
by Aaron Bedra

$9

Building safe applications

Security
Audit

2

Security Audit

©2008 Aaron Bedra

Every effort was made to provide accurate information in this document.
However, neither Aaron Bedra nor Topfunky Corporation shall have any
liability for any errors in the code or descriptions presented in this book.

“Rails” and “Ruby on Rails” are trademarks of David Heinemeier Hansson.

This document is available for US$9 at PeepCode.com (http://peepcode.com).
Group discounts and site licenses can also be purchased by sending email
to peepcode@topfunky.com.

other peepcode products

RSpec (•	 http://peepcode.com/products/rspec-basics) – A three part
series on the popular behavior-driven development frame-
work.

Rails from Scratch (•	 http://peepcode.com) – Learn Rails!

RESTful Rails (•	 http://peepcode.com/products/restful-rails) – Teaches
the concepts of application design with REST.

Subscription pack of 10 (•	 http://peepcode.com/products/subscription-
pack-of-10) – Save money! Buy 10 PeepCode credits.

Javascript with Prototype (•	 http://peepcode.com/products/javascript-
with-prototypejs) – Code confidently with Javascript!

Rails Code Review •	 PDF (http://peepcode.com/products/draft-rails-
code-review-pdf) – Common mistakes in Rails applications,
and how to fix them.

http://peepcode.com
http://peepcode.com/products/rspec-basics
http://peepcode.com
http://peepcode.com/products/restful-rails
http://peepcode.com/products/subscription-pack-of-10
http://peepcode.com/products/subscription-pack-of-10
http://peepcode.com/products/javascript-with-prototypejs
http://peepcode.com/products/javascript-with-prototypejs
http://peepcode.com/products/draft-rails-code-review-pdf
http://peepcode.com/products/draft-rails-code-review-pdf

contents

5	 So You Want to Audit your Rails App?
6	 You write tests don’t you?

6	 I don’t know the first thing about security!

6	 Keep Notes!!!

7	 Be Brutal

8	 Securing Models
8	 SQL Injection

13	 Unapproved Data Manipulation

15	 Unauthorized Access Escalation

18	 Securing Views
18	 Cross Site Scripting (XSS)

22	 Cross Site Request Forgery (CSRF)

24	 Crawling and Fuzz Testing
26	 Running the test

28	 What does it all mean?

29	 How do I fix it?

30	 Disclaimer!

31	 Keeping your Host on Lockdown
31	 Platforms

31	 Firewall

35	 Ssssshhhh, don’t tell them we moved SSH

37	 General Rules of Thumb

38	 What’s the Risk?
38	 Why do I care about Risk Analysis?

45	 Conclusions

47	 Final Thoughts
47	 Create Guidelines, not Rules!

4

5

So You Want to Audit
your Rails App?
chapter 1
Everyday, thousands of applications are hacked.

Bank account numbers are exposed, social security information is
compromised, credit cards are revealed, and other types of personal
information is accessed. Don’t let your Rails application be one of
them! Let’s pick apart your code and see what places are vulnerable
to attacks. We will cover SQL Injection in your models, sanitization
logic in your controllers, Cross Site Scripting and Cross Site Request
Forgery in your views, and improper setup of your host operating
system. The information we cover could very well be the most impor-
tant thing you learn as a developer aside from writing the code itself.

There are a ton of reasons to audit your application. You could work
for a company that is regulated under Sarbanes-Oxley (SOX) or
HIPAA. You might be launching a new startup that is going to be
taking credit card transactions. Or, you might just want to keep your
users’ data safe. No matter why you decide to audit your application,
the process is the same. Even if you don’t have nuclear launch codes
being passed over the Internet, you should be auditing your work to
make sure you haven’t introduced any security holes.

Audits take place every day for many different reasons. It’s a great
idea for you to learn how to perform an audit. Once you are comfort-
able with the process you can start scheduling regular audits. Along
with increasing the security of your application, you will more than
likely increase the overall quality of your code as well.

6

You write tests don’t you?
Just think of this as another test. Some of it can be automated, but
eventually there will be manual verification. This can be off-putting to
some people, but I assure you it is worth it. During the process you
will laugh a little, cry a little, and probably make a few Yaks really
really cold (to be explained later). It is a process that will change the
way you develop your next application.

I don’t know the first thing about security!
That’s OK, you don’t have to be a security expert to audit your appli-
cation. It does help to know a thing or two about hax0ring, or to be
able to think like a hacker, but it’s not necessary. This book will get
you well on your way to being an effective auditor and will probably
inspire you to read more about information security.

Keep Notes!!!
One of the most important things you can do during an audit is
keep a very good set of notes. Document everything you do. If you
have even the slightest notion that something is awry, make a note
of it, because you will need these notes later. I recommend using an
electronic solution so you can easily search your notes for a key-
word or phrase. Your notes will probably end up being a giant ball of
nonsense that only you can make sense of, so having the ability to
search through it will help when you go back to write a sane version
in report form.

There are many applications that can help you with taking notes.
Desktop programs like Voodo Pad (http://flyingmeat.com/voodoopad),
Yojimbo (http://www.barebones.com/products/yojimbo), or TaskPaper (http://
hogbaysoftware.com/products/taskpaper) are great for this task. You can

http://flyingmeat.com/voodoopad
http://www.barebones.com/products/yojimbo
http://hogbaysoftware.com/products/taskpaper
http://hogbaysoftware.com/products/taskpaper

7

even keep it simple and just use a text file or even the trusty emacs
scratch buffer.

