, we give brief details of the use of another chip in the ARM
family called the MEMC. This information is not vital to most programmers, and may be
skipped on the first reading.

A topic which is related to virtual memory mentioned above, and which unlike that, is
within the scope of this book, is the relationship between 'physical' and 'logical' memory in
ARM systems. Many ARM-based machines use a device called the Memory Controller -
MEMC - which is part of the same family of devices as the ARM CPU. (Other members are
the Video Controller and I/O Controller, called VIDC and IOC respectively.)

When an ARM-based system uses MEMC, its memory map is divided into three main
areas. The bottom half - 32M bytes - is called logical RAM, and is the memory that most
programs 'see' when they are executing. The next 16M bytes is allocated to physical RAM.
This area is only visible to system programs which use the CPU in a special mode called
supervisor mode. Finally, the top 16M bytes is occupied by ROM and I/O devices.

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

3 of 11

The logical and physical RAM is actually the same thing, and the data is stored in the same
RAM chips. However, whereas physical RAM occupies a contiguous area from address
32M to 32M+(memory size)-1, logical RAM may be scattered anywhere in the bottom 32M
bytes. The physical RAM is divided into 128 'pages'. The size of a page depends on how
much RAM the machine has. For example, in a 1M byte machine, a page is 8K bytes; in a
4M byte machine (the maximum that the current MEMC chip can handle) it is 32K bytes.

A table in MEMC is programmed to control where each physical page appears in the
logical memory map. For example, in a particular system it might be convenient to have
the screen memory at the very top of the 32M byte logical memory area. Say the page size
is 8K bytes and 32K is required for the screen. The MEMC would be programmed so that
four pages of physical RAM appear at the top 32K bytes of the logical address space. These
four pages would be accessible to supervisor mode programs at both this location and in
the appropriate place in the physical memory map, and to non-supervisor programs at just
the logical memory map position.

When a program accesses the logical memory, the MEMC looks up where corresponding
physical RAM is and passes that address on to the RAM chips. You could imagine the
address bus passing through the MEMC on its way to the memory, and being translated
on the way. This translation is totally transparent to the programmer. If a program tries to
access a logical memory address for which there is no corresponding physical RAM
(remember only at most 4M bytes of the possible 32M can be occupied), a signal called
'data abort' is activated on the CPU. This enables attempts to access 'illegal' locations to be
dealt with.

As the 4M byte limit only applies to the current MEMC chip, there is no reason why a later
device shouldn't be able to access a much larger area of physical memory.

Because of the translation performed by MEMC, the logical addresses used to access RAM
may be anywhere in the memory map. Looked at in another way, this means that a 1M
byte machine will not necessarily appear to have all of this RAM at the bottom of the
memory map; it might be scattered into different areas. For example, one 'chunk' of
memory might be used for the screen and mapped onto a high address, whereas another
region, used for application programs say, might start at a low address such as &8000.

Usually, the presence of MEMC in a system is if no consequence to a program, but it helps
to explain how the memory map of an ARM-based computer appears as it does.

2.2 Programmer's model

This section describes the way in which the ARM presents itself to the programmer. The
term 'model' is employed because although it describes what the programmer sees when
programming the ARM, the internal representation may be very different. So long as

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

4 of 11

programs behave as expected from the description given, these internal details are
unimportant.

Occasionally however, a particular feature of the processor's operation may be better
understood if you know what the ARM is getting up to internally. These situations are
explained as they arise in the descriptions presented below.

As mentioned above, ARM has a particularly simple register organisation, which benefits
both human programmers and compilers, which also need to generate ARM programs.
Humans are well served because our feeble brains don't have to cope with such questions
as 'can I use the X register as an operand with the ADD instruction?' These crop up quite
frequently when programming in assembler on certain micros, making coding a tiresome
task.

There are sixteen user registers. They are all 32-bits wide. Only two are dedicate; the
others are general purpose and are used to store operands, results and pointers to
memory. Of the two dedicated registers, only one of these is permanently used for a
special purpose (it is the PC). Sixteen is quite a large number of registers to provide, some
micros managing with only one general purpose register. These are called accumulator-
based processors, and the 6502 is an example of such a chip.

All of the ARM's registers are general purpose. This means that wherever an instruction
needs a register to be specified as an operand, any one of them may be used. This gives the
programmer great freedom in deciding which registers to use for which purpose.

The motivation for providing a generous register set stems from the way in which the
ARM performs most of its operations. All data manipulation instructions use registers.
That is, if you want to add two 32-bit numbers, both of the numbers must be in registers,
and the result is stored in a third register. It is not possible to add a number in memory to
a register, or vice versa. In fact, the only time the ARM accesses memory is to fetch
instructions and when executing one of the few register-to-memory transfer instructions.

So, given that most processing is restricted to using the fast internal registers, it is only fair
that a reasonable number of them is provided. Studies by computer scientists have shown
that eight general-purpose registers is sufficient for most types of program, so 16 should
be plenty.

When designing the ARM, Acorn may well have been tempted to include even more
registers, say 32, using the 'too much is never enough' maxim mentioned above. However,
it is important to remember that if an instruction is to allow any register as an operand, the
register number has to be encoded in the instruction. 16 registers need four bits of
encoding; 32 registers would need five. Thus by increasing the number of registers, they
would have decreased the number of bits available to encode other information in the

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

5 of 11

instructions.

Such trade-offs are common in processor design, and the utility of the design depends on
whether the decisions have been made wisely. On the whole, Acorn seems to have hit the
right balance with the ARM.

There is an illustration of the programmer's model overleaf.

In the diagram, 'undedicated' means that the hardware imposes no particular use for the
register. 'Dedicated' means that the ARM uses the register for a particular function - R15 is
the PC. 'Semi-dedicated' implies that occasionally the hardware might use the register for
some function (for storing addresses), but at other times it is undedicated. 'General
purpose' indicates that if an instruction requires a register as an operand, any register may
be specified.

As R0-R13 are undedicated, general purpose registers, nothing more needs to be said
about them at this stage.

Special registers

Being slightly different from the rest, R14 and R15 are more interesting, especially R15.
This is the only register which you cannot use in the same way as the rest to hold operands

R0 Undedicated, general purpose

R1 Undedicated, general purpose

R2 Undedicated, general purpose

R3 Undedicated, general purpose

R4 Undedicated, general purpose

R5 Undedicated, general purpose

R6 Undedicated, general purpose

R7 Undedicated, general purpose

R8 Undedicated, general purpose

R9 Undedicated, general purpose

R10 Undedicated, general purpose

R11 Undedicated, general purpose

R12 Undedicated, general purpose

R13 Undedicated, general purpose

R14 Semi-dedicated, general purpose (link)

R15 Dedicated, general purpose (PC)

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

6 of 11

and results. The reason is that the ARM uses it to store the program counter and status
register. These two components of R15 are explained below.

Register 14 is usually free to hold any value the user wishes. However, one instruction,
'branch with link', uses R14 to keep a copy of the PC. The next chapter describes branch
with link, along with the rest of the instruction set, and this use of R14 is explained in
more detail there.

The program counter

R15 is split into two parts. This is illustrated below:

Bits 2 to 25 are the program counter (PC). That is, they hold the word address of the next
instruction to be fetched. There are only 24 bits (as opposed to the full 26) because
instructions are defined to reside on word boundaries. Thus the two lowest bits of an
instruction's address are always zero, and there is no need to store them. When R15 is
used to place the address of the next instruction on the address bus, bits 0 and 1 of the bus
are automatically set to zero.

When the ARM is reset, the program counter is set to zero, and instructions are fetched
starting from that location. Normally, the program counter is incremented after every
instruction is fetched, so that a program is executed in sequence. However, some
instructions alter the value of the PC, causing non-consecutive instructions to be fetched.
This is how IF-THEN-ELSE and REPEAT-UNTIL type constructs are programmed in machine
code.

Some signals connected to the ARM chip also affect the PC when they are activated. Reset
is one such signal, and as mentioned above it causes the PC to jump to location zero.
Others are IRQ and FIQ, which are mentioned below, and memory abort.

Status register

The remaining bits of R15, bits 0, 1 and 26-31, form an eight-bit status register. This
contains information about the state of the processor. There are two types of status
information: result status and system status. The former refers to the outcome of previous
operations, for example, whether a carry was generated by an addition operation. The
latter refers to the four operating modes in which the ARM may be set, and whether
certain events are allowed to interrupt its processing.

Here is the layout of the status register portion of R15:

31 30 29 28 27 26 25 2 1 0

N Z C V I F Program Counter S1 S0

Type Bit Name Meaning

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

7 of 11

The result status flags are affected by the register-to-register data operations. The exact
way in which these instructions change the flags is described along with the instructions.
No other instructions affect the flags, unless they are loaded explicitly (along with the rest
of R15) from memory.

As each flag is stored in one bit, it has two possible states. If a flag bit has the value 1, it is
said to be true, or set. If it has the value 0, the flag is false or cleared. For example, if bits 31
to 28 of R15 were 1100, the N and Z flags would be set, and V and C would be cleared.

All instructions may execute conditionally on the result flags. That is to say, a given
instruction may be executed only if a given combination of flags exists, otherwise the
instruction is ignored. Additionally, an instruction may be unconditional, so that it
executes regardless of the state of the flags.

The processor mode flags hold a two-bit number. The state of these two bits determine the
'mode' in which the ARM executes, as follows:

The greater part of this book is concerned only with user mode. The other modes are
'system' modes which are only required by programs which will have generally already
been written on the machine you are using. Briefly, supervisor mode is entered when the
ARM is reset or certain types of error occur. IRQ and FIQ modes are entered under the
interrupt conditions described below.

Result
31 N Negative result flag

30 Z Zero result flag

Status
29 C Carry flag

28 V Overflowed result flag

System
27 IRQ Interrupt disable flag

26 FIQ Fast interrupt disable flag

Status
1 S1 Processor mode 1

0 S0 Processor mode 0

s1 s0 Mode

0 0 User

0 1
FIQ or fast
interrupt

1 0 IRQ or interrupt

1 1
SVC or
supervisor

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

8 of 11

In non-user modes, the ARM looks and behaves in a very similar way to user mode (which
we have been describing). The main difference is that certain registers (e.g. R13 and R14 in
supervisor mode) are replaced by 'private copies' available only in that mode. These are
called R13_SVC and R14_SVC. In user mode, the supervisor mode's versions of R13 and
R14 are not visible, and vice versa. In addition, S0 and S1 may not be altered in user mode,
but may be in other modes. In IRQ mode, the extra registers are R13_IRQ and R14_IRQ; in
FIQ mode there are seven of them - R8_FIQ to R14_FIQ.

Non-user modes are used by 'privileged' programs which may have access to hardware
which the user is not allowed to touch. This is possible because a signal from the ARM
reflects the state of S0 and S1 so external hardware may determine if the processor is in a
user mode or not.

Finally, the status bits FIQ and IRQ are used to enable or disable the two interrupts
provided by the processor. An interrupt is a signal to the chip which, when activated,
causes the ARM to suspend its current action (having finished the current instruction) and
set the program counter to a pre-determined value. Hardware such as disc drives use
interrupts to ask for attention when they require servicing.

The ARM provides two interrupts. The IRQ (which stands for interrupt request) signal
will cause the program to be suspended only if the IRQ bit in the status register is cleared.
If that bit is set, the interrupt will be ignored by the processor until it is clear. The FIQ (fast
interrupt) works similarly, except that the FIQ bit enables/disables it. If a FIQ interrupt is
activated, the IRQ bit is set automatically, disabling any IRQ signal. The reverse is not true
however, and a FIQ interrupt may be processed while an IRQ is active.

As mentioned above, the supervisor, FIQ and IRQ modes are rarely of interest to
programmers other than those writing 'systems' software, and the system status bits of
R15 may generally be ignored. Chapter Seven covers the differences in programming the
ARM in the non-user modes.

2.3 The instructions set

To complement the regular architecture of the programmer's model, the ARM has a well-
organised, uniform instruction set. In this section we give an overview of the instruction
types, and defer detailed descriptions until the next chapter.

General properties

There are certain attributes that all instructions have in common. All instructions are 32-
bits long (i.e. they occupy one word) and must lie on word boundaries. We have already
seen that the address held in the program counter is a word address, and the two lowest
bits of the address are set to zero when an instruction is fetched from memory.

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

9 of 11

The main reason for imposing the word-boundary restriction is one of efficiency. If an
instruction were allowed to straddle two words, two accesses to memory would be
required to load a single instruction. As it is, the ARM only ever has to access memory
once per instruction fetch. A secondary reason is that by making the two lowest bits of the
address implicit, the program address range of the ARM is increased from the 24 bits
available in R15 to 26 bits - effectively quadrupling the addressing range.

A 32-bit instruction enables 232 or about 4 billion possible instructions. Obviously the
ARM would not be much of a reduced instruction set computer if it used all of these for
wildly differing instructions. However, it does use a surprisingly large amount of this
theoretical instruction space.

The instruction word may be split into different 'fields'. A field is a set of (perhaps just
one) contiguous bits. For example, bits 28 to 31 of R15 could be called the result status
field. Each instruction word field controls a particular aspect of the interpretation of the
instruction. It is not necessary to know where these fields occur within the word and what
they mean, as the assembler does that for you using the textual representation of
instruction.

One field which is worth mentioning now is the condition part. Every ARM instruction
has a condition code encoded into four bits of the word. Four bits enable up to 16
conditions to be specified, and all of these are used. Most instructions will use the
'unconditional' condition, i.e. they will execute regardless of the state of the flags. Other
conditions are 'if zero', 'if carry set', 'if less than' and so on.

Instruction classes

There are five types of instruction. Each class is described in detail in its own section of the
next chapter. In summary, they are:

Data operations

This group does most of the work. There are sixteen instructions, and they have very
similar formats. Examples of instructions from this group are ADD and CMP, which add and
compare two numbers respectively. As mentioned above, the operands of these
instructions are always in registers (or an immediate number stored in the instruction
itself), never in memory.

Load and save

This is a smaller group of two instructions: load a register and save a register. Variations
include whether bytes or words are transferred, and how the memory location to be used
is obtained.

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

10 of 11

Multiple load and save

Whereas the instructions in the previous group only transfer a single register, this group
allows between one and 16 registers to be moved between the processor and memory.
Only word transfers are performed by this group.

Branching

Although the PC may be altered using the data operations to cause a change in the
program counter, the branch instruction provides a convenient way of reaching any part
of the 64M byte address space in a single instruction. It causes a displacement to be added
to the current value of the PC. The displacement is stored in the instruction itself.

SWI

This one-instruction group is very important. The abbreviation stands for 'SoftWare
Interrupt'. It provides the way for user's programs to access the facilities provided by the
operating system. All ARM-based computers provide a certain amount of pre-written
software to perform such tasks as printing characters on to the screen, performing disc I/O
etc. By issuing SWI instructions, the user's program may utilise this operating system
software, obviating the need to write the routines for each application.

Floating point

The first ARM chips do not provide any built-in support for dealing with floating point, or
real, numbers. Instead, they have a facility for adding co-processors. A co-processor is a
separate chip which executes special-purpose instructions which the ARM CPU alone
cannot handle. The first such processor will be one to implement floating point
instructions. These instructions have already been defined, and are currently implemented
by software. The machine codes which are allocated to them are illegal instructions on the
ARM-I so system software can be used to 'trap' them and perform the required action,
albeit a lot slower than the co-processor would.

Because the floating point instructions are not part of the basic ARM instruction set, they
are not discussed in the main part of this book, but are described in Appendix B.

ARM Assembly Language Programming - Chapter 2 - Inside the ARM

11 of 11

3. The Instruction Set

We now know what the ARM provides by way of memory and registers, and the sort of
instructions to manipulate them.This chapter describes those instructions in great detail.

As explained in the previous chapter, all ARM instructions are 32 bits long. Here is a
typical one:

10101011100101010010100111101011

Fortunately, we don't have to write ARM programs using such codes. Instead we use
assembly language. We saw at the end of Chapter One a few typical ARM mnemonics.
Usually, mnemonics are followed by one or more operands which are used to completely
describe the instruction.

An example mnemonic is ADD, for 'add two registers'. This alone doesn't tell the assembler
which registers to add and where to put the result. If the left and right hand side of the
addition are R1 and R2 respectively, and the result is to go in R0, the operand part would
be written R0,R1,R2. Thus the complete add instruction, in assembler format, would be:

ADD R0, R1, R2 ;R0 = R1 + R2

Most ARM mnemonics consist of three letters, e.g. SUB, MOV, STR, STM. Certain 'optional
extras' may be added to slightly alter the affect of the instruction, leading to mnemonics
such as ADCNES and SWINE.

The mnemonics and operand formats for all of the ARM's instructions are described in
detail in the sections below. At this stage, we don't explain how to create programs,
assemble and run them. There are two main ways of assembling ARM programs - using
the assembler built-in to BBC BASIC, or using a dedicated assembler. The former method
is more convenient for testing short programs, the latter for developing large scale
projects. Chapter Four covers the use of the BASIC assembler.

3.1 Condition codes

The property of conditional execution is common to all ARM instructions, so its
representation in assembler is described before the syntax of the actual instructions.

As mentioned in chapter two, there are four bits of condition encoded into an instruction
word. This allows sixteen possible conditions. If the condition for the current instruction is
true, the execution goes ahead. If the condition does not hold, the instruction is ignored
and the next one executed.

The result flags are altered mainly by the data manipulation instructions. These

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

1 of 37

instructions only affect the flags if you explicitly tell them to. For example, a MOV
instruction which copies the contents of one register to another. No flags are affected.
However, the MOVS (move with Set) instruction additionally causes the result flags to be
set. The way in which each instruction affects the flags is described below.

To make an instruction conditional, a two-letter suffix is added to the mnemonic. The
suffixes, and their meanings, are listed below.

AL Always

An instruction with this suffix is always executed. To save having to type 'AL' after the
majority of instructions which are unconditional, the suffix may be omitted in this case.
Thus ADDAL and ADD mean the same thing: add unconditionally.

NV Never

All ARM conditions also have their inverse, so this is the inverse of always. Any
instruction with this condition will be ignored. Such instructions might be used for
'padding' or perhaps to use up a (very) small amount of time in a program.

EQ Equal

This condition is true if the result flag Z (zero) is set. This might arise after a compare
instruction where the operands were equal, or in any data instruction which received a
zero result into the destination.

NE Not equal

This is clearly the opposite of EQ, and is true if the Z flag is cleared. If Z is set, and
instruction with the NE condition will not be executed.

VS Overflow set

This condition is true if the result flag V (overflow) is set. Add, subtract and compare
instructions affect the V flag.

VC Overflow clear

The opposite to VS.

MI Minus

Instructions with this condition only execute if the N (negative) flag is set. Such a
condition would occur when the last data operation gave a result which was negative.
That is, the N flag reflects the state of bit 31 of the result. (All data operations work on 32-

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

2 of 37

bit numbers.)

PL Plus

This is the opposite to the MI condition and instructions with the PL condition will only
execute if the N flag is cleared.

The next four conditions are often used after comparisons of two unsigned numbers. If the
numbers being compared are n1 and n2, the conditions are n1>=n2, n1<n2, n1>n2 and
n1<=n2, in the order presented.

CS Carry set

This condition is true if the result flag C (carry) is set. The carry flag is affected by
arithmetic instructions such as ADD, SUB and CMP. It is also altered by operations involving
the shifting or rotation of operands (data manipulation instructions).

When used after a compare instruction, CS may be interpreted as 'higher or same', where
the operands are treated as unsigned 32-bit numbers. For example, if the left hand operand
of CMP was 5 and the right hand operand was 2, the carry would be set. You can use HS
instead of CS for this condition.

CC Carry clear

This is the inverse condition to CS. After a compare, the CC condition may be interpreted as
meaning 'lower than', where the operands are again treated as unsigned numbers. An
synonym for CC is LO.

HI Higher

This condition is true if the C flag is set and the Z flag is false. After a compare or subtract,
this combination may be interpreted as the left hand operand being greater than the right
hand one, where the operands are treated as unsigned.

LS Lower or same

This condition is true if the C flag is cleared or the Z flag is set. After a compare or
subtract, this combination may be interpreted as the left hand operand being less than or
equal to the right hand one, where the operands are treated as unsigned.

The next four conditions have similar interpretations to the previous four, but are used
when signed numbers have been compared. The difference is that they take into account
the state of the V (overflow) flag, whereas the unsigned ones don't.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

3 of 37

Again, the relationships between the two numbers which would cause the condition to be
true are n1>=n2, n1<n2, n1>n2, n1<=n2.

GE Greater than or equal

This is true if N is cleared and V is cleared, or N is set and V is set.

LT Less than

This is the opposite to GE and instructions with this condition are executed if N is set and V
is cleared, or N is cleared and V is set.

GT Greater than

This is the same as GE, with the addition that the Z flag must be cleared too.

LE Less than or equal

This is the same as LT, and is also true whenever the Z flag is set.

Note that although the conditions refer to signed and unsigned numbers, the operations
on the numbers are identical regardless of the type. The only things that change are the
flags used to determine whether instructions are to be obeyed or not.

The flags may be set and cleared explicitly by performing operations directly on R15,
where they are stored.

3.2 Group one - data manipulation

This group contains the instructions which do most of the manipulation of data in ARM
programs. The other groups are concerned with moving data between the processor and
memory, or changing the flow of control.

The group comprises sixteen distinct instructions. All have a very similar format with
respect to the operands they take and the 'optional extras'. We shall describe them
generically using ADD, then give the detailed operation of each type.

Assembler format

ADD has the following format:

ADD{cond}{S} <dest>, <lhs>, <rhs>

The parts in curly brackets are optional. Cond is one of the two-letter condition codes listed
above. If it is omitted, the 'always' condition AL is assumed. The S, if present, causes the

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

4 of 37

instruction to affect the result flags. If there is no S, none of the flags will be changed. For
example, if an instruction ADDS É yields a result which is negative, then the N flag will be
set. However, just ADD É will not alter N (or any other flag) regardless of the result.

After the mnemonic are the three operands. <dest> is the destination, and is the register
number where the result of the ADD is to be stored. Although the assembler is happy with
actual numbers here, e.g. 0 for R0, it recognises R0, R1, R2 etc. to stand for the register
numbers. In addition, you can define a name for a register and use that instead. For
example, in BBC BASIC you could say:-

iac = 0

where iac stands for, say, integer accumulator. Then this can be used in an instruction:-

ADD iac, iac, #1

The second operand is the left hand side of the operation. In general, the group one
instructions act on two values to provide the result. These are referred to as the left and
right hand sides, implying that the operation determined by the mnemonic would be
written between them in mathematics. For example, the instruction:

ADD R0, R1, R2

has R1 and R2 as its left and right hand sides, and R0 as the result. This is analogous to an
assignment such as R0=R1+R2 in BASIC, so the operands are sometimes said to be in
'assignment order'.

The <lhs> operand is always a register number, like the destination. The <rhs> may either
be a register, or an immediate operand, or a shifted or rotated register. It is the versatile
form that the right hand side may take which gives much of the power to these
instructions.

If the <rhs> is a simple register number, we obtain instructions such as the first ADD
example above. In this case, the contents of R1 and R2 are added (as signed, 32-bit
numbers) and the result stored in R0. As there is no condition after the instruction, the ADD
instruction will always be executed. Also, because there was no S, the result flags would
not be affected.

The three examples below all perform the same ADD operation (if the condition is true):

ADDNE R0, R0, R2
ADDS R0, R0, R2
ADDNES R0, R0, R2

They all add R2 to R0. The first has a NE condition, so the instruction will only be executed

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

5 of 37

if the Z flag is cleared. If Z is set when the instruction is encountered, it is ignored. The
second one is unconditional, but has the S option. Thus the N, Z, V and C flags will be
altered to reflect the result. The last example has the condition and the S, so if Z is cleared,
the ADD will occur and the flags set accordingly. If Z is set, the ADD will be skipped and the
flags remain unaltered.

Immediate operands

Immediate operands are written as a # followed by a number. For example, to increment
R0, we would use:

ADD R0, R0, #1

Now, as we know, an ARM instruction has 32 bits in which to encode the instruction type,
condition, operands etc. In group one instructions there are twelve bits available to encode
immediate operands. Twelve bits of binary can represent numbers in the range 0..4095, or -
2048..+2047 if we treat them as signed.

The designers of the ARM decided not to use the 12 bits available to them for immediate
operands in the obvious way just mentioned. Remember that some of the status bits are
stored in bits 26..31 of R15. If we wanted to store an immediate value there using a group
one instruction, there's no way we could using the straightforward twelve-bit number
approach.

To get around this and related problems, the immediate operand is split into two fields,
called the position (the top four bits) and the value (stored in the lower eight bits). The
value is an eight bit number representing 256 possible combinations. The position is a four
bit field which determines where in the 32-bit word the value lies. Below is a diagram
showing how the sixteen values of the position determine where the value goes. The bits
of the value part are shown as 0, 1, 2 etc.

The way of describing this succinctly is to say that the value is rotated by 2*position bits to
the right within the 32-bit word. As you can see from the diagram, when position=&03, all
of the status bits in R15 can be reached.

b31 b0 Pos

........................76543210 &00

10........................765432 &01

3210........................7654 &02

543210........................76 &02

76543210........................ &04

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

6 of 37

The sixteen immediate shift positions

When using immediate operands, you don't have to specify the number in terms of
position and value. You just give the number you want, and the assembler tries to
generate the appropriate twelve-bit field. If you specify a value which can't be generated,
such as &101 (which would require a nine -bit value), an error is generated. The ADD
instruction below adds 65536 (&1000) to R0:

ADD R0, R0, #&1000

To get this number, the assembler might use a position value of 8 and value of 1, though
other combinations could also be used.

Shifted operands

If the <rhs> operand is a register, it may be manipulated in various ways before it is used
in the instruction. The contents of the register aren't altered, just the value given to the
ALU, as applied to this operation (unless the same register is also used as the result, of
course).

The particular operations that may be performed on the <rhs> are various types of shifting
and rotation. The number of bits by which the register is shifted or rotated may be given as
an immediate number, or specified in yet another register.

Shifts and rotates are specified as left or right, logical or arithmetic. A left shift is one
where the bits, as written on the page, are moved by one or more bits to the left, i.e.
towards the more significant end. Zero-valued bits are shifted in at the right and the bits at
the left are lost, except for the final bit to be shifted out, which is stored in the carry flag.

..76543210...................... &05

....76543210.................... &06

......76543210.................. &07

........76543210................ &08

..........76543210.............. &09

............76543210............ &0A

..............76543210.......... &0B

................76543210........ &0C

..................76543210...... &0D

....................76543210.... &0E

......................76543210.. &0F

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

7 of 37

Left shifts by n bits effectively multiply the number by 2n, assuming that no significant bits
are 'lost' at the top end.

A right shift is in the opposite direction, the bits moving from the more significant end to
the lower end, or from left to right on the page. Again the bits shifted out are lost, except
for the last one which is put into the carry. If the right shift is logical then zeros are shifted
into the left end. In arithmetic shifts, a copy of bit 31 (i.e. the sign bit) is shifted in.

Right arithmetic shifts by n bits effectively divide the number by 2n, rounding towards
minus infinity (like the BASIC INT function).

A rotate is like a shift except that the bits shifted in to the left (right) end are those which
are coming out of the right (left) end.

Here are the types of shifts and rotates which may be used:

LSL #n Logical shift left immediate

n is the number of bit positions by which the value is shifted. It has the value 0..31. An LSL
by one bit may be pictured as below:

After n shifts, n zero bits have been shifted in on the right and the carry is set to bit 32-n of
the original word.

Note that if there is no shift specified after the <rhs> register value, LSLÊ#0 is used, which
has no effect at all.

ASL #n Arithmetic shift left immediate

This is a synonym for LSL #n and has an identical effect.

LSR #n Logical shift right immediate

n is the number of bit positions by which the value is shifted. It has the value 1..32. An LSR
by one bit is shown below:

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

8 of 37

After n of these, n zero bits have been shifted in on the left, and the carry flag is set to bit
n-1 of the original word.

ASR #n Arithmetic shift right immediate

n is the number of bit positions by which the value is shifted. It has the value 1..32. An ASR
by one bit is shown below:

If ' sign' is the original value of bit 31 then after n shifts, n 'sign' bits have been shifted in on
the left, and the carry flag is set to bit n-1 of the original word.

ROR #n Rotate right immediate

n is the number of bit positions to rotate in the range 1..31. A rotate right by one bit is
shown below:

After n of these rotates, the old bit n is in the bit 0 position; the old bit (n-1) is in bit 31 and
in the carry flag.

Note that a rotate left by n positions is the same as a rotate right by (32-n). Also note that
there is no rotate right by 32 bits. The instruction code which would do this has been
reserved for rotate right with extend (see below).

RRX Rotate right one bit with extend

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

9 of 37

This special case of rotate right has a slightly different effect from the usual rotates. There
is no count; it always rotates by one bit only. The pictorial representation of RRX is:

The old bit 0 is shifted into the carry. The old content of the carry is shifted into bit 31.

Note that there is no equivalent RLX rotate. However, the same effect may be obtained
using the instruction:

ADCS R0,R0,R0

After this, the carry will contain the old bit 31 of R0, and bit 0 of R0 will contain the old
carry flag.

LSL rn Logical shift left by a register.

ASL rn Arithmetic shift left by a register.

LSR rn Logical shift right by a register.

ASR rn Arithmetic shift right by a register.

ROR rn Rotate right by a register

This group acts like the immediate shift group, but takes the count from the contents of a
specified register instead of an immediate value. Only the least significant byte of the
register is used, so the shift count is in the range 0..255. Of course, only counts in the range
0..32 are useful anyway.

We now have the complete syntax of group one instructions:

ADD{cond}{S} <dest>,<lhs>,<rhs>

where <dest> and <lhs> are registers, and <rhs> is:

#<value> or

<reg> {,<shift>}

where <value> is a shifted immediate number as explained above, <reg> is a register and

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

10 of 37

<shift> is:

<shift type> #<shift count> or
<shift type> <reg> or
RRX

where <shift type> is LSL, ASL, LSR, ASR, ROR and <shift count> is in the range 0..32,
depending on the shift type.

Here is an example of the ADD instruction using shifted operands:

ADD R0, R0, R0, LSL #1 ;R0 = R0+2*R0 = 3*R0

Instruction descriptions

The foregoing applies to all group one instructions. We now list and explain the individual
operations in the group. They may be divided into two sub-groups: logical and arithmetic.
These differ in the way in which the result flags are affected (assuming the S is present in
the mnemonic). Arithmetic instructions alter N, Z, V and C according to the result of the
addition, subtraction etc.

Logical instructions affect N and Z according to the result of the operation, and C
according to any shifts or rotates that occurred in the <rhs>. For example, the instruction:

ANDS R0,R1,R2, LSR #1

will set C from bit 0 of R2. Immediate operands will generally leave the carry unaffected if
the position value is 0 (i.e. an operand in the range 0..255). For other immediate values, the
state of C is hard to predict after the instruction, and it is probably best not to assume
anything about the state of the carry after a logical operation which uses the S option and
has an immediate operand.

To summarise the state of the result flags after any logical operation, if the S option was
not given, then there is no change to the flags. Otherwise:

? If result is negative (bit 31=1), N is set, otherwise it is cleared.
? If result is zero, Z is set, otherwise it is cleared.
? If <rhs> involved a shift or rotate, C is set from this, otherwise it is unaffected by the

operation.
? V is unaffected

AND Logical AND

The AND instruction produces the bit-wise AND of its operands. The AND of two bits is 1

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

11 of 37

only if both of the bits are 1, as summarised below:

In the ARM AND instruction, this operation is applied to all 32 bits in the operands. That is,
bit 0 of the <lhs> is ANDed with bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so
on.

Examples:

ANDS R0, R0, R5 ;Mask wanted bits using R5
AND R0, R0, #&DF ;Convert character to upper case

BIC Clear specified bits

The BIC instruction produces the bit-wise AND of <lhs> and NOT <rhs>. This has the effect of
clearing the <lhs> bit if the <rhs> bit is set, and leaving the <lhs> bit unaltered otherwise.

In the ARM BIC instruction, this operation is applied to all bits in the operands. That is, bit
0 of the <lhs> is ANDed with NOT bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so
on.

Examples:

BICS R0,R0,R5 ;Zero unwanted bits using R5
BIC R0,R0,#&20 ;Convert to caps by clearing bit 5

TST Test bits

The TST instruction performs the AND operation on its <lhs> and <rhs> operands. The
result is not stored anywhere, but the result flags are set according to the result. As there
are only two operands, the format of TST is:

<lhs> <rhs> <lhs> AND <rhs>

0 0 0

0 1 0

1 0 0

1 1 1

<lhs> <rhs> NOT <rhs>
<lhs> AND
NOT <rhs>

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

12 of 37

TST <lhs>,<rhs>

Also, as the only purpose of executing a TST is to set the flags according to the result, the
assembler assumes the S is present whether you specify it or not, i.e. TST always affects the
flags.

See the section 'Using R15 in group one instructions' below.

Examples:

TST R0,R5 ;Test bits using r5, setting flags
TST R0,#&20 ;Test case of character in R0

ORR Logical OR

The ORR instruction produces the bit-wise OR of its operands. The OR of two bits is 1 if
either or both of the bits is 1, as summarised below:

In the ARM ORR instruction, this operation is applied to all bits in the operands. That is, bit
0 of the <lhs> is ORed with bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so on.
This instruction is often used to set specific bits in a register without affecting the others. It
can be regarded as a complementary operation to BIC.

Examples:

ORRS R0,R0,R5 ;Set desired bits using R5
ORR R0,R0,&80000000 ;Set top bit of R0

EOR Logical exclusive-OR

The EOR instruction produces the bit-wise exclusive-OR of its operands. The EOR of two
bits is 1 only if they are different, as summarised below:

<lhs> <rhs> <lhs> OR <rhs>

0 0 0

0 1 1

1 0 1

1 1 1

<lhs> <rhs> <lhs> EOR <rhs>

0 0 0

0 1 1

1 0 1

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

13 of 37

In the ARM EOR instruction, this operation is applied to all bits in the operands. That is, bit
0 of the <lhs> is EORed with bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so on.
The EOR instruction is often used to invert the state of certain bits of a register without
affecting the rest.

Examples:

EORS R0,R0,R5 ;Invert bits using R5, setting flags
EOR R0,R0,#1 ;'Toggle' state of bit 0

TEQ Test equivalence

The TEQ instruction performs the EOR operation on its <lhs> and <rhs> operands. The
result is not stored anywhere, but the result flags are set according to the result. As there
are only two operands, the format of TEQ is:

TEQ <lhs>,<rhs>

Also, as the only purpose of executing a TEQ is to set the flags according to the result, the
assembler assumes the S is present whether you specify or not, i.e. TEQ always affects the
flags.

One use of TEQ is to test if two operands are equal without affecting the state of the C flag,
as the CMP instruction does (see below). After such an operation, Z=1 if the operands are
equal, or 0 if not. The second example below illustrates this.

See the section 'Using R15 in group one instructions' below.

Examples:

TEQ R0,R5 ;Test bits using R5, setting flags
TEQ R0,#0 ;See if R0 = 0.

MOV Move value

The MOV instruction transfers its <rhs> operand to the register specified by <dest>. There is
no <lhs> specified in the instruction, so the assembler format is:

MOV <dest>,<rhs>

Examples:

MOV R0, R0,LSL #2 ;Multiply R0 by four.
MOVS R0, R1 ;Put R1 in R0, setting flags

1 1 0

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

14 of 37

MOV R1, #&80 ;Set R1 to 128

MVN Move value

The MOV instruction transfers the logical NOT of its <rhs> operand to the register specified
by <dest>. Inverting the <rhs> before transfer enables negative immediate operands to be
loaded. There is no <lhs> specified in the instruction, so the assembler format is:

MVN <dest>,<rhs>

In general, -n = NOT (n-1). This means that to load a negative number, you subtract one
from its positive value and use that in the MVN. For example, to load the number -128 you
would do a MVN of 127.

Examples:

MVNS R0, R0 ;Invert all bits of R0, setting flags
MVN R0, #0 ;Set R0 to &FFFFFFFF, i.e. -1

Descriptions of the arithmetic instructions follow. Here is a summary of how the result
flags are affected by these instructions. If the S option is not specified, no change takes
place. Otherwise:

If result is negative (bit 31=1), N is set, otherwise it is cleared.

