|
"

The Practice of
Progr nmi

Brian W
Rob Pike

Simplicity
Clarity
Generality

O
O
w
|'f—\'
2

=
=
55
W
—
=5
<
T
A
I.r‘-“\I
E
T
w
=
I'v'
—
i
P2
—
)
f-‘"
—
o
A
—
Z
|ﬁ'|
{5
wn
T
TR

Programming/Software Engineering

ThePracticat Programming

With the same insight and authority that made their book The Unix Programming
Environment a classic, Brian Kernighan and Rob Pike have written The Practice
of Programming to help make individual programmers more effective and
productive.

The practice of programming is more than just writing code. Programmers must
also assess tradeoffs, choose among design alternatives, debug and test, improve
performance, and maintain software written by themselves and others. At the
same time, they must be concerned with issues like compatibility, robustness,
and reliability, while meeting specifications.

The Practice of Programming covers all these topics, and more. This book is full
of practical advice and real-world examples in C, C++, lava, and a variety of
special-purpose languages. It includes chapters on:
e debugging: finding bugs quickly and methodically
e testing: guaranteeing that software works correctly and reliably
e performance: making programs faster and more compact
e portability: ensuring that programs run everywhere without change
e design: balancing goals and constraints to decide which algorithms and data
structures are best
e interfaces: using abstraction and information hiding to control the interactions
between components
e style: writing code that works well and is a pleasure to read
notation: choosing languages and tools that let the machine do more of the
work

Kernighan and Pike have distilled years of experience writing programs,
teaching, and working with other programmers to create this book. Anyone who
writes software will profit from the principles and guidance in The Practice of
Programming.

Brian W. Kernighan and Rob Pike work in the Computing Science Research
Center at Bell Laboratories, Lucent Technologies. Brian Kernighan is Consulting
Editor for Addison-Wesley's Professional Computing Series and the author, with
Dennis Ritchie, of The C Programming Language. Rob Pike was a lead architect
and implementer of the Plan 9 and Inferno operating systems. His research
focuses on software that makes it easier for people to write software

tpop.awl.com

art by Renee French
O Text printed on recycled paper
“ ADDISON-WESLEY
Addison-Wesley is an imprint of
Addison Longman, Inc.

The Practice of Programming

Many of the designationgsedby manufacturers and sellexsdistinguish their products are
claimed as trademarks. Where those designations appghar book, and Addison Wesley
Longman, Inc. wasawareof atrademark claim. the designations haeenprintedin initial
capital letters or all capital letters.

Theauthorsandpublisher havéakencarein preparatiorof this book, but makaoexpressed or
impliedwarrantyof any kindandassumeno responsibilityfor errorsor omissionsNo liability is
assumedor incidental or consequential damag@esonnectiorwith or arising outf the useof
the information or programs contained herein,

Thepublisher offers discounts this book whernordered in quantity for special sales. For more
information, pleaseontact:

ComputerandEngineering Publishing Group
Addison Wesley_ongman, Inc.

One JacolWay

Reading, Massachuseitt867

This book wastypese(grapipictbljeqn|troff -mpm) in Times and Lucida Sans Typewritgrthe
authors.

Library of Congress Catalogingn-Publication Data

KernighanBrianW.

Thepracticeof programming BrianW. Kernighan, RolPike.

p.cm.-- (AddisonWesley professional computing series)
Includes bibliographical references.
ISBN 0-201-61586-X
1. Computemprogrammingl. Pike,Rob.IL Title. IIL. Series.
QA76.6.K48 1999
005.1--dc21

99-10131
CIP

Copyright© 1999by Lucent Technologies.

All rights reserved\o partof this publicationmaybe reproduced, stor@daretrieval system, or
transmittedin any form orby any means, electronic, mechanical, photocopying, recording, or
otherwise, without the priawritten permissiorof the publisher. Printeid the United Statesf
America.Published simultaneously in Canada.

Textprinted on recycledand acid-free paper.
ISBN 0-201-61586-X

234567 CRS 02010099

2d Printing May 199

Preface

Chapter1: Style
1.1 Names

12
13
14
15
16
17

ExpressionandStatements
Consistency and Idioms
Function Macros

Magic Numbers
Comments

Why Bother?

Chapter 2. Algorithms and Data Structures

21
22
23
24
25
26
2.7
28
29

Searching
Sorting

Libraries

A Java Quicksort
O-Notation
Growing Arrays
Lists

Trees

Hash Tables

210 Summary

Chapter 3: Designand Implementation

31
32

TheMarkov Chain Algorithm
Data Structure Alternatives

3.3 Building the Datétructure in C

34

Generating Output

Contents

vi THE PRACTICE OF PROGRAMMING

3.5
3.6
3.7
3.8
3.9

Java

C++

Awk and Perl
Performance
Lessons

Chapter 4: Interfaces

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

CommaSeparated Values
A Prototypd_ibrary

A Library for Others

A C++Implementation
Interface Principles
ResourcéManagement
Abort, Retry.Fail?
Userlnterfaces

Chapter 5: Debugging

S.1

52
53
54
5.5
5.6
5.7
5.8

Debuggers
GoodClues EasyBugs
No Clues,Hard Bugs
Last Resorts
Non-reproducibldugs
Debugging Tools
Other People'8ugs
Summary

Chapter 6: Testing

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

TestasYou Write the Code
Systematic Testing
TestAutomation
TestScaffolds

Stress Tests

Tipsfor Testing

Who Doesthe Testing?
Testingthe Markov Program
Summary

Chapter 7: Performance

7.1
7.2
7.3
7.4
7.5

A Bottleneck
Timing andProfiling
Strategiefor Speed
TuningtheCode
SpaceEfficiency

71
76
78
80
82

85
86
87
91
99
103
106
109
113

117
118
119
123
127
130
131
135
136

139
140
145
149
151
155
158
159
160
162

165
166
171
175
178
182

THE PRACTICE OF PROGRAMMING

7.6 Estimation
7.7 Summary

Chapter 8: Portability
8.1 Language
8.2 Headers andibraries
8.3 ProgramOrganization
8.4 Isolation
8.5 DataExchange
8.6 ByteOrder
8.7 PortabilityandUpgrade
8.8 Internationalization
8.9 Summary

Chapter9: Notation
9.1 Formattindpata
9.2 Regular Expressions
9.3 Programmablé&ools
9.4 Interpreters, CompilerandVirtual Machines
9.5 Programshat WritePrograms
9.6 Using Macros Generate Code
9.7 Compilingon theFly

Epilogue
Appendix: Collected Rules

Index

vii

184
187

189
190
196
198
202
203
204
207
209
212

215
216
222
228
231
237
240
241

247
249
253

Preface

Haveyou ever..

wasted dot of time coding the wrong algorithm?

used alata structuréhat was muckoo complicated?

testeda programbut missedhn obvious problem?

spentaday looking fora bug youwshould have found ifive minutes?
needed tanake gorogramrun three times faster and use less memory?
struggled tanove a prograrfrom a workstatiorto aPCor vice versa?
tried to make modesthangen someone else's program?

rewrittena program becausu couldn't understarit?

Wasit fun?

Thesethingshapperto programmerall thetime. But dealingwith suchproblems
is often harder thait shouldbe because topics like testing, debugging, portability,
performance, design alternativesid style—the practice of programming—are not
usually the focus of computer sciencer programmingcourses. Most programmers
learnthemhaphazardlastheir experience growand aew never learrthematall.

In a worldof enormousandintricate interfaces, constantly changing taoid lan
guages and systems, and relentless preksumoreof everything, one can lose sight
of thebasic principles—simplicity,clarity, generality—thatform the bedroclof good
software. One caalsooverlook the valuef toolsandnotations that mechanize some
of software creation and thus enlist the compités own programming.

Our approachn this book isbasedon these underlying, interrelated principles,
which apply at all levelsof computing. These includgmpliciry, which keeps pre
grams shorand manageableslariry, which makesurethey are easy tanderstand,
for peopleaswell as machinegjenerality, which means thework well in a broad
rangeof situationsandadapt wellsnewsituations ariseandautomation,which lets
the machine do the work for us, freeing us from mundasks. By lookingatcom:
puter programmingn a variety of languagesfrom algorithmsand data structures
throughdesign, debugging, testing, and performance improvemerdganillustrate

X PREFACE

universalengineering concepthatare independewf language. operating system, or
programming paradigm.

This bookcomes frommany yearsof experience writing and maintaining a tt
software, teaching programming coursasgd working witha wide varietyof pro-
grammers.We wantto share lessons about practical isst@passon insights from
our experienceandto suggestvaysfor programmersf all levels to bemore profi-
cient and productive.

We are writing for several kinds readers.If you area studentvho hastaken a
programming courser two and would like to bea better programmer, thixok will
expandon someof the topics forwhich there wasn't enough time school. If you
write programsas part of your work, butin supportof other activities rathethanas
the goalin itself, the informationwill helpyou to program more effectivelylf you
are a professional programme&ho didn't get enough exposuré such topicsin
schoolor who would like a refresher, of you are a softwarenanager who want®
guide your stafin the right direction, the material here sholébf value.

We hope thathe advicewill helpyou towrite better programsTheonly prereq
uisiteis thatyou havedone some programming, preferablyC. C++ or Java. Of
course the more experiengeu have, the easidr will be; nothing can takgou from
neophyteto expertin 21 days. Unix and Linux programmerswill find someof the
examples more familighan will thosewho haveused onlywWindows and Macintosh
systems, but programmedrem anyenvironment should discover thingsiaketheir
lives easier.

The presentatios organized intonine chapters, each focusimgn one major
aspecbf programming practice.

Chapterl discusses programming style. Good sigleo important to googro-
grammingthat we have choseto cover it first. Well-written programs are betténan
badly-writtenones—they have fewer errorand are easieto debugandto modify—
soit is importantto think about style fronthe beginning. This chapter also intro
ducesan important themén good programminghe useof idioms appropriatéo the
language beingsed.

Algorithms and data structures. the topi€<hapter2, arethecoreof the com
puter science curriculuanda major partof programmingcourses. Since most read
ers will alreadybe familiar with this material, ourtreatment isintendedas a brief
reviewof the handfulof algorithms and data structurémstshowup in almost every
program. More complex algorithnand datastructuresusually evolve from these
building blocksso one should master thasics.

Chapter3 describeghe desigrand implementatioof a small progranthatillus-
trates algorithm and data structure issnesrealistic settingThe program ismple-
mentedn five languages; comparirthe versions showkowthe same data structures
arehandledn each andhow expressiveness and performawuag across a spectrum
of languages.

PREFACE Xi

Interfaceshetweerusers, programsandpartsof programs are fundamentalpro-
grammingand muchof the successf softwareis determinedy how well interfaces
are designedndimplemented. Chapte¥shows the evolutionf a smalllibrary for
parsing awidely useddata format.Even thoughthe examplés small.it illustrates
many of the concernsf interface design: abstraction, information hiding, resource
management, and error handling.

Much aswe try to write programs correctly the first timejgs, andtherefore
debugging, are inevitable. Chaptegives strategieandtactics for systematiand
effective debugging Among the topicsare the signaturesf commonbugs andhe
importanceof '*numerology,” where patternsn debugging output often indicate
where a problem lies.

Testingis anattempt to develop a reasonable assurance thragaam isvorking
correctlyand thatit stays correct as it evolves. The emphasiShapter6 is on sys
tematic testindoy handand machine. Boundargondition tests probat potential
weak spots. Mechanizatioand test scaffoldsnakeit easy to do extensivesting
with modesteffort. Stress tests provide a differdimd of testingthan typical users
doandferret out a different clas¥ bugs.

Computers arso fastand compilersare sogood thatmany programs are fast
enough thelay theyarewritten. But others are too slow, tirey usetoo muchmem
ory, or both. Chaptef presentgnorderlyway to approach theaskof makinga pro-
gramuseresources efficiently, so that theogramremains correcandsoundas itis
mademore efficient.

Chapter8 covers portability. Successful programs likeag enough that their
environment changesr they muste movedto newsystems onewhardware onew
countries. Thegoalof portabilityis to reduce the maintenancka programby mini-
mizing the amounbf changenecessaryo adapt it to anewenvironment.

Computing isrich in languagesnot just the generagburpose ones thate use for
the bulk of programming, but alsmanyspecialized languagéisatfocuson narrow
domains. Chapteéd presents several examplafsthe importancef notationin com
puting, and showkow we can usé to simplify programsto guide implementations,
andevento help us write programs that write programs.

To talk about programming, we hat@show a lotof code. Most of the examples
were written expressly for the book, although some small ones were adizpted
other sourcesWe've tried hardto write ourown codewell, andhave tested on half
adozensystems directly from the machineadable text. More informatias avail
ableatthewebsite forThe Practice of Programming:

http://tpop.awl.com

The majority of the programs ara C, with a numbeiof examplesn C++ and
Javaand somebrief excursions into scripting languaget the lowest level, Gnd
C++ are almost identical and our C programs are valid C++ programs as well. C++
andJavaare lineal descendarabC, sharingmore thara little of its syntaxand much
of its efficiency and expressiveness, while adding richer type systedidraries.

Xii PREFACE

In our own work, weroutinely useall threeof these languages, anthnyothers. The
choiceof language dependsm the problem:operating systems are begitten in an
efficientand unrestrictive language like @r C++; quick prototypes are often easiest
in acommandnterpreteor a scripting language likdwk or Perl; for user interfaces.
Visual Basic and’cl/Tk arestrong contenders, along with Java.

Thereis animportant pedagogical issirechoosing a language for our examples.
Justasno language solveall problems equallywell, no single language ibestfor
presenting altopics. Higherlevel languages preempt somesigndecisions. If we
use a lowetevel language, wegetto consider alternative answers to the questions;
exposingmoreof the details, wecantalk aboutthem better. Experience shovilsat
even whenwe use the facilitiesf high-level languages, it's invaluabte know how
theyrelate tolower-levelissues; without that insight;s easy taruninto performance
problemsand mysterioubehavior. So we will often use C for our examples, even
thoughin practicewe mightchoose something else.

For themost parthowever, the lessons are independéany particular program
ming language The choiceof data structure is affectéy the languagathand; there
may befew optionsn some languages while othenigght support a varietgf alterna
tives. But theway to approachmakingthe choicewill be the same.The detailsof
how to test anddebug are differerin different languages, but strategies and tactics
are similarin all. Most of the techniques for making a program efficient ten
appliedin anylanguage.

Whatever languaggou write in, your taskasa programmeis to dothe bestyou
canwith the toolsat hand. A good programmer can overcome a poor language or a
clumsy operating system, but even a great programming enviromiliembt rescue
a bad programmer.We hope that, nonatterwhatyour current experience arskill.
this book will help you to programbetterandenjoy it more.

We are deeply grateful to friendadcolleaguesvhoread draft®f the manuscript
andgaveus manyhelpful commentsJon Bentley. Russ CodohnlLakos.JohnLin-
derman, PeteMemishian, lan Lance TaylorHoward Trickey, and Chris Van Wyk
read the manuscript, some madhnanonce,with exceptional care and thoroughness.
We are indebted to Torfargill, Chris Cleeland, Steve Dewhurst, Eric Grosse,
Andrew Herron, Gerard HolzmannDoug McHroy, Paul McNamee, Peter Nelson,
DennisRitchie, Rich Stevens, Tom SzymansiKentaro Toyama, John Wait, Daniel
C. Wang, PeterWeinberger. Margared/right. and Cliff Young for invaluable com
mentson draftsatvarious stages. We also appreciate good advice and thoughtful sug
gestions fromAl Aho, Ken Arnold, ChuckBigelow, JoshuaBloch. Bill Coughran.
Bob FlandrenaRenée French, MarkKernighan. AndyKoenig, Sape MullendeEvi
NemethMarty Rabinowitz Mark V. ShaneyBjame StroustrupKen Thompson, and
Phil Wadler. Thankyou all.

Brian W. Kernighan
RobPike

1

Style

It is an old observatiorthat the bestwriters sometimes disregard
the rules of rhetoric. When they do so,however,the readerwill
usually find in the sentencesomecompensatingmerit, attainedat
the cost of the violation. Unlesshe is certainof doing as well,he
will probablydo bestto follow the rules.

William Strunk andE. B. White, The Elementsof Style

This fragmenbf code comes from a largeogram written manyearsago:

if ((country == SING) || (country == BRNI) I
(country = POL) || (country == ITALY))

~
*

If the countryis Singapore,Brunei or Poland
then the current time is the answer time
ratherthan the off hook time.
Resetanswertime and set day of week.

* % % % %

/

It's carefully written. formatted,and commented, and the progratmcomesfrom
worksextremelywell; the programmeraho createcthis systemarerightly proudof
what they built. But this excerpt is puzzlinp thecasualreader. What relationship
links SingaporeBrunei, Polandand Italy? Why isn't Italynentionedin the com-
ment? Since the comment and twelediffer, oneof them mustbe wrong. Maybe
bothare. The code ishatgets executedndtestedsoit's morelikely to be right;
probably the comment didngetupdatedwvhenthecodedid. The comment doesn't
say enough about the relationship among the three couitttiess mentionif you
hadto maintainthis code,you would needto know more.

Thefew lines above are typicaf much realcode: mostly well done,but with
some thingshatcould be improved.

2 STYLE CHAPTER 1

This bookis aboutthe practiceof programming—how to write programs for real.
Our purpose is tbelpyou to write softwarethat worksat leastaswell asthe program
this examplewastakenfrom, while avoiding trouble spotand weaknessed/Ne will
talk aboutwriting better codérom the beginningandimprovingit asit evolves.

We are going to starih an unusualplace,however,by discussing programming
style. The purposef styleis to makethecodeeasyto readfor yourselfandothers,
and goodstyleis crucial to goodprogramming.We wantto talk aboutit first soyou
will besensitive tdat asyou readthecodein therestof the book.

There ismoreto writing a program thamgettingthe syntaxright, fixing the bugs,
and makingit run fast enough. Programs amead noonly by computers but alsby
programmersA well-written programis easier to understamathd to modify thana
poorly-written one. The disciplinef writing well leads to cod¢hatis morelikely to
becorrect. Fortunately, this disciplinenst hard.

The principle®f programming style arbasedon common sensguidedby expe
rience, not orarbitrary rulesand prescriptions. Codshould be clearand simple—
straightforward logic, natural expression, conventional languagee, meaningful
names, neaformatting, helpful comments—and it should avoid clever trickand
unusualconstructions. Consistency is importéretcausetherswill find it easier to
read your code,and youtheirs,if you all stick to the same style. Detailsnay be
imposedby local conventions, management edigt,a program,but evenif not, it is
best toobeya setof widely shared conventions. We follatlve style usedin the book
The C Programming Language,with minor adjustment®r C++andJava.

We will often illustrate rulesf style by smallexample®f badandgood program
ming, sincethe contrastbetween two waysf sayingthe same things instructive.
These examples aret artificial. The**bad" ones araall adaptedrom real code,
written by ordinary programmers (occasionally ourselves) working utitescommon
pressuresf too muchwork andtoo little time. Somewill bedistilled for brevity. but
they will not be misrepresented. Thesme will rewrite thebadexcerptso showhow
they could beimproved. Sincethey arerealcode, howevethey may exhibit multiple
problems. Addressing every shortcomingpuld take ustoo far off topic, sosomeof
the goodexampleswill still harbor otherunremarkedlaws.

To distinguishbadexamples from goodhroughoutthe bookwe will place ques
tion marksin the marginsof questionable codasin this realexcerpt:

? #define ONE 1L
? #define TEN 10
9 #define TWENTY 20

Why are thesé&tdefinegjuestionable? Consid#ite modificationghatwill be neces
saryif anarrayof TWENTY elements mudie made larger At thevery least, eaclmame
shouldbereplaceddy onethatindicateshe roleof the specificvaluein the program:

#define INPUT-MODE 1
#define INPUT-BUFSIZE 10
#define OUTPUT-BUFSIZE 20

SECTION 1.1 NAMES 3

1.1 Names

What's in a name? A variableor function namelabelsan objectand conveys
informationaboutits purpose.A name shoulde informative, concisemnemorable,
and pronounceablé possible. Much information comes from conteahdscopethe
broadethescopeof avariable the moranformationshouldbeconveyedy its name.

Usedescriptivenamesfor globals, short names fdocals.Global variableshy defi-
nition, cancrop up anywherén a program,so they need nameslong enoughand
descriptive enough teemind thereaderof their meaning. It's alsohelpful to include
a brief commentwith thedeclaratiorof each global:

int npending= 0; // currentlength of input queue

Global functions,.classeandstructureshouldalsohavedescriptivenames that sug
gest theirole in aprogram.

By contrast, shortemamessuffice for local variableswithin a function,n may be
sufficient, npointsis fine,and numberof Pointsis overkill.

Local variablesusedin conventionalvays can have veishortnames.The use of
i and j for loop indicesp andq for pointersand s and t for stringsis sofrequent
thatthere is little profiand perhapsomelossin longernames.Compare

7 for (theElementIndex = 0; theElementIndex < numberOfElements;
? theElementIndex++)
? elementArray[theElementIndex] = theElementIndex;
to
for (i = 0; I < nelems; i++)
elem[i] = i;

Programmers are often encouragedselong variable namesegardlessf context.
Thatis a mistakeclarity is often achievedhrough brevity.

There aremany namingconventionsand local customs. Commonones include
usingnames thabeginor endwith p, suchasnodep, for pointersnitial capital letters
for Globals; and all capitalsfor CONSTANTS. Some programming shopse more
sweepingules, suchasnotationto encoddypeand usageénformationin the variable.
perhapspch to meana pointerto acharacteandstrTo andstrFrom to meanstrings
that will be written to and readfrom. As for the spellingof the nameghemselves,
whetherto usenpending or numPendi ng or num_pendi ng is a matterof taste; specific
rules aranuchless importanthanconsistent adherencedsensible convention.

Naming conventionsnakeit easierto understand/our own code.aswell ascode
written by others. They alsomakeit easierto invent new namesasthe code isbeing
written. The longer th@rogram, the morenportant isthe choiceof good. descrip
tive, systematimames.

Namespaceim C++ and packagesn Java providevaysto manage thecopeof
namesandhelp tokeepmeanings clear withouwindulylong names.

4 STYLE CHAPTER 1

BeconsistentGive relatedthingsrelatednames that show their relationshipd high
light their difference.

Besides beingnuchtoo long,the member namei this Java class are wildly
inconsistent:

2 classUserQueud

? int noOfItemsInQ, frontOfTheQueue, queueCapacity;
? public int noofUsersInQueue() {...}

? 3

The word *"queué’ appearsaasQ. Queueand queue. But since queuesan only be
accesseffom a variableof type UserQueuanembemamesdo not need to mention
**queue’’ atall; context sufficesso

? queue.queueCapacity
is redundant.This versionis better:

class UserQueuef
int nitems, front, capacity;
public int nusersQ) {...}

3

sinceit leadsto statements like

gqueue.capacity++;
n = queue.nusers();

No clarity is lost. This example stitheedsvork, however!*items* and* users' are
the same thingoonly onetermshouldbe usedor a single concept.

Use active names forfunctions. Functionnames shoulde based on active verbs,
perhaps followedby nouns:

now = date.getTime();
putchar(’\n’);

Functions thateturna boolean (truer false) valueshouldbe namedgothat the return
value is unambiguous. Thus

? if (checkoctal(c)) ...
doesnotindicatewhich valueis trueand whichis false,while
if (soctal(c)) ...
makedt clear that the function returns triiehe argument isctal andalseif not.

Be accurate.A name nobonly labels,it conveys informatiorio the reader.A mis-
leadingnamecan result in mystifyingpugs.

Oneof uswrote and distributed for years a macro called ctalwith this incor
rect implementation:

SECTION 1.1 NAMES 5

? #define isoctal(c) ((c) »= '0' & (c) <= '8")
insteadf the proper
#define isoctal(c) ((c) >= '0" && (c) <= '7")

In this case the nameonveyedhecorrect intenbut theimplementatiorwaswrong;
it's easy foasensiblenameto disguisea brokenimplementation.
Here'sanexamplen which the namendthecode arén complete contradiction:

? public booleaninTable(Object obj) {
? int j = this.getIndex(obj);

7 return (j = nTable);

? }

The functiongetIndex returnsa value betweenzero and nTable-1 if it finds the
object,andreturnsnTable if not. The boolean value returneay i nTable is thus the
oppositeof what the nameimplies. At the time the code iswritten, this might not

cause troubldqutif the progranmis modifiedlater, perhapby adifferentprogrammer,
the name isureto confuse.

Exercisel-1. Commenbn the choiceof namesandvaluesin thefollowing code.

? #define TRLE 0

? #define FALSE 1

?

7 if ((ch = getchar(Q)) = EOF)
7 not-eof = FALSE;

m]

Exercisel-2. Improvethis function:

7 int smaller(char =s, char #t) {
? if (stremp(s, t) < 1)

? returnl;

? else

7 return 0;

?);

O

Exercisel-3. Readthis code aloud:

? i f ((Falloc(SMRHSHSCRTCH, S_TFEXT|0644, MAXRODDHSH) < 0)

6 STYLE CHAPTER 1

1.2 Expressions and Statements

By analogywith choosingnamedto aid thereader's understandingrite expres
sionsand statementdn a way that makes their meanings transparenas possible.
Write the clearest codehat does the job.Use spacesaroundoperators to suggest
grouping;moregenerally, format tdnelpreadability. This idrivial but valuable, like
keepinga neatdeskso you can find things. Unlike your desk, your programs are
likely to beexaminecby others.

Indent to show structure. A consistent indentation style thelowestenergyway to
makea program's structure sedfvident. This example isadly formatted:

? for(n++;n<100; field[n++]1="\0");
? *1 = "\0"; return(’\n’);

Reformatting improves it somewhat:

9 for (n++; n < 100; field[n+] = '\0")

7 wio= \0';

k return(’\n’);

Even better is toput the assignmenin the bodyand separateghe incrementso the
loop takes moreconventional formandis thuseasietto grasp:

for (n++; n < 100; n++)
field[n] = "\0’;
«1 = '\0’";
return ’\n’;
Usethe natural form for expressionsWrite expressionss you might speakthem
aloud. Conditional expressiorikatinclude negations are alwalgardto understand:

? if (!(block-id < actblks) || !(block-id >= unblocks))

Eachtestis stated negativelthoughthereis no needfor either tobe. Turning the
relationsaroundletsusstatethe testspositively:

if ((block-id >= actblks) || (block_id < unblocks))

Now thecodereadsnaturally.

Parenthesizeo resolve ambiguityParentheses specify groupiagd canbe usedo
make the intent clearevenwhen theyare not required. Thenner parentheseis the
previousexample arenot necessaryhut they don't hurt, either. Seasoned program
mers might omithem,because the relationaperatorg< <= == 1= >=>) havehigher
precedencéhanthelogical operatorgg& and | |).

Whenmixing unrelatedoperatorsthough,it's a goodidea toparenthesize. C and
its friends present pernicious precedence problanthit's easyto makea mistake.

SECTION 1.2 EXPRESSIONSAND STATEMENTS 7

Becausehe logical operatordind tighterthanassignment, parentheses ar@ndatory
for mostexpressionthatcombinethem:

while ((c = getchar()) != EOF)

Thebitwise operatorg and | havelower precedendian relationabperators like=,
sodespite its appearance,

? i f (x&MASK == BITS)

?
actually means

? if (x & (MASK==BITS))

5

which is certainlynot the programmer's intentBecausét combineditwise and rela
tional operators, the expressioreds parentheses:

i T ((x&ASK) == BITS)

Evenif parentheses aren't necesstmgy can helpf thegrouping ishardto grasp
atfirst glance. This code doesméedparentheses:

? leap-year =y %4 = 0 & y % 100 !'= 0 || y % 400 == O;
but they makeit easietto understand:
leap_year = ((y%4 == 0) & (y%100 != 0)) || (y%400 == 0);

We also removedsome ofthe blanks:groupingthe operandof higherprecedence
operators helpthereadeto seethe structuremorequickly.

Break up complex expressionsC, C++, and Javahaverich expressiorsyntaxand
operatorsand it's easyto get carriedaway by cramming everything into one con
struction. An expression likehe following is compacbut it packs toomanyopera
tions intoa single statement:

ki #x += (#xp=2+k < (n-m) ? c[k+1] : d[k--1));
It's easier to grasywhen brokerinto severapieces:

i (2sk < n-m)
=xp = c[k+1];
else
=*xp = d[k--1;
*X += #Xp;

Be clear. Programmers' endless creative enasggometimesisedto write the most
concise code possibler to find clever waysto achievea result. Sometimethese
skills are misapplied, though, sintegoal is towrite clear codenotclever code.

8 sTvE CHAPTER 1

Whatdoes this intricate calculatiaio?
? subkey = subkey >> (bitoff - ((bitoff >> 3) << 3));

The innermost expression shiistoff three bitsto the right. The result is shifted
left again, thus replacintipe threeshifted bitsby zeros. This resultin turnis sub
tractedfrom theoriginal value, yielding théottomthreebits of bitoff. These three
bits areusedto shift subkey to theright.

Thustheoriginal expressiois equivalento

subkey = subkey >> (bitoff & 0x7);

It takes awhile to puzzle outwvhat thefirst versionis doing;thesecond is shortemd
clearer. Experienced programmarakeit even shorteby usinganassignment oper
ator:

subkey >>= bitoff & 0x7;

Some constructs seem to invite abuse. The@peratorcan lead to mysterious
code:

?» child=('LC&&!RC)?0: (ILC7RC:LO);

It's almost impossible to figuiut whatthis does without followingll the possible
pathsthrough theexpression. This forrs longer,but mucheasier to follow because
it makeghe paths explicit:

if LC = 0 && RC == 0)
child = 0;

else if (LC == 0)
child = RC;

else
child = LC;

The?: operatoiis fine for short expressionshereit can replace four linesf if-else
with one,asin

max = (a > b) ? a : b;
or perhaps
printf ("The list has %d item¥s\n", n, n==1 2 "" * "s");

butit is nota general replacement for conditional statements.

Clarity is not thesameasbrevity. Oftentheclearer codeill beshorterasin the
bit-shifting example, buit can alsdelonger,asin the conditional expression recast
asan if-else. The proper criterion is eafainderstanding.

Becaeful with sde ebk Operators liket+ have sideeffects: besides returning a
value,theyalsomodify anunderlying variable. Side effects chaextremely conve
nient, but they canalsocause trouble because the actiohsetrieving the value and
updating the variable might not happrhe sametime. In C andC++, theorder of

SECTION 1.2 EXPRESSIONS AND STATEMENTS 9

executiornof side effectss undefinedsothis multiple assignment likely to produce
thewronganswer:

7 stri++] = stri++] = ° ’;

Theintentis to store blanksitthe next two positions str. But depending onvhen
i is updated, a position strcould be skippedndi mightendup increased onlgy
1. Breakit into two statements:

strii++] -
strii++] -

Eventhoughit contains only one increment, this assignntanialso give varying
results:

2 array[i++] = 1:

If i isinitially 3,the array element migbesetto 3or4.
It's not just incrementand decrementghat have side effectsl/O is another

sourceof behindthe-scenes action. This exampleais attempt toreadtwo related
numbers from standamput:

7 scanf("%d %d", &yr, &profitlyr]);

It is brokenbecause padf the expression modifies andanother partisesit. The
valueof profit[yr] can neveberight unlesghe newvalueof yr is the sameasthe
old one. You might think that the answer deperats theorderin which the argu
ments are evaluatedyttherealissue ighatall thearguments tacanfare evaluated
before theroutine is calledso&profit[yr] will alwaysbe evaluatedusing theold
valueof yr. This sortof problemcan occuiin almost anylanguage.Thex is, as
usual,to breakup the expression:

scanf("%d”. &yr);
scanf("%d"”, &profitlyr]);

Exercise cautiom any expressiowith side effects.

Exercisel-4. Improve eaclof these fragments:

7 if ('(c ="y || c=="Y"))

? return;

? length = (length < BUFSIZE) ? length : BUFSIZE;
7 flag = flag 2 0 - 1;

? quote = (xline == '""') 7 1 : 0;

10 STYLE CHAPTER 1

? if (val & D
? bit = 13
? else

? bit = 0O;

Exercisel-5. What is wrongwith this excerpt?

7 int read(int =ip) {

? scanf("%d", 1ip) ;

? return =ip;

? 1

?

? insert(&graph[vert], read(&val), read(&ch));

O

Exercisel-6. List all thedifferent outputs thisould producewith various order®f
evaluation:

? n=1;
? printf("%d %d\n", n++, n++);

Try it onasmanycompilersasyou can, to seavhathappeng practice.]

1.3 Consistency and Idioms

Consistency leads to better progradfisormatting varies unpredictablyr aloop
overanarray runs uphilthis time anddownhill the next,or stringsare copiedwith
strcpy hereanda for loop therethe variationsmakeit harder to see what's really
going on. Butf the same computation is dotiee sameway everytime it appears,
any variationsuggesta genuine difference, ongorth noting.

Usea consistent indentatiorand bracestyle.Indentation shows structurieut which
indentationstyle is best? Shoulithe openingbracego on thesame lineasthei f or
on thenext? Programmetsavealways argued abotitelayoutof programsput the
specific style ismuchless importanthanits consistent applicationPick one style,
preferablyours,use itconsistentlyanddon't wastetime arguing.

Shouldyou include braces evewhen they are not needed?Like parentheses,
bracescan resolve ambiguityand occasionallymake thecode clearer. For consis
tency, many experienced programmers always put braces around loop loodies.
Butif thebodyis asingle statemenheyare unnecessargg we tendto omitthem. If
you also choose to leavthem out, makesureyou don't dropthem when they are
neededo resolvahe " dangling els8 ambiguity exemplifiedy this excerpt:

SECTION 1.3 CONSISTENCY AND IDIOMS 11

? if (month == FEB) {
? if (year%4 == 0)

? if (day > 29)

? legal = FALSE;
? else

? if (day > 28)

? legal = FALSE;
? 1

The indentatioris misleading, sincéheelse is actuallyattached taheline
? if (day > 29)
and thecodeis wrong. Wheronei f immediately follows another, alwaysebraces:

? if (month == FEB) {

? if (year%4 == 0) {
? if (day > 29)
? legal = FALSE;
2 } else {

? if (day > 28)

? legal = FALSE;
2

}

Syntaxdriven editing toolsnakethis sortof mistake less likely.
Evenwith the bug fixed, thoughthe codeis hardto follow. The computation is
easier to grasip we usea variable tohold the numberf daysin February:

i f (month == FEB) {
int nday;

nday = 28;

if (year%4 == 0)
nday = 29;

if (day > nday)
legal = FALSE;

R P IR I BT BT R)

1

The code is stillwrong—2000is a leapyear,while 1900and 2100 arenot—but this
structure ismucheasier to adapt tmakeit absolutelyright.

By the wayif you workon a programyou didn't write, preservehestyleyou find
there. Wheryou makea change, don'tiseyourown style everthoughyou preferit.
The program's consistenty moreimportantthan your own, becausdét makes life
easierfor thosewhofollow.

Use idioms for consistencylLike naturallanguages, programming languadese
idioms, conventionalvays that experienced programmaewsite common piecesf
code. A central part of learningany language is developing familiarity with its
idioms.

12 STYLE CHAPTER 1

Oneof the mostcommon idiomss the formof a loop. Considethe C, C++, or
Java code for stepping through the n elemehtmn array, for examplt initialize
them. Someonenight write theloop likethis:

7 i=0;

? while (i <= n-1)

? array[i++] = 1.0;
or perhapdike this:

? for (i =0; i <n;)
? array[i++] = 1.0;
oreven:

? for (i = n; --i >=0;)
? array[i] = 1.0;

All of these are correct, bilteidiomatic formis like this:

for (i =0; i < n; i+4)
array[i] = 1.0;

This is notan arbitrary choice. It visits each membgian n-elementarray indexed
from 0 to n-1. It placesall theloop controlin thefor itself, runsin increasing order,
and uses the vengliomatic ++ operatorto update theoop variable. It leavesthe
index variableat a known value justbeyond thdast array elementNative speakers
recognize iwithout studyandwrite it correctly withouta moment's thought.

In C++orJava, a common variant includes the declaratidghe loopvariable:

for (int i =0; i < n; i+4)
array[i] =1.0;

Here is thestandard loop fowalking along a listn C:

for (p = list; p !'= NUL p = p->next)

Again,all the loop controis inthefor.
For an infinite loopyve prefer

for G3)
but

while (L

isalso popular. Don'tiseanything othethanthese forms.

Indentation shouldbe idiomatic,too. This unusual vertical layoutletracts from
readability;t looks like three statementsta loop:

SECTION 1.3 CONSISTENCY AND IDIOMS 13

? for(

? ap = arr;

? ap < arr + 128;
? #ap++ = 0

?

? {

? [

? 1

A standard loojis mucheasier taead:

for (ap

arr; ap < arr+128; ap++)
*ap :

0;

Sprawling layoutsalsoforce code onto multiple screens pagesand thus detract
from readability.

Another common idions to nest an assignment inside a loop conditiotin as

while ((c = getchar()) != EOF)
putchar(c);

The do-whi Te statements usedmuchless oftenthanfor andwhile, because it
always executes at least once, testititpe bottomof the loop insteadf the top. In
many caseghat behavioris a bug waitingto bite, asin this rewriteof the getchar
loop:

2 do {

? c = getchar();
? putchar(c);

? } while (c !'= EOF);

It writes a spurious output character becdheéest occurs aftethe call to putchar.
The dewhile loopis theright one onlywhenthe body of the loop mustalwaysbe
executed at least onogg'll see some examples later.

One advantagef the consistenuuseof idiomsis that it draws attentiorio non
standard loops, a frequesign of trouble:

? int i, =iArray, nmemb;

?

? iArray = malloc(nmemb = sizeof(int));
? for (i =0; i <= nmemb; i++)

? iArray[i] = i;

Spaces allocated fommemb items,i Array[0] throughiArray[nmemb-1], butsince
theloop testis <= theloop walks off the endof the array and overwrites whatevsr
stored nextn memory. Unfortunately, errors like this are oftert detecteduntil
long afterthedamage habeendone.

C andC++ also have idioms for allocating space for strisngs thermanipulating
it, andcodethatdoesn'tusethem often harborslaug:

14 STYLE CHAPTER 1

char =p, buf[256];

gets(buf);
p = malloc(strien(buf));
strepy(p, buf);

[S S R Sy

One shouldhever useggets, since therés no way to limit the amounbf input it will
read. This leads to security problems thed'll returnto in Chapter6, wherewe will
show that fgets is always a better choiceBut thereis another problenas well:
strlen doesnot count the’\0’ that terminates a stringyhile strcpy copiesit. So
notenough spacis allocatedand strcpy writes pastthe endof the allocated space.
Theidiom is

p = malloc(strien(buf)+1);
strepy(p, buf);

ar

p = new char[strien(buf)+1];
strcpy(p, buf);

in C++. If youdon't seghe+1, beware.

Java doesn't suffer from this specific problem, since stringsaarepresented as
null-terminated arrays. Arragubscripts are checked well, soit is not possible to
access outsididae boundsf anarrayin Java.

Most C and C++ environments provide a library functistndup, thatcreates a
copy of a stringusingmalloc andstrcpy, makingit easy to avoidhis bug. Unfortu-
nately.strdup is not partof the ANSI C standard.

By the way, neither theoriginal code nothe corrected version chedke value
returnedoy malloc. We omittedthis improvemento focuson the main pointbutin
areal program theeturnvaluefrom malioc, real 1oc, strdup, or any other alloca
tion routine shouldlwaysbechecked.

Useelse-ifs for multi-way decisions Multi-way decisions are idiomatically expressed
as achainfi f.. elsei f ... €l se, like this:

i f (condition,)
statement,

2

else i f (condition,)
statement,

else
default-statemenr

The conditions arereadfrom top to bottom; athefirst condition thatis satisfied,the
statement thatfollows is executedand then the restof the construct is skipped. The
statement partmay be a single statemeot a groupof statements encloséu braces.

SECTION 13 CONSISTENCY AND IDIOMS 15

The lastelse handles thé'defaull® situation,where nonef the other alternatives
was chosen. This trailinglse part may beomittedif thereis no action forthe
default, although leaving ih with an error messagaay help tocatchconditionsthat
""can'thapper’

Align all of the else clauses vertically rathg¢hanlining up eachelse with the
correspondingf. Vertical alignment emphasizehkat thetests are donm sequence
and keeps them from marchioff theright sideof the page.

A sequencef nested f statementss often a warningf awkwardcode,if not
outright errors:

? if (argc == 3)

? if ((fin = fopenCargv[1], "r™)) != NULL)

? i f ((fout = fopen(argv[2], "w")) != NULL) {

? while ((c = getc(fin)) != EOP

? putc(c, fout);

? fclose(fin); fclose(fout);

? } else

? printf("Can't open output file %s\n", argv[2]);
? else

? printf("Can't open input file %s\n", argv[1]);
? else

? printf("Usage: cp inputfile outputfile\n");

The sequencef i f s requiresus to maintaina mental pushdowstackof what tests
weremade so that at the appropriate pointve can popthemuntil we determinethe
corresponding actiofif we can still remember). Sinad mostone actiorwill be per
formed,we really wantan else if. Changing the ordein which the decisions are
madeleads to a clearer versidn,which we have also correcteitie resourcdeak in
the original:

if (argc '= 3
printf("Usage: cp inputfile outputfile\n™);
else i f ((fin = fopen(argv[1], "r")) == NULL
printf("Can’t open input file %s\n", argv[1]);
else i f ((fout = fopen(argv[2], "w")) == NULL) {
printf("Can't open output file %s\n", argv[2]);
fclose(fin);
} else {
while ((c = getc(fin)) != EOP
putc(c, fout);
fclose(fin) ;
fclose(fout);
1

Weread down theéestsuntil the first onethatis true,do thecorresponding actiomnd
continue aftethelastelse. The rule is to follow each decisiasclosely as possible
by its associated action. Or, to piitanotherway, eachtime you makea test, do
something.

Attemptsto re-usepiecesf code often leatb tightly knottedprograms:

16 STYLE CHAPTER 1

? switch () {

? case '-': sign = -1;

? case '+’: c = getchar();

? case '.': break;

7 default: if (lisdigit(c))
? return 0;
? }

This usesa tricky sequencef fall-throughdn the switch statemerib avoid duplicat
ing oneline of code. It's alsonotidiomatic; caseshould almost alwaysnd witha
break, with the rare exceptions commented more traditional layout anstructure
is easieto read thoughlonger:

? switch () {

2 case '-':

? sign = -1;

2 /* fall through =/
» case '+':

? c = getchar();

? break;

? case '.':

? break;

? default:

? it (lisdigit(c))
? return 0;

? break;

y]

}

The increasén sizeis morethanoffsetby the increase clarity. Howeverfor such
anunusuabktructurea sequencef elseif statementss evenclearer:

if (c == "-") {
sign = -1;
c = getchar();
}elseif (c = "+") {
c = getchar(};,
}elseif (c '= . & lisdigit(c)) {
return 0;
1

The braces around the elivee blockshighlight the parallestructure.
An acceptableiseof afall-through occursvhenseveral cases have identicatle;
theconventional layous like this:

case '0’':

case '1':

case '2":
break;

and no comment igquired.

SECTION 1.4 FUNCTION MACROS 17

Exercisel-7. Rewrite thes€/C++ excerptanoreclearly:

if (istty(stdin)) ;
else if (istty(stdout)) ;
else if (istty(stderr)) ;
else return(0);

o

if (retval 1= SUCCESS)

return (retval);
1
fa A1l went well! &
return SUCCESS;

[S B L P, S

? for (k = 0; k++ < 5, x 4= dx)
7 scanf ("%1f", &dx);

O

Exercisel-8. Identify theerrorsin this Java fragmerdindrepair itby rewriting with
an idiomatidoop:

? int count = O;

? while (count < total) {

? count++;

? if (this. getName(count) == nametable. userName()) {
? return (true) ;

2 }

?

O

1.4 Function Macros

Thereis a tendency among oldé€ programmers to writenacrosinsteadf func-
tions forvery short computationthatwill be executed frequentl/O operationsuch
asgetchar and character tests liiedi gi t are officially sanctioned examples. The
reasons performancea macro avoids the overheaflafunction call. This argument
was weak evenwhen C wasfirst defined,a time of slow machinesnd expensive
function calls; todayt is irrelevant. Withmodernmachinesndcompilers, the draw
backsof function macros outweigh their benefits.

Avoid function macrosin C++, inline functions render function macros unnecessary;
in Java, there are no macrds.C, theycauseanoreproblemshan theysolve.

18 sTVLE CHAPTER 1

Oneof the mostseriousproblemswith function macros isthat a parameter that
appearsmore thanoncein the definitionmight be evaluatedmore thanonce;if the
argumenin the callincludesanexpressiomwith sideeffects the resulis asubtlebug.
This code attempts implemenbneof the character teshiom <ctype.h>:

? #define isupper(c) ((c) >= 'A'" && () <= 'Z")

Notethatthe parameter occurstwice in the body of the macro.If i supperis called
in acontext like this,

2 while (isupper(c = getchar()}))

?

then each timan input characteis greatetthanor equalto A, it will bediscardecind
anothercharactereadto be testedagainstz. The C standards carefully writtento
permit i supper andanalogous function® be macrosbut only if they guarante¢o
evaluate theargument onlypnce sothis implementatiois broken.

It's always bettetio usethe ctypefunctionsthanto implementhemyourself.and
it's safemot to nestroutines likegetchar thathavesideeffects. Rewritingthetestto
usetwo expressions rathdénanone makes itclearerandalsogivesan opportunityto
catchendof-fileexplicitly:

while ((c = getchar()) '= EOF && isupper(c))

Sometimes multiple evaluatimauses performancegroblemratherthan an out
right error. Consider this example:

v #define ROUND_TO_INT(x) ((int) ((x)+(((x)>0)70.5:-0.5)))

?

2 Size = ROUND_TO_INT(sgrt(dx=dx + dy=dy));

This will perform thesquareroot computation twice as often as necessdtyen
givensimple arguments complex expression likine body of ROUNDIONT trans
lates intomany instructions which shouldbe housed ira single functionto be called
whenneeded.Instantiatinga macroatevery occurrence maktsecompiledprogram
larger. (C++ inline functionshave thiddrawbacktoo.)

Parenthesizehe macro bodynd arguments.f you insiston usingfunction macros,
be careful. Macroswork by textual substitutionthe parameters the definitionare
replacedby the argumentsf the call and theresult replacethe original call, astext.
Thisis atroublesome differendeom functions. The expression

1 / square(x)
worksfine if squareis afunction,butif it's a macrolike this,
? #define square(x) (X) = (X)

theexpressiomwill beexpandedo theerroneous

SECTION1.5 MAGIC NUMBERS 19

? 1/) = (0
The macro shoulte rewrittenas
#define square(x) ((x) = (X))

All those parentheses arecessaryEven parenthesizirthe macro properlgoesnot
addressthe multipleevaluationproblem. If an operatioris expensiveor common
enoughto bewrappedup. usea function.

In C++, inline functions avoidhe syntactic troublevhile offering whateveper

formance advantagmacros mighprovide. They are appropriate for short functions
that set or retrievasinglevalue.

Exercisel-9. Identifythe problemswith this macro definition:
2 #define ISDIGIT(c) ((c >= '0"') && (c <= '9')) 71 : 0

O

1.5 Magic Numbers

Magic numbers arethe constantsarray sizes, character positions, conversion fac
tors,andotherliteral numeric valuethatappeain programs.

Givenamesto magic numbersAs a guideline any numbeptherthan0 or 1is likely
to be magic andshould havea nameof its own. A raw numberin programsource
gives no indicationof its importanceor derivation, making the program hardéo
understanéind modify. This excerpt frona programto print a histogramof letter
frequencies oa 24 by 80cursoraddresseterminalis needlesslyppaquéebecausef a
hostof magicnumbers:

? fac =1im / 20; /+ set scale factor =/
7 if (fac < 1D

._, fac = 1;

9 /= generate histogram =/
b, for (i =0, col =0; i < 27; i++, j++) {

7 col += 3;

ki k =21 - (let[i] / fac);

! star = (let[i] = 0) 2 " " : '=’;

? for (j = k; § < 22; j++)

2 draw(j, col, star);

? }

7 draw(23, 2, " "); /= label x axis =/

? for (i="'A"; i @& 'Z'; i++)

printf("%c ", i);

20 STYLE CHAPTER 1

The code includes, among others, the numd@rg1,22, 23, and27. They're clearly
related. or are they?In fact, there are only three numbers criticethis program: 24,
the numberof rowson thescreen; 80, the numbef columns;and 26, thenumberof
lettersin the alphabet.But noneof these appeain the code,which makes the num
bersthatdoevenmore magical.

By giving namesto the principal numberm the calculation,we can make the
code easier to follow. We discover, for instant®t the number3 comes from
(80—1)/26 and that e t shouldhave26 entries, no27 (an off-by-oneerror perhaps
caused by dndexed screen coordinatesylaking a coupleof other simplifications,
thisis theresult:

enum {
MNROW =1, /% top edge */
MINCOL =1, /% left edge »/
MAXROW = 24, /= bottom edge (<=) =/
MAXCOL = 80, /% right edge (<=) =/
LABELROW = 1, [* position of labels =/
NLET - 26, /% size of alphabet =/
HEIGHT = MAXROW - 4, /* height of bars =/
WIDTH = (MAXCOL-1)/NLET /* width of bars =/

1
fac = (lim + HEIGHT-1) / HEIGHT; /= set scale factor =/
if (fac < D

fac = 1;

for Ci= 0; 1 < NLET; i++) { /= generate histogram =/
if (et[i] == 0)
continue;
for (j = HEIGHT - Tet[il/fac; j < HEIGHT; j++)
draw(j+1 + LABELROW, (i+1)=WIDTH, ’=');

1
draw(MAXROW-1, MINCOL+1, ’ '); /= label x axis =/
for Ci= 'A"; i <= "Z'; i++)

printf("%c ", 1) 3

Nowit's clearemwhat the maifoop does:it's anidiomatic loop from0 to NLET, indi-
catingthattheloop is over the elementsf the data. Alsdhecalls todraw are easier
to understand because wolie® MAXROW andMINCOL remindus ofthe orderof argu
ments. Most important, it'snow feasible to adapt the program to another sfzgis-
playor different data. The numbers are demystifiadsois the code.

Define numbersas constants,not macros.C programmerdavetraditionally used
#define to managemagic numbevalues. TheC preprocessds a powerfulbut blunt
tool, howeverand macros are& dangerousvay to programbecausehey changethe
lexical structureof the progranunderfoot.Let thelanguage propeatothework. In C
andC++, integer constants cabre definedwith an enum statement, ase sawin the
previous example. Constamtfsany typecanbedeclaredwith const in C++:

const int MAXROW = 24. MAXQOOL = 80;

SECTION 1.5 MAGIC NUMBERS 21

orfinal inJava:
static final int MAXROW = 24, MAXCOL = 80;

C alsohasconst valuesbut they cannotbe usedas array boundsothe enum state
ment remains thmethodof choicein C.

Usecharacter constants, not integer§he functionsn <ctype.h> or their equiva
lent should beisedto testthe properties of character#\ test likethis:

? if (c >= 65 && c <= 90)

?
depends completely on a particular character representation. It's baer to
? if (c >="A" & c < 'Z")
? -

but that may nobhavethedesired effecif theletters arenotcontiguousn thecharae
ter set encodingr if thealphabet includes other letters. Bisgb use thdibrary:

it (supper (c))

in C or C4+, or

if (Character. isUpperCase(c))

in Java.

A related issués that thenumber0 appears oftein programsjn manycontexts.
The compilemwill convertthenumber intdaheappropriateaype, butit helps theeader
to understand the rolaf eachO if thetypeis explicit. For exampleyse(voi d=)0 or
NULL to represent a zero pointierC, and *\0’ insteadof 0 to representhenull byte
atthe endof a string. In other words, don't write

? str = 0;

? name[i] = 0;

? x = 0;

butrather:
str = NULL;
name[i] = ’\0’;
x = 0.0;

We preferto usedifferent explicit constants, reserviegfor a literal integer zero,
becausdheyindicate theuseof the valueandthus provide @it of documentationin
C++, however,0 ratherthan NULL is the acceptechotationfor a null pointer. Java
solves the problem beby defining the keywordnull for an object referenciat
doesn't refeto anything.

22 STYLE CHAPTER 1t

Usethe languageo calculatethe sizeof an object.Don't usean explicit size for any
data type;usesizeof(int) insteadof 2 or 4, for instance. For similar reasons,
sizeof(array[01) may be betterthan sizeof(int) because it's one less thing to
changsf the typeof thearray changes.

Thesizeof operatoiis sometimes convenientvay to avoid inventinghamedor
thenumberghatdetermine array sizes. For exampié.we write

char buf[1024];
fgets(buf, sizeof(buf), stdin);

the buffer sizeis still a magic numberbut it occurs only oncein the declaration. It
may notbe worth inventinga namefor the sizeof a local array, but it is definitely
worth writing codethatdoesnot haveto changéf thesize ortypechanges.

Java arraybavea length field thatgivesthe numberof elements:

char buf[] = new char [1024];

for (int i = 0; i < buf.length; i++)

Thereis noequivalentof .Tength in C andC++, butfor an array (not pointer)
whosedeclaratioris visible, this macro computes the numbrelementsn thearray:

#define NELEMS(array) (si zeof(array) / sizeof(array [0]))
double dbuf [100];

for (i = 0; i < NELEMS(dbuf); i++)

The array sizés setin only one placetherestof thecode doesiot changef thesize
does. Thereis noproblemwith multiple evaluatiorof the macrargument here, since
there canbe no side effectsand in fact the computationis done aghe program is
beingcompiled. Thids anappropriateusefor a macrobecausé does something that
afunction cannot: computéesizeof an arrayfrom its declaration.

Exercisd-10. How would you rewrite these definitions to minimize potential
errors?

? #define FTZMETER 0.3048
? #define METERZFT 3.28084
? #define MIZFT 5280.0
? #define MIZKM 1.609344
?

#define SQMIZSQKM 2.589988

SECTION 1.6 COMMENTS 23

1.6 Comments

Commentsaremeant tchelpthereaderof a program. Theydo not helpby saying
thingsthecode alreadylainly saysor by contradictinghe code, orby distracting the
reademith elaborate typographical displays. Thestcomments aidhe understand
ing of a programby briefly pointingout salient detail®r by providing a larger-scale
view of the proceedings.

Don't belabor the obviousComments shouldn't report s@¥identinformation, such
asthefact thati —+has-incrementer_. Hereare somef our favoriteworthlesscom-
ments:

/*
* default
*/
default:
break;

B I D

? /* return SUCCESS =/

? return SUCCESS;

’ zerocount++; /* Increment zero entry counter =/
? /% Initialize "total" to "number-received" */

? node->total = node->number-received;

All of these comments shoubédeleted; they're just clutter.

Comments shoulddd something thais not immediately evident fronthe code,
or collect into one placeformation that isspreadthrough thesource. When some
thing subtleis happeninga commentmay clarify, but if the actions are obvious
already, restatinthemin words ispointless:

while ((c = getchar()) !'= BEOF & isspace(c))
/* skip white space */

?

? if (c = EOP /* end of file =/
7 type = endoffile;

7 elseif (c = "'(C") /x left paren =/
ki type = leftparen;

? else if (c = ")") /+ right paren =/
? type = rightparen;

? elseif (c = ";") /#* semicolon =/

? type = semicolon;

? else i f (is_op(c)) /% operator =/

7 type = operator;

2 else i f (isdigit(c)) /* number =/

These comments should alsedeleted, since theell-chosen nameaireadyconvey
the information.

24 STYLE CHAPTER |

Commentfunctions and globalata. Commentsan be useful,of course. We cont
mentfunctions, global variables, constant definitions, figidstructuresandclasses,
andanything elsavherea brief summary can aid understanding.

Global variable®iavea tendencyto cropup intermittently throughout a program;
a comment servessa remindeto bereferredto asneeded.Here'sanexample from
a programin Chapter3 of this book:

struct State { /« prefix * suffix list a
char »pref|[NPREF]; /a prefix words a/
Suffix =suf; /a list of suffixes =/
State *next; /* next in hash table »/

};

A commentthatintroduces eacfunctionsets the stage for readitige codeitself.
If thecodeisn't toolong ortechnical.a single linds enough:

// random: return an integer in the range [0. .r-1].
int random(int r)

{
}

return (int)(Math .floor(Math.random()*r)) ;

Sometimes code is genuinely difficult, perhaps bec#usalgorithm is compli
catedor the data structures are intricatén that case, a commerhat points to a
sourceof understanding can atthe reader. It may also be valuableto suggestvhy
particular decisionsvere made.This comment introducean extremely efficient
implementatiorof aninverse discrete cosine transfo(@CT) usedin a JPEGimage
decoder.

/*
idct: Scaled integer implementation of

Inverse two dimensional 8x8 Discrete Cosine Transform,
Chen-Wang algorithm (IEEE ASSP-32, pp 803-816, Aug 1984)

32-bit integer arithmetic (8-bit coefficients)
11 multiplies, 29 adds per DCT

I EEERE

Coefficients extended to 12 bits for

%

» |[EEE 1180-1990 compliance
*/
static void idct(int b[8«8])
{
}

This helpful comment citethe referencebriefly describeshedataused,ndicates the
performancef the algorithm,andtells how andwhy the original algorithm haskeen
modified.

SECTION 1.6 COMMENTS 25

Don't commentbad code, rewriteit. Comment anythinginusualor potentiallycon
fusing, but when the comment outweighthe code,the code probablyneedsfixing.
This examplausesa long, muddled comment and a conditionaimpiled debugging
print statement to explain a single statement:

9 /= I'F"result” is 0 a match was found so return true (non-zero).
? Otherwise, "result" is non-zero so return false (zero). =/
5

? #ifdef DEBUG

? printf("#=xx isword returns !result = %d\n",6 Iresult) ;

? fflush(stdout);

? #endif

?

7

return(! result) ;

Negations ardardto understandnd shouldbe avoided. Partof the problem is the
uninformative variabl@aame,result. A moredescriptivename matchfound, makes
thecomment unnecessary and cleapshe printstatementoo.

#ifdef DEBUG

printf ("#+x isword returns matchfound = %d\n", matchfound) ;
ffl ush(stdout) ;

#endif

return matchfound;

Don't contradict the codeMost comments agrewith the codewhenthey arewrit-
ten, but as bugsare fixedand the progranevolves,the commentsare often leftin
their original form, resultingn disagreemenith the code. Thiss thelikely expla
nationfor theinconsistencyn theexample that operthis chapter.

Whateverthe sourceof the disagreement, a commaehfat contradictshe codeis
confusing,and manya debugging sessidms beenneedlesshyprotractedbecausex
mistakencommentwas takerastruth. Whenyou change codemakesurethe com
ments are still accurate.

Comments shouldot only agree with code,theyshould supporit. The comment
in this exampleis correct—it explainsthe purposeof the nexttwo lines—but it
appears to contradithe code; the commerttlks aboutnewline and thecode talks
about blanks:

? ti me (&now) ;

2 strcpy(date, ctime(&now));

? /% get rid of trailing newline character copied from ctime */
? i=0;

? while(date[i] >= ') i++;

? date[i] = O;

One improvemeris to rewritethecodemoreidiomatically:

B N - T

STYLE CHAPTER |

time(&now) ;

strcpy(date, ctime(&now));
/= get rid of trailing newline character copied from ctime =/

for (i = 0; date[i] != ’\n’; i++)

date[i] = '\0’;

Codeandcommentnow agree put both can be improvetly beingmade morealirect.
The problem isto deletethe newline that ctime putson the end of the string it
returns. The comment showddyso,and thecode shouldio so:

time(&now) ;

strcpy(date, ctime(&now));

/x ctime() puts newline at end of string; delete it =/
date[strlen(date)-1] = ’\0’;

This last expression the C idiom for removingthe lastcharacter frona string. The
codeis now short, idiomaticandclear, andthe comment supports ity explaining
why it needgo bethere.

Clarify, dit cofuse. Comments are supposedttelp readers over thbard parts,
not create more obstacles. This example follows our guidetihesmmentingthe
functionand explaininginusualpropertiespn theotherhand, the€functionis strcmp
andthe unusualproperties ar@eripheralto thejob at hand, which is théamplementa
tion of a standarcindfamiliar interface:

3 m3 Al Wl a3 3 3 A3 3 S a3 s a3

int strcmp(char =s1, char =#s2)
/* string comparison routine returns -1if slis =/
/* above s2 in an ascending order list, O if equal =/
/* 1if sl below s2 =/
{
whi Te(#*sl==xs2) {
if(xs1=="\0") return(0);
Sl++;
S2++;
I
i f(*s1>xs2) return(1);
return(-1) ;
I

Whenit takesmore thara few wordsto explain what's happening, it's oftanindi-
cationthatthe code shoultbe rewritten. Herethe code could perhagse improved
but the real problemis thecommentwhich is nearly as long aghe implementation
and confusing,too (which way is "*abové'?). We're stretching the point to say this
routineis hardto understandyut since it implementa standard function, its comment
can helpby summarizinghe behavior and tellingis wherethe definition originates;
that'sall that'sneeded:

SECTION 1.7 WHY BOTHER? 27

/x strcmp: return < 0 if sl<s2, > 0 if sl>s2, O if equal =/

/* ANSI C, section 4.11.4.2 =/
int stremp(const char »sl, const char =s2)

}

Students aréaught thatit's importanto comment everything. Professiomnmab-
grammers are often required to comment all their code thByurposenf comment
ing canbe lost in blindly following rules. Comments areneantto helpa reader
understancgansof the progranthat arenot readily understood frorthe codeitself.
As muchas possible, write codbat is easyo understandhe betteryou do this, the
fewer commentgou need. Good codeneeddewer commentthanbadcode.

Exercisel-11. Commenbn these comments.

? void dict::insert(string& w)
2 // returns 1if win dictionary, otherwise returns 0

? if (n>MAX || n%2>0) // test for even number

// Write a message
// Add to line counter for each line written

void write_message()
{
// increment line counter
line-number = line-number + 1;
fprintf(fout, "%d %s\n%d %s\n¥d %s\n",
line-number, HEADER,
line-number + 1, BODY,
line-number + 2, TRAILER);
// increment 1ine counter
line_number = line_number + 2;

= o ad ad ocwd ol A el el R el

a

1.7 Why Bother?

In this chapter, we'vetalked about the mainconcernsof programming style:
descriptive hames, claritiy expressions, straightforward control flow, readabiity
codeand commentsand theimportanceof consistenuse ofconventionsand idioms
in achieving albf these. It'shardto arguethatthese ardadthings.

28 smE CHAPTER |

But why worry about style? Who caregshata program looks likef it works?
Doesn'tit take toomuchtime tomakeit look pretty? Aren't the rules arbitrary any
way?

The answeis thatwell-written code is easier teead ando understand, almost
surely has fewer errorand islikely to be smallerthancodethat hasbeencarelessly
tossed together and never polishédthe rush to get programs outhe door to meet
some deadline, it's easy pushstyle aside, tavorry about it later. This cabe a
costly decision. Somef the examplesn this chaptershow what cargo wrong if
there isn't enough attention gmod style. Sloppy codés bad code—not just awk
ward and hartb read, bubftenbroken.

The key observation ighat goodstyle shouldbe a matterof habit. If you think
about styleas you write code originally, andf you take the time to reviseand
improve it,you will develop goodabits. Oncethey become automatic, your subeon
sciouswill takecareof manyof the details for you, and evethe codeyou produce
underpressuravill be better.

Supplementary Reading

As we said atthe beginningof the chapter, writinggood codehas muchin com-
mon with writing good English.Strunk and White's The Elementsof Style (Allyn &
Bacon) is still the besshortbook onhow to write Englishwell.

This chapter drawsn the approactof The Elementsof Programming Styleby
Brian Kernigharmand P. J. Plauger{McGraw-Hill, 1978). Steve Maguire'dN’riting
Solid Code (Microsoft Press.1993)is an excellent source of programming advice.
There are also helpful discussiooisstyle in Steve McConnell’s Code Complete
(Microsoft Press.1993)and Petevander Linden'sExpert C Programming:DeepC
SecretgPrentice Hall 1994).

2

Algorithms and
Data Structures

In the end, only familiaritywith the toolsand techniquesf the field will pro-
vide the right solution for a particular problem, and onlya certain amount of
experiencewill provide consistently professional results.

Raymond FieldingThe Techniqueof SpecialEffectsCinematography

The study of algorithmanddata structures is ora# thefoundationsof computer
science, aich field of elegant techniqueand sophisticated mathematical analyses.
And it's morethanjust fun and games fahetheoreticallyinclined: a good algorithm
or data structurenight makeit possible to solve a probleim secondghatcould oth-
erwise take years.

In specialized areas like graphics, databases, pargintgricalanalysis, and sim
ulation, the ability to solve problems depends criticatly stateof-the-artalgorithms
anddata structureslf you are developing progranis a field that's newto you,you
mustfind outwhatis already known, lestou waste your time doingoorly what oth
ershavealready donevell.

Every program depends on algorithms and data structboedew programs
dependon the invention ofbrandnew ones. Evermwithin an intricate program like a
compileror awebbrowser, mosof thedata structures are arrays, lists, traeglhash
tables. Whera program needs somethingreelaborate, iwill likely be basedon
these simpler ones. Accordingfgr most programmersthe taskis to know what
appropriate algorithms and data structures are available andd&ystanchow to
choose among alternatives.

Hereis the storyin a nutshell. There amenly a handfulof basicalgorithmsthat
show up in almost everyprogram— primarily searchingand sorting—and even those
are often includeth libraries. Similarly, almost every data structisrderivedfrom a
few fundamental ones. Thus the material covénethis chapterwill be familiar to
almostall programmersWe have writtenworking versionsto makethe discussion

20

30 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

concrete, angou canlift code verbatinmf necessarybut do soonly afteryou have
investigatedvhat theprogramming language and its librariémveto offer.

2.1 Searching

Nothingbeatsan array for storing static tabular data. Conmyilae initialization
makes it cheapnd easyo construcsucharrays.(In Java, the initialization occueg
run-time,but this isan unimportant implementation detaihless thearrays ardarge.)
In a program to detectwords thatreusedrather toamuchin badprose we canwrite

char =flab[] = {
"actually",
"just ",
llquitell’
"really ".
NULL

};

The search routineeedsto know how manyelements aré the array. Oneway to
tell it is to pass thdengthas an argument; anothemsedhere,is to placea NULL
marker at thendof the array:

/% lookup: sequential search for word in array =/
int lookup(char =word, char *array[])

{
int i;
for (i = 0; array[i] != NULL; i++)
if (strcmp(word, array[i]) == 0)
return i;
return -1;
);

In C and C++, a parameterthat is an array of strings canbe declared ashar
*array[] orchar *+array. Although these formare equivalent, the firghakesit
clearerhow the parametewill be used.

This search algorithnis calledsequential searclbecauséd looks at each element
in turn to seeif it's the desired one.When theamountof datais small, sequential
searchis fast enough. Therarestandard library routines o sequential seardior
specific data typedsor example, functions liketrchr andstrstr search fothefirst
instanceof a given characteor substringn a C orC++ string. theJavaString class
has anindex0f method. and th@eneric C++find algorithms applyto most data
types. If suchafunction existdor thedatatypeyou've gotuseit.

Sequential searcls easybut theamountof work is directly proportionato the
amountof datato be searched; doublirtge numberof elementswill doublethe time
to searchf thedesiredtemis not present. Thiss a linearrelationship—rurtimeis a
linear functiorof datasize—so this method islsoknownaslinear search.

SECTION 2.1 SEARCHING 3L

Here'san excerpt froman arrayof more realistic sizérom a program that parses
HTML, which definestextual namefor well overa hundredndividual characters:

typedef struct Nameval Nameval;
struct Nameval {

char *name;

int value;

};

/= HIML characters, e.g. AElig is ligature of Aand E. =/
/* Values are Unicode/IS010646 encoding. =/

Nameval htmlchars[] = {

"AE1ig", 0x00c6,
"Aacute", 0x00c1,
"Acirc", 0Ox00c2,
.. %

"zeta", 0x03b6,

};

For a larger array like this,t's more efficient tousebnay search.The binary
search algorithnis an orderlyversionof the way we look up wordsin a dictionary.
Checkthe middleelement.If that valueis biggerthan whatwe are looking for look
in the first half; otherwiseJook in the secondalf. Repeat until thelesireditem is
foundor determinecdhotto be present.