Be Brutal
It can be a hard thing to audit your own code. I actually recommend
against it! If you audit your own application, you’ll be thinking about
how much work it will be to fix all the holes you find, which may
cause you to treat it more gently than you should. So if you wrote it,
let someone else audit it.

If you have no other choice, you need to be honest with yourself
about things that are wrong. If it’s not your code, it’s much easier to
be a jerk about what’s wrong. You do however, need to be as bru-
tal as you can be when it comes to auditing software. If something
seems even the slightest bit wrong, document it for further scrutiny.

8

Securing Models
chapter 2
The most important part of any application isn’t your code or the
graphics, it’s the application’s data. You can rewrite code, but it’s very
hard to recreate data that has been deleted or manipulated. And it’s
impossible to retrieve data once it has been leaked!

SQL Injection
You’re application is running smoothly on the web. Everything is
going nicely until one morning you get an email as you are reading
your RSS reader. The site doesn’t seem to be working.

As you sit down to troubleshoot, you quickly notice that the data you
had yesterday is no longer there. In fact, all your data is missing. You
restore from the backups you pulled last night and all is well. Then,
a look at your logs reveals some nasty SQL as the culprit of your
disaster.

SQL injection accounts for a significant number of web related
application break-ins. In the past few years there have been huge
improvements in the effort to stop SQL injection related exploits.

SQL injection is a technique that exploits a security vulnerability
occurring in the database layer of an application. The vulnerability is
present when

User input is incorrectly filtered.•	

Escape characters embedded in •	 SQL statements are not correctly
sanitized.

User input is not strongly typed and thereby unexpectedly exe-•	

sql injection resources

There are a lot of great SQL injection related
resources on the web. OWASP has a great sec-
tion (http://www.owasp.org/index.php/Testing_for_SQL_
Injection) on testing for SQL injection if you want
to learn more on the subject.

http://www.owasp.org/index.php/Testing_for_SQL_Injection
http://www.owasp.org/index.php/Testing_for_SQL_Injection

9

cuted.

SQL injection is in fact an instance of a more general class of vul-
nerabilities that can occur whenever one programming or scripting
language is embedded inside another.

How does it happen?
There are a lot of different ways to attack an application that is vuler-
able to SQL injection attacks. Let’s take a look at how to exploit inse-
cure code using the aforementioned dangerous group of methods.
We will use examples from a few and demonstrate what can happen
if injection code is passed in unsanitized.

Asset.find(:all, :limit => “#{params}”)

If we passed something similar to this:

10 procedure help()

We can expect an output and result similar to this:

Unknown procedure ‘help’ : SELECT * FROM ‘assets’

This is not good! It looks like we are able to directly call stored proce-
dures from the limit call. If we could enumerate what stored proce-
dures are on this database, we could start executing those proce-
dures.

Another thing that could happen would look like this:

Asset.find_by_sql(“SELECT * FROM assets WHERE id=#{params}”)

10

An attacker could pass in parameters similar to these:

‘; DELETE FROM assets WHERE 1’

The initial result of the call would just return an empty array. No
errors would be thrown, and nothing would blow up in your log files,
but your assets would all be gone! This is an example of a much
more destructive attack that can be used on an application vulner-
able to SQL injection.

A classic comic on this issue is at xkcd (http://xkcd.com/327).

The good news for you is that Rails gives you awesome protection
right out of the box. The bad news is that you can still go out of your
way to create holes in your application. Let’s quickly highlight the
good bits that Rails gives you for free.

Asset.find params[:id]

This find accepts an user argument passed in directly from the
user. Normally this is bad practice to put user input directly into your
database calls, however, Rails ensures that anything passed in via
params will be safe to accept without any further intervention. That
being said, let’s move on to some more interesting things that can
cause real problems in your application.

find_by_sql•	

execute•	

find•	 with conditions in a string (i.e. :conditions => [“asset =
#{little_bobby_tables}”])

limit•	

little bobby droptables says:

Make sure when you find bugs like these you
write tests along with the bugfixes.

This will only take a few minutes more and
will make sure that you or another developer
doesn’t accidentally reintroduce this bug later
on in the development cycle.

http://xkcd.com/327

11

offset•	

group_by•	

order•	 .

These methods are not automatically sanitized and should be used
with caution. If you are auditing your source code and see any of
these methods used, make sure that they are being properly sani-
tized.

How do I fix it?
SQL injection vulnerabilities are nasty little problems if left unfixed.
Luckily, the fixes are rather simple and won’t take too much of your
time to complete.

Our first example of injectable code can be fixed by a regular
expression as simple as:

params[:limit].gsub(/\D/,’’)

This will strip out all non-numerical characters from the string and
leave you with just the numerical limit for your search. You would
need to call this method any time you accept these types of inputs.

You could make this into a utility method and duck-punch it into

Ruby’s String class.

Even though Ruby is a dynamic language and is not strictly typed,
your application should still expect to see certain kinds of data. You
may need to check for any of the following:

Strings without whitespace•	

12

Strings with whitespace trimmed from the front and end•	

Numerical input•	

Float or decimal values•	

Special formats such as phone numbers, zip codes, tax ID num-•	
bers, email addresses, etc.