If result is zero, Z is set, otherwise it is cleared.

If the operation generated a carry, C is set, otherwise it is cleared.

If the operation generated an overflow, V is set, otherwise it is cleared.

Note that if C=1 after an ADDS, the implication is that a carry was generated, i.e. the
addition overflowed into bit 32. This does not mean that the result is wrong. For example,
adding -1 to 10 will produce the following:

A carry is generated, but the result we obtain is the desired one, i.e. 9. The overflow flag
(see below) is used for detecting errors in the arithmetic. In this case, V=0 after the
operation, implying no overflow.

00000000000000000000000000001010

+11111111111111111111111111111111

00000000000000000000000000001001

1

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

15 of 37

The state of the carry after a SUBS is the opposite to that after an ADDS. If C=1, no borrow
was generated during the subtract. If C=0, a borrow was required. Note that by this
definition, borrow = NOT carry, so the summary of the flags' states above is correct.

The precise definition of the overflow state is the exclusive-OR of the carries from bits 30
and 31 during the add or subtract operation. What this means in real terms is that if the V
flag is set, the result is too large to fit in a single 32-bit word. In this case, the sign of the
result will be wrong, which is why the signed condition codes take the state of the V flag
into account.

ADD Addition

This instruction adds the <lhs> operand to the <rhs> operand, storing the result in <dest>.
The addition is a thirty-two bit signed operation, though if the operands are treated as
unsigned numbers, then the result can be too.

Examples:

ADD R0,R0,#1 ;Increment R0
ADD R0,R0,R0,LSL#2 ;Multiple R0 by 5
ADDS R2,R2,R7 ;Add result; check for overflow

ADC Addition with carry

The add with carry operation is very similar to ADD, with the difference that the carry flag
is added too. Whereas the function of ADD can be written:

<dest> = <lhs> + <rhs>

we must add an extra part for ADC:

<dest> = <lhs> + <rhs> + <carry>

where <carry> is 0 if C is cleared and 1 if it is set. The purpose of ADC is to allow multi-
word addition to take place, as the example illustrates.

Example:

;Add the 64-bit number in R2,R3 to that in R0,R1
ADDS R0,R0,R2 ;Add the lower words, getting carry
ADC R1,R1,R3 ;Add upper words, using carrySUB Subtract

This instruction subtracts the <rhs> operand from the <lhs> operand, storing the result in
<dest>. The subtraction is a thirty-two bit signed operation.

Examples:

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

16 of 37

SUB R0,R0,#1 ;Decrement R0
SUB R0,R0,R0,ASR#2 ;Multiply R0 by 3/4 (R0=R0-R0/4)

SBC Subtract with carry

This has the same relationship to SUB as ADC has to ADD. The operation may be written:

<dest> = <lhs> - <rhs> - NOT <carry>

Notice that the carry is inverted because the C flag is cleared by a subtract that needed a
borrow and set by one that didn't. As long as multi-word subtracts are performed using
SUBS for the lowest word and SBCS for subsequent ones, the way in which the carry is set
shouldn't concern the programmer.

Example:

;Subtract the 64-bit number in R2,R3 from that in R0,R1
SUBS R0,R0,R2 ;Sub the lower words, getting borrow
SBC R1,R1,R3 ;Sub upper words, using borrow

RSB Reverse subtract

This instruction performs a subtract without carry, but reverses the order in which its
operands are subtracted. The instruction:

RSB <dest>,<lhs>,<rhs>

performs the operation:

<dest> = <rhs> - <lhs>

The instruction is provided so that the full power of the <rhs> operand (register,
immediate, shifted register) may be used on either side of a subtraction. For example, in
order to obtain the result 1-R1 in the register R0, you would have to use:

MVN R0,R1 ;get NOT (R1) = -R1-1
ADD R0,R0,#2 ;get -R1-1+2 = 1-R1

However, using RSB this could be written:

RSB R0, R1, #1 ;R0 = 1 - R0

In more complex examples, extra registers might be needed to hold temporary results if
subtraction could only operate in one direction.

Example:

;Multiply R0 by 7

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

17 of 37

RSB R0, R0, R0, ASL #3 ;Get 8*R0-R0 = 7*R0

RSC Reverse subtract with carry

This is the 'with carry' version of RSB. Its operation is:

<dest> = <rhs> - <lhs> - NOT <carry>

It is used to perform multiple-word reversed subtracts.

Example

;Obtain &100000000-R0,R1 in R0,R1
RSBS R0,R0,#0 ;Sub the lower words, getting borrow
RSC R1, R1,#1 ;Sub the upper words

CMP Compare

The CMP instruction is used to compare two numbers. It does this by subtracting one from
the other, and setting the status flags according to the result. Like TEQ and TST, CMP doesn't
actually store the result anywhere. Its format is:

CMP <lhs>, <rhs>

Also like TST and TEQ it doesn't require the S option to be set, as CMP without setting the
flags wouldn't do anything at all.

After a CMP, the various conditions can be used to execute instructions according to the
relationship between the integers. Note that the two operands being compared may be
regarded as either signed (two's complement) or unsigned quantities, depending on which
of the conditions is used.

See the section 'Using R15 in group one instructions' below.

Examples:

CMP R0,#&100 ;Check R0 takes a single byte
CMP R0,R1 ;Get greater of R1, R0 in R0
MOVLT R0,R1

CMN Compare negative

The CMN instruction compares two numbers, but negates the right hand side before
performing the comparison. The 'subtraction' performed is therefore <lhs>--<rhs>, or
simply <lhs>+<rhs>. The main use of CMN is in comparing a register with a small negative
immediate number, which would not otherwise be possible without loading the number
into a register (using MVN). For example, a comparison with -1 would require

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

18 of 37

MVN R1,#0 ;Get -1 in R1
CMP R0,R1 ;Do the comparison

which uses two instructions and an auxiliary register, compared to this:

CMN R0,#1 ;Compare R0 with -1

Note that whereas MVN is 'move NOT ', CMN is 'compare negative', so there is a slight
difference in the way <rhs> is altered before being used in the operation.

See the section 'Using R15 in group one instructions' below.

Example

CMN R0,#256 ;Make sure R0 >= -256
MVNLT R0,#255

Using R15 in group one instructions

As we know, R15 is a general-purpose register, and as such may be cited in any situation
where a register is required as an operand. However, it is also used for storing both the
program counter and the status register. Because of this, there are some special rules
which have to be obeyed when you use R15. These are described in this section.

The first rule concerns how much of R15 is 'visible' when it is used as one of the source
operands, i.e. in an <rhs> or <lhs> position. Simply stated, it is:

? if <lhs> is R15 then only bits 2..25 (the PC) are visible
? if <rhs> is R15 then all bits 0..31 are visible

So, in the instruction:

ADD R0,R15,#128

the result of adding 128 to the PC is stored in R0. The eight status bits of R15 are seen as
zeros by the ALU, and so they don't figure in the addition. Remember also that the value
of the PC that is presented to the ALU during the addition is eight greater than the address
of the ADD itself, because of pipelining (this is described in more detail below).

In the instruction

MOV R0,R15,ROR #26

all 32 bits of R15 are used, as this time the register is being used in an <rhs> position. The
effect of this instruction is to obtain the eight status bits in the least significant byte of R0.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

19 of 37

The second rule concerns using R15 as the destination operand. In the instruction
descriptions above we stated that (if S is present) the status bits N, Z, C and C are
determined by the outcome of the instruction. For example, a result of zero would cause
the Z bit to be set.

In the cases when R15 itself is the destination register, this behaviour changes. If S is not
given in the instruction, only the PC bits of R15 are affected, as usual. So the instruction

ADD R15,R15,R0

adds some displacement which is stored in R0 to the program counter, leaving the status
unaffected.

If S is present in the instruction, and the instruction isn't one of TST, TEQ, CMP, or CMN (which
are explained below), the status bits which are allowed to be altered in the current
processor mode are overwritten directly by the result. (As opposed to the status of the
result.) An example should make this clear. To explicitly set the carry flag (bit 29 of R15)
we might use:

ORRS R15,R15,#&20000000

Now, as the second R15 is in a <lhs> position, the status bits are presented as zeros to the
ALU (because of the first rule described above). Thus the value written into the status
register is (in binary) 001000...00. In fact, in user modes, only the top four bits may be
affected (i.e. the interrupt masks and processor mode bits can't be altered in user mode).

The example above has the (usually) unfortunate side effect of skipping the two
instructions which follow the ORR. This is, as usual, due to pipelining. The R15 value which
is transferred into the ALU holds the address of the third instruction after the current one,
thus the intervening two are never executed. (They are pre-fetched into pipeline, but
whenever the PC is altered, the ARM has to disregard the current pre-fetched
instructions.)

To overcome this there is a special way of writing to the status bits, and only the status
bits, of R15. It involves using the four instructions which don't usually have a destination
register: TST, TEQ,, CMP, and CMN. As we know, these usually affect the flags from the result
of the operation because they have an implicit S option built-in. Also, usually the
assembler makes the <dest> part of the instruction code R0 (it still has this field in the
instruction, even if it isn't given in the assembly language).

Now, if the <dest> field of one of these instructions is made R15 instead, a useful thing
happens. The status bits are updated from the result of the operation (the AND, EOR, SUB
orADD as appropriate), but the PC part remains unaltered.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

20 of 37

The problem is how to make the assembler use R15 in the <dest> field instead of R0. This
is done by adding a P to the instruction. To give a concrete example, we will show how the
carry flag can be set without skipping over the next two instructions:

TEQP R15,#&20000000

This works as follows. The R15 is a <lhs> so the status bits appear as zeros to the ALU.
Thus EORing the mask for the carry flag with this results in that bit being set when the
result is transferred to R15. The rest of the status register (or at least the bits which are
alterable) will be cleared.

Setting and clearing only selected status bits while leaving the rest alone takes a bit more
effort. First the current value of the bits must be obtained. Then the appropriate masking is
performed and the result stored in R15. For example, to clear the overflow flag (bit 28)
while preserving the rest, something like this is needed:

MOV tmp,R15 ;Get the status
BIC tmp,tmp,#1<<28;Clear bit 28
TEQP R15,tmp ;Store the new status

Finally, we have to say something about performing arithmetic on R15 in order to alter the
execution path of the program. As we will see later in this chapter, there is a special B (for
Branch) instruction, which causes the PC to take on a new value, This causes a jump to
another part of the program, similar to the BASIC GOTO statement. However, by changing
the value of R15 using group one instructions such as ADD, we can achieve more versatile
control, for example emulating the BASIC ON..GOTO statement.

The important thing to bear in mind when dealing with the PC has already been
mentioned once or twice: the effect of pipelining. The value obtained when R15 is used as
an operand is 8 bytes, or 2 words, greater than the address of the current instruction. Thus
if the instruction

MOV R0,R15

was located at address &8000, then the value loaded into R15 would be &8008. Chapters
Five and Six contain several examples of the use of R15 where pipelining is taken into
account.

Group One A

There is a small class of instructions which is similar in form to the group one instructions,
but doesn't belong in that group. These are the multiply instructions, whose form bears a
similarity to the simplest form of group one instructions.

Two distinct operations make up this group, multiply and multiply with accumulate. The

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

21 of 37

formats are:

MUL{cond}{S} <dest,<lhs>,<rhs>
MLA{cond}{S} <dest>,<lhs>,<rhs>,<add>

All operands are simple registers; there are no immediate operands or shifted registers.
MUL multiplies <lhs> by <rhs> and stores the result in <dest>. MLA does the same, but
adds register <add> before storing the result.

You must obey certain restrictions on the operands when using these instructions. The
registers used for <rhs> and <dest> must be different. Additionally, you should not use
R15 as a destination, as this would produce a meaningless result. In fact, R15 is protected
from modification by the multiply instructions. There are no other restrictions.

If the S option is specified, the flags are affected as follows. The N and Z flags are set to
reflect the status of the result register, the same as the rest of the group one instructions.
The overflow flag is unaltered, and the carry flag is undefined.

You can regard the operands of the multiply instructions as unsigned or as two's
complement signed numbers. In both cases, the correct results will be obtained.

Example:

MUL R0,R1,R2

Summary of group one

The group one instructions have the following form:

<op1>{cond}{S}{P} <dest>,<lhs>,<rhs>
<op2>{cond}{S}{P} <dest>,<rhs>
<op3>{cond}{S}{P} <lhs>,<rhs>

where <op1> is one of ADD, ADC, AND, BIC, EOR, ORR, RSB, RSC, SBC, SUB, <op2> is one of MOV, MVN,
and <op3> is one of TEQ, TST,CMN, CMP.

The following <op3>s have no <dest> field: CMN, CMP, TEQ, TST. They allow the use of the {P}
option to set the <dest> field in the machine code to R15 instead of the default R0.

The following <op2>s have no <lhs> field: MOV, MVN.

? <dest> and <lhs> are registers.
? <rhs> is #<expression> where <expression> is a 12-bit shifted immediate operand, or
? <register>, or
? <register>, <shift type> <count> where <shift type> is LSL, ASL, ASR, LSR, ROR

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

22 of 37

and where <count> is #<expression> or <register> where <expression> is five-bit
unsigned value, or

? <register>, RRX

3.3 Group two - load and store

We turn now to the first set of instructions concerned with getting data in and out of the
processor. There are only two basic instructions in this category. LDR loads a register from
a specified location and STR saves a register.

As with group one, there are several options which make the instructions very versatile.
As the main difference between LDR and STR is the direction in which the data is
transferred (i.e. to or from the processor), we will explain only one of the instructions in
detail - STR. Notes about LDR follow this description.

STR Store a word or byte

Addressing modes

When storing data into memory, you have to be able to specify the desired location. There
are two main ways of giving the address, called addressing modes. These are known as
pre-indexed and post-indexed addressing.

Pre-indexed addressing

Pre-indexed addressing is specified as below:

STR{cond} <srce>,[<base>{,<offset>}]

<srce> is the register from which the data is to be transferred to memory. <base> is a
register containing the base address of memory location required. <offset> is an optional
number which is added to the address before the data is stored. So the address actually
used to store the <srce> data is <base>+<offset>

Offset formats

The <offset> is specified in one of two ways. It may be an immediate number in the range
0 to 4095, or a (possibly) shifted register. For example:

STR R0,[R1,#20]

will store R0 at byte address R1+20. The offset may be specified as negative, in which case
it is subtracted from the base address. An example is:

STR R0,[R1,#-200]

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

23 of 37

which stores R0 at R1-200.

(Note for alert readers. The immediate offset is stored as a 12-bit magnitude plus one bit
'direction', not as a 13-bit two's complement number. Therefore the offset range really is -
4095 to +4095, not -4096 to +4095, as you might expect.)

If the offset is specified as a register, it has the same syntax as the <rhs> of group one
instructions. That is, it could be a simple register contents, or the contents of a register
shifted or rotated by an immediate number.

Note: the offset register can only have an immediate shift applied to it. In this respect, the
offset differs from the <rhs> of group one instructions. The latter can also have a shift
which is stored in a register.

This example stores R0 in the address given by R1+R2*4:

STR R0,[R1,R2,LSL#2]

Again, the offset may be negative as this example illustrates:

STR R0,[R1,-R2,LSL#3]

Write-back

Quite frequently, once the address has been calculated, it is convenient to update the base
register from it. This enables it to be used in the next instruction. This is useful when
stepping through memory at a fixed offset. By adding a ! to the end of the instruction, you
can force the base register to be updated from the <base>+<offset> calculation. An
example is:

STR R0,[R1,#-16]!

This will store R0 at address R1-16, and then perform an automatic:

SUB R1,R1,#16

which, because of the way in which the ARM works, does not require any extra time.

Byte and word operations

All of the examples of STR we have seen so far have assumed that the final address is on a
word boundary, i.e. is a multiple of 4. This is a constraint that you must obey when using
the STR instruction. However, it is possible to store single bytes which may be located at
any address. The byte form of STR is obtained by adding B at the end. For example:

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

24 of 37

STRB R0,[R1,#1]!

will store the least significant byte of R0 at address R1+1 and store this address in R1 (as !
is used).

Post-indexed addressing

The second addressing mode that STR and LDR use is called post-indexed addressing. In
this mode, the <offset> isn't added to the <base> until after the instruction has executed.
The general format of a post-indexed STR is:

STR{cond} <srce>,[<base>],<offset>

The <base> and <offset> operands have the same format as pre-indexed addressing. Note
though that the <offset> is always present, and write-back always occurs (so no ! is
needed). Thus the instruction:

STRB R0,[R1],R2

will save the least significant byte of R0 at address R1. Then R1 is set to R1+R2. The
<offset> is used only to update the <base> register at the end of the instruction. An
example with an immediate <offset> is:

STR R2,[R4],#-16

which stores R2 at the address held in R4, then decrements R4 by 4 words.

LDR Load a word or byte

The LDR instruction is similar in most respects to STR. The main difference is, of course, that
the register operand is loaded from the given address, instead of saved to it.

The addressing modes are identical, and the B option to load a single byte (padded with
zeros) into the least significant byte of the register is provided.

When an attempt is made to LDR a word from a non-word boundary, special corrective
action is taken. If the load address is addr, then the word at addr AND &3FFFFFFC is loaded.
That is, the two least significant bits of the address are set to zero, and the contents of that
word address are accessed. Then, the register is rotated right by (addr MOD 4)*8 bits. To
see why this is done, consider the following example. Suppose the contents of address
&1000 is &76543210. The table below shows the contents of R0 after a word load from
various addresses:

Address R0

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

25 of 37

After the rotation, at least the least significant byte of R0 contains the correct value. When
addr is &1000, it is a word-boundary load and the complete word is as expected. When
addr is &1001, the first three bytes are as expected, but the last byte is the contents of
&1000, rather than the desired &1004. This (at first sight) odd behaviour facilitates writing
code to perform word loads on arbitrary byte boundaries. It also makes the
implementation of extra hardware to perform correct non-word-aligned loads easier.

Note that LDR and STR will never affect the status bits, even if <dest> or <base> is R15. Also,
if R15 is used as the base register, pipelining means that the value used will be eight bytes
higher than the address of the instruction. This is taken into account automatically when
PC-relative addressing is used.

PC relative addressing

The assembler will accept a special form of pre-indexed address in the LDR instruction,
which is simply:

LDR <dest>,<expression>

where <expression> yields an address. In this case, the instruction generated will use R15
(i.e. the program counter) as the base register, and calculate the immediate offset
automatically. If the address given is not in the correct range (-4095 to +4095) from the
instruction, an error is given.

An example of this form of instruction is:

LDR R0,default

(We assume that default is a label in the program. Labels are described more fully in the
next chapter, but for now suffice is to say that they are set to the address of the point in the
program where they are defined.)

As the assembler knows the value of the PC when the program is executed, it can calculate
the immediate offset required to access the location default. This must be within the range
-4095 to +4095 of course. This form of addressing is used frequently to access constants
embedded in the program.

Summary of LDR and STR

&1000 &76543210

&1001 &10765432

&1002 &32107654

&1003 &54321076

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

26 of 37

Below is a summary of the syntax for the register load and save instructions.

<op>{cond}{B} <dest>,[<base>{,#<imm>}]{!}
<op>{cond}{B} <dest>,[<base>,{+|-}<off>{,<shift>}]{!}
<op>{cond}{B} <dest>,<expression>
<op>{cond}{B} <dest>,[<base>],#<imm>
<op>{cond}{B} <dest>,[<base>],{+|-}<off>{,<shift>}

Although we haven't used any explicit examples, it is implicit given the regularity of the
ARM instruction set that any LDR or STR instruction may be made conditional by adding
the two letter code. Any B option follows this.

<op> means LDR or STR. <imm> means an immediate value between -4095 and +4095. {+|-}
means an optional + or - sign may be present. <off> is the offset register number. <base> is
a base register, and <shift> refers to the standard immediate (but not register shift)
described in the section above on group one instructions.

Note that the case of:

STR R0,label

is covered. Although the assembler will accept this and generate the appropriate PC-
relative instruction, its use implies that the program is writing over or near its code.
Generally this is not advisable because (a) it may lead inadvertently to over-writing the
program with dire consequences, and (b) if the program is to be placed in ROM, it will
cease to function, as ROMs are generally read-only devices, on the whole.

3.4 Group three - multiple load and store

The previous instruction group was eminently suitable for transferring single data items in
and out of the ARM processor. However, circumstances often arise where several registers
need to be saved (or loaded) at once. For example, a program might need to save the
contents of R1 to R12 while these registers are used for some calculation, then load them
back when the result has been obtained. The sequence:

STR R1,[R0],#4
STR R2,[R0],#4
STR R3,[R0],#4
STR R4,[R0],#4
STR R5,[R0],#4
STR R6,[R0],#4
STR R7,[R0],#4
STR R8,[R0],#4
STR R9,[R0],#4
STR R10,[R0],#4
STR R11,[R0],#4
STR R12,[R0],#4

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

27 of 37

to save them is inefficient in terms of both space and time. The LDM (load multiple) and STM
(store multiple) instructions are designed to perform tasks such as the one above in an
efficient manner.

As with LDR and STR we will describe one variant in detail, followed by notes on the
differences in the other. First though, a word about stacks.

About stacks

LDM and STM are frequently used to store registers on, and retrieve them from, a stack. A
stack is an area of memory which 'grows' in one direction as items are added to it, and
'shrinks' as they are taken off. Items are always removed from the stack in the reverse
order to which they are added.

The term 'stack' comes from an analogy with stacks of plates that you see in self-service
restaurants. Plates are added to the top, then removed in the opposite order. Another
name for a stack is a last-in, first-out structure or 'LIFO'.

Computing stacks have a value associated with them called the stack pointer, or SP. The
SP holds the address of the next item to be added to (pushed onto) or removed (pulled)
from the stack. In an ARM program, the SP will almost invariably be stored in one of the
general-purpose registers. Usually, a high-numbered register, e.g. R12 or R13 is used. The
Acorn ARM Calling Standard, for example, specifies R12, whereas BASIC uses R13.

Here is a pictorial representation of two items being pushed onto a stack.

Before the items are pushed, SP points to (holds the address of) the previous item that was
pushed. After two new words have been pushed, the stack pointer points to the second of
these, and the first word pushed lies 'underneath' it.

Stacks on the ARM have two attributes which must be decided on before any STM/LDM
instructions are used. The attributes must be used consistently in any further operation on
the stack.

The first attribute is whether the stack is 'full' or 'empty'. A full stack is one in which the SP
points to the last item pushed (like the example above). An empty stack is where the stack

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

28 of 37

pointer holds the address of the empty slot where the next item will be pushed.

Secondly, a stack is said to be ascending or descending. An ascending stack is one where
the SP is incremented when items are pushed and decremented when items are pulled. A
descending stack grows and shrinks in the opposite direction. Given the direction of
growth in the example above,the stack can be seen to be descending.

The above-mentioned Acorn Calling Standard (which defines the way in which separate
programs may communicate) specifies a full, descending stack, and BASIC also uses one.

STM Store multiple registers

In the context of what has just been said, STM is the 'push items onto stack' instruction.
Although it has other uses, most STMs are stack oriented.

The general form of the STM instruction is:

STM<type> <base>{!}, <registers>

We have omitted the {cond} for clarity, but as usual a condition code may be included
immediately after the mnemonic. The <type> consists of two letters which determine the
Full/Empty, Ascending/Descending mode of the stack. The first letter is F or E; the second is
A or D.

The <base> register is the stack pointer. As with LDR/STR, the ! option will cause write-back
if present. <registers> is a list of the registers which we want to push. It is specified as a
list of register numbers separated by commas, enclosed in braces (curly brackets). You can
also specify a list of registers using a - sign, e.g. R0-R4 is shorthand for R0,R1,R2,R3,R4.

Our first example of an STM instruction is:

STMED R13!,{R1,R2,R5}

This will save the three registers R1, R2 and R5 using R13 as the SP. As write-back is
specified, R13 will be updated by subtracting 3*4 (12) from its original value (subtracting
as we are using a descending stack). Because we have specified the E option, the stack is
empty, i.e. after the STM, R13 will hold the address of the next word to be pushed. The
address of the last word pushed is R13+4.

When using STM and LDM for stack operations, you will almost invariably use the ! option,
as the stack pointer has to be updated. Exceptions are when you want to obtain a copy of
an item without pulling it, and when you need to store a result in a 'slot' which has been
created for it on the stack. Both these techniques are used in the 'find substring' example of
Chapter Six.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

29 of 37

More on FD etc.

The ascending/descending mode of a stack is analogous to positive and negative offsets of
the previous section. During an STM, if the stack is descending, a negative offset of 4 is
used. If the stack is ascending, a positive offset of 4 is used (for each register).

Similarly, the difference between what the ARM does for full and empty stacks during an
STM is analogous to the pre- and post-indexed addressing modes of the previous section.
Consider a descending stack. An empty stack's pointer is post-decremented when an item
is pushed. That is, the register to be pushed is stored at the current location, then the stack
pointer is decremented (by a fixed offset of 4), ready for the next one. A full stack is pre-
decremented on a push: first SP is decremented by 4, then the register is stored there. This
is repeated for each register in the list.

Direction of storage

Below is an STM which stores all of the registers at the location pointed to by R13, but
without affecting R13 (no write-back).

STMFD R13,{R0-R15}

Although the stack is an FD one, because there is no write -back, R13 is not actually
decremented. Thus after the operation, R13 points to some previous item, and below that
in memory are the sixteen pushed words.

Now, as R0 appears first in the list, you might expect that to be the first register to be
pushed, and to be stored at address R13-4. Well, you would be wrong. Firstly, the order in
which the register list appears has no bearing at all on the order in which things are done.
All the assembler is looking for is a mention of a register's name: it can appear anywhere
within the braces. Secondly, the registers are always stored in the same order in memory,
whether the stack is ascending or descending, full or empty.

When you push one or more registers, the ARM stores the lowest-numbered one at the
lowest address, the next highest -numbered one at the next address and so on. This always
occurs. For ascending stacks, the location pointer is updated, the first register stored (or
vice versa for empty stacks) and so on for each register. Finally, if write-back is enabled,
the stack pointer is updated by the location pointer.

For descending stacks, the final value of the stack pointer is calculated first. Then the
registers are stored in increasing memory locations, and finally the stack pointer is
updated if necessary.

We go into this detail because if you need to access pushed registers directly from the
stack, it is important to know where they are!

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

30 of 37

Saving the stack pointer and PC

In the previous example, the stack pointer (R13) was one of the registers pushed. As there
was no write-back, the value of R13 remained constant throughout the operation, so there
is no question of what value was actually stored. However, in cases where write-back is
enabled, the SP changes value at some time during the instruction, so the 'before' or 'after'
version might be saved.

The rule which determines which version of the base register is saved is quite simple. If
the stack pointer is the lowest-numbered one in the list, then the value stored is the
original, unaltered one. Otherwise, the written-back value of the base register is that stored
on the stack. Since we have standardised on R13 for the stack pointer, it is almost always
the new value which is stored.

When R15 is included in the register list, all 32-bits are stored, i.e. both the PC and status
register parts.

LDM Load multiple registers

LDM perform the stack 'pull' (or pop as it is also known) operation. It is very similar in form
to the STM instruction:

LDM<type> <base>{!},<registers>{^}

As before, the <type> gives the direction and type of the stack. When pulling registers, you
must use the same type of stack as when they were pushed, otherwise the wrong values
will be loaded. <base>, ! and <registers> are all as STM.

The only extra 'twiddle' provided by LDM is the ^ which may appear at the end. If present,
this indicates that if R15 is in the register list, then all 32-bits are to be updated from the
value pulled from the stack. If there is no ^ in the instruction, then if R15 is pulled, only the
PC portion (bits 2-25) are affected. The status bits of R15 will remain unaltered by the
operation.

This enables you to decide whether subroutines (which are explained in detail in the next
section) preserve the status flags or use them to return results. If you want the routine to
preserve the flags, then use ^ to restore them from the stack. Otherwise omit it, and the
flags will retain their previous contents.

Loading the stack pointer and PC

If the register being used as the stack pointer is in the LDM register list, the register's value
after the instruction is always that which was loaded, irrespective of where it appeared in
the list, and whether write-back was specified.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

31 of 37

If R15 appears in the list, then the ^ option is used to determine whether the PC alone or
PC plus status register is loaded. This is described above.

An alternative notation

Not all of the uses for LDM and STM involve stacks. In these situations, the full/empty,
ascending/descending view of the operations may not be the most suitable. The assembler
recognises an alternative set of option letters, which in fact mirrors more closely what the
ARM instructions really do.

The alternative letter pairs are I/D for increment/decrement, and B/A for before/after. Thus
the instruction:

STMIA R0!,{R1,R2}

stores R1 and R2 at the address in R0. For each store, a post-increment (Increment After) is
performed, and the new value (R0+8) is written back. Similarly:

LDMDA R0!,{R1,R3,R4}

loads the three registers specified, decrementing the address after each one. The write-
back option means that R0 will be decremented by 12. Remember that registers are always
stored lowest at lowest address, so in terms of the original R0, the registers in the list will
be loaded from addresses R0-8, R0-4 and R0-0 respectively.

The table below shows the equivalents for two types of notation:

The increment/decrement type notation shows how push and pull operations for a given
type of stack are exact opposites.

Summary of LDM/STM

LDM{cond}<type1> <base>{!},<registers>{^}

Full/Empty
Decrement/Increment

equivalent

STMFD STMDB

LDMFD LDMIA

STMFA STMIB

LDMFA LDMDA

STMED STMDA

LDMED LDMIB

STMEA STMIA

LDMEA LDMDB

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

32 of 37

LDM{cond}<type2> <base>{!},<registers>{^}
STM{cond}<type1> <base>{!},<registers>{^}
STM{cond}<type2> <base>{!},<registers>{^}

where:

cond is defined at the start of this chapter.

<type1> is F|E A|D
<type2> isI|D B|A
<base> is a register

<registers> is open-brace comma-separated-list close-brace

Notice that ^ may be used in STM as well as LDM. Its use in STM is only relevant to non-user
modes, and as such is described in Chapter Seven.

3.5 Group four - branch

In theory, the group one data instructions could be used to make any change to the PC
required by a program. For example, an ADD to R15 could be used to move the PC on by
some amount, causing a jump forward in the program. However, there are limits to what
you can achieve conveniently using these general-purpose instructions. The branch group
provides the ability to locate any point in the program with a single operation.

The simple branch

Group four consists of just two variants of the branch instruction. There are (refreshingly
perhaps) no alternative operand formats or optional extras. The basic instruction is a
simple branch, whose mnemonic is just B. The format of the instruction is:

B{cond} <expression>

The optional condition, when present, makes the mnemonic a more normal-looking three-
letter one, e.g. BNE, BCC. If you prefer three letters, you could always express the
unconditional branch as BAL, though the assembler would be happy with just B.

<expression> is the address within the program to which you wish to transfer control.
Usually, it is just a label which is defined elsewhere in the program. For example, a simple
counting loop would be implemented thus:

MOV R0,#0 ;Init the count to zero
.LOOP MOVS R1,R1,LSR#1 ;Get next 1 bit in Carry
ADC R0,#0 ;Add it to count
BNE LOOP ;Loop if more to do

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

33 of 37

The 'program' counts the number of 1 bits in R1 by shifting them a bit at a time into the
carry flag and adding the carry to R0. If the MOV left a non-zero result in R1, the branch
causes the operation to repeat (note that the ADC doesn't affect the status as it has no S
option).

Offsets and pipelining

When the assembler converts a branch instruction into the appropriate binary code, it
calculates the offset from the current instruction to the destination address. The offset is
encoded in the instruction word as a 24-bit word address, like the PC in R15. This is
treated as a signed number, and when a branch is executed the offset is added to the
current PC to reach the destination.

Calculation of the offset is a little more involved than you might at first suspect - once
again due to pipelining. Suppose the location of a branch instruction is &1230, and the
destination label is at address &1288. At first sight it appears the byte offset is &1288-
&1230 = &58 bytes or &16 words. This is indeed the difference between the addresses.
However, by the time the ARM gets round to executing an instruction, the PC has already
moved two instructions further on.

Given the presence of pipelining, you can see that by the time the ARM starts to execute
the branch at &1230, the PC contains &1238, i.e. the address of two instructions along. It is
this address from which the offset to the destination must be calculated. To complete the
example, the assembler adds &8 to &1230 to obtain &1238. It then subtracts this from the
destination address of &1288 to obtain an offset of &50 bytes or &14 words, which is the
number actually encoded in the instruction. Luckily you don't have to think about this
when using the B instruction.

Branch with link

The single variant on the branch theme is the option to perform a link operation before the
branch is executed. This simply means storing the current value of R15 in R14 before the
branch is taken, so that the program has some way of returning there. Branch with link, BL,
is used to implement subroutines, and replaces the more usual BSR (branch to subroutine)
and JSR (jump to subroutine) instructions found on some computers.

Most processors implement BSR by saving the return address on the stack. Since ARM has
no dedicated stack, it can't do this. Instead it copies R15 into R14. Then, if the called
routine needs to use R14 for something, it can save it on the stack explicitly. The ARM
method has the advantage that subroutines which don't need to save R14 can be called
return very quickly. The disadvantage is that all other routines have the overhead of
explicitly saving R14.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

34 of 37

The address that ARM saves in R14 is that of the instruction immediately following the BL.
(Given pipelining, it should be the one after that, but the processor automatically adjusts
the value saved.) So, to return from a subroutine, the program simply has to move R14
back into R15:

MOVS R15,R14

The version shown will restore the original flags too, automatically making the subroutine
preserve them. If some result was to be passed back in the status register, a MOV without S
could be used. This would only transfer the PC portion of R14 back to R15, enabling the
subroutine to pass status information back in the flags.

BL has the expected format:

BL{cond} <expression>

3.6 Group five - software interrupt

The final group is the most simple, and the most complex. It is very simple because it
contains just one instruction, SWI, whose assembler format has absolutely no variants or
options.

The general form of SWI is:

SWI{cond} <expression>

It is complex because depending on <expression>, SWI will perform tasks as disparate as
displaying characters on the screen, setting the auto-repeat speed of the keyboard and
loading a file from the disc.

SWI is the user's access to the operating system of the computer. When a SWI is executed,
the CPU enters supervisor mode, saves the return address in R14_SVC, and jumps to
location 8. From here, the operating system takes over. The way in which the SWI is used
depends on <expression>. This is encoded as a 24-bit field in the instruction. The
operating system can examine the instruction using, for example:.

STMFD R13!,{R0-R12} ;Save user's registers
BIC R14,R14,#&FC000003 ;Mask status bits
LDR R13,[R14,#-4] ;Load SWI instruction

to find out what <expression> is.

Since the interpretation of <expression> depends entirely on the system in which the
program is executing, we cannot say much more about SWI here. However, as practical
programs need to use operating system functions, the examples in later chapters will use a

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

35 of 37

'standard' set that you could reasonably expect. Two of the most important ones are called
WriteC and ReadC. The former sends the character in the bottom byte of R0 to the screen,
and the latter reads a character from the keyboard and returns it in the bottom byte of R0.

Note: The code in the example above will be executed in SVC mode, so the accesses to R13
and R14 are actually to R13_SVC and R14_SVC. Thus the user's versions of these registers
do not have to be saved.

3.7 Instruction timings

It is informative to know how quickly you can expect instructions to execute. This section
gives the timing of all of the ARM instructions. The times are expressed in terms of 'cycles'.
A cycle is one tick of the crystal oscillator clock which drives the ARM. In fact there are
three types of cycles, called sequential, non-sequential and internal.

Sequential (s) cycles are those used to access memory locations in sequential order. For
example, when the ARM is executing a series of group one instructions with no
interruption from branches and load/store operations, sequential cycles will be used.

Non-sequential (n) cycles are those used to access external memory when non-consecutive
locations are required. For example, the first instruction to be loaded after a branch
instruction will use an n-cycle.

Internal (i) cycles are those used when the ARM is not accessing memory at all, but
performing some internal operation.

On a typical ARM, the clock speed is 8MHz (eight million cycles a second). S cycles last
125 nanoseconds for RAM and 250ns for ROM. All n-cycles are 250ns. All i-cycles are
125ns in duration.

Instructions which are skipped due to the condition failing always execute in 1s cycle.