For binarysearchthetablemustbe sorted asit is here(that'sgoodstyle anyway;
people find things fastén sorted tables tooand we mustknow how long thetable
is. TheNELBMS macro from Chaptelr canhelp:

printf("The HIML table has %d words\n" NELEMS(htmlchars)) ;
A binarysearch function fothis tablemight looklike this:

/* lookup: binary search for name in tab; return index =/
int lookup(char xname, Nameval tab[], int ntab)
{

int low, high, mid, cmp;

low = O;
high = ntab - 1;
while (low <= high) {
mid = (low + high) / 2;
anp = strcmp(name, tab[mi d].name) ;
if (cmp < 0)
high = mid - 1;
else if (cmp > 0)
low = mid + 1;
else /= found match =/
return mid;
}

return -1; /+ no match */

32 ALGORITHMSAND DATA STRUCTURES CHAPTER 2

Putting all thisgogetherto searchtml chars we write
half = Tookup("fracl2”, htmichars, NELEMS(htmlchars));
to find the arrayndexof thecharactet.

Binary search eliminatekalf the dateat each step.The numberof stepsis there
fore proportional to the numbef timeswe can dividen by 2 before we'rdeft with a
single element. Ignoring roundoff, thislog,n. If we have 1000 items to search,
linear search takagp to 1000 steps,while binarysearch takes about 1liOwe have a
million items. linear takes amillion stepsand binarytakes20. The more items, the
greater the advantagébinary search.Beyondsome sizef input (which variesvith
the implementationpinarysearchs faster than linear search.

2.2 Sorting

Binary search works onlyf the elements are sortedf. repeatedsearches are
going tobe made in some data séft,will be profitable to sortbonceand then use
binarysearch.If the data set is knowin advanceit can be sorte@henthe program
is written and built usingcompiletime initialization. If not, it mustbe sortedwhen
the progranis run.

Oneof the best alround sorting algorithmss quicksort,which wasinvented in
1960by C. A. R. Hoare. Quicksort is a fine examplaf how to avoid extra comput
ing. It worksby partitioninganarray into littleandbig elements:

pick oneelement of the array (tH&pivot™).
partition the other elements inteo groups:

""little ones' thatare lesghan thepivot value,and

""big one&' thataregreatetthanor equal to the pivotalue.
recursively sort each group.

When this process finished, the arrays in order. Quicksoris fast becausence an
element iknown to belessthan thepivot value,we don't have to compaitto any
of the big ones; similarly. big ones amot comparedto little ones. This makes it
muchfasterthan thesimple sorting methodsichasinsertion sorandbubble sort that
compare each element directly to all the others.

Quicksortis practicaland efficient; it has been extensively studiadd myriad
variations exist.Theversionthatwe presenhereis just about the simplest implemen
tation but it is certainly not the quickest.

Thisquicksort function sortanarrayof integers:

SECTION 2.2 SORTING 33

/# quicksort: sort v[0]..v[n-1] into increasing order &
void quicksort(int v[], int n)

{
int i, last;
if (n <= 1) /* nothing to do =/
return;
swap(v, 0, rand() % n); /* move pivot elem to v[0] «
last = O:
for (i =1; i < n; i++) /* partition =/
if (v[i] < v[0D])
swap(v, ++last, 1);
swap(v, 0, last); /a restore pivot a
quicksort(v, last) ; /= recursively sort =/
guicksort(v+last+l, n-last-1); /= each part a
}

The swap operation,which interchangegwo elements, appears three times in
quicksort, soit is best madéto a separate function:

/a swap: interchange v[i] and v[j] =/
void swap(int v[], inti,int j)

int temp;

temp = v[il;
v[il = v[jl;
v[i]l = temp;

}

Partitioning selects a random elemestthe pivot. swapsit temporarily to the
front, then sweeps through the remaining elements, exchanging those traatiee
pivot ("'little ones") towards the beginning (at locatidast) and big ones towards
theend (atlocationiY At the beginning ofthe process, jusafterthe pivot hasbeen
swapped tahefront, 1ast = 0 andelementd = 1 throughn-1 areunexamined:

unexamined

P
last i n-1

At the top of thefor loop, elementa throughlast are strictly less thathe pivot,

elementslast+1 throughi-1 are greatethanor equal to the pivotand elementa

throughn-1 have not been examinget. Until v[i] >= v[0], the algorithmmay
swapv[i] with itself; thiswastes some time but not enoughwviarry about.

p <p >=p unexamined |

Tt ! t }

last i n-1

34 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

After all elements havbeenpartitioned, elemertt is swapped witlthe | a s telement
to put thepivot elementin its final position;this maintainghecorrect ordering.Now
the array looks lik¢his:

<p p >=p |

! ! !

last n-1

The same process applied tothe leftandright subarrays;when this has finished,
thewhole arrayhasbeensorted.

How fast is quicksortdn the bespossible case,

o the first pass partitionselements into two groupsd aboutn/2 each.

o the second level partitions two groups, eatlaboutr/2 elements, into four

groups eaclbf aboutn/4.

o thenext level partitions four groupd aboutn/4 into eight of abouk/8.

e andsoon.

This goeson for aboutlog, n levels,sothe total amountf work in the best case is
proportional to nt 2xn/2 + 4xn/4 + 8xn/8 ... (log,n terms),which is nlog, n.
On the averaget doesonly a little more work. It is customary tausebase 2 loga
rithms; thuswve say thaguicksorttakestime proportional tanlogn.

This implementationf quicksortis theclearest for expositiorhutit has aweak
ness. If each choicef pivot splitsthe element valuesto two nearlyequal groups.
ouranalysis is correct, biftthe split isunevertoo often, theun-time can growmore
like n?2. Ourimplementation usesrandomelementasthe pivot to reduce the chance
that unusual inputatawill cause toanany uneversplits. Butif all theinput values
arethe samegur implementation spliteff only oneelement each time amidll thus
run intime proportionato n?.

Thebehaviorof some algorithms depends strongty theinput data. Perverse
unlucky inputsmay causean otherwisewell-behavedalgorithm torun extremely
slowly or usea lot of memory. In the cas@f quicksort, although a simple implemen
tation like ours might sometimasin slowly, more sophisticated implementations can
reducethechanceof pathological behavido almost zero.

2.3 Libraries

The standard libraridsr C and C++ include sort functionshat shouldbe robust
against adverse inputs, anshedto run asfastaspossible.

Library routines ar@reparedo sonanydata typebputin returnwe mustadapt to
their interface which may be somewhatmore complicatedthan whatwe showed
above. In C, the library function ismamedgsort,and we needo provide a compati
sonfunction tobecalled by gsortwheneveit needs to compar®o values. Since

SECTION 2.3 LIBRARIES 35

the values might bef any type, the comparison functionhianded tworoi da point
ers tothe data items to be comparet@he function casts the pointets the proper
type, extracts the data values, compé#nem,andreturnstheresult (negative, zeroy
positive according to whether the first value is less than, equad greaterthanthe
second).
Here's an implementation for sortiagarrayof strings,which isa common case.

We define a functiorscmp to castthearguments and cadtrcmp to do the compari
son.

/* scmp: string compare of =pl and =p2 =/
int scmp(const void =pl, const void =p2)

i
char #vl, =v2;
vl = =(char =) pl;
v2 = =x(char ==) p2;
return strcmp(vl, v2);
}

We could write thisasa oneline function, but the temporary variablaskethe code
easier to read.

We can'tusestrcmp directly asthe comparison function becaussort passes
theaddress of each entity thearray,&str[i] (of typecharaa), notstr [i] (of type
chars), asshownin thisfigure:

arrayof N pointers:

str[0] | _

str(1] —]

str[2] =
\‘@

striN-11 [—f——s{strings’

To sort elementstr[0] throughstr[N-1] of an arrayof strings,qsort mustbe
calledwith thearrayi,its length.the sizeof the items being sorted, atttecomparison
function:

char =str[N];
gsort(str, N, sizeof(str[0]), scmp);

Here'sa similar function cnp for comparing integers:

36 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

/* icmp: integer compare of #pl and ap2 =/
int icmp(const void =pl, const void =p2)

3

int vl, v2;

viI==(int o pl;
v2 = »(int a) p2;
if (vl <v2)
return -1;
else if (vl == v2)
return 0;
else
return 1;

Wecouldwrite

? return vl-v2;

butif vz is largeand positiveandyv | is largeand negativeor vice versa, the resulting
overflowwould produceanincorrect answer. Direct comparison is longer but safe.

Again, thecall togsort requires the array, its length, the size of the items being
sorted andthe comparison function:

int arr[N]};

gsort(arr, N, sizeof(arr[0]), icmp);

ANSI C also defines @inary search routinebsearch. Like gsort, bsearch
requires a pointer to a comparison function (often the samesedfor gsort); it
returns a pointer to the matching elemennNULL if not found. Hereis our HTML
lookup routine, rewritten taisebsearch:

/a lookup: use bsearch to find name in tab, return index =/
int lookup(char xname, Nameval tab[], int ntab)

3

Nameval key, anp;

key.name = name;
key-value = 0; /= unused; anything will do =/
np = (Nameval =) bsearch(&key, tab, ntab,
sizeof(tab[0]), nvemp);
if (np == NULL)
return -1;
else
return np-tab;

As with gsort, the comparison routine receivte addresf the items to be
comparedsothe keymusthavethat type; irthis examplewe needto construct a fake
Nameval entrythatis passedo the comparison routinélhecomparison routine itself

SECTION 2.4 A JAVA QUICKSORT 37

is afunction nvemp that compares twdlameval items by calling strcmp on their
stringcomponents, ignoring their values:

/* nvemp: compare two Nameval names =/
int nvemp(const void ava, const void =vb)

{

const Nameval =a, ab

a = (Nameval =*) va;

b = (Nameval =) vb:

return strcmp(a->name, b->name);
}

Thisis analogougo scmp but differs becausehe strings arestoredas membersf a
structure.

The clumsines®f providing thekey meansthatbsearch provides less leverage
thangsort. A goodgeneralpurpose sort routine takagpageor two of code,while
binary searchis notmuchlongerthanthe codét takesto interface tbsearch. New
erthelessit's agood ideato usebsearch insteadof writing your own. Over the
yearshinarysearcthas provesurprisinglyhardfor programmerto getright.

The standardC++ library hasa generic algorithm calledort that guarantees
O(nlogn) behavior. Thecodeis easiebecausé needsocasts oelemensizes.and
it doesnot requirean explicit comparison functioffior typesthat havean orderrela
tion.

int arr[N];
sort(arr, arr+N);

The C++ library also has generidinary search routinesyith similar notational
advantages.

Exercise?-1. Quicksortis mostnaturally expressed recursively. Wiitéteratively
andcomparghetwo versions. (Hoardescribeiow hardit wasto work out quick
sort iterativelyand how neatlyit fell into placewhen hadid it recursively.)O

24 A Java Quicksort

The situatiorin Javais different. Early release$iad no standardsortfunction,so
we neededo write our own. More recent/ersionsdo providea sort function. how
ever,which operate®n classeshat implement th€omparable interface,sowe can
now askthe libraryto sort forus. But sincethe techniquesire usefulin other situa
tions, in this sectionwe will work through thedetailsof implementing quicksorin
Java.

38 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

It's easyto adapta quicksortfor eachtype we might wantto sort. butit is more
instructive to writea generic sort thatanbecalled for anykind of object. moren the
styleof theqsortinterface.

Onebig difference fromC or C++ is thatin Java it isnot possibleto passa com
parisonfunction to another functionhereare no function pointerdnsteadwe create
an interface whosesole contents a function that comparegwo Objects. For each
datatypeto be sorted we thencreatea classwith a member functiothatimplements
theinterfacefor thatdatatype. We passan instanceof thatclass tathe sort function,
whichin turn useghe comparison functiowithin theclassto compare elements.

We begin by defining an interfacenamedCmp that declaresa single membera
comparison functioampthatcompareswo Objects:

interfaceCmp {
int cmp(Object x, Objecty);
+

Thenwe can write comparison functionthatimplementthis interface; for example,
thisclass defineafunctionthatcomparesntegers:

// lcmp: Integer comparison
class Iecmp implements Cmp {
public int cmp(Object ol, Object 02)
{
inti1= ((Integer) ol).intvalue(;
inti2= ((Integer) o2).intvalue(Q);
if (il <12
return -1,
elseif (il ==1i2)
return 0;
else
return 1;

}
andthis compareStrings:
// Scmp: String comparison

class Scmp implements Cmp {
public int cmp(Object ol, Object 02)

{
String sl = (String) o1;
String s2 = (String) o2;
return sl.compareTo(s2);
1

}

We can sort only types that are derived fr@bjectwith this mechanism; it cannot
be applied tdhe basictypes likei n t or double. This iswhy we sortIntegersrather
thani nts.

SECTION 2.4 AJAVA QUICKSORT 39

With these components, we can now translate the C quicksort function into Java
and have it call the comparison function from a Cmp object passed in as an argument.
The most significant change is the use of indices 1e ft and r ight. since Java does not
have pointers into arrays.

// Quicksort.sort: quicksort v[Teftl. v[right]
static void sort(Object[] v, int left, int right, Qrp cmp)

{
int 1,last;
if (left >=right) // nothing to do
return;
swap(v, left, rand(left,right)) ; // move pivot elem
last = left; // to v[left]
for (i= left+l; § <= right; i++) // partition
if (cmp.cmp(v[i], v[left]) < 0)
swap(v, ++last, 1);
swap(v, left, last); // restore pivot elem
sort(v, left, last-1, cmp); // recursively sort
sort(v, last+l, right, cmp); // each part
1

Quicksort.sort uses amp to compare a pair of objects, and calls swap as before to
interchange them.

// Quicksort.swap: swap v[i] and v[j]
static void swap(Object[] v, int i, int j)

{
Object temp;
temp = v[il;
v[i]l = v[3il;
v[j]l = temp;
1

Random number generation is done by a function that produces a random integer
intherange 1eft to right inclusive:

static Random rgen = new RandomQ);
// Quicksort.rand: return random integer in [left, right]
static int rand(int left, int right)

{
1

return left + Math.abs(rgen.nextInt())%(right-Teft+l);

We compute the absolute value, using Math. abs, because Java's random number gen-
erator returns negative integers as well as positive.

The functions sort, swap, and rand, and the generator object rgen are the mem-
bers of aclass Quicksort.

Finally, to call Quicksort.sort to sort a String array, we would say

40 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

String[] sarr = new String[n];
// fill n elements of sarr...
Quicksort.sort(sarr, O, sarr.length-1, new Scmp());

This callss o rtwith a stringcomparison object created for the occasion.

Exercise-2. OurJava quicksort doesfair amountof type conversiomsitems are
cast from their original type (likenteger)to Objectandback again. Experiment
with aversionof Quicksort.sortthatusesthe specific type being sorted, to estimate
whatperformance penaltyis incurredby type conversiond

2.5 O-Notation

We've described the amountwbrk to be doneby a particular algorithnn terms
of n, the numbeof elementsn the input. Searchinguinsorteddata can take timgro-
portional to njf we use binarysearclon sorted data, the timgill be proportional to
logn. Sortingimesmight be proportional ta? or nlogn.

We needa way to make such statements more precise, wdtithe same time
abstracting away details likbe CPU speedandthe quality of the compiler (and the
programmer). Wavantto compare running timeand space requirements of algo
rithms independentlgf programming language, compiler, machine architecture,
cessor speed, system loaddother complicating factors.

Thereis a standard notatidor this idea, called' O-notation!" Its basic parame
ter is n,the sizeof a problem instance, and theomplexity or running time is
expresseasa functionof n. The**0O is for order,asin **Binary search i (logn);
it takes on the ordeof logn stepsto searchan array of n items!" The notation
O(f(n)) meansthat. oncen gets large, the running timg proportional toat most
f(n), for example,0(n?) or O(nlogn). Asymptotic estimates like this are valuable
for theoretical analyseand very helpful for gross comparisorsf algorithms, but
detailsmay make a differencim practice. For example,law-overheadD(n?) algo-
rithm may runfasterthana high-overheadd(rlogr) algorithm for small valuesf n,
but inevitably,if n getslargeenough, the algorithrwith the slowergrowing fune
tional behaviowill befaster.

We mustalso distinguistbetweenworstcaseand expectedehavior. It'shardto
define" expected; since it dependsn assumptions abouwthat kindsof inputswill
begiven. We canusuallybe precise abouhe worst case, although thatay be mis-
leading. Quicksort's worstase run-time is O(n?) but the expected time is
O(nlogn). By choosingthe pivot element carefully each timese can reduce the
probability of quadraticor O(n?) behavior to essentially zera practice, awell-
implemented quicksodsually runsn O(nlogn) time.

SECTION 2.6 GROWING ARRAYS 41

These are thmostimportant cases:

Notation Name Example

o(l) constant array index

O(logn) logarithmic binarysearch

O(n) linear string comparison
O(nlogn) nlogn quicksort

o(n?) quadratic simple sorting methods
o(n*) cubic matrix multiplication
0(2%) exponential set partitioning

Accessinganitemin anarrayis a constantimeor O(1) operation.An algorithm
that eliminateshalf the inputat each stage, likdinary searchwill generallytake
O(logn). Comparing two rcharacter stringsvith strcmp is O(n). The traditional
matrix multiplication algorithm take®(n>), since each elemenf the output is the
resultof multiplying » pairsandadding therrup, andthere aren? elementsn each
matrix.

Exponentiaitime algorithms are often the resohl evaluating all possibilities:
there are2" subsetof a setof n items,so analgorithm that requires lookinat all
subsetswill be exponentiabr O(2"). Exponential algorithms are generally too
expensive unless is very small, since addingneitem to the problem doubles the
runningtime. Unfortunately there anmanyproblems, suchsthe famous' Traveling
SalesmarProblem’’ for which only exponential algorithms are knowWhenthatis
thecase algorithmsthatfind approximations to the best answer are often substituted.

Exercise2-3. What are some input sequentest mightcause a quicksort implemen
tation to display worstase behavior? Try to find some that provoke your library
sioninto running slowly. Automate the procesgthat youcan specifyand performa
large numbeof experiments easily

Exercise2-4. Designandimplementanalgorithm thawill sort an arrapf n integers
asslowly aspossible.You have toplay fair: the algorithmmustmake progresand
eventually terminate, and the implementation matcheatwith tricks like time-

wasting loops.What is the complexitgf youralgorithmasa function oin? O

26 Growing Arrays

Thearraysusedin the past few sectiorfsavebeen staticwith their sizeandcon
tents fixedat compiletime. If the flabbyword or HTML character tables were be
modifiedat run-time, a hashtablewould bea more appropriate data structu@row-
ing a sorted arrapy inserting n elementsne ata time isan O(n?) operation that
shouldbe avoidedf n is large.

42 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

Often,though,we needto keeptrackof a variablebut small numbeof things,and
arrayscanstill bethe methodof choice. To minimize the cosbf allocation, the array
shouldberesized in chunks, and for cleanliness the array should be gathered together
with the informationnecessanto maintainit. In C++ or Java, thiswould be done
with classedrom standardibraries;in C, we can achieve similar resultwith a
struct.

The following codedefinesa growable array of Nameval items; new items are
addedat theend ofthe array,which isgrown as necessaty make room.Any ele-
mentcan beaccessed through its subsciiptonstantime. Thisis analogous tdhe
vector classem the JavandC++ libraries.

typedef struct Nameval Nameval ;
struct Nameval {

char xname;
int value;
i
struct Nvtab {
int nval ; /* current number of values =/
int max ; /* allocated number of values =/
Nameval tnameval; /% array of name-value pairs =/
} nvtab;

enum { NVINIT = 1, N\GON = 2 };

/+* addname: add new name and value to nvtab =/
int addname(Nameval newname)

{

Nameval tnvp;

i f (nvtab.nameval == NULL) { /* first time =/
nvtab. nameval =
(Nameval =) malloc(NVINIT = sizeof(Nameval));
i ¥ (nvtab. nameval == NULL)
return -1;
nvtab.max = NVINIT;
nvtab.nval = O;
} else i f (nvtab.nval >= nvtab.max) { /* grow =/
nvp = (Nameval =) realloc(nvtab.nameval,
(NVGROW=nvtab.max) = sizeof(Nameval));
if (nvp == NULL
return -1;
nvtab.max == NVGRON
nvtab.nameval = nvp;
)
nvtab.nameval[nvtab.nval] = newname;
return nvtab. nval++;

}

The function addname returns the indewf the item just addedpr -1.if some error
occurred.

SECTION 2.6 GROWING ARRAYS 43

The call toreal Toc growsthe array to thenew size, preserving the existiraye
mentsandreturnsa pointer to itor NULL if there isn't enougmemory. Doubling the
sizein eachrealloc keeps th@xpected cosif copying each element constaifthe
array grewby just oneelementon each callthe performance coulthe O(n?). Since
the addresf the arraymay changewhenit is reallocated, theest of the program
must refer to elementsof the arrayby subscriptsnot pointers. Notehat the code
doesn'tsay

? nvtab .nameval = (Nameval a) realloc(nvtab .nameval ,
? (NVGROW=xnvtab.max) =# sizeof (Nameval)) ;

In this form.if thereallocatiorwereto fail, the original arrayvould belost.

We sstartwith avery small initial valug(NVINIT = 1)for thearraysize. This forces
the programto grow its arraysight awayand thusensureghat this parbf the pro-
gram isexercised. The initial sizean beincreased oncthe code goes intproduc
tion use, though the cosf startingsmall isnegligible.

The returnvalueof realloc doesnot need to beast toits final type becaus€
promotes theoid* automatically. BuC++ does not; there the castrequired. One
can argue abouwthetherit is saferto cast (cleanliness, honesty)rat tocast(thecast
canhide genuine errors\We chose to cast becauseigkes the program legal both
C andC++; the price is les®rrorcheckingfrom the C compiler,but that is offset by
the extra checking available fromsing twocompilers.

Deletinga name carbetricky. becauseve mustdecidewhatto do with theresult
ing gapin the array.If the ordeiof elements doesot matter, itis easiesto swap the
last element into thiole. If orderis to be preserved. howevewe must movehe ele
ments beyondhe hole dowrby oneposition:

/* delname: remove first matching nameval from nvtab =/
int delname(char *name)

{
int i;
for (i = 0; 1 < nvtab.nval; i++)
i f (strcmp(nvtab.nameval [i].name, name) == 0) {
memmoe (nvtab .nameval +1, nvtab .nameval +i+1,
(nvtab. nval - (i+1)) = sizeof(Nameval)) ;
nvtab .nval —;
return 1;
[
return 0;

Thecall tomemmoe squeezeshe array by moving the elementsdown one position;
memmoe IS astandard library routine for copying arbitresizedblocksof memory.
TheANSI C standard definetsvo functions:memcpy, which is fastbut mightover
write memoryif sourceanddestination overla@gndmemmowe, which mightbeslower
but will alwaysbecorrect. The burdenof choosing correctness over spséduldnot

44 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

be placed uporthe programmerthere shoulde only onefunction. Pretend there is,
andalways usenemmove.
We could replace thememmovesall with thefollowing loop:
intj;
for (j = i; j < nvtab.nval-1; j++)
nvtab.nameva[j] = nvtab.namevalj+1];

We preferto usememmovebecausd avoids the easyo-make mistakef copying the
elementsn the wrongorder. If we wereinserting instead of deleting, the loapuld
need tocount downnot up, to avoid overwriting elementsBy calling memmovewe
don't needto think it through each time.

An alternative tanoving the elementsf the arrayis to mark deleted elements as
unused.Thento adda new item, first search foan unusedslot andgrow the vector
only if noneis found. In thisexample, an element can be marednusedy setting
its name field tovULL.

Arrays are the simplestay to group data; it's no accident that most languages
provide efficientand convenient indexed arraysd represent stringas arraysof
characters Arraysareeasyto use,provideO(1) access tany item, work well with
binary searchandquicksort,and have little space overhead. For fixsize data sets,
whichcan even be constructed at compile tiordor guaranteedmall collectionsof
data, arrayareunbeatable. But maintaining a changingafetaluesin an array can
be expensive, sif the numbepf elements is unpredictable and potentially laige,
may bebetterto useanother data structure.

Exercise2-5. In thecodeabove,delnamedoesn't calreallocto returnthe memory
freed by the deletion.ls this worthwhile? How would you decidewhetherto do so?
O

Exercise2-6. Implement thenecessarghanges taddname and delnameto delete
itemsby marking deleted itemas unused. How isolatedis the restof the program
from thischanged

2.7 Lists

Next to arrays, listsare the mostcommon data structuri@ typical programs.
Many languagesave builtin list types—some,such as Lisp, arkased orthem—but
in C we mustbuild them ourselves.In C++ and Java, lists are implementdy a
library, but we stillneedto know how andwhento useit. In this sectiorwe're going
to discuss listén C butthe lessonapply morebroadly.

SECTION 2.7 Lsts 45

A singly-linked list is a setof items, eaclwith dataanda pointerto the nextitem.
The headf the listis a pointerto the firstitem andtheendof the listis markedby a
null pointer. This showsa list with four elements:

head

> = NULL

data 1 data 2 data 3 data4

There are several important differentedweenarraysandlists. First, arrayhave
fixed sizebuta list is always exactly the sizie needsto be tohold itscontentsplus
someperitem storage overhea hold the pointers. Second, lists cahe rearranged
by exchanginga few pointers.which is cheapethanthe block move necessaiy an
array. Finallywhenitemsareinsertedor deleted the other items aremioved;if we
store pointers to the elemeiirtssome other data structutbey won'tbe invalidated
by changeso the list.

These differences suggebatif the setof itemswill change frequentlyparticu
larly if the numbenof itemsis unpredictablea list is the way to store themby com-
parison, ararray isbetter for relatively static data.

There area handfulof fundamental list operationadda new item to the frontor
back, finda specific itemadda new item beforeor aftera specific itemand perhaps
delete aritem. Thesimplicity of lists makes it easy saldother operations as appro
priate.

Rather thardefining an explicitList type, theusualway lists areusedin Cis to
startwith a type fortheelements, suchsour HTML Nameval. and adda pointerthat
links to thenextelement:

typedef struct Nameval Nameval ;
struct Nameval {

char xname;

int value ;

Nameval +next; /+ in list */

1

It's difficult to initialize a nonrempty listat compile time, so, unlike arrays, lists are
constructed dynamically. Firstie needa way to construcanitem. The mostdirect
approachs to allocateonewith a suitable functionwhich we call newi tem:

/= newitem: create new item from name and value =/
Nameval tnewi tem(char tname, int value)

{

Nameval =newp;

newp = (Nameval +« emalloc(sizeof(Nameval });
newp->name = name;

newp->value = value;

newp->next = NULL,;

return newp;

46 ALGORITHMSAND DATA STRUCTURES CHAPTER 2

Theroutineemal 1oc is onewe'll usethroughouthe book; it callsmalloc, andif the
allocation fails,it reports the erroand exits theprogram. We'll show thecodein
Chapte#d; for now,it's sufficient toregardemal Toc asa memoryallocatorthat never
returns failure.

The simplestand fastestway to assembla list is to add eachnew elementto the
front:

/* addfront: add newp to front of listp =/
Nameval =addfront(Nameval =1listp, Nameval =xnewp)

{
newp->next = listp;
return newp;

Whena list is modified, itmay acquirea different first elementasit doeswhen
addfront is called. Functionthatupdatea list mustreturna pointer to thenewfirst
element,which is storedin the variableghat holdsthe list. The functioraddfront
and other functionsn this groupall returnthe pointerto the first element as their
function valuea typical useis

nvlist = addf ront(nvlist, newitem("smiley", 0x263A));

This design work®venif the existing lisis empty (null) and makes easy to com
binethe functionsin expressionsit seems more naturdianthe alternativef pass
ing ina pointer to the pointer holding theadof thelist.

Adding anitem to the end ot list is an O(n) procedure, sinceve mustwalk the
list to find theend:

/% addend: add newp to end of listp =/
Nameval xaddend(Nameval =1istp, Nameval =newp)

{

Nameval =p;

iT (Qistp == NULL)
return newp;
for (p = listp; p->next != NULL, p = p->next)

’
p->next = newp;
return listp;

If we wantto makeaddend an (1) operationwe cankeepa separate pointer tine
endof thelist. The drawback to this approach, besides the bofmarintainingthe
end pointer,is thata list is no longer representday a single pointer variable. We'll
stick with the simple style.

To search for aitem witha specific name, follow theext pointers:

SECTION2.7 LISTS 47

/= lookup: sequential search for name in listp =/
Nameval =lookup(Nameval =1listp, char xname)

{
for (; listp != NULL;, listp = listp->next)
i f (strcmp(name, 1istp->name) == 0)
return listp;
return NULL; /* no match =/
}

This takesO(n) time and there'sio way to improve thaboundin general. Evenif
the listis sorted,we needto walk along the list t@etto a particular elementBinary
search doesotapplyto lists.

To print the elements d list, we canwrite a function towalk the listand print
each elementp compute théengthof alist, we can writea functionto walk thelist
and incremena counter;and soon. An alternative iso write one functionapply,
that walksa list andcalls another function for each list element. We wetkeapply
more flexible by providing it with an argumentto be passeceachtime it calls the
function. Soapply has three arguments: the&t, afunction tobeappliedto each ele
mentof the list, ancan argument fothat function:

/= apply: execute fn for each element of listp =/
void apply(Nameval =listp.

void (=xfn) (Nameval+, void*) , void =arg)
{

for (; listp !'= NULL; listp = 1istp->next)
(=fn)(listp, arg); /= call the function =/
[

Thesecond argument afpply is a pointer toa function that takesvo argumentsnd
returnsvoid. Thestandard but awkward syntax,

void (=fn) (Nameval *, voids)

declares n to be a pointerto avoid-valued functionthat is,a variablethat holds the
addressof a function that returnssoid. The function takes two arguments,
Nameval*. which is thelist elementanda void*, which isa generic pointeto an
argument for the function.

To useapply, for example tgorint the elements oé list, we could writea trivial
function whose argumentaformat string:

/* printnv: print name and value using format in arg =/
void printnv(Nameval =p, void =arg)
{

char »fmt;

fmt = (char =) arg;
printf(fmt, p->name, p->value);

which wecall like this:

48 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

apply(nvlist, printnv, "%s: %x\n™);

To count the elementsye defineafunction whose argument épointer to an integer
to beincremented:

/* inccounter: increment counter =arg =/
void EInccounter(Nameval #p, void =arg)
{ -

int »ip;

/* p is unused */

ip = (nt %) arg;

(xip)++;

I
andcall it like this:
int n;
n = 0;
apply(nvlist, inccounter, &n);

printf("%d elements i n nvlist\n", n);

Not every list operatioiis bestdone thisway. Forinstance, to destrog list we
mustusemorecare:

/% freeall: free all elements of listp »/
void freeall(Nameval =listp)

{
Nameval =next;
for (; listp != NULL; listp = next) {
next = Tistp->next;
/% assumes name i s freed elsewhere =/
free(listp) ;
I
}

Memory cannot beusedafter it hasbeenfreed, so we mustsavelistp->next in a

local variablecallednext, before freeing the elemepbintedto by 1istp. If the
loop read, likeheothers,

? for (; listp !'= NULL; listp = 1listp->next)
? free(listp) ;

the value ofli stp->next could beoverwrittenby fre e andthecodewouldfail.
Noticethat freeal1 doesnotfree listp->name. It assumeshat thename field of
eachNameval will be freed somewhere elser was never allocated.Making sure
items are allocatedndfreed consistently requires agreement betwesvitem and
freeall; there isatradeoff betweerguaranteeinthat memongets freecand making
sure things aren't freed that shouldy®t Bugs are frequenthenthis is done wrong.

SECTION 2.7 Lsts 49

In other languages, including Java, garbage collection sthi@gproblemfor you.
We will returnto the topicof resource managementChapte#.
Deletinga single elementrom alist is morework thanaddingone:

[* delitem: delete first "name" from listp =/
Nameval *deli tem(Nameval =1istp, char *name)

{
Nameval =p, =prev;
prev = NULL;
for (p = listp; p != NULL; p = p->next) {
if (strcmp(name, p->name) = 0) {

if (prev == NULL)
listp = p->next;

else
prev->next = p->next;
free(p);
return listp;
|
prev = p;
1
eprintf("delitem: %s not in Tist", name) ;
return NULL; /* can't get here =/

Asin freeal1, del i tem doesnotfreethename field.

Thefunctioneprintf displays an error message and exits the progsich is
clumsy at best. Recovering gracefully from erroas be difficult and requiresa
longer discussiothatwe defer to Chapte4, wherewe will alsoshow the implemen
tationof eprintf.

Thesebasiclist structuresandoperations account for thest majorityof applica
tions thatyou are likely to writein ordinary programs. But there araany alterna
tives. Some libraries, including the C++ Standard Template Libsaportdoubly-
linked lists,in which each elemerttastwo pointers.oneto its successor araheto its
predecessorDoubly-linked lists requiremore overheadbut finding the last element
anddeleting the current element abg1) operations. Some allocate the |stinters
separately from the datheylink together; these amrelittle harderto usebut permit
items to appeasn more thamnelist at the samdime.

Besidedeingsuitable for situationwherethere are insertions and deletiamshe
middle, lists are good fomanagingunordered dataf fluctuating size, especially
whenaccess tendw be lastin-first-out(LIFO), asin a stack. They make moreffec
tive useof memory thararrays dovhenthere are multiple stacks that grawd shrink
independentlyTheyalso behavevell whentheinformationis ordered intrinsicallas
achainof unknowna priori size, such as the successiv@dsof adocument.If you
mustcombine frequent updatith randomaccess, however,would bewiserto use
aless insistently lineatatastructure, suchs atree orhashtable.

50 ALGORITHMSAND DATA STRUCTURES CHAPTER 2

Exercise2-7. Implementsomeof the otherlist operatorscopy. mergesplit, insert
beforeor after a specific item. How do the twoinsertion operations diffen diffi -
culty? How muchcanyou usethe routines we've written, andow much mustyou
create yourselfgl

Exercise2-8. Write recursiveand iterative versionsof reverse.which reversesa
list. Do notcreatenewlist items: reusethe existingones.OO

Exercise2-9. Write a genericList typefor C. The easiestway is to haveeach list
item holda void= that pointdo thedata. Do the same for C+by defininga template
and for Javaby defining a classthat holds listsof type Object. What are the
strengthandweaknessesf the various languages fahis job? O

Exercise2-10. Deviseandimplementa setof tests for verifyinghat thelist routines
you write are correct. Chaptérdiscusses strategies for testi.

2.8 Trees

A treeis a hierarchical data structutkat storesa setof itemsin which each item
hasa value, may point to zeroor moreothers,and ispointed toby exactlyoneother.
Theroot of thetreeis the sole exceptiomo item pointsto it.

There aremanytypesof treesthat reflect complex structures, such as parse trees
thatcapture the syntasf a sentence oa program,or family treesthatdescriberela-
tionships amongpeople. We will illustrate the principlesvith binary search trees,
which havetwo links at eachnode. They're the easiesto implement, and demen
stratethe essential propertias trees. A nodein a binary searchtree hasa valueand
two pointers,le ft and right, that pointto its children. The child pointersay be
null if thenodehas fewethantwo children. In a binary search tree, the values at the
nodesdefinethe tree:all children to thdeft of a particularnode have lower values,
and allchildrento the right havenighervalues. Becausef this property,we canuse
a variantof binary searchto search the tree quickly farspecific valueor determine
thatit is not present.

Thetree versiorof Namevalis straightforward:

typedef struct Nameval Nameval;
struct Nameval {

char *name;

int value

Nameval x1eft; /+ lesserx/

Nameval =right; /= greaters=/
1

Thelesserandgreatercommentgeferto the propertiesf thelinks: leftchildren store
lessewalues, righthildren store greateralues.

SECTION 2.8 TREES 51

As aconcrete example, this figure shoasubsebf a charactenametable stored
as abinarysearch tree adfameval s, sortecby ASCII characteraluesin thenames:

" Ox263A |

i

=N

"Aacute” "zeta"
0x00c1 0x03b6
"AETig" "Aci rc"
0x00c6 0x00c2

With multiple pointers to other elemeritseach node o0& tree, manyoperations
thattake timeO(n) in listsor arrays require onl@(logn) time in trees. The multiple
pointersat each node reduce the time compleaftpperationsy reducingthe num-
ber of nodes onenust visitto find anitem.

A binarysearch tree (whictve'll call just'tre€" in this section)is constructedby
descending intahe tree recursively, branchirgft or right as appropriate ntil we
find the right placeto link in the new node, which musbe a properly initialized
object of type Nameval: a name.a value. and twonull pointers. Thenew node is
added as leaf,thatis, it hasnochildren yet.

/* insert: insert newp in treep, return treep */
Nameval tinsert(Nameval ttreep, Nameval tnewp)

{
int cmp;
if (treep == NULL)
return newp;
amp = strcmp(newp->hame, treep->name);
if (cmp = 0)
weprintf("insert: duplicate entry %s ignored ",
newp->name) ;
else if cmp < 0)
treep ->left = insert(treep->left, newp) ;
else
treep ->right = insert(treep->right, newp) ;
return treep;
}

We haven't said anything before about duplicate entries. vigmsonof insert
complains about attempts insert duplicate entriggmp == 0) in the tree. The list

52 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

insert routine didn't complain becaubat would require searchinghe list, making
insertionO(n) ratherthan O(1). With trees, howevethe testis essentially free and
the propertieof thedata structure aneotasclearly definedf there are duplicatedn
other applications, though, ihight be necessaryo accept duplicates, or might be
reasonabl& ignore them completely.

Theweprintf routine isa variantof eprintf; it prints an error message, prefixed
with thewordwarning, but unlikeeprintf it doesnotterminatethe program.

A treein which eachpathfrom theroot to a leaf has approximatelghe same
length iscalled balanced. The advantaifea balanced tree ighat searching for an
item is an O(logn) process, sincgsin binary searchthe numberof possibilitiesis
halved at each step.

If items are inserted int@treeasthey arrive, the tree mightnot be balancedin
fact, it mightbebadly unbalancedlf theelements arrive already sortéak, instance,
the codewill always descendown one branchof thetree, producingn effecta list
downtheright links, with all the performance problems @aflist. If the elements
arrivein random order. howevethis is unlikely to happerandthe treewill be more
or less balanced.

It is complicatedo implement treethatare guaranteet be balanced; thiss one
reasonthere aremany kindsof trees. For our purposes, we'll just sidestep the issue
and assume that incoming dais sufficiently randomto keepthe treebalanced
enough.

The code forookup issimilartoinsert:

/= lookup: look up name in tree treep =/
Nameval *lookup (Nameval =treep, char =name)
{
int cmp;
if (treep == NULL)
return NULL;
arp = strcmp(name, treep->name);
if cmp = 0)
return treep;
else if (cmp < 0)
return lookup(treep->left, name) ;
else
return lookup(treep->right. name) ;

}

There area coupleof thingsto noticeaboutiookup andinsert. First,they look
remarkably likethe binarysearch algorithnat the beginningof the chapter. This is
no accident, sincthey share an idewith binary search: dividendconquer the ori-
gin of logarithmictime performance.

Second, these routines are recursifethey are rewritterasiterative algorithms
they will be even more similar to binary search. In fact, the iterative version of
Tookup canbeconstructeddy applying an elegant transformation to the recurgere
sion. Unlesswe havefound the itemlookup's last actionis to returnthe resulof a

SECTION28 TREES 53

call to itself, a situation calledkil recursion. This canbe convertedo iterationby
patching up the argumerasd restartingthe routine. The most direct methodtis
usea goto statement, but&hile loopis cleaner:

/* nrlookup: non-recursively look up name in tree treep «/
Nameval #nrlockup(Nameval =treep, char =zname)
{
int cmp;
while (treep !'= NULD) {
anp = strcmp(name, treep->name) ;
if (cmp == 0)
return treep;
else if (cmp < 0)
treep = treep->left;
else
treep = treep->right;
|
return NULL;

}

Oncewe can walk the treethe other common operations follow naturallye
canusesomeof thetechniques from list management, sasiwriting a general tree
traverser that calls a function at eawde. This time, however, there is a choite
make: wherdo we perform theoperationon this itemand whendo we processhe
restof thetree? The answer depenals whatthe treeis representingif it's storing
datain order, suchas a binary search treeye visit the left half beforethe right.
Sometimeghe tree structure reflects some intrinsic ordemfighe datasuchasin a
family tree, and the ordér which we visit the leavesvill depend orthe relationships
the tree represents.

An in-order traversal executes the operation after visiting the sléfitree and
before visiting theight subtree:

/= applyinorder: -inorder application of fn to treep =/
void applyinorder(Nameval =treep,
void (=fn) (Nameval =, voidx), void =arg)

{
if (treep == NULL)
return;
applyinorder(treep->left, fn, arg);
(=fn) (treep, arg) ;
applyinorder(treep->right, fn, arg) ;
}

This sequence igsed whemodesare tobe processeth sorted order, for exampte
printthem allin order,which wouldbedoneas

applyinorder(treep, printnv, "%s: %\n");

It also suggests a reasonabiy to sort: insert items into a tree, allocatearray of
theright size thenusein-order traversal to store themthearrayin sequence.

54 ALGORITHMS AND DATA STRUCTURES CHAPTER 2

A postordertraversal invokes the operation the currennodeafter visiting the
children:

/= applypostorder: postorderapplicationof fn to treep =/
void applypostorder(Nameval =treep,
void (=fn) (Namevak, void*) , void =arg)

if (treep== NULL)
return;
applypostorder(treep->left, fn, arg);
applypostorder(treep->right, fn, arg);
(+fn) (treep, arg);
}

Postorder traversalk usedwhenthe operatioron the node depends the subtrees
belowit. Examplesnclude computinghe heightof a tree (take thenaximumof the
heightof eachof thetwo subtrees and addone), laying out a trei@ a graphicgdraw
ing packagdallocate space othe pagegor eachsubtree and combinghemfor this
node's spaceandmeasuringotal storage.

A third choice pre-order, is rarely usedsowe'll omit it.

Realistically binarysearchreesare infrequentlysed, though Brees, which have
very highbranching, areisedto maintain informatioron secondary storagen day-
to-day programming, one commarseof a tree igo represent the structuoé a state
mentor expression. For exampline statement

mid = (low + high) / 2

canberepresentedly the parse treeshownin thefigure below. To evaluatethetree,
do a posbrder traversal angkrform the appropriate operation at eacide.

RN
mid /
7 N
+ 2
/N
low high
We'll take a longer lookt parse treem Chapte®.

Exercise2-11. Comparethe performancef 1ookupand nrlookup. How expensive
is recursion compared to iteration

Exercise2-12. Usein-order traversal to create a sootitine. Whattime complexity
does it have? Undevhat conditionsmight it behave poorly?How does itsperfor
mancecompareto our quicksort and a library versioo®

Exercise2-13. Deviseandimplement a satf tests for verifying thathe tree routines
are correct]

SECTION 2.9 HASH TABLES 55

2.9 Hash Tables

Hashtables are onef the great invention®f computer scienceThey combine
arrays, lists, and some mathematics to createfficient structure for storingnd
retrieving dynamic data. The typical applicatiera symboltable. which associates
somevalue(thedata)with each membeaf a dynamic setf strings (thekeys). Your
favorite compiler almost certainlysesa hash tabléo managenformation about each
variablein your program. Your web browsemay well usea hashtableto keep track
of recentlyused pagesindyour connection tthe Internetprobably usesneto cache
recentlyused domaimamesand theifP addresses.

Theideais to pass thekey through a hash function to generate a haaslhe that
will be evenly distributedhrougha modestsizedintegerrange. The hash value is
usedto indexa tablewhere thenformation is stored. Javerovidesa standard inter
faceto hashtables. In C andC++the usuaktyleis to associatevith eachhash value
(or ""bucket") alist of theitemsthatshare that hashsthis figure illustrates:

symtab[NHASH]: hash chains:
- NULL

NULL name 1 name 2
NULL value 1 value 2
NULL

» NULL
NULL name 3
NULL value 3

In practice the hashfunction is predefinedandan appropriate size of arrayallo-
cated, often at compileme. Eachelementof the arrayis a list thatchainstogether
theitems thashare éhash valueln other words, dashtableof n itemsis anarrayof
lists whoseaverage lengtis n/(array size). Retrievinganitem is an O(1) operation
providedwe pick a goodhashfunctionand thdists don't grow todong.

Because hash tablés anarrayof lists, the elemertypeis the sameasfor alist:

typedef struct Nameval Nameval;
struct Nameval {

char *name;

int value;

Nameval *next; /= in chain «/
1

Nameval =symtabNHASH] ; /« a symbol table =/
Thelist techniquesve discussedh Section2.7 canbe usedto maintain thendividual

hashchains. Once you've got a gobashfunction, it's smooth sailing: jugick the
hashbucket and walllongthelist lookingfor a perfect matchHere is theeode for a

56 ALGORITHMSAND DATA STRUCTURES CHAPTER 2

hash tabldookup/insert routine. If the item is foundit is returned.If the itemis not
foundand thecreate flagis setlookup addsthe itemto the table. Again, this does
notcreate a copgf the nameassuming thahecaller hasmadea safe copy instead.

/* lookup: find name in symtab, with optional create =/
Nameval* lookup(char tname, int create, int value)

{
int h;
Nameval =Sym;
h = hash(name);
for (sym = symtab[h]; sym != NULL; sym = sym->next)
if (strcmp(name, sym->name) == 0)
return sym;
if (create) {
sym = (Nameval « emalloc(sizeof(Nameval));
sym->name = name; /= assumed allocated elsewhere =/
sym->value = value;
sym->next = symtab[h];
symtab[h] = sym;
1
return sym;
1

This combinatiorof lookup and optional insertionis common. Without it, there is
duplicationof effort; onemustwrite

if (lookup("name”) == NULL)
addi tem(newitem("name"”, value)) ;

andthehash icomputedwice.

How big shouldthearray be? The generalea isto makeit big enoughthateach
hashchain will have at mosta few elementsso that lookup will be O(1). For
instance, a compilanight havean array sizeof a few thousand, since a large source
file hasa fewthousandines,andwe don't expectnore tharabout onenew identifier
per lineof code.

We mustnow decidewhat the hasfunction,hash, should calculate. The function
mustbe deterministic and shouldbe fastanddistributethe datauniformly throughout
thearray. Onef the mostommon hashing algorithms for strings buildsahvalue
by adding eaclbyte of the stringto a multipleof the hashsofar. The multiplication
spreads bits fronthe new bytethrough the valuso far; at the end of the loop, the
result shoulde a thoroughmixing of theinput bytes. Empirically, the values31 and
37 have proven tdoe good choices for the multiplien a hashfunction for ASCII
strings.

enum { MULTIPLIER = 31 };

SECTION 2.9 HASH TABLES 57

/= hash: compute hash value of string =/
unsigned int hash(char =str)
{
unsigned int h;
unsigned char =p;
h = 0;
for (p = (unsigned char =) str; =p != "\O"; p++)
h = MULTIPLIER = h + «p;
return h % NHASH;

}

The calculatioruses unsignecharacters because whethesr is signeds not speci
fied by C andC++, andwe wantthe hashvalue toremainpositive.

Thehashfunction returns the result modutwe sizeof the array. If the hashfunc-
tion distributeskey values uniformlythe precise arragize doesn'tnatter. It's hard
to becertain that éhashfunctionis dependable, thouglnd even the best function
may have troublewith someinput sets,soit's wise to makethe array size a prime
numberto give a bitof extra insuranceéy guaranteeinghat the array size,the hash
multiplier, and likely dataalues hav&o common factor.

Experiments showthat for a wide varietyof strings it'shardto construct éhash
functionthatdoes appreciably bettdranthe one above, but it's easymakeonethat
doesworse. An early releasef Javahada hash functiorfor strings thatwvas more
efficientif the stringwaslong. Thehashfunctionsavedtime by examiningonly 8 or
9 characters at regular intervals throughout stringger than 1@&haracters. starting
atthebeginning. Unfortunately, althoudghe hashfunctionwasfaster, ithadbadsta
tistical propertieshat canceledany performance gain.By skipping piecef the
string, it tendedo miss theonly distinguishingpart. File names beginith long iden
tical prefixes—the directory name—and may differ only in the last fewcharacters
(.java versus.class). URLs usually beginwith http ://www. and endwith .html,
sothey tendto differ onlyin the middle. The hashfunctionwould oftenexamineonly
the nonvarying part of the name, resultingn long hashchainsthat slowed down
searching. Th@roblem wasesolvedy replacinghe hash wittone equivalent tthe
onewe have shown (with a multipliesf 37), which examines every charactarthe
string.

A hashfunction that's good for oriaput set (say, short variable namesight be
poorfor anothefURLs), soa potentiahashfunction shouldbe testedon a variety of
typical inputs. Does ithashshort strings well? Long stringsE2qual lengthstrings
with minor variations?

Strings aren't the only thingge can hash.We couldhash the threeoordinatesf
a particlein a physicalsimulation, reducinghe storageo a linear tablg¢O(number of
particles)) insteadf a threedimensional arra(O(xsize X ysizeX zsize)).

One remarkablase ofhashing is Gerard Holzmann's Supertia@gramfor ana
lyzing protocols and concurresystems. Supertrace takes the full information for
each possible stat# the systemunderanalysisand hashegshe information to gener
ate the addresof a singlebit in memory. If thatbit is on, the state haseenseen

58 ALGORITHMSAND DATA STRUCTURES CHAPTER 2

before;if not, it hasn't. Supertraagsesa hashtablemany megabytes londyut stores
only asinglebit in each bucket. Theiig no chainingijf two stateollide by hashing
to thesamevalue, the progranwon't notice. Supertrace depends on the probabdfty
collision beinglow (it doesn'tneedto be zero because Supertrasgrobabilistic.not
exact). Thenashfunctionis therefore particularly careful, usesa cyclic redundancy
check,afunctionthatproduces thoroughmix of the data.

Hashtables are excellent for symbol tables, sittoey provide expected?(1)
access tanyelement. Theydo haveafew limitations. If the hasHunctionis pooror
the tablesizeis too small,the lists cangrow long. Since the lists are unsorted, this
leads tad(n) behavior. The elements aneotdirectly accessible sorted orderbutit
is easyto countthem,allocate an array, fill itvith pointersto the elements, and sort
that. Still, when usegroperly,theconstanttime lookup, insertioranddeletion prop
ertiesof a hash tablareunmatchedy other techniques.

Exercise2-14. Our hashfunction is an excellent genergurposehashfor strings.
Nonetheless, peculiar dataight cause poor behavior. Construetdata setthat
causes ouhashfunction toperformbadly. Is it easierto find a badset for different
valuesof NHASH? O

Exercise2-15. Write afunction to accesthe successive elemen$ the hashablein
unsortedrder.d

Exercise2-16. Changdookupsothatif theaverage listengthbecomes morthanx,
thearray isgrown automaticallypy afactorof yand the hastable isrebuilt. O

Exercise2-17. Design a hashfunction for storingthe coordinatesof pointsin 2
dimensions.How easilydoesyour function adapto changesn the typeof thecoor
dinates, for examplieom integerto floating pointor from Cartesiarto polar coordi
natespr to changes fror2 to higher dimensions2

2.10 Summary

There are several steps choosing an algorithm. First, assgsstential algo-
rithmsanddata structures. Consideow muchdatathe program isikely to process.
If the probleminvolvesmodesamountof data, choose simple techniquiéshe data
could grow, eliminate desigrikat will not scaleup to largeinputs. Then, usea
library or language featuiie you can. Failing that, writer borrowa short, simple,
easyto understandmplementation. Tryt. If measurements proveti be too slow,
only thenshouldyou upgradego amoreadvanced technique.

Although there arenany data structuressome vitalto good performance spe
cial circumstancesnost programs arédased largelyn arrays, lists, treeand hash
tables. Eacbf these supportsset of primitive operationsisuallyincluding: create

SECTION 2.10 SUMMARY 59

newelementfind an elementaddan element somewhere, perhaps delete an element,
andapply some operatidio all elements.

Eachoperationhasan expected computation tirtteat often determinebow suit-
ablethis data typgor implementationjs for a particular applicationArrays support
constaritime acces# any elemenbutdo notgrowor shrink gracefully. Lists adjust
well to insertions and deletions, but taf2én) timeto accessandomelements. Trees
and hashables provide a good compromisapid access to specific items combined
with easy growthsolongassomebalance criterioiis maintained.

There are other more sophisticated data structures for specipladdms, but
this basic seis sufficient tobuild thegreatmajority of software.

Supplementary Reading

Bob Sedgewick's familpf Algorithms books (AddisonWesley) is an excellent
placeto find accessible treatmerif a varietyof usefulalgorithms. Thehird edition
of Algorithmsin C++ (1998) has a good discussminhashfunctionsandtable sizes.
Don Knuth’s The Art of Computer Programming (.AddisorrWesley) is thedefinitive
sourcefor rigorous analyses ahanyalgorithms;Volume 3 (2nd Edition,1998)cov-
ers sorting and searching.

Supertrace is describ@u Designand Validation of ComputerProtocols by Ger
ard Holzmann (Prentiddall. 1991).

JonBentley and DougMcllroy describehecreationof a fastand robustuicksort
in "*Engineeringa sort function;" Software—Practice and Experience23, 1, pp-
1249-1265, 1993.

Design and Implementation

Show meyour flowcharts and conceal your tablesand | shall con
tinue to be mystijied. Show me your tables,and | won't usually
needyour flowcharts; they'll beobvious.

FrederickP. Brooks, Jr.,The Mythical Man Month

As the quotation from Brooks's classic book sugg#ésesdesigrof the data strue
turesis thecentral decision ithecreation of gorogram. Oncethe data structures are
laid out, the algorithmgendto fall into place, andhecoding is comparatively easy.

This point of view is oversimplified but nomisleading. In the previous chapter
we examined the basic data structuttest are the building blocksf mostprograms.
In this chaptemve will combinesuchstructuresas we work through the desigand
implementatiorof a modesisized program. Wevill show how the problem influ
encesthe data structuresand how the codethat follows is straightforward onceve
havethedata structuresyapped out.

One aspeatf this pointof view is that thehoiceof programming language isl-
atively unimportanto the overall design.We will design therogramin the abstract
and thenwrite it in C, Java,C++, Awk, and Perl. Comparingthe implementations
demonstrateBow languages can hetp hinder, andvaysin which theyareunimpor
tant. Prograndesign can certainlye coloredby a languagdut is not usuallydomi-
natedby it.

The problemwe have chosen isinusual, but irbasicform it is typical of many
programs: some data comiessome data goes owtnd theprocessing depends a
little ingenuity.

Specifically, we're going to generatndomEnglishtext thatreads well. If we
emit randomlettersor randomwords,theresultwill be nonsense. For examplepao-
gram tharandomly selects lettefand blanksto separatevords)might producehis:

xptmxgn xusaja afgnzgxl Thidlwcd rjdjuvpydriwnjy

61

62 DESIGN AND IMPLEMENTATION CHAPTER 3

which is notvery convincing. If we weight thelettersby their frequencyf appear
ancein English textwe mightgetthis:

idtefoae tcs trder jcii ofdslngetacp t ola

which isn't a greatdeal better. Wordshosen from the dictionary aandomdon't
make much moreense:

polydactyl equatorial splashily jowl verandah circumscribe

For better resultsye needa statisticalmodel with more structure. suclas the fre-
guencyof appearancef whole phrases. But whecanwefind suchstatistics?

We could graba largebodyof Englishandstudyit in detail,but thereis an easier
and moreentertaining approach. They observations thatwe can useany existing
textto construct statisticalmodelof thelanguageasusedin that text,andfrom that
generateandomtextthathas similar statisticd® the original.

3.1 The Markov Chain Algorithm

An elegantway to dothis sortof processings a technique calle@ Markov chain
algorithm. If we imaginethe input asa sequenc®f overlapping phraseshe algo-
rithm divideseach phrase into two paresmulti-word prefix anda singlesuffix word
thatfollows theprefix. A Markov chain algorithm emits output phradgsrandomly
choosingthe suffix thatfollows the prefix, accordingo the statistics of (in our case)
theoriginal text. Threeword phrasesvork well—a two-word prefix isusedto select
thesuffix word:

setw,; andw, to thefirst two words in the text
printw,; andw,
loop:
randomlychoosews, oneof thesuccessorsf prefixw ; w, in thetext
printw 3
replacev, andw, by w, andw,
repeat loop

Toillustrate, supposere want to generateandomtext based orafew sentences para
phrased frontheepigraph aboveysing tweword prefixes:

Show your flowcharts and conceal your tables and | will be
mystified. Show your tables and your flowcharts will be
obvious. (end)

These are son@ the pairsof inputwords andhewords thafollow them:

SECTION 3.1 THE MARKOV CHAIN ALGORITHM 63

Input prefix: Suffix wordsthat follow:
Show your flowcharts tables
your flowcharts and will

flowcharts and conceal

flowcharts will be

your tables and and

will be mystified. obvious.
be mystified. Show

be obvious. (end)

A Markov algorithm processinthis textwill begin by printing Show your and will
thenrandomly pickeitherflowcharts or tables. If it chooses the formethecur-
rent prefix becomesyour flowcharts andthe next word willbeand orwill. If it
choosegables, the nextword will beand. This continueantil enough outpuhas
beengeneratedr until theendmarkeris encountere@dsa suffix.

Ourprogram will read pieceof English text andise a Markowhain algorithnto
generatenew text basedn the frequencyf appearancef phrasef a fixed length.
The numberof wordsin the prefix, which istwo in our example,is a parameter.
Making theprefix shorter tendt producelesscoherent prose; makiriglongertends
to reproduce thénput text verbatim. For English text,usingtwo words toselecta
third is agoodcompromisejt seemgo recreatethe flavorof the inputwhile adding
its own whimsical touch.

Whatis aword? Theobvious answeis asequencef alphabetic characterbut it
is desirable to leavpunctuation attachetb thewordsso* words " and' words. " are
different. Thishelpsto improvethequality of the generated prodwy letting punctua
tion, and therefore (indirectly) grammar, influentee wordchoice,although italso
permitsunbalancedjuotesand parentheses$o sneakin. We will therefore define
"word"" as anythingbetweenwhite space, adecisionthat placesno restriction on
input language and leaves punctuation attadbettie words. Since most program
ming languages havéacilities to split text into white-spaceseparated words, this is
also easy t@amplement.

Becauseof the method, all words, all twevord phrasesand all threeword
phrasesn the output must have appeaiadheinput, but there shoulthe manyfour-
word and longer phrasdhat aresynthesized. Herareafew sentenceproducedby
the programwe will developin this chapter, whegiven the textof ChapterVIl of
The Sun Also Risedy ErnestHemingway:
As | startedup the undershirtonto his chestblack, and big stomacmus
clesbulging underthe light. "You seethem? Below theline where his
ribs stopped werdéwo raised white welts."Seeon the forehead. "Oh,
Brett, | love you." "Let's not talk. Talking's all bilge. I'm going away
tomorrow! "Tomorrow? "Yes. Didn'tl sayso? | am! "Let's havea
drink, then'

We werelucky herethat punctuatiomameout correctlythat neechot happen.

64 DESIGN AND IMPLEMENTATION CHAPTER 3

3.2 Data Structure Alternatives

How muchinput do we intendto deal with? How fast mustthe programrun? It
seemgeasonabléo askour program to readh a whole book,sowe shouldbe pre
paredfor input sizesof » =100,000wordsor more. The outputwill be hundredsor
perhapghousandsf words,andthe programshouldrun in a few seconds insteaaf
minutes. With 100,000wordsof input text,» is fairly largeso thealgorithmscan't be
too simplisticif we wantthe program tdefast.

The Markov algorithmmustseeall theinput beforet can beginto generateut
put. so it muststorethe entireinput in someform. One possibilityis to readthe
whole input andstoreit in a long string, but we clearly want the inputbrokendown
into words. If we storeit asanarrayof pointersto wordsoutput generatiois simple:
to producesach word, scatheinput textto seewhat possible suffixwordsfollow the
prefix that wasjust emitted, andhenchoose onat random. However, thaheans
scanningall 100,000 input wordsfor eachword we generatel,000 wordsof output
means hundreds millions of stringcomparisonswhichwill not befast.

Another possibilityis to storeonly uniqueinput words, togetherwith a list of
wherethey appeairin the inputso that we can locatesuccessowords morequickly.
We could usea hashtable like theonein Chapter2, but that versiordoesn'tdirectly
addresshe needsof the Markov algorithm,which mustquickly locateall thesuffixes
of agiven prefix.

We needa data structuré¢hat better representsprefix andits associated suffixes.
The programwill havetwo passesan input pass that builds thiatastructure repre
senting the phrasemjdanoutputpasghat usesthe datastructurdo generate thean
domoutput. In both passesye needto look up a prefix (quickly):in theinput passo
updateits suffixes,andin the output past selectat random fronthe possiblesuf
fixes. This suggesta hashtablewhose keysre prefixesand whosevalues are the
setsof suffixesfor the corresponding prefixes.

For purposesf descriptionwe'll assume two-word prefix, soeach outputvord
is based orthe pair of wordsthat precedé. The numberof wordsin the prefix
doesn'affect thedesign and thprograms should handiay prefix length,but select
ing a number makethediscussion concrete. Tlpeefix andthe setof all its possible
suffixeswe'll call astatewhichis standard terminologypr Markov algorithms.

Given a prefix, we need tostoreall the suffixes that followt so we canaccess
themlater. Thesuffixes araunorderednd addedneat a time. We don't know how
manytherewill be,sowe needa datastructurethatgrows easily andfficiently. such
asalist or adynamic array.Whenwe aregenerating outputye need tobe ableto
choose one suffiat randonfrom the setof suffixes associatedith a particularpre
fix. ltemsarenever deleted.

What happendf a phrase appearsore tharonce? For example, 'might appear
twice' might appeatwice but 'might appear oncebnly once. This coulde repre
sentedby putting ‘twice' twican the suffix list for 'might appeadr by puttingit in
once,with an associated counter get2. We've triedit with and without counters;

SECTION 3.3 BUILDING THE DATA STRUCTURE IN C 65

without is easier. since adding a suffix doesn't require checking wtigthénere
alreadyandexperiments showetiat thedifferencein run-timewasnegligible.

In summary, each state comprisqwefix and a lisof suffixes. This information
is stored in éhashtable,with prefix as key.Eachprefix is a fixedsizesetof words.
If a suffix occurs moréhanonce for a given prefix, each occurrendkt beincluded
separately irthelist.

The next decisioiis how to represent thevords themselvesThe easyway is to
storethemas individual strings. Sinamost texthasmany wordsappearing multiple
times, itwould probably save storagewe kepta secondash tablef singlewords,
sothe textof eachword wasstoredonly once. Thiswould alsospeedup hashingof
prefixes, sincewe could compare pointers rathtéiran individual charactersunique
stringshaveunique addresses. We'll leamatdesignasan exercise; for now, strings
will be stored individually.

3.3 Building the Data Structure in C
Let's beginwith a C implementation.Thefirst stepis to define some constants.

enum |

NPREF = 2, /#= number of prefix words =/
NHASH = 4093, /= size of state hash table array =/
MAXGEN = 10000 /+ maximum words generated =/

I

This declaration defines the numbenedrds (NPREF) for the prefix, the sizef the
hashtable arrayNHASH). and an upperlimit on the numberf wordsto generate
(MAXGEN). If NPREF is a compiletime constant rathéhana run-time variable, storage
management is simpler. The array dzeet fairly large becausge expectto give
the program large input documents, perhaps a wiadé&. We choseNHASH = 4093
sothatif the inputhas10,00distinct prefixegword pairs)the average chawvill be
very short, twoor three prefixes.Thelarger the size, the shorter the expected length
of the chains and thus the faster the lookup. Pphiggram isreally a toy sothe per
formance isn't critical, but we makethe array toemalltheprogram will not handle
our expected inpuin reasonable timeon the other hand,if we make it toobig it
might notfit in the availablenemory.

The prefix carbestoredasan array of words. The elementstbé hash tablewill
berepresentedsa State datatype,associating theuffix list with the prefix:

typedef struct State State;

typedef struct Suffix Suffix;

struct State { /= prefix + suffix list =/
char »pref[NPREF] ; /# prefix words =/
Suffix =#suf; Jx list of suffixes =/
State *next; /= next in hash table =/

};

66

DESIGN AND IMPLEMENTATION CHAPTER 3

struct Suffix { /= list of suffixes =/
char *word; /+ suffix =/
Suffix *next; /= nextinlist of suffixes =/

}s

State xstatetab[NHASH] ; /* hash table of states =%/

Pictorially,thedata structures look likiis:

statetab:
s
a State:
o prefl0]
pref(1]
suf
- R 1:* Suffix:
[word |

next
w:ther Suffix:
word ——f"tabT es"l

another State: next
pref[0]
pref[1]
suf
next

We needa hashfunction for prefixeswhich are array®of strings. It is simpleto

modify the stringhashfunctionfmm Chapter2 to loop overthe stringsin the array,
thus ineffect hashingheconcatenatioof the strings:

/+ hash: compute hash value for array of NPREF strings =/
unsigned int hash(char »s[NPREF])

{
unsigned 1int h;
unsigned char =p;
int i;
h = 0;
for Ci= 0; T < NPREF, i++)
for (p = (unsigned char =) s[il; #«p !'= '\0"; p++)
h = MULTIPLIER * h + =p;
return h % NHASH
}

A similar modificatiorto the lookup routine completes the implementatibthe

hashtable:

SECTION 3.3 BUILDING THE DATA STRUCTUREIN C 67

/= lookup: searchfor prefix; createif requested.x/

/= returns pointerif presentor created;NULL if not. =/

/= creationdoesn't strdup so strings mustn’t changelater. »/
State* lookup(char »prefix[NPREF], int create)

{
inti, h;
State=sp;
h = hash(prefix);
for (sp = statetab[h]; sp != NUL;, sp = sp->next) {
for (i = 0; i < NPREF, i++)
if (strcmp(prefix[i], sp->pref[i]) != 0)
break;
if (i == NPREF) /= found it as
return sp;
}
if (create) {
sp = (State ») emalloc(sizeof(State));
for (i = 0; i < NPREF, i++)
sp->pref[i] = prefix[i];
sp->suf = NULL
sp->hext = statetab[h];
statetab[h] = sp;
}
return sp;
}

Notice thaflookup doesn'tmakeacopy of theincoming stringsvhenit creates new
statejt juststores pointers sp->pref[]. Callersof lookup mustguarante¢hat the
datawon't be overwritten later. For example,if the strings aren an /O buffer, a
copy mustbe madebefore1ookupis called; otherwisesubsequent input could over
write the datathat the hashtable pointsto. Decisions aboutvho ownsa resource
shared across anterfacearise often.\We will explorethis topic at lengthin the next
chapter.

Next we needto build the hashtable as théle is read:

/+ build: readinput, build prefix table »/
void build(char =prefix[NPREF], FILE =f)

{
char buf[100], fmt[10];
/= createa format string; %s could overflow buf =/
sprintf(fmt, "%%%ds”, sizeof(buf)-1);
while (fscanf(f, fmt, buf) = EOF)
add(prefiXx, estrdup(buf)):
}

The peculiar calto s printf getsaroundanirritating problemwith fscanf,which
is otherwiseperfectfor thejob. A call to fscanf with format%s will readthe next
white-spacedelimitedword from thefile into the buffer, but thereis nolimit on size:
a long word might overflow the input buffer, wreakingavoc. If the buffer is 100

68 DESIGN AND IMPLEMENTATION CHAPTER 3

bytes long (whiclis far beyond whatve expect eveto appear imormaltext), we can
usethe format%99s (leavingonebytefor theterminal ’\0'), which tells fscanfto
stopafter99 bytes. A long word will be broken intgieceswhich is unfortunatebut
safe. Wecould declare

) enum { BUFSIZE = 100 };
? char fmt[] = "%99s"; /+ BUFSIZE-1 =/

but that requires two constarits one arbitrandecision—the sizeof the buffer—and
introducesthe needto maintaintheir relationship.The problem carbe solved once
and for all by creatingthe format string dynamically with sprintf, so that's the
approachwetake.

The two argumentgo build arethe prefix array holdingthe previousNPREF
wordsof input anda FILE pointer. It passes thprefix andacopyof the inputword
to add,which addsthe newentryto thehashtableand advancdseprefix:

/+ add: add word to suffix list, updateprefix =/
void add(char =prefix[NPREF], char *suffix)

{
Statexsp;
sp = lookup(prefix, 1); /= createif not found =/
addsuffix(sp, suffix);
/+ move the words down the prefix =/
memmove(prefix, prefix+l, (NPREF-1)=xsizeof(prefix[0]));
prefix[NPREF-1] = suffix;

}

The call to memmoweis the idiom for deletingfrom an array. It shifts elementsl
throughNPREF-1in the prefix down to positiong) throughNPRER2, deletingthe first
prefix word andopeninga spacdor a newone athe end.