Some of these may be satisfied with a simple regular expression
check. Others may need to be validated against a reference table
with valid values. It’s safest to check for a specific kind of input and
reject all others.

Don’t try to escape complicated SQL directly since the rules may
be different depending on the database in use. To avoid costly
mistakes, you can also take advantage of methods such as
ActiveRecord::Base::connection.quote inside methods that expose
raw SQL.

sql_injection/article.rb

class Article < ActiveRecord::Base

 def find_with_limit(limit)
 find(:all, :limit => connection.quote(limit))
 end

end

There are quite a few plugins out there that utilize some of the
dangerous methods described above in unsanitized ways. If you’re
unsure, read the code and run the Tarantula plugin against your
application, as will be shown later.

The will_paginate plugin is safe. It makes use of limit and

offset but takes the potential problems into account.

13

Unapproved Data Manipulation
Rails makes it easy to update many fields at once by passing a
Hash of values to ActiveRecord.

Unfortunately, this also makes it easy for a user to POST arbitrary
values and manipulate data in unexpected ways.

How does it happen?
Here’s a snippet from an idiomatic update action.

Potentially unsafe update from a form
@order.update_attributes(params[:order])

But what if someone calls the update action with extra information,
such as a new price for the order?

We might feel that we are safe since our HTML form only includes
the fields that we want to update. Furthermore, how would anyone
discover the names of our database fields? Aren’t these stored safely
and securely inside our code?

Unfortunately, the default Rails scaffolding exposes table field names
via the XML format. Accessing http://localhost:3000/orders/1.xml
shows them all:

<order>
<created-on type=”datetime”>2008-05-27</created-on>
<id type=”integer”>1</id>
<price type=”integer”>123</price>
<state>pending</state>
<updated-on type=”datetime”>2008-05-27</updated-on>
</order>

14

From here, it’s a simple matter for someone to set their own price by
sending a POST with a new price. They might even POST a state of
paid and bypass the payment process altogether!

/orders/1?order%5Bprice%5D=1&order%5Bstate%5D=paid

This may seem like an obscure threat, but libraries such as

ActiveResource make it possible to exploit vulnerabilities like this

in only a few lines of code. Sites that use Rails scaffolding without

modification are vulnerable to this kind of attack right out of the

box.

How do I fix it?
ActiveRecord provides a simple directive to protect fields: attr_pro-
tected. List sensitive fields that should be protected and Rails will
ignore them during bulk field updates via new, create, or update_
attributes.

attr_protected/order.rb

class Order < ActiveRecord::Base

 attr_protected :price, :state

end

If you do need to modify these values, you can set them directly.

@order.price = params[:order][:price]

To do the reverse, use attr_accessible. This will expose only the

fields you list and will lockdown all other fields.

15

Unauthorized Access Escalation
Every Rails tutorial shows you how to pull information from a table.
It’s a simple find with an id. It looks so innocent! What could be
wrong with that?

The problem is that unscoped queries allow any user to access any
piece of data, even if it does not belong to them.

How does it happen?
Let’s assume that you have an application that stores and lists tasks
for users. The show action for a single user’s tasks might look like this:

Potentially dangerous!
@task = Task.find(params[:id])

The problem is that any user can look at any other user’s tasks. If
you use auto-incrementing integers as your id (which is the default),
it’s as easy as logging in as any user and typing example.com/
tasks/1, example.com/tasks/2, example.com/tasks/3, into the brows-
er’s address bar.

Lather, rinse and repeat for create, update, and destroy, and you’ve
just given every user the ability to manipulate any other user’s data!

How do I fix it?
Fortunately, ActiveRecord provides an easy way to limit access to
associated records. Instead of issuing queries against the model’s
class, you should issue a query through the model that owns the
record.

16

For our user and task example, the restful-authentication plugin
(http://github.com/technoweenie/restful-authentication/tree/master) provides a
current_user method that represents the ActiveRecord row for the
logged-in user. We can use this to generate subqueries on associ-
ated models.

Here is a basic User model:

models/user.rb

class User < ActiveRecord::Base

 has_many :tasks

end

Instead of querying the Task model, we can query the tasks associ-
ated with this user.

@task = current_user.tasks.find(params[:id])

This generates SQL roughly similar to the following:

SELECT * FROM tasks WHERE (tasks.user_id = 42)

Protecting data from unauthorized access is that easy! If a user tries
to type in the ID of a record they don’t own, an empty set will be
returned.

Any query that would be run against the Task class can be run
against the association.

Dynamic conditions
current_user.tasks.find_all_by_status(‘Completed’)
Additional options
current_user.tasks.find(:all, :limit => sanitized_limit)

http://github.com/technoweenie/restful-authentication/tree/master

17

18

Securing Views
chapter 3

Cross Site Scripting (XSS)
As you are running through the admin panel of your application
checking out new user information for your awesome new startup,
you come across a user’s profile that does something very strange.

Every time you click to view the user’s information, you are redirected
to another page and your username and password hash are dis-
played right on the page.

What in the world is going on? There isn’t any code in your appica-
tion that points to this site, and for that matter would never display
information in such a way.

