

SOFTWARE MAINTENANCE
Concepts and Practice

SECOND EIITION

SOFTWARE MAINTENANCE
Concepts and Practice

SECOND Er ITION

Penn y Grub b (University of Hull, UK) &
Arms t ron g A Takan g (Software Systems Consultant, USA)

VJ>Worl d Scientifi cNew Jersey London Singapore Hong Kong

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: Suite 202,1060 Main Street, River Edge, NJ 07661

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Britis h Librar y Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

SOFTWARE MAINTENANCE : CONCEPTS AND PRACTICE (2nd Edition)

Copyright © 2003 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-238-425-1
ISBN 981-238-426-X (pbk)

Printed in Singapore by World Scientific Printers (S) Pte Ltd

Acknowledgement s

To our families, especially

 George and Danny (and thanks for all that proof-reading)

 Ayem, Bessem and Nyente.

The authors would like to thank colleagues and friends in the various
health care facilities across the world whose software trials and
tribulations have been amalgamated into the Acme Health Clinic case
studies used in the book.

Thanks also to Steven Patt and his colleagues for editorial
assistance.

V

Prefac e

Aims and Objectives

The purpose of this book is to explore the key issues underpinning
software change and to discuss how these issues impact on the
implementation of changes to software systems. The motivation for the
book came from the need for texts dealing directly with challenges that
software engineers face when modifying complex software systems. The
extent of this challenge can be seen in the cost of modifying software.
This cost can reach 70% of the total life-cycle cost [4, 36, 176].
Software maintenance is recognised as a key area in software
engineering [9, 163]. Despite this, many mainstream software
engineering courses are biased towards the development of new software
systems at the expense of issues surrounding changes to these systems
after they become operational [70].

Our intention is to produce a text that presents:

 a coherent and comprehensive coverage of software change
concepts;

 a theoretical base for the skills required to effect, control and manage
changes to evolving software systems;

 a framework for understanding and applying current maintenance
techniques and methods to solve problems.

This is not a cookbook; there is no set of cut and dried rules for
dealing with the problems of software maintenance. An elegant and
workable solution in one situation may be completely inadequate for the
same problem in a different environment. Nonetheless, it is essential for
software engineers to have a sound understanding of software
maintenance for several reasons. Firstly, it is common wisdom that a
large part of finding a solution to a problem lies in understanding it.
Secondly, an insight into the issues underpinning software maintenance
can help in the formulation of an adequate framework that can be used to
guide the development of appropriate support tools. This framework also
enables researchers to identify potential research questions and compare
research findings.

vii

vii i Software Maintenance: Concepts and Practice

Target Audience

This book is aimed at students, academics and professionals who have an
interest in the development and maintenance of software systems.

It is intended as a reference text and also as a course book for
software maintenance, software evolution and general courses on
advanced software engineering. It can also serve as an introductory text
for those intending to engage in research into software maintenance.

For undergraduate study, the book aims to raise awareness of
software maintenance issues, for example the need to develop programs
that cater for the evolutionary tendency of software systems. This not
only provides a grounding in the discipline, but is also a preparation for
lif e in the commercial world. The first job of many graduates going into
the software industry involves the maintenance of existing systems rather
than the development of new systems [187, 282]. Additionally, the book
is intended to complement other undergraduate software engineering and
programming courses.

For software professionals, the text provides a collection of
definitions for some of the commonly used terms. This is important
because of the plethora of terms and jargon in use [211]. In addition, the
case studies and real world examples provided should help during in-
service training or refresher courses on software maintenance.

Structure and Organisation of this Book

The book is organised into five parts.

The first part looks at the context of software maintenance. It
introduces the basic concepts and the framework within which
maintenance operates. Underlying theory is introduced by looking at the
fundamentals of software change, but real world considerations are also
introduced at this stage. This part of the book concludes with a look at
how software development and maintenance life-cycles are modelled.

The second part of the book goes through the activities that take
place during maintenance, starting with understanding the system to be
changed, through the specifics of making the change and testing the
modified system, to the managerial issues and decision-making that
accompanies the process.

Preface ix

The third part looks at means of measurement and assessment,
both of the overall process and of the components of software and
software maintenance, showing how to keep track and provide objective
assessment.

These first three parts of the book look at what software
maintenance is and how to do it. In total they build the case for
maintainability in systems.

The fourth part looks at how these lessons can be used in the
building of better systems.

The fifth and final part looks at research areas and the future for
the discipline of software maintenance.

Each major section is preceded by a number of discussion points
aimed at provoking thought about some of the fundamental issues.

Exercises throughout the book vary from straightforward
questions on the details of the text, to more complex role-playing
projects where the reader is asked to put themselves into a particular
maintenance context and think through a specific problem.

Both minor and major case studies are used throughout to relate
the material to what is happening at the coal face of software
maintenance.

Contents
ACKNOWLEDGEMENT S V

PREFACE VI I

PART I: THE CONTEXT OF MAINTENANC E 1

OVERVIEW 1

DISCUSSION POINTS 2

1. INTRODUCTIO N TO THE BASIC CONCEPTS 5

1.1 INTRODUCTION 5

1.2 DEFINITIONS 6

1.3 THE BASICS 7

1.4 How NEW DEVELOPMENT AND MAINTENANCE ACTIVITIE S

DIFFER 9

1.5 WHY SOFTWARE MAINTENANCE is NEEDED 10

1.6 MAINTAININ G SYSTEMS EFFECTIVELY 11

1.7 CASE STUDY-A I R TRAFFIC CONTROL 12

1.8 CATEGORISING SOFTWARE CHANGE 14

1.9 SUMMARY 15

2. THE MAINTENANC E FRAMEWOR K 17

2.1 INTRODUCTION 17

2.2 DEFINITIONS 17

2.3 A SOFTWARE MAINTENANCE FRAMEWORK 18

2.3.1 Components of the Framework 20
2.3.1.1 User 20
2.3.1.2 Environment 20

Operating environment 20
Organisational Environment 21

2.3.1.3 Maintenance Process 23
2.3.1.4 Software Product 25
2.3.1.5 Maintenance Personnel 28

2.3.2 Relations Between the Maintenance Factors 29
2.4 SUMMARY 31

3. FUNDAMENTALS OF SOFTWARE CHANGE 33

3.1 INTRODUCTION 33

3.2 DEFINITIONS 33

3.3 SOFTWARE CHANGE 34

3.3.1 Classification of Changes 34
3.3.1.1 Corrective Change 35

xi

xii Software Maintenance: Concepts and Practice

3.3.1.2 Adaptive Change 36
3.3.1.3 Perfective Change 36
3.3.1.4 Preventive Change 39

3.3.2 The Importance of Categorising Software Changes 40
3.3.3 Case Study - The Need to Support an Obsolete

System 40
3.3.4 Incremental Release 41

3.4 ONGOING SUPPORT 42

3.5 LEHMAN'S LAWS 44

3.6 SUMMARY 46

4. LIMITATION S AND ECONOMI C IMPLICATION S TO
SOFTWARE CHANGE 47

4.1 INTRODUCTION 47

4.2 DEFINITIONS 47

4.3 ECONOMIC IMPLICATIONS OF MODIFYING SOFTWARE 48

4.4 LIMITATION S TO SOFTWARE CHANGE 50

4.4.1 Resource Limitations 50
4.4.2 Quality of the Existing System 51
4.4.3 Organisational Strategy 51
4.4.4 Inertia 51
4.4.5 Attracting and Retaining Skilled Staff 52

4.5 THE NOMENCLATURE AND IMAGE PROBLEMS 52
4.6 POTENTIAL SOLUTIONS TO MAINTENANCE PROBLEMS 54

4.6.1 Budget and Effort Reallocation 54
4.6.2 Complete Replacement of the System 55
4.6.3 Maintenance of the Existing System 56

4.7 SUMMARY 56

5. THE MAINTENANC E PROCESS 59

5.1 INTRODUCTION 59

5.2 DEFINITIONS 60

5.3 THE SOFTWARE PRODUCTION PROCESS 60

5.4 CRITICAL APPRAISAL OF TRADITIONAL PROCESS MODELS 65

5.4.1 Code-and-Fix Model 66
5.4.2 Waterfall Model 67
5.4.3 Spiral Model 69

5.5 MAINTENANCE PROCESS MODELS 71

5.5.1 Quick-Fix Model 76
5.5.1.1 Case Study - Storage of Chronological

Clinical Data 77
5.5.2 Boehm's Model 80
5.5.3 Osborne's Model 82
5.5.4 Iterative Enhancement Model 84

Contents xiii

5.5.5 Reuse-Oriented Model 85
5.6 WHEN TO MAK E A CHANGE 86

5.7 PROCESS MATURITY 87

5.7.1 Capability Maturity Model® for Software 88
5.7.2 Software Experience Bases 88

5.8 SUMMARY 89

PART II : WHAT TAKE S PLACE DURING MAINTENANC E 91

OVERVIEW 91

DISCUSSION POINTS 94

6. PROGRAM UNDERSTANDING 97

6.1 INTRODUCTION 98

6.2 DEFINITIONS 98

6.3 AIM S OF PROGRAM COMPREHENSION 100

6.3.1 Problem Domain 100
6.3.2 Execution Effect 101
6.3.3 Cause-Effect Relation 101
6.3.4 Product-Environment Relation 103
6.3.5 Decision-Support Features 103

6.4 MAINTAINER S AND THEIR INFORMATION NEEDS 103

6.4.1 Managers 104
6.4.2 Analysts 104
6.4.3 Designers 105
6.4.4 Programmers 105

6.5 COMPREHENSION PROCESS MODELS 107

6.6 MENTALMODEL S 109

6.7 PROGRAM COMPREHENSION STRATEGIES '. 110

6.7.1 Top-Down Model I l l
6.7.2 Bottom-Up / Chunking Model 113
6.7.3 Opportunistic Model 115

6.8 READING TECHNIQUES 115

6.9 FACTORS THAT AFFECT UNDERSTANDING 116

6.9.1 Expertise 118
6.9.2 Implementation Issues 118

6.9.2.1 Naming Style 118
6.9.2.2 Comments 120
6.9.2.3 Decomposition Mechanism 121

6.9.3 Documentation 122
6.9.4 Organisation and Presentation of Programs 122
6.9.5 Comprehension Support Tools 125

6.9.5.1 Book Paradigm 125
6.9.6 Evolving Requirements 126

xiv Software Maintenance: Concepts and Practice

6.10 IMPLICATIONS OF COMPREHENSION THEORIES AND STUDIES 128

6.10.1 Knowledge Acquisition and Performance 128
6.10.2 Education and Training 129
6.10.3 Design Principles 129
6.10.4 Guidelines and Recommendations 129

6.11 SUMMARY 130

7. REVERSE ENGINEERIN G 133

7.1 INTRODUCTION 133

7.2 DEFINITIONS 134

7.3 ABSTRACTION 134

7.3.1 Function Abstraction 135
7.3.2 Data Abstraction 135
7.3.3 Process Abstraction 135

7.4 PURPOSE AND OBJECTIVES OF REVERSE ENGINEERING 135

7.5 LEVELS OF REVERSE ENGINEERING 138

7.5.1 Redocumentation 139
7.5.2 Design Recovery 141
7.5.3 Specification Recovery 142
7.5.4 Conditions for Reverse Engineering 143

7.6 SUPPORTING TECHNIQUES 143

7.6.1 Forward Engineering 144
7.6.2 Restructuring 144
7.6.3 Reengineering 146

7.7 BENEFITS 146
7.7.1 Maintenance 146
7.7.2 Software Reuse 147
7.7.3 Reverse Engineering and Associated Techniques in

Practice 147
7.8 CASE STUDY: US DEPARTMENT OF DEFENSE INVENTORY 148

7.9 CURRENT PROBLEMS 149

7.10 SUMMARY ...: 151

8. REUSE AND REUSABILIT Y 153

8.1 INTRODUCTION 154

8.2 DEFINITIONS 154

8.3 THE TARGETS FOR REUSE 155

8.3.1 Process 155
8.3.2 Personnel 156
8.3.3 Product 156
8.3.4 Data 156

8.3.4.1 Design 156
8.3.4.2 Program 157

Contents xv

8.4 OBJECTIVES AND BENEFITS OF REUSE 158

8.5 APPROACHES TO REUSE 159

8.5.1 Composition-Based Reuse 160
8.5.2 Generation-Based Reuse 162

8.5.2.1 Application Generator Systems 162
8.5.2.2 Transformation-Based Systems 163
8.5.2.3 Evaluation of the Generator-Based Systems 164

8.6 DOMAI N ANALYSI S 164

8.7 COMPONENTS ENGINEERING 166

8.7.1 Design for Reuse 166
8.7.1.1 Characteristics of Reusable Components 166
8.7.1.2 Problems with Reuse Libraries 168

8.7.2 Reverse Engineering 169
8.7.2.1 Case Study-Patient Identification 170

8.7.3 Components-Based Processes 171
8.8 REUSE PROCESS MODEL 172

8.8.1 Generic Reuse/Reusability Model 173
8.8.2 Accommodating a Reuse Process Model 176

8.9 FACTORS THAT IMPACT UPON REUSE 177

8.9.1 Technical Factors 177
8.9.1.1 Programming Languages 177
8.9.1.2 Representation of Information 177
8.9.1.3 Reuse Library 178
8.9.1.4 Reuse-Maintenance Vicious Cycle 178

8.9.2 Non-Technical Factors 178
8.9.2.1 Initial Capital Outlay 178
8.9.2.2 Not Invented Here Factor 179
8.9.2.3 Commercial Interest .179
8.9.2.4 Education 179
8.9.2.5 Project Co-ordination 179
8.9.2.6 Legal Issues 179

8.10 SUMMARY 181

9. TESTING 183

9.1 INTRODUCTION 183

9.2 DEFINITIONS 183

9.3 WHY TEST SOFTWARE 184

9.4 WHAT is A SOFTWARE TESTER'S JOB 186

9.5 WHAT TO TEST AND How 187

9.5.1 Who Chooses Test Data 187
9.6 CATEGORISING TESTS 189

9.6.1 Testing Code 190
9.6.1.1 Black Box and White Box Testing 190
9.6.1.2 Structured Testing 190
9.6.1.3 Integration Testing 191

xvi Software Maintenance: Concepts and Practice

9.6.1.4 Regression Testing 191
9.7 VERIFICATION AND VALIDATIO N 192

9.8 TEST PLANS 192

9.8.1 Points to Note 193
9.9 CASE STUDY - T H E R AC 25 194

9.10 SUMMARY 201

10. MANAGEMEN T AND ORGANISATIONA L ISSUES 203

10.1 INTRODUCTION 204

10.2 DEFINITIONS 205

10.3 MANAGEMENT RESPONSIBILITIES 205

10.4 ENHANCING MAINTENANC E PRODUCTIVITY 206

10.4.1 Choosing the Right People 206
10.4.2 Motivating Maintenance Personnel 206
10.4.3 Communication 208

10.4.3.1 Adequate Resources 209
10.4.3.2 Domain Knowledge 209

10.5 MAINTENANC E TEAMS 210
10.5.1 Temporary Team 211
10.5.2 Permanent Team 211

10.6 PERSONNEL EDUCATION AND TRAINING 211

10.6.1 Objectives 212
10.6.1.1 To Raise the Level of Awareness 212
10.6.1.2 To Enhance Recognition 213

10.6.2 Education and Training Strategies 213
10.7 ORGANISATIONAL MODES 214

10.7.1 Combined Development and Maintenance 214
10.7.1.1 Module Ownership 214
10.7.1.2 Change Ownership 215
10.7.1.3 Work-Type 215
10.7.1.4 Application-Type 216

10.7.2 Separate Maintenance Department 216
10.8 SUMMARY 217

PART III : KEEPIN G TRACK OF THE MAINTENANC E PROCESS 219

OVERVIEW 219

DISCUSSION POINTS 220

11. CONFIGURATIO N MANAGEMEN T 223

11.1 INTRODUCTION 2 23

11.2 DEFINITIONS 225

11.3 CONFIGURATION MANAGEMENT 226

11.3.1 A Specific View of Software Configuration
Management 231

Contents xvii

11.3.1.1 Version Control 232
11.3.1.2 Building 234
11.3.1.3 Environment Management 234
11.3.1.4 Process Control 235

11.4 CHANGE CONTROL 235

11.4.1 The Responsibilities of Management in Change
Control 236

11.5 DOCUMENTATION 238

11.5.1 Categories of Software Documentation 238
11.5.2 Role of Software Documentation 241
11.5.3 Producing and Maintaining Quality Documentation 242

11.6 SUMMARY 245

12. MAINTENANC E MEASURES 247

12.1 INTRODUCTION 247

12.2 DEFINITIONS 248

12.3 THE IMPORTANCE OF INTEGRITY IN MEASUREMENT 249

12.3.1 Software Measurement 250
12.3.2 Software Measure and Software Metric 251

12.4 OBJECTIVES OF SOFTWARE MEASUREMENT 253

12.4.1 Evaluation 253
12.4.2 Control 253
12.4.3 Assessment 253
12.4.4 Improvement 254
12.4.5 Prediction 254

12.5 EXAMPLE MEASURES 254

12.5.1 Size 255
12.5.2 Complexity 255

12.5.2.1 McCabe's Cyclomatic Complexity 256
12.5.2.2 Halstead's Measures 257

12.5.3 Quality 259
12.5.3.1 Product Quality 259
12.5.3.2 Process Quality 259

12.5.4 Understandability 260
12.5.5 Maintainability 260
12.5.6 Cost Estimation 261

12.6 GUIDELINES FOR SELECTING MAINTENANCE MEASURES 2 61
12.7 SUMMARY 263

PART IV : BUILDIN G BETTER SYSTEMS 265

OVERVIEW 265

DISCUSSION POINTS 2 66

xviii Software Maintenance: Concepts and Practice

13. BUILDIN G AND SUSTAINING MAINTAINABILIT Y 269

13.1 INTRODUCTION 270

13.2 DEFINITIONS 270

13.3 IMPACT ANALYSI S 271

13.3.1 Models and Strategies 271
13.3.2 Impact Analysis in Creating Maintainable Systems 272

13.4 QUALITY ASSURANCE 272

13.4.1 Fitness for Purpose 273
13.4.2 Correctness 274
13.4.3 Portability 274
13.4.4 Testability 275
13.4.5 Usability 275

13.4.5.1 Case Study-Usability 275
13.4.6 Reliability 276
13.4.7 Efficiency 277
13.4.8 Integrity 277
13.4.9 Reusability 278
13.4.10 Interoperability 278

13.5 FOURTH-GENERATION LANGUAGES 279

13.5.1 Properties of Fourth-Generation Languages 281
13.5.2 Impact on Maintenance 282

13.5.2.1 Increased Productivity 282
13.5.2.2 Reduction in Cost 283
13.5.2.3 Ease of Understanding 283
13.5.2.4 Automatic Documentation 283
13.5.2.5 Reduction in Workload 283

13.5.3 Weaknesses of Fourth-Generation Languages 283
13.5.3.1 Application-Specific 284
13.5.3.2 Proprietary 284
13.5.3.3 Hyped Ease of Use 284
13.5.3.4 Poor Design 284

13.6 OBJECT-ORIENTED PARADIGMS 285

13.6.1 Decomposition to Aid Comprehension 286
13.6.2 Impact on Maintenance 288
13.6.3 Migration to Object-Oriented Platforms 290
13.6.4 Approaches 290
13.6.5 Retraining Personnel 291

13.7 OBJECT-ORIENTED TECHNIQUES IN SOFTWARE MAINTENANCE 292

13.7.1 Case Study -Mobile2OOO 292
13.7.2 Case Study - Insight II 293
13.7.3 Case Study - Image Filing System 295

13.8 SUMMARY 297

Contents xix

14. MAINTENANC E TOOLS 299

14.1 INTRODUCTION 299

14.2 DEFINITIONS 300

14.3 CRITERIA FOR SELECTING TOOLS 300

14.4 TAXONOMY OF TOOLS 302

14.5 TOOLS FOR COMPREHENSION AND REVERSE ENGINEERING 302

14.5.1 Program Slicer 303
14.5.2 Static Analyser 303
14.5.3 Dynamic Analyser 304
14.5.4 Data Flow Analyser 304
14.5.5 Cross-Referencer 304
14.5.6 Dependency Analyser 305
14.5.7 Transformation Tool 305

14.6 TOOLS TO SUPPORT TESTING 305

14.6.1 Simulator 305
14.6.2 Test Case Generator 306
14.6.3 Test Paths Generator 306

14.7 TOOLS TO SUPPORT CONFIGURATION MANAGEMENT 306

14.7.1 Source Code Control System 307
14.7.2 Other Utilities 308

14.8 OTHER TASKS 308

14.8.1 Documentation 308
14.8.2 Complexity Assessment 308

14.9 SUMMARY 309

PART V: LOOKIN G TO THE FUTURE 311

OVERVIEW 311

THE PAST AND PRESENT 312

RESEARCH AREAS 313

Classification 313
Software Experience Bases 313
Software Reuse 313
Support Tools 314
Software Measurement 314
Program Comprehension 314
The Software Maintenance Process 315
The Threesome Marriage 315

THE BEST OF BOTH WORLDS 316

REFERENCES 317

INDEX 341

PART I: The Contex t of Maintenanc e

Overview
This section of the book looks at software maintenance in context. It
aims to set the scene for looking in detail at what happens during the
maintenance process, and to provide a grounding in the subject that will
support you in the building of better software systems.

As with any discipline, it is important to have a good
understanding of the theoretical base and the context within which it
operates, in order to understand the cutting edge and be able to take the
discipline forward.

In this first part of the book, we will look at the basic concepts of
software maintenance and the overall framework within which it
operates. This includes a study of the fundamentals of software change,
some of the limitations and constraints, and finally a look at the theory of
maintenance process models.

 Basic Concepts

A study of the basic concepts shows where and how software
maintenance fits within the discipline of software engineering. It
highlights the aspects that make software maintenance a distinct
discipline, whilst exploring why software maintenance is needed and
how it can be carried out effectively.

1

2 Software Maintenance: Concepts and Practice

 Maintenance Framework

A study of the framework within which software maintenance operates,
roots the discipline firmly in the real world and gives a flavour for how
many different elements must be taken into account during maintenance
projects.

 Software Change Fundamentals

A study of the theory of software change leads to a deeper understanding
of the types of change that are and are not possible within software
systems. It allows for a more structured and effective approach to the
whole issue of implementing change.

 Limitation s and Economic Implications

Looking at the theory is useful, and you cannot be an effective software
maintainer without it. However, it is no use seeing software maintenance
as something that operates in a vacuum or always has unlimited
resources at its disposal. Being aware of economic and other constraints
is vital in making appropriate decisions.

 Maintenance Process Models

The process of carrying out software maintenance has evolved over
many years, and the underlying processes can be modelled. An
understanding of the models that you are working to when effecting
software change leads to a far better grasp of the overall processes and
thus aids good decision making.

Discussion Points
These points are intended to stimulate thinking and discussion on
fundamental issues in software maintenance. The issues raised are
explored in the chapters of this section, but it is beneficial to think
around these areas and try to draw conclusions yourself, before looking
for answers in the text.

 When to Implement Change

Imagine that you are in charge of a large software project. As well as a
major upgrade that is being implemented, you have to support three
different versions running on different Windows platforms and also a
DOS version that is still in use by a small group of users. A number of

The Context of Maintenance 3

different clients approach you over the course of a week to request the
following changes:

 One of the DOS users has seen a colleague's Windows version. He
doesn't wish to upgrade his system entirely, but he would like a
specific functionality. Can you provide it?

 One of your more enthusiastic users has been experimenting with the
latest functions in the latest Windows version. A problem has come
to light whereby the database may be corrupted. Can you fix it?

 Another of your Windows clients has heard about the wonderful new
upgrade that is coming on stream, but it seems a long time to wait.
Could you provide one small extra function in the current version?

Discuss the issues raised above. What sorts of things should you
think about when considering these requests? What considerations would
persuade you to agree? What would persuade you to turn the request
down? For each request, try to think of one scenario where you would
agree and one where you would turn it down. In each case, which is the
most likely - that you will or wil l not agree to make the change?

1

Introductio n to the Basi c Concept s

"There is no such thing as a 'finished' computer program "

Lehman [169 chapter 2]

This chapter aims to

1.Define and introduce software maintenance and software
evolution.

2.Show how these topics fit within the wider context.

3.Distinguish software maintenance from software development.

4.Outline why maintenance is needed.

5.Give a flavour of the theoretical background and key skills
required to implement effective software change.

6.Introduce the specific activities that comprise software
maintenance.

1.1 Introduction
The discipline concerned with changes related to a software system after
delivery is traditionally known as software maintenance. This section of
the book will examine software maintenance with a view to defining it,
and exploring why it is needed. An appreciation of the discipline is
important because costs are extremely high. Many issues, including

5

6 Software Maintenance: Concepts and Practice

safety and cost, mean there is an urgent need to find ways of reducing or
eliminating maintenance problems [211].

During the past few decades, there has been a proliferation of
software systems in a wide range of working environments. The sectors
of society that have exploited these systems in their day-to-day operation
are numerous and include manufacturing industries, financial
institutions, information services, healthcare services and construction
industries [176, 263]. There is an increasing reliance on software systems
[69] and it is ever more important that such systems do the job they are
intended to do, and do it well. In other words, it is vital that systems are
useful. If they fail to be useful, they will not be accepted by users and
wil l not be used.

In today's world, correct use and functioning of a software
system can be a matter of life and death. Some of the factors that bear on
the usefulness of software systems are functionality, flexibility ,
continuous availability and correct operation [170]. Changes will usually
be required to support these factors during the lifetime of a system [256].
For example, changes may be necessary to satisfy requests for
performance improvement, functional enhancement, or to deal with
errors discovered in the system [176].

One of the greatest challenges facing software engineers is the
management and control of these changes [131]. This is clearly
demonstrated by the time spent and effort required to keep software
systems operational after release. Results from studies undertaken to
investigate the characteristics and costs of changes carried out on a
system after delivery show estimated expenditure at 40-70% of the costs
of the entire life-cycle of the software system [4, 33, 35, 176].

1.2 Definitions
Evolution - a process of continuous change from a lower, simpler, or
worse to a higher, more complex, or better state.

Maintainabilit y - the ease with which maintenance can be carried out.

Maintenance - the act of keeping an entity in an existing state of repair,
efficiency, or validity; to preserve from failure or decline.

Software - the programs, documentation and operating procedures by
which computers can be made useful to man [192 p. 1].

Introduction to the Basic Concepts 7

Software maintenance - modification of a software product after
delivery, to correct faults, to improve performance or other attributes, or
to adapt the product to a modified environment [272 p.94].

1.3 The Basics
To understand software maintenance we need to be clear about what is
meant by 'software'. It is a common misconception to believe that
software is programs [184 p.4]. This can lead to a misunderstanding of
terms that include the word 'software'. For instance, when thinking about
software maintenance activities, there is a temptation to think of
activities carried out exclusively on programs. This is because many
software maintainers are more familiar with, or rather are more exposed
to programs than other components of a software system. A more
comprehensive view of software is the one given in the definitions
section.

McDermid's definition [192 p.l] makes clear that software
comprises not only programs - source and object code - but also
documentation of any facet of the program, such as requirements
analysis, specification, design, system and user manuals, and the
procedures used to set up and operate the software system. Table 1.1
shows the components of a software system and some examples of each.

McDermid's is not the only definition of a software system [264]
but it is a comprehensive and widely accepted one and is the one we shall
use in this book.

The maintainability of a software system is something that is
notoriously difficult to quantify. Certain aspects of systems can be
measured. For example, there are several different ways of measuring
complexity. Specific features such as interoperability or adherence to
standards are also significant. However, there is no simple overall
'maintainability factor' that can be calculated. Nonetheless, recognising
the features and traits that make a system easy to maintain is one of the
major attributes of a good software maintenance engineer, and one of the
things that makes such a person worth his/her weight in gold to a
commercial enterprise. The true worth of software maintenance skills is
being recognised more and more, and software maintainers are drawing
level with software developers as the 'elite' of the software engineering
team. The different factors that make up maintainability, and also the

8 Software Maintenance: Concepts and Practice

issue of the 'public face' of software maintenance are issues discussed in
more depth later in the book.

Table 1.1 Components of a software system

Software Examples
Components

1 Source code
Program 2 Object code

1 Analysis / (a) Formal specification
specification: (b) Context diagram

(c) Data flow diagrams

2 Design: (a) Flowcharts
(b) Entity-relationship

charts
Documentation

3 Implementation: (a) Source code listings
(b) Cross-reference

listings

4 Testing: (a) Test data
(b) Test results

Operating 1 Instructions to set up and use the software system
procedures 2 Instructions on how to react to system failures

You wil l find many different definitions of software maintenance
in the literature [209, 70, 6, 176]. Some take a focussed and specific
view, and some take a more general view. The latter definitions e.g.
defining maintenance as "any work that is undertaken after delivery of a
software system" [70 p.233] encompass everything, but fail to indicate
what maintenance entails. The former more specific definitions, whilst
showing the activities of maintenance, tend to be too narrow. Typical
amongst this set of definitions are

 the bug-fixing view - maintenance is the detection and correction of
errors,

 the need-to-adapt view - maintenance is making changes to software
when its operational environment or original requirement changes,

 the user-support view - maintenance is the provision of support to
users.

Introduction to the Basic Concepts 9

The definition used in this book is from the IEEE software
maintenance standard, IEEE STD 1219-1993. This (given in the previous
section) draws on the different classifications, and provides a
comprehensive definition.

1.4 How New Development and Maintenance Activities
Differ

Although maintenance could be regarded as a continuation of new
development [85, 108] (Figure 1.1), there is a fundamental difference
between the two activities. New development is, within certain
constraints, done on a green field site. Maintenance must work within the
parameters and constraints of an existing system.

Requirements
analysis &

specification

Design &
specification

Coding &
module
testing

Integration &
system testing

Installation &
maintenance

Figure 1.1 Waterfall model of a software life cycle

Before undertaking any system development or maintenance
work, an impact analysis should be carried out to determine the
ramifications of the new or modified system upon the environment into
which it is to be introduced. This is discussed in more depth in Chapter
13. The impact of introducing a specific feature into a system will be
very different if it is done as a maintenance activity, as opposed to a

10 Software Maintenance: Concepts and Practice

development activity. It is the constraints that the existing system
imposes on maintenance that give rise to this difference. For example, in
the course of designing an enhancement, the designer needs to
investigate the current system to abstract the architectural and the low-
level designs. The reasons for this are explored further in Chapter 6. This
information is then used to:

(i) work out how the change can be accommodated;

(ii) predict the potential ripple effect of the change, and

(iii) determine the skills and knowledge required to do the job.

To explain the difference between new development and
software maintenance, Jones [146] provides an interesting analogy where
he likens the addition of functional requirements to a live system, to the
addition of a new room to an existing building:

"The architect and the builders must take care not to weaken the
existing structure when additions are made. Although the costs of the

new room usually will be lower than the costs of constructing an entirely
new building, the costs per square foot may be much higher because of

the need to remove existing walls, reroute plumbing and electrical
circuits and take special care to avoid disrupting the current site "

Jones (quoted in [69 p.295]).

A detailed comparison of the individual activities of software
development and software maintenance can be found in [270].

Exercise 1.1 Define the term software maintenance and indicate the
factors that initiate the modification of software.

Exercise 1.2 Compare and contrast software development and
software maintenance.

1.5 Why Software Maintenance is Needed
Having looked at what software maintenance is, and briefly what it
entails, it is important now to appreciate why it needs to be done. There
are a number of factors [4, 33, 36, 35, 176] that provide the motivation
for maintenance:

 To provide continuity of service: Systems need to keep running. For
example, software controlling aeroplanes in flight or train signalling

Introduction to the Basic Concepts 11

systems cannot be allowed just to stop if an error occurs. Unexpected
failure of software can be life threatening. Many facets of daily lif e
are now managed by computer. There can be severe consequences to
system failure such as serious inconvenience or significant financial
implications. Maintenance activities aimed at keeping a system
operational include bug-fixing, recovering from failure, and
accommodating changes in the operating system and hardware.

 To support mandatory upgrades: This type of change would be
necessary because of such things as amendments to government
regulations e.g. changes in tax laws will necessitate modifications in
the software used by tax offices. Additionally, the need to maintain a
competitive edge over rival products will trigger this kind of change.

 To support user requests for improvements: On the whole, the better
a system is, the more it wil l be used and the more the users will
request enhancements in functionality. There may also be
requirements for better performance and customisation to local
working patterns.

 To facilitate future maintenance work: It does not take long to learn
that shortcuts at the software development stage are very costly in
the long run. It is often financially and commercially justifiable to
initiate change solely to make future maintenance easier. This would
involve such things as code and database restructuring, and updating
of documentation.

If a system is used, it is never finished [169 ch.2] because it will
always need to evolve to meet the requirements of the changing world in
which it operates.

1.6 Maintaining Systems Effectively
In order to maintain systems effectively, a good grounding in the relevant
theory is essential and certain skills must be learnt. Software
maintenance is a key discipline, because it is the means by which
systems remain operational and cope efficiently in a world ever more
reliant on software systems. Maintenance activities are far-reaching. The
maintenance practitioner needs to understand the past and appreciate
future impact. As a maintenance engineer, you need to know whether
you are maintaining a system that must operate for the next five minutes
or the next five decades. These problems were illustrated with the

12 Software Maintenance: Concepts and Practice

introduction of a new air traffic control system in the UK, where the
deferring of the date of completion of the new system meant that the old
system had to be supported long beyond its expected lifetime (see the
case study below). The motivation to get it right comes from
understanding the wider implications, which in turn comes from an
understanding of the theories and complexities of the discipline of
software maintenance.

 The maintenance engineer needs a far wider range of skills than just
computer programming. Amongst other things, he / she needs
comprehension skills and wide-ranging analytical powers

1.7 Case Study - Air Traffic Control
For many years, air traffic over England and Wales was handled by two
centres run by National Air Traffic Services in West Drayton, Middlesex
and in Manchester. These centres dealt with air traffic crossing British
airspace and also with take-off and landing traffic at British airports.

However, with air traffic doubling every 15 years, (the 1.6
million flights a year in UK airspace in 1998, was predicted then to rise
to 2 million by 2003) the centres were working at and beyond their
planned capacity. Alarmingly, the number of in-flight near misses was
also increasing.

It was clear that new centres were needed. Planning began in
early 1990 and the decision was taken to build a brand new centre and air
traffic control system to replace the control centres in London and
Manchester. The aim was to increase the number of flights that
controllers could handle. The new centre was to be staffed by 800
controllers. IBM was chosen to build a bespoke system. It would be
based on a US system, but would require new hardware as well as new
software. It was due for completion in 1996 at an estimated cost of £339
million.

In 1996, stability problems were found with the new software and the
centre was not opened. Because of continued delays, an independent
study was carried out in 1998. The option of scrapping the project
altogether was considered and experts warned that the system might

Introduction to the Basic Concepts 13

never work properly. Completion was rescheduled to between late 1999
and 2001 at a revised cost of £623 million.

An independent audit of the new software in 1999 found 1400
bugs in the two million lines of code. By August 2000, the number of
bugs was reported to be down to 500, an estimated 200 of which were
deemed to be serious. At this stage, 400 computer technicians were
working on the system and managers were warning of possible failure to
meet the new deadline.

Over a year was spent clearing the 1400 bugs found by the 1999 audit.
Tony Collins of Computer Weekly reported "enormous success" at this
stage i.e. in the latter months of 2000. He warned however that
confidence in the plan to sort out the remaining serious bugs might be
thrown into disarray if one of them turned out to be more serious than
realised.

In the event, the new centre opened on Sunday, January 27th
2002, six years behind schedule and about £300 million over budget.

What went wrong with this project? The reasons were varied, and
numerous, but stemmed from the initial decision to start from scratch. Mr
Butterworth-Hayes, author of Jane's Air Traffic Control Special Report
said this decision was "probably wrong" and that off-the-shelf
components should have been used. He pointed out that the system
needed to last 25 to 30 years, but software advances would be likely to
outdate a new system in 18 months.

There were other problems. In 1994, IBM sold the project to
another company, which was later taken over. This inevitably caused
disruption to schedules and work plans.

Interestingly, in 1995, the US system that was the template, was
scrapped.

In failing to meet both its deadlines and revised deadlines, the
project was showing a classic early warning sign of serious problems.

14 Software Maintenance: Concepts and Practice

The new system was brought on-line, not without further teething
problems, but to date has provided a safer, more efficient environment
and has a lot of much-needed spare capacity.

Was safety compromised by the delays? Almost certainly, yes.
The controllers at the West Drayton centre had to cope with far more
work than the old systems had been designed to handle. This
compromised both the safety of air traffic and the health of the
controllers themselves who were forced to work in high-stress
conditions. It was during the most stressful period, towards the end of the
new project, that staff had to be taken off live duties to be trained on the
new system. This was a cause of further delay.

It is interesting to compare this project with the European mainland,
where less ambitious upgrades resulted in much earlier working versions.
These may not have been the ideal solutions conceptually, but they
worked in practice because they took better account of what could
actually be delivered with the available technology. The new French
system for example, used off-the-shelf software to be updated every year.
It was introduced with far fewer problems and far more cheaply.

The last word goes to Mr Butterworth-Hayes, speaking in 2002.
"There are four major air traffic improvement programmes in Europe at
the moment: France, Britain, Italy and Germany. Who has been the most
successful? You have to say the UK is not in the top three."

1.8 Categorising Software Change
Software change may be needed, and initiated, for a number of reasons
and can be categorised accordingly. In brief, software change may be
classified under the following categories:

 Modification initiated by defects in the software.

 Change driven by the need to accommodate modifications in the
environment of the software system.

 Change undertaken to expand the existing requirements of a system.

 Change undertaken to prevent malfunctions.

Introduction to the Basic Concepts 15

The categorising of software change is not simply an academic
exercise. It is vital in understanding when and how to make changes,
how to assign resources and how to prioritise requests for change. These
areas are expanded and explained in more detail in the following
chapters.

1.9 Summary
The key points covered in this chapter:

 The cost of maintaining systems in many organisations has been
observed to range from 40% to 70% of resources allocated to the
entire software life-cycle.

 It is important to understand what is meant by the basic terms that
underlie the field, software, maintenance, evolution and
maintainability, in order to understand the importance of software
maintenance and how it fits into context in the modern world.

 Software maintenance and software development, although closely
linked, are different. It is important for those involved in
maintenance fully to appreciate the differences.

 In a world ever more reliant on software systems, the discipline of
software maintenance is becoming more and more important.

 As with other fields, software maintenance is underpinned by a
theoretical base. It is important to be aware of this in order to be an
effective software maintainer.

Having introduced the basic concepts and given a broad
overview of maintenance activities, the next chapter looks at the overall
framework within which maintenance is carried out.

2

The Maintenanc e Framewor k

"Everything is connected to everything "

Mercury Rising: Film 1998

This chapter aims to

1. Look in detail at the context in which software maintenance
activities are carried out.

2. Discuss in depth the components of the maintenance framework
and show how they interrelate.

2.1 Introduction
Software maintenance is not an activity carried out in a vacuum. It
affects, and interacts with the environment within which it is carried out.
Indeed, it is changes and interactions in the surrounding environment that
bring about the need for change. Understanding the framework, and the
relationship between the factors comprising this framework allows
prediction of problem areas and the ability to avoid them.

2.2 Definitions
Environment - the totality of conditions and influences which act from
outside upon an entity.

Environmental factor - an agent which acts upon the entity from
without and influences its form or operation.

17

18 Software Maintenance: Concepts and Practice

Framework - a set of ideas, conditions, or assumptions that determine
how something will be approached, perceived, or understood.

Informatio n gap - this is the discrepancy between the body of
knowledge that system users and system maintainers possess and the
body of knowledge that each needs to have in order to satisfy a request
for change.

Maintenance challenge - the need to keep systems running. Historically
the challenge has been to keep mechanical systems operational after
physical wear and tear on components. Software is not subject to
physical wear and tear, but to influences less easy to identify and
address. Thus the maintenance challenge when applied to software is a
far more complex beast than when applied to mechanical systems.

Maintenance personnel - the individuals involved in maintaining a
software product.

Maintenance process - any activity carried out, or action taken, either
by a machine or maintenance personnel during software maintenance.

Operating environment - all software and hardware systems that
influence or act upon a software product in any way.

Organisational environment - all non-software- or non-hardware-
related environmental factors.

Safety-critical - a system where failure could result in death,
injury or illness, major economic loss, environmental or property
damage.

Safety-related - a system where failure could significantly increase the
risk of injury or damage.

Software maintenance framework - the context and environment in
which software maintenance activities are carried out.

2.3 A Software Maintenance Framework
To a large extent the requirement for software systems to evolve in order
to accommodate changing user needs contributes to the high
maintenance costs. This is discussed further in chapter 4. Additionally,
there are other factors which contribute indirectly by hindering

The Maintenance Framework 19

maintenance activities. A Software Maintenance Framework (SMF)1 will
be used to discuss some of these factors. The elements of this framework
are the user requirements, organisational and operational environments,
maintenance process, software product, and the maintenance personnel
(Table 2.1). To understand the sources of the software maintenance
challenge, you need an understanding of these components, their
characteristics and the effect of their interactions.

Table 2.1 Components of a software maintenance framework

Component

1. User requirements

2. Organisational environment

3. Operational environment

4. Maintenance process

5. Software product

6. Maintenance personnel

Feature

 Requests for additional functionality, error
correction and improving maintainability

 Request for non-programming-related
support

 Change in policies
 Competition in the market place

 Hardware innovations
 Software innovations

 Capturing requirements
 Creativity and undocumented assumptions
 Variation in programming practice
 Paradigm shift
 'Dead' paradigms for 'living' systems
 Error detection and correction

 Maturity and difficulty of application domain
 Quality of documentation
 Malleability of programs
 Complexity of programs
 Program structure
 Inherent quality

 Staff turnover
 Domain expertise

This is a derivative of the Software Maintenance Framework proposed by Haworth et al. [126].

20 Software Maintenance: Concepts and Practice

2.3.1 Components of the Framework

2.3.1.1 User

The user in this context refers to individuals who use the system,
regardless of their involvement in its development or maintenance. As
touched upon in chapter 1, there are several reasons why there could be
requests for modification of a system after it becomes operational. The
categorisation of software change is explored in detail in chapter 3. The
implementation of such modifications may necessitate:

(i) 'progressive' work to refine existing functions or to introduce
new features; and

(li) 'anti-regressive' work to make programs well structured, better
documented, more understandable and capable of further
development [294].

Regardless of the degree of success of a system, it has a
propensity to evolve (while it remains operational) in order to support
users' changing needs.

2.3.1.2 Environmen t

Essentially, the environments affecting software systems are the
operating environment and the organisational environment. Typical
environmental factors within these are business rules, government
regulations, work patterns, software and hardware operating platforms.

Operating environment
Examples of factors within the operating environment are

innovations in hardware and software platforms:

 Hardware innovations: The hardware platform on which a software
system runs may be subject to change during the lifetime of the
software. Such a change tends to affect the software in a number of
ways. For example, when a processor is upgraded, compilers that
previously produced machine code for that processor may need to be
modified.

 Software innovations: Like hardware, changes in the host software
may warrant a corresponding modification in the software product.
Operating systems, database management systems and compilers are
examples of host software systems whose modification may affect
other software products.

The Maintenance Framework 21

Mini Case Study - Upgrading an Operating System

At the research institute attached to the ACME Health Clinic2 a
Solaris 1.x3 was upgraded to Solaris 2.x (Solaris is a UNIX-based
operating system for SUN4 machines). As a result of this change, many
applications that previously ran on Solaris 1.x had to be modified in order
to use Solaris 2.x. This also meant the users had to retrain and learn the
use of new commands. Some administrative practices became out of date
as a result of the upgrade.

The end result was a more efficient and cost-effective system but
the cost of accommodating the upgrade went well beyond the retail price
of the new software.

Organisational Environment
Examples of the entities of the organisational environment are

policies and imposed factors of business and taxation, and also
competition in the market place:

 Change in policies: Many information systems have business rules
[182] and taxation policies incorporated into their program code. A
business rule refers to the procedures used by an organisation in its
day-to-day operation [159]. A change in the business rule or taxation
policy leads to a corresponding modification of the programs
affected. For example, changes to Value Added Tax (VAT) rules
necessitate modification of programs that use VAT rules in their
computations.

 Competition in the market place: Organisations producing similar
software products are usually in competition. From a commercial
point of view, organisations strive towards having a competitive
edge over their rivals (by securing a significant proportion of the
market for that product). This can imply carrying out substantial
modifications so as to maintain the status of the product [108] -
reflected in the level of customer satisfaction - or to increase the
existing 'client base'.

" The ACME Health Clinic is an amalgam of many healthcare facilities whose experiences
pertaining to software maintenance have been used throughout the book.

Solaris'" is a trademark of Sun Microsystems.

4 SUN™ is a registered trademark of AT& T (Bell Laboratories).

22 Software Maintenance: Concepts and Practice

The user may not be billed directly for maintenance costs arising
from changes in the organisational environment motivated by the need to
keep a competitive edge. However, despite no direct financial input from
the user, resources (both machine and human) still need to be allocated.

Generalised Case Study - Maintainability and VAT Rules

Consider the evolution of a system that has accommodated VAT
in buying and selling prices for many years.

The original system will have had to cater for a fixed VAT rate
on a specific list of goods. Over time, both the VAT rate and the list of
goods wil l change. The fixed rate will then become variable depending
upon the class of goods. Further variations will occur such as different
rates for the same goods depending upon how they are sold.

In an early system, both the VAT rate and the list of goods may
have been "hard-wired" into the code. Updating would require tedious
line-by-line checking and amendment with no guarantee that vital
elements were not being missed. The code could have been improved by
declaration of constants and the use of internal tables. This would allow
updates to be made to one section of the code and once only, thus cutting
down the room for error. However, it would still mean rewriting
programs and would allow the misuse of values within the program.

Later modifications to produce modular code would address the
latter problem.

Software engineering point: encapsulation of parts of the code
means that execution of a particular part of a program cannot
accidentally modify variables that have no relevance to that section of
code.

A major step forward is to take the data out of the programs
altogether, to store it in external tables or files. VAT upgrades can now
be carried out by providing new data files and the programs need not be
modified.

Software engineering point: proper separation of data from code
avoids unnecessary code modification.

VAT rates and the eligibility of different goods in different
contexts are in fact nothing to do with system developers and
maintainers. They are set and amended by Government bodies. Even

The Maintenance Framework 23

separation of the data as above will not prevent the need to modify
programs. Suppose that a new factor enters the arena. VAT rates now
depend on a specific selling context such that the same goods sold in
different contexts attract different rates. Amending the data files wil l not
be enough. The solution is that programs should not rely on their own
internal calculations for things over which they have no control. They
should access central data sources e.g. a central VAT server, which is
essentially a black box that takes in information from the program and
returns a current rate.

Software engineering point: true interoperability between
software systems using properly researched and formulated interfaces is
the route to real flexibility and is a quantum leap forward in building
maintainable systems.

2.3.1.3 Maintenanc e Proces s

The maintenance process itself is a major player in the software
maintenance framework. Significant factors are the capturing of change
requirements, programming practice, 'dead' paradigms and error
detection.

 Capturing change requirements: This is the process of finding out
exactly what changes are required. It poses a lot of problems. Firstly,
it is fundamentally difficult to capture all requirements a priori [27,
108]. Requirements and user problems only really become clear
when a system is in use. Many users know what they want but lack
the ability to express it in a form understandable to the analyst or
programmer. This is due to the 'information gap' [210] defined
earlier.

 Variation in programming practice: This refers to differences in
approach used for writing and maintaining programs. It involves the
use of features or operations which impose a particular program
structure. This tends to vary between individuals and organisations
and may present difficulties if there is no consistency. Basic
guidelines on good programming practice have been available for
decades and aim to minimise future difficulties. Traditional
guidelines would include: avoiding the use of 'GOTOs', the use of
meaningful identifier names, logical program layout, and use of
program commentary to document design and implementation
rationale. There exist psychological arguments and empirical

24 Software Maintenance: Concepts and Practice

evidence, albeit sparse, which suggest that these features impact on
program comprehension [48, 247, 293] and hence can influence the
amount of time required for effecting change.

 Paradigm shift: This refers to an alteration in the way we develop
and maintain software [34]. Despite the enormous strides made in
structure and reliability of programming languages, there still exists
a large number of systems developed using inadequate software
tools. As well as the many systems still in use that were developed
using low-level programming languages [211] and those developed
prior to the advent of structured programming techniques, there are
many programs in operation and in need of maintenance that were
developed without the means to take advantage of the more
advanced and more recently developed techniques.

Such programs inherit a number of characteristics [69]:

(i) They were designed using techniques and methods that fail
to communicate essential features such as program structure,
data abstractions and function abstractions.

(ii) The programming languages and techniques used to write
the code did not make visible and obvious the program
structure, program interfaces, data structures and types, and
functions of the system.

(iii) The constraints that affected their design no longer present a
problem today.

(iv) The code can sometimes be riddled with non-standard or
unorthodox constructs that make the programs difficult to
understand, the classic example being the use of GOTOs.

In order to address these weaknesses and reap the benefits of
modern development practices and the latest programming
languages, existing programs may be restructured or completely
rewritten. Examples of techniques and tools that can be used for this
include: structured programming, object orientation, hierarchical
program decomposition, reformatters and pretty-printers, automated
code upgrading. It must be noted however that even programs
developed using state of the art programming methods gradually lose
their structure after being subjected to a series of unplanned and ad

The Maintenance Framework 25

hoc 'quick fixes' (see chapter 5). This continues until preventive
maintenance is carried out to restore order to their structure.

 'Dead' paradigms for 'living' systems: Many 'living systems' are
developed using 'dead paradigms' [216], that is, using the Fixed
Point Theorem of Information Systems [op. cit.]. Based on this
theorem, there exists some point in time when everyone involved in
the system thinks they know what they want and agree with everyone
else. The resulting system is satisfactory only at the point at which it
is delivered to the user. Thereafter, it becomes difficult - with few
exceptions - to accommodate the changing needs of the users and
their organisations. The extra flexibilit y to evolve that is provided by
interoperability goes some way towards alleviating this problem, but
does not solve it. However, it should be noted that in order for a
system to be built at all, it is essential that requirements are agreed -
this is not the same as agreeing what the "finished" product is.

 Error detection and correction: 'Error-free' software is non-existent.
Software products have 'residual' errors which are difficult to detect
even with the most powerful testing techniques and tools. The later
these errors are discovered during the life-cycle of a software
product, the more expensive they are to correct. The cost gets even
higher if the errors are detected during the maintenance phase
(Figure 2.1).

2.3.1.4 Software Product
There is a tendency to assume that computer programs are static artefacts
that do not change once they correctly implement the agreed system
specification [273]. However, this is far from the case and the evolving
programs themselves contribute to the maintenance challenge. Programs
are seldom static and can never be so when they implement large systems
that are in continuous use. Lehman compares this phenomenon to the
evolution of biological organisms and of social groupings [168].
Remember however, that it is not just the programs themselves but also
the accompanying documentation and operating procedures that are
subject to such changes. Aspects of a software product that contribute to
the maintenance challenge include:

 Maturity and difficulty of the application domain: The requirements
of applications that have been widely used and well understood are
less likely to undergo substantial modification on installation than

26 Software Maintenance: Concepts and Practice

those that are still in their infancy. For example, accounts and payroll
packages are likely to be subject to fewer requests for changes in
requirements than a medical information system. Accounts and
payroll packages have been in operation for a long time and their
requirements have stabilised. In comparison, the requirements of
medical information systems - used for improving the quality of
patient care by providing accurate, reliable and comprehensive
information - are only now becoming apparent [142, 83, 90, 53, 54,
55, 56]. An aspect that may also affect maintenance is the inherent
difficulty of the original problem. For example, programs dealing
with simple problems, such as sorting a list of integers, are easier to
handle than those used for more complex computations, such as
weather forecasting.

100 /

Relative /
cost /
of /
error /
fixing /

50 /

Requirements Design Implementation Testing Operation
I &

Maintenance

Lif e cycle phase

Figure 2.1 Cost of fixing errors increases in later phases of the life cycle

The Maintenance Framework 27

 Quality of the documentation: The lack of up-to-date systems'
documentation is one of the major problems that software
maintainers face [76]. Programs are often modified without a
corresponding update of the documents affected. Even in
environments where there are automatic documentation support
tools, their contents may be inaccurate. Worse still, there may be no
documentation at all. Inadequate documentation adversely affects
maintenance productivity even for a programmer maintaining his /
her own program, and in the vast majority of cases people are
maintaining programs written by others.

 Malleability of the programs: The malleable or 'soft' nature of
software products makes them more vulnerable to undesirable
modification than hardware items. With other more orthodox
engineering deliverables, there is a well-defined approach to
implementing a change.

Mini Case Study - The 'Software Airbag'

Prior to the inclusion of an airbag into a make of car that did not
have one, a feasibility study would be carried out to establish how such a
component would be designed, and how its addition would affect other
parts of the car. On approval of the change, the airbag would be
designed. After it had been established that its inclusion adhered to
current quality and safety regulations, the design could then be approved
and construction of the airbag finally commissioned.

Because of the tendency to treat software change in a less formal
way, the software "airbag" will be bolted onto the car with no regard to
safety considerations or appropriate design. Issues of safety, correct
placing, and how other components are affected are unlikely to be
considered until problems with the bolted-on version arise.

Ad hoc software changes may have unknown and even fatal
repercussions. This is particularly true of safety-related or safety-
critica l systems [144],

 Inherent quality: The nature of the evolution of a software product is
very closely tied to the nature of its associated programs [168].
Based on the results derived from empirical observations of large
industrial software systems, Lehman concluded in his Law of
continuing change that:

28 Software Maintenance: Concepts and Practice

"A program that is used and that as an implementation of its
specification reflects some other reality, undergoes continual change
or becomes progressively less useful. The change or decay process
continues until it is judged more cost effective to replace the system

with a recreated version. "

Lehman ([169] p.412)

This tendency for the system to decay as more changes are
undertaken implies that preventive maintenance needs to be
undertaken to restore order in the programs, thereby changing the
product to a better and more sophisticated state.

2.3.1.5 Maintenanc e Personne l

It should never be forgotten that people are involved at all stages of the
maintenance process and as such are components within the maintenance
framework. Maintenance personnel include maintenance managers,
analysts, designers, programmers and testers. The personnel aspects that
affect maintenance activities include the following:

 Staff turnover: Due to the high staff turnover within the Information
Technology industry, especially with regard to software maintenance
[76], most systems end up being maintained by people who are not
the original authors. In many cases, there is no comprehensive record
of "successful and unsuccessful change attempts previously tried"
[272 p.94] or documentation on choice of algorithms and
assumptions made. Consequently, anyone other than the author,
attempting to understand what the system does in order to identify
sections of the code that need to be changed, will spend a substantial
proportion of the maintenance effort just understanding the code.
Even the original author will have the same problems with his / her
own code if documentation is not kept up to date. Comprehension
takes up about half of maintenance effort. This is discussed in detail
in chapter 6.

 Domain expertise: The migration of staff to other projects or
departments can mean that they end up working on a system for
which they have neither the system domain knowledge nor the
application domain knowledge. The lack of such knowledge may
mean that the programmers can introduce changes to programs
without being aware of their effects on other parts of the system - the

The Maintenance Framework 29

ripple effect. This problem will be worsened by the absence of
documentation. Even where documentation exists, it may be out of
date or inadequate. These problems all translate to a huge
maintenance expenditure.

 Working practices: Software systems do not change unless they are
changed by people [169 ch.19 pp.393-449]. The way the change is
carried out is an important factor in how easy the resulting system
wil l be to understand. Various factors that affect the way a change is
made have a significant effect on how easy or difficult the next
maintenance programmer's job wil l be. Factors that can make the job
more difficult include such things as

- a maintainer's desire to be creative (or 'clever');

- the use of undocumented assumption sets [170];

- undocumented design and implementation decisions. It should
always be borne in mind that after time has elapsed,
programmers find it difficult to understand their own code.

Exercise 2.1 Discuss the issues that can contribute to high
maintenance costs. How would you minimise their
effects?

Exercise 2.2 What are the factors that impinge on the evolution of
software products?

2.3.2 Relations Between the Maintenance Factors

It is a change in, or interaction between, the factors discussed above that
causes software products to evolve and hence causes maintenance
problems to arise. Three major types of relation and interaction that can
be identified are product/environment, product/user and
product/maintenance personnel (Figure 2.2).

 Relation between product and environment: A software product does
not exist in a vacuum, rather it can be seen as an entity which is
hosted by its organisational and operational environments. As such,
it inherits changes in the elements of these environments - taxation
policies, software innovations, etc., a view captured by Brooks:

"The software is embedded in a cultural matrix of
applications, laws and machine vehicles. These all change

30 Software Maintenance: Concepts and Practice

continually, and their changes inexorably force change upon the
product. "

Brooks[47]

 Relation between product and user: One of the objectives of a
software product is to serve the needs of its users. The needs of the
users change all the time. In order for the system to stay useful and
acceptable it has to change to accommodate these changing
requirements.

Organisational
environment U s er environment

* J \ /

\ / ̂ Maintenance N. /

\ I ^/^~^\ \A /
\ I Software] /

\ \ ' Process & ^ / /
\ \ . Personnel / /

\ /
\ / Direct influence

\ / >

\ / Indirect influence

Operational
environment

V J

Figure 2.2 Inter-relationship between maintenance factors

The Maintenance Framework 31

 Interaction between personnel and product: The maintenance
personnel who implement changes are themselves the conduit
through which change is implemented. Changes in factors such as
user requirements, the maintenance process, or the organisational
and operational environments, will bring about the need for a change
in the software product. However, the software product will not be
affected until the maintenance personnel implement the changes. The
type of maintenance process used and the nature of the maintenance
personnel themselves, wil l affect the quality of the change.

The effects of the above relations and interactions are reflected
in changes in some fundamental characteristics of the software product,
such as its size and complexity; That is, changes in these product
attributes are brought about by changes in the environment and user
requirements. The size - measured in number of program modules or
lines of code - tends to increase with an increase in the functionality
being offered by the system. Similarly, the complexity - measured in
terms of the difficulty of understanding the program source code - tends
to increase as the programs are modified.

2.4 Summary
The key points covered in this chapter are:

 Software maintenance is carried out within, and interacts with, the
world around it.

 The software maintenance framework comprises the users, the
operational and organisational environments, the maintenance
process, the software product and the maintenance personnel.

 Interactions between the components of the software maintenance
framework are the driving forces behind the need for software
change.

 The major types of interaction are between the product and its
environment, the product and its users, the product and the
maintenance personnel.

 A good understanding of the context in which software maintenance
is carried out is vital in effective implementation of software change.

32 Software Maintenance: Concepts and Practice

The maintenance framework gives the context in which
maintenance activities are carried out. The next chapter goes on to
explore in detail the fundamentals of software change.

3

Fundamental s of Softwar e Chang e

"The tendency to change is necessary to optimally adjust to
environmental requirements "

Damste [74]

This chapter aims to

1. Discuss different types of software change and give reasons why
changes occur.

2. Show how on-going support, as well as software change, can be
classified as a maintenance activity.

3. Explain the tendency of software systems to evolve.

4. Introduce important areas of background theory via a discussion
of Lehman's Laws.

3.1 Introduction
This chapter like the last, looks at the way software changes and evolves
over time, but we now look at the detail of software change - what types
of change there are and how to categorise them. Additionally,
fundamental theory is discussed and Lehman's Laws are introduced.

3.2 Definitions
Adaptive change - a change made in order to become suited to different
conditions.

33

34 Software Maintenance: Concepts and Practice

Change - the act, process, or result of being made different in some
particular

Corrective change - a change made in order to remove faults.

E-type system - a system in which the criteria for acceptability is that
stakeholders are satisfied with the system in terms of its performance in a
real world situation.

On-going support - a service offered to customers to assist their
continuing use of a product.

Perfective change - a change made in order to improve.

Post-delivery evolution - software evolution referring explicitly to the
period after the product is delivered to the customer.

Preventive change - a change made in order to forestall or reverse
deterioration.

Ripple effect - consequences of an action in one place, occurring
elsewhere e.g. a stone dropped in a pond resulting in waves / ripples far
from the point of impact.

S-type system - a system in which the criteria for acceptability is that it
is correct relative to an absolute specification [167].

Software evolution - the tendency of software to change over time.

3.3 Software Change

3.3.1 Classification of Changes

In order to achieve the objectives of maintenance discussed in chapter 1,
a wide spectrum of change to the software product may be necessary.
Various authors have attempted to classify these changes, resulting in a
taxonomy which consists of corrective, adaptive, perfective and
preventive changes [4, 12, 176, 191, 209].

We wil l look in detail at each type of change and then go on to
discuss the wider issue of why it is important to make these distinctions.

Fundamentals of Software Change 35

3.3.1.1 Correctiv e Chang e

Corrective change refers to modification initiated by defects in the
software. A defect can result from design errors, logic errors and coding
errors [209].

 Design error s occur when, for example, changes made to the
software are incorrect, incomplete, wrongly communicated or the
change request is misunderstood.

 Logic error s result from invalid tests and conclusions, incorrect
implementation of design specifications, faulty logic flow or
incomplete testing of data.

 Coding error s are caused by incorrect implementation of detailed
logic design and incorrect use of the source code logic. Defects are
also caused by data processing errors and system performance errors
[176].

Al l these errors, sometimes called 'residual errors' or 'bugs',
prevent the software from conforming to its agreed specification.

In the event of a system failure due to an error, actions are taken
to restore operation of the software system. Under pressure from
management, maintenance personnel sometimes resort to emergency
fixes known as 'patching' [26]. The ad hoc nature of this approach gives
rise to a range of problems that include increased program complexity
and unforeseen ripple effects.

Increased program complexity usually stems from degeneration
of program structure which makes the program increasingly difficult, if
not impossible, to understand. This is sometimes referred to as the
'spaghetti syndrome' or 'software fatigue' (cf. 'metal fatigue'), which
implies the resistance of the program to change is at its maximum. As
Rushby explains,

"A badly structured program is likened to a plateful of spaghetti:
if one strand is pulled, then the ramifications can be seen at the other
side of the plate where there is mysterious turbulence and upheaval"

Rushby ([193], p.162).

36 Software Maintenance: Concepts and Practice

3.3.1.2 Adaptiv e Chang e
Even where residual errors are not causing problems, the software is
bound to change as attempts are made to adapt it to its ever-changing
environment. Adaptive change is a change driven by the need to
accommodate modifications in the environment of the software system.
The term environment in this context refers to the totality of all
conditions and influences which act from outside upon the system, for
example business rules, government policies, work patterns, software
and hardware operating platforms. A change to the whole or part of this
environment wil l warrant a corresponding modification of the software
[47].

Adaptive maintenance includes any work initiated as a
consequence of moving the software to a different hardware or software
platform - compiler, operating system or new processor. For example,
the acceptance of distributed processing as a solution to the increasing
demands for enhanced performance opened up the possibility of the
migration of millions of lines of sequential code to parallel environments
[124].

Another example is change resulting from modification to a
virtual machine that runs the underlying programs. Virtual machines can
be hardware (in the case where there are no higher-level programming
languages) or other software systems (such as compilers, operating
systems and database management systems). Programs can be changed
as a result of a new compiler, which performs additional optimisations to
generate smaller and faster code. Similarly, programs sometimes need to
be modified in order to take full advantage of additional facilities
provided by a new version of the operating system or the introduction of
a new database management system. Examples would include saving
disk space and taking efficient measures to recover from failures.

An example of a government policy having far-reaching effects
on software systems was the introduction of the Euro to countries of the
European Union. This required significant change to software systems in
many areas, for example banking, retail and share trading.