Theaddsufi x routineaddsthe newsuffix:

/= addsuffix: add to state. suffix must not changelater =/
void addsuffix(State =sp, char ssuffix)

{
Suffix suf;
suf = (Suffix =) emalloc(sizeof(Suffix)) ;
suf->word = suffix;
suf->next = sp->suf;
sp->suf = suf;
}

We split theactionof updatingthe state into twéunctions: add performtegeneral
serviceof addinga suffix to a prefix, while addsuffixperformstheimplementation-

specific actiorof addinga word to a suffix list. Theaddroutineis usedby build. but

addsuffixis usedinternally only by add;it is an implementation detail thahight
changeandit seems bettdo have itin a separatéunction. even though is calledin

only oneplace.

SECTION 34 GENERATINGOUTPUT 69

3.4 Generating Output

With the data structure buithe nextstepis to generatthe output.Thebasic idea
is asbefore: givera prefix, select onef its suffixesat random, printt, thenadvance
theprefix. Thisis the steadgtateof processingyve muststill figure out how to start
andstopthe algorithm. Startingis easyif we remember the wordsf thefirst prefix
and begin with themStoppingis easytoo. We needa markerword to terminate the
algorithm. After all theregular inputwecan addaterminatora**word" thatis guar
anteed noto appeain anyinput:

build(prefix, stdin);
add(prefix: NONWORD);

NONWORD shouldbe somevalue thawill neverbeencountereéh regular input. Since
the inputwordsare delimitedoy white spacea "*'word" of white spacewill serve,
such asnewline character:

char NONWORD[] = "\n"; /= cannot appeans real word =/

Onemoreworry: what happeni thereis insufficient inputto startthe algorithm?
Therearetwo approachet this sortof problem either exitprematurelyif thereis
insufficientinput, or arrangethat thereis always enouglanddon't botherto check.
In this program, th&atterapproachworkswell.

We caninitialize building and generatingith a fabricated prefixywhich guaran
tees therés alwaysenough inpufor theprogram. To primethe loops, initialize the
prefix arrayto be all NONWORD words. This has the nicdoenefitthat thefirst word of
the inpuffile will bethefirst suffix of thefake prefix,sothe generation loopeedgo
print only the suffixest produces.

In casethe outputis unmanageabljong, we can terminate the algorithm after
some numbeof wordsare producedor whenwe hit NONWORD asa suffix, whichever
comedirst.

Adding a few NONWORDs to the endsof the datasimplifies the main processing
loopsof the progransignificantly;it is anexampleof the techniquef addingsentinel
values tamarkboundaries.

As arule, try to handleirregularitiesand exceptionsand special cases data.
Codeis harderto get rightsothecontrolflow shouldbeassimple and regular gos
sible.

The generatefunction usesthe algorithmwe sketched originally.It produces
oneword perline of output,which canbe groupednto longer lineswith a word pro-
cessorChapte® showsasimple formatter calledimt for thistask.

With the useoft the initial and finaINONWORD strings,generatestartsand stops

properly:

70 DESIGN AND IMPLEMENTATION CHAPTER 3

/+ generate:produceoutput, one word per line =/
void generate(int nwords)

Statexsp;

Suffix =suf;

char »prefix[NPREF], =w;

int i, nmatch;

for (i = 0; i < NPREF, i++) /= resetinitial prefix =/
prefix[i] = NONWORD;

for 3 =0; i < nwords; i++) {
sp = lookup(prefix, 0);
nmatch = O;
for (suf = sp->suf; suf '= NUL suf = suf->next)
if (rand() % ++nmatch == 0) /% prob = 1/mmatch =/
w = suf->word;
if (strcmp(w, NONWORD) == 0)
break;
printf ("%s\n", w);
memmove(prefix, prefix+l, (NPREF-1)xsizeof(prefix[0]));
prefix[NPREF-1] = w;

Noticethealgorithm for selectingoneitem at randomwvhenwe don't know how many
items thereare. The variable nmatch countsthe numberof matchesas the listis
scanned. The expression

rand() % ++nmatch == 0

incrementsmatch and isthentruewith probabilityl/nmatch. Thus theirst match

ing item isselectedwith probability 1. the secondill replacet with probability 1/2,

the thirdwill replacethe survivor with probability 1/3, andsoon. At anytime, each
oneof thek matching itemseersofar has beegelected with probability 1 /k.

At the beginningwe setthe prefix to the startingvalue,which is guaranteedo
beinstalled in the hashtable. The firstSuffix valueswefind will be thefirst words
of the document. sindbey arethe unique followon to thestartingprefix. Afterthat,
randomsuffixeswill bechosen. Théoop calls lookupto find the hashtableentryfor
thecurrentprefix. thenchooses randomsuffix, printsit, andadvanceshe prefix.

If thesuffix we choosds NONWORD, we're done, becauses have chosen thetate
thatcorrespond$o the endf the input. If thesuffix is not NONACRQwe print it, then
dropthefirst word of the prefix with a call to memmove, promotethe suffix to be the
lastword of the prefix, and loop.

Now we can put all this togetheinto amain routinethat reads the standard input
and generatest mosta specifiechumberof words:

SECTION35 JAVA 71

/* markov main: markov-chain random text generations/
int main(voi d)
{
int i, nwords= MAXGEN;
char =prefix[NPREF] ; /« currentinput prefix =/
for (i = 0; i < NPREF, i++) /+« setup initial prefix =/
prefix[i] = NONACRDQ
build(prefix, stdin);
add(prefix, NONWORD);
generate(nwords);
return o;
}

Thiscompletesur C implementation.We will returnat the endof the chapteto
acomparisorof programsn different languagesThegreat strengthsf C arethatit
givestheprogrammecompletecontrol over implementation, and programtenin
it tendto be fast. The cost,however, ighat theC programmemustdo morecf the
work, allocating and reclaimingnemory creatinghashtablesandlinked lists,andthe
like. Cis arazorsharp toolwith which onecancreatean elegant anéfficientpro-
gramor abloody mess.

Exercise3-1. The algorithmfor selectinga randomitem from a list of unknown
length dependsn havinga good randonnmumber generatorDesign anccarry out
experimentso determinehow well the method worki practice.d

Exercise3-2. f each inputword is storedin a secondhashtable,the text is only
storedonce, which should save space. Meassmnedocumentdo estimatehow
much. This organizatiornwould allow usto compare pointers rathtétranstringsin the
hashchainsfor prefixes,which shouldrun faster. Implement thisversion and mea
surethechangen speedand memorgonsumptiond

Exercise3-3. Removethe statements that place sent@NWORDs at thebeginning
and end of the data,and modifygenerateso it startsand stopsproperly without
them. Make sureit producesorrect output for inputwith 0, 1, 2, 3, and4 words.
Compare this implementatiém the version usingentinelsJ

3.5 Java

Our second implementatioof the Markov chain algorithmis in Java. Object-
oriented languages like Java encouraga®pay particular attentioro theinterfaces
betweerthe componentsf the program.which arethenencapsulated asdependent
dataitemscalled object®r classeswith associated functions called methods.

Javahasaricher librarythanC, includingasetof container classeso group exist
ing objectsin variousways. One examplés a Vector that provides dynamically-
growable array thatcan storeany Object type. Another examplés theHashtable

72 DESIGN AND IMPLEMENTATION CHAPTER 3

class,with which one can store and retrieve value®f one type usingbjectsof
another typas keys.

In our applicationyectors of strings arethe naturalchoice tohold prefixes and
suffixes. We can usea Hashtable whose keysre prefix vectorand whosevalues
are suffix vectorsThe terminologyfor this typeof constructionis a mapfrom pre-
fixes tosuffixes;in Javawe needno explicit State type becausgashtable implic-
ity connects (maps) prefixéssuffixes. This desigis different from theC version,
in whichwe installedstate structureshat heldboth prefix andsuffix list, andhashed
on the prefixto recoverthefull State.

A Hashtable providesa put methodto storea key-value pair, ané get method
to retrievethevaluefor a key:

Hashtable h = new Hashtable();
h.put(key, value);
Sometype v = (Sometype) h.get(key);

Ourimplementatiorhasthreeclasses.Thefirst class.Prefix, holds thewords of
theprefix:

class Prefix {
public Vector pref; // NPREF adjacent words from input

Thesecondclass,Chain, readsthe input, buildghe hashtable,andgenerates the
output;hereareits classvariables:

class Chain {
static final int NPREF = 2; // size of prefix
static final String NONMCRD = "\n";
// "word" that can't appear
Hashtable statetab = new Hashtable();
// key = Prefix, value = suffix Vector
Prefix prefix = new Prefix(NPREF, NONACRD) ;
// initial prefix
Random rand = new Random();

The thirdclasss the public interfacet holdsmain andinstantiatea Chain:

class Markov {
static final int MAXCEN = 10000; // maximum words generated
public static void main(String[] args) throws IOException
{
Chain chain = new Chain() ;
int nwords = MAXGEN;

chain. build(System.in);
chain. generate(nwords) ;

SECTION 3.5 JAVA 73

Whenaninstancef classChain is createdijt in turn creates hashtableandsets
upthe initial prefix of NPREF NONWORDs. Thebuild function useghelibrary function
StreamTokenizer to parse the input intavordsseparatedby white spacecharacters.
Thethreecallsbefore thdoop set théokenizelinto theproperstatefor our definition
of “"word!*

// Chain build: build State table from input stream
void build(InputStream in) throws IOException

i
StreamTokenizer st = new StreamTokenizer(in);

st. resetSyntax(); // remove default rules
st.wordChars(0, Character.MAX_VALUE); // turn on all chars
st.whitespaceChars(0, ' *); // except up to blank
while (st.nextToken() != st.TT_EOF)

add(st.sval);

add (NONWORD) ;

The add function retrieveghe vectorof suffixes for thecurrent prefixrom the
hashtable;if therearenone(the vectoiis null), add creates new vectoranda new
prefix to storein thehash table.n either casdt adds thenew word to thesuffix vec
tor and advances the prebix droppingthe firstword and addinghe newword at the
end.

// Chain add: add word to suffix list, update prefix
void add(String word)

{
Vector suf = (Vector) statetab.get(prefix);
it (suf == null) {
suf = new VectorQ;
statetab. put(new Prefix(prefix), suf) ;

[
suf. addElement(word);

prefix. pref. removeElementAt(0) ;
prefix.pref.addElement (word);

Notice thatif suf is null, add installsa new Prefix in the hashtable, rathethan
prefix itself. This isbecaus¢heHashtable class storegemsby referenceandif
we don't makea copy, we could overwritedatain the table. This isthe same issue
thatwe hadto dealwith in theC program.

The generation functioris similar to theC version, but slightly more compact
becausdt canindexa randomvector element directly insteadl looping througha
list.

74 DESIGN AND IMPLEMENTATION CHAPTER 3

// Chain generate: generate output words
void generate(int nwords)
{
prefix = new Prefix(NPREF, NONACHD ;
for (int 1 = 0; 1 < nwords; i++) {
Vector s = (Vector) statetab.get(prefix);
int r = Math.abs(rand.nextInt()) % s.size();
String suf = (String) s.elementAt(r);
i T (suf.equals(NONWORD)

break;
System.out.printin(suf);
prefix. pref.removeElementAt(0) ;
prefix-pref .addETement(suf);

}

The two constructors of Prefix create new instances from supplied data. The first
copies an existing Prefix, and the second creates a prefix from n copies of a string;
we use it to make NPREF copies of NONACRD when initializing:

// Prefix constructor: duplicate existing prefix
Prefix(Prefix p)
{

pref = (Vector) p.pref.clone();

// Prefix constructor: n copies of str
Prefix(int n, String str)

{
pref = new Vector();
for (int i =0; i <n; i+
pref. addETement(str);
}

Prefiix also has two methods, hashCode and equals, that are called implicitly by
the implementation of Hashtable to index and search the table. It is the need to have
an explicit class for these two methods for Hashtable that forced us to make Prefix
afull-fledged class. rather than just a Vector like the suffix.

The hashCode method builds a single hash value by combining the set of
hashCodes for the elements of the vector:

static final int MULTIPLIER = 31; // for hashCode()

// Prefix hashCode: generate hash from all prefix words
public int hashCode()
{

int h=0;

for (int i = 0; i < pref.size(Q); i++)

h = MULTIPLIER = h + pref.elementAt(i).hashCode(Q);
return h;

SECTION35 JAVA 75

andequals doesanelementwise comparisah thewordsin two prefixes:

// Prefix equals: compare two prefixesfor equal words
public booleanequals(Object o)

Prefix p = (Prefix) o;

for (int i =0; i < pref.size(); i++)
if (‘pref.elementAt(i).equals(p.pref. elementAt(i)))
return false;
return true;

}

The Javaprogramis significantly smallerthan the C programand takescareof
moredetails;Vectorsand theHashtabé arethe obvious exampledn general, stor
agemanagement isasy since vectogrow as needed andarbage collection takes
careof reclaimingmemorythat is nolonger referencedBut to usethe Hashtable
classwe still needto write functionshashCode andequals soJavaisn't taking care
of all the details.

Comparing thevay the C and Java programs represantloperateon the same
basicdatastructure we see that the Jaweersion habetter separatioof functionality.
For example,to switch from Vectorsto arrayswould be easy. In the C version.
everythingknows whaeverythingelse isdoing: thehashtableoperatesn arraysthat
aremaintainedn various placeslookupknowsthe layoutof the Stateand Suffix
structuresandeveryoneknowsthesizeof theprefix array.

% java Markov <jr_chemistry.txt | fmt

Wash the blackboard. Watch it dry. The water goes
into the air. When water goesinto the air it
evaporates. Tie a damp cloth to oneend of a solid or
liquid. Look around. What are the solid things?
Chemical changestake placewhen something burns. If
the burning material hasliquids, they are stable and
the spongerise. It looked like dough, but it is
burning. Break up the Tump of sugarinto small pieces
and put them togetheragainin the bottom of a liquid.

Exercisé3-4. Revise the Javeersionof markov to usean array insteadf a Vector
for theprefix in theStateclass.0

76 DESIGN AND IMPLEMENTATION CHAPTER 3

3.6 C++

Our third implementations in C++. SinceC++ is almosta superset of C, it can
be usedasif it wereC with afew notational conveniencesndour original C version
of markov is alsoa legal C++ program. A more appropriateuseof C++, however,
would be todefineclassedor the objectsin the program,moreor lessaswe did in
Javaihis would let ushide implementation detaildVe decidedto goevenfurtherby
usingthe Standardremplate_ibrary or STL, since theSTL hasbuilt-in mechanisms
thatwill do muchof what we need. TheISO standard folC++ includes thesTL as
partof the language definition.

TheSTL provides containers such as vectiists, andsets andafamily of funda
mentalalgorithms for searching, sortingsertingand deleting. Using the template
featureof C++, everySTL algorithmworkson a variety of containersincluding both
userdefinedtypesand builtin typeslike integers. Containe@eexpresseésC++
templates thaareinstantiatedor specificdatatypes;for example, therés a vector
container that can be used to make particular types likevector<int> or
vector<string>. All vector operationsincluding standard algorithnfer sorting,
can beusedon suchdatatypes.

In additionto a vector containerthatis similar to Java'svector, the STL pro-
videsa deque container.A deque (pronouncétdeck") is adoubleendedjueudhat
matcheswvhat we do with prefixes:it holdsNPREF elementsandlets us popthe first
elementandadda newoneto the endjn O(1) time for both. TheSTL dequeis more
generathanwe needsinceit permitspushand popat either endbut the performance
guaranteemake itanobvious choice.

The STL also providesan explicit map container,basedon balancedrees, that
stores keyvalue pairandprovidesO(logn) retrievalof the value associatedth any
key. Mapsmight not beasefficientasO(1) hashtables,but it's nice not to haveto
write any codewhatsoeveto use them,(Some norstandardC++ libraries includea
hash or hash -map containewhoseperformancenay be better.)

We alsousethe builtin comparison functionsyhich in this casewill do string
comparisonsisingthe individual strings the prefix.

With these components hand,the code goetogethersmoothly. Hereare the
declarations:

typedef deque<string> Prefix;
map<Prefix, vector<string> > statetab; // prefix -> suffixes

TheSTL providesatemplatefor deques; the notatiateque<string> specializesit to
adequewhoseelementsarestrings. Sincethis type appearseveraltimesin the pro-
gram,we useda typedef to giveit thenamePrefix. The maptype that stores pre
fixesand suffixes occuranly once, howeveso we did not give it a separate name;
themap declaration declaresvariablestatetab thatis a map fromprefixesto vec
torsof strings. Thidgs moreconvenienthaneitherC or Javabecauseve don't need
to providea hashfunctionor equals method.

SECTION® CHt 77

Themainroutineinitializesthe prefix, readshe input(from standard input, called
cin in theC++ iostream library),addsatail, and generates the output, exaeatyn
theearlierversions:

// markov main: markov-chain random text generation
int main(void)
{
int nwords = MAXGEN
Prefix prefix; // current input prefix

for (int i = 0; i < NPREF, 1i++) // set up initial prefix

add(prefix, NON\CRD) ;
build(prefix, cin);

add(prefix, NONACRD) ;

generate(nwords);
return 0;

}

Thefunction build usestheiostream library to readthe inputone word at a
time:

// build: read input words, build state table
void build(Prefix& prefix, istream& in)

{
string buf;
while (in >> buf)
add(prefix, buf);
}

Thestringbuf will growas necessatg handle inputvordsof arbitrary length.
Theadd function showsnoreof the advantagesf usingtheSTL:

// add: add word to suffix list, update prefix
void add(Prefix& prefix, const string& s)

{
if (prefix. size() == NPREP) {
statetab[prefix].push_back(s);
prefix.pop-front(Q);
}
prefix.push_back(s);
}

Quitea bit is goingon undertheseapparently simple statemenfBhemap container

overloads subscriptinghe [] operator)o behave aalookup operation. The expres

sionstatetab[prefix] doesalookupin statetab with prefix askey and returna

referenceto the desiredentry;the vectolis createdf it doesnot existalready. The

push-back memberfunctionsof vector anddeque pusha new string ontothe back

endof thevectoror dequepop-front popsthefirst elemenoff thedeque.
Generatioris similar to theprevious versions:

78 DESIGN AND IMPLEMENTATION CHAPTER 3

// generate: produce output, one word per line
void generate(int nwords)
{
Prefix prefix;
int i;
for (i =0; i < NPREF; 1i++) // reset initial prefix
add(prefix, NONWORD),

for (i = 0; 1 < nwords; d++) {
vector<string>& suf = statetab[prefix];
const string& w = suffrand() % suf.size()] ;
if (w = NONWORD

break;
cout << w << "\n";
prefix .pop-front Q; // advance

prefix. push_back(w);

Overall, thisversionseems especialtjlearandelegant—the codeis compactthe
datastructuras visible andthe algorithms completely transparenSadly,thereis a
price topay: this version runsmuch slowerthanthe originalC version,though it is
notthe slowest.We'll comebackto performance measurements shortly.

Exercise3-5. The great strengtof the STL is the easevith which onecanexperi
mentwith differentdatastructures.Modify theC++ versiorof Markov to usevarious
structuredo represent therefix, suffix list, and statetable. How does performance
change fothedifferentstructures?l

Exercise3-6. Write a C++ versionthat usesonly classesand the string datatype
but no other advancelibrary facilities. Comparet in styleand speetb the STL ver
sions.O

37 Awk and Perl

To roundouttheexerciseye alsowrotethe progranin two popular scripting lan
guagesAwk and Perl.Theseprovidethe necessarfeaturegor thisapplicationasse
ciativearraysandstring handling.

An associative arrays a convenient packagingf a hashtable;it lookslike an
array but its subscripts@rearbitrary stringsor numberspr commaseparatedists of
them. It is aform of mapfrom one datdypeto another.In Awk, all arraysareasse
ciative;Perl has botttonventional indexed arrayéth integersubscriptandassocia
tive arrays.which are called ""hashes$; a namethat suggesttiow they areimple-
mented.

TheAwk andPerlimplementationarespecializedo prefixesof length2.

SECTION37 AWK AND PERL 79

markov.awk: markov chain algorithm for 2-word prefixes
BEGIN { MAXGEN = 10000; NONACRD = "\n"; wl = w2 = NONAVCFD }

{ for Ci= 15 1 <= NF;, i+4) { # read all words
statetab[wl,w2,++nsuffix[wl,w2]] = $i
wl = w2
w2 = $i
}
}
BD {

statetab[wl,w2,++nsuffix[wl,w2]] = NONAMCRD # add tail
wl = w2 = NONWCRD
for Ci= 0; i < MAXGEN i++) { # generate
r = int(randQ»nsuffix[wl,w2]) + 1 # nsuffix >= 1
p = statetab[wl,w2,r]

if (p = NONACRD)
exit
print p
wl=w2 # advance chain
w2 =p

}

Awk is a patternaction language: the inpi#t reada line at a time, eachline is
matchecdhgainst th@atternsandfor eachmatchthe corresponding actigmexecuted.
There aréwo special patternBEGIN andEND, that matchbeforethefirst line of input
andafterthelast.

An actionis a block of statements enclos@dbraces.In the Awk versionof Mar-
kov,theBEGIN block initializesthe prefix andicoupleof other variables.

Thenext block has npatternsoby defaultit is executed oncfor each input line.
Awk automaticallysplits eachinput line into fields (white-space delimitedvords)
calleds 1through$nF; the variableF is the numbeof fields. The statement

statetab[wl,w2,++nsuffix[wl,w2]] = §i

builds the magrom prefix to suffixes. Thearraynsuffi x counts suffixesand the
elementnsuffix[wl,w2] countsthe numberof suffixes associatedith that prefix.
The suffixes themselvesre stored in array elementsstatetab[wl,w2,1],
statetab[wl,w2, 2], andsoon.

Whenthe B\D block isexecutedall the inputhas beemead. At that point,for
eachprefix thereis an elementof nsuffix containinghe suffixcount,and thereare
thatmanyelement®f statetab containinghe suffixes.

ThePerl version issimilar, but usesan anonymous array insteafl a third sub
scriptto keep traclof suffixes; it alsausesmultiple assignmertb updatethe prefix.
Perl usesspecialcharacters tindicate thetypesof variables:$ marksa scalarand@
an indexedarray,while bracketq] areused to indexarraysand braces{} to index
hashes.

80 DESIGN AND IMPLEMENTATION CHAPTER 3

markov.pl: markov chain algorithm for 2-word prefixes

$MAXGEN = 10000;
$NONWORD = "\n";
$wl = $w2 = $NONWORD; #initial state
while (<>) { # read each line of input
foreach (split) {
push(@{$statetab{$wi}{$w2}}, $.);
($wl, $w2) = (8w2, $.); # multiple assignment
}

}
push(@{$statetab{$wl}{Sw2}}, $NONWORD); # add tail

$wl = $w2 = $NONWORD;
for ($i = 0; $i < $MAXGEN; $i++) {
$suf = $statetab{swl}{$w2}; # array reference

$r = int(rand @$suf); # @$suf i s number of elems
exit i F(($t = $suf->[$r]) eq $NONWORD);

print "$t\n";

(Bwl, $w2) = ($w2, $1); # advance chain

}

As in the previous program#hie map isstoredusing the variablestatetab. The
hearof theprogram igheline

push(@{$statetab{$wi}{$w2}}, $_);

which pushesa new suffix onto the endof the (anonymous) array storext
statetab{$w1l}{$w2}. In the generatiorphase.$statetab{$wl}{3$w2} is a refer
ence tanarrayof suffixesand$suf->[$r] pointsto ther-th suffix.

Both thePerl and Awk programsareshort comparetb the threesarlierversions.
but they are harder toadaptto handle prefixes thaire not exactlytwo words. The
coreof theC++ STL implementatiorftheadd andgenerate functions) isof compara
ble length and seendearer. Nevertheless, scripting languaga® often a good
choice forexperimental programminfpr making prototypesandevenfor produe
tion useif run-time is nota majorissue.

Exercise 3-7. Modify the Awk and Perl versionsto handle prefixesf any length.
Experimento determinevhateffectthis changdason performanceq

3B Performance

We haveseveral implementatiorte compare. We timed theprogramson the
Book of Psalms fromthe King James Biblewhich has 42,685%vords(5,238distinct
words, 22,482 prefixes). This tekias enoughepeated phras€s$Blessed ighe...”")

SECTION 3.8 PERFORMANCE 81

thatonesuffix list has morehan 400 elementsandtherearea few hundred chains
with dozenof suffixes, sat is agoodtestdata set.

Blesseds the manof the net. Turn theantome,and raisame up, thatl
may tell all my fears. They lookeduntohim, he heard. My praise shall
be blessed.Wealthandriches shalbe saved. Thouhast dealtwell with
thy hid treasurethey are casinto a standing water, thiint into astand
ing water, andlry groundinto watersprings.

Thetimesin thefollowing table are theumberof second$or generatingl0.000
wordsof output; onemachineis a 250MHz MIPS R10000 running Irix 6.4 andthe
otheris a400MHz PentiumlIl with 128 megabytesf memoryrunningWindowsNT.
Runtime is almost entirely determindoly the input size;generatioris very fast by
comparison.The table alsincludesthe approximatgrogramsizein linesof source
code.

250MHz 400MHz Linesof
R10000 PentiumIl source code

C 0.36sec 0.30sec 150
Java 4.9 9.2 105
C++/STL/deque | 2.6 11.2 70
C++/STL st 1.7 15 70
Awk 2.2 21 20
Perl 1.8 10 18

The C andC++ versions were compiledith optimizing compilerswhile the Java
runs had justin-time compilersenabled. The IrixC and C++ timesarethe fastest
obtained from three differenbmpilers; similar resultsereobservesn Sun SPARC
and DEC Alpha machines.The C versionof the programis fastestby a large factor;
Perl comes secondlhetimesin the tablearea snapshobf our experienceith a par
ticular setof compilers andibraries howeversoyou may seevery different resultdn
your environment.

Somethingis clearly wrong with the STL deque versionon Windows. Experi
mentsshowed that the deque that represtmaprefix account$or mostof the run-
time, althought never holdsmore than two elementsyve would expectthe central
data structurethe map, to dominate. Switchindrom a dequeto a list (whichis a
doublylinked list in the STL) improvesthe timedramatically. On the other hand,
switching froma mapto a (nonstandardpash containemade nalifferenceon Irix;
hashesverenot availableon our Windows machinelt is a testamento the funda
mentalsoundnessf the STL design that these changes requarly substituting the
word list for theword deque or hash for map in two placesand recompiling. We
concludehatthe STL, which isa newcomponenbf C++, still suffersfrom immature
implementations. The performarisainpredictabléetweenmplementationsf the
STL and betweenindividual datastructures.The sameis true of Java,whereimple-
mentationgrealsochanging rapidly.

82 DESIGN AND IMPLEMENTATION CHAPTER 3

There are some interesting challengegestinga program that is mearb pro-
duce voluminousandomoutput. How do we know it worksatall? How do we know
it works all thetime? Chapte6, which discusses testing, contains some suggestions
anddescribesiow we testedthe Markov programs.

P Lessons

The Markov programhasa long history. The firstversion was writterby Don P.
Mitchell. adaptedy Bruce Ellis. andapplied tohumorousdeconstructionist activities
throughouthe 1980s. It lay dormantuntil we thought touseit in a university course
asanillustration of programdesign. Rathethandustingoff the original. we rewrote
it from scratchin C to refreshour memoriesof the various issuebatarise,and then
wrote it againin several other languagessing each language'snique idioms to
expresghesamebasicidea. Afterthecoursewe reworked theprogramamany times
to improveclarity and presentation.

Overall thattime, however the basic design hagmainedhe same. The earliest
versionusedthe same approach dke ones wehavepresented here, althoughdit
employ a secondhashtable to represent individualords. If we were to rewrite it
again.we would probably nothangemuch. Thedesignof a program is rootedh the
layoutof its data. Thedata structures don't define every detailt, theydo shapehe
overall solution.

Some data structure choiceskelittle difference,suchas listsversusgrowable
arrays. Some implementations generalize b#terothers—the Perl and Awkcode
could be readily modifiedto one or threeword prefixesbut parameterizinghe
choicewould be awkward. As befitsobjectoriented languagetiny changes tdghe
C++ and Java implementationsould make thedata structures suitable for objects
otherthan English text,for instance programs (where white spagauld be signifi-
cant),or notesof music.or evenmouse clickeand menuselectiongor generatingest
sequences.

Of course while thedata structures arauchthe same, there &swide variationin
the general appearanaethe programsn the sizeof the source codeand in perfor
mance. Very roughly, higheflevel languages give slower prograthan lower level
ones, although it'sinwiseto generalize othahanqualitatively. Big building-blocks
like the C++ STL or theassociative arrayandstring handlingf scripting languages
can leado morecompact codandshorter development time. These aotwithout
price,althoughthe performanc@enaltymay not mattermuchfor programslike Mar-
kov, thatrun for only a few seconds.

Less clear, however, low to assess the los§ controlandinsightwhenthe pile
of systemsupplied code geto big thatoneno longer knowswvhat's goingon under
neath. This is thecasewith the STL version; itsperformances unpredictable and
thereis noeasyway to addresshat. One immature implementatiave usedneeded

SECTION 39 LESSONS 83

to berepairedbeforeit would runour program. Few of us have theresource®r the
energytotrackdownsuch problems anfiix them.

This is a pervasive andyrowing concernin software:aslibraries, interfacesand
tools becomemore complicatedthey become less understood alebscontrollable.
Wheneverythingworks, rich programmingnvironments cate very productive,but
when they fail, thereis little recourse. Indeed. we may notevenrealize that some
thingis wrongif theproblems involve performanag subtle logic errors.

Thedesign andmplementatiorof this programillustrate anumberof lessons for
larger programs. First is the importanceof choosing simplealgorithms anddata
structuresthe simplestthat will do the job inreasonable timéor the expectegrob-
lem size. If someone else hadready written them and put theéma library for you,
that'sevenbetter,our C++ implementationprofitedfrom that.

Following Brooks's advicewefind it best to start detailed desigvith datastruc
tures,guidedby knowledgeof whatalgorithms mighbe used;with thedatastructures
settled.thecodegoestogether easily.

It's hardto designa programcompletely andhen buildit; constructingreal pro
gramsinvolves iteration and experimentatioifhe actof building forcesoneto clar-
ify decisions thahad previouslybeen glossed overThat wascertainly thecasewith
our programshere, which havegonethrough many changesf detail. As muchas
possible,startwith somethingsimpleandevolveit asexperience dictateslf ourgoal
had beerjust to write a personal versionf the Markov chain algorithm fofun. we
would almostsurely havewritten it in Awk or Perl—thoughnot with asmuchpolish
ing asthe onesve showedhere—andlet it goatthat.

Productioncodetakes muchmoreeffort thanprototypesdo, however. If we think
of the programs presentdtereas production code(sincethey have beermolishedand
thoroughlytested),production quality requiresneor twoorders of magnitudenore
effort than aprogram intendedor personal use.

Exercise3-8. Wehaveseen versionsf theMarkov programin awide variety of lan-
guages, including Scheme. T#olog, Python,GenericJava.ML, and Haskell; each
presentsts ownchallenges and advantages. Implemirgprogram inyour favorite
language andompare itgeneraflavorand performanced

Supplementary Reading

The StandardTemplateLibrary is describedn a varietyof books,includingGen
eric Programming and the STL, by Matthew Austern (AddisorWesley,1998). The
definitive referenceon C++ itself is The C++ Programming Language,by Bjame
Stroustrup (3rd edition, AddisorWesley,1997). ForJava,we refer toThe Java Pro-
gramming Language, 2nd Edition by Ken Arnold and JamesGosling (Addison
Wesley, 1998). The best descriptiorof Perl is Programming Perl, 2Znd Edition, by
Larry Wall, Tom Christiansen, and RandathwartAO’Reilly, 1996).

84 DESIGN AND IMPLEMENTATION CHAPTER 3

Theidea behinddesignpatterns is thatthereareonly a few distinct desigrcon
structsin most programs in theameway that thereareonly a few basicdatastruc
tures; veryloosely, it is thedesign analo@f the codeidioms that wediscussedn
Chapterl. Thestandard referends Design Patterns:Elements ofReusableQbject-
Oriented Software, by Erich Gamma, Richardelm, RalphJohnson, and Joh¥lis-
sides(AddisonWesley. 1995).

Thepicaresque adventure$ themarkov program,originally called shaney, were
describedn the"* Computing Recreatiofscolumnof theJune.1989Scientific Amer-

ican. Thearticle wasrepublished ifiThe Magic Machine,by A. K. Dewdney(W. H.
Freeman,1990).

Interfaces

Beforel built a wall I'd askto know
What | waswalling in or walling out,

And to whoml waslike to giveoffence.
Somethingthereis that doesn't lovea wall.
That wants itdown.

Robert FrostMendingWall

The essence of desigs to balance competing goals and constraints. Although
theremay be many tradeoffswhenoneis writing a small selcontained systenthe
ramificationsof particular choicesemain within thesystemandaffectonly theindi-
vidual programmer.But when codeis to beusedby others, decisions hawider
repercussions.

Among the issues to bweorked out ina design are

o Interfaceswhatservicesandaccess are providedPhe interface is in effect a
contract between supplier and customBEne desireis to provide services that
are uniformandconvenientwith enough functionalityo beeasyto use but not
somuchas to becomanwieldy.

¢ Informationhiding: whatinformationis visible and whatis private? An inter-
facemustprovide straightforward accessthe components while hiding details
of the implementatiosothey canbechanged without affectingsers.

e Resourcemanagement: whs responsible fomanaging memonand other
limited resources? Here, tineain problems are allocating and freeisigrage.
andmanaging shared copiekinformation.

e Errorhandling: whaletects erroravho reportsthem,andhow? When an error
is detectedwhatrecoveryis attempted?

In Chapter2 we lookedat the individual pieces—the datastructures—from which

a systenis built. In Chapte3, we lookedat how to combine those into small pre
gram. The topic now turns to the interfacelsetweencomponentghat mightcome
from different sources. Irthis chapter we illustrate interface desigy building a

85

86 INTERFACES CHAPTER 4

library of functions and data structures facommontask. Along the way, we will
presentsomeprinciplesof design. Typically therarean enormousumberof deck
sionsto be made,but mostaremade almosunconsciously. Without theseprinciples,
the result is ofterthe sort of haphazard interfacéisatfrustrate andmpedeprogram
mersevery day.

4.1 Comma-Separated Values

Commaseparated valuesr CSV,is thetermfor a natural and widelysedrepre
sentationfor tabular data.Eachrow of a tableis a line of text;the fieldson eachine
areseparatedoy commas. The table at the end of the previous chapter mighiegin
thisway in CSv format:

,"250MHz" ,"400MHz" ,"Lines of"

, "R10000", "Pentium II","source code'
C,0.36 sec,0.30 sec,150
Java,4.9,9.2,105

This formatis read and writterby programs suclasspreadsheets; nobinciden
tally, it alsoappearsn web pagedor services suchsstock pricequotations. A pop
ular web pagefor stock quotegpresents a display likiis:

Symbol Last Trade Change Volume
LU 2:19PM 86-114 | +4-1/16 | +4.94% 5,804,800
T 2:19PM | 60-11/16 | -1-3/16 | -1.92% | 2,468,000
MSFT 2:24PM | 106-9/16 +1-3/8 | +1.31% | 11,474,900

Download Spreadsheet Format

Retrieving numbersby interacting with aweb browseris effective but time-
consuming. It's a nuisanceto invoke a browser, wait, watch barrageof advertise
ments,type a list of stockswait, wait, wait, then watch anotherbarrage all to geta
few numbers.To procesghe numbers further requiresenmoreinteraction; seleet
ing the "*DownloadSpreadshedtormat® link retrieves dile that containsmuchthe
samenformationin linesof CSV datalike thesg(edited tdfit):

"LU",86.25,"11/4/1998","2:19PM" ,+4.0625,
83.9375,86.875,83.625,5804800

"T",60.6875,"11/4/1998","2:19PM", -1.1875,
62.375,62.625,60.4375,2468000

"MSFT",106.5625,"11/4/1998","2:24PM",+1.375,
105.8125,107.3125,105.5625,11474900

Conspicuoudy its absencen this processs the principle of lettingthe machinedo
thework. Browsers leyour computer access daiaa remoteserver, buit would be
more conveniento retrieve thedata without forced interaction. Underneath all the

SECTION 4.2 A PROTOTYPELIBRARY 87

button-pushing isa purely textualprocedure—the browser readsomeHTML, you
type sometext, the browsesendsthat toa serverand readsomeHTML back. With
the right tools and language, it'seasy to retrieve the information automatically.
Here'sa programin the language Tclo access thetockquoteweb site and retrieve
CSV datain theformat above precededby afew headefines:

getquotestcl: stock pricesfor Lucent, AT&T, Microsoft

set so [socket quote.yahoo.com 80] ;# connectto server
setq "/d/quotes.csv?s=LU+T+MSFT&f=s11d1t1lclohgv"

puts $so "GET $q HTTP/1.0\r\m\r\n" ;# sendrequest

flush $so
puts [read $so] # read & print reply
Thecryptic sequencéd=. .. thatfollows theticker symbolsis an undocumentedon-

trol string, analogougo thefirst argumenof printf, that determinesvhat values to
retrieve. By experimentwe determined thas identifies the stock symbol,1 thelast
price, c | the change sincgesterday, ando on. What's important isn'tthe details,
which aresubject tochangeanyway, but the possibilityof automation:retrieving the
desired information and converting it intiee formwe needwithoutany humaninter-
vention. Wecanletthemachined othe work.

It typically takesa fraction of asecond taun getquotesfar lessthaninteracting
with a browser. Once wehavethedata,we will want to process it furtherDatafor-
mats likeCSV work bestif thereareconvenient librarie$or convertingto and from
theformat, perhapsllied with someauxiliary processinguchasnumericalconver
sions. But we do not know of an existing public library to handleCsv, so we will
write oneourselves.

In thenextfew sections.we will build three versionsf a library to readCSV data
and convert it intan internal representationAlong theway, we'll talk aboutissues
thatarisewhendesigning softwaréhat mustwork with othersoftware. Forexample,
theredoesnot appear tbheastandard definitiorf CSV. sotheimplementatiorcannot
bebasedona precise specificatiora commonsituation inthedesignof interfaces.

4.2 A Prototype Library

We areunlikely to getthedesignof a library or interface righton thefirst attempt.
As Fred Brooksoncewrote, *"plan tothrow oneaway; you will, anyhow:" Brooks
waswriting aboutlargesystems butheideais relevantfor any substantial piecef
software. It's not usually until you've built and used a versiomf the programthat
you understand the issu&gll enoughto getthe desigrright.

In this spirit, we will approachthe constructionof a library for CSV by building
oneto throw away,a prototype. Our first version willignoremany ofthedifficulties
of athoroughly engineered library, bufll becomplete enougto beusefuland tolet
usgainsomefamiliarity with the problem.

88 INTERFACES CHAPTER 4

Our starting point is a functiassvgetline thatreads one linef CSv data from a
file into a buffer, splitst into fieldsin an array, removes quotes. and returnshtine
berof fields. Over the yearsye have written similacodein almost every language
we know, soit's a familiar task. Here is a prototype versio€; we've marked as
questionable because it is jugir@totype:

? char buf[200]; /a input line buffer =/

7 char =fiel1d[20]; /* fields =/

?

? /a csvgetline: read and parse line, return field count =/
? /a sample input: "LU",86.25,"11/4/1998","2:19PM",+4.0625 =/
b int csvgetline(FILE =fin)

7

- {

7 int nfield;

7 char =p, =»q;

2

? i f (fgets(buf, sizeof(buf), fin) == NULD

1 return -A;

? nfield = O;

9 for (g = buf; (p=strtok(g, ",\m\r")) != NULL; q = NULL)
? field[nfiel d++] = unquote(p);

? return nfield;

? }

The commenét the topof thefunction includes an exampte the input format that
the programaccepts; such comments are helpful for programs that passinput.

TheCSsV format istoo complicatedto be parsed easilypy scanf sowe usethe C
standard library functiostrtok. Each callof strtok(p,s) returnsa pointerto the
first token withinp consistingof charactersiotin s; strtok terminates the tokenby
overwriting the following characterf the original stringvith a null byte. On thefirst
call, strtok's first argument ighe string to scan; subsequent caliseNULL to indi-
catethatscanning should resume whéréeft off in the previous call. This a poor
interface. Becausetrtok stores a variablim a secret place between caligly one
sequencef calls may be active at ondime; unrelated interleaved calgill interfere
with eachother.

Our functionunquote removes the leadingnd trailing quotesthat appeaiin the
sample input abovelt doesnot handle nestequotes. howevego although sufficient
for a prototype, it'siotgeneral.

7 /* unquote: remove leading and trailing quote =/
3 char »unquote(char =»p)

? {

? if (p[o] == """) {

? if (p[strlen(p)-1] == "'"")

? plstrlen(p)-1] = ’\0’;

? p++;:

? }

? return p;

7

SECTION 4.2 A PROTOTYPELIBRARY 89

A simple test prograrelps verify thatsvgetline works:

? /a csvtest main: test csvgetline function »/

? int main(void)

? {

? int i, nf;

?

? while ((nf = csvgetline(stdin)) != -1)

7 for Ci= 0; i < nf; i++)

? printf("field[®d] = ‘%s’'\n", 1, field[il);
? return O;

? }

Theprintfencloseghefieldsin matching single quoteghich demarcate¢hemand
help torevealbugsthathandle white space incorrectly.
Wecannow runthison theoutputproducecy getquotes. tcl:

% getquotes.tcl | csvtest

Field[0]

= 'LJ’
field[1] = '86.375'
field[2] = *11/5/1998'
field[3] = ‘1:01PM’
field[4] = '-0.125'
field[5] = '86'
field[6] = '86.375'
field[7] = '85.0625'
field[8] = '2888600'
field[0] = 'T'

= '61.0625'

field[1]

(We haveeditedout theHTTP header lines.)

Now we havea prototypethatseems tavork on dataof the sortwe showed above.
But it might be prudent tdry it on something elsaswell, especiallyif we planto let
others usé. We found anothewebsite thatdownloadsstock quotesand obtaineda
file of similar informationbut in a different form: carriage returns(\r) ratherthan
newlines to separate records, and terminating carriage return at theendof the file.
We've editecandformatted it to fit on the page:

"Ticker","Price","Change", "Open". "Prev Close", "Day High",
"Day Low","52 Week High","52 Week Low","Dividend”,
"Yield","Volume","Average Volume" K "P/E"

"Ly",86.313,-0.188,86.000,86.500,86.438,85.063,108.50,
36.18,0.16,0.1,2946700,9675000,N/A

“T”,61.125,0.938,60.375,60.188,61.125,60.000,68.50,
46.50,1.32,2.1,3061000,4777000,17.0

“"MSFT",107.000,1.500,105.313,105.500,107.188,105-250,
119.62,59.00,N/A,N/A,7977300,16965000,51.0

With this input, our prototype failed miserably.

90 INTERFACES CHAPTER 4

We designed our prototype after examining one data samdeyetestedit origi-
nally only ondata fromthatsame source. Thuse shouldn'tbe surprisedwhen the
first encountemith a different source reveals gross failings. Long innes. many
fields, and unexpectedr missingseparatorsll cause trouble. This fragile prototype
might serve forpersonal user to demonstrate the feasibility an approach, but no
morethanthat. It's timeto rethink the design before we another implementation.

We madea large numbeof decisionspothimplicit andexplicit, in the prototype.
Here are someof the choices that were made, not alwagsthe bestway for a
generalpurpose library Eachraisesanissuethatneedsmorecareful attention.

e The prototype doesn't handle long input lines or aftdields. It can give
wrong answersor crashbecauset doesn't even chedbor overflows, let alone
returnsensible valueis caseof errors.

e The inputis assumed consistof linesterminatedoy newlines.

e Fields are separatdyy commas andsurrounding quotes aremoved. There is
no provisionfor embedded quotes commas.

The input lineis not preservedijt is overwrittenby the proces®f creating
fields.

e No datais saved fronone input line to thaext: if somethings to beremem
bereda copy mustbe made.

e Accessto the fieldsis througha global variablethe field array, which is
sharedby csvgetline andfunctionsthatcall it; thereis nocontrol over access
to thefield contents othe pointers. Therés alsono attemptto prevent access
beyond thdast field.

e The global variablemakethe desigrunsuitablefor a multi-threaded environ
mentor even fortwo sequencesf interleaved calls.

e The callermust openand close files explicitly;csvgetline readsonly from
openfiles.

e |nput and splitting are inextricably linked: each call reaafine and splits it
into fields. regardlessf whether the application needs that service.

e Thereturnvalue is the numbef fields on theline; each linemustbe split to
compute thisvalue. There is alsmo way to distinguish errors frorandof file.

e There isnoway to changany ofthese properties without changing the code.

This long yet incomplete list illustrates sonaf the possible desigtradeoffs.
Each decision isvoven throughhe code. That's fine farquick job. like parsing one
fixed formatfrom a known source. But whatif the format changesr a comma
appearsvithin aquoted stringor the server producedong lineor alot of fields?

It may seem easyo cope, sinceahe ' library'" is smalland only a prototype any
way. Imagine, howeverthat after sitting on thshelffor afew monthsor years the
code becomegartof alargerprogram whosspecification changes ovéme. How
will csvgetl ine adapt?if that progranis usedby others, the quick choices maide
theoriginal designmay spell troublethatsurfaces yearater. This scenario is repre
sentativeof the historyof many badinterfaces.lt is a sadfact thata lot of quick and

SECTION 4.3 A LIBRARY FOR OTHERS 91

dirty codeendsup in widely-used softwarewhereit remainsdirty and often nogas
guickasit should have been anyway.

4.3 A Library for Others

Using whatwe learnedfrom the prototypewe now want tobuild a library worthy
of generaluse. The most obvious requiremens$ that we must make csvgetli ne
more robussoit will handle long linesr manyfields; it must alsdoe morecarefulin
the parsing of fields.

To createaninterfacethatotherscanuse,we mustconsiderthe issuedisted at the
beginningof this chapter: interfaces, information hidingsourcenanagement, and
errorhandling. Theinterplayamongthesestrongly affects thedesign. Ourseparation
of these issueis a bit arbitrary,sincetheyareinterrelated.

Interface. Wedecidedon three basioperations:
char=csvgetline(FILE =): read a nevCSV line
charxcsvfield(int n). returnthen-th field of the currentine
intcsvnfield(void): returnthe numbenof fieldsonthe current line

What function valueshouldcsvgetli nereturn? It is desirableto returnasmuch
useful informationasconvenientwhich suggests returninipe numberof fields, asin
the prototype. But therthe numberof fields mustbe computed everif the fields
aren't beingused. Anotherpossiblevalueis the inputline length, whichis affected
by whetherthe trailingnewline is preserved. After severalexperimentswe decided
thatcsvgetlinewill return a pointer tahe original line of input, or NULL if end of
file hasbeen reached..

We will removethe newline atthe endof theline returnedby csvgetline, since
it caneasily berestoredf necessary.

Thedefinition of afield is complicated,we havetried to match whatwe observe
empiricallyin spreadsheet@ndotherprograms. A field is aequencef zeroor more
characters. Fields are separatedoy commas. Leading and trailingblanksare pre-
served. A field may be enclosed in doublguotecharacters,in which case itmay
contain commasA quoted fieldmay contain doublequotecharacterswhicharerep-
resentedby a doubled doublguote; the CSvV field "x""y" definesthe string x"y.
Fieldsmay beempty;a field specifiedas™" is empty, andidentical to onespecified
by adjacent commas.

Fieldsare numberedfrom zero. Whatif the user ask$or a nonexistent fieldby
calling csvfield(-1) or csvfield(100000)? Wecouldreturn"" (the emptystring)
because thisanbe printed andcompared;programsthat process variablaumbersof
fields would not haveto takespecial precautiont deal with norexistentones. But
thatchoice provideso way to distinguishempty from non-existent. A secondhoice
would beto print anerror messager even abortwe will discussshortly why thisis

92 INTERFACES CHAPTER 4

not desirable. We decided toreturn NULL, the conventionalvaluefor a non-existent
stringin C.

Information hiding. Thelibrary will imposeno limits on inputline lengthor number
of fields. To achievethis, either the callemust provideche memoryor thecallee (the
library) mustallocateit. The callerof thelibrary function fgetspassesn an array
and a maximumsize. If theline is longerthan the buffer, it is brokeninto pieces.
Thisbehavioris unsatisfactoryfor theCSV interface,soour library will allocatemem
ory asit discovers thamoreis needed.

Thusonly csvgetli neknowsabout memory management; nothialgout thewvay
thatit organizes memoris accessiblérom outside. The bestway to provide thaiso-
lation is througha function interface: csvgetli nereadsthe next line,no matter how
big, csvfield(n) returnsa pointer tothe bytesof the n-th field of the currentline,
andcsvnfi e ld returnsthe numbenof fieldson the currentine.

We will haveto grow memoryaslonger linesor more fields arrive. Details of
how that isdone arehiddenin thecsvfunctions;no otherpart of the programknows
how this works for instance whethethe library uses smalbrraysthat grow,or very
large arrayspr something completely different. Ndioestheinterfacereveal when
memoryis freed.

If the user call®nly csvgetli ne, there'sno needto splitinto fields; linescanbe
split on demand.Whetherfield-splitting is eager (doneight away whenthe lineis
read) or lazy (doneonly when a field or countis needed)or very lazy (onlythe
requestedield is split) is another implementation detail hidd&om the user.

Resource managementWe mustdecidewho is responsiblgor sharedinformation.
Doescsvgetli nereturnthe originaldataor makea copy? W edecidedthatthereturn
value ofcsvgetli neisa pointerto theoriginal input, whichwill beoverwritten when
the nextline is read. Fieldswill bebuilt in acopy of the inputline, andcsvfield
will return apointerto thefield within the copy. Withthis arrangement, the usarust
makeanother copyif a particular lineor field is to be savedor changed, and it ithe
user'sresponsibilityto release that storage whigns nolongerneeded.

Who opensand closes thaput file? Whoever opensn input file shoulddo the
corresponding close: matching tasks shobiétoneat the samelevel or place. We
will assumehatcsvgetli ne iscalledwith a FILE pointerto analreadyopen file that
thecallerwill closewhen processinis complete.

Managing theresources sharedr passedacross the boundary betweanlibrary
andits callersis a difficult task,andthereareoften sound but conflicting reasohs
prefervarious design choices. Erraaadmisunderstandingabout theshared respon
sibilitiesareafrequentsourceof bugs.

Error handling. Becausecsvgetli ne returnsNULL, thereis nogood way to distin-
guish end of file from an error like running out of memory; similarly, access a
non-existentfield causesno error. By analogy withferror, we could add another
functioncsvgeterroto theinterface to reporthe most recent errohut for simplic-
ity we will leaveit outof this version.

SECTION 4.3 A LIBRARY FOR OTHERS 93

As a principle, library routines shoulahot just die whenan error occurs; error sta
tus shoulde returnedo thecaller forappropriate actionNor shouldthey print mes
sages opop up dialog boxes, sincthey may berunningin anenvironmentvherea
messagevould interferewith somethingelse. Errohandlingis atopic worth asepa
rate discussioof its own, laterin this chapter.

Specification.The choicesnadeabove shouldbe collectedin one placeasa specifi
cationof the serviceghatcsvgetl ne providesand how it is to be used. In alarge
project,the specification preceddbe implementation, because specifiers angle-
menters are usualljifferentpeople andmay bein differentorganizations.In prac
tice, however.work often proceeds parallel,with specification and code evolving
together,although sometimethe **specificatio' is written only after the factto
describepproximatelywhatthecode does.

The best approadhto write thespecification earlyandreviseit aswe learn from
the ongoing implementation. Theore accurateand careful a specification is, the
morelikely that the resultinggrogramwill work well. Evenfor personal programis,
is valuableto preparea reasonablyhoroughspecification becauseencourages cen
sideratiorof alternativesindrecordghechoicesnade.

For our purposes, the specificatiamould include function prototypes aral
detailed prescriptioaf behavior, responsibilitieendassumptions:

Fieldsareseparatetty commas.

A field may beenclosedn doublequotecharacters...”.

A guotedield may contain commabut notnewlines.

A quoted fieldmay contain doublejuotecharacters, representeby "".
Fieldsmay beempty;"" andanemptystring both represenanemptyfield.
Leadingandtrailing white spaceds preserved.

char =csvget1line(FILE =f);
reads one linfom open inpufile f;
assumes that input lines are termindgkt, \n, \r\n, or EOR
returns pointeto line, with terminator removedy NULL if EOFoccurred.
line may beof arbitrarylength;returnshNULL if memonyimit exceeded.
line mustbetreated as readnly storage;
callermustmakea copyto preserver change contents.

char acsvfield(i nt n);

fields arenumberedrom 0.

returnsn-th field from last linereadby csvgeti ne;
returnsNULL if n < 0 or beyondastfield.

fieldsare separateldy commas.

fields may be surroundedby "..."; suchquotes areemoved;
within "...", "" isreplacediy " and commds notaseparator.

in unquotedields,quotes are regulaharacters.

therecanbeanarbitrarynumberof fieldsof anylength;
returnsNULL if memonflimit exceeded.

field mustbetreated as readnly storage;
callermustmakeacopy topreserver change contents.

behavior undefineifl called beforesvgeti neis called.

94 INTERFACES CHAPTER 4

int csvnfield(void);
returnsnumberof fieldson last linereadby csvgetline.
behavior undefineifl called beforesvgetline is called.

This specificatiorstill leavesopenquestions.Forexample whatvalues shouldbe
returnedby csvfield andcsvnfield if theyare calledhftercsvgetline hasencoun
teredeEOF? How should ilHformedfields be handled? Nailinglown all suchpuzzles
is difficult evenfor a tiny system, andrery challengindor a large one,thoughit is
importantto try. Oneoften doesn'tdiscover oversightand omissions until imple
mentationis underway.

The rest of this sectioncontainsa new implementationof csvgetline that
maitches thepecification.The library is brokeninto two files, a headercsv. h that
containghefunctiondeclarations that represehé public partof theinterfaceandan
implementation fileesv . ¢ thatcontainghecode. Usersncludecsv. hin theirsource
codeand link their compiled codewith the compiled versiorof csv. c; the source
needneverbe visible.

Hereis the headefile:

/= csv.h: interface for csv library a/

extern char xcsvgetline(FILE nf) ; /= read next input line =/
extern char zcsvfield(int n); /a return field n as
extern int csvnfield(void); /+ return number of fields ars

Theinternal variables that stotext and thénternalfunctiondike split are declared
static sotheyare visibleonly within thefile thatcontainghem. This is the simplest
way to hideinformationin aC program.

enum { NOVEM = -2 }; /% out of memory signal as

NULL; /% input chars x/

NULL; /= line copy used by split =/

0; /* size of 1ine[] and sline[] =/
NULL; /a field pointers *

static char =1ine

static char =sline
static int maxline
static char ==field

static int maxfield = 0O; /* size of field[] =/
static int nfield 0; /* number of fields in field[] as
static char fieldsep[] = *,"; /= field separator chars =/

The variables are initialized statically agell. These initial valuesre usedto test
whethetto create ogrowarrays.

Thesedeclarationslescribea simple data structureThe line array holds the
input line; the s line arrayis createdby copyingcharacterfrom Tine and terminat
ing each field. Thefield array points tentriesin s line. This diagramshowsthe
stateof these threarrays aftetheinput lineab,"cd","e""f", ,"g, h" hasbeenpro-
cessed. Shaded elemeints line arenot partof anyfield.

SECTION 4.3 A LIBRARY FOR OTHERS 95

: T T, T LT Tl Tl Tl T Ta]] Tz
line a'bl, cld . e f P [g h

i ol A B A I e B S
dine alb o™ [c|dhojo["|e| | F]\o " [xol\ol " |g |, |N|\o
field 0 1 2 3 4

Here is the function csvgetline itself:

/% csvgetline: get one line, grow as needed =/
/a sample input: "LU",86.25,"11/4/1998","2:19PM",+4.0625 =/
char acsvgetline(FILE afin)

{ .
int i, c;
char *newl, anews;
if (line == NULL) { /= allocate on first call =/
maxline = maxfield = 1;
line = (char a) malloc(maxline);
sline = (char a) malloc(maxline);
field = (char #x) malloc(maxfieldxsizeof(field[0]));
if (line = NULL || sline == NULL || field == NULL) {
reset(Q);
return NULL; /+ out of memory */
}
}
for (i=0; (c=getc(fin))!=EOF && !endofline(fin,c); i++) {
if (b= maxline-1) { /= grow line =/
maxline %= 2; /a double current size */
newl = (char a) realloc(line, maxline) ;
news = (char =) realloc(sline, maxline) ;
if (newl == NULL || news == NULL) {
reset();
return NULL; /* out of memory =/
}
line = newl;
sline = news;
3
1ine[i] = c;
1
Tine[i] = '\0’;
if (split() = NovAVM) {
reset(Q);
return NULL; /+ out of memory */
}
return (c == EOF && 1 == 0) ? NULL : line;
}

An incoming line is accumulatedin Tine, which is grown as necessaryby a call to
realloc; the sizeis doubled oneachgrowth, asin Section2.6. The sline array is

96 INTERFACES CHAPTER 4

kept thesame sizesline; csvgetline callsspli t to createthefield pointersin a
separatarrayfield which isalsogrownasneeded.

As is our custom,we start the arraysvery smalland growthem on demand,to
guarantee thahe array-growing code is exercisedf allocation fails,we call reset
to restore thaglobalsto their starting statesoa subsequent calb csvgetline has a
chanceof succeeding:

/a reset: set variables back to starting values as
static void reset(void)
{
free(1ine); /+ free(NULL) permitted by ANSI C =/
free(sline);
free(field);
line = NULL;
sline = NULL;
field = NULL;
maxline = maxfield = nfield = O;

}

Theendofline function handles thproblem thaan input linemay beterminated
by a carriage return,sewline, both,or evenECF

/* endofline: check for and consume \r, \n, \r\n, or EOF a/
static int endofline(FILE afin, int c)

{
int eol;
eol = (c=="\r’ || ¢=="\n");
if (c="\r"){
c = getc(fin);
if (c '='\n’ && c != EOF)
ungetc(c, fin); /* read too far; put c back =/
1
return eol;
}

A separate functiois necessarysince the standard input functiothg not handlehe
rich varietyof perverse formats encounteiedealinputs.

Our prototype usedtrtok to find the nexttokenby searching for a separator
characternormally a comma, but thisnadeit impossibleto handle quoted commas.
A major changein the implementatiorof split is necessary, though its interface
need nothange. Consider thesgput lines:

w un
[
"
L] '

Eachline hasthree empty fields. Making sutbatspli t parsegshem andther odd
inputs correctly complicatei$ significantly, an exampleof how special caseand
boundaryconditions can com dominate gprogram.

SECTION4.3 A LIBRARY FOR OTHERS 97

/= split: split line into fields =/
static int split(void)

{
char ap, =*»newf;
char asepp; /* pointer to temporary separator character as
int sepc; /a temporary separator character =/
nfield = 0O;
if (1ine[0] == '\0")
return O;
strcpy(sline, line);
p = sline;
do {
.if (nfield >= maxfield) {
maxfield a= 2; /a double current size x/
newf = (char #*) realloc(field,
maxfield » sizeof(field[0]));
i f (newf == NULL)
return NOVEM
field = newf:
1
1F@p == ")
sepp = advquoted(++p); /+ skip initial quote =/
else
sepp = p + strcspn(p, fieldsep);
sepc = seppl[0];
sepp[0] = ’\0’; /% terminate field =/
field[nfield++] = p;
p=sepp + 1;
} while (sepc = "',");
return nfield;
}

The loop growshe array of field pointersif necessarythencalls oneof two other
functionsto locate and processthe nextfield. If the field beginswith a quote,
advquoted finds thefield and returns pointerto the separatothat endsthe field.
Otherwiseto find the nextcommawe usethe library functionstrespn(p,s), which
searchea string p for the nextoccurrencef any charactein strings; it returnsthe
numbeiof characterskipped over.

Quoteswithin a field are representedy two adjacent quotesso advquoted
squeezeghoseinto a single onejt alsoremoves thejuotesthat surroundhe field.
Some complexityis addedby an attemptto cope with plausible inputghat don't
maitchthe specificationsuchas "abc"def. In suchcaseswe appendwhatever fol
lows the second quotentil the nextseparatoas partof this field. Microsoft Excel
appearso useasimilaralgorithm.

98

INTERFACES CHAPTER 4

/+ advquoted: quoted field; return pointer to next separator =/
static char nadvquoted(char =p)

{ .
inti.,j;
for i=3j =0; p[3] !'= '\O’; i++, j++) {
if (p[3] = """ && pl++j] 1= ") {
/* copy up to next separator or \0 =/
int k = strcspn(p+j, fieldsep);
memmove (p+i, p+j, k);
i += k;
j += k;
break;
1
: p(i1 = plil;
p(il = "\0’;
return p + j;
1

Sincetheinput line is already split, csvfield andcsvnfield are trivial:

/* csvfield: return pointer to n-th field =/
char =csvfield(int n)

{
if (n <0 || n>=nfield)
return NULL;
return field[n];
1

/+ csvnfield: return number of fields =/
int csvnfield(void)

{
1

return nfield;

Finally, we can modify the testdriver to exercisethis versionof the library; since

it keepsa copy of the input line, which the prototype doesnot. it can print the original
line beforeprinting the fields:

/* csvtest main: test CSV library =/
int main(voi d)

int i;
char =1ine;
while ((line = csvgetline(stdin)) != NULL) {
printf("line = “%s’\n", line) ;
for Ci= 0; 1 < csvnfieldQ); i++)
printf("field[%d] = ‘%s’\n", i , csvfield(i));
}

return 0;

SECTION 4.4 A C++ IMPLEMENTATION 99

This completes our ®ersion. It handles arbitrarily large inputsnd doessome
thing sensible evemith perverse data. Thariceis thatit is morethanfour timesas
long asthefirst prototypeand someof the code is intricate. Such expansioisize
andcomplexity is aypical resultof movingfrom prototype to production.

Exercised-1. There are several degrees of lazirfes$ield-splitting; amonghe pos
sibilities are to spliall atoncebutonly whensome field is requested, to sgiily the

field requestedor to split upto the field requested. Enumerate possibilities, assess
their potential difficulty and benefitthenwrite themandmeasure their speed3.

Exercised4-2. Add afacility soseparatorsanbe changeda)to an arbitrary class of
characters(b) to different separators for different fields) to a regular expression
(seeChapte®). What shouldheinterfacdook like? O

Exercise4-3. We chosdo use thestatic initialization providedly C asthe basisof a
onetime switch:if a pointer isNULL on entry. initialization is performedAnother
possibilityis to requirethe useto call anexplicit initialization functionwhich could
include suggesteiditial sizes for arrays. Implement a verstbatcombineghe best
of both. Whats the roleof re setin yourimplementation®]

Exercise4-4. Designand implement a library for creati@SV-formatteddata. The
simplestversion might taken array of stringsand print them withquotesandcom-
mas. A more sophisticatedrersion mightusea format string analogous forintf.
Look at ChapteB for some suggestioms notation.CJ

4.4 A C++Implementation

In this sectiorwe will write a C++ versiorof theCSV library to address somef
theremaining limitation®f the C version. Thiswill entail some changes ttoespeci
fication, of which the mostimportant isthat the functionswill handleC++ strings
instead of C character arrays. Timse ofC++ stringswill automatically resolveome
of the storage managemessuessincethelibrary functionswill managehe memory
for us. In particular.thefield routineswill returnstringsthatcan be modified by the
caller,amoreflexible desigrnthan thepreviousversion.

A classCsv definesthe public face while neatlyhidingthe variablesandfunctions
of theimplementation. Since a class object containshalktate for an instanceje
can instantiate multipl€sv variables; each is independerfitthe othersso multiple
CSV inputstreams can operatethe sametime.

100 INTERFACES CHAPTER 4

class Csv { // read and parse comma-separated values
// sample input: "LU",86.25,"11/4/1998","2:19PM",+4.0625

public:
Csv(istream& fin = cin, string sep=",") :
fin(fin), fieldsep(sep) {}

int getline(string&);
string getfield(int n);
int getnfield() const { return nfield; }

private:
istream& fin; // input file pointer
string line; // input line
vector<string> field; // field strings
int nfield; // number of fields
string fieldsep; // separator characters
int split();

int endofline(char) ;

int advplain(const string& line, string& fld, int);

int advquoted(const string& line, string& fld, int);
[I

Default parameters fothe constructor are definesb a defaultCsv object will read
from the standard input stream and use the normal field separator; eithbe can
replacedvith explicit values.

To manage stringghe class useghe standardC++ string andvector classes
ratherthan C-style strings. There iao non-existent state for atring: ""empty"
means onlythatthe length is zeroandthere isno equivalenbf NULL, sowe can't use
thatasanendof file signal. ThusCsv: :getline returns the input line through an
argumentby reference, reservinthe function value itselffor end of file anderror
reports.

// getline: get one line, grow as needed
int Csv: :getline(string& str)

{
char c;
for (line = ""; fin.get(c) && !endofline(c);)
line += c;
splitQ;
str = line;
return !fin. eof(Q;
|

The+=operatoiis overloadedo append a character to a string.

Minor changes are neediedendofline. Again,we haveto readtheinput a char
acter at a time, since nopé the standard input routines can hanthe varietyof
inputs.

SECTION 4.4 A C++ IMPLEMENTATION

// endofline: check for and consume \r, \n, \r\n, or EOF
int Csv: :endofline(char ¢)

{
int eol;
eol = (c=="\r’ || c=="\n");
if (c =="\r") {
fin.get(c);
iF(fin.eofQ && c != '\n’)
fin.putback(c); // read too far
}
return eol;
1

Hereis thenewversionof split:

// split: splitline into fields
int Csv: :split(Q
{

string fld;

int i, j;

nfield = O;

if (line.length() == 0)

return O;
i=0;

do {
if i< line.lengthQ) && line[i] = """)
j = advquoted(line, fld. ++i); // skip quote
else
j = advplain(line, fld, 1);
if (nfield >= field.size(Q))
field.push_back(fld);
else
field[nfield] = fld;
nfield++;
i=3+1;
} while (j < 1ine.length(Q));

return nfield;

}

101

Sincestrcspn doesn'twork on C++ strings,we mustchangeboth split and
advquoted. The new version of advquoted usesthe C++ standard function
find - first- of to locate the next occurrencef a separator characteThe call
s.find_first- of(fieldsep, j) searcheshe string s for the first instanceof any
charactein fieldsep thatoccursator afterposition j. If it fails to find aninstance,
it returnsanindex beyondhe endof thestring, some mustbring it backwithin range.
The innerfor loop that follows appends charactenp to the separatoto the field

beingaccumulatedh f1d.

102 INTERFACES CHAPTER 4

// advquoted: quoted field; return index of next separator
int Csv: :advquoted(const string& s, string& fld, int i)

{ .
int j;
fid = "
for (3 =1; J < s.lengthQ; j++) {
if (s[j] ==""" && s[++j] '=""") {
int k = s.find_first_of(fieldsep, j);
if (k > s.TengthQ)) // no separator found
k = s.length();
for (k -= j; k-- > 0;)
fld += s[j++];
break:
}
fld += s[j];
} -
return j;
}

The function find-first- of is also used in a new function advplain, which
advances over a plain unquoted field. Again, this change is required because C string
functions like strcspn cannot be applied to C++ strings, which are an entirely differ-
ent data type.

// advplain: unquoted field; return index of next separator
int Csv::advplain(const string& s, string& fld, int i)

{
int j;
j = s.find_first- of(fieldsep. 1); // look for separator
if (3 > s.length()) // none found
j = s.lengthQ);
fld = string(s, i, j-i);
return j;
}

As before, Csv::getfield is trivial, while Csv: :getnfield is so short that it is
implemented in the class definition.