Cross Site Scripting (XSS) is an issue for every web developer, no
matter the framework. This problem is magnified by the general lack
of understanding of the core problems that XSS introduces, as well
as the simple fact that developers often overlook XSS issues when
developing an application.

Cross-site scripting (XSS) is a type of computer security vulner-
ability typically found in web applications which allow code injection
by malicious web users into the web pages viewed by other users.
Examples of such code include HTML code and client-side scripts.
An exploited cross-site scripting vulnerability can be used by attack-
ers to bypass access controls such as the same origin policy. Vulner-
abilities of this kind have been exploited to craft powerful phishing
attacks and browser exploits.

xss resources

If you want to learn more about XSS you can
find more information here. (http://www.owasp.org/
index.php/Cross_Site_Scripting) If you would like to
further explore CSRF you can look here. (http://
www.owasp.org/index.php/Testing_for_CSRF)

http://www.owasp.org/index.php/Cross_Site_Scripting
http://www.owasp.org/index.php/Cross_Site_Scripting
http://www.owasp.org/index.php/Testing_for_CSRF
http://www.owasp.org/index.php/Testing_for_CSRF

19

Example
To be able to bookmark pages, search engines generally leave
search variables in the URL address. In this case, the URL would look
like:

http://test.example.com/search.php?q=XSS%20

Next we try to send the following query to the search engine:

<script type=”text/javascript”> alert(‘This is an XSS
Vulnerability’) </script>

By submitting the query to search.php, it is encoded and the result-
ing URL would be something like:

http://test.example.com/search.php?q=%3Cscript%3Ealert%28%91
This%20is%20an%20XSS%20Vulnerability%92%29%3C%2Fscript%3E

Upon loading the results page, the test search engine would prob-
ably display empty results for the search, but it will display a
JavaScript alert which was injected into the page. This type of thing
can lead to much more powerful and crafted attacks against your
application.

An XSS attack takes advantage of unescaped output to add

harmful Javascript code into the HTML rendered by your

application. There is a potential vulnerability anywhere that users

can enter content into your website (blog comments, profile pages,

etc.). You can sanitize inputs (user-generated content) but sanitizing

outputs is more bulletproof (rendered HTML).

20

How do I detect XSS?
Scan your source code looking for unescaped values where users
could enter harmful data.

The guideline for this is simple. If you see an opening ERB tag with-
out a corresponding h(), you have an item to add to your audit list. It
doesn’t necessarily mean you have a vulnerability, it just means you
need to take a look at why you haven’t escaped the data. This will
provide the fastest turn around for hardening your application and is
very easily scriptable.

How do I fix it?
By following the guidelines above, you will ultimately produce a huge
amount of auditable code. This is OK, don’t be overwhelmed. You will
find that fixing these issues takes almost no time at all and is rather
painless.

You will, however, find that there are a couple cases that you will
have trouble with and you will have to make some decisions as to
the applicable risk associated with the problem. We will cover how to
assess risk later on.

For now here’s what you need to do. When you see something like
this:

<%= @asset.description %>

Make sure you that you consider it a potential for XSS code execu-
tion and simply fix it like so:

<%= h(@asset.description) %>

21

You can also omit the parentheses:

<%=h @asset.description %>

This simple fix will escape any potential problems that could arise
from a user entering bad bits into your database.

Tainting
There comes a time in this process where you will have to make a
decision as to how you want to globally handle XSS protection for
your application. Ultimately you are faced with the issue of tainting
versus not.

Simply put, tainting is a process where you mark any input that
doesn’t come directly from your application. This is done using
ruby’s taint() function. Once you have decided to do this you need
some way to keep track of managing what has been tainted and
make sure that you don’t render anything that has been deemed as
such.

Luckily for you there is a solution just for this. The SafeERB (http://
rubyforge.org/projects/safe-erb) plugin originally written by Shinya Kasatani
and further maintained and updated for Rails 2 by yours truly does
just this.

There is, however, a drawback to using SafeERB. It raises an error
anytime you try to render a tainted string. This can quickly become
quite a pain, especially if you have a rather large application that
you haven’t already audited for XSS correctness.

The double whammy comes in the fashion of poor testing. If you
don’t have good tests, you may uncover errors in your production
application without warning. If you have your heart set on using

http://rubyforge.org/projects/safe-erb
http://rubyforge.org/projects/safe-erb

22

SafeERB, you should consider it for new projects and probably noth-
ing else.

If you don’t wish to go the tainting route, there are other alternatives
that end up being much more palatable. XSS Shield (http://code.google.
com/p/xss-shield) is a plugin that will seamlessly protect your applica-
tion via the h() method without any intervention from you. Per the
documentation:

<%# By default, the h() method must be used. %>
<h3><%= h(item.name) %></h3>
<p><%= link_to “#{h(item.first_name)}’s stuff”,
 :action => :view,
 :id => item %>
</p>

<%# Instead, the plugin does it for you. %>
<h3><%= item.name %></h3>
<p><%= link_to “#{item.first_name}’s stuff”,
 :action => :view,
 :id => item %>
</p>

All your views will be automatically protected. This is a nice solution
and requires very little effort to accomplish your goal. This pretty
much makes a winning combination for solving the XSS problem on
your application.