3.3.1.3 Perfectiv e Chang e

This term is used to describe changes undertaken to expand the existing
requirements of a system. A successful piece of software tends to be
subjected to a succession of changes resulting in an increase in its

Fundamentals of Software Change 37

requirements. This is based on the premise that as the software becomes
useful, the users experiment with new cases beyond the scope for which
it was initially developed [47, 210]. Expansion in requirements can take
the form of enhancement of existing system functionality or
improvement in computational efficiency,, for example providing a
Management Information System with a data entry module or a new
message handling facility [258].

Consider a system consisting of a simple program that requires
three modules to produce two outputs (Figure 3.1). When a request for
enhancement is made, a number of questions need to be answered by the
maintenance personnel prior to the implementation of the change. One
question is: can the new requirement, represented as an output, be
satisfied by the programs that already exist in the system, or wil l more
programs, represented as modules, be needed to produce the new output?
If programs that already exist in the system can produce the output, then
it wil l be pointless creating a separate program to implement that
requirement since this will lead to duplication of effort.

Module 1

Module 2

Module

s
Y
S
T
E
M

Output 1

Output 2

Figure 3.1 Diagram of a basic system, S

Let us now suppose that system S needs to be enhanced in order
to accommodate new requirements, but that these new requirements will
also need to have access to some of the data of the existing program. In
the course of modifying the system, it may be necessary to provide

38 Software Maintenance: Concepts and Practice

additional modules, which are eventually included. The enhanced version
of system S, S', is shown in Figure 3.2. How the new modules interface
with existing modules is another significant area to be addressed in
connection with this change.

I—- ^ Output 1

*- Output 2
Module 1 ~~—fc.

x ^ ; Output 3
Module 2 ^ s . I I j

Module 3 x ^ \ ^ /I ?, j

i r—i -*l
x/^ M I

Module n-1 s ̂ \ | |

M o d u l en L^Outputm-1

Output m

Figure 3.2 Diagram of an enhanced system, S'

The program continues to grow in this fashion with each
enhancement, and one can visualise what the program size will be after a
number of years of modification. During this process, the system evolves
from an average-sized program of average maintainability to a very large
program that offers great resistance to change.

Apart from adding new functions or refining those already
provided, some system functions can be withdrawn. In the event of some
facility becoming redundant or being rejected by users, the programs
developed to cater for that function should be removed or modified.

S
Y
S
T
E

M

Fundamentals of Software Change 39

Mini case study - redundant functionality

The ACME Health Clinic, during reorganisation, switched its
diabetes education program from a general clinic to a specialist clinic.
Thus the diabetes education module was no longer necessary as part of
its general clinic's software system and was removed, thus increasing
resources, notably disk space and memory.

3.3.1.4 Preventiv e Chang e

The long-term effect of corrective, adaptive and perfective changes is
expressed in Lehman's law of increasing entropy (see section 3.5). Work
done on a software system to address problems of deteriorating structure
is known as preventive change.

Preventive change is undertaken to prevent malfunctions or to
improve maintainability of the software [26]. The change is usually
initiated from within the maintenance organisation with the intention of
making programs easier to understand and hence making future
maintenance work easier. Preventive change does not usually give rise to
a substantial increase in the baseline functionality.

Examples of preventive change include code restructuring, code
optimisation and documentation updating. After a series of quick fixes to
a software system, the complexity of its source code can increase to an
unmanageable level, thus justifying complete restructuring of the code.
Code optimisation can be performed to enable the programs to run faster
or make more efficient use of storage. Updating user and system
documentation, though frequently ignored, is often necessary when any
part of the software is changed. The documents affected by the change
should be modified to reflect the current state of the system. The issue of
documentation is explored further in chapters 6 and 11.

Unforeseen rippl e effects imply that a change to one part of a
program may affect other sections in an unpredictable fashion, thereby
leading to a distortion in the logic of the system. This is often due to the
lack of time to carry out a thorough impact analysis before effecting a
change. Program slicing techniques [285, 106] and concepts such as
modularization and information hiding can be used to address these
problems (see chapter 13 for a detailed treatment of these techniques and
concepts).

40 Software Maintenance: Concepts and Practice

3.3.2 The Importance of Categorising Software Changes

In principle, software maintenance activities can be classified
individually. In practice, however, they are usually intertwined. For
example, in the course of modifying a program due to the introduction of
a new operating system (adaptive change), obscure bugs may be
introduced. The bugs have to be traced and dealt with (corrective
maintenance). Similarly, the introduction of a more efficient sorting
algorithm into a data processing package (perfective maintenance) may
require that the existing program code be restructured (preventive
maintenance). Figure 3.3 shows the potential relationships between the
different types of software change.

Adaptive change Perfective change

\ Corrective change /

\ ' / Where

\ / = leads to

Preventive change

Figure 3.3 Potential relation between software changes

Despite the overlapping nature of these changes, there are good
reasons to distinguish between them. Some changes require a faster
response than others. Understanding the nature of the changes to be
implemented allows more effective prioritisation of change requests.

3.3.3 Case Study - The Need to Support an Obsolete System

At the research institute attached to the ACME Health Clinic, the payroll
system was computerised in the 1960's. The maximum salary with which

Fundamentals of Software Change 41

the system could cope was a factor of hardware and memory restrictions.
There was no allowance for salaries above this maximum. Should a
calculation yield a higher figure, the number would 'fli p over' and
become a large negative number. After a decade of inflation this
maximum salary, which had been considered far above the amount to
which the senior director could aspire, was barely above the average
starting salary for a technician. A firm of consultants was called in and
given two tasks. One was to develop a new up-to-date system and the
other was to see that all wages were paid correctly and on time.

This situation demonstrates the different priorities that can face
software maintainers. The long-term solution was obviously the
development of the new system. The upkeep of the old system was, in a
sense, a dead-end task. The system, no matter how much resource was
put into it, would be taken out of service at the first possible opportunity.
In fact, resource given to the old system was resource taken from the new
one and would delay implementation. Despite this, top priority had to be
given to keeping the old system running and producing accurate results
up to the moment that the new system was up and running and well
enough tested to be relied upon.

The balance to be struck was the expenditure of as littl e as
possible resource on the old system while giving adequate resource to the
development of the new; too littl e resource and wages would not be paid;
too much and the project would run out of money before the new system
was ready.

The consultants did their job, all wages were paid on time and
the new system ran relatively smoothly for many years until superseded
by new advances in both hardware and software technology.

3.3.4 Incremental Release

The changes made to a software product are not always done all together
[136]. The changes take place incrementally, with minor changes usually
implemented while a system is in operation. Major enhancements are
usually planned and incorporated, together with other minor changes, in
a new release or upgrade. The change introduction mechanism also
depends on whether the software package is bespoke or off-the-shelf.
With bespoke software, change can often be effected as the need for it
arises. For off-the-shelf packages, users normally have to wait for the

42 Software Maintenance: Concepts and Practice

next upgrade. Figure 3.4 shows the stages at which changes can be
introduced during the life-cycle of a software product. The detailed
process of effecting changes has been discussed in chapter 1.

Exercise 3.1 Describe the different changes that a software product
can undergo and indicate the rationale for each.

Exercise 3.2 Explain why it is important to distinguish between the
different types of software change.

Release 1 . Release 2 . Release 3 ^ Release N

A A A

Opportunity to introduce change

Figure 3.4 Incremental product release

3.4 Ongoing Support
This category of maintenance work refers to the service provided to
satisfy non-programming-related work requests. Ongoing support [4],
although not a change in itself, is essential for successful communication
of desired changes. The objectives of ongoing support include effective
communication between maintenance and end-user personnel, training of
end-users and providing business information to users and their
organisations to aid decision making [1].

 Effective communication: This is essential between the parties
affected by changes to a software system [4]. Maintenance is the
most customer-intensive part of the software life-cycle [58] since a
greater proportion of maintenance effort is spent providing
enhancements requested by customers than is spent on other types of
system change. The time and resources spent need to be justified by
customer satisfaction [170]. It is time well spent for the maintenance

Fundamentals of Software Change 43

organisation to establish good customer5 relations and co-operation,
and continually demonstrate that they aim to satisfy the customers'
needs [243] so that both parties understand each other.

This rapport is of paramount importance. It can lead to
enhanced communication between supplier and user, thus giving less
room for misinterpretation of users' change requests. It means that
the maintenance organisation will be in a better position to
understand users' business needs, and hence can avoid technical
decisions that contradict business decisions [243]. Also, there is a
potential to increase user involvement in the maintenance process, an
essential ingredient for successful maintenance and ultimate user
satisfaction. Failure to achieve a successful level of communication
between the maintenance organisation and those affected by the
software changes can lead to software failure [209].

Training of end-users: Training refers to the process of equipping
users with sufficient knowledge and skills to enable them use a
system to its full potential. This can be achieved in different ways.
Users are traditionally supplied with supposedly comprehensive and
easy-to-use manuals, which are designed to facilitate the use of the
system. Manuals, however, do not always provide the information
needed or do not provide the information in an easily understood
way. Users, as a result, resort to other means such as on-line help or
telephone queries. If this fails, arrangements can be made for on-site
visits. Formal or informal short courses are arranged to train users in
the use of the software and how to deal with problems that arise. In
either case, the degree of commitment depends on the maintenance
agreement between both parties [262].

Users can also receive peer group training through a 'user
group'. This is an association of users with a common interest, for
instance those using a particular Computer Aided Design (CAD)
system. Ideally, a user group offers a user an opportunity to form a
'symbiotic' relationship with other users - both parties learning from
one another's experiences.

Throughout this book, the words 'customer' and 'user' will be used interchangeably to refer to any
individual who uses the software system in whole or in part. Some authors distinguish between the
two [243].

44 Software Maintenance: Concepts and Practice

 Providing business information: Users need various types of timely
and accurate information to enable them take strategic business
decisions. For instance, a company planning to make major
enhancements to its database management system may first want to
find out the cost of such an operation. With such information, the
company is in a better position to know whether it is more
economical to enhance the existing system or to replace it
completely.

Exercise 3.3 Ongoing support does not necessarily lead to
modification of programs, thus it should not be
considered as part of maintenance. What are your
opinions on this view?

3.5 Lehman's Laws
When we talk about software evolution and maintenance, we are talking
about software that is actively being used to solve problems or address
applications in real world domains [169]. To demonstrate concepts and
principles, we often use examples that do not fit this definition, but you
should always bear in mind that these are examples, being used for
purposes of simplifying explanations.

To gain a real understanding of software evolution, we need to
tease out the theory that underlies it. Work on formulating and
understanding this theory really began in the late 1960's with Lehman's
investigation of the software process [166]. This led, over a period of 20
years, to Lehman's eight Laws of Software Evolution.

A brief summary of the laws is as follows:

I. Law of continuing change: formulated in 1974 - systems must
be continually adapted or they become progressively less satisfactory
to use. This law says that systems evolve in a way comparable with
biological organisms. The difference is that it is the variance between
the system and its operational context that leads to feedback
pressures forcing change in the system.

II . Law of increasing complexity: formulated in 1974 - as a system
evolves, its complexity increases unless work is done to maintain or
reduce it. If changes are made with no thought to system structure,
complexity will increase and make future change harder. On the

Fundamentals of Software Change 45

other hand, if resource is expended on work to combat complexity,
less is available for system change. No matter how this balance is
reconciled, the rate of system growth inevitably slows.

III . Law of self-regulation: formulated in 1974 - evolutionary aspects
of system evolution processes tend to display a degree of statistical
regularity. Industrially produced E-type software is implemented
within the context of a wider organisation. Thus the objective of
getting the system finished is constrained by the wider objectives and
constraints of organisational goals at all levels. Positive and negative
feedback controls within this wider context ultimately determine the
way the system evolves.

IV. Law of conservation of organisational stability: formulated in
1978 - the average work rate in an E-type process tends to remain
constant over periods of system evolution. This is counter-intuitive
because one tends to assume that management decision-making will
determine the effort expended on system change. However, analyses
to date suggest that the many inputs to satisfactory system change
combine to give an essentially constant work rate.

V. Law of conservation of familiarity: formulated in 1978 - the
average incremental growth of systems tends to remain constant or
decline. The more changes that are required means it is harder for
those involved to get to grips with all that is required of them. This
affects the quality and progress of the change.

VI . Law of continuing growth: formulated in 1991 - functional
capability must be continually increased over a system's lifetime to
maintain user satisfaction. This is closely related to the first law. In
any system implementation, requirements have to be constrained.
Attributes will be omitted. These will become the irritants that
trigger future demand for change. Thus, E-type system growth is
driven by feedback from its users.

VII . Law of declining quality: formulated in 1996 - unless rigorously
adapted to meet changes in the operational environment, system
quality wil l appear to decline. A system is built on a set of
assumptions, and however valid these are at the time, the changing
world will tend to invalidate them. Unless steps are taken to identify
and rectify this, system quality will appear to decline especially in

46 Software Maintenance: Concepts and Practice

relation to alternative products that will come onto the market based
on more recently formulated assumptions.

VIII . Law of feedback systems: formulated in 1996 (but recognised as
early as 1971) - evolution processes are multi-level, multi-loop,
multi-agent feedback systems. Feedback plays a role in all the laws.
The key role of feedback was recognised in the 1968 study referred
to earlier [166]. Studies in the 1970's showed self-stabilising
feedback system behaviour. "The process leads to an organisation
and a process dominated by feedback," [167].

Since Lehman first used the term law, it has been criticised [62, 162].
Were these laws, or were they observations or hypotheses? Lehman
himself admits that "strong intuition played a part in the decision to use
the term law." [172] However, that intuition has proven to be sound
[268].

3.6 Summary
The key points covered in this chapter are:

 Maintenance activities consist of corrective, adaptive, perfective and
preventive changes, and ongoing support. In principle, these can be
distinguished but in practice they are intertwined.

 Unrealistically small programs will be used to demonstrate
principles, but real maintenance is done on systems that are actively
being used to solve problems or address applications in real world
domains.

 Lehman's laws describe principles common to all large, live
software systems.

In an ideal world, we would build and modify software with no
regard to time and cost constraints. Of course, in an ideal world, the
system would always be perfect. However, we have to operate in the real
world where it is vital to appreciate the realities and costs of software
evolution. This is the subject of the next chapter.

4

Limitation s and Economi c Implication s to
Softwar e Chang e

"The most expensive solution is frequently not the best solution "

Edward Guy, information technology consultant [119]

This chapter aims to

1. Discuss the economic implications of modifying software.

2. Explore the nomenclature and image problems of software
maintenance.

3. Identify potential solutions to maintenance problems and discuss
their strengths and weaknesses.

4.1 Introduction
The cost of modifying software is enormous. With the rapid advances in
technology that see new systems outdated in months, most maintenance
is done on systems that are obsolete to some degree. Supporting obsolete
systems is costly, yet building new can be costlier still and not provide
the best solution (see the case study in chapter I). We have to find the
route that provides the best results in terms of cost, reliability and
timeliness.

4.2 Definitions
Image - character or attributes as generally perceived.

47

48 Software Maintenance: Concepts and Practice

Maintenance crisis - The current predicament where the demand for
high quality sophisticated software systems far outstrips the supply of
such systems, but existing systems lack the capacity to evolve
appropriately with technological advancement.

Nomenclature - terminology, naming system within a particular
context.

4.3 Economic Implications of Modifying Software
As mentioned previously, a substantial proportion of the resources
expended within the Information Technology industry goes towards the
maintenance of legacy software systems. The following extract
emphasises this:

"In the '90 's, yearly corporate expenditures for software will
reach $100 billion dollars. At least $70 billion is spent yearly on
maintaining systems, while only $30 billion on new development.

Maintenance costs grow at 10% a year, at the same rate as the size of
system growth."

Bernstein ([28], p.94)

A number of studies have been undertaken to investigate the
costs of software maintenance [176, 35, 4, 160, 213] and many of their
findings are in line with the development : maintenance ratio quoted in
the above extract. Figure 4.1 gives a comparison of costs for
maintenance and new development). In these studies, the maintenance
costs range from 49% for a pharmaceutical company [4] to 75% for an
automobile company [91].

One might have expected that maintenance costs would have
fallen, in line with the widespread use of software engineering
methodologies to develop large software systems [137], but according to
these figures, there was very littl e reduction in maintenance costs from
the 1970's [91] to the 1990's [160]6.

In their study of 487 data processing organisations, Lientz and
Swanson [176] reported on the proportion of maintenance effort

In the article [160], the definition of maintenance is slightly different from the one used in this
book since it does not include the 'enhancement of existing systems'. But when interpreted in the
context of this book, maintenance consumes 56% of the users' resources.

Limitations and Economic Implications to Software Change 49

allocated to each category of system change. Corrective maintenance
accounted for 20%; adaptive maintenance consumed 25%; 50% was
accounted for by perfective maintenance; and the remaining 5% was
spent on preventive maintenance-related activities (Figure 4.2).

20 40 60 80 100

| | | | I

Elshoff |67|

I
S Leintz& Swanson [138]
o 1

|

r Alkhatib T41

e I
Lauhclan|128]

1 I I I I

20 40 60 80 100

Percent of total effort expended (over a 10 year period)

Maintenance New Development

Figure 4.1 Comparison of maintenance and new development costs

Considering that the above figures for maintenance may not
necessarily apply to other applications and settings, due to differences in
the applications, maintenance personnel expertise and the nature of
accompanying documentation and environment, it is not advisable to
base maintenance decisions on these figures alone (see chapter 2 for
detailed explanations). They are simply a reflection of the scale of the
maintenance problem.

There are approaches which can be used to estimate the cost of a
proposed maintenance project. This way, the user can decide whether it
is worth enhancing an existing system or whether to replace it altogether.
Such a feasibility analysis can lead to considerable savings. Examples of
cost estimation models include Boehm's COCOMO [35] and COCOMO
II [37] models.

Alkhatib [4]

Lauhclan [128]

u
r

50 Software Maintenance: Concepts and Practice

60 60

50

50 " I " 50

Percent of 4 0 4 0

maintenance
effort

30 2 5 30

20

20 ~ 20

10 5 " io

Corrective Adaptive Perfective Others

Change

Figure 4.2 Expenditure on the different changes

4.4 Limitations to Software Change
Ideally, the types of changes discussed in the last chapter would be
implemented as the need for them arises. In practice, however, that is not
always possible for several reasons [36].

4.4.1 Resource Limitations

One of the major impediments to the quality and productivity of
maintenance activities is the lack of resources. The lack of skilled and
trained maintenance programmers, the lack of suitable tools and
environment to support their work, and lack of sufficient budget
allocation are issues that hold back change.

Limitations and Economic Implications to Software Change 51

4.4.2 Quality of the Existing System

In some 'old' systems, quality can be so poor that any change can lead to
unpredictable ripple effects and a potential collapse of the system.
Industry spends significant sums of money on maintaining obsolete code,
even to the extent of maintaining obsolete hardware, because the risk of
unforeseen ripple effects of excising the code is too great.

Quality can become so poor that change is virtually impossible.
This means that errors cannot be addressed and the system cannot evolve
with progress in technology. This can lead to users tied into old systems
(software and hardware), with huge maintenance costs, and with a
system that provides less functionality that cheaper competitor systems.
They cannot swap because of the data tied into the old system.

There comes a point where maintaining an old system is no
longer viable. Unfortunately, this does not mean that developing a new
one is viable. A point can be reached where the software developer goes
out of business and the users are left high and dry with years' worth of
data locked inside an obsolete system. Building software that avoids this
sort of problem is explored in chapter 13.

4.4.3 Organisational Strategy

The desire to be on a par with other organisations, especially rivals, can
be a great determinant of the size of a maintenance budget. It is often
these strategic decisions, far more than objective analysis of the problem
being tackled that determines the maintenance budget. This is not the
ideal way to ensure the job gets done in the best way.

4.4.4 Inertia

The resistance to change by users may prevent modification to a software
product, however important or potentially profitable such change may
be. This is not just unthinking stubbornness. For many decades, users
have been promised the earth from software enterprises who can see the
potential of the technology, but who have been unable to deliver for a
variety of reasons. Sometimes the hardware has been inadequate (the
days of overheating valves spiked many a budding software engineer's
guns). Sometimes the theoretical base has been non-existent, and
software developers have been building on quicksand without realising
it.

52 Software Maintenance: Concepts and Practice

As with any new field, things that look obvious in hindsight,
catch people out the first time round. Initial versions of software-
controlled missiles are a case in point. When fired from aeroplanes in
flight, the essential sequence of instructions is "release-the-missile",
"fire-the-missile". But software is fast and literal. The sequence should
actually be "release-the-missile", "pause-long-enough-for-the-missile-to-
be-released", "fire-the- missile".

4.4.5 Attracting and Retaining Skilled Staff

The high costs of keeping systems operational and ensuring that user
needs are satisfied - as implied by the quoted case surveys - are partly
due to the problem of attracting and retaining highly skilled and talented
software maintenance personnel [76], The historical reason for the lack
of skilled staff and high personnel turnover was largely an image
problem. Problems still persist today for a variety of reasons. Attracting
and retaining good staff are management issues dealt with in a later
chapter.

Exercise 4.1 Pick a software package you are familiar with that has
evolved through several versions. List some of the
modifications that were implemented in the different
versions. What barriers might there have been to
implementation of certain of these features in earlier
versions?

4.5 The Nomenclature and Image Problems
The use of the word "maintenance" to describe activities undertaken on
software systems after delivery has been considered a misnomer due to
its failure to capture the evolutionary nature of software products.
Maintenance has traditionally meant the upkeep of an artefact in
response to the gradual deterioration of parts due to extended use [108].
This is simply corrective maintenance and takes no account of adaptive
and perfective changes [260, 176]. As is shown in Figure 4.2, corrective
change accounts for less than a quarter of the maintenance effort.

The incorporation of adaptive and perfective changes in the
software maintenance taxonomy shows that work undertaken on
operational systems does not only involve correction of malfunctions, but
also entails adapting and enhancing the systems to meet the evolving

Limitations and Economic Implications to Software Change 53

needs of users [176] and their organisations. Consequently, a number of
authors have advanced alternative terms that are considered to be more
inclusive and encompass more of the activities undertaken on existing
software to keep it operational and acceptable to the users. These include
'software evolution' [12, 108, 169 ch.2], 'post-delivery evolution' [192]
and'support' [100, 163].

Software evolution and post-delivery evolution are similar
because they both describe the tendency of software to evolve and they
are used synonymously by many authors. There is however a difference.
The transition from an idea to develop a software system to its detailed
specification, then to its design and implementation, are all part of the
evolving software. Thus, software evolution can refer to any phase of the
evolution, including those preceding delivery of the software. On the
other hand, post-delivery evolution is more specific and refers to that part
of the evolutionary development of software that occurs after the
software is in live use.

The inclusion of the word maintenance in software maintenance
has been linked to the negative image associated with software
maintenance. Higgins describes the problem:

"...programmers... tend to think of program development as a
form of puzzle solving, and it is reassuring to their ego when they

manage to successfully complete a difficult section of code. Software
maintenance, on the other hand, entails very little new creation and is

therefore categorised as dull, unexciting detective work. "

Higgins ([129], p.5)

This denial of the creativity inherent in the software maintenance
process, arguably far greater than in software development, has caused
significant problems by artificially lowering the status of a very skilled
task. Schneidewind went further than Higgins in contending that to work
in maintenance has been likened to having bad breath [245]. Some
authors argue that the general lack of consensus on software maintenance
terminology has also contributed to the negative image [211].

It can be argued that there is nothing wrong with using the word
"maintenance" provided software engineers are educated to accept its
meaning within the software engineering context, regardless of what it
means in non-software engineering disciplines. After all, any work that

54 Software Maintenance: Concepts and Practice

needs to be done to keep a software system at a level considered useful to
its users will still have to be carried out regardless of the name it is given.

Although software maintenance was a neglected area, the
demands of the software industry are forcing a greater appreciation of
maintenance-related issues, and managers are having to address the
improvement of maintenance support [78].

Despite the reservations expressed, the term software
maintenance is still very widely used. Within the scope of this book, the
term software maintenance will be used as a generic term that refers to
any modification undertaken after installation of a software product.

So far, we have examined the concept of software maintenance
and its constituent activities emphasising the problems that comprise the
maintenance challenge. In the next section, we will look at potential
solutions.

4.6 Potential Solutions to Maintenance Problems
There are three overall approaches to maintenance problems:

(i) budget and effort reallocation - reassigning maintenance re-
sources to develop more maintainable systems;

(ii) complete replacement of existing systems; and

(iii) enhancement of existing systems.

4.6.1 Budget and Effort Reallocation

Based on the observation that software maintenance costs at least as
much as new development, some authors [117] have proposed that rather
than allocating less resource to develop unmaintainable or difficult-to-
maintain systems, more time and resource should be invested in the
development - specification and design - of more maintainable systems.

The use of more advanced requirement specification approaches
[147], design techniques and tools [300], quality assurance procedures
and standards such as the ISO 9000 series [141] and maintenance
standards [272] are aimed at addressing this issue. It is believed that the
deployment of these techniques, tools and standards earlier on in the
development life-cycle wil l lead to more maintainable systems.

Limitations and Economic Implications to Software Change 55

However, it is only recently that empirical evidence is emerging to
support this [50]. See for example the work of the FEAST projects [94].

4.6.2 Complete Replacement of the System

After having examined the problems that the maintenance of legacy
systems poses for many medium-size to large organisations, particularly
their unwelcome economic impact on the software budgets of these
organisations, one might be tempted to suggest that if maintaining an
existing system costs as much as developing a new one, why not develop
a new system from scratch? This suggestion is understandable, but in
practice it is not so simple. The risks and costs associated with complete
system replacement are very high [273] and the following must be
considered:

 Economic constraints: Corrective and preventive maintenance take
place periodically at relatively small but incremental costs. With few
exceptions, enhancement and adaptive work requests are also
undertaken intermittently at a fraction of the cost of developing a
new system. In the long term, the total costs incurred in undertaking
these activities add up to a considerable sum during the system's
lifetime. In the short term, however, the organisation can afford to
pay these comparatively small maintenance charges while at the
same time supporting more ambitious and financially demanding
projects. For example, in a survey carried out by Tamai and
Torimitsu, several of the respondents who once considered
replacement of their systems abandoned the idea because it was too
expensive [263].

 Residual errors in new systems: The creation of another system is no
guarantee that it will function better than the old one. On installation,
errors may be found in functions the old system performed correctly
and such residual errors wil l need to be fixed as they are discovered.
As Bernstein points out, 'if there are no problems, there's trouble'
[28]. A new system will not be error-free.

 Database of information: The old system is a collection of functions,
and as such, it embodies a wealth of experience, represents a
repository of ideas that could enable the identification of building
blocks of future systems [245], and may contain management,
operational and financial information about an organisation as well

56 Software Maintenance: Concepts and Practice

as business rules [211] that have accrued over many years. A
collection of assumption sets (sometimes known as the assumption
knowledge base system) that underlie the different paradigms and
functions used to develop the system, are embedded in these old
systems. The availability of such knowledge could prove useful for
the development of future systems, thereby reducing the chances of
re-inventing the wheel. It wil l be unrealistic for an organisation to
part with such an asset [69].

4.6.3 Maintenance of the Existing System

Complete replacement of the system is not usually a viable option. An
operational system in itself can be an asset to an organisation in terms of
the investment in technical knowledge and the working culture
engendered. The 'budget/effort reallocation' approach, though
theoretically convincing, is somewhat difficult to pursue. Even if the
latter were possible, it would be too late for systems that are already in
what is being termed the maintenance crisis.

As an alternative, the current system needs to have the potential
to evolve to a higher state, providing more sophisticated user-driven
functionality, the capability of deploying cutting edge technology, and of
allowing the integration of other systems in a cost-effective manner. A
number of techniques, methods, tools and management practices are used
to meet these goals. These issues provide the underlying framework for
much of the remainder of this book.

4.7 Summary
The key points covered in this chapter are:

 The high expenditure on software maintenance is partly due to the
evolutionary nature of software products and partly due to other
problems such as badly structured code, incomplete or non-existent
documentation, staff turnover and changes in the environment of the
product.

 Possible solutions to the maintenance problems include: (i) investing
more resources during the earlier phases of the software life-cycle so
as to develop more maintainable systems. This may be achieved by
the use of evolutionary development paradigms, although these are
not yet proven to be practical; (ii) complete replacement of the

Limitations and Economic Implications to Software Change 57

existing system. However the latter, though sometimes necessary, is
not usually economically viable.

Having looked at the framework within which maintenance
operates, we have now identified that it is not always economically
viable to replace a system from scratch and that the budget reallocation
approach is yet to be proven. We now need to look at what are the most
acceptable ways of keeping software systems at levels considered useful
and acceptable. In order to discuss how specific methods are applied, it is
important to understand the software maintenance process and how it has
been modelled. This is the theme of the next chapter.

5

The Maintenanc e Proces s

"Modelling is a tool for coping with problems of largeness "

DeMarco ([79], p 42)

This chapter aims to

1. Discuss the importance of process models.

2. Explain the weaknesses of traditional life-cycle models with
respect to maintenance.

3. Identify ways of accommodating the evolutionary tendency of
software within traditional software life-cycle models.

4. Study examples of maintenance process models.

5. Compare and contrast different types of maintenance process
model.

6. Discuss the strengths and weaknesses of each maintenance
process model.

7. Look at the issue of process maturity.

5.1 Introduction
We have looked at different types of change, why and when they might
be carried out, and the context in which this will be done. This chapter
wil l look at the change process by looking in detail at different ways in
which the process of maintenance has been modelled. In order to study

59

60 Software Maintenance: Concepts and Practice

maintenance process models effectively, they need to be seen in the
context of traditional life-cycle models. A comparison of traditional and
maintenance models helps to highlight the differences between software
development and software maintenance and shows why there is a need
for a 'maintenance-conscious' process model.

5.2 Definitions
Life-cycle - the cyclic series of changes undergone by an entity from
inception to 'death'. In terms of software, the life-cycle is the series of
recognised stages through which a software product cycles during its
development and use.

Model - the representation of an entity or phenomenon.

Process - the progress or course taken, methods of operation, a series of
actions taken to effect a change.

"A specific activity or action performed by a human being or
machine during a software project"

Basili & Abd-El-Hafiz ([15], p.3)

Process model - the representation of the progress or course taken - i.e.
the model of the process.

Software maintenance process - the series of actions taken to effect
change during maintenance.

5.3 The Software Production Process
The software production process encompasses the whole activity from
the initial idea to the final withdrawal of the system (Figure 5.1).

Idea Analysis Requirements Design Implementation Testing Use

^-^7 ^—=7 v- - :7 ^—-7 v---7 v—-7
v J

Figure 5.1 Stages in the evolution of a software system

Maintenance Process Models 61

A process, being the series of discrete actions taken to effect a
change, is distinct from the life-cycle which defines the order in which
these actions are carried out.

The software life-cycle starts with an idea, then goes through the
stages of feasibility study, analysis, design, implementation, testing,
release, operation and use. The software evolves through changes which
lead to, or spring from, new ideas that start the cycle off again. A
familiar example is that of the metamorphosis of an insect (Figure 5.2).
The adult insect lays the egg from which the pupa emerges which
becomes the chrysalis from which the adult emerges which lays the
egg... and so on.

V L j V Rnih-rlK

 Egg (J ^ * »

\j / Chrysalis

Pupa

fgure 5.2 The metamorphosis of an insect

Mini Case Study - The Analysis of Patient Questionnaires at the
ACME Health Clinic

The person whose job it was to analyse patient questionnaires
became disillusioned with the tediousness of sifting through sheets of
paper and collating responses. She had the idea of computerising the
process and thereby automating it. The objectives were to speed the
process up and to allow the computer to deal with the tedium of adding

Pupa

Chrysalis

Figure 5.2 The metamorphosis of an insect

62 Software Maintenance: Concepts and Practice

and collating, removing the time-consuming need for double-checking of
calculations done by hand, thus making the process more reliable.

The technician had to ask the following:

a) Would it be feasible?

b) Could the job be done with available equipment and resources?

The answers being yes, the 'system' progressed to the next stage
- a detailed appraisal of exactly what was needed. Once this was decided,
the system was designed and implemented. Once implemented, the
system was tested to the point where it was deemed reliable enough to
use for real.

In this instance, one person creating a system for her own use
progressed from the original idea to the system in use in a few hours.
Interestingly, but not surprisingly, as soon as it became known that the
system had been computerised, many requests for further data analysis
came in. Not a single one of these could be accommodated. The person
concerned had automated a specific set of analyses, with no
consideration for further expansion.

We are familiar with the life-cycle as a cyclic series of stages
(Figure 5.3) but what exactly comprises these stages?

Requirements analysis

Operation

Design

Testing
Implementation

Figure 5.3 The generic life cycle

Maintenance Process Models 63

Design, for example, can be a pile of documents, a set of
diagrams, ideas in someone's head, drawings on a blackboard. How do
we deal with this plethora of information and make sense of it? We need
a means of representing it in a way that hides the confusing detail and
allows us to understand the major concepts. We need a model.

A familiar example is a map. A map provides an abstract
representation of an area, and a very useful one. Given the real thing, the
area, it is very difficult to know where anything is or how to find one's
way about. Given an abstract and manageable representation, a map, the
task becomes much easier.

JCOT

Figure 5.4 The architectural drawing of the building

Similarly, an architect's drawings (Figure 5.4) represent the
information needed to construct a building. Such a representation gives
more than just the idea of the shape or look of the building (Figure 5.5),
it contains the information needed to enable safe construction of the
building.

In software terms the model is the abstract representation of the
software production process, the series of changes through which a
software product evolves from initial idea to the system in use. For

64 Software Maintenance: Concepts and Practice

software maintenance, it is the representation of those parts of the
process specifically pertaining to the evolution of the software.

Figure 5.5 The finished building

A process model gives an abstract representation of a way in
which to build software. Many process models have been described and
we wil l look at a number of such models.

The term process implies a single series of phases. Life-cycle
implies cycling through this series of phases repeatedly. However, you
wil l find that some texts use the term software process as an alternative
to software life-cycle. In this case, the term process as opposed to life-
cycle is being used to give a different emphasis rather than implying a
series versus a cyclic repetition of a series. The pivotal points of the
software life-cycle in this case are the products themselves and software
process shifts the emphasis to the processes by which the products are
developed.

Exercise 5.1 Define the terms process, life-cycle and model.

Exercise 5.2 Explain the differences between a software life-cycle
and a software process.

Maintenance Process Models 65

5.4 Critical Appraisal of Traditional Process Models
The history and evolution of life-cycle models is closely tied to the
history and evolution of computing itself. As with other areas (the
creation of programming languages, system design and so on) there was
an evolutionary path from the ad hoc to the structured.

In the days when computer system development was a case of
one person developing a system for his or her own use, there were no
major problems with ad hoc and hit or miss methods. Such methods, in
fact, are integral to the learning process in any field. As the general body
of knowledge and experience increases, better understanding results and
better methods can be developed.

Other factors influence the move from the ad hoc to the
structured: risk factors, for example; safety considerations and the
ramifications of failure when a large customer base has to be considered.
Thus need, knowledge and experience lead to better structured and better
understood models.

However, there is a specific aspect to be considered when
looking at the historical development of models for maintenance. The
evolution of models went in parallel with the evolution of software
engineering and computer science in general. It must be remembered that
the level of awareness of software maintenance-related issues was low
until relatively recently. Software maintenance itself as a field of study is
new compared to software development. The process and life-cycle mod-
els have evolved in an environment of high awareness of software
development issues as opposed to maintenance issues and, as such, are
development models.

There are very many software process and life-cycle models and,
of these, many have a variety of permutations. In this section we will
look at three which are representative of the area of process models in
general: code-and-fix, waterfall and spiral, representing respectively the
old, the well established and the new. An outline of these is given below
to provide a framework for subsequent discussion of maintenance
process models. The details of the traditional models are extensively
covered in other texts [255, 274].

66 Software Maintenance: Concepts and Practice

5.4.1 Code-and-Fix Model

Figure 5.6 The code-and-fix model

This is ad hoc and not well defined. It is a simple two-phas"e model
(Figure 5.6). The first phase is to write code. The next phase is to 'fix ' it.
Fixing in this context may be error correction or addition of further
functionality. Using this model, code soon becomes unfixable and
unenhanceable. There is no room in this model for analysis, design or
any aspect of the development process to be carried out in a structured or
detailed way. There is no room to think through a fix or to think of the
future ramifications, and thus errors increase and the code becomes less
maintainable and harder to enhance. On the face of it, this model has
nothing to recommend it. Why then consider it at all? The reason is that
despite the problems, the model is still used, the reason being that the
world of software development often dictates the use of the code-and-fix
model. If a correction or an enhancement must be done very quickly, in a
couple of hours say, there is no time for detailed analysis, feasibility
studies or redesign. The code must be fixed. The major problems of this
scenario are usually overcome by subsuming code-and-fix within a
larger, more detailed model. This idea is explored further in the
discussion of other models.

The major problem with the code-and-fix model is its rigidity. In
a sense, it makes no allowance for change. Although it perhaps does not
assume the software to be correct from the off - it does have a fix stage
as well as a code stage - it makes no provision for alteration and repair.
The first stage is to code. All the other stages through which a software
system must go (analysis, specification, design, testing) are all bundled
together either into the fix stage or mixed up with the coding. This lack
of properly defined stages leads to a lack of anticipation of problems.

Code

Fix

Maintenance Process Models 67

Ripple effects, for example, will go unnoticed until they cause problems,
at which stage further fixes may have become unviable or impossible.
There is no acknowledgement in the model that one route may be better
or less costly than another. In other, more structured models, explicit
provision is made for the following of a particular route, for example a
lesser risk route or a less expensive route. Because there is no such
provision in the code-and-fix model, code structure and maintainability
wil l inevitably deteriorate. Recognition of the problems of ad hoc
software development and maintenance led to the creation of better
structured models.

5.4.2 Waterfall Model

The traditional waterfall model gives a high-level view of the software
life-cycle. At its most basic it is effectively the tried and tested problem-
solving paradigm:

 Decide what to do

 Decide how to do it

 Doit

 Test it

 Use it.

The phases in the waterfall model are represented as a cascade.
The outputs from one phase become the inputs to the next. The processes
comprising each phase are also defined and may be carried out in parallel
(Figure 5.7).

Many variations on this model are used in different situations but
the underlying philosophy in each is the same. It is a series of stages
where the work of each stage is 'signed off and development then
proceeds to the following phase. The overall process is document driven.
The outputs from each stage that are required to keep the process moving
are largely in the form of documents.

The main problem with the original waterfall model lay in its
sequential nature, highlighted by later refinements which adapted it to
contain feedback loops. There was recognition in this of the ever-
increasing cost of correcting errors. An error in the requirements stage,

68 Software Maintenance: Concepts and Practice

for example, is far more costly to correct at a late stage in the cycle and
more costly than a design error.

Nonetheless, the model still fails to capture the evolutionary
nature of the software. The model allows for errors in the specification
stage, for example, to be corrected at later stages via feedback loops, the
aim being to catch and correct errors at as early a stage as possible.
However, this still assumes that at some point a stage can be considered
complete and correct, which is unrealistic. Changes - in specification for
example - wil l occur at later stages in the life-cycle, not through errors
necessarily but because the software itself is evolutionary.

Requirements
analysis

Specification

Design

Implementation

Testing

Operation and use

Figure 5.7 The waterfall model

A specification may be correct at a particular point in time but
the system being specified is a model of some part of the world -
complex air traffic control perhaps, or simple analysis of questionnaire
answers. A system models an aspect of reality which is subject to

Maintenance Process Models 69

change. Systems become incorrect not always through error or oversight
but because we live in an ever-changing world and it is this evolutionary
aspect of software systems that the waterfall model fails to capture.

More recently developed models take a less simplistic view of
the life-cycle and try to do more to accommodate the complexities.

5.4.3 Spiral Model

The phases in this model are defined cyclically. The basis of the spiral
model is a four-stage representation through which the development
process spirals. At each level

 objectives, constraints and alternatives are identified,

 alternatives are evaluated, risks are identified and resolved,

 the next level of product is developed and verified,

 the next phases are planned.

The focus is the identification of problems and the classification
of these into different levels of risk, the aim being to eliminate high-risk
problems before they threaten the software operation or cost.

A basic difference between this and the waterfall model is that it
is risk driven. It is the level of risk attached to a particular stage which
drives the development process. The four stages are represented as
quadrants on a Cartesian diagram with the spiral line indicating the
production process (Figure 5.8).

One of the advantages of this model is that it can be used as a
framework to accommodate other models. The spiral model offers great
advantage in its flexibility , particularly its ability to accommodate other
life-cycle models in such a way as to maximise their good features and
minimise their bad ones. It can accommodate, in a structured way, a mix
of models where this is appropriate to a particular situation. For example,
where a modification is called for quickly, the risks of using the code-
and-fix scenario can be evaluated and, if code-and-fix is used, the
potential problems can be addressed immediately by the appropriate
procedures being built into the next phase.

A problem with the spiral model is a difficulty in matching it to
the requirements for audit and accountability which are sometimes
imposed upon a maintenance or development team. The constraints of

70 Software Maintenance: Concepts and Practice

audit may be incompatible with following the model; for example, a very
tight deadline may not allow sufficient time for full risk evaluation. This
may well be an indication that the constraints imposed in terms of audit
and accountability are less than optimal.

The fact that the model is risk driven and relies heavily on risk
assessment is also a problem area. In breaking down a problem and
specifying it in detail, there is always a temptation to 'do the easy bits
first' and leave the difficult bits until last. The spiral model requires that
the high-risk areas are tackled first and in detail. Although 'difficult '
does not always equate to 'high risk' it often does. A team inexperienced
in risk assessment may run into problems.

Time/Cumulative cost

Software
development/evolution
spirals through the four

phases

Evaluation of alternatives
Identification of risksIdentify:

Objectives
Constraints
Alternati

Development
verification

Figure 5.8 The spiral model

Exercise 5.3 Investigate the ways in which the basic waterfall
model has been enhanced and modified. Describe these
modifications and explain why they were made.

Plan next phase

Maintenance Process Models 71

5.5 Maintenance Process Models
The need for maintenance-conscious models has been recognised for
some time but the current situation is that maintenance models are
neither so well developed nor so well understood as models for software
development.

In the early days, problems with system development were
overwhelming and it is not surprising that the evolutionary nature of
software that is at the heart of maintenance was to an extent ignored [26].
To attempt to take account of future changes in systems, prior to good
understanding of the development process, was akin to asking for the
incorporation of a crystal ball into the model. However, our
understanding of the maintenance process, just like our understanding of
the development process, moved on and maintenance process and life-
cycle models emerged.

Expanding on the example given in chapter 1, let us consider the
addition of a room to a building. When the house was built to its original
design, rooms A and B were built side by side. Some years later, a third
room is needed. Had this need been perceived originally, three smaller
rooms would have been built (Figure 5.9).

The original The later requirement

V

f

V V

Figure 5.9 We need an extra room!

At the time of the original building, there was no need for a third
room. But, after the building had been in use for some time, a need for a
third room emerged. The addition of the third room to the existing

72 Software Maintenance: Concepts and Practice

building is a very different proposition from constructing the third room
in the first place.

This is directly analogous to the addition of new requirements to
a software system. Planning to build three rooms from the start is
relatively easy, as is initial development of a particular functionality.
Deciding to add the third room prior to commencement of building work
is a littl e harder and requires alteration of plans. This equates to the case
where there is a change in requirements subsequent to designing a piece
of software but prior to implementing it. The addition of the extra room
after the building has been completed and is in use is a very different
matter, as is modification to software which is in use.

 The wall between rooms A and B must be knocked down.

Software interfaces between different components may have
to be altered.

 This is a building in use - the problem of creating and removing a
pile of rubble must be addressed. The resultant dust with which the
original building site could have coped may now pose a major threat
to sensitive equipment. At the time of original building, rubbish
chutes and skips would have been on site.

There is far less leeway to allow for the introduction of
errors and ripple effects in a piece of software which must be
released quickly to a large customer base. During initial
development, there was a specific and resourced testing phase.
Reintroduction of modified software may be subject to tight time
deadlines and resource constraints.

 Adding the third room may well require people and materials to
travel through, and thus affect, parts of the building they would not
have had to access originally. The work will impact differently upon
the environment upon which it is carried out. The effects of adding
the third room as opposed to building it in the first place will cause
disruption at a different level, to a different group of people and in
different places. All this needs to be assessed and addressed.

Similarly, a modification to a large and complex software
system has the potential to affect parts of the software from which it
could have been kept completely separate had it been added
originally.

Maintenance Process Models 73

 The physical effect on the building itself will be different. Is the wall
between A and B a load-bearing wall? If so, there will be a need for
a supporting joist. Had the original plans catered for a third room,
there would have been no supporting joist across the middle of a
room in this way. It would have been unnecessary, a design flaw in
fact, had it appeared in the original, and yet in the conversion it is an
absolute necessity

The software will have to be modified to cater for the
addition of the new functionality. Suppose that the new functionality
calls for data to be held in memory in a large table. It may be that the
existing system does not allow the creation of such a structure
because of memory constraints. Data structures in other parts of the
system may not have left enough room for a large table. If i t is not
feasible to make extensive alteration to the rest of the data structures,
then something other than a large table must be used. This something
else, a linked list perhaps, may seem wholly inappropriate. And yet,
the demands of the maintenance environment insist upon it.

 Does the wall contain central heating pipes, wiring ducts, network
cables or anything else which may have to be taken into account
prior to its being demolished?

Likewise, are there hidden dependencies within the software
modules which are to be modified? In theory, these will all be
documented. In practice, buildings tend to be better documented than
software systems.

It is all too easy to assume that an enhancement to an existing
software system can be tackled in exactly the same way as adding that
feature from the start. This misconception may be due to the malleable
nature of software. It is not as obvious with software, as it is with a
building, that adding something later is a very different case from adding
it in the first place.

It is this concept, that maintenance is a very different matter
from initial development, that a maintenance-conscious model must
encompass.

One can go only so far along the road towards predicting a future
need for an extra room. And yet traditional engineering methods allow us
to add new rooms to buildings without having to demolish the building

74 Software Maintenance: Concepts and Practice

or make it unsafe. In software engineering, there is a great deal of
demolition work going on simply because we cannot add the 'extra
room' safely. Predicting every future need is not possible and attempting
to do so is very costly. We can, however, do more to encompass the
genuine needs of maintenance within the models with which we work.

An obvious example is documentation. Engineers in other fields
would not dream of neglecting, or working without, documentation. If
proper documentation did not exist, road workers would cut off mains
services almost every time they dug a hole in a city street. Yet software
engineers often have to rely on their own investigations to discover
dependencies between software modules or to discover potential ripple
effects because the original system and subsequent changes are not
documented.

It is important to recognise the differences between new
development and maintenance but it is also important to recognise the
similarities. In the building analogy; it is the same skills and expertise
that are required to build the new wall whether constructing it in the new
building or adding it later. What will make the difference is whether the
work is being done on a building site or in a building in use.

Idea

Operation Understand the system

Document / N.
/ \ Define

Release new / \ objectives

v e r s i on / \ Analysis

Training \ /Specification

Validation \ /Design

Testing ^ ^ ^-^implementation

Figure 5.10 The 'maintenance conscious' life cycle

The generic stages in a maintenance-conscious model (Figure
5.10) compared with the traditional development model appear similar

Maintenance Process Models 75

on the surface but within the stages there are great differences in
emphasis and procedure. There is more effort required and very different
emphases on the early stages, and conversely less effort required in the
later stages, of the maintenance model as opposed to the development
model (Figure 5.11).

A /Maintenance \ / \

Effort / / \ \

I ^ — D e v e l o p m e nt \ \

Analysis Specification Design Implementation Testing Operation

Lifecycle ^

Figure 5.11 Effort needed in the different stages

Consider the building example again. Buildings are built for a
particular purpose but often change use during their lifetime. A private
house is converted to a shop. A stately home is converted to offices. The
fact that the private house was not originally built with provision for a
shop window or a counter does not mean that the house must be entirely
demolished. Appropriate skills are brought to bear and the required
conversions carried out. If the hopeful shopkeepers were to say to the
builder 'If you were building this window into a new building whose
design had allowed for it, it would take you x person-hours and you
would use these specific materials and spend z pounds. Here are z
pounds, build it this way,' the builder would turn down the job and
wonder why these people wanted to insist on dictating details of

76 Software Maintenance: Concepts and Practice

something they appeared to know nothing about. And yet, much software
maintenance is carried out this way. Had an original specification
allowed for a particular functionality, it might have taken as littl e as five
minutes to implement. 'Please deliver the modified software in five
minutes!' Is it any surprise that software collapses under conversion to a
greater extent than buildings do?

The essence of the problems at the heart of all the traditional
models is in their failure to capture the evolutionary nature of software.
A model is needed which recognises the requirement to build
maintainability into the system. Once again, there are many different
models and we wil l look only at a representative sample of four of them.

5.5.1 Quick-Fix Model
This is basically an ad hoc approach to maintaining software (Figure
5.12). It is a 'firefighting' approach, waiting for the problem to occur and
then trying to fix it as quickly as possible, hence the name.

C
Problem -^^
found ^ \ .

_ Fix it . ^ - ^ ^

Figure 5.12 The quick-fix model

In this model, fixes would be done without detailed analysis of
the long-term effects, for example ripple effects through the software or
effects on code structure. There would be littl e if any documentation. It is
easy to see how the model emerged historically, but it cannot be
dismissed as a purely historical curiosity because, like the code-and-fix
model, it is still used.

What are the advantages of such a model and why is it still used?
In the appropriate environment it can work perfectly well. If for example
a system is developed and maintained by a single person, he or she can
come to learn the system well enough to be able to manage without

Problem

Fix it

Maintenance Process Models 77

detailed documentation, to be able to make instinctive judgements about
how and how not to implement change. The job gets done quickly and
cheaply.

However, such an environment is not the norm and we must
consider the use of this model in the more usual setting of a commercial
operation with a large customer base. Why does anyone in such a setting
still allow the use of an unreliable model like the quick-fix? It is largely
through the pressure of deadlines and resources. If customers are
demanding the correction of an error, for example, they may not be
willin g to wait for the organisation to go through detailed and time-
consuming stages of risk analysis. The organisation may run a higher risk
in keeping its customers waiting than it runs in going for the quickest fix.
But what of the long-term problems? If an organisation relies on quick-
fix alone, it wil l run into difficult and very expensive problems, thus
losing any advantage it gained from using the quick-fix model in the first
place.

The strategy to adopt is to incorporate the techniques of quick-
fix into another, more sophisticated model. In this way any change
hurried through because of outside pressures will generate a recognised
need for preventive maintenance which will repair any damage done.

By and large, people are well aware of the limitations of this
model. Nonetheless, it often reflects only too well the real world business
environment in which they work. Distinction must be made between
short-term and long-term upgrades. If a user finds a bug in a commercial
word processor, for example, it would be unrealistic to expect a whole
new upgrade immediately Often, a company will release a quick fix as a
temporary measure. The real solution wil l be implemented, along with
other corrections and enhancements, as a major upgrade at a later date.

5.5.1.1 Case Study - Storage of Chronological Clinical Data

When the ACME Health Clinic system was originally
developed, it catered only for a single recording per patient for things
such as blood pressure, weight, medication and so on. This was because
of a misunderstanding during requirements analysis which did not come
to light until the system was in use. In fact, the system needed to store
chronological series of recordings. At that stage, the need for storage of
chronological data was immediate. The maintenance programmer
assigned to the task drew up a mental model of data held in small arrays

78 Software Maintenance: Concepts and Practice

to allow speedy retrieval and proceeded to implement the change. This
quick-fix method identified the need

 for the arrays,

 to amend the data structures to allow for linking of the chronological
data,

 for a small restructuring program to modify the existing data.

There was no update of documentation, no documentation of the
changes other than a few in-code comments and no in-depth analysis.

Because this was done speedily as a quick fix, problems such as
array overflow were not considered. In fact, once enough information
was stored, data was going to 'drop off the end' of the arrays and
disappear. This would lead to data corruption in that the chronological
links would be broken and missing links would appear in the middle of
the data chains (Figure 5.13).

This was noticed while another enhancement was being tested,
the potential seriousness of the problem was recognised and the race was
on to solve it before the clinic stored sufficient data to cause the problem.
This imposed yet another tight deadline and the fastest fix had to be
found. The 'best' solution, a radical restructuring of the data and
procedures for data retrieval and storage, was recognised, but could not
be implemented because of the time restriction. Another quick fix had to
be found. The only solution was to 'catch' data overflowing the
temporary array and store it in the patient file. This meant that
chronological links were maintained, but the data was being stored in the
patient's file without being explicitly saved by the clinician. This not
only led to less well-structured code, documentation further out of date
and a situation even harder to retrieve, but was also in contravention of
an original requirement regarding permanent saving of data.

This ACME Health Clinic case study highlights the difficulties
of the quick-fix model. Ripple effects that should have been obvious
were missed. These forced the adoption of a further fix which was
known to be wrong. The resources that had to be diverted into this
emergency repair lessened the likelihood of time being devoted to doc-
umentation update, thus decreasing the chances of the error being
successfully retrieved.

Maintenance Process Models 79

Data in memory . Data on disk

Finâ array
position

5 items in 1 I 1 1 1 I links; to 1st 3 data items
volatile I I I I I i ^ i t em j°n disk in memory

I I ,'" -^ I Data in memory
V ; T he fnk between no longer

Data i t e n ^l 1 1 1 1 (" " d a | f j " m e m° f y access ib le
added to I I I I I I a n d d a t a o n d . sk
r n is broken i 1 i 1 i 1
full array \

Data "falls "" j ̂ ^ — ^ 7
out" I

j Data is stored
Lr—' ! ^ temporarily on disk

X̂ ^̂ ^ 1 1 1 1 1 ,.-1 'H J to prevent the link
-^ ' i being broken

I 1 1 1 1 1 ; J /

I The 'clinically
inappropriate' solution

Figure 5.13 Enhancing the system to deal with chronological data

The underlying basis of the problem is that the quick-fix model
does not 'understand' the maintenance process. The problems
experienced were not hard to predict and the 'advantage' gained by the
original quick fix was soon lost.

Many models have subsequently been developed which look at,
and try to understand, the maintenance process from many different
viewpoints. A representative selection of these is given below.

80 Software Maintenance: Concepts and Practice

5.5.2 Boehm's Model
In 1983 Boehm [36] proposed a model for the maintenance process
based upon economic models and principles. Economic models are
nothing new. Economic decisions are a major driving force behind many
processes and Boehm's thesis was that economic models and principles
could not only improve productivity in maintenance but also help
understanding of the process.

Boehm represents the maintenance process as a closed loop
cycle (Figure 5.14). He theorises that it is the stage where management
decisions are made that drives the process. In this stage, a set of
approved changes is determined by applying particular strategies and
cost-benefit evaluations to a set of proposed changes. The approved
changes are accompanied by their own budgets which will largely deter-
mine the extent and type of resource expended.

Management decisions

Proposed/cnanges

Evaluation

Approv«sd changes

Chanfce
implemented

New version of software

Software in use

Figure 5.14 Boehm's model - 1983

Results

Maintenance Process Models 81

The survey by Leintz and Swanson [176] (Figure 5.15) showed
that almost half maintenance effort was devoted to non-discretionary
maintenance activities.

Software
maintenance
effort

54.7%

45.3% I 1

Non discretionary
maintenance Discretionary maintenance

emergency fixes " enhancements for users
debugging " documentation improvement

- changes to input data " improving efficiency
changes to hardware

Figure 5.15 Results of Lientz and Swansons' survey- 1978

In terms of the production function - the economic relationship
between the inputs to a process and its benefits - this reflects the typical
three-segment graph of;

 Investment: This is a phase of low input of resource and low benefit.
This correlates to a newly released software product which has a
high requirement for emergency fixes and mandatory enhancements.

 High payoff: An organisation sees increasing benefit from the
software product and the initial problems are ironed out. This is a
phase during which resource is put into user enhancements and
improvements in documentation and efficiency. Cumulative benefit
to the organisation increases quickly during this phase.

 Diminishing returns: Beyond a certain point, the rate of increase of
cumulative benefit slows. The product has reached its peak of

82 Software Maintenance: Concepts and Practice

usefulness. The product has reached the stage where radical change
becomes less and less cost effective.

Boehm [36] sees the maintenance manager's task as one of
balancing the pursuit of the objectives of maintenance against the
constraints imposed by the environment in which maintenance work is
carried out.

Thus, the maintenance process is driven by the maintenance
manager's decisions which are based on the balancing of objectives
against constraints.

In the example of the problems with the ACME Health Clinic
system, this approach to maintenance would have recognised that the
quick-fix approach adopted was not appropriate. Had a quick fix been
essential, it would have been a temporary holding measure which would
have allowed the system to continue running without radical and ill -
thought-out changes. These would have been assessed as part of the
overall strategy and would have allowed a progression towards the real
solution instead of the inevitable path away from it.

5.5.3 Osborne's Model

Another approach is that proposed by Osborne [210]. The difference
between this model and the others described here is that it deals directly
with the reality of the maintenance environment. Other models tend to
assume some facet of an ideal situation - the existence of full
documentation, for example. Osborne's model makes allowance for how
things are rather than how we would like them to be.

The maintenance model is treated as continuous iterations of the
software life-cycle with, at each stage, provision made for
maintainability to be built in. If good maintenance features already exist,
for example full and formal specification or complete documentation, all
well and good, but if not, allowance is made for them to be built in.

The stages in the maintenance life-cycle are shown in Figure
5.16 and include recognition of the steps where iterative loops will often
occur.

Maintenance Process Models 83

Identification of need for change

Change request submitted

Requirements analysis

Change request

rejected ^- ^ approved

/ Task scheduled

Design analysis

Design review

Modification to code

Review of proposed change

Testing

Documentation update

Standards audit ^/^

User acceptance

tiorueviePost-installatiorueview of changes

Task completed

n

Figure 5.16 Osborne's model of the software maintenance process

Osborne hypothesises that many technical problems which arise
during maintenance are due to inadequate management communications
and control, and recommends a strategy that includes:

 the inclusion of maintenance requirements in the change
specification;

 a software quality assurance program which establishes quality
assurance requirements;

84 Software Maintenance: Concepts and Practice

 a means of verifying that maintenance goals have been met;

 performance review to provide feedback to managers.

5.5.4 Iterative Enhancement Model

Analyse existing system

Characterise

Redesign (] Pr oPo s ed
c u r r e nt \ / modifications

version and
implement

Figure 5.17 The three stages of iterative enhancement

This model has been proposed based on the tenet that the implementation
of changes to a software system throughout its lifetime is an iterative
process and involves enhancing such a system in an iterative way. It is
similar to the evolutionary development paradigm during pre-installation.

Originally proposed as a development model but well suited to
maintenance, the motivation for this was the environment where
requirements were not fully understood and a full system could not be
built.

Adapted for maintenance, the model assumes complete
documentation as it relies on modification of this as the starting point for
each iteration. The model is effectively a three-stage cycle (Figure 5.17):

 Analysis.

 Characterisation of proposed modifications.

 Redesign and implementation.

The existing documentation for each stage (requirements, design,
coding, testing and analysis) is modified starting with the highest-level
document affected by the proposed changes. These modifications are
propagated through the set of documents and the system redesigned.

Maintenance Process Models 85

The model explicitly supports reuse (see chapter 8) and also
accommodates other models, for example the quick-fix model.

The pressures of the maintenance environment often dictate that
a quick solution is found but, as we have seen, the use of the 'quickest'
solution can lead to more problems than it solves. As with the previous
model, iterative enhancement lends itself to the assimilation of other
models within it and can thus incorporate a quick fix in its own more
structured environment. A quick fix may be carried out, problem areas
identified, and the next iteration would specifically address them.

The problems with the iterative enhancement model stem from
assumptions made about the existence of full documentation and the
ability of the maintenance team to analyse the existing product in full.
Whereas wider use of structured maintenance models will lead to a
culture where documentation tends to be kept up to date and complete,
the current situation is that this is not often the case.

5.5.5 Reuse-Oriented Model

This model is based on the principle that maintenance could be viewed as
an activity involving the reuse of existing program components. The
concept of reuse is considered in more detail in chapter 8. The reuse
model described by Basili [16] has four main steps:

 Identification of the parts of the old system that are candidates for
reuse,

 Understanding these system parts,

 Modification of the old system parts appropriate to the new
requirements,

 Integration of the modified parts into the new system.

A detailed framework is required for the classification of
components and the possible modifications. With the full reuse model
(Figure 5.18) the starting point may be any phase of the life-cycle - the
requirements, the design, the code or the test data - unlike other models.
For example, in the quick-fix model, the starting point is always the
code.

86 Software Maintenance: Concepts and Practice

Old system New system
i 1

Requirements >i K Requirements

analysis Component!* a n a l y s is

Design >j L i l "" ary k Design
i i

Source code ^j K Source code
i i

Test data >j j< Test data
i i

Figure 5.18 The reuse model

Exercise 5.4 Compare and contrast Osborne's maintenance process
model with the other maintenance process models dealt
with in this chapter.

Exercise 5.5 Describe how the ACME Health Clinic system might
have been more effectively modified. Assume the same
tight deadlines but investigate the incorporation of the
quick-fix model into another, more structured model.

5.6 When to Make a Change
So far discussion has been about the introduction of change into a system
without considering whether or not that change should be made at all. In
other words, the ways in which different models approach the
implementation of change has been considered but without addressing
the important question of how to decide when a change should be made.
It cannot simply be assumed that everyone involved with a system, from
the developers to the users, can throw their ideas into the arena and
automatically have them implemented. That would lead to chaos.

Not all changes are feasible. A change may be desirable but too
expensive. There has to be a means of deciding when to implement a
change. Ways of doing this, e.g. via a Change Control Board, are
explored in detail in chapter 11.

Exercise 5.6 What was the last software project you worked on?
Was it a commercial project, an undergraduate project
or a personal project? Write a critical appraisal of the

Maintenance Process Models 87

life-cycle model to which you worked. Was it well
structured or ad hoc? Would you work to a different
model if you were to start this project again?

Exercise 5.7 You are the IT manager in charge of a large library
software system which fails unexpectedly one Monday
morning. How would you go about the process of
solving this problem

1. if it is imperative that it is up and running within
two hours?

2. if the library is able to function adequately for
several days without its software system?

5.7 Process Maturity
We have looked at how processes are modelled, but a vital issue is of
course, how they are used.

Knowledge of the theory does not lead automatically to effective
use in practice. Many undergraduate software engineering programmes
include a group project where students work together on a large software
project, to mimic the commercial environment. Processes will have been
learnt in other parts of the course. If the application of these to the group
work is ad hoc and not controlled, the results of such projects will be
unpredictable. Outcomes will depend upon chance, individual flair of
team members and wil l by and large be random. Well-organised projects,
in contrast, should allow all groups to use effectively the processes they
have learnt in their theoretical courses.

A similar situation holds in a commercial software house. Some
companies carry on successful operations for a long time reliant on a few
very good programmers. If they do not put resources into building the
maturity of the processes themselves, there will come a point where the
operation cannot continue. The burden will become far too great for the
few people carrying it. They will leave and the whole operation will
collapse.

Organisations need a means by which to assess the maturity and
effectiveness of their processes.

88 Software Maintenance: Concepts and Practice

5.7.1 Capability Maturity Mode/ 8 for Software
The Software Engineering Institute (SEI) developed a capability maturity
model for software [217]. Using this, the maturity of processes can be
assessed. Five levels are defined:

1) Initial . The software process is ad hoc. Few processes are
defined. Success depends on individual flair of team members.

2) Repeatable. Basic processes are established, tracking cost,
scheduling, and functionality. Successes can be repeated on projects with
similar applications.

3) Defined. Processes are documented and standardised. There
exists within the organisation standard processes for developing and
maintaining software. All projects use a tailored and approved version of
the standard process.

4) Managed. Detailed measures are collected, both of the
process and the quality of the product. Quantitative understanding and
control is achieved.

5) Optimising. Quantitative feedback is evaluated and used from
the processes and from the piloting of innovative ideas and technologies.
This enables continuous process improvement.