// getfield: return n-th field
string Csv: :getfield(int n)

{
if (n <0 [] n>=nfield)
return "";
else
return field[n];
}

Our test program is a simple variant of the earlier one:

SECTION 4.5 INTERFACE PRINCIPLES 103

// Csvtestmain: test Csv class
int main(void)
{
string line;
Csv csv;
while (csv.getline(line) = 0) {
cout << "line = ‘" << line <<"’\n";
for (int i = 0; i < csv.getnfield(); i++)
cout << "field[" << i << "] = *"
<< ¢sv.getfield(i) << "’\n";
}
return 0;

}

The usageis differentthan with the C version. though only ira minor way.
Dependingon thecompiler,the C++ version isanywhere from40 percentto four
times slowetthanthe C version ona largeinput file of 30,000lines with about25
fields perline. Aswe sawwhencomparing versionsf markov, thisvariability is a
reflectionon library maturity. The C++ sourcerogramis about20 percenshorter.

Exercise 4-5. Enhancethe C++ implementationto overload subscriptingwith
operato(] sothatfieldscanbeaccessedscsv[i]. O

Exercise 46. Write a Java versiomwf the CSV library, thencomparethe threemple-
mentations foclarity. robustnessand speed

Exercise4-7. Repackage the C+sersionof theCSv codeasanSTL iterator.O

Exercise4-8. The C++versionpermits multiple independe@bvinstances to operate
concurrentlywithout interfering,a benefitof encapsulatingll the statein an object
that canbe instantiated multiple timesModify the C versionto achievethe same
effectby replacing the global data structuxeith structureghat areallocatedandini-
tialized by anexplicit csvnew functiond

4.5 Interface Principles

In the previous sections/e wereworkingout thedetailsof an interface. which is
the detailedboundary betweecodethat providesa serviceandcodethatusest. An
interface definesvhat somebody of code doedor its users, how th&unctionsand
perhaps data members daeusedby the resof the program. OuLSV interfacepro-
videsthreefunctions—reada line, getafield, and returrthe numberof fields—which
aretheonly operationshatcanbeperformed.

To prosperan interfacemustbe well suitedfor its task—simple,general. regular,
predictablerobust—and it must adapt gracefullyasits usersand its implementation

104 INTERFACES CHAPTER 4

change.Goodinterfaces follow a setdf principles. These amotindependertr even
consistentput they help us describewhat happens acroghe boundary betwedwo
piecesf software.

Hide implementationdetails.The implementatiobehind thenterface shouldbe hid-
den fromthe restof the program soit can be changed without affectingr breaking
anything. There are several terms fiois kind of organizing principle; information
hiding, encapsulation, abstraction, modularizatang thelike all refer to related
ideas. An interfaceshould hidedetailsof theimplementatiorthatare irrelevanto the
client (user)f theinterface. Details that are invisitdanbechanged without affect
ing theclient, perhapdo extendthe interface makeit moreefficient,or even replace
its implementation altogether.

The basic librarie®f most programming languages provide familiar examples,
though notalways especially welllesigned ones. The C standdf@ library is
amongthe best knowna coupleof dozenfunctionsthatopen, close, readyrite, and
otherwisemanipulatefiles. The implementatioof file I/0 is hidden behing data
type FILE*, whoseproperties onenight beable to see (becautieey are often spelled
outin <stdio.h>) butshouldnotexploit.

If theheader file doenot includetheactual structure declaration, juke nameof
thestructure, this issometimes calledn opaquetype,since its properties aret visk
ble and all operationstake place through a pointer to whatever real object lurks
behind.

Avoid global variables; wherever possible it is betbepassreferenceso all data
through function arguments.

We stronglyrecommendigainst publicly visible data all forms; it is toohardto
maintainconsistencyf valuesif userscanchange variables atill. Function inter
facesmake iteasierto enforce accessiles, but thigrinciple is oftenviolated. The
predefined/O streams likestdin andstdoutare almost always definedelements
of a globalarrayof FILE structures:

extern FILE __iob[_NFILE];
#definestdin (& __iob[0])
#define stdout (&__iob[1])
#define stderr (&__iob[2])

This makes themplementation completely visiblé;alsomeanghatone can't assign
tostdin,stdoutor stderr eventhoughtheylook like variables. The peculisame
__iob uses theANSI C conventiorof two leading underscores for privatamesthat
must be visible, which makes the namdsss likely to conflictwith hamesin a pro-
gram.

Classesn C++ andJava are bettenechanismdor hiding information;they are
central tothe properuse ofthoselanguages. The container claseéthe C++ Stan
dard Templaté.ibrary thatwe usedin Chapter3 carry this even further: aside from
some performance guaranted¢Sere is noinformation about implementatiomnd
library creators canseany mechanism they like.

SECTION 4.5 INTERFACE PRINCIPLES 105

Choosea small orthogonal sebf primitives.An interfaceshould provide asmuch
functionality as necessabut no moreand thefunctions shoulchot overlap exces
sively in their capabilities. Having lotsf functionsmay make thelibrary easietto
use—whateverone needs is there for the taking. But a large interfabariderto
write andmaintain andsheer sizenay makeit hardto learnand useswell. **Appli-
cation program interfactsor APls are sometimeso huge that no mortal can be
expected to mastérem.

In the interesof convenience, some interfaces provide multipggsof doingthe
same thing, a tendendyat shouldberesisted. The C standdv® library provides at
least four different functions thatll write a single character to an outptream:

charc;

putc(c, fp);

fputc(c, fp);

fprintf(fp, "%c", c);

fwrite(&c, sizeof(char), 1, fp);

If the streamis stdout,there are severahore possibilities. These are convenient,
butnotall are necessary.

Narrow interfaces are the preferredto wide ones, at leasiintil one has strong
evidence that more functions areeded.Do one thinganddoit well. Don't addto
aninterface just becauseit's possittielo soanddon'tfix the interfacavhen it's the
implementation that'droken. Forinstance, rathethanhavingmemcpyfor speedand
memmovefor safety it would be betterto haveone function thatvasalways safeand
fastwhenit couldbe.

Don't reach behind theuser's back. A library function shoulchot write secret files
and variablesor change global datand it should be circumspect aboutnodifying

datain its caller. Thestrtok function fails severabf thesecriteria. Itis a bit of a

surprisethatstrtokwrites null bytes intdahe middleof its input string. Itauseof the

null pointerasa signal topick up whereit left off last time implies secret dateld

between calls, a likely source biigs, andt precludes concurrentsesof the func-

tion. A better desigrwould provide a single functiothat tokenizesan input string.
For similarreasonspur secondC versioncan't be usedor two input streamssee
Exercised-8.

The useof one interfaceshould not demandnother one just fathe convenience
of theinterface designesr implementer. Insteadnake theinterface sekcontained,
or failing that, be explicit aboutwhatexternal services are required. Otherwjsei
placea maintenancéurdenon theclient. An obvious example ithe painof manag
ing hugelists of header filesn C and C++ source; header files cée thousandsf
lineslongandinclude dozensf other headers.

Do the same thing the sameay everywhereConsistencyand regularity arempor-
tant. Related things shoulbde achievedby related meansThe basicstr.. . func
tionsin the C library are easy tssewithout documentation becaugey all behave
aboutthe samedata flows fronright to left, the same directiomsin anassignment

106 INTERFACES CHAPTER 4

statementand theyall returnthe resulting string.On the otherhand,in the C Stan
dardl/O library it is hardto predict theorder of arguments to functions. Sofeve
theFILE* argument first, some last; othdravevarious orders for sizend humbeof
elements. The algorithms f8L containers preseatvery uniform interfacesoit is
easy tgoredicthow to use arunfamiliar function.

External consistency, behaving like something else, isaagmal. For example,
the mem. .. functionsweredesigned after thetr. .. functionsin C, but borrowed
their style. The standaifD functionsfread andfwrit e would be easier taemem
ber if they lookedlike the read andwrite functionsthey were basedn. Unix
commandline options are introducday a minussign, but a given option lettermay
meancompletely differenthings.evenbetweerrelated programs.

If wildcards likethe = in «_exe areall expandedy acommand interpreter, behav
ior is uniform. If theyare expandetly individual programs, neuiniform behavior is
likely. Web browsers taka single mouseclick to follow a link, but other applica
tions taketwo clicks to starta programor follow a link; the result isthat manypeople
automatically clickwice regardless.

These principles are easier to follawsomeenvironmentghan others,but they
still stand. Forinstanceit's hardto hideimplementation detail® C. buta goodpro-
grammemill not exploit them, because tto somakes theletails parof theinterface
and violatesthe principleof informationhiding. Commentsn header files, names
with special formgsuchas__iob), andsoon arewaysof encouragingood behavior
whenit can't beenforced.

No matter whatthere isa limit to how well we can doin designing an interface.
Even the beshterfacef today may eventuallybecome thgroblemsof tomorrow.
butgood design capushtomorrow offa while longer.

4.6 Resource Management

Oneof the mostdifficult problemsin designingthe interface fora library (or a
classor a package) ido manageresourceshatare ownedby the library or thatare
sharedby the library and those who callit. The most obvious suchresource is
memory—who is responsible for allocatingnd freeing storage?—but other shared
resources include open filasdthe stateof variableswhosevalues areof common
interest. Roughlythe issues fall intothe categoriesof initialization, maintaining
state, sharingndcopying,andcleaningup.

The prototypef our CSV packageusedstatic initializatiorto setthe initial values
for pointers.counts,and the like. But this choiceis limiting since it prevents restart
ing theroutinesin their initial state once onef the functions haseencalled. An
alternativeis to provide an initialization functionthat setsall internal values to the
correct initialvalues. This permits restartindyut relieson theuserto call it explic-
itly. Thereset functionin the secondversioncould be madepublic for this purpose.

SECTION 4.6 RESOURCE MANAGEMENT 107

In C++ and Java, constructorare usedto initialize datamembersof classes.
Properly defined constructors ensuhat all data membersare initializedand that
thereis noway to createan uninitialized class objectA groupof constructorgan
support various kindsf initializers; we might provideCsv with one constructothat
takesafile nameandanother that takemninput stream.

What about copieof informationmanagedy a library. suchasthe inputlines
and fields? OurC csvgetli ne programprovides direct access tbe input strings
(line andfields) by returning pointers téhem. This unrestricted access has several
drawbacks. It's possibfer the useto overwritememoryso as taenderotherinfor-
mationinvalid; for example, an expression like

strcpy(csvfield(1l), csvfield(2));

couldfail in a variety of ways, mostlikely by overwritingthe beginningof field 2 if

field 2 is longerthanfield 1. The userof the library mustmakea copy of any infor-
mation to be preservedbeyond the nextcall to csvgetline;in the following

sequence. the pointenight well be invalid at the endif the secondcsvgetline
causes reallocatiorof its line buffer.

char =p;

csvgethline(fin);
p = csvfield(1);
csvgetline(fin);
/a p could be invalid here =/

The C++version issafer becaugbestrings are copiethat canbechanged awill.

Java uses references to refeobjects,that is, anyentity otherthanoneof the
basictypes likei nt. Thisis moreefficientthan makingacopy,butonecanbefooled
into thinking thata references a copy; we had a buglike thatin anearly versionof
our Javanarkov programandthis issueis a perennial sourcef bugsinvolving strings
in C. Clone methods provideway to makeacopywhennecessary.

The other sideof initialization or construction is finalizatioror destruction—
cleaning upandrecovering resourceshensomeentity is no longemeeded.This is
particularly importanfor memory sincea program thafails to recoveunusedmem
ory will eventuallyrun out. Much modem software is embarrassingkpneto this
fault. Relatedproblems occuwhenopenfiles are tobe closed:if datais beingbuf-
fered,the buffer may haveto beflushed (and itsnemoryreclaimed). For standaf@l
library functions. flushing happens automaticalligen the programterminatesor-
mally, but it must otherwisebe programmed. The& and C++ standard function
atexit providesa way to get control just befora programterminates normally;
interface implementersan use thifacility to schedule cleanup.

Freearesourcan the samelayer that allocatedt. Oneway to control resourcallo-
cationandreclamationis to have thesame library, package, or interfabatallocates

108 INTERFACES CHAPTER 4

aresourceberesponsible for freeing. Anotherway of saying this is thathe alloca
tion stateof a resourceshouldnotchangeacmsgheinterface. OurCsV librariesread
data from fileghat havealreadybeenopenedsotheyleavethemopenwhen theyare
done. The calleof the libraryneeddo closethefiles.

C++ constructorand destructors help enforce thisle. Whena class instance
goesout of scopeor is explicitly destroyedthe destructoris called; it can flush
buffers, recovememory, resevaluesanddo whatever else is necessary. Java does
not providean equivalent mechanismAlthoughit is possibldo defineafinalization
methodfor a class, therés no assuranctatit will run atall, let alone aa particular
time,socleanup actions cannbéguaranteetb occur, althouglit is often reasonable
to assuméhey will.

Java doegprovide considerable helpvith memory management because it has
built-in garbagecollection.As a programruns, it allocatesew objects. There is no
way to deallocatethem explicitly, but the rurtime system keepsrack of which
objectsarestill in useand whichare not, andperiodically returnsinusedones tathe
availablememory pool.

There arevarietyof techniques for garbage collection. Some schéwmep track
of the numberof usesof each object, itseference countandfree an objectvhenits
reference count goes to zero. This techniquebeawsedexplicitly in C andC++ to
manageshared objects. Other algorithms periodically follavail from the alloca
tion poolto all referencedbjects. Objectshatare found thisvay are stillin use;
objectsthatarenot referredo by anyother object araotin use and¢canbereclaimed.

The existencef automatic garbage collection doest meanthat there are no
memorymanagement issuds a design. We still haveto determinewhetherinter-
faces return referencesshared objectsr copiesof them,andthis affectsthe entire
program. Noiis garbage collectiofiee—thereis overhead tamaintaininformation
andto reclaim unused memory, andllectionmay happemt unpredictablémes.

All of these problems beconmeore complicatedif a library is to be usedin an
environmentwhere more thaone threawf control canbe executing its routines at
thesame timeasin a multi-threadedlava program.

To avoid problems, it isnecessaryto write codethat is reentrant,which means
thatit works regardles®f the numberof simultaneous executions. Reentrant code
will avoidglobal variables, statiocal variablesandany other variable that coulde
modified whileanotherthreadis usingit. The key to good multi-thread design i
separate the componeststhey sharenothingexcept throughvell-definedinterfaces.
Libraries that inadvertently expose variables to sharing destteymodel. (In a
multi-thread progranstrtokis adisasterasare other functionm the C library that
storevaluesin internal static memory.) If variablesmight be shared they must be
protectedoy somekind of locking mechanisnto ensurghatonly one thread a time
accesseshem. Classes ara big help here because thgyrovide a focus for dis
cussing sharingndlocking models. Synchronizedethodsn Java provida way for
onethreadto lock an entire claser instanceof aclass against simultaneous modifica

SECTION 4.7 ABORT. RETRY. FAIL? 109

tion by some other thread; synchronized blopksmitonly onethreadat a time to
executea sectionof code.

Multi-threading adds significant complexity to programming issretis toobig
atopic for us to discudn detailhere.

4.7 Abort, Retry, Fail?

In the previous chapterae usedfunctions likeeprintf and estrdup to handle
errorsby displayinga message before terminating execution. For examplen t f
behaves liképrintf(stderr, ...), butexitsthe programwith anerror status after
reporting the error.lt usesthe <stdarg.h> headeland thevfprintf library routine
to print the arguments representégt the ... in the prototype. Thestdarg library
must be initialized by a call to va_start and terminatedby va_end. We will use
moreof this interfacen Chapte©.

#include <stdarg.h>
#include <string. h>
#include <errno.h>

/* eprintf: print error message and exit as
void eprintf(char =fmt, ...)

va_list args;
fflush(stdout);
if (progname() !'= NULL)
fprintf(stderr, "%s: ", progname());
va_start(args, fmt);
viprintf(stderr, fmt, args) ;
va_end(args);
if (fmt[0] '= ’\O’ && fmt[strien(fmt)-1] == ’:’)
fprintf(stderr, " %s", strerror(errno));
fprintf(stderr, "\n™);
exit(2); /a conventional value for failed execution =/

}

If the format argument endwith a colon, eprintf calls the standardC function
strerror, which returnsa string containingany additional system error information
thatmight be available. We alsowroteweprintf, similarto eprintf, thatdisplaysa
warningbut doesnot exit. Theprintf-like interfaceis convenient forbuilding up
stringsthat mightbe printedor displayedn a dialogbox.

Similarly, estrdup tries tomakea copy of a string,andexits with a messagévia
eprintf) if it runsoutof memory:

110 INTERFACES CHAPTER 4

/* estrdup: duplicate a string, report i f error =/
char =estrdup(char =xs)

{
char at;
t = (char %) malloc(strien(s)+1);
if (t == NULL)
eprintf("estrdup(\"%.20s\") failed:™, s);
strcpy(t, s);
return t;
3

andemalloc providesasimilar service for callomalloc:

/+ emalloc: malloc and report i f error =/
void =emalloc(size_t n)

{
void »p;
p = malloc(n);
if (p == NULL)
eprintf("malloc of %u bytes failed:", n);
return p;
3

A matchingheader file calleé printf. h declares these functions:

/+ eprintf.h: error wrapper functions =/

extern void eprintf(char =, ...);
extern void weprintf(char =, ...);
extern char xestrdup(char a);

extern void x»emalloc(size_t);

extern void nerealloc(void a, size-t);
extern char «progname(void);

extern void setprogname (char a);

This header is includeid any file that calls one ofthe error functions.Eacherror
messagalso includeshe nameof the progranif it hasbeensetby the caller: thids
setand retrievedy thetrivial functionssetprogname and progname, declaredn the
header fileanddefinedin thesource filewith eprintf:

static char =name = NULL; /= program name for messages */

/% setprogname: set stored name of program =/
void setprogname(char astr)

{
3

/* progname: return stored name of program =/
char =progname(void)

name = estrdup(str);

return name;

SECTION 4.7 ABORT. RETRY. FAIL? 111

Typical usagdooks likethis:

int main(int argc, char =argv[])

{
setprogname("markov");
f.; fopen(argv[il, "r"):
if (f = NULL)
eprintf("can't open%s:”, argv[il);
}

which printsoutput likethis:
markov: can't openpsalm.txt: No suchfile or directory

We find these wrapper functions convenientdar own programming, sincéhey
unify error handlingandtheir very existence encourages us to catch erir@teadof
ignoring them. There is nothing special about our desigonwvever.and you might
prefer somevariantfor your own programs.

Supposethat ratherthan writing functions for ourown use,we are creatinga
library for otherdo usein their programsWhatshoulda functionin thatlibrary doif
an unrecoverable error occurs? The functimasvroteearlierin this chapter display
a message andie. This is acceptable behavior foany programs, especially small
standalone toolsand applications. For othgprograms.however, quittings wrong
sinceit preventgherest ofthe progranfrom attempting any recovery; for instanae,
word processomustrecover from errorsoit does not los¢he documenthatyou are
typing. In some situationa library routine should natven displayp messagesince
the programmay be runningin anenvironment whera messagewill interferewith
displayed datar disappeawithouta trace. A usefulalternative igo record diagnos
tic outputin anexplicit **log file,"" whereit canbe monitoredindependently.

Detecterrors at a low level, handle themat a high level. As a general principle,
errors shoulde detected ahslow a levelaspossibleputhandled at high level. In
most casedhecaller should determingowto handleanerror,not thecallee. Library
routinescan helpin this by failing gracefully; that reasonirigd usto returnNULL for
anonexistent field rathethanaborting. Similarlycsvgetli nereturnsNULL no mat
terhow manytimesit is called aftethefirst endof file.

Appropriatereturnvalues arenot always obviousaswe sawin theearlier discus
sion aboutwhatcsvgetl neshouldreturn. We want toreturnas much useful infor
mationaspossibleputin aform thatis easyfor the restof the progranto use.In C,
C++ and Java, that means returning somethérsghe function value. and perhaps
other values through reference (pointer) argumeltany library functionsrely on
the ability to distinguishnormal values fromerror values. Inputfunctions like
getchar returna charfor valid data,and somenon-char valuelike EOF for end of
file orerror.

112 INTERFACES CHAPTER 4

This mechanisndoesn'twork if thefunction'slegal returnvalues takaip all pos
sible values.For examplea mathematical function likéog canreturnany floating
point number.In IEEE floating point, a specialvalue calledNaN (**not a numbet")
indicates an errandcanbereturnedasanerror signal.

Some languagesuchasPerl and Tcl, providea low-costway to group twoor
morevalues intoa mple. In suchlanguagesa function valueandanyerror state can
beeasilyreturnedtogether. TheC++ STL providesa pair datatype thatcan alsdbe
usedin this way.

It is desirable to distinguistariousexceptionalalueslike end of file and error
statedf possible, rathethanlumpingthemtogether intaa single value.f the values
can't readilybe separated, another optianto returna single** exception® value and
provideanother functiothatreturnsmoredetail abouthelast error.

This is the approachusedin Unix andin the C standard librarywhere manysys
tem calls and library functions returrrd but alsoseta global variablecalled errno
that encodeghe specific error;strerrorreturnsa string associatedith the error
number. Onour systemthis program:

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <math.h>

/a errno main: testerrno =/
int main(void)

{
double f;
errno = 0; /= clear errorstate =/
f = Tog(-1.23);
printf("%f %d %s\n", f, errno, strerror(errno));
return 0;
}

prints
nan0x10000000 33 Domain error

As shown,errno mustbe cleared firstthenif an error occurserrno will besettoa
non-zero value.

Use exceptionsonly for exceptional situationsSome languages provigxceptions
to catch unusuadituationsand recoverfrom them; theyprovide an alternate flowf

control when somethingbad happens.Exceptionsshould notbe usedfor handling
expectedeturnvalues. Readinffom afile will eventually producan end of file;

this shouldbe handledwith a returnvalue, notby anexception.

In Java, one writes

A S A s ST

SECTION 4.8 USER INTERFACES 113

String fname = "someFileName";
try {
FileInputStream in = new FileInputStream(fname);
int c;
while ((c = in.read()) !'= -1)
System.out.print((char) c);
in.close();

} catch (FileNotFoundException e) {
System.err.printin(fname + " not found");

} catch (IOException e) {
System.err.printIn("IOException: " + e);
e.printStackTrace();

}

The loop reads charactarstil end offile, an expected evetitat issighaledby a
return valueof -1.from read. If thefile can't be opened, that raisem exception,
however, rathethansettingthe input stream taw11 aswould be donein C or C++.
Finally,if some othel/O error happens thetry block, it is also exceptionadndit
is caughtby theI0Exception clause.

Exceptions are often overuseBecause thegistort the flowof control, they can
leadto convoluted constructiorthatare proneo bugs. It ishardlyexceptionato fail
to open a file; generating an exceptionthis case strikedus as overengineering.
Exceptions are best reserved farly unexpected events, suakfile systems filling
upor floating-point errors.

For C programsthe pair of functions setimp and longjmp provide amuch
lower-level serviceupon which an exceptionmechanisncan be builtput they are
sufficiently arcanghatwe won't go into themhere.

Whatabout recovergf resourcesvhenanerror occurs? Should a library attempt
a recoverywhensomething goesvrong? Notusually, but it might do a servidsy
making surethat it leaves informationn ascleanand harmless a statas possible.
Certainly unusedstorage shoultbe reclaimed.If variables mighbe still accessible,
they shouldbe set to sensibl@alues. A common sourcef bugsis trying to usea
pointer that points to freed storagé.errorhandling code sets pointerszero after
freeing whathey point to, thiswon't go undetected. Theset function inthe sec
ond versiorof theCSV library wasanattempt to address these issulsgyeneralaim
tokeepthelibrary usableafter an errohasoccurred.

4.8 User Interfaces

Thus farwe have talkednainly about interfaces among the componerfits pro
gram or between program8But thereis another important kindf interface between
aprogram andts human users.

Most of theexample programis this bookare textbased, so their user interfaces
tendto be straightforwardAs we discussedn the previous section, erroshouldbe

114 INTERFACES CHAPTER 4

detectedand reported,and recovernyattemptedwhereit makes sense. Error output
shouldincludeall available informatiormnd shouldbe as meaningfulas possible out
of context;adiagnostic shouldot say

estrdupfailed
whenit couldsay
markov: estrdup("Derrida™) failed: Memory 1imit reached

It costsnothingto add theextrainformationaswe did in estrdup,and itmay helpa
userto identify a problemor providevalid input.

Programs should displagformation aboutproper usagevhenan erroris made,
asshownin functions like

/+ usage: print usagemessage and exit =/
void usage (voi)

fprintf(stderr, "usage:%s [-d] [-n nwords]"
" [-s seed] [files ...J\n", progname());
exit(2) ;

The program naméentifiesthe sourceof the message. which especially important
if this is part of a larger process. If a programpresentsa messagehat just says
syntaxerrororestrdupfailed,the usemighthaveno ideawho saidit.

The text of error messages, prompts)d dialog boxes should state the fooh
valid input. Don't say that a parameter igoo large; reporthe valid rangeof values.
When possiblethe text shouldbe valid input itself, suchas the full command line
with the parametesetproperly. In addition to steeringusers toward properse,such
outputcan becapturedn afile or by a mousesweepand thenused torun somefur-
ther process. This pointsout aweaknes®f dialog boxes:their contentsare hardo
grab for lateuse.

One effectiveway to createa good user interface foinput is by designinga spe
cialized language for setting parameters, controlling actanm$so on;a good nota
tion can make a program easyto use while it helps organizean implementation.
Language-based interfaces aréhesubjeciof Chapte.

Defensive programminghat is, makingure that programis invulnerable tdad
input, isimportantbothfor protectingusersagainst themselvesdalsoas asecurity
mechanism.This s discussednorein Chapte6. which talks abouprogramtesting.

For most peoplegraphical interfaces amde user interface for their computers.
Graphicaluserinterfacesare a hugetopic, sowe will say onlya few things that are
germando this book. First, graphical interfaces ahardto create andnake* right"*
since their suitabilityand success depend stronglg humanbehaviorand expecta
tions. Second, aa practical matterif a system has userinterface there is usually
morecodeto handleuserinteractiorthan there isn whatever algorithms dihe work.

SECTION 4.8 USER INTERFACES 115

Nevertheless, familiar principlegpply to boththe external desigand the internal
implementatiorof user interface softwarel-rom the user's standpoint, style issues
like simplicity, clarity, regularity, uniformity, familiarityand restraintall contribute
to an interfacethat is easyto use;the absencef such propertiesusuallygoesalong
with unpleasandr awkward interfaces.

Uniformity and regularityare desirable. including consistargeof terms. units,
formats,layouts.fonts, colors, sizegndall theother optionghata graphical system
makes availableHow manydifferent Englishwordsare usedto exit froma program
or closea window? The choicesange from Abandoro control-Z, with at leasta
dozen betweenThis inconsistencis confusing toa nativespeakeiand bafflingfor
others.

Within graphicscode.interfaces are particularly important, sinthesesystemsre
large, complicatecand drivenby a very differentinput model tharscanningsequen
tial text. Objectorientedprogrammingexcels at graphicalserinterfaces, sincé
providesa way to encapsulatall the stateand behaviorsof windows,using inher
tanceto combine similaritiesin baseclasseswhile separating differences derived
classes.

Supplementary Reading

Althougha few of its technical details araow dated.The Mythical Man Month,
by Frederick P. Brooks, Jr. (AddisoiWesley,1975; Anniversary Edition995). is
delightful readingand contains insights about software developnikatareasvalu-
able today asvhenit wasoriginally published.

Almost every book on programminghassomethingusefulto say abouinterface
design. One practicélook based on hatdon experienceés Large-Scale C++ Soft
ware Design by JohnLakos (AddisorWesley,1996), which discussesiow to build
and manage trulyfargeC++ programs.David Hanson'sC Interfaces and Implemen-
tations (AddisonWesley. 1997} agood treatment fo€ programs.

Steve McConnell’s Rapid Development (Microsoft Press1996) isan excellent
descriptionof how to build softwarein teamswith an emphasi®n the role of proto-
typing.

There are several interestibgoks onthe designof graphicaluserinterfaceswith
a variety of different perspectivesWe suggesDesigningVisual Interfaces: Commu
nication Oriented Techniquesdy Kevin Mullet and Darrell Sano (PrenticeHall.
1995), Designingthe User Interface: Strategies folEffective Human-Computer Inter-
action by BenShneiderman (3rd edition. AddisaMesley,1997). About Face: The
Essentials of User Interface Designby Alan Cooper (IDG,1995). andJser Interfuce
Designby Harold Thimbleby (AddisorWesley,1990).

O

Debugging

bug.
b. A defectorfaultin a machine, plan, dhelike. orig.U.S.
1889Pall Mall Gaz. 11 Mar. 1/1 Mr. Edison,l wasinformed,had beenup the
two previous nights discovering bug' in his phonograph-an expressiorfor
solving a difficulty, andimplying thatsomeimaginaryinsecthassecreted itself
insideandis causing all the trouble.

Oxford English Dictionary. 2nd Edition

We have presented a lof codein the past four chaptersnd we've pretended
thatit all pretty much worked théirst time. Naturallythis wasn't true; therevere
plenty of bugs. The word "*bud* didn't originatewith programmersbut it is cer
tainly one of the mostcommon termsn computing. Why should softwareébe so
hard?

Onereason ighat the complexityof a programis related tdahe numbeof ways
that its componentsaninteractandsoftware is fullof componentsindinteractions.
Many techniques attempo reduce theonnectiondbetweencomponents so there are
fewer piecesto interact; examples include information hiding, abstractiod intef
faces,and thelanguage features that supptitem. There are also techniques for
ensuringtheintegrity of a softwaredesign—programproofs, modeling, requirements
analysis, formalserification—but noneof these has yet chang#te way softwareis
built; they havebeensuccessfubnly on smallproblems. Thereality is that therewill
alwaysbeerrorsthatwe find by testingandeliminateby debugging.

Good programmers knothat theyspendas much timedebuggingaswriting so
they try to learn fromtheir mistakes Every bugyou find canteachyou how to pre-
vent a similabugfrom happeninggainor to recognizét if it does.

Debuggingis hard anccan take longand unpredictable amounts time, so the
goal isto avoid havingto do muchof it. Techniqueshathelp reduce debugginigme
include good design, good stylbpundary condition tests, assertioraxd sanity
checksin the code, defensive programming, wedksigned interfaces, limited global
data, and checkingols. An ounceof preventiorreally is wortha poundf cure.

117

118 DEBUGGING CHAPTER 5

What istherole of language?A majorforcein theevolutionof programmindan-
guageshasbeenthe attempt to prevent bugs through language features. Some fea
turesmakeclasse®f errors lesdikely: rangecheckingon subscripts. restrictgubint-
ersor no pointersat all, garbage collection, string data typgsed UO. and strong
type-checking.On theopposite sidef thecoin, some features are prone to error, like
goto statements, global variables, unrestricted poingerd automatictype conver
sions. Programmers shoukhow the potentially riskybitsof their languages and take
extra carewhen usingthem. They should also enablall compiler checksand heed
the warnings.

Eachlanguage feature that prevents sopneblem hasa costof its own. If a
higherlevel language makes tsemplebugsdisappear automaticallthe priceis that
it makest easierto create highetevelbugs. No language preventgu from making
mistakes.

Even thoughwe wish it wereotherwisea majority of programming times spent
testingand debugging.In this chapter,we'll discusshow to makeyour debugging
timeasshort and productivaspossiblewe'll comebackto testingh Chaptel6.

5.1 Debuggers

Compilers formajor languagesisuallycomewith sophisticated debuggers, often
packagedispartof a development environmettiatintegrates creatioandediting of
source code, compilation, executiamd debuggingall in a single systemDebug-
gers include graphical interfaces for stepping throagitogramone statemenbr
function ata time, stoppingat particular lines omwhen a specific condition occurs.
Theyalso provide facilities for formattiranddisplayingthe valuesof variables.

A debuggercan be invoked directlywhen a problemis known to exist. Some
debuggersakeover automaticallyvhen somethingunexpectedlygoeswrong during
programexecution. It'susually easyto find out where the program waesxecuting
whenit died, examine the sequerafdunctionsthat wereactive (thestacktrace)and
display the valuesf localandglobal variables. Thamuchinformationmay be suffi-
cientto identify a bug. If not, breakpoints and steppimgakeit possible tore-run a
failing programone stepat atime to find the firsplace wheresomething goewrong.

In theright environmenandin the handsf an experiencedser,agood debugger
can makelebugging effective and efficierit,notexactlypainless. Witlsuch power
ful tools at one's disposalhy would anyone ever debugithout them? Why do we
needa wholechapteron debugging?

There areseveralgood reasons, some objectaradsomebasedon personaéxpe
rience. Some languages outsitie mainstream have rebuggeior provide only
rudimentarydebugging capabilities. Debuggers are systiependent, Ss§you mav
not haveaccesgo the familiar debugger from one systaminenyou work on another.
Some programs aret handledvell by debuggersmulti-processor multi-thread pre
grams.operating systemsnddistributed systemsustoften be debuggedy lower-

SECTION5.2 GOOD CLUES, EASY BUGS 119

level approacheslin suchsituations, you'ren your own. withoutmuch help besides
print statements angbur ownexperiencendability to reasorabout code.

As a personal choiceye tendnot tousedebuggerbeyondgettinga stacktraceor
the valueof a variableor two. Onereason is thait is easyto get lostin detailsof
complicated data structurasdcontrol flow; wefind stepping through programless
productivethanthinking hardeandadding output statemerdadself-checking code
al critical places. Clicking over statements takes lorlgan scanningthe outputof
judiciously-placed displayslt takes less timé decidewhereto put printstatements
thanto single-step tothecritical sectiorof code,evenassumingve know where that
is. Moreimportant, debugging statements steith the program; debugger sessions
are transient.

Blind probingwith a debuggeis notlikely to beproductive. Itis morehelpful to
usethe debugger to discovehe stateof the programwhenit fails, thenthink about
how the failure could have happenedebuggers carpe arcaneand difficult pro-
grams,and especially for beginnensay provide more confusionthan help. If you
askthe wrongquestionthey will probably giveyou ananswerputyou may not know
it's misleading.

A debuggeran be of enormousralue. howeverandyou should certainlynclude
onein your debugging toolkit; it is likelyto bethe firstthing you turnto. Butif you
don't havea debuggerpr if you're stuck onan especiallyhard problem, the teeh
niquesn this chaptemwill helpyou todebug effectivelyandefficiently anyway. They
should make your use of your debuggemmore productiveas well, since they are
largely concernedith howto reasorabout errorand probableauses.

5.2 Good Clues, Easy Bugs

Oops! Somethings badly wrong. My programcrashed, oprinted nonsense, or
seemdo berunningforever. Now what?

Beginners hava tendency toblame thecompiler,the library, or anything other
thantheirown code. Experienced programmaersuld love to do the same, buthey
know that. realistically,mostproblems are theown fault.

Fortunately,most bugsare simpleand can befound with simple techniques.
Examine the evidenda the erroneous output artdy to inferhow it could havebeen
produced.Look atanydebugging output befothecrash;if possible gea stacktrace
from a debugger.Now you know somethingpf whathappenedand where. Pauseo
reflect. How could that happen®Reason back from thetateof the crashedporogram
to determinavhatcould have caused this.

Debugging involves backwards reasoniliig solving murder mysteries. Some
thing impossible occurredind the onlysolid information is that it really did occur.
Sowe mustthink backwardgrom the resultto discoverthe reasonsOncewe havea
full explanationwe'll know whatto fix and,alongthe way, likely discovera few
other thingave hadn't expected.

120 DEBUGGING CHAPTER 5

Look for familiar patterns. Ask yourself whether this ia familiar pattern.**I've

seenthatbeforé® is oftenthe beginningof understanding, cgven the whol@answer.
Common bugéave distinctive signatures:orinstance, novic€ programmersften
write

? int n;
? scanf("%d", n);

insteadf

int n;
scanf ("%d", &n) :
and this typicallycauses an attempi access odbf-boundsmemory whera line of
input is read.Peoplevho teachC recognizehe symptom instantly.
Mismatched typeandconversiondn printf andscanf areanendless sourcef
easybugs:

? intn = 1;
7 double d = PI;
? printf("%d %f\n", d, n);

The signaturef this erroris sometimeshe appearancef preposterous valueBuge
integersor improbablylarge orsmallfloating-point values. OmSunSPARC,the out
put fromthis programis a hugenumber and an astronomical one (folded to fit):

1074340347 268156158598852001534108794260233396350\
1936585971793218047714963795307788611480564140\
0796821289594743537151163524101175474084764156\
422771408323839623430144.000000

Another common errois using%f insteadof %1f to reada double with scanf.
Some compilers catch such mistakewverifying thatthe typesof scanf andprintf
argumentamatch their format strings;if all warnings are enabledior the printf
above theGNU compilergcc reportgthat

x.c:9: warning: int format, double arg (arg 2)
x.C:9: warning: double format, different type arg (arg 3)

Failing to initialize a local variable gives rise to another distinctive error. The
resultis oftenanextremely large valuehe garbage left over from whatever previous
value was storedin the samememory location. Some compilerwill warn you,
thoughyou may haveto enablehe compiletime check, andhey can nevetatch all
cases.Memory returnedy allocators likemalloc, real 1oc, andnew is likely to be
garbage todyesure to initializet.

Examinethe mostrecent changeWhat waghelast change?f you're changingonly
onething at atime as aprogramevolvesthe bug modlikely is eitherin the newcode
or hasbeenexposedy it. Looking carefullyat recentchanges helps to localizke
problem. If the bug appearsn the new versionand not in the old. the new code is

SECTION5.2 GOOD CLUES, EASY BUGS 121

partof the problem.This meansghatyou should preservatleastthe previousversion
of the program,which youbelieve tobe correct,sothat you cancomparebehaviors.
It also meanshatyou shouldkeeprecordsof changesnade and bugéxed, soyou

don't haveto rediscover thisvital information whileyou're tryingto fix a bug.

Source code control systegsdotherhistory mechanisms areelpful here.

Don't makethe same mistake twicéfter youfix a bugask whetheyou might have
made thesame mistake somewhere else. This happtnakof usjust daysbefore
beginningto write this chapter. Thegrogram was quick prototype for a colleague,
andincluded some boilerplate for optional arguments:

7 for (i =1; i < argc; i++) {

? it (argv[il1[0] != "-') /= options finished */
? break;

7 switch (argv[i]I11) {

7 case 'o’: /= output filename =*/
? outname = argv[i];

7 break;

? case 'f':

? from = atoi (argv[i]);

? break;

? case 't':

? to = atoi (argv[il);

? break;

?

Shortly after our colleague tried e reportedthat the outputfile hamealwayshad
the prefix-o attached tdt. This wasembarrassing but easyrepair;thecode should
have read

outname = &argv[iJ[2];

Sothatwasfixed upandshipped offand backcame another report thifite program
failed to handlean argument like-f123 properly:the converted numerigalue was
alwayszero. This isthesame errorthe nexicasen theswitch shoulchave read

from = atoi (&argv[il[2]);

Becausethe author was still in a hurry, he failed to notice that the sameblunder
occurred twicemoreandit took anotheroundbefore allof thefundamentally identi
cal errors were fixed.

Easycode carhavebugsif its familiarity causes us to leibwn our guard.Even
whencode issosimpleyou could writeit in yoursleep, don't fall asleeghile writing
it.

Debug it now,not later. Beingin too muchof a hurry canhurtin other situationss
well. Don't ignore a crasWwhenit happenstrackit downright away, sincé may not
happeragain untilit's toolate. A famous example occurrenh the Mars Pathfinder
mission. After theflawless landingn July 1997thespacecraft's computdendedo

122 DEBUGGING CHAPTER 5

resetonce aday or so,and theengineersvere baffled. Oncethey tracked down the
problem, they realizedthat they hadseen thaproblem before.During pre-launch

tests the resetmdoccurred, but had been ignored because the engineers were work
ing onunrelatedoroblems. So they wereforced to dealvith the problemlater when

the machinavastensof millions of miles away and mudharderto fix.

Geta stacktrace. Althoughdebuggersan probeunning programs, ona their most
commonuses ido examinethe stateof a programafter death. The source limeim:
berof thefailure, oftenpartof a stack tracds the mostuseful single piecef debug
ging information; improbable@aluesof arguments are alsoldg clue (zero pointers,
integersthat are hugewhen theyshouldbe small, or negativewhen they shouldbe
positive, character stringlsataren't alphabetic).

Here's a typical examplbasedn thediscussiorof sortingin Chapter2. To sort
anarrayof integerswe should callgsort with theinteger comparison functiciemp:

int arr[N];
gsort(arr, N, sizeof(arr[0]), icmp);

but suppose itis inadvertentlypassedthe nameof the string comparison function
scmp instead:

? int arr[N];
? gsort(arr, N, sizeof(arr [01), scmp);

A compiler can't detedhe mismatclof types here, so disaster awai¥henwe run
the programit crashedy attempting to access ditegal memorylocation. Running
thedbx debugger produces a stackcelike this, edited tdit:

0 stramp(Oxla2, Ox1c?2) ["strcomp.s":31]

1 scmp(pl = 0x10001048, p2 = 0x1000105c) ["badgs.c":13]

2 qst(0x10001048, 0x10001074, Ox400b20, Ox4) ["gsort.c ©:147]
3 qsort(0x10001048, Oxlc2, 0x4, O0x400b20) ["gsort.c":63]

4 main() ["badgs .c":45]

5 __dstart Q ["crtlti nit.s":13]

This sayghat the programdied in strcmp; by inspectionthe twopointerspassedo
strcmp aremuch toosmall, a cleasign of trouble. The stackracegives a trailof
line numbers where each functiorascalled. Linel3in our test filebadgs .c is the
call

return strcmp(vl, v2);

whichidentifiesthefailing call and points towardkeerror.
A debuggecanalsobe usedto displayvaluesof localor global variables thawill
give additional information abouthat went wrong.

Readbeforetyping. One effective butinderappreciatedlebugging techniquis to
readthe codevery carefullyand thinkabout itfor a while without makingchanges.
There's gowerful urgeto getto the keyboard angtartmodifying theprogram tcsee

SECTION 5.3 NO CLUES, HARD BUGS 123

if thebuggoesaway. Butchances arthatyou don't know what'sreally broken and
will changethe wrongthing, perhaps breaking something elgelisting of the criti-
cal partof program orpaper can giva different perspectivéhan whatyou seeon the
screen, and encouraggs to take more timdor reflection. Don'tmakelistings asa
matterof routine, though.Printing a completeprogram wastes tresince it'shardto
seethe structurewhenit's spread acrogmany pagesand the listing will be obsolete
the momentyou start editing again.

Takea breakfor a while; sometimesvhatyou seein the source codés what you
meantratherthan whatyou wrote, andan intervalaway fromit can soften youmis-
conceptionandhelpthecodespeakfor itself whenyou return.

Resistthe urgeto start typing; thinkings a worthwhile alternative.

Explain your codeto someone elseAnother effective techniquis to explainyour
code tosomcone else. Thiswill often causeyou to explainthe bugto yourself.
Sometimesit takesno more thana few sentences, followelly an embarrassed
""Nevermind, | see what'swrong. Sorry to botheryou:* This works remarkably
well; youcaneven useon-programmeraslisteners. Oneniversitycomputer center
kepta teddybear neathe helpdesk. Studentwith mysterioudugswererequiredto
explainthemto thebear beforehey couldspeakto a humancounselor.

5.3 No Clues, Hard Bugs

"I haven't goaiclue. What onearthis goingon?* If you really haven'tanyidea
whatcouldbewrong,life gets tougher.

Make the bug reproducibleThe first stepis to make sure you can makethe bug
appearon demand. It's frustratingp chase dowra bug that doesn'thappenevery
time. Spend some time constructimgput and parameter settingbat reliably cause
the problem,then wrapup the recipeso it can be run with a button pushor a few
keystrokes.If it's a hardbug, you'll be makingit happeroverandover asyou track
downthe problemsoyou'll saveyourselftime by makingit easyto reproduce.

If the bug can't be madeto happerevery time try to understandvhy not. Does
some sebf conditionsmakeit happenmore often than others? Even if you can't
makeit happen everyime. if you candecreasehe timespentwaiting for it. you'll
find it faster.

If a programprovides debugging output, enalitle Simulation programbke the
Markov chain programin Chapter3 should includean option that producesiebug
ging informationsuchasthe seedof the randomnumber generator so that outpan
be reproduced; another option should allfev setting the seed. Many programs
includesuchoptionsandit is a goodideato include similar facilitiesn yourown pro-
grams.

124 DEBUGGING CHAPTER5

Divideand conquerCantheinput that causes th@ogram tdail be madesmalleror
morefocused?Narrow downthe possibilitiedy creatingthe smallest inputvherethe
bug still showsup. Whatchangesnaketheerror go away?Try to find crucial test
cases that focusn theerror. Eachtestcaseshouldaim at a definitive outcomehat
confirms or deniea specific hypothesiabout whats wrong.

Proceedy binarysearch.Throw away halfthe input andeeif the outputs still
wrong; if not, go back to the previousstateand discard theotherhalf of the input.
Thesamebinarysearch processnbeusedon the programtextitself: eliminatesome
partof the programthat shoulchaveno relationshipto the bugandseeif the bugis
still there. An editorwith undo ishelpfulin reducingbig testcases andlig programs
without losing thebug.

Studythe numerologyof failures. Sometimes patternin the numerologyf failing
examples givea cluethatfocuseghe searchWe found somespellingmistakesn a
newly written sectionof this book,whereoccasional letterBad simply disappeared.
This was mystifying. The text had beencreatedby cuttingand pastindrom another
file. soit seemegpossible that somethingaswrongwith thecut or paste commands
in thetext editor. But where tostartlooking for the problem¥or clueswe lookedat
thedataand noticedhatthe missing characteeemediniformly distributed through
the text. We measuredhe intervalsand found thatthe distancebetweendropped
characterswas always 1023 bytesa suspiciouslynonrandom value. A search
through theeditor sourceode for numbersear 1024ound a coupleof candidates.
Oneof thosewasin newcode, so we examined thafirst, and thebug waseasyto
spot, a classicoff-by-one errorwherea null byte overwrotethe lastcharacterin a
1024byte buffer.

Studying the patterrsf numbers relatetb thefailure pointedus right at the bug.
Elapsedime? A coupleof minutesof mystification,five minutesof looking at the
datato discover the patterof missingcharactersa minute tosearcHor likely places
to fix, andanother minutéo identify and eliminate théug. This one would have
beenhopelesdo find with a debuggersinceit involved two multiprocess programs,
drivenby mouseclicks. communicatinghrougha file system.

Displayoutputto localize your searchif you don't understandavhat the programis
doing, adding statements display moreinformationcan be the easiestmostcost
effective way to find out. Put themin to verify yourunderstandingr refine your
ideasof what'swrong. Forexample, display'can't getheré' if you think it's not
possibleto reacha certain pointn the codethenif you seethat messagenovethe
output statementsack towardsthe start tofigure outwherethingsfirst beginto go
wrong. Or show'got heré' messages going forwarth) find the last placewhere
thingsseemto be working. Each messagouldbe distinct soyou can tellwhich
one you're looking at.

Display messagéds a compactfixed format so they are easyto scanby eye or
with programs like the pattemmatchingtool grep. (A greplike programis invalu-
able for searchingext. Chapter9 includesa simple implementation.)f you're dis-

SECTION 5.3 NO CLUES, HARD BUGS 125

playing the valuef a variable, formait the sameway eachtime. In C andC++,
show pointers as hexadecimalmberswith %x or %p; this will help you to see
whethertwo pointers have the same vatuarerelated. Learnto readpointervalues
andrecognize likely and unlikelynes, likezero, negative numbemxjd numbersand
small numbers.Familiarity with theform of addressewill payoff whenyou're using
adebuggertoo.

If outputis potentially voluminoust might be sufficientto print singleletter out
puts likeA, B, ..., asacompact displagf wherethe programwent.

Write self-checking code.lf moreinformationis neededyou can write your own
checkfunctionto testaconditiondump relevant variables. and alibe program:

/* check: test condition, print and die as
void check(char =s)

{
if (varl > var2) {
printf("%s: varl %d var2 %d\n", s, varl, var2);
fflush(stdout); /* make sure all output is out as
abort() ; /+* signal abnormal termination =/
1

We wrotecheck tocall abort, astandardC library functionthatcausegprogramexe
cutionto beterminated abnormally for analysigth adebugger.In adifferentappli
cation,you mightwantcheck to carryon after printing.

Next,addcalls tocheck wherevettheymight be usefulin yourcode:

check("before suspect");
/a ... suspect code ... as
check("after suspect") ;

After a bug isfixed, don'tthrow check away. Leaveit in the sourcecommented
out or controlledby a debugging optionso that it can be turnedon againwhenthe
nextdifficult problemappears.

For harder problemssheck might evolveto do verification and display of data
structures.This approaclean begeneralizedo routines that perform ongoing consis
tencycheck=of data structureandotherinformation. In a programwith intricate data
structuresit's agood idedao write these checkbeforeproblemshappenas compe
nentsof the progranpropersotheycan be turnedn whentrouble starts. Don'tise
them only whendebugging; leavéheminstalledduringall stagesof programdevet
opment. If they're not expensiveit might be wiseto leavethem always enabled.
Large programs like telephone switching systems often dagagificant amourf
codeto ""audit* subsystems thahonitor informationand equipmentand reportor
evenfix problemsf theyoccur.

Write a log file. Another tactids to write a log file containinga fixed-format stream
of debugging outputWhena crash occurdhelog recordsvhathappenegust before
the crash.Webserversaandothernetworkprogramsnaintainextensivdogsof traffic

126 DEBUGGING

CHAPTER 5

sotheycan monitor themselvesd their clients;this fragment (edited to fit) comes
from alocal system:

[Sun Dec 27 16:19:24 19981

HTTPd: access to /usr/local/httpd/cgi-bin/test.html
failed for ml.cs.bell-labs.com,
reason : client denied by server (CGI non-executabl e)
from http://m2.cs.bell-Tabs.com/cgi-bin/test.pl

Be sureto flush /O bufferssothefinal log recordsappeaiin thelog file. Output
functions likeprintf normally buffertheiroutputto print it efficiently; abnormal ter
mination may discardthis buffered output.In C, acall to ffl ush guaranteethatall
outputis written beforethe programdies; there are analogotissh functions for
output streami C++and Java. Oif youcanafford the overheadou can avoid the
flushing problemaltogethetby usingunbuffered/O for log files. The standard func
tionssetbuf andsetvbuf control buffering;setbuf (fp, NULL) turnsoff buffering
on the streanfp. The standard error strearfssderr, cerr, System. err) are nor
mally unbufferecby default.

Draw a picture. Sometimes pictureare more effective than text for testingand
debugging. Pictureare especiallyhelpful for understanding data structures,vees
sawin Chapter2, andof coursewhenwriting graphics softwaregut they carbe used
for all kinds of programs. Scatterplots display misplaced valuasore effectively
than columnsof numbers. A histogramof data reveals anomaliés exam grades,
randomnumbersbucketsizesin allocatorsand hashablesand thdike.

If youdon't understand what's happening inside your progrgrannotatinghe
data structurewiith statisticsand plotting the result. The following graphsplot. for
theC markov programin Chapter 3hashchain length®n thex axisandthe number
of elementsn chainsof thatlength onthey axis. The input dat&s our standard test,
the Book of Psalms (42,68%/0rds,22,482 prefixes). The firstvo graphs are for the
good hashmultipliersof 31 and37 andthe third isfor the awfulmultiplier of 128. In
thefirst two casesno chain idongerthan15or 16 elementsand mostelements are
chainsof length5 or6. Inthethird, the distributions broaderthe longest chain has
187 elementgndthere are thousands of elementshains longethan20.

5000
4000 . °

-.® L] ¢
30’00"' [] L]

. L]
2000 - .

L]
-
1000 . . s,
° e . e . %0 00
U ?. T ..- T ?‘ 1 .'.- T T I #-1..'.“.
0 10 20 30 0 10 20 30 0 10 20 30
Multiplier 31 Multiplier 37 Multiplier 128

SECTION 5.4 LAST RESORTS 127

Use toolsMake good usef thefacilities of the environmentwhereyou aredebug
ging. Forexamplea file comparisorprogramlike diff compareshe outputsfrom
successfuandfailed debugging runso you canfocuson what haschanged.if your
debuggingutput islong, usegrep to searcht or aneditorto examine it. Resighe
temptationto senddebugging outputo a printer: computerscan voluminousutput
betterthanpeople do. Use shedtriptsand other tool$o automate the processing of
the outpufrom debugging runs.

Write trivial programs to tedtypothesesr confirm your understandingf how
somethingvorks. Forinstanceis it valid tofreeaNULL pointer?

int main(voi d)
{
free(NULL);
return 0;

3

Source code contrpkograms likeRCS keep trackof versionsof codesoyou can
see what has changedand revertto previousversions torestorea known state.
Besides indicatingvhathas changed recentiiiey canalsoidentify sectionf code
that havea long historyaof frequent modification; thesare often a good placdor
bugs tdurk.

Keeprecords.If thesearcHor a buggoeson for anylengthof time, you will begin to
lose track of what you tried and what you learned. If you record yourtestsand
results,you areless likelyto overlook somethingr to think hat you havechecked
some possibilitywhenyou haven't. The aaf writing will help you remember the
problem the nextime somethingimilarcomesup, andwill also servevhenyou're
explaining itto someonelse.

5.4 Last Resorts

What doyou do if noneof this advice helps? Thisay be thetime to usea good
debuggeto stepthroughthe programlf your mentaimodelof how somethingvorks
is justplain wrong, soyou're lookingin the wrong placeentirely, orlooking in the
right placebut not seeingthe problem.a debuggeforcesyou to think differently.
These'" mental model* bugsare among the harde#b find; the mechanical aid is
invaluable.

Sometimesthe misconceptioris simple: incorrect operator precedencethe
wrongoperatorpr indentation thaloesn'tmatchthe actual structurey a scopeerror
wherea local namehidesa global nameor a global nameintrudesinto a local scope.
Forexample, programmediten forget that& and | have lowerprecedencéhan==
and!=. They write
? if (x & 1 == 0)

?

128 DEBUGGING CHAPTERS5

andcan'tfigure outwhy this is always false. Occasionalyyslip of the fingercon
vertsasingle= into two or vice versa:

? while ((c == getchar()) !'= EOP
? ifc ="’'\n")
? break;

Or extracodeis left behindduring editing:

? for (3 =0; ¥ <n; i+4);
? af[i++] = 0;

Or hastytypingcreates problem:

? switch (© {

? case '<’:

? mode = LESS;

? break;

? case '>':

? mode = GREATER,
? break;

? defualt:

7 mode = EQUAL;
? break;

a

}

Sometimeghe errorinvolves argumentis the wrongorderin a situationwhere
type-checkingcan'thelp, like writing

? memset(p, n, 0); /* storen0’s inp %/
insteacdbf
memset(p, 0, n); /* storen0’sinp %/

Sometimes something chandeshind yourback—global or shared variableare
modified andyou don't realize that sometherroutinecantouch them.

Sometimegour algorithmor datastructureéhasafatal flawandyou just can't see
it. While preparing materiabn linked lists, we wrote a packageof list functionsto
createnewelementslink them tothefront or backof lists,andso on;thesefunctions
appeain Chapter2. Of coursewe wrotea test progranto makesure everythingvas
correct. The firstfew testsworkedbut thenone failed spectacularlyin essencehis
wasthe testing program:

while (scanf ("%s %d", name, &value) !'= EOF {
p = newitem(name, value) ;
Tistl = addfront(listl, p);
list2 = addend(1ist2, p);

1

for (p = listl; p !'= NULL;, p = p->next)
printf ("%s %d\n", p->name, p->value);

N Y W) W

SECTION 5.4 LAST RESORTS 129

It wassurprisinglydifficult to seethatthefirst loop was putting the sameo& p on
bothlists sothe pointersverehopelessly scramblday thetime we got to printing.

It's tough tofind this kind of bug, becausgour brain takegou right around the
mistake. Thus debugger is help,sinceit forcesyou to go in a different direction,
to follow whatthe programis doing, not whatyou think it is doing. Oftenthe under
lying problem issomethingvrongwith the structureof the wholeprogramand tosee
the erroyou needto return to youstartingassumptions.

Notice, by the way, thatin the list example therrorwasin the testcode,which
madethe bug that muchharderto find. It is frustratingly easyo waste timechasing
bugsthataren'tthere, becaugbe test prograns wrong,or by testing thenrongver
sionof the progranpr by failing to updateor recompile before testing.

If you can'tfind abugafter considerablesork, takea break. Cleayour mind,do
somethingelse.Talk to a friend andaskfor help. The answemightappeaoutof the
blue,butif not,you won't bestuckin thesamerut in the nextdebugging session.

Oncein along while, theproblem reallyis the compileror alibrary or theoperat
ing systenor eventhe hardware, especiallysomething changed the environment
justbeforea bugappeared.You shouldneverstartby blamingoneof these put when
everythingelse hasbeeneliminated,that mightbe all that's left. We oncehad to
movea largetext-formatting program from itoriginal Unix home toa PC. The pro-
gram compiled withoutincident,but behavedn an extremelyodd way: it dropped
roughly every second charactef its input. Our first thoughtwas that thismustbe
some propertyof using 16bit integers insteadf 32-bit, or perhaps sometrange
byte-order problem.But by printing out thecharacterseenby the main loop, we
finally trackedit downto anerrorin the standard headde ctype .h providedby the
compilervendor. It implemented spri nt asafunctionmacro:

2 #define isprint(c) ((c) >= 040 &% (c) < 0177)
andthemaininputloop wasbasically

? while (isprint(c = getchar()))
? e

Eachtimean inputcharactewasblank (octal40,apoorway to write * ') or greater,
which was mostof the time,getchar wascalleda secondtime because theacro
evaluated its argument twicand thefirst input character disappeared forevéhe
original codewasnot as clean ai should havébeen—there'stoo muchin the loop
condition—but the vendor's headfie wasinexcusablywrong.

Onecanstill find instancesf this problem todaythis macrocomedrom adiffer-
entvendor'scurrentheadefiles:

? #define __iscsym(c) (isalnum(c) || ((©) == "_"))

Memory"*leaks”—the failure to reclaimmemorythatis no longerin use—are a
significant sourcef erraticbehavior. Anotheproblem isforgettingto close files,
until the tableof openfiles is full andthe program cannatpen any more. Programs

130 DEBUGGING CHAPTER 5

with leakstendto fail mysteriously becaugbeyrun out of some resourdritthe spe
cific failure can'tbereproduced.

Occasionallyhardware itseljoesbad. The tloatingpointflaw in the 1994 Pen-
tium processothat caused certain computations gooduce wronganswerswas a
highly publicizedandcostly bugin the designof the hardwarebut once ithad been
identified, it was of course reproducible. Onef the strangestougs we ever saw
involved a calculator progranmlpng agoon a two-processor system. Sometintés
expression/2 would print 0.5 and sometimes #vould print some consistent but
utterly wrong valudike 0.7432;therewasno patterrasto whetheronegot the right
answeror the wrong one. Theproblem was eventuallytracedto a failure of the
floating-pointunit in oneof the processorsAs the calculatoprogramwas randomly
executesbn one processar the other, answergereeither correcor nonsense.

Many yearsagowe useda machine whoseternal temperature coulibestimated
from the numberof low-orderbits it got wrongin floating-point calculations. Onef
the circuit cardswasloose;asthe machine got warmethecard tilted furtheiout of
its socketand moralatabits weredisconnected frorthe backplane.

5.5 Non-reproducible Bugs

Bugsthatwon't stand still aréhe mostdifficult to dealwith, and usually the@rob-
lem isn't as obviousas failing hardware. The very fact that thebehavioris non
deterministids itselfinformation, however; imeans that therroris notlikely to be a
flaw in your algorithmbut that in someway your codeis usinginformation that
changes eactime the program runs.

Check whetheall variableshavebeeninitialized; you maybe picking up a ran
dom value from whatevevaspreviously storedh the samememorylocation. Local
variablesf functionsand memornybtained from allocators atee mostikely cul-
prits in C and C++. Setall variables toknown values;if there'sa randomnumber
seed that is normallset fromthe time of day, forceit to aconstant, likezero.

If thebugchanges behaviar even disappeamshendebuggingcodeis addedit
may be a memoryallocationerror—somewherg/ou have writteroutsideof allocated
memory, and the additioof debugging code changes the layafustorage enough to
changetheeffectof thebug. Mostoutput functionsfrom pri ntf to dialogwindows,
allocatememorythemselves, further muddying the waters.

If thecrash site seems far away from anything that couldrbag,the mostlikely
problem isoverwritingmemoryby storing intoa memory location thasn't used until
much later. Sometimeghis isa dangling pointeproblem, where pointer toa local
variableis inadvertentlyreturnedrom afunction,thenused. Returning the addresé
alocal variablds arecipefor delayed disaster:

SECTION 5.6 DEBUGGING TOOLS 131

char smsg(int n, char =s)
char buf[100];

?
?
?
?
? sprintf(buf, "error %d: %s\n", n, S);
? return buf;

0

? I

By the time thepointerreturnedoy msg is usedjt no longerpointsto meaningfulstor
age. You mustallocate storageith malloc. useastaticarray, orrequirethecaller
to provide the space.

Usinga dynamically allocatedalueafterit hasbeenfreedhassimilar symptoms.
We mentionedhisin Chaptel2 whenwe wrotef reeall. This codds wrong:

2 for (p = listp; p != NULL; p = p->next)
? free(p);

Oncememory habeenfreed,it mustnot be usedsinceits contentamay have changed
andthereis noguarantee thai->nextstill pointsto theright place.

In some implementatiortf malloc andfree. freeingan item twicecorruptsthe
internaldatastructureshut doesn'tcause troublentil muchlater, whena subsequent
call slips on the mess madearlier. Some allocatorsomewith debugging options
thatcan be setto checkthe consistencygf thearenaat eachcall; turn themon if you
havea nonrdeterministidoug. Failingthat,you can write youown allocator that does
someof its own consistencyxheckingor logsall calls for separat@nalysis. An allo-
cator thatdoesn'thave torun fastis easyto write, sothis strategys feasiblewhenthe
situationis dire. Therearealso excellentommercial productthat checkmemory
management arechtcherrorsand leaks: writing youown malloc andfre e cangive
you someof their benefitéf you don't haveaccesso them.

When a program worksor one person butfails for another, somethingiust
dependn theexternal environmerdf the program. Thignight includefiles readby
the program,file permissions, environment variables, segpath for commands,
defaultsor startup files. It's hard to be a consultanfor thesesituationssinceyou
have tdbecomeheotherpersonto duplicatehe environmerf the broken program.

Exercisés-1. Write a versionof malloc andfre e that can be usedfor debugging
storagemanagemenproblems. Onepproachis to checkthe entire workspaceon
eachcall of malloc andfree;anotheiis to write logging information thatan be pro-
cessedy another program. Eitheray, add marken® the beginningandendof each
allocatedblock to detect overrunateitherend.l

5.6 Debugging Tools

Debuggeraren't the only tools that helgind bugs. A variety of programscan
help us wadethrough voluminous outpub select importanbits. find anomaliesor

132 DEBUGGING CHAPTERS

rearrange dat make iteasierto see what's goingn. Many of theseprograms are
partof the standartbolkit; somearewritten to heldfind a particularbugor to analyze
aspecificprogram.

In this sectionve will describesimpleprogramcalledstrings thatis especially
useful forlooking atfiles thatare mostly nonprintingcharactersuch agxecutables
or the mysterioudbinary formats favoredsy someword processors.There is often
valuable informatiomiddenwithin, like the texbf adocumentor errormessages and
undocumentedptionsor thenamesf files anddirectories, othe namesf functions
aprogram migheall.

We alsofind stri ngs helpful for locating textin otherbinaryfiles. Image files
often containASCIl strings that identify thgorogramthat created them, and com
pressediles and archives (such azp files) may containfile names;strings will
find these too.

Unix systems providanimplementatiorof strings already. althougit's alittle
differentfrom this one. It recognizeshenits inputis a program angxaminesnly
thetext and data segments, ignoring slymboltable. Its -a optionforces itto read
thewnholefile.

In effect,strings extractsthe ASCII textfrom abinaryfile sothe textcan beread
or processedby other programslf an error messagearries no identificationjt may
not be evidentwhat program producedt, let alonewhy. In that case,searching
through likelydirectorieswith acommandike

% strings =.exe #.d11 | grep 'mystery message'

mightlocatethe producer.
Thestrings functionreadsafile andprintsall runsof at leastMINLEN = 6 print-
able characters.

/a strings: extract printable strings from stream =/
void strings(char *name, FILE =fin)
{

int c, 13

char buf[BUFSIZ] ;

do { /# once for each string =/

for (i = 0; (c = getc(fin)) '= EOF,) {
if (tisprint(c))

break;
buf[i++] = c;
if (i >= BUFSI2)
break;

3
if (i »>= MINLEN) /« print if long enough =/
printf("%s:%.xs\n", name, i, buf);
} while (c '= EOF);

SECTIONS5.6 DEBUGGING TOOLS 133

Theprintf formatstring%.=s takes the string lengtinom the nextargument(i),
since the stringpouf) is not null-terminated.

The dewhile loop findsandthenprintseachstring, terminatingat EOF. Checking
for endof file at the bottomallowsthegetc andstringloopsto sharea termination
conditionandlets a singleprintf handle endf string,endof file. and string too
long.

A standaredssue outer loopvith a testat thetop, or a singlegetc loop with a
morecomplex bodywould require duplicatindgheprintf. This function started life
thatway, butit hadabugin theprintf statementWefixed thatin oneplacebut for-
got to fix two others. ("'Did | makethe same mistake somewhere élge?t that
point,it becameelear that thgprogram needet be rewrittensotherewasless duph
cated codethatled to the dewhile.

The mainroutineof strings callsthestrings functionfor eachof its argument
files:

/% strings main: find printable strings in files a/
int main(int argc, char =argv[])
{

int i;

FILE afin;

setprogname("strings");
if (argc =
eprintf ("usage: strings filenames") ;
else {
for (i =1; i < argc; i++) {
if ((fin = fopen(argv[il, "rb")) == NULL)
weprintf(“"can’t open %s:", argv[i]);
else {
strings(argv[i], fin);
fclose(fin);

}
}

return 0;

You might besurprised thattrings doesn'treadits standard input nofiles are
named.Originally it did. To explainwhy it doesn'thow, we needto tell adebugging
story.

The obvioustest case fostrings is to run the programon itself. This worked
fine on Unix. but under Windows 95 the command

C:\> strings <strings.exe

producecdexactlyfive linesof output:

134 DEBUGGING CHAPTER 5

IThis program cannot be run in DOS mode
‘.rdata
@ .data
.idata
.reloc

Thefirst line looks like an error messagend we wastedsometime before realizing
it's actuallya string inthe program,andthe outputis correct.at leastasfarasit goes.
It's not unknownto have a debuggingsession derailecdby misunderstanding the
sourceof amessage.

But thereshould be more output. Whereis it? Lateone night, the light finally
dawned. (*‘I've seen thabefore!") Thisis aportability problem thats describedin
moredetail in Chapter8. We had originally written the prograno readonly from its
standard input usingetchar. On Windows. howevergetchar returnseor whenit
encounters particular byte(0Ox1A or controkZ) in text modeinput andthis was caus
ing the earlytermination.

This is absolutelylegal behavior, butnot what we were expecting giveour Unix
background. The solution is to open thefile in binary mode using the mode"rb".
But stdi n is alreadyopenandthereis no standardway to changets mode. (Fune
tions like fdopen or setmode could be usedbut theyare not partof the C standard.)
Ultimately wefacea set of unpalatable alternatives: fordbe userto provide a file
namesoit works properlyon Windows but is unconventionabn Unix; silently pro
duce wrong answeri§ a Windows userattemptsto read fromstandardnput; or use
conditionalcompilationto makethe behavioradaptto different systems, at the price
of reduced portability.We chose thdirst optionsothesameprogramworks thesame
way everywhere.

Exerciseb-2. The strings program prints strings witMINLEN or more characters,
which sometimesproducesmore outputthan is useful. Providestrings with an
optionalargumento definethe minimumstring length.0

Exercise5-3. Write vis, which copiesinput to output. except thatit displaysnon-
printable bytes like backspaces, control charactenslnon-ASCII charactersas\Xhh
wherehh is the hexadecimal representatiaf the non-printable byte. By contrast
with strings, vis is mostuseful forexamininginputs thatcontain onlya few non-
printing charactersd

Exercise5-4. What doessi s produceif theinpur is \X0A? How couldyou make the
outputof vis unambiguousd

Exercise5-5. Extendvis to processa sequence dfiles, fold longlinesat anydesired
column,andremovenon-printable characters entirelyWhat otherfeaturesmight be
consistentwith therole of the program1d

SECTION 57 OTHER PEOPLE'S BUGS 135

5.7 Other People's Bugs

Realistically, most programmerdo not have the fun ofdevelopinga brand new
system from the groundp. Instead, theyspend much of theitime using, maintain
ing. modifyingandthus, inevitablydebuggingcodewritten by otherpeople.