Group one

MOV, ADD etc. 1 s-cycle. If <rhs> contains a shift count in a register (i.e. not an immediate
shift), add 1 s-cycle. If <dest> is R15, add 1 s + 1 n-cycle.

Group one A

MUL, MLA. 1 s + 16 i- cycles worst-case.

Group two

LDR. 1 s + 1 n + 1 i-cycle. If <dest> is R15, add 1 s + 1n-cycle.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

36 of 37

STR. 2 n-cycles.

Group three

LDM. (regs-1) s + 1 n + 1 i-cycle. Regs is the number of registers loaded. Add 1 s + 1 n-cycles
if R15 is loaded.

STM. 2 n + (regs-1) s-cycles.

Group four

B, BL. 2 s + 1 n-cycles.

Group five

SWI. 2 s + 1 n-cycles.

From these timings you can see that when the ARM executes several group one
instructions in sequence, it does so at a rate of eight million a second. The overhead of
calling and returning from a subroutine is 3 s+1 n-cycles, or 0.525 microseconds if the
return address is stored, or 2 s+5 n-cycles, or 1.5µs if the return address is stacked.

A multiply by zero or one takes 125ns. A worst-case multiply takes 2.125µs. Saving eight
registers on the stack takes 7 s + 2 n-cycles, or 1.375µs. Loading them back, if one of them is
the PC, takes 1.75 µ6s.

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

37 of 37

4. The BBC BASIC Assembler

There are two main ways of writing ARM assembly language programs. One is to use a
dedicated assembler. Such a program takes a text file containing ARM assembly language
instructions, assembles it, and produces another file containing the equivalent machine
code. These two files are called the source files and object files respectively.

An alternative approach is to use the assembler built-in to BBC BASIC. The ability to mix
assembler with BASIC is a very useful feature of the language, and one that is relatively
straightforward to use. For this reason, and because of the widespread availability of BBC
BASIC, we describe how to use its built-in assembler. The examples of the next two
chapters are also in the format expected by the BASIC assembler.

4.1 First principles

Two special 'statements' are used to enter and exit from the assembler. The open square
bracket character, [, marks the start of assembly language source. Whenever this character
is encountered where BASIC expects to see a statement like PRINT or an assignment,
BASIC stops executing the program and starts to assemble ARM instructions into machine
code. The end of the source is marked by the close square bracket,]. If this is read where
BASIC is expecting to see an instruction to be assembled, it leaves assembler mode and
starts executing the (BASIC) program again.

To see the effect of entering and leaving the assembler, type in this short program:

10 PRINT "Outside the assembler"
20 [;In the assembler
30]
40 PRINT "Outside the assembler"

If you RUN this, you should see something like the following:

Outside the assembler
00000000 ;In the assembler
Outside the assembler

Between the two lines produced by the PRINT statements is one which the assembler
printed. Unless you tell it not to, the assembler prints an assembly listing. We shall
describe this in detail, but for now suffice is to say that it consists of three parts: an address
(the eight zeros above, which may be different when you run the program), the machine
code instruction in hex, and the source instruction being assembled.

In our example above, no instructions were assembled, so no machine code was listed. The
only line of source was a comment. The semi-colon, ;, introduces a line of comment to the
assembler. This acts much as a REM in BASIC, and causes the text after it to be ignored. The

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

1 of 21

comment was indented somewhat in the assembly listing, as the assembler leaves space
for any machine code which might be produced.

The address printed at the start of the line is called the location counter. This tells us two
things: where the assembler is placing assembled machine code instructions in memory,
and what the value of the program counter (PC) will be when that instruction is fetched
for execution, when the program finally comes to be run. Because we are not assembling
any instructions, no code will be written to memory, so it doesn't matter what the location
counter's value is. Normally, though, when you assemble code, you should set the location
counter to some address where the assembler may store the machine code.

It is easy to set the location counter, as it is stored in the system integer variable P%. If you
enter the immediate statement:

PRINT ~P%

you will see the same figures printed as at the start of the middle line above (except for
leading zeros).

Let us now assemble some actual code. To do this, we need to reserve some storage for the
object code. This is easily done using the form of DIM which reserves a given number of
bytes. Type in the following:

10 DIM org 40
20 P% = org
30 [;A simple ARM program
40 MOV R0,#32
50.LOOP
60 SWI 0
70 ADD R0,R0,#1
80 CMP R0,#126
90 BNE LOOP
100 MOV R15,R14
110]

It may seem strange using the variable org in the DIM, then using it only once to set P%, but
we shall see the reason for this later. Note that the DIM statement returns an address which
is guaranteed to be aligned on a word boundary, so there is no need to 'force' it to be a
multiple of four.

As in the previous example, the first line of the assembler is a comment. The next seven
lines though are actual assembly language instructions. In fact, you may recognise the
program as being very similar to the example given at the end of Chapter One. It is a
simple loop, which prints the character set from ASCII 32 (space) to ASCII 126 (tilde or ~).

The lines which are indented by a space are ARM mnemonics, followed by their operands.

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

2 of 21

When the assembler encounters these, it will convert the instruction into the appropriate
four-byte machine code, and then store this at the current location counter - P%. Then P%
will be increased by four for the next instruction.

Line 50, which starts with a ., is a label. A label is a variable which marks the current place
in the program. When it encounters a label, the assembler stores the current value of the
location counter into the variable, so that this place in the program may be accessed in a
later instruction. In this case the BNE at line 90 uses the label LOOP to branch back to the SWI
instruction. Any numeric variable may be used as a label, but by convention floating point
variables (without % sign) are used. Every label in a program should have a unique name.
This isn't hard to achieve as BBC BASIC allows very long names.

If you RUN the program, another assembly listing will be produced, this time looking like:

000167C8 ;A simple ARM program
000167C8 E3A00020 MOV R0,#32
000167CC .LOOP
000167CC EF000000 SWI 0
000167D0 E2800001 ADD R0,R0,#1
000167D4 E350007E CMP R0,#126
000167D8 1AFFFFFB BNE LOOP
000167DC E1A0F00E MOV R15,R14

The first column is the location counter, and in the listing above, we can see that the first
machine instruction was placed at address &167C8. Next is the hex representation of that
instruction, i.e. the code which will actually be fetched and executed by the processor. You
can verify that this is what was stored by the assembler by typing in:

PRINT ~!&167C8

(The address should be whatever was printed when you ran the program.) You will see
E3A00020, as in the listing.

In the third column is the label for that instruction, or spaces if there isn't one, followed by
the rest of the line, as typed by you.

To see the fruits of you labours, type the command:

CALL org

The ASCII character set of the machine will be printed. The CALL statement takes the
address of a machine code routine, which it then executes. The machine code is called as if
a BL instruction had been used with the address given as the operand. Thus to return to
BASIC, the return address in R14 is transferred to R15 (the PC) as in the example above.

We will have more to say about using CALL (and the associated function USR) later in this

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

3 of 21

chapter.

4.2 Passes and assembly options

Frequently, a label is defined after the place (or places) in the program from which it is
used. For example, a forward branch might have this form:

100 CMP R0,#10
110 BNE notTen
120 ; some instructions
130 ; ...
140.notTen

In this example, the label notTen has not been encountered when the instruction at line 110
is assembled. It is not defined until line 140. If this or a similar sequence of instructions
were encountered while assembling a program using the method we have already
described, a message of the type 'Unknown or missing variable' would be produced.

We clearly need to be able to assemble programs with forward references, and the BBC
BASIC assembler adopts the same approach to the problem as many others: it makes two
scans, or passes, over the program. The first one is to enable all the labels to be defined,
and the second pass assembles the code proper.

In the BASIC assembler we tell it to suppress 'errors' during the first pass by using the OPT
directive. A directive (or pseudo-op as they are also called) is an instruction which doesn't
get converted into machine code, but instead instructs the assembler to perform some
action. It is used in the same place as a proper instruction.

The OPT directive is followed by a number, and is usually placed immediately after the [,
but can in fact be used anywhere in the source code. The number is interpreted as a three-
bit value. Bit zero controls the assembly listing; bit one controls whether 'Unknown or
missing variable' type errors are suppressed or not, and bit two controls something
called offset assembly, which we shall come to later. The eight possible values may be
summarised as below:

Value Offset assembly Errors given Listing

0 No No No

1 No No Yes

2 No Yes No

3 No Yes Yes

4 Yes No No

5 Yes No Yes

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

4 of 21

If you don't use OPT at all, the default state is 3 - offset assembly is not used; errors are not
suppressed, and a listing is given.

The most obvious way to obtain the two passes in BASIC is to enclose the whole of the
source code in a FOR...NEXT loop which performs two iterations. Often, the code is
enclosed in a procedure so that the FOR and NEXT of the loop can be close together. The
desired assembly option can then be passed as a parameter to the procedure.

Below is an example following the outline described above. The program contains a
forward reference to illustrate the use of two passes. The listing is produced in the second
pass (as it always should be if there are two passes), so the values given to OPT are 0 and 3
respectively.

1000 REM Example of two-pass assembly
1010 DIM org 100
1030 FOR pass=0 TO 3 STEP 3
1040 PROCasm(pass,org)
1050 NEXT pass
1060 END
1070
2000 DEF PROCasm(pass,org)
2010 P%=org
2020 [OPT pass
2030 .loop
2040 SWI 4 ;Read a char
2050 MOVS R0,R0,ASR#1
2055 MOVEQ R15, R14
2060 BCC even
2070 SWI 256+ASC"O" ;Print O
2080 B loop
2090 .even
2100 SWI 256+ASC"E" ;Print E
2110 B loop
2120]
2130 ENDPROC

The most important thing to notice is that the P% variable is set at the start of each pass. If
you only set it at the start of the first pass, by the end of the first pass it will contain the
address of the end of the code, and be incorrect for the start of the second pass.

The program is fairly trivial. It reads characters from the keyboard and prints E if the
character has an even ASCII code, or O if not. This repeats until an ASCII character 0 or 1
(CTRL @ or CTRL A) is typed. The branch to even at line 2060 is a forward one; during the
first pass the fact that even hasn't been defined yet is ignored, then during the second pass,
its value - set in line 2090 - is used to address the following SWI.

6 Yes Yes No

7 Yes Yes Yes

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

5 of 21

In fact, because of the ARM's conditional instructions, this program could have been
written without any forward branches, by making lines 2070 and 2080:

2070 SWICS 256+"O" ;Print O
2080 SWICC 256+"E" ;Print E

and deleting lines 2090 and 2100. It's always hard thinking of simple but useful ways of
illustrating specific points.

You should be aware of what actually happens when a forward reference is encountered
in the first pass. Instead of giving an error, the assembler uses the current value of the
location counter. In line 2060 above, for example, the value returned for the undefined
variable is the address of the BCC instruction itself. If only the first pass was performed and
you tried to call the code, an infinite loop would be caused by this branch to itself. It is
important, therefore, that you always set bit 1 of the OPT value during the second pass, to
enable errors to be reported, even if you don't bother about the listing.

4.3 Program style and readability

Any experienced assembler language programmer reading this chapter will probably be
thinking by now, 'What a load of rubbish.' The examples presented so far are not, it must
be admitted, models of clarity and elegance. This was deliberate; it gives us a chance to
point out how they are deficient and how these deficiencies may be remedied.

As we learned in Chapter One, assembly language is about as far from the ideal as a
normal human programmer is likely to venture. When writing an assembly language
program, you should therefore give your reader as much help as possible in
understanding what is going on. Bear in mind that the reader may well be you, so it's not
just a question of helping others.

Comments are the first line of attack. As we have seen, comments may appear as the first
(and only) thing on the line, or after the label, or after the label and instruction. A
comment may not come between the label and instruction, as the instruction will be
ignored, being taken as part of the comment. We have used ; to introduce comments, as
this is the same character that many other assemblers use. The BBC BASIC assembler also
allows you to use \ and REM. Whatever you use, you should be consistent.

A comment should be meaningful. The comments at the start of a routine should explain
what it does, what the entry and exit conditions are, and what the side -effects are. Entry
and exit conditions usually pertain to the contents of the ARM registers when the routine
is called and when it returns, but may also include the state of specific memory locations
at these points too.

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

6 of 21

The side-effects of a routine are similar to saying what it does, but are more concerned
with actions which might affect the operation of other routines. A common side -effect is
that of corrupting certain registers. Another example might be a routine which prints a
character on the screen as its main action, but corrupts a pointer in RAM as a side-effect.
By documenting these things in comments, you make it much easier to track down bugs,
and to interface your routines to each other.

From the remarks above, it can be seen that the routines presented above are poorly
served with comments, and this makes it more difficult to understand them, even though
they are quite short.

Another important way of increasing readability is to use names instead of numbers.
Examples where this clouded the issue in earlier programs are:

80 CMP R0,#126

2040 SWI 4 ;Read a char

Admittedly the second example has a comment which gives the reader some idea, but the
first one is totally meaningless to many people. In the BBC BASIC assembler, wherever a
number is required in an operand, the full power of the BASIC expression evaluator is
available. The most obvious way to utilise this is to use variables as names for 'magic'
numbers. For example, in the character program, we could have included an assignment

17 maxChar = ASC"~"

and made line 80:

80 CMP R0, #maxChar

In the first place we are told in line 17 what the last character to be printed is, and secondly
the name maxChar gives a much better indication in line 80 of what we are comparing.

In the second example, the operand to SWI was a code number telling the operating system
what routine was desired. This was the read character routine which goes by the name of
ReadC. So the program can be made more readable by adding the line:

1005 ReadC = 4 : REM SWI to read a char into R0

and changing line 2040 to:

2040 SWI ReadC

which makes the comment redundant. The SWI 256 is another instruction that can be
improved. This particular SWI has an operand of the form 256+ch, where ch is the code of

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

7 of 21

character to be printed. It is given the name WriteI (for write immediate) in Acorn
documentation, so we could have an assignment like this:

1007 WriteI=&100 : REM SWI to write char in LSB of operand

and change the instructions to have the form:

2070 SWI WriteI+ASC"O"

The importance of giving names to things like SWI codes and immediate operands cannot
be understated. A similarly useful tool is naming registers. So far we have used the
denotations R0, R1 etc. to stand for registers. In addition to these standard names, the
assembler accepts an expression which evaluates to a register number. An obvious
application of this is to give names to important registers such as the SP by assigning the
appropriate register number to a variable. For example, if we had these three assignments
in the BASIC part of a program:

10 link = 14 : REM BL link register
20 sp = 13 : REM My stack pointer register
30 acc = 5 : REM Accumulator for results

then instructions could take the form:

1000 MOVCS pc,link ;Return if too big

1210 STM (sp)!,{acc,link} ;Save result and return addr

2300 LDM (sp)!,{acc,pc} ;Return and restore

There are two things to note about these examples. The first is that we use the name pc
even though this wan't one of the variables we defined above. The BASIC assembler
recognises it automatically and substitutes R15. The second is that sp has brackets around
it. These are required because the ! sign is used by BASIC to denote 'indirection'. To stop
BASIC from getting confused you have to put brackets around any variable name used
before a ! in STM and LDM instructions. You don't need the brackets if a register name, such
as R13, is used.

In the examples in this book, we use the names pc, link and sp as shown above, and we
also use names for other registers where possible. There is no confusion between register
numbers and immediate operands, of course, because the latter are preceded by a # sign.
So:

4310 MOV acc,sp

copies the contents of register sp (i.e. R13) to register acc, whereas:

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

8 of 21

4310 MOV acc,#sp

would load the immediate value 13 into the acc register.

The final point about style concerns layout. The assembler doesn't impose too many
constraints on the way in which you lay out the program. As we have already mentioned,
labels must come immediately after the line number, and comments must appear as the
last (and possibly only) thing on the line. However, it is advisable to line up the columns
where possible. This makes it easier to follows comments if nothing else. Comments
describing individual routines or the whole program can be placed at the start of the line.
This also applies to comments for instructions which wouldn't fit on the line easily (e.g.
after an STR with a long register list).

Line spacing can also be important. It is a good idea to leave blank lines between routines
to separate them.

A typical format would be: ten spaces for the label, 25 for the instruction, and the rest of
the line for the comment. For example:

1230 MOV count, #15 ;Init the counter
1240.loop SWI writeI+ASC"*" ;Print an asterisk
1250 SUB count, #1 ;Next count
1260 BNE loop

Another minor point of style in the listing above is the spacing of operands. It is easier to
separate operands if there is at least one space character between them.

By way of a simple contrast, we list the very first program of this chapter, trying to
practise that which we have just been preaching.

10 DIM org 40
20 P% = org
30 outReg = 0 : REM Register use by WriteC. Preserved
40 link = 14 : REM BL link register
50 pc = 15 : REM ARM program counter
60 WriteC = 0 : REM SWI code to print char in R0
70 firstChar = ASC" "
80 lastChar = ASC"~"
90 [
100 ;A simple ARM program. This prints the ASCII
110 ;character set from 'firstChar' to 'lastChar'
120 MOV outReg, #firstChar ;Init the output char
130.loop
140 SWI WriteC ;Display the char.
150 ADD outReg, outReg, #1 ;Increment the character
160 CMP outReg, #lastChar ;Finished?
170 BNE loop ;No so loop
180 MOV pc, link ;else return
190]

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

9 of 21

Because the line numbers are not particularly relevant to the assembly language, listings in
subsequent chapters don't use them.

Finally, a note on cases. The assembler is totally case-insensitive. Mnemonics and 'R's in R0
etc. may be in upper or lower case or any combination thereof. Labels, however, must
obey the rules of the rest of BASIC, which state that variable names are case dependent.
Thus LOOP is a different label from loop, and Loop is again different. The convention used
in this book is upper case for mnemonics and R0-type designations, and a mixture of
upper and lower case (e.g. strPtr) for labels and other names. As usual, the method you
adopt is up to you, consistency being the important thing.

4.4 Offset assembly

The facility of offset assembly was mentioned above. It is enabled by bit 2 of the OPT
expression. When offset assembly is used, the code is still assembled to execute at the
address in the P% variable. However, it is not stored there. Instead, it is placed at the
address held in the O% variable.

Motivation for offset assembly can be explained as follows. Suppose you are writing a
program which will load and execute at address &8000. Now, using DIM to obtain code
space, you find you can only obtain addresses from about &8700 up. You could set P%
explicitly to &8000, but as this is where the BASIC interpreter's workspace lies, you will be
in dire danger of overwriting it. This invariably leads to unpleasantness.

The solution to this dilemma is to still assign P% to &8000, as if it is going to execute there,
but use offset assembly to store the machine code at some conveniently DIMmed location.
Here is the outline of a program using offset assembly, without line numbers.

org = &1000 : REM Where we want the code to run
DIM code 500 : REM Where the code is assembled to
code$= " "+STR$~code+" "
org$ = " "+STR$~org+" "
FOR pass=4 TO 6 STEP 2
P%=org
O%=code
[OPT pass
;The lines of the program come here
;...
;...
]
NEXT pass
OSCLI "SAVE PROG "+code$+STR$~O%+org$+org$

Both P% and O% are set at the start of each pass. Because bit 2 of the pass looping value is
set, offset assembly will take place and the assembled code will actually be stored from the
address in code. Once assembled, the code is saved with the appropriate load and
execution addresses, and could be activated using a * command.

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

10 of 21

When using offset assembly, you shouldn't use CALL to test the machine code, as it will be
assembled to execute at an address different from the one in which it is stored.

Having illustrated the use of offset assembly, we will now say that you should rarely have
to use it. As the next chapter tries to show, it is quite easy to write ARM programs which
operate correctly at any load address. Such programs are called position independent, and
there are a few simple rules you have to obey in order to give your programs this desirable
property.

Overleaf is a version of the outline listing above, assuming that the program between the
[and] statements is position independent.

org = &1000 : REM Where we want the code to run
DIM code 500 : REM Where the code is assembled to
code$= " "+STR$~code+" "
org$ = " "+STR$~org+" "
FOR pass=0 TO 2 STEP 2
P%=code
[OPT pass
;The lines of the program come here
;...
;...
]
NEXT pass
OSCLI "SAVE PROG "+code$+STR$~P%+org$+org$

The differences are that O% doesn't get a mention, and the values for the OPT directive are
0 and 2 respectively. The value of org is used only to set the load and execution addresses
in the SAVE command.

In the light of the above, you may be wondering why offset assembly is allowed at all. It is
really a carry-over from early versions of BBC BASIC, running on the BBC Micro. These
incorporated assemblers for the old-fashioned 6502 processor that the BBC machine used.
It is virtually impossible to write position independent code for the 6502, so offset
assembly was very useful, especially for those writing 'paged ROM' software.

There is still one valid use for offset assembly, and that is in defining areas of memory for
data storage. We shall describe this in the next section.

4.5 Defining space

Most programs need some associated data storage area. This might be used for constant
data, such as tables of commands, or for holding items such as character strings (filenames
etc.) or arrays of numbers which won't fit in the ARM's registers. There are four assembler
directives which enable you to reserve space in the program for data. They are called:

EQUB - Reserve a byte

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

11 of 21

EQUW - Reserve a word (two bytes)
EQUD - Reserve a double word (four bytes)
EQUS - Reserve a string (0 to 255 bytes)

The reference to a 'word' being two bytes may be confusing in the light of our earlier
claims that the ARM has a 32-bit or four-byte word length. Like offset assembly, the
notation has its origins in the murky history of BBC BASIC. It's probably best to forget
what the letters stand for, and just remember how many bytes each directive reserves.

Each of the directives is followed by an expression, an integer in the first three cases, and a
string in the last. The assembler embeds the appropriate number of bytes into the machine
code, and increments P% (and if necessary O%) by the right amount.

Here is an example of using EQUB. Suppose we are writing a VDU driver where control
characters (in the range 0..31) may be followed by 1 or more 'parameter' bytes. We would
require a table which, for each code, gave us the parameter count. This could be set-up
using EQUB as below:

.parmCount
; This table holds the number of parameters bytes
; for the control codes in the range 0..31
EQUB 0 ;NUL. Zero parameters
EQUB 1 ;To Printer. One parm.
EQUB 0 ;Printer on. Zero parms.
EQUB 0 ;Printer off. Zero parms
....
....
EQUB 4 ;Graf origin. Four bytes
EQUB 0 ;Home. No parameters
EQUB 2 ;Tab(x,y). Two parms.
; End of parmCount table
;

Each of the EQUBs embeds the count byte given as the operand into the machine code. Then
P% is moved on by one. In the case of EQUW, the two LSBs of the argument are stored
(lowest byte first) and P% incremented by two. For EQUD, all four bytes of the integer
operand are stored in standard ARM order (lowest byte to highest byte) and P% is
incremented by 4.

There are a couple of points to note. We are storing data in the object code, not
instructions. Therefore you have to ensure that the program will not try to 'execute' the
bytes embedded by EQUB etc. For example, if there was code immediately before the label
parmCount above, there should be no way for the code to 'drop through' into the data area.
The result of executing data is unpredictable, but invariably nasty. For this reason it is
wise to separate 'code' and 'data' sections of the program as much as possible.

Secondly, in the example above we embedded 32 bytes, which is a multiple of four. So

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

12 of 21

assuming that P% started off on a word boundary, it would end up on one after the list of
EQUBs. This means that if we started to assemble instructions after the table, there would be
no problem. Suppose, however, that we actually embedded 33 bytes. After this, P% would
no longer lie on a word boundary, and if we wanted to start to assemble instructions after
the table, some corrective action would have to be taken. The ALIGN directive is used to
perform this.

You can use ALIGN anywhere that an instruction can be used. Its effect is to force P% and
O% to move on to the next word boundary. If they already are word-aligned, they are not
altered. Otherwise, they are incremented by 1, 2 or 3 as appropriate, so that the new values
are multiples of four.

The string directive, EQUS, enables us to embed a sequence of bytes represented by a BBC
BASIC string into memory. For example, suppose we had a table of command names to
embed in a program. Each name is terminated by having the top bit of its last letter set. We
could set-up such a table like this:

.commands
; Table of commands. Each command has the top bit
; of its last char. set. The table is terminated
; by a zero byte.
EQUS "ACCES"+CHR$(ASC"S"+&80)
EQUS "BACKU"+CHR$(ASC"P"+&80)
EQUS "COMPAC"+CHR$(ASC"T"+&80)
....
....
EQUS "TITL"+CHR$(ASC"E"+&80)
EQUS "WIP"+CHR$(ASC"E"+&80)
;
EQUB 0
ALIGN
; End of command table

Note the use of the ALIGN directive at the end of the table.

The examples presented so far have shown initialised memory being set-up, that is
memory which contains read-only data for use by the program. The need to reserve space
for initialised memory also arises. For example, say a program uses an operating system
routine to load a file. This routine might require a parameter block in memory, which
contains all of the data necessary to perform the load. To reserve space for the parameter
block, a sequence of EQUDs could be used:

.fileBlock
; This is the parameter block for the file load operation
;
.namePtr EQUD 0 ; Pointer to the filename
.loadAddr EQUD 0 ; The load address of the file
.execAddr EQUD 0 ; The execution address
.attributes EQUD 0 ; The file's attributes

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

13 of 21

;
;
.doLoad
; This routine sets up the file block and loads the file
; It assumes the name is on the stack
;
STR sp, namePtr ; Save the name pointer
MOV R0, #&1000 ; Get 4K for the file
SWI getMemory ; Returns pointer in R1
STR R1, loadAddr ; Save the address
; Get the address of the parameter block in R0
ADR R0, fileBlock
MOV R1, #loadCode ; Command code for SWI
SWI file ; Do the load
...

The EQUDs to set up the parameter block do not have meaningful operands. This is because
they are only being used to reserve memory which will be later filled in by the program.
Each EQUD has a label so that the address of the four-byte area reserved can be accessed by
name.

Following the set-up directives is some code which would use such a parameter block. It
uses some hypothetical SWI calls to access operating system routines, but you can assume
that similar facilities will be available on any ARM system you are likely to use. Some of
the instructions may not be very clear at this stage, but you might like to come back and
re-examine the example having read the next two chapters.

The ADR instruction isn't an ARM mnemonic, but is a directive used to load a register with
an address. The first operand is the register in which the address is to be stored. The
second operand is the address to be loaded. The directive is converted into one of these
instructions:

ADD reg,pc,#addr-(P%+8) or

SUB reg,pc,#(P%+8)-addr

The first form is used if the addr is after the directive in the program, and the second form
is used if addr appears earlier, as in the example above. The idea of using the directive is to
obtain the required address in a position-independent manner, i.e. in a way which will
work no matter where the program is executing. We say more about position-
independence in Chapter Five.

To reserve space for items larger than double words, you can use EQUS. The operand
should be a string whose length is the required number of bytes. The BASIC STRING$
function provides a good way of obtaining such a string. The example below reserves two
32-byte areas:

.path1 EQUS STRING$(32,CHR$0) ;32 bytes for filename1

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

14 of 21

.path2 EQUS STRING$(32,CHR$0) ;32 bytes for filename2

By making the second operand of STRING$ CHR$0, the bytes embedded will by ASCII 0. As
this is an illegal filename character, it can be used to guard against the program omitting
to initialise the strings before using them.

In each of the examples above, the directives were used to reserve storage inside the
machine code of the assembly language program. Another use is in defining labels as
offsets from the start of some work area. For example, we may use register R10 as a
pointer to a block of memory where we store important, frequently accessed data (but
which doesn't fit in the registers). The LDR group of instructions would be used to access
the data, using immediate offsets. Suppose the structure of the data is thus:

The data items are the sort of thing that a BASIC interpreter would store in its data area.
Notice that all of the word-length items are stored in one group so that they remain word
aligned. One way of assigning the offsets in the BBC BASIC assembler would be with
assignments:

page = 0
top = page+4
lomem = top+4
vartop = lomem+4
count = vartop+4
errptr = count+4
strlen = errptr+4
listo = strlen+1
opt = listo+1
....= opt+1

This method has a couple of drawbacks. First, to find out how many bytes have been
allocated to a given item, you have to look at two lines and perform a subtraction.

Offset Item Bytes

&00 Program pointer 4

&04 Top of program 4

&08 Start of variables 4

&12 End of variables 4

&16 Character count 4

&20 ON ERROR pointer 4

&24 String length 1

&25 List option 1

&26 OPT value 1

&27 ... 1

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

15 of 21

Similarly, to insert a new item, two lines have to be amended. Even worse, the actual
values assigned to the labels can't be discovered without printing them individually - they
don't appear in the assembly listing.

To overcome these drawbacks, we use the assembler's offset assembly ability. The method
is illustrated below:

DIM org 1000 : REM Enough for code and data declarations FOR pass=0 TO 2 STEP 2
PROCdeclarations(org,pass)
PROCasm(org,pass)
NEXT
END

DEF PROCdeclarations(org,pass)
P%=0 : O%=org
[OPT pass + 4
.page EQUD 0
.top EQUD 0
.lomem EQUD 0
.vartop EQUD 0
.count EQUD 0
.errptr EQUD 0
.strlen EQUB 0
.listo EQUB 0
.opt EQUB 0
... EQUB 0
]
ENDPROC

DEF PROCasm(org,pass)
P%=org
[OPT pass
....

The procedure PROCdeclarations contains the EQU directives which define the space for
each item. By adding 4 to the pass value, offset assembly is used. Setting P% to zero means
that the first label, page, will have the value zero; top will be set to 4, and so on. O% is set
to org originally so that the bytes assembled by the directives will be stored in the same
place as the program code. As PROCasm is called after PROCdeclarations, the code will
overwrite the zero bytes.

When this technique is used, the addresses of the labels appear in the assembly listing
(using FOR pass=0 TO 3 STEP 3); it is easier to see how many bytes each item occupies (by
seeing which directive is used), and adding a new item is simply a matter of inserting the
appropriate line.

4.6 Macros and conditional assembly

Sometimes, a sequence of instructions occurs frequently throughout a program. An
example is setting up a table. Suppose we have a table which consists of 32 entries, each

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

16 of 21

containing a branch instruction and three items of data, a two byte one and two single byte
items. To set up the table, we could have a list of 32 instruction sequences, each of the
form:

B address
EQUW data1
EQUB data2
EQUB data3

Typing in these four lines 32 times might prove a little laborious, and possibly error-prone.

Many dedicated assemblers provide a facility called macros to make life a little easier in
situations like the one described above. A macro can be viewed as a template which is
defined just once for the sequence. It is then 'invoked' using a single-line instruction to
generate all of the instructions. The BBC BASIC assembler implements macros in a novel
way, using the user-defined function keyword, FN.

If the assembler encounters an FN where it is expecting to find a mnemonic, the function is
called as usual, but any result it returns is disregarded. Once you are in FN, you have the
whole power of BASIC available. This includes the assembler, so you can start to assemble
code within the FN. This will be added to the machine code which was already assembled
in the main program.

To clarify the situation, we will implement a macro to make a table entry of the type
described above.

10000 DEF FNtable(address,data1,data2,data3)
10010 [OPT pass
10020 B address
10030 EQUW data1
10040 EQUB data2
10050 EQUB data3
10060]
10070 =""

As you can see, the 'body' of the macro is very similar to the list of instructions given
earlier. The macro is defined in a separate part of the program, outside of the main
assembly language section (hence the very high line number). It assumes that the looping
variable used to control the passes of the assembler is called pass, but this could have been
given as an extra parameter.

To call the macro, an FNtable call is used, one for each entry in the table. A typical
sequence might look like this:

1240 FNtable(list,1,2,3)
1250 FNtable(delete,2,3,4)
1260 FNtable(renumber,1,1,2)
1270

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

17 of 21

When the FN is reached, the assembler calls the function using the parameters supplied.
The effect of this is to assemble the instructions and then return. The return value "" is
disregarded. The net effect of all this is to assemble four lines of code with only one
instruction.

Another use of macros is to 'invent' new instructions. For example, instead of always
having to remember which type of stack you are using (full, empty, ascending or
descending), you could define a macro which pushes a given range of registers. By always
using the macro, you also avoid the pitfuls of forgetting the ! to denote write -back.

The routine below is a macro to push a range of registers onto a full, descending stack,
using R13.

10000 DEF FNpush(first,last)
10010 [OPT pass
10020 STMFD R13!,{first-last}
10030]
10040 =""

Another advantage of using a macro to implement a common operation like push is that it
can be changed just the once to affect all of the places where it is used. Suppose, for
example, that you have to change your program to use an empty stack, so that it is
compatible with someone else's program. By simply changing line 10020 above, every
push operation will use the new type of stack.

There are situations where you might want to be able to assemble different versions of a
program, depending on some condition. This is where conditional assembly comes in.

Using conditional assembly is a bit like IFÉ type operations in BASIC, and that is exactly
what we use to implement it in the BBC BASIC assembler. The listing overleaf shows how
the macro FNpush could be written to cope with either a full or empty stack.

The variable fullStack is a global which is defined at the start of the program to TRUE if we
are assembling for a full stack and FALSE if we want an empty one.

10000 DEF FNpush(first,last)
10010 IF fullStack THEN
10020 [OPT pass
10030 STMFD R13!,{first,last}
10040]
10050 ELSE
10060 [OPT pass
10070 STMED R13!,{first,last}
10080]
10090 ENDIF
10100 =""

Most features of dedicated assemblers can be implemented using a combination of BBC

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

18 of 21

BASIC and the BASIC assembler. For example, some assemblers have a WHILE loop
directive which can be used to assemble repeated instructions which would be tedious
(and maybe error prone) to type. The BASIC WHILE (or FOR or REPEAT) loops can be used to
similar effect. The macro below implements a 'fill memory' function. It takes a count and a
byte value, and stores the given number of bytes in the object code.

10000 DEF FNfill(byte,count)
10010 IF count=0 THEN =""
10020 LOCAL i
10030 FOR i=1 TO count
10040 [OPT pass
10050 EQUB byte
10060]
10070 NEXT i
10080 [OPT pass
10090 ALIGN
10100]
10110 =""

Although we could have quite easily 'poked' the bytes into the code without using EQUB,
the method we use guarantees that the effect of FNfill shows up on the assembly listing.
It is important to keep what is printed in the listing consistent with what is actually going
on, otherwise it becomes difficult to debug programs from the listing.

4.7 Calling machine code

Many of the example programs in the next two chapters are accompanied by short test
routines. These are called from BASIC after the code has been assembled. To help you
understand these programs, we describe the CALL statement and the USR function in this
section.

The format of the CALL statement is:

CALL <address>,[<parameters>]

The <address> is the location of the machine code that you want to execute. The optional
<parameters> are BASIC variables, separated by commas.

When the called routine starts to execute, it finds its registers set-up by BASIC. We won't
describe the full extent of what BASIC provides for the machine code program, but instead
point out the most useful features. First, R0 to R7 are set-up from the values of eight of the
system integer variables (A% etc). So, R0 holds the contents of A%, R1 is initialised from
B%, and so on, up to R7 which has been loaded from H%.

R9 points to the list of parameters, and R10 contains the number of parameters that
followed the <address>. This may be zero, as the parameters are optional. The data to
which R9 points is a list of pairs of words. There is one word-pair for each parameter.

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

19 of 21

The first word contains the address of the variable, i.e. where its value is stored in
memory. The second word holds the type of the variable. From this, the meaning of the
data addressed by the first word can be determined. The main types are as follows:

The type-128 string value consists of five bytes. The first four are the address of the
contents of the string (i.e. the characters), and the fifth byte is the string's length. A type-
129 string is a sequence of bytes terminated by a carriage -return character, and the address
word points to the first character of the string. Note that the data values can have any
alignment, so to access them you must use a general-alignment routine of the type
presented in Chapter Six.

It is important to realise that the word-pairs describing parameters are in reverse order.
This means that the word pointed to by R9 is the address of the last parameter's value. The
next word is the type of the last parameter, and the one after that is the address of the
penultimate parameter, and so on. Obviously if there is only one parameter, this rerversal
does not matter.

The final registers of importance are R13, which is BASIC's stack pointer, and R14, the link
register. BASIC's (full, descending) stack may be used by the called routine, as long as the
stack pointer ends up with the same value it had on entry to the routine. R14 contains the
return address, as if the routine had been called with a BL instruction. This enables the
routine to return to BASIC with an instruction such as:

MOV pc,R14

The USR function is used in a similar way to CALL. There are two important differences.
First, it cannot take parameters, so a typical use would be:

PRINT ~USR address

Second, it returns a result. This result is the contents of R0 on return from the machine
code. There are several examples of USR in the next two chapters.