The SEI's model is not the only one in use, but is widely
referenced and other models [63] tend to be closely cross-referenced with
it. The benefits accruing from software process improvement based upon
the SEI's model have been studied and documented [128, 161].

5.7.2 Software Experience Bases

The idea of an organisation continually improving through sharing
experience is a concept that can counter the vulnerability inherent in
having experience concentrated in a few skilled employees.

Knowledge can be formalised into guidelines and models, or
may be embodied in the skills of the personnel involved. The latter is as
much an asset as a company's software systems, built using such
knowledge, but harder to turn into an asset that can effectively be shared
and retained.

Organisations have created systems to support knowledge and
experience sharing e.g. knowledge and experience databases, with

Maintenance Process Models 89

varying degrees of success. Conradi et al [67] suggest that software
experience base is a more useful term than database, to avoid
inappropriate comparison with the traditional database management
systems. They propose four factors required for successful
implementation of a software experience base:

1. Cultural change - people must become comfortable with sharing
knowledge and using others' knowledge and experience, in order that
the software experience base is active and used.

2. Stability - an unstable business environment will not be conducive to
the development of a culture or a system for knowledge and
experience sharing.

3. Business value - in order for any system to be used and useful in
today's business world, it must provide a demonstrable payback.

4. Incremental implementation - implementing a software experience
base in small increments is of use in keeping the process close to the
users and, with effective feedback, prevents the software experience
base becoming a remote and irrelevant entity.

5.8 Summary
The key points that have been covered in this chapter are:

 The software life cycle is the cyclic series of phases through which a
software system goes during its development and use. A process is a
single series of such phases.

 A process model abstracts the confusing plethora of detail from the
process of software evolution and allows us to understand it.

 Traditional life-cycle models fail to take account of the evolutionary
nature of software systems.

 There are major differences between new development and
maintenance although they have many specific phases in common.
Maintenance-conscious models can be built from traditional models
by catering for the evolutionary tendency of the software.

 There are many different maintenance models. Three representative
ones are quick-fix which is an ad hoc, fire-fighting approach;
iterative enhancement which is based on the iterative nature of

90 Software Maintenance: Concepts and Practice

change to a system; and reuse-oriented which sees maintenance as an
activity involving the reuse of program components. The most
pragmatic approach is given by Osborne's model.

 Models differ in bias: some are oriented towards economic aspects,
some towards products and some towards processes.

 All models have strengths and weaknesses. No one model is
appropriate in all situations and often a combination of models is the
best solution.

 By improving the maturity of their software processes, software
developers and maintainers move from as-hoc, ill-defined processes
where success is largely a matter of chance, to a situation of
predictable and repeatable project outcomes and continual
improvement.

This part of the book has put maintenance activities into context
and looked at how the maintenance process is modelled. The next stage
is to look at what actually happens during maintenance.

PART II: What Takes Place Durin g Maintenanc e

Overview
This section of the book aims to overview the means by which software
is changed in practice.

The actual process of making a change is a complex business
and even the simplest changes go through defined stages as they are
brought about. Essentially, the following steps will be carried out:

 The maintenance programmer gains an understanding of the current
system and the context within which it operates.

 The change is carried out

 The new version is tested and then goes live.

The above steps involve significant software engineering and
programming skills, but one very important stage has been omitted - that
of initially identifying and agreeing the need for change. This, though
requiring an appreciation of software engineering, is a managerial
decision, based on knowledge of the overall context within which the
proposed change is to be made. The first stage above, that of
understanding the current system, affects management decisions on
software change and the means by which that change is carried out.
Thus,

 the identification of the need for change and agreement to its being
carried out

91

92 Software Maintenance: Concepts and Practice

is also a stage in the process.

Each of the above steps covers significant effort within the
maintenance lifecycle. This section of the book looks in detail at these
stages.

 Understanding the Current System

Understanding is a vital precursor to implementing change. Without an
understanding of what the current system does, it is impossible to
safeguard against undesirable ripple effects and unintended
modifications. Programme comprehension, in essence breaks down into
what, where and how.

 What does the software system actually do?

 Where does the change need to be made?

 How do the relevant parts of the software work?

There are many different aspects to be understood, and in order
to be successful in carrying out a change, it is necessary to appreciate
different people's comprehension needs. In large complex systems, it
would be neither feasible nor desirable to understand every aspect. The
skill is to recognise which aspects must be understood.

The process of understanding can itself be modelled, and there
are strategies to aid the maintenance programmer. Many factors relevant
to software, to the environment or to the maintenance personnel, affect
understanding.

 Carryin g Out the Change

Changing the software itself can be done in many ways. We saw in the
chapter on process models, that the way change is effected can be fairly
simplistic (cf. Quick-fix model) or very sophisticated (cf. Osborne's
model). The simplistic methods have a "feel" of being faster - the
programmer can "get down to coding" more quickly. However, the price
for this is almost always a more expensive, less effective end result that
takes as long, if not longer, to implement.

A common precursor to carrying out a modification is reverse
engineering. This essentially is taking the programme apart to see how it
works, and has the feel of a backward step. However, the advantages
gained in programme understanding allow for far more effective

What Takes Place During Maintenance 93

implementation of the steps that build the system back up again e.g.
forward engineering, restructuring and re-engineering. An advantage of
sound understanding is the potential for reuse of components.

Forward engineering refers to the traditional software
development approach, building a system starting with requirements
analysis going on to design and then implementation. Forward
engineering a modification into an existing system is a very different
matter from forward engineering on a green field site. An added stage
e.g. of reverse engineering is often a vital precursor.

Restructuring is often required in maintenance. Systems lose
structure (as stated in Lehman's second law). Restructuring is a means of
restoring order and creating a more maintainable system. It involves
changing the abstract representation of the system from one form to
another without changing the functionality.

Reengineering is the means by which a system is enhanced using
first reverse engineering to aid comprehension and allows an element of
restructuring, then forward engineering to produce the new enhanced
system.

Vast resources in many industries are wasted on reinventing the
wheel. This is more of a problem the less mature a discipline is. The
software industry is young compared with many other engineering
disciplines, and the nature of software is such that it does not necessarily
lend itself to the reuse of components. Nonetheless, reuse is an obvious
route to increased effectiveness and is now a major factor at the leading
edge of software development and maintenance.

 Testing

Systems are tested before they are released in order to ease the process of
live implementation as much as possible. Testing can be ad hoc or very
sophisticated. Issues such as how catastrophic a software failure would
be, or where and when a failure might occur, drive the testing process.
For example, in a games programme, a software error could become a
feature. Those who discover it, exploit the bug to gain advantage in the
game. It becomes talked about in games literature. It becomes an integral
part of the software. In a railway signalling system however, or an air
traffic control system, a software error could be life threatening.

94 Software Maintenance: Concepts and Practice

 Identifyin g the Need for Change

Identifying the need for a change can be a trivial task e.g. "when I click
on the button labelled blue background the background becomes red, and
when I click on the button labelled red background the background
becomes blue." It is easy to identify here that a change is needed. Indeed,
one can predict with reasonable certainty what the problem is and how to
solve it.

However, this is a different matter from actually agreeing that
the change should be made. What if we are dealing with very old source
code in the current system? The link between 'red source' and the 'blue
button' may not be the straightforward link it might be in modern code.
Maybe 'blue' and 'red' within the source code are hard to identify (a
likely cause of the original error). The relevant code may not be self-
contained in modules or procedures. There may be far-reaching ripple
effects. Maybe we have a programmer who has spent some time studying
the problem, and can say, 'No, it isn't a trivial matter but yes, it can now
be solved.'

Does this mean the change can go ahead? Not necessarily. This
is old software that has been in use a long time. There is a big user base
out there that is accustomed to this peculiarity. Suppose there are no
plans to extend the user base until a fully updated version is available in
a few months' time. Correcting the error may serve only to confuse the
current users. It may be deemed more effective to distribute an
addendum to the user guide to explain this quirk.

This is a simple example, but illustrates the point that agreeing a
change is not a decision to be taken lightly.

Discussion Points
These points are intended to stimulate thinking and discussion on
fundamental issues in software maintenance. The issues raised are
explored in the chapters of this section, but it is a beneficial to think
around these areas and try to draw conclusions yourself, before looking
for answers in the text.

 Program Understanding

At the start of the year, Programmer A has a small software system that
he has developed himself. He understands what it does, how it does it

What Takes Place During Maintenance 95

and why it operates the way it does. Two years later, the system is a large
one with far more functionality. Programmer A no longer has as in-depth
understanding of what it does, why or how.

Chart the specific milestones in Programmer A's loss of
understanding. What happens to make him lose touch with his software?
What are the significant factors that have led from almost perfect
understanding to very poor understanding?

 Effecting Change

Programmer A is an experienced programmer who has been working on
a particular system for a long time. Programmer B has the same skills
and level of experience but is new to this system. Would use of the
Quick-Fix model to address a software problem be any safer, more
effective or less prone to long-term problems if done by Programmer A
rather than Programmer B?

 Testing

Question: Why do we test software?

Answer: To see if it works.

Discuss why this answer is deficient in terms of why it misses
the point of the question. In thinking about this, consider the following
exchange and look for points of comparison:

Question: Why did you drive across town today?

Answer: To look at the opening hours notice on the shop, to see
if it will be open on the 3rd Saturday in June next year.

 Management

You are the managing director of a software firm. One of the systems
you support needs a major upgrade. You intend to put Team A on this as
they are an experienced group already familiar with the system. You
have another contract on a system that is new to your firm. The deadlines
on this are less critical and it is a less complex piece of software. You
intend employing a new team to deal with this, intending to train them up
as they carry out the work.

Team A now puts a spanner in the works. They say they do not
want to work on the major upgrade. They are bored with the system.
They want to widen their experience. They are prepared to take on the

96 Software Maintenance: Concepts and Practice

new system, but want no responsibility for the old. If assigned to the
major upgrade as originally planned, they will leave and work elsewhere.

Team A on the new system will be more expensive than the less
experienced team. If Team A is switched to this project, you will have to
employ a new team to work on the major upgrade, but because of the
complexity and deadlines, you will not be able to employ an
inexperienced team to train up. Your options are:-

 Team A on the new project, a new experienced team on the major
upgrade,

 A new trainee team on the new project, a new experienced team on
the major upgrade.

Discuss the pros and cons of these options.

6

Progra m Understandin g

"Programmers have become part historian, part detective and
part clairvoyant"

Corbi ([69], p. 295)

This chapter aims to

1. Explain the role of program understanding in maintenance
activities.

2. Discuss the aims of program understanding.

3. Explain the comprehension needs of members of a maintenance
project.

4. Discuss comprehension process models and their application to
maintenance tasks.

5. Discuss the role of the mental model in understanding programs.

6. Discuss the different comprehension strategies and explain the
differences.

7. Discuss the effect of each strategy on various aspects of
maintenance activities.

8. Discuss the factors that impact on source code understanding.

9. Give a foundation for the selection of suitable tools, techniques
and methods.

97

98 Software Maintenance: Concepts and Practice

6.1 Introduction
Part I discussed the types of change to which a software system can be
subjected: corrective (due to defects); adaptive (due to changes in its
environment); perfective (to accommodate new requirements); and
preventive (to facilitate future maintenance work). It also looked at the
framework within which change may be implemented effectively.
However, an area not yet touched upon, but which is fundamental to an
effective change process, is understanding. Prior to implementing any
change, it is essential to understand the software product as a whole and
the programs affected by the change in particular [49, 69, 276, 220].
During maintenance, this involves:

 having a general knowledge of what the software system does and
how it relates to its environment;

 identifying where in the system changes are to be effected; and

 having an in-depth knowledge of how the parts to be corrected or
modified work.

Program understanding consumes a significant proportion of
maintenance effort and resources. At Hewlett Packard it was estimated
that reading code (a fundamental element in comprehension) costs $200
million a year [212]. Data from industry and other sources also indicates
that about half of the total effort expended on effecting change is used up
in understanding programs [69, 214]. This expenditure tends to increase
in the event of a programmer maintaining programs written by someone
else, of inaccurate, out-of-date or even non-existent system
documentation, or of deterioration in program structure due to several
years of ad hoc quick fixes. Unfortunately, these problems are all too
familiar to maintenance personnel [76, 212].

This chapter considers the issues that underpin program
understanding during maintenance.

6.2 Definitions
Bottom-up - working from the detail to the general overview - starting
with small detailed constituents and building them up into larger aspects.

Cause-effect relation - This is the causal relation between a
consequence and those parts of the program that brought it about [246].

Program Understanding 99

Chunking - The process of putting together small units of information
(such as program statements) into larger units (such as procedures) [194].
Each of these information units is known as a chunk.

Cognitive process - how the knowledge is manipulated in human
memory during the formation and use of mental models.

Cognitive structur e - the way in which knowledge is stored in human
memory.

Comprehension - understanding, the capacity to understand general
relations of particulars.

Decision-support feature - An attribute of a software product that can
guide maintenance personnel in technical and management decision
making processes.

Execution effect - The behaviour of the system when it is run.

Functional requirements - statements of the services that a system
should provide.

Mental model - an abstract representation of an entity.

Non-functional requirements - constraints on the services and
functions offered by a system.

Opportunisti c - taking advantage of favourable circumstances as they
arise.

Problem domain - The problem is the task being performed by the
software and the problem domain is the area to which the task belongs.

Product-environment relation - This is the connection between the
whole system and elements of the sphere within which it operates.

Top-down - working from the general to the specific - starting with
large general aspects and breaking them down into smaller more detailed
constituents.

Vocabulary problem - The difficulties that arise from the use of
identifier names that fail to convey the intended meaning [103].

100 Software Maintenance: Concepts and Practice

6.3 Aims of Program Comprehension
The ultimate purpose of reading and comprehending programs is to be
able successfully to implement requested changes. This entails acquiring
information about certain aspects of the software system such as the
problem domain, execution effect, cause-effect relation, product-
environment relation and decision-support features of the software
(Table 6.1).

Table 6.1 Features of a software product and their importance to understanding

Knowledge Importance

1. Problem domain To assist in the estimation of resources

 To guide the choice of suitable algorithms,
methodologies, tools and personnel

2. Execution effect To determine whether or not a change did achieve the
desired effect

3. Cause-effect relation . j 0 establish the scope of a change, to predict potential
ripple effects and to trace data flow and control flow

Product- . j 0 a s c e rt a j n n ow changes in the product's environment
environment relation a f f e ct t he p r o d u ct a nd i t s u n d e r | v j n g programs

5. Decision-support To support technical and management decision-making
features processes

6.3.1 Problem Domain

Being able to capture domain knowledge is now considered a far more
important area than it used to be [27], This is partly because of the
proliferation of computers in a wider spectrum of specialist problem
areas - for example, specialist clinical environments.

In large software systems, for example in domains such as health
care, telecommunications and finance, problems are usually broken down
into manageable sub-problems or smaller elements, each of which is
handled by a different program unit such as a module, procedure or
function. A compiler, for example, consists of elements such as a parser;
lexical analyser and code generator, each of which can be decomposed
into even smaller components. In order to effect change or simply to
estimate the resource required for a maintenance task, knowledge of the

Program Understanding 101

problem domain in general and the sub-problems in particular is essential
so as to direct maintenance personnel in the choice of suitable
algorithms, methodologies and tools. The selection of personnel with the
appropriate level of expertise and skills is another aspect. Information
can be obtained from various sources - the system documentation, end-
users, or the program source code.

6.3.2 Execution Effect

At a high level of abstraction, the maintenance personnel need to know
(or be able to predict) what results the program wil l produce for a given
input without necessarily knowing which program units contributed to
the overall result or how the result was accomplished. At a low level of
abstraction, they need to know the results that individual program units
wil l produce on execution. Knowledge of data flow, control flow and
algorithmic patterns can facilitate the accomplishment of these goals. For
example, a specialist compiler programmer may want to know, at a
higher level of abstraction, the output from a complete compilation
process, and at a lower level, the output from the parser. During
maintenance, this information can assist the maintenance personnel to
determine whether an implemented change achieved the desired effect.

6.3.3 Cause-Effect Relation

In large and complex programs, knowledge of this relation is important
in a number of ways.

 It allows the maintenance personnel to reason about how components
of a software product interact during execution.

 It enables a programmer to predict the scope of a change and any
knock-on effect that may arise from the change.

 The cause-effect relation can be used to trace the flow of information
through the program. The point in the program where there is an
unusual interruption of this flow may signal the source of a bug.

For example, in Figure 6.17 it is important for the programmer to
know that Segment A accepts input characters and stacks them, and that
Segment B unstacks these characters. As such, if the data structure is

This simple example is used only to illustrate the underlying principles and is by no means
representative of typical maintenance problems.

102 Software Maintenance: Concepts and Practice

changed from Stack to Queue, the cause-effect relation will be used to
identify the areas of StringReversing affected by this change.

MODULE StringReversing:
FROM InOut IMPORT WriteString, Write, Read, EOL,

WriteLn;
FROM StacksLibrary IMPORT StackType, Create, IsEmpty,

Pop, Push;

VAR
Stack: StackType;
Char, Response: CHAR;

BEGIN
REPEAT

Create (Stack);
WriteString ("Enter string to be reversed");
WriteLn;

Read (Char); Segment A
WHILE Char # EOL DO 4

Push (Stack, Char);
Read (Char);

END (* While *)
WriteLn;

WriteString ("Reversed string is: ");

WHILE NOT IsEmpty (Stack) DO Segment B
Pop (Stack, Char); 4
Write (Char);

END (* While *)
WriteLn;

WriteString ("Process another string (Y or N)? ");
Read (Response);

UNTIL CAP (Response) # 'Y'
END StringReversing.

Figure 6.1 A string reversing program

Program Understanding 103

6.3.4 Product-Environment Relation

A product is a software system. An environment is the totality of all
conditions and influences which act from outside upon the product, for
example business rules, government regulations, work patterns, software
and hardware operating platforms. It is essential for the maintenance
personnel to know not only the nature but the extent of the relation. This
knowledge can be used to predict how changes in these elements wil l
affect the product in general and the underlying programs in particular.

6.3.5 Decision-Support Features

Software product attributes such as complexity and maintainability are
examples that can guide maintenance personnel in technical and
management decision-making processes like option analysis, decision-
making, budgeting and resource allocation. Measures of the complexity
of the system (measured by using, say, McCabe's metric [190]) can be
used to determine which components of the system require more
resource for testing. The maintainability of the system (measured by
using, say, Gilb's approach [109]) may be used as an indicator of its
quality.

Reverse engineering can be used to study the system to be
understood in order to extract these kinds of information. Chikofsky and
Cross define reverse engineering as the 'process of analysing a subject
system to identify the system's components and their interrelationships
and create representations of the system in another form or a higher level
of abstraction' [60 p. 15]. A detailed discussion of the issues of reverse
engineering will be presented in the next chapter.

There are many factors that affect the extent to which
maintenance personnel can acquire the above categories of knowledge
about a system. These include comprehension strategies, domain
expertise, quality of documentation, presentation and organisation,
programming practice and implementation issues, and support tools, all
of which are discussed later in this chapter.

6.4 Maintainers and Their Information Needs
It is not essential that every member of a maintenance project team
understands every aspect of the system being maintained. The process of
understanding is driven by the need to know. Members of the

104 Software Maintenance: Concepts and Practice

maintenance team - managers, analysts, designers and programmers - all
have different comprehension or information needs depending on the
level at which they function [277].

6.4.1 Managers

Considering that one of the responsibilities of management is making
decisions, managers need to have decision-support knowledge in order to
make informed decisions. The level of understanding required will
depend on the decision to be taken. For example, to be able to estimate
the cost and duration of a major enhancement, knowledge of the size of
the programs (in terms of lines of code or function points) is required.
This estimate can then be used to determine whether or not it is more
economical to replace the system with a vendor system. Managers do not
necessarily have to know the architectural design of the system or the
low-level program implementation details in order to carry out their
duties. As Weinberg puts it,

"Nobody can seriously have believed that executives could read
programs"

Weinberg ([284], p.5).

6.4.2 Analysts

During software development the analyst requires an understanding of
the problem domain (for example, finance or health care) [220] in order
to undertake tasks such as determining the functional and non-functional
requirements, and to establish the relationship between the system and
the elements of its environment. During maintenance, the analysts would
be concerned with knowing how changes in this environment (for
example, new government regulations or a new operating system) would
affect the system. Thus, prior to implementing the change, the analyst
needs to have a global view of the system, that is, a general picture of the
interaction between the major functional units. The analyst is also
required to determine the implications of change on the performance of a
system.

Like managers, analysts do not need the local view - a picture of
localised parts of the system and how they are implemented. The use of
physical models such as context diagrams can be employed to represent
the main components of the system and how they relate to the system's

Program Understanding 105

environment, thereby assisting the analyst to gain a good understanding
of the system without being distracted by low-level design or coding
details.

6.4.3 Designers

The design process of a software system can take place at two levels:
architectural and detailed design [93]. Architectura l design results in
the production of functional components, conceptual data structures and
the interconnection between various components. Detailed design results
in the detailed algorithms, data representations, data structures and
interfaces between procedures or routines. During maintenance, the
designer's job is to:

 extract this information and determine how enhancements could be
accommodated by the architecture, data structures, data flow and
control flow of the existing system;

 go through the existing source code to get a rough idea of the size of
the job, the areas of the system that will be affected, and the
knowledge and skills that will be needed by the programming team
that does the job [69].

The use of concepts such as information hiding, modular
program decomposition, data abstraction, object orientation, and good
design notations such as data flow diagrams, control flow diagrams,
structure charts and hierarchy process input/output (HIPO) charts can
help the designer obtain a good understanding of the system before
designing changes.

6.4.4 Programmers

Maintenance programmers are required to know the execution effect of
the system at different levels of abstraction, the causal knowledge and
knowledge of the product-environment relation. At a higher level of
abstraction (for instance, at the systems level), the programmer needs to
know the function of individual components of the system and their
causal relation. At a lower level of abstraction (for example, individual
procedures or modules), the programmer needs to understand 'what each
program statement does, the execution sequence (control flow), the
transformational effects on the data objects (data flow), and the purpose
of a set of program statements (functions)' [220 p.54].

106 Software Maintenance: Concepts and Practice

This information will assist the programmer in a number of
ways:

1. To decide on whether to restructure or rewrite specific code
segments;

2. To predict more easily any knock-on effect when making changes
that are likely to affect other parts of the system;

3. To hypothesise the location and causes of error;

4. To determine the feasibility of proposed changes and notify
management of any anticipated problems.

The use of tools such as static analysers, ripple effect analysers,
cross-referencers and program slicers can facilitate the programmer's
task. In addition to the use of these tools, experience within the given
problem area, the programming task [111] and the programming
language used will determine the speed and efficiency with which the
program can be understood.

Although in principle, it is possible to categorise the roles of
maintenance personnel, in practice the divisions are not clear cut. The
responsibilities wil l depend on factors such as the organisation of
maintenance work (see chapter 10) and on the size of the maintenance
team. In situations where a few individuals are assigned to maintenance
tasks, they tend to perform the duties of the analyst, designer and
programmer although not necessarily simultaneously. As such, they
would need to understand not just low-level implementation issues such
as the control flow, data flow, data structures and algorithmic aspects of
the system but would be expected also to understand the architectural
design of the system and be aware of any other issues that may be
required for successful maintenance and evolution.

In larger companies, which can have 500 to 1000 maintenance
personnel (sometimes in different geographical locations), there tend to
be well-defined roles for maintainers depending on the organisational
mode being used (see Chapter 10). Whatever approach is chosen to
organise personnel and maintenance tasks, it is essential to have in place
a mechanism that enables them to communicate.

Exercise 6.1 What do you aim to achieve when attempting to
understand a program?

Program Understanding 107

Exercise 6.2 Why is it important to understand programs?

Exercise 6.3 Suppose that as a programmer, you are asked to: (i)
provide a message handling facility for an operational
Management Information System (MIS); and (ii)
integrate the MIS into other office automation
packages. What information about the MIS would you
need, to be able to effect these changes? Indicate your
reasoning.

6.5 Comprehension Process Models
Programmers vary in their ways of thinking, solving problems and
choosing techniques and tools. Generally, however, the three actions
involved in the understanding of a program are: reading abo"ut the
program, reading its source code, and running it [69]. Figure 6.2
overviews these actions with examples.

 Step 1 - Read about the program: At this stage of the process, the
'understander' browses, peruses different sources of information
such as the system documentation - specification and design
documents - to develop an overview or overall understanding of the
system. Documentation aids such as structure charts and data and
control flow diagrams can be used. In many large, complex and old
systems (developed prior to the advent of good documentation tools,
techniques and practice), this phase may be omitted if the system
documentation is inaccurate, out of date or non-existent.

 Step 2 - Read the source code: During this stage, the global and local
views of the program can be obtained. The global view is used to
gain a top-level understanding of the system and also to determine
the scope of any knock-on effect a change might have on other parts
of the system. The local view allows programmers to focus their
attention on a specific part of the system. With this view, information
about the system's structure, data types and algorithmic patterns is
obtained. Tools such as static analysers - used to examine source
code - are employed during this phase. They produce cross-reference
lists, which indicate where different identifiers - functions,
procedures, variables and constants - have been used (or called) in
the program. That way, they can highlight abnormalities in the
program and hence enable the programmer to detect errors. Bearing

108 Software Maintenance: Concepts and Practice

in mind that the system documentation may not be reliable, reading
program source code is usually the principal way of obtaining
information about a software product.

 Step 3-Run the program: The aim of this step is to study the dynamic
behaviour of the program in action, including for example, executing
the program and obtaining trace data. The benefit of running the
program is that it can reveal some characteristics of the system which
are difficult to obtain by just reading the source code.

The details of techniques and tools to support the various phases
of the comprehension process are considered in section 6.7. In practice,
the process of understanding a program does not usually take place in
such an organised manner. There tend to be iterations of the actions and
backtracking (indicated by broken lines in Figure 6.2) to clarify doubts
and to obtain more information.

Read about the
program

Read the
source code

V
Run the
program

Read data flow
diagrams

Read definition and
implementation
modules

Get trace data
Dynamic analysis

Figure 6.2 A comprehension process model

It is generally assumed that as maintainers go through the steps
outlined above (regardless of the order) in an attempt to understand the
program8 they form a mental model - internal representation - of the
program [145].

Comprehension in a software maintenance sense involves acquisition of knowledge about
programs, as well as accompanying documentation and operating procedures, but we shall

Program Understanding 109

Exercise 6.4 How is the comprehension process model in Figure 6.2
different from, or similar to, the one that you tend to
use? Indicate your reasons.

6.6 Mental Models
Our understanding of a phenomenon depends to some extent on our
ability to form a mental representation, which serves as a working model
of the phenomenon to be understood [145].

The phenomenon (how a television set works, the behaviour of
liquids, an algorithm) is known as the target system, and its mental
representation is called a mental model. For example, if you understand
how a television works, then you have a mental model which represents
this and, based on that model, you can predict behaviour such as what
wil l happen when the television set is turned on or when a different
channel is selected. Using the model you can also explain certain
observations such as the occurrence of a distorted image. The
completeness and accuracy of the model depends to a large extent on its
users' information needs. In the case of the television set, an ordinary
user - who uses it solely for entertainment - does not have to understand
the internal composition of the cathode ray tube and circuits and how
they work, in order to be able to use it. A technician, however, who
services the set in the event of breakdown needs a deeper understanding
of how the set works and thus requires a more elaborate and accurate
mental model.

The content and formation of mental models hinges on cognitive
structures and cognitive processes. The mental model is formed after
observation, inference or interaction with the target system. It changes
continuously as more information about the target system is acquired. Its
completeness and correctness can be influenced by factors such as the
user's previous experience with similar systems and technical
background [145, 177]. The mental model may contain insufficient,
contradictory or unnecessary information about the target system.
Although it is not necessary for this model to be complete, it has to
convey key information about the target system. For example, if it

concentrate here on the issues of understanding programs. The underlying principles, however, can
also be applied to documentation.

110 Software Maintenance: Concepts and Practice

models a piece of software, it should at least embody the functionality of
the software.

Research in the area of programmers' cognitive behaviour during
maintenance suggests that there are variations in the strategies that
programmers use to understand (or form mental models of) programs.
That is, the cognitive structures and cognitive processes differ.

6.7 Program Comprehension Strategies
Table 6.2 Program comprehension strategies and their differences

Features

Model Tenet of the model Cognitive process Cognitive structure

Top-down Program understanding Top-down reconstruction Problem and
is mapping from how the of knowledge domains programming domain
program works and their mappings knowledge
(programming domain)
to what is to be done Reconstruction based on Potential intermediate
(problem domain) hypotheses creation, domain knowledge

confirmation and
refinement cycle M u l t l Pl e l aye rs o f d o m a ln

knowledge

Bottom-up Recognition of recurring Bottom-up chunking of Mapping between
patterns in program code recognised patterns to knowledge domains

produce high-level
semantic structures Hierarchical multi-layered

arrangement of patterns

Opportunistic C o m b i n a t i on o f b o th Top-down and bottom-
PP top-down and bottom-up u p c u es a re e x p l o i t ed as Similar to top-down and

strategies (n ey | ,e c o r ne available bottom-up representations
depending on the level of

An assimilation process abstraction
is used to obtain
information from source
code and system
documentation

A program comprehension strategy is a technique used to form a mental
model of the target program. The mental model is constructed by
combining information contained in the source code and documentation
with the assistance of the expertise and domain knowledge that the
programmer brings to the task. A number of descriptive models of how
programmers go about understanding programs have been proposed
based on the results of empirical studies of programmers. Examples of

Program Understanding 111

these models include top-down [48, 130], bottom-up [251, 250] and
opportunistic models [130, 220] (Table 6.2).

6.7.1 Top-Down Model
The tenet of this model is that an understander starts by comprehending
the top-level details of a program, such as what it does when it executes,
and gradually works towards understanding the low-level details such as
data types, control and data flows and algorithmic patterns in a top-down
fashion. An example of a top-down comprehension model is that
proposed by Brooks [48]. The key features of Brooks' model are:

 It views the structure of the knowledge being understood as
organised into distinct domains linking the problem domain
(represented by the functionality of the system) and the programming
domain (represented by the program);

 Program comprehension involves reconstructing knowledge about
these domains and the relationship between them. The reconstruction
process is top-down, involving creation, confirmation and refinement
of hypotheses on what a program does and how it works.

The cognitive structure and cognitive process of a mental model
resulting from a top-down strategy can be explained in terms of a design
metaphor. Software development in its entirety can be considered to be a
design task which consists of two fundamental processes - composition
and comprehension [220]. Composition represents production of a
design and comprehension is understanding that design. Composition
entails mapping what the program does in the problem domain, into a
collection of computer instructions of how it works in the programming
domain, using a programming language. Figure 6.3 shows examples of
knowledge domains that can be encountered during this process and how
they are linked.

Comprehension is the reverse of composition. It is a
transformation from the programming domain to the problem domain
involving the reconstruction of knowledge about these domains
(including any intermediate domains) and the relationship between them.
The reconstruction process is concerned with the creation, confirmation
and successive refinement of hypotheses. It commences with the in-
ception of a vague and general hypothesis, known as the primar y

112 Software Maintenance: Concepts and Practice

hypothesis. This is then confirmed9 and further refined on acquisition of
more information about the system from the program text and other
sources such as the system documentation.

DEVELOPMEN T KNOWLEDG E BASIC PROCESSES
SUBTASKS DOMAIN S

{ Problem domain knowledge
(e.g. operating systems)

C

Requirements | Functional requirements C ~°
specification J Non-functional requirements O ^

I " * pM R
O E

{ Design strategies S

Architectural / detailed design I E

Design language T N

- - - - I, '
- » N

Programming language

{ Programming conventions
Data structures / data flow
Algorithms 1 f

Control flow

Figure 6.3 Knowledge domains encountered during comprehension

The primary hypothesis is usually generated as soon as the
programmer encounters information concerning any aspect of the
program, for instance a module name. Thus, the mental model of the
program begins to be constructed at the outset, even before the
programmer becomes aware of low-level semantic and syntactic details
of the program.

a

If the hypothesis is wrong it will be rejected.

Analysis

Design

Coding

I
T
I

H
E
N
S

Architectural/detailed design.
Design language

mming
Programming conventions

Program Understanding 113

The information required for hypothesis generation and
refinement is manifested in key features - internal and external to the
program - known as beacons which serve as typical indicators of the
presence of a particular structure or operation [48]. Some examples of
beacons are given in Table 6.3. The use of this approach to understand a
program is reminiscent of skimming a piece of text to obtain a general,
high-level understanding [288], and then rereading the text in detail to
gain a deeper understanding.

Table 6.3 Program beacons (adapted from [48], p55)

No Indicator

Internal to the program text

1. Prologue comments, including data and variable dictionaries

2. Variable, structure, procedure and label names

3. Declarations or data divisions

4. Interline comments

5. Indentation or pretty-printing

6. Subroutine or module structure

7. I/O formats, headers, and device or channel assignments

External to the program

1. Users' manuals

2. Program logic manuals

3. Flowcharts

4. Cross-reference listings

5. Published descriptions of algorithms or techniques

6.7.2 Bottom-Up I Chunking Model
Using this strategy, the programmer successively recognises patterns in
the program. These are iteratively grouped into high-level, semantically
more meaningful structures [18, 219, 250], The high-level structures are
then chunked together into even bigger structures in a repetitive bottom-
up fashion until the program is understood. See Figure 6.4 for a
diagrammatic representation of the bottom-up model.

114 Software Maintenance: Concepts and Practice

The chunking process tends to be faster for more experienced
programmers than novices because they recognise patterns more quickly.
For example, the following program statements:

MaxValue := Table [1] ;
FOR Index := 2 TO 100 DO

IF Table [Index] > MaxValue THEN
MaxValue := Table[Index];

END;
END;

would be grouped by an experienced programmer into a chunk
'find maximum element in array'.

High-order Chunks

\

High-level semantic structures / k \.

(e.g. procedures, functions, modules etc.) /
\ /

\ low-level semantic /
\ structures (e.g. /

\ statements) / Direction of
\ / comprehension

Low-order Chunks

Figure 6.4 Bottom-up comprehension process

The main weaknesses of both the top-down and bottom-up
comprehension strategies are:

 failure to take into consideration the contribution that other factors
such as the available support tools make to understanding; and

 the fact that the process of understanding a program rarely takes
place in such a well-defined fashion as these models portray. On the
contrary, programmers tend to take advantage of any clues they
come across in an opportunistic way.

(e.g. procedures, function, modules etc.)

Program Understanding 115

6.7.3 Opportunistic Model

When using this model the understander makes use of both bottom-up
and top-down strategies, although not simultaneously.

"... the human understander is best viewed as an opportunistic
processor capable of exploiting both bottom-up and top-down cues as

they become available "

Letovsky ([175], pp.69-70) [our emphasis]

According to this model, comprehension hinges on three key and
complementary features - a knowledge base, a mental model and an
assimilation process:

 A knowledge base: This represents the expertise and background
knowledge that the maintainer brings to the understanding task.

 A mental model: This expresses the programmer's current
understanding of the target program.

 An assimilation process: This describes the procedure used to obtain
information from various sources such as source code and system
documentation.

When maintainers need to understand a piece of program, the
assimilation process enables them to obtain information about the
system. This information then triggers the invocation of appropriate
plans10 from the knowledge base to enable them to form a mental model
of the program to be understood. As discussed earlier, the mental model
changes continuously as more information is obtained.

6.8 Reading Techniques
Reading techniques are instructions given to the software maintainer on
how to read and what to look for in a software product.

Reading is key in both understanding and constructing software.
Basili [21] has conducted experiments aimed specifically at increasing
our understanding of how to aid the reading process.

Plans (or schemas) are knowledge structures representing generic concepts stored in memory [80]
and there exist schemas for different problem and programming domains. They have 'slot-types'
(equivalent to variables) that can be instantiated with 'slot-fillers' (equivalent to values). An example
of a slot-type is a data structure such as a stack, and the slot-filler is any feature in a program which
indicates the use of a stack, for instance an operation to 'push' or 'pop' an item.

116 Software Maintenance: Concepts and Practice

An issue in developing effective reading techniques, is focussing
on the specific context. What is the purpose of this reading exercise? Is it
to find errors, or to analyse for specific characteristics? Or is it to allow
sufficient understanding to be able to use one element of a system in a
different system? Experiments have shown that if the reading technique
is focussed on the goal, it is more effective in achieving that goal. On the
other hand, the focussed approach needs to be taught and learnt, which
implies an overhead, and it also may be slower. Later studies [252]
confirm what one would intuitively expect - greater effectiveness comes
from suiting the specific method to the particular context.

The motivation to study and understand reading techniques is to
develop defined and effective processes that can be taught, rather than
relying upon the traditional, ad hoc approaches, where effectiveness
relies upon the experience of the software maintainer and the ad hoc,
personalised techniques he or she develops over the years.

Exercise 6.5 List the different types of program understanding
strategies and distinguish between them.

Exercise 6.6 Which of these strategies do you use and under what
circumstances?

6.9 Factors that Affect Understanding
A number of factors can affect not only the formation of mental models
of a program, but also their accuracy, correctness and completeness and
hence the ease with which a program can be understood. These factors
include: expertise; programming practice and implementation issues;
documentation; program organisation and presentation; support tools and
evolving requirements. A summary of these factors is given in Figure
6.5.

Program Understanding 117

Factors Elements Remark

Problem » Depends on
I * prior knowledge

Application | * systems documentation
u ~ knowledge l \~ I U * interviews / discussions

M \ J System I How il relates t0 the

application
P , ,

Decomposition Hierarchical and
R | modular

E / I Modularity I ̂ c o uPl i n S' h iSh
^ / , [cohesion

H Programming / Information Hide away information
E practice/ / / hiding that may change

- Implementation . ' '.
jcciipc V \ I I No unnecessary

N U! ! ! ! ! I V S Algorithms/ c o m p l e x i ty
\ nesting

c \ I I
° \ Define and adhere to

Coding/Identifier in-house standards
naming

° I —ft
I 1 y External Should

N _ Documentation / L * be updated as system changes
^^~~ Internal I * be accurate and concise

| | * adhere to standards

F / Symbology » Should
/ I I * be consistent,

\ I 1 / I ; -i concise, legible &
Organisation/ / Terminology J uniform

c ~ Presentation \ I 1 * facilitate identification
I issues I \ i 1 of chunks & beacons

p Layout * assist invocation of
appropriate plans

O I 1 y Static
Comprehension y analysis tools Reveals structural

R ~ support tools X . I I characteristics of program

g Dynamic Reveals dynamic behaviour
analysis tools of program

Figure 6.S Taxonomy of program comprehension-related factors

Domain

C

118 Software Maintenance: Concepts and Practice

6.9.1 Expertise
Programmers become experts in a particular application domain or with a
particular programming language by virtue of the repertoire of
knowledge and skills they acquire from working in the domain or with
the language. There is a psychological argument that this expertise has a
significant impact on comprehension [99]. Several studies have been
undertaken to investigate the effect of expertise on programmers'
comprehension and performance in programming tasks [5, 244]. In many
of these studies the performance of experts is compared with that of non-
experts (or novices). The expert tends to perform better than the novice.
A number of explanations for this have been offered. For example, Petre
explains that:

"Experts differ from novices in both their breadth and their
organisation of knowledge: experts store information in larger chunks

organised in terms of underlying abstractions. This organisation
apparently facilitates quick recognition of problem types and recall of

associated solution strategies."

Petre ([222], p. 107)

In effect, the more experienced a programmer is with an
application domain or with a programming language, the easier and
quicker it is to understand a program and indeed, the whole software
system.

6.9.2 Implementation Issues

There are several implementation issues that can affect the ease and
extent to which a maintainer understands a program. The inherent
complexity of the original problem being solved by the program is a
factor. At the program level, the naming style, comments, level of nest-
ing, clarity, readability, simplicity, decomposition mechanism,
information hiding and coding standards can affect comprehension.
These have been widely covered elsewhere (for example, [188, 250]).
Here, we provide a survey of a few of them - naming style, comments,
and decomposition mechanism.

6.9.2.1 Namin g Styl e

Identifiers are symbols that are used in a program to denote the
names of entities such as modules, procedures, functions, types,

Program Understanding 119

constants and variables. There is a psychological argument that because
identifier names indicate the presence of a particular structure or
operation, they serve as beacons for comprehension [29]. That is,
meaningful identifier names can provide clues that assist programmers to
invoke appropriate plans during understanding.

Empirical evidence for the effect of identifier names on
understanding, however, seems to be sparse and in some cases results
from studies have been inconclusive [247, 250]. For example, in an
experimental study carried out to investigate the effect of naming style
on comprehension for novices and experts, identifier names were found
to affect the comprehension of high-level procedural language programs
by novices but not experts [265]. In another study undertaken to inves-
tigate the presence of beacons in a sort program, only expert
programmers were observed to recall the beacon lines better than the
non-beacon lines [289].

There are a number of possible reasons for this. Firstly, some of
the variables being tested for significance only affect certain activity
components - debugging, enhancement, testing, etc. - and their impact on
understanding wil l be significant only in those situations where these
components are important [130], Secondly, their effect may be
neutralised by the 'vocabulary problem' [103].

A := FALSE;
WHILE NOT A DO

IF B.C=B.J THEN
B.E := B.E+D.F;
IFG.EOFTHEN

A:=TRUE
ELSE

ReadBlock (G,D)
END;

ELSE
WriteBlock (H,B);
ReadBlock (I, B)

END;
END;

Figure 6.6 Non-meaningful identifier names can hinder comprehension

Despite the lack of concrete empirical evidence to support the
impact of identifier names on understanding, we can simply by intuition,
appreciate the benefits of using meaningful identifier names. For

120 Software Maintenance: Concepts and Practice

example, the code segment in Figure 6.6 (adapted from [165]) is almost
impossible to understand.

When the same program is written using more meaningful
identifier names (Figure 6.7), it is easier to see that the program is
performing a 'fil e update'. To minimise the impact of the vocabulary
problem, the identifier names should be as informative, concise and
unambiguous as possible.

EndOfUpdate := FALSE;
WHILE NOT EndOfUpdate DO

IF UserRec.ld=UserRec.UpdateNumber THEN
UserRec.Used := UserRec.Used + UpdateRec.ResourcesUsed;

IF UpdateFile.EOF THEN
EndOfUpdate := TRUE

ELSE
ReadBlock (UpdateFile.UpdateRec)

END;
ELSE

WriteBlock (NewUsersFile.UserRec);
ReadBlock (UserFile, UserRec)

END;
END;

Figure 6.7 Facilitating comprehension with meaningful identifier names

6.9.2.2 Comment s

Program comments within and between modules and procedures
usually convey information about the program, such as the functionality,
design decisions, assumptions, declarations, algorithms, nature of input
and output data, and reminder notes. Considering that the program source
code may be the only way of obtaining information about a program, it is
important that programmers should accurately record useful information
about these facets of the program and update them as the system
changes. Common types of comments used are prologue comments and
in-line comments. Prologue comments precede a program or module and
describe goals. In-line comments, within the program code, describe how
these goals are achieved.

The comments provide information that the understander can use
to build a mental representation of the target program. For example, in
Brooks' top-down model (section 6.7.1), comments - which act as
beacons - help the programmer not only to form hypotheses, but to refine

Program Understanding 121

them to closer representations of the program. Thus, theoretically there is
a strong case for commenting programs. The importance of comments is
further strengthened by evidence that the lack of 'good' comments in
programs constitutes one of the main problems that programmers
encounter when maintaining programs [76].

Although from a theoretical standpoint comments impact upon
comprehension, results from empirical studies carried out to investigate
the effect of comments on comprehension remain equivocal [261],
Shneiderman [249] carried out a study to investigate the effect of high-
level (overall description of program) and low-level (description of
individual statements) comments on recall and modification of Fortran
programs. The programs with high-level comments were easier to
modify. Sheppard et al [195] found no such effect on modification of
small programs by professional programmers. As with identifier naming,
the issue is not that comments do not assist comprehension, but as Sheil
explains; these equivocal results may be due to '... both unsophisticated
experimental techniques and a shallow view of the nature of
programming' [247 p.165]. It has to be pointed out that comments in
programs can be useful only if they provide additional information. In
other words, it is the quality of the comment that is important, not its
presence or absence.

6.9.2.3 Decompositio n Mechanis m

One of the key factors that affect comprehension of programs is
their complexity [73]. One way to deal with this complexity and hence
improve comprehensibility depends to some extent on how the entire
software system has been decomposed: the strategy used to reduce the
system into levels that can be easily handled by the human brain.
Modular decomposition and structured programming can be used.

Modular decomposition is a technique for dividing large
software systems into manageable components - called modules - that
can be easily understood. This is especially important during the design
of the system. Modularization should be done around the sources of
change: those areas that tend to change during the lifetime of the system.
That way, when the change takes place, it is localised to a specific
module, thus reducing or eliminating the ripple effect. Psychologists
believe that a modular version of a program is a lot easier to comprehend
using the 'chunking' process than a non-modular program. There is also

122 Software Maintenance: Concepts and Practice

empirical evidence to suggest that modularity reduces the time required
to effect a change [155].

Structured programming is the approach of using high-level
programming languages which aim to reduce the size and complexity of
programs to manageable proportions, hence making them more readable
and more easily understood.

6.9.3 Documentation

As discussed in the preceding sections, before undertaking any software
maintenance work, the maintainer must be able to have access to as
much information about the whole system as possible. The system
documentation can be very useful in this respect [255, 284], more
importantly because it is not always possible to contact the original
authors of the system for information about it [26]. This is partly due to
the high turnover of staff within the software industry: they may move to
other projects or departments, or to a different company altogether. As
such, maintainers need to have access to the system documentation to en-
able them to understand the functionality, design, implementation and
other issues that may be relevant for successful maintenance. Sometimes,
however, the system documentation is inaccurate, out of date or non-
existent. In such cases the maintainers have to resort to documentation
internal to the program source code itself - program comments. The
subject of documentation is explored in detail in chapter 11.

6.9.4 Organisation and Presentation of Programs

The reading of program source code is increasingly being recognised as
an important aspect of maintenance [13, 212], even more so in situations
where the program text is the only source of information about a
software product. In the light of this, programs should be organised and
presented in a manner that will facilitate perusal, browsing, visualisation
and ultimately understanding.

Enhanced program presentation can improve understanding by:

 facilitating a clear and correct expression of the mental model of the
program and the communication of this model to a reader of the
program [13];

Program Understanding 123

 emphasising the control flow the program's hierarchic structure and
the programmer's - logical and syntactic - intent underlying the
structure; and

 visually enhancing the source code through the use of indentation,
spacing, boxing and shading (see Figure 6.8).

A: No blank lines

FOR i:=l TO NumEmployees DO
LowPos:=i
Smallest:=Employees[LowPos]. Employee Age;
FOR j:=i+l TO NumEmployees DO
IF Employee[j].EmployeeAge < Smallest THEN
LowPos:=j;
Smallest:=Employee[j].Employee.Age
END(*IF*)
END(*FORj*)
TempRec:=Employee[LowPos];
Employee[SmallPos]:-Employee[i];
Employee[i]:=TempRec
END (* FOR i *)

B: Blank lines / indentation / boxes / shading

FOR i:=l TO NumEmployees DO
LowPos:=i
Smallest:=Employees[LowPos].EmployeeAge;

FOR j:=i+l TO NumEmployees DO

IF Employee[j].EmployeeAge<Smallest THEN
LowPos:=j;
Smallest:=Employee[j].Employee.Age

END (*IF*)

END(*FORj*)

TempRec:=Employee[LowPos];
Employee[SmallPos]:-Employee[i];
Employee[i] :=TempRec

END (* FOR i *)

Figure 6.8 Blank lines, indentation, boxes and shading to improve program layout

124 Software Maintenance: Concepts and Practice

Indentation is used to emphasise the logical or syntactic relation
between statements (or groups of statements) in a program, for example
the use of indentation to group together statements belonging to a given
control structure. There is some experimental evidence that the use of
two to four spaces to indent program statements is optimal in enhancing
understanding [201].

Spacing, using blank lines and white spaces to separate program
segments or comments, can be done manually or automatically. If done
manually, it is important that standard in-house procedures for program
layout should be drawn up, agreed upon and adhered to by all members
of a project team or organisation. Boxing and shading are employed to
highlight the most salient aspects of a program and to indicate
relationships between semantic and syntactic components of the
program.

In order to reap the benefits of the above layout techniques, there
must be consistency in the conventions and rules used. The use of grey
scale to shade the program should not affect the legibility of the source
text. Automatic program layout tools such as pretty-printers can be used
automatically to enforce consistent program layout.

Theoretically, effective organisation and presentation of source
code should facilitate the identification of beacons, the invocation of
plans and the building of chunks, all of which are central to program
understanding. The use of indentation to emphasise the logical structure
of a program is an example of a 'structure beacon'. When used in this
way, the structure:

 provides clues which programmers use to formulate, confirm and
refine hypotheses during understanding (as seen in Brooks' model);

 provides clues that guide programmers in the invocation of suitable
plans; and

 promotes the formation of a program chunk. The chunk is then
compared with the plans contained in the programmers' knowledge
base - a repertoire of programming skills and techniques.

There is also evidence which suggests that well-structured
programs take less time to understand [38, 238].

Program Understanding ! 25

Bearing in mind the significance of program layout in
understanding, programs should be organised and presented in a manner
that facilitates the formation of mental models.

"effective program presentation makes good programs more
understandable and bad programs more obvious "

Baecker & Marcus ([13], p.ix).

6.9.5 Comprehension Support Tools

There are tools which can be used to organise and present source code in
a way that makes it more legible, more readable and hence more
understandable. These include the 'Book Paradigm' [208, 207], the
pretty-printer, the static analyser [108, 295] and the browser.

Many comprehension tools are designed to serve as aids to
enable the understander to speed up the understanding process. The
output from these tools, however, does not provide explanation of the
functionality of the subject system. Here we describe the Book Paradigm
and some of its features.

6.9.5.1 Boo k Paradig m

This tool is based on the 'book metaphor'. It involves documenting
source code using publishing features and style traditionally found in
books - sentencing, paragraphing, sectioning, pagination, chapter
division, prefaces, indexing and a contents page - in a fashion that
facilitates comprehension. Figure 6.9 shows an example of the source
code book for one of the ACME Health Clinic's medical information
systems called Mobile Clinic. Organisation of source code in this way
promotes understanding by:

 allowing programmers the freedom to use a variety of strategies and
access paths that they would not normally use when reading
programs;

 providing high-level organisational clues about the code and low-
level organisational chunks and beacons;

 presenting information in a form that a programmer can easily
recognise, thus expediting invocation of plans from the
programmer's repertoire.

126 Software Maintenance: Concepts and Practice

Mt/r ' MOBILE Cl INK
^^^r* Source code book

{ Contents) I 1 { Index |
{ Chapter 1 }

{This contains a } Clinic 3
{ listing of the } I ' n i s contains } DateOfBirth 6
(chapters } { the following } GPNmae 4,20

{ programs } PatientAddress ...2, 15
Chapter 1 5 PatientID 7
Chapter 2 15 (SearchPatRecord} PatientName 2,5
Chapter3 23 < 1 NextOfKin 8

Figure 6.9 An example of a source code book

6.9.6 Evolving Requirements
It has been known since the early days of the discipline of software
engineering that the issue of requirements can be make or break for a
software system.

In the early days, requirements were treated as though they were
static, but of course, like all elements of a system, they evolve.

For years, we have talked about "capturing requirements", but
more recently the language has shifted as the true nature of requirements
becomes better appreciated.

Projects large and small have struggled or foundered through
problems with requirements - misunderstandings, conflicts, failure to
adapt as contexts changed. An estimated 45% of resources goes on
system failures. A project, for example, that takes years to bring to
fruition, is bound to change as a result of changing requirements. An
instructive case to study in this respect is that of the building
(eventually!) of the channel rail tunnel linking England and France.

Program Understanding 127

We have all become comfortable with the stages in the evolution of a
software system - e.g. requirements, design, implementation, testing, and
so on. However, there was truth in the words of Allen Fairbairn (Systems
Engineering manager on the channel tunnel link) who said that the true
phases of a project are enthusiasm, disillusionment, blame for the
innocent and reward for the uninvolved (i.e. the lawyers)".

In terms of requirements we need to think in more flexible terms:

 Impact analysis is key, because changing requirements implies the
addition, modification and deletion of requirements, which means
that we have to introduce change as an integral part of building and
maintaining systems.

 Written requirements cannot be treated as though written in-stone,
just because they have been recorded. They will evolve.

 The evolution of requirements will lead to requirements that conflict.
Resolution of conflict will become a part of requirements analysis.

 Requirements have always been an unofficial matter of negotiation.
This wil l need to be recognised more formally.

Vision is perfect with hindsight and we should use this to learn about
evolving requirements and how to deal with them. A simple (with
hindsight) example is that reactions by the opposition to a new system
are a predictable source of changing context and requirements. During
the building of the channel tunnel rail link, the "opposition", the ferry
operators equipped themselves with better and faster ferries, that could
challenge the speed and stability of the railway.

Exercise 6.7 Enumerate and explain briefly the factors that can
affect your understanding of a program.

Exercise 6.8 What measures would you take to improve the
understandability of the program in Figure 6.10?

Exercise 6.9 List all the maintenance tools available in your local
system. Try out three of these and for each, explain the
following: its use, its key features and how it improves
understanding.

1' Allen Fairbairn was addressing the December 2001 meeting of the Interdisciplinary Software
Engineering Network at The Royal Society.

128 Software Maintenance: Concepts and Practice

_ _ _ _ _ _ _ _ _ _ __

FROM BasicIO IMPORT WriteReal, WriteString, WriteLn, Readlnt, Writelnt;
CONST max = 20;
VAR a : ARRAY [L.max] OF INTEGER; number: INTEGER; total: INTEGER;

BEGIN
WriteString("Type in 20 numbers"); number := 0;
WHILE number <> 20 DO number := number + 1; Readlnt (afnumber]); END;

WriteString ("The 20 numbers in reverse are "); WriteLn; number := 20;
REPEAT Writelnt (a[number]),max); WriteLn; number := number - 1
UNTIL number = 0;

number := 20 total := 0;
WHILE number <> 0 DO total := total + a[number]; DEC (number); END;
WriteString ("The average for the 20 numbers is ");
WriteReal (FLOAT (total) / FLOAT (max), 12);

END AddNumbers

Figure 6.10 A program to add numbers

6.10 Implications of Comprehension Theories and
Studies

There is as yet no empirical evidence as to which of the program
understanding strategies discussed is the best. Nonetheless, it is
important to be aware of the effect that these strategies or other cognitive
issues can have on various critical activities of software maintenance.
These closely related activities include: knowledge acquisition and
performance; education and training; the designing of programming
languages, maintenance tools and documentation standards; and issuing
guidelines and making recommendations.

6.10.1 Knowledge Acquisition and Performance

The knowledge that a maintainer requires for modifying a program
depends on the nature of the change. For example, with an enhancement
that does not impact on other sections of the program, a local view of the
program wil l suffice. On the other hand, if the modification affects other
parts of the system, then a global view and the cause-effect relation for

Program Understanding 129

the system are needed. The strategy used to study the program can
determine both the speed and accuracy with which the required
information is obtained and also the ultimate success of the modification.

For example, in a study to investigate the relationship between
the comprehension strategy used, the knowledge acquired and the
programmers' performance on a modification task, it was observed that
the strategy used determined the knowledge acquired and also affected
performance on a modification task [180]. The subjects who used a
systematic strategy (similar to the opportunistic) were successful in
making modifications because they gathered knowledge about the cause-
effect relation of the system's functional units. However, the subjects
who used the as-needed strategy (similar to bottom-up) failed to do the
same because they did not obtain the cause-effect relation.

6.10.2 Education and Training

Maintainers need to be taught about program understanding. If they are
aware of the different approaches and the effect of each on
understanding, it is conjectured that they would be in a better position to
judge which is the most suitable one for a given task and environment.
They can also reflect on the appropriateness of the strategy that they
usually use. The maintainers should, however, be allowed to work with
the strategies with which they feel comfortable if they so wish.

6.10.3 Design Principles
Comprehension hinges on the ability to form an accurate mental model
of the target program. This being the case, a sound understanding of how
a programmer goes about comprehending a program can provide useful
insights. Lessons can be learnt about appropriate principles for designing
programs, programming languages, documentation standards and support
tools that facilitate the formation of mental models. Tools developed to
support comprehension should make provision for top-down, bottom-up
and opportunistic models, but without imposing any of them on
maintainers.

6.10.4 Guidelines and Recommendations

Results from empirical studies provide a basis for software maintainers
to set guidelines for programming and documentation practices. For

130 Software Maintenance: Concepts and Practice

example, based on the psychological argument and empirical evidence
that a modular program is better suited to maintainers' cognitive
structures and cognitive processes than a non-modular program [155],
organisations and their personnel should be more willing to take the
guidelines seriously. Empirical evidence can also be deployed as a basis
for recommendations in areas such as documentation standards [175] and
choice of techniques, methods and tools.

Exercise 6.10 Why is it important for maintainers to obtain a good
understanding of the various program comprehension
strategies and other cognitive issues?

6.11 Summary
The key points that have been covered in this chapter are:

 The process of understanding software products in general and
programs in particular is at the heart of virtually all maintenance
activities and it accounts for over half of the time and effort spent on
effecting change.

 Program comprehension involves abstracting information about
certain aspects of the software system.

 The information needs of maintenance personnel vary with their
responsibilities.

 During comprehension of a system, the understander forms an
internal representation, which serves as a working model of the
system. At the outset, the model may be incomplete but becomes
more complete and more accurate as additional information about the
system is obtained.

 Three principal strategies for program comprehension are top-down,
bottom-up and opportunistic.

 Factors that impinge on program comprehension include: (i)
language expertise and domain knowledge of the maintenance
personnel; (ii) programming practice and implementation issues; (iii)
availability of documentation; (iv) organisation and presentation of
programs; (v) inherent complexity of the original problem; and (vi)
programming environment and availability of automated tools.

Program Understanding 131

 Suitable expertise and experience in the problem and programming
domains, consistency of style, adherence to local coding and
documentation standards, up-to-date and accurate systems and
internal program documentation, good program presentation and
good support tools are necessary to enhance understanding and
thereby facilitate maintenance work.

The underlying objective in trying to enhance our understanding
of the cognitive requirements and processes of maintainers is to improve
performance on maintenance jobs, thereby paving the way for higher
productivity and successful evolution of software products. These ideals,
no matter how useful and desirable they may be, will not be realised
without the availability of suitable techniques. The following chapters
examine a number of currently available techniques that are used to
support software change.

7

Revers e Engineerin g

"If you don't know where you are, you can't be sure you 're not
travelling in circles "

Pickard & Carter ([223], p A-36)

This chapter aims to

1.Discuss reverse engineering, forward engineering, reengineering
and restructuring.

2. Explain the concepts of redocumentation and design recovery.

3.Describe the purpose, objectives and benefits of the above
techniques with respect to effecting software change.

4.Discuss reverse engineering tools and identify some of their
limitations.

5.Discuss the application of reverse engineering techniques to
maintenance problems.

6.Discuss the weaknesses associated with the techniques covered in
this chapter.

7.1 Introduction
As shown in the previous chapter, understanding a software system
precedes any type of change. The comprehension process takes up a
great deal of the total time spent on carrying out the change. The reasons

133

134 Software Maintenance: Concepts and Practice

for this include incorrect, out-of-date or non-existent documentation, the
complexity of the system and a lack of sufficient domain knowledge on
the part of the maintainer. One way to alleviate these problems is to
abstract from the source code relevant information about the system,
such as the specification and design, in a form that promotes
understanding.

Reverse engineering is a technique that can be used to do this.
Reverse engineering alone does not lead to a change in the program; it
simply paves the way for easier implementation of the desired changes.
Changes are implemented using techniques such as forward engineering,
restructuring, and reengineering. The issues underpinning these
techniques form the theme of this chapter.

7.2 Definitions
Abstraction - a "model that summarises the detail of the subject it is
representing" [72 p.201].

Forward engineering - the traditional software engineering approach
starting with requirements analysis and progressing to implementation of
a system.

Reengineering - the process of examination and alteration whereby a
system is altered by first reverse engineering and then forward
engineering.

Restructuring - the transformation of a system from one
representational form to another.

Reverse engineering - the process of analysing a subject system to:

 identify the system's components and their interrelationships and

 create representations of the system in another form or at higher
levels of abstraction. [60 p. 15]

7.3 Abstraction
Abstraction is achieved by highlighting the important features of the
subject system and ignoring the irrelevant ones. There are three types of
abstraction that can be performed on software systems: function, data
and process abstraction.

Reverse Engineering 135

7.3.7 Function Abstraction

This is also known as procedural abstraction and means eliciting
functions from the target system - those aspects which operate on data
objects and produce the corresponding output. Functions are usually
described using verbs such as add, check, pop, etc. Functions are often
characterised by an input-output relation; a function /takes x as input and
produces/ft) as output. During the abstraction process, we are interested
in what the function does and not how it operates.

7.3.2 Data Abstraction

This means eliciting from the target system data objects as well as the
functions that operate on them. The main focus here is on the data
objects. The implementation details are considered irrelevant. Atypical
example of data abstraction is the production of an abstract data type for
a stack with operations CreateStack, Push, IsEmptyStack and Pop. An
example of data abstraction at the design level in object-oriented systems
is the encapsulation of an object type and its associated operations in a
module or class. Procedural languages such as Ada and Modula-2 offer
the package and module respectively. These separate the definition of
entities from their implementation which enables the programmer to
separate the specification of data types from the details of the operations
carried out on them. Data and function abstraction can take place at
different levels depending on the phase of the life-cycle.

7.3.3 Process Abstraction

This is the abstracting from the target system of the exact order in which
operations are performed. There are two classes of process that can be
abstracted: concurrent and distributed processes. Concurrent processes
communicate via shared data that is stored in a designated memory
space. Distributed processes usually communicate through 'message-
passing' and have no shared data area. A detailed discussion of this form
of abstraction is outside the scope of this book (see [283] for further
discussion).

7.4 Purpose and Objectives of Reverse Engineering
The concept of reverse engineering is borrowed from established
engineering disciplines such as manufacturing. It is popular within the

136 Software Maintenance: Concepts and Practice

domain of software engineering in general and software maintenance in
particular, especially for its potential in helping program understanding.

A system's components are the products from different phases of
the software life-cycle, for example the requirements specification, the
architectural and detailed design, and the actual source code [255].
Although reverse engineering can start from any of these products, the
most common starting point is the program source code, primarily
because after several years of evolution, the specification or design
information for the system may be inaccurate or not be available. This is
usually because previous maintenance tasks have been inadequately
documented. Accordingly, unless otherwise stated, it should be assumed
that reverse engineering starts from the source code.

The goal of reverse engineering is to facilitate change by
allowing a software system to be understood in terms of what it does,
how it works and its architectural representation. The objectives in
pursuit of this goal are to recover lost information, to facilitate migration
between platforms, to improve and/or provide new documentation, to
extract reusable components, to reduce maintenance effort, to cope with
complexity, to detect side effects, to assist migration to a CASE
environment [72, 101], and to develop similar or competitive products
[241]. A summary of these objectives is contained in Table 7.1.

 To recover lost information: With time, a system undergoes a series
of changes. Because of such things as management pressure and time
constraints, the corresponding documentation for the requirements
specification and design may not be kept up to date and may not
even exist. This makes the code the only source of information about
the system. Reverse engineering tools allow this information
(requirements specification and design) to be recovered. For exam-
ple, reverse engineering has been used to capture the specification
and design of Cobol application programs [158]. The recovered
specification would be in a specification language such as Z, and the
design represented as data flow diagrams, control flow diagrams, and
entity-relationship diagrams.

 To facilitate migration between platforms: In order to take advantage
of a new software platform, (for example, a CASE environment
[110]) or hardware platform (for example, a parallel architecture [52,
64]) a combination of reverse and forward engineering can be used.