When debuggingthers' code, everythinghat we havesaid abouthow to debug
your own codeapplies. Before starting, thougkipu mustfirst acquire someunder
standingof how the programis organizedandhow theoriginal programmershought
andwrote. Theterm usedn onevery largesoftwareprojectis " discovery’" which is
not a bad metaphor.The task isdiscovering whabn earthis going onin something
thatyou didn't write.

Thisis a place wherdgoolscan helgsignificantly. Textsearch programs likgrep
can find all the occurrence®f names. Crosseferencersgive some idea of the
program'sstructure. A display of the graphof function calls isvaluableif it isn't too
big. Steppingthrougha programa function callata time with adebuggercanreveal
the sequencef events. A revision historyof the programmay give someclues by
showingwhat has beerdoneto the programovertime. Frequentchangesareoftena
sign of codethatis poorly understoodr subjectto changingrequirementsandthus
potentially buggy.

Sometimesyou needto track down errorsin software youare not responsibleor
anddonot havethe sourceodefor. In thatcase, the task to identify andcharacter
ize the bugsufficiently well that you canreportit accurately.and at the sametime
perhapdind a""work-around" thatavoids theproblem.

If you think thatyou havefounda bugin someone else's programthefirst stepis
to makeabsolutelysureit is agenuinebug,soyou don't wastehe author'sime and
lose yourown credibility.

Whenyou find a compilerbug, make surehatthe erroris really in the compiler
andnotin yourown code. For exampleyhethera right shift operation fillswith zero
bits (logical shift)or propagates the sighit (arithmeticshift) is unspecifiedin C and
C++, sonovicessometimeghink it's an errorif a construct like

? i=-1;
? printf("%d\n", i >> 1);

yields an unexpected answer. But this a portability issue, because this statement
can legitimately behave differentlpn different systems.Try your test on multiple
systemsand besureyou understand whahappens; check thkanguage definitiorto
besure.

Make sure the bug isiew. Do you have the latest versiaf the program?ls
therea list of bugfixes? Most softwaregoesthroughmultiple releasesif you find a
bug in version4.0bl, it might well be fixed or replacedby a new one in version
4.04b2. In anycasefew programmers have much enthusiasmffeing bugsin any-
thing but the currentversionof a program.

136 DEBUGGING CHAPTER 5

Finally, put yourselfin the shoe®f the person who receives youeport. You
wantto providethe ownerwith asgood atestcase ayou canmanage.lt's not very
helpful if the bugcanbedemonstrated onlwith large inputspr an elaborate enviren
ment, or multiple supporting files. Strip the tedbwn to a minimal andself
contained case. Include other informattbat could possibly be relevant, like the
versionof the program itselfand ofthe compiler. operatingystem. and hardware.
For thebuggy versiorof i spri nt mentionedn Section5.4. we could providethis as
atestprogram:

/* test program for disprint bug =/
int main(voi d)

{
int c;
while (isprint(c = getchar()) || ¢ != EOF)
printf ("%c", c);
return 0;
3

Any line of printabletext will serveasa testcase, sincéhe outputwill contain only
half the input:

% echo 1234567890 | isprint —test
24680
%

The best bugeports arg¢he onesthat neednly a lineor two of input ona plain
vanilla systemto demonstrat¢he fault, and thatinclude afix. Send the kinaf bug
report you'd liketo receive yourself.

5.8 Summary

With theright attitude debugginganbefun, like solving a puzzldut whetherwe
enjoy it or not, debuggings an art thatve will practice regularly. Stillit would be
nice if bugsdidn't happensowe try to avoid themby writing codewell in the first
place. Well-written code has fewelbugsto beginwith andthosethat remairare eas
ier tofind.

Once abug hasbeenseen, the firsthing to do is to think hard abouthe cluesit
presents.How could it havecome about?s it something familiar? Was something
just changedh the programs there something special about thput datathat pre
vokedit? A few well-chosertest caseanda few print statements the codemay be
enough.

If therearen'tgood clues,hardthinking is still the bestfirst step, tobe followed
by systematic attempts twarrow downthe locationof the problem. One stefs cut-
ting downtheinputdata tomakea small inputthat fails; anotheis cuttingout code to
eliminate regionshatcan't berelated. It's possibl® insertchecking codethat gets

SECTION 5.8 summary 137

turned on only after thprogramhas executed some numéisteps, again toy to
localizethe problem.All of theseareinstance®f a general strategy, divigedcon
quer,whichis aseffectivein debuggingsit is in politicsandwar.

Use othemidsaswell. Explaining your code to someone else (even a teddy)
is wonderfully effective. Use a debugger to get a stack trace. Useo$dhazom
mercial toolghatcheck formemoryleaks, array bounds violations, suspect code, and
the like. Step through yoyrogram wherit has becomeclear that you havethe
wrongmentalpictureof howthecodeworks.

Know yourself, and the kindsf errorsyou make.Onceyou have foundandfixed
a bug, make surthat you eliminate other bugthat mightbe similar. Think about
whathappenedoyou can avoid makinghatkind of mistakeagain.

Supplementary Reading

Steve Maguire'sWing ~ Solid Code (Microsoft Press,1993) and Steve

McConnell’s CodeCompletgMicrosoft Press1993)both havemuchgood advicen
debugging.

Testing

In ordinary computational practice by hand or by deskmtichines, it
is the customto checkevery step of the computation and, whenan
error is found, to localize it by a backward processstarting from
the first point wherethe error is noted.

NorbertWiener,Cybernetics

Testingand debugging are often spokas asingle phrasebut they are not the
same thing.To oversimplify, debuggings what youdo whenyou know thata pro-
gram is broken.Testingis a determined. systematic attentptbreaka programthat
you think is working.

EdsgerDijkstra madethe famous observatiothat testing can demonstrate the
presencedf bugs,but nottheir absenceHis hopeis that programgan be madecor-
rect by constructionsothat thereareno errorsandthusno needfor testing. Though
this isa fine goal,it is not yet realistic for substantial programS.oin this chapter
we'll focuson how to testto find errors rapidly, efficientlyandeffectively.

Thinking aboufpotentialproblems agou codeis agood start. Systematic testing,
from easy tests to elaborate ones, helps erthat@rogramsbegin life workingcor-
rectly and remaincorrect aghey grow. Automationhelps to eliminatenanual pre
cesseandencourages extensitesting. And there areplenty of tricks of the trade
thatprogrammers have learned from experience.

Oneway to write bug-free codds to generatet by a program. If some program
ming taskis understoodowell that writingthecode seemmechanicalthenit should
be mechanized. A common case occumshen a program canbe generatedrom a
specificationih some specializelhnguage.For examplewe compilehigh-level lar
guages into assembly codee useregular expressions to specifgatternsof text; we
use notationdike SUM(A1:A50) to representoperations oven rangeof cells in a
spreadsheetin suchcasesif thegeneratoor translatois correctandif thespecifica
tion is correct,the resultingprogramwill becorrecttoo. Wewill coverthisrich topic

139

140 TESTING CHAPTER 6

in moredetail in Chapter9; in this chapter wewill talk briefly about waygo create
testsfrom compactspecifications.

6.1 Test as You Write the Code

Theearliera problemis found, thebetter. If you think systematically about what
you arewriting asyou writeit, you can verify simplepropertiesof the programasit is
being constructedwith theresult thatyour codewill havegonethroughoneroundof
testing beforet is evencompiled. Certainkinds of bugsnevercometo life.

Testcode atits boundaries.One techniqueis boundary condition testing: as each
small piece ofcodeis written—aloopor a conditional statemenfpr example—check
right thenthatthe condition branchesheright way or thatthe loopgoesthroughthe
proper numberof times. This processis calledboundary condition testingecause
you are probingat the natural boundaries within the programnddata,suchasnon
existentor emptyinput. asingleinputitem, anexactlyfull array,andsoon. Theidea
is that most bugeccurat boundaries.If a pieceof codeis going tofail, it will likely
fail ata boundary. Converselyif it works at its boundariesijt's likely to work else
wheretoo.

This fragment.modeledon fgets. reads charactersntil it finds a newline or fills
abuffer:

7 intigz

ki char s[MAX];

? for Ci= 0; (s[i] = getchar()) != '\n’ && i < MAX-1; ++1i)
v s[--i] = "\0’;

Imagine that you have justritten this loop. Now simulateit mentally asit readsa
line. Thefirst boundary taest isthesimplest:anemptyline. If you startwith aline
thatcontains onlya singlenewline, it's easyto seethatthe loop stop®n thefirst iter-
ation with i setto zero,sothe last linedecrementd to -1 andthus writesa null byte
into s[-1], which is before the beginningof the array. Boundarycondition testing
findsthe error.

If we rewritethe loopto usetheconventional idiom for fillingan array with input
charactersit lookslike this:

9 for (1 = 0; 1 < MAX-1; i++)

7 if ((s[i] = getchar()) == '\n’)
7 break;

? s[i]l = "\0’;

Repeatingtheoriginal boundarytest, it'seasy toverify thata line with justa newline
is handledcorrectly: i is zero, the first input characterbreaksout of the loop. and

SECTION 6.1 TEST AS YOU WRITE THE CODE 141

"\0” is storedin s[0]. Similar checkingfor inputsof oneand twocharactersfol-
lowed by anewline give usconfidencethat theloop worksnearthatboundary.

There are othelboundaryconditionsto check, though.If theinputcontainsalong
line or no newlines, thais protected bythe checkthati stayslessthan MAX-1. But
what if the input is empty,sothe firstcall to getchar returnseOF? We must check
for that:

2 for (i = 0; i < MAX-1; i++)

? ifT ((s[i] = getchar()) == "\n’ || s[i] == EOF)
7 break;

? s[i]l = ’'\0’;

Boundary conditiortestingcancatchlots of bugs, butot all of them. We will return
to thisexamplein Chapter8, where wewill showthatit still hasa portability bug.

The next stepis to checkinput at the other boundary,where thearray is nearly
full, exactly full, andoverfull, particularly if the newline arrives atthe sametime.
We won't write out the details here, butt's a good exercise. Thinking about the
boundariesraisesthe question ofwhat to do when the buffer fills beforea "\n’
occurs; thiggapin the specificationshouldbe resolved earlyandtesting boundaries
helpsto identify it.

Boundary condition checking is effective for finding off-by-one errors. With
practice,it becomes secondature,andmanytrivial bugsareeliminated before they
everhappen.

Test pre and postconditions.Another way to head off problems isto verify that
expectedr necessary properties hold before geandition)and aftefpostcondition)
some pieceof code executes. Making surethat input valuesare within rangeis a
commonexample oftestinga pre-condition. Thisfunction for computing the average
of n elementdn anarrayhasa problemif n is less tharorequalto zero:

7 double avg(double a[], int n)
? {

9 int i3

? double sum;

9

7 sum = 0.0;

? for (i=0; 1 <n; i++)
? sum += afil;

2 return sum / n;

? 3

Whatshouldavg doif n is zero? An array with noelements isa meaningful concept
althoughits averagevalue is not. Shouldavg let the systemcatch the division by
zero? Abort? Complain'? Quietly retusomeinnocuousvalue? Whaff n is nega
tive, which is nonsensical but not impossible®s suggestedn Chapter4, our prefer
encewould probablybeto returnO asthe averagd nisless tharorequalto zero:

return n <= 0 ?2 0.0 : sum/n;

142 TESTING CHAPTER 6

butthere'snosingleright answer.

The one guaranteadrong answeris to ignorethe problem. An article in the
November,1998Scientific American describesn incident aboardhe USS Yorktown,
a guidedmissile cruiser.A crew member mistakenly enteraderofor a datavalue,
which resultedin a division by zero,an errorthatcascade@ndeventually shutdown
the ship's propulsionsystem. TheYorktown wasdeadin the waterfor a coupleof
hoursbecausea programdidn't check fowalid input.

Use assertionsC and C++ providean assertion facilityin <asserth> thatencour
ages addingre- andpostcondition tests. Sincafailed assertion aborts the program,
theseare usually reservedfor situationswherea failure is really unexpectecéand
there's noway to recover. We might augment theode abovewith an assertion
before thdoop:

assert(n > 0);
If theassertions violated,it will causehe progranto abortwith a standardnessage:

Assertionfailed: n > 0, file avgtest.c, line 7
Abort(crash)

Assertions are particularhelpful for validating propertiesf interfacesbecause they
draw attention to inconsistencibstweencaller and callee and mayeven indicate
who's at fault. If the assertiorthat n is greaterthan zero failswhenthe function is
called,it pointsthefinger atthe caller rathethanat avg itself aghe source of trouble.
If aninterface changesut we forgetto fix someroutinethatdepend®n it, an asser
tion maycatch thamistakebeforeit causegeal trouble.

Program defensively.A useful techniques to add codeto handle’ can't happen
cases, situationsvhere it is not logically possible for something thappenbut
(becausef some failure elsewheré&)mightanyway. Adding testfor zeroor nega
tive array lengths tavg wasone example As another example programprocess
ing gradesmight expectthat therewould be no negativeor hugevaluesbut should
check anyway:

if (grade< 0 || grade> 100) /= can't happen=/

letter='2";
elseif (grade >= 90)

letter = 'A' ;
else

This is an exampleof defensiveprogramming: makingsurethat a programprotects
itself againstncorrectuseor illegal data. Null pointersout of rangesubscripts, divi
sion by zero,and other errors catbe detected early andarnedaboutor deflected.
Defensive programmingno pun intended)might well have caughthe zero-divide
problem on theyorktown.

SECTION 6.1 TEST AS YOU WRITE THE CODE 143

Check error returnsOne ofteroverlooked defensis to check the erroreturnsfrom
library functionsand system calls.Returnvaluesfrom input routinessuchasf read
andfscanf shouldalwaysbe checked for errorgsshouldanyfile opencall suchas
fopen. If areadoropen fails, computation cannmtoceedorrectly.

Checkingthe returrcode from output functions likiprintf or fwri t ewill catch
the errorthatresultsfrom trying to writea file whenthereis no spacdeft on thedisk.
It may be sufficientto check thereturn value fronfclose, which returnsECFif any
error occurred during any operati@mdzero otherwise.

fp = fopen(outfile, "w");
while (...) /= write output to outfile =/
fprintf(fp, ...);

if (fclose(fp) == EOF) { /= any errors? =/
/* some output error occurred«/
}

Output errorsanbeserious. If the file beingwritten isthe new versionof a precious
file, this checkwill saveyou from removing theold file if the newonewas notwrit-
tensuccessfully.

The effort of testing agou go is minimal and pays off handsomely. Thinking
about testingsyou write a programwill leadto better code, because thatlkenyou
know best whathecodeshould do.If insteadyou wait untilsomething breakypu
will probably havdorgottenhow the code works. Workingnderpressureyou will
needto figureit out again,which takes timeand thefixes will be less thorougland
morefragile because your refreshed understanidiligely to beincomplete.

Exercise6-1. Check out these examplastheir boundarieghenfix them asneces
saryaccordingo the principlesof stylein Chapterl andtheadvicein this chapter.

(a) Thisis supposedo compute factorials:

? int factorial(int n)
? {

? int fac;

? fac = 1;

? while (n--)

? fac a= n;

? return fac;

? }

(b) Thisis supposed tprint the charactersf astring oneper line:

? i=0;

2 do {

9 putchar(s[i++]);

9 putchar(’\n’);

7 } while (s[i] != ’\0");

144 TESTING CHAPTER 8

(c) Thisis meant to copy a string from source to destination:

dest[i] = src[i];

2 void strcpy(char zdest, char #src)

2

9 int mg

?

? for Ci= 0; src[i] != "\O0’; i++)
7

?

3
(d) Another string copywhich attemptdo copyn characters from to t:

void strncpy(char at, char as, int n)

7

?

? while (n > 0 & as != *\0') {

? *t = %53

? -

? St++;

? n--;

p }

L 3

(e) A numericalcomparison:

? if G >3

? printf("%d is greater than %d.\n", i, j);
? else

? printf("%d i s smaller than %d.\n", i, j):

(f) A character clag®st:

? ifc >='A" & c <= '2") {

? if (c <='L")

? cout << "first half of alphabet";
? else

? cout << "second half of alphabet";
? }

O

Exercise6-2. As we are writing thisbookin late 1998,the Year2000 problem looms
asperhaps thbiggest boundargondition problem ever.

(a) Whatdateswould you useto check whether a systagiikely to work in the year
2000? Supposinghat testsare expensiveto perform.in what order would you do
yourtests after trying Januaty 2000 itself?

(b) How would you testthe standard functiootime, whichreturnsa string represen
tationof the daten thisform:

Fri Dec 31 23:58:27 EST 1999\n\0

Supposeyour programcalls ctime. How would you write your code to defend
against a flawed implementation?

SECTION 62 SYSTEMATIC TESTING 145

(c) Describehow you would testa calendaprogramthat prints output like this:

January 2000
S MTu WTh F S

(d) What othertime boundariesan you think of in systems thayou use.and how
would you testto seewhethertheyarehandlectorrectly?

6.2 Systematic Testing

It's importantto testa program systematicallyo you know at eachstepwhatyou
aretesting andvhatresultsyou expect. You need tdeorderlysoyou don'toverlook
anything, ang/ou mustkeeprecordssoyou know how muchyou havedone.

Test incrementally Testingshouldgo handin hand withprogram constructionA
""big bang' whereone writesthe whole programthen testsit all at once,is much
harderand mordime-consuminghan anincremental approach. Wriggartof a pro-
gram,test it,addsomemorecode, testhat, andso on. If you havetwo packageshat
havebeenwritten andtestedindependentlytest that they work togetherwhen you
finally connect them.

For instancewhen weweretesting theCSV programsn Chapter. thefirst step
wasto write justenoughcodeto read thénput; this let us validate input processing.
Thenextstepwasto splitinput linesatcommas. Once thegartswereworking, we
movedon to fields with quotesandthengraduallyworkedup to testing everything.

Test simple parts firstThe incremental approaetisoappliesto how you testfea
tures. Testsshould focudirst on the simplestand mostcommonlyexecuted features
of aprogram;only whenthoseareworking properly should/ou moveon. Thisway,
ateachstageyou exposemore totesting and build confidence that basic mechanisms
areworking correctly. Easytests findtheeasy bugsEachtestdoesthe minimunto
ferretout thenext potential problem.Although eachbugis harderto triggerthanits
predecessoit, is not necessarily hardéo fix.

In thissection, we'litalk aboutwaysto chooseeffectivetestsandin whatorderto
apply them;in the nexttwo sectionsyve'll talk abouthow to mechanize therocess
sothatit canbe carried out efficiently. The first step, deastfor small programsr
individual functions,is an extensionof the boundarycondition testing thatwve
describedn the previous sectiorsystematitestingof small cases.

Supposene havea function that performbinary searchin an arrayof integers.
We wouldbeginwith these tests, arrangiedorderof increasing complexity:

146 TESTING CHAPTER 6

e search an array withoelements
e search an array witbneelementandartrial value that is
- less tharthe single elemerih the array
- equalto the single element
- greatetthanthe single element
e search an arrawith two elementsand trialvalues that
- checkall five possible positions
e checkbehaviorwith duplicate elements the array andtrial values
- less tharthe valuein the array
- equalto thevalue
- greatetthanthevalue
e searchanarray with threelementsaaswith two elements
e search an array wittourelementsaswith twoand three

If thefunctiongetspast this unscathed. it's liketg be ingoodshape put it could still
betestedfurther.

This setof testsis small enoughto perform by hand,but it is betterto create aest
scaffold to mechanizehe process.The following driver program isaboutassimple
as wecanmanage. It reads inputines that contain &ey to searchfor andan array
size;it createsanarray of thatsize containingrzaluesl. 3. 5. ...: andit searches the
array forthekey.

/* bintest main: scaffold for testing binsearch =/
int main(void)
[
int i, key, nelem, arr[1000];
while (scanf ("%d %d", &key, &nelem) != EOF) {
for (i = 0; i < nelem; i++)
arr[i] = 2+ + 1;
printf ("%d\n" binsearch(key, arr, nelem)) ;

}

return 0;

}

Thisis simpleminded buit shows that useful testscaffold neechot be big. andit is
easily extended to performoreof thesetestsandrequire less manual intervention.

Know what output to expect.For all tests, it's necessamp know what theright
answer isjf you don't. you're wasting yourtime. This might seemobvious.since for
many programsgt's easyto tell whetherthe programs working. Forexample, either
acopyof atile is acopyorit isn't. Theoutput fromasortis sortedor it isn't; it must
alsobea permutation ofhe originalinput.

Most programsare moredifficult to characterize—compilers (doesthe output
properly translateheinput?), numericahlgorithms(is the answemwithin error toler-
ance?),graphics(are the pixelsin the rightplaces?).andsoon. Forthese, it'sespe
cially importantto validatethe outputby comparingit with known values.

SECTION 6.2 SYSTEMATICTESTING 147

e To testa compiler, compileand runthetest files. Thetestprograms shouldin
turn generate outpugndtheir resultshouldbecomparedo known ones.

e To testa numericalprogram, generateestcasesthat explorethe edgesof the
algorithm, trivial cases asvell ashardoncs. Where possible, write codbat
verifiesthatoutput properties argane. Foexampletheoutputof a numerical
integrator canbe tested forcontinuity, and for agreementvith closedform
solutions.

e To testagraphics program, it'sot enough to seé# it can drawa box; instead
read the box back from the screerand checkthat itsedges are exacthyhere
they shouldbe.

If the program hasan inverse, checlthat its application recovershe input.
Encryption and decryption ameversessoif youencrypt something and can't decrypt
it, somethingis wrong. Similarly, lossless compressiorand expansion algorithms
should be inverses. Programshat bundlefiles togethershould extract them
unchanged. Sometimésere aremultiple methods foinversion: checlall combina
tions.

Verify conservation propertiesMany programs preserve sonmoperty of their
inputs. Tools likeac (count lineswords,andcharactersandsum (computea check
sum) canverify thatoutputs are othe same sizehave thesame numbeof words,
contain the sambytesin some orderand the like.Other programs compare files for
identity (cmp) or report differencesdiff). These programar similar ones areead
ily available fomostenvironmentsand arewell worth acquiring.

A bytefrequencyprogram carbe usedto checkfor conservatiorf dataandalso
to spot anomalies likaontext characterin supposedlyextonly files; here'sa ver-
sion thatwecall freq:

#include <stdio.h>
#include <ctype.h>
#include <limits.h>

unsigned Tong count [UCHAR_MAX+1];

/* freq main: display byte frequency counts =/
int main(void)

{
int c;
while ((c = getchar()) !'= EOF)
count [c]++;
for (c = 0; c «a UCHAR_MAX; C++)
if (count [c] != 0)
printf (™%.2x %c %lu\n",
c, isprint(c) ? ¢ : -7, count[c]);
return O;
}

Conservation propertiezsan be verified within a program. too.A function that
countsthe elementdn a data structure providestrivial consistencycheck. A hash

148 TESTING CHAPTER 6

table shoulchavethe property thagvery element inserted intd can be retrieved.
This conditionis easyto checkwith a function thatdumps thecontentsf the table
into a file or an array. At any time, thenumberof insertions intca data structure
minusthe numberof deletionsnustequalthe numberof elementsontainedacondr
tion thatis easyto verify.

Compare independent implementatioriadependenimplementationsf a library or
programshould produc¢he same answerd-or example two compilers should pro
duceprogramghat behave the sam&y on the same machinat leastin mostsitua
tions.

Sometimesan answercan be computedin two differentways,or you might be
ableto write a trivial versionof a program to usesa slow butindependentompart
son. If two unrelategorogramgyetthesame answers, thaessa goodchance thathey
arecorrect;jf theygetdifferentanswersat leasbne iswrong.

Oneof the authors oncevorked with anotherperson orma compiler for a new
machine. Thevork of debugginghe code generateldy the compilemwassplit: one
person wrotghe software that encoded instructions for tdrget machineand the
otherwrote thedisassembler fahe debugger. Thisneantthatany errorof interpre
tationor implementatiorof theinstruction sewasunlikely to be duplicatedbetween
the two components When the compilemiscodedan instructionthe disassembler
wassureto notice. All the early outpudf the compilemvas runthrough thedisassem
bler andverified against theeompiler's own debugging printouts. This strategy
workedvery well in practice, instantlgatchingmistakesn both pieces. The onlydif-
ficult, protracted debugging occurredhen both peopleinterpretedan ambiguous
phrasen the architecture descriptiam thesame incorreatvay.

Measuretest coverageOnegoal of testingis to makesurethatevery statemenof a
programhas beemxecuted sometime duririige sequencef tests; testing cannbie
considered completanless evenjine of the programhasbeenexercisedby at least
one test. Complete coverageoften quitedifficult to achieve. Evenleavingaside
"'can't happef! statementst is hardto use normainputsto forcea program togo
throughpatrticular statements.

Therearecommercial tool§or measuringcoverage.Profilers, often included as
panof compilersuites,providea way to computea statement frequenayount for
each prograrstatement that indicates the coverage achieysgecifictests.

We tested the Markov progranf Chapter3 with a combinationof these tech
niques. The last sectioof thischaptedescribeshose tests detail.

Exercise6-3. Describehow youwouldtestf req. O

Exercise6-4. Design and implememtversionof freq that measurebe frequencies
of othertypesof datavalues,suchas 32bit integersor floating-point numbersCan
you makeoneversionof the program handla variety of typeselegantly?

SECTION 63 TEST AUTOMATION 149

6.3 Test Automation

It's tedious and unreliabte do muchtestingby hand; proper testing involves lots
of tests/ots of inputs,andlots of comparisonsf outputs. Testing should therefore
be doneby programswhich don't gettired or careless.It's worth takingthetimeto
write ascriptor trivial program that encapsulates all the tesisgcompletetestsuite
can beun by (literally or figuratively)pushinga single button. Theasier testsuite
is to run, the moreoften you'll run it and the less likely you'll skip whentime is
short. We wrotea testsuitethat verifies all the programre wrotefor this book, and
ranit every timewe madechangespartsof thesuiteranautomaticallyaftereach suc
cessful compilation.

Automate regression testing-he most basic formof automationis regressiontest
ing, which performsa sequencef tests thatomparehe new versionof something
with the previous versionWhenfixing problemsthere'sa naturaltendency taheck
only thatthefix works;it's easyto overlook the possibility thahe fix brokesome
thing else. The intentof regression testing to makesure that the behavior hasn't
changeakxcepin expectedvays.

Some systenarerich in tools thathelpwith suchautomation; scripting languages
allow us to write shortscriptsto run testsequencesOn Unix, file comparators like
diff andampcompare outputssort bringscommonelements togethegrepfilters
testoutputswe, sum,andf req summarize outputs. Together, thesake iteasyto
createad hoc testscaffolds, maybenot enoughfor large programsbut entirely ade
quate fora program maintaineloy anindividualor asmall group.

Hereis a script forregression testing killer application program called két
runstheold version(old-ka) andthe newversion (newka)for alargenumberof dif-
ferenttestdatafiles, and complains about eachefor which theoutputsarenot iden
tical. It is written for a Unix shell but could easilybe transcribedo Perl or other
scriptinglanguage:

for i in ka_data.x # loop over test datafiles
do
old-ka $i >outl # run the old version
newka $i >out2 # run the new version
if 1 amp-s outl out2 # compareoutputfiles
then
echo S5 B4aD # different: print error message
fi
done

A testscriptshouldusuallyrun silently, producing outpuinly if somethingunex
pectedbccursas thisonedoes. We could instead choode print eachfile nameasit
is beingtestedandto follow it with anerrormessagé something goesrong. Such
indicationsof progresshelp toidentify problemdike an infinite loop or a test script
thatis failing to run the right tests but the extrachatteris annoyingif thetests are
running properly.

150 TESTING CHAPTER 6

The -s argument causesp to reportstatusbut produceno output. Iif the files
compareequal,arp returnsatruestatus,! amp is false,and nothings printed. if the
old andnew outputs differ.however,arp returns falsend the file nameanda warn
ing areprinted.

Thereis an implicit assumptiorin regression testing that the previous version
the prograntomputeshe right answer.This mustbecarefully checkedtthe begin
ning of time, andthe invariant scrupulously maintainelflan erroneous answewer
sneaksnto a regression tesit's very hardto detectandeverything that depends it
will bewrongthereafter.lIt's goodpracticeto check the regression test itself periodi
cally to makesureit is still valid.

Create seHlcontained testsSelfcontained tests that carry thewn inputs and
expected outputs providecomplemento regression testsOur experience testing
Awk may be instructive. Many languageconstructions aréestedby runningspect
fied inputsthroughtiny programsandcheckingthat theright outputis produced.The
following part of a large collectionof miscellaneous tests verifiese tricky incre-
mentexpression. Thigest runs thenew versionof Awk (newawk) on a short Awk
program toproduce outpuin onefile, writes thecorrectoutputto anotherfile with
echo, compares théles,andreportsanerrorif theydiffer.

field increment test: $i++ means ($i)++, not $(i++)
echo 3 5 | newawk '{i = 1; print $i++; print $1, i}’ >outl

echo '3
4 1' >out2 # correct answer

if ' aoép -s outl out2 # outputs are different
then

echo 'BAD: field increment test failed'
fi

Thefirst comments partof the tesinput;it documentsvhatthe tests testing.

Sometimest is possibleto constructa largenumberof testswith modesteffort.
For simple expressionsve createca small. specialized languader describing tests,
inputdataand expectedutputs.Here isashort sequence that testsmeof the ways
thatthenumeric valud canberepresenteith Awk:

try {if ($1 == 1) print "yes"; else print "no"}

1 yes
1.0 yes
1E0 yes
0.1E1 yes
10E-1 yes
01 yes
+1 yes
10E-2 no

10 no

SECTION 6.4 TEST SCAFFOLDS 151

Thefirst line is a program tobe tested(everything aftetheword try). Eachsubse
quentline is a setof inputsandthe expectedutput,separatedby tabs. Thefirst test
says thaif the first input field is 1 the output shouldbe yes. The firstseventests
shouldall print yesand thdast two tests should prinb.

An Awk program(whatelse?)xonvertseach test inta completeAwk program,
then runs eachinput throughit, and compares actual outptd expected outpuit
reportonly thosecasesvhere theansweiis wrong.

Similarmechanisms arased taest the regular expressiamatching andgubstitu
tion commands.A little languagdor writing testsmakesit easyto createa lot of
them;usinga programto write a program to test programhas higheverage. (Chap
ter 9 hasmore tosay aboutlittle languagesind the useof programsthat writepro-
grams.)

Overall, theraareabouta thousandestsfor Awk; the whole setcan be run with a
singlecommandandif everything goes welho outputis produced Wheneveafea
tureis addedbr abugis fixed, newtestsareaddedto verify correctoperation.When
everthe program ischangedevenin atrivial way, the wholetestsuiteis run;it takes
only a few minutes. It sometimes catches completely unexpeetedrs,and has
savedheauthorsof Awk from public embarrassmentanytimes.

What shouldyou do when youdiscoveman error? If it was notfound by an exist
ing test, creata newtest thatloes uncover tharoblem and verifythetestby running
it with the broken versioof the code.Theerrormay suggest furthetestsor a whole
new classof thingsto check. Or perhapst is possibleto adddefenseso the program
thatwould catch thesrrorinternally.

Neverthrow awaya test. It can help you decidewhethera bug reportis valid or
describesomething already fixedKeepa recordof bugs, changeandfixes; it will
help you identify old problems anfix newones. In mostcommerciaprogramming
shopssuchrecords are mandatoryzor yourpersonal programminthey area small
investment thatill payoff repeatedly.

Exercisés-5. Designa testsuitefor printf, usingasmanymechanical aidasposst
ble.O

6.4 Test Scaffolds

Our discussiosofar is basedargely on testinga singlestandalone programin
its completed form. This nottheonly kindof testautomation. howevenpr isit the
mostlikely way to test partof a big program duringconstructionespeciallyif you
arepartof ateam. Nor is it the mosteffectiveway to testsmall components that are
buriedin something larger.

To testa componenin isolation, it's usually necessaryo createsome kindof
frameworkor scaffoldthat provides enough support and interfecéhe restof the

152 TESTING CHAPTER 6

system that thpart undetestwill run. We showeda tiny exampldor testingbinary
searchearlierin thischapter.

It's easyto build scaffoldsfor testing mathematicdinctions,string functions,
sort routines, andoon, sincethe scaffoldingis likely to consistmostly of settingup
input parameters, callindpe functionsto be testedthenchecking the resultdt's a
bigger jobto createscaffoldingfor testinga partly-completed program.

To illustrate,we'll walk through building a testfor memset, oneof the mem.. .
functionsin the C/C++ standardibrary. Thesdunctionsareoften written in assem
bly languagdor a specificmachine, since their performarisémportant. The more
carefully tunedthey are,however, thenorelikely they areto be wrong andhusthe
more thoroughlyhey shouldbetested.

The first stepis to provide the simplest possibl€ versions thatre known to
work; these provide benchmarkfor performance andnoreimportant,for correct
ness.To move toa new environment, onearries thesimple versions andses them
until thetunedonesareworking.

The functionmemset (s, c, n) setsn bytesof memory tothe byte c, starting at
address, andreturnss. This functionis easyif speeds not anissue:

/+ memset: set first n bytes of s to c */
void =memset(void =s, int c, size-t n)

{ .
size-t 1;
char =p;
p = (char =) s;
for (3 =0; 1 <n; ++)
plil = c;
return s;
}

But whenspeed isinissue, trickdike writing full wordsof 32or 64bitsatatime are
used. Thesecanleadto bugsso extensivéestingis mandatory.

Testingis basean acombinatiorof exhaustive and boundacpndition checksit
likely pointsof failure. Formemset, the boundaries include obvious valoés such
as zeropneand two, butilsovaluesthatarepowersof two or nearby valuesnclud-
ing both small onesandlargeones like2'®, which correspond#o a natural boundary
in many machinesa 16-bit word. Powersof two deserveattention becauseeway
to makememset fasteris to setmultiple bytesat onetime; thismight bedoneby spe
cial instructionsor by trying to storea word at a time insteacof a byte. Similarly, we
want to checkarray origins with a variety of alignmentsn casethereis someerror
basedon starting addressr length. We will placethe target arrayinsidea larger
array,thuscreatinga buffer zoneor safetymargin on eackideandgiving usan easy
way to vary thealignment.

We alsowant to checka variety of valuesfor c, including zeropx7F (the largest
signed value, assumirsbit bytes),0x80 and OxFF (probing at potential errors
involving signedand unsigneatharacters)yand somevaluesmuch bigger than one

SECTION 6.4 TEST SCAFFOLDS 153

byte (to be surethat onlyone byte is used). We shouldalso initializememory to
someknown pattern thais different from anyof these character values we can
check whethatiemset wroteoutside thevalid area.

We can usedhe simple implementation asstandardf comparisorin a test that
allocatestwo arrays,then compares behavio@ combinationsof n, ¢ and offset
within the array:

big = maximum left margin+ maximum n + maximum right margin
sO0 = malloc(big)
s | = malloc(big)
for each combination of test parameters n, c, and offset:
setall of s0 ands| to known pattern
run slow memset(s0 + offset, c, n)
run fast memset(sl + offset, c, n)
check return values
compare all of s0 and s1 byte by byte

An errorthat causesemset to write outsidethe limitsof its arrayis mostlikely to
affectbytesnearthe beginningr the endof thearray,soleavinga bufferzone makes
it easierto seedamageddytes and makes liess likely thatan error will overwrite
someotherpartof the program.To checkfor writing outof boundswe compareall
thebytesof s0 ands1, notjustthen bytesthat shoulde written.
Thusareasonablsetof testsmightincludeall combinationf:

offset = 10, 11, ..., 20

c =0, 1, ox7F, 0Ox80, OxFF, 0x11223344

n=0,1, 2, 3, 4,5, 7, 8 9, 15, 16, 17,
31, 32, 33,..., 65535, 65536,65537

The valuesf n wouldincludeat least?’ - 1, 2' and2’ +1 for i from O to 16.

Thesevaluesshould nobe wired intathe main panof thetestscaffold.but should
appeain arraysthat mightbecreatedby handor by program. Generatinghemautc
matically is better;that makesit easyto specify more powerof two or to include
moreoffsetsandmore characters.

These testwiill give memset a thorough workout yetostvery little time even to
create, let alonrun, since therarefewerthan3500casedor the values aboveThe
testsarecompletely portablesothey canbe carried to a new environment as neces
sary.

As a warning,considerthis story. We once gavea copy of a memset testerto
someonalevelopingan operating system and librarifs a new processor.Months
later, we (the authorof the original test) startedsing themachineand had a large
application failits testsuite. We tracedthe problem toa subtle bug involving sign
extension in the assembly language implementatioin memset. For reasons
unknown.the library implementehad changed theemset testersoit did not check
valuesof ¢ aboveox7F. Of coursethe bug wasisolatedby runningthe original.
workingtester, onceve realizedthatmemset wasasuspect.

154 TESTING CHAPTER 6

Functions likememset aresusceptibléo exhaustiveests becaugbey aresimple
enoughthat onecan prove that theiestcases exercise all possible executiaths
through thecode,thusgiving complete coveragd-or example,it is possibleto test
memmove for all combinationsof overlap, direction,and alignment. Thiss not
exhaustiven thesenseof testing all possibleopy operationsputit is anexhaustive
testof representativedf each kinddf distinctinput situation.

As in any testingmethod test scaffoldmeedthecorrectanswerto verify theoper
ationsthey aretesting. An important techniqueyhich we usedin testingmemset, is
to comparea simpleversionthatis believedcorrectagainsi new versionthatmay be
incorrect. Thicanbedonein stagesasthefollowing example shows.

Oneof the authors implementedraster graphics library involvingn operator
that copiedlocksof pixelsfrom oneimageto another. Dependingn the parameters,
theoperation couldbea simplememorycopy,or it couldrequireconverting pixel val
uesfrom onecolor spacdo anotherpr it could requiré'tiling"* wherethe inputwas
copiedrepeatedly throughouwat rectangulaarea, orcombinationsof theseand other
features. The specificatimi the operatomwas simple, but an efficientimplementa
tion wouldrequire lotof special code fathe manycases. Tanakesureall thatcode
wasrightdemandeé sound testing strategy.

First. simplecodewaswritten by handto performthe correct operatiofor a sin-
gle pixel. Thiswas usedo testthelibrary version'shandlingof asinglepixel. Once
this stagewasworking, thelibrary could betrustedor singlepixel operations.

Next, handwrittencodeused the librana pixel atatime to builda very slow ver
sion of the operatorthat worked on a single horizontatow of pixels, and that was
comparednith thelibrary's much moreefficienthandlingof a row. With thatwork-
ing, the librarycouldbetrusted for horizontal lines.

This sequence continuedking lines tdouild rectangles, rectangles build tiles,
andsoon. Along the way,many bugswerefound, including som@ the testeitself,
but that's partof the effectivenessf the method:we were testingtwo independent
implementationshuilding confidencein both as we went. If a testfailed, the tester
printedout a detailed analysi® aid understandingvhatwentwrong,andalsoto ver-
ify that the testavasworking properlyitself.

As thelibrary wasmodified and portedvertheyearsthetester repeatedjyroved
invaluabléefor finding bugs.

Becausef its layerby-layerapproachthis testemeeded tde run from scratch
each time, to verify itoown trust of the library. Incidentally,the testerwas not
exhaustiveput probabilistic:it generated randorest casesvhich, for long enough
runs, would eventuallyexploreevery crannyof the code. With the hugenumberof
possible testasesthis strategywwasmoreeffectivethantrying to constructa thorough
testsetby hand,and muchmoreefficientthanexhaustivéesting.

Exercise6-6. Createhetestscaffoldfor memset along the lineshat weindicated..d

Exercise6-7. Create testfor the restf themenm. . . family. O

SECTION6.5 STRESS TESTS 155

Exercise6-8. Specifya testing regime fonumericalroutines likesgrt, sin, andso

on, asfound in math. h. What input valuesmakesense? What independent checks

canbe performedd

Exercise6-9. Define mechanisms for testindpe functionsof the C str. .. family,
like stremp. Some of these functions, especially tokenizers likertok and
strcspn, are significantlynorecomplicated¢han theamem.. . family, somoresophis
ticatedtestswill becalled for.O0

6.5 Stress Tests

High volumesof machinegenerateéhput are another effective testitgchnique.
Machinegenerated input stresses programs differethty input writtenby people
does. Higher volum itself tends tobreakthings becausevery large inputs cause
overflow of input buffers, arraysandcountersandare effective at findingnchecked
fixed-size storagewithin a program. Peopletend to avoid "*impossiblé® casedike
empty inputsor input thatis outof order or outof range,andare unlikely to create
very long namesr huge data values. Computelog,contrastproduceoutput strictly
accordingo their programsndhaveno ideaof whatto avoid.

To illustrate.hereis asingle lineof outputproducedby the MicrosoftVisual C++
Version 5.0 compilerwhile compiling the C++STL implementatiorof markov; we
haveeditedtheline soit fits:

xtree(114) : warning C4786: 'std::_Tree<std::deque<std::
basic - stri ng<char,std: :char —trai ts<char>,std: :allocator
<char>>,std: :allocator<std: :basic_string<char,std::

... 1420characters omitted
allocator<char>>>>»>:iterator ° : identifier was
truncated to '255' characters in the debug information

Thecompiler is warning ughatit hasgenerateé variablename thais a remarkable
1594 characterng but that only 258haracterdhavebeenpreservedasdebugging
information. Not all programsiefendthemselves againstich unusualljong strings.

Random inputs (not necessarily legal) are anotlagrto assault programin the
hope of breaking something. Thisadogical extensiorof **peopledon't do that*
reasoning. For example, sormemmercialC compilers aretestedwith randomly-
generatedutsyntacticallyvalid programs. Thérick is to usethespecification of the
problem—in this case,the C standard—to drive a program thatproducesvalid but
bizarre testlata.

Such testsely ondetectionby built-in checksand defensedn the program,since
it may not be possibleto verify that the program iproducingthe rightoutput;the
goal ismoreto provokea crashor a'*can't happen thanto uncover straightforward
errors. It's als@ good way to test thaterrorhandling codeworks. With sensible
input, mosterrors don'thappenand codeto handlethemdoesn't get exercisetly

156 TESTING CHAPTER 6

nature,bugstendto hidein such comers.At somepoint, thoughthis kind of testing
reaches diminishing returns:finds problems thaareso unlikely to happenin real
life they maynot beworth fixing.

Sometestingis basedon explicitly malicious inputs. Security attacks often use
big or illegal inputs that overwrite precious datié;is wise to look for such weak
spots. Afew standard library functionare vulnerableto this sortof attack. For
instance,the standard library functiogets providesno way to limit the sizeof an
inputline, soit shouldneverbeused; alwaysisefgets(buf, sizeof(buf), stdin)
instead. A barescanf ("%s",buf) doesn't limitthelength ofaninputline either;it
should thereforeisually be used withanexplicit length,such ascanf ("%20s" , buf).
In Section3.3 we showed howo address this probleffior a general buffesize.

Any routine thatmightreceive value$rom outsidethe program, directlyor indi-
rectly, should validate itsnput values before using themrlhe following program
from atextbookis supposedo read arinteger typedy a user,and warnif theinteger
is too long. Its goal is to demonstrate howo overcomethe gets problem,but the
solution doesn'alwayswork.

7 #define MAXNUM 10

?

? int main{void)

? {

? char num [MAXNUM] ;

2

? memset(num, 0, sizeof(num));
? printf("Type a number. *);

? gets (num) ;

2 if (num [MAXNUM-1] '= 0)

? printf("Number too big.\n");
7 e ¥l

? }

If theinput number is ten digits lond, will overwrite the lasteroin array num with a
non-zero valueandin theorythis will be detecte@fter thereturnfrom gets. Unfor-
tunately,thisis not sufficient. A malicious attackeranprovidean even longetinput
string that overwritesomecritical value, perhapthe return addres$or the call,so
the program never return® theif statemenbutinsteadexecutesomethingnefart
ous. Thusthiskind of unchecked inpuit a potentialsecurity problem.

Lestyou think thatthisis anirrelevant textbook example, in Jul$998an errorof
this formwasuncoveredn several major electronimail programs. As the New York
Timesreported,

Thesecurity holds causedy whatis knownasa ' buffer overflow error’* Pro-
grammersaresupposedo includecodein their softwareto check that incoming
dataareof asafetype and thatheunitsarearriving at theright length. Ifa unit
of datais toolong, it can overrurthe " buffer'* —the chunk of memoryset aside
toholdit. In thatcase, thée-mail programwill crash, and a hostilgrogrammer
cantrick thecomputerinto running a malicious prograi its place.

SECTION 6.5 STRESSTESTS 157

This was also onef the attacks thefamous'" InternetWorm™* incidentof 1988.

Programshat parseHTMLforms can alsde vulnerableo attacksthatstorevery
long input stringgn small arrays:

? static char query[1024];

5

7 char «read_form(void)

? {

? int gsize;

?

? gsize= atoi(getenv("CONTENT_LENCTH"));
7 fread(query, gsize. 1, stdin);

? return query;

? }

The code assumes that the inwitl neverbe more than1024 bytes longso, like
gets.it is opento an attackhatoverflows itsbuffer.

More familiar kinds of overflowcan cause troubletoo. If integers ovefflow
silently, theresult carbedisastrous. Considanallocation like

? char =p;
? p = (char) malloc(x » y # z);

If the product ofx, y, and z overflows, the call to malloc might producea
reasonablesized arraybut p[x] might refer tomemoryoutside the allocatekgion.
Suppose thatnts are 16 bits and x. y, and z are eachd1l. Thenxxy+z is 68921,
whichis 3385 modul@'®. Sothecall tomalloc allocatesonly 3385bytes;any refer

encewith a subscripbeyondthat valuewill be outof bounds.

Conversionbetweentypes is another source of oveffloand catchingthe error
may notbe goodenough.The Ariane5 rocketexplodedon its maidenflight in June,
1996 becausthe navigation package was inheritiedm the Ariane4 without proper
testing. The newrocketflew faster, resultingn larger valuesf some variables the
navigation software. Shortly after launam attempt to convera 64-bit floating-
point number intoa 16-bit signed integer generatesh overflow. The errorwas
caught,but the codethat caughtit elected to shutlown the subsystem. The rocket
veeredff courseandexploded. It wasunfortunateghatthe codethatfailed generated
inertial reference informationseful only befordift -off; hadit beenturned offat the
momenbf launch.therewould havebeenno trouble.

On a more mundane levehinary inputs sometimes break programs that expect
text inputs, especiall§ they assumehat theinput isin the7-bit ASCII character set.
It is instructiveandsometimes sobering to pdsisary input (suchas acompiledpro-
gram) to an unsuspectipgogram thaexpectgextinput.

Good test casemnoften beusedon a varietyof programs.Forexampleany pro-
gramthat reads files shoultbe testedon an empty file. Any program thateadstext
shouldbetested orbinary files. Any programthat readsextlines shouldetested on
huge linesand emptyinesandinput with nonewlines atall. It's agood ideao keep

158 TESTING CHAPTER 6

a collectionof such tesfiles handy,soyou cantest anyprogramwith themwithout
havingto recreatehe tests.Or writea programto creatdestfiles upondemand.

When Steve Bournavaswriting his Unix shell (which came tde known asthe
Bourne shell)he madea directoryof 254files with one-character names, one for each
byte valueexcept’\0’ andslash,the twocharacterghatcannot appean Unix file
names. He usedthat directory for all manneof testsof patterrmatchingand tok-
enization. (Theestdirectorywasof course createlly a program.) For years after
wards, thatdirectory was the baneof file-treewalking programsit tested thento
destruction.

Exercisé-10. Try to createa file thatwill crash your favoritéext editor, compiler,
or otherprogram.dd

6.6 Tips for Testing

Experienced testetsemanytricks and techniqueso maketheir work more pre
ductive; this section includes sowfeour favorites.

Programs should check array boufifishe language doesrdb it for them), but
the checking codenight not betestedf the arraysizes are large compared to typical
input. To exercisethe checks, temporarilynakethe array sizesvery small, which is
easierthancreating largeestcases. Weiseda related trickin thearray-growing code
in Chapter2 andin theCSV libraryin Chapte#. In fact. we left thetiny initial values
in place, sinceéheadditional startup cost is negligible.

Make the hashfunctionreturna constantso everyelement gets installedn the
samehashbucket. Thiswill exercise the chaining mechanism; it also provates
indicationof worstcase performance.

Write a versionof your storage allocatdghatintentionally fails early, to test your
codefor recovering from oubf-memory errors. ThisersionreturnsNuLL after 10
calls:

/* testmalloc: returns NULL after 10 calls =/
void »testmalloc(size_t n)

{
static int count = O;
if (++count > 10)
return NULL;
else
return malloc(n);
}

Beforeyou ship yourcode.disable testing limitationthat will affect performance.
We oncetracked downra performanceroblemin a production compileto a hash
function that always returned zero because testingltadi®eereft installed.

SECTION6.7 WHO DOES THE TESTING? 159

Initialize arraysand variableswith some distinctive value, rath#étan the usual
defaultof zero;thenif you acces®ut of boundsor pick up an uninitializedvariable,
you are morelikely to noticeit. The constanOxDEADBEEF is easyto recognizen a
debugger; allocators sometimes sgehvaluesto help catch uninitializedata.

Vary yourtestcases, especiallyhenmakingsmall testdy hand—it's easyto get
into a rut by always testinghe same thingand youmay not notice that something
elsehas broken.

Don't keep onmplementinghew features or even testing existing oifethere are
known bugs;theycould beaffecting the testesults.

Test output should includdl input parameter settingsp the tests carbe repro
duced exactlyIf your programusesrandomnumbershavea way to setand print the
starting seed, independeasft whether thetests themselves arandom. Makesure
that test inputsand corresponding outputs am@operly identified, so they canbe
understooéndreproduced.

It's alsowiseto provide ways tanake theamountand typeof output controllable
whena programis run; extra outputanhelp during testing.

Teston multiple machines, compilerand operating systemsEachcombination
potentially reveals errors that woté seenon others, suclasdependencies dpyte-
order, sizef integers, treatmerdf null pointers. handlingf carriage returrand
newline, and specific propertiesf librariesand header files. Testingn multiple
machineslsouncovers problemis gathering the componerdéa programfor ship-
mentand,aswe will discusdn Chapter8, may revealunwitting dependencies the
development environment.

We will discuss performance testimgChapter7.

6.7 Who Does the Testing?

Testingthatis doneby theimplementeior someone elswith access tothesource
code is sometimes calladhite box testing. (Thedermis a weakanalogyto black box
testing, where the tester doest knowhow the componenis implemented;*clear
box"* might be more evocative.)lt is importanto test yourown code: don't assume
that some testing organizationuserwill find things foryou. But it's easy to delude
yourself abouthow carefully you are testingsotry to ignorethe codeand thinkof
hardcases, na@asyones. To quote DorKnuth describinghow hecreates tests fahe
TEX formatter,"”| get into the meanest, nastiest frashenind thatl can manage, and
| write the nastiest [testing] codeecan thinkof; then| turn aroundandembedthatin
even nastier constructions that are alnobsicené! The reasorfor testingis to find
bugs,not to declare thgrogram working. Therefore the tests shoube tough,and
when theyfind problemsthatis a vindicationof your methodsnota cause for alarm.

Black box testing meanshat the tester has no knowledgé or access tahe
innardsof the code.lIt finds different kindf errors, becausthe tester haslifferent
assumptions abowvhereto look. Boundaryconditions area good placeto begin

160 TESTING CHAPTER 6

black box testing; highvolume, perversendillegal inputs are good follovons. Of
courseyou shouldalsotesttheordinary'* middleof theroad" or conventional usesf
the progranmnto verify basicfunctionality.

Real users arghe nextstep. New users findnew bugs, becausthey probethe
programin unexpected wayslt is important tado thiskind of testing before thpro-
gram isreleased to thevorld though, sadlymany programs are shipped without
enoughtestingof any kind. Betareleasesf software are an attempt havenumer
ousreal users test arogrambeforeit is finalized,but betareleaseshould nobeused
asa substitute fothoroughtesting. As software systemgetlargerand more com
plex, and development schedules get shorter, however, the pressure to ship without
adequate testing increases.

It's hard to test interactive programs, especialify they involve mouseinput.
Sometesting carbe doneby scripts (whose properties depamdlanguage, environ
ment, and théke). Interactive programshouldbecontrollable from scripts that sim
ulate user behavioso they can betestedby programs.One technique is to capture
theactionsof realusersand replaythem; another is to create a scripting langubhge
describes sequencasdtiming of events.

Finally, give somdahoughtto how to testthe tests themselves. We mentioried
Chaptel5 the confusioncausedby a faultytestprogramfor a list package. A regres
sion suite infectedy anerrorwill cause trouble fothe restof time. The resultof a
setof testswill not mean mucii thetests themselves are flawed.

6.8 Testingthe Markov Program

The Markov programof Chapter3 is sufficiently intricate thait needs careful
testing. It produces nonsenswhich is hard to analyze for validity, and we wrote
multiple versionsn several language®s a final complication, its outpus random
anddifferent each timeHow canwe apply someof the lessonsf this chapteto test
ing this program?

The first sebf tests consistaf a handfulof tiny files thatcheckboundarycondk
tions, to makesure theprogramproduceghe right output for inputs that contaanly
afew words. Fomrefixesof lengthtwo, we usefive files that contain respectively
(with oneword per line)

(empty file)

oo
oc oo

C
cd
For each file the output shouldbe identicalto the input. These checks uncovered

severaloff-by-one errorsn initializing thetable andstartingandstoppingthe genera
tor.

SECTION 6.8 TESTING THE MARKOV PROGRAM 161

A secondtest verified conservation propertiesfFor two-word prefixes, every
word, every pairandevery triple that appeairs the outpubf a run mustoccurin the
input aswell. We wrote an Awk program thatreadsthe original input intoa giant
array.builds array®f all pairsandtriples,then readshe Markov output into another
array anccompares thewo:

markov test: check that all words, pairs, triples in
output ARGV[2] are in original input ARGV[1]
BEGIN {
while (getline <ARGV[1] > Q)
for (i =1 i <= NF, i++) {
wd[++nw] = §i # input words
single[$i]++
1
for (i= L4 1 < nw; i++)
pair[wd[i],wd[i+1]]++
for (= 15 i < nw-1; i++)
triplelwd[i].,wd[i+1],wd[i+2]]++
while (getline <ARGV[2] > Q) {
outwd[++ow] = $0 # output words
i (1(%0 in single))
print "unexpected word". $0
}
for Ci= 1 1 < ow, i++)
if (' (Coutwd[i1,outwd[i+1]) in pair))
print "unexpected pair”, outwd[i], outwd[i+1]
for €= L 1 < ow-1; i++4)
if (0 (Coutwd[i],outwd[i+1],outwd[i+2]) in triple))
print "unexpected triple",
outwd{i], outwd[i+1], outwd[i+2]
}

We madeno attempt tdouild an efficient test, just tanakethe test progranassimple
aspossible. It takes siar seven seconds tinecka 10,000word output file againsa
42,685word input file, not muchlongerthansome versions dflarkov taketo gener
ateit. Checking conservation caughimajor errorin our Java implementatiothe
programsometimes overwrote hash table entries bedausedreferencesteadof
makingcopiesof prefixes.

This test illustrates the principle thiatanbe mucheasier toverify a propertyof
the outputthanto create the output itself. For instance it is easieheck thatfile
is sortedthanto sortit in the firstplace.

A third test is statisticah nature. Theinput consists ofhesequence

abcabc..abd..

with tenoccurrencesf abc for eachabd. Theoutputshould haveboutlOtimesas
many c's asd's if the randomselection is workingroperly. We confirm this with
freq, of course.

162 TESTING CHAPTER 6

Thestatistical tesshowedthatanearly versionof theJavaprogram, whichassoci
atedcounterswith each suffix produced?20c's for everyd, twice asmanyasit should
have. After somehead scratchingwe realizedthat Java's random number generator
returns negativaswell aspositive integersthe factorof two occurredbecause the
rangeof values was twicaslargeasexpectedsotwice asmanyvalues wouldbezero
modulothe counter;this favoredthe firstelementin the list, which happenedo bec.
The fix wasto take the absolutealue before themodulus. Without this test, we
would neverhavediscovered therror;to theeye,theoutput looked fine.

Finally, we gavethe Markov programplain Englishtext to seethatit produced
beautiful nonsenseOf course,we alsoran this testearly in the developmenbf the
program. But we didn'stoptestingwhenthe programhandledregularinput. because
nastycaseswill comeup in practice. Getting theeasycasesight is seductive; hard
casegnustbetestedtoo. Automated,systematidestingis the bestway to avoid this
trap.

All of the testing was mechanized. A shadlipt generatediecessarynputdata,
ran and timed thetests, and printed any anomalous outputThe script was config-
urable sothesame tests couldeappliedto any version ofMarkov, and everyime we
madea setof changedo oneof the programs, wean all the tests agairto makesure
that nothingwasbroken.

6.9 Summary

Thebetteryou write your codeoriginally, the fewer bugé will have and the more
confidentyou can be that your testinghasbeen thorough.Testingboundarycondi
tionsasyou write isan effectiveway to eliminatea lot of silly little bugs. Systematic
testingtries to probeat potential troublespotsin an orderlyway; again.failures are
mostcommonly foundat boundaries. whicltan be explorethy handor by program.
As much aspossible, itis desirableto automatetesting,since machines don't make
mistakesor gettired or fool themselvesnto thinking that somethings working when
it isn't. Regression testsheckthatthe progranstill produceghe sameanswersasit
usedto. Testingaftereach small changis agoodtechnique for localizing theource
of any problem becauseew bugs arenost likelyto occurin new code.

Thesinglemostimportant ruleof testingis todoit.

Supplementary Reading

Oneway to learnabouttestingis tostudy exampledrom thebest freely available
software. Don Knuth'$' The Errorsof TEX,"" in Software—Practice andExperience,
19,7, pp. 607-685, 1989, describes every error fourid thatpointin the TEX format-
ter,andincludesa discussion of Knuth's testing methodsheTRIP testfor TEX is an
excellentexampleof a thoroughtest suite. Perl also comeswith an extensive test

SECTION6.9 SUMMARY 163

suitethat ismeantto verify its correctness after compilatiandinstallationon a new
system,and includes modulesuchasMakeMaker and TestHarness that aidin the
constructiorof tests forPerl extensions.

Jon Bentley wrote a series of articlein Communications ofthe ACM that were
subsequently collected Programming Pearlsand More Programming Pearls, pub-
lishedby AddisonWesleyin 1986and 1988 respectivelyThey oftentouch on test
ing, especially frameworks for organiziagd mechanizing extensivests.

Performance

His promiseswere,ashe thenwas,mighty;
But his performance, ashe is now,nothing.

Shakespear&ing Henry VIII

Long ago, programmensent to great effortto make their programs efficient
because computevgere slow anéxpensive. Today, machines anechcheapeand
faster sothe needor absolute efficiency is greathgduced.ls it still worth worrying
about performance?

Yes, but onlyif the problem is important, the programgenuinely too slowand
there is some expectation that it dammadefasterwhile maintaining correctness,
robustnessandclarity. A fastprogramthat getsghe wronganswer doesn't saamy
time.

Thus the first principle of optimization isdon't. Is the program gooenough
already? Knowindhow a programwill be used andhe environmenit runsin, is
thereany benefitto makingit faster? Programaritten for assignments a college
class are neversedagain;speed rarelynatters.Nor will speedmatter formostper
sonal programs, occasiortabls, test frameworks, experiments)d prototypes. The
run-time of a commercial produabr a central componerguchas agraphicslibrary
can be critically important, howeverso we needto understanchow to think about
performance issues.

Whenshouldwe try to speedup a program?How canwe do so? What canwe
expectto gain? This chapter discusdaswy to makeprogramsun fasteror use less
memory. Speedis usuallythe mostimportant concernso that is mostly what we'll
talk about. Space (maimemory.disk) is less frequentlyan issuebut canbe crucial,
sowe will spendsome timeandspaceon that too.

As we observedin Chapter2, the beststrategy is tause thesimplest, cleanest
algorithms and data structures appropriate fotabke. Thermeasurgerformanceo
seeif changes are needed; enable compiler options to gertleedtestest possible
code; asseswhat changes to the@rogram itselfwill have the moseffect; make

165

166 PERFORMANCE CHAPTER 7

change®ne ata time and reassess; ankeepthe simpleversionsfor testing revisions
against.

Measuremenis a crucialcomponenbf performanceémprovement since reasoning
andintuition are fallibleguidesand mustbe supplementedith tools liketiming com
mandsand profilers. Performancémprovement has muchn commonwith testing,
including suchtechniquesas automation keeping careful records, anging regres
sion teststo make surethat changespreservecorrectnessand do not undo previous
improvements.

If you chooseyour algorithmswisely and write well originallyyou mayfind no
needfor further speedups. Often minohangeswill fix any performance problenis
well-designed code.while badlydesigneccodewill requiremajorrewriting.

7.1 A Bottleneck

Let us beginby describinghow a bottleneck was removed from a critical program
in our local environment.

Ourincoming mail funnelsthrough amachine, called agateway thatconnectsour
internal networkwith the external Internet. Electronianail messages froroutside—
tens of thousands a d&yr a community of dew thousandpeople— arriveat the gate
way and are transferredto the internal networkthis separation isolatesur private
network(rom the public Interneaindallowsusto publish a singlanachine naméhat
of the gateway) for everyonia thecommunity.

Oneof the servicesof the gatewayis to filter out "*spam’’ unsolicited mail that
advertisesservicesof dubiousmerit. After successful early trialsf the spamfilter,
theservice wasnstalledasa permanenteature forall usersof the mailgateway,and
a problem immediatelypecameapparent. The gateway machine, antiquated and
already very busy,was overwhelmedbecausethe filtering program was takingo
much time—much more time than wasrequiredfor all the otherprocessingof each
message—thatthe mail queuesfilled and messagealelivery was delayedy hours
while thesystem struggledio catchup.

This is an exampleof a true performance problem: the program wasot fast
enoughto do its job, and people were inconvenienceay the delay. The program
simply hadto run much faster.

Simplifying quite a bit. the spamfilter runs like this. Eachincoming message is
treatedasa single string, and a textuphtternmatcherexamineghatstringto seeif it
containsany phrasedrom known spamsuchas’* Make millionsin your spargime”
or ""XXX-rated!" Messagesend to recursothis technique is remarkably effective,
andif aspammessagés not caught, a phrass addedto thelist to catchit nexttime.

Noneof the existing stringmatching toolssuchasgrep, had theright combina
tion of performance and packagimgpa specialpurposespamfilter was written. The
original codewas verysimple; it lookedto seeif eachmessageontainedany of the
phrases (patterns):

SECTION7.1 A BOTTLENECK 167

/= isspam: testmesg for occurrence ofany pat =/
i nt isspam(char *mesqg)
{
int i;
for (i = 0; i < npat; i++)
if (strstr(mesg, pat[i]) != NULL) {
printf("spam: match for ‘%s’\n", patlil);
returnl;

|
return 0;

How couldthis be madefaster?The stringmustbesearchedandthestr st rfunction
from theC library is the bestway to searchit's standar@ndefficient.

Using profiling, a techniquewe'll talk aboutin the nextsection,it becameclear
that theimplementatiorof strstrhad unfortunate propertieshen usedin a spam
filter. By changingthe way strstrworked,it could be made moreefficientfor this
particular problem

Theexisting implementationaft r s t rlookedsomething likethis:

/+ simple strstr: usestrchrto look for first character=/
char =strstr(const char »s1, const char #s2)

I
int n;
n = strlen(s2);
for G3) |
sl = strchr(sl, s2[0]);
if (sl== NULL)
return NULL;
if (strncmp(sl, s2, n) == 0)
return (char a) sl;
sl++;

It had beenwritten with efficiency in mind, and in fact for typical useit was fast
becausét usedhighly-optimizedilibrary routinesto do the work. It calledstrchrto

find the nextoccurrence of the first charactd#rthe patternand thercalledstrncmp

to seeif therestof the string matched the restf the pattern. Thust skipped quickly
over mostof the messagéooking for the first charactesf the pattern.and thendid a
fastscanto checktherest. Why would this performbadly?

There are several reasons. Fisstrncmp takes asan argumenthe lengthof the
pattern. which must be computedwith strlen. But the patternsare fixed, so it
shouldn'tbe necessaryo recompute their lengths for eagtessage.

Secondstrncmp hasacomplex innetoop. It mustnotonly compare the bytesof
the two strings,it must lookfor the terminating\0 byte on both stringswhile also
countingdown thelengthparameter. Sincthe lengths ofall thestrings areknownin

168 PERFORMANCE CHAPTER7

advancdthoughnotto strncmp), this complexity is unnecessavye know the counts
areright sochecking for tha,0 wastegime.

Third, strchris also complex, sincié mustlook for the characteandalsowatch
for the\0 bytethat terminates the message. Rggiven call toisspam, the message
is fixed, sotime spent looking for thg0 is wastedsincewe know where thenessage
ends.

Finally, althoughstrnemp, strchr,andstrlenareall efficientin isolation, the
overheadf calling these functionis comparableo the cost of the calculatiothey
will perform. It's moreefficientto doall thework in a special, carefullywritten ver
sionof strstrandavoid calling other functions altogether.

These sortef problemsarea common sourcef performancérouble—a routine
or interfaceworks well for the typical caseput performspoorly in an unusualcase
thathappens tbecentralto the progranatissue. The existings tr s t rwasfine when
boththe patterrandthestringwereshortandchanged each calbut whenthe stringis
long andfixed, the overheais prohibitive.

With thisin mind, strstrwas rewrittento walk the pattern andnessage strings
togethedooking for matcheswithoutcalling subroutines. The resulting implementa
tion has predictable behavidt:is slightly slowerin some casedyut muchfasterin
the spam filter and, most important, is never terrible. To verify the new
implementation's correctneasid performancea performanceest suite was built.
This suiteincluded not onlysimple examples like searching word in a sentence,
but also pathologicalcasessuchaslooking fora patternof a singlex in a string of a
thousance's and a patternof a thousandk's in a string of a singlee, both of which
canbe handledbadly by naive implementations. Such extreme cases key partof
performancevaluation.

The library was updatedwith the newstrstrand the sparnfilter ran about30%
faster,agood payoffor rewritingasingleroutine.

Unfortunatelyijt wasstill too slow.

When solving problems, it's important task the right question. Upto now,
we've beenasking for the fastestay to search foa textual patternin a string. But
thereal problem igo search fomlarge,fixed setof textual patternm along, variable
string. Put thatway,str stris notsoobviouslythe rightsolution.

The most effective way to makea programfaster isto usea better algorithm.
With a clearerideaof the problem, it'stime to think aboutwhat algorithm would
work best.

The basic loop,

for (i = 0; i < npat; i++)
if (strstr(mesg, pat[i]) !'= NULL)
returni;

scansdown the messagepat independent times; assumiriigdoesn't find any
matches,it examines eachbyte of the messagenpat times, for a total of
strlen(mesg)+npat comparisons.

SECTION 7.1 A BOTTLENECK 169

A better approacfks to invertthe loops, scanning the message oircéhe outer
loop while searching foall the patterns parallel in theénnerloop:

for (j = 0; mesg[j] '= '\O’; j++)
i f (some pattern matches starting at mesg[jl)
return 1;

The performance improvement stems fransimple observationTo seeif any pat
tern matches the messageposition j, we don't needto look at all patternsonly
thosethat begin withthe same character agssg[j]. Roughly. with 52 upperand
lower-case lettersve might expect todoonly strlen(mesg)»npat/52 comparisons.
Since the letters aret evenlydistributed—wordsbeginwith s muchmore oftenthan
x—we won't seeafactorof 52 improvementput weshouldsee someln effect,we
construct hashtableusingthefirst character of thpatternasthe key.