Cross Site Request Forgery (CSRF)
Cross-site request forgery, also known as one click attack, sidejack-
ing or session riding is abbreviated as CSRF (Sea-Surf) or XSRF.
CSRF is a type of malicious exploit of websites. Although this type of
attack has similarities to cross-site scripting (XSS), cross-site script-
ing requires the attacker to inject unauthorized code into a website,
while cross-site request forgery merely transmits unauthorized com-

http://code.google.com/p/xss-shield
http://code.google.com/p/xss-shield

23

mands from a user the website trusts.

Rails 2 gives you CSRF protection out of the box. It automatically
provides a session token for all requests that it compares your
request with so that hijacking can not take place. Unless the code
you are auditing has done something to turn it off, you can rest
assured that this shouldn’t be an item of concern.

Fig. A Rails 2 uses a session key to protect against CSRF

24

Crawling and Fuzz Testing
chapter 4
A Security fuzzer is a tool used by security professionals (and pro-
fessional hackers) to test the parameters of an application. It feeds
garbage data into various form and URL inputs in an attempt to
cause an error.

Typical fuzzers test an application for buffer overflows, format string
vulnerabilities, and error handling. More advanced fuzzers incorporate
functionality to test for directory traversal attacks, command execu-
tion vulnerabilities, SQL Injection and Cross Site Scripting vulnerabili-
ties. Web Vulnerability scanners typically perform all of this function-
ality, and can be considered an advanced fuzzer.

Your audit is not complete without a thorough examination of all the
links and inputs of the target application. This can be a difficult pro-
cess even for the most skilled of QA analysts. This kind of test really
calls for automation. Writing a crawler and fuzzer from scratch can
also be a daunting task if you are not sure what to look for. Luckily
this task has been completed for you! It’s as simple as installing the
Tarantula plugin.

./script/plugin install \
 git://github.com/relevance/tarantula.git

If your application isn’t on Rails 2.1, you can clone it directly to the
vendor/plugins directory.

git clone git://github.com/relevance/tarantula.git vendor/
plugins/tarantula

You will have to install the facets and htmlentities gems along with

25

this plugin.

sudo gem install facets htmlentities

Once you have Tarantula installed, just run the tarantula:setup task
to generate the default test.

rake tarantula:setup

You will end up with the following test in your application’s test/
tarantula folder.

Although this looks like a standard integration test, it will only work

correctly if a single test method is defined. Future versions of the

plugin may support fuzzing via multiple user sessions.

Here’s the default test:

fuzzing/tarantula_test.rb

require “#{File.dirname(__FILE__)}/../test_helper”
require “relevance/tarantula”

class TarantulaTest < ActionController::IntegrationTest
 fixtures :all

 def test_tarantula
 post ‘/session’, :login => ‘quentin’, :password =>
‘test’
 follow_redirect!
 tarantula_crawl(self)
 end
end

Tarantula assumes that you have a set of fixtures with valid data
inside. If you don’t have fixtures for a table, you can use the ar_fix-

tarantula

Tarantula is an open source application writ-
ten by Relevance (http://opensource.thinkrelevance.
com) that crawls your application and fuzzes
all available inputs. Feedback to this project is
always welcome.

http://opensource.thinkrelevance.com
http://opensource.thinkrelevance.com

26

tures plugin (http://topfunky.net/svn/plugins/ar_fixtures) to dump develop-
ment or production data to YAML fixtures.

RSpec doesn’t currently have integration tests. You can use a

Test::Unit integration test for fuzzing even if the rest of your specs

are written with RSpec.

This is the quick way to get started. For more information and exam-
ples see the Wiki Page (http://opensource.thinkrelevance.com/wiki/tarantula).

Running the test
To run Tarantula, just grab a console and run:

rake tarantula:test

The Tarantula test may take a while to run depending on the size

of your application and speed of your machine. One application

we ran took 5 minutes on a slow laptop, while others ran in a few

seconds on a fast desktop machine.

After it’s finished, it will produce an HTML report detailing failures and
successes. If you’re on a Mac, it will automatically display the results
in your default browser. If you are using any other system you will
have to manually open the report in your web browser. The report is
located in the tmp/tarantula directory of your application.

If no report is generated, try the following:

Does your application have a •	 SessionController that is used for
login? If not, you may need to change the path that Tarantula

http://topfunky.net/svn/plugins/ar_fixtures
http://opensource.thinkrelevance.com/wiki/tarantula

27

sends a post to.

Does your login form have •	 login and password fields? If not, you
may need to change those in the test.

Is the value of the login and password correct? The data in your •	
fixtures will be used to verify the login.

Do you have a full set of fixtures?•	

If all else fails, run •	 rake tarantula:test -t in order to see a more
complete listing of the errors encountered.

Here is an example of what your report might look like.

Fig. B Tarantula HTML report.

You will come across several different types of results after running
Tarantula.

28

The most obvious is the successful hits, marked by a green box.
Tarantula keeps track of everything it does and will detail all links it
crawls regardless of the response.

What does it all mean?
Tarantula will tell you that something was wrong, but it rarely tells you
exactly what was wrong. That’s your job!

Most of the application’s failures are documented by the HTTP
response code generated. You should aim to fix all the failures, but
the ones you are immediately concerned with are the 500 errors.
These are typically caused by the built in fuzzing that Tarantula
offers.

Be aware that some of the errors you encounter can be caused

by improperly formed HTML. These should still be fixed even if

they don’t reflect a problem with the operational code in your

application.