4.8 Summary

Type Meaning

0 Single byte, e.g. ?addr

4 Integer, e.g. fred%, !fred, fred%(10)

5 Real, e.g. fred, |fred, fred(10)

128 String, e.g. fred$, fred$(10)

129 String, e.g. $fred

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

20 of 21

In this chapter we have looked at one of the assemblers available to the ARM programmer.
Because it is part of ARM BASIC, it is straightforward to use. Although the assembler itself
is not overflowing with features, the fact that assembler and BASIC can be freely
combined has many advantages. It is relatively easy to implement many of the features of
'professional' assemblers, such as macros and conditional assembly.

Finally we looked briefly at the CALL and USR keywords in BASIC, in preparation for their
use in later chapters.

ARM Assembly Language Programming - Chapter 4 - The BBC BASIC Assembler

21 of 21

5. Assembly Programming Principles

The previous chapters have covered the ARM instruction set, and using the ARM
assembler. Now we are in a position to start programming properly. Since we are
assuming you can program in BASIC, most of this chapter can be viewed as a conversion
course. It illustrates with examples how the programming techniques that you use when
writing in a high-level language translate into assembler.

5.1 Control structures

Some theory

A program is made up of instructions which implement the solution to a problem. Any
such solution, or algorithm, may be expressed in terms of a few fundamental concepts.
Two of the most important are program decomposition and flow of control.

The composition of a program relates to how it is split into smaller units which solve a
particular part of the problem. When combined, these units, or sub-programs, form a
solution to the problem as a whole. In high-level languages such as BASIC and Pascal, the
procedure mechanism allows the practical decomposition of programs into smaller, more
manageable units. Down at the assembly language level, subroutines perform the same
function.

Flow of control in a program is the order in which the instructions are executed. The three
important types of control structure that have been identified are: the sequence, iteration,
and decision.

An instruction sequence is simply the act of executing instructions one after another in the
order in which they appear in the program. On the ARM, this action is a consequence of
the PC being incremented after each instruction, unless it is changed explicitly.

The second type of control flow is decision: the ability to execute a sequence of instructions
only if a certain condition holds (e.g. IF...THEN...). Extensions of this are the ability to
take two separate, mutually exclusive paths (IF...THEN...ELSE...), and a multi-way decision
based on some value (ON...PROC...). All of these structures are available to the assembly
language programmer, but he has to be more explicit about his intentions.

Iteration means looping. Executing the same set of instructions over and over again is one
of the computer's fortes. High-level languages provide constructs such as REPEAT..UNTIL
and FOR...NEXT to implement iteration. Again, in assembler you have to spell out the
desired action a little more explicitly, using backward (perhaps conditional) branches.

Some practice

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

1 of 26

Having talked about program structures in a fairly abstract way, we now look at some
concrete examples. Because we are assuming you have some knowledge of BASIC, or
similar high-level language, the structures found therein will be used as a starting point.
We will present faithful copies of IF...THEN...ELSE, FOR...NEXT etc. using ARM assembler.
However, one of the advantages of using assembly language is its versatility; you
shouldn't restrict yourself to slavishly mimicking the techniques you use in BASIC, if some
other more appropriate method suggests itself.

Position-independence

Some of the examples below (for example the ON...PROC implementation using a branch
table) may seem slightly more complex than necessary. In particular, addressing of data
and routines is performed not by loading addresses into registers, but by performing a
calculation (usually 'hidden' in an ADR directive) to obtain the same address. This
seemingly needless complexity is due to a desire to make the programs position-
independent.

Position-independent code has the property that it will execute correctly no matter where
in memory it is loaded. In order to possess this property, the code must contain no
references to absolute objects. That is, any internal data or routines accessed must be
referenced with respect to some fixed point in the program. As the offset from the required
location to the fixed point remains constant, the address of the object may be calculated
regardless of where the program was loaded. Usually, addresses are calculated with
respect to the current instruction. You would often see instructions of the form:

.here ADD ptr, pc, #object-(here+8)

to obtain the address of object in the register ptr. The +8 part occurs because the PC is
always two instructions (8 bytes) further on than the instruction which is executing, due to
pipelining.

It is because of the frequency with which this calculation crops up that the ADR directive is
provided. As we explained in Chapter Four, the line above could be written:

ADR ptr, object

There is no need for a label: BASIC performs the calculation using the current value of P%.

Instead of using PC offsets, a program can also access its data using base-relative
addressing. In this scheme, a register is chosen to store the base address of the program's
data. It is initialised in some position-independent way at the start of the program, then all
data accesses are relative to this. The ARM's register-offset address mode in LDR and STR
make this quite a straightforward way of accessing data.

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

2 of 26

Why strive for position-independence? In a typical ARM system, the programs you write
will be loaded into RAM, and may have to share that RAM with other programs. The
operating system will find a suitable location for the program and load it there. As 'there'
might be anywhere in the available memory range, your program can make no
assumptions about the location of its internal routines and data. Thus all references must
be relative to the PC. It is for this reason that branches use offsets instead of absolute
addresses, and that the assembler provides the

LDR <dest>,<expression>

form of LDR and STR to automatically form PC-relative addresses.

Many microprocessors (especially the older, eight-bit ones) make it impossible to write
position-independent code because of unsuitable instructions and architectures. The ARM
makes it relatively easy, and you should take advantage of this.

Of course, there are bound to be some absolute references in the program. You may have
to call external subroutines in the operating system. The usual way of doing this is to use a
SWI, which implicitly calls absolute address &0000008. Pointers handed to the program by
memory-allocation routines will be absolute, but as they are external to the program, this
doesn't matter. The thing to avoid is absolute references to internal objects.

Sequences

These barely warrant a mention. As we have already implied, ARM instructions execute
sequentially unless the processor is instructed to do otherwise. Sequence of high-level
assignments:

LET a = b+c
LET d = b-c

would be implemented by a similar sequence of ARM instructions:

ADD ra, rb, rc
SUB rd, rb, rc

IF-type conditions

Consider the BASIC statement:

IF a=b THEN count=count+1

This maps quite well into the following ARM sequence:

CMP ra, rb
ADDEQ count, count, #1

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

3 of 26

In this and other examples, we will assume operands are in registers to avoid lots of LDRs
and STRs. In practice, you may find a certain amount of processor-to-memory transfer has
to be made.

The ARM's ability to execute any instruction conditionally enables us to make a
straightforward conversion from BASIC. Similarly, a simple IF..THEN...ELSE such as this
one

IF val<0 THEN sign=-1 ELSE sign=1

leads to the ARM equivalent:

TEQ val, #0
MVNMI sign, #0
MOVPL sign, #1

The opposite conditions (MI and PL) on the two instructions make them mutually exclusive
(i.e. one and only one of them will be executed after the TEQ), corresponding to the same
property in the THEN and ELSE parts of the BASIC statement.

There is usually a practical limit to how many instructions may be executed conditionally
in one sequence. For example, one of the conditional instructions may itself affect the flags,
so the original condition no longer holds. A multi-word ADD will need to affect the carry
flag, so this operation couldn't be performed using conditional execution. The solution
(and the only method that most processors can use) is to conditionally branch over
unwanted instructions.

Below is an example of a two-word add which executes only if R0=R1:

CMP R0, R1
BNE noAdd
ADDS lo1, lo1, lo2
ADC hi1, hi1, hi2
.noAdd ...

Notice that the condition used in the branch is the opposite to that under which the ADD is
to be performed. Here is the general translation of the BASIC statements:

IF cond THEN sequence1 ELSE sequence2 statement
;'ARM' version
;Obtain <cond>
B<NOT cond> seq2 ;If <cond> fails then jump to ELSE
sequence1 ;Otherwise do the THEN part
...
BAL endSeq2 ;Skip over the ELSE part
.seq2
sequence2 ;This gets executed if <cond> fails
...
.endSeq2

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

4 of 26

statement ;The paths re-join here

At the end of the THEN sequence is an unconditional branch to skip the ELSE part. The two
paths rejoin at endSeq2.

It is informative to consider the relative timings of skipped instructions and conditionally
executed ones. Suppose the conditional sequence consists of X group one instructions. The
table below gives the timings in cycles for the cases when they are executed and not
executed, using each method:

In the case where the instructions are executed, the branch method has to execute the un-
executed branch, giving an extra cycle. This gives us the rather predictable result that if the
conditional sequence is only one instruction, the conditional execution method should
always be used.

When the sequence is skipped because the condition is false, the branch method takes
2n+s, or the equivalent to 5s cycles. The conditional branch method takes one s cycles for
each un-executed instruction. So, if there are four or fewer instructions, at least one cycle is
saved using conditional instructions. Of course, whether this makes the program execute
any faster depends on the ratio between failures and successes of the condition.

Before we leave the IF-type constructions, we present a nice way of implementing
conditions such as:

IF a=1 OR a=5 OR a=12...

It uses conditional execution:

TEQ a,#1
TEQNE a,#5
TEQNE a,#12
BNE failed

If the first TEQ gives an EQ result (i.e. a=1), the next two instructions are skipped and the
sequence ends with the desired flag state. If a<>1, the next TEQ is executed, and again if this
gives an EQ result, the last instruction is skipped. If neither of those two succeed, the result
of the whole sequence comes from the final TEQ.

Another useful property of TEQ is that it can be used to test the sign and zero-ness of a
register in one instruction. So a three -way decision could be made according to whether an

 Branch Conditional

Executed s + Xs Xs

Not executed 2n + s Xs

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

5 of 26

operand was less than zero, equal to zero, or greater than zero:

TEQ R0,#0
BMI neg
BEQ zero
BPL plus

In this example, one of three labels is jumped to according to the sign of R0. Note that the
last instruction could be an unconditional branch, as PL must be true if we've got that far.

The sequence below performs the BASIC assignment a=ABS(a) using conditional
instructions:

TEQ a, #0
RSBMI a, #0 ;if a<0 then a=0-a

As you have probably realised, conditional instructions allow the elegant expression of
many simple types of IF... construct.

Multi-way branches

Often, a program needs to take one of several possible actions, depending on a value or a
condition. There are two main ways of implementing such a branch, depending on the
tests made.

If the action to be taken depends on one of a few specific conditions, it is best implemented
using explicit comparisons and branches. For example, suppose we wanted to take one of
three actions depending on whether the character in the lowest byte of R0 was a letter, a
digit or some other character. Assuming that the character set being used is ASCII, then
this can be achieved thus:

CMP R0,#ASC"0" ;Less than the lowest digit?
BCC doOther ;Yes, so must be 'other'
CMP R0,#ASC"9" ;Is it a digit?
BLS doDigit ;Yes
CMP R0,#ASC"A" ;Between digits and upper case?
BCC doOther ;Yes, so 'other'
CMP R0,#ASC"Z" ;Is it upper case?
BLS doLetter ;Yes
CMP R0,#ASC"a" ;Between upper and lower case?
BLT doOther ;Yes, so 'other'
CMP R0,#ASC"z" ;Lower case?
BHI doOther ;No, so 'other'
.doLetter
...
B nextChar ;Process next character
.doDigit
...
B nextChar ;Process next character
.doOther
...

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

6 of 26

.nextChar

...

Note that by the time the character has been sorted out, the flow of control has been
divided into three possible routes. To make the program easier to follow, the three
destination labels should be close to each other. It is very possible that after each routine
has done its job, the three paths will converge again into a single thread. To make this
clear, each routine is terminated by a commented branch to the meeting point.

A common requirement is to branch to a given routine according to a range of values. This
is typified by BASIC's ON...PROC and CASE statements. For example:

ON x PROCadd,PROCdelete,PROCamend,PROClist ELSE PROCerror

According to whether x has the value 1, 2, 3 or 4, one of the four procedures listed is
executed. The ELSE... part allows for x containing a value outside of the expected range.

One way of implementing an ON... type structure in assembly language is using repeated
comparisons:

CMP choice, #1 ;Check against lower limit
BCC error ;Lower, so error
BEQ add ;choice = 1 so add
CMP choice, #3 ;Check for 2 or 3
BLT delete ;choice = 2 so delete
BEQ amend ;choice = 3 so amend
CMP choice, #4 ;Check against upper limit
BEQ list ;If choice = 4 list else error
.error
...

Although this technique is fine for small ranges, it becomes large and slow for wide ranges
of choice. A better technique in this case it to use a branch table. A list of branches to the
routines is stored near the program, and this is used to branch to the appropriate routine.
Below is an implementation of the previous example using this technique.

DIM org 200
choice = 0
t = 1
sp = 13
link = 14
REM Range of legal values
min = 1
max = 4
WriteS = 1
NewLine = 3
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;Multiway branch in ARM assembler
;choice contains code, min..max of routine to call

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

7 of 26

;If out of range, error is called
;
STMFD (sp)!,{t,link}
SUBS choice, choice, #min ;Choice <min?
BCC error ;Yes, so error
CMP choice, #max-min ;Choice >max?
BHI error ;Yes, so error
ADR link, return ;Set-up return address
ADR t,table ;Get address of table base
ADD PC, t, choice, LSL #2 ;Jump to table+choice*4
;
.error
SWI WriteS
EQUS "Range error"
EQUB 0
ALIGN
;
.return
SWI NewLine
LDMFD (sp)!,{t,PC}
;
;
;Table of branches to routines
.table
B add
B delete
B amend
B list
;
.add
SWI WriteS
EQUS "Add command"
EQUB 0
ALIGN
MOV PC,link
;
.delete
SWI WriteS
EQUS "Delete command"
EQUB 0
ALIGN
MOV PC,link
;
.amend
SWI WriteS
EQUS "Amend command"
EQUB 0
ALIGN
MOV PC,link
;
.list
SWI WriteS
EQUS "List command"
EQUB 0
ALIGN
MOV PC,link
]
NEXT
REPEAT
INPUT "Choice ",A%

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

8 of 26

CALLorg
UNTIL FALSE

The first four lines check the range of the value in choice, and call error if it is outside of
the range min to max. It is important to do this, otherwise a branch might be made to an
invalid entry in the branch table. The first test uses SUBS instead of CMP, so choice is
adjusted to the range 0 to max-min instead of min to max.

Next, the return address is placed in R14. The routines add, delete etc. return as if they
had been called using BL, i.e. use a return address in R14. To do this, we use ADR to place
the address of the label return into R14, this being where we want to resume execution.

The next ADR obtains the base address of the jump table in the register t. Finally, the ADD
multiplies choice by 4 (using two left shifts) and adds this offset to the table's base
address. The result of the addition is placed in the program counter. This causes execution
to jump to the branch instruction in the table that was denoted by choice. From there, the
appropriate routine is called, with the return address still in R14.

As we mentioned in the position-independent code section, this may seem a little bit
involved just to jump to one of four locations. Remember though that the technique will
work for an arbitrary number of entries in the table, and will work at whatever address the
program is loaded.

Loops

Looping is vital to any non-trivial program. Many problems have solutions that are
expressed in an iterative fashion. There are two important classes of looping construct. The
first is looping while, or until, a given condition is met (e.g. REPEAT and WHILE loops in
BASIC). The second is looping for a given number of iterations (e.g. FOR loops). In fact, the
second class is really a special case of the general conditional loop, the condition being that
the loop has iterated the correct number of times.

An important characteristic of any looping construct is where the test of the looping
condition is made. In BASIC REPEAT loops, for example, the test is made at the
corresponding UNTIL. This means that the instructions in the loop are always executed at
least once. Consider this example:

REPEAT
IF a>b THEN a=a-b ELSE b=b-a
UNTIL a=b

This is a simple way to find the greatest common divisor (GCD) of a and b. If a=b (and
a<>0) when the loop is entered, the result is an infinite loop as on the first iteration b=b-a
will be executed, setting b to 0. From then on, a=a-0 will be executed, which will never

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

9 of 26

make a=b.

The WHILE loop tests the condition at the 'top', before its statements have been executed at
all:

WHILE a<>b
IF a>b THEN a=a-b ELSE b=b-a
ENDWHILE

This time, if a=b, the condition at the top will fail, so the loop will never be executed,
leaving a=b=GCD(a,b).

Below are the two ARM equivalents of the REPEAT and WHILE loop versions of the GCD
routine:

;Find the GCD of ra,rb.
;Fallible version using 'repeat' loop
.repeat
CMP ra,rb ;REPEAT IF a>b
SUBGT ra,ra,rb ; THEN a=a-b
SUBLE rb,rb,ra ; ELSE b=b-a
CMP ra,rb ;UNTIL
BNE repeat ;a=b
;

;Find GCD of ra,rb, using 'while' loop
.while
CMP ra,rb ;WHILE a<>b
BNE endwhile
SUBGT ra,ra,rb ; IF a>b THEN a=a-b
SUBLE rb,rb,ra ; ELSE b=b-a
B while ;ENDWHILE
.endwhile

Notice that the difference between the two is that the WHILE requires a forward branch to
skip the instructions in the body of the loop. This is not a problem for an assembler, which
has to cope with forward references to be of any use at all. In an interpreted language like
BASIC, though, the need to scan through a program looking for a matching ENDWHILE is
something of a burden, which is why some BASIC's don't have such structures.

Because both of the code sequences above are direct translations of high-level versions,
they are indicative of what we might expect a good compiler to produce. However, we are
better than any compiler, and can optimise both sequences slightly by a bit of observation.
In the first loop, we branch back to an instruction which we have just executed, wasting a
little time. In the second case, we can use the conditional instructions to eliminate the first
branch entirely. Here are the hand-coded versions:

;Fallible version using 'repeat'
CMP ra,rb ;REPEAT IF a>b
.repeat

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

10 of 26

SUBGT ra,ra,rb ; THEN a=a-b
SUBLE rb,rb,ra ; ELSE b=b-a
CMP ra,rb ;UNTIL
BNE repeat ;a=b
;

;Find GCD of ra,rb, using 'while' loop
.while
CMP ra,rb ;REPEAT
SUBGT ra,ra,rb ; IF a>b THEN a=a-b
SUBLT rb,rb,ra ; ELSE IF a<b b=b-a
BNE while ;UNTIL a=b endwhile

By optimising, we have converted the WHILE loop into a REPEAT loop with a slightly
different body.

In general, a REPEAT-type structure is used when the processing in the 'body' of the loop
will be needed at least once, whereas WHILE-type loops have to be used in situations where
the 'null' case is a distinct possibility. For example, string handling routines in the BASIC
interpreter have to deal with zero-length strings, which often means a WHILE looping
structure is used. (See the string-handling examples later.)

A common special case of the REPEAT loop is the infinite loop, expressed as:

REPEAT
REM do something
UNTIL FALSE

or in ARM assembler:

.loop
; do something
BAL loop

Programs which exhibit this behaviour are often interactive ones which take an arbitrary
amount of input from the user. Again the BASIC interpreter is a good example. The exit
from such programs is usually through some 'back door' method (e.g. calling another
program) rather than some well-defined condition.

Since FOR loops are a special case of general loops, they can be expressed in terms of them.
The FOR loop in BBC BASIC exhibits a REPEAT-like behaviour, in that the test for
termination is performed at the end, and it executes at least once. Below is a typical FOR
loop and its REPEAT equivalent:

REM A typical for loop
FOR ch=32 TO 126
VDU ch
NEXT ch
REM REPEAT loop equivalent
ch=32

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

11 of 26

REPEAT
VDU ch
ch=ch+1
UNTIL ch>126

The initial assignment is placed just before the REPEAT. The body of the REPEAT is the same
as that for the FOR, with the addition of the incrementing of ch just before the condition.
The condition is that ch is greater than the limit given in the FOR statement.

We can code the FOR loop in ARM assembler by working from the REPEAT loop version:

;Print characters 32..126 using a FOR loop-type construct
;R0 holds the character
MOV R0, #32 ;Init the character
.loop
SWI WriteC ;Print it
ADD R0, R0, #1 ;Increment it
CMP R0, #126 ;Check the limit
BLE loop ;Loop if not finished
;

Very often, we want to do something a fixed number of times, which could be expressed
as a loop beginning FOR i=1 TO n... in BASIC. When such loops are encountered in
assembler, we can use the fact that zero results of group one instructions can be made to
set the Z flag. In such cases, the updating of the looping variable and the test for
termination can be combined into one instruction.

For example, to print ten stars on the screen:

FOR i=1 TO 10
PRINT "*";
NEXT i

could be re-coded in the form:

;Print ten stars on the screen
;R0 holds the star character, R1 the count
MOV R0,#ASC"*" ;Init char to print
MOV R1,#10 ;Init count
.loop
SWI WriteC ;Print a star
SUBS R1,R1,#1 ;Next
BNE loop
;

The SUBS will set the Z flag after the tenth time around the loop (i.e. when R1 reaches 0), so
we do not have to make an explicit test.

Of course, if the looping variable's current value was used in the body of the loop, this
method could not be used (unless the loop was of the form FOR i=n TO 1 STEP -1...) as we

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

12 of 26

are counting down from the limit, instead of up from 1.

Some high-level languages provide means of repeating a loop before the end or exiting
from the current loop prematurely. These two looping 'extras' are typified by the continue
and break statements in the C language. Continue causes a jump to be made to just after
the last statement inside the current FOR, WHILE or REPEAT-type loop, and break does a jump
to the first statement after the current loop.

Because continue and break cause the flow of control to diverge from the expected action
of a loop, they can make the program harder to follow and understand. They are usually
only used to 'escape' from some infrequent or error condition. Both constructs may be
implemented in ARM using conditional or unconditional branches.

5.2 Subroutines and procedures

We have now covered the main control flow structures. Programs written using just these
constructs would be very large and hard to read. The sequence, decision and loop
constructs help to produce an ordered solution to a given problem. However, they do not
contribute to the division of the problem into smaller, more manageable units. This is
where subroutines come in.

Even the most straightforward of problems that one is likely to use computer to solve can
be decomposed into a set of simpler, shorter sub-programs. The motivations for
performing this decomposition are several. Humans can only take in so much information
at once. In terms of programming, a page of listing is a useful limit to how much a
programmer can reasonably be expected to digest in one go. Also, by implementing the
solution to a small part of a problem, you may be writing the same part of a later program.
It is surprising how much may be accomplished using existing 'library' routines, without
having to re-invent the wheel every time.

The topics of program decomposition and top-down, structured programming are worthy
of books in their own right, and it is recommended that you consult these if you wish to
write good programs in any language. The discipline of structured programming is even
more important in assembler than in, say, Pascal, because it is easier to write treacherously
unreadable code in assembler.

A minimal decomposition of most programs is shown in the block diagram overleaf. Data
is taken in, processed in some way, then results output. If you think about it, most
programs would be rather boring if they depended on absolutely no external stimulus for
their results.

Once the input, processing and output stages have been identified, work can begin on
solving these individual parts. Almost invariably this will involve further decomposition,

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

13 of 26

until eventually a set of routines will be obtained which can be written directly in a
suitably small number of basic instructions.

The way in which these routines are linked together, and how they communicate with
each other, are the subjects of the next sections.

Branch and link

The ARM BL instruction is a subroutine-calling primitive. Primitive in this context means
an operation which is implemented at the lowest level, with no more hidden detail.

Recall from Chapter Three that BL causes a branch to a given address, and stores the return
address in R14. We will illustrate the use of BL to call the three routines which solve a very
simple problem. This may be expressed as follows: repeatedly read a single character from
the keyboard and if it is not the NUL character (ASCII code 0), print the number of 1 bits
in the code.

For comparison, the BASIC program below solves the problem using exactly the same
structure as the following ARM version:

REPEAT ch = FNreadChar
IF ch<>0 PROCoutput(FNprocess(ch))
UNTIL ch=0
END
REM ***
DEF FNreadChar=GET
REM ***
DEF FNprocess(ch)
LOCAL count
count=0
REPEAT
count=count + ch MOD 2
ch=ch DIV 2
UNTIL ch=0

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

14 of 26

=count
REM ***
DEF PROCoutput(num)
PRINT num
ENDPROC

There are four entities, separated by the lines of asterisks. At the top is the 'main program'.
This is at the highest level and is autonomous: no other routine calls the program. The next
three sections are the routines which the main program uses to solve the problem. As this
is a fairly trivial example, none of the subroutines calls any other; they are all made from
primitive instructions. Usually (and especially in assembly language where primitives are
just that), these 'second level' routines would call even simpler ones, and so on.

Below is the listing of the ARM assembler version of the program:

DIM org 200
sp = 13
link = 14
REM SWI numbers
WriteC = 0
NewLine = 3
ReadC = 4
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;Read characters and print the number of 1 bits in the
;ASCII code, as long as the code isn't zero.
STMFD (sp)!,{link} ; Save return address
.repeat
BL readChar ;Get a character in R0
CMP R0,#0 ;Is it zero?
LDMEQFD (sp)!,{PC} ;Yes, so return to caller
BL process ;Get the count in R1
BL output ;Print R1 as a digit
B repeat ;Do it again
;
;
;readChar - This returns a character in R0
;All other registers preserved
;
.readChar
SWI ReadC ;Call the OS for the read
MOV PC, link ;Return using R14
;
;process - This counts the number of 1s in R0 bits 0..7
;It returns the result in R1
;On exit, R1=count, R0=0, all others preserved
;
.process
AND R0, R0, #&FF ;Zero bits 8..31 of R0
MOV R1, #0 ;Init the bit count
.procLoop
MOVS R0, R0, LSR #1 ;DIV 2 and get MOD 2 in carry
ADC R1, R1, #0 ;Add carry to count
BNE procLoop ;More to do
MOV PC, link ;Return with R1=count

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

15 of 26

;
;output - print R1 as a single digit
;On exit, R0=R1 + "0", all others preserved
;
.output
ADD R0, R1,#ASC"0" ;Convert R1 to ASCII in R0
SWI WriteC ;Print the digit
SWI NewLine ;And a newline
MOV PC, link ;Return
]
NEXT
CALL org

Because of the way in which the program closely follows the BASIC version, you should
not have much difficulty following it. Here are some points to note. In the BASIC version,
two of the subroutines, process and readChar, are functions and print is a procedure. In
the ARM version, there is no such obvious distinction in the way the routines are called.
However, the fact that process and readChar return values to their caller makes them
equivalent to function, whereas process, which returns no value of use to the caller, is a
procedure equivalent.

At the start of each routine is a short description of what it does and how it affects the
registers. Such documentation is the bare minimum that you should provide when writing
a routine, so that problems such as registers being changed unexpectedly are easier to
track down. In order to do this when the operating system routines are used (e.g. the SWI
WriteC call), you have to know how those routines affect the registers. This information
should be provided in the system documentation. For now, we assume that no registers
are altered except those in which results are returned, e.g. R0 in SWI ReadC.

In the routine process we use the ability to (a) set the C flag from the result of shifting an
<rhs> operand, and (b) preserve the state of the Z flag over the ADC by not specifying the S
option. This enables us to write an efficient three-instruction version of the BASIC loop.

The routine output assumes that the codes of the digit symbols run contiguously from 0, 1,
...9. Using this assumption it is a simple matter to convert the binary number 1..8
(remember &00 will never have its 1 bits counted) into the equivalent printable code. As
the ASCII code exhibits the desired contiguous property, and is almost universally used
for character representation, the assumption is a safe one.

As none of the routines change the link register, R14, they all return using a simple move
from the link register to the PC. We do not bother to use MOVS to restore the flags too, as
they are not expected by the main program to be preserved.

If a subroutine calls another one using BL, then the link register will be overwritten with
the return address for this later call. In order for the earlier routine to return, it must
preserve R14 before calling the second routine. As subroutines very often call other

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

16 of 26

routines (i.e. are 'nested'), to an arbitrary depth, some way is needed of saving any number
of return addresses. The most common way of doing this is to save the addresses on the
stack.

The program fragment below shows how the link register may be saved at the entry to a
routine, and restored directly into the PC at the exit. Using this technique, any other
registers which have to be preserved by the routine can be saved and restored in the same
instructions:

;
;subEg. This is an example of using the stack to save
;the return address of a subroutine. In addition, R0,R1
;and R2 are preserved.
;
.subEg
STMFD (sp)!,{R0-R2,link};Save link and R0-R2
... ;Do some processing
...
LDMFD (sp)!,{R0-R2,pc}^ ;Load PC, flags and R0-R2
;

The standard forms of LDM and STM are used, meaning that the stack is a 'full, descending'
one. Write -back is enabled on the stack pointer, since it almost always will be for stacking
operations, and when the PC is loaded from the stack the flags are restored too, due to the
^ in the instruction.

Note that if the only 'routines' called are SWI ones, then there is no need to save the link
register, R14, on the stack. Although SWI saves the PC and flags in R14, it is the supervisor
mode's version of this register which is used, and the user's one remains intact.

Parameter passing

When values are passed to a routine, they are called the parameters, or arguments, of the
routine. A routine performs some general task. When supplied with a particular set of
arguments, it performs a more specific action (it has been parameterized, if you like), and
the job it performs is usually the same for a particular set of arguments. When a routine
returns one or more values to its caller, these values are known as the results of the
routine.

The term 'subroutine' is usually applied to a primitive operation such as branch and link,
which enables a section of code to be called then returned from. When a well-defined
method of passing parameters is combined with the basic subroutine mechanism, we
usually call this a procedure. For example, output in the example above is a procedure
which takes a number between 0 and 9 in R1 and prints the digit corresponding to this.
When a procedure is called in order to obtain the results it returns, it is called a function.

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

17 of 26

You may have heard the terms procedure and function in relation to high-level languages.
The concept is equally valid in assembler, and when the procedures and functions of a
high-level language are compiled (i.e. converted to machine code or assembler) they use
just the primitive subroutine plus parameter passing mechanisms that we describe in this
section.

In the example program of the previous section, the BASIC version used global variables
as parameters and results, and the assembler version used registers. Usually, high-level
languages provide a way of passing parameters more safely than using global variables.
The use of globals is not desirable because (a) the caller and callee have to know the name
of the variable being used and (b) global variables are prone to corruption by routines
which do not 'realise' they are being used elsewhere in the program.

Using registers is just one of the ways in which arguments and results can be passed
between caller and callee. Other methods include using fixed memory areas and the stack.
Each method has its own advantages and drawbacks. These are described in the next few
sections.

Register parameters

On a machine like the ARM, using the registers for the communication of arguments and
results is the obvious choice. Registers are fairly plentiful (13 left after the PC, link and
stack pointer have been reserved), and access to them is rapid. Remember that before the
ARM can perform any data processing instructions, the operands must be loaded into
registers. It makes sense then to ensure that they are already in place when the routine is
called.

The operating system routines that we use in the examples use the registers for parameter
passing. In general, registers which are not used to pass results back are preserved during
the routine, i.e. their values are unaltered when control passes back to the caller. This is a
policy you should consider using when writing your own routines. If the procedure itself
preserves and restores the registers, there is no need for the caller to do so every time it
uses the routine.

The main drawback of register parameters is that they can only conveniently be used to
hold objects up to the size of a word - 32-bits or four bytes. This is fine when the data
consists of single characters (such as the result of SWI ReadC) and integers. However, larger
objects such as strings of characters or arrays of numbers cannot use registers directly.

Reference parameters

To overcome the problem of passing large objects, we resort to a slightly different form of
parameter passing. Up until now, we have assumed that the contents of a register contain

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

18 of 26

the value of the character or integer to be passed or returned. For example, when we use
the routine called process in the earlier example, R0 held the value of the character to be
processed, and on exit R1 contained the value of the count of the number one bits. Not
surprisingly, this method is called call-by-value.

If instead of storing the object itself in a register, we store the object's address, the size
limitations of using registers to pass values disappear. For example, suppose a routine
requires the name of a file to process. It is obviously impractical to pass an arbitrarily long
string using the registers, so we pass the address of where the string is stored in memory
instead.

The example below shows how a routine called wrchS might be written and called. WrchS
takes the address of a string in R1, and the length of the string in R2. It prints the string
using SWI WriteC.

Note that the test program obtains the address in a position-independent way, using ADR.
The first action of wrchS is to save R0 and the link register (containing the return address)
onto the stack. The use of stacks for holding data was mentioned in ChapterThree, and we
shall have more to say about them later. We save R0 because the specification in the
comments states that all registers except R1 and R2 are preserved. Since we need to use R0
for calling SWI WriteC, its contents must be saved.

The main loop of the routine is of the WHILE variety, with the test at the top. This enables it
to cope with lengths of less than or equal to zero. The SUBS has the dual effect of
decreasing the length count by one and setting the flags for the termination condition. An
LDRB is used to obtain the character from memory, and post -indexing is used to
automatically update the address in R1.

DIM org 200
sp = 13
link = 14
cr = 13 : lf = 10
WriteC = 0
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;
;Example showing the use of wrchS
;
.testWrchS
STMFD (sp)!,{link} ;Save return address
ADR R1, string ;Get address of string
MOV R2,#strEnd-string ;Load string length
BL wrchS ;Print it
LDMFD (sp)!,{PC} ;Return
;
.string
EQUS "Test string" ;The string to be printed
EQUB cr

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

19 of 26

EQUB lf
.strEnd
;
;
;Subroutine to print a string addressed by R1
;R2 contains the number of bytes in the string
;On exit, R1 points the to byte after the string
; R2 contains -1
;All other registers preserved
.wrchS
STMFD (sp)!, {R0,link} ;Save R0 and return address
.wrchsLp
SUBS R2, R2, #1 ;End of string?
LDMMIFD (sp)!, {R0,PC} ;Yes, so exit
LDRB R0, [R1], #1 ;Get a char and inc R1
SWI WriteC ;Print this character
B wrchsLp ;Next char
]
NEXT
CALL testWrchS

When the LDMMI is executed we restore R0 and return to the caller, using a single
instruction. If we had not stored the link on the stack (as we did in the first instruction), an
extra MOV pc,link would have been required to return.

Call-by-reference, or call -by-address is the term used when parameters are passed using
their addresses instead of their values. When high-level languages use call-by-reference
(e.g. var parameters in Pascal), there is usually a motive beyond the fact that registers
cannot be used to store the value. Reference parameters are used to enable the called
routine to alter the object whose address is passed. In effect, a reference parameter can be
used to pass a result back, and the address of the result is passed to the routine in a
register.

To illustrate the use of reference results, we present below a routine called readS. This is
passed the address of an area of memory in R1. A string of characters is read from the
keyboard using SWI ReadC, and stored at the given address. The length of the read string is
returned in R0.

DIM org 100, buffer 256
WriteC = 0
ReadC = 4
NewLine = 3
cr = &0D
sp = 13
link = 14
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;
;readS. Reads a string from keyboard to memory
;addressed by R1. The string is terminated by the character
;&0D (carriage return) On exit R0 contains the length of
;the string, including the CR

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

20 of 26

;All other registers are preserved
;
.readS
STMFD (sp)!, {link} ;Save return address
MOV R2, #0 ;Init the length
.readSlp
SWI ReadC ;Get char in R0
TEQ R0, #cr ;Was it carriage return?
SWINE WriteC ;Echo the character if not
STRB R0, [R1, R2] ;Store the char
ADD R2, R2, #1 ;Increment the count
BNE readSlp ;If not CR, loop
SWI NewLine ;Echo the newline
MOV R0, R2 ;Return count in R0 for USR
LDMFD (sp)!, {PC} ;Return
]
NEXT
B%=buffer
PRINT"String: ";
len%=USR readS
PRINT"Length was ";len%
PRINT"String was "$buffer

This time, a REPEAT-type loop is used because the string will always contain at least one
character, the carriage return. Of course, a routine such as this would not be very practical
to use: there is no checking for a maximum string length; no action on special keys such as
DELETE or ESCAPE is taken. It does, however, show how a reference parameter might be
used to pass the address of a variable which is to be updated by the routine.

Parameter blocks

A parameter block, or control block, is closely related to reference parameters. When we
pass a parameter block to a routine, we give it the address of an area of memory in which
it may find one or more parameters. For example, suppose we wrote a routine to save an
area of memory as a named file on the disk drive. Several parameters would be required:

? Name of the file on the disk
? Start address of data
? End address (or length) of data
? Load address of data
? Execution address (in case it is a program)
? Attributes (read, write etc.)

Now, all of these items may be passed in registers. If we assume the name is passed by
address and has some delimiting character on the end, six registers would be required.
Alternatively, the information could be passed in a parameter block, the start address of
which is passed in a single register. The file save routine could access the component parts
of the block using, for example

LDR [base,#offset]

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

21 of 26

where base is the register used to pass the start address, and offset is the address of the
desired word relative to base.