Givensome precomputation to constradableof which patterndegin witheach
characteri sspam is still short:

int patlen|NPAT] ; /* length of pattern =/
int starting[UCHAR_MAX+1][NSTART] ; /+ pats starting with char =/
int nstarting[UCHAR_MAX+1]; /+ number of such patterns =/

/+ isspam: test mesg for occurrence of any pat =/
int #sspam(char xmesg)

inti, j, k;
unsigned char c;

for (3 = 0; (c = mesg[j1) !'= °\0"; j++ |
for i= 0; i < nstartinglcl; i++) {
k = starting[c][i];
i f (memcmp(mesg+j, pat[k] , patlen[k]) = 0) {
printf("spam: match for *‘%s’\n", patl[k]l);
return 1;

}
}

return 0;

The twodimensional arragtarting[c] [] stores, for each characterthe indice®f
those patternthat beginwith that character. Its companianstarting[c] records
how manypatterndegin withc. Without these tablesheinner loopwould runfrom
0 to npat, abouta thousand; insteaitl runsfrom 0 to something like20. Finally, the
arrayelemenpatlen[k] stores thggrecomputedesultof strlen(pat{k]).

The following figure sketches these data structurea gatof three patterns that
beginwith theletterb:

170 PERFORMANCE CHAPTER 7

nstarti ng: starting: patlen: pat:
3] b I7BE5e7 _
[171| 4 —+—== buy! |
[351] 9 ~—+—={ big bucks |
[971| 14 —+—={ best pictures!

The coddo build these tables easy:

int i;
unsignedchar c;
for (i =0O; 1 < npat; i++) {
C = pat[i1[0];
if (nstarting[c] >= NSTART)
eprintf("too many patterns(>=%d) begin "%c’'",
NSTART, ©);
starting{c][nstarting[c]++] = 1i;
patlen[i] = strien(pat[il);
}

Dependingn the input, thespamfilter is now five to ten timedfasterthanit was
usingtheimprovedstrstr,andsevento fifteen times fastethan theoriginal imple
mentation. We didn't getfactorof 52, partly becaus®f the non-uniform distribu
tion of letters,partly because théoop is morecomplicatedn the new program,and
partly because there are stitlanyfailing string comparison® executeputthe spam
filter is nolonger thebottleneck formail delivery. Performancgroblemsolved.

The restof this chaptemwill explorethe techniquesised tadiscover performance
problems,isolate the slowcode. and speedit up. Before moving on, though, it's
worth looking backat the spamfilter to seewhatlessonst teaches. Mosimportant,
makesure performance matterk.wouldn't havebeenworth all the effortif spam fit
tering wasn'ta bottleneck. Oncewe knew it wasa problem,we usedprofiling and
other techniquet study thebehaviorandlearn where the problem really layhen
we madesure we were solving theright problem, examininghe overall program
ratherthan just focusingon strstr,the obviousbut incorrect suspect. Finallyye
solved the corregtroblem using better algorithmandcheckedhatit really was fas
ter. Onceit wasfast enoughye stoppedwhy overengineer?

SECTION7.2 TIMING AND PROFILING 171

Exerciser-1. A tablethat mapsa single characteto the setof patternghat begin
with thatcharacter givean orderof magnitudémprovement. Implemeiatversionof
i sspam that useswo characters abe index. How muchimprovement doethatlead
to? Thcscarcsimple special cased a data structure called trie. Most suchdata
structures arbasecbn tradingspace fotime. O

7.2 Timing and Profiling

Automate timing measurementdlost systems hava commandto measurehow
long a programtakes. On Unix. thecommands calledtime:

% time slowprogram

real 7.0
user 6.2
Sys 0.1

%

This runs the commandand reportsthree numbersall in seconds!'real” time, the
elapsedimefor the progranto complete;"uset' CPU time. timespent executinthe
user's programgnd "*system” CPU time, time spentwithin the operatingsystemon
the program's behalflf your systermhasa similar commanduseit; the numbersuill
be more informative, reliableand easierto track than time measuredwith a stop
watch. And keep good notesAs you work on the program, makingnodifications
andmeasurementgpu will accumulate lot of datathat canbecome confusingday
or two later. (Whichversionwasit thatran 20% faster?) Many of thetechniquesve
discussedn the chapteron testingcan beadaptedor measuring and improvinger
formance. Usé¢he machine taun and measurg/our testsuites andmostimportant,
useregression testintp makesureyour modificationsdon't breakthe program.

If your system doesntavea time commandpr if you're timinga function in
isolation, it'seasyto constructa timing scaffold analogout a testingscaffold. C
and C++ providea standard routineglock, thatreportshow muchCPU time thepro-
gram has consumesb far. 1t can be called beforeand after a function tomeasure
CPUusage:

#include <time.h>
#include <stdio.h>

clock-t before;
double elapsed;

before= clock();

long-running_functionQ ;

elapsed= clock() - before;

printf("function used%.3f seconds\n",
elapsed/CLOCKS_PER_SEQ) ;

172 PERFORMANCE CHAPTER 7

The scaling ternCLOCKSPERSEC, records the resolutiaf the timerasreportedby
clock. If thefunction takes onlya small fractionof a secondrunit in aloop. butbe
sure to compensate for loop overhéatiatis significant:

before= clock();

for (i =0; i < 1000; i++)
short-running_function();

elapsed= (clock()-before)/(double)i;

In Java, function# the Dateclass givewall clock time,which is an approximatiomo
CPUtime:

Date before= new Date();

long-running_functionQ);

Date after = new Date(Q);

long elapsed= after.getTime() - before.getTime();

Thereturn valuef getTime is in milliseconds.

Usea profiler. Besidesa reliable timingmethod,the mostimportanttool for perfor
manceanalysisis a system for generating profile®A profile is a measuremeruf
wherea programspendsits time. Some profiledist each function, the numbef
timesit is called,and the fractionof executiontime it consumes. Others show counts
of how manytimeseach statementasexecuted. Statementisatare executed fre
quently contributemoreto rurttime, while statementshat are never executethay
indicateuselesgodeor codethat isnot being teste@dequately.

Profiling is an effectivetool for finding hot spots in a program, the functionsr
sectionof codethatconsumemostof the computingtime. Profilesshouldbe inter-
pretedwith care, however. Givethe sophisticatiorof compilersand the complexity
of cachingand memoryeffects. asvell asthe factthat profiling a programaffects its
performancethestatistican a profile canbeonly approximate.

In the 1971 paperthat introducedhe term profilingDon Knuth wrotethat “*less
than 4 per centof a programgenerally accounts fomore thanhalf of its running
time’" This indicateghat the way to use profiling isto identify the critical time-
consumingparts of the programimprovethemto the degree possiblandthenmea
sureagainto seeif a new hot spot has surfaced. Eventually, often aftely oneor
two iterationsthereis noobvioushotspot left.

Profiling is usuallyenabledwith a special compiler flagr option. Theprogram is
run, and then an analysistool shows theresults. On Unix, theflag is usually-p and
the toolis calledprof:

% CC -p spamtest.c -0 spamtest
% spamtest
% prof spamtest

The followingtableshowsthe profile generatetly aspecial versioof the spanfilter
we built to understandts behavior. It usesa fixed messagand a fixed setof 217
phraseswhich it matches againshe messagé&0,000 times. This runona 250 MHz

SECTION 7.2

TIMING AND PROFILING 173

MIPS R10000 usedthe original implementationf strstr that calls other standard
functions. Theoutput hadeenedited and reformattesbit fits the page. Noticeow
sizesof input (217 phrases) and the numlpéruns (10.000) showp as consistency
checksin the*" calls® column,which countsthe numbeof callsof each function.

12234768552 Totalumberof instructionsexecuted

13968100Q.: Totalcomputectycles
55.847:Totalcomputed execution tingeecs.)
1.141: Averageyclesl instruction

secs % cum% cycles instructions calls function
45260 81.0% 810% 11314990000 9440110000 48350000 strchr
6.081 10.9% 91.9% 1520280000 1566460000 46180000 strncmp
2.592 4.6% 96.69% 648080000 854500000 2170000 strstr
1.825 3.3% 99.8% 456225559 344882213 2170435 strlen
0.088 0.2% 100.0% 21950000 28510000 10000 isspam
0.000 0.0% 100.0% 100025 100028 1 main
0.000 00% 100.0% 53677 70268 219 _memoccpy
0.000 0.0% 100.0% 48888 46403 217 strcpy
0.000 0.0% 100.0% 17989 19894 219 fgets
0.000 0.0% 100.0% 16798 17547 230 malloc
0.000 0.0% 100.0%: 10305 10900 204 realfree
0.000 0.0% 100.0% 6293 7161 217 estrdup
0.000 0.0% 100.0% 6032 8575 231 cleanfree
0.000 0.0% 100.0% 5932 5729 | readpat
0.000 0.0% 100.0%: 5899 6339 219 getline
0.000 00% 100.0% 5500 5720 220 malloc

It's obviousthatstrchr andstrncmp, bothcalledby strstr, completely domi
natethe performance. Knuth's guidelinis right: a small part of the program con
sumes mosbf the runtime. Whena programis first profiled, it's common to setbe
top-running functionat 50 percent or moreasit is here, makingt easyto decide
where to focus attention.

Concentrate on the hot spotéfter rewriting strstr, we profiled spamtest again
and found thaf9.8%of the timewas nowspentin strstr alone.even though the
whole program was considerably fast&hen a single function isso overwhelm
ingly the bottleneck, ther@reonly twoways to goimprove the function to usebet
ter algorithm,or eliminate the function altogethéy rewriting the surroundingro-
gram.

In this casewe rewrote the program. Here ateefirst few linesof the profile for
spamtest using the final, fast implementatiofh i sspam. Noticethat theoveralltime
is much lessthatmemomp is now the hot spot,and thatisspam now consumes sig-
nificant fraction of the computationit is more complexhanthe version thatcalled
strstr, butits costis morethancompensated fdoy eliminatingstrlen andstrchr
fromisspam andby replacingstrncmp with mememp, which does lessvork per byte.

174 PERFORMANCE CHAPTER 7

secs % cum% cvcles instructions calls function
3524 56.9% 56.9% 880890000 1027590000 46180000 memecmp
2.662 43.04 100.04. 665550000 902920000 10000 issparn
0.001 0.0% 100.0% 140304 106043 652 strlen
0.000 0.0% 100.0% 100025 100028 1 man

It's instructive tospendsome time comparinghe cycle countsand numberof
callsin the two profiles. Notice thastrle nwentfrom a coupleof million calls to
652,andthat strncmp andmemcmp are called the same numinértimes. Also notice
that1isspam, which now incorporateshefunctionof strchr,still manageso usefar
fewer cycleghanstrchrdid before because examinenly the relevant patternat
each step.Many more detailof the executiortan be discoveredoy examining the
numbers.

A hot spotcan often beeliminated or at least cooledpy muchsimpler engineer
ing than we undertook forthe spanfilter. Long ago.a profile of Awk indicated that
onefunction was beingcalled about million timesover the coursef a regression
test,in this loop:

7 for (= 1; j < MAXFLD; j++)
2 clear(3);

Theloop, which clears fieldsbeforeeachnew input line is read,wastaking asmuch
as50 percentof the rurrtime. The constantAXFLD. the maximumnumberof fields
permittedin an input line, was200. But in most use®f Awk, the actual numbeof
fields wasonly two or three. Thusan enormous amount of time&as being wasted
clearing fieldsthat had neverbeenset. Replacinghe constantiy the previous value
of the maximum numbeaf fields gavea 25 percentoverall speedup. Thie wasto
changethe uppetimit of theloop:

for (j =i;] < maxfld; j++)
clear(j);
maxfld =i ;

Draw a picture. Pictures are especiallyood for presenting performance measure
ments. Theyganconvey informatiorabouttheeffectsof parameter changes, compare
algorithmsand data structuresand sometimespoint to unexpected behaviorThe
graphof chain lengthcounts for severdlashmultipliersin Chaptels showedclearly
thatsome multipliersverebetterthanothers.

The following graph showthe effectof the sizeof the hashtablearray on run-
time for the C versionof markov with Psalmsasinput (42,685words, 22,482 pre-
fixes). Wedid two experiments. One set runsusedarray sizesthatare powersf
two from 2 to 16.384; the other usedsizesthat are the largegprime lessthan each
powerof two. We wantedto seeif a prime arraysizemade anymeasurable difference
to theperformance.

SECTION 7.3 STRATEGIES FOR SPEED 175

04 = Powerdf two
20 - X e Prime
~ 10- *
Runtime 5_ *x
x
sec.
(sec) 5_ x
1- .
05 - L S~ NN x
0.2 4
T T T T
1 10 100 1000 10000
HashTableSize

The graphshowsthat runtime for this input is nosensitive to the table size once
the sizeis above 1,000 elements, nisrtherea discernible differenceetween prime
andpowerof-twotablesizes.

Exercise7-2. Whetheror not your system has time com.nand, use clock or
getTime to write a timing facility for your own use. Compareits timesto a wall
clock. How does other activitgn the machine affect the timing&P

Exercise7-3. In the first profile,strchr wascalled 48,350,00@imesand strncmp
only 46,180,000. Explainthe differenced

7.3 Strategies for Speed

Before changin@ programto makeit faster,be certain thatt really is too slow,
and usetiming toolsand profilersto discover wherehe time is going. Onceyou
knowwhat's happening, there araumberof strategiedo follow. We list afew here
in decreasing ordef profitability.

Usea betteralgorithm or datastructure. The most importanfactorin makinga pro-
gram fastelis the choiceof algorithmanddata structure; there cde a hugediffer-
encebetweeran algorithm thais efficientandonethatis not. Our spamfilter sawa
changein data structure thatias wortha factorof ten;evengreater improvemerg
possibleif the new algorithm reduces the ordef computationsay from O(n?) to
O(nlogn). We covered thigopicin Chaptel2, sowe won't dwell on ithere.

Be sure thathecomplexityis really whatyou expect;if not, theremight bea hid-
den performancleug. This apparently linear algorithm for scannanstring,

? for (8= 0; i < strlen(s); i++)
if (s[i] =

o~

?

176 PERFORMANCE CHAPTER 7

is in fact quadraticif s hasn characters, each cadl strien walks down then char
actersf the stringand thdoop isperformed n times.

Enablecompiler optimizationsOne zerecost changghat usuallyproduces a reasen
able improvemeris to turn on whatever optimization the compiler provides. Modem
compilersdo sufficiently well that theyobviate much of the needfor smallscale
changedy programmers.

By default,mostC and C++compilersdo notattemptmuchoptimization. A com
piler option enables theptimizer (**improver* would be a more accuraterm). It
shouldprobablybe the default excepthat theoptimizationstendto confusesource-
level debuggersso programmeranust enable the optimizer explicitly onciaey
believe theprogramhasbeendebugged.

Compiler optimizatiorusuallyimproves rurtime anywhere from a few percent to
a factorof two. Sometimes, though, it slows tlgogramdown, so measure the
improvement before shipping your product. We compared unoptinazéapti-
mizedcompilationon a coupleof versionof the spam filter. For theestsuite using
the final versionof the matching algorithmthe original runtime was 8.1 seconds,
which dropped td5.9 secondsvhen optimizationwas enabled.an improvementbf
over25%. On the other hand, theersion thatusedthe fixedup strstr showedno
improvementinderoptimization, becausetrstr hadalreadybeenoptimizedwhenit
wasinstalledin thelibrary; the optimizer applies onlyo the source code being cem
piled nowand noto thesystem libraries. However, some compilers hglebal opti-
mizer-which analyzetheentire programfor potential improvementdf sucha com
pileris availableon yoursystemtiry it; it might squeeze out a few more cycles.

Onething to be awaref is thatthe more aggressivetiie compiler optimizes, the
morelikely it is to introduce bugs into the compiled program. After enabling the opti
mizer,re-runyour regression testite.asyou should for any other modification.

Tune thecode.The right choiceof algorithm mattersf data sizes arbig enough.
Furthermore, algorithmic improvements work across different machines, compilers
andlanguages. But once the right algoritigrin place,if speed is stilanissue the
next thingto try is tuning the code: adjusting the detailEloopsandexpressions to
makethingsgofaster.

The versionof isspam we showed atheend of Sectiorv.l hadn'tbeen tuned.
Here,we'll showwhatfurther improvementsanbe achievedy tweaking the loop.
As a reminderthisis how we left it:

for (j = 0; (c = mesg[j1) != '\0’; j++) {
for (i = 0; i < nstarting[c]; i++) {
k = starting[c][i];
if (memcmp(mesg+j, pat[k] , patlen[k]) = 0) {
printf ("spam: match for ‘%s’\n", pat[kl);
return 1;

SECTION7.3 STRATEGIES FOR SPEED 177

This initial version take6.6 secondsn our testsuitewhencompiledusingthe opti
mizer. The inner loophasanarrayindex(nstarti ng[c]) in itsloop conditiorwhose
valueis fixed for each iterationf the outerloop. We can avoid recalculating by
savingthevaluein alocal variable:

for (j = 0; (c = mesg[j]) !'= "\0’; j++) {
n = nstarti ng[c] ;
for (A =051 <n; i++) {

k = startingl[cl[i];

This drops the time to 5.9 seconds, aldd% faster,a speedupypical of whattuning
can achieve. There's another variatkdecan pull out:starting[c] is alsofixed. It
seems like pullinghatcomputation oubf the loopwould alsohelp, but inour tests it
madeno measurable difference. Thiwo. is typical of tuning: some thingéelp,
some things don'tand one must measure to find owthich. And resultswill vary
with different machinesr compilers.

There is another changee could makeo the spamfilter. The inner loop com
pares theentire patternagainst thestring. but the algorithm ensurdisatthefirst char
acter alreadynatches.We can thereforeune thecodeto startmemomp onebyte fur
ther along. We tried this andfound it gave abou8% improvementwhich is slight
butit requires modifying only three lin@$ the programoneof themin precomputa
tion.

Don't optimize what doesn't matteGBometimesuning achievesothingbecausit is
applied where it make® difference. Make sure tlowdeyou're optimizings where
time is really spent.The following story might be apocryphdiut we'll tell it any
way. Anearly machindrom a now-defunct companyasanalyzedwith a hardware
performance monitor and discovettede spendings0 percentof its time executing
the same sequenoéseveral instructionsTheengineersduilt a special instruction to
encapsulate the functia thesequence, rebuithe systemandfoundit madenodif-
ferenceatall; they hadptimizedtheidle loop of the operating system.

How mucheffort shouldyou spendmakinga programrun faster? Thenain crite-
rion is whether the changesill yield enoughto be worthwhile. Asa guideline, the
personal time spenhaking a program faster shouldot be morethan the time the
speeduwill recover duringhelifetime of the program.By this rule, the algorithmic
improvement tda sspam wasworthwhile:it took adayof work butsaved (and contin
uesto save) hours every day. Removthgarrayindexfrom the inner loopvasless
dramatic, but stilworth doing, since thgrogramprovidesa serviceto alargecom
munity. Optimizing public services like thepamfilter or a library is almost always
worthwhile; speedingip test programs is almost never worthwhil&nd for a pro-
gramthatruns forayear, squeeze out everythipgu can. It may be worth restarting
if you find a way to makea ten percent improvement even aftbe program halseen
runningfor a month.

178 PERFORMANCE CHAPTER 7

Competitive programs—gamescompilers.word processors, spreadsheets, data
basesystems—fall into this categoraswell, since commercial succeisoften tothe
swiftest, at leash publishedbenchmark results.

It's importantto time programs as changes areing madeto make sure that
things are improving. Sometimesvo changes that each improvea program will
interact,negatingtheir individual effects. It's also theasethat timing mechanisms
canbesoerraticthat it's hardto draw firm conclusions abouhe effectof changes.
Evenon singleuser systemdimes carfluctuate unpredictablylf the variability of
theinternaltimer (or at leastwhat is reportedback toyou)is ten percentchangeghat
yield improvementsf only ten percent ardardto distinguishfrom noise.

7.4 Tuning the Code

Therearemanytechniqueso reduce rurtimewhena hot spot isfound. Here are
some suggestionshich shouldbe appliedwith care.andwith regressioniestingafter
eachto be surethat thecodestill works. Bearin mind thatgood compilerswill do
someof these for you, anéh fact you mayimpede their effortby complicating the
program. Whatevepou try, measurdés effect tomake sure ithelps.

Collect common subexpressionff. an expensive computation appears multiple
times.doit in only oneplaceandremembetheresult. For examplein Chapterl we
showeda macrothat computeda distanceby calling sqrt twice in a row with the
same valuesn effectthecomputationwvas

? sqrt(dx=dx + dy=xdy) + ((sgrt(dxzdx + dyzdy) > 0) 2 ...)

Compute the squareotonceanduseits valuein two places.
If a computationis done within a loop but doesnot dependon anything that
changewwithin theloop. movethe computation outsidaswhen wereplaced

for (i = 0; i < nstartinglc]l; i++) {
by

n = nstarting[c];
for (G =0; i <n; i+») {

Replaceexpensive operatiorisy cheap onesThetermreduction in strength refers to
optimizationgthat replacean expensive operatioby a cheaper oneln olden times,
this usedto meanreplacing multiplicationby additionsor shifts. but thatrarely buys
muchnow. Division andremainder arenuchslowerthanmultiplication. howeverso
there may be improvementf a division can be replacedwith multiplicationby the
inverse,or a remainderby a maskingoperationif the divisor is a powerof two.

Replacing array indexingy pointersin C or C++ might speedthingsup, although
mostcompilersdo this automatically. Replacirgfunctioncall by a simplercalcula-

SECTION 7.4 TUNING THE CODE 179

tion can still be worthwhile. Distancen the planeis determinedby the formula
sqrt(dx=dx+dy=dy). so todecidewhich of two pointsis furtheraway wouldnor-
mally involve calculatingwo squareroots. But the same decisiocan be madeby
comparing thequaresf thedistances;

if (dxlsdx1+dyl=dyl < dx2=dx2+dy2xdy2)

givesthe same resuitscomparingthe squareootsof theexpressions.

Anotherinstance occurs textual pattern matchers suel our spamfilter or
grep. If the patternbeginswith a literal charactera quick searchis madedown the
input text for thatcharacterif no matchis found,the moreexpensivesearchmachin
eryis notinvokedat all.

Unroll or eliminate loops.Thereis a certain overheadh settingup and runninga
loop. If the bodyof theloopisn't toolong anddoesn't iteratépo manytimes.it can
be moreefficientto writeouteach iteratiorin sequenceThus, forexample.
for (i=0; 1 < 3; i++)
a[il = b[i1 + c[il;

becomes
af0] = b[0] + c[0];
af1] = b[1] + c[1];
a[2] = b[2] + c[2];

This eliminates loop overheagarticularly branchingwhich can slowmodern pro-
cessordy interruptingthe flow of execution.

If the loopis longer,the samekind of transformatiorcanbe used t@mortize the
overheaabver fewer iterations:

for (A =0; i < 3=n; i++)
a[il = b[i] *t c[il;

becomes

for (i=0; i < 3xn; i = 3) {
a[i+0] = b[i+0] + c[i+0];
ali+1] = b[i+1] + c[i+1];
a[i+2]1 = b[i+2] *+ c[i+2];
}

Note thatthis worksonly if the lengthis a multiple of the step sizeptherwiseaddk
tional codeis neededo fix up theends,which is a placefor mistakes tareepin and
for someof theefficiencyto belostagain.

Cache frequently-used values.Cached valuedon't haveto be recomputed. Caching
takesadvantagef locality, the tendencyor programgandpeople) to rause recently
accessed anearby itemdn preference tolder or distant dataComputing hardware
makesextensiveuseof cachesindeed. adding cachmemoryto acomputecanmake

180 PERFORMANCE CHAPTER7

greatimprovementsn how fast a machineappears. Theameis true of software.
Webbrowsers, foinstance, cachpagesandimages to avoid the slotkansferof data
overthe Internet.In a print previewprogramwe wrote yearsago, horalphabeticspe
cial characters likez hadto belookedupin atable. Measurement showed thauch
of the useof specialcharactersnvolved drawing lineswith long sequencesf the
samesingle character. Cachingst the single mostrecentlyusedcharactemadethe
programsignificantly fasteon typical inputs.

It's bestif thecachingoperationis invisible from outside sothatit doesn't affect
the resbof the programexceptfor makingit run faster. Thusn the caseof the print
previewer, thénterfaceto thecharactedrawing functiordidn't changet wasalways

drawchar(c) ;

The originalversionof drawchar calledshow(lookup(c)). Thecacheimplementa
tion usednternal staticzariables to rememb#e previouscharacteandits code:

if (c = lastc) { /+ update cache/
lastc= c;
lastcode= lookup(c);

}

show(lastcode) ;

Write a specialpurpose allocatorOften the single hot spotin a program is memory
allocation, which manifests itselfas lots of calls on malloc or new. When most
requests arfor blocksof the sameize, substantial speedwgepossibleby replacing
callsto the generalpurpose allocatdoy callsto a specialpurpose one. The special
purposeallocatormakesonecall to malloc to fetcha big array of items,thenhands
themout oneatatime asneededacheaper operatiorzreed itemsreplacedback in
aree list sothey carbereusedjuickly.

if therequestedizesaresimilar,you cantradespace fotime by alwaysallocating
enoughfor thelargest request. Th&anbeeffective formanagingshort stringsf you
usethesamesizefor all stringsupto aspecifiedlength.

Some algorithmean usestackbased allocatiorwherea whole sequencef allo-
cationsis done,andthentheentire seis freedat once. The allocator obtainsnebig
chunkfor itself andtreatsit asa stack pushingallocatedtemson asneededand pop
ping themall off in a singleoperation atheend. SomeC libraries offera function
allocafor thiskind of allocationthoughit is notstandard It uses the localall stack
asthe sourceof memory, andrees allthe itemswhenthefunctionthat callsalloca
returns.

Buffer input and output. Buffering batchedransactions sthat frequenbperations
are done with as little overheadas possible,and the highoverheadoperationsare
doneonly whennecessaryThe costof an operationis thereby spreadver multiple
datavalues. Whena C programcalls printf, for examplethe characters are stored
in a buffer but not passed to theperatingsystem untilthe buffer is full or flushed
explicitly. Theoperating system itsethay inturn delaywriting thedatato disk. The

SECTION 7.4 TUNING THE CODE 181

drawback is theneedto flush output buffers to make data visibkethe worstcase,
information stillin a bufferwill be lostif a programcrashes.

Handle specialcasesseparately.By handling samesized objectsin separate code,
specialpurpose allocators reduce time and space oveihéhd generadllocator and
incidentally reduce fragmentatiomn the graphics library fothe Inferno system, the
basic draw functiomvaswritten to beassimple and straightforwaaspossible.With
that working, optimizationgor a variety of cases (choseby profiling) were added
one at aime; it wasalways possible to tegite optimizedversionagainstthe simple
one. In the end, onlya handfulof cases were optimized becatisedynamic distribu
tion of calls tothe drawing functiorwas heavilyskewed towards displaying charac
ters; itwasn't worth writing clevercodefor all the cases.

Precompute resultsSometimest is possible tomakea programrun fasterby pre-
computing valueso they arereadywhen they are needed.We saw thisin thespam
filter, which precomputedtrilen(pat[i]) andstoredit in the array apatlen[i].
If a graphics systemeedsto repeatedly compute mathematical function like sine
but only for a discrete sebf values, suclasinteger degrees, ill be faster tqre
computea table with 360entries(or provideit asdata)and indexinto it as heeded.
Thisis anexampleof trading space for time. There ar@nyopportunities to replace
codeby dataor to do computation during compilation, to satime andsometimes
spaceas well. For examplethe ctypefunctions likeisdigit are almost always
implementedy indexing intoa tableof bit flags rathethanby evaluatinga sequence
of tests.

Use approximate valueslf accuracy isn'tan issue,uselower-precision dataypes.
On older or smaller machinegir machineghat simulate floating poinin software,
singleprecision floatingpoint arithmetids often fastethandoubleprecisionso use
float insteadof double to savetime. Some moderngraphics processoisse a
relatedtrick. The IEEE floating-point standard requirésgraceful underfloW ascal
culations approacthe lowendof representable values, buthis isexpensive t@om
pute. For images, the feature is unnecessary aisdfasterand perfectlyacceptable
to truncate ta@ero. This notonly saves timevhenthe numbersunderflow,it can sim
plify the hardware fomll arithmetic. Theuseof integersin and cos routinesis
another examplef usingapproximatevalues.

Rewritein a lower-level language Lower-level languagetendto be more efficient,
although at costin programmetime. Thus rewriting some criticgdart ofa C++or
Javaprogramin C orreplacingan interpreted scripby a programin a compiledlan
guagemay make itrun much faster.

Occasionally, one can get significant speedwith machinedependentode.
This isalast resortnot a stepto betakenlightly, because it destroys portabilapnd
makes future maintenanaed modificationamuchharder. Almosalways, operations
to be expresseih assembly language are relatively small functions that shmmild
embeddedh alibrary; memset andmemmove, or graphics operations, atgpical exam-

182 PERFORMANCE CHAPTER7

ples. The approacks to write the codascleanly as possibia a high-level language
and makesure it's corredby testingit aswe described fomemset in Chapter6. This

is your portable versionwhich will work everywhere, albeit slowlyWwWhenyou move

to a newenvironmentyou canstartwith a version thais knownto work. Now when
you write an assemblylanguageversion. testt exhaustively against the portable one.
Whenbugsoccur.non-portable codés alwayssuspectit's comforting tchavea com-
parisonimplementation.

Exercise7-4. Oneway to makeafunction likememset run fasteris to have itwrite in
word-sizedchunksinsteadof byte-sized;this is likely to matchthe hardware better
andmight reducethe loop overheadby a factorof four or eight. The downsidis that
there arenow a varietyof end effects taealwith if thetarget isnotalignedon a word
boundary andf the lengthis not a multiple of the wordsize. Writea version of
memset thatdoesthis optimization. Compare its performantethe existinglibrary
version ando a straightforward byteat-a-time loop.O

Exercise7-5. Write a memory allocatorsmalloc for C stringsthat uses special-
purpose allocator for small stringsit callsmal1oc directly for large onesYou will
needto definea structto represent the strings either case.How do you decide
whereto switchfrom callingsmalloctomalloc?d

7.5 Space Efficiency

Memory usedo be the mostprecious computing resource, alwayshort supply,
and muchbad programmingwasdonein an attemptto squeeze thenostout of what
little therewas. The infamous®Year2000Problem* is frequently cited asnexam
ple of this; when memory wasruly scarce eventhe two bytesneeded to stor&9
were deemed too expensive. Whethar not spaceis the truereasonfor the
problem—such code may simply reflectthe way people use datem everyday life,
where the centuryis commonly omitted—it demonstrates the danger inherémt
shortsighted optimization.

In any case,timeshave changedind both main memonand secondary storage
are amazinglgheap. Thus the first approach to optimizing space shaelthe same
asto improving speedion't bother.

There are still situationsiowever, wherspace efficiency matterdf a program
doesn'tfit into the availablenain memory partsof it will be pagedout,and thatwill
make its performance unacceptabl®e seethis when new versionsof software
squander memory; is a sadreality thatsoftware upgrades are often followleyglthe
purchasef morememory.

Savespaceby using thesmallestpossible datgpe.One step to space efficienisjto
make minoichanges to use existimgemory betterfor exampleby using thesmallest

SECTION7.5 SPACE EFFICIENCY 183

data typethat will work. This mightmeanreplacingi nt with shortf thedatawill
fit; thisis a common technique for coordinaie2-D graphics systems, sindé bits
are likely to handle any expected raragfescreen coordinatesOr it might mean
replacing doubl evith f 10at;the potentialproblem is los®f precision, sincefoats
usually holdonly 6 or 7 decimal digits.

In these caseandanalogous ones, other changesy berequiredaswell, notably
format specification® printf andespeciallyscanfstatements.

The logical extensioof this approach is to encode informationa byteor even
fewer bits,say a singlebit wherepossible. Don't useC or C++ bitfields; they are
highly nonportableand tendto generate voluminowsnd inefficient code. Instead,
encapsulate the operatiopgu want in functionsthat fetch and setindividual bits
within wordsor an array of words with shift and maskoperations. This function
returns a groupf contiguous bits from the middéé a word:

/% getbits: getn bits from positionp =/

/+ bits are numbered from 0 (least significant) up =/
unsignedint getbits(unsigned int x, int p, int n)

{

}

return (X >> (p+1-n)) & ~(~0 << n);

If suchfunctionsturn out to be too slow,they canbe improvedwith the techniques
described earliein this chapter. In C++, operator overloadingan be usedto make
bit accesses look like regukatbscripting.

Don't storewhat youcan easily recomputeChanges like these aminor, however;
theyare analogous to code tuning. Major improvements are more likely to come from
better data structures, perhaps coupléttl algorithm changesHere's an example.
Many years agopneof uswasapproachedy a colleaguevho wastrying to do a
computatioron a matrix solargethatit was necessarp shutdown the machinand
reload a strippedown operating systesp the matrix wouldit. He wantedo know
if therewas analternative, sincehis was anoperationahightmare. We askedwhat
the matrixwaslike, andlearnedthat it contained integer valuesostof which were
Zero. In fact, fewerthan five percentof the matrixelements wer@onzero. This
immediately suggested a representatiomwhich only the norzero elementsf the
matrix werestored andeachmatrixaccess lika[i][j] wouldbe replacedyy afunc-
tion callm(i,j). There are severalaysto store the data; the easiesprobablyan
arrayof pointersonefor each row, eacbf which pointsto a compacarray of col-
umnnumbersandcorresponding values. Thimshigher space overhepér nonzero
item but requiresmuch less space overalynd although individual accessesll be
slower, they will be noticeably fastethanreloading the operating systerio com
plete thestory: the colleague applied the suggestma wentawaycompletely satis
fied.

We useda similar approach to solve a modeersionof the sameproblem. A
radio design systemeededo represent terrain data and rasignalstrengths over a

184 PERFORMANCE CHAPTER 7

very large geographical area (100 to 200 kilometera side) to a resolutioof 100
meters. Storinghis as a large rectangular array exceettedmemoryavailableon
the target machinand wouldhave caused unacceptaplgingbehavior. But over
largeregions, the terrain argignal strength values alikely to bethe samesoa hier
archical representatiaihat coalesces regionsf the same value into a single cell
makegheproblem manageable.

Variationson this theme are frequerdindso are specific representationmst all
sharethe samebasic ideastorethe common valuer values implicitlyor in a com
pact form,andspend more timandspaceon the remaining/alues. If the mostcom-
monvalues are really commothis isa win.

The programshouldbe organizedso that thespecific data representatiofcom:
plex types is hiddenn a classor setof functions operatingn a private dataype.
This precautiorensureghatthe resiof the program will not be affectedif the repre
sentation changes.

Space efficiency concerns sometinmanifestthemselvesn the external repre
sentatiorof informationaswell, bothconversiorandstorage.In general, iis bestto
store informatiorastext wherever feasible rath#ranin somebinary representation.
Textis portable, easy teead, ancamenable to processiby all kindsof tools; binary
representationsave noneof these advantages. The argumiantavor of binary is
usually based oH speed,' butthis should be treatedith some skepticism, sindae
disparitybetween text and binafgrmsmay not bell thatgreat.

Space efficiency often comesgith a costin runtime. One applicatiorhad to
transfer abig image fromone programto another. Imageis a simple format called
PPM were typically a megabyteso we thoughtit would be much faster to encode
themfor transferin the compresse@IF format instead; those files were more like
50K bytes.But theencodinganddecodingof GIF took asmuchtime aswassavedby
transferring a shorter fileso nothingwasgained. Thecode to handléhe GIF format
is about 500 lines long; thiePM source isabout10 lines. For easeof maintenance,
therefore the GIF encodingwas dropped andhe application continues to ugePM
exclusively. Of coursethe tradeoff would be different if the file were to be sent
across a slownetwork instead;then a GIF encodingwould be much more cost
effective.

7.6 Estimation

It's hardto estimate aheadf time how fast a progranwill be, and it's doubly
hardto estimatethe costof specific language statementsmachine instructions. It's
easythough,to create aost modelfor a languager a systemwhich will give you at
least arough ideaof how long important operationtake.

One approacthat isoften usedfor conventionaprogrammindanguages is pro-
gram that timesepresentative code sequences. There are operational difficulties, like
getting reproducible resultsxd cancelingout irrelevant overheaddut it is possible

SECTION 7.6 ESTIMATION 185

to get usefulinsightswithout mucheffort. For examplewe havea C and C++ cost
model program thagstimates the costé individual statementby enclosingthemin
aloop that runs them manmillions of times,thencomputesan averagdime. On a

250MHz MIPS R10000, it produceghis data,with timesin nanoseconds per opera
tion.

Int Operations

14—+ 8
il=4i2+i3 12
il=1i2 -i3 12
il=12 % i3 12
il=12 /i3 114
il=12 % i3 114
Float Operations
fl="f2 8
fl=f2+13 12
fl=f2 - 13 12
fl=Ff2 = 3 11
fl=Ff2/ 13 28
Double Operations
dl = d2 8
dl=d2 + d3 12
dl =d2 - d3 12
dl =d2 = d3 11
dl=d2 / d3 58
Numeric Conversions
il=fl 8
fl=11 8

Integer operations are fast, except for divistml modulus.Floatingpoint opera
tions areasfastor faster,a surprise to peopletho grewup at a time whenfloating-
pointoperations werenuchmore expensivéhaninteger operations.

Other basic operatiorarealsoquite fast, including function callsthe last three
linesof this group:

Integer Vector Operations

v[i] =i 49
vivlill = i 81
vlvIv[ill]l =1 100
Control Structures
if (=5 il++ 4
if (i !1=5) dl++ 12
while (i < 0) il++ 3
il = suml(i2) 57
i1 = sum2(i2, i3) 58
il = sum3(iz2, i3, i4) 54

But inputandoutput arenot socheap, nor areostother library functions:

186 PERFORMANCE CHAPTER 7

Input/Output
fputs(s, fp) 270
fgets(s, 9, fp) 222
fprintf(fp, "%d\n", i) 1820
fscanf(fp, "%d", &il) 2070
Malloc
free(maitloc(8)) 342
String Functions
strcpy(s, "0123456789) 157
il = strcmp(s, s) 176
il = stromp(s, "al23456789") 64
String/Number Conversions
il = atoi("12345") 402
sscanf("12345", "%d", &i1) 2376
sprintf(s, "%d", i) 1492
fl = atof("123.45™) 4098
sscanf("123.45", "%f", &fl) 6438
sprintf(s, "%6.2f", 123.45) 3902

Thetimesfor malloc andfre eareprobably notindicativeof trueperformance, since
freeingimmediately afterallocating is not a typical pattern.
Finally, math functions:

Math Functions

il = randQ 135
fl = Tog(f2) 418
fl = exp(f2) 462
fl = sin(f2) 514
fl = sqrt(f2) 112

Thesevalues would be different on differenthardware, ofcourse,but the trends
can be usedfor back-of-the-envelope estimate®f howlong something mightake,or
for comparing therelative costs of 1/O versus basic operationsor for deciding
whetherto rewrite anexpressioror use arinline function.

Therearemany sources of variabilityOneis compiler optimizationlevel. Mod-
e mecompilers canfind optimizationghatelude mostprogrammers.Furthermorecur-
rentCPUs areso complicated that only a good compiler can take advantagef their
ability to issue multiple instructionsconcurrently, pipeline their execution,fetch
instructionsand data befortheyareneededandthelike.

Computer architecturiself is another majoreason whyperformance numbers
arehard topredict. Memorycaches maka great differencén speed, angnuchclev-
ernessin hardware desiggoesinto hiding the fact that main memoryis quite a bit
slower thancachememory. Rawprocessotlock rateslike ‘400 MHz™" are sugges
tive butdon't tell the whole story; oneof our old 200 MHz Pentiumss significantly
slowerthananevenolder 100MHz Pentiumbecausehelatter has abig second-level
cache and the former hasne. Anddifferent generationsf processorevenfor the

—— i .t e

SECTION 7.7 SUMMARY 187

sameinstruction settake differenthumbers ofclock cyclesto do a particular opera
tion.

Exercise7-6. Createa setof testsfor estimating the costef basic operation$or
computers and compilers near you, and investigiatdarities andlifferencesn per
formance

Exercise7-7. Createa cost model for higherlevel operationsin C++. Among the
featuresthat might be included are construction, copying, anddeletion of class
objects; member function callsjrtual functions; inline functions; theiostream
library; the STL. This exercisés openrended,soconcentrate oma smallsetof repre
sentative operationgl

Exercise7-8. Repeathe previous exercistor Java.O

7.7 Summary

Onceyou havechosenthe right algorithm, performanceoptimization is generally
the lastthing to worry about asyou write a program. If you mustundertaket, how-
ever, the basicycleis to measurefocuson the fewplaces where ahangewill make
the most differenceyerify the correctnessf yourchangesthen measureagain. Stop
assoonasyou can, and preservt@e simplest versioasa baselingor timing and cof
rectness.

When you'retrying to improvethe speedor space consumptioof a programijt's
a goodidea to makeaip somebenchmark testand problemssoyou canestimate and
keeptrack of performancefor yourself. If therearealreadystandard benchmarisr
yourtask, useéhemtoo. If the programis relatively selfcontainedpneapproach iso
find or createa collectionof *"typical’” inputs; thesenight well be partof a testsuite
aswell. Thisis the genesisof benchmark suitefor commercial and academsys
temslike compilers, computers, artle like. For exampleAwk comeswith about20
small programsthat together cover mostf the commonlyused languagefeatures;
theseprogramsarerun overa verylarge input file to assurihat thesameresultsare
computedandthat no performance bug has been introducedWe also havea collec
tion of standard large data files that che usedor timing tests. Insome caseg
might help that suchfiles haveeasily verified propertiesfor examplea sizethat is a
powerof tenor of two.

Benchmarking came managed witithe samekind of scaffolding as weecom
mendedfor testingin Chapter6. Timing testsarerun automatically,outputsinclude
enoughidentification that theyxan be understoodndreplicated;recordsare keptso
that trends and significant changes beobserved.

By the way, it's extremelydifficult to do good benchmarking,and it is not
unknownfor companies taune their productso show up wellbon benchmarkssoit is
wise to takall benchmark resultwith a grain of salt.

188 PERFORMANCE CHAPTER7

Supplementary Reading

Our discussionof the spandfilter is basedon work by Bob Flandrena and Ken
Thompson. Theirfilter includes regular expressiofsr moresophisticatednatching
and automatically classifies messageqcertainly spam,possibly spam, not spam)
according to the stringbey match.

Knuth's profiling paper,'" An Empirical Studyof FORTRAN Programs, appeared
in Software—Practiceand Experiencel, 2, pp. 105133,1971. Thecoreof the paper
is a statisticabnalysisof asetof programs foundy rummagingin wastebasketsand
publicly-visible directorieson thecomputer center'snachines.

Jon Bentley'sProgramming Pearls and More Programming Pearls (Addison
Wesley,1986 and1988) have severdiine examplesof algorithmicand codetuning
improvements; therare also good essaga scaffoldsfor performance improvements
and the usef profiles.

Inner Loops,by Rick Booth (AddisosiVesley, 1997), is a good reference otun-
ing PCprogramsalthough processors evolgefastthatspecific detailsgequickly.

JohnHennessyand David Patterson's familyf books oncomputer architecture
(for example Computer Organizatiomnd Design:The Hardware/Software Interface,
Morgan Kaufman1997) contairthoroughdiscussion®f performance considerations
for modemcomputers.

Portability

Finally, standardization,like convention, carbeanothermanifesta-
tion Of the strongorder. Bur unlike conventionit hasbeenaccepted
in Modern architectureas an enriching product ofour technology,
yetdreadedor its potential domination and brutality.

RobertVenturi,Complexity and Contradictionn Architecture

It's hard to write softwaré¢hat runs correctly anefficiently. Soonce aprogram
worksin oneenvironmentyou don't want torepeat much ofheeffort if you moveit
to a different compileor processoor operating system. Ideally, should needno
changesvhatsoever.

This ideal iscalled portability. In practice,'" portability"® more oftenstandsfor
the weaker concept th#twill be easier tomodify the programasit movesthanto
rewriteit from scratch. Theless revisiont needs, thenoreportableit is.

You may wonderwhy we worry aboutportability at all. If softwareis going to
run in only one environment, undespecifiedconditions,why spendtime giving it
broader applicability? Firsgnysuccessful progranalmostby definition, getsused
in unexpected wayand unexpected placesBuilding software tobe more general
than itsoriginal specificatiorwill resultin less maintenance and martlity down the
road. Second, environments change. When the compileperating systeror hard
wareis upgradedfeaturesmay change.Thelessthe programdepends ospecial fea
tures, the less likely it it0 breakand themoreeasilyit will adapt to changing circum
stances. Finally, and mostimportant, a portable prograns a better program.The
effort investedto make aprogramportable alsanakes it better designebtletter con
structed, andnore thoroughly testedThe techniquesof portable programmingre
closelyrelatedto thetechniques ofood programmingn general.

Of course the degresf portability mustbe tempered by realityThere isnosuch
thing asan absolutely portabl@rogram,only a program thahasn'tyet been triedn
enough environments. Bute cankeep portability asour goal by aiming towards
softwarethat runs withoutchangealmost everywhere Evenif this goalisn't met

189

190 PORTABILITY CHAPTER 8

completely,time spenbn portability asthe program is created willay off when the
software musbeupdated.

Ourmessagés this: try to writesoftwarethat works withintheintersection ofthe
various standards, interfacaadenvironmentst must accommodateDon't fix every
portability problemby addingspecialcode;instead adaptthesoftware towork within
the new constraints. Use abstractiand encapsulation to restrietnd control
unavoidable noportable code.By staying withinthe intersection ofconstraints and
by localizing system dependencies, yaodewill become cleaner andore general
asit is ported.

8.1 Language

Stick to the standard.The first stepto portablecodeis of courseto programin a
high-level languageandwithin the language standaifdthere is one. Binariedon't
port well, butsourcecodedoes. Even sahe way thata compilertranslatesa pro-
graminto machinenstructions is not preciselgefined, everdor standardanguages.
Few language# wide usehave only a single implementation; thamre usually mut
tiple suppliers, or versionsfor different operatingsystems,or releases that have
evolved ovetime. How they interpretyour sourceodewill vary.

Why isn't a standard strict definition? Sometimes a standdsdncompleteand
fails to define thebehavior wherfeaturesnteract. Sometimes it's deliberatelgdefi-
nite; for example, thehar typein C and C++ may be signedor unsigned,and need
noteven have exactly Bits. Leavingsuchissuesup to the compilemwriter mayallow
more efficient implementations anavoid restrictingthe hardware the languageill
runon, atthe riskof makinglife harderfor programmers.Politics andechnicalcom-
patibility issues may leath compromiseshatleave detailsinspecified. Finally, lan-
guagesareintricate and compilerarecomplex; therewill be errorsin the interpreta
tion andbugsin theimplementation.

Sometimes théanguages aren'standardizedt all. C has an official ANSI/ISO
standard issueih 1988, but theISO C++ standardwas ratifiedonly in 1998; at the
time wearewriting this, not allcompilersin usesupport theofficial definition. Java
is new and still yearsaway from standardization. A language standari$ usually
developed only after the language hasaaiety of conflicting implementationgo
unify, andis in wide enough use tgustify the expensef standardization. Irthe
meantime, therarestill programs to write anthultiple environments tsupport.

So although referencemanualsand standards give thienpression ofrigorous
specification, theynever define a languadelly, and different implementations may
make valid but incompatibleinterpretations. Sometimes therare even errors. A
small illustrationshowedup while we werdirst writing this chapter. This external
declaration is illegain C andC++:

? #x[] = {"abc"};

SECTION 8.1 LANGUAGE 191

A test of a dozesompilersturned up dew thatcorrectly diagnosed thaissingchar
type specifierfor x, afair numberthat warnedf mismatched types (apparently using
anold definitionof the language to inféncorrectlythatx is an arrayof int pointers),
andacouplethatcompiled the illegatodewithout a murmuiof complaint.

Programin the mainstream.The inability of some compilergo flag this error is
unfortunate,but it alsoindicates arimportant aspeotf portability. Languages have
dark comerswhere practice varies-bitfields in C and C++, for example—andit is
prudent to avoidhem. Use only those featurder which thelanguagedefinition is
unambiguous andrell understood.Such featureare more likely to be widely avai
ableand to behavéhe sameway everywhere.We call this themainstreanof thelan-
guage.

It's hard to knowustwherethemainstream is, but's easyto recognizeconstrue
tions thatarewell outsideit. Brand newfeaturessuchas// comments andompiex
in C, or features specifito onearchitecturesuchas thekeywordsnearandfar, are
guaranteedo causetrouble. If afeatureis so unusualor unclear thato understand it
you need to consult a '"language lawyef*—an expert in reading language
definitions— don't use it.

In this discussionwe'll focus onC and C++, generalpurpose languages cem
monly usedto write portablesoftware. The C standards more than alecadeold and
thelanguages very stableputa newstandards in theworks, so upheavais coming.
Meanwhile, theC++ standards hot off the pressonot allimplementationdavehad
time to converge.

What is theC mainstream?Theterm usually referdo the established stytd# use
of the language but sometimesit's better toplan for the future. For example, the
original versionof C did not require functionprototypes. Onedeclaredsqrt to be a
functionby saying

? double sqgrtQ;

which defines the typef the return value but not of the parametessiSI C added
function prototypes, whiclspecifyeverything:

double sqrt(doubie);

ANSI C compilersarerequired to accept thearlier syntax,but you shouldnonetheless
write prototypedor all yourfunctions. Doingsowill guarantee safede— function

calls will be fully typechecked—andif interfaceschange, the compilewill catch

them. If yourcodecalls

func(7, PI);

but func has noprototype,the compilermight not verify that func is being called
correctly. If thelibrary laterchangessothatfunc has threeargumentsthe needto
repairthesoftwaremight be missed because tlodd-style syntax disablesype check
ing of function arguments.

192 PORTABILITY CHAPTER 8

C++ is a largerlanguagewith a more recergstandardsoits mainstreanis harder
toidentify. For example, althougive expectthe STL to becomemainstream, this will
not happen immediatelyand somecurrent implementationgdo not supportit com
pletely.

Beware of languagedrouble spots.As we mentioned,standards leave some things
intentionally undefinear unspecified, usuallyo give compiler writers more flexibil
ity. Thelist of such behaviors idiscouraginglyong.

Sizesof data types. Thesizesof basic datdypesin C andC++ arenot definedpther
thanthe basiaules that

sizeof(char) < sizeof(short) 0 sizeof(int) B sizeof(long)
sizeof (float) < sizeof(doubl €)

andthatchar must haveat least8 bits, short andint atleastl6, andlong at least
32, thereare noguaranteegroperties. It’s not even required thatpointervaluefit in
anint.

It's easy enough to finoutwhatthesizesare foraspecificcompiler:

/= sizeof: display sizes of basic types =/
int main(voi d)

printf("char %d, short %d, int %d, long %d,",
sizeof(char), sizeof(short),
sizeof(int), sizeof(long)) ;

printf(" float %d, double %d, void* %d\n",
sizeof(float), sizeof(double), sizeof(void =*));

return O;

}
The outpuis the samen mostof the machinesve useregularly:

char 1, short 2, int 4, long 4, float 4, double 8, void* 4
butothervaluesarecertainly possible. Son-bit machines producthis:

char 1, short 2, int 4, long 8, float 4, double 8, void* 8
andearly PC compilerstypically producedhis:

char 1, short 2, int 2, long 4, float 4, double 8, void* 2

In the early daysof PCs, the hardware supported sevekaids of pointers. Coping
with this mess causetheinvention of pointer modifierdike far andnear, neitherof
which is standardbut whose reservedord ghostsstill haunt currencompilers. If
your compiler can changbe sizesof basictypes,or if you havemachines with di
ferentsizes, tryto compile andestyour program in these differeatnfigurations.
The standardheadeffile stddef .h definesa numberof typesthatcanhelp with
portability. The mostcommonlyusedof theseis size —t, which istheunsigned inte

SECTION 8.1 LANGUAGE 193

gral type returnedly the sizeof operator. Valuesf this typearereturnedby func-
tions likes trl enand useds argumentsy manyfunctions, includingnalioc.

Learningfrom someof theseexperienceslava defineshe sizesof all basic data
types:byteis 8 bits,charandshortarel6, in tis 32,andlong is 64.

We will ignoretherich setof potential issues relatedfloating-point computation
sincethatis a booksized topidn itself. Fortunately mostmodem machines support
thelEEE standardor floating-pointhardwareand thughe propertiesf floating-point
arithmeticarereasonablyvell defined.

Order of evaluation. In C andC++, the orderof evaluationof operandsf expres
sions, side effectandfunction arguments notdefined. For exampl@ theassign
ment

? n = (getchar() << 8) | getchar();

the secondetchar couldbecalledfirst: theway theexpressioris written is not nec
essarilytheway itexecutes.In thestatement

? ptr[count] = namg++count];

countmightbeincremented beforer afterit is usedo indexptr, andin
? printf("%c %c\n", getchar(), getchar()):

thefirst input character coulde printedsecondnsteadf first. In

? printf("%f %s\n", log(-1.23), strerror(errno));

the valueof errno maybeevaluated beforkog is called.

Therearerulesfor whencertain expressioraeevaluated.By definition,all side
effectsandfunction calls must becompletecateach semicolorr whenafunctionis
called. The&& and| | operatoreexecutdeft to right andonly asfar as necessary to
determine theitruth value(including side effects). Thepnditionin a ?: operatolis
evaluatedincluding side effectgndthenexactly oneof thetwo expressions thédl-
low is evaluated.

Javahasa stricterdefinition of orderof evaluation.It requiresthat expressions,
including side effectspe evaluated leftto right, though one authoritativenanual
advisesnot writing codethat depends crucially’* on this behavior. Thiss sound
adviceif there'sany chance that Javeodewill be convertedto C or C++, which
makeno suchpromises. Convertingetweenanguagess an extremebut occasion
ally reasonable test portability.

Signedness othar. In C andC++, it is not specified whetheihe chardata type is
signedor unsigned. Thisan lead tdroublewhencombiningcharsandi nts,suchas
in code thatallsthei nt-valuedroutinegetchar(). If you say

? charc; /= shouldbeint =/
? Cc = getcharQ);

194 PORTABILITY CHAPTER 8

the valueof c will be between0 and255if char is unsignedand between-128and
127if char is signed,for the almostuniversal configuration of-®it characters on a
two's complemenmmachine. This has implicationd the characteiis to beusedasan
arraysubscripbr if it is to betestedagainstEOF, which usually hawalue-1in stdio.
Forinstance,we had developed this codle Section6.1 after fixing afew boundary
conditionsin the original version. The comparisons[i] == EOF will alwaysfail if
char is unsigned:

? int i;

9 char s[MAX];

i

? for (= 0; i < MAX-1; i++)

? if ((s[i] = getchar()) == '\n’ || s[i] == EOF)
? break;

? s[i] = ’\0’;

When getchar returns EOF, the value255 (OxFF, the resultof converting -1 to
unsigned char) will bestoredin s[i]. If s[i] is unsigned, this will remai@55 for
the comparison witBOF, which will fail.

Evenif char is signed, howevethe codédsn't correct. Thecomparisorwill suc
ceedat EOF, but avalid input byteof OxFF will look just like EOF and terminatethe
loop prematurely. Soregardless of the sign ofar, you must always store the return
value ofgetchar in anint for comparisorwith EOF. Hereis how to write theloop
portably:

int c, i;
char s[MAX] ;
for (i = 0; 1 < MAX-1; i++) {
if ((c = getchar()) = '\n’ || ¢ == EOF)
break;
s[i] = c;
}
s[i] = ’\0’;

Javahasno unsigned qualifier; integral typesare signed andhe (16-bit) char
typeis not.

Arithmetic or logical shift. Right shifts of signed quantitiesvith the >> operator
may be arithmetic(a copy of the sign bit is propagatedduring the shift)or logical
(zeros fillthe vacated bitsluring the shift). Again, learninfrom the problemsvith C
and C++, Java reservess> for arithmetic rightshift and provides a separate operator
>>> for logical right shift.

Byte order. Thebyte ordemwithin short, int, andlong is notdefined; the bytevith
the lowestaddressnay bethe most significant byter the least significanyte. This
is a hardwaredependentssuethat we'll discussatlengthlater inthis chapter.

SECTION 8.1 LANGUAGE 195

Alignment of structure and classmembers. The alignmentof items within strue
tures,classesandunions isnotdefined.except thamembersarelaid outin the order
of declaration. For examplein this structure,

struct X {
char c;
int i;
1

theaddres®f i couldbe?2, 4, or 8 bytesfrom the beginningf the structure.A few
machinesallow i ntsto bestored on oddoundaries, bunost demandhatan n-byte
primitive datatype be stored atan n-byte boundary for examplethatdoubles,which
areusually8 bytes longarestoredataddressethataremultiplesof 8. On topof this,
thecompiler writermay makefurtheradjustments, suchsforcing alignment foper
formancereasons.

You should never assumthat the elementsof a structure occupy contiguous
memory. Alignmentrestrictionsintroduce'*holes”; structX will haveat leastone
byte of unusedpace.Theseholesimply thata structuramay be bigger thathe sum
of its membersizes,and will vary from machine tomachine. If you're allocating
memoryto hold one,you must askor sizeof(structX) bytes, notsizeof (char)+
sizeof(int).

Bitfields. Bitfields aresomachinedependent thatooneshoulduse them.

This long list of perils can be skirtedby following a fewrules. Don't useside
effects exceptor a veryfew idiomatic constructions like

ali++] = 0;
C = #pP++;
%S++ = w4+,

Don't compare &harto EOF. Always usesizeof to compute the sizef typesand
objects. Never right shift a signedalue. Make surethe data typés big enough for
therangeof valuesyou are storingn it.

Try several compilerslt's easyto think thatyou understand portability, but compilers
will see problemthatyou don't, and different compilers sometinssseyour program
differently, so you should take advantag# their help. Turn onall compiler warn
ings. Try multiplecompilers onthe samemachine and on differembachines. Tra
C++ compileronaC program.

Since the language acceptegdifferent compilersvaries, thefact that youmpro-
gram compileswith onecompileris noguaranteehat itis even syntacticallgorrect.
If several compilers accept yarode, however, the oddnprove. We havecompiled
everyC programin this book with thre€ compilers on threanrelated operatingys
tems(Unix, Plan9, Windows) and also a coupté C++ compilers. This wasa sober
ing experience put it caughtdozensof portability errorsthat no amountof human
scrutinywould haveuncovered.They wereall trivial to fix.

196 PORTABILITY CHAPTER 8

Of course, compilersauseportability problems todyy makingdifferentchoices
for unspecified behaviorBut our approach still givess hope. Ratherthan writing
codein a way that amplifies thelifferencesmong systems, environments, and -com
pilers, we striveto createsoftware thabehavesndependenthyof the variations.In
short,we steerclearof featuresnd propertiethatarelikely to vary.

8.2 Headers and Libraries

Headers and libraries provide services that augtheriasidanguage. Examples
includeinput andoutputthroughstdioin C, i ostreamin C++, andjava.ioin Java.
Strictly speaking, thessrenot partof the languagebut theyare defined alongyith
the languagéself and are expectdd be partof any environment that claim® sup
port it. But because libraries covabroadspectrunof activities,andmustoften deal
with operatingsystemissuesthey canstill harbor norportabilities.

Use standard librariesThe same generaddviceapplies heras for the core lan

guage:stick to the standard, and withiits older,well-established component&

definesa standard librargf functions for inpuandoutput, string operationsharae

ter classtests, storage allocation, aadariety of other tasks.lf you confineyour
operating system interactiottsthese functionghere isagood chance thgour code
will behave thesameway and performwell asit moves fromsystemto system. But

you muststill be careful,because there areanyimplementationsf the library and
someof themcontain features that anetdefinedin the standard.

ANSI C doesnot definethe stringcopying functionstrdup, yet most environ
mentsprovideit, eventhosethat claim to conformto the standard.A seasonegro-
grammermay use strdupout of habit, andnot be warnedhat it is nonstandard.
Later, the programwill fail to compile when ported toan environmenthat doesnot
provide the function. Thisortof problemis the major portability headache intro
ducedby libraries;the onlysolutionis to stick to thestandard and tegbur program
in awide varietyof environments.

Header filesand packagedefinitions declarg¢he interfaceto standard functions.
One problem ighat headertend tobecluttered becaudhey aretrying to copewith
several languagéas the same file. For exampieis common tdind a single header
file like stdio.h servingpreANSI C, ANSI C, and evenC++ compilers. In such
casesthefile is littered with conditionalcompilationdirectivedike #if and#ifdef.
Because th@reprocessor languagenot very flexible, thefiles are complicateaénd
hardto read andsometimes contaierrors.

This excerpfrom a headefile on oneof our systemss betterthan most,because
it is neatly formatted:

SECTIONS.2 HEADERS AND LIBRARIES 197

? #ifdef _OLD_C

7 extern int fread(Q);

? extern int fwrite(;

? #else

;) # if defined(__STDC__) || defined(__cpluspl us)

? extern size_t fread(void®, size-t, siZze-t FILE*) ;
? extern size -t fwrite(const void«, size-t, size -t, FILE*) ;
2 # else /% not __STDC__ || __cplusplus =/

? extern size_t fread();

? extern size-t fuwrite(Q);

;) # endif /x else not __STDC__ || __cplusplus =/

? #endif

Even thoughthe exampileis relatively clean,it demonstrates that headides (and
programs) structured likibis are intricateand hard tamaintain. Itmight beeasietto
usea different headefor eachcompileror environment. Thisvould requiremain
taining separatéles, but eachwould be selfcontained and appropridtar aparticu
lar systemandwould reduce the likelihoodf errorslike includingstrdup in a strict
ANSI C environment.

Headeffiles alsocan'*pollute” the namespaceby declaringa function with the
samename asonein your program. Foexample,our warningmessagéunction
wepri ntf wasoriginally calledwprintf, butwe discoveredhat someenvironments,
in anticipationof the new C standarddefinea function with that namen stdio. h.
We neededo change thenameof our functionin orderto compileon thosesystems
and bereadyfor the future.If the problemwasan erroneous implementation rather
thana legitimatechangeof specificationyve could work aroundit by redefiningthe
namewhenincluding the header:

/% some versions of stdio use wprintf so define it away: =/
#define wprintf stdio —wprintf

#include <stdio.h>

#undef wprintf

/% code using our wprintf(Q follows.. . */

(L= B S -)

This mapsall occurrencesf wprintf in the headefile to stdio —wprintf sothey
will not interferewith our version.We can theruseourownwpri ntf withoutchang
ing its name, atthe costof some clumsinesand the risk thaa library we link with
will call our wpri ntf expectingto get the official one. For a single functionjt's
probablynot worth the trouble,but some systemsiake sucta messof the environ
ment thatone mustresortto extremedo keep thecode clean.Be sureto comment
whatthe constructiolis doing,anddon't make itworseby adding conditional compi
lation. If some environmentdefinewpri ntf, assumehey all do; thenthefix is per
manentndyou won't have tamaintain thetifdef statementaswell. It may beeas
ier to switch thanfight and it's certainly saferso that's what wedid when we
changed theameto weprintf.

Evenif you try to stick to the rules and the environmeistclean.it is easyto step
outsidethe limits by implicitly assumingthat somefavorite propertyis true every-

198 PORTABILITY CHAPTER 8

where. For instance ANSI C definessix signals that cabe caughtwith signal;the
POSIX standard define&9; most Unixsystems suppoB82 or more. If you wantto
usea nontANSI signal,thereis clearly a tradeoff betweenfunctionality and portabil
ity. andyou mustdecidewhich matteramnore.

Therearemanyother standards thatenot partof a programming languagéefi-
nition; examples includeperatingystem anaetworkinterfacesgraphics interfaces,
andthe like. Somaremeant tacarry acrossnorethanonesystem, likePOSIX; oth-
ers are specific to one system,like the various Microsoft Windows APIs. Similar
adviceholdshereas well. Your programswill be moreportableif you choosewidely
used andwell-established standards, aihdyou stick to the mostcentraland com
monly usedaspects.

8.3 Program Organization

Therearetwo major approacheds portability, which we will call unionandinter-
section. Thaunion approachs to usethe bestfeature®f eachparticular system, and
makethe compilationand installation process conditionah propertiesof the local
environment.The resultingcodehandles thenion of all scenarios, takingdvantage
of the strength=of eachsystem. The drawbacks include th&ize and complexity of
theinstallation process arttle complexityof code riddledvith compiletime condk
tionals.

Use only featureqvailableeverywhereTheapproactwe recommends intersection:
useonly those features thaiistin all target systemgjon't usea featureif it isn't
available everywhereOnedangertis that the requiremendf universal availability of
featuresmay limit the rangeof target systemsr the capabilitiesof the program;
anotheis that performancaay sufferin some environments.

To compare these approachles’'s look at a coupleof examples thatise union
codeand rethinkthem using intersection. As you will see,union codeis by design
unportable. despiteits statedgoal, while intersectioncodeis not only portablebut
usuallysimpler.

This small example attempts copewith an environmentthat for somereason
doesn'thave thestandard headéte std1ib. h:

#if defined (STDC_HEADERS) || defined (_LIBC)
#include <stdlib.h>

#else

extern void smalloc(unsigned int);

extern Void wrealloc(void =, unsignedint);
#endif

O T R Sy

This styleof defensds acceptabldf usedoccasionallybut notif it appears often. It
alsobegsthe questiof how manyotherfunctionsfrom stdli b will eventuallyfind
their way into this or similarconditional code.If oneis usingmalioc andrealloc,

SECTIONS.3 PROGRAM ORGANIZATION 199

surely free will be neededas well, for instance.Whatif unsigned it is not the
same asize_t, theproper typeof the argumenibmaitocandrealioc? Moreover,
how do we know that STDC_HEADERS or _LIBC are defined,and definedcorrectly?
How canwe be surehat therds noothernamethat shouldrigger the substitutiom
someenvironment?Any conditional code like thiss incomplete-—unportable—
because eventualysystem thatioesn'tmatchtheconditionwill come alongandwe
mustedit the #i fdefs. If we could solvethe problemwithout conditional compila
tion, we wouldeliminate thesngoing maintenance headache.

Still, the problemthis examplés solvingis real.so how canwe solveit onceand
for all? Our preferencevould beto assume thahestandard headeesist; it'ssome
one else'groblemif they don't. Failingthat, it would be simplerto ship with the
softwarea headeffile that definesmalloc, realloc, andfree, exactlyas ANSI C
definesthem. This file can always be included, insteadf applying banehids

throughout the codeThenwe will alwaysknow that the necessamterfaceis avait
able.

Avoid conditional compilation.Conditional compilatiorwith #ifdef and similar
preprocessatirectivess hard tomanage, because informatitemds to gesprinkled
throughout the source.

#ifdef NAIME

char rastring= "convert ASCIl to native characteset’;
#else
#ifdef MAC

char «astring = "convertto Mec textfile format';
#else
#ifdef DOS

char =astring
#else

char =astring
#endif /= ?DOS =/
#endif /+« MAC =/
#endif /+ NATMVE =/

"convertto DOS textfile format';

n

"convertto Unix textfile format";

3 D sl i w3 s D T) nd e e

Thisexcerptwould havebeenbetterwith #eli f aftereachdefinition. ratherthanhaw
ing #endifs pile up at theend. But thereal problenis that,despitdts intention, this
codeis highly nonportable because behavedlifferentlyon each system and needs
to be updateavith a new #i fdef for every new environment. A single stringwith
moregeneral wordingvould besimpler. completely portable, and jasinformative:

char rastring= "convertto local text format’;
This needs na@onditionalcode sincd is the samen all systems.

Mixing compiletime controlflow (determinedby #ifdef statementspith run-
time control flowis muchworse sinceit is verydifficult to read.

200 PORTABILITY CHAPTER 8

? #if ndef DISKSYS

7 for (i = 1; i <= msg->dbgmsg.msg_total; i++)

2 #endif

2 #ifdef DISKSYS

? i = dbgmsgno;

2 if (i <= msg->dbgmsg.msg_total)

) #endif

? {

2

2 if (msg->dbgmsg.msg_total == i)

2 #if ndef DISKSYS

7 break; /= no more messages to wait for =/
7 about30 morelines,with further conditional compilation
7 #endif

7 3

Even when apparently innocuous, conditional compilatioan frequently be
replacedby cleanemethods. For instance#i fdefs areoften used tacontrol debug
ging code:

7 #ifdef DEBUG

? printf(...);

? #endif

butaregulari f statementvith aconstant conditiomay work justaswell:

enum { DEBUG = 0 };

if (DEBUG) {
printf(...);
3

If DEBUG is zero,mostcompilerswon't generatany code for thisput they will check
the syntaxof the excludeatode. An #ifdef, by contrastcan concealsyntaxerrors
thatwill prevent compilatioif the#ifdef is later enabled.