Reverse Engineering 137

The specification and design are abstracted using reverse engineering
tools. Forward engineering is then applied to the specification
according to the standards of the new platform. An example is the
migration of Fortran programs to new parallel environments using
the toolset pRETS [124].

To improve or provide documentation: As previously mentioned, one
of the major problems with legacy systems is insufficient, out-of-
date or non-existent documentation. During redocumentation, tools
can be used to augment inadequate documentation or to provide new.

To provide alternative views: Redocumentation tools can be used to
provide alternative documentation such as data flow diagrams,
control flow diagrams and entity-relationship diagrams in addition to
the existing documentation. This is a means whereby other views of
the system can be obtained. For example, data flow diagrams portray
the system from the point of view of data flow within the system and
outside. Control flow diagrams, on the other hand, show the system
from the perspective of the flow of control between the different
components.

To extract reusable components: Based on the premise that the use
of existing program components can lead to an increase in
productivity and improvement in product quality [29], the concept of
reuse has increasingly become popular amongst software engineers.
Success in reusing components depends in part on their availability.
Reverse engineering tools and methods offer the opportunity to
access and extract program components. Software reuse is discussed
in the next chapter.

To cope with complexity: One of the major problems with legacy
systems is that as they evolve, their complexity increases. In the
event of a modification, this complexity must be dealt with by
abstracting system information relevant to the change and ignoring
that which is irrelevant. Reverse engineering tools together with
CASE tools provide the maintainer with some form of automated
support for both function and data abstractions.

To detect side effects: In cases where the maintainer lacks a global
view of the system, ripple effects are a common result of change.
That is, undesired side effects are caused and anomalies go
unnoticed. Reverse engineering tools can make the general

138 Software Maintenance: Concepts and Practice

architecture of the system visible, thereby making it easier to predict
the effect of change and detect logic and data flow problems.

 To reduce maintenance effort: This has been one of the main driving
forces behind the increasing interest in reverse engineering. A large
percentage of the total time required to make a change [69, 214] goes
into understanding programs. The two main reasons for this are lack
of appropriate documentation and insufficient domain knowledge
[202]. Reverse engineering has the potential to alleviate these
problems and thus reduce maintenance effort because it provides a
means of obtaining the missing information.

Table 7.1 Summary of objectives and benefits of reverse engineering

Objectives Benefits

1. To recover lost information 1. Maintenance

2. To facilitate migration between (a) enhances understanding, which
platforms assists identification of errors

3. To improve and/or provide (b) facilitates identification and
documentation extraction of components
„ . , , . affected by adaptive and

4. To prov.de alternate v.ews perfective changes

5. To extract reusable components (c) provides documentation or

6. To cope with complexity alternative views of the system

7. To detect side effects 2. Reuse: Supports identification and
extraction of reusable components

8. To reduce maintenance effort
3. Improved quality of system

7.5 Levels of Reverse Engineering
Reverse engineering involves performing one or more of the above types
of abstraction, in a bottom-up and incremental manner [239]. It entails
detecting low-level implementation constructs and replacing them with
their high-level counterparts. The process eventually results in an
incremental formation of an overall architecture of the program. It
should, nonetheless, be noted that the product of a reverse engineering
process does not necessarily have to be at a higher level of abstraction. If
it is at the same level as the original system, the operation is commonly
known as 'redocumentation' [60]. If on the other hand, the resulting

Reverse Engineering 139

product is at a higher level of abstraction, the operation is known as
'design recovery' [29, 60] or 'specification recovery' (Figure 7.1).

Abstraction Lifecycle phase
level

High ___ ̂ Specification T^) ^documentation ''

r I
^ J Specification recovery Re\ erse

I n t e r m e d i a r y ^ |_ engineering

Design) ^documentation

r |
Intermediary w J

^ " S Design recovery

Low _ ^ I m p i e r n e n t a t i on ^) Redocumentation

Figure 7.1 Levels of abstraction in a software system

7.5.1 Redocumentation
Redocumentation is the recreation of a semantically equivalent
representation within the same relative abstraction level [60]. The goals
of this process are threefold [159]. Firstly, to create alternative views of
the system so as to enhance understanding, for example the generation of
a hierarchical data flow [24] or control flow diagram (for example,
Figure 7.2) from source code. Secondly, to improve current
documentation. Ideally, such documentation should have been produced
during the development of the system and updated as the system
changed. This, unfortunately, is not usually the case. Thirdly, to generate
documentation for a newly modified program. This is aimed at
facilitating future maintenance work on the system - preventive
maintenance.

140 Software Maintenance: Concepts and Practice

PROCEDURE CommandSelector;

BEGIN
Statement 1;
IF <boolean expression 1> THEN

Statement sequence 1
ELSIF <boolean expression 2> THEN

Statement sequence 2
ELSE

Statement sequence 3
END {IF}
Statement 2;

END Command Selector;

Statement 1

Boolean Expression 1

TRUE FALSE

Statement Sequence 1 Boolean Expression 2

TRUE .FALSE

Statement Sequence 2 Statement Sequence 3

\ /

Statement 2

Figure 7.2 A program and its corresponding control flow diagram

Reverse Engineering 141

7.5.2 Design Recovery

Design recovery entails identifying and extracting meaningful higher-
level abstractions beyond those obtained directly from examination of
the source code [60]. This may be achieved from a combination of code,
existing design documentation, personal experience, and knowledge of
the problem and application domains [29]. The recovered design - which
is not necessarily the original design - can then be used for redeveloping
the system. In other words, the resulting design forms a baseline for
future system modifications [110]. The design could also be used to
develop similar but non-identical applications. For example, after
recovering the design of a spelling checker application, it can used in the
design of a spell checking module in a new word processing package.

Different approaches, which vary in their focus, can be used to
recover these designs. Some draw heavily on programming language
constructs contained in the program text as seen in the model by Rugaber
et al. [239]. They argue that an important aspect of design recovery is
being able to recognise, understand and represent design decisions
present in a given source code. Program constructs, which vary between
programming languages, enable recognition of design decisions. Ex-
amples of such constructs are control and data structures, variables,
procedures and functions, definition and implementation modules, and
class hierarchies.

Other approaches rely on knowledge about the problem and
application domains. An example here is the use of 'automated cliche
recognition' offered by The Programmer's Apprentice [235]. Cliches are
standard problem solving techniques, such as searching and sorting, that
can easily be identified by inspection. This assumes that an experienced
programmer can reconstruct the design of a program by recognising the
cliches used. This is based on the premise that success in recovering
design relies more heavily on knowledge about the domain than
knowledge about general and widely applicable components such as
sorts and searches [29].

A number of models for recovering design have been proposed
[7, 29]. Choi and Scacchi propose an approach to extract and restructure
the design of large systems, where the term 'large systems' refers to
those systems with intermodular relations.

142 Software Maintenance: Concepts and Practice

7.5.3 Specification Recovery

In some situations reverse engineering that only leads to the recovery of
the design of the system may not be of much use to an organisation or a
software engineer. A typical example is where there is a paradigm shift
and the design of the new paradigm has littl e or nothing in common with
the design of the original paradigm, for instance moving from structured
programming to object-oriented programming. In this case, an
appropriate approach is to obtain the original specification of the system
through specification recovery. This involves identifying, abstracting
and representing meaningful higher levels of abstractions beyond those
obtained simply by inspecting the design or source code of the software
system. During this process, the specification can be derived directly
from the source code or from existing design representations through
backward transformations. Information obtained from other sources such
as system and design documentation, previous experience, and problem
and application domain knowledge can greatly facilitate the recovery
process.

Ideally the recovered specification should be represented in a
form that can be reimplemented easily in another programming language
or paradigm. An example of such forms is a mathematical function in a
language such as Z++. Usually such representations preserve the precise
semantics of the source code (see Lano and Haughton [159] for some
useful examples). The specification recovered can also be represented as
'object classes' [205, 296]. Object class representation is particularly
useful when reverse engineering is performed with the intent of
migrating the current system to an object-oriented platform. In this case
the system is represented as a set of objects and operations (a detailed
treatment of the object-oriented paradigm and case studies is given in
chapter 13).

The specification recovered during reverse engineering can be
put to a number of uses. Firstly, a fairly representative specification of a
system can be used to support software maintenance without necessarily
requiring access to the source code. Secondly, the specification assists
the maintainer in acquiring the appropriate level of understanding
required to effect a change to a software system. And thirdly, if the
specification is suitably represented it can be used in the development or
maintenance of similar software systems. The use of a specification in

Reverse Engineering 143

this way can sometimes have more benefits than a similar use of source
code [202].

7.5.4 Conditions for Reverse Engineering

There are no hard and fast rules as to what criteria a program must fulfi l
before it may usefully be subject to reverse engineering. There are,
however, some features (see, for example, [45, 101, 281]) which may
serve as warning signs or indicators. The motives for reverse engineering
are usually commercial [241], A summary of these indicators is given in
Table 7.2.

Table 7.2 Factors that motivate the application of reverse engineering

Indicator Motivation
1. Missing or incomplete design/specification Product / environment
2. Out-of-date, incorrect or missing documentation related
3. Increased program complexity
4. Poorly structured source code
5. Need to translate programs into a different

programming language
6. Need to make compatible products
7. Need to migrate between different software or

hardware platforms

8. Static or increasing bug backlog Maintenance process
9. Decreasing personnel productivity related
10. Need for continuous and excessive corrective change

11. Need to extend economic life of system
12. Need to make similar but non-identical product Commercially related

Reverse engineering in itself does not directly lead to
modification of a system. It simply enables an understanding of a system
by representing it at an equivalent or higher abstraction level. The
desired change can then be effected by one or more of the following
supporting techniques.

7.6 Supporting Techniques
The understanding obtained through reverse engineering can support the
implementation of change through techniques such as forward
engineering, restructuring, and reengineering. This section considers
these techniques. Some examples will be used to highlight their
significance in improving the maintainability of programs.

144 Software Maintenance: Concepts and Practice

7.6.1 Forward Engineering

Forward engineering, as the term suggests, is the opposite of reverse
engineering. It refers to the traditional software development approach -
proceeding from requirements to detailed implementation via the design
of the system. Forward engineering will not be covered in this chapter as
it has been covered extensively elsewhere (see publications such as [229,
255, 274]).

7.6.2 Restructuring

This involves transforming a system from one representational form to
another at the same relative level of abstraction without a change in its
functionality or semantics [60]. The transformation would usually be to a
more desirable format. This activity is based on the premise that after a-
string of modifications, the structure of programs tends to degrade.

"The addition of any function not visualized in the original
design will inevitably degenerate structure. Repairs, also, will tend to

cause deviation from structural regularity since, except under conditions
of the strictest control any repair or patch will be made in the simplest

and quickest way. No search will be made for a fix that maintains
structural integrity. "

Lehman & Belady ([23], p. 113)

As the degeneration continues, the programs become more
complex and difficult to understand. To control this increase in
complexity, the source code needs to be restructured. Seen in this light,
restructuring is a form of preventive maintenance aimed at improving the
physical state of the target system in conformance with a given standard
[60]. There are various types of restructuring which differ in the part of
the system affected and the manner in which this is done.

1. Control-flow-driven restructuring: This involves the imposition
of a clear control structure within the source code [61] and can
be either intermodular or intramodular in nature. Choi and
Scacchi term these 'restructuring in the small' and 'restructuring
in the large' respectively [61]. An example of restructuring in the
small is restructuring a 'spaghetti-like' module's code so as to
comply with structured programming concepts. An example of
restructuring in the large is regrouping physically distant routines
- located in different modules - so as to give the system a more

Reverse Engineering 145

coherent structure. This is particularly useful in cases where
some old compilers forced conceptually close routines to be
physically far apart - due to memory considerations - thus
making it difficult to understand the functionality of the code.

2. Efficiency-driven restructuring: This involves restructuring a
function or algorithm to make it more efficient. A simple
example of this form of restructuring is the replacement of an IF-
THEN-ELSIF-ELSE construct with a CASE construct (Figure
7.3). With the CASE statement, only one Boolean is evaluated,
whereas with the IF-THEN-ELSIF-ELSE construct, more than
one of the Boolean expressions may need to be tested during
execution thereby making it less efficient. Note however, that for
this particular example, an optimising compiler would do this
restructuring automatically.

IF ExamScore >= 75 THEN
Grade := 'A' CASE ExamScore OF

ELSIF ExamScore >= 60 THEN 75..100 : Grade := 'A'
Grade := 'B' 60..74 : Grade := 'B'

ELSIF ExamScore >= 50 THEN 50..59 : Grade := 'C
Grade := 'C 40..49 : Grade := 'D'

ELSIF ExamScore >= 40 THEN ELSE
Grade := 'D' Grade := 'F'

ELSE ENDCASE
Grade := 'F'

ENDIF

Figure 7.3 Restructuring a program to improve efficiency

3. Adaption-driven restructuring: This involves changing the
coding style in order to adapt the program to a new programming
language or new operating environment, for instance changing
an imperative program in Pascal into a functional program in
Lisp. Another example is the transformation of program
functions in a sequential environment to an equivalent but totally
different form of processing in a parallel environment [52, 116,
124].

In addition to the source code, other representations of a
software system can be restructured. These include requirements
specifications, data models and design plans. Although it is difficult to
automate the restructuring process completely, there exist some
automatic restructuring tools [115].

146 Software Maintenance: Concepts and Practice

7.6.3 Reengineering

This is the process of examining and altering a target system to
implement a desired modification. Reengineering consists of two steps.
Firstly, reverse engineering is applied to the target system so as to
understand it and represent it in a new form [60]. Secondly, forward
engineering is applied, implementing and integrating any new
requirements, thereby giving rise to a new and enhanced system.

These two steps can be further broken down as, for example, in
the 8-layer Source Code Reengineering Model (SCORE/RM) proposed
by Colbrook et al. [64]. This model supports retrospective abstraction of
data from source code. The first five layers - encapsulation,
transformation, normalisation, interpretation and abstraction - constitute
reverse engineering. The remaining three layers - causation, regeneration"
and certification make up forward engineering. The authors argue that
the model has a number of applications. Firstly, it provides a mechanism
which enables the maintainer to work through the code and understand
its purpose, produce documentation and modify the code in a way that
enhances its maintainability. Secondly, it supports retrospective
specification of a system from the available source code.

7.7 Benefits
The successful achievement of these objectives translates into a number
of benefits in the areas of maintenance and software quality assurance.
The output of reverse engineering can also be beneficial to software
reuse - reapplication of existing software code or design [102].

7.7.1 Maintenance

Generally, the ability to use reverse engineering tools to recapture design
history and provide documentation facilitates understanding of a system
[159]. Considering the time devoted to program understanding, reverse
engineering tools offer real scope for reducing maintenance costs. For
example, data collected from a study of the effect of reengineering upon
software maintainability indicated that reengineering can decrease
complexity and increase maintainability [254], The basic understanding
gained through reverse engineering can benefit maintenance activities in
various ways:

Reverse Engineering 147

 Corrective change: The abstraction of unnecessary detail gives
greater insight into the parts of the program to be corrected. This
makes it easier to identify defective program components and the
source of residual errors. The availability of cross-reference tables,
structure charts, data flow and control flow diagrams resulting from
reverse engineering - can assist in tracing and identifying the
variables to be changed as well as the areas likely to be affected by
the change.

 Adaptive/perfective change: The broad picture made available by
reverse engineering eases the process of understanding the major
components of the system and their interrelationships, thereby
showing where new requirements fit and how they relate to existing
components. Extracted specification and design information ean be
used during enhancement of the system or for the development of
another product.

 Preventive change: Reverse engineering has been recognised as
being of specific benefit to future maintenance of a system:

"... the greatest benefits of reverse engineering tools can be
realised after the changes are implemented in any of the categories of
maintenance... These include the automatic regeneration of numerous

graphical representations of the software to assist future maintenance. "

Cross et al ([72], p.264)

7.7.2 Software Reuse

In general terms, software reuse refers to the application of knowledge
about a software system - usually the source and object code - to develop
or maintain other software systems. The software components that result
from a reverse engineering process can be reused. Quite often these
components need to be modified in one way or another before they can
be reused. The issue of reuse is dealt with in the next chapter.

7.7.3 Reverse Engineering and Associated Techniques in Practice

Reverse engineering and associated techniques such as reengineering and
restructuring have had practical applications within different sectors of
the computing industry [282]. The techniques described in this chapter
have been used successfully in a number of organisations for very large

148 Software Maintenance: Concepts and Practice

and complex software systems [3, 185, 205, 296, 278]. The following
case study in which reverse engineering was successfully employed is
the reengineering of a large inventory of US Department of Defense
information systems [3]. Other cases in which the techniques described
in this chapter played a pivotal role are described in chapter 13.

7.8 Case Study: US Department of Defense Inventory
The US Department of Defense (DoD) is involved with the

maintenance of a large inventory of heterogeneous, non-combat
information systems at more than 1700 data centres totalling over 1.4
billion lines of code [185]. There are two key problems that the DoD
faces in connection with these systems. Firstly, their operation consumes
an enormous part of the department's budget - more than $9 billion each
year. And secondly, due to lack of standardised data and data structures
across these systems, the DoD is often unable to obtain correct
information from the data available in the existing databases. For
example, issuing the same query to several payroll systems can produce
different kinds of responses that are sometimes impossible to reconcile.

As a result of these problems, there was a need to integrate the
different computer systems used by the DoD. This led to a project known
as Joint Operations Planning and Execution Systems (JOPES) with
special emphasis on the data requirements of the systems, that is,
'reverse engineering data requirements'. Some of the main activities of
this project were:

 the extraction of business rules and data entities from the software
systems and data structures;

 derivation and management data models of the systems;

 configuration management of the different systems.

Due to the bulky nature of the data structures and associated
code, a divide-and-conquer approach was used to extract the business
rules and data entities embedded in them before these were organised in
categories. The approach was top-down followed by bottom-up. During
the top-down phase, draft versions of high-level 'as-is' business process
and data models were derived from analysis of user screens, reports and
policy statements. The draft data model consisted of a draft 'as-is' busi-
ness model and a draft mixed - physical, conceptual and external - 'as-is'

Reverse Engineering 149

schema. Reverse engineering and data dependency analysis tools were
then applied to these models as well as software, data dictionary and data
files. The schema levels of the draft data model were then separated,
validated and inconsistencies resolved. The latter was repeated until the
data was normalised.

Apart from the logical data models and data elements, some
other deliverables from this project were: high-level model view
decomposition hierarchies; traceability matrix (which could be used to
perform impact analysis in the event of a change); system and data
migration plans (directives on how to facilitate future expansion and mi-
gration of the existing system); reusable software requirements; DoD
standard data model; DoD standard data elements; and an integrated
enterprise database.

Some of the lessons learned from this project were:

 Getting the commitment and authorisation of senior management,
though not easy, was critical to the success of the project.

 The discovery and recovery of data requirements embedded in the
systems required a great deal of analysis undertaken by humans with
the support of commercial and customised software tools.

 It was difficult to estimate the cost of the reengineering effort. This
was partly due to the unstructured nature of one of the systems being
reengineered.

 A single reverse engineering CASE tool was insufficient to support
all the reverse engineering activities involved in the project. It also
came to light that many of the tools focused on code analysis with
littl e or no support for extraction of business rules.

 Integration, modernisation, restructuring and/or augmentation of the
existing information infrastructure appeared to be the current ways of
dealing with information integration problems.

7.9 Current Problems
As discussed in the preceding sections, reverse engineering promises to
be particularly useful in addressing the problems of understanding legacy
systems. There are, however, a number of problem areas that still need to

150 Software Maintenance: Concepts and Practice

be addressed. These stem primarily from the difficulty of extracting
high-level descriptions of a system from its source code alone [40].

 The automation problem: It is not yet feasible to automate fully at a
very high level. Technology is not yet mature enough to provide the
level of automation that software engineers would like. Complete
automation may never be feasible because the process of
understanding a system - in which reverse engineering plays a part -
requires the use of domain-specific information. This may always be
reliant upon domain experts. Biggerstaff notes that "the degree of
automation is unlikely to go beyond the notion of an assistant that
can perform wide-ranging searches and suggest domain-based
recovery strategies to the software engineer" [29 p.38].

 The naming problem: Even if it were possible to automate the
extraction of high-level descriptions from source code, naming
would still pose a problem. Take as an example the source code for a
binary sort algorithm. Extracting the specification is one thing, but
automatically naming it (with a meaningful name such as BinarySort
as opposed to the less meaningful identifier, p3, say) is quite another.
Boldyreff and Zhang [40] have done some work to address this prob-
lem. Their approach, called the transformational approach, involves
functional decomposition of the program. Code segments are
transformed into recursive procedures. The programmer then names
and comments each procedure interactively. A collection of these
comments then forms a higher-level abstraction of the program.

Exercise 7.1 Explain the differences between the different types of
reverse engineering techniques and give examples
where appropriate.

Exercise 7.2 Carry out specification and design recovery on all or
parts of a software system that you are not familiar with
(the system should be at least 2K lines of code in
length).

 What technique(s) do you use to identify the
specification and design and why?

 What form of representation do you consider
suitable for these tasks? Indicate your reasons.

 What lessons did you learn from this work?

Reverse Engineering 151

Exercise 7.3 A bank has a substantial investment in a Cobol
software system that is at least one million lines of code
in length and has been running for over 20 years. It is
used on a daily basis to perform various operations such
as managing customer accounts and loans. After several
years of modification - both planned and ad hoc - the
system has become too expensive to maintain. As a
result, the bank wants some advice on the next step to
take. Suppose that you have been employed as a
software maintenance consultant. What advice would
you give the bank? Indicate the reasons for any
recommendations you make.

7.10 Summary
The key points that have been covered in this chapter are:

 Reverse engineering is a technique used to obtain an overview
understanding of a program prior to its being changed. Forward
engineering, restructuring and reengineering are techniques which
may be employed subsequently to implement a desired modification.

 Redocumentation and design recovery are two forms of reverse
engineering. Redocumentation is the representation of a program in a
semantically equivalent form but at the same relative level of
abstraction. Design recovery is the extraction of higher-level
abstractions of the program.

 The objectives of reverse engineering include: the recovery of lost
information; easing the migration between platforms; providing new
or alternative documentation; extracting reusable components;
coping with complexity; and detecting side effects.

 Achievement of these objectives can bring about benefits such as
reduction in maintenance effort, provision of reusable components
and enhancement of software quality.

 Automation of reverse engineering processes can expedite
maintenance, but complete automation is not yet possible.

 Although reverse engineering-related techniques promise to help
maintenance problems, the lack of automation prevents their full
potential being realised.

152 Software Maintenance: Concepts and Practice

As already pointed out in this chapter, techniques such as
forward engineering, restructuring and reengineering can be used to
effect changes to a software system. It is, however, important to note that
in the process of implementing these changes, every attempt must be
made to increase productivity, and to improve the maintainability and
quality of the software system. One way of achieving these objectives is
to use existing software components, a process known as software reuse,
and this is the subject of the next chapter.

8

Reuse and Reusabilit y

"In an era of competitive software marketing, if a program is
good enough to be of interest to many people, it is good enough to be

marketed commercially for a profit. Does this mean that the only kind of
software being donated to public repositories is software of limited use

to others, and therefore not worth reusing? "

Aharonian [2]

This chapter aims to

1.Discuss the concepts of software reuse and reusability.

2.Explain the goals and benefits of employing reusable software
components during software maintenance.

3.Discuss the technical and non technical issues underpinning
software reuse and reusability.

4. Explore ways of maximising the potential of software reuse.

5.Discuss the use of appropriate techniques to design and construct
solutions given a change request and a set of reusable
components.

6.Explain weaknesses of current reuse techniques and possible ways
of addressing these weaknesses.

153

154 Software Maintenance: Concepts and Practice

8.1 Introduction
The problems of low productivity and poor software quality are still
commonplace within the software industry [134]. This is true of software
maintenance projects in particular despite an increase in expenditure on
software maintenance activities and the availability of more sophisticated
methodologies, techniques and tools. One way to minimise the effects of
these problems is to use previously developed software, rather than 're-
inventing the wheel' by writing all the code from scratch. This is the
concept of software reuse [31, 43, 133, 150].

Productivity can be increased by software reuse because less
time and effort is required to specify, design, implement and test the new
system. The quality of the new product tends to be higher, primarily
because the reused components will have already been through cycles of
rigorous testing. Reuse results in a more reliable, more robust and higher
quality product. The telling observation has been made that 60-85% of
programs used to build systems already exist and can be standardised and
reused [157, 148]. It must be stressed that benefits come from the reuse
of good software components - that is, components that have been well
engineered, rigorously tested and are demonstrably secure and reliable.
The reuse of badly engineered, insecure and unreliable components will
give no benefit.

Software reuse, though initially targeted at software development
projects, is more and more being applied to maintenance problems. It has
been reported that software reuse can bring about a significant reduction
in maintenance costs [242] and an increase in productivity of
maintenance personnel [157]. In order to reap the benefits of software
reuse, it is important that the software has been designed to be reused.
This is still not the norm although there are moves in this direction. Thus,
there is often a need to adapt the software prior to its being reused. This
chapter discusses the issues concerned with the concept and practice of
software reuse as it pertains to software maintenance.

8.2 Definitions
Data - factual information such as measurements used as a basis for
calculation, discussion, or reasoning.

Personnel - the individuals involved in a software project.

Reuse and Reusability 155

Product - a "concrete documentation or artefact created during a
software project" ([15], p.3).

Program — code components, at the source and object code level, such
as modules, packages, procedures, functions, routines, etc. Also
commercial packages such as spreadsheets and databases.

Reuse - "the reapplication of a variety of kinds of knowledge about one
system to another similar system in order to reduce the effort of
development or maintenance of that other system" [31 p.xv]

8.3 The Targets for Reuse
A number of different definitions of software reuse exist in the literature
[31, 88, 133, 150]. There is the simplistic view which defines the term as
the simple reuse of code. This fails to take into consideration other forms
of software-related knowledge that can be reused. Both knowledge and
program artefacts can be reused. The extent to which items such as
procedures, modules and packages can be reused (with or without
adaptation) is known as reusability [133]. Some of the attributes that are
used to assess reusability are structure, functionality, level of testing,
complexity and frequency of reuse. The knowledge that can be reused
comes from three main sources: the process, the personnel and the
product [20, 15,267].

8.3.1 Process

Process reuse may be the application of a given methodology to different
problems. The application of methodologies such as formal methods, or
object-oriented design in the development of different products is an
example of process reuse. Another example of reusing a process is the
use of a cost estimation model - such as Boehm's COCOMO II [37]
model - when estimating the cost of a maintenance project. There is a
growing body of empirical evidence demonstrating the extent to which
the reuse of a process impacts on productivity and product quality. In
general terms, an operation which is repeated becomes familiar and thus
easier to perform; problems are discovered and addressed and thus the
benefit from repetition tends to increase.

156 Software Maintenance: Concepts and Practice

8.3.2 Personnel
The reuse of personnel implies reusing the knowledge that they acquire
in a previous similar problem or application area. This expertise is
known as domain knowledge. An example of this is 'lesson learned'
knowledge - the knowledge acquired through meeting and addressing a
particular situation in practice. This is notoriously difficult to teach as
theory. Owing to the difficulty in archiving this kind of knowledge and
the turnover of personnel within the software industry; reusable
personnel knowledge is volatile. As such, it cannot be considered a fixed
asset of the host organisation. The expertise gained in one project is often
taken away to other projects or to a different organisation [108]. Ways to
minimise the effect of this problem are through the application of domain
analysis to capture this knowledge in a reusable form (see chapter 6) or
through measures to combat high staff turnover (see chapter 10) or tools
such as software experience bases (see chapter 5).

8.3.3 Product
Product reuse involves using artefacts that were the products arising from
similar projects. Examples include the reuse of data, designs and
programs.

8.3.4 Data
Reusable data enables data sharing between applications and also
promotes widespread program reusability. Reusable data plays an
important role in database systems. For different applications to share the
data held in these databases, the data needs to be in a format that
facilitates data transfer between applications. Although there is still no
universal format for data interchange, it is becoming ever more common
for different applications to share data. An example of data that needs to
be reusable is patient data in medical information systems, primarily
because different individuals are often involved in the care of a patient -
the family doctor, the hospital consultant, the pathology laboratory, etc.
Al l these health professionals may have different application programs,
but nonetheless require access to the same data.

8.3.4.1 Design
The second reusable aspect of a software product is its design -
architectural and detailed design. The architectural design is an abstract

Reuse and Reusability 157

or diagrammatic representation of the main components of the software
system, usually a collection of modules. The detailed design is a
refinement of the architectural design. Reuse of architectural design has a
greater payoff than reuse of detailed design [202].

The design of a system can be represented in many ways, for
example using context diagrams, data flow diagrams, entity-relationship
diagrams, state transition diagrams and object models. The redeployment
of pre-existing designs during the development of similar products can
increase productivity and improve product quality. Despite this potential,
there is littl e evidence of widespread design reuse, characterised by the
general lack of any form of standard software design catalogue. One
exception is in the area of compiler construction. Compilers are usually
developed from fairly well-known and documented components such as
lexical analysers, parsers, symbol tables and code generators. This is still
a long way from established areas, such as the automobile industry or
home construction where the design of existing products is routinely
reused.

8.3.4.2 Program
Program reuse is the reuse of code components that can be integrated
into a software system with littl e or no prior adaptation; for example,
libraries (containing scientific functions and well-known algorithms such
as binary sort), high-level languages and problem-oriented languages. As
regards commercial packages, spreadsheet programs have been hailed as
one of the most successful examples of a reusable product [148]. They
can be used by a wide variety of users to perform a wide variety of tasks.
For instance, a specific function such as automatic recalculation permits
users to change one or more variables and see the result of automatic
recomputation of all values.

Exercise 8.1 What do you understand by the terms reuse and
reusability with regard to software development and
maintenance?

Exercise 8.2 Describe the different sources of knowledge that can
be reused and give examples.

158 Software Maintenance: Concepts and Practice

8.4 Objectives and Benefits of Reuse
There are three major driving forces behind the concept of reuse: to
increase productivity, to improve quality and to facilitate code
transportation [66].

 To increase productivity: By reusing product, process and personnel
knowledge to implement changes rather than writing code from
scratch, the software engineer's productivity can be greatly increased
because of the reduction in the time and effort that would have been
spent on specification, design, implementation and testing the
changes. Reuse can, accordingly, reduce the time and costs required
to maintain software products. For reuse to be justified, the time
taken to search the reuse library and to understand, adapt and
incorporate the reusable component needs to be significantly less
than that needed to write the component from scratch.

 To increase quality: Since reusable programs have usually been well
tested and already shown to satisfy the desired requirements, they
tend to have fewer residual errors. This leads to greater reliability
and robustness. It is this feature which makes software reuse
attractive to software engineers interested in improving (or at least
maintaining) the quality of software products. Note once again that
we are talking about the reuse of good programs and program
components.

 To facilitate code transportation: The aim of code transportation is
to produce code that can easily be transported across machines or
software environments with littl e or no modification. This excludes
activities which are aimed at adapting the same product to changes in
its software or hardware operating environment. Producing machine-
independent components can be achieved through the use of in-
house, national or international standards. Portability reduces the
time and resource required to adapt the components to a different
machine or software environment.

It is not always possible to achieve all the above objectives at
any given time or on any given project. However, success in achieving
them can bring about benefits such as a reduction in maintenance time
and effort and an increase in maintainability.

 Reduction in maintenance time and effort: One benefit of reuse is a
reduction in maintenance time and effort [157, 148]. Owing to the

Reuse and Reusability 159

generality, manageable size and consistency in style of reusable
components, it is much easier to read, understand and modify them
when effecting a software change, there is also a reduction in the
learning time as a result of the increasing familiarity with the reused
code that the user gains with time.

The greatest benefit of reuse to maintenance is obtained
during perfective change for two reasons. Firstly, because perfective
change requires incorporation of new components that can be
obtained from reuse libraries, and secondly because perfective
change consumes about 50% of maintenance costs (Figure 4.2).
Schach [242] has shown that in situations where more than 51% of
the budget is devoted to maintenance, the cost savings during
maintenance due to software reuse is significantly greater than those
during development due to software reuse.

 To improve maintainability: Another benefit of reuse is that it can
improve maintainability. Reusable components tend to exhibit such
characteristics as generality, high cohesion and low coupling,
consistency of programming style, modularity and standards. These
are also characteristics that maintainable programs ought to manifest.
Thus, an attempt to improve the reusability of software components
can contribute significantly to enhancing their maintainability [108].

Exercise 8.3 Give reasons why it is important to reuse programs
instead of writing them from scratch.

Exercise 8.4 What benefits can be derived from reusing software?

8.5 Approaches to Reuse
Biggerstaff [30, 32] provides a very good framework for approaches to
reuse. There are two main approaches depending on the nature of the
component that is being reused, either static building blocks or dynamic
patterns (Table 8.1). Coincidentally, this impinges on how the target
system is obtained - through composition or generation [30, 32].

In this section, these approaches to reuse are discussed and some
examples given.

160 Software Maintenance: Concepts and Practice

Table 8.1 Approaches to reuse

Features Approaches to reuse

Name of component Atomic building blocks Patterns

Principle of reuse Composition Generation

Type Black-box White-box Application Transformation
generator based
based

Example Mathematical Object oriented Draco SETL
systems functions classes

UNIX
commands

8.5.1 Composition-Based Reuse

In the composition approach, the components being reused are atomic
building blocks that are assembled to compose the target system. The
components retain their basic characteristics even after they have been
reused. Examples of such building blocks are program modules, routines,
functions and objects. A number of well-defined composition
mechanisms are used to 'glue' these components together.

A simple example of such a mechanism is the UNIX pipe [153].
It is a way of connecting the output of one program to the input of
another, and as such, it can be used to create a large program by
combining smaller ones. Consider the problem of determining the
number of files in a subdirectory This task can be split into two subtasks:
list the files and then count them. The Is command lists files. The we -w
command counts the number of words in a file. So to count the number
of files in a subdirectory, these two programs can be combined using the
pipe (represented by the symbol '|') thereby giving 'Is we | w'.

In object-oriented programming, the composition mechanism is
achieved through the principle of inheritance [266]. This allows the
construction of new components from existing ones. By the use of
inheritance we can obtain components that are either a modification of
another component or a collection of other components. Take, for
instance, the example presented in Figure 8.1, where we define an object
called MEMBER (of a University) and also specify its attributes such as
Name, Address and DateOfBirth. A student in the University is a
member and has the attributes of the object MEMBER, but has the

Reuse and Reusability 161

additional features of enrol and examine. Similarly, a lecturer is a
member of the University but has the additional features of employed
and lectures. In a situation where we already have the component
MEMBER and its associated attributes, and we want an additional
component, STUDENT or LECTURER, all that is required is to
construct STUDENT or LECTURER using MEMBER and implement
only their additional features. Inheritance in this instance promotes
efficient reuse of existing code and expedites the development process.

In order to increase their reusability, software components need
to exhibit certain design and implementation characteristics. These
characteristics are considered in chapter 6. During composition, if the
components are reused without modification, as in the above example,
this is black-box reuse. On the other hand, if the components require
modification prior to being reused, this is white-box reuse.

- \ -^ Name

MEMBER < Address

^ 3 ^ ' ^ Date of birth

Enrol ^ I 1 I ^ 1 ^— Lectures
STUDENT LECTURER

Examine ^ ' ' ' ' ^— Employed

Figure 8.1 Inheritance as a composition mechanism

 Black-box reuse: In black-box reuse, the component is reused
without modification. Since the user does not need to modify the
component prior to reusing it, only information on what it does is
made available. The use of routines from standard libraries such as
MathLibO and InOut in Modula-2 are examples of this form of reuse.
Only the definition modules of these libraries are made available to
the user, thereby ensuring that the user cannot change the
implementation of the component. This type of reuse can be very

162 Software Maintenance: Concepts and Practice

successful [202], especially in application domains that are well
understood and where there exist standard interfaces between
reusable components. Examples of well-understood reusable
components can be found in UNIX and mathematical applications in
Fortran, as reflected in the high proportion of software engineers
reusing them.

 White-box reuse: In white-box reuse, the component is reused after
modification. This approach to reuse requires that the user be
supplied with information on both what the component does and how
it works. In a language such as Modula-2, information on what the
program does is contained in the definition module and information
on how the program works is contained in the implementation
module. Access to the source code of the implementation module
permits the user to modify the component in accordance with the
requirements of the target system.

8.5.2 Generation-Based Reuse

In the generation approach, the reusable components are active entities
that are used to generate the target system. Here, the reused component is
the program that generates the target product. Unlike the composition
approach, the output generated does not necessarily bear any
resemblance to the generator program. Examples are application
generators, transformation-based systems and language based systems.

Although our discussion is based on Biggerstaff s framework,
we consider language-based systems and transformation-based systems
to be similar, and as such, both have been treated under transformation-
based systems. The reason for this is that language-based generation
systems exhibit some transformation features, except that during the
transformation process the target system is expressed in a well-defined
language.

8.5.2.1 Applicatio n Generato r System s

Application generators are software systems that are used to generate
other applications. Provided the specification of the application to be
generated is expressed in some notation, it is generated automatically.
Parts of the application generator such as its architectural design are
reused during the generation of the output product, thereby giving rise to

Reuse and Reusability 163

some similarities between the generator system and the output
application [31].

Different mechanisms are used to capture the specification of the
target product. Examples are formal specification [226], logic
specification, knowledge-based specification, grammatical specification
and algorithmic specification [232]. Application generators are usually
domain-specific. A typical example of an application generator is yacc12

in UNIX [153]. This is a program that generates a parser when given an
appropriate grammatical specification.

Another example is Neigbors' Draco system [202]. It enables the
construction of domain-specific software products from reusable
components. The approach on which this system is based requires that a
set of domains with which an organisation is familiar be identified and
modelled by a specialist in those domains. When a change request is
received by the organisation's analyst, an attempt is made to match the
requirements of the change to existing domains. If this is possible, then
the specification is expressed in an appropriate notation and then refined
into executable code.

8.5.2.2 Transformation-Base d System s
Transformation-based systems are products that are developed using an
approach whereby high-level specifications of the system are converted
through a number of stages into operational programs. There are two
types of transformation that can be used during this conversion process:
step-wise refinement and linguistic transformation.

 Step-wise refinement involves continuously refining the high-level
specification by adding more detail until the operational programs
are obtained.

 During linguistic transformation the operational programs are
derived by transforming the system through different stages. At each
of these stages, the system is represented using an intermediate
language which may be translated into some other intermediate
language until the final implementation of the system - in a given
programming language - is obtained.

yacc: 'yet another compiler compiler'.
12

164 Software Maintenance: Concepts and Practice

The key feature of linguistic transformation-based systems is that
the detailed implementation is hidden from the user. This method is
particularly important in situations where the user simply wants to
specify the abstract details of the system to be developed while
suppressing as many design or implementation details as possible.

An example of a transformation system is the SETL language
[81, 85]. This is an imperative sequential language. Its philosophy is that
computations can be represented as operations on mathematical sets. The
program specified in SETL is then translated into a lower-level language
called LITTL E - with semantics that lie between Fortran and C.

8.5.2.3 Evaluatio n of the Generator-Base d System s

The notion of reuse in the above types of generator is that they
themselves are the reusable component because they are used to generate
different programs. In principle it is easy to classify systems according to
the above generation-based taxonomy. In practice, however, it is difficult
to classify a generated system as belonging to any specific category.
Quite often, the systems are hybrid in nature, borrowing concepts from
more than one of the categories. For example, Neigbors' Draco system
[202] has features of both an application generator and a transformation
system.

8.6 Domain Analysis
There are two categories of component that can be reused: horizontally
reusable and vertically reusable components [133]. Horizontal reuse is
reuse of components that can be used in a wide variety of domains, for
example algorithms and data structures. Vertical reuse is reuse of
components that are targeted at applications within a given problem area.

Due to the application domain oriented nature of vertical reuse,
there is often a need to identify common problems within the domain and
attempt to produce 'standard' solutions to these problems. This can be
achieved through domain analysis: a process by which information used
in developing and maintaining software systems is identified, captured,
and organised with the purpose of making it reusable when maintaining
existing systems (adapted from R Prieto-Diaz [230]).

This is achieved by studying the needs and requirements of a
collection of applications from a given domain [202]. The objects (for

Reuse and Reusability 165

example; existing and future requirements, and the current
implementation) and operations pertinent to this domain are identified
and described. The constraints on the interactions between these objects
and the operations are also described [134]. These descriptions are then
implemented as code modules in a given programming language ready to
be reused. The inputs and outputs involved in the whole process are
illustrated in Figure 8.2. The Draco system [202] is a good example of a
system that provides support for domain analysis.

Processes
(e.g. domain analysis
methods, operational

Materia l Input procedures) Human Input
(e.g. existing and future (e.g. domain expert, domain
requirements, current engineer)

implementations)

~7 Perform Domain \
(Analysis y

Output
(e.g. taxonomies, domain models)

Figure 8.2 The inputs and outputs of domain analysis

Domain analysis is best performed by a domain expert who has
experience of developing many systems in the same domain. It is
especially important to organisations that are specialised in particular
software systems for a designated problem set. The advantages of
domain analysis include the following:

 The repository of information produced serves, as an invaluable asset
to an organisation. The information can be used for training other
personnel about the development and maintenance of software
systems belonging to the domain in question [132],

166 Software Maintenance: Concepts and Practice

 One of the problems with the data processing industry is the high
turnover of personnel - especially in maintenance departments - thus
depriving organisations of the valuable expertise gained from
previous projects. With domain analysis, the impact of such turnover
can be minimised.

Domain analysis has a wide range of benefits to software
organisations, especially those interested in reuse. There are, however, a
number of factors that may prevent organisations from undertaking it
[132]:

 It requires a substantial upfront investment. This can be a risky
venture for the organisation because there is no absolute guarantee
that the results of the domain analysis will justify its cost.

 It is a long-term investment whose benefit will not be realised until
the organisation observes some increase in productivity and a
reduction in the cost of maintenance as a result of reuse.

8.7 Components Engineering
The composition-based approach to reuse involves composing a new
system partly from existing components. There are two main ways in
which these components can be obtained. The first is through a process
known as design for reuse. This involves developing components with
the intention of using them on more than one occasion. The second way
is through reverse engineering.

8.7.1 Design for Reuse

8.7.1.1 Characteristic s of Reusabl e Component s

To accommodate the evolutionary nature of a software system during its
lifetime, it is essential to anticipate change. This means designing and
implementing modules that are susceptible to modification. Similarly,
with reuse, candidate components should be designed and implemented
in a way that shields them from too many changes when they need to be
reused. That is, if significant benefits are to be reaped from reusing a
component, the issue of its reusability should not be a matter of mere
coincidence or an afterthought. Its development and maintenance must
be guided by sound design principles. In general the design principles
aimed at enhancing evolvability apply equally to reusability. In this

Reuse and Reusability 167

section, only those principles which we believe impact strongly on
reusability are discussed. Readers interested in the others should consult
texts such as Ghezzi et al [108] and van Vliet [274].

 Generality: This means the potential use of a component for a wide
spectrum of application or problem domains. Typical examples of
software systems which exhibit generality are database and
spreadsheet packages which have been designed to accommodate the
needs of a wide variety of users. This is in contrast to much more
domain-specific applications, for instance, air traffic control systems
or clinical prescribing packages. Consider a simple example: a
program to sort 75 items. A generic approach where the sort routine
does not rely on the number or type of the items has more reuse
potential than an approach which uses a fixed size array and builds
specific item comparisons into the sort routine.

Generality presents a problem for reusability. It has been
observed that solutions that are targeted at a wider problem domain
(for example, formal specification) tend to have lower pay-off than
those that are targeted at a narrower problem domain (for example,
problem-oriented languages) [32]. Thus, prior to deciding on the
degree of generality needed, it is essential to achieve the right
balance between generality and pay-off.

 Cohesion versus coupling: Cohesion is an internal property which
describes the degree to which elements such as program statements
and declarations are related. A module with high cohesion denotes a
high affinity between its constituent elements. Coupling, on the other
hand, is an external property which characterises the interdependence
between two or more modules in a given system. High coupling
signifies a strong interrelationship between modules in a program. In
the event of a change to one module, high coupling implies that
several other modules are likely to be affected. Loosely coupled
modules, on the other hand, are more independent and thus easier to
understand and adapt for reuse. Increasing the degree of reusability
of a software component therefore implies high cohesion and loose
coupling since the component can be reused without worrying too
much about which other modules accompany it.

 Interaction: The interaction with the user in terms of the number of
read-write statements per line of source code should be minimised

168 Software Maintenance: Concepts and Practice

but there should be more interaction with utility functions - those that
can be used for several purposes [148]. The aim is to reduce the
impact of change on the front end of the system.

 Uniformity and standardisation: The use of standards across
different levels of the software [227] is likely to promote reusability
of software components. Standards exist for such things as user
interface design, programming style, data structure design and
documentation. For example, standards help towards uniformity in
the techniques used to invoke, control and terminate functions as
well as in the methods used for getting help during use of the
software [148]. The increasing use of international standards such as
the ISO 9000 quality series [141] should accelerate the move
towards reusability of software products by ensuring commonality in
the documents and operational procedures pertaining to a software
system.

 Data and control abstractions: Data abstraction encompasses
abstract data types, encapsulation and inheritance. Control
abstraction embraces external modules and iterators [227]. To allow
effective reuse, it is essential to have a clear separation between the
programs that manipulate data and the data itself.

 Interoperability: The increasing popularity of interoperability will
aid reuse by allowing systems to take advantage of remote services.
Consider for example the issue of patient identification in clinical
systems. Work on Patient/Person Identification Servers [68] will
both aid system building/maintenance and make the whole issue of
identification more reliable.

8.7.1.2 Problem s wit h Reuse Librarie s

The components library plays a central role in composition-based reuse.
There are, however, a number of problems associated with designing the
library and also obtaining candidate components from it [202]:

 The granularity and size dilemma: When designing a components
library, it is important to have appropriately sized fragments so as to
facilitate understandability and increase the generic potential. This
implies that the library will contain many small components, which
poses problems with classifying and searching. The classification
and search problems can be minimised by having a smaller number

Reuse and Reusability 169

of large library fragments, but this increases the problems of
understandability and genericity. Thus, there is a conflict [202].

 The search problem: Without an appropriate mechanism for
describing the contents of a components library, it will be difficult
for a user to find components that match the requirements of the
system to be composed. It may take more time than would be
required to write the code from scratch. This would discourage the
reuse of existing software and encourage individuals to resort to
writing their own code. The knowledge-based technique by Basili
and Abd-EI-Hafiz [15] and the behaviour sampling technique by
Podgurski and Pierce [224] address this problem.

 The classification problem: It is important to store information in the
components library on what components it contains. However, it is
not always obvious how to specify this information. Some research
has been undertaken to address this issue. For example, the use of
functional specifications has been suggested as a means of
representing components in the library [143]. Another example of a
classification scheme is that by Prieto-Diaz and Freeman [231]. They
classify the components based on three factors: functionality (what
the component does), environment (where it does it) and
implementation details (how it does it).

 The specification and flexibility problems: Not only is it difficult to
specify, in the library, what the system does, it can also be difficult
to specify how it works and the constraints on its usage. This poses
problems for a user intending to undertake white-box reuse. Another
problem faced during white-box reuse is not being able to tell which
design and implementation decisions are fixed and which are
flexible.

8.7.2 Reverse Engineering
The second way in which reusable components can be made available is
by identifying and extracting them from existing systems that were not
originally designed for reuse but nonetheless have reusability potential.
One of the techniques that is commonly employed for this purpose is
reverse engineering. This technique enables

"... the extraction of components from existing software, through
the analysis of both code and documentation, possibly helped by

170 Software Maintenance: Concepts and Practice

software engineers, abstracting and generalising these so that they
become widely reusable."

Dusink & Hall ([88], p.7)

See chapter 7 for further discussion on reverse engineering.

Exercise 8.5 Compare and contrast the different approaches to
reuse, giving examples of systems that can be obtained
from each of these approaches.

8.7.2.1 Case Stud y - Patien t Identificatio n

In the early days of medical information systems in the 1950's and
1960's, systems identified patients by name or by locally generated ID
number. Each system invented its own method.

Staff at the ACME Health Clinic evaluated a system that was in
many respects well ahead of its time, but had to reject it because its
patient identification method meant it could not distinguish between two
patients at the clinic who happened to be same sex twins with the same
first initial.

Locally generated IDs were a solution for a while, but created
problems when patients moved.

In the UK, in an effort to find a solution all systems could use,
there was a move to have all patients electronically registered by their
NHS numbers. This initiative brought to light previously unnoticed
clerical errors in the allocation of NHS numbers. The numbers could not
be guaranteed to be unique. This was a solvable problem but it did not
get to the heart of the issue of patient identification.

Populations are far more mobile than they used to be. People
cross international borders. There is a brisk illici t trade in false IDs for
many purposes. NHS numbers and their equivalents in other countries do
not necessarily provide accurate identification and are not always
available when needed.

There are occasions (and they tend to be the emergency
situations) where the patient is unable to provide any clue as to their
identity e.g. they may be unconscious. Smartcards can help, but may be
stolen and misused.

Reuse and Reusability 171

Retina and fingerprints are more reliable but imply that by taking
such a print, a person's relevant medical history is available. Does this
imply a huge database holding a populations' identification and medical
details? This opens up an enormous can of worms in terms of civil
liberties. History does not give much hope that such a collection of data
would not be misused. How do we weigh the risks for potential for harm
from the misuse of detailed medical information against the risks of, say,
an allergy being missed when a patient is brought in unconscious?

The security issues surrounding personal and medical data are
far from being solved. Should we be looking to medical advances
whereby a quick test of a patient's DNA and vital signs will show up all
relevant medical data, allowing appropriate treatment to be administered
without necessarily knowing who the patient is?

The apparently 'simple' issue of identifying a patient soon
mushrooms far beyond the immediate issues. It is an interesting
demonstration of the fact that building and maintaining software often
reaches far beyond the solving of a technical problem.

8.7.3 Components-Based Processes

A potential advantage to components-based processes is in tackling the
over-concentration of expertise. Maintenance of traditional software
tends to result in a small number of people developing in-depth specific
technological or business expertise. These people then become
indispensable in the maintenance of a system. This is due largely to
scarcity of resource. Often there is no time available for training new
personnel, and even where there is, the experts cannot be spared because
their time is dedicated to maintaining the system.

Components-based processes counteract this effect. Components
by their nature cross technological and business areas. The focus of
required skills changes. Components services skills are needed as there
wil l be a components library to be maintained.

Both domain-specific and generic components-based
frameworks for software products have been developed. The Object
Management Group (OMG), in their Model-Driven Architectures
initiatives are significant contributors to standardisation in this area
[203]. As well as formal standards, there are de facto standards such as
Java [259]. An international standard for process engineering models,

172 Software Maintenance: Concepts and Practice

also developed by the OMG, is the Software Process Engineering
Metamodel [204],

8.8 Reuse Process Model
Traditional top-down life-cycle models (see chapter 5) do not
specifically address ways by which reuse activities can be
accommodated at each phase of the life-cycle [283]. This is a result of
several factors [133]:

 Software reuse is not inherently top-down, as are some of the life-
cycle models (for example, the waterfall model).

 In software reuse, the developer or maintainer takes a view that
extends beyond single projects or systems.

 Reuse involves the exploitation of commonality at many levels of
abstraction besides that easily captured in code.

 Reuse depends, to a large extent, on the ability to analyse specific
domains in order to extract maximally reusable components.
Structured methodologies designed for top-down life-cycle models,
however, rarely provide specific techniques to analyse domains.

Despite the above weaknesses, traditional life-cycle models may
serve as frameworks within which reuse can be accommodated. In
response to the need for 'reuse-conscious' life-cycle models, a number of
propositions for refinement of current life-cycle models have been put
forward [19, 151, 231, 253]. For instance, Simos suggests that:

"What is needed is a process model that allows for iteration
between the top-down, 'problem-driven' approach and a bottom-up,
'parts-driven 'perspective.... Such a process model would correspond

more closely to the real state of practice in software development than
the current model, and would at least initially have a less prescriptive,

more descriptive flavour."

Simos (cited in [133], p.38)

Although Simos makes particular reference to development, in
principle the above characteristics would also apply to any reuse model
targeted at maintenance activities. To exploit the potential of software
reuse successfully, there must be a mechanism to integrate it into existing
software engineering process models rather than considering it as an add-

Reuse and Reusability 173

on. Hooper and Chester [133] provide a good review of other
propositions and reuse models. One of these is that of Prieto-Diaz and
Freeman [231]. Their view of a reuse model is summarised in the
algorithm in Figure 8.3. It assumes that the software engineer has already
understood the problem to be solved and the specifications that are
available. A model with no such assumption is a four-step generic
reuse/reusability model proposed by Kang [150].

given a set of specs
BEGIN

search library for component
IF identical match then terminate
ELSE
collect similar components
FOR each component

compute degree of match
END (*FOR*)
rank and select best component
modify component

END(*IF*)
END

Figure 8.3 A reuse process algorithm

8.8.1 Generic Reuse/Reusability Model

Proposals for many of the reuse process models stem from the failure of
orthodox process models, e.g. waterfall and spiral life-cycle models, to
address reuse issues. Kang's [150] refinement of the DOD-STD2167A
life-cycle (similar to the waterfall life-cycle) led to a four-step 'generic
reuse/reusability model' developed at the Software Engineering Institute
in the Carnegie Mellon University, Pittsburg. His idea was to identify
reuse activities applicable to each phase of the DOD-STD-2167A life-
cycle based on the generic model. This model is further refined by
Hooper and Chester [133] to include an evaluation phase, thereby
extending it to a five-step model (Figure 8.4).

174 Software Maintenance: Concepts and Practice

Step 1

Understand problem

A

V

Domain
ExDert

Step 2

Reconfiguration

A

Candidate components Step 3

Acquisition & modification

A

V

Components
Library

Step 4

Integration

A

V

Feedback

Step 5

Evaluation

Figure 8.4 A generic reuse process model

The steps of this generic reuse model are summarised below:

Step 1: This step involves understanding the problem to be solved
and then identifying a solution structure based on predefined
components available.

Reuse and Reusability 175

 Step 2: The solution structure is then reconfigured in order to
maximise the potential of reuse at the current and the next phase.
This means involving the domain experts of the next phase who will
study the proposed solution of the current phase and identify
reusable components available at the next phase. Several techniques
can be used to identify reusable components [15]. The criteria for
selection are based on factors such as functionality, logic and pre-
and post-conditions.

 Step 3: The major task at this stage is preparing the reusable
components identified in the solution structure in readiness for
integration. This involves acquiring reusable components, modifying
and/or instantiating them for the problem being solved. For those
components that cannot be acquired or that are uneconomic to adapt,
new ones are developed.

 Step 4: The main aim at this stage is integrating the completed
components into the product(s) required for the next phase of the
software life-cycle.

 Step 5: In this step, the experience from the preceding steps is used
to evaluate the reusability prospects of two categories of component.
The first category is those components that need to be developed for
the sub-problems for which no reusable components exist. The
second category is those components that have been obtained from
the adaptation of predefined components. The result of this
evaluation exercise is then used to update the current library of
reusable components.

The main advantage of the generic model, as Hooper and
Chester note, is that it takes a multi-project view of development and
maintenance whereby products from one project are expected to be used
for other projects.

Like the refinements proposed by Simos, Kang's model does not
make specific reference to maintenance activities. This, however, does
not prevent it from being applied during the implementation of software
change since the steps he lists also apply to maintenance.

176 Software Maintenance: Concepts and Practice

8.8.2 Accommodating a Reuse Process Model

Requirements
specification

Reuse
Process
Model

Design Reuse
Process
Model

Implementation Reuse
Process
Model

Testing Reuse
Process
Model

Operation

Figure 8.5 Incorporating a reuse process model into a waterfall lifecycle

One of the reasons that may discourage organisations from adopting
software reuse is the difficulty of accommodating it in an existing
software engineering process model. Without an appropriate mechanism
such a change may destabilise the organisational culture which in turn
may encourage resistance to the incorporation of reuse into the
organisation's process model. One way to encourage the adoption of
reuse is to assist personnel in applying reuse at the various phases of the
software life-cycle they are already using. The integration of a reuse
model such as Kang's may help soften any resistance from personnel

Reuse and Reusability 177

since it does not require the existing software engineering process model
to be abandoned (Figure 8.5). There are of course many other issues that
need to be addressed in order to accommodate reuse into an organisation
(see the following section and [133]).

8.9 Factors that Impact upon Reuse
Hooper and Chester note that:

"... if reuse is to occur in an effective way, it must be integrated
into the software process in such a way that we consider reusing
software as the means to satisfy requirements before we consider

developing new software."

Hooper & Chester ([133], p.36)

As noted earlier, reuse has the potential to increase personnel
productivity and improve product quality. This potential, however, has
not yet been fully realised. This is due to both technical and non-
technical factors. These are discussed below.

8.9.1 Technical Factors

8.9.1.1 Programming Languages
The use of several programming languages to develop software within a
company hinders attempts to develop reusable components [66]. One
way to address this problem is to choose a programming language and
mandate its use for projects within an organisation.

8.9.1.2 Representation of Information
Another impediment to reuse is the representation of design information
in a form that does not promote reuse. The reuse of design can be
automated. Biggerstaff and Perlis [31] suggest that one way to achieve
this is by representing knowledge about the implementation structures in
a form that allows a designer to separate individual design factors. For
example, given a program that converts an infix expression to Reverse
Polish Notation, the designer should be able to factor out the concept of a
stack, which is data structure based, from a mathematical expression
which is application domain based.

178 Software Maintenance: Concepts and Practice

8.9.1.3 Reuse Librar y
For ease of reuse, large libraries of reusable components must be
populated and easily accessible. There is a need for adequate retrieval
techniques for managing the libraries. This is an expensive and time-
consuming venture upon which some companies are not willin g to
embark [66].

8.9.1.4 Reuse-Maintenanc e Viciou s Cycl e
In the course of applying reuse techniques to alleviate maintenance, it is
essential to populate the component library with as many reusable
fragments as possible. However, as the library gets bigger, managing it
can present another maintenance problem. This can lead to a 'reuse-
maintenance vicious cycle'. One way to minimise the effect of this is to
use good design principles when designing the components as well as the
library in which they will be stored.

5.9.2 Non-Technical Factors

Non-technical factors play a large part in inhibiting the smooth adoption
of reuse. Bott and Ratcliffe [43] contend that the cumulative effect of the
non-technical problems presents a greater obstacle than the technical
ones, a view also shared by Aharonian [2].

8.9.2.1 Initia l Capita l Outla y

Reuse depends, to a large extent, on the availability of large libraries of
reusable components. The initial setting up and managing of such
libraries is an expensive business. Added to this is the general reluctance
of some companies to make a commitment and investment in reuse
without some form of incentive [66]. Biggerstaff [29] points to a number
of reasons for this. Firstly, the financial infrastructure of the company
may not be capable of supporting such a level of investment. Secondly,
some companies do not understand the extent to which they will depend
on software technology in the long term. And thirdly, it takes a while for
the process of technologies to be reflected in organisational policies. For
example, it took a long time for successful technologies such as
workstations to be widely used in many companies. In comparison, an
advanced technology wil l take time to be widely adopted.

Reuse and Reusability 179

8.9.2.2 Not Invente d Here Facto r

It has been shown that there is a tendency amongst software engineers to
avoid the use of programs not developed in-house [32, 66]. The not-
invented-here (NIH) factor is a cultural issue [32]. Programmers
traditionally prefer to develop their own code rather than use other
people's and there can be a prevailing mood which makes the production
of code from scratch a matter of pride. These problems wil l be overcome
by the establishment of a different culture. There is evidence that this is
already happening, probably as a factor of the maturing field, and reuse
is being viewed in a more positive light.

8.9.2.3 Commercia l Interes t

One way to encourage software reuse is to give software components a
wide circulation, for instance making them available in the public
domain. However, a product that is worth reusing by other individuals or
companies may well be marketed commercially for profit. This can
prevent authors of software from putting products in the public domain
for reuse by others, especially where they would be reused for
commercial gain.

8.9.2.4 Educatio n
It is sometimes the case that managers, who are in a position to play a
significant role in reuse programmes, lack an adequate level of software
engineering education. This may impede their ability to recognise the
potential financial and productivity benefits of reuse [66].

8.9.2.5 Projec t Co-ordinatio n
In some companies there is littl e or no co-ordination between projects.
This leads to duplication [66]. Putting in place a reuse programme would
facilitate the reuse of knowledge gained and should yield cost and
productivity benefits. One way of doing this is for the company to take a
multi-project view of development and maintenance. This entails treating
the deliverables - artefacts and other forms of knowledge - from every
project as potential input to other projects.

8.9.2.6 Legal Issue s

The notion of reusing someone else's software, especially a public
software library, raises a series of legal questions which are yet to be
addressed. For example, Aharonian [2] asks:

180 Software Maintenance: Concepts and Practice

 "Does reusing software in certain configurations violate known and
unknown patents? Will companies be liable for actions of
uninformed programmers? Will companies need lawyers as part of
their software reuse staff?

 Who is liable for faults attributed to acquired repository software
components? At which point in modifying external software, does the
burden of reliability pass from the original developer to the
modifying company? "

Until these questions have been carefully considered and
ambiguities resolved, the potential of software reuse may never be
realised regardless of technological breakthroughs and potential benefits.

Exercise 8.6 You have just joined a team of software engineers in
which you are the only one who has studied and
practised software reuse and reusability. The company
you work for has no reuse programme although they are
willin g to start one. You are asked to implement the
reuse programme.

 What is the first step you would take?

 Outline the technical, managerial and organisational steps you
would go through.

 What tactics do you need to employ in order for the programme
to succeed?

 What difficulties do you anticipate and how would you
overcome them?

Exercise 8.7 A mechanical engineering contractor has been using a
large and complex Fortran software system for over 12
years. There is no documentation for the system and the
maintenance programmers have moved to a different
company. In order to take advantage of state-of-the-art
parallel machines, the contractor wants the software to
be reimplemented on a parallel platform.

 Briefly describe the techniques that will be needed to
accomplish the task.

 How would you go about performing the job, bearing in mind
the merits of software reuse?

Reuse and Reusabi I ity 181

8.10 Summary
The key points that have been covered in this chapter are:

 Software reuse involves the redeployment of software products from
one system to maintain or develop another system in an attempt to
reduce effort and to improve quality and productivity. Reusability is
the ease with which this goal can be achieved.

 The key driving forces behind the reuse of software components
during maintenance are: to increase productivity and product quality,
to improve maintainability and to reduce maintenance costs. The key
benefit of reuse to maintenance is "...to allow high speed and low-
cost replacement of ageing systems, whose functions and data
requirements have become well known" [148 p.493].

 Reuse process models may be applied at each phase of the life-cycle
[19,151,253].

 Software reuse is a multi-faceted issue that embraces several
concepts - domain analysis, development and refinement of
components, classification / packaging, searching, evaluation /
assessment and integration.

 The two main approaches to reuse are composition and generation.
Using the composition methods, a product is constructed from a
combination of atomic building blocks. With the generation method,
programs are used in the generation of other programs.

 Several technical and non-technical factors impinge on reuse.
Examples of the technical factors include generality, cohesion and
coupling, component interaction, uniformity, level of data and
function abstraction and availability of internal documentation.
Examples of non-technical factors include initial capital outlay, the
NIH factor, commercial interests, inadequate education, project co-
ordination and legal concerns.

 There are a number of ways to maximise the potential of reuse.
Management support is especially important, as are planning and
investing for reuse, and having adequate tool support.

Specific maintenance techniques have been examined in this and
previous chapters. Once the system has been changed, it will be released
to users. However, it cannot just be assumed that everything will work

182 Software Maintenance: Concepts and Practice

according to specification. To minimise residual errors, the software is
tested. Testing is the subject of the next chapter.

9

Testin g

"The best tester isn 't the one who finds the most bugs or who
embarrasses the most programmers. The best tester is the one who gets

the most bugs fixed. "

Kanerefa/([149],pl5]

This chapter aims to

1.Discuss the concept of software testing, looking at why and how it
is done.