As the address of the parameter block is passed to the routine,the parameters may be
altered as well as read. Thus parameter blocks are effectively reference parameters which
may be used to return information in addition to passing it. For example, the parameter
block set up for a disk load operation could have its entries updated from the data stored
for the file in the disk catalog (load address, length etc.)

Parameter blocks are perhaps less useful on machines with generous register sets like the
ARM than on processors which are less well-endowed, e.g. 8-bit micros such as the 6502.
However, you should remember the advantage of only one register being needed to pass
several parameters, and be ready to use the technique if appropriate.

Stack parameters

The final parameter passing technique which we will describe uses the stack to store
arguments and results. In chapter three we described the LDM and STM instructions, for
which the main use is dealing with a stack-type structure. Information is pushed on to a
stack using STM and pulled from it using LDM. We have already seen how these instructions
are used to preserve the return address and other registers.

To pass parameters on the stack, the caller must push them just before calling the routine.
It must also make room for any results which it expects to be returned on the stack. The
example below calls a routine which expects to find two arguments on the stack, and
returns a single result. All items are assumed to occupy a single word.

;
;StackEg. This shows how the stack might be used
;to pass arguments and receive results from a stack.
;Before entry, two arguments are pushed, and on exit a
;single result replaces them. ;
.stackEg
STMFD (sp)!,{R0,R1} ;Save the arguments
BL stackSub ;Call the routine
LDMFD (sp)!,{R0} ;Get the result
ADD sp,sp,#8 ;'Lose' the arguments
...
...
.stackSub

LDMFD (sp)!,{R4,R5} ;Get the arguments
... ;Do some processing
...
STMFD (sp)!,{R2} ;Save the result
MOV pc,link ;Return

Looking at this code, you may think to yourself 'what a waste of time.' As soon as one

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

22 of 26

routine pushes a value, the other pulls it again. It would seem much more sensible to
simply pass the values in registers in the first place. Notice, though, that when stackSub is
called, the registers used to set-up the stack are different from those which are loaded
inside the routine. This is one of the advantages of stacked parameters: all the caller and
callee need to know is the size, number and order of the parameters, not (explicitly) where
they are stored.

In practice, it is rare to find the stack being used for parameter passing by pure assembly
language programs, as it is straightforward to allocate particular registers. Where the stack
scheme finds more use is in compiled high-level language procedures. Some languages,
such as C, allow the programmer to assume that the arguments to a procedure can be
accessed in contiguous memory locations. Moreover, many high-level languages allow
recursive procedures, i.e. procedures which call themselves. Since a copy of the
parameters is required for each invocation of a procedure, the stack is an obvious place to
store them. See the Acorn ARM Calling Standard for an explanation of how high-level
languages use the stack.

Although the stack is not often used to pass parameters in assembly language programs,
subroutines frequently save registers in order to preserve their values across calls to the
routine. We have already seen how the link register (and possibly others) may be saved
using STM at the start of a procedure, and restored by LDM at the exit. To further illustrate
this technique, the program below shows how a recursive procedure might use the stack
to store parameters across invocations.

The technique illustrated is very similar to the way parameters (and local variables) work
in BBC BASIC. All variables are actually global. When a procedure with the first line

DEF PROCeg(int%)

is called using the statement PROCeg(42), the following happens. The value of int% is
saved on the stack. Then int% is assigned the value 42, and this is the value it has
throughout the procedure. When the procedure returns using ENDPROC, the previous value
of int% is pulled from the stack, restoring its old value.

The assembly language equivalent of this method is to pass parameters in registers. Just
before a subroutine is called, registers which have to be preserved across the call are
pushed, and then the parameter registers are set-up. When the routine exits, the saved
registers are pulled from the stack.

There are several routines which are commonly used to illustrate recursion. The one used
here is suitable because of its simplicity; the problem to be solved does not get in the way
of showing how recursion is used. The Fibonacci sequence is a series of numbers thus:

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

23 of 26

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

where each number is the sum of its two predecessors. It can be expressed mathematically
in terms of some functions:

f(0) = 0

f(1) = 1

f(n) = f(n-2) + f(n-1)

where f(n) means the nth number in the sequence starting from zero. It can easily be
translated into a BASIC function:

DEF FNfib(n) IF n<=1 THEN =n ELSE =FNfib(n-2)+FNfib(n-1)

To convert this into ARM assembler, we will assume that the number n is passed in R1 and
the result fib(n) returned in R0.

DIM org 200
link=14
sp=13
FOR pass=0 TO 2 STEP 2P%=org
[opt pass
;Fibonacci routine to return fib(n)
;On entry, R1 contains n
;On exit, R0 contains fib(n), R1 preserved, R2 corrupt
;
.fib
CMP R1,#1 ;See if it's an easy case
MOVLE R0,R1 ;Yes, so return it in R0
MOVLE PC,link ;And return
STMFD (sp)!,{link} ;Save return address
SUB R1,R1,#2 ;Get fib(n-2) in R0
BL fib
STMFD (sp)!,{R0} ;Save it on the stack
ADD R1,R1,#1 ;Get fib(n-1) in R0
BL fib
LDMFD (sp)!,{R2} ;Pull fib(n-2)
ADD R0,R0,R2 ;Add fib(n-2) and fib(n-1) in R0
ADD R1,R1,#1 ;Restore R1 to entry value
LDMFD (sp)!,{PC} ;Return
]
NEXTFOR B%=0 TO 25
PRINT "Fib(";B%") is ";USR fib
NEXT B%

The routine does not use the stack in exactly the same way as BBC BASIC, but the saving
of intermediate results on the stack enables fib to be called recursively in the same way.
Note that it is important that on return R1 is preserved, i.e. contains n, as specified in the
comments. This is because whenever fib is called recursively the caller expects R1 to be

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

24 of 26

left intact so that it can calculate the next value correctly. In the cases when R1=0 or 1 on
entry it is clearly preserved; in the other cases, by observation R1 is changed by -2, +1 and
+1, i.e. there is no net change in its value.

You should note that, like a lot of routines that are expressed elegantly using recursion,
this Fibonacci program becomes very inefficient of time and stack space for quite small
values of n. This is due to the number of recursive calls made. (For an exercise you could
draw a 'tree' of the calls for some start value, say 6.) A better solution is a counting loop.
This is expressed in BASIC and ARM assembler below.

DEF FNfib(n)
IF n <= 1 THEN =n
LOCAL f1,f2
f2=0 : f1 = 1
FOR i=0 TO n-2
f1 = f1+f2
f2 = f1-f2
NEXT i
= f1
DIM org 200
i = 2 : REM Work registers
f1 = 3
f2 = 4
sp = 13
link = 14
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;fib - using iteration instead of recursion
;On entry, R1 = n
;On exit, R0 = fib(n)
;
.fib
CMP R1,#1 ;Trivial test first
MOVLE R0,R1
MOVLE PC,link
STMFD (sp)!,{i,f1,f2,link} ;Save work registers and link
MOV f1,#1 ;Initialise fib(n-1)
MOV f2,#0 ;and fib(n-2)
SUB i,R1,#2 ;Set-up loop count
.fibLp
ADD f1,f1,f2 ;Do calculation
SUB f2,f1,f2
SUBS i,i,#1
BPL fibLp ;Until i reaches -1
MOV R0,f1 ;Return result in R0
LDMFD (sp)!,{i,f1,f2,PC};Restore and return
NEXT pass
FOR B%=0 TO 25
PRINT"Fib(";B%;") is ";USR fib
NEXT B%

Summary

The main thrust of this chapter has been to show how some of the familiar concepts of

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

25 of 26

high-level languages can be applied to assembler. Most control structures are easily
implemented in terms of branches, though more complex ones (such as multi-way
branching) can require slightly more work. This is especially true if the code is to exhibit
the desirable property of position-indepence.

We also saw how parameters may be passed between routines - in registers, on the stack,
or in parameter blocks. Using the stack has the advantage of allowing recursion, but is less
efficient than passing information in registers.

ARM Assembly Language Programming - Chapter 5 - Assembly Programming Principles

26 of 26

6. Data Structures

We have already encountered some of the ways in which data is passed between parts of a
program: the argument and result passing techniques of the previous chapter.

In this chapter we concentrate more on the ways in which global data structures are
stored, and give example routines showing typical data manipulation techniques.

Data may be classed as internal or external. For our purposes, we will regard internal data
as values stored in registers or 'within' the program itself. External data is stored in
memory allocated explicitly by a call to an operating system memory management
routine, or on the stack.

6.1 Writing for ROM

A program's use of internal memory data may have to be restricted to read-only values. If
you are writing a program which might one day be stored in a ROM, rather than being
loaded into RAM, you must bear in mind that performing an instruction such as:

STR R0, label

will not have the desired effect if the program is executing in ROM. So, you must limit
internal references to look-up tables etc. if you wish your code to be ROMmable. For
example, the BBC BASIC interpreter only accesses locations internal to the program when
performing tasks such as reading the tables of keywords or help information.

A related restriction on ROM code is that it should not contain any self-modifying
instructions. Self-modifying code is sometimes used to alter an instruction just before it is
executed, for example to perform some complex branch operation. Such techniques are
regarded as bad practice, and something to be avoided, even in RAM programs.
Obviously if you are tempted to write self-modifying code, you will have to cope with
some pretty obscure bugs if the program is ever ROMmed.

Finally, the need for position-independence is an important consideration when you write
code for ROM. A ROM chip may be fitted at any address in the ROM address space of the
machine, and should still be expected to work.

The only time it is safe to write to the program area is in programs which will always,
always, be RAM-based, e.g. small utilities to be loaded from disc. In fact, even RAM-based
programs aren't entirely immune from this problem. The MEMC memory controller chip
which is used in many ARM systems has the ability to make an area of memory 'read-
only'. This is to protect the program from over-writing itself, or other programs in a multi-
tasking system. Attempting to write to such a region will lead to an abort, as described in

ARM Assembly Language Programming - Chapter 6 - Data Structures

1 of 36

Chapter Seven.

It is a good idea, then, to only use RAM which has been allocated explicitly as workspace
by the operating system, and treat the program area as 'read-only'.

6.2 Types of data

The interpretation of a sequence of bits in memory is entirely up to the programmer. The
only assumption the processor makes is that when it loads a word from the memory
addressed by the program counter, the word is a valid ARM instruction.

In this section we discuss the common types of data used in programs, and how they
might be stored.

6.3 Characters

This is probably the most common data type, as communication between programs and
people is usually character oriented. A character is a small integer whose value is used to
stand for a particular symbol. Some characters are used to represent control information
instead of symbols, and are called control codes.

By far the most common character representation is ASCII - American Standard Code for
Information Interchange. We will only be concerned with ASCII in this book.

Standard ASCII codes are seven bits - representing 128 different values. Those in the range
32..126 stand for printable symbols: the letters, digits, punctuation symbols etc. An
example is 65 (&41), which stands for the upper-case letter A. The rest 0..31 and 127 are
control codes. These codes don't represent physical characters, but are used to control
output devices. For example, the code 13 (&0D) is called carriage return, and causes an
output device to move to the start of the current line.

Now, the standard width for a byte is eight bits, so when a byte is used to store an ASCII
character, there is one spare bit. Previously (i.e. in the days of punched tape) this has been
used to store a parity bit of the character. This is used to make the number of 1 bits in the
code an even (or odd) number. This is called even (or odd) parity. For example, the binary
of the code for the letter A is 1000001. This has an even number of one bits, so the parity bit
would be 0. Thus the code including parity for A is 01000001. On the other hand, the code
for C is 1000011, which has an odd number of 1s. To make this even, we would store C
with parity as 11000011. Parity gives a simple form of checking that characters have been
sent without error over transmission lines.

As output devices have become more sophisticated and able to display more than the
limited 95 characters of pure ASCII, the eighth bit of character codes has changed in use.

ARM Assembly Language Programming - Chapter 6 - Data Structures

2 of 36

Instead of this bit storing parity, it usually denotes another 128 characters, the codes for
which lie in the range 128..255. Such codes are often called 'top-bit-set' characters, and
represent symbols such as foreign letters, the Greek alphabet, symbol 'box-drawing'
characters and mathematical symbols.

There is a standard (laid down by ISO, the International Standards Organisation) for top-
bit-set codes in the range 160..255. In fact there are several sets of characters, designed for
different uses. It is expected that many new machines, including ARM-based ones will
adopt this standard.

The use of the top bit of a byte to denote a second set of character codes does not preclude
the use of parity. Characters are simply sent over transmission lines as eight bits plus
parity, but only stored in memory as eight bits.

When stored in memory, characters are usually packed four to each ARM word. The first
character is held in the least significant byte of the word, the second in the next byte, and
so on. This scheme makes for efficient processing of individual characters using the LDRB
and STRB instructions.

In registers, characters are usually stored in the least significant byte, the other three bytes
being set to zero. This is clearly wise as LDRB zeroes bits 8..31 of its destination register, and
STRB uses bits 0..7 of the source register as its data.

Common operations on registers are translation and type testing. We cover translation
below using strings of characters. Type testing involves discovering if a character is a
member of a given set. For example, you might want to ascertain if a character is a letter.
In programs which perform a lot of character manipulation, it is common to find a set of
functions which return the type of the character in a standard register, e.g. R0.

These type-testing functions, or predicates, are usually given names like isLower (case) or
isDigit, and return a flag indicating whether the character is a member of that type. We
will adopt the convention that the character is in R0 on entry, and on exit all registers are
preserved, and the carry flag is cleared if the character is in the named set, or set if it isn't.
Below are a couple of examples: isLower and isDigit:

DIM org 100
sp = 1
link =14
WriteI = &100
NewLine = 3
Cflag = &20000000 : REM Mask for carry flag
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;
;Character type-testing predicates.

ARM Assembly Language Programming - Chapter 6 - Data Structures

3 of 36

;On entry, R0 contains the character to be tested
;On exit C=0 if character in the set, C=1 otherwise
;All registers preserved
;
.isLower
CMP R0, #ASC"a" ;Check lower limit
BLT predFail ;Less than so return failure
CMP R0, #ASC"z"+1 ;Check upper limit
MOV pc, link ;Return with appropriate Carry
.predFail
TEQP pc, #Cflag ;Set the carry flag
MOV pc, link ;and return
;
.isDigit
CMP R0, #ASC"0" ;Check lower limit
BLT predFail ;Lower so fail
CMP R0, #ASC"9"+1 ;Check upper limit
MOV pc, link ;Return with appropriate Carry
;
;Test for isLower and isDigit
;If R0 is digit, 0 printed; if lower case, a printed
;
.testPred
STMFD (sp)!,{link}
BL isDigit
SWICC WriteI+ASC"0"
BL isLower
SWICC WriteI+ASC"a"
SWI NewLine
LDMFD (sp)!,{pc}
;
]
NEXT pass
REPEAT
INPUT"Character ",c$
A%=ASCc$
CALL testPred
UNTIL FALSE

The program uses two different methods to set the carry flag to the required state. The first
is to use TEQP. Recall from Chapter Three that this can be used to directly set bits of the
status register from the right hand operand. The variable Cflag is set to &20000000, which
is bit mask for the carry flag in the status register. Thus the instruction

TEQP pc, #Cflag

will set the carry flag and reset the rest of the result flags. The second method uses the fact
that the CMP instruction sets the carry flag when the <lhs> is greater than or equal to its
<rhs>. So, when testing for lower case letters, the comparison

CMP R0,#ASC"z"+1

will set the carry flag if R0 is greater than or equal to the ASCII code of z plus 1. That is, if
R0 is greater than the code for z, the carry will be set, and if it is less than or equal to it

ARM Assembly Language Programming - Chapter 6 - Data Structures

4 of 36

(and is therefore a lower case letter), the carry will be clear. This is exactly the way we
want it to be set-up to indicate whether R0 contains a lower case letter or not.

Strings of characters

When a set of characters is stored contiguously in memory, the sequence is usually called a
string. There are various representations for strings, differentiated by how they indicate
the number of characters used. A common technique is to terminate the string by a pre-
defined character. BBC BASIC uses the carriage return character &0D to mark the end of
its $ indirection operator strings. For example, the string "ARMENIA" would be stored as the
bytes

A &41
R &52
M &4D
E &45
N &4E
I &49
A &41
cr &0D

An obvious restriction of this type of string is that it can't contain the delimiter character.

The other common technique is to store the length of the string immediately before the
characters - the language BCPL adopts this technique. The length may occupy one or more
bytes, depending on how long a string has to be represented. By limiting it to a single byte
(lengths between 0 and 255 characters) you can retain the byte-aligned property of
characters. If, say, a whole word is used to store the length, then the whole string must be
word aligned if the length is to be accessed conveniently. Below is an example of how the
string "ARMAMENT" would be stored using a one-byte length:

len &08
A &41
R &52
M &4D
A &41
M &4D
E &45
N &4E
T &54

Clearly strings stored with their lengths may contain any character.

Common operations on strings are: copying a string from one place to another, counting
the length of a string, performing a translation on the characters of a string, finding a sub-
string of a string, comparing two strings, concatenating two strings. We shall cover some
of these in this section. Two other common operations are converting from the binary to
ASCII representation of a number, and vice versa. These are described in the next section.

ARM Assembly Language Programming - Chapter 6 - Data Structures

5 of 36

Character translation

Translation involves changing some or all of the characters in a string. A common
translation is the conversion of lower case letters to upper case, or vice versa. This is used,
for example, to force filenames into upper case. Another form of translation is converting
between different character codes, e.g. ASCII and the less popular EBCDIC.

Overleaf is a routine which converts the string at strPtr into upper case. The string is
assumed to be terminated by CR.

DIM org 100, buff 100
cr = &0D
strPtr = 0
sp = 13
link = 14
carryBit = &20000000
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;toUpper. Converts the letters in the string at strPtr
;to upper case. All other characters are unchanged.
;All registers preserved
;R1 used as temporary for characters
;
toUpper
STMFD (sp)!,{R1,strPtr,link};Preserve registers
.toUpLp
LDRB R1, [strPtr], #1 ;Get byte and inc ptr
CMP R1, #cr ;End of string?
LDMEQFD (sp)!,{R1,strPtr,pc} ;Yes, so return
BL isLower ;Check lower case
BCS toUpLp ;Isn't, so loop
SUB R1,R1,#ASC"a"-ASC"A" ;Convert the case
STRB R1,[strPtr,#-1] ;Save char back
B toUpLp ;Next char
;
.isLower
CMP R1, #ASC"a"
BLT notLower
CMP R1, #ASC"z"+1
MOV pc,link
.notLower
TEQP pc,#carryBit
MOV pc,link
]
NEXT
REPEAT
INPUT"String ",$buff
A%=buff
CALL toUpper
PRINT"Becomes "$buff
UNTIL FALSE

The program uses the fact that the upper and lower case letters have a constant difference
in their codes under the ASCII character set. In particular, each lower case letter has a code

ARM Assembly Language Programming - Chapter 6 - Data Structures

6 of 36

which is 32 higher than its upper case equivalent. This means that once it has been
determined that a character is indeed a letter, it can be changed to the other case by adding
or subtracting 32. You can also swap the case by using this operation:

EOR R0, R0, #ASC"a"-ASC"A" ;Swap case

The EOR instruction inverts the bit in the ASCII code which determines the case of the
letter.

Comparing strings

The example routine in this section compares two strings. String comparison works as
follows. If the strings are the same in length and in every character, they are equal. If they
are the same up to the end of the shorter string, then that is the lesser string. If they are the
same until a certain character, the relationship between the strings is the same as that
between the corresponding characters at that position.

strCmp below compares the two byte-count strings at str1 and str2, and returns with the
flags set according to the relationship between them. That is, the zero flag is set if they are
equal, and the carry flag is set if str1 is greater than or equal to str2.

DIM org 200, buff1 100, buff2 100
REM str1 to char2 should be contiguous registers
str1 = 0
str2 = 1
len1 = 2
len2 = 3
index = 4
flags = len2
char1 = 5
char2 = 6
sp = 13
link = 14
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;strCmp. Compare the strings at str1 and str2. On exit,
;all registers preserved, flags set to the reflect the
;relationship between the strings.
;Registers used:
;len1, len2 - the string lengths. len1 is the shorter one
;flags - a copy of the flags from the length comparison
;index - the current character in the string
;char1, char2 - characters from each string
;NB len2 and flags can be the same register
;
.strCmp
;Save all registers
STMFD (sp)!, {str1-char2,link}
LDRB len1, [str1], #1 ;Get the two lengths
LDRB len2, [str2], #1 ;and move pointers on
CMP len1, len2 ;Find the shorter
MOVGT len1, len2 ;Get shorter in len1

ARM Assembly Language Programming - Chapter 6 - Data Structures

7 of 36

MOV flags, pc ;Save result
MOV index, #0 ;Init index
.strCmpLp
CMP index, len1 ;End of shorter string?
BEQ strCmpEnd ;Yes so result on lengths
LDRB char1, [str1, index] ;Get a character from each
LDRB char2, [str2, index]
ADD index, index, #1 ;Next index
CMP char1, char2 ;Compare the chars
BEQ strCmpLp ;If equal, next char
;
;Return with result of last character compare
;Store flags so BASIC can read them
;
STR pc,theFlags
LDMFD (sp)!,{str1-char2,pc}
;
;Shorter string exhausted so return with result of
;the comparison between the lengths
;
.strCmpEnd
TEQP flags, #0 ;Get flags from register
;
;Store flags so BASIC can read them
;
STR pc,theFlags
LDMFD (sp)!, {str1-char2,pc}
;
.theFlags
EQUD 0
]
NEXT pass
carryBit = &20000000
zeroBit = &40000000
REPEAT
INPUT'"String 1 ",s1$,"String 2 ",s2$
?buff1=LENs1$: ?buff2=LENs2$
$(buff1+1)=s1$
$(buff2+1)=s2$
A%=buff1
B%=buff2
CALL strCmp
res = !theFlags
PRINT "String 1 "
IF res AND carryBit THEN PRINT">= "; ELSE PRINT "< ";
PRINT "String 2"
PRINT "String 1 ";
IF res AND zeroBit THEN PRINT"= "; ELSE PRINT"<> ";
PRINT "String 2"
UNTIL FALSE

Finding a sub-string

In text-handling applications, we sometimes need to find the occurrence of one string in
another. The BASIC function INSTR encapsulates this idea.

The call

ARM Assembly Language Programming - Chapter 6 - Data Structures

8 of 36

INSTR("STRING WITH PATTERN","PATTERN")

will return the integer 13, as the sub-string "PATTERN" occurs at character 13 of the first
argument.

The routine listed below performs a function analogous to INSTR. It takes two arguments -
byte-count string pointers - and returns the position at which the second string occurs in
the first one. The first character of the string is character 1 (as in BASIC). If the sub-string
does not appear in the main string, 0 is returned.

For a change, we use the stack to pass the parameters and return the result. It is up to the
caller to reserve space for the result under the arguments, and to 'tidy up' the stack on
return.

DIM org 400,mainString 40, subString 40
str1 = 0
str2 = 1
result = 2
len1 = 3
len2 = 4
char1 = 5
char2 = 6
index = 7
work = 8
sp = 13
link = 14
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;
;instr. Finds the occurence of str2 in str1. Arguments on
;the stack. On entry and exit, the stack contains:
;
; result word 2
; str1 word 1
; str2 <-- sp word 0 plus 10 pushed words
;
;str1 is the main string, str2 the substring
;All registers are preserved. Result is 0 for no match
;
.instr
;Save work registers
STMFD (sp)!,{str1-work,link}
LDR str1, [sp, #(work-str1+2+0)*4] ;Get str1 pointer
LDR str2, [sp, #(work-str1+2+1)*4] ;and str2 pointer
MOV work, str1 ;Save for offset calculation
LDRB len1, [str1], #1 ;Get lengths and inc pointers
LDRB len2, [str2], #1
.inLp1
CMP len1, len2 ;Quick test for failure
BLT inFail ;Substr longer than main string
MOV index, #0 ;Index into strings
.inLp2
CMP index, len2 ;End of substring?
BEQ inSucc ;Yes, so return with str2

ARM Assembly Language Programming - Chapter 6 - Data Structures

9 of 36

CMP index, len1
BEQ inNext ;End of main string so next try
LDRB char1, [str1, index] ;Compare characters
LDRB char2, [str2, index]
ADD index, index, #1 ;Inc index
CMP char1, char2 ;Are they equal?
BEQ inLp2 ;Yes, so next char
.inNext
ADD str1, str1, #1 ;Move onto next start in str2
SUB len1, len1, #1 ;It's one shorter now
B inLp1
.inFail
MOV work, str1 ;Make SUB below give 0
.inSucc
SUB str1, str1, work ;Calc. pos. of sub string
STR str1,[sp,#(work-str1+2+2)*4] ;Save it in result
;Restore everything and return
LDMFD (sp)!,{str1-work,pc}
;
;Example of calling instr.
;Note that in order that the STM pushes the
;registers in the order expected by instr, the following
;relationship must exist. str2 < str1 < result
;
.testInstr
ADR str1,mainString ;Address of main string
ADR str2,subString ;Address of substring
STMFD (sp)!, {str1,str2,result,link} ;Push strings and
BL instr ;room for the result. Call instr.
LDMFD (sp)!, {str1,str2,result} ;Load strings & result
MOV R0,result ;Result in r0 for USR function
LDMFD (sp)!,{pc}
;
]
NEXT
REPEAT
INPUT"Main string 1 ",s1$, "Substring 2 ",s2$
?mainString = LEN s1$
?subString = LEN s2$
$(mainString+1) = s1$
$(subString+1) = s2$
pos = USR testInstr
PRINT "INSTR("""s1$""","""s2$""") =";pos;
PRINT " (";INSTR(s1$,s2$)")"
UNTIL FALSE

The Note in the comments is to act as a reminder of the way in which multiple registers
are stored. STM always saves lower numbered registers in memory before higher numbered
ones. Thus if the correct ordering on the stack is to be obtained, register str2 must be
lower than str1, which must be lower than result. Of course, if this weren't true, correct
ordering on the stack could still be achieved by pushing and pulling the registers one at a
time.

6.4 Integers

The storage and manipulation of numbers comes high on the list of things that computers

ARM Assembly Language Programming - Chapter 6 - Data Structures

10 of 36

are good at. For most purposes, integer (as opposed to floating point or 'real') numbers
suffice, and we shall discuss their representation and operations on them in this section.

Integers come in varying widths. As the ARM is a 32-bit machine, and the group one
instructions operate on 32-bit operands, the most convenient size is obviously 32-bits.
When interpreted as signed quantities, 32-bit integers represent a range of -2,147,483,648 to
+2,147,483,647. Unsigned integers give a corresponding range of 0 to 4,294,967,295.

When stored in memory, integers are usually placed on word boundaries. This enables
them to be loaded and stored in a single operation. Non word-aligned integer require two
LDRs or STRs to move them in and out of the processor, in addition to some masking
operations to 'join up the bits'.

It is somewhat wasteful of memory to use four bytes to store quantities which need only
one or two bytes. We have already seen that characters use single bytes to hold an eight-bit
ASCII code, and string lengths of up to 255 characters may be stored in a single byte. An
example of two-byte quantities is BASIC line numbers (which may be in the range 0..65279
and so require 16 bits).

LDRB and STRB enable unsigned bytes to to transferred between the ARM and memory
efficiently. There may be occasions, though, when you want to store a signed number in a
single byte, i.e. -128 to 127, instead of more usual 0..255. Now LDRB performs a zero-
extension on the byte, i.e. bits 8..31 of the destination are set to 0 automatically. This means
that when loaded, a signed byte will have its range changed to 0..255. To sign extend a
byte loaded from memory, preserving its signed range, this sequence may be used:

LDRB R0, <address> ;Load the byte
MOV R0, R0, LSL #24 ;Move to bits 24..31
MOV R0, R0, ASR #24 ;Move back with sign

It works by shifting the byte to the most significant byte of the register, so that the sign bit
of the byte (bit 7) is at the sign bit of the word (bit 31). The arithmetic shift right then
moves the byte back again, extending the sign as it does so. After this, normal 32-bit ARM
instructions may be performed on the word.

(If you are sceptical about this technique giving the correct signed result, consider eight-bit
and 32-bit two's complement representation of numbers. If you examine a negative
number, zero and a positive number, you will see that in all cases, bit 7 of the eight-bit
version is the same as bits 8..31 of the 32-bit representation.)

The store operation doesn't need any special attention: STRB will just store bits 0..7 of the
word, and bit 7 will be the sign bit (assuming, of course, that the signed 32-bit number
being stored is in the range -128..+127 which a single byte can represent).

ARM Assembly Language Programming - Chapter 6 - Data Structures

11 of 36

Double-byte (16-bit) operands are best accessed using a couple of LDRBs or STRBs. To load
an unsigned 16-bit operand from an byte-aligned address use:

LDRB R0, <address>
LDRB R1, <address>+1
ORR R0, R0, R1, LSL #8

The calculation of <address>+1 might require an extra instruction, but if the address of the
two-byte value is stored in a base register, pre- or post-indexing with an immediate offset
could be used:

LDRB R0, [addr, #0]
LDRB R1, [addr, #1]
ORR R0, R0, R1, LSL #8

Extending the sign of a two-byte value is similar to the method given for single bytes
shown above, but the shifts are only by 16 bits.

To store a sixteen-bit quantity at an arbitrary byte position also requires three instructions:

STRB R0, <address>
MOV R0, R0, ROR #8
STRB R0, <address>+1

We use ROR #8 to obtain bits 8..15 in the least significant byte of R0. The number can then
be restored if necessary using:

MOV R0, R0, ROR #24

Multiplication and division

Operations on integers are many and varied. The group one instructions cover a good set
of them, but an obvious omission is division. Also, although there is a MUL instruction, it is
limited to results which fit in a single 32-bit register. Sometimes a 'double precision'
multiply, with a 64-bit result, is needed.

Below we present a 64-bit multiplication routine and a division procedure. First, though,
let's look at the special case of multiplying a register by a constant. There are several
simple cases we can spot immediately. Multiplication by a power of two is simply a matter
of shifting the register left by that number of places. For example, to obtain R0*16, we
would use:

MOV R0, R0, ASL #4

as 16=2
4
. This will work just as well for a negative number as a positive one, as long as the

result can be represented in 32-bit two's complement. Multiplication by 2
n
-1 or 2

n
+1 is just

ARM Assembly Language Programming - Chapter 6 - Data Structures

12 of 36

as straightforward:

RSB R0, R0, R0, ASL #n ;R0=R0*(2^n-1)
ADD R0, R0, R0, ASL #n ;R0=R0*(2^n+1)

So, to multiply R0 by 31 (=25-1) and again by 5 (=22+1) we would use:

RSB R0, R0, R0, ASL #5
ADD R0, R0, R0, ASL #2

Other numbers can be obtained by factorising the multiplier and performing several shift
operations. For example, to multiply by 10 we would multiply by 2 then by 5:

MOV R0, R0, R0, ASL #1
ADD R0, R0, R0, ASL #2

You can usually spot by inspection the optimum sequence of shift instructions to multiply
by a small constant.

Now we present a routine which multiplies one register by another and produces a 64-bit
result in two other registers. The registers lhs and rhs are the two source operands and
dest and dest+1 are the destination registers. We also require a register tmp for storing
temporary results.

The routine works by dividing the task into four separate multiplies. The biggest numbers
that MUL can handle without overflow are two 16-bit operands. Thus if we split each of our
32-bit registers into two halves, we have to perform:-

lhs (low) * rhs (low)
lhs (low) * rhs (high)
lhs (high) * rhs (low)
lhs (high) * rhs (high)

These four products then have to be combined in the correct way to produce the final
result. Here is the routine, with thanks to Acorn for permission to reproduce it.

;
; 32 X 32 bit multiply.
; Source operands in lhs, rhs
; result in dest, dest+1
; tmp is a working register
;
.mul64
MOV tmp, lhs, LSR #16 ;Get top 16 bits of lhs
MOV dest+1, rhs, LSR #16 ;Get top 16 bits of rhs
BIC lhs,lhs,tmp,LSL #16 ;Clear top 16 bits of lhs
BIC rhs,rhs,dest+1,LSL#16 ;Clear top 16 bits of rhs
MUL dest, lhs, rhs ;Bits 0-15 and 16-31
MUL rhs, tmp, rhs ;Bits 16-47, part 1
MUL lhs, dest+1, lhs ;Bits 16-47, part 2

ARM Assembly Language Programming - Chapter 6 - Data Structures

13 of 36

MUL dest+1, tmp, dest+1 ;Bits 32-63
ADDS lhs, rhs, lhs ;Add the two bits 16-47
ADDCS dest+1, dest+1, #&10000 ;Add in carry from above
ADDS dest, dest, lhs, LSL #16 ;Final bottom 32 bits
ADC dest+1,dest+1,lhs,LSR#16 ;Final top 32 bits

The worst times for the four MULs are 8 s-cycles each. This leads to an overal worst-case
timing of 40 s-cycles for the whole routine, or 5us on an 8MHz ARM.

The division routine we give is a 32-bit by 32-bit signed divide, leaving a 32-bit result and
a 32-bit remainder. It uses an unsigned division routine to do most of the work. The
algorithm for the unsigned divide works as follows. The quotient (div) and remainder
(mod) are set to zero, and a count initialised to 32. The lhs is shifted until its first 1 bit
occupies bit 31, or the count reaches zero. In the latter case, lhs was zero, so the routine
returns straightaway.

For the remaining iterations, the following occurs. The top bit of lhs is shifted into the
bottom of mod. This forms a value from which a 'trial subtract' of the rhs is done. If this
subtract would yield a negative result, mod is too small, so the next bit of lhs is shifted in
and a 0 is shifted into the quotient. Otherwise, the subtraction is performed, and the
remainder from this left in mod, and a 1 is shifted into the quotient. When the count is
exhausted, the remainder from the division will be left in mod, and the quotient will be in
div.

In the signed routine, the sign of the result is the product of the signs of the operands (i.e.
plus for same sign, minus for different) and the sign of the remainder is the sign of the left
hand side. This ensures that the remainder always complies with the formula:

a MOD b = a - b*(a DIV b)

The routine is listed below:

DIM org 200
lhs = 0
rhs = 1
div = 2
mod = 3
divSgn = 4
modSgn = 5
count = 6
sp = 13
link = 14
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;
;sDiv32. 32/32 bit signed division/remainder
;Arguments in lhs and rhs. Uses the following registers:
;divSgn, modSgn - The signs of the results

ARM Assembly Language Programming - Chapter 6 - Data Structures

14 of 36

;count - bit count for main loop
;div - holds lhs / rhs on exit, truncated result
;mod - hold lhs mod rhs on exit
;
.sDiv32
STMFD (sp)!, {link}
EORS divSgn, lhs, rhs ;Get sign of div
MOVS modSgn, lhs ;and of mod
RSBMI lhs, lhs, #0 ;Make positive
TEQ rhs, #0 ;Make rhs positive
RSBMI rhs, rhs, #0
BL uDiv32 ;Do the unsigned div
TEQ divSgn, #0 ;Get correct signs
RSBMI div, div, #0
TEQ modSgn, #0 ;and of mod
RSBMI mod, mod, #0
;
;This is just so the BASIC program can
;read the results after the call
;
ADR count, result
STMIA count, {div,mod}
LDMFD (sp)!,{pc} ;Return
;
.uDiv32
TEQ rhs, #0 ;Trap div by zero
BEQ divErr
MOV mod, #0 ;Init remainder
MOV div, #0 ;and result
MOV count, #32 ;Set up count
.divLp1
SUBS count, count, #1 ;Get first 1 bit of lhs
MOVEQ pc, link ;into bit 31. Return if 0
MOVS lhs, lhs, ASL #1
BPL divLp1
.divLp2
MOVS lhs, lhs, ASL #1 ;Get next bit into...
ADC mod, mod, mod ;mod for trial subtract
CMP mod, rhs ;Can we subtract?
SUBCS mod, mod, rhs ;Yes, so do
ADC div, div, div ;Shift carry into result
SUBS count, count, #1 ;Next loop
BNE divLp2
.divErr
MOV pc, link ;Return
;
.result
EQUD 0
EQUD 0
]
NEXT pass
@%=&0A0A
FOR i%=1 TO 6
A%=RND : B%=RND
CALL sDiv32
d%=!result : m%=result!4
PRINTA%" DIV ";B%" = ";d%" (";A% DIV B%")"
PRINTA%" MOD ";B%" = ";m%" (";A% MOD B%")"
PRINT
NEXT i%

ARM Assembly Language Programming - Chapter 6 - Data Structures

15 of 36

ASCII to binary conversion

Numbers are represented as printable characters for the benefit of us humans, and stored
in binary for efficiency in the computer. Obviously routines are needed to convert between
these representations. The two subroutines listed in this section perform conversion of an
ASCII string of decimal digits to 32-bit signed binary, and vice versa.