If Tarantula finds a form, it will generate garbage data and feed it
into the form. If you have not properly sanitized your inputs, your
application will most likely generate a 500 error. This is the worst
type of error to have in terms of security because it means that a
user was able to do something that caused your application to crash.
It also tells an attacker that there is improperly secured code that
they can start using as an attack vector to hopefully break into your
application. A good attacker can use enumeration techniques to
inspect your application’s HTTP response codes to isolate weak sec-
tions and act accordingly.

So the 500 errors are the first errors you should fix.

29

How do I fix it?
When analyzing the 500 errors, it is important to understand there
are no innocuous errors. If your application generates an error, you
may be able to analyze the code and prove to yourself that there
is no real security vulnerability. This is usually a bad idea because
it costs more time and effort than simply fixing the code, and you
might be wrong.

Fixing the errors provided by Tarantula should be fairly straightfor-
ward. First, click on the URL link for the page in question. You’ll see
the Rails error message and backtrace of the error. If it was a POST,
PUT, or DELETE, you’ll see the parameters used to access the page.
These will often be nonsensical values that were used to confuse the
application.

“product[description]”=>4539, “product[title]”=>-3450,

The error detail output can sometimes be confusing since it’s HTML-

based and is meant to be viewed in a web browser. However, you

can usually find the file and line number of the error.

Next, open the file in question and look at the code. Are certain types
of data being expected but not found? Is there an error condition
that isn’t being caught properly?

For example, Tarantula identified a sloppy line of code in an applica-
tion that was relying on the existence of specific form data.

item.type = @items.detect { |i| i.ext == item_ext }.name

The solution was to verify the result of the detect loop before assum-
ing that we could extract the name from it.

30

You will more than likely stumble upon some head scratchers, but
don’t worry! With a little bit of time and some good tests, you will
uncover the errors and be much better off than you were before you
let this fuzzy spider attack your application.

Disclaimer!
Making the decision to use Tarantula means that you now have to
write a solid test suite to back it up. If you do not have good tests, it’s
time to man up! You will not be very successful with Tarantula until
you do.

PeepCode has several screencasts on RSpec (http://peepcode.com/

products/rspec-basics) and one on Test-First Development (http://peepcode.

com/products/test-first-development) if you’re not familiar with the basics of

testing.

When you create your Tarantula test, be sure to choose a user that
has full access to everything in your application. You want to ensure
that every possible link is crawled and every form fuzzed.

You can create separate tests for separate roles, but for a thorough
examination, the user needs to be able to see everything.

http://peepcode.com/products/rspec-basics
http://peepcode.com/products/rspec-basics
http://peepcode.com/products/test-first-development
http://peepcode.com/products/test-first-development

31

Keeping your Host
on Lockdown
chapter 5
None of your newfound auditing-fu will do you any good unless the
system you are deploying to is secure. If an attacker gains control
of your server, they can do whatever they want to your application
and your data. Since we obviously don’t want that to happen, let’s go
over some helpful hints to check the security of your box.

Platforms
You can deploy a Rails application on just about any platform. Your
options for deployment are Windows, Linux, Solaris, or the BSDs.
Given this wide range of options, choosing a platform can be a touch
choice. The most popular deployment platform for Rails applications
is Linux, so we will focus our efforts on auditing a Linux machine.

There are hundreds of Linux distributions that are purposed for just
about any task. We will be highlighting certain features of Linux dis-
tributions that aid in securing the machine.

Firewall
This is the cornerstone and basis for security on your server. Making
sure you have a good firewall ruleset in place will get you farther than
almost any other security tactic.

In order to test your server, let’s use nmap. Nmap is a network map-
ping tool that shows which ports on a machine are open, along with
version numbers of the running software being exposed to the Inter-

32

net. Nmap is easily installed via your package management system
of choice. To get the latest version you can go to the nmap homep-
age (http://insecure.org/nmap) and compile the source yourself.

Now that we have nmap installed, let’s get to checking our server.
Open a terminal window and enter the following:

nmap -P0 [your host’s ip address]

This will do a port scan of your host without pinging it. A lot of serv-
ers diable the echo ping protocol, so this will make sure that you get
something useful back. You should get an output something similar
to this:

Starting Nmap 4.20 (http://insecure.org) at 2008-04-13
09:55 EDT
Interesting ports on xxx-xxx-xxx-xxx.yourdomain.com (xxx.
xxx.xxx.xxx):
Not shown: 1691 closed ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
80/tcp open http
554/tcp open rtsp
3333/tcp open dec-notes
7070/tcp open realserver

This is good but we can do better with the -A flag.

nmap -P0 -A [your host’s ip address]

This will do a full signature scan of the entire host. It will determine
what applications are running on the exposed ports and most of the
time can even show what version of the software they are running.
Now you get a more interesting output.

http://insecure.org/nmap

33

Starting Nmap 4.20 (http://insecure.org) at 2008-04-13
10:04 EDT
Interesting ports on xxx-xxx-xxx-xxx.yourdomain.com (xxx.
xxx.xxx.xxx):
Not shown: 1691 closed ports
PORT STATE SERVICE VERSION
21/tcp open tcpwrapped
22/tcp open ssh OpenSSH 4.6p1 Debian 5ubuntu0.2
(protocol 2.0)
80/tcp open http-proxy nginx http proxy 0.5.35
554/tcp open tcpwrapped
3333/tcp open dec-notes?
7070/tcp open tcpwrapped
Service Info: OS: Linux

This output shows you the version numbers of everything running
and even takes a good guess as to what operating system you are
running. An attacker will use any information they can get their
hands on to attack your system, so you should do your best to
restrict what they can see and access.