2. Look at the key aspects of a software tester's job.

3.Discuss different types and categories of test.

4.Look at test plans.

9.1 Introduction
What is testing and why do we do it?

Testing is the examination of a software system in the context of
a given specification set. You will find texts that tell you we test in order
to verify that a software system conforms to an agreed specification.
However, this is wrong. The purpose of testing is to find errors in
software systems i.e. to identify ways in which it does not conform to an
agreed specification. It may seem pedantic to emphasise the latter
purpose over the former. Aren't they the same anyway? At one level
perhaps, but there are important differences that we will explore later.

183

184 Software Maintenance: Concepts and Practice

In many ways, testing is analogous to software maintenance as a
whole. It is a vital component in the development of software systems; it
is required throughout the lifetime of a system; it is rarely budgeted for
sufficiently; its status is far below its importance etc.

There is a large body of theory behind testing. As with
maintenance as a whole, the theoretical concepts sometimes seem a
world away from the real lif e situations that testers are faced with.
However, software testers with a good knowledge of the theoretical
background will be better equipped to cope with the problems that will
arise, for example, as a result of lack of resource to carry out sufficient
testing.

9.2 Definitions
Proof - the process of establishing validity in accordance with principles
of mathematical reasoning.

Test - a critical examination by submission of an entity to conditions or
operations that will lead to its acceptance or rejection against a set of
agreed criteria.

9.3 Why Test Software
Before looking at the details of testing, it is important to have a clear and
comprehensive grasp of why we test software. Think back to the
overview section of Part II . You were asked to discuss the following
question and answer in terms of why the answer missed the point of the
question.

Question: Why do we test software? Answer: To see if it works?

Another question and answer was given to compare:

Question: Why did you drive across town today? Answer: To
look at the opening hours notice on the shop, to see if it will be open on
the 3rd Saturday in June next year.

What are the problems in the second example? For one thing, it's
a long way to drive to get information that would be more easily
obtained by a phone call. As well as taking longer, it's hot very reliable.
What if the shop is shut and the information is not posted on the door?
What if the information is posted? Does that really answer the question

Testing 185

about what wil l happen on the 3rd Saturday in June next year? At best, it
gives an indication.

Testing software to see if it works is much the same. Unless you
can comprehensively test every eventuality, every context of every input
(which you can't, the possibilities are infinite) the best you can do by
testing is to say that it works in this finite set of circumstances, and gives
an indication of how it might work in others.

If you wanted to say that a software system worked, you would
do it by proof, not test.

Compare software with the situation where proof is possible. The
equation y?=mx+c (where m and c are constants) gives a straight line
when plotted on a graph. We know this is the equation of a straight line
because we can prove it mathematically. We certainly don't test it (by
plugging in different values for m and c) to find this out.

Thus, a fundamental answer to the question of why we test
software is that we test software because we cannot prove it.

Much work has been done on formal methods and different
approaches to testing (see for example [44, 147]), but there is no
software system proving tool on the horizon, and there may never be.

But isn't the purpose of testing, as mentioned above, to verify
that the system works? No, it isn't, because the system does not work.
Because we cannot prove software, we cannot build software without
errors. Thus to test software to verify that it works, is to aim for the
impossible. You wil l never get the best out of your personnel if they are
set up to fail - as are testers who are trying to show that a system works.
The successful tester finds bugs in a system.

Given that the best that testing can ever do is verify operation in
a tiny set of the possible operating contexts, is it worth doing at all? The
answer to that is a resounding Yes. Testing is vital to the safety and
correct operation of software systems. The reality is that programmers
find and fix most bugs. Given that estimated bugs run at an average of
more than 1 per program statement, enormous numbers of them are fixed
in order to release software at an estimated 3 or less per 100 program
statements [22].

Finding the bugs is only half the story. Finding the error doesn't
fix it, only identifies it. And for a variety of reasons, not all bugs can be

186 Software Maintenance: Concepts and Practice

fixed. Good software testers can identify, categorise and prioritise the
errors they find.

Systematic testing, following principles researched for effective
software production relies on the software development and maintenance
processes having themselves been carried out systematically and to
appropriately high standards. Obviously, in many cases this will not have
been done.

Very often, systems to be tested will have been developed in
ways that are far from ideal. It is as pointless to pretend that systems to
be tested wil l have been produced according to ideal conditions as it is to
pretend that testing conditions will be ideal. However, recognising the
best case scenario is also valuable, because no-one should become so
resigned to developing and maintaining software to inadequate standards
that they stop trying to improve things. A maintenance programmer
needs to know about the theoretical models of development and
maintenance in order to be a good maintenance programmer even in less
than ideal conditions. In the same way, knowledge of the theory of
testing is a vital component of a tester's toolkit.

9.4 What is a Software Tester's Job
A tester's job is more than to find errors in software. It is also to design
tests that find errors and then find further errors (to avoid allowing the
release of software with serious bugs), and to get errors corrected.
Testers will recognise the severity of errors, and there will be debate
between programmers and testers as to which errors can and should be
fixed.

Myers [199 ch.2] compares the tester and program to be tested
with a doctor and sick patient. If a test run shows no errors, it should not
be deemed 'successful' any more than a doctor's examination of a sick
patient that failed to find the cause of the sickness, be deemed a success.

Remember that bug fixing is corrective maintenance, with all its
attendant problems of ripple effects and so on. The sensible course of
action is sometimes NOT to correct an error e.g. if the software is close
to release and there is no time to investigate possible ripple effects.

Testing costs money, therefore it has to show a return for its
investment by adding value to the program under test. The better

Testing 187

improved and more reliable a program is, the more likely it is to repay
this investment [199 ch.2].

If the expectation is that the tester wil l verify a program as error-
free, he/she wil l always fail to meet expectation, or worse, will start to
design tests that allow the program to 'succeed'. The finding of yet
another serious bug after the programmer thought that all was well may
be extremely annoying, not just to the programmer, but also to the
manager who is working to a tight schedule to get the system shipped.
But however irritating, the finding of a serious bug by a tester is a good
piece of work and should be treated as such.

9.5 What to Test and How
Even a program that takes in two 2-digit numbers, multiplies them
together and stores the answer, has an infinity of possible test cases. Each
of the two inputs can be any number in the range -99 to 99. That gives
39,601 possible pairs of numbers. A finite set of inputs? No, you cannot
assume that the user will hit the keys he is told to. Any combination of
available keys is a viable test case, and this includes the ctrl+alt+del
sequence as well as the reset button and the on-off switch. Add to this the
test of how the system reacts when a heavy handed doctor inputs data by
descending upon the keys with great force, or when lightning strikes
during data input. These latter two cases exercised maintenance staff
looking after systems at the ACME Health Clinic. In the first case, the
system had to be modified (by flushing the input buffer) to cope with the
heavy-handed user. In the second, extensive integrity checks were
necessary to verify the extent of the damage to the data. Neither case had
been covered in system tests. The former was subsequently included as a
routine test of system modifications.

9.5.1 Who Chooses Test Data

Ideally, programs will have sets of test data that have been designed from
their specifications, although this shouldn't be assumed to be sufficient.
It is possible for a program to pass all the tests in its agreed test data set,
but still not operate correctly. Test cases can be decided by looking at
what the program is supposed to do i.e. by examining the specification,
or by examining the listing or by examining the program as it runs.
Different sets of tests wil l result.

188 Software Maintenance: Concepts and Practice

There are some basics to choosing test cases including the
following:

 Valid as well as invalid inputs must be checked.

 Classes of test data can be distinguished to cut down the
overall set of tests i.e. inputs that should give the same or
similar results and where a successful test on one member of
the class may justifiably be extrapolated to assume success
for all members of the class. Hence, boundary conditions
should be subject to greater scrutiny. In the example of a
program taking inputs in the range -99 to 99, test cases
should include both limits as well as values just below and
just above.

 It is important to know where problems are likely to occur.
For example, at boundaries, both anticipated and
unexpected. Combinations of events, factors or inputs must
be looked at, and not just the anticipated ones. If a
circumstance is possible, no matter how remote the
possibility seems, it may happen.

 Never assume that you are testing ideal code, however much
easier that makes the job.

Since you can never test everything, where do you stop? What
determines that a test phase is finished? This question is answered by
looking at what is at stake. A system controlling a medical device for
example, should be subject to more rigorous testing than say a games
program. This is not to play down the importance of testing games
programs. The release of error-ridden games may destroy a company's
competitive edge and thus the livelihoods of its employees.

Exercise 9.1 Pick two software systems and consider how you
would go about designing test cases. Do the systems
have formal specifications that you can use as a basis?
Can you identify test sets from which to extrapolate a
whole series of results? Where are the boundary
conditions?

Testing 189

9.6 Categorising Tests
Testing software systems is a complex discipline in its own right. It is
not, and should not be treated as an ad hoc bolt-on to deal with problems
when they occur. The discipline has evolved to provide a framework
within which we can now rely upon software-controlled aircraft, nuclear
power stations, medical robots and so on. This isn't to say that we always
get it right, but the discipline has evolved to the degree that properly
designed test strategies allied to properly engineered software systems
have the potential to provide software systems we can rely on.

We cannot provide a system that is safe from catastrophic
failure, but properly implemented test strategies and risk analyses can
allow us to predict with confidence that catastrophic software failure will
occur no more than once in X years. As long as X is many times larger
than the lifetime of the system, we have a close approximation to safe
software.

A comprehensive treatment of software testing is beyond the
scope of this book, but many excellent texts exist that deal with the
subject from different perspectives [149].

This chapter will look at a simple categorisation of tests to
provide an overview.

Testing can and should take place at all stages of the
development and maintenance life cycle. We can categorise by stage e.g.
requirements, design, coding. Within this we can look at top down,
bottom up, unit or whole, static or dynamic tests. Whether one way is
better than another, and the best ways of conducting specific types of test
are argued in the literature [86, 92, 198, 199, 297], but the general
consensus is for a mix of strategies tailored to a specific situation. We
can also test aspects such as portability e.g. will the system work on
another platform or in another language and will it produce data that
retains its integrity when processed by a different system.

The many aspects of software systems from source code details
to high level managerial policy can all be tested. However, as the
maintenance programmer spends a lot of time dealing with other
people's code, we will look at some aspects of testing code.

190 Software Maintenance: Concepts and Practice

9.6.1 Testing Code

What constitutes a serious software bug? There are bugs that do not
cause the program to fail e.g. the program prints an instruction on the
wrong part of the screen. An interesting example is a Windows program
that uses the key sequence Alt+F4 for some common action. This could
cause untold havoc for its users because that is the sequence that closes
down most Windows programs. Yet it could be argued that it was not an
error in the program itself.

Code can be tested at many different levels - do individual
statements execute according to specification, do procedures provide
expected output for given input, does the program as a whole perform in
a particular way? Within this are many issues to be borne in mind. For
example, it is possible to execute each statement without touching upon
certain conditions. However, test cases should try to take account of all
possible conditions and combinations of conditions, with special
emphasis on boundary conditions and values where behaviour is often
erroneous.

9.6.1.1 Blac k Box and Whit e Box Testin g
In black box testing, the system acts as a black box - we don't see inside
it, we just see what goes in and what comes out. Test cases are derived
from the specification, and take no account of the internal operation of
the program.

In white box testing we 'see inside the box' and look at the detail
of the code.

A program giving the correct result to a black box test, is not
necessarily executing its code correctly. Similarly, a program statement
executing correctly does not mean that it conforms to its specification.

9.6.1.2 Structure d Testin g

An aim of structured testing is to maximise the number of errors found
by the test cases used and to avoid redundant test cases. Consider the
program that takes two integers as input and outputs their product,
39,600 different combinations could be tested and still miss some of the
boundary conditions. Redundant testing is inefficient.

Good and properly structured test cases are valuable entities.
They should be kept. Test cases should not just be invented on the fly

Testing 191

and discarded. This doesn't imply that everything must be formally
recorded, or that every test case for every program will be of lasting
value. But it is frustrating and counterproductive to find yourself sitting
at a terminal for hours creating test cases because the last person to test
this software didn't record what they had done. It saves a lot of time to
have a set of test cases, to know the circumstances in which they were
used, and what results they produced.

It seems obvious to say so, but you must know the expected
outcomes of each test case. If you don't, you won't know if you have
found a problem or not.

Testing should be planned by assuming that the program
contains errors. It's a very safe assumption to make, yet all too often,
testing strategies are built upon the premise that the program works.

9.6.1.3 Integratio n Testin g

Testing a program starting with tests of its elements and then combining
them to test larger elements is known as integration testing. A procedure,
function or module may work on its own, but fail to execute correctly
when tested together with other elements. Consider a function that takes
two numbers and returns the result of subtracting one from the other. The
order in which the numbers are supplied to the function is vital to correct
operation, but incorrect ordering won't necessarily show up until the
function is tested in conjunction with other elements of the program that
use it.

Testing program elements requires program stubs to be written.
These are small programs that execute the element under test. Program
stubs do not appear in the final product, but are in themselves a powerful
and reusable testing tool.

9.6.1.4 Regressio n Testin g

Testing finds errors and also checks that amended code has fixed the
problem. However, software has a tendency to instability. We have
discussed for example the ripple effect that modifications can produce.
Thus an amendment that fixes one error may introduce or reintroduce
others. Regression testing is the running of tests both to see that the
identified bug has been fixed and to check that other errors have not been
introduced.

192 Software Maintenance: Concepts and Practice

A set of regression tests can be built up to cover tests for every
bug ever discovered in a piece of code. These tests can then be run every
time the code is modified.

9.7 Verification and Validation
The verification and validation of software is key in building systems
that can be trusted. Verification, ensuring accuracy against an agreed set
of requirements and specifications, is largely what this chapter has been
about. Validation is external certification that a system can demonstrate a
level of compliance, perhaps to a legal requirement such as a specific
safety standard.

Carrying out verification and validation activities is not enough.
They must be documented. Without adequate documentation, it will not
be possible to demonstrate compliance (referenced in [51]).

The aims of verification and validation are to achieve better
systems i.e. systems with improved reliability, performance, quality and
cost effectiveness. Ratikin [234] provides guidance on essential
techniques in software verification and validation, showing also how to
reconcile conflicting demands e.g. of quality versus tight deadlines. The
impact on cost and scheduling of verification and validation processes is
a legitimate concern, and it is important to get the balance right.
However, undue criticism on grounds of cost should not be allowed to
shortcut necessary verification and validation work [10].

Verification and validation methodologies provide a robust
framework for the creation of quality software systems [279], and are
more effective when performed independently of the team building or
maintaining the system [89, 279].

A useful guide, as in many areas, is to look at the guidelines and
standards already developed [138, 139].

9.8 Test Plans
A test plan can vary from a short informal document to a multi-volume
series, depending upon the purpose for which it is intended.

Testing ! 93

The IEEE standard defines a test plan as

"A document describing the scope, approach, resources, and
schedule of intended testing activities. It identifies test items, the features

to be tested, the testing tasks, who will do each task, and any risks
requiring contingency planning."

[ANSI/IEEE Standard 829-1983 for Software Test
Documentation]

A test plan can either be a tool or a product [149 ch.12]

Kaner advises that a test plan whose purpose is to act as a tool is
"valuable ...to the extent that it helps you manage your testing project
and find bugs. Beyond that, it is a diversion of resources" [149 p.205].

Test plans can become products. A company taking over a large
software system with a view to maintaining it into the future will also be
interested in a test plan that will help them to do this. Developing test
plans as products may require strict adherence to specific specifications
e.g. military standards, and will require the same attention to detail and
clarity as full-blown user/system documentation.

Good test plans facilitate testing in many ways including:

 providing lists of useful test cases identifying such things as
boundary conditions and classes of test data. This improves
efficiency and means important test cases are less likely to
be missed.

 providing information on what the scale of the job is likely
to be and what resources will be needed.

 providing information to identify and prioritise tasks, thus
aiding organisation of the testing team and identifying roles
and responsibilities.

9.8.1 Points to Note

From test plans ranging from the very informal to the very sophisticated,
there are general points that hold true. These are largely a matter of
common sense, but forgetting them can waste inordinate amounts of time
and resources.

194 Software Maintenance: Concepts and Practice

Deal with errors and try out solutions one at a time. Otherwise
you won't know which error is causing the problem or which solution
fixed it or caused a further problem.

/ / it can happen, it will happen, and should be tested. Ill-
informed managers or software developers may become impatient at
tests of apparently 'unlikely' scenarios, but not taking account of these
can be very costly when things go wrong.

Don't test your own software. There are numerous examples of
the most glaring of problems overlooked because people have tested their
own code. The code writer's preconceptions get in the way. The creators
of the enigma codes in the 1930/40s provide a lesson software testers
would do well to heed. They relied upon statistical analyses as an
assurance of how un-crackable the codes were. Had they set teams of
people onto the task of cracking them, they may have realised sooner just
how vulnerable they were. [286].

The use of a good test plan can avoid these problems.

Exercise 9.2 Write a test plan for a program (of a reasonable size -
at least 100 LOC) that was not developed by you. If you
are undertaking a course that has involved a substantive
piece of software development, swap your code with a
fellow student and write test plans for each others code.
The originators of the code should study the test plans
produced for their code and discuss the strengths and
weaknesses. In particular, look for anything unexpected
that has come to light about your code.

Exercise 9.3 Look at the following case study. List all the problems
that concern error messages. Consider how these might
have been avoided and formulate some general rules
that would prevent these problems occurring in other
systems.

9.9 Case Study - Therac 25
This case study relates to incidents in the 1980's. The software system
problems it highlights were catastrophic in their effects, causing death
and injury. Had all the lessons been learnt, and had the problems
disappeared from the modern world of software, there would be no place

Testing 195

for the case study in this book. However, the underlying issues - for
example, testing, levels and means of communication, procedures for
follow-up of reported problems, technical issues and good programming
practice - are still relevant today.

The Therac Machines

The Therac-25 radiotherapy machine evolved from the less sophisticated
Therac-6 and Therac-20. The Therac-6 delivered only x-rays. Theracs-20
and 25 operated in both x-ray and electron mode. Put simply, these
machines could deliver either low dose or high dose radiation. The high-
dose beam was blocked so as to deliver a diffuse and not a concentrated
beam. The Therac-25 software was adapted from Therac-6 and used
subroutines from the Therac-20 to handle electron mode. Typical
therapeutic doses are around 200 rads for a single treatment. 500 rads
and above can be fatal.

A Chronology of the Problem Incidents

A hospital in Marietta, Georgia had been operating a Therac-25 since the
beginning of 1985. Other places had been using the machines since 1983.
In June 1985, a patient in the Marietta hospital complained of being
burnt during treatment. No fault could be found with the machine. The
manufacturer, when contacted, insisted that machine malfunction could
not be the cause. Nonetheless, the patient filed a lawsuit against the
manufacturer in the November. This was settled out of court with no
liability admitted. Littl e can be known for certain about this first
incident, but later reconstructions estimated that the patient had probably
received two doses of between 15,000 and 20,000 rads.

July 1985, in Ontario Canada, saw the next probable Therac-25
accident. The operator reported that when the machine was activated, it
shut down with a cryptic error message and indicated that no dose had
been delivered. Operators were accustomed to frequent malfunctions and
simply pressed a 'proceed' key to continue. Because of severe skin
reddening when the patient returned three days later, the machine was
taken out of service. Regulatory authorities and Therac-25 users were
informed that there was a problem, but were not told that a patient had
been injured. The patient died in the November of cancer, but the
autopsy revealed serious radiation overdose.

196 Software Maintenance: Concepts and Practice

The manufacturer could not reproduce the malfunction. They
suspected a hardware fault and made some changes, which they claimed
led to an improvement of 5 orders of magnitude.

Again, users were told there was a problem, told to make visual
checks and not to proceed if a certain series of error messages appeared.
Once again, however, they were not told of the injury to the patient.

Gordon Symonds, head of Advanced X-ray Systems at the
Canadian Radiation Protection Bureau led an analysis of the Therac-25
and listed four modifications necessary for minimum compliance with
the Canadian 1971 Radiation Emitting Devices Act. As well as the
hardware modifications that were made, the report said treatment should
be suspended, not just paused, on dose-rate malfunction, removing the
possibility of proceeding via the proceed key. In response to this, the
manufacturer decreased the number of tries from five to three, but the
recommended modification was still pending some months later when
further incidents occurred. Additionally, the manufacturer was asked to
install an independent system to verify the turntable position (to ensure
that an unblocked electron beam could not be delivered). This was not
done and the machine continued to rely on software verification alone.

In common with other machines, one in Yakima, Washington
was modified in response to the incident in Ontario. In December of the
same year, a patient developed severe skin reddening in a pattern later
shown to match the open slots in the Therac-25 blocking trays. The cause
was not attributed to the machine at the time, although the hospital later
contacted the manufacturer to ask if machine malfunction could have
been the cause. The reply was unequivocally that it could not. Many
technical reasons were given. On this occasion, the patient suffered
injury, but survived. It was later estimated that the accidental overdose
was substantially less than that in a more serious incident at the same
facility a year later.

Despite mounting evidence of fundamental problems, and
system modifications, the death toll was still to rise. In March 1986, an
accidental overdose in Tyler, Texas was investigated in detail. This
proved something of a turning point in unearthing the real problems.

Testing 197

The Tyler Incidents

Patient and machine operator are separated and usually communicate via
video and audio links. On the occasion in question, the video was not
turned on and the audio wasn't working.

The patient, who was half way through a treatment programme
and knew what to expect, knew at once that something was wrong. He
described the sensation as having a hot cup of coffee poured over his
back, and immediately started to get up to alert the operator.

The sequence of events was that the operator, who was
experienced with the machine, entered the patient's prescription details,
but typed Y for x-ray, instead of 'e' for 'electron'. This was a common
mistake because the majority of treatments were x-ray. She used the
cursor-up key to edit the entry to 'e'.

When she pressed the 'beam on' key to begin the treatment, the
machine displayed 'malfunction 54' and 'treatment pause'. Treatment
pause indicated a low priority problem, i.e. not serious enough to
suspend treatment. The dose monitor display indicated that 6 monitor
units had been delivered, as opposed to the 202 intended. It was later
established that, far from under-dosing the patient, the machine had
delivered between 16,000 and 25,000 rads.

The operator was accustomed to frequent malfunctions causing
the machine to pause, and did what she usually did in pressing the
proceed key to continue. The machine then paused again with the same
error and dosage messages. In fact, another huge overdose had been
delivered as the patient was getting off the table to report the first
problem. This time, the beam hit his arm.

Examination of the patient showed intense skin reddening, and
was initially put down to electric shock. The hospital physicist examined
the machine and found no apparent problem. He did not know the
meaning of the malfunction message because it was not detailed in the
documentation provided with the machine.

The day after the incident, the machine was shut down for
testing. A day of tests failed to reproduce malfunction 54. The
manufacturer reported that there had been no other similar incidents.

After further investigation, including testing for anything that
could have given the patient an electric shock, the machine was put back

198 Software Maintenance: Concepts and Practice

into service. About a week later - three weeks after the previous incident
- the next overdose occurred.

The same operator making the same error in inputting Y rather
than 'e', edited the prescription as usual and, when the machine indicated
ready, she pressed the 'beam on' key. The machine immediately paused
and showed malfunction 54. The audio link to the patient was working,
and the operator heard the patient shout for help. This patient had been
having treatment for a skin cancer on the side of his face. As a result of
the overdose - an estimated 25,000 rads - he died three weeks later of
acute radiation injury to the right temporal lobe of his brain.

The condition of the first patient worsened in the weeks
following the incident. He was admitted to hospital some weeks
afterwards with radiation-induced myelitis. Amongst many problems, he
lost the use of his left arm and both legs. Paralysis of his vocal cords left
him unable to speak. He died five months after the accident.

The hospital physicist took the machine out of service
immediately after the second incident and contacted the manufacturer.
He then began his own investigation. It was not easy to replicate the
conditions for a malfunction 54, but with the operator's help, he managed
it. Once he could reproduce the error, he began working out what
dosages the patients had actually received.

Finding the Error s and the Solutions

In the Therac software, completion of data entry was detected by the
presence of the cursor on the command line. It was possible for an
operator to move the cursor back up the screen, edit the entries, and
move it back down to the command line, without the edit being detected
by the software. The changes would not always go undetected. Speed of
data entry was a key factor. Even then, not all malfunctions were critical.
The real problem was the specific speed and sequence that left the
blocking trays open when the machine was set to deliver an electron
beam.

In May, the FDA took action and declared the Therac-25
defective under the Radiation Control for Health and Safety Act. The
manufacturer was ordered to inform all users, investigate the problem,
find a solution and issue a corrective action plan which would have to be
approved by the FDA. The manufacturer issued a temporary fix which

Testing 199

was in essence to instruct users to disable the cursor up key, so that data
could not be edited in the way that could cause the problem.

Between May and the end of 1986, a corrective action plan and a
revised version were produced, but the FDA was still voicing concerns
on several areas including the lack of a rigorous testing plan for future
modifications.

In January 1987, another patient was accidentally overdosed in
Yakima, Washington and died three months later. This accident was also
traced to a software fault, but a different one. Put simply, the program
used a particular variable to indicate whether or not everything was okay
to deliver a treatment. A zero value indicated okay. Any other value
indicated a problem and the treatment would be paused or suspended.
The variable was set to zero when everything was in place, but another of
the subroutines incremented it every time it executed. During machine
setup, this subroutine might be executed several hundred times. The
variable was stored in a single byte. Thus on the 256th increment, the
variable would overflow and become zero. If the operator pressed a
particular button at the point the variable overflowed, a setup problem
would not be detected, which is what happened in the second Yakima
incident, and led to the fatal overdose.

After this incident, the manufacturer was instructed by the
regulatory authorities in the USA and Canada to discontinue operation.

The corrective action plan went through several iterations and
included hardware as well as software safety features, correction of the
identified software bugs and logic errors, a means by which operators
could visually verify the positioning of the blocking trays, the provision
of meaningful error and dose rate messages, limiting of editing keys, a
type of dead man's handle to prevent unwanted changes, and updated
documentation.

Some Key Points

A lack of procedures for follow-up is evident even from the first
incident. Despite having a lawsuit filed against it, the manufacturer was
telling its customers for a long time afterwards (and even after further
incidents) that there were no reported problems. No law at the time
required reporting to regulatory authorities in the USA. This was
amended in 1990.

200 Software Maintenance: Concepts and Practice

Following hardware changes made after the incident in Ontario,
the manufacturer claimed improvements of 5 orders of magnitude. There
was no evidence to back this claim. They had not even been able to
reproduce the fault.

Staff at the Yakima facility were unable to mount an effective
investigation after the incident in December 1985. Documentation on
machine malfunction was inadequate, they were misled by an absolute
assurance backed up by much technical evidence that the machine was
not at fault, and were told that no similar incidents had previously
occurred.

It was Fritz Hager, the hospital physicist in Tyler, Texas, who
carried out a detailed investigation with the help of the Therac-25
operator. It was largely as a result of his work that the software errors
were discovered as soon as they were. Without his investigation, more
patients might have been injured or died.

The crib sheet supplied with the Therac-25 showed 'malfunction
54' to be a 'dose input 2' error, with no further explanation. What it
actually indicated was the delivery of a dose that was either too high or
too low.

The Therac-20 was tested once problems with the Therac-25
became known. It proved to exhibit the same software problem, but was
not a danger to patients because it incorporated mechanical interlocks to
monitor the machine and did not rely solely on software, as did the
Therac-25.

Where did the Fault Lie?

Software errors were undoubtedly a primary cause of the Therac-25
accidents, but software error alone was not the cause. As well as
technical problems at several levels - logic and programming errors -
there were managerial and procedural errors. There was no proper
process for follow-up of reported problems, no effective testing strategy,
as evidenced by the errors in the software and the lack of any plans for
testing future modifications. Testing problems were also evident in the
manufacturer's inability to reproduce the reported malfunctions. This
goes hand in hand with trying to base tests on the assumption that there
are no faults.

Testing 201

The absolute elimination of the software errors that could result
in fatal overdose was not then (and would not now be) possible.
However, the added safety features, including both software and
hardware, were successful in preventing further catastrophic failure for
the rest of the lifetime of the Therac-25.

Software is one component of a more complex system involving
hardware, users, managers etc. This dimension should always be borne in
mind. A serious operational error is unlikely to be just a software error. It
wil l be a combination of many things. Even a software error, or the
software component of the error, is rarely an explicit coding error. The
Therac-25 is a notable exception, where a coding error can be said to
have led to fatalities. However, even here the situation was far more
complex involving errors at many levels including in design decisions,
managerial decisions and quality assurance procedures.

Exercise 9.4 Reports and analyses of the Therac-25 incidents are
easily obtainable. The case study given earlier is a brief
summary. It does not cover, for example the true extent
to which the users were key in unearthing the problems,
nor does it go into any depth on the issue of reuse of
software subroutines from the earlier versions of the
software. Other well-documented events are the
cracking of the enigma codes in the 2nd world war
[286] and the failure of the Ariane 5 spacecraft, flight
501 in 1996 [8]. Choose one of the following to
investigate in depth:

 Concentrating on the users of the systems, compare
the roles played by the users of the enigma
machines (code creators and code breakers) with
the role played by the users of the Therac machines.

 Compare the reuse of software subroutines, and the
problems this caused, in the Therac-25 machine and
the Ariane 5 spacecraft.

9.10 Summary
The key points that have been covered in this chapter are:

202 Software Maintenance: Concepts and Practice

 We test software because we cannot prove it. The purpose of testing
is to find errors.

 A tester not only finds, but also prioritises errors. Not all bugs can or
should be fixed.

 It is important to design tests that find the maximum number of
software bugs without expending resources on redundant tests.

 There are many ways of categorising software testing and many
different strategies for testing. The "best" test strategy is usually a
mix of several techniques.

 Test plans can facilitate efficient and effective testing.

We have now looked at what happens during maintenance and
how software is made to evolve. However, we have not considered in
depth the issue of whether or not a change should be carried out. The
management and organisational side of this question is the subject of the
next chapter.

10

Managemen t and Organisationa l issue s

"Characterising and understanding software maintenance
processes and organisations are necessary, if effective management
decisions are to be made and adequate resource allocation is to be

provided. "

Briand, Kim, Melo, Seaman & Basili [46]

This chapter aims to

1. Explain the criteria for choosing the right calibre of maintenance
personnel.

2.Distinguish between the qualities of development and maintenance
staff.

3. Describe ways of motivating maintenance staff.

4.Discuss approaches that can be used to increase maintenance
productivity.

5.Explain the concept of a maintenance team and its importance.

6.Distinguish between the types of team, their strengths and
weaknesses.

7.Explain the importance of educating and training maintenance
personnel.

8.Discuss the different organisational modes for maintenance
activities.

203

204 Software Maintenance: Concepts and Practice

9.Describe the types of education and training programmes available
to maintenance personnel.

10.1 Introduction
During the very early days of Information Technology, when computers
were very expensive and less powerful than they are today only large
organisations and a few individuals used them to write programs. These
were usually small programs aimed at performing relatively simple tasks,
and as such, could be maintained by individuals. As the computer's
capability soared and price fell, it become available in a wide variety of
work settings. One of the consequences was that the demand for complex
software systems became commonplace. This led to a radical change in
the context in which software was developed and maintained. In turn,
this implied a need for radically different management and organisation.
In effect, there has been a shift of emphasis in software maintenance; that
is, a transition from small special-purpose programs - e.g. mathematical
functions - to very complex applications - e.g. real-time systems and
embedded systems; and from one-person tasks to team tasks (i.e. to
project level) primarily because the complexity surpassed that which
could be managed by a single individual [42].

The outcome of these changes is evident in the problems of the
software crisis. The demand for high quality sophisticated software
systems far outstrips the supply of such systems. The net result is that
management-related issues have taken on a greater significance, as has
the organisation of activities so as to deliver the goods. The management
of personnel and the organisation of maintenance tasks relates closely to
the equivalent activities in development projects. Nonetheless, there are
significant differences. Management in maintenance can be viewed in
terms of managing change in the software system and managing
personnel. The management of change is the subject of chapter 11.

This chapter is aimed at providing an overall context for
personnel management with respect to the required qualities,
motivational factors, team dynamics, improving productivity and
provision of adequate education and training. It is also the aim of this
chapter to discuss the different approaches that can be used to organise
maintenance tasks.

Management and Organisational Issues 205

10.2 Definitions
Management - the act or art of exercising executive, administrative and
supervisory direction.

Team workin g - a number of people associated together in carrying out
a task.

10.3 Management Responsibilities
Small systems that can be developed and maintained single-handedly,
and that usually have short life spans, are of no interest to us; their
successful operation does not need any significant management control.
Large and complex software systems are the ones that present challenges
for management because:

 they form an integral part of an organisation,

 their ability to evolve is at the heart of their operation, and

 their maintenance requires the services of large numbers of
personnel.

With such complex software systems, the role of maintenance
personnel is central to their successful operation. It is the job of
management to enable maintenance personnel to live up to this
expectation. In this respect, management has the responsibility of
ensuring that the software system under maintenance is of a satisfactory
quality, and that desired changes are effected with the minimum possible
delay at the least possible cost. This can be achieved by:

 devising a means of managing maintenance personnel in order to
increase their productivity, ensure job satisfaction and improve
system quality, all of which can be facilitated through choice of
personnel, motivation, a suitable team structure and education and
training;

 selecting a suitable way of organising maintenance tasks so as to
increase productivity, control maintenance effort and cost, and most
importantly deliver a high quality system. This depends very much
on the organisational modes employed for maintenance tasks.

206 Software Maintenance: Concepts and Practice

10.4 Enhancing Maintenance Productivity
It is an aim of management to maximise productivity. There are several
ways in which this can be done. It is a management task to find the right
people for the job, then to see that they are motivated, and given the
necessary information and resources to do the job well. It is incumbent
also upon the management team to equip itself with sufficient knowledge
of the area it is managing.

10.4.1 Choosing the Right People

The COCOMO analysis of 24 maintenance projects and 63 development
projects [35] indicated that the single most important factor in increasing
productivity is to get the right people for the job. This means tackling the
problem of low status of maintenance personnel and working towards
improving the general image of maintenance work, an image not
enhanced by the low status and low financial rewards traditionally given
to maintenance staff. Another way of attracting high calibre people to
maintenance work is by tying the overall aims of the organisation to the
aims of maintenance [36]. It should be noted that the model referenced
above has been refined by COCOMO II [37] and a number of extensions,
but the results in terms of personnel remain the same.

Choosing the right people for the job in terms of specific skills
and experience is only half the story, Once a team is in place, the single
most important factor influencing productivity is motivation.

10.4.2 Motivating Maintenance Personnel

In the overview of this section of the book, the problem was posed of
possible loss of experienced personnel. A team should never be solely
reliant on one or two "stars" whose loss would cause the enterprise to
collapse. Nonetheless, it is hard to overestimate the value to a team of its
experienced personnel. A motivated team is far more likely to stay. In the
problem posed, serious consideration should be given to allowing the
experienced team to take on the new project. The up-front costs of
employing new experienced personnel may be greater, but the long-term
investment wil l be worthwhile. Keeping the team means their experience
of the old project is still available, even if they are not working directly
on it.

Management and Organisational Issues 207

Software maintenance still has an image problem. As a result,
management has a much more difficult task motivating maintenance
personnel than motivating development personnel. Attitudes of
management can affect the quantity and quality of work that subordinates
achieve, and the way that work is completed [57].

Some ways of motivating personnel are through rewards,
appropriate supervision, assignment patterns and recognition:

 Rewards: Maintenance work often requires extraordinary bursts of
effort, for example to keep operational a vital system that crashes
unexpectedly, to add in extra functionality to tight deadlines, to
'rescue' commercial credibility. It is important that maintenance
personnel feel valued and rewarded for their hard work. One
intuitively thinks of reward in financial terms - the one-off bonus
payment for a particularly good piece of work. However, ill-thought-
out bonus schemes can be counter-productive. A structured reward
system such as promotion is often more effective. If someone is
capable of good enough work to earn bonus payments, he or she is
likely to be someone worth retaining in a maintenance team.
Promotion brings not only financial reward, but also enhanced status.
It is a statement of confidence in a person, it allows them to feel
valued and that their efforts are recognised. It engenders loyalty to a
team far more than the one-off bonus system. Good maintenance
programmers can easily be poached by promises of better bonuses.
Status, recognition, and a good working environment, however, are
not so easily duplicated. Never underestimate the value of a good
maintenance team. Lower basic pay and one-off bonuses may look,
to the paymasters, like a more effective deal than steady salary
increases, but reducing staff turnover by retaining good people saves
enormous amounts of money. Consider this in the light of program
comprehension and the costs involved.

A maintainer can master a system so well that the operation of the
system revolves around him or her. In such cases, it becomes
difficul t to move the maintainer elsewhere in the organisation. This
may or may not prove problematic and can be dealt with by choosing
a suitable organisational mode (see section 10.7).

 Supervision: It is not always possible to have highly experienced
maintenance staff. There is a need to assign inexperienced staff to

208 Software Maintenance: Concepts and Practice

maintenance tasks. It is essential to ensure that they get the right
level of technical supervision and support from senior members of
staff, otherwise they become demotivated through attempts to
accomplish tasks beyond their skills and expertise.

 Assignment patterns: From time to time it is important to rotate
maintenance personnel between maintenance and development tasks.
One advantage is that they do not feel stuck with the maintenance
tasks. Secondly, their maintenance experience can help them develop
more maintainable systems.

 Recognition: Getting proper acknowledgement for the very real
benefits that maintenance brings to an organisation [7] can assist
maintainers to recognise their importance within the organisation.

 Career structure: Providing an effective maintenance career
structure equivalent to that for development will help to engender a
culture where maintenance is seen as a valuable activity by staff and
management. It is important also that maintenance is viewed as an
activity that enhances the assets of a company and not just as a drain
on resources.

The problem is often not that the relevant motivating factors are
absent, but that they are not visible. It should be a management aim to
improve the image of maintenance work to make these factors more
apparent and thus attract high calibre personnel. Also central to
motivation is the ability to ensure effective communication between
management and personnel.

10.4.3 Communication

It is important that management keep maintenance personnel informed. If
staff are unaware of what the procedures are, for example for document
control, and why they have been put in place, they will be unable to
follow them effectively or give competent feedback on problems
associated with them. Information must flow in both directions in order
that the maintenance process may be properly controlled, and
information may be gathered on the processes carried out so that benefits
may be documented and quantified.

This means, in essence, that maintenance personnel must give
management information on progress 'at the coal face' in order that the

Management and Organisational Issues 209

management process can be effective. Note, however, that it is for
management to put in place the framework needed for effective
communication.

10.4.3.1 Adequat e Resource s
Resources can be viewed in terms of tools - software and hardware - and
working environment. In a study of maintenance programmers, they put
state-of-the-art software tools at the top of their list of things most likely
to increase productivity. It is important that investment in tools for
maintenance is not secondary to investment in tools for development as
this gives a clear signal of the perceived relative status of the two
activities.

The issue of investing enough in maintenance staff also includes
employing the appropriate number of staff. Over-stretching too few good
people can lead to dissatisfaction with the working environment.

It is incumbent upon management to be aware of new
developments in the field. Otherwise their managerial authority can stifle
innovation at a lower level which will lead to a dissatisfied team. The
morale of a team that wants to work with state-of-the-art tools and
techniques but cannot is unlikely to be high. Perceived low status is also
one of the reasons for the high turnover of staff - especially skilled
personnel - in maintenance jobs.

10.4.3.2 Domai n Knowledg e

Managers, in order to be effective, must have adequate knowledge of the
maintenance process. In particular, they need to be aware of the cost
implications of the various maintenance stages in order to be able to
guide the maintenance process effectively. For example, management
needs to know that the analysis of existing code is one of the most
expensive phases. This area is covered in detail in Chapter 6. Without
this knowledge, it is difficult to make effective decisions as to how to
tackle problems or how best to invest resources.

Exercise 10.1 You are a maintenance manager with the task of
persuading top management to increase the budget for
the maintenance department. In drawing up your report,
what are the points you would emphasise in trying to
achieve your aim?

210 Software Maintenance: Concepts and Practice

Exercise 10.2 High calibre personnel would rather do software
development work than software maintenance work.
Explain why this is so and how, if you were a
maintenance manager, you would try to attract high
calibre people to work in your department.

10.5 Maintenance Teams
The structure of the maintenance team itself is an important factor in
determining the level of productivity. For example, a team where
personnel are constantly changing will be bad for productivity because of
the lag time involved in bringing new staff up to speed on a project.

Two types of team commonly used in development are egoless
programming and the chief programmer team [187, 191].

The egoless programming team is an organisational structure of
individuals whose operation is based on the philosophy that everyone
involved in a project should work together to develop the best possible
software system. It requires a collegiate setting where team members are
open to criticism and do not allow their ego to undermine the project
objective.

The chief programmer team imposes an organisational
structure in which discipline, clear leadership and functional separation
play a major role [14]. Its objectives are to organise software
maintenance into clearly-defined tasks, to create an environment that
promotes the use of state-of-the-art tools, and to ensure that at least two
people understand every line of code. It differs sharply from egoless
programming in the lack of a comparable level of democracy.

These two well-known team types can be deployed in software
maintenance. The major difficulty is that software maintenance tends to
be change-driven without the overall timetable and budget considerations
given to development projects. The maintenance process is initiated
when there is a change to be made. This change may be too small to
warrant the services of a team. At other times though, there could be a
request for a major maintenance task thereby justifying a team effort. To
address the differences, Martin and McClure have suggested two types of
maintenance team: the short-term (temporary) team and the long-term
(permanent) team [187].

Management and Organisational Issues 211

10.5.1 Temporary Team
A temporary team is created on an informal basis when there is a need to
perform a specific task, for example a code review. The programmers
work together to solve the problem at hand. Leadership is not fixed; it
rotates between the team members. The main problem with this
arrangement is that program quality, programmer morale and user
satisfaction can be compromised.

10.5.2 Permanent Team
A permanent team is a more formal arrangement. It allows for
specialisation, creates communication channels, promotes an egoless,
collegiate atmosphere, reduces dependency on individuals and allows for
periodic audit checks. This team is created on a permanent basis to
oversee the successful evolution of a software system throughout its
lifetime. The team consists of a maintenance leader, a co-leader, a user-
liaison person, a maintenance administrator and other programmers.

The maintenance leader provides technical support to the whole
team. He or she is responsible to the maintenance administrator. The co-
leader is an assistant to the maintenance leader. The user-liaison person
is charged with linking the users and the maintenance team. The
maintenance administrator is the administrator with a range of
responsibilities such as hiring, firing and promotion of staff. The
maintenance programmers perform problem diagnosis and implement
change under the supervision of the maintenance leader.

It is worth pointing out that regardless of the maintenance team
adopted, it is important for it to have a mix of experienced and junior
personnel. To this end, it is incumbent upon management to take positive
steps towards encouraging high calibre people into maintenance work.

10.6 Personnel Education and Training
The personnel of an organisation are central to its successful operation.
Their full potential and contribution, however, may be undermined by
the lack of an appropriate level of education and training. Education and
training in software maintenance is a traditionally neglected area. Few
software engineering degrees even devote a full lecture course to the
topic and training has tended to be ad hoc. However, there is evidence
now of a changing trend. A growing academic market for textbooks

212 Software Maintenance: Concepts and Practice

aimed at degree level and beyond is becoming evident. Note, for
example, the need implied by the production of this book. A few
Universities, for example the University of Durham, UK, and the
University of Maryland, USA, devote a significant proportion of their
degree programme to maintenance issues [26]. In this section the
objectives and strategies of software maintenance education are
discussed.

10.6.1 Objectives

10.6.1.1 To Raise the Level of Awareness
Maintenance personnel need to understand the processes and procedures
of maintenance - especially the key differences and relationship between
development and maintenance - in order to be able to do their job
effectively. The reasons for this are as follows:

 From a management perspective, maintenance managers must
understand the specific needs of the maintenance environment in
which they operate, for example to recognise the need to set
attainable goals in a field which is notorious for the imposition of
unrealistic deadlines. Failure to meet deadlines can be demoralising
and can impede future productivity. A thorough appreciation of the
issues concerned with maintenance can assist in better management -
planning and control - of maintenance activities.

 From a maintenance programmer's point of view, it is important for
the programmer to recognise that maintenance is not just a peripheral
activity in an organisation, it is at the heart of the organisation's
functioning. This is a key point and needs to be recognised as such.
The more highly computerised an organisation is, the more vital is
recognition for this. Remove maintenance as a key activity from an
organisation like a bank or a Stock Exchange, and the effect would
be catastrophic.

 In circumstances where inexperienced staff (e.g. newly recruited
graduates) are assigned to maintenance jobs, it is not uncommon for
them to notice that the task they are working on is remote from what
was taught to them in University or College courses. Intensifying the
level of software maintenance concerns in software engineering-
related courses in Universities and Colleges can significantly

Management and Organisational Issues 213

improve the maintenance skill levels of computer science and
software engineering graduates.

" Despite recent improvements, software maintenance still has an
image problem. One of the reasons for this is lack of understanding
of what software maintenance really is; it is often perceived as
simply effecting corrective change. It is important to enlighten those
- directly or indirectly - concerned with software maintenance to
recognise the activity in its true light.

10.6.1.2 To Enhance Recognition
In organisations whose operation depends on the successful evolution of
their software systems, it needs to be recognised within the management
structure that maintenance is a vital and valuable activity. When carried
out effectively it can ensure successful running of systems and lead to
increased customer satisfaction [170].

10.6.2 Education and Training Strategies
There are a number of ways in which the education and training of
maintainers can be undertaken. These include University education, in-
service training, self-tuition, conferences and workshops.

 University education: A large number of Universities currently run
courses in software engineering, most of which touch upon software
maintenance issues. Considering the increasing importance of
software maintenance in industry and academia [9, 282], it is
important that software maintenance be elevated from just a 'tag-on'
to software engineering to a fully fledged course or be integrated
fully within the software engineering course. This is particularly
important for graduates who intend to pursue a career in
programming. The trend in this respect is in the right direction.

 Conferences and workshops: Attending conferences and workshops
nationally or internationally - e.g. those organised by bodies such as
the IEEE Computer Society (http://www.computer.org/) and the
Durham Research Institute in Software Evolution
(http://www.dur.ac.uk/CSM/) - offer maintenance personnel the
chance to meet others with similar experiences. One of the
advantages of such meetings is that the delegates can exchange ideas
and identify areas for future collaborative work. One of the

214 Software Maintenance: Concepts and Practice

drawbacks is that due to the high cost, it may not possible for every
member of a maintenance team to gain such exposure.

 Hands-on experience: No matter what level of education and formal
training software maintenance personnel receive, it will only be
reinforced by having the opportunity to do real maintenance work on
large software systems. This remains the most valuable way to
acquire the appropriate level of knowledge and skill required to
undertake successful software maintenance.

10.7 Organisational Modes
After having settled on the type of team to deploy, the next concern is
organisational mode. There is a choice between combining development
and maintenance activities or having a separate department. The decision
to separate or combine the activities depends on factors such as the size
of the organisation and the maintenance portfolio with which it has to
deal. Large organisations which have a wide range of products and large
capital reserves can afford to finance two separate departments. If there
is a large software systems portfolio to maintain alongside other develop-
ment projects, there would be an expectation that there would be separate
departments. In practice, however, many organisations combine
development and maintenance activities.

The following sections look at the different modes of organising
maintenance activities in more detail.

10.7.1 Combined Development and Maintenance
The combination of development and maintenance activities may depend
on the type of change (change ownership), program modules (module
ownership), activity domains (W-Type), application domains (A-Type)
and life-cycle phase (L-Type).

10.7.1.1 Module Ownership
The module ownership mode requires that each member of the

team is assigned ownership of a module. The owner of a module is
responsible for effecting any changes that need to be implemented in that
module. The main advantage with this mode of organisation is that the
module owner develops a high level of expertise in the module. Its
weaknesses are:

Management and Organisational Issues 215

 Nobody is responsible for the overall software system.

 The workload may not be evenly distributed.

 It is difficult to implement enhancements due to unknown
dependencies.

 It is difficult to enforce coding standards.

10.7.1.2 Chang e Ownershi p
In the change ownership mode each person is responsible for one

or more change no matter which modules are affected. That is, the person
is also responsible for the analysis, specification, design, implementation
and testing of the change. The strengths of the change ownership mode
are:

 There is a tendency to adhere to standards set for the whole software
system.

 Integrity of the change is ensured.

 Changes can be coded and tested independently.

 Code inspection tends to be taken seriously.

Its weaknesses are:

 Training of new personnel takes much more time than it would for
the module ownership mode. This is primarily because knowledge of
the entire system is required.

 Individuals do not have long-lasting responsibilities, but instead have
a series of transient responsibilities.

10.7.1.3 Work-Typ e

The key feature of Work-Type mode is that there is
'departmentalisation' by work type; analysis, specification, etc. Those in
the different departments work as a team but with clearly defined
responsibilities and roles. The main strength of this arrangement is that
members in each department develop specialised knowledge and skills.
The drawback is the cost of co-ordinating the different departments.

216 Software Maintenance: Concepts and Practice

10.7.1.4 Application-Type
With the Application-Type mode, division is based on

application areas such as health information systems or office
automation. The advantage with this mode is that members of the team
develop specialised application knowledge. Like the Work-Type mode,
its drawback is the cost of co-ordinating of the various application
domains.

10.7.2 Separate Maintenance Department

This mode of organisation requires a separate maintenance department. It
is based on the need to maintain a large number of system portfolios, and
the increasing business need of keeping software systems operational at
all times.

Its strengths are:

 There is clear accountability.

 It allows development staff to concentrate on development of new
software systems.

 It facilitates and motivates acceptance testing just after development.

 It encourages high quality end-user service.

Its weaknesses are:

 There is a danger of demotivation due to status differences (see
earlier discussion).

 The developers tend to lose system knowledge after the system is
installed.

 There is a high cost involved in the co-ordination of development
and maintenance when needed.

 There may be duplication of communication channels.

In the cases where there is a separate maintenance department,
some organisations take measures to minimise the effect of the
dichotomy by providing the maintenance team with support. This support
can be provided by assigning some members of the development team to
join the maintenance team on installation of the system. Lientz and
Swanson have called these members the maintenance escort [176]. This

Management and Organisational Issues 217

is usually a temporary measure; the maintenance escorts return to
development work after ensuring that the system functions according to
the agreed specification. At times, the maintenance escorts may become
permanent members of the maintenance team by virtue of their
familiarity with the system during its development.

Exercise 10.3 Software maintenance is a traditionally neglected area
in computer science and software engineering degree
courses. Say why the differing environments of the
University degree course and the industrial maintenance
department could have been a major cause of this
neglect.

10.8 Summary
The key points that have been covered in this chapter are:

 A major software maintenance management responsibility is control
of personnel issues.

 Software maintenance productivity may be enhanced by choosing
the right people, motivating them and giving them adequate
resources to do the job.

 Tackling the problem of low status of maintenance personnel and
working towards enhancing the general image of maintenance work
is largely a task for those responsible for educating and training
maintenance personnel.

 A good maintenance team is a very important and valuable asset to
an organisation.

 The need for education and training is paramount and education
strategies are gradually changing to become more appropriate to
maintenance issues.

Software maintenance is a complicated business that dwarfs
software development in terms of the complexities of looking after
multiple versions, supporting users and prioritising tasks. Without some
structured means of keeping track of it all, it would be impossible to
manage, and impossible to know for certain that the job was being
carried out effectively. These issues form the basis of the next section of
the book.

PART III: Keepin g Track of the Maintenanc e
Proces s

Overview
Maintaining software is a complex field and it is not easy to keep track of
everything that is happening. Nonetheless, it is vital to do so. In this part
of the book, we look at how to keep track of all the complexities of the
maintenance process and, related to this, how to be sure that what we are
doing is effective.

 Configuration Management

IT systems grow and change. The more successful a system, the better
used it wil l be and the more it wil l evolve. Uncontrolled change leads to
less order within a system and eventually to a system that is so degraded
and disordered it can no longer change. With software at the heart of so
many systems in the modern world, it is ever more vital that software
change and evolution is controlled so that systems can grow in
functionality and usefulness, rather than defaulting to an uncontrolled
slide towards disordered complexity.

Even if you will never be called upon to take charge of the
management of complex software change, you need a good
understanding of what controlling software is all about. It will underpin
much of what you do and the decisions you make as a maintenance
programmer.

219

220 Software Maintenance: Concepts and Practice

 Maintenance Measures

The development of good, maintainable systems is a laudable aim, but
what exactly does good and maintainable mean? How can you judge if
one system is better than another? Measures such as user satisfaction are
important, but not always enough. "The users like system A better than
system B" does not mean that system A is necessarily a better system. It
might collapse irretrievably at the next attempted upgrade, making the
users perforce switch their allegiance to system B. On the other hand,
well-structured, maintainable code does not automatically mean great
'look and feel' and high user satisfaction. The issues are related, but not
the same.

In striving to build 'good' systems, maintainability is a key
factor. A maintainable system has a~ chance of being developed into a
good system. A non-maintainable system has nowhere to go.

The ideal would be to judge systems by a maintainability factor
- a meaningful and rigorously calculated measure that would apply to all
software and give a true measurement of how maintainable it was. As
yet, no-one has figured out a way of doing this. Maybe they never will ,
but that doesn't mean that we can't measure software. We can, and the
understanding of how software measures can be applied is key in
building up an in-depth understanding of how software systems evolve.

Discussion Points
These points are intended to stimulate thinking and discussion on
fundamental issues in software maintenance. The issues raised are
explored in the chapters of this section, but it is a beneficial to think
around these areas and try to draw conclusions yourself, before looking
for answers in the text.

 The Paper Trai l

The following example is of people facing a situation where the right or
wrong decision is not immediately obvious. Think through the issues, the
underlying ones as well as the superficial. Analyse if and where these
people are getting it wrong, what they might have done better and how
they might be motivated to get it right.

Keeping Track of the Maintenance Process 221

Programmer A has been maintaining system X since it was developed. A
major upgrade is to be undertaken, and new programmers are being
brought in to work with programmer A.

Programmer A is discussing with his manager how best to spend the time
remaining before the new team starts. There are one or two minor
modifications that users have requested. These will not take long, and
could be cleared up before the new team arrives, thus giving it a clean
start. On the other hand, a couple of minor straightforward modifications
might be just the thing to get the new programmers familiar with the
system. Programmer A feels he should use the time to comment the
existing code and bring the system documentation up to date. Being the
sole maintainer, he has been a bit lax at times. His manager thinks that
getting started on documenting the requirements for the major upgrade
might be a better use of the time, to give the new team a flying start. The
old code will eventually be ported to another language. Is there any point
in updating its documentation? If there is any catching up of paperwork
to be done, programmer A could update his QA backup forms - the
forms that all personnel are expected to keep to show how, when and
where electronic data is backed up. Programmer A defends his position
of keeping his own personal records as he is the only one with access to,
or ability to use, the data he has responsibility for backing up.
Furthermore, he points out, the whole system will be changed when the
new team starts. The manager agrees, but points out that a QA review
would still put a black mark against the non-existence of this paperwork.

They debate the pros and cons. What is to be gained or lost by the timing
of each of the suggested tasks?

 Hidden Benefit

As part of a job interview, Candidate A and Candidate B are given a
programming task. They must make a simple modification to a piece of
software. The system comprises tens of thousands of lines of code. There
is insufficient time to tell them the details of what the system does. All
they know is that at certain identifiable points, the code makes a 5%
adjustment to a total. For the new version, the adjustment must be 7.5%
under one set of conditions, 3% under another, and must stay at 5% for
the rest of the time.

Candidate A's objectives are speed and the least possible
modification of the source code. The points that might require

222 Software Maintenance: Concepts and Practice

modification are easily identifiable. Constants within the existing code
already exist for the values 3, 5 and 7.5. Candidate A uses these, adds
conditional statements only at the places where the new conditions could
occur and turns in a working version that requires littl e new compilation.
Together with this, Candidate A makes the recommendation that the
modification be re-done when time allows, such that the calculations are
no longer reliant on the constant values, and the testing of conditions
expanded to include all possible points.

Candidate B's objective is to make the modification in a
reasonable time, but with due regard to code structure. This involves
removal of any use of constant declarations. The required values wil l be
read in from an external table. Conditional statements are placed at all
identified points, on the grounds that even if this modification does not
require it, a future one might. Together with the working version,
requiring full recompilation, Candidate B turns in a recommendation that
the objects subject to these percentage shifts be better encapsulated, such
that calculations are invisible in the main source code, and that the
conditional statements themselves are no longer necessary.

When required to argue for their own solution against the other
candidate's, A claims to have demonstrated the ability to perform a quick
and workable amendment. Preventive maintenance, by way of code
amendment, can easily follow when time allows. This solution gets a
working version back on the clients' desk in the quickest time. Although
not the best structured code, speed of delivery might give a commercial
advantage.

B says that A has taken this argument too far. There might be
need for another quick fix before the necessary preventive maintenance
can be done. A quick-fix on top of A's solution might, for example,
change the value of one of the constant declarations with catastrophic
effect. B claims a solution that, although not perfect, has provided a
working system in a reasonable time and one that can bear the weight of
another quick-fix without disastrous results.

Try to argue the case from both sides, and see if you can make a
convincing case for employing either candidate.

11

Configuratio n Managemen t

Good practice comes down to common sense, but if it were as
easy as it sounds, far fewer projects would get it wrong.

This chapter aims to

1.Describe what configuration management is and the major
processes that make it up.

2.Discuss configuration management as vital to the integrity of the
end product.

3.Define change control and explain its role in configuration
management.

4.Explain the role and importance of documentation in maintenance.

5.Give examples of software support tools.

6.Explore some differences between configuration management in
software maintenance and in software development.

11.1 Introduction
Configuration management is a means of keeping a hold of the process
of software change, and of having confidence in the implementation of
change. Configuration management looks at the overall system process
and its constituent parts down to a certain level of detail. Below this
level, we enter the realms of software measurement which is covered in
the next chapter.

223

224 Software Maintenance: Concepts and Practice

As we have seen, software maintenance consumes up to 75% of
the total life-cycle cost and is by far the biggest concern of those who
develop and maintain commercial software. At the heart of maintenance
is an evolving software product.

In the field of software engineering, there is an added
complication when dealing with system configuration and change. This
is that the software component of the product which is released is in the
form of executable code whereas the corresponding 'product' within the
supplier organisation is source code. This source code is the
representation of an executable equivalent, but which one? Source code
can be modified without there being any effect upon executable versions
in use and, if strict controls are not kept, the source code which is the
exact representation of a particular executable version may no longer
exist. Additionally, source code alone is insufficient documentation to
enable understanding of the system, as is explored fully in chapter 6, and
tight documentation controls are necessary.

The means by which the process of software development and
evolution is controlled is called configuration management. When so
much hangs on a continually changing product, it is vital that the process
of change be controlled. Without proper control, we cannot keep a
handle on what the product is or does. Configuration management in
software maintenance differs from configuration management in
software development because of the different environments in which the
activities are carried out. Software maintenance is undertaken in the
environment of a live system in use by a probably large user base.
Potential effects upon a live system are much more immediate than those
upon a system still under development.

Control of the process of change in the software industry has
been less rigorous than in other engineering disciplines. Yet without
control, product integrity is lost. Suppose that a customer reports a bug in
a software system. In order to address this situation, to assess the severity
of the problem, it is necessary to know which product the customer is
using. The executable code that the customer is running must be matched
with the appropriate source code. This is not always going to be possible
if changes and updates to the software have not been properly controlled.
Maybe the source code for this version (and perhaps several subsequent
versions) was not kept. Perhaps the bug is a serious one and perhaps the
customer cannot upgrade to the current version; it may be inappropriate

Configuration Management 225

for the customer's hardware. A serious bug may be costing the customer
money in lost business. Who will pay ultimately? A court may well
decide that it was unforgivably lax on the part of the software supplier to
fail to keep the necessary information on a live system. The lack of
control may cost the software company dear and may even put it out of
business.

Putting procedures in place for the effective control of software
maintenance has an attached cost. However, any short-term saving from
neglecting to install such procedures is very soon wiped out when
problems occur.

11.2 Definitions
Baseline - The arrangement of related entities that make up a particular
software configuration. Any change made to a software system relates to
a specific baseline. Baselines can be defined at each stage of the software
life-cycle, for example functional baseline, design baseline, product
baseline, etc.

Change - the act, process or result of being altered.

Change control - keeping track of the process of making a modification.

Configuration - A mode of arrangement, confirmation or outline; the
relative position of the component parts of a system, for example the
relative positions of the stars and planets in the solar system.

Configuration management - "The discipline of developing uniform
descriptions of a complex product at discrete points in its life-cycle with
a view to controlling systematically the manner in which the product
evolves" [200].

Software change control - keeping track of the process of making
modifications to a software system.

Software configuration - The current state of the software system and
the interrelationship between the constituent components. These would
typically be the source code, the data files and the documentation.

Software configuration management - Configuration management
related specifically to software systems.

226 Software Maintenance: Concepts and Practice

Software documentation - the written record of facts about a software
system recorded with the intent to convey purpose, content and clarity13.

Varian t - Source and object specialised to different platforms. For
example, Microsoft Word for Windows for the PC and Microsoft Word
for Windows for the Macintosh are variants of the same product.

Version - A version represents a small change to a software
configuration. In software configuration management terms one refers to
versions of a given baseline rather than dealing with a proliferation of
baselines.

Version control - Keeping track of baselines, versions of baselines and
the relationships between them.

11.3 Configuration Management
Configuration management was established as a field in its own right in
the 1950's with the primary purpose of guaranteeing reproducibility of
products. It is now recognised as an activity that is critical to the
management and maintenance of any large system, including one that is
software based.

:ionUsing the definition given in the previous section, configurat
management activities fall into four broad categories:

1. The identification of the components and changes;

2. The control of the way the changes are made;

3. Auditing the changes - making the current state visible so that
adherence to requirements can be assessed;

4. Status accounting - recording and documenting all the activities
that have taken place.

Depending upon the size of the organisation there might or might
not be someone with sole responsibility for configuration management.
In a large organisation, there might be a configuration management team
with a configuration manager. In a small organisation, the duties of a
configuration manager might be taken on by others along with other

Adapted from Tausworthe's definition of 'concurrent documentation' ([264], pp.32-9).

Configuration Management 227

duties. But however the task is organised, it is the same job that needs to
be done.

Al l components of the system's configuration are recorded along
with all relationships and dependencies between them. Any change -
addition, deletion, modification - must be recorded and its effects upon
the rest of the system's components checked. After a change has been
made, a new configuration is recorded. There is a need to know who is
responsible for every procedure and process along the way. It is a
management task both to assign these responsibilities and to conduct
audits to see that they are carried out.

A programmer, for example, might make a modification to a
software module in accordance with instructions received. Another
programmer requiring this modification for interface to another module
might, if unaware of the work already done, redo the modification.
Similarly, if the first programmer is unaware of the wider requirements,
he or she might make the modification in a way that is inappropriate to
other modules which depend upon it. It is the programmer's job to
program. It is a management job to have a clear view of the system as a
whole at all levels.

Mini Case Study - Giving Appropriate Guidance and Direction

The management task of assigning appropriate responsibility
applies at many levels. Problems in non-software-related tasks can affect
software development and vice versa. At the research institute attached
to the ACME Health Clinic, a large research project involved the
conducting of a wide-ranging survey during its first year. In the second
year of the project, there were complaints that a software development
group's work was held up because the results of the survey were not
available. In fact, the survey had been done and the information gathered
but no one had been able to give guidance to the survey team about how
to collate and present their results. The staff and resource had been
available to do the work but because no one had explicit responsibility
for overseeing the interface between the survey team and the rest of the
project, delays were caused.

A major aim in configuration management and change control is
reproducibility. We might wish to reproduce an older version of a system
if a new one has serious shortcomings or we might wish to reproduce
specific functionality in a particular environment. In fact, the need may

228 Software Maintenance: Concepts and Practice

arise to reconstitute both the product and the process at any stage in its
evolution.