The ASCII-to-binary routine takes a pointer to a string and returns the number
represented by the string, with the pointer pointing at the first non-decimal digit.

DIM org 200
REM Register assignments
bin = 0
sgn = 1
ptr = 3
ch = 4
sp = 13
link = 14
cr = &0D
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
.testAscToBin
;Test routine for ascToBin
;
STMFD (sp)!,{link} ;Save return address
ADR ptr,digits ;Set up pointer to the string
BL ascToBin ;Convert it to binary in R0
LDMFD (sp)!,{PC} ;Return with result
;
.digits
EQUS "-123456"
EQUB cr
;
;ascToBin. Read a string of ASCII digits at ptr,
;optionally preceded by a + or - sign. Return the
;signed binary number corresponding to this in bin.
;
.ascToBin
STMFD (sp)!,{sgn,ch,link}
MOV bin,#0 ;Init result
MOV sgn,#0 ;Init sign to pos.
LDRB ch,[ptr,#0] ;Get possible + or -
CMP ch,#ASC"+" ;If +,just skip
BEQ ascSkp
CMP ch,#ASC"-" ;If -,negate sign and skip
MVNEQ sgn,#0
.ascSkp
ADDEQ ptr,ptr,#1 ;Inc ptr if + or -
.ascLp
LDRB ch,[ptr,#0] ;Read digit
SUB ch,ch,#ASC"0" ;Convert to binary
CMP ch,#9 ;Make sure it is a digit
BHI ascEnd ;If not,finish
ADD bin,bin,bin ;Get bin*10. bin=bin*2
ADD bin,bin,bin,ASL #2 ;bin=bin*5

ARM Assembly Language Programming - Chapter 6 - Data Structures

16 of 36

ADD bin,bin,ch ;Add in this digit
ADD ptr,ptr,#1 ;Next character
B ascLp
.ascEnd
TEQ sgn,#0 ;If there was - sign
RSBMI bin,bin,#0 ;Negate the result
LDMFD (sp)!,{sgn,ch,pc}
]
NEXT pass
PRINT "These should print the same:"
PRINT $digits ' ;USRtestAscToBin

Notice that we do not use a general purpose multiply to obtain bin*10. As this is bin*2*5,
we can obtain the desired result using just a couple of ADDs. As with many of the routines
in this book, the example above illustrates a technique rather than providing a fully -
fledged solution. It could be improved in a couple of ways, for example catching the
situation where the number is too big, or no digits are read at all.

To convert a number from binary into a string of ASCII characters, we can use the
common divide and remainder method. At each stage the number is divided by 10. The
remainder after the division is the next digit to print, and this is repeated until the quotient
is zero.

Using this method, the digits are obtained from the right, i.e. the least significant digit is
calculated first. Generally we want them in the opposite order - the most significant digit
first. To reverse the order of the digits, they are pushed on the stack as they are obtained.
When conversion is complete, they are pulled off the stack. Because of the stack's 'last-in,
first-out' property, the last digit pushed (the leftmost one) is the first one pulled back.

buffSize=12
DIM org 200,buffer buffSize
REM Register allocations
bin = 0
ptr = 1
sgn = 2
lhs = 3
rhs = 4
div = 5
mod = 6
count = 7
len = 8
sp =13
link = 14
cr=&0D
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;
;binToAscii - convert 32-bit two's complement
;number into an ASCII string.
;On entry,ptr holds the address of a buffer
;area in which the ASCII is to be stored.
;bin contains the binary number.

ARM Assembly Language Programming - Chapter 6 - Data Structures

17 of 36

;On exit,ptr points to the first digit (or -
;sign) of the ASCII string. bin = 0
;
.binToAscii
STMFD (sp)!,{ptr,sgn,lhs,rhs,div,mod,link}
MOV len,#0 ;Init number of digits
MOV mod,#ASC"-"
TEQ bin,#0 ;If -ve,record sign and negate
STRMIB mod,[ptr],#1
RSBMI bin,bin,#0
.b2aLp
MOV lhs,bin ;Get lhs and rhs for uDiv32
MOV rhs,#10
BL uDiv32 ;Get digit in mod,rest in div
ADD mod,mod,#ASC"0" ;Convert digit to ASCII
STMFD (sp)!,{mod} ;Save digit on the stack
ADD len,len,#1 ;Inc string length
MOVS bin,div ;If any more,get next digit
BNE b2aLp
;
.b2aLp2
LDMFD (sp)!,{mod} ;Get a digit
STRB mod,[ptr],#1 ;Store it in the string
SUBS len,len,#1 ;Decrement count
BNE b2aLp2
MOV mod,#cr ;End with a CR
STRB mod,[ptr],#1
LDMFD (sp)!,{ptr,sgn,lhs,rhs,div,mod,pc}
;
;
.uDiv32
STMFD (sp)!,{count,link}
TEQ rhs,#0 ;Trap div by zero
BEQ divErr
MOV mod,#0 ;Init remainder
MOV div,#0 ;and result
MOV count,#32 ;Set up count
.divLp1
SUBS count,count,#1 ;Get first 1 bit of lhs
MOVEQ pc,link ;into bit 31. Return if 0
MOVS lhs,lhs,ASL #1
BPL divLp1
.divLp2
MOVS lhs,lhs,ASL #1 ;Get next bit into...
ADC mod,mod,mod ;mod for trial subtract
CMP mod,rhs ;Can we subtract?
SUBCS mod,mod,rhs ;Yes,so do
ADC div,div,div ;Shift carry into result
SUBS count,count,#1 ;Next loop
BNE divLp2
.divErr
LDMFD (sp)!,{count,pc}
]
NEXT pass
A%=-12345678
B%=buffer
CALL binToAscii
PRINT"These should be the same:"
PRINT;A% ' $buffer

ARM Assembly Language Programming - Chapter 6 - Data Structures

18 of 36

As there is no quick way of doing a divide by 10, we use the uDiv32 routine given earlier,
with lhs and rhs set-up appropriately.

6.5 Floating point

Many real-life quantities cannot be stored accurately in integers. Such quantities have
fractional parts, which are lost in integer representations, or are simply too great in
magnitude to be stored in an integer of 32 (or even 64) bits.

Floating point representation is used to overcome these limitations of integers. Floating
point, or FP, numbers are expressed in ASCII as, for example, 1.23, which has a fractional
part of 0.23, or 2.345E6, which has a fractional part and an exponent. The exponent, the
number after the E, is the power of ten by which the other part (2.345 in this example)
must be multiplied to obtain the desired number. The 'other part' is called the mantissa. In

this example, the number is 2.345*106 or 2345000.

In binary, floating point numbers are also split into the mantissa and exponent. There are
several possible formats of floating point number. For example, the size of the mantissa,
which determines how many digits may be stored accurately, and the size of the exponent,
determining the range of magnitudes which may be represented, both vary.

Operations on floating point numbers tend to be quite involved. Even simple additions
require several steps. For this reason, it is often just as efficient to write in a high-level
language when many FP calculations are performed, and the advantage of using
assembler is somewhat diminished. Also, most machines provide a library of floating
point routines which is available to assembly language programs, so there is little point in
duplicating them here.

We will, however, describe a typical floating point format. In particular, the way in which
BBC BASIC stores its floating point values is described.

An FP number in BBC BASIC is represented as five bytes. Four bytes are the mantissa, and
these contain the significant digits of the number. The mantissa has an imaginary binary
point just before its most significant bit. This acts like a decimal point, and digits after the
point represents successive negative powers of 2. For example, the number 0.101
represents 1/2 + 0/4 + 1/8 or 5/8 or 0.625 in decimal.

When stored, FP numbers are in normalised form. This means that the digit immediately
after the point is a 1. A normalised 32-bit mantissa can therefore represent numbers in the
range:

0.10000000000000000000000000000000 to

ARM Assembly Language Programming - Chapter 6 - Data Structures

19 of 36

0.11111111111111111111111111111111

in binary which is 0.5 to 0.9999999998 in decimal.

To represent numbers outside this range, a single byte exponent is used. This can be
viewed as a shift count. It gives a count of how many places the point should be moved to
the right to obtain the desired value. For example, to represent 1.5 in binary floating point,
we would start with the binary value 1.1, i.e. 1 + 1/2. In normalised form, this is .11. To
obtain the original value, we must move the point one place to the right. Thus the
exponent is 1.

We must be able to represent left movements of the point too, so that numbers smaller
than 0.5 can be represented. Negative exponents represent left shifts of the point. For
example, the binary of 0.25 (i.e. a quarter) is 0.01. In normalised form this is 0.1. To obtain
this, the point is moved one place to the left, so the exponent is -1.

Two's complement could be used to represent the exponent as a signed number, but is is
more usual to employ an excess-128 format. In this format, 128 is added to the actual
exponent. So, if the exponent was zero, representing no shift of the point from the
normalised form, it would be stored as 128+0, or just 128. A negative exponent, e.g. -2,
would be stored as 128-2, or 126.

Using the excess-128 method, we can represent exponents in the range -128 (exponent
stored as zero) to +127 (exponent stored as 255). Thus the smallest magnitude we can

represent is 0.5/(2
128

), or 1.46936794E-39. The largest number 0.9999999998*(2
127

), or
1.701411834E38

So far, we have not mentioned negative mantissas. Obviously we need to represent
negative numbers as well as positive ones. A common 'trick', and one which BBC BASIC
uses, is to assume that the most significant bit is 1 (as numbers are always in normalised
form) and use that bit position to store the sign bit: a zero for positive numbers, and 1 for
negative numbers.

We can sum up floating point representation by considering the contents of the five bytes
used to store them in memory.

byte 0 LS byte of mantissa

byte 1 Second LSB of mantissa

byte 2 Second MSB of mantissa

byte 3 MS byte of mantissa. Binary point just to the left of bit 7

byte 4 Exponent, excess-128 form

ARM Assembly Language Programming - Chapter 6 - Data Structures

20 of 36

Consider the number 1032.45. First, we find the exponent, i.e. by what power of two the
number must be divided to obtain a result between 0.5 and 0.9999999. This is 11, as

1032.45/(2
11

)=0.504125976. The mantissa, in binary, is: 0.10000001 00001110 01100110
01100110 or, in hex 81 0E 66 66. So, we would store the number as:

This are the five bytes you would see if you executed the following in BASIC:

DIM val 4 :REM Get five bytes
|val=1032.45 :REM Poke the floating point value
FOR i=0 TO 4 :REM Print the five bytes
PRINT ~val?i
NEXT i

Having described BBC BASIC's floating point format in some detail, we now have to
confess that it is not the same as that used by the ARM floating point instructions. It is,
however, the easiest to 'play' with and understand.

The ARM floating point instructions are extensions to the set described in Chapter Three.
They follow the IEEE standard for floating point. The implementation of the instructions is
initially by software emulation, but eventually a much faster hardware unit will be
available to execute them. The full ARM FP instruction set and formats are described in
Appendix B.

6.6 Structured types

Sometimes, we want to deal with a group of values instead of just single items. We have
already seen one example of this - strings are groups, or arrays, of characters. Parameter
blocks may also be considered a structured type. These correspond to records in Pascal, or
structures in C.

Array basics

We define an array as a sequence of objects of the same type which may be accessed
individually. An index or subscript is used to denote which item in an array is of interest
to us. You have probably come across arrays in BASIC. The statement:

DIM value%(100)

byte 0 LSB = &66

byte 1 2rd LSB = &66

byte 2 2nd MSB = &0E

byte 3 MSB = &81 AND &7F = &01

byte 4 exponent = 11+128 = &8B

ARM Assembly Language Programming - Chapter 6 - Data Structures

21 of 36

allocates space for 101 integers, which are referred to as value%(0) to value%(100). The
number in brackets is the subscript. In assembler, we use a similar technique. In one
register, we hold the base address of the array. This is the address of the first item. In
another register is the index. The ARM provides two operations on array items: you can
load one into the processor, or store one in memory from the processor.

Let's look at a concrete example. Suppose register R0 holds the base address of an array of
four-byte integers, and R1 contains the subscript of the one we want to load. This
instruction would be used:

LDR R2, [R0, R1, LSL #2]

Note that as R1 holds the index, or subscript, of the element, we need to multiply this by
four (using the LSL #2) to obtain the actual offset. This is then added to the base address in
R0, and the word at this address is loaded into R2. There is no ! at the end, so R0 is not
affected by write-back.

If the array was of byte-sized objects, the corresponding load operation would be:

LDRB R2, [R0, R1]

This time there is no scaling of the index, as each item in the array occupies only one byte.

If you are accessing an array of objects which are some inconvenient size, you will need to
scale the index into a byte offset before loading the item. Moreover, further adjustment
might be needed to ensure that the load takes place on word boundaries.

To illustrate the problem of loading odd-sized objects from arbitrary alignments, we give a
routine below to load a five byte floating point value into two registers, mant (the
mantissa) and exp (exponent). The number is stored in memory as a four-byte mantissa
followed by a single -byte exponent. An array of these objects could use two words each,
the first word holding the mantissa and the LSB of the second word storing the mantissa.
It would then be a simple job to load two words from a word-aligned address, and mask
out the unused part of the exponent word.

Using two whole words to store five bytes is wasteful when many elements are used (e.g.
an array of 5000 numbers would waste 15000 bytes), so we obviously have to store the
numbers contiguously. It is quite likely, therefore, that the mantissa and exponent will be
aligned in a way which makes simple LDR instructions insufficient to load the number into
registers.

Consider the value stored starting at address &4001:

ARM Assembly Language Programming - Chapter 6 - Data Structures

22 of 36

Three bytes of the number are held in the three most significant bytes of one word; the last
two bytes are stored at the start of the next word.

The technique we will use is to load the two words which the value straddles, then shift
the registers appropriately so that mant contains the four bytes of the mantissa in the
correct order, and the LSB of exp contains the exponent byte.

On entry to the code, base contains the base address of the array, and off holds the index
(in elements rather than bytes).

ADD off, off, off, LSL #2 ;offset=5*offset
ADD base, base, off ;base=base+5*n
AND off, base, #3 ;Get offset in bytes
BIC base, base, #3 ;Get lower word address
LDMIA base, {mant,exp} ;Load the two words
MOVS off, off, LSL #3 ;Get offset in bits
MOVNE mant, mant, LSR off ;Shift mantissa right
RSBNE base, off, #32 ;Get shift for exponent
ORRNE mant, mant, exp,LSL base ;OR in mantissa
.part
MOVNE exp, exp, LSR off ;Get exponent is LSB
AND exp, exp, #&FF ;Zero high bytes of exp

Notice we use LDMIA to load the two word. The code assumes that the register number of
mant is lower than exp, so that the words are loaded in the correct order.

The last four instructions are all conditional on the byte offset being non-zero. If it is zero,
the value was on a word boundary, and no shifting is required.

Arrays of strings

We have already noted that a string is an array of characters. Sometimes, we want an array
of strings, i.e. an array of character arrays. For example, the BASIC declaration:

DIM name$(10)

gives us an array of 11 strings, name$(0) to name$(10). How do we organise such a

&4000 *****************

&4001 LSB of mantissa

&4002 2nd LSB of mantissa

&4003 2nd MSB of mantissa

&4004 MSB of mantissa

&4005 Exponent

&4006 *****************

&4007 *****************

ARM Assembly Language Programming - Chapter 6 - Data Structures

23 of 36

structure in assembly language? There are two solutions. If each of the strings is to have a
fixed length, the easiest way is to store the strings contiguously in memory. Suppose we
wanted ten strings of ten characters each. This would obviously occupy 100 bytes. If the
base address of these bytes is stored in base, and the subscript of the string we want in
sub, then this code would be used to calculate the address of the start of string sub:

ADD base,base,sub,LSL #3 ;Add sub*8
ADD base,base,sub,LSL #1 ;Add sub*2

After these instructions, base would point to (old) base+10*sub, i.e. the start character of
string number sub.

Storing all the characters of every string can be wasteful if there are many strings and they
can have widely varying lengths. For example, if a lot of the strings in an array contain no
characters for a lot of the time, the storage used for them is wasted. The solution we
present is to use an array of string information blocks instead of the actual characters.

A string information block (SIB) is a structure which describes the address and length of a
string. Unlike the string itself, it is a fixed length, so is more amenable to storing in an
array. BASIC uses SIBs to describe its strings. When you DIM a string array in BASIC, the
only storage allocated is for the appropriate number of SIBs. No character storage is
allocated until you start assigning to the strings.

The format of a BASIC SIB is:

bytes 0 to 3 address of the string

byte 4 current length of the string

When you DIM an array, all entries have their length bytes set to zero. As soon as you
assign something to the string, BASIC allocates some storage for it and fills in the address
part. The way in which BASIC allocates storage for strings is interesting in its own right,
and is described in sectionÊ6.7

To illustrate how we might use an array of SIBs, the routine below takes a base address
and a subscript, and prints the contents of that string.

DIM org 200
sub = 0
base = 1
len = 2
p1 = 3
p2 = 4
argPtr = 9 : REM BASIC's pointer to CALL arguments
WriteC = 0
sp = 13
link = 14

ARM Assembly Language Programming - Chapter 6 - Data Structures

24 of 36

FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;
;Print base$(sub) where base points to the start of
;an array of five-byte block of the format:
; 0..3 pointer to string
; 4 length of string (see section 4.7)
;and sub is the subscript 0..n of the desired
;string. The SIB may be at any byte alignment.
;
.pStr
;Get address of SIB = base+sub*5
ADD base,base,sub,LSL #2 ;base=base+sub*4
ADD base,base,sub ;base=base+sub*1
LDRB len,[base,#4] ;Get string len
TEQ len,#0 ;If zero,nothing to do
MOVEQ pc,link
;
;Arbitrary alignment load of four-byte pointer into
;p1. Address of pointer in base
;
AND sub,base,#3 ;Get offset in bytes
BIC base,base,#3 ;Get lower word address
LDMFD base,{p1,p2} ;Load the two words
MOVS sub,sub,LSL #3 ;Get offset in bits
MOVNE p1,p1,LSR sub ;Shift lower word
RSBNE sub,sub,#32 ;Get shift for high word
ORRNE p1,p1,p2,LSL sub ;ORR in the high word
;
;Now print the string. NB len > 0 so we can test at the
;end of the loop
;
.pStrLp
LDRB R0,[p1],#1 ;Load a character into R0
SWI WriteC ;Print it
SUBS len,len,#1 ;Decrememt the count
BNE pStrLp ;Loop if more
.endPStr
MOV pc,link ;Return
;
;testPstr. This takes a subscipt in sub (r0)
;and a BASIC string array CALL parameter
;and prints the appropriate string
;
.testPstr
STMFD (sp)!,{link}
LDR base,[argPtr] ;Load the address of the
BL pStr ;CALL parm. Print the string
LDMFD (sp)!,{pc}
]
NEXT pass
DIM a$(10)
FOR i%=0 TO 10
a$(i%)=STR$RND
NEXT i%
FOR i%=0 TO 10
A%=i%
PRINT"This should say "a$(i%)": ";
CALL testPstr,a$(0)

ARM Assembly Language Programming - Chapter 6 - Data Structures

25 of 36

PRINT
NEXT i%

Multi-dimensional arrays

A single list of items is not always sufficient. It may be more natural to store items as a
table of two or even more dimensions. A BASIC array declaration of two dimensions is:

This allocates space for a matrix of 36 integers:

We can use such arrays in assembly language by imagining the rows laid out end to end in
memory. Thus the first six words of the array would hold t%(0,0) to t%(0,5). The next six
would store t%(1,0) to t%(1,5) and so on. To calculate the address of t%(a,b) we use
base+a*lim+b, where lim is the limit of the second subscript, which is 6 in this case.

The routine below takes base, sub1 and sub2. It calculates the address of the required
element, assuming each element is 4 bytes (e.g. an integer) and that there are 16 elements
per row.

ADD sub1, sub2, sub1, LSL #4 ;sub1=sub2+16*sub1
ADD base, base, sub1, LSL #2 ;base=base+sub1*4

Once base has been calculated, the usual instruction could be used to load the integer at
that address. In the more general case, the number of elements per row would be stored in
a register, and a general multiply used to multiply sub1 by this limit.

Bit fields

We end this discussion of the basic types of data by reverting to the lowest level of
representation: the bit. We have seen how sequences of bits, usually in multiples of eight,
may be used to represent characters, integers, pointers and floating point numbers.
However, single bits may usefully store information too.

One binary digit can represent two values: 0 or 1. Often this is all we need to distinguish
between two events. A bit used to represent a choice such as yes/no, true/false,

ARM Assembly Language Programming - Chapter 6 - Data Structures

26 of 36

success/failure is called a flag. We already know of several useful flags: the result flags in
the status register. The V flag for example represents overflow/no overflow.

It is common to find in many programs a set of flags which could be grouped together and
stored in a single byte or word. Consider a text editor. There might be flags to indicate
insert/overtype mode, justify/no justify mode, help displayed/no help, case
sensitive/insensitive searches. Each of these would be assigned a bit in the flag byte. The
value given to a flag is that of the bit in that position. Thus we might define the examples
above as:

insMode = &01
juMode = &02
hlpMode = &04
snsMode = &08

There are four main operations on flags: set, clear, invert and test. To set a flag, the ORR
operation is used. For example, to set the insMode flag of register flags:

ORR flags, flags, #insMode

Clearing a flag is achieved using BIC, bit clear. To clear both hlpMode and snsMode:

BIC flags, flags, #hlpMode OR snsMode

To invert a flag we use the EOR operation. This is often called 'toggling a flag', because
applying the operation repeatedly has the effect of switching the flag between the two
values.

To invert the juMode flag:

EOR flags, flags, #juMode

Finally, to test the state of a flag, we use TST. This performs an AND operation, and the
result is zero if the flag is cleared, and non-zero if it is set:

TST flags, #insMode

tests the insert mode flag. If you test more than one flag in a single TST, the result is non-
zero if any of the flags are set, and zero if all of them are cleared. You can also use TEQ to
see if all of a set of flags are set and the rest are cleared. For example,

TEQ flags, #insMode OR juMode

sets the Z flag if insMode and juMode are set and hlpMode and snsModer are cleared.
Otherwise Z is cleared.

ARM Assembly Language Programming - Chapter 6 - Data Structures

27 of 36

As 32 bits are held in a single word, arrays of flags can be stored very efficiently. To
illustrate this, we show Byte magazine's well-known Sieve of Eratosthenes program. This
benchmark is often used to test the speed of a few simple types of operation, for example
when various compilers for a language are being compared. The purpose of the program
is to find prime numbers using a technique attributed to the eponymous Greek
mathematician.

The Sieve technique works as follows. Start with an array of flags, one for each of the
integers from 2 to the maximum prime to be found. All of the flags are set to 'true' initially,
indicating that any number could be a prime. Go through the array looking for the next
'true' bit. The number corresponding to this bit is prime, so output it. Then go through all
of the multiples of this number, setting their bits to 'false' to eliminate them from the
enquiry. Repeat this process till the end of the array.

Byte's version of the Sieve algorithm is slightly different as it starts from the supposition
that all even numbers (except for two) are non-prime, so they are not even included. For
comparison, we give a BBC BASIC version of the algorithm first, then the ARM assembler
one. The BASIC version is shown overleaf.

Each flag is stored in a byte, and the storage for the array of size% bytes is obtained using
a DIM statement. Notice that the program doesn't actually print the primes it discovers,
because the idea of the benchmark is to test the speed of things like array accesses, not
printing. The place in the program where the prime would be printed is shown in a REM.

size% = 8190
DIM flags% size%
count% = 0
FOR i% = 0 TO size%
flags%?i% = TRUE
NEXT i%
FOR i% = 0 TO size%
IF flags%?i% THEN
prime% = i%+i%+3 : REM PRINT prime%
k% = prime%+i%
WHILE k% <= size%
flags%?k% = FALSE
k% += prime%
ENDWHILE
count% += 1
ENDIF
NEXT i%

PRINT count%

In the ARM assembler version, we are eight times more efficient in the storage of the flags,
and use a single bit for each one. Thus 32 flags can be stored in each word of memory. The
ARM version is shown below:

ARM Assembly Language Programming - Chapter 6 - Data Structures

28 of 36

DIM org 2000
REM Register allocations
count = 0
ptr = 1
i = 2
mask = 3
base = 4
prime = 5
k = 6
tmp = 7
size = 8
iter = 9
link = 14
SIZE = 8190
iterations = 10
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;Sieve of Eratosthenes in ARM assembler
;The array of SIZE flags is stored 32 per word from
;address 'theArray'. The zeroth element is stored at bit
;0 of word 0,the 32nd element at bit 0 of word 1, and so
;on. 'Base' is word-aligned
;
;Registers:
; count holds the number of primes found
; mask used as a bit mask to isolate the required flag
; ptr used as a general pointer/offset into the array
; i used as a counting register
; size holds the value SIZE for comparisons
; base holds the address of the start of the array
; prime holds the current prime number
; k holds the current entry being 'crossed out'
; tmp is a temporary
; iter holds the count of iterations
;
.sieve
MOV iter,#iterations
.mainLoop
ADR base,theArray
MVN mask,#0 ;Get &FFFFFFFF, ie all bits set
MOV size,#SIZE AND &FF;Load size with SIZE in 2 steps
ORR size,size,#SIZE AND &FF00
;
;Initialise the array to all 'true'. First store the
;complete words (SIZE DIV 32 of them), then the partial
;word at the end
;
MOV i,#SIZE DIV 32 ;Loop counter = number of words
MOV ptr,base ;Start address for initing array
.initLp
STR mask,[ptr],#4 ;Store a word and update pointer
SUBS i,i,#1 ;Next word
BNE initLp
LDR tmp,[ptr] ;Get last, incomplete word
MOV mask,mask,LSR #32-SIZE MOD 32 ;Clear top bits
ORR tmp,tmp,mask ;Set the bottom bits
STR tmp,[ptr] ;Store it back
MOV i,#0 ;Init count for main loop
MOV count,#0

ARM Assembly Language Programming - Chapter 6 - Data Structures

29 of 36

.lp
MOV ptr,i,LSR #5 ;Get word offset for this bit
MOV mask,#1 ;Get mask for this bit
AND tmp,i,#31 ;Bit no. = i MOD 32
MOV mask,mask,LSL tmp
LDR tmp,[base,ptr,LSL #2] ;Get the word
ANDS tmp,tmp,mask ;See if bit is set
BEQ nextLp ;No so skip
ADD prime,i,i ;Get prime
ADD prime,prime,#3
ADD k,i,prime ;Get intial k
ADD count,count,#1 ;Increment count
.while
CMP k,size ;While k<=size
BGT nextLp
MOV ptr,k,LSR #5 ;Get word for flags[k]
MOV mask,#1
AND tmp,k,#31
MOV mask,mask,LSL tmp
LDR tmp,[base,ptr,LSL #2]
BIC tmp,tmp,mask ;Clear this bit
STR tmp,[base,ptr,LSL #2] ;Store it back
ADD k,k,prime ;Do next one
B while
.nextLp
ADD i,i,#1 ;Next i
CMP i,size
BLE lp
SUBS iter,iter,#1
BNE mainLoop
MOV pc,link ;Return after iter iterations.
;
.theArray
]
REM Reserve the bytes for the array
P%=P%+SIZE/8
NEXT
REM Time 10 iterations, as in Byte
TIME=0
primes = USR sieve
T%=TIME
PRINT"It took ";T%/100" seconds for ";iterations" loops."

Notice the sequence which obtains the mask and offset for a given bit in the array occurs
twice. The first step is to find the word offset of the word which contains the desired
element. There are 32 flags in a word, so the word containing flag i is i DIV 32 words
from the start of the array. The division by 32 is performed using a right shift by five bits.
Next, the position of the desired flag within the word is needed. This is simply i MOD 32,
which is obtained using i AND 31 in the assembler. A mask, which starts off at bit 0, is
shifted by (i MOD 32) places to the left to obtain the correct mask. Finally, to load the word
containing the flag, a scaled indexed load of the form:

LDR reg,[base,offset,LSL #2]

is used, the LSL #2 scaling the word offset which we calculated into a (word-aligned) byte

ARM Assembly Language Programming - Chapter 6 - Data Structures

30 of 36

address.

The difference in the speed of the BASIC and assembler versions is quite dramatic. BASIC
takes 6.72 seconds to perform one iteration of the program. Assembler takes 0.73 seconds
to perform ten of them, which makes it over 90 times faster. A version in assembler which
more closely mirrors the BASIC version, with one byte per flag, takes 0.44 seconds for ten
iterations.

6.7 Memory allocation

Some of the examples of ARM assembler we have already given rely on memory being
available to store data. For example, strings are generally referenced using a pointer to the
characters in memory, and arrays are treated in the same way. In a program that
manipulates a lot of data, some way of managing memory must be provided. For example,
a text editor needs to be able to allocate space to hold the text that the user types, and the
BASIC interpreter needs to allocate space for program lines, variables etc.

The facilities provided by the operating system for the allocation of memory vary greatly
from machine to machine. The UNIX operating system, for example, provides some useful
'library' routines for allocating a given number of bytes, freeing an area so that it can be re -
used later, and extending an area already allocated. On the other hand, a simple operating
system such as the environment provided by an ARM co-processor connected to a BBC
Micro might just hand the program a large chunk of memory and leave the management
of it entirely to the program.

In this section, we illustrate a simple way in which memory allocation may be
implemented, assuming that the program is just handed a large 'pool' of space by the
operating system.

Linked lists

In memory allocation, a structure known as the linked list is often found. A linked list of
objects can be regarded as an array where the elements are not contiguous in memory.
Instead, each element contains explicit information about the address of the next element.
This information is known as the link field of the element. The last item in the list usually
has a special link field value, e.g. zero, to mark it as the end, or may contain a link back to
the first element (this is called a circular linked list).

Linked lists can be illustrated pictorially using boxes and arrows. For example, consider a
linked list of items which contain two words of information in addition to the link. A list
of them might be drawn like this:

ARM Assembly Language Programming - Chapter 6 - Data Structures

31 of 36

The 'head' is a pointer to the first element. This could be stored in a memory location, or in
a register in the ARM. The first field in each element is the link pointer, and this is
followed by two data words. The pointer for the third element does not point anywhere; it
marks the end of the list.

There are many operations that can be performed on linked lists, and large sections of
many books on algorithms and data structures are devoted to them. However, we are only
interested in a couple of simple operations here: removing an item from the front of the
list, and adding a new item to the front of the list.

To remove an item from the front, we just need to replace the head pointer with the link
from the first item. When this is done, the list looks like this:

Notice that item number one is now inaccessible through the list, so in order to use it, a
pointer to it must be 'remembered' somewhere. Notice also that if the item removed was
the last one, the head pointer would be given the end of list value, and would not point at
anything. This is known as an empty list.

To insert an item at the front of the list, two actions are required. First, the head pointer is
copied into the link field of the item to be inserted. Then, the head pointer is changed to
point at this new item.

With this simple level of understanding of linked lists, we can now describe how they are
used in memory allocation schemes.

String allocation

The allocation scheme presented is very similar to the one BBC BASIC uses to allocate
space for its string variables, and so is suitable for that type of application. Operations
which a string allocator must perform are:

Allocate an area. Given a length in bytes, return a pointer to an area where this number of

ARM Assembly Language Programming - Chapter 6 - Data Structures

32 of 36

bytes may be stored.

Free an area. Given a length in bytes, and a pointer, free the area of memory so that it can
be used by another string when required.

Strings in BBC BASIC may be between 0 and 255 bytes long. The allocator always works in
terms of complete words, so strings may occupy between 0 and 64 words. Recall from the
discussion of string information blocks earlier that the length is stored along with the
address of the characters which make up the string. From this length byte, the number of
words required to hold the string can be deduced:

words = (len-1) DIV 4 + 1

The area of memory BASIC uses for its string storage is called the heap. A word-aligned
pointer, which we will call varTop, holds the address of the next free byte on the heap. The
upper limit on the heap is set by the stack, which grows down from the top of memory.

A very simple memory allocation scheme using the heap would work as follows. To
allocate n bytes, calculate how many words are needed, then add this to varTop. If this is
greater than the stack pointer, SP, give a 'No room' error. Otherwise, return the old value of
varTop as the pointer to free space, and update varTop by the appropriate number of bytes.
To free space, do nothing.

This scheme is clearly doomed to failure in the long run, because memory can never be
freed, and so eventually varTop could reach the stack and a 'No room' error be generated.
To solve this, BASIC has a way of 'giving back' storage used by strings. There are 64 linked
lists, one for each possible number of words that a string can occupy. When a request for n
bytes is made, a check is made on the appropriate linked list. If this is not empty, the
address of the first item in the list is returned, and this is removed from the list. If the list is
empty, the storage is taken from varTop as described above. To free n bytes, the area being
freed is simply added to the front of the appropriate linked list.

The algorithms for allocate, free and initialise are shown below in BASIC.

DEF PROCinit
EMPTY = 0
DIM list(64)
FOR i=1 TO 64
list(i) =EMPTY
NEXT i
varTop = <initial value>
ENDPROC
DEF FNallocate(n)
IF n=0 THEN =0
words = (n-1) DIV 4 + 1
IF list(words) <> EMPTY THEN
addr = list(words)

ARM Assembly Language Programming - Chapter 6 - Data Structures

33 of 36

list(words) = !list(words)
ELSE
IF varTop + 4*words > SP THEN ERROR 0,"No room"
addr = varTop
varTop += 4*words
ENDIF
= addr
DEF PROCfree(n,addr)
IF n=0 THEN ENDPROC
words = (n-1) DIV 4 + 1
!addr = list(words)
list(words) = addr
ENDPROC

The ARM assembler versions of these routines rely on a register called workSpace, which
always contains the address of the start of a fixed workspace area. In this example, the first
word of workSpace holds the current value of varTop, and the next 64 words are the
pointers to the free lists. Another register, heapLimit, is assumed to always hold the upper
memory limit that the allocater can use. Here are the ARM versions of the three routines.

heapSize = 1000
DIM org 600,heap heapSize-1
addr = 0
n = 1
offset = 2
words = 3
tmp = 4
heapLimit = 5
workSpace = 6
sp = 13
link = 14
NULL = 0
FOR pass=0 TO 2 STEP 2
P%=org
[opt pass
;Init. Intialise the memory allocation system
;It initialises varTop and sets the 64 linked list
;pointers to 'NULL'
.init
STMFD (sp)!,{link}
ADR workSpace,ws ;Init workspace pointer
BL getVarTop ;Get varTop in tmp.
STR tmp,[workSpace] ;Save it
MOV tmp,#NULL ;Init the pointers
MOV offset,#64 ;Word offset into workSpace
.initLp
STR tmp,[workSpace,offset,LSL #2]
SUBS offset,offset,#1
BNE initLp
LDMFD (sp)!,{PC} ;Return
;
;Alloc. Allocate n bytes, returning address of
;memory in addr, or EMPTY if no room
.alloc
SUBS words,n,#1 ;Return immediately for n=0
MOVMI addr,#NULL
MOVMI PC,link

ARM Assembly Language Programming - Chapter 6 - Data Structures

34 of 36

MOV words,words,LSR #2 ;Divide by four
ADD words,words,#1 ;Plus one
;Get pointer for this list
LDR addr,[workSpace,words,LSL#2]
CMP addr,#NULL ;Is it empty?
LDRNE tmp,[addr] ;No, so unlink
STRNE tmp,[workSpace,words,LSL#2]
MOVNE PC,link ;And return
;Empty list so allocate from varTop
LDR addr,[workSpace]
ADD tmp,addr,words,LSL #2 ;Check for no room
CMP tmp,heapLimit
STRLT tmp,[workSpace] ;Update vartop and return
MOVGE addr,#NULL ;Return NULL if no room
MOV PC,link
;
;free. Take a size (in n) and address (in addr)
;of a string, and link it into the appropriate
;free list.
.free
SUBS words,n,#1 ;Return if for n=0
MOVMI PC,link
MOV words,words,LSR #2 ;Divide by four
ADD words,words,#1 ;Plus one
;Get current head pointer for this size
LDR tmp,[workSpace,words,LSL #2]
STR tmp,[addr] ;Store it in new block
;Update head to point to new block
STR addr,[workSpace,words,LSL #2]
MOV PC,link ;Return
;
;Set tmp to point to 'heap' area
;and set up upper limit of heap
.getVarTop
ADR tmp,heap
ADD heapLimit,tmp,#heapSize
MOV PC,link
;
.ws EQUD 0 ;Slot for varTop pointer
]
REM Reserve space for 64 pointers = 256 bytes
P%=P%+256
NEXT pass

The way in which varTop is initialised depends on the system. In BASIC, for example,
varTop is initialised to the value of LOMEM whenever a CLEAR-type operation is performed.
LOMEM itself is usually set to the top of the BASIC program, but can be altered using an
assignment. These three routines show that a relatively small amount of code can perform
quite sophisticated memory allocation.