There are way too many open ports on this server. We really only
want to be able to SSH into the host to manage it, and be able to
serve traffic out of port 80, the HTTP port. Everything else must go!

There are several ways to accomplish this task. You can put a fire-
wall up in front of your server that blocks everything but the desired
traffic. You can also just take advantage of Linux’s built in firewall
software iptables. We will take the iptables approach since it comes
standard on almost any Linux distribution and can be activated very
easily. The only thing iptables requires is a script to tell it what to do.

Let’s write a firewall script that only allows traffic into the server on
port 80 and port 22 (some lines wrap).

*filter
-A INPUT -i lo -j ACCEPT

34

-A INPUT -d 127.0.0.0/255.0.0.0 -i ! lo -j REJECT --reject-
with icmp-port-unreachable
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p tcp -m tcp --dport 80 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j
ACCEPT
-A INPUT -m limit --limit 5/min -j LOG --log-prefix “iptables
denied: “ --log-level 7
-A INPUT -j REJECT --reject-with icmp-port-unreachable
-A FORWARD -j REJECT --reject-with icmp-port-unreachable
-A OUTPUT -j ACCEPT
COMMIT

Let’s save this file as iptables.rules and store it in /etc. Now we just
need to activate it and test it out. To load the ruleset into iptables,
simply run the following:

 sudo iptables-restore < /etc/iptables.rules

Once that’s complete, we need to check iptables to make sure that
our ruleset was applied properly.

sudo iptables -L

If things worked properly, you should see output similar to this:

Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT 0 -- anywhere anywhere
REJECT 0 -- anywhere 127.0.0.0/8
reject-with icmp-port-unreachable
ACCEPT 0 -- anywhere anywhere
state RELATED,ESTABLISHED
ACCEPT tcp -- anywhere anywhere
tcp dpt:www
ACCEPT tcp -- anywhere anywhere
state NEW tcp dpt:ssh
LOG 0 -- anywhere anywhere

35

limit: avg 5/min burst 5 LOG level debug prefix `iptables
denied: ‘
REJECT 0 -- anywhere anywhere
reject-with icmp-port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination
REJECT 0 -- anywhere anywhere
reject-with icmp-port-unreachable

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
ACCEPT 0 -- anywhere anywhere

The last thing we need to do is to test our host again with nmap. Let’s
use the first nmap method as shown above. Now we get an output
similar to this:

Starting Nmap 4.20 (http://insecure.org) at 2008-04-13
09:55 EDT
Interesting ports on xxx-xxx-xxx-xxx.yourdomain.com (xxx.
xxx.xxx.xxx):
Not shown: 1691 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http

This looks much better! Let’s move onto some other tips and tricks to
help you keep the hackers at bay

Ssssshhhh, don’t tell them we moved SSH
There are thousands of brute force bots on the Internet launching
attacks against port 22. The solution? Simply move the port your
SSH server runs on. You can put an end to this quickly by modifying

36

your sshd config located in /etc/ssh/sshd_config from:

Port 22

to:

Port 31337

In order for this change to take effect, you’ll need to restart SSH. This
may differ depending on your distro, but many servers have an sshd
script in /etc/init.d:

sudo /etc/init.d/sshd reload

Make sure that all SSH-enabled users in your system have strong
passwords. A general rule of thumb for password strength is eight
characters in length with a combination of letters, numbers, and spe-
cial characters. If you are still concerned about attackers having the
ability to brute force your logins (rapidly guess passwords), you can
utilize SSH keys (http://www.sshkeychain.org/mirrors/SSH-with-Keys-HOWTO/SSH-
with-Keys-HOWTO-4.html).

Mac OS X Leopard comes with an agent that will automatically

cache your local SSH key password, making it much easier to

interact with many servers via SSH keys.

This method along with completely disabling password authentica-
tion can take your level of security one level higher. You can take
your SSH config a lot further by disabling password authentication
entirely and only allowing certain users, but for our purposes, we will
stop here.

http://www.sshkeychain.org/mirrors/SSH-with-Keys-HOWTO/SSH-with-Keys-HOWTO-4.html
http://www.sshkeychain.org/mirrors/SSH-with-Keys-HOWTO/SSH-with-Keys-HOWTO-4.html

37

General Rules of Thumb
Configuring a strong firewall and securing SSH offer the biggest
bang for the buck when it comes to securing your server. There are
hundreds of little things you can do to enhance security, but a lot
of them are specific to your distribution of Linux. Read up on your
distribution and see what it has to offer.

If your distribution offers SELinux (•	 http://en.wikipedia.org/wiki/Security-
Enhanced_Linux), try to take advantage of it. It’s a set of security
policies developed by the National Security Agency and works
together with many different Linux distros.

Turn off any services that you aren’t using. Not only will it help •	
with security, it will also free up valuable system resources you can
use for things that actually need them.