In pursuit of this aim, three objectives of configuration
management are control, consistency and minimising cost.

 Control: The very essence of software maintenance is the
evolutionary nature of software systems. If the process by which
such systems evolve is not controlled, chaos can result.

Configuration management is necessary because software
systems have a long lifetime and are subject to change. Constant
change to workable live software systems is bound to lead to
problems without a proper means of control.

 Consistency: Configuration management is necessary to ensure the
production of consistent sets of software products:

Consistent sets of documents

Software projects in their development will produce
reams of documents. Some wil l be vital to the maintenance
phase and these need to be identified. However, many
documents which are vital during the development process might
not be needed subsequently. Often, where these contain vital
information it wil l have been subsumed into other documents -
for example, final deliverables and manuals. It is very important
to identify which these documents are, and decide what
procedures are to be applied to keeping track of them.

As well as standardised document identification which
allows for versioning and indexing, standard reporting
mechanisms should be put in place [229]. The whole area of
documentation is an important and often neglected one. Section
11.5 is devoted to a detailed discussion of documentation and its
importance to the maintenance process.

Consistent software releases

A large area of responsibility is the management of the
release of changed systems into the world. Standardised version
and product release control is needed to keep track of what is
where. Version control is discussed later.

Configuration Management 229

 Cost: A major aim in configuration management is to ensure that the
changes are made such that overall costs are minimised. This means
cost in terms of future maintenance as well as the cost of the
immediate change.

User 1

Ver 1.0 for DOS ver 1.0 for DOS

User 5

ver 1.0 for unix
Ver 1.0 for unix

User 2
I /ver 1.1 for DOS Quick fix releases

., , . , \ / ver 1.2 for DOS to fix bugs
Ver 3.0 for Windows \ / i

U s e r3 / \ / v e r l - 3 f o r D O S Version never
/ \ / released

Ver 1.1 for DOS ' Y
| | \ ver 2.0 for DOS

/ \ (faster processor)

User 4 / \

1 / \ ver 2.1 for DOS

Ver 1.2 for DOS / \ ("PS-de of 2.0)

(temporary fix) -~^^^ \
Ver 3.0 for Windows

Ver 3.0 for Windows

Figure 11.1 Different versions of a software product

Figure 11.1 shows a small section of a company's user base and
the different versions of a software product currently in use. Suppose that
user 3 has a problem with the system because of a newly discovered bug.
There are several options open to the system supplier. The most
attractive from the point of view of the supplier would be to persuade the
user to upgrade to a newer version, perhaps version 2.0 or even 3.0.

230 Software Maintenance: Concepts and Practice

However, this might not be possible. Hardware constraints may prevent
it. An upgrade to version 1.2 or 1.3 is another possibility but these are
interim releases, one of which was a temporary short-term solution for a
specific user. The company wil l not wish to increase its user base on
these interim releases now that these have been superseded by newer
versions. It might be that the best, or only, solution is to produce another
quick-fix solution, perhaps a version 1.2a which addresses both the
newly found error and any serious problems which have come to light
with the temporary version 1.2.

It is easy to see that without consistent and accurate records and
documentation, it will be all but impossible to keep track of this, whereas
proper procedures wil l enable the identification of

 the software version in use by a particular user - attempting a repair
of the wrong version will only make things worse;

 the options for upgrade - it is necessary to know which options are
viable in the user's environment;

 the levels at which different versions are compatible - the structure
of data files, for example, might change between versions or
releases, and attempting to run an inappropriate version might lead to
corruption of the user's data;

 the source code corresponding to a specific version - if, as in the
example, the only option is a new release of version 1.2 as version
1.2a, it is vital to be able to trace and reproduce the source code for
version 1.2 despite the fact this might not correspond to any
executable version currently in use.

Without a structured approach it is impossible to guarantee

i. the integrity of the system,

ii . that the course of evolution is traceable or

iii . that correlation between all the different parts of the
system is identifiable.

Configuration management is more than just a set of
methodologies and tools. An organisation will select configuration
management methodologies appropriate to its specific needs but
considerable skill is needed in both selection of the right techniques and

Configuration Management 231

methodologies and the effective imposition of them upon the software
development and maintenance process.

Exercise 11.1 What is meant by the configuration of a software
system? Illustrate your answer by detailing the
configuration of a software system on which you have
worked or are currently working.

Exercise 11.2 Why might it be important to be able to reproduce a
software configuration for a version of a system which
has no users?

11.3.1 A Specific View of Software Configuration Management

There are many different ways of tackling the specifics of software
configuration management and no single system wil l suit all projects.
The choice of specific procedures depends upon many things, for
example the working environment and the resources available.

Process management

Project management

/configuration \
Management

version control
building
environment
management
process control

Tracking defects

Quality assurance

Work flow Policy enforcement

Figure 11.2 Software configuration management

232 Software Maintenance: Concepts and Practice

In this section we will look in detail at one view of software
configuration management. Leblang [164] views it as a four-part process
broadly in line with the four-category definition of Narayanaswamy and
Scacchi[200]:

1. version control

2. building

3. environment management and

4. process control

These categories sit within an overall process where collective
control is the task of process management (Figure 11.2).

11.3.1.1 Versio n Contro l

A company that has developed and supplied a software product will find
itself having to maintain this product in many different versions. There
are many reasons for this. Not all users will upgrade to the latest version
simultaneously. The latest version might imply a change in operating
system. A company cannot abandon a product and with it a large
customer base just because it has developed a better version that runs on
a more up-to-date platform. Similarly a company cannot abandon users
of a previous version just because a newer version has been released. In
the main, a company will be supporting many versions of a product.
Control of the evolution of a single system is no trivial task. When
multiple versions and upgrades have to be considered, the task becomes a
mammoth one.

During the process of software evolution, many objects are
produced, for example files, electronic documents, paper documents,
source code, executable code and bitmap graphics.

A version control system keeps track of all the changes to every
object and can also support parallel development by allowing branching
of versions. Figure 11.3 shows version control at its simplest where the
current version of the whole system is given by version 2 of object 1,
version 3 of object 2, version 4 of object 3 and version 2 of object 4.

In a more complex system where, for example, parallel
development must be supported, branching may occur (Figure 11.4). It is
now not such a simple matter to identify the latest version of the object.

Configuration Management 233

Version 2.2 might be a later version than version 4.0, for example. The
version control system must control the creation of these variants as well
as the merging of the different versions to form a complete system.
Version control tools exist and are discussed further in Chapter 14.

Object 1 Object 2 Object 3 Object 4
Ver 1 Ver 1 Ver 1 Ver 1

Object 1 Object 2 Object 3 Object 4 ^Current
Ver 2 Ver 2 Ver 2 Ver 2 "^version

Object 2 Object 3 /
Ver 3 Ver 3 /

—tu
Object 3

Ver 4

Figure 11.3 Version control

Object 1

Ver 1.0

Ver 2.0 Ver 2.1 Ver 2.2

Ver 3.0 Ver 3.1

Ver 4.0

Figure 11.4 Version control with branching

234 Software Maintenance: Concepts and Practice

11.3.1.2 Buildin g
Software systems must be built and rebuilt from the objects of which
they are made. These objects will evolve and change and the
management of building the system must ensure that the correct product
can be produced reliably. Automatic build tools might involve minimal
rebuildin g - reusing objects where possible and rebuilding only where
an object has changed or has had a dependency change. Documentation
is vital and build tools should produce the documentation necessary to
recreate the complete file system environment for any specific build.

Objects must be built from the appropriate versions of the
sources using the appropriate tools. Automated systems which might
ensure that the correct version of the sources is used do not always
ensure that the correct tools, for example the right version of the
compiler, are used. Traditional tools require that the user specifies
module dependencies via some sort of system model like a makefile. The
manual updating of a system model is unsatisfactory as it is all too easy
to fail to declare all dependencies, especially as the system configuration
changes. System model generators automate this process but might be
language specific, can be slow, and are not always reliable in all
circumstances. However, as their use has become more widespread, their
reliability has improved.

11.3.1.3 Environmen t Managemen t

This is the means by which the file system is managed. The aim here is
to ensure that the appropriate versions of files are selected and that the
environment at any stage may be reproduced. Environment management
must take account of the need both to share objects and to keep objects
apart from each other. For example, a maintenance programmer must be
able to make changes to an object without the changes having any effect
upon the system as a whole prior to such change being completed,
verified and accepted as part of the system. On the other hand, it must be
possible to test the results of change upon the system as a whole and to
test one change against another. An environment management system
must be what Leblang [164] describes as a time machine which allows
everything in the environment to appear as it did at some given point in
time.

Configuration Management 235

11.3.1.4 Proces s Contro l
Process control is the means by which configuration management
interacts with the wider aspects of the organisation and controls the way
that other processes interact with each other. The configuration
management process must interact with all the processes and
methodologies used, for example the design and analysis methodologies.

Exercise 11.3 The example in Figure 11.3 uses integer numbers to
label different versions. Why would this be inadequate
for branching versions such as those shown in the
example in Figure 11.4?

11.4 Change Control
Change control concerns the specific area comprising the sequence of
events starting with a request for a change to a live software system and
ending with either the approval of a system incorporating the change or a
rejection of the request for change.

Bennett et al. [26] define the activities which comprise change
control as:

 Selection from the top of a priority list.

 Reproduction of the problem (if there is one).

 Analysis of code (and specifications if available).

 Incorporation of change.

 Design of changes and tests.

 Quality assurance.

Change control ensures that changes to a system are made in a
controlled way such that their effects can be predicted. Full change
control procedures can be time-consuming and are not necessarily
appropriate at every stage of the evolution of a system. There are cases
where the process of deciding and approving change can be done less
formally. For example, pressing reasons might emerge for the use of one
algorithm over another or for a module to be structured in a different way
from the one originally envisaged. An experienced team is quite capable
of making these decisions without putting such changes to a full-blown
change control process.

236 Software Maintenance: Concepts and Practice

Mini Case Study - When is a Less Formal Change Control
Process Appropriate ?

For the ACME Health Clinic's original Windows-based Medical
Information System, program development was carried out in
Microsoft's Visual Basic 3.0. Design of the data and modules had aimed
at an optimal way of passing medical record structures to and from
subroutines. Subsequently it was discovered that the run-time stack of
Visual Basic 3.0 is very small and could not cope with the data structures
as designed. Thus a new means of passing data was designed. The
problem and the solution were discussed within the project team and
documented but did not need a full-blown change control process which
would have been counter-productive because of the time it would have
taken. Had the solution to this problem been a change in the actual data
structures, then far more structured procedures would have been
followed, as this would have implied a major change in the system
design. And had either of these solutions been carried out after the
system had gone live in the clinic, then a proper change control process
would have been followed. Once a system is live, the possible effects of
any change are far-reaching and can affect the user base as well as the
live system, which in this example is interacting with patients and
therefore has the potential to cause harm.

11.4.1 The Responsibilities of Management in Change Control

 Deciding if the change should be made: This is the job of a Change
Control Board. A request for change must be analysed to see if it is
valid. Is it a requirement for a genuine change or does it stem
perhaps from a user's misunderstanding of existing functionality? A
potential change must be costed. The cost of making the change must
be balanced against the benefit that wil l accrue from it.

It is the job of the Change Control Board to decide whether
or not to accept a request for change. It is usual to institute a change
request form that gives details of the change requested and the action
taken. Change request forms are a very useful form of
documentation. The definition of the exact format of a change
request form and the information contained within it is a job for the
configuration management team although in some cases it wil l be
necessary to conform to client standards. An example is given in
Figure 11.5. The Change Control Board considers the effect of a

Configuration Management 237

change from a strategic and organisational viewpoint rather than a
technical one and decides whether or not the change would be cost-
effective.

Managing the implementation of the change: The ramifications of
making a change must be assessed. This assessment wil l have begun
as part of the costing process.

Verifying the quality: Implementation of a change should be subject
to quality control. A new version of the system should not be
released until it has satisfied a quality control process.

Chang e Reques t Form

Name of system

Version

Revision

Date

Requested by

Summary of change

Reasons for change

Software components requiring change

Documents requiring change

Estimated cost

Figure 11.5 An example of a change request form

A key component in the general control of change and specific
control of the processes of software evolution is documentation. A major
aim in configuration management and change control is reproducibility.
We might wish to reproduce an older version of a system if a new one
has serious shortcomings or we might wish to reproduce specific
functionality in a particular environment. Without a written record of
what the situation was previously and is now; and why and how it
changed, reproduction is impossible with any guarantee of accuracy.

Nowadays the move is towards teams working in parallel on the
maintenance of systems. This calls for far more sophisticated means of
control; for example, the need for strict procedures on the checking out,

238 Software Maintenance: Concepts and Practice

editing and checking in of entities such as source code modules from a
components library.

Exercise 11.4 Investigate the concept of the change control form
and design a detailed change control form for use in an
organisation which supports many different versions of
many different software products for a large user base.
Give a reason for the inclusion of each field on the
form. Useful detail can be found in [255].

It is essential to be able to retain and manage the system
components. In order to do this, accurate and up-to-date information
about them must always be available. The means of making such
information available is through documentation. In the next section, the
categories, "role, production and maintenance' of documentation are
discussed.

11.5 Documentation
Documentation is integral to the whole process of management and
control. It has a major role to play in making processes and procedures
visible and thereby allowing effective control.

The recording process usually begins when the need for the system is
conceived and continues until the system is no longer in use.

11.5.1 Categories of Software Documentation

There are two main categories of software documentation: user
documentation and system documentation.

User documentation refers to those documents containing
descriptions of the functions of a system without reference to how these
functions are implemented [255].

System documentation contains documents which describe all
facets of the system, including analysis, specification, design,
implementation, testing, security, error diagnosis and recovery.

The user documentation and system documentation are further
split into separate documents, each of which contains a description of
some aspect of the software system (see, for example, Table 7.1).

Configuration Management 239

Table 7.1 Types and functions of documentation

Type Constituent document Function
User 1. System overview Provides general description of system
documentation functions

2. Installation guide Describes how to set up the system,
customise it to local needs, and configure it
to particular hardware and other software
systems

3. Beginner's guide Provides simple explanations of how to start
/ tutorial using the system

4. Reference guide Provides in-depth description of each system
facility and how it can be used

5. Enhancement Contains a summary of new features
booklet

6. Quick reference Serves as a factual lookup
card

7. System Provides information on services such as
administration networking, security and upgrading

System 1. System rationale Describes the objective of the entire system
documentation 2. Requirements Provides information on the exact require-

analysis / ments for the system as agreed between the
specification user and the developer / maintainer

3. Specification / Provides description:
design (i) of how the system requirements are

implemented
(ii) of how the system is decomposed into a
set of interacting program units
(iii) the function of each program unit

4. Implementation Provides description of:
(i) how the detailed system design is
expressed in some formal programming
language
(ii) program actions in the form of intra-
program comments

5. System test plan Provides description of how program units
are tested individually and how the whole
system is tested after integration

6. Acceptance test Describes the tests that the system must pass
plan before users accept it

7. Data dictionaries Contains descriptions of all terms that relate
to the software system in question

There are other ways in which documentation may be classified.
For example, Macro argues that there are three classes of documentation:
user manuals, operator manuals and maintenance manuals [184]. The

240 Software Maintenance: Concepts and Practice

user manual describes what the system does without necessarily going
into the details of how it does it or how to get the system to do it.

The operator manual describes how to use the system as well as
giving instructions on how to recover from faults. The maintenance
manual contains details of the functional specification, software design,
high quality code listings, test data and results.

Both classification schemes are identical in the sense that they
both include all the information that is contained in software documents
(Figure 11.6).

OPERATORS' USER MAINTENANCE
MANUAL MANUAL MANUAL

How to use the How to use the How to use the
system system system
Error recovery I I Error recovery J I Error recovery

Figure 11.6 Documentation classification schemes

Although the list of software documents presented in Table 7.1 is
not exhaustive, it contains many of the documents typically found in a
system. The type, content and sometimes name of each document will
vary between systems. This variation is caused by a number of factors
that include:

 Development methodology: The approach used to develop software
systems differs from one organisation to another [298]. The type of
system documentation produced will depend on the approach used to
develop the software.

 Category of customer: The relation of an individual or organisation
to a software system determines the subset of documents that
accompany its copy of the system. For example, a software

Configuration Management 241

developer will sell user manuals and object code to software dealers.
The same developer might sell system documentation as well as
source code listings to a customer who modifies the system to build
other products. As such, different customers may receive different
documentation sets for the same software system.

 Version of the system: System upgrades will be accompanied by
additional documents such as enhancement booklets, which convey
information on the new features of the system, and other literature on
how to upgrade existing systems.

The diversity in the types of documents that come with each
software system makes it difficult to give a prescriptive list of documents
that must accompany a software system. The nomenclature of
documentation varies between systems and organisations. The present
scenario is that users must learn to accept the nomenclature of their
systems suppliers. The disadvantage of this is that if users have different
systems'4 with varying documentation naming conventions, it can be
difficul t and confusing to switch between systems and find information
in an easy and timely fashion. In a time when software maintainers are
working hard against the clock to address maintenance backlog
problems, the last thing they need is a set of confusing software
documentation. The use of international document standards can
alleviate this problem.

11.5.2 Role of Software Documentation

There are a number of reasons why it is of paramount importance to have
accurate and sufficient documentation about a software system:

 To facilitate program comprehension: The function of
documentation in the understanding and subsequent modification of
the software cannot be overemphasised [255, 284]. Prior to
undertaking any software maintenance work, the maintainer should
have access to as much information as possible about the whole
system. Due to the high turnover of staff within the software
industry, it may not always be possible to contact developers of the
system for information about it [26]. As such, maintainers need to
have access to documents about the system in order to enable them

14
That is, systems from different suppliers, which is usually the case.

242 Software Maintenance: Concepts and Practice

to understand the rationale, functionality and other development
issues. Each system document has a specific function (see Table 7.1).
According to Brooks' top-down theory of program comprehension,
program text and the associated documents, each of which is termed
an indicator, are used to verify hypotheses about a program's
function [48]. However, he warns that 'more documentation is not
necessarily better' (op. cit., p.552), one reason for this is that
redundancy in documents may result in some documents
contradicting others.

 To act as a guide to the user: Documentation aimed at users of a
system is usually the first contact they have with the system [255].
The user documentation that comes with a system is used for various
purposes that include:

providing an initial and accurate description of what the system
can do. As such, the user can decide whether or not the system
can satisfy his or her needs. In order to achieve this, the
documents must be written and arranged in such a way that the
user can easily find what is required.

providing information that enables the user to install the system
and customise it to local needs.

providing technical information on how to handle malfunctions.

 To complement the system: Documentation forms an integral and
essential part of the entire software system. Osborne argues that
'without the documentation, there is littl e assurance that the software
satisfies stated requirements or that the organisation will be able to
maintain it' [209].

Exercise 11.5 List the major types of software documentation and
explain how each can facilitate maintenance.

11.5.3 Producing and Maintaining Quality Documentation

It is essential to make continuous changes to all facets of documentation
affected by maintenance activities. The importance of this is underscored
by the fact that the inspection of existing documents may be the only
means available to maintenance personnel to understand the details of the

Configuration Management 243

software and the reasoning behind its development [11]. Reasonably
good15 documentation wil l facilitate the achievement of this aim.

Osborne contends that the cost of maintaining a software system
is proportional to the effectiveness of the documentation which describes
what the system does as well as the logic used to accomplish its tasks
[209]. It is not only what the documents contain that matters, but how the
material is presented. Some authors have suggested a number of
guidelines on producing software documents:

1. Writing style: adhering to guidelines for clear and
understandable text, for example using the active rather than the
passive mode, splitting the text into manageable chunks and
repeating complex explanations in different ways.

2. Adhering to document standards: for example, standard cover
sheets can ensure traceability of documents. Standard fonts,
styles and numbering systems can make it easier for the reader
to switch between documents - there will be no need to adapt to
different styles for different documents.

3. Standards and quality assessment: putting documents through a
quality assessment process will help to ensure conformance to
standards.

4. Documentation techniques:

a) To ensure that documentation is up to date, procedures should
be put in place to encourage the use of adequate resource for
the updating of documents concurrent with system updates.

b) The use of good design methodologies, for example good
design methods and practices such as structured
programming, use of high-level control structures, meaningful
identifier names and consistent style, reduces the need for
low-level documentation [98]. This is particularly helpful
during maintenance.

15 The phrase 'reasonably good' is used to emphasise the importance of striking the right balance
between what-we expect from software documentation and the information it eventually provides.
This is because too much is usually expected from documentation. Weinberg [284] argues that
people have different needs when they look at program documentation and no single collection of
documentation will satisfy those needs equally well.

244 Software Maintenance: Concepts and Practice

5. Documentation support tools: support tools exist to help with
the classification and updating of documentation. Appropriate
tools can do much towards ensuring consistency in documents.

A common problem that confronts maintainers of software
systems is ensuring consistency across all the documents when the
software system changes [77, 255]. The usual solution to this problem is
to keep a record alongside the documents of the relationships and
dependencies of not only the documents, but also parts of the documents
[255]. This way, changes to whole or parts of documents can be
controlled and managed more effectively The use of structured software
development methodologies such as Structured Analysis/Structured
Design (SA/SD), Jackson Structured Design (JSD) [298] and Object
Modelling Technique (OMT) [240] helps to lend structure to the whole
process and makes the effective keeping of documentation an easier task.
The advent of software documentation tools, most of which come with
the system used to develop the software, is another step along the road to
effective and maintainable documentation.

Software systems are modified and enhanced by individuals who
were not involved with the initial development. In order to ensure that a
system can be updated quickly and reliably, it is necessary to record all
information relating to the evolution of the software. When the system is
changed, all documents that are affected must be updated as and when
the changes occur.

Exercise 11.6 Investigate the Source Code Control System (SCCS)
available on your system and explain how you would
use it as part of a large software project.

Exercise 11.7 Produce a comprehensive list of the configuration
management support tools available on your system.
Write a concise note on each summarising its use. On-
line help or manual systems are a good starting point.

Exercise 11.8 Explain the limitations of SCCS as regards its use in
a parallel development/maintenance environment and
explain how these limitations have been overcome in
other support tools.

Configuration Management 245

11.6 Summary
The key points that have been covered in this chapter are:

 Configuration management is the management of system evolution
by identifying the exact state of a system at discrete points in its life-
cycle.

 The major processes that make up configuration management are:

the identification of the system components and the changes
made to them,

the control of these changes,

audit,

documentation.

 Configuration management is necessary to ensure traceability and
reproducibility without which product integrity is compromised.

 Change control, the major part of configuration management, is the
management of all the changes that are made as a system evolves.

 Documentation is the written record of facts about a system. Its role
in maintenance is to facilitate comprehension and make visible all
aspects of what the system does and how it works.

 Software tools exist to support configuration management and it is
important to take advantage of such tools to help control the
processes of software evolution.

 In essence the management of software maintenance differs from the
management of software development because of the different
environments in which the activities are carried out.

We have looked at ways of keeping track of the processes of
software maintenance. Over and above this, we need to know that what
we are doing is useful and effective. Are the processes we are overseeing
creating better systems? How can we tell? To be effective, we need to
evaluate methods and processes. We need a means of empirical
measurement to assess and compare systems and techniques. The subject
of measuring software relates not only to making better systems, but also
to assessing existing systems. The topic of measurement is studied in the
next chapter.

12

Maintenanc e Measure s

" ...ifyou can measure what you are speaking about and express
it in numbers you know something about it; but when you cannot

measure it, when you cannot express it in numbers, your knowledge of it
is of a meagre and unsatisfactory kind"

Lord Kelvin [152]

This chapter aims to

1.Discuss software measurement, software measures and software
metrics.

2.Distinguish software measure from software metric.

3.Discuss the importance of measures to maintenance activities.

4. Give examples of maintenance measures and discuss their practical
applications.

5.Discuss the limitations of current maintenance measures.

6.Explain the guidelines for choosing maintenance measures.

12.1 Introduction
Software maintenance personnel are faced with the challenge of
managing, controlling and making the changes necessary to allow
software systems to evolve. The resources required to do this effectively

247

248 Software Maintenance: Concepts and Practice

are costly, and a number of ways have been suggested to keep these costs
down. For example,

 software personnel should be encouraged towards the '...
development of understandable, maintainable software that is easy to
revise and validate over the life-cycle' [210 p.22];

 understandable software wil l help in ' achieving many of the other
qualities such as evolvability and verifiability' [108 p.31].

Without doubt, many software engineers would like to develop
and maintain software systems with these qualities, not least because
such systems wil l be cost-effective in the long term. There are, however,
a number of questions that arise from this. Firstly, what level of
understandability, maintainability, evolvability, verifiability or related
attributes should a software product manifest in order to be considered
acceptable? Secondly, how can one determine whether the tool or
method being applied to carry out maintenance work on the product will
achieve or has accomplished the desired effect? Thirdly, how can the
resources required to undertake any proposed maintenance work on the
product be predicted or assessed? In order to address these questions, a
sound understanding of the issues concerned with measuring the
maintenance-related attributes of software products, processes and
resources is needed.

The theme of this chapter is twofold: to discuss the concepts of
measurement in general and software measurement in particular, and to
explore the scope of measurement in maintenance through the use of
some maintenance-related measures.

12.2 Definitions
Empirica l - capable of being verified or disproved by observation or
experiment.

Entit y - either an object (for instance an athlete or chunk of program
code) or an event (for instance sprinting or the design phase in a
software development project).

Measurement - "the process of empirical, objective encoding of some
property of a selected class of entities in a formal system of symbols so
as to describe them" [152 ch.12 p.4]. This is a commonly accepted

Maintenance Measures 249

inclusive definition, but others have been suggested in the literature [95,
96, 152 ch. 12 pp.3-19].

Metri c — "a criterion to determine the difference or distance between two
entities, like the distance of a query and a document in Information
System Retrieval Systems. A well-known metric is the metric of Euclid,
which measures the shortest distance between two points" Zuse [299
p.29]. It should be noted that Zuse goes on to say "the term metric, as
used for distance metrics, is a misinterpretation in the software research
area of software measurement."

Property of an entity - the attribute which is to be measured, for
example the speed of sprinting or the complexity of the program.

12.3 The Importance of Integrity in Measurement
A measurement procedure must demonstrate a number of characteristics.
It must be

 Empirical: The result of measurement should describe empirically
established facts. Finkelstein [96] captured the importance of this
when he said that the precise, concise, objective and empirical nature
of measurement 'gives its primacy in science' (pp. 27-8).

 Objective: During measurement, observations should be carried out
with integrity, objectively, reliably, efficiently and without bias or
ambiguity [152 ch.12 pp.3-19]. If this is done, it should always be
possible for someone else to repeat the measurement.

 Encodable: An attribute can be encoded or characterised using
different symbols such as numbers and graphic representations. In
this book, however, encoding will be restricted to numbers. The
assignment of numbers in this fashion is aimed at preserving
observed relations between entities [236]. For example, the
description of the length of programs using lines of code preserves
the observed relation 'longer than'.

Based on the above notion of measurement, if two entities
possess equivalent levels of an empirically observable attribute, then the
same symbol should be assigned to both entities in order to characterise
that attribute. An example is using a thermometer to measure the
temperature of two freezers, A and B. If freezer A has a temperature of

250 Software Maintenance: Concepts and Practice

minus 20.5° C and it is as cold as freezer B, then the temperature of
freezer B must also be minus 20.5° C.

Similarly, in software development and maintenance, there may
be a need to obtain a quantitative description of some attribute of a
software product or activity. The domain that deals with such
measurement has become known as 'software measurement' [84].

12.3.1 Software Measurement
Measurement concepts and techniques have been widely used in many
well-developed science disciplines such as physics [236] and chemistry.
In comparison, however, the application of measurement in software
engineering is still in its infancy. This is evident in the wide variety of
definitions of software measurement in the literature [221, 299]. The
definition used here is that software measurement is the 'process of
objectively and empirically quantifying an attribute of a software system
and the process connected with its development, use, maintenance and
evolution' [152 ch.12 p.4].

Although the above definition applies to both development of
new systems and maintenance of existing systems, this discussion is
centred on maintenance. In general, there are three software
maintenance-related entities whose attributes can be subjected to
measurement: process, product and resource [95].

 A process is any software-related activity such as change analysis,
specification, design, coding and testing.

 A resource is input to a process, for example personnel, hardware
and software.

 A product is any intermediate or final output resulting from a
software process such as system documentation (for example,
specification and design), program listings, test data, source code and
object code.

A diagrammatic representation of the relationship between these
three entities is presented in Figure 12.1.

In software measurement, two types of attribute can be
identified: internal and external [95]. An internal attribute is one which
can be measured in terms of the process, product or resource itself. For

Maintenance Measures 251

example, complexity, modularity and reusability are internal attributes of
the source code of a program. An external attribute is one which can only
be measured with respect to the relation of a process, product or resource
to its environment, for example the maintainability of program source
code or productivity of software personnel.

According to the above notion of software measurement, we can
measure the attribute of a software product, for example the complexity
of a program's source code. A common way of estimating the
complexity of a program is by counting the number of lines of code (200,
say) in the program. We can also measure the attribute of a software
process, for instance the effort required in making a change (30 person-
hours). Examples of different process, product and resource
measurements will be discussed later in the chapter.

C ^ f ^
Resource Process

(e.g. manpower, (e.g. systems analysis,
computing, hardware / design, coding)

software)

\ ' / V J

Development / Maintenance
Project

\i

/ N

Product
(e.g. system / user documents,

source / object code)

V /

Figure 12.1 Relation between a resource, process and product

12.3.2 Software Measure and Software Metric

The result of a software measurement process is known as a software
measure. The measure characterises the property of interest for a class of
entities. In the earlier examples of freezers and source code, the numbers

252 Software Maintenance: Concepts and Practice

(-20.5° C and 200 LOC respectively) are measures of the temperature
and complexity respectively. That is, a measure is the assignment of
these numbers (as in the above example) or any other selected symbol
during measurement. A measure can also be seen as a mapping of the
entity (for example, program source code) to the attribute (for example,
complexity). Based on this notion of a measure, an entity can have more
than one measure for the same attribute; that is, more than one mapping.
This can be illustrated using program maintainability as follows:

Two factors can be used to assess the maintainability of a
program, P: understandability and modifiability [223]. Understandability
is the time, Tl , required per module to determine the changes required.
Modifiability " is the time, T2, required per module to effect these
changes. Any of the times, Tl or T2, can be used to quantify the
maintainability of P16. In that case there will be two mappings; from P to
Tl (measure 1) and from P to T2 (measure2). These mappings are
illustrated in Figure 12.2.

Program, P

measure 1 / N.
(maps program to / X measure 2
understandability) / ~ \ (maps program to

/ \ modifiability)

Tl = 5 minutes Tl = 7 minutes
Understandability Modifiability

Maintainability

Figure 12.2 Relation between an entity, measure and attribute

Another term that has been widely used in the literature [73, 95,
120, 127] in connection with software measurement is software metric. It

Except in a composite measure which combines both understandability and modifiability into a
single measure.

16

Maintenance Measures 253

is sometimes used as a synonym for software measure [299]. The use of
metric in this context has been challenged by some authors [95, 299].
They argue that based on its meaning in mathematics (from where the
term is derived) it is inappropriate to use it to mean software measure.

The terms measure and metric are still being used
interchangeably in the literature [237] but the position taken here is that
of Zuse (see section 12.2). The type of measure obtained during software
measurement within software maintenance departments depends to some
extent on the objective.

12.4 Objectives of Software Measurement
Software measurement can be undertaken for several reasons, notably for
evaluation, control, assessment, improvement and prediction.

12.4.1 Evaluation

There is a need for maintainers to evaluate different methods, program
libraries and tools before arriving at a decision as to which is best suited
to a given task. For instance, during reuse, the maintainer may be faced
with the problem of evaluating the suitability of a candidate component
obtained from the reuse library.

12.4.2 Control

There is a need to control the process of software change to ensure that
change requests are dealt with promptly and within budget. As DeMarco
says, "you cannot control what you cannot measure" [79].

12.4.3 Assessment

In order to control a process or product, it is important to be able to
assess or to characterise it first. For instance, a manager may need to
assess a system to determine whether or not it is economically feasible to
continue maintaining it. Also, in order to determine whether or not the
maintenance process being used is achieving or will achieve the desired
effect, an assessment of the process must be undertaken.

254 Software Maintenance: Concepts and Practice

12.4.4 Improvement

There is a need to improve various characteristics of the software system
or process such as quality and productivity. It is difficult to assess and
monitor such improvements without an objective means of measuring the
characteristics. With measures of quality and productivity, management
is able to set targets and monitor progress in achieving those targets. If
the targets are not met, then corrective actions can be taken.

12.4.5 Prediction

There is a need to make predictions about various aspects of the software
product, process and cost. For instance, measures obtained from program
code can be used to predict the time required to implement a given
change. These measures can assist a manager in the allocation of time,
personnel, hardware and software resources to a maintenance project. To
a programmer, the measures can serve as indicators of the difficulty
associated with understanding a program and can also signify the speed
and accuracy with which change can be effected.

In aiming to achieve the above objectives, there is a wide
spectrum of measures at the disposal of software maintainers.

12.5 Example Measures
To understand these measures and how they may impact on the
maintenance process, it is useful to look at some specifics.

There are several measures that maintainers may need in order
do their job. In theory these measures can be derived from the attributes
of the software system, the maintenance process and personnel. In
practice, however, the most commonly used source of measures is the
software system, specifically the source code. The main reason is that
very often the only information about a system available to maintainers
is the source code. Even in situations where design documentation exists,
it may be out of date or inaccurate. Another reason is that algorithms can
be used to obtain measures from the source code in an inexpensive and
non-intrusive way [299]. Thus, the discussion on maintenance measures
wil l be centred on source code-based measures such as size, complexity,
quality, understandability and maintainability.

Maintenance Measures 255

72.5.7 Size
One of the commonest ways of measuring the size of a program is by
counting the number of lines of code. Moller and Paulish define lines of
code (LOC) as "the count of program lines of code excluding comment
or blank lines" [196 p.67]. This measure is usually expressed in
thousands of lines of code (KLOC). During maintenance, the focus is on
the 'delta' lines of code: the number of lines of code that have been
added or modified during a maintenance process. The advantage of this
measure is that it is easy to determine and also correlates strongly with
other measures such as effort and error density [292]. It. has, nonetheless,
been criticised. There are no standards for LOC measurement and it is
dependent on the programming language in question [196]. Also it is too
simplistic and does not reflect cost or productivity [95]. Despite these
criticisms, this measure is still widely used. Halstead's measures -
discussed later - can also be used to estimate the size of a program.

72.5.2 Complexity
There is no consensus on a definition for the term 'complexity'. This is
evident in the wide variety of complexity measures reported in the
literature [112, 299]. In software maintenance, however, it is useful to
define program complexity. Zuse defines it as "the difficulty of
maintaining, changing and understanding programs" [299 p.28]. One of
the major problems that software maintainers face is dealing with the
increasing complexity of the source code that they have to modify [292,
169ch.l9pp.393-449].

Program complexity embraces several notions such as program
structure, semantic content, control flow, data flow and algorithmic
complexity. As such, it can be argued that computing a single complexity
value is misleading; other vital information is hidden in this value.
However, there is sometimes a need to compute a single value for
complexity which in turn is used as an indicator for other attributes such
as understandability, maintainability and the effort required for
implementation and testing.

The more complex a program is, the more likely it is for the
maintainer to make an error when implementing a change [292], The
higher the complexity value, the more difficult it is to understand the
program, hence making it less maintainable. Based on the argument that
inherently complex programs require more time to understand and

256 Software Maintenance: Concepts and Practice

modify than simple programs, complexity can be used to estimate the
effort required to make a change to a program.

Over one hundred complexity measures have been proposed in
the literature. For example, McCabe's cyclomatic complexity [190],
Halstead's difficulty measure [121], Basili-Hutchens1 measure [14], and
Prather's measure [228]. Zuse provided a useful and comprehensive
review of these measures [299]. Work has also been done on the
implications of the use of metrics and the selection and interpretation of
data [174, 173] to allow greater effectiveness and objectivity in the
analysis of software systems. See for example, Turski's work on
determining the evolutionary growth of systems [269].

There follows discussion on two of the most popular code
complexity measures: McCabe's cyclomatic complexity [190] and
Halstead's difficulty measure [121].

12.5.2.1 McCabe' s Cyclomati c Complexit y
McCabe views a program as a directed graph in which lines of program
statements are represented by nodes and the flow of control between the
statements is represented by the edges. McCabe's cyclomatic complexity
(also known as the cyclomatic number) is the number of 'linearly
independent' paths through the program (or flow graph) and this value is
computed using the formula:

v(F) =e-n+2

where n = total number of nodes; e = total number of edges or
arcs; and v(F) is the cyclomatic number.

This measure is used as an indicator of the psychological
complexity of a program. During maintenance, a program with a very
high cyclomatic number (usually above 10) is considered to be very
complex. This value can assist the maintainer in a number of ways.

 It helps to identify highly complex programs that may need to be
modified in order to reduce complexity.

 The cyclomatic number can be used as an estimate of the amount of
time required to understand and modify a program.

 The flow graph generated can be used to identify the possible test
paths during testing.

Maintenance Measures 257

Despite its usefulness and popularity, McCabe's cyclomatic
number has limitations [95 pp.277-95]:

 It takes no account of the complexity of the conditions in a program,
for example multiple use of Boolean expressions, and over-use of
flags.

 In its original form, it failed to take account of the degree of nesting
in a program. As such, two programs may have been considered to
be equally complex based on cyclomatic number whereas in actual
fact, one had a greater level of nesting than the other. There have
been a number of improvements to take into consideration the level
of nesting [125].

12.5.2.2 Halstead's Measures
In his theory of software science [121, 122, 65], Halstead proposed a
number of equations to calculate program attributes such as program
length, volume and level, potential volume, language level clarity,
implementation time and error rates [121]. Here we shall concentrate on
those measures which impact on complexity: program length and
program effort. The measures for these attributes can be computed from
four basic counts:

«/ = number of unique operators used

n2 = number of unique operands used

N, = total number of operators used

N2 = total number of operands used

An operand is a variable or constant. An operator is an entity that
can either change the value of an operand or the order in which it is
changed. Operators include arithmetic operators (for example, *, /, + and
-), keywords (for example, PROCEDURE, WHILE, REPEAT and DO),
logical operators (for example, greater than, equal to and less than), and
delimiters.

The following formulae can be used to calculate the program
length and program effort:

 Observed program length, N = N, + N2;

 Calculated program length, = rtlog2n1 + n2log2n2

258 Software Maintenance: Concepts and Practice

 Program effort, E = ni*N 2*fN 1+N^*logfn1+n2)

2*n2

The four basic counts can also be used to compute other
attributes such as programming time [73], number of bugs in a program
[97] and understandability [188].

There are a number of reasons why Halstead's measures have
been widely used [188]. Firstly, they are easy to calculate and do not
require an in-depth analysis of programming features and control flow.
Secondly, the measures can be applied to any language but yet are
programming language sensitive. For instance, in a functional language
or a 4GL a single token tends to carry more information than a similar
token in a procedural language. And thirdly,. there exists empirical
evidence from both industry and academia that these measures can be
used as good predictors of programming effort and number of bugs in a
program.

Despite the above advantages, Halstead's measures have been
criticised for several reasons:

 The cognitive psychology-based assumptions have been found to be
erroneous [71].

 The experiments which were used to test the measures were badly
designed [179] and statistically flawed [140]. Many of these were
small-size experiments and used small sample sizes, which were
unrepresentative of 'real' software systems.

 The counting rules involved in the design of the measures were not
fully defined [179] and it is not clear what should be counted.

 There was failure to consider declarations and input/output
statements as a unique operator for each unique label [248].

 The measures are code-based; it is assumed that 'software =
programs' [140]. Although this may be true for some systems,
others, especially those developed using modern software
engineering techniques and tools, are likely to have automatic doc-
umentation support. The measures fail to capture the contribution
that this documentation makes to the programming effort or program
understanding.

Maintenance Measures 259

 From a psychological point of view, the measures are inadequate on
the grounds that they ignore the high-level structures (or chunks) that
expert programmers use to understand programs [130].

12.5.3 Quality
In general terms, quality is defined as 'fitness for purpose' [141]. In other
words, a quality product, be it a word processor or a flight control
system, is one which does what the user expects it to do. This notion of
quality does not only apply to a product, it can be extended to the
maintenance process. A quality maintenance process is one which
enables the maintainer to implement the desired change. Different
measures can be used to characterise product and process quality

12.5.3.1 Produc t Qualit y

One way of measuring the quality of a software system is by keeping
track of the number of change requests received from the users after the
system becomes operational. This measure is computed by "dividing the
number of unique change requests made by customers for the first year
of field use of a given release, by the number of thousand lines of code
for that release" [196 pp.69]. This measure only includes requests which
pertain to faults detected by customers. The measure excludes feature
enhancement change requests which are not contained in the software
requirements specification. The number of change requests from users
can serve as an indicator of customer satisfaction. It can also serve as an
indicator of the amount of maintenance effort that may be required for
the system.

The other measure of product quality is the number of faults that
are detected after the software system becomes operational, usually after
the first year of shipment. The same type of fault pointed out by more
than one user is counted as a single fault. The number of users reporting
the same fault may be used as a measure of the significance of the fault
and therefore the priority that should be attached to fixing it.

12.5.3.2 Proces s Qualit y

This describes the degree to which the maintenance process being used is
assisting personnel in satisfying change requests. Two measures of
process quality are schedule and productivity [196].

260 Software Maintenance: Concepts and Practice

The schedule is calculated as "the difference between the
planned and actual work time to achieve the milestone of first customer
delivery, divided by the planned work time" [196 p.72]. This measure is
expressed as a percentage. A negative number signifies a slip and a
positive number signifies early delivery.

The productivity is computed by dividing the number of lines of
code that have been added or modified by the effort in staff days required
to make the addition or modification. Effort is the total time from
analysing the change requests to a successful implementation of the
change.

12.5.4 Understandability

Program understandability is the ease with which the program can be
understood, that is, the ability to determine what a program does and how
it works by reading its source code and accompanying documentation.
This attribute depends not just on the program source code, but also on
other external factors such as the available documentation, the
maintenance process and maintenance personnel. Some of the measures
that can be used as an estimate of understandability are complexity,
quality of documentation, consistency and conciseness.

Understandability usually has an inverse relation to complexity;
as the complexity of a program increases, the understandability tends to
decrease. From this perspective, understandability can be computed
indirectly from McCabe's cyclomatic complexity and Halstead's
program effort measure. Understandability can also be estimated from
subjective ratings of the quality of documentation, consistency of
programming style and the conciseness of the program text.

12.5.5 Maintainability

Software maintainability is "the ease with which the software can be
understood, corrected, adapted, and/or enhanced" [229]. Maintainability
is an external attribute since its computation requires knowledge from the
software product as well as external factors such as the maintenance
process and the maintenance personnel. An example of a maintainability
measure that depends on an external factor is the Mean Time To Repair
(MTTR): the mean time required to effect a change [95]. Depending on
the circumstances, the calculation of MTTR may require information on

Maintenance Measures 261

the problem recognition time, administrative delay time, maintenance
tools collection time, problem analysis time, change specification time
and change time.

Maintainability can also be perceived as an internal attribute if it
is derived solely from the software system. Several internal attributes of
program source code can impact on maintainability, for example
modularity. Thus, measures for these other internal attributes would need
to be obtained in order to compute maintainability. Unfortunately, there
is yet to be an exact model for determining maintainability. At present,
measures such as complexity and readability [118] are used as indicators
or predictors of maintainability.

12.5.6 Cost Estimation

The cost of a maintenance project is the resources - personnel, machines,
time and money - expended on effecting change. One way of estimating
the cost of a maintenance task is from historical data collected for a
similar task. The major difficulty with this approach to cost estimation is
that there may be new variables impacting upon the current task which
were not considered in the past. However, the more that is collected the
more accurate wil l be the estimate.

A second way of estimating cost is through mathematical
models. One of these was Boehm's COCOMO model adapted for
maintenance [36]. The updated COCOMO II [37] model, instead of
being based on a single process model such as the waterfall model, has
been interpreted to cover the waterfall model, MBASE/RUP (Model-
Based Architecting and Software Engineering / Rational Unified
Process), and incremental development. According to Boehm, the cost of
maintenance is affected by attributes of factors called cost drivers.
Examples of cost drivers are database size, program complexity, use of
modern programming practices and applications experience of the
maintenance personnel.

A third measure of cost is time in person-months required to
modify a program.

12.6 Guidelines for Selecting Maintenance Measures
As already indicated, the main purpose of maintenance activities is to
ensure that a software system can be easily modified, adapted and

262 Software Maintenance: Concepts and Practice

enhanced to accommodate changes. There are no hard and fast rules as to
how these objectives can be achieved through the use of maintenance
measures. There are, however, some guidelines that can be used in
selecting suitable maintenance measures. These guidelines include well-
defined objectives, fitness for purpose, ease of use, low implementation
cost and sensitivity.

 Clearly defined objectives: Prior to deciding on the use of a
measurement for maintenance-related purposes, it is essential to
define clearly and unambiguously what objectives need to be
achieved. These objectives will determine the measures to be used
and the data to be collected.

 Personnel involvement: The purpose of measurement in an
organisation needs to be made clear to those involved in the
programme. And the measures obtained should be used for that
purpose and nothing else. For instance, it needs to be made clear
whether the measurement is to improve productivity, to set and
monitor targets, etc. Without such clear expression of the purpose of
measurement, personnel may feel that the measures will be used for
punitive purposes and this can impede the programme.

 Ease of use: The measures that are finally selected to be used need to
be easy to use, take not too much time to administer, be unobtrusive,
and possibly subject to automation. As indicated earlier in this
chapter, one of the reasons why source code-based measures are very
popular is because they can be easily automated and collected in an
unobtrusive way.

Exercise 12.1 Develop two versions of a program of manageable
size: one version in a procedural language and the other
version in a functional language of your choice. (Note:
manageable size will greatly depend on your level of
expertise, but should be at least 30 LOC.)

 For each version of the program calculate the
complexity using McCabe's and Halstead's
complexity measures;

 Compare the two complexity values obtained above.
Comment on your result.

Maintenance Measures 263

Exercise 12.2 Two pharmaceutical companies have been merged
following a take-over. As a result, their information
systems for storing and managing information on drugs,
customer names and addresses, and outstanding orders
for products have to be merged. In one of the
companies, the systems are written in C and a mixture
of other databases and they run on a mainframe. The
other company has programs which are all written in
Cobol running on a mainframe as well. As a software
measures consultant, what advice would you give to the
company?

12.7 Summary
The main points that have been covered in this chapter are:

 Software measurement is the process of objectively and empirically
quantifying an attribute of a software system and the process
connected with its development, use, maintenance and evolution. A
software measure is the result of measurement; it characterises the
property of interest for a class of entities. Software metric is
commonly used as a synonym for software measure although its use
in this way has been criticised.

 Measures can assist maintainers to evaluate methods, tools and
programs, to control the maintenance process, to assess the software
system and maintenance process, to improve quality and productivity
and to make predictions about various aspects of the software system
and the maintenance process.

 There are several measures that maintainers can use, but some of the
most commonly used ones are McCabe's cyclomatic complexity,
Halstead's measures, schedule, person-months, Boehm's COCOMO
models and MTTR.

 The main limitation of the above measures is their reliance on
program source code alone despite the impact of several external
factors on maintainability.

 Some of the guidelines for selecting a measure are ease of use, low
cost of implementation and sensitivity to as many factors as possible.

264 Software Maintenance: Concepts and Practice

The topics that have been examined so far have covered the
process, the mechanisms and the management of software maintenance.
Building upon these ideas, we can now look at how maintainability can
be built into software systems.

PART IV: Buildin g Bette r System s

Overview
Given the problems of the maintenance crisis, it is important to learn the
lessons of the past and to build new systems that will avoid past
problems. This section of the book looks at how to build maintainability
into systems and what tools are available to help both the developer and
the maintainer to provide better and more reliable systems.

 Buildin g and Sustaining Maintainabilit y

If there is one thing we have learnt as the disciplines of Computer
Science, Software Engineering and Software Maintenance have
developed, it is that software systems evolve. A program only ever
ceases to evolve when it is no longer used.

Given that evolution is an integral part of software systems, we
need no longer waste time in the unattainable ideal of the "finished
system", but can instead aim for the program that can change without
loss of quality. Experience has shown what sorts of things compromise
the integrity of a program - quick fixes causing unforeseen ripple effects,
inadequate resources to address the problem of quick fixes, badly written
or misunderstood code, inadequate resources, out of date documentation
and so on.

In all areas we can look at both prevention and cure, but we must
be realistic. We could say that resources must be available to allow all
changes to be implemented via a more sophisticated model than quick-

265

266 Software Maintenance: Concepts and Practice

fix, but that doesn't address the case where quick-fix is the only option.
The live system just fell on its face and it needs to be up and running
again right now! There will always be times where change leads to loss
of quality. In recognising this, we can look at ensuring the loss of quality
is temporary. We can identify areas of potential problem and put
safeguards in place. Code that is initially developed in accordance with
best practice, is less susceptible to the problems of the quick fix, and
such problems as occur can more easily be retrieved. The key is to take
maintainability into account every step along the way.

 Software Maintenance Tools

We have moved far beyond the stage of maintaining systems manually.
The activities of software maintenance need to be automated. We need
tools to help upgrade and enhance systems and to find and correct errors.

The development and use of effective tools and diagnostics
facilitates the whole maintenance process. It allows the processes to be
better structured and organised. Feedback from the use of automated
maintenance processes and support tools helps in the development of the
field and provides the evidence needed to guide future progress.

Software maintenance tools are themselves software systems that
evolve and need to be maintained.

Discussion Points
These points are intended to stimulate thinking and discussion on
fundamental issues in software maintenance. The issues raised are
explored in the chapters of this section, but it is a beneficial to think
around these areas and try to draw conclusions yourself, before looking
for answers in the text.

 The "Best" Paradigm

A small-to-medium sized software house runs a variety of different
projects - commercial, government funded, research and development -
and works in collaboration with a number of different bodies. These
include commercial enterprises who essentially pay for the development
of new products, or for specific features within existing products;
government departments who pay for a job to be done, but operate a
hands-off approach to the details of the work; research projects where the

Building Better Systems 267

software house works in close collaboration with other software houses,
academic institutions and users in developing new ideas and products.

To date, the software house operates on a single hardware
platform, and uses a single programming language for software
development. This situation wil l have to change. The company cannot
remain at the forefront of the research and development world if its
working practices are out of date. Government contracts will increasingly
be calling for specific platforms and standards, and the commercial
customers wil l expect a move forward.

This latter market is the one with the least incentive to change.
The customers are happy with products they know. These products
interface well with other products and the older systems they still use.
These people are looking neither for upheaval nor to be pioneers ironing
out the teething problems of newer technologies. Nonetheless, the world
is moving on and already new customers are becoming harder to find.

What issues must the software house address and how should it
go about it? Consider all factors that might be relevant, including the
following:-

Time: how long will it take to introduce new platforms?

The client base: how should the various types of client be dealt
with - the same or differently?

Cost: what will need to be costed?

Retraining: how long wil l it take to retrain staff and how should
this be factored in?

Bear in mind that a small company cannot "lose" all its staff to lengthy
retraining. It does not have the reserves to be able to put its current
projects on hold.

 The Best Tools for the Job

You are about to embark upon a large software maintenance project on a
system that has been in use for many years. The aims are to provide a
more efficient system with the extra flexibilit y of running on a variety of
hardware platforms, better security and future-proofing of the data
processed by the system. No data must be corrupted or lost, either data
that has been processed by the old version of the system or future data
that wil l be processed by the new version. The system has a user base

268 Software Maintenance: Concepts and Practice

including people whose databases hold 30 years worth of data. There is a
legal requirement to hold this data for a minimum of 100 years, so the
system must take account of future upgrades of the sort not yet even
thought about. The data is sensitive and its confidentiality must be
assured, whilst allowing authorised users timely access.

List at least six software maintenance tools that your
maintenance team might use. Include some you are familiar with, and
some you are not. Assess these tools and try to make a judgement on
how useful they could be and how best you might deploy them. In
particular, look at each tool's effectiveness in terms of this specific
project. Look at the issue of the project team's familiarity with each tool
and why this might be an issue. How new on the market is each tool?
Why might this be an issue?

13

Buildin g and Sustainin g Maintainabilit y

"During software development, we regularly uncover errors,
new requirements, or the results of earlier miscommunication...

Furthermore, after baselining the design and delivering the product,
even more new requirements will appear. All this means that you must

select architectures, components, and specification techniques to
accommodate major and incessant change. "

Davis ([75], p.87)

This chapter aims to

1. Explain the need to build and sustain maintainable software
systems.

2.Explain the role of impact analysis in maintainability.

3.Explain the role that technologies such as fourth-generation
languages and object-oriented paradigms can play in achieving
maintainability.

4.Discuss the key features of fourth-generation languages and how
they affect maintenance.

5.Describe the key features of object-oriented paradigms and their
effect on maintenance.

269

270 Software Maintenance: Concepts and Practice

13.1 Introduction
The failure to use paradigms that enable software engineers to build and
sustain maintainable software products has contributed in part to the
software maintenance crisis and its associated cost [210]. The nature of
orthodox software development and maintenance methods makes it
difficul t to accommodate the changing needs of users of these products
[113]. In response to the need to develop and maintain, in a timely and
economical fashion, software systems that meet users' requirements and
are resilient to change and adaptation, various ideas have been advocated
over the years e.g. the use of fourth-generation languages and object-
oriented paradigms [156, 278, 280, 296]. The results of a survey in the
mid 1990's of approximately 250 of the UK's largest investors in
software systems indicated that object-oriented technology was
becoming a mainstream technology [287] and that its potential to
increase maintainability was one of the key driving forces behind this.
Another trend which has had an impact upon the long-term
maintainability of software systems is the adoption of quality assurance
procedures. The number of software companies adopting the ISO 9000
quality standards series has increased rapidly since the early 1990's
[141].

In this chapter, quality assurance issues and the way they affect
maintainability are examined. Fourth-generation languages and object-
oriented paradigms are discussed, concentrating on their key
characteristics and how they impact upon maintainability.

13.2 Definitions
High level language - a computer programming language that is similar
to a natural language and that requires each statement to be translated or
interpreted into machine language prior to execution.

Impact analysis - the determination of the major effects of a proposed
project or change.

Object oriented programming - computer programming in which code
and data pertaining to a single entity (object) are encapsulated, and
communicate with the rest of the system via messages.

Building and Sustaining Maintainability 271

Quality assurance - the systematic monitoring and evaluation of aspects
of a project, service or facility to ensure that necessary standards of
excellence are being met.

13.3 Impact Analysis
Managing change is fundamental to software maintainability. A key part
of the management of change is determining what the ramifications and
implications of the change will be.

We have already seen that program comprehension is one of the
most expensive parts of software evolution. A key aspect in
understanding the system is determining the impact of the changes that
are proposed. This is impact analysis.

An impact analysis looks at questions such as which system will
be affected by a change, where do the changes need to be made, how
much code needs to be modified. Effective impact analysis is a vital
element in retaining an augmenting the maintainability of a system.

13.3.1 Models and Strategies

Many different strategies can be deployed, and there are various
techniques to model change and the impact of change. Choice of
methodology is determined by the needs of a specific project, based upon
the proposed change and the potential impacts.

Several formal models have been proposed (there is a useful
overview in Bohner and Arnold [39 ch.6], looking for example at
predicting the locations and size of a change [104, 106] or analysing
dependencies in the software [135, 183].

We can look at the impact of change at different levels, from the
higher level abstract components of a system, down to the detail which
of which code statements are affected in a particular module.

Traditional approaches to impact analysis concentrate on
analysis of source code e.g. using program slicing techniques or
dependence graphs. Program slicing is a key tool to aid impact analysis
(see chapter 14) especially in procedural and object-oriented programs
[39 ch.4]. However, as we've seen in earlier chapters, software is not just
programs, and software change affects more than just the source code.

272 Software Maintenance: Concepts and Practice

Re-use helps because it tends to lead to better documentation of
how components are changed and what other components might be
affected.

Approaches that take a wider view of a software system have
been developed. Han [123] for example, describes an approach that looks
at change in design and implementation documents, but does not
consider certain aspects such as changes in the scope of identifiers. Other
approaches estimate the impact of code change from various standpoints
e.g. the functional paradigm [154 p.5, 197 p.5].

13.3.2 Impact Analysis in Creating Maintainable Systems

Good example of the key importance of impact analysis in modifying
software systems was the tackling of the Year 2000 problem [271],
identifying all systems and subsystems that would not be able to cope
with the changeover from 1999 to 2000.

Techniques developed to facilitate impact analysis allow greater
efficiency and accuracy in assessing the impact and risks of making a
change, thus decreasing the chances of inappropriate changes being
embarked upon. Impact analysis is key in planning and managing
software change and has the effect of making the resultant changed
systems better and more maintainable.

13.4 Quality Assurance
Quality is widely defined as 'fitness for purpose' and this encompasses
most of what many people mean when they talk about quality. However,
in order to discuss quality in relation to a software product and the
important role that quality has to play in building and sustaining
maintainability, this definition must be widened. A useful definition is
given by Ince in [141] in terms of quality factors. He cites correctness
and maintainability as the two most important quality factors that a
system can possess. The discussion here is of building maintainability
into a system and, as such, maintainability will not be looked at as a
quality factor by itself but rather as something which is affected by the
other quality factors - fitness for purpose, correctness, portability,
testability, usability, reliability, efficiency, integrity, reusability and
interoperability.

Building and Sustaining Maintainability 273

Another important issue which impacts upon the quality of a
system is the appropriate use of standards. There are in existence
standards for many aspects of the software change process, for example
documentation standards. There are also quality standards specifically
adapted to the software process, for example the UK's TICKIT scheme
which relates quality issues directly to software production. There are
also standards, in existence and under development, specifically for
software maintenance, for example the IEEE (STD) 1219-1993 -
Standard for Software Maintenance. Use of software maintenance
standards is not yet as widespread as the use of general quality standards
but the adoption of such standards is becoming more widespread.

13.4.1 Fitness for Purpose

Fitness for purpose - does the product do the job it was intended to do -
is an obvious criterion by which to measure quality. In order to see what
it means in terms of the maintainability of a system it is necessary to look
at how it is measured. The key to enabling measurement of fitness for
purpose is the requirements analysis. It is this which gives the detail of
the purpose of the system. In measuring fitness for purpose, we are
measuring against the requirements: does the system meet its
requirements? If this question cannot be answered - if, for example,
there is no formal record of the requirements, or the requirements are
couched in nebulous terms - there is no reliable measure of quality
through fitness for purpose. Thus the formal statement of requirements is
very important in the building of a quality system. It must be taken into
account at the time the requirements are drawn up that the system will be
measured against them.

Requirements should be hard. For example, the requirement that
a system should respond quickly is a soft requirement and can only be
measured subjectively, whereas the requirement that the system should
respond within 3 seconds is a hard requirement and can be measured
objectively.

How is maintainability affected? Without formal, hard
requirements, change is hard to evaluate, the effects of change are hard to
analyse and the nature of the change is not always easy to identify.
Suppose that a user requests that a certain feature be 'speeded up'.
Against a vague original requirement that a particular feature be
performed 'not too slowly', it is difficult to determine the best course.

274 Software Maintenance: Concepts and Practice

The obvious thing may be to attempt a more efficient rewrite of the
relevant algorithm. Against a hard requirement such as 'response time
under 3 seconds for a Pentium IV processor', it is easier to analyse the
situation. Perhaps there is nothing further to be gained from any code
amendment, and the solution is for the user to upgrade to a faster
processor. If this is obvious from the outset, much time can be saved;
modification is effected quickly without any waste of resources on
unfeasible solutions - the system is more maintainable.

13.4.2 Correctness

There is as yet no way of proving a system to be correct. Nonetheless,
there is much that can be done towards decreasing the level of errors in a
system. Chapter 5 describes some system life-cycle models and the
advantage of structured system development and maintenance. A
reduction in the number of errors is one of the advantages. Building
correctness into a system has the obvious advantage that less time wil l be
spent on corrective maintenance. A maintenance-conscious life-cycle
model wil l help maintain the correctness of a system. The effect of an ap-
propriate model upon sustaining the maintainability of a system is
illustrated by the example in Chapter 5 where maintainability at the
ACME Health Clinic was built out of the system by use of an
inappropriate model.

13.4.3 Portability

Portability encompasses many things, for example moves between

 hardware platforms, for example porting a system from a VAX to a
PC;

 operating systems, for example from Windows to LINUX to widen a
market, from VAX/VM S to Windows when an organisation moves
from a VAX base to a PC base;

 programming languages, for example upgrading a system from DOS-
based to Windows-based by rewriting in a different language or
rewriting a system to adhere to a new in-house standard, for example
Fortran 77 to ANSI C;

Building and Sustaining Maintainability 275

 countries, for example an organisation may wish to widen its market
for a product from the UK to Europe. The product would need to be
available in all European languages.

Building for portability will enhance maintainability by easing
moves between platforms, languages and so on. The building of
portability into a system means the avoidance of features which tie a
software system to a particular platform or language. Adhering to
standards can help portability as can appropriate decisions regarding
what should be hard-coded and what should not. For example, adapting a
system from single language to multilingual is far easier if the parts
which must change are not embedded in the code but are read in, perhaps
from multilingual term sets. Upgrading such a system may be just a case
of providing the appropriate term set.

13.4.4 Testability

A system that is easy to test is also easier to change effectively because it
is easier to test the changes made. It does not automatically follow that a
system that is hard to test will be harder to change per se but if the
system cannot be tested effectively, it is hard to engender confidence that
modifications have been carried out successfully. A good requirements
specification is a necessity in enhancing testability. For the system to be
testable, it is a prerequisite to know what is to be tested, how it should be
tested and what the results of previous tests were. Following from this is
the issue of keeping up-to-date documentation. If there is a change in
requirements or a change in any test procedure, documentation is
essential to maintain the testability of the system. This illustrates that
these factors cannot be considered in isolation. They will always interact.

13.4.5 Usability

If a system for any reason is not used, it may as well not exist.
Maintenance is only an issue for a system that is used and that evolves
with use.

73.4.5.1 Case Study - Usability

An interesting example is furnished by a project carried out at the
research institute of the ACME Health Clinic. Under investigation was
the electronic warning system in the Intensive Therapy Unit of a nearby
general hospital. The purpose of the system was to warn medical staff of

276 Software Maintenance: Concepts and Practice

untoward changes in patients' conditions. The system was fairly simple
in concept - various vital signs were monitored, for example blood
pressure, and if one of these should fall outside a given range an alarm
was sounded. The problem with the system was its simplicity. A normal
blood pressure range varies from patient to patient and often cannot be
used in isolation as an indication of a problem. Other factors, such as
current medication, patient's age and condition and so on are also
important. It was vital that the system didn't miss any untoward change
and it was thus set to trigger an alarm if there was any possibility of a
problem. This inevitably led to a large number of false alarms and this
ultimately made the system unusable. The staff spent more time dealing
with false alarms than was saved through not having to carry out routine
monitoring. When the ACME research institute began its investigations
the electronic system, though still in place, was never turned on.

An experimental neural net system was installed. This took as its
baseline parameters the normal ranges of the original system. When an
alarm was sounded by the system, the medical staff gave feedback as to
whether or not it had sounded appropriately From this feedback, the
system learnt what constituted a problem situation for a particular patient
and consequently gave fewer false alarms. The system had to be taught
for each new patient. It began in a state that was identical to the old
system and became more and more efficient the longer it monitored a
patient.

The basic rule on usability is simple. If a system is not used, it is
useless. It does not matter how good it is at doing its job or how well
engineered it is; if for any reason, the users cannot, or will not, use it, it is
no more use than if it does not exist at all, like the ITU system that was
never turned on.