Summary

We have seen that most types of data may be loaded into ARM registers and processed
using short sequences of instructions. Simple items may be stored along with the program,
but only if the program is executing in RAM. ROM programs may only access fixed tables

ARM Assembly Language Programming - Chapter 6 - Data Structures

35 of 36

of data within the program area. Other data must be accessed through pointer registers,
using memory allocated by the operating system. Data should be accessed in a position
independent manner.

ARM Assembly Language Programming - Chapter 6 - Data Structures

36 of 36

7. Non-user Modes

In the previous chapters, we have restricted ourselves to discussing the ARM while it is
operating in user mode. For most purposes, this is all that is required. For example, large
ARM programs such as the BBC BASIC interpreter manage to function entirely in user
mode. There are times, however, when a program must execute in one of the other modes
to work correctly. In this chapter, we discuss the characteristics of the non-user modes.

7.1 Extended programmer's model

Register set

As described in Chapter Two, there are four modes in which the ARM may operate. The
bottom two bits of R15 (called s1 and s0) determine the modes, as summarised below:

When the ARM is in a non-user mode, its register set differs slightly from the user mode
model. The numbering of the registers is identical, but some of the higher numbers refer to
physically distinct registers in modes 1 to 3. The complete register model for all modes is
shown overleaf. Each column shows the registers which are visible in mode 0, 1, 2 and 3
respectively.

The register names without a suffix refer to the user registers that we are used to dealing
with. As the diagram shows, each of the non-user modes has at least two registers which
are physically separate from the user mode ones. R14 is the link register, so all modes have
their own link register, and R13 is traditionally used as the stack pointer, so each mode can
have its own stack. FIQ mode has five additional private registers. These are provided so
that important information may be stored in the processor for instant access when FIQ
mode is entered.

In Acorn documentation, the term 'supervisor' modes is used to describe all non-user
modes. We will adopt this convention for the rest of this chapter. Where the actual
processor mode 3 is meant, the term SVC mode will be used.

Here is the extended programmer's model:

s1 s0 Mode

0 0 0 User (USR)

0 1 1 Fast interrupt (FIQ)

1 0 2 Ineterrupt (IRQ)

1 1 3 Supervisor (SVC)

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

1 of 17

Instruction extensions

Although there are no instructions which can only be used in supervisor mode, the
operation of some of the instructions already described in earlier chapters does alter
slightly. These differences are covered for each instruction group below.

Group one

Recall that in user mode, only the N, Z, V and C bits of the status register may be altered
by the data manipulation instructions. The two interrupt mask bits, F and I, and the mode
bits S0 and S1, may be read, but an attempt to alter them is ignored.

In supervisor mode, all eight bits of the status register may be changed. In fact, the very
act of entering a supervisor mode may cause a change in the state of the four special bits.
For example when a SWI instruction is used to call a supervisor mode routine, S0 and S1
are set to decimal 3, i.e. SVC mode, and IRQs are disabled by the I bit being set.

The easiest way to set the F, I, S0 and S1 bits to a required state is to use the TEQP
instruction. Recall that the instruction:

TEQP pc,#value

performs an exclusive-OR of R15 (the PC and status flags) and the immediate value, but
does not store the result anywhere. Because R15 is acting as a left-hand operand, only the
PC bits (2 to 25) are used in the calculation, the status bits being set to 0. Furthermore,
because the P option was specified after TEQ, the result of the exclusive-OR operation on
bits 0, 1 and 26 to 31 of the operands is stored directly into the corresponding bits of R15.
Thus the net result of the instruction is to store 1 bits in R15 where the value has one bits,

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

2 of 17

and 0s where value was zero. You could view TEQP instruction as a special 'load status
register' instruction of the form:

LDSR #value

As an example, suppose we are in SVC mode (S0 = S1 = 1) with interrupts disabled (I = 1),
and want to move to FIQ mode (S0 = 1, S1 = 0) with both types of interrupts disabled (I = F
= 1). The following instruction would achieve the desired result:

TEQP pc,#S0_bit + F_bit + I_bit

The following BASIC assignments would initialise the bit masks for the various status bits,
such as S0_bit, used above:

S0_bit = 1 << 1
S1_bit = 1 << 2
F_bit = 1 << 26
I_bit = 1 << 27
V_bit = 1 << 28
C_bit = 1 << 29
Z_bit = 1 << 30
N_bit = 1 << 31

The TEQP instruction can only be used to store a given pattern of 1s and 0s into the status
bits of R15. What we sometimes need is the ability to affect only some bits without altering
others. This requires more work, as we have to read the current bits, then perform the
desired operation. Suppose we want to disable both types of interrupts without altering
the processor mode (i.e. F = I = 1, S0, S1 unchanged). Here is one way:

MOV temp,pc ;Load current flags
ORR temp,temp,#F_bit+I_bit ;Set interrupt masks
TEQP temp,#0 ;Move new flags into R15

This time, the current flags' states are loaded into a temporary register using the MOV
instruction. Remember that to read the status part of R15, it must appear as a right-hand
operand in a group one instruction. The ORR is used to set the I and F bits without altering
the others. Finally, the TEQP sets the status bits from temp.

As a final example, suppose we want to return to user mode (S0 = S1 = 0) without altering
the rest of the flags. We could use the TST instruction to clear S0 and S1, leaving the other
flags unaltered:

MOV temp,#N_bit+V_bit+C_bit+Z_bit+I_bit+F_bit
TSTP temp,pc

The MOV loads temp with a mask of the bits that are to be unaltered, and the TST does an
AND of this and the current status register, putting the result in R15, as the P option is
specified.

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

3 of 17

Group two

There is only one difference between using LDR and STR in supervisor mode and user
mode. Recall that the post-indexed instructions of the form:

LDR <reg>,[<base>],<offset>

always use write-back, so there is no need to include a ! at the end of the instruction to
specify it. Well, the bit in the instruction code which would specify write-back is used for
something else. It is ignored in user mode, but in supervisor mode it affects the state of a
signal (called SPVMD, described below) which tells peripheral devices if the CPU is
executing in supervisor or user mode.

Usually, when the ARM executes an LDR or STR in supervisor mode, the SPVMD signal
tells the 'outside' world that this is a supervisor mode operation, so that devices like
memory controllers can decide whether the requested data transfer is legal or not. If the T
(for translate) option is given in an STR/LDR instruction, the SPVMD signal is set to indicate
a user mode transfer, even if the CPU is really in supervisor mode. The T option comes
after the optional byte-mode B flag, for example

LDRBT R0,[R1],#1

will load a byte into R0 addressed by R1, after which R1 will be incremented by one.
Because T is present, the instruction will execute with SPVMD indicating user mode, even if
the program is actually running in supervisor.

Note: The T option was included when it was envisaged that user and supervisor mode
programs would have totally separate address spaces, with the former going through
address translation and the latter not. As it turns out, the user address space enforced by
the MEMC chip is actually a sub-set of the supervisor mode address space, so the T option
is not usually needed. Remember also that its use is only valid with post-indexing, where
the ! option is not necessary.

Group three

The LDM instruction provides the ^ option. If present, this specifies that if R15 is loaded by
the instruction, the status bits will be overwritten. If the ^ is absent, the status bits of R15
will be unaffected by an LDM, even if the rest of R15 is loaded. In user mode, only N, Z, V
and C may be overwritten; in supervisor mode, all the status bits are affected.

In supervisor mode, the ^ option is relevant even if R15 is not in the set of registers being
loaded. In this situation, its presence indicates that the user-mode registers should be
loaded, not the ones relevant to the current mode. So, in FIQ mode, for example, the
instruction

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

4 of 17

LDMFD sp,{R0-R14}^

will load the user-mode registers from memory. However, if R15 was in the list of registers
to be loaded, the instruction would have its usual effect of loading the registers
appropriate to FIQ mode set, and the ^ would indicate that the status bits of R15 are to be
loaded.

For STM, there is no corresponding need for ^, since all of R15 is always saved if specified in
the register list. However, in supervisor mode, the presence of ^ in an STM is still relevant.
Usually, an instruction like:

STMFD sp,{R0-R15}

saves all of the registers which are visible in the current mode. For example, if the mode is
SVC, then R0-R12, R13_SVC, R14_SVC and R15 are used. However, if ^ is specified, all
registers saved are taken from the user bank, i.e. this instruction

STMFD sp,{R0-R15}^

would cause R0-R15, all from the user bank of registers, to be saved.

Note that if write-back were specified in such an instruction, then the updated index
register would be written back to the user bank instead of the appropriate supervisor
mode bank. Therefore you should not specify write-back along with ̂ when using the STM
instruction from a supervisor mode.

Group four

The only difference between using branches in user and supervisor mode is that, in BL, the
link register (R14) appropriate to the current mode is used instead of the user R14. This is
as expected, and does not require any special attention.

Group five

When a SWI instruction is executed, the return address and flags are stored in R14_SVC.
This means that when SWI is used from any mode other than SVC, no precautions are
required to save R14 before the SWI is called. However, in SVC mode, executing a SWI will
overwrite the current contents of R14_SVC. Therefore, this register should be preserved
across calls to SWI if its contents are important.

To illustrate this, suppose a routine written to execute in user mode contains a call to the
operating system's write character routine, but no other subroutine calls. It could be
written thus:

;do some stuff

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

5 of 17

SWI WriteC ;Print char, R14_USR is preserved
;do some more stuff
MOV pc,link ;Return using R14

If the same routine is executed in SVC mode, the SWI WriteC would cause the return
address in R14_SVC to be over written. The routine would have to be coded thus to work
correctly:

STMFD (sp)!,{link} ;Save return address
;do some stuff
SWI WriteC ;Print char, R14_SVC is corrupt
;do some more stuff
LDMFD (sp)!,{pc} ;Return using stacked address

Memory map

We have mentioned previously that some ARM systems are fitted with a memory
controller (MEMC) which, amongst other things, translates addresses emanating from the
CPU, performing a mapping from logical addresses to physical addresses. It also controls
the access to other devices, for example ROM and I/O. MEMC controls the access of
various parts of the memory map, restricting the operations which can be performed in
user mode. The SPVMD signal produced by the ARM CPU tells the MEMC if the ARM is
in supervisor mode or not. This enables MEMC to enforce a 'supervisor mode only' rule
for certain locations.

Recall that the bottom 32M bytes of the address space is allocated to 'logical' RAM. This is
divided into pages of between 8K and 32K bytes, up to 128 of them being present. Each
page has a 'protection level' associated with it. There are four levels, 0 being the most
accessible, and 3 being the most restricted. When the processor is in user mode, pages with
protection level 0 may be read and written; pages at level 1 may be read only, and levels 2
and 3 are inaccessible. In supervisor mode, all levels may be read or written without
restriction. (There is also a special form of user mode, controlled by MEMC, called OS
mode. This allows read/write of levels 0 and 1 and reads-only of levels 2 and 3.)

The next 16M bytes of the memory map is set aside for physical RAM. This is only
accessible in supervisor mode. The top 16M bytes is split between ROM and I/O. ROM
may be read in any processor mode, but access to some I/O locations (e.g. those which
control the behaviour of MEMC itself) is restricted to supervisor mode.

When an attempt is made to read or write an area of memory which is inaccessible in the
current mode, an 'exception' occurs. This causes the processor to enter SVC mode and
jump to a pre-defined location. There are various other ways in which user mode may be
left, and these are all described below. Remember, though, that the memory scheme
described in this section only refers to systems which use the Acorn MEMC, and might be
different on your system.

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

6 of 17

7.2 Leaving user mode

There are several circumstances in which a program executing in user mode might enter
one of the other modes. These can be divided roughly into two groups, exceptions and
interrupts. An exception occurs because a program has tried to perform an operation
which is illegal for the current mode. For example, it might attempt to access a protected
memory location, or execute an illegal instruction.

Interrupts on the other hand, occur independently of the program's actions, and are
initiated by some external device signalling the CPU. Interrupts are known as
asynchronous events, because their timing has no relationship to what occurs in the
program.

The vectors

When an exception or interrupt occurs, the processor stops what it is doing and enters one
of the non-user modes. It saves the current value of R15 in the appropriate link register
(R14_FIQ, R14_IRQ or R14_SVC), and then jumps to one of the vector locations which
starts at address &0000000. This location contains a Branch instruction to the routine which
will deal with the event.

There are eight vectors, corresponding to eight possible types of situation which cause the
current operation to be abandoned. They are listed overleaf:

The table shows the address of the vector, what causes the jump there, how the IRQ and
FIQ disable flags are affected (X meaning it's unaffected), and what mode the processor
enters. All events disable IRQs, and RESET and FIQ disable FIQs too. All events except the
interrupts cause SVC mode to be entered.

Note that the FIQ vector is the last one, and the processor has no special use for the

Vector Cause I F Mode

&0000000 RESET 1 1 SVC

&0000004 Undefined instruction 1 X SVC

&0000008 Software interrupt (SWI) 1 X SVC

&000000C Abort (prefetch) 1 X SVC

&0000010 Abort (data) 1 X SVC

&0000014 Address exception 1 X SVC

&0000018 IRQ 1 X IRQ

&000001C FIQ 1 1 FIQ

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

7 of 17

locations immediately following it. This means that the routine to handle a FIQ can be
placed at location directly &1C, instead of a branch to it.

The following sections describe the interrupts and exceptions in detail. It is likely that
most readers will only ever be interested in using the interrupt vectors, and possibly the
SWI and undefined instruction ones. The rest are usually looked after by the operating
system. However, fairly detailed descriptions of what happens when all the vectors are
called are given. If nothing else, this may help you to understand the code that your
system's OS uses to deal with them.

It is important to note that many of the routines entered through the vectors expect to
return to the user program which was interrupted. To do this in a transparent way, all of
the user's registers must be preserved. The PC and flags are automatically saved whenever
a vector is called, so these can easily be restored. Additionally, all the supervisor modes
have at least two private registers the contents or which are hidden from user programs.
However, if the routine uses any registers which are not private to the appropriate mode,
these must be saved and restored before the user program is restarted. If this is not done,
programs will find register contents changing 'randomly' causing errors which are
exceedingly difficult to track down.

7.3 RESET

The RESET signal is used to ensure that the whole system is in a well-defined state from
which it can start operating. RESET is applied in two situations on most systems. Firstly,
when power is first applied to the system, so-called power-on reset circuitry ensures that
the appropriate levels are applied to the RESET signals of the integrated circuits in the
computer. Secondly, there is usually a switch or button which may be used to RESET the
system manually, should this be required.

On typical ARM systems, the MEMC chip, which contains the power-on reset circuitry, is
used to control the resetting of the rest of the computer.

Upon receiving a RESET signal, the ARM immediately stops executing the current
instruction. It then waits in an 'idle' state until the RESET signal is removed. When this
happens, the following steps take place:

? SVC mode is entered
? R15 is saved in R14_SVC
? The FIQ and IRQ disable bits are set
? The PC is set to address &0000000

Although the program counter value when the RESET occurred is saved, it is not likely
that an attempt will be made to return to the program that was executing. Amongst other

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

8 of 17

reasons, the ARM may have been halfway through a long instruction (e.g. STM with many
registers), so the affect of returning is unpredictable. However, the address and status bits
could be printed by the operating system as part of 'debugging' information.

Likely actions that are taken on reset are initialisation of I/O devices, setting up of system
memory locations, possibly ending with control being passed to some user mode program,
e.g. BASIC.

7.4 Undefined instruction

Not all of the possible 32-bit opcodes that the ARM may encounter are defined. Those
which are not defined to do anything are 'trapped' when the ARM attempts to decode
them. When such an unrecognised instruction code is encountered, the following occurs:

? SVC mode is entered
? R15 is saved in R14_SVC
? The IRQ disable bit is set
? The PC is set to address &0000004

The program counter that is stored in R14_SVC holds the address of the instruction after
the one which caused the trap. The usual action of the routine which handles this trap is to
try to decode the instruction and perform the appropriate operation. For example the
Acorn IEEE floating-point emulator interprets a range of floating point arithmetic
instructions. Having done this, the emulator can jump back to the user's program using
the PC saved in R15_SVC.

By trapping undefined instructions in this way, the ARM allows future expansions to the
instruction set to be made in a transparent manner. For example, an assembler could
generate the (currently unrecognised) machine codes for various operations. These would
be interpreted in software using the undefined instruction trap for now, but when a new
version of the ARM (or a co-processor) is available which recognises the instructions, they
would be executed in hardware and the undefined instruction trap would not be
triggered. The only difference the user would notice is a speed-up in his programs.

7.5 Software interrupt

This vector is used when a SWI instruction is executed. SWI is not really an exception, nor is
it a proper interrupt since it is initiated synchronously by the program. It is, however, a
very useful feature since it enables user programs to call routines, usually part of the
operating system, which are executed in the privileged supervisor mode.

When a SWI is executed, the following happens:

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

9 of 17

? SVC mode is entered
? R15 is saved in R14_SVC
? The IRQ disable bit is set
? The PC is set to address &0000008

As with undefined instructions, the PC value stored in R14_SVC is one word after the SWI
itself. The routine called through the SWI vector can examine the code held in the lower 24
bits of the SWI instruction and take the appropriate actions. Most systems have a well-
defined set of operations which are accessible through various SWIs, and open-ended
systems also allow for the user to add his or her own SWI handlers.

To return to the user's program, the SWI routine transfers R14_SVC into R15.

7.6 Aborts and virtual memory

An 'abort' is caused by an attempt to access a memory or I/O location which is out of
bounds to the program that is currently executing. An abort is signalled by some device
external to the ARM asserting a signal on the CPU's ABORT line. In a typical system, this
will be done by the MEMC, which controls all accesses to memory and I/O. Typical
reasons for an abort occurring are attempts to:

? write to a read-only logical RAM page
? access physical RAM or I/O in user mode
? access a supervisor mode-only logical page in user or OS mode
? access an OS mode-only logical page in user mode
? access a logical page which has no corresponding physical page

There are two types of abort, each with its own vector. The one which is used depends on
what the ARM was trying to do when the illegal access took place. If it happened as the
ARM was about to fetch a new instruction, it is known as a pre-fetch abort. If it occurred
while the ARM was trying to load or store data in an LDR/STR/LDM/STM instruction, it is
known as a data abort.

Virtual memory

Except for programming errors, by far the most common cause of an abort is when the
system is running what is known as virtual memory. When virtual memory is used, not all
of the program is kept in physical RAM at once. A (possible majority) part of it is kept on a
fast mass storage medium such as a Winchester disk.

Suppose a computer is fitted with 1M byte of RAM, and it is required that a program 'sees'
a memory space of 4M bytes. This 4M bytes might be located in the first part of the logical
memory map, from address &0000000 to &003FFFFF. On the Winchester disk, 4M bytes

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

10 of 17

are set aside to represent the virtual address space of the program. Now as only 1M byte
RAM is available, only a quarter of this virtual address space can be physically stored in
the computer's RAM. In the diagram overleaf, the first 1M byte of the disk area is loaded
into physical RAM and mapped into the lowest megabyte of the logical address space.

As long as the program only accesses instructions and data which lie in the

first megabyte of the logical address space, a mapping into physical RAM

will be found by the MEMC and no problems will occur. Suppose, however, that the
program attempts to access logical address 2,000,0000. There is no physical RAM which
corresponds to this logical address, so MEMC will signal this fact to the processor using its
ABORT line.

The abort handler program responds to an abort in the following way. First, it discovers
what logical address the program was trying to access. It then allocates a page of physical
RAM which can hold the page of virtual memory corresponding to this address. The
appropriate data is loaded in from the disk, and the logical to physical address map in the
MEMC adjusted so that when the processor next tries to access the location which caused
the abort, the newly-loaded data will be accessed.

Now when a new page of virtual memory is loaded from disk, the previous contents of the
area of physical memory used to store it must be discarded. This means that a range of
addresses which used to be accessible will now cause an abort if an attempt is made to
access them. Moreover, if that page contained data which has changed since it was first
loaded from the disk, it must be re -written to the disk before the new page can be loaded.
This ensures that the virtual memory on the disk is consistent with what is held in the
RAM.

It is up to the software which deals with aborts to decide which page to discard when
fetching a new page from the disk, and whether it needs to be written out before it is
destroyed by the new data. (If the re-allocated page contain a part of the program, or read-

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

11 of 17

only data, then it is not necessary to write it to the disk first, since the copy already stored
there will be correct.) There are several algorithms which are used to decide the way in
which pages are re-allocated in response to aborts (which are often called 'page faults').
For example, the so-called 'least recently used' algorithm will use the page which has not
been accessed for the longest period of time, on the assumption that it is not likely to be
required in the near future.

This may all seem incredibly slow and cumbersome, but in practice demand-paged virtual
memory systems work well for the following reasons. Aborts are relatively infrequent as
programs spend a lot of their time in small loops. ARM systems using MEMC have a fairly
large page size (between 8K and 32K) so a program can spend a lot of its time in a single
page without encountering 'missing' RAM. Additionally, virtual memory is often used on
multi-tasking systems, where more than one program runs at once by sharing the CPU for
short time slots. While the relatively slow transfer of data between RAM and disk is taking
place, another program can be using the CPU. This means that although one program
might be held up waiting for a segment of its virtual address space to be loaded from disk,
another program whose program and data are in physical RAM can proceed.

The subject of virtual memory is a complex one which is covered in a variety of text books.
A good one is 'The Design of the Unix Operating System' by MJ Bach, published by
Prentice-Hall.

Pre-fetch aborts

When a pre-fetch abort occurs, the ARM completes the instruction(s) before the one which
'aborted'. When this instruction comes to be executed, it is ignored and the following takes
place:

? SVC mode is entered
? R15 is saved in R14_SVC
? The IRQ disable bit is set
? The PC is set to address &000000C

The PC value saved is the one after the instruction which caused the abort. The routine
which deals with the pre-fetch abort must perform some action, as outlined above, which
will enable the instruction to be re-tried and this time succeed.

A simple single-tasking (one program at once) operating system running virtual memory
might take the following steps on receiving a pre -fetch abort:

? verify that it is a missing page problem (not access violation)
? enable IRQs
? find a suitable page of physical RAM

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

12 of 17

? load the page corresponding to the required logical address
? set-up MEMC to map the physical to logical page
? re-try the instruction by jumping to R14_SVC minus 4

It is important to re-enable IRQs so that the normal servicing of interrupts is not disturbed
while the new page is being loaded in. The third step may itself be quite involved, since a
decision has to be made about which physical page is suitable for loading in the new
section of the program and whether its current contents must be saved, as mentioned
above.

Data aborts

A data abort is a little more complex, since the ARM is halfway through the instruction by
the time the abort occurs. If the instruction was an LDR or STR, it is abandoned and no
registers are altered (in particular, the base register is unchanged, even if write-back was
specified).

If the instruction was an LDM or STM, the instruction completes (though no registers are
altered in an LDM), and the base register is updated if write-back was enabled. Note that if
the base register was included in the list of registers to be loaded, it is not over-written as
would normally be the case. The (possibly written-back) value is left intact. Then:

? SVC mode is entered
? R15 is saved in R14_SVC
? The IRQ disable bit is set
? The PC is set to address &0000010

This time, R14_SVC is set to the instruction two words after the aborted one, not one. The
abort handler routine must take the following action. It must examine the aborted
instruction to find out the type and address mode, and undo the affect of any adjustment
of the base register due to write-back. It can derive the address of the data which caused
the abort to occur from the base register, and perform a similar paging process to that
described for pre -fetch aborts. It can then re-execute the instruction, by jumping to address
R14_SVC minus 8 using an instruction such as:

SUB pc,link,#8

The time taken to decode the instruction which caused the abort and perform the
appropriate operations varies according to instruction type, number of registers (for
LDM/STM), type of indexing (for LDR/STR) and whether write -back was enabled. Calculations
made from typical abort-handler code result in times of between 20 s+41n-cycles for the
best case and 121 s+36 n-cycles for the worst case. On an 8MHz ARM system, these
translate into approximately 13.4us and 27.1us respectively.

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

13 of 17

7.7 Address exception

An address exception occurs if an attempt is made to access a location outside the range of
the ARM's 26-bit address bus. This can be caused by the effective address (base plus any
offset) of an LDR/STR instruction exceeding the value &3FFFFFF, or if the base register in an
LDM/STM instruction contains a value greater than this.

Note that in the latter case, the exception will only occur if the base register is illegal when
the instruction starts to execute. If it is legal for the first data transfer, and subsequently
exceeds &3FFFFFF having been auto-incremented, no exception occurs. Instead the
address 'wraps round' and subsequent loads or stores take place in the first few locations
of the memory map.

Unlike the aborts described above, the address exception is detected internally by the
ARM, and not by the assertion of a signal by some external device. Like data aborts,
however, the incorrect instruction is abandoned or 'completed' as described above.

On detecting the address error, the ARM causes the following to take place:

? SVC mode is entered
? R15 is saved in R14_SVC
? The IRQ disable bit is set
? The PC is set to address &0000014

If it is required that the instruction be re -started after an address exception has been
generated, the address in R14_SVC minus 4 can be used. However, there is usually not
much point and the usual action is to enter a 'monitor' program which can be used to try
to diagnose what went wrong.

7.8 IRQ

IRQ stands for Interrupt ReQuest, and is one of two interrupt inputs on the ARM. An
external device signals to the ARM that it requires attention by asserting the IRQ line. At
the end of every instruction's execution, the ARM checks for the presence of an IRQ. If an
interrupt request has been made, and IRQs are enabled, the following happens:

? IRQ mode is entered
? R15 is saved in R14_IRQ
? The IRQ disable bit is set
? The PC is set to address &0000018

If IRQs are disabled, because the IRQ disable bit in the status register is set, the interrupt is
ignored and the ARM continues its normal processing. Note that on initiating an IRQ

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

14 of 17

routine, the ARM stes the IRQ, so further IRQs are disabled.

The routine handling the interrupt must take the appropriate action, which will result in
the interrupting device removing its request. For example, a serial communications device
might cause an IRQ when a byte is available for reading. The IRQ routine, on discovering
which device caused the interrupt, would read the data byte presented by the serial chip,
and buffer it somewhere for later reading by a program. The action of reading a byte from
the serial chip typically informs the device that its IRQ has been serviced and it 'drops' the
interrupt request.

On the ARM, the interrupt disable bits and processor mode bits in the status register
cannot be altered in user mode. This means that user mode programs typically execute
with both types of interrupt enabled, so that the 'background' work of servicing
interrupting devices can take place. However, it is sometimes desirable to disable all
interrupts, and there is typically a SWI call provided by the operating system which allows
the interrupt masks to be changed by user mode programs.

The following few paragraphs refer to the writing of both IRQ and FIQ routines.

Interrupt routines must be quick in execution, because while the interrupt is being
serviced, the main program cannot progress. The Acorn IOC (I/O controller) chip provides
some support for dealing with interrupts which makes their processing more efficient. For
example, it provides several IRQ inputs so that many devices may share the ARM's single
IRQ line. These inputs may be selectively enabled/disabled, and a register in the IOC may
be read to find which devices at any time require servicing.

An interrupt routine usually has limitations imposed on what it can do. For example, it is
undesirable for an interrupt handler to re-enable interrupts. If it does, another IRQ may
come along which causes the handler to be called again, i.e. the routine is re-entered.

It is possible to write code which can cope with this, and such routines are known as re-
entrant. Amongst other things, re-entrant routines must not use any absolute workspace,
and must preserve the contents of all registers that they use (which all interrupt routines
should do anyway). The first restriction means that the stack should be used for all
workspace requirements of the routine, including saving the registers. This ensures that
each re-entered version of the routine will have its own work area.

Unfortunately, it is common to find that operating system routines are impossible to write
in a re-entrant fashion. This means that it is not possible to use many operating system
routines from within interrupt service code. A common example is to find that a machine's
output character routine is executed with interrupts enabled and is not re-entrant. (The
reason is that in some circumstances, e.g. clearing the screen, the output routine might
take several milliseconds, or even seconds, and it would be unwise to disable interrupts

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

15 of 17

for this long.)

You should consult your system's documentation to find out the exact restrictions about
using OS routines from within interrupt service code.

Interrupt routines should also be careful about not corrupting memory that might be used
by the 'foreground' program. Using the stack for all workspace is one way to avoid this
problem. However, this is not always possible (for example, if the IRQ routine has to
access a buffer used by the foreground program). You should always endeavour to restrict
the sharing of locations by interrupt and non-interrupt code to a bare minimum. It is very
hard to track down bugs which are caused by locations being changed by something
outside the control of the program under consideration.

To return to the user program, the IRQ routine subtracts 4 from the PC saved in R14_IRQ
and places this in R15. Note that this saved version will have the IRQ disable bit clear, so
as well as returning to the main program, the transfer causes IRQs to be re -enabled.

7.9 FIQ

FIQ stands for Fast Interrupt reQuest. A signal on the ARM's FIQ input causes FIQ mode
to be entered, if enabled. As with IRQs, the ARM checks at the end of each instruction for a
FIQ. If both types of interrupt occur at the same time, the FIQ is handled first. In this
respect, it has a higher priority than IRQ. On responding to a FIQ, the ARM initiates the
following actions:

? FIQ mode is entered
? R15 is saved in R14_FIQ
? The FIQ and IRQ disable bits are set
? The PC is set to address &000001C

Notice that a FIQ disables subsequent FIQs and IRQs, so that whereas a FIQ can interrupt
an IRQ, the reverse is not true (unless the FIQ handler explicitly enables IRQs).

The term 'fast' for this type of interrupt is derived from a couple of its properties. First, FIQ
mode has more 'private' registers than the other supervisor modes. This means that in
order for a FIQ routine to do its job, it has to spend less time preserving any user registers
that it uses than an IRQ routine would. Indeed, it is common for a FIQ routine not to use
any user registers at all, the private ones being sufficient. Secondly, the FIQ vector was
cleverly made the last one. This means that there is no need to have a branch instruction at
address &000001C. Instead, the routine itself can start there, saving valuable microseconds
(or fractions thereof).

To return to the user program, the FIQ routine subtracts 4 from the PC saved in R14_FIQ

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

16 of 17

and places this in R15 (i.e. the PC). Note that this saved version will have the FIQ disable
bit clear, so as well as returning to the interrupted program, the transfer causes FIQs to be
re-enabled.

ARM Assembly Language Programming - Chapter 7 - Non-user Modes

17 of 17

Appendix A

The Co-processor Instructions

In Chapter Seven, we talked about the undefined instruction trap. This occurs when the
ARM tries to execute an instruction which does not have a valid interpretation. There are
over four billion possible combinations of the 32 bits which form an instruction code, so it
is not really surprising that some of these are not defined to do anything meaningful.

There are two types of undefined instruction. The first set are totally illegal, and cause the
undefined instruction vector to be called whenever they are encountered. The second set
are only classed as illegal if there is no co-processor in the system which can execute them.
Unsurprisingly, these are called the co-processor instructions. Note that the ARM itself
treats all undefined instructions as possible co-processor ones. The only thing which
distinguishes the first class from the second is that no co-processor will ever indicate that it
can execute the first type.

Note also that if an instruction is not executed because its condition codes cause it to be
ignored by the ARM, it will never be 'offered' to a co-processor, or trapped as an
undefined instruction. This means that if an instruction is a 'no-operation' due to its
condition code being 'never', the rest of instruction can be anything - it will never cause a
trap to occur.

A.1 ARM/co-processor handshaking

An ARM co-processor is an external chip (or chips), connected to the ARM data and
control buses. When the ARM fails to recognise an instruction, it initiates a co-processor
handshake sequence, using three special signals which connect the two chips together. The
three signals are:

CPI Co-processor instruction.

The ARM asserts this when it encounters any undefined instruction. All co-processors in
the system monitor it, ready to leap into action when they see it become active.

CPA Co-processor absent.

When a co-processor sees that an undefined instruction has been fetched (by reading the
CPI signal), it uses CPA to tell the ARM if it can execute it. There are two parts to the
instruction which determine whether it is 'co-processable'. The first is a single bit which
indicates whether a particular undefined instruction is a proper co-processor one (the bit is
set) or an undefined one (the bit is clear).

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

1 of 10

The second part is the co-processor id. This is a four-bit field which determines which of
16 possible co-processors the instruction is aimed at. If this field matches the co-processor's
id, and the instruction is a true co-processor one, the co-processor lets the ARM know by
setting the CPA signal low. If none of the co-processors recognises the id, or there aren't
any, the CPA line will remain in its normal high state, and the ARM will initiate an
undefined instruction trap.

CPB Co-processor busy

Once a co-processor claims an instruction, the ARM must wait for it to become available to
actually execute it. This is necessary because the co-processor might still be in the middle
of executing a previous undefined instruction. The ARM waits for the co-processor to
become ready by monitoring CPB. This is high while the co-processor is tied up
performing some internal operation, and is taken low when it is ready to accept the new
instruction.

Note that while the ARM is waiting for CPB to go low, the program which executed the
co-processor instruction is effectively halted. However, interrupts are still enabled, so
these may be serviced as usual. When the interrupt routine returns to the co-processor
instruction, it is effectively re -executed from the beginning, with the handshake starting
again from the ARM asserting CPI. Note also that in a multi-tasking system, where several
programs share the processor in turn, switching between tasks is performed under
interrupts, so only the program which executed the co-processor instruction will be held
up by the ARM waiting for the co-processor to become available.

Once the ARM gets the co-processor's undivided attention, they can execute the
instruction between them. There are three classes of instruction, and what happens once
the co-processor is ready depends on which class the instruction belongs to. Simplest are
the internal co-processor operations. These require no further intervention from the ARM,
which continues executing the next instruction, while the co-processor performs the
required operation.

The second class is ARM to (or from) co-processor data transfer. This is where data is
transferred between ARM registers and those on the co-processor. Thirdly, co-processor to
(or from) memory operations may be executed. In these, the ARM provides the addresses,
but data is transferred into or out of the co-processor. In the sections below, each class of
co-processor instruction is described in detail.

Like the ARM, a co-processor can restrict instruction execution to supervisor mode only. It
does this by monitoring the state of the SPVMD signal, described in Chapter Seven. If a
privileged instruction is attempted from user mode, the co-processor could signal this
using the ABORT line, just as the MEMC does. The abort handler code would have to be
able to determine that it was a co-processor rather than the MEMC which created the

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

2 of 10

abort, so that it could deal with it appropriately. However, there is no way in which an
aborted co-processor instruction could be re-started, because the ARM cannot tell where
the instruction originally came from.

A.2 Types of co-processor

Currently, only one co-processor's instruction set has been fully defined. This is the
floating point unit (FPU). As the chips have not been made yet, even these instructions are
treated as undefined ones. However, Acorn has written a program, the floating point
emulator package, which intercepts the undefined instruction trap and emulates in
software the floating point instruction set. The only difference between a system which has
an FPU fitted and one which uses the emulator is the speed in which they execute the
instructions (the emulator is anything between 10 and 100 times slower, depending on the
operation).

Because of the way in which the co-processor protocol works, it is possible to design chips
which recognise successively more of the instruction set. Thus a first generation FPU
might just execute the four simple arithmetic operations in hardware, leaving the emulator
to do the difficult stuff (possible using the FPU instructions to do it). A final version could
implement the whole of the instruction set, leaving the emulator with nothing to do.