Sometimes conditional compilation excludes large blotksede:

#ifdef notdef /« undefined symbol =/

#end%%'

#if 0
#end%%.

but conditionalcodecanoften beavoided altogethday usingfiles thatare condition
ally substituted during compilatioiwWe will returnto this topicin thenextsection.

When you must modifga programto adaptto a new environmentgdon't begin by
makinga copy of the entire program. Instead, adapt thexistingsource. You will

SECTIONS.3 PROGRAM ORGANIZATION 201

probablyneedto makechangedo the main bodyof the codeandif you edit a copy,
before longyou will havedivergent versionsAs muchaspossiblethereshould only
be a single sourcéor a program;if you find you needto change something port to
a particularenvironmentfind a way to makethe changevork everywhere. Change
internal interface# you needto, but keep the code consisterid#i fdef-free. This
will makeyour codemore portable ovetime, ratherthan morespecialized.Narrow
theintersection, don'broaden the union.

We have spoken out against conditional compilatiod showrsomeof the prob
lemsit causes.But the nastiesproblem isone we haven'tmentioned:it is almost
impossibleto test. An #ifdef turns a single prograninto two separatehzompiled
programs. lis difficult to know whether all the variarmgrogramshavebeencompiled
andtested. Ifachanges maden one#ifdef block, we may needto maket in oth-
ers, but the changesan be verified only within theenvironment that causdisose
#ifdefsto beenabled.lf asimilar chang@&eeds to be made fother configurations,
it cannotbe tested. Also, whenwe adda new #ifdef block, it is hardto isolatethe
change taleterminewhatother conditionseed tdoe satisfiedto get hereand where
elsethis problem mightneedto befixed. Finally,if somethings in codethatis con
ditionally omitted, thecompilerdoesn'tseeit. It could be utter nonsensand we
won't know until some unluckycustomer trieso compileit in the environmenthat
triggersthatcondition. Thigprogramcompilesvhen_MAC is definedandfails whenit
iS not:

#ifdef _MAC

printf("This is Macintosh\r");
#else

This will give a syntaxerror on other systems
#endif

Soour preferencés to use onlyfeaturesthatae commonto all targetenviron
ments. We cancompileand test althe code.If somethings a portability problem,
we rewriteto avoidit ratherthanadding conditionatode;this way, portability will
steadily increasandthe programitself will improveratherthanbecomingmorecon
plicated.

Somelargesystemaredistributedwith a configuration scripto tailor coddo the
local envimnment. At compilation time, the script testthe envimnment
properties—location of header filesand libraries, byte order within words, size of
types, implementatiorigriown to be broken(surprisingly common)xndso on—and
generates configuration parametarsnakefilesthat will give the right configuration
settingsfor thatsituation, Thesecriptscan bdargeandintricate,a significant frae
tion of asoftware distributiorand require continual maintenato&eepthemwork-
ing. Sometimesuchtechniquesirenecessanput the more portablend#i fdef-free
thecode isthe simpleand moreeliable the configuratioandinstallationwill be.

Exercise3-1. Investigatehow your compiler handlesodecontainedwithin a condk
tional block like

202 PORTABILITY CHAPTER 8

const int DEBUG = O;
/= Or enum { DEBUG = 0 }; =/
/= or final booleanDEBUG = false; =/

if (DEBUG) {
, B

Underwhatcircumstances dodtscheck syntax2Vhendoes itgenerateode? Iif you
haveacces$o morethanone compilemowdo the results compare2

8.4 Isolation

Although we would like to havea singlesourcehat compilesvithout changeon
all systemsthat may be unrealistic. But it is a mistaketo have norportablecode
scattered throughoatprogram:thatis oneof the problemshatconditionacompila
tion creates.

Localize systentlependencies separate filesWhen different codeis neededor
different systems, the differencslould bdocalizedin separate files, one file for
eachsystem. For example, theext editor Samrunson Unix, Windows,andseveral
otheroperating systems. The system interfaces for these envirorvagntgidely,
but mostof the code foSam isidentical everywhereA single file capturethesys
tem variationsfor a particular environmentinix. ¢ provides the interfaceodefor
Unix systemsandwindows ¢ for the Windowsenvironment.These filesmplement
aportable interfacé theoperating system and hide the differencgamis, in effect,
written toits own virtual operating systemyhich is ported tovariousreal systemsoy
writing a coupleof hundred linesof C to implementhalf a dozensmall but non-
portable operations using locatlyailablesystentalls.

The graphics environmerd these operating systermsealmost unrelatedSam
copesby havinga portable libranfor its graphics. Althoughit's a lot morework to
build sucha library than to hack the codeto adaptto a given system—the codeto
interfaceto the X Window systemfor examplejs abouthalf as bigas the resf Sam
put together—the cumulative efforis lessin the longrun. And asa sidebenefit,the
graphics librarys itself valuableand hasbeen usedeparatelyo makea numberof
otherprogramsportable too.

Samis an old program; today, portable graphics environmsuathas OpenGL.,
Tcl/Tk andJavaareavailablefor a variety of platforms. Writingyour codewith these
ratherthana proprietary graphics libramnyill giveyour program wideutility.

Hide systendependencielsehind interfaces Abstractionis a powerful techniqueor
creating boundaridsetweenportableand nonportable partef a program. The /O
librariesthat accompanynost programming languages providgoodexampleithey
presentan abstractiorof secondanstoragean termsof files to beopened andlosed,

SECTION8.5 DATA EXCHANGE 203

readand written, withouainy referenceo their physicallocationor structure.Pro
grams that adhete theinterfacewill run onanysystenthatimplementsit.

The implementatiorof Sam provides another exampte# abstraction. An inter
face isdefinedfor thefile systemandgraphics operatiorendthe program uses only
featuref the interface. The interfadiself useswhateverfacilities areavailablein
the underlying system. Thatight require significantly different implementatioors
differentsystemshut the programthat usesthe interfacds independentf thatand
should requir@ochanges ai is moved.

The Java approadb portability is a goodexampleof how far this can be carried.
A Javaprogram istranslatednto operationsn a "'virtual maching’ that is,a simu
lated computethat can be implementedo run on any realmachine. Java libraries
provide uniform accesgo featuresf the underlyingsystem, including graphics, user
interface networking, and théke; the librariesmapinto whateverthe local system
provides. In theory,it shouldbe possibleto run the same Jav@rogram(even after
translationgverywherevithout change.

8.5 Data Exchange

Textualdatamovesreadily from one systento another ands thesimplestport
ableway to exchange arbitrary informatidoetweersystems.

Use texir data exchangeTextis easy tonanipulatenith other toolsandto process
in unexpectedvays. For examplejf the outputof one programisn't quite right as
inputfor anotheran Awk or Perl scriptcan be usedo adjustit; grep canbe usedto

selector discardlines; your favorite editorcan be usedto make moreomplicated
changes. Text files amsomucheasier talocumentnd may not even needmuch

documentationsince peoplecan readthem. A commentin a text file canindicate
what versionof softwareis needed to process ttata;the first line of a Postscript
file, for instance, identifies the encoding:

%1PS-Adobe-2.0

By contrastbinary files needspecialized tools andarely can be usedtogether
evenon the same machineA variety of widely-usedprogramsconvert arbitrary
binary data into texsoit canbeshippedwith less chancef corruption; these include
binhex for Macintoshsystemspuencode anduudecode for Unix, and variougools
that useMIME encodingfor transferringbinary datain mail messagesin Chapter9,
we show a family of pack and unpack routinesto encodebinary dataportably for
transmission.The sheervariety of suchtools speakso the problemsf binary for-
mats.

There is one continuirigitation with exchanging text?C systemaisea carriage
return *\r’ anda newline or line-feed'\n’ to terminate each lineyhile Unix sys
temsuseonly newline. The carriageeturn isan artifactof anancientdevicecalleda

204 PORTABILITY CHAPTER 8

Teletype thahada carriagereturn(CR) operationto return thetyping mechanisnto
the beginningof a line, and a separate lindeed operatior{LF) to advancet to the
next line.

Eventhoughtoday's computersave no carriages taeturn, PC softwarefor the
most part continuesto expectthe combination(familiarly known as CRLF, pro-
nounced ‘curliff’’) on each line.f there areno carriagereturnsa file may beinter-
pretedas one giant line. Line amtharactecountscanbewrongor change unexpect
edly. Some software adapfsacefully but muchdoesnot. PCs arenot theonly cul-
prits; thankgo a sequencef incrementatompatibilitiessomemodemnetworking
standardsuch adHTTP alsouseCRLFto delimit lines.

Ouradviceis to usestandardnterfacesyhich will treatCRLFconsistentlyon any
given systemeither(on PCs) by removing\r on input and adding backon output,
or (on Unix) by alwaysusing\n ratherthan CRLF to delimit linesin files. For files
thatmustbe moved baclandforth, a programto convertfiles from eachformatto the
otheris a necessity.

ExerciseB-2. Write a programto removespuriouscarriagaeturnsrom afile. Write
asecond program taddthem by replacingeachnewline with a carriagereturn and
newline. How would youtestthese programg3

8.6 Byte Order

Despitethedisadvantages discussed abdweary data isometimes necessary. It
can be significantly morecompaciandfaster to decode, factaitsat make itessential
for many problemsin computer networking But binary datahassevere portability
problems.

At least one issus decided: allmodem machines hax&bit bytes. Different
machines havdifferent representatiors$ any object largetthan a byte, howeverso
relying on specific propertiess a mistake. A short intege(typically 16 bits, or two
bytes)may have itslow-orderbyte storedat a lower addresthan thehigh-orderbyte
(little-endian).or ata higher addresgbig-endian).Thechoiceis arbitrary,and some
machines evesupportboth modes.

Therefore, althoughig- andlittle-endian machineseememoryasa sequencef
wordsin the same ordethey interpretthe bytes withira word in theoppositeorder.
In this diagram, thdour bytesstartingat location0 will represent the hexadecimal
integernx11223344 on abig-endian machinend0x44332211 onalittle-endian.

0 1 2 3 4 5 6 7 8

11|22 |33 | 44

To seebyteorderin action try this program:

SECTIONS8.6

BYTE ORDER

/= byteorder: display bytesof a long =/
int main(void)

}

unsignedlong x;

unsignedchar #p;

int i;

/+ 1122 33 44 => big-endian =/

/= 44 33 22 11 => little-endian=/

/% X = 0x1122334455667788UL; for 64-bit long =/

X = 0x11223344UL;

(unsignedchar =) &x;

for (i = 0; i < sizeof(long); i++)
printf("%x ", =p++);

printf("\n");

return 0;

On a 32-bit big-endianmachine theoutputis

11 22 33 44

but onalittle-endianmachine.it is

44 33 22 11

205

andon the PDR11 (avintage16-bit machine still foundn embedded systems),is

22 11 44 33

On machineswith 64-bit longs. we canmake the constant biggand seesimilar

behaviors.

This may seem likea silly program,but if we wish to sendan integer downa
byte-wide interfacesuchasa networkconnection,we needto choosewhich byte to
sendfirst, and thathoiceis in essence thbig-endiannittleendian decision.In other
words, thisprogramis doingexplicitly what

fwrite(&x, sizeof(x), 1, stdout);

doesimplicitly. It is not safe towrite anint (or shortor long) from onecomputer
and readt asaninton anothecomputer.
Forexample,if the source computevrites with

unsignedshort x;
fwrite(8x, sizeof(x), 1, stdout);

andthereceivingcomputereadswith

unsignedshort x;
fread(&x, sizeof(x), 1, stdin);

the valueof x will not be preservedf the machineshavedifferent byte orders.If x
startsas0x1000 it may arrive as0x0010.

206 PORTABILITY CHAPTER 8

This problemis frequently solvedisingconditional compilatiomnd** byte swap

ping,”" something like this:

N N N N W)

short x;

fread(&x, sizeof(x), 1, stdin);
#1fdef BIG-ENDIAN

/* swap bytes a/

X = ((x&0XFF) << 8) | ((x>>8) & OxFF);
#endif

This approactbecomes unwieldyvhen many two- and four-byte integers are being
exchanged. In practicthe bytesendup beingswappedmorethanonce aghey pass
from placeto place.

If the situationis badfor short, it's worsefor longer data types, because there are

more waygo permutethe bytes. Add inthe variablgpadding between structungem
bers,alignment restrictiongindthe mysterious byte orders older machinegndthe
problemlooks intractable.

Usea fixed byte order for data exchangé&hereis a solution. Write thebytesin a
canonical ordeusingportable code:

unsigned short x;
putchar(x >> 8) ; /= write high-order byte =/
putchar(x & OxFF); fa write low-order byte a

thenreadit backa byteat atime andreassembli:

unsigned short x;
x = getchar() << 8; fa read high -order byte a
x |= getchar() & OxFF; /* read low-order byte =/

The approach generalizes to structufegou write the valuesof the structure

members ira defined sequence,byte at atime, without paddinglt doesn't matter
what byteorderyou pick; anything consistenwill do. Theonly requirement is that
senderand receiver agre@n the byteorderin transmissiorand on the numbeiof
bytesin each object.In the next chapterwe showa pair of routinesto wrap up the
packingandunpackingf general data.

Byte-at-a-time processingnay seem expensive, but relativette I/O that makes

the packingand unpacking necessary, tpenaltyis minute. Considerthe X Window

system,in which theclient writes datan its native byte order andhe servermust
unpackwhatever the client sends. Ty savea few instructionn theclient end,
buttheserveris maddargerand more complicatethy the necessitpf handlingmul-

tiple byte ordersat the sametime—it may well have concurrertiig-endianandlittle-

endian clients—and the cost in complexity and code is much more significant.
Besides, this is graphics environmenvherethe overhead tgack byteswill be

swampedby theexecutiorof thegraphical operation it encodes.

The X Window system negotiates byte order for the client and requires the

serverto becapableof both. By contrastthe Plard operating system defineshyte

SECTION 8.7 PORTABILITY AND UPGRADE 207

order for messages to the file servertf@graphics serverdnddatais packedand
unpacked withportable codeas above. In practice the runtime effect is not
detectablecomparedo I/O, thecostof packing the dati insignificant.

Javais a higherlevel languageéhanC or C++ and hides byt®rder completely.
The libraries providea Serializableinterfacethat defines how data items are
packedor exchange.

If you're workingn C or C++, however you mustdo the work yourself.Thekey
point about théyte-at-a-time approactis thatit solvesthe problem without#i fdefs,
for any machines that havbit bytes. We'll discusghisfurtherin the next chapter.

Still, the bessolutionis often to convert informatioto textformat, which (except
for theCRLFproblem) is completely portable; thesenoambiguity aboutepresenta
tion. It's not alwaysthe right answerthough. Time or space cabe critical, and
some data, particularly floating point, dase precision dudo roundoff whenpassed
throughprintf and scanf. If you mustexchange floatingoint valuesaccurately,
makesureyou havea good formatted/O library; such libraries exishut may not be
partof your existing environmentlt's especiallyhardto represent floatingoint val-
uesportably in binary,but withcare textwill dothejob.

Thereis one subtle portability issua usingstandard functions to handbnary
fles—it is necessaryo open such fileg binary mode:

FILE =fin;

fin = fopen(binary_file, "rb");
Cc = getc(fin);

If the 'b' is omitted, ittypically makesno difference at albn Unix systemsput on
Windows systemshe first controlZ byte (octal032, hex 1A) of input will terminate
reading (wesaw this happerto the strings program inChapters). On theother
hand,using binary modéo readtextfiles will cause\r to bepreservedn input, and
notgenerate@n output.

8.7 Portability and Upgrade

Oneof the mosfrustrating sourcesf portability problemss system softwaréhat
changes during its lifetime. These changes can hagipery interfacein the system,
causing gratuitous incompatibilitieetweerexisting versionsf programs.

Change the naméf you change the specificatiorOur favorite (ifthat is the word)
example isthe changing propertiesf the Unixechocommandwhoseinitial design
wasjustto echoits arguments:

% echo hello, world
hello, world
%

208 PORTABILITY CHAPTER 8

However.echobecamea key partof manyshell scriptsandthe needto generate for
mattedoutput becameimportant. So echowas changedo interpret its arguments.
somewhat likepri ntf:

% echo 'hello\nworld’
hello

world

%

This new featureis useful, but causegortability problems forany shell scriptthat
dependsn theechocommando do nothing morghanecho. The behaviaf

% echo BPATH

now depend®n which versiorof echowe have. If the variable happensy accident
to containa backslash, amay happen orDOS or Windows,it may beinterpretecby
echo. The differencas similar to that betweenthe output fromprintf (str) and
printf("%s", str) if thestrings t r containsa percent sign.

We've told only afractionof thefull echostory, butit illustratesthe basic prob
lem: changes to systems can generate different versiaaftwarethatintentionally
behavdlifferently, leading taunintentional portability problems.And the problems
arevery hardto work around. Itwould have caused mudbss troubléhad the new
versionof echobeengivenadistinctname.

As a moredirect example, considéne Unixcommandsum,which printsthe size
and a checksunof afile. It waswritten to verify thata transferof informationwas
successful:

% sumfile

52313 2 file

%

% copyfi letoothermachine
%

% telnet othermachhne
$

$ sumfile

52313 2 file

$

The checksunis the same aftethe transfer,so we canbe reasonablyconfidentthat
the oldand newcopies are identical.

Then systems proliferated, versions mutattj someone observethat the
checksumalgorithmwasn't perfect,so sumwas modifiedto usea better algorithm.
Someone elsenade thesame observatioand gave suma different better algorithm.
And so on,so that todaythere are multiple versiord sum,each givinga different
answer.We copiedone file tonearbymachines to seehatsumcomputed:

SECTION 8.8 INTERNATIONALIZATION 209

% sum file

52313 2 file

%

% copy file tomachine2
% copy file tomachine3
% telnet machine2

$

$ sum file

eaa0d468 713 file

$ telnet machine3
>

> sum file
62992 A file
>

Is thefile corrupted, or dave justhave different versionsf sum? Maybe both.
Thussum is theperfect portability disaster: a program intendedittn thecopy-
ing of software from one machine to another has different incompatible vetisadns

render ituselesdor its original purpose.

For its simple taskthe original sum wasfine; its low-tech checksunalgorithm
wasadequate."Fixing'" it may havemadeit a better program, buot by much,and
certainlynotenough tanake thancompatibility worthwhile. Theroblem isnot the
enhancementbut that incompatible programisave thesamename. The change
introduced a versioning problem theitl plagueusfor years.

Maintain compatibility with existing programsand data. When a new versionof
software suchasa word processois shipped, it's commofor it to readfiles pro-
ducedby the oldversion. That'swhatonewould expect: as unanticipated features are
added theformat mustevolve. But new versions sometimes faib providea way to
write the previous file format.Usersof the new version, everif they don't use the
newfeatures, cannot share their filwgth peopleusing theolder softwarendevery
oneis forcedto upgrade.Whether an engineering oversigitta marketing strategy,
this desigris mostregrettable.

Backwardscompatibility is the abilityof a program taoneetits older specification.
If you're goingto change arogram. maksureyou don't breakold softwareand data
that depenan it. Document the changes welhdprovidewaysto recovetheorigi-
nal behavior. Most important, considewhether theehangeyou're proposing is gen
uine improvementvhen weighedagainst the costf any non-portability you will
introduce.

8.8 Internationalization

If one livesin the United States, it's easy to forgdiat English isnot the only lan
guageASClIl is notthe only characteset,$ is notthe only currency symbol, dateasn
be written with the day first, timeganbe basedn a 24hour clock,andsoon. So

210 PORTABILITY CHAPTER 8

another aspeatf portability, taken broadly, dealwith making programs portable
across languagend cultural boundaries. This potentiallya very big topic, but we
havespace to point ouwnly afew basicconcerns.

Internationalization is the term for making a programrun without assumptions
aboutits cultural environment. The problems are many, ranging from character sets
to theinterpretatiorof iconsin interfaces.

Don't assume ASCII. Character sets are richilean ASCIl in most partf the world.
The standard charactsting functionén ctype.h generallyhidethese differences:

if (isalpha(c)) ...

is independentf the specific encodingf charactersandin additionwill work cor-
rectly in localeswherethere are morer fewer lettershanthose fromato z if the pre
gram iscompiledin thatlocale. Of course, evethe namd sal pha speaks tadts ori-
gins; some languages dohavealphabets at all.

Most European countries augmehe ASCII encodingwhich defines valuesnly
up to 0x7F (7 bits), with extra characters to represéié lettersof their language.
The Latinl encoding, commonlysedthroughoutWesternEuropejs an ASCII super-
setthat specifies bytevaluesfrom 80 to FF for symbolsandaccented charactersy,
for instance, represerttse accentetketterg. The Englishword boy is representeth
ASCIl (orLatin-1) by threebytes withhexadecimal valueg 6F 79, while theFrench
word garcon is represented ihatin-1 by the bytes67 61 72 E7 6F 6E. Other lan
guages define other symbolyyt theycan'tall fit in the 128values left unusetly
ASCII, so thereare a variety of conflicting standards for the characters assigned to
bytess80 throughFF.

Some languages don't fit 8 bits at all; therearethousand®f charactersn the
major Asian languagesThe encodingsisedin China. Japarand Koreaall havel6
bits per characterAs a result, toreada document writterin one language oacom-
puter setup for anotheris a major portability problem. Assuming the characters
arrive intact, toread a Chinese documerdn an American computer involveat a
minimum, special softwarandfonts. If we wantto useChinese, Englisrand Rus
sian togethetheobstacles are formidable.

The Unicode charactset isanattemptto amelioratethis situationby providinga
single encoding foall languages throughothe world. Unicode,which iscompati
ble with the16-bit subsebf the ISO 10646 standardjses 16 bitper charactenyith
valuesOOFF and below correspondingo Latin-1. Thus theword garcon is repre
sentecdby the 16-bit valueso067 0061 0072 00E7 006F 006E, while theCyrillic alpha
betoccupiesralueso401 through04FF, andthe ideographic languages occuggrge
block startingat 3000. All well-knownlanguagesand manynot so well-known, are
represented in Unicodsp it is theencodingof choicefor transferring documents
betweencountriesor for storing multilinguakext. Unicode isbecoming popular on
the Internetand somesystems even suppdtrs astandard formatjava.for example,
usesUnicode as itsiativecharacter set for strings. Tian9 and Inferno operating
systemsuse Unicodethroughout, even for theamesof files andusers. Microsoft

SECTIONS8.8 INTERNATIONALIZATION 211

Windows supportthe Unicodecharacter set, but doast mandatét; most Windows
applications stillwork best inASCIJ but practice iapidly evolving toward4Jnicode.

Unicode introducea problem though:charactersio longer fitin a byte, so Uni-
codetext suffers from the byt@rder confusion.To avoid this, Unicode docutnents
are usually translated intaa byte-stream encoding calledTF8 before being sent
between progransr overa network. Each16-bit characteis encoded aa sequence
of 1, 2, or 3 bytesfor transmission. ThaSCII character setisesvalues 00 through
7F, all of whichfit in a single byte usingUTF-8, so UTF8 is backwards compatible
with ASCII. Values between 8and 7FFarerepresented in twbytes,and values 800
andabove areepresented ithree bytes. The&ord garconappearsn UTF8 asthe
bytes67 6172 C3 A7 6F 6E;Unicodevalue E7, the ¢ characteris representedsthe
two bytesC3 A7 in UTFS8.

The backwards compatibilityf UTF8 and ASCII is a boon,sinceit permits pre
gramsthat treat texasan uninterpretedyte stream tevork with Unicodetextin any
language.We tried the Markovprograms from Chapte&3 on UTF8 encoded texin
Russian, Greek, Japanese, and Chirsxktheyran without problemsForthe Eure
peanlanguageswhose wordsre separateby ASCII spacetab,or newline, the out-
put wasreasonable nonsens€or theothers, itwould benecessaryto changethe
word-breaking ruleso getoutput closein spirit totheintentof the program.

C and C++ support"wide characters; which are 16-bit or larger integersand
some accompanying functiotisat can be used tgrocess characteirs Unicodeor
other large character set®Vide character string literals angrittenasL"...", but
they introduce further portabilitproblems:a programwith wide character constants
can only be understoodvhen examinedon a display that useshat characteset.
Since charactemnustbeconverted into byte strearaschasUTF8for portablerans
missionbetween machine€ provides functions to convewide characters t@and
from bytes. But whichconversiordo we use? The interpretation tfe character set
andthe definition of the bytestream encoding are hiddenthe librariesanddifficult
to extractithesituation is unsatisfactont best. It is possiblethat in someosy future
everyonewill agreeon whichcharacter set tase but likelier scenariawill beconfu-
sion reminiscerf the byte-order problems that still pestes.

Don't assume EnglishCreatorsof interfacesmust keep irmind thatdifferentlan-
guages oftetiakessignificantly different numbers of charactersay the samething,
sotheremustbeenoughroom on thescreerandin arrays.

What about error messages® the very least,they shouldbe free of jargonand
slangthat will be meaningfubnly amonga selected populationyriting themin sim-
ple languagés a goodstart. Onecommon techniquis to collectthe textof all mes
sagesin one spotso that they can be replacedeasily by translations into othdan-
guages.

There are plentpf cultural dependencies, likbe mm/dd/yy date formathat is
usedonly in North America. If there isany prospecthat softwarewill be usedin
another country, thikind of dependency shoulde avoidedor minimized. Iconsn

212 PORTABILITY CHAPTER 8

graphical interfaces are often culttdependentnanyicons are inscrutable to natives
of theintended environment, let alone people from other backgrounds.

8.9 Summary

Portablecodeis an ideal that iswell worth striving for, sinceso much time is
wastedmakingchanges tanovea programfrom one system to another to keepit
runningasit evolvesandthe systems ituns onchanges. Portability doesn't come for
free,however. It requires care in implementatiand knowledgeof portability issues
in all the potentiatarget systems.

We havedubbed thewo approaches to portabilitynion andintersection. The
union approach amount® writing versionsthat work on each target, merging the
codeasmuchas possible with mechanisms like conditional compilation. The-draw
backsaremany:it takes more codandoftenmorecomplicated code, it'sard tokeep
upto date,andit's hardto test.

Theintersection approadh to write asmuchof thecode as possibla aform that
will work without change on each system. Inescapable system dependencies are
encapsulateah single source fileshatactasan interfacebetween the program and
the underlying system. The intersection approdets drawbacks too, including
potentiallossof efficiencyandevenof featuresput in thelong run, thebenefits out
weigh thecosts.

Supplementary Reading

There aremany descriptionsof programming languagedut few are precise
enougho serve as definitive references. The authors adraipgrsonabias towards
The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice
Hall, 1988). but it is not a replacemenfor the standard. Sam Harbisand Guy
Steele'sC: A Reference Manual(Prentice Hall,1994), now in its fourth edition, has
good advice onC portability. The officialC and C++ standards are available from
ISO, the International Organization for Standardization. The closest toiag offi-
cial standardor Javais The Java LanguageSpecificationpy James Gosling3ill Joy,
and GuySteele (AddisorWesley,1996).

Rich Stevens'sAdvanced Programming in the Unix Environment (Addison-
Wesley,1992)is an excellent resourder Unix programmersand provides thorough
coveragef portability issues amongnix variants.

POSIX, the Portable Operating System Interfas@ninternational standard defin
ing commandsand libraries basedon Unix. It providesa standard environment,
source codeortability for applicationsand a uniform interfaceto I/O, file systems
andprocesses. It is describedaseriesof bookspublishedvy the IEEE.

—

SECTION 8.9 SUMMARY 213

The term ""big-endiant® was coinedby Jonathan Swifin 1726. The articleby
DannyCohen,""On holy warsanda plea forpeace, IEEE Computer,October1981.
is a wonderfufable about byte ordethatintroducedthe ' endiant' termsto comput
ing.

The Plan9 system developedt Bell Labs hasnadeportability a centrapriority.
The system compiles frothe same#ifdef-free sourceon a varietyof processorand
usesthe Unicode character set throughout. Regergionsof Sam (first describeith
""The Text Editorsam;" Software—Practice and Experience17,11, pp. 813-845,
1987)useUnicode,but runon awide varietyof systems.The problemsof dealing
with 16-bit character sets lik&Jnicodearediscussedn the paperby Rob Pike and
KenThompson;*Hello World or KeAnjuépa k6ope or Z AIZBIHA,” Proceedingsof
the Winter 1993USENIX Conference SanDiego, 1993,pp. 43-50. The UTF8encod
ing made itdfirst appearancm this paper. This paper alsoavailableat the Plar9
websiteat Bell Labs,asis thecurrentversionof Sam.

TheInferno systemwhich isbased orthe Plan9 experience, is somewhat analo
gousto Java,in that it defines avirtual machinethatcanbeimplemented omny real
machine, provides a language (Limbiotis translated into instructions ftis vir-
tual machineand usesUnicodeasits native character set. It also includegréual
operating systenthat provides a portable interfate a variety of commercialsys
tems. It is describedn "' The Inferno Operatingsystenm,” by Sean Dorward, Rob
Pike,David Leo Presotto, Dennibl. Ritchie,HowardW. Trickey, and PhilipVinter-
bottom,Bell Labs Technical Journal,2, 1, Winter,1997.

Notation

Perhapsof aff the creationsof man
language is the most astonishing.

Giles Lytton Stracheyordsand Poetry

The right language camake allthe differencean how easy itis to write apro-
gram. This iswhy a practicing programmer's arsenal hotad only generalpurpose
languages like C anits relatives butalsoprogrammable shells, scripting languages,
and lotsof applicationspecific languages.

The powerof good notation reachégyondtraditional programming into special
ized problem domains. Regular expressions let us write con{faotcasionally
cryptic) definitionsof classe®f strings;HTML lets usdefinethe layout of interactive
documents, often using embedded programsther languagesuchas JavaScript;
Postscripexpresses an entidwcument—this book, forexample—as a stylizedpro-
gram. Spreadsheets anard processors often include programming languages like
Visual Basic to evaluate expressions, access information, or control layout.

If you find yourself writing toomuchcode to do a mundane jotw, if you have
trouble expressinthe process comfortably, maybe you're using the wrong language.
If the right language doesn't yet exist, that migdén opportunity to create your-
self. Inventing a language doesn&cessarily meahuilding the successoto Java;
oftena thorny problem can be clearag by a changef notation. Considethe for-
matstringsin theprintf family, which are a compa&ndexpressivevay to control
thedisplayof printedvalues.

In this chapterye'll talk abouthow notation can solve problens)ddemonstrate
some of the techniquesu can use to implement yourown speciatpurposdan-
guages. We'll even explore the possibiliGEkaving ongprogramwrite anothepro-
gram, an apparently extrernseof notation thahappensnoreoften,andis far easier
to do, thanmanyprogrammers realize.

215

216 NOTATION CHAPTER 9

9.1 Formatting Data

Thereis alwaysa gap between whatve wantto say tothe compute("* solve my
problent*) and what wearerequiredto sayto getajob done. The narrower this gap,
the better. Goochotationmakest easier tcsay what we wantand harder tosay the
wrongthing by mistake. Sometimes, good notation can prowdsvinsight, allowing
usto solve problemthat seemetbo difficult, or evenleadusto newdiscoveries.

Little languagesare specialized notations foarrowdomains.They not only pre
vide a goodinterfacebut also help organizethe progranthat implementthem. The
printf control sequences aaggoodexample:

printf("%d %6.2f %-10.10s\n", i, f, s);

Eachw in theformat string signala placeto interpolatethe valueof the nextprintf
argument; after some optional flagisd field widths, the terminating letter sayhat
kind of parameteto expect. This notatiois compact, intuitiveand easy towrite,
and the implementatioris straightforward. The alternativés C++ (iostream) and
Java(java.io) seemmore awkward sincethey don't provide special notation,
althoughtheyextend to usedefined typesandoffer typechecking.

Somenonstandardmplementationsf printf let you addyour own conversions
to the builtin set. This is convenierift you haveother data types thateedoutput
conversion.For example a compilermight usexL for line numberandfile name;a
graphics systemmight usexP for a pointand%R for arectangle. The cryptic striraf
lettersand numberdfor retrievingstock quotesthat we sawin Chapter4 wasin the
same spiritacompact notatiofor arranging combinatioref stock data.

We can synthesize similar exampiasC and C++. Supposewe want to send
packets containing various combinatiaisdata types from one system to another.
As we sawin ChapteiB, the cleanest solutiamay be to convert toa textual represen
tation. Fora standarchetwork protocol, thoughtheformatis likely to be binary for
reasonsf efficiencyor size. How canwe write the packehandling code te port
able, efficientandeasyto use?

To make thisdiscussion concrete, imagitieat we planto send packetsf &bit,
16-bit, and 32-bit data items from system to systeANSI C saysthatwe can always
storeatleast8 bitsin achar, 16 bitsin ashort,and32bitsin a long, sowe will use
thesedata typeso represendur values. Therewill be manytypesof packets; packet
typel mighthavea 1-byte type specifiera 2-byte counta I-byte valueanda 4-byte
dataitem:

0Ox01 cnt, cntg val data, data, data, data,

Packet typ@ might contaira shortand twolong datawords:

0x02 cnt, ont, dwl, dwl, dwil, dwl, dw2, w2, dw2, dw2,

SECTION 9.1 FORMATTING DATA 217

One approacis to write pack and unpadkinctionsfor each possiblpackettype:

int pack_typel(unsigned char =buf, unsigned short count,
unsigned char val, unsigned long data)

{
unsigned char =bp;
bp = buf;
«bp++ = 0x01;
=bp++ = count >> 8;
=bp++ = count;
«bp++ = val ;
+bp++ = data >> 24;
«bp++ = data >> 16;
«bp++ = data >> 8:
«bp++ = data;
return bp - buf;

}

For a realistic protocolthere will be dozensof such routines. all variatioran a
theme. The routinegould be simplified by usingmacrosor functionsto handle the
basicdatatypes (short, longandsoon), but evenso, suchrepetitive codes easy to
get wrong, hardo read,and hardo maintain.

The inherent repetitiveneskthe code iscluethatnotation carhelp. Borrowing
the ideafrom printf, we candefinea tiny specification languag| which each
packetis describecby a brief string thatcaptureshe packetlayout. Successive ele
mentof the packeareencodedwith ¢ for an8-bit characters for a 16-bit short inte
ger, andl for a 32-bit longinteger. Thus.for example, thgpackettype 1 built by our
exampleabovejncludingtheinitial type byte. mightbedescribedy the format string
cscl. Thenwe canusea single pack functionto createpacketsof any type; this
packetwould becreatedwith

pack(buf, "cscl", 0x01, count, val, data) ;

Because our formattring contain®nly data definitions, there'so needor the%
characterssedby printf.

In practice, informatiomt the beginningf the packet mighell the recipienbow
to decode the reghut we'll assume thérst byte of the packetcanbe usedto deter
minethelayout. The sender encodes the dathis format andshipsit; the receiver
reads the packet, pickf the firstbyte,anduseghatto decodewhatfollows.

Hereis an implementatiorof pack, whichfills buf with the encodedrepresenta
tion of its arguments as determinggl the format. We make all valuesunsigned,
including the bytesin the packet bufferfo avoid sigrextensionproblems. We also
usesomeconventionatypedefs to keep the declarations short:

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;

218 NOTATION CHAPTER 9

Like sprintf, strcpy, and similar functions,pack assumeghat the buffer isbig
enoughto hold the resultjt is thecaller's responsibilityo ensure this. There &so
noauempt taletect mismatches between fhenat and the argument list.

#include <stdarg.h>

/+ pack: pack binary items into buf, return length =/
int pack(uchar =buf, char =fmt, ...)

va_list args;

char ap;

uchar =bp;

ushort s;

ulong 1;

bp = buf;

va_start(args, fmt);

for (p = fmt; =p 1= "\0"; p++) {
switch (xp) {

case 'c’: /a char =/
=bp++ = va_arg(args, int);
break;

case 's’: /a short =/

s = va_arg(args, int);
*bp++ = 5 >> 8;

=bp++ = s;
break;
case '1": /* long =/

1 = va_arg(args, ulong);
=bp++ = 1 >> 24;
=bp++ = 1 >> 16;
*bp++ = 1 >> 8;
=bp++ = 1;
break;
default: /* illegal type character as
va_end(args);
return -1;
|
|
va_end(args);
return bp - buf
|

Thepack routineuses thetdarg.h header more extensivelyaneprintf did in
Chaptedd. Thesuccessive argumerdgeextracted using the macva_arg, with first
operandhevariableof typeva_1i st set upby calling va_start andsecond operand
thetypeof theargument (this isvhy va_arg is a macro, not a function). Wheno-
cessings done,va_end mustbecalled. Although the arguments foe* and's ' rep-
resentchar andshort values,they mustbe extractedasints because C promotes
char and short argumentsto i nt when theyare representebly an ellipsis. ..
parameter.

SECTION9.1 FORMATTING DATA 219

Eachpack-type routine will now be oneline long, marshaling its argumentsinto
a call of pack:

/* pack-typel: pack format 1 packet =/
int pack_typel(uchar abuf, ushort count, uchar val, ulong data)

{
]

return pack(buf, "cscl”, 0x01, count, val, data);

To unpack, we cando the samething: rather than write separatecodeto crack each
packet format, we call a single unpack with a format string. This centralizesthe con
versionin oneplace:

/a unpack: unpack packed items from buf, return length =/
int unpack(uchar abuf, char afmt, ...)
{

va_list args;

char =p;

uchar abp, =pc;

ushort »ps;

ulong »pl;

bp = buf;
va_start(args, fmt) ;
for (p = fmt; ap !'= ’\0’; p++) {
switch (=p) {
case 'c’: [* char */
pc = va_arg(args, uchars);
*pCc = =bp++;

break;
case 's': [* short */
ps = va_arg(args, ushort*);
*ps = =bp++ << 8§;
*ps |= =bp++;
break;
case 'l1": /% long */
pl = va_arg(args, ulong®) ;
*pl = =bp++ << 24;
apl |= =bp++ << 16;
*p1 |= =bp++ << §;
*pl1 |= xbp++;
break;
default: /= illegal type character =/
va_end(args);
return -1;

}

va_end(args) ;
return bp - buf;

220 NOTATION CHAPTER 9

Like scanf, unpack musteturn multiple valuego its caller, soits argumentsare
pointersto the variablesvherethe resultsare tobe stored. Its function valueis the
numberof bytesin the packetywhich can be usefibr errorchecking.
Becausé¢hevaluesareunsigned antbecauseve stayed withirthe sizeghat ANSI
C &fines for the data types, thidetransfers datportably evenbetweermachines
with differentsizes forshortandlong. Providedthe program thausespack does
not try to sendasa long (for example) value that canndbe representeah 32 bits,
the valuewill bereceivedtorrectly. In effect,we transfer thdow 32 bits of the value.
If we needto sendargervalueswe coulddefineanother format.
Thetype-specificunpackingoutines thatall unpackareeasy:

/* unpacktype2: unpack andprocess type2 packet/
int unpack_type2(int n, uchar xbuf)
|

ucharc;

ushort count;

ulong dwl, dw2;

if (unpack(buf, "csll", &, &count, &dwl, &dw2) != n)
return -1;

assert(c == 0x02);

return process_type2(count, dwl, dw2);

To callunpack_type2, we mustfirst recognize thatve haveatype 2 packet. which
impliesareceiver loop somethiriike this:

while ((n = readpacket(network, buf, BUFSIZ)) > 0) {
switch (buf[0]) {
default
eprintf("bad packettype 0x¥x", buf[0]);
break;
casel:
unpack_typel(n, buf);
break;
case?2:
unpack_type2(n, buf);
break;

1

Thisstyleof programming cagetlong-winded. A morecompacimethod is talefine
atableof function pointersvhoseentries ar¢he unpacking routines indexbgtype:

int (xunpackfn[]1)(int, uchar) = {
unpack_type0,
unpack_typel,
unpacktype?2,

SECTION 9.1 FORMATTING DATA 221

Each functionin thetable parses a packet, checks the reanttjnitiates furthempro-
cessing fothatpacket. Thetable makes the recipient's job straightforward:

/= receive: read packets from network, process them */
void receive(int network)

{
uchar type, buf[BUFSIZ] ;
int n;
while ((n = readpacket(network, buf, BUFSIZ)) > 0) {
type = buf[0];
if (type >= NELEMS(unpackfn))
eprintf("bad packet type Ox%x", type);
if ((xunpackfn[typel)(n, buf) < 0)
eprintf ("protocol error, type %x length %d",
type, n);
1
}

Each packet's handlircgde is compactin a singleplace, and easyp maintain. The
receiver is largely independent of the protocol itself; it's céatiast,too.

This example idasedon somereal code for a commercial networkinmotocol.
Once the author realized this approach could work, atfiewsandrepetitive error-
prone linef code shrunko a few hundred linethatare easily maintained\otation
reduced the mess enormously.

Exercise 9-1. Modify pack and unpack to transmit signed values correctly, even
betweenmachinewith different sizes foshort andlong. How shouldyou modify
the format string$o specify a signed data item?ow canyou testthecode tocheck,
for example, thait correctly transfers al.from a computemwith 32-bit longs to one
with 64-bit Tongs? O

Exercise9-2. Extendpack andunpack to handle strings; one possibilitytisinclude
the lengthof the stringin the format string. Extenthemto handle repeateitems
with a count. How does this interaatith the encodingf strings?0

Exercised-3. Thetableof function pointersn the C program abovie at the hearbf
C++'s virtual function mechanism. Rewripack andunpack andreceive in C++to
take advantagef this notational conveniencgl

Exercise9-4. Write a commandine versionof printf that prints its secon@énd
subsequent argumeritsthe formatgiven by its first argument. Some shelfready
provide thisasa builtin. O

Exercise9-5. Write a function that implements the format specifications foiand
spreadsheet progranes in Java's Decimal Format class,which display numbers
accordingto patternghatindicatemandatory anaptional digits, location of decimal
points and commaandsoon. Toillustrate, the format

222 NOTATION CHAPTER 9

##,##0.00

specifies anumberwith two decimal placesit leastonedigit to the leftof the decimal
point, a comma after the thousands digit, and biiliikg up to the tenthousands
place. It would represeni2345.67 as12,345.67 and.4as_____ 0.40 (usingunder
scoresto stand for blanks). Fora full specification,look at the definition of
DecimalFormat or a spreadsheet program.

9.2 Regular Expressions

Theformat specifiers for pacind unpack are aery simple notation for defining
the layoutof packets.Our next topic is a slightly more complicatedt much more
expressive notatiomegular expressionswhich specifypatternof text. We've used
regular expressions occasionally throughout ek without defining thempre-
cisely; they are familiar enoughto be understood withoutmuch explanation.
Although regular expressiorare pervasivein the Unix programming environment,
they are not as widely usedin other systemsso in this sectionwe'll demonstrate
someof their power. In caseyou don't have a regular expression library handy, we'll
also show a rudimentary implementation.

There are several flavoos regular expressionbut in spirit they are all thesame.
away todescribe patterref literal characters, alongith repetitions, alternatives, and
shorthands for classescharacters like digiter letters. One familiar example is the
so-called** wildcards® usedin commandline processorsr shellsto matchpatternsf
file names.Typically a is takento mean'*any stringof characters so,for example, a
command like

C:\> del =».exe

usesa patternthat matches all files whose names conefsany string ending in
“.exe”. Asis often the case, details differ from systemsystem, and even from
programto program.

Althoughthe vagariesf different programsnay suggest that regular expressions
arean ad khoc mechanism, in facthey are a languageith a formal grammaanda
precise meaning for each utterance in the language. Furthermaightihmplemen
tation carrun veryfast; a combinatioof theory andengineering practice makes a lot
of differenceanexampleof the benefibf specialized algorithms thate alluded to in
Chapter2.

A regular expressiois a sequencef characterghat defines a setf matching
strings. Most charactestimply match themselvespthe regular expressiabcwill
matchthat stringof letters wherevet occurs. In addition a fewmnetacharacterindi-
cate repetitioor groupingor positioning. In conventiondlnix regular expressions,
A stands for the beginnimaj a string and for the endsoAx matches am only atthe

SECTION 9.2 REGULAR EXPRESSIONS 223

beginningof a string. x$ matchesanx only atthe endAx$ matchex only if it is the
sole characteof the stringandA$ matches the empty string.

The charactet'.’* matchesnycharactersox. y matchesay, x2y andsoon, but
not xy or xaby, andA.$ matches a stringith a single arbitrary character.

A setof characters inside brackd } matchesiny oneof the enclosed characters,
s0[0123456789] matches a single digit; may beabbreviated0-91.

These building blocks are combineith parenthese®r grouping,| for alterna
tives,a for zeroor moreoccurrencest for one or more occurrencesyd? for zeroor
oneoccurrences. Finally\ is usedasa prefixto quote a metacharactand turnoff
its special meanin(\= is a literala and\\ is a literal backslash.

Thebestknown regular expressidaol is the progranyrep thatwe've mentioned
several times.The programis a marvelous examplef the valueof notation. It
applies a regular expressitmeach lineof its input files and prints those lineshat
contain matching strings. This simple specification, plus the pofwregular expres
sions, letst solve manyday-to-day tasks.In the following examples, notihat the
regular expression syntasedin the argumento grep is different fromthewildcards
usedto specify asetof file names; this difference reflects the differasés.

Which source file uses claBsgexp?

% grep Regexp =.java
Which implementsit?
% grep 'class.xRegexp’ =.java
Where did | sav¢hat mailfrom Bob?
% grep 'AFrom:.x bob@' mail/«
How many norblanksource lines artherein this program?
% grep .| w.cH++ | we

With flags to print line numbersof matchedlines, count matchesjo case-
insensitive matching, invert the sense (select lines that daitththe pattern)and
performother variationsf the basic ideayrep is so widely usedthat it hasbecome
the classic examplaf tool-basegrogramming.

Unfortunatelynotevery system comegith grep or an equivalent. Some systems
include a regular expression libranguallycalledregex or regexp, thatyoucan use
to write a versiorof grep. If neitheroptionis available, it'seasyto implement a
modestsubset of théull regular expressiolanguage.Herewe presenanimplemen
tationof regular expressiongndgrep to go alongwith it; for simplicity, theonly
metacharacters anc$. anda, with = specifying a repetitionf the single previous
periodor literal character. This subset provides a large fracifaihe powemwith a
tiny fractionof the programming complexityf general expressions.

Let's startwith the matchfunction itself. Its jobis to determine whethera text
string matches a regular expression:

224 NOTATION CHAPTER 9

/a match: search for regexp anywhere in text */
int match(char *regexp, char atext)
{
i (regexp[0] == *A")
return matchhere(regexp+l, text);
do { /+ must look even i f string is empty as
i T (matchhere(regexp, text))
return A;
} while (*text++ 1= ’\0");
return 0;

If the regular expression begimgith A, the text must begin witta matchof the
remaindenf the expression. Otherwise, walk alongthetext, usingnatchhere to
seeif thetext matches aainy position. As soonaswefind amatch,we'redone. Note
theuseof a dowhile: expressions camatchthe empty stringfor example$ matches
theempty string at the emaf a line and. = matchesny numberof charactersinclud-
ing zero),sowe mustcall matchhere evenif thetextis empty.

The recursive functiomatchhere doesmostof thework:

/* matchhere: search for regexp at beginning of text =/
int matchhere(char aregexp, char =text)

if (regexp[0] == °\0")
return 1;
if (regexp[l] == "=+’)
return matchstar(regexp[0], regexp+2, text);
if (regexp[0] = ’$’ && regexp[l] =— '\0")
return *text == '\0’;
i (=text!="\0" && (regexp[0]=="." || regexp[0]===text))
return matchhere(regexp+1l, text+l);
return 0;

If the regular expressias empty, we have reached the end and thus hiaumd a
match. If the expression endgith $, it matche®nly if thetextis alsoatthe end. If
the expression begingith a period,that matchesany character. Otherwise the
expression begingith a plain charactethat matchestself in thetext. A A or § that
appeardn the middleof a regular expression thustakenasa literal charactemnota
metacharacter.

Notice thatmatchhere calls itself after matchingone characterof pattern and
string,sothe deptlof recursion cafbeasmuchasthe lengthof thepattern.

Theonetricky caseoccurswhenthe expression begingth a starred charactenr
examplexx. Then we callmatchstar, with first argument the operandf the starx)
andsubsequent arguments the pattern after the star atekthe

SECTION9.2 REGULAR EXPRESSIONS 225

/+ matchstar: search for cxregexp at beginning of text =/
int matchstar(int c, char =regexp, char stext)

{
do { /* a = matches zero or more instances =/
i f (matchhere(regexp, text))
return 1;
} while (=text != *\0’ && (*text++ ==c¢ || ¢ == '."));
return O;

Hereis another dawhile, againtriggeredby the requirement that the regular expres
sion x= can match zero charactersThe loop checks whether the text matches the
remaining expression, tryireg each positiorof the textaslongasthe first character
matches the operad the star.

This isanadmittedly unsophisticated implementatibnt it works. andat fewer
than 30 lines of code, it showghat regular expressions donteedadvancedech
niguesto be putto use.

We'll soon presensomeideasfor extending the code. Forow, though,let's
write a version ofjrep that usesatch. Here is the main routine:

/= grep main: search for regexp in files =/
int main(int argc, char =argv[])
{

int § , nmatch;

FILE =f;

setprogname("grep");
if (argc < 2)
eprintf(“usage: grep regexp [file ...1");
nmatch = O;
if (argc == 2) {
if (grep(argv[l], stdin, NULL))
nmatch++;
} else {
for (= 2; i < argc; i++) {
f = fopen(argv[il, "r");
if (f == NULL) {
weprintf("can't open %s:", argv[il);
continue;

L
if (grep(argv[l], f, argc>3 ? argv[i] : NULL) > 0)

nmatch++;
fclose(f);
[
1
return nmatch == 0O;

It is conventionathatC programseturn0 for succesandnon-zero values for various
failures. Ourgrep, like theUnix version, defines succeasfinding a matching line,

226 NOTATION CHAPTER 9

so itreturns0 if there werany matches, If therewerenone,and2 (viaeprintf) if
anerror occurred. These status valuesloatestedoy other programs like a shell.
The functiongrep scans a single file, callingatch on eacHine:

/# grep: search for regexp in file =/
int grep(char aregexp, FILE af, char xname)

int n, nmatch;
char buf [BUFSIZ];

nmatch = O;
while (fgets(buf, sizeof buf,) !'= NULL) {
n = strienCbuf);
if (n >0 &% buf[n-1] = "\n’)
buf[n-11 = *\0’;
if (match(regexp, buf)) {

nmatch++;
if (name != NULL)
printf("%s:", name) ;

printf ("%s\n", buf) ;
}
}

return nmatch;

}

The main routine doesn't quif it fails to open a file. This design was chosen
becausét's commorto saysomething like

% grep herpolhode a.a

andfind that oneof the filesin the directory can'beread. It's better fogrep to keep
going after reporting the problem, rathleanto give up andforce the user to type the
file list manuallyto avoid theproblemfile. Also, noticethatgrep prints the file name
andthe matching line, but suppresses the nirtés reading standard inpot a sin
gle file. Thismayseemanodd designbut it reflectsanidiomatic styleof usebased
onexperience. When given onlyoneinput, grep's taskis usually selectionandthe
file namewouldclutter the output. Buf it is askedo search throughmanyfiles, the
taskis mostoftentofind all occurrencesf somethingandthe names are informative.
Compare

% strings markov.exe | grep 'DOS mode'
with
% grep grammer chapters=.txt

These touches are paftwhatmakesgrep sopopular,anddemonstrat¢hat notation
mustbe packagedvith humanengineering tduild a natural, effective tool.

Our implementatioof match returnsassoonasit finds a match. Fogrep, that is
a finedefault. But for implementing a substitution (seatahdreplace) operatdn a
text editor theleftmost longestmatch ismore suitable. For examplgiven the text

SECTION 9.2 REGULAR EXPRESSIONS 227

"aaaaa" the patterna* matchesthe null string at the beginningf the text, but it
seemsnorenaturalto match allfive a's. To causenatch tofind theleftmost longest
string,matchstar mustberewrittento begreedy:ratherthanlooking at eachcharae
ter of the textfrom left to right, it shouldskipover the longesttringthat matcheghe
starred operandhenbackupif the resbf thestringdoesn'tmatchtherestof the pat
tern. In otherwords,it should rurfrom rightto left. Hereis a versionof matchstar
thatdoedefimost longestmatching:

/+ matchstar: leftmost longest search for cxregexp */
int matchstar(int c, char aregexp, char #text)

{
char =t;
for (t = text; »t != \g* g& (»t = c || Cc == LYY te+)
do { /a a matches zero or more */
if (matchhere(regexp, t))
return 1;
} while (t-- > text):
return 0;
}

It doesn'tmatterwhich matchgrep finds, sincet is justcheckingfor the presencef
any matchand printingthe wholdine. Sosincelefimost longest matchingdoes extra
work, it's notnecessarfor grep, butfor asubstitutioroperatorit is essential.

Our grep is competitivewith systerasupplied versions, regardledfsthe regular
expression. There apathologicakxpressionthat can cause exponential behavior,
suchasaraxaxaxaxb whengiventhe inputaaaaaaaaac, buttheexponential behavior
is presentin somecommercial implementations tod grep variant availableon
Unix, calledegrep, usesa more sophisticated matching algorithm that guarantees lin
earperformancdy avoiding backtrackingshena partial matchfails.

What aboutmakingmatch handle full regulaexpressions? Theseould include
characteclasses likda-zA-Z] to matchanalphabeticharactertheability to quotea
metacharactdffor exampleto search fom literal period),parentheses for grouping,
andalternativegabc or def). The firststepis tohelpmatch by compilingthe pattern
into a representation thas easier tescan. It is expensiveo parsea characterclass
every timewe comparet against charactera pre-computed representatibasedn
bit vectors couldnakecharacter class@suchmoreefficient. Forfull regular expres
sions,with parentheses and alternatives, the implementatissibe more sophist
cated but can useomeof the techniques we'll talk about laiethis chapter.

Exercise 9-6. How doesthe performancef match compardo strstr whensearch
ing for plain text?]

Exercise 9-7. Write a nonrecursive versiof matchhere andcompare its perfer
manceo the recursive versiord

228 NOTATION CHAPTER 9

Exercise9-8. Add someoptions togrep. Populatonesinclude-v to invert thesense
of thematch.-1i to do casansensitivenatchingof alphabeticsand-n to include line
numbersin the output. How should the line humbelse printed? Should they be
printedon thesame line athematchingext? o

Exercise9-9. Add the+ (one ormore) and? (zeroor one) operator® match. The
patterna+bb? matche®neor morea's followed by oneor two b's. OO

Exercise9-10. Thecurrent implementatioof match turn®ff thespecialmeaningof

A ands if theydon't beginor end the expression, anfla if it doesn'timmediately
follow a literal characteror a period. A more conventional desigris to quotea
metacharactday precedingt with a backslashFix matchto handle backslashes this
way. O

Exercise9-11. Add characterlasse$o match. Characterlassespecifya matchfor
any one of the characterin the brackets. They can be made moreonvenientoy
adding ranges, for exampl@-z] to matchany lower-casedetter,and invertingthe
sense, for examp{A0-9] to matchany characteexcepta digit. 0O

Exercise9-12. Change matcko usethe leftmostongestversionof matchstarand

modify it to returnthe charactepositionsof the beginningandend of the matched
text. Usethatto build a programgresthatis like grep but printsevery input line

after substitutinghewtextfor text that matches thgatternasin

% gres 'homoiousian' ' homoousian'mission. stmt
O

Exercise9-13. Modify matchandgrepto work with UTF-8 stringsof Unicodechar
acters. BecauddTH8 andUnicode area superset of ASCII, this changas upwardly
compatible. Regulaxpressiongswell as the searched textjll alsoneedto work
properly withUTF8. How should characterlassedeimplemented]

Exercise9-14. Write an automatic testefor regularexpressionshat generates test
expressionandtest stringgo search.If you can,use arexistinglibrary as a refer
encemplementation; perhag®u will find bugsin it too. O

9.3 Programmable Tools

Many toolsarestructured around specialpurpose languagél’he grepprogram
is justoneof afamily of tools thatuseregularexpressions asther languages solve
programming problems.

Oneof the firstexamplesvasthecommandnterpreteior job control languagelt
wasrealized earlyhatcommonsequencesf commands coulbeplacedn a file,and
an instanceof the commandinterpreteror shell could be executedwith thatfile as

SECTION 9.3 PROGRAMMABLE TOOLS 229

input. Fromthereit wasa short stepto adding parameters, conditionals, loops,-vari
ablesandall theother trappingsf aconventional programming languagehe main
differencewasthat therevasonly onedatatype—strings—and the operatorim shell
programs tended the entire programs that didnhteresting computationsAlthough
shell programmingdpasfallen out of favor, often giving groundo alternativedike
Perl in commandenvironments&nd topushing buttons graphicaluserinterfacesit

is still aneffectiveway to build up complex operations oof simpler pieces.

Awk is another programmable toal,small, specialized patteaction language
that focusesn selectionandtransformatiorof aninput stream.As we sawin Chap
ter 3, Awk automatically reads inptites and splits eacHine into fieldscalled $1
through $NF, where NF is the numberof fields on the line. By providing default
behaviorfor many commontasks,it makesuseful oneline programspossible. For
example, thisompleteAwk program,

split.awk: split input into one word per line
{ for (i =1; 1 @& NF; i++) print $i }

printsthe**words" of eachinputline oneword perline. Togoin the othedirection,
hereis animplementation ofmt, which fills eachoutput linewith words. up to at
most60charactersa blankline causes paragraph break.

fmt.awk: format into 60-character lines

/./ {for (i=1; i a NF;, i++) addword($i) } # nonblank line
/A8/ { printline(); print "™} # blank line
END { printlineQ }

function addword(w) {
if (length(line) + 1 + Tength(w) > 60)

printline()

if (length(line) = 0)
line =w

else
line =line ™ " w

}

function printline() {
if (length(line) > 0) {
print line
line = ""

}

We often usef mt to re-paragraphmail messageandother short documentsie also
useit to formattheoutputof Chapte3's Markov programs.

Programmable tools oftemiginatein little languages designéor natural expres
sionof solutionsto problemswithin a narrowdomain. One hice exampkethe Unix
tool egn, which typesets mathematidarmulas. Its input languagés closeto whata

mathematicianmight say when readingequationsaloud: g is written pi over 2.

230 NOTATION CHAPTER 9

TEX follows the same approach; its notationthis formulais \pi \over 2. If there
is a naturalor familiarnotation forthe problenyou're solvinguseit or adaptit; don't
start from scratch.

Awk wasinspiredby a programthat usedregular expressions identify anoma
lousdatain telephone traffic recordbut Awk includes variablegxpressiondpops,
andsoon, to make ita real programming languageer]l andTcl were designed from
the beginnindo combinetheconveniencandexpressiveness little languagesvith
the powerof big ones. They are truegeneralpurpose languages, althoutjiey are
mostoften usedfor processing text.

Thegenerictermfor such toolds scripting languagesbecauséhey evolvedfrom
early commandnterpretersvhoseprogrammabilitywaslimited to executingcanned
"'scripts’ of programs. Scripting languages perntteativeuseof regular expres
sions,not only for patternmatching—recognizinghat a particular pattermccurs—
but also foridentifying regionsof text to be transformed.This occursin the two
regsub (regular expression substitution) commaindshe following Tcl program.
The program isa slight generalizationf the programwe showedin Chapter4 that
retrieves stockuotesthis onefetches th&JRL given by its first argument. Thefirst
substitutiorremoves thetringhttp: // if it is presentthesecond replaces tlfiest /
by a blank, therebysplitting the argument inttwo fields. Thelindex command
retrievedieldsfrom a string (startingwith index0). Text enclosedh [] is executed
asaTcl command and replacdsy the resultingtext; $x is replacedby the valueof
the variablex.

geturl.tcl: retrieve document from URL
input has form [http://labc.def. com[/whatever...]

regsub "http://" $argv "" argv ;# remove http:// i T present
regsub "/" $argv " " argv ;# replace leading / with blank

set so [socket [lindex $argv 0] 80] ;# make network connection
set q "/[1index $argv 11"

puts $so "GET $q HTTP/1.0\n\n" ;# send request

flush Bso
while {[gets Bso 1ine] >= 0 & $line !'= ""} {} ;# skip header
puts [read $so] ;# read and print entire reply

This script typically produces voluminoaatput,muchof which is HTML tags
bracketedby < and>. Perl is goodat text substitution, s@ur nexttool is a Perl script
thatusegregularexpressionandsubstitutions taliscardthetags:

unhtml.pl: delete HIML tags

while (<>) { # collect all input into single string
$str = $_; # by concatenating input Tines

}

Bstr =— s/<[A>]+>//qg; # delete <...>

Bstr =— s/ / /g; # replace by blank
Bstr =- s/\s+/\n/g; # compress white space
print $str;

SECTION 9.4 INTERPRETERS. COMPILERS, AND VIRTUAL MACHINES 231

Thisexamplds crypticif one doesiotspeak PerlTheconstruction
$str =~ s/regexp/repl/g

substitutethestringrep1 for thetextin str that matches (leftmost longest) tegu
lar expressiomegexp; thetrailing g, for "*global;" means talo sofor all matchesn
the stringratherthanjust thefirst. Themetacharacter sequenceis shorthand foa
white spacecharacte(blank, tabnewline, and thelike); \n is anewline. Thestring
““ ’’ isanHTML characteljke thosein Chapter2, thatdefinesa nonbreakable
spacecharacter.

Putting all this together, heres a moronicbut functional web browser,imple-
mentedas aoneline shell script:

web: retrieve web page and format its text, ignoring HTML
geturl .tcl $1| unhtml .pl | fmt.awk

This retrieveghe web page,discardsall thecontrol and formatting informatioand
formatsthe textby its own rules. It's afastway to graba pageof textfrom theweb.

Notice the variety of languagesve cascadeogethereachsuitedto a particular
task: Tcl, Perl, Awk and, within eachof those, regular expressionshe power of
notation comes from havireggoodonefor eachproblem. Tcl is particularlygoodfor
grabbing text ovethe network;Perl andAwk aregood ateditingandformatting text;
andof courseregularexpressions amgoodat specifying piecesf textfor searching
andmodifying. Thesdanguages togetharemorepowerfulthan anyoneof themin
isolation. It's worth breaking thgob into piecesif it enables/ou to profit from the
right notation.

9.4 Interpreters, Compilers, and Virtual Machines

How doesa programget from its sourcecodeform into execution?f the lan
guagsds simpleenoughasin printf orour simplest regular expressiongcanexe
cute straighfrom the source This iseasyandhasvery faststartup.

Thereis a tradeoff betweensetuptime andexecution speedlf the languagés
morecomplicatedjt is generallydesirable taonvert thesourcecodeinto a conve
nientandefficientinternal representation fexecution.It takes some time process
the sourceriginally but this isrepaidin faster executionPrograms that combine the
conversiorandexecution inta singleprogramthat reads the source text, convérts
and runst are callednterpreters.Awk and Perinterpretasdo manyother scripting
andspecialpurposéanguages.

A third possibilityis to generaténstructiongfor the specifickind of computerthe
programis meantto run on, as compilers doThis requiresthe mostup-front effort
andtime butyields the fastest subsequent execution.

232 NOTATION CHAPTER 9

Other combinationexist. Onethat we will study in this sectionis compiling a
programinto instructiongor a madeup computeravirtual machine)thatcanbesim-
ulatedon any realcomputer. A virtual machinecombinesmanyof the advantagesf
conventional interpretation acdmpilation.

If alanguagés simple,it doesn'ttakemuchprocessingo infer the progranstruc-
ture and convert it to an internal form. If, however,the languagehas some
complexity-declarations nestedstructuresiecursivelydefined statements expres
sions, operatorwith precedenceandthe like—it is more complicatedto parsethe
input todetermineghestructure.

Parsers are often writtevith the aid of anautomatic parseyenerator, alsoalled
acompilercompiler. such agacc or bison. Suchprograms translagedescriptiorof
the language, called itgammar,into (typically)a Cor C++ programthat,once com
piled, will translate statements the language intaan internal representationOf
course, generating parser directlyfrom a grammaiis another demonstratiasf the
powerof goodnotation.

The representatigoroducedby a parselis usuallya tree,with internalnodescon
taining operators and leaves containing operaAdgatement such as

a = max(b, c¢/2);
might producehis parséor syntaxjree:

Ny

max

i \/
c/ \2

a

b

Many of the tree algorithms describ&dChapter2 canbe used tdbuild and process
parse trees.

Oncethe treeis built, there area variety of waysto proceed. The mostdirect,
usedin Awk, is to walk thetreedirectly,evaluating thexodesaswe go. A simplified
versionof suchan evaluation routinéor anintegerbased expression language might
involve apostorder traversal like this:

typedef struct Symbol Symbol ;
typedef struct Tree Tree;

struct Symbol {
int value;
char *name;

};

SECTION 94 INTERPRETERS, COMPILERS. AND VIRTUAL MACHINES 233

struct Tree {

int op; /* operation code =/
int value; /= value 1 f number =/
Symbol =symbol; /a Symbol entry i f variable as

Tree «left;
Tree aright;
};

/a eval: version 1: evaluate tree expression =/
int eval(Tree =t)

{
int left, right;
switch (t->op) {
case NUMBER
return t->value;
case VARIABLE:
return t->symbol->value;
case ADD.
return eval(t->left) + eval(t->right) ;
case DIVIDE:
left = eval (t->1eft) ;
right = eval (t->right) ;
if (right == 0)
eprintf("divide %d by zero", left) ;
return left / right;
case MAX:
left = eval (t->1eft) ;
right = eval(t->right) ;
return left>right ? left : right;
case ASSIGN:
t->left->symbol->value = eval (t->right);
return t->left->symbol->value;
/* ... %
}
}

The firstfew case®valuatesimpleexpressions like constaraisd values; later ones
evaluate arithmetic expressioasdothersmight do special processing, conditionals,
andloops. To implement control structurethetreewill needextrainformation, not
shownhere, that represents the control flow.

As in pack andunpack, we canreplace thexplicit switchwith a tableof function
pointers.Individualoperators arenuchthe same ag theswitch statement:

/+* addop: return sum of two tree expressions */
int addop(Tree at)

{
}

Thetableof function pointers relategperatordo the functions thgberformthe oper
ations:

return eval(t->left) + eval(t->right) ;

234 NOTATION CHAPTER 9

enum { /= operation codes, Tree.op =/
NUMBER,
VARIABLE,
ADD,
DIVIDE,
[¥ ... x/
|5

/= optab: operator function table =«/
int («xoptab[1)(Tree a) = {

pushop, /% NUMBER */
pushsymop, /* VARIABLE a/
addop « [+ ADD =/
divop /* DIVIDE =/
A

};

Evaluationuses theoperatorto indexinto the table of function pointerdo call the
right functionsthis version willinvokeother functionsecursively.

/* eval : version 2: evaluate tree from operator table =/
int eval (Tree =t)

{
}

return (+optab[t->o0p])(t);

Both these versionaf eval are recursiveThere arevaysof eliminatingrecur
sion, includinga clevertechnique calledhreaded codehat flattensthe call stack
completely. The neatestethod is to daway withtherecursion altogethday storing
the functionsin an array thatis thentraversed sequentiallp execute th@rogram.
This arraybecomesa sequencef instructionsto be executedby a little special-
purposemachine.

We still needa stackto representhepartially evaluated valuas the computation,
sothe formof thefunctions changegut the transformatiois easyto see. In effect,
we invent a stack machine in which the instructionsare tiny functionsand the
operands are storemh a separateperand stack. It's natreal machinebut we can
program itasif it were,andwe canimplementt easily asaninterpreter.