13.4.6 Reliability
Varying degrees of importance can be attached to reliability, depending
upon the application. Building in a high degree of reliability can be
costly and is not always necessary. The reliability of an air traffic control
system, for instance, must be greater than for a word processing package.
Reliability is closely allied to trust. If a customer has no trust in a system,
he or she will not use it.

Building and Sustaining Maintainability 277

It is interesting to note in the example in the above case study,
that the neural net ITU system never got beyond the stage of a trial
research system because the staff did not trust it. The reason for this lack
of trust was not that the system had ever shown itself to be unreliable,
quite the reverse, but that the state of the art concerning neural net
technology at the time was such that the means by which the system
learnt to monitor the patients' vital signs could not be fully explained.

13.4.7 Efficiency

The efficiency of a system, how it makes use of a computer's resources,
is not always easy to quantify. A requirements specification will often
specify speed and storage requirements and response times, but there is
often an implicit assumption that a system will make 'the most efficient'
use of the available resources. In terms of maintainability there is a need
to make these assumptions explicit. A request for a modification to make
a particular feature 'faster' or 'better' is easier to address when it can be
matched to a hard requirement.

13.4.8 Integrity

The integrity of a system can be interpreted in two ways:

1. Is the system safe from unauthorised access?

2. Can system integrity be guaranteed from a configuration
management point of view? Has the system been built from a
consistent and reproducible set of modules?

The importance of the latter has been covered in Chapter 11. The
former is what is referred to in the ISO 9000 series of Quality Standards
where integrity is described in terms of a system's ability to prevent
unauthorised access. A desirable level of integrity in this sense varies
widely from system to system. Some systems will include provision for
levels of access in requirements specifications and some will not. In most
systems, even where unauthorised access is not a major issue, there will
usually be an assumption that the system should be safe from
unauthorised access.

An important point regarding maintainability is that the
requirement is made explicit even in cases where it is not immediately
perceived to be a vital issue.

278 Software Maintenance: Concepts and Practice

Integrity in the sense of a consistent and reproducible
configuration is vital to maintainability. Without it, reproducing a system
becomes a matter of guesswork and the implementation of change a very
hit or miss affair.

13.4.9 Reusability

Reusability is a factor that is absolutely central to the maintainability of a
system. Its importance is such that an entire chapter has been given over
to it in this book (Chapter 8). This section will not repeat what has been
said in Chapter 8, but the reader is referred back to this chapter for the
details of reuse and reusability. A point to note is that reusability as a
quality factor is not of direct interest to a customer. Although the
reusability of a system is likely to have an advantageous effect upon
future systems and enhancements, a customer's direct interest is in using
a system rather than any future reuse of its component parts.

13.4.10 Interoperability
The ability of a system to interact with other systems is a very important
factor. People want to be able to move data between applications without
loss. There was a time when it was all but impossible to move a
document between word processors without, at the very least, losing all
formatting information. There is a commercial advantage to keeping
systems segregated. If data can be switched easily from one package to
another, a customer can move easily between packages whereas, if
moving to a different package involves loss of data, a customer can be
effectively tied to a package. In the early days of the software industry,
this scenario was widespread. Even nowadays there are areas, for
example healthcare computing, where healthcare facilities are tied to old
and inefficient systems because to change would involve the loss of
significant data accumulated over decades. The trend, however, is
towards interoperability and there is littl e doubt that software suppliers,
certainly of health care systems, will soon have to comply with specific
requirements in this area. Additionally, the software world is such that
market advantage of isolated systems is dwindling.

Exercise 13.1 How would you go about persuading a customer, who
is having a new system developed, to budget for
reusability and testability?

Building and Sustaining Maintainability 279

This section has briefly discussed quality factors and their
impact upon maintainability. The following sections look in more detail
at some specific technologies and the way that these impact upon
maintainability.

13.5 Fourth-Generation Languages
In the early days of computing, programming was undertaken mainly by
professional programmers. As prices fell and personal computers became
more widely available in a broad range of working environments, end-
users, who often were not professional programmers, wanted to use the
computers to perform tasks such as storing and manipulating data, or
even to develop their own applications without necessarily needing the
support of professional programmers. Conventional programming
languages were an option, but required significant investment of time
and effort to learn. The tools to enable users to achieve these objectives
were fourth-generation languages (4GLs).

The use of the term 'fourth-generation languages' stemmed from
the classification of programming languages according to their
generations. The use of first-generation languages entails programming
computers using binary notation. These languages require a good
understanding of low-level details of the machine such as physical
storage locations and registers. Programs written using these languages
are very dependent on the specific machine for which they are written.
An example is machine code.

Second-generation languages were an improvement of the first-
generation ones. Instead of specifying the physical location in the
computer, symbolic addresses are used to designate locations in memory.
Second-generation languages are slightly less machine dependent. An
example is symbolic assembler.

Third-generation languages, also known as high-level
languages, are more independent of the machine than second-generation
languages and as such their use does not require knowledge of the
machine instruction set. Thus, programs can be easily ported to different
machines. Also, third-generation languages are generally standardised
and procedural in nature - their use requires adherence to some rules and
regulations. These languages are often used to solve scientific or
commercial problems. Examples are Pascal, Cobol, Ada and Modula-2.

280 Software Maintenance: Concepts and Practice

Note that C is often put into this category, but it is in fact nearer to an
assembly language. Although it is much easier to program using these
high-level languages in comparison with their predecessors, they still
present several difficulties which include:

 Writing and debugging programs is a significantly slow, difficult and
expensive process. Often these difficulties contribute to late delivery
of software products.

 Many of them can only be used effectively by professional
programmers. If there is a dearth of the relevant professionals,
projects will be significantly slowed.

 The implementation of changes to complex software systems is slow,
difficult-and hence can greatly increase maintenance costs.

 Several lines of code need to be written to solve a relatively small
problem, thereby impeding programmer productivity.

In response to the above problems, 4GLs were created. In other
words, the advent of 4GLs was seen as a way of reducing dependence on
professional programmers and giving users the power to obtain fast
results to support their day-to-day operation without the need for
extensive programming.

Martin [186] provides a taxonomy of 4GLs which consists of
simple query languages, complex query and update languages, report
generators, graphics languages, decision-support languages, application
generators, specification languages, very-high-level programming
languages, parameterised application packages and application
languages. There is a wide variety of commercially available 4GLs.
Martin [186] also provides a comprehensive coverage of these tools.
Some of the most commonly used ones include SQL, Oracle, Ingres, and
FOCUS.

SQL (or Structured Query Language), as the name signifies, is a
query language that is used in conjunction with a database and allows the
user to obtain various types of information from the database. For
instance, the command

LIST PATIENT_NO AGE FOR AGE < 10 TO PRINT

accesses a database of patient records and prints the patient
number and age of each patient who is less than 10 years old.

Building and Sustaining Maintainability 281

Oracle and Ingres are both examples of decision-support
languages. They permit users to build databases and manipulate data in
order to obtain decision-support information. These tools are commonly
used for business-oriented problems such as analysis of financial matters
and for making investment projections.

In principle, we can have these different categories of 4GLs. In
practice however, the distinction is not so clear-cut; some packages
combine facilities offered by more than one of these strands of 4GL. An
example of such a package is FOCUS. It provides a wide spectrum of
facilities such as report generation, database query, screen generation,
graphics and financial modelling and also enables generation of
applications.

Some 4GLs are described as non-procedural languages because
they allow the user to specify 'what' the application is to do but not in
detail 'how' this is to be achieved. Examples of non-procedural
languages include application generators, database query languages and
form designers. In contrast to non-procedural languages are procedural
languages which require that the user specifies how each action is to be
accomplished. Examples of procedural languages include Pascal,
Modula-2, Cobol, and C. Certain 4GLs, however, sometimes combine
the characteristics of both non-procedural and procedural languages.

13.5.1 Properties of Fourth-Generation Languages

Although 4GLs have different characteristics depending on factors such
as their functionality, operational environment and target users, there are
some properties which are common to many of them. Martin and
McClure [186, 188] in a survey carried out in the early 1980's provided
an extensive list of these characteristics. It must however be noted that
further studies and advances led to the reappraisal of some of these.

 They are easy to use. This is undoubtedly true in relation to 1980's
alternatives, but a less significant characteristic now.

 They can be employed by non-professional programmers to obtain
results. True of course, but what was heralded as a great advantage
turned out to be a double-edged sword (see section on weakness of
4GLs).

 They use a database management system directly.

282 Software Maintenance: Concepts and Practice

 They require an order of magnitude fewer instructions than other
conventional languages such as Cobol.

 Where possible, they use non-procedural code.

 Where possible, intelligent default assumptions about what the user
wants are made.

 They are designed for on-line operations.

 They encourage or enforce structured code. This has proved true
only to a point for early 4GLs. Maintenance programmers struggling
with badly written 4GL code can testify to reams of ill-structured
code. However, in relation to early alternatives, the statement holds.

 They make it easy to understand someone else's code. Once again,
this characteristic and the next one were of greater significance when
compared to 1980's alternatives.

 They are designed for easy debugging.

 Non-technical users can learn to use a subset of the language after a
two-day training course.

 They allow results to be obtained in an order of magnitude less time
than with Cobol or PLII. It is not clear that this characteristic is
backed up by rigorous empirical study.

 Where possible, documentation is automated.

13.5.2 Impact on Maintenance
By virtue of the above characteristics, the use of 4GLs to develop and
maintain applications impacts on software maintenance in many ways.

13.5.2.1 increased Productivity
One of the major problems with applications developed with third-
generation languages such as Cobol and Fortran is the time required to
effect change. In organisations that depend on the effective operation of
their software systems, delays in implementing change can be disruptive
and costly. One of the strengths of 4GLs is that they enable more rapid
implementation of change, thereby increasing productivity. For instance,
adding a sorting procedure for a database may require in excess of 50

Building and Sustaining Maintainability 283

lines of a third-generation language in comparison with one line of 4GL
code.

13.5.2.2 Reduction in Cost
Due to the reduction in time required to develop and maintain
applications using 4GLs, they tend to cost less than conventional
application development. Major enhancements can be undertaken in
hours, unlike traditional programming language applications which may
take several weeks or months.

13.5.2.3 Ease of Understanding
As discussed in Chapter 6, prior to modifying other people's programs, it
is essential to. understand them. A good 4GL facilitates this. In an
industry where there is a shortage of qualified staff and a high turnover
of maintenance personnel, the desire to shorten comprehension time is
one of the driving forces behind 4GLs [178].

13.5.2.4 Automatic Documentation
In many 4GL-oriented applications, a large proportion of the
documentation is generated automatically. Considering the significant
role that documentation plays in maintenance of other people's
programs, this feature can ease considerably the job of maintenance
personnel.

13.5.2.5 Reduction in Workload
One of the major problems contributing to the software crisis, where
demand for software systems exceeds supply, has been the shortage of
professional programmers. The user-friendly and easy to learn nature of
many 4GLs allowed end-users to implement modifications with littl e or
no assistance, thereby reducing the workload for the maintenance
personnel.

73.5.3 Weaknesses of Fourth-Generation Languages
In spite of the above potential benefits to maintenance, these languages
do have weaknesses which include the following.

284 Software Maintenance: Concepts and Practice

13.5.3.1 Application-Specific
The very fact that many of these languages are targeted at specific
application domains makes it difficult to use them for applications other
than those for which they were originally designed. This can also make it
uneconomical or even impossible to enhance the functionality of an
application because the language originally used to develop it is not
powerful enough, unlike third-generation languages which can support a
wider spectrum of applications.

13.5.3.2 Proprietary
Many 4GLs are not compatible; that is, they are proprietary and are not
'open languages' [178]. Once a 4GL system is purchased from a vendor,
the organisation concerned cannot easily migrate to other similar systems
or reuse code from other environments without huge cost implications,
thereby impinging on the long-term evolution of the system.

13.5.3.3 Hyped Ease of Use
There have been a lot of claims in the literature that 4GLs are designed
for non-professional programmers. However, not only are some
programming constructs out of the reach of non-computer-literate users,
a 4GL itself is no substitute for a good grounding in software engineering
theory [82]. Thus, 'ease of use' may actually translate to unmaintainable
code.

13.5.3.4 Poor Design
The ease of use issue means that systems can be developed by people
with no expertise or grounding in software engineering, or by people
with no thorough understanding of the business problem being solved.
This can lead to badly designed and implemented systems with littl e or
no documentation [82]. As such, the systems soon become
unmaintainable.

4GLs have the potential to speed up productivity and reduce
cost, but as Linthicum explains,

Building and Sustaining Maintainability 285

"... these tools lock you into a vendor, not a standard. 4GLs
don't provide the same degree of flexibility or performance as 3GLs...

Full-featured object-oriented programming languages and development
environments like C++ may be the best alternative to the weaknesses of

4GLs."

Linthicum ([178], jj.42)

13.6 Object-Oriented Paradigms
Early procedural programming is analogous to the 'waterfall' model. It
developed in much the same way. It was appropriate to early software
development contexts.

Originally, computers were used to solve well-defined,
mathematically based problems. The idea of following a sequence of
instructions was appropriate and relevant. Early programs written in
machine code or assembler were the 'code-and-fix' and 'quick-fix' of
programming languages. Simple sequences of instructions were fine for
simple and clearly defined problems.

As the problems to be addressed became more complex,
procedural languages and programming techniques became more
sophisticated to deal with them. Techniques of structured systems
analysis and design were developed, but essentially the underlying
philosophy of a computer program being a sequence of instructions to be
followed, remained the same. A comparison can be made with the
waterfall and other similar development and maintenance models. These
are more sophisticated versions of code-and-fix and quick-fix, but not
dissimilar in essence, and still with fundamental shortcomings.

Nowadays, systems that are being computerised are far too
complex to be captured by sequences of instructions. There are no
defined start and end points. Where, for example, does the "program"
that is the world Telecom system start and end? The concept does not
make sense.

The object-oriented paradigm was developed to handle the
design, development and maintenance of industrial-strength software
[42]. A major characteristic of these systems is that they are inherently
complex [42, 169 ch.12]. Such systems, e.g. air traffic control systems,
airline ticket reservation systems and spacecraft control systems, are

286 Software Maintenance: Concepts and Practice

large and dynamic networks of interacting systems. These interacting
systems themselves are made up of smaller systems and so on until at
some level we eventually find familiar small systems that can be
modelled procedurally. Thus procedural programming fits into object-
orientation in the way that code-and-fix and quick-fix remain relevant to
development and maintenance.

In this context, the system to be programmed becomes a series of
elements, each of which is a self-contained system.

13.6.1 Decomposition to Aid Comprehension

The level of complexity of industrial-strength software systems makes it
impossible for a single individual to understand the entire system all at
once; there is a limit to how much information the human brain can
handle and process at any given time [194]. The use of decomposition
during the development of these systems was hailed as one of the first
effective means of addressing the issue of complexity [42, 215]. This is
based on the premise that in order to understand a system, we only need
to comprehend some of its constituents at any one time rather than the
whole system. Decomposing a system allows the production of these
constituents. There are two ways in which a system can be decomposed:
algorithmic decomposition and object-oriented decomposition [42].

Algorithmi c decomposition was one of the most popular
approaches used by software engineers and usually came under the guise
of 'top-down structured design'. Here, the system is perceived as a
process - or a collection of algorithms - and during decomposition, the
process is broken down into sub-processes each of which in turn is
represented as procedures, functions or modules depending on the
programming language. For instance, the design (or algorithmic
decomposition) of a spelling checker system yields the output given in
Figure 13.1 [255].

This approach to software development and maintenance has a
number of weaknesses. Firstly the output from each phase of the life-
cycle is represented in a different form or language [266]. For instance,
the design of a system can be represented graphically using structures
such as data flow diagrams and structure charts whereas the
implementation is in textual form (using a suitable programming

Building and Sustaining Maintainability 287

language). Secondly, issues of abstraction and information hiding are not
necessarily dealt with properly [42].

Spell

Get_ Lookup Handle_
Sorted_ Unknown_
Words I I Words

Get_Words Sort

Figure 13.1 Algorithmic decomposition of a spell checker system

Object-oriented decomposition is the approach in which the
system is viewed as a collection of objects that interact to perform a
higher-level function. Each object exhibits unique behaviour usually
characterised by the operations that it performs, and those that other
objects perform on it. The objects communicate with each other through
message-passing; that is, sending instructions on the service that is
required. Object-oriented decomposition involves abstracting these
objects and operations from the problem domain. An object-oriented
decomposition equivalent of the spelling checker system in Figure 13.1
is given in Figure 13.2. In this example, the object, SpellingChecker,
first issues a message, GetWords, to another object, Document,
requesting words. After receiving the words, SpellingChecker then
instructs another object, Dictionary, to check the spelling of the words.
This is achieved by passing the message, Lookup.

The object-oriented paradigm is based on the view that the real
world consists of sets of objects such as cars, cats, desk, tables etc. These
objects have attributes which describe some aspects of the object; for
example, a car has wheels, tyres, windscreens, etc. They can also
perform operations and operations can be performed on them by other

288 Software Maintenance: Concepts and Practice

objects. Objects that have a group of similar attributes are considered to
belong to a class and each of the objects is an instance of that class.

Document Dictionary

Get Words ̂ ^ ^ . / lookup

Spell Checker

Figure 13.2 Object orientation of a spell checker system

Each object in a class inherit s the attributes of that class. This
process is known as inheritance. Suppose that we have a class called
UniversityEmployees with attributes such as EmployeeName and
Salary. Each instance of the class UniversityEmployees, for example
professors, lecturers, research assistants and secretaries, inherits the
attributes EmployeeName and Salary.

In an object-oriented system containing code libraries, the
process of hiding the implementation details of an object and its
associated operations behind a well-defined interface is known as
encapsulation. The concept of encapsulation is similar to the notion of
using definition and implementation modules in Modula-2 to separate the
program interface from implementation details. Encapsulation is a
particularly important concept for maintainability. It allows objects
inherently to be units of reusable code, which have the benefits of
component reuse: increased productivity and software quality and ease of
code migration (Chapter 8). Additionally, systems built from these
objects are extensible; the functionality of such systems can be increased
through inheritance [113, 114].

13.6.2 Impact on Maintenance
Advocates of the object-oriented paradigm argue that one of its main
advantages is that there is a common view of what happens in the real
world and how this is implemented in the software, and as such, the

Building and Sustaining Maintainability 289

transformation from the analysis phase to the implementation phase is
much clearer and less error prone [266].

Booch [42, 41] has also pointed out a number of advantages of
an object-oriented view of software development over orthodox methods
such as top-down structured design or data-driven design:

 It yields smaller systems due to the reuse of common mechanisms.

 It facilitates the production of systems that are resilient to change and
hence easily evolvable considering that its design is based on a stable
intermediate form. The potential of object orientation to increase
maintainability is a contributory factor to its popularity [287].

 The risks associated with complex systems are reduced because
object-oriented systems are built to evolve incrementally from
smaller components that have been shown to satisfy the
requirements.

 Products from object-oriented decomposition can be stored in
libraries and reused [25]. As discussed in Chapter 8 this has the
advantage of expediting personnel productivity, high quality
software and a reduction in cost.

Despite the benefits of deploying object-oriented techniques,
their application is not universal. It takes time to bring a new paradigm
on stream. There is a large body of code in existence requiring
maintenance. Thus, even if object-orientation becomes the accepted
paradigm for software development, the need for expertise in non object-
oriented techniques will persist for a very long time. It is not necessarily
appropriate or cost effective to convert existing systems.

Education and training is another issue. In the mid 1990's, there
was an insufficient level of object-orientation education and training
[156]; a large proportion of mainstream programmers had littl e or no
educational background in object-oriented techniques. It can be
prohibitively expensive for industry to retrain its personnel. In a large
survey on object-oriented issues, conducted in the UK, investment in
personnel was found to cost at least 10 times that in hardware or software
[287], For an appropriately trained body of experts to come up through
the ranks of the colleges and universities takes time. Training the trainers
adds to this. A strategic decision to swap to an object-oriented language
in a mainstream Computer Science course, if not backed up by staff

290 Software Maintenance: Concepts and Practice

resources, can lead to object-oriented languages being taught using
procedural programming techniques and philosophies.

The problems of which language to use [114] bedevil any
advance of this type. There are risks in choosing one language over
another before the foundation work on the underlying paradigm is
settled.

13.6.3 Migration to Object-Oriented Platforms

As a result of the benefits of object-oriented technology there has been a
tendency to migrate existing systems based on traditional paradigms by
using object-oriented techniques and languages. In this section, the
approaches and personnel issues concerned with this migration are
discussed.

13.6.4 Approaches

Migration to object-oriented platforms can be approached in a number of
ways. The first is to rewrite the whole system. In other words, throw
away the current system and start from scratch, but develop the new
system from an object-oriented perspective. This may be an option for
small systems of a few thousand lines of code. For many large systems -
usually hundreds of thousands or several million lines of code - that
represent a significant part of the assets of the organisations that own
them, a better approach is required.

The second approach to migration, especially appropriate in the
early days of moves to object-oriented systems, was to use object-
oriented analysis as a 'springboard'; that is, perform object-oriented
analysis of the existing system and implement it using a mainstream but
non-object-oriented language such as Cobol or C and then migrate to a
suitable object-oriented language at some later time [113]. A prototype
could be used to validate the specification with the user. The key ad-
vantage of this approach was that it avoided the risk of choosing an
object-oriented programming language that would prove a bad choice as
object-oriented languages themselves evolved.

The third, and possibly the approach preferred by most
organisations, is that which permits organisations to reap the benefits that
object orientation offers as well as securing the investment that has been
made in their existing systems. This objective can be achieved through

Building and Sustaining Maintainability 291

techniques such as abstraction engineering [218] and object wrapping
[113, 218]. The process of abstraction engineering involves taking the
existing non-object system and modelling it as a set of objects and
operations. This enables the identification of key reusable components
which themselves can be assembled to form new objects that can be used
for both perfective and preventive maintenance of the existing system as
well as the development of new systems. For example, there may be a
need to enhance a patients' appointment system, embodied within a
much larger hospital information system, so that other specialist
standalone packages can be integrated into the appointment system.
Rather than develop a new system, the appointment system can be
isolated and encapsulated in the form of objects that can be used in other
systems.

After identifying objects through abstraction engineering,
programs which allow the objects to be accessed in a formal and
controlled fashion are developed through a process known as object
wrapping. These programs are called wrappers. The wrappers serve as
interfaces to these objects and are what any prospective user of the object
wil l be presented with. The wrapped objects can then be implemented in
one or more object-oriented programming languages. The main
advantage of object wrapping is that after an object has been wrapped, it
can be reused in several other systems as if it was developed from
scratch.

73.6.5 Retraining Personnel
The key issues that preoccupy the software community in relation to this
change process are usually technical and managerial in nature. An area
that has been neglected is the retrainin g of personnel - analysts,
designers and programmers - already involved in mainstream
technologies or programming languages, such as structured programming
and Cobol [156]. Such retraining is essential since it can be used to
capitalise on the existing knowledge base that the personnel have
acquired by virtue of their experience.

Undoubtedly the retraining process is not only an expensive
activity [287] but also a difficult task.

292 Software Maintenance: Concepts and Practice

"There is nothing more difficult to arrange, more doubtful of
success, and more dangerous to carry through than initiating changes "

Machiavelli (quoted in [114], pp. 20-2)

Nonetheless, the transition to a new technology need not
necessarily be perceived as revolutionary but rather as an evolutionary
process. It is important to select and apply training techniques that bridge
the gap between the old and new technologies. That is, make explicit the
links between familiar concepts in the old technology and corresponding
concepts in the new technology.

Krupinski and Vlamis [156] provide suggestions on the
techniques that can be used to assist Cobol programmers become
proficient in' object-oriented programming. For example, they link the
process of hiding implementation details behind a well-defined interface
in traditional programming languages to the concept of encapsulation in
object-oriented languages. Another method, 'Objects 9000', being used
to facilitate conversion to the object-oriented paradigm, involves
introducing object-orientation in connection with ISO 9000 quality
standards [87].

Although littl e attention has been paid to the retraining of
personnel in connection with the migration of legacy systems, there are
examples in which these systems have been reengineered successfully
using object-oriented techniques. In the next section some of these
examples are discussed.

13.7 Object-Oriented Techniques in Software
Maintenance

The application of object oriented techniques is more common in the
development of new systems than in the maintenance of existing
systems. There are, however, examples in which these techniques have
been applied successfully in the reengineering of software systems. In
this section we will look at three such systems. The experiences from
these ventures by the organisations concerned are also discussed.

13.7.1 Case Study - Mobile2000
Mobile2OOO, a Customer Account Management and Billing System,
developed by American Management Systems, Inc. (AMS), is a cus-

Building and Sustaining Maintainability 293

tomer account management and billing system used within the cellular
telephone industry [278]. The mainframe-based system consists of about
200 on-line and 600 batch/report programs all of which constitute around
2.2 million lines of Cobol code. As a result of the potential of object-
oriented technology to broaden its functionality and to increase its ease
of use, Mobile2OOO was reengineered using object-oriented and
Graphical User Interface (GUI) techniques. The ultimate goal was to
develop a version of Mobile2OOO called 'Mobile2OOO GUI' which is
based on a client/server architecture17. The client is an Intel-based PC
running OS/2. The server can be an OS/2-based server or an IBM
mainframe.

During implementation, the Mobile2OOO system was first
analysed objectively, bringing out its strengths and weaknesses, through
reverse engineering. The specific goals for reimplementing the system
using object-oriented technology were then identified. The desired
functionality was implemented using Smalltalk/V with ENVY as the
configuration manager and WindowBuilderPro as the user interface
design tool. Local data was stored as persistent objects and in SQL
tables. With the aid of Communications Manager for OS/2, the
workstation - acting as a client - communicates in a peer-to-peer fashion
with the server.

The experiences from the project were threefold. It showed
firstly, that during reengineering, it is important to develop a
methodology which combines what has been successful in the past with
those processes and procedures unique to object technology. Secondly,
developers need to be offered training in the object-oriented paradigm
using the technologies that will be deployed to reengineer the legacy
system in question. And thirdly, there is a need for constant iteration to
extend and improve the desired functionality.

13.7.2 Case Study - Insight II

Insight II is an interactive molecular modelling system jointly developed
by the Monsanto Corporation and the University of California, San

In a client/server architecture, a software system known as a 'server' performs operations
requested by other systems, known as 'clients' [257].

17

294 Software Maintenance: Concepts and Practice

Francisco, originally for modelling protein [205]. This system, which
was developed around 1984 based on a procedural development
paradigm, is a workstation-based graphical application primarily used by
research chemists for visualisation, simulation and analysis of molecules
and also as a tool for basic research and pharmaceutical development.

As Insight II increased in size - reaching 120,000 lines of C code
in 1988 - to accommodate new functionality such as molecular
modelling subsystems for synthetic polymers and inorganic catalysts,
there was increasing difficulty in maintaining its reliability. Another
problem with Insight II was its inability to support an open architecture
that would allow users to create their own applications within a well-
defined framework.

In response to these problems, a new application framework had
to be developed. Due to its potential to offer solutions to the problems of
extensibility, efficiency and reliability, the object-oriented paradigm was
chosen for this task. It was also chosen because of its support for
encapsulation and consistency, two essential characteristics for an open
architecture.

Instead of completely rewriting the existing system, an
evolutionary approach to developing the architecture was chosen. A class
library that reimplements Insight II was developed while ensuring that
the old applications and their core - architecture - were still working.
The code of the old system was encapsulated with a 'jacket' - or wrapper
- that gives the appearance of an object oriented system, called
'Chembench'. The old applications were then migrated, in a piecemeal
fashion, to the new object-oriented interfaces. The main advantages of
this approach were that the substantial investment made in the existing
system was not wasted and there was an opportunity to build on past
successes. One disadvantage of this approach, however, was that the
jacket was constrained by some limitations in the old system.

A number of lessons were learned from the migration of Insight
II to an object-oriented platform. Firstly, the maintainability and
extensibility of the new system was substantially improved. This is
apparent in the increased rate of adding functionality and the decreased
rate of reported errors. Secondly, major extensions of the system have
been undertaken while maintaining reliability. Prior to the migration,
such extensions were either abandoned or could only have been

Building and Sustaining Maintainability 295

undertaken at the risk of disastrous long-term consequences. Thirdly, the
use of jackets and the piecemeal approach to migration allowed the
existing system to run alongside the entire process. And finally, the
migration successfully led to an open architecture that offered sufficient
encapsulation and interface consistency, thus making it easy for users to
use it as a basis for their own applications.

Despite the success of this project, problems were encountered.
One was the inability to modify some classes because migration to
Chembench was incomplete. Another problem was the difficulties
encountered due to the use of C instead of C++; one of the host platforms
for Chembench did not have C++ available and some of the personnel
involved had no C++ expertise.

13.7.3 Case Study - Image Filing System

Due to the need for a software development methodology which could
simplify the maintenance and modification of a large software system,
the object-oriented paradigm was chosen by a group of researchers in a
major multinational corporation [296]. The paradigm was chosen on the
grounds that it provides a stable architecture and a modifiable software
system. A two-phase project to investigate the applicability and
usefulness of using object-oriented techniques to develop large-scale
software systems was set up.

During the first stage of the project, a year was spent analysing,
designing, and developing a prototype for an existing image filing
system using Coad's Object-Oriented Analysis and Object-Oriented
Design and C++. This system - constituting several million lines of code
- consisted of two layers. The upper layer made up of three subsystems:
image definition, image entry and image retrieval; the lower layer
consisting of two subsystems: a user interface and a database. The result
of this phase indicated that the use of object-oriented techniques could be
applied to develop large-scale software systems.

The second phase of the project involved evaluation of the
effectiveness of object-oriented techniques. The approach used was to
apply Hatley's Real-Time Structured Analysis (RSA) and Rumbaugh's
Object Modeling Technique (OMT) to the same subsystem of the image
filing system - the image retrieval subsystem in this case - and evaluate

296 Software Maintenance: Concepts and Practice

their analysis processes and the corresponding results. Three criteria
were used to carry out the evaluation: separation of role between analysis
and design; ease of proceeding to the analysis process; and ease of
understanding the results of analysis.

The results from the second phase of this project are threefold.
Firstly, analysts applying RSA tend to introduce more design decisions
earlier in the analysis than when using OMT. This gives rise to an
inflexible specification that depends on the design decisions. Secondly,
the analysis process of RSA is less straightforward and more time-
consuming than that of OMT. Also, due to the hierarchical structure of
functional models and the tight coupling between the functional model
and dynamic model of a system in RSA, a small change can have
extensive effects. On the other hand, when using OMT, a modification to
a dynamic model or functional model does not affect the object model18.
This is because the details of the dynamic model and functional model
are encapsulated by the object concerned. Thirdly, the analysis results of
RSA are easier to understand than those of OMT.

As a general conclusion, "RSA is useful for analysts whose
purpose is to specify the analysis results for customers and designers,
while OMT is useful for analysts whose purpose is to analyse an
unfamiliar problem for their own sake" [296 p.43].

Exercise 13.2 Below is a problem statement from a client who
wants an information system for students' examination
marks:

Due to an increase in the number of students, an
information system for managing students' examination
marks is needed. Using the system, each lecturer should
be able to store students' examination marks. A lecturer
should also be able to modify the marks (for his or her
course only) and make enquiries about the names and
grades of all students who attain a certain score, for
instance 75% or more, for each module.

 Develop the above system using a third-generation language
such as Modula-2 or Ada and also develop the same system

j O

Provided the modification does not affect messages to and from the object.

Building and Sustaining Maintainability 297

using a suitable 4GL. Compare the comprehensibility and
maintainability of the two systems.

 Modify both systems to allow tutors and students also to make
enquiries. Tutors should only be allowed to view the marks of
their tutees and students should only be allowed to view their
own marks. Comment on the time and ease of effecting this
change for both systems.

13.8 Summary
The key points that have been covered in this chapter are:

 It is essential to build maintainability into software systems, but it is
even more important to sustain maintainability while the systems
evolve.

 Comprehensive impact analysis as an integral part of implementing
system change is key in building and sustaining maintainability in
systems.

 Technologies such as 4GLs and object-oriented paradigms aim to
achieve this objective.

 Using 4GLs to develop applications can lead to easily understood
code, increased productivity automatic documentation and reduced
maintenance cost. However, 4GLs are not the cure-all solution they
have sometimes been hyped up to be. Problems can arise through the
development of systems by people who do not have the appropriate
foundation knowledge in software engineering or maintenance.

 Object-oriented paradigms give rise to systems that are resilient to
change since design is based on a stable intermediate form.
However, it is important to note that despite the increasing popularity
of object-oriented techniques, it is still early days for object-oriented
development of large complex systems.

In this chapter, the effects of using 4GLs, object-oriented
techniques, quality assurance procedures and standards on the
maintainability of software systems have been discussed. Also, some
case studies illustrating the applicability of these techniques in large-
scale industrial systems have been examined. To increase the
productivity and efficiency with which some of these techniques and

298 Software Maintenance: Concepts and Practice

procedures can be applied, it is important to work with suitable tools. In
the next chapter, some of these tools are described.

14

Maintenanc e Tool s

A tool is only as good as its user

This chapter aims to

1.Discuss a number of criteria that can be used as guidelines to
choosing tools.

2.Outline some general categories of the most commonly used
maintenance tools.

3.Describe the key features of tools that can be used to support tasks
such as program comprehension, reverse engineering,
configuration management, debugging, testing and
documentation.

4.Explain how the above features enable the software maintainer to
understand and to modify software systems.

14.1 Introduction
There may be no 'silver bullets' for maintenance problems, but the use of
tools to support the software maintainer can significantly simplify the
task, increase efficiency and productivity, and support the evolution of
the entire software system.

In this chapter, some general criteria for selecting tools are
discussed. Also, a survey of the key features of commonly used software
maintenance tools is presented. The criteria and features given can be

299

300 Software Maintenance: Concepts and Practice

used as guidelines for evaluating the suitability of a prospective tool -
assisting the user to make an informed choice. It is not the aim of this
chapter to provide a comprehensive list of specific products and their
vendors (see, for example, [300] for such information).

14.2 Definitions
Tool - implement or device used to carry out functions automatically or
manually.

Software maintenance tool - an artefact used to carry out automatically
a function relevant to software change.

14.3 Criteria for Selecting Tools
There are several vendors developing and marketing a wide variety of
tools that claim to support software maintenance. Some of them
apparently serve the same purpose, but in practice differ in cost and in
many other respects. Bearing this in mind and prior to acquiring a tool
for software maintenance work, there are a number of factors that should
be taken into consideration:

 Capability: This is one of the most important criteria to consider
when evaluating a tool. The tool must be capable of supporting the
task to be performed. When a technique or method is to be supported
by a tool, it is necessary to ensure first that it works without a tool;
that is, by hand. As Davis points out, "if a technique doesn't work
without automation, it won't work with automation" [75, 34].

 Features: After having decided that the technique or method can
benefit from automated support, the features expected of any
potential tool need to be considered. As a simple example, a useful
word processor will need to provide not just an editor, but also other
features such as a spelling checker, thesaurus, drawing and search
facilities. Similarly in maintenance, particular features may be
required of a tool. The importance of each of these features should be
rated and the tool selected accordingly.

 Cost and benefits: The cost of introducing a tool needs to be weighed
against the benefits. The benefits that the tool brings need to be
evaluated in terms of indicators such as product quality, productivity,
responsiveness, cost reduction, and extent of overlap or dichotomy

Maintenance Tools 301

between different groups with respect to their way of doing things
[170].

Platform: The platform refers to the specific hardware and software
environments on which the tool runs. Examples include: IBM
mainframe and mini platforms such as MVS and AS/400
respectively; PC-based operating systems such as Macintosh OS,
MS-DOS and Windows; and LINUX and UNIX variants. The
platform where the tool is to be mounted needs to be considered.

Programming language: This refers to the language that will be used
to write the source code. Examples include Java, Ada, C, C++,
Cobol, Fortran, Modula-2, Lisp and Prolog. To be on the safe side, it
is important to obtain a tool that supports a language that is already
(or is likely to become) an industry standard. This is particularly
important in situations where there is migration to a new paradigm,
for example migration to object-oriented development.

Ease of use: The ease with which users can get to grips with the tool
determines, to some extent, its acceptability. Usually, a tool that has
a similar 'feel' to the tools that users are already familiar with tends
to be accepted more easily than one which is radically different. For
example, introducing a command-driven tool into a menu-driven
environment will cause more problems for the users than a menu-
driven tool.

Openness of architecture: The ability to integrate a tool with others
from different vendors plays a major role in its extensibility and
flexibility . This is particularly important in situations where the
desired tool needs to run in conjunction with existing tools. Another
reason for selecting a tool with an open architecture is that in very
complex maintenance problems a single product from one vendor
may not be capable of performing all the required tasks. For instance,
many CASE tools provide support for code analysis but lack the
capability of extracting business rules from the code [185]. In such
cases there is a need to purchase additional tools from other vendors
to supplement the existing ones and it is important that they can be
integrated. In short, avoid proprietary tools if you can.

Stability of vendor: It is important to consider the reputation of the
vendor before acquiring a tool. Due to high competition in the
computing industry, a company who cannot keep up with the

302 Software Maintenance: Concepts and Practice

competition may disappear from the scene and leave its users with no
support. As such, it is essential to look into the background of any
company being considered as a supplier of a tool. If the tool is one
with an open architecture then this factor may not be so important.

 Organisational culture: Organisations usually have a particular way
in which they operate; a working culture and work patterns. In order
to increase the chances of the tool being accepted by the target users,
it is essential to take such culture and work patterns into
consideration [170].

14.4 Taxonomy of Tools
In principle, it is possible to distinguish between classes of software
maintenance tools, usually based on the task that they support. For
instance, visualisation tools support program comprehension. In practice,
however, it is difficult to have such fine-grained distinction primarily due
to the diversified and interrelated nature of software maintenance
activities. For example, some debuggers - used for correcting errors in
programs - also offer visualisation facilities.

In this section an attempt is made to classify maintenance tools
based on the specific tasks that they support. In cases where a tool
supports more than one task, this will be pointed out in the discussion.
The categories of tasks for which tools will be discussed are:

 Program understanding and reverse engineering

 Testing

 Configuration management

 Documentation and measurement.

14.5 Tools for Comprehension and Reverse Engineering
Program understanding and reverse engineering have been combined
because they are strongly linked. Program understanding involves having
a general knowledge of what a program does and how it relates to its
environment; identifying where in the system changes are to be effected;
and knowing how the different components to be modified work.
Reverse engineering goes a step further by enabling analysis and
different representations of the system to promote that understanding.

Maintenance Tools 303

As a result of the large amount of time used to study and
understand programs [69, 214], tools that promote understanding play a
major role in the implementation of change. Tools for reverse
engineering and related tasks such as redocumentation, design recovery,
specification recovery and reengineering also achieve the same goal. The
majority of tools in this category are visualisation tools, that is, tools that
assist the programmer to form a mental model of the system under
examination by virtue of the visual impact they create. Examples of
program understanding and reverse engineering tools include the
program sheer, static analyser, dynamic analyser and cross-referencer.

14.5.1 Program Slicer

One of the major problems with software maintenance is coping.with the
size of the program source code. It is important that a programmer can
select and view only those parts of the program that are affected by a
proposed change without being distracted by the irrelevant parts. One
technique that helps with this problem is known as slicing - a mechanical
process of marking all sections of a program text that may influence the
value of a variable at a given point in the program [285]. The tool used to
support slicing is known as a program slicer [105]. The program slicer
also displays data links and related characteristics to enable the
programmer to track the effect of changes.

14.5.2 Static Analyser

In an attempt to understand a program, there is usually a need to obtain
information about different aspects of the program such as modules,
procedures, variables, data elements, objects and classes, and class
hierarchy. A static analyser allows derivation of this information
through careful and deep examination of the program text. Some authors
also refer to this type of tool as a 'browser' [206]. Generally, a static
analyser:

 allows general viewing of the program text - serves as a browser;

 generates summaries of contents and usage of selected elements in
the program text such as variables or objects.

304 Software Maintenance: Concepts and Practice

14.5.3 Dynamic Analyser
When studying a software system with the aim of changing it, simply
examining the program text - static analysis - may not provide all the
necessary information. Thus, there is a need to control and analyse
various aspects of the program when it is executing. A tool that can be
used to support this process is known as a dynamic analyser. Generally,
the dynamic analyser allows a maintainer to trace the execution path of
the system while it is running - it acts as a tracer. This permits the
maintainer to determine the paths that will be affected by a change and
those through which a change must be made.

14.5.4 Data Flow Analyser

A data flow analyser is a static analysis tool that allows the maintainer
to track all possible data flow and control flow paths in the program and
also to backtrack [275]. This is particularly important when there is a
need for impact analysis: studying the effect of a change on other parts of
the system. By tracking the flow of data and control, the maintainer can
obtain information such as where a variable obtained its value and which
parts of the program are affected by the modification of the variable.

Generally, a data flow analyser also:

 allows analysis of program text to promote understanding of the
underlying logic of the program;

 assists in showing the relationship between the different components
of the system;

 provides pretty-printers that allow the user to select and display
different views of the system.

14.5.5 Cross-Referencer
The cross-referencer is a tool that generates an index of the usage of a
given program entity. For example, it can produce information on the
declarations of a variable and all the sections in the program in which it
has been set and used. During the implementation of a change, the
information this tool generates helps the maintainer to focus and localise
attention on those parts of the program that are affected by the change.

Maintenance Tools 305

14.5.6 Dependency Analyser

A dependency analyser helps the maintainer to analyse and understand
the interrelationships between entities in a program. This tool is
particularly useful in situations where logically related entities, such as
variables, may be physically far apart in the program. Generally, a
dependency analyser:

 can provide capabilities that allow a maintainer to set up and query a
database of the dependencies in a program. Information on
dependencies can also be used to determine the effect of a change
and to identify redundant relationships between entities [290];

 provides a graphical representation of the dependencies in a program
where the node in the graph represents a program entity and an arc
represents the dependency between entities.

14.5.7 Transformation Tool

A transformation tool converts programs between different forms of
representations, usually between text and graphics; for example,
transforming code to visual form and vice versa [233]. Because of the
impact that visual representations can have on comprehension, the use of
a transformation tool can help the maintainer view and understand the
system in a way that would not be possible with, for example, just the
textual representation. The tool usually comes with a browser and editor,
which are used to edit the program in any of its representations.

14.6 Tools to Support Testing
Testing is one of the most expensive and demanding tasks in software
development and maintenance and can benefit greatly from automated
support.

14.6.1 Simulator

Using a test simulator, a controlled environment is set up for the testing
to take place. The system to be tested is simulated in this environment
and the appropriate set of tests carried out. The set-up and components of
the environment wil l depend on the type of application being tested. For
instance, a simulator for a real-time system needs to provide a priority-

306 Software Maintenance: Concepts and Practice

based, event-driven, multitasking environment together with interprocess
communication through message queues and shared memory [291].

The key advantage of this approach to testing is that it allows the
maintainer access to a richer set of tools than may otherwise be available.
The other advantage is that the maintainer can try out the effect of a
change before implementing the change on the actual operational system.
The disadvantage is that the results and observations may be misleading
since some of the constraints in the real environment may not be
reflected in the controlled environment.

14.6.2 Test Case Generator

Sets of test data used to test the functionality of the system undergoing
modification are produced. The test data can be obtained from the system
as well as data files. The tool that assists in generating test data is called
a test data generator [225]. The tool usually requires definition of the
criteria for generating the test cases.

14.6.3 Test Paths Generator

Prior to undertaking integration and unit testing, it is important to know
all the potential data flow and control flow paths that may have been
affected by a change. This information enables the maintainer to carry
out the appropriate set of tests to ensure that a change has achieved the
desired effect. Test path generators can be used for this purpose [189].
Sometimes, the combination of potential test paths can be so large that
some criteria must be introduced for selecting the most important paths.

14.7 Tools to Support Configuration Management
Effective configuration management is not possible without the aid of
some kind of automated support tools in most maintenance environments
[181]. Keeping track of the objects produced during modification to a
software system is not a trivial task. There may be thousands of files -
source files, binary files - and an enormous amount of associated
documentation. Add to this the fact that much software maintenance is
carried out in a distributed network environment, perhaps with a mix of
hardware platforms, and the magnitude of the problem becomes
apparent.

Maintenance Tools 307

Configuration management and version control support tools act
as a repository for the objects that make up a software system. A specific
configuration is created by taking objects - usually particular versions of
source files - out of a central repository and putting them into a private
work area. Examples of classic tools in this area are Source Code Control
System and Revision Control System (RCS). Other, more sophisticated
tools have been developed on top of these, for example Open
Development Environment (ODE) is a system built on RCS with a view
to tackling the specific problems of a parallel development environment.

It is outside the scope of this book to look in detail at a
comprehensive list of configuration management support tools but a brief
overview of a classic support tool, Source Code Control System, will be
given.

14.7.1 Source Code Control System

Source Code Control System (SCCS) consists of various utility programs
usually accessed by a front end such as the sees UNIX command. An
associated SCCS history file may be created for each file and the SCCS
programs wil l be applied to the relevant history files such that versions
can be tracked and programmers can keep track of which files have been
changed and when.

Creation of a history file for a source code file on a UNIX
platform would involve the following steps:

 Renaming the original source code file in the current directory.

 Creating the history file in the SCCS subdirectory.

 Performing an 'sees get' on the renamed source code file to retrieve
a read-only copy of the initial version.

SCCS can be used to perform various actions on versioned files.
For example, a working copy of a file that has been checked out for
editing may be compared with a version from the SCCS history. A file
that has been checked out for editing will be locked so that no one else
can edit that version. SCCS will also produce administrative information
such as listing all the files currently being edited and will include
information on the specific version being edited and the person doing the
editing.

308 Software Maintenance: Concepts and Practice

14.7.2 Other Utilities
There are many utilities that can be used to keep track of files and
filestores. SCCS is one of the more sophisticated. Many of the familiar
programs and utilities have their part to play. For example, Is and dir
commands, and file manager tools give information on files and
directory structure. Find tools and the grep command allow searches for
specific patterns within files. Similar utilities exist on all platforms. The
important thing is to be aware that such tools exist and to take advantage
of whichever are the most appropriate in a particular situation.

14.8 Other Tasks

14.8.1 Documentation

As stressed throughout this book, the importance of documentation for
software maintenance cannot be overemphasised. Its importance is
reflected in the observation that lack of documentation is considered to
be one of the major problems that software maintainers face [77, 176].
There is a wide variety of documentation tools which include hypertext-
based tools [107], data flow and control chart generators, requirements
tracers, and CASE tools.

14.8.2 Complexity Assessment

Usually in maintenance projects, it is essential to assess the complexity
of a system before effecting any change to it. A complexity quantifier is
a tool used to measure the complexity of a program. Such complexity
measures are usually based on factors such as the underlying algorithm
of a program or its structure. Tools that automatically generate, for
example, McCabe's cyclomatic number can be used to pinpoint where
the software is too complex to be reliable and to quantify the number of
tests needed [189].

Exercise 14.1 Investigate the Source Code Control System available
on your system and explain how you would use it as
part of a large software project.

Exercise 14.2 A major University has a large computer system used
for storing and managing information about all its
students and staff. The system: (i) is 25 years old; (ii)
was developed using structured programming

Maintenance Tools 309

techniques in Cobol communicating with relational
databases; (iii) is running on an IBM mainframe; and
(iv) has over 500,000 lines of code.

The system has undergone several modifications, both
planned and quick fixes, and has become too expensive
to maintain. In the light of these difficulties, the
University wants to take advantage of the benefits of
object-oriented development but without discarding its
current system. Unfortunately, over 90% of the staff
who maintain the system are new and are not familiar
with its implementation.

 Identify the major tasks that need to be performed by the
software maintenance personnel.

 For each of these tasks, identify a suitable type of tool (or sets
of tools) to assist the maintainers.

 Using the information contained in an appropriate guide (e.g.
Zvegintzov [300]) and elsewhere, make recommendations on
the most suitable commercial tools.

There is a wide variety of tools available to software maintainers.
Examples that have not been covered in this chapter, mainly because
they have been documented extensively elsewhere, are debuggers,
editors (including syntax-sensitive editors), and programming languages
[108,300].

14.9 Summary
The key points that have been covered in this chapter are:

 There are several criteria for selecting a suitable maintenance tool.
Criteria include capability features, cost and benefits, platform,
programming language, ease of use, openness of architecture,
stability of vendor and organisational culture.

 Some general categories of maintenance task that can benefit from
automated support are program understanding, reverse engineering,
configuration management, debugging and testing.

 There are several tools that support each of the above tasks, but they
have some general features in common.

310 Software Maintenance: Concepts and Practice

 There are a number of ways in which the above features enable the
software maintainer to understand and modify software systems.

In this chapter various issues underpinning the selection and use
of tools, and how they assist maintainers, have been discussed. The
dynamic nature of activities within the software industry, especially with
respect to paradigm shifts, presents great challenges to all members of
the maintenance team. An overview of some of these challenges is given
in the next section.

PART V: Lookin g to the Futur e

The aims of this book have been to facilitate understanding of

1. The context of maintenance: the fundamentals of software
change, the maintenance framework, maintenance process
models, the different types of maintenance activity, the problems
facing maintenance organisations and some of the solutions to
these problems.

2. What happens during maintenance: program comprehension,
reverse engineering, software reuse, testing and the management
of the process.

3. How to keep track of the maintenance process: overall and at a
more detailed level.

4. How to build better systems: the use of support tools and the
means by which maintainability may be built into software
systems.

Overview
This final section of the book aims to reflect on the past and present of
software maintenance as an academic discipline and as a 'trade' dating
back to the late 1970's, highlighting some pertinent research issues. It
also attempts to make a prognosis of the maintenance-related challenges
that lie ahead within the software industry.

311

312 Software Maintenance: Concepts and Practice

The Past and Present
Software maintenance as an academic subject and as an occupation has
come a long way. In the early days, the wider issues of software
maintenance were simply not understood. The fact that software systems
evolved was not fully appreciated, let alone the implications of this
continual need for change.

In academia historically, maintenance received far less attention
than development of new systems [26]. This is evident in the
comparatively small number of publications and active researchers in the
area in the early days of the discipline. In industry, the situation was not
much different; software maintenance was considered a second-class job,
one that was dull and that entailed unexciting detective work [129], This
is evident in the less competitive wage levels and much poorer career
prospects of software maintainers.

With time, software systems increasingly became an integral part
of the fabric of many organisations, grew bigger and more complex, and
their maintenance consumed a significant proportion - up to 70% - of the
software life-cycle budget for these organisations [4, 35, 176]. In
addition to these rising maintenance costs, the recession in the early
1990's led to severe cuts in budgets for the development of new systems
[9]. The cuts meant not only an increased need to get more from existing
systems but also the need to ensure that these systems were much more
maintainable than was deemed necessary before. The systems became
assets that needed to be protected [218].

The two factors of rising maintenance costs and a reduction in
resources for development of new systems marked a turning point in the
treatment and perception of software maintenance issues. Attention on
software maintenance intensified. This can be seen in the increasing
number of conferences, workshops, books, journals, organisations and
special issues of mainstream journals dedicated specifically to software
maintenance [300]. Also, there is evidence of maintenance-related issues
being viewed in a more positive light than before by management [78]. A
by-product of the increasing interest in software maintenance activities
was an increased level of research activity.

Looking to the Future 313

Research Areas
The discipline of software maintenance has progressed rapidly from
barely being recognised as a discipline in the middle of the 20th century,
to spawning a plethora of journals, conferences and special interest
groups at the start of the 21st. Work is on-going in all areas at all levels.
Software maintenance, once the poor relation, looks likely to be a major
driver of progress in the software industry into the future.

Classification

Classification is a classic aid to understanding, and classifying the
elements of software maintenance helps towards a deeper understanding
of the processes involved. Such classification is not as straightforward as
it might appear. We have covered the topic to a degree within this text,
but work on effective classification is on-going. A good starting point for
an in-depth study of this area is Chapin et al [59] on types of software
maintenance and evolution.

Software Experience Bases

Conradi et al propose the following research questions in [67]:

1. What kind of experience is most useful to developers?

2. How should experience be structured and classified?

3. Is a self-sufficient and self-organising software experience base a
realistic goal?

4. Which environments are suited to software experience bases and
which are not?

Software Reuse

Software reuse is an area of great potential benefit to the software
industry. Many of the reasons it is not yet achieving its potential have not
been fully explored - the management of the reuse process, the
representation of information appropriate to reuse, the legal
considerations and so on. These are all good starting points for research
which would have the potential to lead to wide implementation of reuse
strategies and thus be of great benefit to the software industry.

314 Software Maintenance: Concepts and Practice

Support Tools
There is enormous scope for the development of automated support
tools. Many such tools already exist but are not in widespread use and
are not demonstrably benefiting the software industry. Why is this? Are
the tools too specialised, too general, of no real use...?

The task of software maintenance is such a vital and complex
one that it can no longer be done effectively without automated support.

The push towards interoperability provides the basis for a huge
leap forward in this area.

Software Measurement

There is a great deal of work to be done in the area of measurement.
Consider the following questions:

 What is the maintainability of this software module?

 What wil l be the maintainability of this system if we carry out this
modification in this way as opposed to that way?

Imagine the potential benefits of being able to say "This module
has a maintenance factor of 6.7 and if incorporated in this way will
produce a system with a maintenance factor of 2.4.'

The current situation is a long way from this, but perhaps one
day a maintenance manager will be able to use a software support tool to
pick a component from a reuse library according to quantifiable safety,
reliability and maintainability criteria.

Program Comprehension

Teasley [265] provides thought-provoking insights into areas of
programmer behaviour that are both very important and largely
unexplored. She argues that any comprehension task is affected by three
major elements:

1. Who is doing the comprehending?

2. What are they comprehending?

3. Why do they want to comprehend?

Looking to the Future 315

She claims that many studies on programmer behaviour have
concentrated on WHO, but WHAT and WHY, questions fundamental to
the key area of program comprehension, have largely been ignored.

Program comprehension, is an area that crosses discipline
boundaries. This can be problematic in finding funding for basic
research. Many funding bodies talk about the importance of multi-
disciplinary research, but the mechanisms set up to approve specific
project proposals tend to be biased against projects that do not sit firmly
within one discipline.

The Software Maintenance Process

A significant step on from work on the Laws of Software Evolution first
formulated in the 1960's (see chapter 3) has been the FEAST (Feedback,
Evolution And Software Technology) projects. These investigated the
role and impact of feedback in E-type systems and the software process.
Detailed inspection of the results of the FEAST projects provides an
excellent grounding for anyone wanting to research this area. See for
example [171, 268].

As we have seen, software maintenance consumes a huge
proportion of the total resource required to keep a system operational.
There is much to be gained from improving the processes themselves and
understanding how they interact. It has been recognised that the sharing
of experience between software maintainers is necessary to improve the
overall processes [63], but how this may best be brought about is still
open to debate.

The Threesome Marriage

As important as the change of attitude towards software maintenance is
an increased understanding of the interrelation between the three
concepts that drive software maintenance issues, an area we term the
'threesome marriage'. These are software reengineering, software reuse
and object-oriented techniques. Migration of systems, seen as a way of
addressing maintenance problems, can be considered a form of
reengineering; that is, reverse engineering to analyse and improve
understanding of the system as it is, followed by the traditional forward
engineering using a suitable paradigm or platform. That paradigm at
present seems to be the object-oriented paradigm. The concept of

316 Software Maintenance: Concepts and Practice

viewing a system as a set of objects and operations during object-
oriented development gives rise to objects and operations that can be
reused, thereby promoting software reuse. This 'marriage' is important
because the concepts not only impact strongly upon each other, but their
understanding and application stand to play a major role in the current
trend of migrating legacy systems to alternative platforms.

The Best of Both Worlds
Organisations may be willin g to join the bandwagon of technologies such
as object-oriented and client/server systems [287], but only if they can
see a clear commercial payback. Many will not contemplate doing so at
the expense of their existing systems. These systems represent major
assets and are at the very heart of working culture. As a result, there is an
urgent need to provide migration paths that enable organisations to get
the best of both worlds; that is, cash in on the benefits of the best
technology as well as retaining the value of their existing systems. To
achieve this goal, adaptation of the new technologies to incorporate these
systems is the way forward.

Software maintenance is maturing as a discipline. It has already provided
tangible benefit to the software industry, and has the potential to provide

enormous benefit to future generations of systems.

Reference s

A. Abran, H. Nguyenkim. Measurement of the maintenance process for a
demand-based perspective. Journal of Software Maintenance: Research and
Practice, 5(2):63-90, June 1993.

G. Aharonian. Social and economics problems with defense software reuse.
In Proceedings, Reuse in Practice Workshop. Software Engineering Institute
Pittsburg, PA, July 11-13 1989.

P Aiken, A. Muntz, R. Richards. DoD legacy systems: Reverse engineering
data requirements. Communications of the ACM, 37(5):26-41, May 1994.

G. Alkhatib. The maintenance problem of application software: An em-
pirical analysis. Journal of Software Maintenance: Research and Practice,
1:83-104, 1992.

C. M. Allwood. Novices on the computer: a review of the literature .
slnternational Journal of Man-Machine Studies, 25:633-58, 1986.

ANSI/IEEE. IEEE Standard Glossary of Software Engineering Terminol-
ogy Technical Report 729, 1983.

G. Arango, I Baxter, P Freeman. Maintenance and porting of software by
design recovery. In Proceedings, Conference on Software Maintenance, pages
42-9, Los Alamitos, California. IEEE Computer Press, 1985.

ARIANE 5, Flight 501 Failure, Report by the Inquiry Board, Chairman: Prof.
J. L. Lions, Paris, 19 July 1996.

R. S. Arnold. Software Reengineering: a quick history Communications of
the ACM, 37(5): 13-14, May 1994. This article traces the origin of software
reengineering from the mid-1960's to mid-1990's practices and future
expectations. It is also pointed out that the interest in maintenance in
reengineering existing software systems stemmed from the apparent shortage of
resources for development of new systems.

317

1

2

3

4

5

6

7

8

9

318 Software Maintenance: Concepts and Practice

10 J D Arthur, R E Nance. Verification and Validation without Independence:
a recipe for failure. Systems Research Centre, Virginia Polytechnic Institute
and State University. 2001.

11 J. D. Arthur, K. T. Stevens. Document quality indicators: A framework for
assessing documentation adequacy. Software Maintenance: Research and
Practice. 4(3): 129-42, 1992.

12 L. J. Arthur. Software Evolution: The Software Maintenance Challenge.
John Wiley and Sons, New York, 1988.

13 R. M. Baecker, A. Marcus. Human Factors and Typography for More
Readable Programs, Addison-Wesley Reading, MA, 1990. In this very good
book, Baecker and Marcus discuss some important issues of program
visualisation and give guidelines on how to present programs in an easily
understood way.

14 F. T. Baker, H. Mills. Chief Programmer teams. IBM Systems Journal,
11(1):56-73, 1972.

15 V Basili, S. K. Abd-EI-Hafiz. Packaging Reusable Components: The
Specification of Programs. Technical Report UMIACS-TR-92-97, University
of Maryland, College Park, MD 20742, September 1992.

16 V R. Basili. Viewing software maintenance as reuse-oriented software
development. IEEE Software, 7:19-25, January 1990.

17 V R. Basili, D. H. Hutchens. An empirical study of a syntactic complexity
family . IEEE Transactions on Software Engineering, SE-9:652-63, 1983.

18 V R. Basili, H. D. Mills. Understanding and documenting programs. IEEE
Transactions on Software Engineering, 8:270-83, 1982.

19 V R. Basili, H. D. Rombach, J. Bailey, A. Delis, F. Farhat. Ada reuse metrics.
In P A. Leslie, R. O. Chester, and M. F. Thoefanos, editors, Guidelines
Document for Ada Reuse and Metrics (Draft), pages 11-29. Martin Marietta
Energy Systems, Inc., Oak Ridge, Tenn., under contract to US Army,
A1RMICS., March, 1989.

20 V R. Basili, H. D. Rombach, J. Bailey, B. G. Joo. Software reuse: A
framework. In Proceedings of the Tenth Minnowbrook Workshop (1987,
Software Reuse), Blue Mountain Lake, N.Y, July 1987.

21 V R Basili, G Caldiera, F Lanubile, F Shull. Studies on Reading Techniques.
Report of the Experimental Software Engineering Group (ESEG), University of
Maryland, USA. 1996.

22 B. Beizer Software testing techniques 2nd edition Van Nostrand Reinhold.
New York. 1990.

23 L. A. Belady, M. M. Lehman. Programming system dynamics or the
metadynamics of systems in maintenance and growth. In M. M. Lehman
and L. A. Belady, editors, Program Evolution: Processes of Software Change,
Chapter 5. Academic Press, London, 1985.

References 319

24 P Benedusi, A. Cimitile, U. De Carlini. A reverse engineering methodology
to reconstruct hierarchical data flow diagrams for software maintenance.
In Proceedings, IEEE Conference on Software Maintenance, page 180, Los
Alamitos, CA, 1989. IEEE Computer Society, IEEE Computer Society Press.
1989.

25 D. W Bennett. The Promise Of Reuse. Object Magazine, 4(8):33-40, January,
1995.

26 K. Bennett, B. Cornelius, M. Munro, D. Robson. Software maintenance. In J.
McDermid, editor, Software Engineer's Reference Book, Chapter 20, pages
20/1-20/18. Butterworth-Heinemann Ltd, Oxford, 1991.

27 K. H. Bennett, M P Ward. Theory and practice of middle-out programming
to support program understanding. In Proceedings, IEEE Third Workshop
on Program Comprehension, pages 168-175, Los Alamitos, California,
November. IEEE Computer Society, IEEE Computer Society Press, 1994.
Describes how a domain-specific programming approach called Middle-Out
Programming can facilitate program understanding.

28 L. Bernstein. Tidbits. ACM SIGSOFT - Software Engineering Notes, 18(3):A-
55, July 1993.

29 T. J. Biggerstaff. Design recovery for maintenance and reuse. Computer,
22(7)36-49, July 1989.

30 T. J. Biggerstaff, A J. Perlis. Foreword. IEEE Transactions on Software
Engineering, SE-10(5) :474-477, September 1984.

31 T J. Biggerstaff, A. J. Perlis. Introduction . In T. J. Biggerstaff and A. J. Perils,
editors, Software Reusability: Concepts and Models, volume I, pages xv-xxv.
ACM Press/Addison-Wesley New York, 1989.

32 T. J. Biggerstaff, C. Richter. Reusability framework, assessment, and
directions. In T. J. Biggerstaff and A. J. Perlis, editors, Software Reusability:
Concepts and Models, volume 1, Chapter 1, pages 1-17. ACM Press/Addison-
Wesley, New York, 1989.

33 B. I. Blum. The software process for medical applications. In T. Timmers
and B. I. Blum, editors, Software Engineering in Medical Informatics, pages 3-
25, North-Holland. Elsevier Science Publishers B.V, 1991

34 B. I. Blum. Resolving the software maintenance paradox. Journal of
Software Maintenance: Research and Practice, 7(l):3-26, January-February
1995.

35 B. W Boehm. Software Engineering Economics. Prentice-Hall, Inc., New
Jersey, 1981. Chapter 30 of this book shows how the COCOMO model can be
used to estimate the cost of maintenance work using different cost drivers.

36 B. W Boehm. The economics of software maintenance. In R. S. Arnold,
editor, Proceedings, Workshop on Software Maintenance, pages 9-37, Silver
Spring, MD. IEEE Computer Society Press, 1983. In this paper Boehm argues

320 Software Maintenance: Concepts and Practice

that economic models and principles can help us: (i) improve maintenance
productivity; (ii) understand the software maintenance process. The COCOMO
model and Belady-Lehman laws of program evolution are used to illustrate
these theses.