The FPU instruction set is described in Appendix B.

Further co-processors might concentrate on other aspects of a system. For example, a
graphics co-processor might execute line-drawing and shape filling instructions,
performing the required calculations and data transfers without placing any burden on the
ARM. Such a chip would probably have its own screen memory so that it would not have
to compete with the ARM for access to RAM.

A.3 Co-processor data instructions

This class of instruction requires no further action from the ARM once it has ascertained
that there is a co-processor capable of dealing with it. However, as mentioned above, the
ARM may still have to wait for the co-processor to become available before it can carry on
with the next instruction.

Because there is no further communication between the ARM and the co-processor, the
latter could incorporate an internal buffer where it stores the instructions for later
execution. As long as there is room in the buffer (commonly called a FIFO for 'first-in, first-
out queue'), the co-processor can accept an instruction immediately. Thus while the ARM
is fetching and executing (defined) instructions from memory, the co-processor could
meanwhile be executing its internal operations in parallel. This is similar to the well
known Acorn Second Processor concept, where an I/O processor accepts commands from

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

3 of 10

a FIFO while the language processor works independently on some other task.

In practice the amount of parallel processing which can be achieved is limited by the fact
that eventually the ARM will want a result from the co-processor; so it will hang around
waiting for the queue of instructions to be executed before it can ask for the required
values. In situations where results are not required, e.g. a graphics co-processor which just
takes commands and executes them without passing information back, the benefits can be
great.

The general mnemonic for this type of instruction is CDP, for co-processor data processing.
There are five operands which define which co-processor is required, which operation is
required, which are the source and destination registers, and one for 'optional extra'
information. Of course, the condition code mnemonic may also be present.

Here is the general form of a CDP instruction:

CDP{cond} <cp#>,<op>,<dest>,<lhs>,<rhs>,{info}

where

? {cond} is the optional condition code
? <cp#> is the co-processor number (0-15)
? <op> is the desired operation code (0-15)
? <dest> is the co-processor destination register (0-15)
? <lhs> and
? <rhs> are the co-processor source registers (0-15)
? {info} is the optional additional information field (0-7)

The last five are all stored as four-bit (or three-bit in the case of info) fields in the
instruction code. Note that except for the co-processor number field, which must be in a
fixed place in the instruction for the system to work, none of the items has to be
interpreted as above. A co-processor can place whatever meaning on the remaining 19 bits
that it wants, but this standard defined by Acorn should at least be used as a starting
point.

A particular type of co-processor would have its co-processor field value fixed, and the
operation code could be given a more meaningful name. For example, the FPU has a <cp#>
of 1 and uses the <op> field to describe one of sixteen possible instructions.

There are only eight registers in the FPU, so the top bit of the <dest>, <lhs> and <rhs>
fields can be used for other purposes. For example, the top bit of the <dest> field is used to
indicate which class of operation is required (dyadic, operating on two values, or monadic,
operating on one).

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

4 of 10

So, although the FPU conforms to the spirit of the standard, it uses the fields to maximise
the use of the bits available in the instruction. A typical FPU instruction is:

ADF {cond}<P>{R} <dest>,<lhs>,<rhs>

where

? <P> is the precision of the operation
? {R} is the optional rounding mode and the other fields are as above.

The <P> and {R} fields are encoded into the 'optional extra' information field and the top
bit of the <lhs> field. For more details about the FPU instruction set, see Appendix B.

As another example, a graphics co-processor might use a CDP instruction to set its colour
palette entries. For example,

CDP 2,<palette>,<entry>,<value>,<component>

where

? 2 is the co-processor number
? <palette> is the op-code for setting the palette
? <entry> is the logical colour number (0-15) (the <dest> field)
? <component> is the red, green or blue component (0-2) (the info field)
? <value> is the intensity for that component (0-65535) (the <lhs> and
? <rhs>) field.

As long as the desired operation can be expressed in the number of bits available, any
operation which requires no further communication between the ARM and co-processor
can use a CDP-type instruction.

A.4 Co-processor register transfer operations

This class of co-processor instruction is used to transfer a single 32-bit value from the ARM
to the co-processor, or from the co-processor to the ARM. The standard mnemonics are MRC
for Move from ARM to Co-processor, and MCR for Move from Co-processor to ARM. The
general forms are:

MRC{cond} <cp#>,<op>,<ARM srce>,<lhs>,<rhs>,{info}
MCR{cond} <cp#>,<op>,<ARM dest>,<lhs>,<rhs>,{info}

where

? <cp#> is the co-processor number (0-15)
? <op> is the operation code required (0-7)

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

5 of 10

? <ARM srce>/<ARM dest> is the ARM source/destination register (0-15)
? <lhs> and <rhs> are co-processor register numbers (0-15)
? {info} is optional extra information (0-7)

Notice that the number of possible opcodes has been halved compared to CDP, as there are
now two directions between which to share the sixteen possible codes.

The MCR instruction does not necessarily have to be a simple transfer from a co-processor
register to an ARM one. A complex internal operation could be performed on <lhs> and
<rhs> before the transfer takes place. The co-processor only signals its readiness to the
ARM when it has performed all the necessary internal work and is prepared to transfer the
result to the ARM.

Again, the exact interpretation of the fields depends on the type of co-processor. An
example of an FPU MRC operation is the 'float' instruction, to convert a 32-bit two's
complement integer (in an ARM register) to a floating point number of some specified
precision and rounding type (in an FPU register):

FLT{cond}<P>{R} <ARM srce>,<lhs>

Similarly, an FPU MCR instruction is the 'fix' operation, which converts a floating point
number (in the FPU) to an integer (in the ARM):

FIX{cond}<P>{R} <ARM dest>,<rhs>

Notice that a different field is used in each case to specify the required FPU register. This
does not concern the programmer, since only a register number (or name) is specified. It is
up to the assembler to generate the appropriate binary op-code.

A graphics co-processor might use this instruction to read or write the current pixel
location. If expressed as two sixteen bit co-ordinates, this could be encoded into a single
32-bit register. The operations might be:

MCR 2,<cursor>,<ARM dest>
MRC 2,<cursor>,<ARM srce>

In this case, only the opcode is set to <cursor> to indicate a cursor operation. The <lhs>,
<rhs> and {info} fields are not used.

Using R15 in MCR/MRC instructions

When R15 in the ARM is specified as the <ARM dest> register, only four bits are ever
affected: the N, Z, V and C flags. The PC part of R15 and the mode and interrupt bits are
never changed, even in supervisor mode. This makes the MCR instruction useful for
transferring data from the co-processor directly into the ARM result flags. The FPU's

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

6 of 10

compare instructions use this facility.

If R15 is given as the <srce> register, all 32-bits are transferred to the co-processor. It is not
envisaged that many co-processors will have a use for the ARM's PC/status register, but
the ability to access it is there if required.

A.5 Co-processor data transfer operations

This group of instructions provides a similar function to the LDR/STR instructions, but
transfers data between a co-processor and memory instead of between the ARM and
memory. The address of the word(s) to be transferred is expressed in a similar way to
LDR/STR, that is to say you can use pre-indexed and post-indexed addressing, using any of
the ARM registers as a base. However, only immediate offsets are allowed, in the range -
255 to +255 words (-1020 to +1020 bytes).

Like LDR/STR, write-back to the base register may be performed optionally after a pre-
indexed instruction and is always performed after a post-indexed instruction.

The mnemonics are LDC to load data into a co-processor, and STC to store data. The full
syntax is:

LDC{cond}{L} <cp#>,<dest>,<address>
STC{cond}{L} <cp#>,<srce>,<address>

where

? {L} is an optional bit meaning 'long transfer'; see below
? <cp#> is the co-processor number (0-15)
? <srce>,<dest> is the co-processor register number (0-15)
? <address> specifies the address at which to start transferring data

Address modes

There are three forms that <address> can take: a simple expression, a pre-indexed address,
and a post-indexed address.

If a simple expression is given for the address, the assembler will try to generate a PC-
relative, pre-indexed instruction, without write -back. Thus if you say:

LDC 1,F1,label

(F1 being a co-processor register name) the assembler will generate this equivalent
instruction:

LDC 1,F1,[R15,#label-(P%+8)]

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

7 of 10

assuming the label is after the instruction. Note that as with LDR/STR, the assembler takes
pipe-lining into account automatically when R15 is used implicitly (as above), or explicitly
(as below). Note also that the maximum offset in each direction is only 1020 bytes for
LDC/STC, instead of 4095, which LDR/STR give you. If the address that the instruction tries to
access is outside the available range, the assembler gives an error.

The remaining forms of <address> are:

[<base>] address in ARM register <base>
[<base>,#<offset>]{!} <base>+<offset>, {with write-back}
[<base>],#<offset> <base>, then add <offset> to <base>

The offsets are specified in bytes, in the range -1020 to +1020. However, they are scaled to
words (by dividing by four) when stored in the instruction, so only word-boundary offsets
should be used.

These instructions differ from LDR/STR in that more than one register may be transferred.
The optional L part of the syntax is designed to enable a choice between short (single
word) and long (multiple word) transfers to take place. It is up to the co-processor to
control how many words are transferred. The ARM, having calculated the start address
from the base register, offset, and address mode will automatically increment the address
after each operation.

Long transfers

Remember that LDM/STM always loads/stores registers in ascending memory locations. A
similar thing happens with multiple register LDC/STC transfers. Suppose an STCL instruction
for a given co-processor stores its internal registers from the one given in the instruction,
up to the highest one, F7. The instruction:

STCL 1,F0,[R1,#-32]!

works as follows. The start address of the transfer is calculated from the contents of R1
minus 32. This is written back into R1. Then the eight data transfers take place, starting
from the calculated address and increasing by four bytes after each one. Similarly,

LDCL 1,F4,[R1],#16

will load four registers, starting from the address in R1 and adding four after each transfer.
Finally, 16 is added to the base register R1.

The FPU uses this group of instructions to load and store numbers from its floating point
registers. There are four possible lengths allowed (single, double, extended and packed)
which take one, two, three and three words of memory respectively. The L option only

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

8 of 10

allows two possible lengths. However, the FPU only has eight internal registers, so the top
bit of the <dest>/<srce> field is used to encode the extra two length options.

Apart from this minor difference, the FPU load and store data instructions obey exactly
the general form of the co-processor data transfer, as Appendix B describes.

Aborts and address exceptions

Since this class of instruction uses the ARM address bus, instruction aborts and address
exceptions can occur as for LDM/STM etc. In the case of an exception (the start address has
one or more of bits 26-31 set), exactly the same action occurs as for a native ARM
exception, i.e. the instruction is stopped and the address exception vector called. In the
case of multiple word transfers, only an illegal start address will be recognised; if it
subsequently gets incremented to an illegal value, it will 'wrap-around' into the first few
words of memory.

Data aborts also behave in a similar way to native ARM instructions. As usual, if write-
back was specified, the base register will be updated, but no other changes will take place
in the ARM or co-processor registers. This enables the abort handler code to re-start the
instruction after undoing any indexing. Note that it is up to the co-processor to monitor
the ABORT signal and stop processing when it is activated.

A.6 Co-processor instruction timings

In addition to the n, i and i-cycles mentioned at the end of Chapter Three, co-processor
instructions also use c (for co-processor) cycles. These are the same period as s and i-
cycles.

CDP timing

1 s + B i-cycles.

MRC timing

1 s + B i + 1 c-cycles.

MCR timing

1 s + (B+1) i + 1 c- cycles.

LDC/STC timing

(N-1) s + B i + 1 c-cycles.

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

9 of 10

where:

B is the number of cycles the ARM spends waiting for the co-processor to become ready
(which has a minimum of zero).

N is the number of words transferred.

ARM Assembly Language Programming - Appendix A - The Co-processor Instructions

10 of 10

Appendix B

The Floating Point Instruction Set

Appendix A described the generic form which co-processor instructions take. In this
appendix, we look at a specific use of these instructions: the floating point unit.

The definition given here does not describe any particular hardware. Rather, it gives a
programmer's view of a system which could be implemented in a number of ways. In the
first instance, the instruction set of the FPU has been implemented entirely in software. All
of the instructions are trapped through the unimplemented instruction vector, and the
floating point emulator package uses this facility to interpret the operation codes (using
native ARM instructions) and perform the appropriate operations.

At the other end of the spectrum, a complete hardware implementation of the FPU would
recognise the whole floating point instruction set, so the unimplemented instruction trap
would never be used. The ARM's only involvement in dealing with the instructions would
be in the generation of addresses for data transfers and providing or receiving values for
register transfers.

The only difference, from the programmer's point of view, between the two
implementations would be the speed at which the instructions are executed. The only
reason for using a hardware solution is that this can provide a speed increase of hundreds
of times over the interpreted implementation.

The FPU performs arithmetic to the IEEE 754 standard for floating point.

B.1 Some terminology

In describing the FPU's instruction set, we have to use certain terms which are specific to
floating point arithmetic. These are explained briefly in this section. For a more detailed
discussion, you should see the appropriate IEEE standard document (ANSI/IEEE 754-
1985) , or manufacturer's data on one of the current available FPUs (e.g. the Motorola
MC68881 or Western Digital WE32206).

Precision

The instruction set includes three precisions to which calculations may be performed. The
precision of a floating point number is the number of digits which can be stored with total
accuracy. It is expressed in bits. In Chapter Five, we talked about the mantissa of a floating
number being the part which stored the significant digits, and the exponent being the
scaling factor applied to it.

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

1 of 15

When we say a given floating point representation has n bits of precision, this means that
the mantissa part is stored in n bits. The three standard IEEE precisions are 24 bits, 53 bits
and 65 bits. These are known as single, double, and extended precision respectively. The
mantissa is stored in one fewer bits than the precision implies because numbers are held in
normalised form (as in BBC BASIC) and the MSB is an implicit 1. The binary point comes
after this.

There is a fixed correspondence between the precision of a number expressed in bits, and
how many decimal digits that number can represent. Mathematically speaking, an n-bit
number can hold n*LOG(2)/LOG(10) decimal digits, or more simply, n*0.3010. Thus the
three IEEE floating points types can accurately represent the following number of decimal
digits:

Obviously you cannot have fractional numbers of significant digits, so the values should
be truncated to 7, 15 and 19 respectively. The fractional part means that one extra digit can
be stored, but this cannot go all the way up to 9.

There is one further form of representation for floating point numbers: packed decimal. In
this form, the decimal digits of the mantissa and exponent are represented in a coded
form, with four bits representing each decimal digit (only the combinations 0000 to 1001
being used). In this form, called packed decimal, the mantissa is stored as 19 four-bit
'digits', and the exponent as 4 four-bit digits.

Just because a number can be represented exactly in decimal, do not assume that its binary
representation is also exact. For example, the decimal fraction 0.1 is actually a recurring
fraction in binary, and can never be stored exactly (though of course, when enough digits
are used in the mantissa, the error is very small).

Dynamic range

The mantissa has an imaginary binary point before after its first digit, and the first digit is
always a binary 1, never 0. This is known as 'normalised form'. Thus the mantissa stands
for a fraction between 1.0 and 1.99999... The exponent provides the power of two by which
the mantissa has to be multiplied to obtain the desired value.

To obtain numbers greater than 1.999999... a positive exponent is used, and to represent
numbers smaller than 1.0, a negative exponent is used (meaning that the mantissa is

Type Precision Decimal digits

Single 24 7.2

Double 53 15.95

Extended 65 19.6

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

2 of 15

divided by a power of two instead of multiplied). The exact range of numbers depends on
the maximum power of two by which the mantissa may be multiplied or divided. This is
known as the dynamic range of the representation.

Each of the precisions uses a different size of exponent, as follows:

The table shows how many bits the exponent uses, and the smallest and largest factors by
which the mantissa may be multiplied. The formula n*0.3010 can also be used to find out
what power of ten these exponents correspond to. They are +/-39, +/-307 and +/-4931
respectively. Thus a single precision IEEE number could represent the number 1.234E12
but not 1.234E45. This would require a double precision number.

The exponent is held in an excess-n format, as with BBC BASIC. The excess number is 127,
1023 and 16383 for the three precisions respectively. Note that there is an exponent value
at each end of the range (e.g. -127 and +128, stored as 0 and 255, in single precision) which
is not used. These values are used to represent special numbers.

Rounding

When the FPU performs its calculations, more digits are used than are necessary to store
the numbers involved. Calculations are performed in what is called 'full working
precision'. This is so that any errors which accumulate due to non-exact representations of
fractions do not affect the final result. When a result is presented, the FPU converts the
special full working form into a value of the desired precision. The way in which this
conversion is performed is called the 'rounding mode' of the calculation, and there are four
of them to choose from.

'Round to nearest' means that the final result is the closest number in the selected precision
to the internal version. This is used as the default mode for ARM FPU instructions.

'Round to zero' means that the extra bits of precision are effectively ignored, so the final
result is the one which is closest to zero.

'Round to plus infinity' means that the final result is the first number which is greater than
the 'exact' result which can be stored in the required precision.

Precision Exponent bits Smallest Largest

Single 8 2-126 2127

Double 11 2-1022 21023

Extended 15 2-16382 216383

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

3 of 15

'Round to minus infinity' means that the final result is the first number which is less than
the 'exact' result which can be stored in the required precision.

These four modes can be illustrated by using decimal numbers. Suppose that the
calculations are performed to nine digits precision, and the final precision is seven digits:

Special values

In addition to valid numeric values, the IEEE standard also defines representations for
values which may arise from errors in calculations. These values are 'not a
number' (NAN), plus infinity (+INF) and minus infinity (-INF). There are actually two
types of NAN, trapping and non-trapping. Trapping is described in the next section. The
ways in which these special values may arise are also described there.

Note that IEEE defines two representations for zero, positive and negative zero. Usually
the distinction between them is not important, but sometimes a result will depend on the
sign of the zero used (see the DVZ trap below for an example).

B.2 Programmer's model

To the programmer, the FPU looks like a cut-down version of the ARM CPU. There are
eight general purpose registers, called F0 to F7, a status register and a control register.
There is no program counter; the ARM controls all interaction between a co-processor and
memory. It is responsible for generating addresses for instruction fetches and data
transfers.

Whereas the ARM's own 16 registers are 32 bits wide, there is no definition about how
wide the FPU's registers are. The IEEE standard specifies several levels of precision to
which operations may be performed, as described above. All the programmer needs to
know about the FPU registers is that they are wide enough to maintain numbers to the

Mode 'Exact' result Rounded result

Nearest
0.123456789 0.1234568

-0.123456789 -0.1234568

To zero
0.123456789 0.1234567

-0.123456789 -0.1234567

To +infinity
0.123456789 0.1234568

-0.123456789 -0.1234567

To -infinity
0.123456789 0.1234567

-0.123456789 -0.1234568

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

4 of 15

highest precision required by the standard.

However, when floating point numbers are transferred between the FPU and memory,
their representation becomes important. The formats of the various types of floating
number are described in section B.6.

The FPU status register

The FPU's status register is 32-bits wide, and contains three fields. These are the status
flags, the interrupt masks, and a system id field. There are five flags, and each of these
represents a specific error condition which can arise during floating point operations. Each
flag has a corresponding interrupt mask. When an error condition arises, the FPU checks
the state of the interrupt mask for that error. If the interrupt is enabled, a trap is generated,
which causes the program to halt. The appropriate status flag is set, so that the trap
handler can determine the cause of the error.

If the interrupt for the error condition is disabled, the status flag still gets set, but execution
of the program is not affected. A special result, e.g. NAN or INF is returned.

Note that the way in which an error interrupt is implemented depends on the system in
which the program is executing. Software and hardware FPUs will have different ways of
stopping the program.

The flags are set if the appropriate condition has arisen, and cleared if not. The masks are
set to enable the interrupt, and cleared to disable it. There is an FPU instruction which is
used to initialise the status register to a known state.

Here is the layout of the status register:

bit 0 IVO flag

bit 1 DVZ flag

bit 2 OFL flag

bit 3 UFL flag

bit 4 INX flag

bits 5 to 15 Unused (These are read as zero)

bit 16 IVO mask

bit 17 DVZ mask

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

5 of 15

bit 18 OFL mask

bit 19 UFL mask

bit 20 INX mask

bits 21 to 23 Unused (These are read as zero)

bits 24 to 31 System id (These are 'read-only')

The meanings of the three-letter abbreviations are as follows:

IVO - Invalid operation. There are several operations which are deemed 'invalid', and each
of these sets the IVO flag, and causes the instruction to be trapped if enabled. If the trap is
not enabled, an operation which causes the IVO flag to be set returns NAN as the result.
Invalid operations are:

? Any operation on a NAN
? Trying to 'cancel' infinities, e.g. -INF plus +INF
? Zero times +INF or -INF
? 0/0 or INF/INF
? INF REM anything or anything REM 0
? SQT(<0)
? Converting INF, NAN or too large a number to integer
? ACS(>1), ASN(>1)
? SIN(INF),COS(INF), TAN(INF)
? LOG(<=0), LGN(<=0)
? Writing to the unused or system id bits of the status register

where >1 means 'a number greater than one' etc, and INF means either +INF or -INF. Note
that in the case of converting an INF or too large a number to an integer, the result (if the
error is not trapped) is the largest integer of the appropriate sign which can be represented
in 32 bits two's complement.

DVZ - Divide by zero. This is caused by trying to divide a non-zero number by zero. The
result, if the error is not trapped, is an infinity of the appropriate sign (e.g. -1/0 gives -INF,
-32.5/-0 gives +INF).

OFL - Overflow. This occurs when a result is being rounded to the specified precision for
the operation. If it is impossible to legally represent the number, a trap occurs. If the trap is
disabled, the result depends on the rounding mode specified in the operation:

Nearest

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

6 of 15

? Appropriately signed INF

To zero

? Largest representable number of appropriate sign

To +INF

? Negative overflows go to largest negative number
? Positive overflows go to +INF

To -INF

? Negative overflows go to -INF
? Positive overflows go to largest positive number

UFL - Underflow. This occurs when a number becomes too small (i.e. too close to zero) to
represent properly in the specified precision. If the error is not trapped, the result is
affected by the rounding mode as follows:

Nearest

? Appropriately signed zero

To zero

? Appropriately signed zero

To +INF

? Negative underflows go to -0
? Positive underflows go to smallest positive number

To -INF

? Negative underflows go to smallest negative number
? Positive underflows go to +0

INX - Inexact. This error occurs whenever a rounded result is obtained which is different
from that which would have been calculated if 'infinite' working precision was used.
Calculating the sine, cosine or tangent of an angle greater than 10E20 radians causes this
error. Also, all OFL errors automatically cause this error, so if the OFL trap is disabled but
the INX trap is enabled, an overflow will cause the inexact interrupt to be generated.

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

7 of 15

System id - These eight bits may be used to determine which type of FPU the system is
running. The only one currently defined is bit 31:

bit 31 = 1 implies hardware FPU

bit 31 = 0 implies software FPU

The remaining eight bits are reserved by Acorn for further distinction between different
FPU types. In the first systems they are all zero.

The FPU control register

The control register is a system dependent entity. It is present to enable programs to, for
example, disable a hardware FPU. Its format is dependent on the characteristics of the FPU
hardware; as of this writing, it is undefined. Note that the instructions which read and
write the control register are privileged. An attempt to access it from a user mode program
will cause an error.

B.3 The FPU data processing instructions

There are two classes of FPU data processing instructions, monadic and dyadic. These
terms refer to whether the instruction operates on one or two operands respectively. The
instruction formats are:

MNM{cond}<P>{R} <dest>,<rhs>
MNM{cond}<P>{R} <dest>,<lhs>,<rhs>

where

? MNM is one of the mnemonics listed below
? {cond} is the optional condition
? <P> is the required precision, being one of:
? S single precision
? D double precision
? E extended precision

Note that the precision is not optional - it must be given.

{R} is the required rounding mode for the stored result, being one of:

(nothing) Round to nearest

P Round to +INF

M Round to -INF

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

8 of 15

This is optional, rounding to nearest being the default if it is omitted.

<dest> is the FPU register to hold the result. The standard names for the FPU registers are
F0-F7, and assemblers which recognise the FPU instructions allow other names to be
assigned, as for the normal ARM registers.

<lhs> (dyadic only) is the left hand side of the operation. It is an FPU register

<rhs> is the right hand side of a dyadic operation, or the argument of a monadic operation.
It is an FPU register, or a small floating point constant. These are the allowed values:

0.0 1.0 2.0 3.0

4.0 5.0 0.5 10.0

As usual, the immediate operand is preceded by a # sign.

The available dyadic operations are

Notes:

Reverse power gives a base ten antilog function:

RPWS F0,F0,#10.0 ;F0 = 10^F0

Z Round to zero

ADF add <dest> = <lhs> + <rhs>

MUF multiply <dest> = <lhs> * <rhs>

SUF subtract <dest> = <lhs> - <rhs>

RSF reverse sub. <dest> = <rhs> - <lhs>

DVF divide <dest> = <lhs> / <rhs>

RDF reverse div. <dest> = <rhs> / <lhs>

POW power <dest> = <lhs> ̂<rhs>

RPW reverse power <dest> = <rhs> ̂<lhs>

RMF remainder <dest> = <lhs> REM <rhs>

FML fast multiply <dest> = <lhs> * <rhs>

FDV fast divide <dest> = <lhs> / <rhs>

FRD fast rev. div. <dest> = <rhs> / <lhs>

POL polar angle <dest> = arctan(<lhs>/<rhs>)

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

9 of 15

REM <lhs>,<rhs> gives the remainder of the division of <lhs> by <rhs>. In other words, a
REM b = a-b*n, where n is the nearest integer to a/b.

The 'fast' operations FML, FDV and FRD are performed in single precision, rather than full
working precision used for the other calculations. This means that rounding to any
precision will always yield a result which is only as accurate as a single precision number.

The POL operation is an alternative to the ATN operation described below. The two
operands may be regarded as the 'opposite' and 'adjacent' lengths (signed) of the angle
whose value is required. This function will return a result in the range -PI to +PI radians,
whereas the standard ATN function only gives a result in the -PI/2 to +PI/2 range.

The monadic operations are

The argument of the SIN, COS and TAN is in radians, and ASN, ACS and ATN return a result in
radians. The 'transcendental' functions, from SQT onwards, use 'to nearest' rounding for
intermediate calculations performed in full working precision, only applying the specified
rounding mode as the last operation.

Examples:

MUFS F0,F1,#10.0 ;F0=F1*10, single precision,nearest POWDZ F2,F3,F4 ;F2=F3^F4,
double precision,zero
SINE F7,F0 ;F7=SIN(F0), extended, to nearest
EXPE F0,#1.0 ;F0='e' as an extended constant

MVF move <dest> = <rhs>

MNF move negated <dest> = -<rhs>

ABS absolute value <dest> = ABS(<dest>)

RND integer value <dest> = roundToInteger(<rhs>)

SQT square root <dest> = SQR(<rhs>)

LOG log base 10 <dest> = LOG10(<rhs>)

LGN log base e <dest> = LN(<rhs>)

EXP e to a power <dest> = e ̂<rhs>

SIN sine <dest> = SIN(<rhs>)

COS cosine <dest> = COS(<rhs>)

TAN tangent <dest> = TAN(<rhs>)

ASN arcsine <dest> = ATN(<rhs>)

ACS arccosine <dest> = ACS(<rhs>)

ATN arctangent <dest> = ATN(<rhs>)

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

10 of 15

B.4 The FPU/ARM register transfer instructions

The FPU uses the FRC/FCR class of instructions for three purposes: to convert between
integer and floating point values, to examine and change the FPU status and control
registers, and to perform floating point comparisons.

FIX and FLT are the type-conversion instructions. They have the following forms:

FIX{cond}<P>{R} <ARM dest>,<FPU srce>

FLT{cond}<P>{R} <FPU dest>,<ARM srce>

? <ARM dest> is R0-R14 (R15 not being useful; see Appendix A)
? <ARM srce> is R0-R14 (R15 not being useful)
? <FPU dest> is F0-F7
? <FPU srce> is F0-F7

The FIX operation may result in an IVO trap occurring, as explained above.

Examples:

FIXNES R0,F2 ;Convert F2 to integer in R0 if NE
FLTSZ F1,R0 ;Convert R0 to F1, round to zero

The instructions to read and write the FPU status register are:

RFS{cond} <ARM dest>

WFS{cond} <ARM srce>

<ARM dest> and <ARM srce> are the ARM register to or from which the 32-bit FPU status
register is transferred. The format of this register is described above. After an RFS the ARM
register will contain the state of the status flags and interrupt masks. The unused bits will
be set to zero, and the system id part will be as described above. A program can clear the
flags and set the desired mask bits using WFS. Zeros should be placed in the unused bits
and the system id bits.

The instructions to read and write the FPU control register are:

RFC{cond} <ARM dest>

WFC{cond} <ARM srce>

The format of this register is system dependent. These are privileged instructions and will
abort if an attempt is made to execute them in user mode.

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

11 of 15

Examples:

RFS R4
WFC R0

The FPU compare instructions have the form:

MNM{cond}<P>{R} <lhs>,<rhs>

where all terms are as described in section B.3. The mnemonics are:

CMF compare <lhs> - <rhs>

CNF compare negated <lhs> + <rhs>

CMFE compare <lhs> - <rhs>

CNFE compare negated <lhs> + <rhs>

The versions with the E suffix generate an exception if the operands are 'unordered' (when
at least one operand is a NAN) and thus can't be compared. After the instructions, the
ARM flags are set as follows:

? N set if 'less than' else clear
? Z set if 'equal' else clear
? C set if 'greater or equal' else clear
? V set if 'unordered' else clear

Note that if V=1, then N=0 and C=0.

According to the IEEE standard, when testing for equality or for unorderedness, where the
next instruction condition will be EQ, NE, VS or VC you should use CMF (or CNF). To test for
other relationships (GT, LE etc.) you should use CMFE (or CNFE).

Examples:

CMFE F0,#0.0 ;See if F0 is 0.0, extended precision
CMFEE F1,F2 ;Compare F1, F2 using extended
;precision with disordered exception
CNFS F3,#1.0 ;Compare single precision F3 with -1

B.5 The FPU data transfer instructions

This final group is used to transfer floating point numbers, in the various formats, between
main memory and the FPU. The instructions are LDF to load a floating point number, and
STF to store one:

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

12 of 15

LDF{cond}<P> <FPU dest>,<address>

STF{cond}<P> <FPU srce>,<address>

where

? <P> is as already described, with the additional option of P for packed decimal form
? the FPU registers are F0-F7
? the <address> can take any of the forms described in Appendix A, viz.

expression> PC-relative offset calculated
[<base>]
[<base>,<offset>]{!}
[<base>],<offset>

where
<base> is R0-R14
<offset> is #{+|-}<expression>
and {!} specifies optional write -back.

When a value is stored using STF, it is rounded using 'to nearest' rounding to the precision
specified in the instruction. (E and P will always store results without requiring rounding.)
If some other rounding method is required, this can be done first using a MVF instruction
from the register to itself, using the appropriate rounding mode.

If an attempt is made to store a trapping NAN value, an exception will occur if the IVO
trap is enabled, otherwise the value will be stored as a non-trapping NAN. OFL errors can
occur on stores if the number is too large to be converted to the specified format.

Examples:

STFP F0,[R0] ;Store F0 in packed format at [R0]
LDFE F0,pi ;Load constant from label 'pi' STFS F1,[R2],#4 ;Store single prec.
number, inc. R2

B.6 Formats of numbers

Each of the four precisions has its own representation of legal numbers and special values.
These are described in this section.

Single precision

? Exponent = eight bits, excess-127
? Mantissa = 23 bits, implicit 1. before bit 22

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

13 of 15

Formats of values

where

? x means 'don't care'
? s means 1 for negative, 0 for positive (number, zero or INF)
? Maximum is 255 (for NANs etc)

Double precision

? Exponent = 11 bits, excess -1023.
? Mantissa = 52 bits, implied 1. before bit 19
? Maximum exponent (for NANs etc) = 2047

Formats as above.

Extended precision

? Exponent = 15 bits, excess -16383
? Mantissa = 64 bits
? Maximum exponent (for NANs etc) = 32767

NB The relative positions of the three parts of the first word had not been finalised as of

Sign Exponent Mantissa

Non-trapping NAN x Maximum 1xxxxxxxxxxxxx...

Trapping NAN x Maximum 0<non zero>

INF s Maximum 00000000000000...

Zero s 0 00000000000000...

Denormalised number s 0 <non zero>

Normalised number s Not 0/Max xxxxxxxxxxxxxx...

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

14 of 15

this writing.

Format of values

Packed decimal

Each field is four bits

? e0-e3 are the exponent digits
? d0-d18 are the mantissa digits
? Bit 31 of the first word is the sign of the number
? Bit 30 of the first word is the sign of the exponent

Format of values

Note that when -0 is stored in this format it is converted to +0.

Sign Exponent J Mantissa

Non-trapping NAN x Maximum x 1xxxxxxxxxxxxx...

Trapping NAN x Maximum x 0<non zero>

INF s Maximum 0 00000000000000...

Zero s 0 0 00000000000000...

Denormalised number s 0 0 <non zero>

Un-normalised number s Not 0/Max 0 xxxxxxxxxxxxxx...

Normalised number s Not 0/Max 1 xxxxxxxxxxxxxx...

bit digit

31 30 e3-e0 d18-d0

Non-trapping NAN x x &FFFF d18>7, rest non 0

Trapping NAN x x &FFFF d18<=7, rest non 0

INF s s &FFFF &00000000000000...

Zero 0 0 &0000 &00000000000000...

Number s s &0000-&999 &1-&99999999999...

ARM Assembly Language Programming - Appendix B - The Floating Point Instruction Set

15 of 15

Appendix C

Instruction Set

Data Processing

I: Immediate operand bit. This defines exactly what Operand 2 is. If the I bit is 0, Operand
2 is a register, with the register number held in bits 0 to 3 and the shift applied to that
register in bits 4 to 11. If the I bit is 1, Operand 2 is an immediate value, with bits 0 to 7
holding the 8 bit value, and bits 8 to 11 holding the shift applied to that value.

S: Set condition codes. If this bit is set to 0, the condition codes are not altered after the
instruction has executed. If it is set to 1, they are altered.

Rn: First operand register.

Rd: Destination register.

Branch and Branch with link

L: Link bit. 0=Branch, 1=Branch with link

Multiply and multiply-accumulate

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond 00 I OpCode S Rn Rd Operand 2

31 28 27 25 24 23 0

Cond 101 L Offset

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 000000 A S Rn Rd Rs 1001 Rm

ARM Assembly Language Programming - Appendix C - Instruction Set

1 of 3

A: Accumulate bit. 0=multiply, 1=multiply with accumulate

Single Data transfer

P: Pre/Post indexing. 0=post (offset added after transfer). 1=pre (offset added before
transfer).

U: Up/Down bit. 0=down (Offset subtracted from base). 1=Up (Offset added to base).

B: Byte/Word bit. 0=transfer word, 1=transfer byte.

W: Write-back. 0=No write back, 1=Write address into base.

Block data transfer

S: PSR & Force user mode. 0=do not load PSR or force user mode. 1=load PSR or force
user mode.

Software Interrupt

Co-processor data operations

CP Opc: Co-processor operation code. CRn: Co-processor operand register. CRd: Co-
processor destination register. CP#: Co-processor number. CP: Co-processor information

Co-processor data transfers

N: Transfer Length.

Co-processor register transfers

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond 01 I P U B W L Rn Rd Offset

31 28 27 25 24 23 22 21 20 19 16 15 0

Cond 100 P U S W L Rn Register list

31 28 27 24 23 0

Cond 1111 Comment field (ignored by ARM)

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 1110 CP Opc CRn CRd CP# CP 0 CRm

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

Cond 1110 CP Opc L CRn Rd CP# CP 1 CRm

ARM Assembly Language Programming - Appendix C - Instruction Set

2 of 3

L: Load/Store bit. 0=Store to co-processor, 1=Load from co-processor.

Undefined instructions

31 28 27 24 23 8 7 4 3 0

Cond 0001 xxxxxxxxxxxxxxxx 1xx1 xxxx

31 28 27 25 24 5 4 3 0

Cond 011 xxxxxxxxxxxxxxxxxxxx 1 xxxx

ARM Assembly Language Programming - Appendix C - Instruction Set

3 of 3