Insteacbf walking the treeto evaluate itwe walk it to generatehearrayof func-
tionsto executethe program. Thearraywill alsocontain data values thieinstruc
tions use, such @enstantand variables (symbolgothe typeof the elementsf the
array shouldbea union:

typedef union Code Code;
union Code {

void (xop) (void); /+ function if operator a/
int value; /* value if number =/
Symbol *symbol ; /* Symbol entry if variable as

};

SECTION 9.4 INTERPRETERS, COMPILERS. AND VIRTUAL MACHINES 235

Hereis the routingo generate th&unction pointer@ndplacethemin anarray,code.
of theseitems. Thereturn valuesf generate is notthevalueof the expressior—that
will becomputedvhenthe generated cods executed—but theindexin code of the
nextoperatiorto begenerated:

/* generate: generate instructions by walking tree =/
int generate(int codep, Tree #t)

{

switch (t->op) {

case NUVBER
code[codep++].0p = pushop;
code[codep++].value = t->value;
return codep;

case VARIABLE:
code[codep++].0op = pushsymop;
code[codep++].symbol = t->symbol ;
return codep;

case ADD:
codep = generate(codep, t->left);
codep = generate(codep, t->right);
code[codep++].0op = addop;
return codep;

case DIVIDE:
codep = generate(codep, t->left);
codep = generate(codep, t->right);
code[codep++].0p = divop;
return codep;

case MAX
/* o0 %

}

#

}
For thestatemena = max(b, c/2) thegenerated codeould looklike this:

pushsymop
b

pushsymop
c

pushop

2

divop
maxop
storesymop
a

The operatofunctionsmanipulate thetack popping operandandpushing results.
Theinterpreteris aloop thatwalks a programcounteralongthe arrayof function
pointers:

236 NOTATION CHAPTER 9

Code code[NCODE];

int stack[NSTACK];

int stackp;

int pc; /= program counter =/

/+ eval: version 3. evaluate expression from generated code =/
int eval(Tree at)

{
pc = generate(0, t);
code[pc].op = NULL;
stackp = 0;
pc = 0;
while (code [pc].op !'= NULL)

(»code[pc++].0p) O;

return stack[0];

}

This loop simulatem softwareon our invented stacknachine what happeirs hard
wareon areal machine. Her@reacoupleof representative operators:

/a pushop: push number; value is next word i n code stream =/
void pushop(void)
{

stack[stackp++] = code[pc++].value;

}

/* divop: compute ratio of two expressions =/
void divop(void)
{

int left, right;

right = stack[--stackp];
left = stack[--stackp];
if (right == 0)
eprintf("divide %d by zero\n", left) ;
stack[stackp++] = left / right;
}

Noticethat thecheckfor zero divisors appears divop, notgenerate.

Conditional execution, branchesd loops operateby modifying the program
counterwithin an operator function, performing branchto a different point in the
arrayof functions. Forexamplea goto operator alwaysetsthe valueof thepc vari-
able,while aconditionalbranchsetspc only if the conditioris true.

The code arrayis internalto the interpreterof course but imaginewe wantedto
save th@enerategbrogramin afile. If wewroteout the function addresseiseresult
would beunportable andfragile. But we could instead write owtonstantshat repre
sented the functionsay 1000 for addop. 1001 for pushop, andsoon, andtranslate
thesebackinto thefunction pointersvhenwe readthe progranin for interpretation.

if weexamineafile this procedure produces|ooks likeaninstruction strearnfor
a virtual machine whos@structions implemerthe basicoperator®f our little lan-

SECTION 95 PROGRAMS THAT WRITE PROGRAMS 237

guage, anthegenerate function isreally a compilerthat translates tHanguage into
the virtual machine. Virtualmachines are a lovely oidea.recentlymadefashion
able agairby Java andhe JavaVirtual Machine(JVM); theygive aneasyway to pro-
duce portable, efficient representatiohprogramavritten ina high-level language.

9.5 Programsthat Write Programs

Perhapshe mostemarkablehing aboutthe generate function isthatit is a pro-
gram thatwrites a program: its outpig an executable instruction stream for another
(virtual) machine. Compilersdo this all the time, translating source code into
machine instructionsso the ideais certainly familiar. In fact, programshat write
programs appedn manyforms.

One common example thedynamicgeneratiorof HTML for webpages.HTML
is a language, however limited, and it can contaiaScript code asvell. Webpages
are often generatexh thefly by Perl or C programswith specific contents (for exam
ple, search resultsnd targeted advertising) determinég incoming requestsWe
usedspecialized languagésr the graphs, picturetables, mathematicalkpressions,
and indexin this book. Asanother exampleRostScript is a programminglanguage
that is generatedby word processorsdrawing programsand a variety of other
sources; athe final stage of processinthis wholebook is represented as %v,000
line Postscripprogram.

A documenis a static progranhut theidea ofusinga programming language as
notation forany problemdomainis extremelypowerful. Many yearsgo, program
mersdreamtof having computersvrite all their programs fothem. That will proba
bly neverbe more thara dreambut todaycomputergoutinely writeprograms fomus.
often to represent thingg would not previously haveonsidered programs at all.

The mostcommon prograrwriting program isa compilerthat translateshigh-
level language into machine codk's often useful, thoughto translate codeb a
mainstream programmin@nguage. In the previous sectionwe mentionedthat
parser generators convert a definitafra language's grammar into gptbgram that
parseghelanguage. Qs often usedin this way,asa kind of "*high level assembly
language’ Modula3 and C++ae amongthe generalpurpose languageghosefirst
compilers created C codehich was thencompiledby a standardC compiler. The
approacthasseveral advantages, includiefficiency—becausgrogramsanin prin-
ciple runasfast as Qorograms—and portability—becauseompilerscanbecarried to
any systenthat hasa C compiler. This greatly helpdie early spreadf theselan-
guages.

As another exampleYisual Basic's graphical interface generatesebof Visual
Basic assignment statements to initialize obj#sthe userhasselectedrom menus
and positionedon the screenwith a mouse. A variety of other languagebave
""visual" development systenasd"* wizards' thatsynthesize usenterfacecode out
of mouseclicks.

238 NOTATION CHAPTER 9

In spiteof the powerof programgeneratorsandin spiteof the existencef many
goodexamples, thenotion is not appreciateds muchasit shouldbe andis infre-
quentlyusedby individual programmers. But there are plenty of srsatile opportu
nities for creating codby a programsothatyou can get somef the advantagefor
yourself. Hereare several examples that gene@ts C++ code.

ThePlan9 operating system generates error messagesdtoeader filethatcon
tains names&nd commentsthe comments are converted mechanically into quoted
stringsin anarraythat canbeindexedby theenumeratedalue. This fragment shows
thestructureof theheader file:

/* errors -h: standard error messages #/

enum {
Eperm, /* Permission denied =/
Eio, /* 1/0 error =/
Efile, /* File does not exist =/
Emem, /* Memory limit reached =/
Espace . /* Out of file space =/
Egreg /= It's all Greg's fault =/

Given this input. a simple programcan producethe following setof declarations for
theerrormessages:

/* machine -generated; do not edit. =/

char =zerrs[] = {
"Permission denied ", /* Eperm =/
"1/0 error", [/x Eio =/
"File does not exist", /+ Efile =/
"Memory limit reached", /+ Emem =/
"Out of file space", /= Espace =/
"It's all Greg's fault". /= Egreg =/
I

There area coupleof benefitgo thisapproach. First, the relationshiptween the
enum values and thatringsthey represent is literally selffiocumentingand easy to
makenaturatlanguage independenflso, theinformation appears only onca;" sirn
gle point of truth™ from whichother code is generateshthere is only one place to
keepinformationup to date. If instead there are multiple placésis inevitablethat
theywill get outof sync sometime. Finally, it's easy to arratiggthe . c file will be
recreatec&and recompiled whenever the header fdechanged.When an error mes
sagemustbe changed, althat isneeded is tanodify the header file and compitee
operating system. The messages are automatigadted.

The generatoprogramcan be written in any languageA string processing lan
guage likePerl makest easy:

SECTION 9.5 PROGRAMS THAT WRITE PROGRAMS 239

enum.pl: generate error strings from enum+comments

print "™/= machine -generated; do not edit. =/\n\n";
print "char =zerrs[] = {\n";

while (o) {
chop; # remove newline
if (/A\s=(E[a-20-9]4),?2/) { # first word is E...
$name = $1; # save name
s/.x\/\= *[[; # remove up to [
s/ #\=\///; # remove =/
print "\t\"$_\", /= $name »/\n";
}
}
print "};\n";

Regular expressions aireaction again.Lines whosdfirst fieldslook like identifiers
followed by acomma are selected. The first substitution deletes everythitathe
first nonblankcharacteof thecommentwhile the second removéisecomment ter
minator and anyplanksthat precedé.

As partof a compilertesting effort, Andy Koenigdevelopedi convenientway to
write C++ code to checthat thecompiler caughprogramerrors. Code fragments
that shouldcausea compiler diagnostic are decoratedth magic comments to
describethe expectedmessages. Eadime hasa commentthat beginswith /// (to
distinguishit from ordinary commentsand a regular expressiothat matches the
diagnosticsfrom that line. Thus, for examplethe following two code fragments
should generate diagnostics:

int £QO {}

/// warning. « non-void function .= should return a value

void g(Q) {return 1;)
error.» void function may not return a value

If we run the second test through our C++ compiler, it prithis expected message,
which matches the regular expression:

% CC x.c
"x.c", line 1: error(321): void function may not return a value

Each such code fragmentgvento thecompiler,and theoutputis compared against
the expected diagnostics,processthat is managedby a combinationof shell and
Awk programs. Failures indicasetest where theompiler output differedrom what
wasexpected. Becaugleecomments are regular expressions tieseme latitude in
the outputthey canbe made morer less forgiving, dependiran what is heeded.

The ideaof commentswith semanticds not new. Theyappearin Postscript,
whereregular commentbegin with%a Commentghat begin withé% by convention
may carry extra information about page numbdanding boxesfont namesand
the like:

240 NOTATION CHAPTER 9

%%PageBoundingBox: 126 307 492 768

%%Pages:14

%%DocumentFonts: Helvetica Times-Italic Times-Roman
LucidaSans-Typewriter

In Java, commentthat beginwith /=* and end with:/ areusedto create documenta
tion for theclass definition that follows. The largeeale versionf selfdocumenting
codeis literate programming,which integrates gorogramand its documentatioso
one procesprintsit in a naturalorder for readingandanother arrangesin the right
order for compilation.

In all of theexamples above, it is important to obsetive roleof notation,the
mixtureof languages, anthe useof tools. The combination magnifies the powadr
theindividual components.

Exercise€d-15. Oneof the oldchestnut®f computingis to write a progranthat when
executedvill reproduce itself exactlyn source form. This is a neat special calsa
program thatvrites aprogram. Give it aty in someof your favorite language&l

9.6 Using Macros to Generate Code

Descending a couplef levels, it's possible thavemacros write codat compile
time. Throughout thishook, we've cautioned againssing macros and conditional
compilationtheyencourage a styldf programminghatis full of problems. Buthey
do havetheir place; sometimes textual substitution is exatttéyright answerto a
problem. One examplés usingthe C/C++ macro preprocessor to assemble pietes
a stylizedrepetitive program.

For instancethe program thagstimatedthe speedof elementary language con
structs for Chaptef uses theC preprocessor to assembhe testsby wrappingthem
in boilerplate code. The esseraféhetestis to encapsulate a code fragmiard loop
that starts a timerruns thefragmentmany times, stopghe timer, and reportshe
results. All of therepeated codis capturedn a coupleof macrosand thecode tobe
timedis passedn as arargument. The primary macro takehis form:

#define LOOP(CODE) { \
t0 = clock(Q); \
for (i =0; i <n; i) { CODE} \
printf("%7d ", clock(} - t0); \

I

The backslashes allow the madiady to span multipldines. This macro isused in
""statements that typicallylook like this:

LOOP(f1 = f2)
LOOP(fl = f2 + f3)
LOOP(f1 = f2 - f3)

SECTION 9.7 COMPILING ON THE FLY 241

There aresometimesther statements for initializatiohut the basic timingpart is
representedh these singl@rgumenfragmentshatexpando a significantamountof
code.

Macro processingan be usedto generate production cod®o. Bart Locanthi
oncewroteanefficient versionof atwo-dimensional graphiasperator. The operator,
calledbitb |t or rasterop, is hardto makefast because there areany arguments
that combinein complicatedvays. Throughcareful case analysikpcanthi reduced
the combinationgo individual loops that couldbe separatelyoptimized. Eachcase
was thenconstructedoy macro substitution, analogou® the performanceesting
examplewith all the variants laieut in a singlebig switch statementThe original
source codevasafew hundredines;theresultof macro processingiasseveral thou
sand. Themacreexpanded¢odewasnot optimal butconsideringhedifficulty of the
problem,it waspracticaland veryeasy to produceAlso. ashigh-performance code
goes, itwasrelativelyportable.

Exercise9-16. Exerciser-7 involved writinga programto measurdhe costof vari-
ous operation® C++. Usetheideasof this sectionto create anotherersionof the
program.dd

Exercise9-17. Exercise7-8 involved doinga cost model for Java, which hasno
macrocapability. Solvethe problemby writing anotherprogram,in whatever lan
guage (or languagesdu choosethat writesthe Javaversion and automates ttien-
ing runs.O

9.7 Compiling on the Fly

In the previoussectionwe talked about programs that write prograrimseachof
the examplesthe generatecprogramwasin sourceform; it still neededto be com
piled or interpretedo run. Butit is possibleto generate codéat is readyto run
immediatelyby producing machinastructiongather than sourceThisis known as
compiling**on the fly"* or "*justin time'*; thefirst termis olderbut thelatter. includ
ing its acronymJIT, is morepopular.

Althoughcompiled code imecessarilynonportable—it will run only on a single
typeof processor—it canbeextremely fast.Considetheexpression

max(b, c/2)

The calculatioomustevaluatec, divide it by two, comparéghe resultto b, andchoose
thelarger. If we evaluate¢heexpressiomusingthe virtual machinewe sketcheckarlier
in thechapterwe could eliminatehe check fordivision by zeroin divop. Since2 is
neverzero,thecheckis pointless.But givenany of thedesignswe laid out forimple-
mentingthe virtual machine, therés no way to eliminatethe check;every implemen
tationof thedivide operation compar#isedivisorto zero.

242 NOTATION CHAPTER 9

This is wheregenerating code dynamically caelp. If we build the code forthe
expression directly, rathéhan just by stringing out predefined operationse can
avoid thezero-divide check for divisorshat are knownto be non-zero. In fact, we
cango even furtherif the entire expressiors constantsuchasmax(3=3, 4/2), we
can evaluaté oncewhen wegeneratéhecode,and replacé by the constantvalue9.
If theexpression appeairs aloop, we savetime each trip around the loopndif the
loop runsenough timesye will win back theoverheadt took to study the expression
andgenerate code for it.

Thekey idea isthat thenotation givesisa generalway to express problem, but
the compiler fotthe notation can customiz@ecode forthedetailsof the specific cal
culation. Forexamplejn a virtual machinefor regular expressionsve would likely
haveanoperator tanatcha literal character:

int matchchar(int literal . char =text)

{

return =xtext == literal;

When we generate code foa particular pattern, howevethe value of a given
literal isfixed, say’x’, sowecould insteadise aroperator likethis:

int matchx(char =text)

{
3

return =text == 'X';

And then,ratherthan predefininga special operator for eadheral character value,
we makethings simpletby generatinghe code forthe operatorswe really needfor
the current expression. Generalizitie idea for thefull setof operationswe can
write anon-the-fly compiler that translatdlhe current regular expression into special
code optimized fothatexpression.

Ken Thompsordid exactly this foran implementatiorof regular expressionsn
thelBM 7094in 1967. His version generated little blocké binary 7094 instructions
for the variousoperationsn the expression, threadédemtogetherand then ran the
resultingprogramby calling it, just likea regular function. Similar techniques cba
applied to creating specific instruction sequerfoescreenupdatesn graphics sys
tems, wher¢herearesomanyspecial casethatit is moreefficient to create dynamic
code for each onthatarisesthanto write themall out aheadf time or to include
conditional testé moregeneral code.

Todemonstratevhatis involvedin buildinga real onthe-fly compilerwould take
us muchtoo far into the detailsf a particular instruction sefut it is worthspending
some timeto showhow sucha systemworks. The resbf this section shouldbe read
for ideasandinsightbut notfor implementation details.

Recall thatve left our virtual machinavith a structure like this:

SECTION 9.7 COMPILING ON THE FLY 243

Code code[NCODE] ;
int stack[NSTACK];

int stackp;
int pc, /# program counter =/

Tree =t;

t = parse() ;

pc = generate(0, t);
code[pc]-op = NULL;

stackp = 0;

pc = 0;

while (code [pc].op !'= NULL)

(»code[pc++].0p) O;
return stack[0];

To adapt this cod® onthefly compilation.we must make somehanges. First,
the code arrayis no longean arrayof function pointersput an arrayof executable
instructions. Whethehe instructionswill be of typechar, int. orlong will depend
on the processowe're compilingfor; we'll assument. After thecodeis generated,
we call it as a function. There will be no virtual program counter becausethe
processor'o®wn executiorcyclewill walk alongthe code forus;oncethe calculation
isdone,it will return, likearegular function. Alsoye canchoosdo maintainasepa
rate operand stadkr the machineor usethe processor'swn stack. Eachapproach
hasadvantagedut we've choseto stick with a separate stacgkndconcentraten the
detailsof thecode itself. The implementatioow looks likethis:

typedef int Code;
Code code[NCODE];
int codep;
int stack[NSTACK];
int stackp;
Tree =t;
void (=fn)(void) ;
int pc;

t = parse();
pc = generate(0, t);

genreturn(pc); /* generate function return sequence */
stackp = 0;

flushcaches(); /= synchronize memory with processor =/
fn = (void(*)(void)) code; /= cast array to ptr to func =/
=f) O; /= call function =/

return stack[0];

After generate finishes,genreturn laysdowntheinstructions thamakethegen
eratedcodereturncontrolto eval.

The functionf lushcaches standgor the stepsieededo preparehe processofor
running freshly generatembde. Modem machinesinfastin partbecausehey have

244 NOTATION CHAPTER 9

caches for instructiorend data,and internal pipelinesthat overlapthe executionof
many successive instructions. These caches and pipelines etkgeirtstruction
streamto be static; if we generate code just before executithe processor can
becomeconfused. Th&€PU needs to drain its pipelirendflush its cachedeforeit
can execut@ewly generated instructions. These are highly machggendentoper
ations;the implementatiorof fl ushcaches will bedifferenton each particulatype
of computer.

The remarkable expressidmoi d(=)(voi d)) code is a castthat convertsthe
addres®f the arraycontainingthe generated instructions into a function pointer that
canbe usedto callthecode as a function.

Technically, it'snot too hard to generatethe code itself,though therds afair
amountof engineering talo soefficiently. We startwith some building blocksAs
before, acode arrayandanindexinto it are maintained during compilation. For sim
plicity, we'll make them botlglobal,aswe did earlier. Therwe can write a function
to lay downinstructions:

/* emit: append instruction to code stream =/
void emit (Code inst)

{
}

The instructions themselves cae definedby processoidependeninacrosor tiny
functions that assembilee instructionsby filling in thefields of theinstructionword.
Hypothetically we might havea function callegpopreg thatgenerates code to pop a
valueoff thestack and stor# in a processor registemdanother callegushreg that
generates cod® takethe value storedn a registeland puskhit ontothe stack. Our
revisedaddap function would usethemlike this, givensome defined constantisat
describeheinstructions (likeADDINST) and their layout (the variol®HIFT positions
thatdefinetheformat):

code [codep++] = inst;

/* addop: generate ADD instruction =/
void addop(void)

{

Code 1inst;

popreg(2); /* pop stack into register 2 x/

popreg(1); /* pop stack into register 1 =/

inst = ADDINST << INSTSHIFT;

inst |= (R1) << OP1SHIFT;

inst |= (R2) << OP2SHIFT;

emit (inst) ; /= emit ADD R1l, R2 =/

pushreg(2); /* push val of register 2 onto stack =/
1

This isonly a startingpoint. If we werewriting an on-the-fly compiler for real,we
would employ optimizations. If we're adding a constantie don't needto push the
constanbn the stack, pop it off, and add itye can justaddit directly. Similarthink-

SECTION 9.7 COMPILING ON THE FLY 245

ing caneliminatemore of the overhead.Even as written, howeveraddop will run

muchfasterthan theversionswe wrote earlierbecauséehe variousoperators areot
threadedogetherby function calls. Insteadhe codeto executehemis laid outin

memory asa singleblock of instructionswith thereal processor'grogramcounter
doingall thethreadindor us.

Thegenerate function lookspretty muchasit did for the virtual machine imple
mentation. But this time,it lays outreal machinénstructionsinsteadof pointers to
predefinedfunctions. And to generate efficientode, it should spend someffort
looking for constantt eliminateandother optimizations.

Our whirlwind tourof codegeneration has showanly glimpsesof someof the
techniquesused by real compilersand entirely missed many more. It has also
sidesteppednany of the issuesraisedby the complexitiesof modemCPUs. But it
does illustratéhow a program caranalyzethe descriptionof a problemto produce
specialpurposecode for solvingt efficiently. You can usetheseideasto write a
blazingfastversionof grep, to implement little languageof your own devisingto
design and build virtual machine optimizefbr specialpurpose calculatiomr even.
with alittle help, to writea compiler foraninterestindanguage.

A regularexpressionis a long way from a C++ program,but bothare just nota
tions for solvingproblems. Withthe right notation,many problemsbecomesasier.
And designingandimplementinghe notation carbealot of fun.

Exercise 918. Theonthefly compiler generates faster cddé can replacexpres
sionsthat contain onlonstantssuchasmax(3x3, 4/2), by their value. Oncé has
recognized suchnexpressionhow should it compute its valueg®P

Exercise9-19. How would you testanon-the-fly compiler?0

Supplementary Reading

The Unix Programming Environmentby Brian Kemighanand RobPike (Prentice
Hall, 1984), containsan extendedliscussiorof thetool-based approach to computing
that Unix supports savell. Chapte8 of thatbook presentsa completeémplementa
tion, fromyacc grammar te@xecutable codef asimple programming language.

TEX The Program, by Don Knuth(AddisonWesley 1986), describes complex
documenformatterby presentinghe entireprogram, about 3,000 line®f Pascalin
a''literate programmirlg stylethatcombines explanationith programtextand uses
programs tdormat documentation andxtract compilableode. A Retargetable C
Compiler: Designand Implementationby Chris Fraseand David Hanson(Addison-
Wesley,1995) doethe saméor anANSI C compiler.

The Java virtuamachines describedn The Java Virtual Machine Specification,
2nd Edition, by Tim Lindholmand Frank¥ellin (AddisonWesley,1999).

246 NOTATION CHAPTER 9

Ken Thompson's algorithrfoneof the earliestsoftwarepatentswasdescribedn
""RegularExpression Search AlgoriththCommunicationsof the ACM, 11, 6, pp.
419422, 1968. Jeffrey E. F. Friedl’'s Mastering Regular Expressions(O’Reilly,
1997) isanextensive treatmenf thesubject.

An onthefly compiler for twedimensional graphicsperationss describedn
‘‘Hardware/Software Tradeoffs forBitmap Graphicson the Blit,** by Rob Pike, Bart
Locanthi, andlohnReiser,Software— Practiceand Experience,15, 2, pp. 131-152,
February 1985.

Epilogue

If men could learn from history, what lessons it mighteachus! But
passionand partyblind our eyes,and the light which experience
gives isa lantern on the stem,which shines only on the waves
behind us!

Samuel Taylor Coleridg®ecollections

The world of computing changeall the time, andhe pace seems to accelerate.
Programmersnustcopewith newlanguagesnew tools, new systemsandof course
incompatible changes to old ones. Programs are bigger, interfaces are more compli
cated, deadlines are shorter.

But there arssomeconstants, some point$ stability, where lessorend insight
from the pastcan helpwith the future. The underlying themem this book arebased
onthese lasting concepts.

Simplicity and elarity are first and most important, since almost everytkisg
follows from them. Do the simplesting thatworks. Choose the simplest algorithm
thatis likely to be fast enoughand the simplest data structutieat will do the job;
combinethem with clean, clear code. Don't complicateem unless performance
measurements show that more enginegsingcessary. Interfacebouldbeleanand
spare atleastuntil there is compelling evidence that the benefits outweigh the added
complexity.

Generalityoften goesiandin hand withsimplicity, for it may makepossible solv
ing a problemonceandfor all ratherthanoverandover again for individual casedt
is often the right approach to portabilggwell: find the singlegeneralsolutionthat
workson each system insteafl magnifying the differences betwesystems.

Evolution comesnext. It is not possible to create a perfgrbgram thdirst time.
The insight necessanyto find the right solution comes onlwith a combination of
thoughtand experience; pure introspectiaill not produce a good system, nwil
purehacking. Reactions from users cohetwily here; a cyclef prototyping, exper
iment. usefeedback, andurtherrefinement isnosteffective. Programere build for

247

248 EPILOGUE

ourselves often dootevolve enoughbig programghat we buy from others change
too fast withouhecessarilymproving.

Interfaces are a largepart of the battlein programming.and interface issues
appearin many places. Libraries present theostobviouscasesbut there aralso
interfacesbetweenprogramsand betweernusersand programs.The desire for sim
plicity and generality applies especially strongly ttee designof interfaces. Make
interfaces consisteahd easyo learn anduse;adhergo them scrupulouslyAbstrac
tion is an effective technique: imagine a perfect compowetibrary or program;
makethe interfacematch that ideahscloselyaspossible; hide implementation details
behindthe boundaryoutof harm's way.

Automationis underappreciated. It isnuchmore effective to have a computer
do your work thanto do it by hand. We sawexamplesn testing,in debuggingjn
performance analysignd notably inwriting code, where for the right problem
domain, programsancreate programs thatould behardfor people towrite.

Notation is alsounderappreciatedind notonly asthe way thatprogrammersell
computeravhatto do. It providesnorganizing framework for implementing a wide
rangeof toolsandalso guides the structuoé the programs thatrite programs. We
are all comfortablén the large generapurpose languagdbat serve forthe bulkof
our programming.But astasks becomgofocused andavell understoodhatprogram
ming themfeels almost mechanicdt,may be time to create a notation that naturally
expresses the taskada languagé¢hatimplements it. Regular expressions aneof
our favorite examples, but there are countless opportunities to create little languages
for specialized applications. Thew not have tdesophisticated to reap benefits.

As individual programmers, it's easy to feel like small coga big machine,
usinglanguagesind systemsand tools imposedupon usdoing taskghatshouldbe
done forus. Butin the long runwhat counts ishow well we work with what we
have. By applying somef the ideasn this book,you should findthat your codeis
easier tovork with, your debugging sessions are less pairdal] yourprogramming
is more confident. We hopbat this bookhasgiven yousomethingthat will make
your computingnoreproductive and more rewarding.

Appendix: Collected Rules

Each truth that | discoveredbecame arule that servedme
afterwards in the discovenyof others.

RentDescartes, Le Discours dela Méthode

Severalchapterscontain rulesor guidelines that summarizediscussion. The
rulesare collected heffer easy referenceBearin mind thateachwaspresentedh a
context thaexplains itpurposeandapplicability.

Style
Usedescriptivenamedor globals, shomhamedor locals.
Be consistent.
Useactivenamedor functions.
Beaccurate.
Indentto showstructure.
Use the natural forrfor expressions.
Parenthesizi® resolve ambiguity.
Breakup complexexpressions.
Beclear.
Be carefulwith side effects.
Useaconsistenindentatiorandbracestyle.
Useidiomsfor consistency.
Useelseifs for multi-way decisions.
Avoid functionmacros.
Parenthesize the madvody andarguments.
Give names to magic numbers.
Define numbers asonstantsjot macros.
Usecharacter constantsmt integers.
Usethelanguageo calculateéhesizeof anobject.
Don't belabor the obvious.

249

250 COLLECTEDRULES

Commenfunctionsand globatata.
Don't commenbadcode, rewritet.
Don't contradict theode.

Clarify, don'tconfuse.

Interfaces
Hide implementatiometails.
Choosea smallorthogonaketof primitives.
Don't reach behindhe user'sdack.
Do the saméhing the sameavay everywhere.
Freearesourcén thesame layer that allocatéd
Detecterrors atalow level, handléghemat a highlevel.
Useexceptiondnly for exceptionakituations.

Debugging
Look for familiar patterns.
Examine the mogecent change.
Don't makethe same mistakevice.
Debug it now, nolater.
Getastack trace.
Readbefore typing.
Explain yourcodeto someone else.
Make thebugreproducible.
Divide andconquer.
Studythe numerologyof failures.
Display outputto localizeyoursearch.
Write selfchecking code.
Write alog file.
Draw apicture.
Usetools.
Keeprecords.

Testing
Test codatits boundaries.
Test preand postonditions.
Useassertions.
Prograndefensively.
Checkerror returns.
Test incrementally.
Test simple partfirst.
Know whatoutputto expect.
Verify conservation properties.
Compare independent implementations.

COLLECTED RULES

Measure test coverage.
Automate regression testing.
Create selcontained tests.

Performance
Automate timing measurements.
Usea profiler.
Concentrate on the hot spots.
Drawa picture.
Use a better algorithor data structure.
Enable compiler optimizations.
Tune the code.
Don't optimizewhatdoesn't matter.
Collect common subexpressions.
Replace expensive operatidnscheap ones.
Unroll or eliminate loops.
Cache frequentlusedvalues.
Write a speciapurpose allocator.
Buffer input and output.
Handle special cases separately.
Precomputeesults.
Useapproximatevalues.
Rewritein a lowerlevel language.
Save spachy usingthe smallest possible datgpe.
Don't storewhatyoucan easily recompute.

Portability
Stick to the standard.
Programin themainstream.
Bewareof language trouble spots.
Try several compilers.
Use standard libraries.
Use onlyfeatures available everywhere.
Avoid conditional compilation.
Localize system dependencieseparate files.
Hide system dependencies behind interfaces.
Use texffor data exchange.
Use a fixed byte order for data exchange.
Change th@ameif youchange the specification.
Maintain compatibilitywith existing programanddata.
Don't assum@asSCIl.
Don't assume English.

251

Index

Woman: Is my Aunt Minnie in here?

Driftwood: Well, youcancomein and prowl around if you want to.
If she isn't in here,youcan probablyfird somebodyustasgood.

0, seezero, notatiorfor
Ilk random selection70
__naming convention. 104
$ endof stringmetacharacter. 222
& bitwise operator, 7127
&% logicaloperatorg, 193
"\0' null byte, 21
o
wildcards, 106.222
zero omore metacharacte23,225,227
+oneor more metacharacte223.228
++ increment operator9
. anycharactemetacharacter223
... ellipsisfunction parameter]09, 218
—assignmenbperator,9. 13
>> right shiftoperator, 8135,194
>>= assignmentoperatos,
>>> Java logicatight shift operator,194
?
questionable codeotation. 2, 88
zero or onenetacharacter223,228
?: conditionaloperator, 8,93
[] characterclassetacharacter223.228
\
line continuationcharacter, 240
quotemetacharacter223,228
A startof stringmetacharacter. 222
{} braces, positioaf, 10
\
OR metacharacter223
bitwise operator.7, 127

TheMarx Brothers A Night at the Opera

| | logicaloperator, 193

abortlibraryfunction, 125
abstraction.104,202
add functionMarkov C, 68
addendist function. 46
addfrontlist function. 46
addname list function, 42
addopfunction, 233,244
addsuffi x function,Markov C, 68
advquotedunction.CSV, 97-98
Aho, Al, xii
algorithm
binarysearch,31, 52
constardlime, 41, 44, 49, 55, 76
cubic, 41
exponential, 41
linear, 30, 41, 4647
logn, 32, 41, 51-52, 76
Markovchain, 62-63
nlogn, 34.41
quadratic.40, 43, 176
quicksort, 32
sequentiasearch, 30
tree sort. 53
alignment, 206
structurenember,195
allocafunction, 180
allocation
error,memory. 130
memory. 48, 67, 92

253

254 INDEX

allocator, speciatpurpose,180, 182
ambiguity
andparenthesization, 6
if-else. 10
analysis of algorithmssee0-notation
ANSI/ISO C standard.190,212
anycharactemetacharacter., 223
application programinterface (API1}05, 198
applylistfunction. 47
applyinordertree function,53
applypostordetreefunction. 54
approximatealues, 181
Ariane5 rocket. 157
arithmetic
IEEE floatingpoint. 112, 181.193
shift, 135, 194
Arnold, Ken, xii. 83
ary bounds.14
Array
Java,39
Tengthfield. Java, 22
array,static. 131
w=array[] vs.**array. 30
arrays, growing, 41-44, 58, 92, 95, 97, 158
ASCIl encoding. 210
assembly languagel52.181.237
assermacro, 142
<asserth> header, 142
assignment
multiple, 9
operatorg, 9, 13
operator>»>=, 8
associativearraysee alsohashtable
associativearray, 78, 82
atexit library function, 107
Austern, Matthew.83
avg function.141
Awk. 229
profile. 174
programfmt, 229
program, Markov.79
programspli t.awk, 229
test, 150

backwardgompatibility, 209.211
balancedree, 52, 76
benchmarking,187
Bentley,Jon, xii, 59,163,188
betareleaseest, 160
Bigelow, Chuck, xii
big-endian.204,213
binary

files, 132.157.203

model/O, 134.207
binarysearch

algorithm, 3,52

forerror. 124

function.1ookup. 31.36
testing, 146
tree, 50
tree diagram, b
binhexprogram.203
bi soncompilercompiler. 232
bitblt operator,241
bitfields. 183. 191. 195
bitwise operator
& 17,127
[, 7,127
blackboxtesting, 159
Bloch.Joshua, xii
block, try, 113
Booth.Rick, 188
boundaryconditiontesting. 140141, 152
159-160
Bourne.SteverR., 158
braces. positioof {}, 10
Brooks, Frederick.. Jr., 61, 83, 87.115
bsearcHibrary function. 36
B-tree, 54
buffer
flush. 107, 126
overflowerror, 67,156-157
buffering /0, 180
bug, seealsoerror
bug
environmentdependent. L3
header file. 129
isprint, 129.136
list. 128
mental model. 127
nonreproducible 130-131
performance}8, 82, 175
reports, 136
testprogram, 129
typographical, 128
build function
Markov C, 67
Markov C++, 77
byte order, 194, 204-207
diagram. 204
byteordemrogram, 205

C
functionprototype. 191
standardANSVISO. 190.212
C++
inline function. 17, 19
i ostreamlibrary. 77
sortfunction. 37
standardiSO, 76,190,212
stringclass, 100
caching,179,186,243
can't get heremessage {24
can't happen messagel5, 142.155

Cargill, Tom. xii
carriagereturnyr, 89,96, 203-204
cast, 35, 40, 43, 244
C/C++ preprocessorseepreprocessatirective
C/C++ data type sizes192.216
cerrerrorstream. 126
Chainclass. MarkovJava, 72
Chain add functionMarkovJava, 73
Chain. buildfunction. Markov Java73
Chaingeneratdunction MarkovJava,74
characteset. seeencoding
characterclagwetacharacte[], 223.228
characters

HTML. 31

non-printing, 132

unsigned.57. 152, 193
checkfunction, 125
ChristiansenLom, 83
cin inputstream, 77
class

C++string. 100

container,71, 76

Csv. 100

JavaDate, 172

JavaDecimalFormat, 221

JavaHashtable,71

JavaRandom, 39

JavaeStreamTokenizer. 73

JavaVector, 71

Markov, 72

MarkovJavaChain, 72

MarkovJavaPrefix. 72
Cleeland, Chrisii
clocklibraryfunction, 171
CLOCKSPERSEC timerresolution, 172
clonemethod, seeobjectcopy
Cmp interface,38
codegeneratiorby macro, 240
Codestructure,234
codetuning. 176,178-182
Cohen, Danny213
ColeridgeSamuelTaylor. 247
command

echo, 207

interpreter,106, 228

statugeturn, 109.225

sum, 208

time, 171
commaseparated valuesgealsoCSV
commaseparated valueg6-87
comments23-27, 203

semantic. 239
commorsubexpressioneliminatior,78
Comparablenterface, 37
compatibility backwards,209.21
compiler

gce, 120

INDEX

justin-time. 81, 241, 243

optimization, 176, 186

testing, 147,239
compilercompiler

bison, 232

yacc, 232.245
compiletimecontrofiow. 199
complexexpressiong,
complexity. 40
conditional

compilation. 25, 199

operator?:. 8, 193
configuratiorscript, 201
conservatiopropertiestesting, 147,161
consistency4, 11, 105
const declaration, 20
constant-time algorithmé4l, 44, 49, 55, 76
constructor,100, 107108

Markov JavaPrefix, 74
container

class.71, 76

deque. 76.81

hash, 76.81

list, 81

map, 72, 76, 81

pair, 112

vector. 76,100
controlflow, compiletime, 199
controtZendof file. 134,207
convention

--naming, 104

naming, 3-5, 104
conversionerromprintf, 120
CooperAlan. 115
coordinatéashing.57-58
copy, object,67, 73, 107--108, 161
costmodel, performance} 84
CoughranBill, xii
coverage, test{48
Cox,Russ. xii
CPUpipeline, 179,244
CRLF. 204
Csv

advquotedunction, 9798

csvfieldfunction, 98

csvnfield function. 98

endoflinefunction. 96

mainfunction. 89, 98, 103

reseffunction, 96

splitfunction. 97

field diagram,95

format, 91, 93, 96

in C. 91-99

in C++, 99-103

prototype, 87-91

specification93
"csv.h" header94

256 INDEx

Csv::advplainfunction, 102
Csv::advquotedunction, 102
Csv::endofline function. 101
Csv::getfieldfunction. 102
Csv::getlinefunction, 100
Csv: :getnfieldfunction, 102
Csv::split function, 101
Csvclass, 100
csvfield functionCSv, 98
csvgetline

function, 95

prototype.88

variables 94
csvnfield function.CSV, 98
ctime library function, 25, 144
<ctype.h> header.18, 21, 129.210
cubic algorithm 41
cyclic redundancgheck, 58

danglingelse. see i f-elseambiguity
dangling pointer,130
data
exchange. 202204.216
structure diagranMarkov, 66
structure diagram, spditier, 170
structuretrie, 171
typesizesC/C++, 192.216
typesizes, Java, 193
Dateclass, Java, 172
Date.getTime Javalibrary function, 172
dbxdebugger. 122
OxDEADBEEF, 159
debuggers118-119
debugging
code, 200.202
malloc, 131
output. 123
Decimal Format clasdava. 221
decisionsmulti-way, 14
declaration
const, 20
enum, 20
final, 21
Javasynchronized, 108
loop variable.12
static. 94
typedef, 76,217
deconstruction, 82, 114
default parameters,00
defensivgprogramming, 114. 142
#define, see also macrofunction macro
#definepreprocessordirective?.20.240
delitemList function. 49
delnamefunction, 43
deque container{6.81
derivedtype. 38
Descartes, Rent, 249

descriptive names, 3
desigrtradeoffs, 90
destructor, 108
Dewdney A. K., 84
DewhurstSteve. xii
diagram

binarysearchree. 51

byteorder. 204

CSV field. 95

hashtable, 55

list. 45

Markov datastructure, 66

Markov hasttable, 66

packet format.216

parse treepb4,232

quicksort, 33

spam filterdata structure, 170
Dijkstra, Edsger, 139
directive, see preprocessordirective
discrete cosine transforn24
divideandconquer, 52, 124
divisionby zero. 141-142, 236, 241
divopfunction. 236
Dorward, Sean. 213
doublevs.float, 183
doubly-linked list, 49, 81
dowhileloop, 13,133.225
dynamicprintf format, 68

eager evaluation, 181
echocommand,207
Edison, ThomasA., 117
#elif preprocessordirectivel 99
elimination,common subexpression, 178
ellipsis functiorparameter. .., 109, 218
Ellis, Bruce, 82
elseif, 14
emalloc function. 46, 110
emitfunction. 244
empty string, 9, 100
encapsulation, 104
encoding

ASCII. 210

GIF, 184

ISO 10646, 31,210

Latin-1, 210

MIME, 203

PPM, 184

Unicode. 31.210, 228

UTF-8, 211,213,228
#endif preprocessordirective, 199
end offile, controkZ. 134,207
endoflinefunction.CSV. 96
endof stringmetacharactes, 222
enumdeclaration, 20
enum.pl Perlprogram, 239
environmentdependebtig. 13

EOF value, 194
eprintffunction. 49,109
"eprintf.h" header,110
egnlanguage,229
errno variable. 112,193
<errno. h> header, 109
errormessagesee also eprintf,weprintf
error

binary searclfor. 124

buffer overflow, 67156-157

gets. 14, 156

handling, 109

hardware, 130

memoryallocation. 130

message format] 14

messagemisleading.134

numeric patternsf, 124

off-by-one. 13, 124.141

orderof evaluation, 9,193

outof bounds. 153

patterns, 120

Pentium floatingpoint. 130

printf conversion, 120

gsortargument. 122

recenthange,120

recovery,92, 109-113

reproducible. 123

return values91, 111, 141, 143

scanf, 120

status return;109

streamgcerr, 126

streamstderr, 104.126

streamSystem.err, 126

subscriptoubf range, 14, 140, 157
"errors.h" header,238
estimation. performancel84-187
estrdupfunction, 110, 114
eval function. 233-234, 236
evaluation

eager. 181

expression233

lazy, 92.99

multiple. 18-19.22

of macro argument, multiplel8, 129
examplesregulaexpression.223,230,239
Excelspreadsheet97
exhaustivetestingl 54
expectegherformance40
exponential algorithm41
expressiongee also regulaexpression
expression

evaluation.233

format, 7

style. 6-8
expressions

complex. 7

INDEX 257

negated$, 8, 25
readabilityof, 6
extensionsprintf, 216

falloc symbol, 5
fall-throughswitch. 16
far pointer. 192
fdopenfunction, 134
fflush library function. 126
fgetslibrary function, 22, 88, 92, 140, 156
Fielding, Raymond, 29
file. see also header
files
binary, 132.157.203
testdata. 157
final declaration.21
find library function, 30
find - fi rst_of library function, 101-102
FlandrenaBob. xii. 188
floatvs.double, 183
floating-point
arithmetic.|EEE. 112, 181, 193
error,Pentium. 130
flush, buffer, 107.126
fmt Awk program, 229
forloopidioms, 12, 194
format
CSV, 91, 93,96
dynamicprintf, 68
output, 89
printf%. »s, 133
string,printf, 216
Fraser, Chris, 245
f readlibrary function, 106,205
freelist. 180
free
library function. 48
multiplecalls of, 131
f reeal list function, 48
FrenchRenée, Xii
f reqprogram, 147, 161
Friedl, Jeffrey. 246
Frost. Robert85
fscanflibrary function, 67
function, see also library function
functionmacros. see also macros
function
addendist, 46
addfrontlist, 46
addname list. 42
addop,233,244
alloca, 180
applylist, 47
applyinordertree. 53
applypostordetree. 54
avg, 141
C++inline, 17, 19

258 INDEX

C++sort, 37 Markov Java Prefix. hashCode, 74
check. 125 match, 224
CSV advquoted, 97-98 matchhere, 224
CSV csvfield 98 matchstar, 225
CSV csvnfield. 98 memset. 152
CSV endofline, 96 names, 4
CSV main. 89.98. 103 newitemlist, 45
CSV reset, 9 nrlookup tree, 53
CSV split, 97 nvcmp name-valuecomparison, 37
Csv: :advplain, 102 pack, 218
Csv::advquot.ed, 102 pack-typel. 217,219
Csv: rendofline, 101 parameter. . .. ellipsis. 109, 218
Csv: :getfield. 102 pointer, 3447, 122,220-221, 233, 236,244
Csv: :getline, 100 printnv list, 47
csvgetline, 95 progname, 110
Csv: :getnfield, 102 prototype, C, 191
Csv: :split, 101 pushop, 236
delitemlist, 49 quicksort. 33
dg]name, 43 Quicksort.rand, 39
divop. 236 Quicksort.sort. 39
emaj]oc, 46, 110 Quicksort. swap, 39
emlt', 244 receive. 221
eprintf, 49, 109 Samp String comparison, 38
estrdup, 110, 114 scmp string comparison, 35
eval. 233-234.236 setprogname, 110
fdopen, _134 strdup. 14,110. 196
freeall list, 48 strings, 132
generate, 235 strings main, 133
getbits, 183 strstr, 167
grep, 226 swap, 33
grepmain, 225) testmalloc, 158
Icmpinteger comparison, 38 unpack, 219
iarp integer comparison, 36 unpack-type2. 220
inccounter list, 48 unquote. 88
inserttree, 51 usage. 114
isspam, 167. 169. 177 virtual, 221
leftmost longest matchstar. 227 wepri;,tf 52, 109. 197
Tookup binary search, 31.36 wrapper, '111
IookuphashtabIE, 56 fwrite library function, 106, 205
Tookuplist, 47
lookup tree, 52 Gamma, Erich, 84
macro, isoctal, 5 garbagecollection, 48.75. 108
macros, 17-19
reference count, 108
Markov C add, 68 cc compiler, 120
Markov C addsuffix 68 g prer, 2
Markov G build 67 generate function, 235
. kov C, 70
Markov C++build 77 Mark -
Markov C generate, 70 Markov G4+, 78
Markov G4+ generate, 78 generic class. see container class
Markov G hash. 66 getbit s function, 183
Markov C 1ookup, 67 gei;char
Markov C main, 71 :.bloms, 13, 194
Markov G+ main. 77 ibrary function, 13, 194
getquotes.tc| Tcl program, 87

Markov Java Chain.add, 73
Markov Java Chain.build, 73
Markov Java Chain.generate, 74 (—;rror, 14, 156

library function, 14, 156

Markov Java main, 72
Markov Java Prefix.equals 75 geturl.tcl Telprogram, 230
GIF encoding. 184

gets

global variable 3, 24, 104.122
Gosling, James83,212
got heremessage124

graphof
hash table chainsl26
hash tablsize. 174
grep
function, 226
implementation225-227
main function. 225
options, 228

program,223-226
Grosse, Eric, xii
growing

arrays,41-44, 58, 92, 95, 97, 158

hashable. 58

Hanson, David 115,245
Harbison, Sam, 212
hardware error130
hash
function, 55-57
function, Javas57
function multiplier,56-57
table. 55-58, 78, 169
table chains, grapdf. 126
table diagram555
table function] ookup, 56
table,growing, 58
tableinsertion, 56
table.prefix, 64
tablesize. 56-57, 65
table size, graph of, 174
value. 55
hash
container,76.81
function, MarkovC, 66
hashingcoordinate 57-58
Hashtabk classJava. 71

header
<asserth>, 142
"csv.h', 94

<ctype.h>, 18,21, 129,210
"eprintf.h", 110
<errno.h>, 109
"errors.h", 238
<stdarg.h>, 109.218
<stddef.h>, 192
<stdio.h>, 104, 196
<stdlib.h>, 198
<time.h>, 171
headerfile
bug, 129
organization94
Helm,Richard,84
Hemingway Ernest,63
HennessyJohn. 188

INDEX 259

Herron,Andrew. xii

hexadecimalutput. 125

histogram,126

Hoare, C.A. R.. 32, 37

holesin structure, 195

HolzmannGerard, xii, 57.59

homoiousiarvs. homoousian228

hotspot, 130,172-174

HTML, 86,157,215,230,237
characters, 31

HTTP. 89.204

Iemp Integercomparisonfunction, 38
i emp integer comparisofunction. 36
idioms, 10-17

forloop. 12,194

getchar, 13, 194

infinite loop, 12

list raversal, 12

loop. 12-13. 140

malloc, 14

memmove arrayupdate,43.68

new, 14

realloc, 43.95

side effects,195

string copy, 14

suingtruncation. 26

switch, 16
idle loop, 177
|EEEfloating-pointarithmetic, 12, 181,193
#if preprocessordirectivd96
#ifdef, seealsoconditionalcompilation
#if def preprocessordirectives, 196. 198-201
i f-els eambiguity, 10
i nccountetist function, 48
incremenbperator+, 9
incremental testing145
indentationstyle, 610.12, 15
independentimplementations, testinyg 148
i ndexOf Java library function30
Inferno operating systeni,81,210,213
infinite loop idioms, 12
information hiding,92, 99, 104.202

inC, 94.103
initialization, static, 99106
inline function.C++, 17,19
in-order tre@raversal, 53
input

mode,rb, 134,207

stream, cin, 77

streamstdin, 104
inserttreefunction. 51
insertion, hash table56
insuuctions. stackachine.235
integer

comparison function,dmp, 36

overflow. 36.157

260 INDEX

interface
Cmp, 38
Comparable, 37
principles. 91, 103-106
Seriali zable, 207
interface Java. 38
interfacesyser. 113-115
internationalization209-211
interpreter,231,234
intersectionportability by, 198
1/0
binary mode, 134,207
buffering, 180
textmode, 134
IOException, 113
iostream library,C++, 77
i salpha library function, 210
ISO
10646encoding.31.210
C++standard.76. 190, 212
i soctalfunction macro,5
isprintbug, 129, 136
isspam function}67, 169, 177
i suppeilibrary function, 18, 21
i sUpperCase Javdibrary function, 21

Java
Array, 39
Array lengthfield, 22
data type sizes, 193
Dateclass. 172
DecimalFormat class221
hashfunction, 57
Hashtablelass. 71
interface, 38
library function,Date getTime, 172
library function,i ndexof, 30
library function,i sUpperCase, 21
library function,Math.abs. 39
logical rightshift operatory>>, 194
Object. 38,40, 71
quicksort,37-40
Randontlass,39
randomlibrary function, 24, 162
StreamTokenizerclass.73
synchronizeddeclaration,108
Vectorclass. 71
Virtual Machine. 237
JavaScript, 215
JIT, segustin-timecompiler
Johnson, Ralphg4
Joy, Bill, 212
justin-timecompiler. 81, 241, 243

Kernighan. Brian.28,212,245
Kernighan, Mark, xii
key,search,36, 55, 77

Knuth, Donald, 59, 159, 162,172.188.245
Koenig, Andy, xii, 239

Lakos, John, xii, 115
language
eqn, 229
lawyer, 191
mainstream191
standard,190
languages
scripting, 80,82, 230
testing, 150
Latin-1 encoding.210
lazyevaluation,92.99
leap year computation, I}, 144
leftmost longest
match, 226
matchstafunction, 227
Tengthfield, JavaArray, 22
library
C++iostream, 77
design,91-94
son. 34-37
library function
abort. 125
atexit, 107
bsearch,36
clock, 171
ctime, 25,144
Date.getTime Java, 172
fflush, 126
fgets, 22, 88,92, 140, 156
find, 30
find-fi rst_of, 101-102
fread, 106,205
free, 48
fscanf, 67
fwrite, 106,205
getchar, 13, 194
gets. 14,156
index0f Java, 30
isalpha, 210
i supper, 18.21
i sUpperCase Java, 21
Javarandom, 24, 162
Tongjmp, 113
malloc, 14, 120, 131, 157
Math.abs Java.39
memcmp, 173
memcpy, 43. 105
memmove, 43, 68, 105
memset, 182
new, 14,120
qsort, 34
rand. 33.70
realloc, 43,95, 120
scanf.9, 156, 183
setbuf,setvbuf, 126

setjmp, 113
setmode, 134
sprintf. 67
strchr. 30. 167
strcmp, 26
strcpy. 14
strcspn, 97,101,155
strerror, 109, 112
strlen. 14
strncmp, 167
strstr. 30,167
strtok. 88,96, 105, 108,155
vfprintf, 109
Linderman,John, xii
Lindholm, Tim, 245
line continuation characte\, 240
linear
algorithm, 30, 41, 4647
search,30.32
list
bug. 128
diagram. 45
doubly-linked, 49,81
function, addend,46
function. addfront, 46
function,addname, 42
function,apply, 47
function,delitem, 49
function,f reeall, 48
function, inccounter,48
function.lookup, 47
function. newitem, 45
function, printnv. 47
representation45-46, 49
singly-linked. 45
traversal idioms,12
1listcontainer. 81
lists, 44-50
literateprogramming, 240
little languages,151,216,229
little-endian, 204
local variable, 3, 122
pointer to, 130
Locanthi, Bart. 241.246
log file, 111,125, 131
logical
operator.&&, 6,193
operator.| |, 6,193
right shiftoperator.>>> Java, 194
shift, 135,194
lognalgorithm, 32, 41, 51-52, 76
longjmplibrary function. 113
Tookup
binarysearch function31.36
function. MarkovC, 67
hashtablefunction, 56
list function, 47
tree function,52

INDEX

loop
do-while, 13, 133.225
eliminarion, 179
idioms. 12-13,140
inversion. 169

LOOP macro. 240

loop
unrolling. 179
variabledeclaration, 12

machine

stack, 234

virtual, 203, 213, 232, 236
machinedependent code, 181
macro. 17-19

261

argument, multiple evaluation of, 18, 129

assert,142
codegeneration by, 240
LOoP, 240

NELEMS. 22.3I

va_arg, va_list, va_start, va_end. 109,218

magicnumbers.2. 19-22.129
Maguire Steve. 28137
main function
CSv, 89.98.103
grep, 225
MarkovC. 71
MarkovC++, 77
Markov Java,72
strings, 133
mainstream. languagel91
malloc
debugging. 131
idioms, 14
library function. 14, 120131, 157
management
memory, 48
resource, 92. 16609
mapcontainer,72, 76, 81
Markov
Awk program. 79
C addfunction, 68
C addsuffixfunction. 68
C buildfunction. 67
C++ buiad function, 77
C generatdunction, 70
C++ generatdunction, 78
C hashfunction. 66
C lookupfunction. 67
C main function. 71
C++main function. 77
chain algorithm, 62-63
datastructure diagram66
hash table diagrant6
JavaChainclass, 72
JavaChain.addfunction. 73
JavaChain. buildfunction. 73
JavaChain.generatdunction, 74

262 INDEX

Javamain function, 72
JavaPrefixclass, 72
JavaPrefixconstructor, 74
JavaPrefix.equal function. 75
JavaPrefix.hashCode function, 74
Perl program, 80
program testing.160-162
run-time table, 81
state, 64
testprogram, 161
Markov class, 72
MarsPathfinder, 121
Marx Brothers, 253
match leftmost longest, 226
match function, 224
matchheréunction. 224
matchstar function, 225
leftmost longest. 227
Math.absJavalibrary function, 39
McConnell, Steve. 28.115.137
Mcliroy, Doug, xii,59
McNamee, Paul. xii
mechanization, 86, 146, 149, 155, 2240
memecmp library function. 173
memcpy library function, 43,105
Memishian. Peterxii
memmove
array update idioms43, 68
library function, 43, 68, 105
memoryallocator, seemalloc, new
memory
allocation. 48, 67, 92
allocation error. 130
leak, 107,129.131
management48
memset
function, 152
library function. 182
test, 152-153
mental model bug127
messageseealsoeprintf, weprintf
message
can't get here, 124
can’t happen. 15, 142,155
format,error, 114
gothere, 124
metacharacter
. anycharacter,223
[1 characteclass. 223,228
$ endof suing, 222
+oneor more, 223,228
| OR. 223
\ quote, 223,228
A startof string, 222
* Zeroor more, 223, 225, 227
? zeroorone, 223,228

metacharacters
Perl, 231
regular expression222
MIME encoding, 203
Minnie, A.. 253
misleadingerror message.134
Mitchell, DonP., 82
Modula-3, 237
Mullender, Sape, Xii
Mullet. Kevin. 115
multiple
assignment,9
calls offree. 131
evaluation,18-19.22
evaluationof macro argument18, 129
multiplier, hash function,56-57
multi-threading, 90, 108, 118
multi-way decisions, 14

names
descriptive, 3
function, 4
variable. 3-4, 155
Namevalstructure, 31, 42, 45, 50,55
namevalue structure,seeNameval structure
namevaluecomparison functiomvemp, 37
naming convention,3-5, 104
_-. 104
NaN nota number, 112
nearpointer, 192
negatedexpressionsg, 8, 25
NELBVS macro, 22. 31
Nelson. Peter, xii
Nemeth,Evi, xii
new
idioms, 14
library function, 14, 120
newitem list function. 45
nlognalgorithm, 34.41
non-printing characters,132
non-reproducible bug,130-131
NONAGFDvalue. 69
notanumber.NaN, 112
notation
for zero, 21
printf-like. 87,99, 217
nrlookuptreefunction, 53
null byte, *\0’, 21
NUL pointer. 21
nul1 reference,21, 73
numbers. magic2, 19-22, 129
numeric patternsf error, 124
numerology, 124
nvemp namevaluecomparison function37
Nvtab structure. 42

objectcopy, 67.73, 107-108, 161

Object.Java, 38, 40, 71
off-by-oneerror, 13, 124,141
oneor more metacharacter, 223.228
0-notation, seealso algorithm
O-notation, 40-41

table, 41
on-the-fly compiler, segjust-in-timecompiler
opaqudype, 104
operating system

Inferno, 181, 210, 213

Plan9, 206, 210, 213, 238

virtual, 202,213
operator

& bitwise, 7. 127

&% logical, 6, 193

++increment, 9

= assignment9, 13

>> right shift, 8,135,194

>>= assignment, 8

»>>> Java logical right shift, 194

?: conditional, 8, 193

| bitwise, 7,127

Il logical. 6. 193

bitblt, 241

functiontable,optab, 234

overloading.100,183

precedences-7, 127

relational, 6, 127

sizeof, 22, 192, 195
optaboperatofunctiontable, 234
optimization, compiler,176, 186
options,grep, 228
OR metacharacten., 223
orderof evaluatiorerror. 9, 193
organization. headéle, 94
out of bounds error, 153
output

debugging, 123

format, 89

hexadecimal, 125

streamstdout. 104
overflow,integer. 36, 157
overloading, operator{00, 183

pack function, 218
pack-typelfunction, 217,219
packefformat diagram, 216
pack, unpack216-221
pair container, 112
parameter, . . ellipsis function, 109,218
parametergdefault, 100
parenthesesedundant, 6
parenthesizatiorl8
andambiguity, 6
parsetreep4,232
diagram,54,232

INDEX 263

parser generatoseecompilercompiler
pattern matchingseeregularexpression
patterns,error120

Patterson, David188
Pentiunfloating-pointerror, 130
performance

bug, 18, 82, 175
cost model, 184
estimation.184-187
expected40
graph, 126, 174
test suite,168
worstcase40

Perl

metacharacter@31
programenumpl, 239
programMarkov. 80
program, unhtmlp1, 230
regularexpression. 230
test suite, 162

picture, seediagram

Pike, Rob, 213, 245-246

pipeline. CPU,179,244

pivot element, quicksort32—-34

Plan9 operating systeni06, 210, 213, 238
Plauger, P.J., 28

pointer

dangling. 130

far, 192

function, 34, 47, 122, 220-221,233,236,244
near. 192

NULL, 21

to localvariable, 130

void*, 21.43.47

portability, 189

by intersection, 198
by union. 198

positionof {} braces, 10

POSIX standard,198, 212
postcondition, 141

postordertree traversa§4,232
Postscript.203,215,237,239
PPMencoding, 184

Practice of Programmingwebpage. xi
precedence,operatof-7, 127
pre-condition. 141

Prefix

class, Markovava. 72
constructorMarkovJava, 74

prefixhashtable. 64
Prefix.equalsfunction,MarkovJava,75
Prefix.hashCode function, Markov Java, 74
pre-ordertree traversal54
preprocessordirective

#define, 2.20.240
#elif, 199
#endif, 199

264 INDEX

#if, 196

#ifdef, 25,196, 198-201
PresottoDavid, 213
principlesjnterface,91, 103-106
printf

conversionerror. 120

extensions, 216

format.dynamic, 68

formatstring, 216

%.«s format, 133
printf-like notation,87.99.217
printnvlist function. 47
productiorcode. 83, 99
profile

Awk, 174

spanfilter, 173-174
profiling. 167,172-174
progname function, 110
program

byteorder, 205

counter,236,243

enum. pl Perl, 239

fmt Awk. 229

freq. 147.161

getquotestcl Tcl. 87

geturl.tcl Tcl, 230

grep. 223-226

inverse. 147

Markov Awk. 79

Markov Perl. 80

Markovtest, 161

sizeof, 192

split.ank Awk. 229

strings, 131-134

unhtml.pl Perl, 230

vis, 134
programmabletools228-231
programminggdefensive,114. 142
protocolchecker, Supenrace, 57
prototype

code. 83.87

CSvV, 8791

csvgetline, 88
pushop function, 236

gsort

argumengrror. 122

library function, 34
guadratic algorithm40, 43, 176
questionable code notation, 2, 88
quicksort

algorithm. 32

analysis, 34

diagram. 33

Java, 3740

pivotelement,32-34
quicksortfunction, 33

Quicksortrandfunction, 39
Quicksortsortfunction, 39
Quicksortswapfunction, 39
quoternetacharactey, 223.228
quotes, stock, 86

\r carriage returngg, 96, 203-204
Rabinowitz, Many. xii
randlibrary function, 33, 70
Randontlass.Java, 39
randomselectionl/k, 70
randonlibrary function, Java,24, 162
rb input mode. 134.207
readabilityof expressions, 6
realloc

idioms, 43.95

library function. 43, 95, 120
receivefunction. 221
recent change error120
records. test. 15
recovery,error, 92109-113
reductionin strength,178
redundant parentheses, 6
reentrantcode108
reference

argument,i11, 220

null, 21.73
referenceountgarbage collection. 108
regression testingl 49
regular expressior9, 222-225, 239, 242

examples 223, 230, 239

metacharacters. 222

Perl, 230

Tcl, 230
Reiser,John. 246
relational operatorg, 127
representation

list, 45-46,49

sparsenatrix. 183

tree, 50

two's complement, 194
reproducibleerror,123
reseftfunction,CSV. 96
resourcenanagement92.106-109
return, see carriage return
right shift

operator>>, 8,135.194

operator>>> Java logical, 194
Ritchie. Dennis, xii. 212-213

Sam text editor202,213
Sano, Darrell, 115
scanf

error. 120

libraryfunction. 9, 156,183
Schwartz, Randal. 83
ScmpStringcomparisorfunction. 38

scmp suingcomparison function35
script

configuration, 201

test. 149.160
scriptinglanguages 80, 82, 230
search

algorithm, sequential30

key, 36.55.77
searching 3CG-32
SedgewickRobert, 59
selection}/k random, 70
self-checkingode. 125
self-containedest, 150
semanticomments.239
sentinel,30, 69-71
sequential search algorithm, 30
Seriali zable interface. 207
setbuf.setvbuflibrary function, 126
setjmplibrary function, 113
setmode library function. 134
setprognaméunction. 110
Shakespeare. William, 165
ShaneyMark V.. xii, 84
shell, see command interpreter
ShneidermarBen, 115
side effects,8-9, 18, 193

idioms. 195
signals.197
singlepoint oftruth, 238
singly-linked ist, 45
size,hashtable. 56-57. 65
size_ttype, 192.199
sizeof

operator,22, 192,195

program. 192
sizes

C/C++ datatype. 192,216

Java data type, 193
son

algorithm, tree,53

library, 34-37
sortfunction,C++, 37
sorting strings. 35
source code control}21, 127
spaceefficiency. 182-184
spanilter, 166-170

data structure diagram, 170

profile, 173-174
sparsenatrix representation, 183
speciatcasduning, 181
speciatpurposeallocator, 180,182
specification87.93

CSvV, 93
splitfunction,CSV, 97
spli t.ank Awk program. 229
spreadsheédrmat, see comma-separated values

INDEX

spreadsheet, 139.22

Excel, 97
sprintflibrary function, 67
stack

machine, 234

machinenstructions, 235

trace. 118-119. 122
standard

ANSI/ISO C, 190,212

ISO C++, 76.190,212

language.190

POSIX, 198,212
Standard Templatgbrary. see STL
startof string metachamcter, 222
state.Markov, 64
Statestructure,65
static initialization,99. 106
static

array, 131

declaration94
statistical test,161
statugreturn

command,109,225

error, 109
<stdarg.h> header,109.218
<stddef.h> header. 192
stderrerrorstream.104.126
stdininputstream, 104
<stdio.h> header.104, 196
<stdlib. h> header. 198
stdoutoutputstream. 104
Steele, Guy, 212
StevensRich, xii,212
STL, 49.76,104. 155192
stock quotes86
Strachey. Giletytton, 215
strchrlibrary function, 30, 167
strcmplibrary function. 26
strcpylibrary function, 14
strcspnlibrary function, 97.101, 155
strdupfunction. 14,110,196
StreamTokenizerclass, Java73
strerrorlibrary function, 109,112
stress testing]55-159, 227
string copyidioms. see also strdup
string

comparison functiorsemp, 35

copyidioms, 14

truncatioridioms. 26
stringclassC++, 100
strings

function, 132

mainfunction. 133

program,131-134
strlen library function,14
strncmp library function, 167
Stroustrup, Bjarne. xii,83

265

266 INDEX

strstr self-contained, 150
function, 167 statistical, 161
implementation, 167-168 suite, performance, 168
library function, 30,167 suite, Perl,162
strtoklibrary function, 88, 96, 105, 108, 155 te stprogram, Markov, 161
structure testing
Code, 234 binary search,146
holes in, 195 black box, 159
member alignment195 boundary condition,140-141, 152,159-160
Nameva] 31, 42, 45, 50, 55 by independent implementations, 148
Nvtab, 42 compiler, 147,239
State,65 conservation properties, 147, 161
Suffix, 66 exhaustive,154
Symbol, 232 incremental. 145
Tree. 233 languages.150
Strunk, William, I, 28 Markov program, 160-162
style _ regression,149
expression.6-8 stress, 155-159,227
indentation, 610, 12,15 tools, 147149
subscriptout of range error.14. 140.157 white box. 159
suffix, 62 testmalloc function. 158
Suffix structure. 66 text model/O, 134
sumcommand, 208 Thimbleby,Harold, 115
Supertrac@rotocol checker57 ThompsonKen, xii, 188,213,242,246
swap function.33 threadeccode, 234
Swift, Jonathan, 213 timecommand.171
5‘;V'Itlc?] o <time.h> header.171
fall-through, 16 timerresolution. CLOCKS-PER-SEC 172
idioms, 16 tools
Symbolstructure. 232 programmable,228-231
symboltable, 55.58 testing, 147149
synchronizedleclaration, Java, 108 Toyama,Kcntaro i
syntax tree, see parseiree tradeoffs.design‘QO
Systemerrerrorstream, 126 . '
SzymanskiTom, i TravelingSalesman Problem41
tree, 50-54, 231-237
balanced,52.76
table binary search,50
Markov runtime, 81 function,applyinorder,53
0-notation, 41 function,applypostorder,54
optaboperatofunction, 234 function.insert, 51
tail recursion.53 function, lookup, 52
Taylor. lan Lance, xii function, nrlookup, 53
Tecl parse.54,232
program,getquotestcl. 87 representation50
programgeturl.tcl, 230 sortalgorithm, 53
regular expression230 Treestructure, 233
teddy bear,123.137 tree traversal
test in-order. 53
Awk, 150 postorder, 54.232
beta release160 pre-order. 54
coverage, 148 Trickey. Howard. xii,213
data files, 157 trie datastructure, 17
memset,152-153 TRIP testfor TEX, 159, 162
program bug.129 try block, 113
records, 151 tuning
scaffold, 89, 98, 146, 149,151-155 code, 176,178-182

script, 149,160 speciatcase. 181

tuple. 112
two's complementepresentation,194

type

derived, 38

opaque. 104

size_t, 192,199
typedefdeclaration,76.217
typographical bug, 128

unhtm1.pl Perl program, 230
Unicodeencoding,31.210.228
uninitialized variables, 120,59
union, portability by,198
unpackfunction, 219
unpack-type2function, 220
unquotefunction, 88
unsignectharacters57, 152, 193
usagefunction. 114
userinterfaces, 113-115
USSYorkfown,142
UTF-8encoding, 211,213,228
uuencode, uudecode. 203

va_arg, va_li st,va_start, va_end macro.

109, 218
valueserrorreturn, 91, 111,141.143
vander Linden, Peter,28
Van Wyk, Chris, xii
variable

errno, 112.193

global, 3,24, 104, 122

local, 3, 122

names.3-4, 155
variables

csvgethine. 94

uninitialized, 120159
VectorclassJava, 71
vectorcontainer, 76100
Venturi, Robert, 189
viprintf library function, 109

INDEX 267

virtual
function. 221
machine, 203, 213, 232, 236
operatingsystem, 202,213
vis program, 134
Visual Basic, 215,237
Vlissides,John, 84
void* pointer, 21.43.47

Wadler, Phil, xii
Wait, JohnW.. xii
Wall, Larry. 83
Wang, DanielC., xii
warning messageseeweprintf
web
browser. 86.231
page,Practice ofProgramming, xi
Weinberger, Peter. xii
weprintf function, 52, 109,197
white box testing,159
White,E.B.. 1.28
widecharacters,211
Wiener,Norbert, 139
wildcards, +, 106,222
Winterbottom. Philip,213
worstcase performance40
wrapper function, | 11
Wright, Margaret, xii

X Window system,202, 206

yacccompilerconpiler. 232,245
Year2000problem, 144182
Yellin, Frank, 245

Yorkfown, 142

Young. Cliff, xii

zero, 21

division by, 141-142, 236,241

notation for, 21
zeroor moremetacharacters, 223,225, 227
zerooronemetacharacterz, 223.228