37 B B Boehm, E Clark, E Horowitz, C Westland, R Madachy, R Selby. Cost
Models for Future Software Lif e Cycle Processes: COCOMO 2.0. Annals
of Software Engineering. Special Volume of Software Process and Product
Measurement. J D Arthur & S M Henry Eds. J C Baltzer AG Science
Publishers, The Netherlands. 1:45-60. 1995.

38 D. A. Boehm-Davis, R. W Holt, Alan C. Schultz. The role of program
structur e in software maintenance. International Journal of Man-Machine
Studies, 36:21-63, 1992.

39 S Bohner, R Arnold. Software change impact analysis. IEEE Computer
Society Press. 1996

40 C. Boldyreff, J. Zhang. From recursion extraction to automated com-
menting. In P A. V Hall, editor, Software Reuse and Reverse Engineering in
Practice, Chapter 12, pages 253-270. Chapman and Hall, London, 1992.

41 G. Booch. The five habits of successful object-oriented projects. Object
Magazine, 4(4):80, 78-79, July-August, 1994.

42 G. Booch. Object-Oriented Analysis and Design with Applications, 2nd
edition. The Benjamin/Cummings Publishing Company, Inc., Redwood City,
California, 1994. An excellent book on the conceptual issues and applications
of the object oriented paradigm. In many of the chapters, Booch examines how
different principles of object-oriented analysis and design impacts on
maintenance and evolution of different applications.

43 F. Bott, M. Ratcliffe. Reuse and design. In P A V Hall, editor, Software
Reuse and Reverse Engineering in Practice, Chapter 2, pages 35-51. Chapman
and Hall, London, 1992.

44 L Bottaci, Efficient Strategies for Selective Mutation Testing, Goldsmiths
Seminar series 1999/2000. 14th March 2000.

45 D. Boundy. Software cancer: The seven early warning signs. ACM SIG-
SOFT Software Engineering Notes, 18(2): 19, April 1992.

46 L Briand, Y Kim, W Melo, C Seaman & V Basili. Q-MOPP: Qualitativ e
evaluation of Maintenance Organisations, processes and Products. Journal
of Software Maintenance. 10(4):249-278. 1998.

47 F. P Brooks. No silver bullet - essence and accidents of software
engineering. IEEE Computer, 20(4): 10-20, April 1987.

48 R. Brooks. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18(6):543-54, June 1983.

49 P Brown. Integrated hypertext and program understanding tools. IBM
Systems Journal, 30(3):363-92, 1991.

References 321

50 F Calzorari, P Tonelli & A Antoniol. Dynamic Model for Maintenance and
Testing Effort . In proceedings International Conference on Software
Maintenance, ICSM98. ppI04-l 12 1998.

51 DA Camplin & G Keller. Quality, Safety & the Medical Devices Directives.
Working Paper for EU Telematics Framework IV Project Image Guided
Orthopaedic Surgery II. January 1998.

52 D. Catton. Converting sequential applications for parallel execution with
Strand88 harness. In P A. V Hall, editor, Software Reuse and Reverse
Engineering Practice, Chapter 18, pages 387-413. Chapman and Hall, London,
1992. Describes a system, STRAND88, which provides a migration path from
sequential to parallel processing hence offering many organisations an op-
portunity of reaping the benefits of parallel hardware without having to replace
their existing sequential applications.

53 CEN document: CR 14300 2002 Health Informatic s - Interoperabilit y of
healthcare multimedia report systems, (further information available at the
CEN website http://www.centc251.org/) 2002.

54 CEN document: ENV 1613 1995 Medical Informatic s - Messages for
exchange of laboratory information I, (further information available at the
CEN website http://www.centc251 .org/) 1995.

55 CEN document. ENV 1828 1995. Medical Informatic s - Structure for
classification and coding of surgical procedures, (further information
available at the CEN website http://www.centc251 .org/) 1995.

56 CEN document: ENV 1614 1995 Healthcare Informatic s - Structure for
nomenclature, classification and coding of properties in clinical laboratory
sciences II , (further information available at the CEN website
http://www.centc251.org/) 1995.

57 N. Chapin. Supervisory attitudes towards software maintenance. In
Proceedings of the 1986 National Computer Conference, pages 61-8, AFIPS
Press, 1986.

58 N. Chapin. The job of software maintenance. In Proceedings of Conference
on Software Maintenance, pages 4-12, Washington D.C., IEEE Computer
Society Press, 21-24, September 1987.

59 N Chapin, J E Hale, K Khan, J F Ramil, W Tan Types of Software
Maintenance and Evolution ICSM 2000 11-13 Oct 2000 San Jose CA
(revised version: Journal of software maintenance and evolution: research and
practice. 13(1):3-30 2001.

60 E. J. Chikofsky, J. H. Cross Jr. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7:13-17, January 1990.

61 S. C. Choi, W Scacchi. Extracting and restructurin g the design of large
systems. IEEE Software, 7:66-71, January 1990. Describes an approach that
can be used to extract and restructure system designs. This approach involves

322 Software Maintenance: Concepts and Practice

first mapping the resource-exchange among modules, then deriving a
hierarchical design description using a system-restructuring algorithm.

62 C. K. S. Chong Hok Yuen, Phenomenology of Program Maintenance and
Evolution, PhD Thesis, Dept of Computing, Imperial College, UK. 1981.

63 F Coallier, A Graydon, & M Ficcici (originators of concept on which model is
based), The Trilliu m Model. Available as e-document at
http://www2.umassd.edu/swpi/BellCanada/trillium-html/trillium.html 1995.

64 A. Colbrook, C. Smythe, A. Darlison. Data abstraction in a software re-
engineering reference model. In Proceedings, IEEE Conference on Software
Maintenance, pages 2-11, Los Alamitos, CA, 1990. IEEE Computer Society,
IEEE Computer Society Press. Argues that there is a need for a software
reengineering framework which supports abstraction during reverse
engineering. An 8-layer Source Code Re-engineering Reference Model
(SCORE/RM) is proposed to that effect.

65 D. Comer, M. Halstead. A simple experimentation in top-down design. IEEE
Transactions on Software Engineering, SE-S (2): 105-9, March 1979.

66 T. N. Commer Jr, I. R. Comer, D. J. Rodjak. Developing reusable software
for militar y systems - Why it is needed and why it isn't working. ACM
SIGSOFT Software Engineering Notes, 15(3):33-8, July 1990.

67 R Conradi, M Lindvall, C Seaman. Success Factors for Software Experience
Bases: what we need to learn from other disciplines. In proc. ICSE'2000
workshop on Beg, borrow or steal: using multidisciplinary approaches in
empirical software engineering research. Limerick, Ireland. 2000.

68 OMG CORBAmed DTF. Person Identification Service (PIDS). OMG TC
Document corbamed/98-02-29. 1998.

69 T. A. Corbi. Program understanding: Challenge for the 1990s. IBM
Systems Journal, 28(2):294-306, 1989. Discusses the importance of program
comprehension in maintenance and makes a case for developing tools that
assist programmers in understanding existing code.

70 B. J. Cornelius, M. Munro, D. J. Robson. An approach to software
maintenance education. Software Engineering Journal, 4(4):233-40, July
1988.

71 N. Coulter. Software science and cognitive psychology IEEE Transactions on
Software Engineering, SE-9(2): 166-171, 1983.

72 J. H. Cross, E. J. Chikofsky, C. H. May Jr. Reverse engineering. In M. C.
Yovits, editor, Advances in Computers, pages 199-254. Academic Press,
London, 1992.

73 B. Curtis, S. B. Sheppard, P Milliman, M. A. Borst, T. Love. Measuring the
psychological complexity of software maintenance tasks with the Halstead
and McCabe metrics. IEEE Transactions on Software Engineering, 5:96-104,
1979.

References 323

74 P. H. Damste, Utrecht Netherlands, Concentric Man : Human systems of
communication, adaptation and defence, e-book: published at, and
downloadable from http://home-l.worldonline.nl/~knmg0234/ 1999.

75 A. M. Davis. 201 Principles of Software Development, McGraw-Hill, Inc.,
New York, 1995.

76 J. S. Dean, B. P McCune. An informal study of maintenance problems. In R.
S. Arnold, editor, Proceedings, Workshop on Software Maintenance, pages
137-9, Silver Spring, MD. IEEE Computer Society Press, 1983.

77 S. Dekleva. Delphi study of software maintenance problems. In Proceedings,
Conference on Software Maintenance, pages 10-17, Orlando, Florida,
November, 1992. IEEE, IEEE Computer Society Press.

78 S. M. Dekleva. Software maintenance: 1990 status. Journal of Software
Maintenance: Research and Practice, 4:233-47, 1992.

79 T. DeMarco. Controllin g Software Projects: Management, Measurement
and Estimation. Yourdon Press, New Jersey, 1982.

80 F. Detienne. Psychology of Programming, Chapter 3.1, pages 205-22. Aca-
demic Press, London, 1990.

81 R. Dewar, A. Grand, Y Liu, E. Schonberg, J. T. Schwartz. Programming by
refinement, as exemplified by the SETL representation sublangauge. ACM
Transactions on Programming Languages and Systems, 1(1):27, 1979.

82 R M Dixon, C Gaskell. A Littl e Knowledge. Internal deliverable from Hull
University Medical Informatics Group Quality Assurance work.
www.hull.ac.uk/mig R_M_Dixon@hotmail.com July 1998.

83 R. Dixon, P Grubb, D Camplin, J Ellis, D Ingram, D Lloyd & T Beale, The
Good European Health Record Object Model, in proceedings Towards an
Electronic Patient Record (TEPR'97) 1997.

84 L. Druffel. Professionalism and the software business. IEEE Software,
11(4):6, July 1994. This article takes a succinct look at software measurement
from a business point of view.

85 E. Dubinsky, S. Freudenberger, E. Schonberg, J. T. Schwatz. Reusability of
design for large software systems: An experiment with the SETL
optimizer. In T. J. Biggerstaff and A. J. Perlis, editors, Software Reusability:
Concepts and Models, Chapter 11, pages 275-93. ACM Press/Addison-Wesley,
New York, 1989.

86 R H Dunn, Software Defect Removal, New York: McGraw-Hill, 1984.

87 T. Durham. Quality at risk as demand for trainin g soars. Objects in Europe,
2(1): 10-14, Winter, 1995.

88 L. Dusink, P Hall. Introductio n to re-use. In L. Dusink and P Hall, editors,
Proceedings of the Software Re-use Workshop, pages 1-19, 1989.

324 Software Maintenance: Concepts and Practice

89 S Easterbrook. The role of independent V& V in upstream software
development processes. NASA/WVU Software IV& V Facility, Software
Research Laboratory. 1996.

90 EHCR-SupA Deliverable 3.5 version 1.1 (Revised Oct '00) Final
Recommendations to CEN for futur e work, (documents downloadable from
CHIME www.chime.ucl.ac.uk) 2000.

91 J. L. Elshoff. An analysis of some commercial PL/1 programs. IEEE
Transactions on Software Engineering, pages 113-120, June 1976.

92 M E Fagan, Design and code inspections to reduce errors in program
development, IBM Systems journal, 15:182-211 1976.

93 R. E. Fairley. Software Engineering Concepts. McGraw-Hill, Inc., New
York, 1985.

94 FEAST/2. Project web site www-dse.doc.ic.ac.uk/~mml/feast. 2001.

95 N.E. Fenton. Software Metrics: A rigorous approach. Chapman and Hall,
London, 1991.

96 L. Finkelstein. What is not measurable, make measurable. Measurement and
Control, 15:25-32, January 1982.

97 A. B. Fitzsimmons, L. T. Love. A review and evaluation of software science.
ACM Computing Surveys, 10:3-18, 1978.

98 N. T. Fletton, M. Munro. Redocumenting software systems using hypertext
technology In Proceedings of the Conference on Software Maintenance, pages
54-59, 1988.

99 J. Foster. An industry view on program comprehension. In Proceedings, 2nd
Workshop on Program Comprehension, page 107, Los Alamitos. IEEE
Computer Society, 1993.

100 J. R. Foster, A. E. P Jolly, M. T. Norris. An overview of software
maintenance. British Telecom Technical Journal, 7(4):37-46, 1989.

101 A. Frazer. Reverse engineering - hype, hope or here? In P A. V Hall, editor,
Software Reuse and Reverse Engineering in Practice, Chapter 10, pages 209-
43. Chapman and Hall, London, 1992.

102 T. P Frazier. Software reuse and productivity : an empirical view. In P. T.
Geriner, T. R. Gulledge, W P Hutzler, editors, Software Engineering
Economics and Declining Budgets, pages 69-81. Springer-Verlag, Berlin, 1994.

103 G. W Furnas, T. K. Landauer, L. M. Gomez, S. T. Dumais. The vocabulary
problem in human-system communication. Communications of the ACM,
30(11):964-71, November 1987.

104 K B Gallagher. Evaluating Surgeon's Assistant: results of a pilot study. In
proceedings Conference on Software Maintenance, pp 236-255. 1992.

References 325

105 K. Gallagher. Surgeon's Assistant limit s side effect. IEEE Software, 7:64,
May, 1990.

106 K. B. Gallagher, J. R. Lyle. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8):751-61, August 1991. This
article describes the role of program slicing in software maintenance.

107 P K. Garg, W Scacchi. A hypertext system to manage software life-cycle
documents. IEEE Software, 7:90-8, May; 1990.

108 C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals of Software Engi-
neering. Prentice-Hall International, Inc., New Jersey; 1991. This is one of the
few software engineering textbooks that pays more than just lip-service to
software maintenance and evolution.

109 T. Gilb. Software Metrics. Winthrop Publishers, Inc., Cambridge, Mas-
sachusetts, 1977.

110 K. D. Gillis, D. G. Wright. Improvin g software maintenance using system-
level reverse engineering. In Proceedings, IEEE Conference on Software
Maintenance, pages 84-90, Los Alamitos, CA. IEEE Computer Society; IEEE
Computer Society Press, 1990.

111 D. J. Gilmore. Psychology of Programming, Chapter 3.2, pages 223-34.
Academic Press, London, 1990. This article considers a programming view that
asserts that expert programmers have a much wider repertoire of strategies
available to them than novices. A number of studies are used to support this
stance. Also, a list of programming strategies available to experts - for use in
program comprehension and debugging - is described.

112 R. B. Grady, D. L. Caswell. Software Metrics: Establishing A Company-
Wide Program. Prentice-Hall, Englewood Cliffs, New Jersey; 1987. This book
reports on the experience gained from introducing a software metrics
programme at Hewlett-Packard. It makes good reading for companies thinking
of initiating a similar programme.

113 I. Graham. Interoperation: Using OOA as a springboard. Object Magazine,
4(4):66-8, July-August, 1994. In this paper, the author argues that when
migrating to an object-oriented paradigm, it is important to find analysis and
design methods that support the rich features available in the existing system,
for example by using object wrappers, and that facilitate migration. Similarly,
when developing a new system, object-oriented analysis should be used as a
springboard to analyse and prototype a reversible specification that can be
implemented in any language with a view to migrating to an object-oriented
language when a suitable one becomes available.

114 I. Graham. Migratio n strategies: OT is a migration strategy. Object
Magazine, 4(5):20-2, September, 1994.

115 W G. Griswold, D. Notkin. Automated assistance for program re-
structuring . ACM Transactions on Software Engineering and Methodology,
2(3):228-69, July 1993.

326 Software Maintenance: Concepts and Practice

116 J. Grumann, P J. Welch. A graph method for technical documentation and
re-engineering of DP-applications. In P. A. V Hall, editor, Software Reuse
and Reverse Engineering in Practice, pages 321-53. Chapman and Hall,
London, 1992.

117 T. Guimaraes. Managing application program maintenance expenditures.

Communications of the ACM, 26(10):739-46, October 1983.

118 R. Gunning. The Technique of Clear Writing . McGraw-Hill, 1968.

119 E. Guy, Co-operative Processing - Cheap, Computing Canada 1991

120 T. Hall, N. Fenton. Implementing software metrics - the critical success
factors. Software Quality Journal, 3(4): 195-208, December 1994.

121 M. Halstead. Elements of Software Science. North Holland, Amsterdam,
1977.

122 M. H. Halstead. Advances in Computers, 18:119-72. Academic Press, New
York, 1979.

123 J. Han. Supporting Impact Analysis and change propagation in software
engineering environments. In proc. 8th int. workshop on software technology
and engineering practice. STEP97. pp 172-182. 1996.

124 W. Harrison, C. Gens, B. Gifford. pRETS: A parallel reverse-engineering
toolset for fortran . Journal of Software Maintenance: Research and Practice,
5(1):37-57, March 1993.

125 W. Harrison, K. Magel. A complexity measure based on nesting level. ACM
SIGPLAN Notices, 16(3):63-74, 1981.

126 D. A. Haworth, S. Sharpe, D. P Hale. A framework for software
maintenance: a foundation for scientific inquiry . Journal of Software Main-
tenance: Research and Practice, 4:105-17, 1992.

127 S. Henry, D. Kafura. The evaluation of software systems' structure using
quantitativ e software metrics. Software - Practice and Experience, 14:561-
73, 1984.

128 J Herbsleb, A Carleton, J Rozum, J. Siegel, D. Zubrow, Benefits of CMM -
Based Software Process Improvement: Initia l Results, Software Engineering
Institute, CMU/SEI-94-TR-I3, August 1994.

129 D. A. Higgins. Data Structured Maintenance: The Warnier/Or r Approach.
Dorset House Publishing Co. Inc., New York, 1988.

130 J. -M. Hoc, T. R. G. Green, R. Samurcay, D. J. Gilmore, editors. Psychology of
Programming. Academic Press, London, 1990.

131 G. F. Hoffnagle, W E. Beregi. Automating the software development
process. IBM Systems Journal, 24(2): 102-20, 1985.

References 327

132 R. Holibaugh. Reuse: Where to begin and why. In Proceedings, Reuse in
Practice Workshop. Software Engineering Institute Pittsburg, PA, July 11-13
1989.

133 J. W. Hooper, R. O. Chester. Software Reuse: Guidelines and Methods.
Plenum Press, New York, 1991.

134 E. Horowitz, J. B. Munson. An expansive view of reusable software. In T. J.
Biggerstaff and A. J. Perlis, editors, Software Reusability: Concepts and
Models, 1(2): 19-41. ACM Press/Addison-Wesley, New York, 1989.

135 S. Horwitz, T. Reps, D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems.
12(l):35-56. 1990.

136 C. A. Houtz, K. A. Miller. Software improvement program - a solution for
software problems. In R. S. Arnold, editor, Proceedings, Workshop on
Software Maintenance, pages 120-24, Silver Spring, MD. IEEE Computer
Society Press, 1983. Describes a Software Improvement Programme (SIP),
which is an incremental and evolutionary approach that can be used to
'revamp' a legacy system.

137 W S. Humphrey. The IBM large-systems software development process:
Objectives and direction. IBM Systems Journal, 24(2):76-8, 1985.

138 IEEE Standard for Software Verification and Validation. IEEE STD 1012-
1998.

139 IEEE Guide to Software Verification and Validation Plans. IEEE 1059-
1993.

140 D. Ince. History and industrial applications. In Software Metrics: A
Rigorous Approach, Chapter 14, pages 277-95. Chapman and Hall, London,
1991.

141 D. Ince. ISO 9001 and Software Quality Assurance. The McGraw-Hill In-
ternational Software Quality Assurance Series, McGraw-Hill, Maidenhead,
1994.

142 D. Ingram, D. Lloyd, D. Kalra, T. Beale, S. Heard, P. A. Grubb, R. M. Dixon,
D. A. Camplin, J. C. Ellis, A. M. Maskens. GEHR Deliverables 19, 20, 24 -
'GEHR Architecture' , Version 1.0. (documents downloadable from CHIME
www.chime.ucl.ac.uk) 1995.

143 J. Jeng, H. C. Chang. Using formal methods to construct a software
component library . In I. Sommerville and M. Paul, editors, Proceedings, 4th
European Software Engineering Conference, pages 397-417. Springer-Verlag,
September 1993.

144 P. Jesty. The second SCSC (Safety Critica l Systems Club) symposium - A
personal view. Safety Systems - the Safety Critical Systems Club Newsletter,
3(3): 1-4, May 1994.

328 Software Maintenance: Concepts and Practice

145 P. N. Johnson-Laird. Mental Models: Towards a Cognitive Science of Lan-
guage, Inference, and Consciousness. Cambridge University Press, Cam-
bridge, 1983.

146 C. Jones. How not to measure programming quality. Computer World,
XX(3):82, January 20 1986.

147 J Jones & L Bottaci. Formal Specification Using Z: A Modelling Approach.
International Thomson Computer Press. 1995.

148 T. C. Jones. Reusability in programming: A survey of the state of the art.
IEEE Transactions on Software Engineering, SE-10(5):488-94, September
1984.

149 C. Kaner, J. Falk, H. Q. Nguyen. Testing Computer Software. 2nd edition.
John Wiley & Sons. 1999

150 K. C. Kang. A reuse-based software development methodology. In G.
Booch and L. Williams, editors, Proceedings of the Workshop on Software
Reuse. Rocky Mountain Inst. of Software Engineering, SEI, MCC, Software
Productivity Consortium, Boulder, Cob., October 1987.

151 K. C. Kang. Position paper. In J. Baldo, C. Braun, editors, Proceedings of the
Reuse in Practice Workshop. Software Engineering Institute, July 1989.

152 A. A. Kaposi. Software Engineer's Reference Book, Butterworth-Heinemann
Ltd, Oxford, 1991.

153 B. W. Kernighan, R. Pike. The UNIX Programming Environment. Prentice-
Hall, New Jersey, 1984.

154 G. A. Kiran, S. Haripriya, P. Jalote. Effect of Object Orientation on
Maintainabilit y of Software. In proc. ICSM97, Italy. Pp 114-121. 1997.

155 T. D. Korson, V. K. Vaishnavi. An empirical study of the effects of
modularit y on program modifiability . In E. Soloway and S. Iyengar, editors,
Empirical Studies of Programmers, Chapter 12, pages 168-86. Ablex
Publishing Corporation, New Jersey, 1986. Describes an empirical study of the
effects of modularity on adaptive maintenance. The results suggest that a
modular program is faster to modify than a non-modular program.

156 D. Krupinski, D. Vlamis. Trainin g techniques for the object evolution.
Object Magazine, 4(5):77-81, September 1994.

157 R. G. Lanergan, C. A. Grasso. Software engineering with reusable designs
and code. IEEE Transactions on Software Engineering, SE-10(5):498-501,
September 1984. Reports on a reuse approach that an organisation used for
developing and maintaining its business software. The approach capitalised on
the fact that 60% of all business application designs and code are redundant and
can be standardised and reused. As a result of this approach, there were signif-
icant benefits in productivity and reliability, improved end-user relations, and
better utilisation of personnel.

References 329

158 K. Lano, P. T. Breuer, H. Haughton. Reverse-engineering Cobol via formal
methods. Journal of Software Maintenance: Research and Practice, 5(1): 13-35,
March 1993. Describes methods and tools used to reverse engineer Cobol
application programs back to design and specification, both of which are
captured using the object-based abstractions that the tools create. The program
code is first transformed into an intermediate language, Uniform. The result is
then transformed into a functional description language and finally to the
specification language, Z. Also extracted from the code are data flow diagrams,
entity-relationship diagrams, and call-graphs.

159 K. Lano, H. Haughton. Reverse Engineering and Software Maintenance: A
Practical Approach. McGraw-Hill, London, 1994.

160 S. Lauchlan. Case study reveals futur e shock. Computing, page 9, February
1993.

161 P. K. Lawlis, R. M. Flowe, & J B Thordahl, A Correlational Study of the
CMM and Software Development Performance, Crosstalk: The Journal of
Defense Software Engineering, 8(9):21-25, September 1995.

162 M. J. Lawrence. An Examination of Evolution Dynamics. In proceedings 6th
int. conference on Software Engineering. Tokyo, Japan. 13-16 Sept. IEEE cat.
n.81CH1795-4. pp 188-196, 1982.

163 P. J. Layzell, L. Macaulay. An investigation into software maintenance:
Perception and practices. In Conference on Software Maintenance, pages
130-140, Los Alamitos, California. IEEE Computer Society. 1990. Reports on
a study undertaken to study the perception and practice of software
maintenance in five major UK companies. Results of the investigation
indicated that maintenance is being perceived in a more positive light; main-
tenance departments are becoming more accountable to user departments; and
it seems existing maintenance tools are not being used as one would expect.
The need for technology to support communication between users, developers
and maintenance staff was also identified.

164 D. Leblang. The CM challenge: Configuration management that works. In
W E Tichy, editor, Configuration Management, Chapter 1. John Wiley and
Sons, Chichester, 1994.

165 S. Leestma, L. Nyhoff. Programming and Problem Solving in Modula-2.
Macmillan, New York, 1989.

166 M. M. Lehman. The Programming Process. IBM Res. Rep. RC 2722, IBM
Research Centre, Yorktown Heights, NY 10594, Sept. 1969.

167 M. M. Lehman & L. A. Belady. Program Evolution - processes of software
change. Academic Press. London 1985.

168 M. M.. Lehman. The environment of design methodology, keynote address.
In T. A. Cox, editor, Proceedings, Symposium on Formal Design Methodology,
pages 18-38, Essex, STL Ltd. 1980.

169 M. M. Lehman. Program Evolution. Academic Press, London, 1985.

330 Software Maintenance: Concepts and Practice

170 M. M. Lehman. Uncertainty in computer application and its control
through the engineering of software. Journal of Software
Maintenance:Research and Practice, 1 (l):3-27, 1989.

171 M. M. Lehman & V. Stenning. FEAST/1: Case for support. ICSTM. March
1996.

172 M. M. Lehman. Laws of Software Evolution Revisited. Position paper,
EWSPT96. Oct 1996. LNCS 1149 Springer Verlag. 1997

173 M. M. Lehman, D. E. Perry, J. F. C. Ramil. Implications of evolution metrics
on software maintenance. In proceedings Int. conf. ICSM98. pp 208-217.
1998.

174 M. M. Lehman, D. E. Perry, J. F. C. Ramil, W. M. Turski & P. Wernick.
Metric s and laws of software evolution. IEEE CS Press. 1997.

175 S. Letovsky. Cognitive processes in program comprehension. In E. Soloway
and S. Iyengar, editors, Empirical Studies of Programmers, Chapter 5, pages
58-79. Ablex Publishing Corporation, New Jersey, 1986. Reports on an
investigation into the cognitive processes that are involved in understanding
programs. The results from the study are then used to derive a computational
model of programmers' mental processes, commonly known as the
opportunistic model.

176 B. P. Lientz, E. B. Swanson. Software Maintenance Management. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1980.

177 P. H. Lindsay, D. A. Norman. Human Informatio n Processing: An
Introductio n to Psychology. Academic Press, New York, 1977.

178 D. S. Linthicum. 4GLs: No easy answers. Object Magazine, 4(5):38-42,
September 1994.

179 A. Lister. Software science - the emperor's new clothes? Australian Comp.
Journal, pages 437-39, May 1982.

180 D. C. Littman, J. Pinto, S. Letovsky, E. Soloway. Empirical Studies of
Programmers, Chapter 6, pages 80-90. Ablex Publishing Corporation, New
Jersey, 1986.

181 A. Lobba. Automated configuration management. In proceedings of the
1987 Conference on Software Tools, IEEE, 1987.

182 P. Loucopoulous, P J. Layzell. Improvin g information systems development
and evolution using rule-based paradigm. Software Engineering Journal,
4(5):259-67, 1989.

183 J. P. Loyall, S. A. Mathisen. Using Dependence Analysis to Support the
Software Maintenance Process. Proc. Int. Conf. on Software Maintenance, pp
282-291. 1993.

184 A. Macro. Software Engineering: Concepts and Management. Prentice-Hall
International Ltd, Hemel Hempstead, 1990.

References 331

185 L. Markosian, P Newcomb, R. Brand, S. Burson, T. Kitzmiller. Using an
enabling technology to reengineer legacy systems. Communications of the
ACM, 37(5):58-70, May 1994.

186 J. Martin. Fourt h Generation Languages - Volume II : Survey of
Representative 4GLs, Savant Research Studies, Carnforth, Lancashire, 1984.

187 J. Martin, C. McClure. Maintenance of Computer Programming, volumes I
and II . Savant Research Studies, Carnforth, Lancashire, 1982. These books
cover a wide range of software maintenance issues from an early 1980's
perspective.

188 J. Martin, C. McClure. Software Maintenance - The Problem and Its
Solutions. Prentice-Hall, lnc, Englewood Cliffs, New Jersey, 1983.

189 T. J. McCabe. Battle Map, Act show code structure, complexity. IEEE
Software, 7:62, May 1990.

190 T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308-20, December 1976.

191 C. L. McClure. Managing Software.. Development and Maintenance. Van
Nostrand Reinhold, New York, 1981.

192 J. McDermid. Software Engineer's Reference Book, Chapter 16.
Butterworth-Heinemann, 1991.

193 B. Meek, P. Heath, N. Rushby, editors. Guide to Good Programming. Ellis
Horwood Publishers, Chichester, 2nd edition, 1983.

194 C. A. Miller. The magical number seven, plus or minus two: Some limit s on
our capacity for processing information . Psychological Review, 63:81-97,
1956.

195 S. B. Sheppard, B. Curtis, P. Milliman, T. Love. Modern coding practices
and programmer performance. Computer, 12(12):41-9, December 1979.

196 K. H. Moller, D. J. Paulish. Software Metrics: A Practitioner' s Guide to
Improved Product Development. Chapman and Hall, London, 1993. This
book presents tutorial and case study material that can be useful to those
introducing a metrics programme into software management or those who wish
to improve on an ongoing programme.

197 J. C. Munson, S. G. Elbaum. Code Churn: A Measure for Estimating the
Impact of Code Change. 24. Electronic Edition (IEEE Computer Society DL).
2000.

198 G. J. Myers, A controlled experiment in program testing and code
walkthroughs / inspections. Communications of the ACM, Sept. 760-768.
1978.

199 G. J. Myers The Ar t of Software Testing. New York: John Wiley and sons.
1979.

332 Software Maintenance: Concepts and Practice

200 K. Narayanaswamy, W. Scacchi. Maintainin g configurations of evolving
software systems. IEEE Transactions on Software Engineering, SE13(3):324-
34, March 1987.

20! R. J. Miara, J. A. Musselman, J. A. Navarro, B. Shneiderman. Program
indentation and comprehensibility Communications of the ACM,
26(11):861-67, November 1983.

202 J. M. Neighbors. Draco: A method for engineering reusable software
systems. In T. J. Biggerstaff and A. J. Perlis, editors, Software
Reusability:Concepts and Models, Chapter 12, pages 295-319. ACM
Press/Addison-Wesley, New York, 1989.

203 Object Management Group. Model-Driven Architecture, (doc no.
ormsc/2001-07-01). OMG, Framingham, MA. 2001.

204 Object Management Group. Software Process Engineering Metamodel. (doc
no. ptc/2002-05-04). OMG, Framingham, MA. 2002.

205 G. Olander. Chembench: Redesign of a large commercial application using
object-oriented Techniques. In J. L. Archibald and M. C. Wilkes, editors,
Addendum to the Proceedings: 1992 Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 13-16, New York,
September-October, ACM Press. 1992.

206 P. Oman. Maintenance Tools. IEEE Software, 7:59, May 1990.

207 P. W. Oman, C. R. Cook. The improved paradigm for improved main-
tenance. IEEE Software, pages 39-45, January 1990.

208 P. W. Oman, C. R. Cook. Typographic style is more than cosmetic.
Communications of the ACM, 33(5):506-20, May 1990.

209 W. Osborne. Software Maintenance and Computers, pages 2-14. IEEE
Computer Society Press, Los Alamitos, 1990. This article provides answers to
64 key questions about software maintenance. The article addresses a wide
range of issues including the feasibility and applicability of software reuse,
achieving programmer and software productivity.

210 W. M. Osborne. Building and sustaining software maintainability . In
Proceedings of Conference on Software Maintenance, pages 13-23, Austin
Texas, 21 -24 September 1987.

211 W M. Osborne, E. J. Chikofsky. Fittin g pieces to the maintenance puzzle.
IEEE Software, 7:11-12, January 1990.

212 A. Padula. Use of a program understanding taxonomy at Hewlett-Packard.
In Proceedings, 2nd Workshop on Program Comprehension, pages 66-70, Los
Alamitos. IEEE Computer Society, 1993.

213 G. Parikh. Making the immortal language work. International Computer
Programs Business Software Review, 7(2):33, April 1986.

References 333

214 G. Parikh, N. Zvegintzov. Tutoria l on Software Maintenance. IEEE
Computer Society Press, Silver Spring, Maryland, 1983.

215 D. Parnas. Software aspects of strategic defense systems. Communications of
the ACM, 28(12): 1328, December 1985.

216 R. J. Paul. Why users cannot 'get what they want'. SIGSOIS Bulletin,
14(2):8-12, 1993.

217 M. C. Paulk, C. V. Weber, B. Curtis, & M. B. Chrissis, The Capability
Maturit y Model: Guidelines for Improvin g the Software Process, ISBN 0-
201-54664-7, Add i son -Wesley Publishing Company, Reading, MA, 1995.

218 D. Pearce. It' s a wrap. Consultant's Conspectus, pages 35-6, March 1995.

219 N. Pennington. Stimulus structures and mental representations in expert
comprehension of programs. Cognitive Psychology, 19(3):295-341, July
1987.

220 N. Pennington, B. Grabowski. Psychology of programming. In J. -M. Hoc, T.
R. G. Green, R. Samurcay and D. J. Gilmore, editors, Psychology of
Programming, Chapter 1.3, pages 45-62. Academic Press, London, 1990.

221 A. Perlis, F. Sayward, M. Shaw, editors. Software Metrics: An Analysis and
Evaluation. The MIT Press, 1981.

222 M. Petre. Expert programmers and programming languages. In J. -M. Hoc,
T. R. G. Green, R. Samurcay, D. J. Gilmore, editors, Psychology of
Programming, Chapter 2.1, pages 103-15. Academic Press, London, 1990.

223 M. M. Pickard, Carter. Maintainability . ACM SIGSOFT Software
Engineering Notes, 18(3) :A36-A39, July 1993. In this paper the authors argue
that there exists a relationship between design metrics and the maintainability
of operational systems. Results of a reverse engineering study on 57 Cobol
programs revealed that there exists a correlation between design metrics, such
as function points and other information flow-based metrics, and
maintainability.

224 A. Podgurski, L. Pierce. Retrieving reusable software by sampling. ACM
Transactions on Software Engineering and Methodology, 2(3):286-303, July
1993.

225 R. Poston. T test-case Generator. IEEE Software, 7:56, May 1990.

226 B. Potter, J. Sinclair, D. Till . An Introductio n to Formal Specification and Z.
Prentice-Hall International (UK) Ltd, Hemel Hempstead, 1991.

227 J. Poulin, W. Tracz. WISR'93: 6th annual workshop on software reuse
summary and workin g group reports. ACM SIGSOFT Software Engineering
Notes, 19(1):55-71, January 1994.

228 R. E. Prather. The axiomatic theory of software complexity measure. The
Computer Journal, 27:340-47, 1984.

334 Software Maintenance: Concepts and Practice

229 R. S. Pressman. Software Engineering: A Practitioner' s Approach. McGraw-
Hill, New York, 1987.

230 R. Prieto-Diaz. Domain analysis: An introduction . ACM Software Engi-
neering Notes, 15(2) :47-54, April 1990.

231 R. Prieto-Diaz, P. Freeman. Classification of reusable modules. IEEE
Software, 4(1):6-16, January 1987.

232 F. A. Rabhi. A parallel programming methodology based on paradigms. In
P Nixon, editor, Transputer and Occam Developments, pages 239-51. LOS
Press, Amsterdam, 1995.

233 V. Rajlich. Vifor transforms code skeletons to graphs. IEEE Software, 7:60,
May 1990.

234 S. R. Ratikin. Software Verification and Validation for Practitioners and
Managers: 2nd ed. Artech House. 2001.

235 C. Rich, R. C. Waters. The Programmer's Apprentice. ACM Frontier Series.
ACM Press, New York, 1990.

236 F. S. Roberts. Encyclopaedia of Mathematics and its Applications. Addison-
Wesley, Reading, Massachusetts, 1979.

237 J. M. Roche. Software metrics and measurement principles. ACM SIG-
SOFT Software Engineering Notes, 19(1): 77-85, January 1994. This article
provides a tutorial review of current Software Engineering measurement and
points out problems with existing measurement processes. It concludes by
suggesting that some of these problems could be overcome by including sound
measurement principles into Software Engineering measurement processes.

238 H. D. Rombach. A controlled experiment on the impact of software struc-
tur e on maintainability . IEEE Transactions on Software Engineering, SE-
13(3):344-54, March 1987.

239 S. Rugaber, S. B. Omburn, R. J. LeBlanc Jr. Recognising design decisions in
programs. IEEE Software, 7(l):46-54, January 1990. This paper argues that an
important aspect of design recovery is being able to recognise, understand and
represent design decisions present in a given source code. It contends further
that program constructs such as control and data structures, variables,
procedures and functions, definition and implementation modules, and class
hierarchy serve as indicators of design decisions.

240 J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen. Object-
Oriented Modelling and Design, Prentice-Hall International, Englewood
Cliffs, New Jersey, 1991.

241 P. Samuelson. Reverse-engineering someone else's software: Is it legal?
IEEE Software, 7:90-6, January 1990.

242 S. R. Schach. The economic impact of software reuse on maintenance.
Journal of Software Maintenance: Research and Practice, 6(4)185-96, July-
August 1994.

References 335

243 D. R. Schatzberg. Total quality management for maintenance process man-
agement. Journal of Software Maintenance: Research and Practice, 5(1):1-12,
March 1993.

244 A. L. Schmidt. Effects of experience and comprehension on reading time
and memory for computer programs. International Journal of Man-Machine
Studies, 25:399-409, 1986.

245 N. F. Schneidewind. The state of software maintenance. IEEE Transactions
on Software Engineering, SE-13(3):3O3-1O, March 1987.

246 H. E. Sengler. The Psychology of Computer Use, pages 91-106. Academic
Press, London, 1983.

247 B. A. Sheil. The psychological study of programming. In R. M. Baecker and
W A. S. Buxton, editors, Readings in Human-Computer Interaction: A
Multidisciplinary Approach, pages 165-74. Morgan Kaufman, Los Altos,
California, 1987.

248 V. Y. Shen, S. D. Conte, H. E. Dunsmore. Software science revisited: A
critica l analysis of the theory and its empirical support. IEEE Transactions
on Software Engineering, SE-9(2): 155-65, March 1983. Shen and his
colleagues present a critique of Halstead's Software Science measures and also
review experimental results of studies that were undertaken to test the validity
of these measures. They point out some theoretical shortcomings.

249 B. Shneiderman. Measuring computer program quality and
comprehension. International Journal of Man-Machine Studies, 9:465-78,
1977.

250 B. Shneiderman. Software Psychology. Winthrop, Cambridge, Massachusetts,
1980.

251 B. Shneiderman, R. Mayer. Syntactic semantic interactions in pro-
gramming behaviour: a model. International Journal of Computer and
Information Science, 8:219-38, 1979.

252 F. Shull, F. Lanubile, V. R. Basili. Investigating Reading Techniques for
Object-Oriented Framework Learning. IEEE Transactions on Software
Engineering. 26(11):1101-1118. Nov 2000.

253 M. A. Simos. The domain-oriented software life cycle: Towards an ex-
tended process model for reusability. In G. Booch and L. Williams, editors,
Proceedings of the Workshop on Software Reusability. Rocky Mountain Inst.
of Software Engineering, SE1, MCC, Software Productivity Consortium,
Boulder, Cob., 1987.

254 H. M. Sneed, A. Kaposi. A study on the effect of reengineering upon
software maintainability . In Proceedings, IEEE Conference on Software
Maintenance, pages 91-9, Los Alamitos, CA, IEEE Computer Society, IEEE
Computer Society Press. 1990. The data collected from this study indicated that
reengineering can decrease complexity and increase maintainability, but that
restructuring has only a minor effect on maintainability.

336 Software Maintenance: Concepts and Practice

255 I. Sommerville. Software Engineering, 3rd edition. International Computer
Science Series. Addison-Wesley, Workingham, England, 1989.

256 I. Sommerville, R. Thomson. An approach to the support of software
evolution. The Computer Journal, 32(8) :386-98, 1989.

257 J. Stikeleather. What' s a client, what's a server? Object Magazine, 4(5):94-5,
September, 1994.

258 J. P. Strickland, P. P. Uhrowczik, V. L. Watts. Ims/vs: An evolving system.
IBM Systems Journal, 21(4):490-513, 1982. Discusses the evolutionary
development history of IMS/VS (a Management Information System) since its
inception in 1969, highlighting some of the reasons for this evolutionary
tendency.

259 Sun Microsystems. Java 2 Enterprise Edition Specification vl.3. Sun, Palo
Alto, CA. 2001.

260 E. B. Swanson. The dimensions of maintenance. In Proceedings, 2nd Inter-
national Conference on Software Engineering, pages 492-97, San Francisco,
October 1976.

261 A. A. Takang, P. A. Grubb. The effects of comments and identifier names on
program comprehensibility: An experimental investigation. Research 95/1,
Department of Computer Science, University of Hull, UK, 1995.

262 A. A. Takang, P. A. Grubb, R. M. Dixon. Post-delivery evolution of general
practice software systems. In Proceedings, Primary Health Care Specialist
Group Annual Conference, pages 158-68, Cambridge, 17-19 September 1993.

263 T. Tamai, Y. Torimitsu. Software lifetime and its evolution process over
generations. In Proceedings, Conference on Software Maintenance, 8th
Conference, pages 63-69, Orlando, Florida, IEEE Computer Society Press,
November 1992.

264 R. C. Tausworthe. Standardised Development of Computer Software.
Prentice-Hall, Englewoods Cliffs, New Jersey, 1977.

265 B. E. Teasley. The effects of naming style and expertise on program com-
prehension. International Journal of Human-Computer Studies, 40:757-
70,1994. Describes a study aimed at investigating the effect of naming style
and expertise on understanding. It was concluded that naming style in high-
level procedural language programs affects the understanding of novice
programmers but not experienced programmers.

266 P. Thomas, R. Weedon. Object-Oriented Programming in Eiffel. Addison-
Wesley, Wokingham, England, 1995.

267 W. Tracz. Where does reuse start? ACM Software Engineering Notes,
15(2):42-6, 1990.

268 W. M. Turski. Reference Model for Smooth Growth of Software Systems.
University of Warsaw, June 1996

References 337

269 W. M. Turski. The Reference Model for Smooth Growth of Software
Systems Revisited. IEEE Transactions on Software Engineering 28:8 814-815
2002.

270 S. R. Vallabhaneni. Auditin g the Maintenance of Software. Prentice-Hall,
Englewood Cliffs, NJ, 1987.

271 A. van Deursen, P. Klint, A. Sellink. Validatin g year 2000 compliance.
Software Engineering (SEN) R9713. 1997.

272 D. van Edelstein. Report on the IEEE STD 1219-1993 - Standard for
Software Maintenance. ACM SIGSOFT - Software Engineering Notes,
18(4):94-95, October 1993.

273 E. C. Van Horn. Software Engineering, Chapter 12, pages 209-26. Academic
Press, New York, 1980.

274 H. van Vliet. Software Engineering: Principles and Practice. John Wiley,
Chichester, 1993.

275 L. Vanek, L. Davis. Expert dataflow and static analysis tool. IEEE Software,
7:63, May, 1990.

276 A. von Mayrhauser. Maintenance and evolution of software products. In M.
C. Yovits, editor, Advances in Computers, Chapter 1, pages 1-49. Academic
Press, Boston, 1994.

277 A. von Mayrhauser, A. M. Vans. From program comprehension to tool
requirements for an industrial environment. In Proceedings, 2nd Workshop
on Program Comprehension, pages 78-86, Los Alamitos, California, IEEE
Computer Society Press. 1993.

278 O. Walcher. Reengineering legacy systems using GUI and client/server
technology. In J. L. Archibald and M. C. Wilkes, editors, Addendum to the
Proceedings: Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 37-8, New York, ACM Press. September-
October 1993.

279 D. R. Wallace & R. U. Fujii. Software Verification and Validation: its role
in computer assurance and its relationship with software project
management standards. National Technical Information Service. 1989.

280 B. L. Wang, J. Wang. Is a deep class hierarchy considered harmful? Object
Magazine, 4(7):33-40, November-December, 1994.

281 R. Warden. Re-engineering - a practical methodology with commercial
applications. In P. A. V. Hall, editor, Software Reuse and Reverse Engineering
in Practice, Chapter 14, pages 283-305. Chapman and Hall, London, 1992.

282 R. C. Waters, E. Chikofsky. Reverse engineering: progress along many
dimensions. Communications of the ACM, 37(5):23-4, May 1994. This article
is a guest editorial which reflects on the wave of changes attributable to reverse
engineering issues over the years. The paper points out that reverse engineering

338 Software Maintenance: Concepts and Practice

is not just a peripheral concern but arguably the most important part of software
engineering.

283 P. Wegner. Capital-intensive software technology. IEEE Software, l(3):7-45,
July 1984.

284 G. M. Weinberg. The Psychology of Computer Programming. Van Nostrand
Reinhold Company, New York, 1971. This book makes good reading for
anyone interested in the psychology of programming.

285 M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-57, July 1984.

286 G. Welchman. The Hut Six Story. Classical Crypto Books. 1997.

287 J. White. Object lessons. Consultant's Conspectus, pages 2-5, March, 1995.

288 S. Wiedenbeck. Processes in computer program comprehension. In E.
Soloway and S. lyengar, editors, Empirical Studies of Programmers, Chapter 4,
pages 48-57. Ablex Publishing Corporation, New Jersey, 1986. This article
reports on an experiment which used memorisation and recall method to study
the role of 'beacons' in program comprehension. Analysis of the results
indicated that experienced programmers recalled key lines or beacons better
than other parts of the program, whereas no such results were observed for
novices.

289 S. Wiendenbeck. Beacons in computer program comprehension. Interna-
tional Journal of Man-Machine Studies, 25:697-709, 1986.

290 N. Wilde. Dependency analysis tool set prototype. IEEE Software, 7:65, May
1990.

291 D. G. Wildes, E. J. Nieters. RUTE real-time Unix simulator for PS OS. IEEE
Software, 7:54, May 1990.

292 C. Withrow. Erro r density and size in Ada software. IEEE Software, 1:26-
30, January 1990.

293 S. N. Woodfield, H. E. Dunsmore, V. Y. Shen. Effect of modularization and
comments on program comprehension. In Proceedings, 5th International
Conference on Software Engineering, pages 215-23, Los Alamitos, California,
IEEE Computer Society Press. March 1981.

294 C. M. Woodside. Program Evolution, Chapter 16, pages 339-54. Academic
Press, London, 1985.

295 M. R. Woodward, M. A. Hennel, D. Hedley. A measure of control flow
complexity in program text. IEEE Transactions on Software Engineering, SE-
5:45-50, March 1979.

296 A. Yamashiro, H. Nakano, K. Yoshida, E. Saito. Comparison of OOA and
Real-Time SA - From the experiment of analysing an image filin g system.
In J. L. Archibald and M. C. Wilkes, editors, Addendum to the Proceedings:

References 339

Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 41-4, New York, ACM Press. September-October 1993.

297 E. Yourdon. Techniques of program structure and design. Englewood
Cliffs: Prentice Hall. 1975.

298 E. Yourdon. Structured Systems Analysis, Prentice-Hall International, En-
glewood Cliffs, New Jersey, 1989.

299 H. Zuse. Software Complexity: Measures and Methods. Walter de Gruyter,
Berlin, 1991.

300 N. Zvegintzov, editor. Software Management Technology Reference Guide:
1994/95 European Edition. Software Maintenance News, Inc., Los Alamitos,
California, 1995.

Index

Abd-El-Hafiz 60
Abstraction 24, 101,103,105,

110,134,139, 144,146,151
Abstraction Engineering 291
Acceptance Test Plan 239
Acme Health Clinic 21, 39,40,

61,77,88,82,86,125,170,
187,227,236, 274

Adaption-Driven
Restructuring 145

Adaptive Change 33, 36,40
Aharonian 153, 178, 179
Air Traffic Control 12
Alternative Views 137, 138, 139
Analysts 104
ANSIC 274
ANSI/IEEE 193
Application Domain 19, 25, 28,

118,141,142,162, 164,177,
214, 216, 284

Application Generator
Systems 162

Application-Specific 284
Application-Type 216
Ariane 201
Arnold 271
Assessment 253,237
Assignment Patterns 207,208
Assimilation Process 110,115
Automatic Documentation 283

Baecker 125
Baseline 39, 141,225,226
Basic Concepts 5
Basili 60, 85,115, 169, 203,256
Beginner's Guide/Tutorial 239
Belady 144
Bennett 235
Bernstein 48, 55

Biggerstaff 150,159,162,177,
178

Black Box Testing 190
Black-Box Reuse 161
Boehm 49, 80, 82,155,261,263
Boehm's Model 80
Bohner 271
Boldyreff 150
Booch 289
Book Paradigm 125
Bott 178
Bottom-Up 98,110,114,129
Bottom-Up/Chunking Model 113
Briand 203
Brooks 29, 30,111,120,124, 242
Brooks'Model 111,120
Budget Reallocation 54
Building 234
Building and Sustaining

Maintainability 269
Building Better Systems 265
Butterworth-Hayes 13,14

Capability 300,309
Capability Maturity Model® 88
Career Structure 208
Carrying out the Change 92
Carter 133
Categorising Software Change 14
Category of Customer 240
Cause-Effect Relation 101
Change Control 235,236
Change Control, Management

Responsibilities 236
Change in Policies 19, 21
Change Ownership 215
Change Requirements 23
Change, When to Make a

Change 86

341

342 Software Maintenance: Concepts and Practice

Changes, Classification of 34
Chapin 313
Chembench 294
Chester 173, 175, 177
Chikofsky 103
Choi 141, 144
Chronological Data, Clinical 77
Chunking 99,110,113,114,121
Classification 313
Classification Problem 169
Cocomo 49, 155, 206,261,263
Code-and-Fix Model 66
Cognitive Process 99,109,110,

111,130
Cognitive Structure 99,109,110,

111,130
Cohesion 159, 167, 181
Colbrook 146
Combined Development and

Maintenance 214
Comments 113,118,120,121,

122,124,150,239
Commercial Interest 179
Communication 208
Competition 19,21,301
Complexity 255
Complexity Assessment 308
Components Engineering 166
Components, Classification of 85
Components-Based Processes 171
Composition-Based Reuse 160
Comprehension 28, 92,98,99
Comprehension Process

Models 107
Comprehension Strategies 110,

114
Comprehension Support

Tools 125
Comprehension Theories and

Studies, Implications of 128
Comprehension, Aims of 100
Configuration 225

Configuration Management 223,
226

Conradi 89,313
Consistency 23, 124, 131, 159,

228,244,260, 294
Constraints 2, 10,45, 69, 82, 99,

165,230, 306
Context of Maintenance 1
Continuity of Service 11
Control 253
Control Abstractions 168
Corbi 97
Corrective Change 34, 35, 52,

143,147,213
Correctness 274
Cost 5,261,283,300
Cost and Benefits 300, 309
Cost Estimation 261
Cost Reduction 283
Coupling 159, 167, 181
Critical Appraisal 65
Cross 103, 147
Cross-Referencer 304
Current Problems 149
Cyclomatic Number 256, 257,

308

Damste 33
Data 156
Data Abstraction 135
Data Dictionaries 239
Data Flow Analyser 304
Davis 269,300
Dead Paradigms 25
Decision-Support Features 103
Decomposition 24, 105, 118, 149,

286,287,289
Decomposition Mechanism 121
Decomposition to Aid

Comprehension 286
DeMarco 59,253
Dependency Analyser 305

Index 343

Design 156
Design for Reuse 166
Design Principles 129
Design Recovery 141
Designers 105
Development Methodology 240,

295
Diminishing Returns 81
Documentation 122, 238, 308
Documentation, Categories of 238
Documentation, Classification

of 240
Documentation, Producing and

Maintaining Quality 242
Domain Analysis 164
Domain Knowledge 209
Dusink 170
Dynamic Analyser 304

Ease of Understanding 283
Ease of Use 262,263,284,301
Economic Constraints 55
Economic Implications 2, 47,48
Education 179
Education and Training 129
Education and Training

Strategies 213
Effecting Change 24,42, 95,98,

130, 261
Efficiency 277
Effort Reallocation 54,56
Empirical 23, 27,55,110, 119,

121,122, 128, 129,130,155,
245, 248,249, 258,282

Encodable 249
Enhancement Booklet 239,241
Enigma Codes 194
Entity 248
Environment 20
Environment Management 234
Environmental Factor 17,20
E-Type System 34,45,315

Evaluation 253
Evolving Requirements 126
Example Measures 254
Execution Effect 101
Expertise 118

FDA 198, 199
FEAST 55,315
Features 7, 23, 69,100,110, 160,

300
Finkelstein 249
Fitness for Purpose 273
FORTRAN 77 274
Forward Engineering 144
Fourth-Generation Languages 279
Fourth-Generation Languages,

Impact on Maintenance 282
Fourth-Generation Languages,

Properties of 281
Fourth-Generation Languages,

Weaknesses 283
Framework 2,17,18
Framework for Software

Maintenance 18
Framework, Components 20
Freeman 169,173
Fritz Hager 200
Function Abstraction 135
Functional Requirements 10, 99,

104
Fundamentals of Software

Change 33
Future 311

Generality 167, 181
Generation-Based Reuse 162
Generator-Based Systems,

Evaluation 164
Generic Reuse/Reusability

Model 173
Ghezzi 167
Gilb 103

344 Software Maintenance: Concepts and Practice

Gordon Symonds 196
Guidelines and

Recommendations 129
Guy 47

Hall 170
Halstead 255,256,257,258,260,

262,263
Halstead's Measures 257
Han 272
Hands-On Experience 214
Haughton 142
Hidden Benefit 221
Higgins 53
High Level Language 270
High Payoff 81
Hooper 173,175,177

IEEE 9,193,213,273
Image 47
Image Filing System 295
Image Problems 52
Impact Analysis 271
Impact Analysis in Creating

Maintainable Systems 272
Implementation 8,89
Implementation Issues 118
Improvement 254
Ince 272
Increased Productivity 282
Incremental Release 41
Inertia 51
Information Gap 18,23
Information Needs 103,109,130
Initial Capital Outlay 178
Innovation 19,20
Insight II 293
Installation Guide 239
Integration Testing 191
Integrity 277
Integrity In Measurement 249
Interaction 29, 31, 167

Interoperability 278
Investment 81, 166
ISO 170,277,292
Iterative Enhancement Model 84

Jane's Air Traffic Control Special
Report 13

Jones 10

Kaner 183,193
Kang 173,175,176
Keeping Track of the Maintenance

Process 219
Kim 203
Knowledge Acquisition and

Performance 128
Knowledge Base 56,115, 124,

291
Krupinski 292

Lano 142
Leblang 232,234
Legal Issues 179
Lehman 5, 25, 27,28, 33, 39,44,

46, 93, 144
Lehman's Laws 44
Letovsky 115
Level of Awareness 212
Levels of Reverse

Engineering 138
Lientz 48,81,216
Life-Cycle 6,59,60
Limitations and Economic

Implications 2,47
Limitations to Software

Change 50
Linthicum 284,285
Lord Kelvin 247
Lost Information 136,138,151

Machiavelli 292
Macro 239

Index 345

Maintainability 260
Maintainers 103, 129
Maintainers and Their Information

Needs 103
Maintaining Systems 11,15,48,

127,266
Maintaining Systems

Effectively 11
Maintenance 146, 91
Maintenance Challenge 18,19,

25,54
Maintenance Crisis 18, 56, 265,

270
Maintenance Department 216
Maintenance Factors 29
Maintenance Framework 17
Maintenance Measures 247
Maintenance Measures, Guidelines

for Selection 261
Maintenance of the Existing

System 56
Maintenance Personnel 28
Maintenance Process 23,59
Maintenance Process Models 71
Maintenance Productivity 206
Maintenance Teams 210
Maintenance Tools 299
Management 95, 203, 205, 236
Management and Organisational

Issues 203
Management Responsibilities 205
Managers 104
Mandatory Upgrades 11
Marcus 125
Martin 210,280,281
Maturity 19,25,87,88
McCabe 103,256,257,260,262,

263, 308
McCabe's Cyclomatic

Complexity 256
McClure 210,281
McDermid 7

Measurement 248, 249,250, 253,
314

Measurement, Integrity 249
Melo 203
Mental Models 109
Metric 249,251
Migration Between

Platforms 136, 138,151
Migration to Object-Oriented

Platforms 290
Military Standards 193
Mobile2OOO 292
Model 60,110,271
Models and Strategies 271
Module Ownership 214
Moller 255
Motivating Maintenance

Personnel 206
Myers 186

Naming Style 118
Narayanaswamy 232
Need for Change 17,91,94,312
Need for Software

Maintenance 10
New Development, Difference

from Maintenance 9
Nomenclature 48,52,241
Nomenclature and Image

Problems 52
Non-Functional Requirements 99,

104
Non-Technical Factors 178
Not Invented Here Factor 179

Object Management Group 171
Object Oriented

Programming 270
Objectives 212
Object-Oriented Paradigm 285
Object-Oriented Paradigm, Impact

on Maintenance 288

346 Software Maintenance: Concepts and Practice

Object-Oriented Platforms,
Migration 290

Object-Oriented Techniques in
Software Maintenance 292

Ongoing Support 42
Openness of Architecture 301,

309
Operating Environment 20
Operational Environment 8,19,

29,45
Opportunistic 99
Opportunistic Model 115
Organisation and Presentation of

Programs 122
Organisational Culture 302
Organisational Environment 21
Organisational Modes 214
Organisational Strategy 51
Osborne 82, 83, 86,90,92,242,

243
Osborne's Model 82

Paper Trail 220
Paradigm Shift 19, 24, 142, 310
Past and Present 312
Patient Identification 170
Paulish 255
People 206
Perfective Change 36
Perlis 177
Permanent Team 211
Personnel 156
Personnel Education and

Training 211
Petre 118
Pickard 133
Pierce 169
Podgurski 169
Poor Design 284
Portability 274
Post-Delivery Evolution 34,53

Potential Solutions to Maintenance
Problems 54

Prather 256
Prediction 254
Preventive Change 39
Prieto-Diaz 164,169, 173
Problem Domain 100
Process 155
Process Abstraction 135
Process Control 235
Process Maturity 87
Process Model 2, 60, 65, 71, 89,

107,172, 174, 176
Process Quality 259
Product 156
Product Quality 259
Product-Environment

Relation 103
Program 157
Program Comprehension 314
Program Comprehension

Strategies 110
Program Slicer 303
Program Understanding 97
Programmers 105
Programming Languages 177
Programming Practice 19, 23,

103,116,130,195,261
Project Co-ordination 179
Proof 184
Property of an Entity 249
Proprietary 284

Quality 259
Quality Assessment 243
Quality Assurance 272
Quality Documentation 242
Quality of the Existing System 51
Quick Reference Card 239
Quick-Fix Model 76

Index 347

Ratcliffe 178
Ratikin 192
Reading Techniques 115
Recognition 110, 208,213
Recognition Enhancement 213
Redocumentation 139
Reduction in Cost 283, 289
Reduction in Workload 283
Reengineering 146
Reference Guide 239
Regression Testing 191
Reliability 276
Replacement of the System 55
Representation of Information 177
Requirements

Analysis/Specification 239
Research Areas 313
Residual Errors 35, 55, 147,158,

182
Resource Limitations 50
Resources 15,54,209
Responsibilities 205, 236
Restructuring 144
Retraining Personnel 291
Reusability 278
Reusable Components 137,138,

151,159,162,166,169,178,
291

Reusable Components,
Characteristics 166

Reuse 147, 153,155, 158, 159,
160,162,166,168,172,173,
176,177,178,313

Reuse and Reusability 153
Reuse Libraries 178
Reuse Libraries, Problems 168
Reuse Process Model 172,176
Reuse, Approaches to 159
Reuse, Factors that Impact 177
Reuse, Objectives and

Benefits 158
Reuse, Targets 155

Reuse/Reusability Model,
Generic 173

Reuse-Maintenance Vicious
Cycle 178

Reuse-Oriented Model 85
Reverse Engineering 133, 169
Reverse Engineering and

Associated Techniques in
Practice 147

Reverse Engineering,
Conditions 143

Reverse Engineering, Purpose and
Objectives 135

Rewards 207
Ripple Effect 10, 29, 34, 39,51,

67,100,186,265
Risk Assessment 70
Role of Software

Documentation 241
Rugaber 141
Rumbaugh 295
Rushby 35

Safety-Critical 18,27
Safety-Related 18,27
Scacchi 141, 144,232
Schach 159
Schneidewind 53
Seaman 203
Sheil 121
Sheppard 121
Shneiderman 121
Side Effects 136,137,151
Simos 172,175
Simulator 305
Size 255
Software Airbag 27
Software Change 34
Software Change Control 225
Software Change Fundamentals 2
Software Changes,

Categorising 40

348 Software Maintenance: Concepts and Practice

Software Configuration 225
Software Configuration

Management 225,231,232
Software Documentation 226,238
Software Documentation, Role

of 241
Software Evolution 34,53
Software Experience Bases 88,

313
Software Maintenance

Framework 18, 19, 31
Software Maintenance

Process 315
Software Maintenance Process 53,

60,83,315
Software Maintenance Tool 266,

300
Software Measure 251
Software Measurement 250,314
Software Measurement,

Objectives 253
Software Metric 251
Software Product 25
Software Production Process 60
Software Reuse 147,313
Software Tester 184, 186
Software Tester's Job 186
Source Code 8, 94,107, 115, 122,

124,125
Source Code Book 126
Source Code Control System 307
Specification/Design 239
Specification Recovery 142
Spiral Model 69
Stability of Vendor 301, 319
Staff, Attracting and Retaining 52
Standardisation 168,171
Standards 54,118,129,158,168,

170,240,270, 272
Static Analyser 303
Strategies, Education and

Training 213

Strategies, Impact Analysis 271
Strategies, Program

Comprehension 110
Structured Testing 190
S-Type System 34
Supervision 207
Support Tools 314
Supporting Techniques 143
Swanson 48,81,216
System Administration 239
System Documentation 101,107,

110,115,122,193,238,239,
240

System Overview 239
System Rationale 239
System Test Plan 239

Tamai 55
Targets for Reuse 155
Taxonomy of Tools 302
Team Working 205
Teasley 314
Technical Factors 177
Temporary Team 211
Test 184
Test Case Generator 306
Test Data, Who Chooses it 187
Test Paths Generator 306
Test Plans 192
Testability 275
Testing 183
Testing Code 190
Testing Software 184
Testing, Points to Note 193
Testing, What to Test and

How 187
Tests, Categorising 189
Therac25 194
Threesome Marriage 315
Tool 300
Tools for Comprehension and

Reverse Engineering 302

Index 349

Tools to Support
Comprehension 125, 302

Tools to Support Configuration
Management 306

Tools to Support Reverse
Engineering 302

Tools to Support Testing 305
Tools, Criteria for Selecting 300
Top-Down 99,100
Top-Down Model 111
Torimitsu 55
Traditional Process Models,

Critical Appraisal 65
Transformation Tool 305
Transformation-Based

Systems 163
Turski 256

Understandability 260
Understanding 94,116,283
Understanding the Current

System 108
Understanding, Factors that

Impact 116
Uniformity 168
University Education 213

Usability 275
User 20
User Documentation 238,239,

242
User Requests 11
User Requirements 19,31

VanVliet 167
Variant 226
Verification and Validation 192
Version 226
Version Control 232
Version of the System 241
Vlamis 292
Vocabulary Problem 99,119,120

Waterfall Model 67
Weinberg 104,243
White Box Testing 190
White-Box Reuse 161,162,169
Workload Reduction 283
Work-Type 215

Zhang 150
Zuse 249,253,255,256
Zvegintzov 309