If you are still struggling with server-side security, try reading up on
your distribution of choice. If at the end of the day you still aren’t
satisfied, hire someone to help. Your time as a developer should be
spent on the things you are good at. If security is a major concern,
leave it to the pros to help you out and give you the right tools to
succeed!

http://en.wikipedia.org/wiki/Security-Enhanced_Linux
http://en.wikipedia.org/wiki/Security-Enhanced_Linux

38

What’s the Risk?
chapter 6
There is a fine art to information security that rears it’s head in the
form of risk analysis. I guarantee at some point you will audit an
application and find something in the form of a security hole. Your
job as an auditor is to present the vulnerability, period. You might
decide to offer suggestions for fixing that vulnerability, or you and
your team might be the ones who end up fixing the problems later.
The step between the auditor handing off a report and the develop-
ers hunkering down to fix the problems should include some kind of
risk analysis.

Why do I care about Risk Analysis?
It all comes down to money. If you have a vulnerability that is in an
extremely isolated place in your application, you may not need to
fix that issue immediately (especially if that issue involved rewrit-
ing a component or set of components to solve the problem). Sup-
pose you discovered an issue that would only happen if the user was
logged in as an administrator at the end of February on a leap year.
Let’s do a high level risk analysis of that issue.

Issue Description

Threat Capability The attacker’s ability to
successfully comproise a
system.

Control Strength The systems you have in
place to protect against
attacks.

39

Issue Description

Threat Event Frequency The number of times
annually that a threat
comes in contact with your
system.

Vulnerability The chance that a contact
is able to successfully take
action on a system.

Loss Event Frequency The annual expectation of
the number of successful
attacks on a system.

Probable Loss Magnitude The monetary value that
a single loss event repre-
sents.

Risk The number of loss events
in proportion to the prob-
able loss magnitude.

fair

The FAIR (Factor Aanalysis of Information Risk)
framework was developed by Jack Jones. He
has written a great whitepaper on the subject
that can be freely downloaded here (http://risk-
managementinsight.com/media/docs/FAIR_introduction.pdf).
The risk analysis shown here is a very high level
interpretation of a risk study using FAIR.

http://riskmanagementinsight.com/media/docs/FAIR_introduction.pdf
http://riskmanagementinsight.com/media/docs/FAIR_introduction.pdf

40

threat capability

The attacker has to already have administrative privileges, so pend-
ing any other vulnerabilities they would have to find a way to get
administrative access via social engineering or man in the middle
(MITM) attacks. This tells us that the attacker would have to be very
capable and experienced.

Rating Description

Very High The attacker is either very
skilled or possesses an
unknown exploit.

High The attacker is proficient
with scripting utilities
and can create their own
exploits.

Moderate The attacker has knowl-
edge of script utilities and
some information on how
to use them.

Low The attacker has just
started hacking and really
doesn’t posses much
knowledge.

Very Low The attacker just learned
that hacking was possible
and decided to give it a
shot.

Conclusion: Threat Capability = Very High

41

control strength

If your application has authentication and authorization (users,
rights, and roles) you have a start. If you have a role of administrator
that has top level access and restricts all other users from perform-
ing administrative functions then you have a good foundation. In this
case let’s assume there are no vulnerabilities associated with these
controls.

Conclusion: Control Strength = High

threat event frequency

It is possible that this attack can occur every leap year on Febru-
ary 29th. For argument sake we will call this every four years. Given
our per annum is yearly that makes the threat event frequency once
every four years.

Rating Description

Very High (VH) More than 100 times per
year

High (H) Between 10 and 100 times
per year

Moderate (M) Between 1 and 100 times
per year

Low (L) Between .1 and 1 times per
year

Very Low (VL) Less than .1 times per year
(once every 10 years)

Conclusion: Threat Event Frequency = Low

42

vulnerability

In order to determine our vulnerability we simply need to cross refer-
ence our Control Strength and Threat Capability. We have a Control
Strength of of High and a Threat Capability of Very High, which gives
us a Vulnerability of High.

Here is a reference pulled from the FAIR Wiki (http://fairwiki.riskmanage-
mentinsight.com)

M VLL VL VL

LH VLM VL

MVH VLH L

HVHVH LM

VHVHVH MH

VL L M H VH

VL

L

M

H

VH

Control Strength

T
h
re

at
 C

ap
ab

ili
ty

Vulnerability

Conclusion: Vulnerability = High

http://fairwiki.riskmanagementinsight.com
http://fairwiki.riskmanagementinsight.com

43

loss event frequency

This vulnerability only has the chance of arising every four years
(yes there are a couple of edge cases in leap years but let’s ignore
them for simplicity purposes). Let’s say our per annum in this case is
yearly. This would make the possibility of a threat occurring 0.25%.

Now let’s move that into the likelihood that that threat actually could
occur. Given a possibility of 0.25%, a high control strength and the
need for a very highly skilled attacker, the probability of a successful
attack is almost negligible.

A Vulnerability of High and a Threat Event Frequency of Low gives us
a Loss Event Frequency of Low.

VL VLVL VL VL

LVL LVL L

MVL ML M

HML HH

VHHM VHVH

VL L M H VH

VL

L

M

H

VH

Vulnerability

T
h
re

at
 E

ve
n
t

Fr
eq

u
en

cy

Loss Event Frequency

Conclusion: Loss Event Frequency = Low

44

probable loss magnitude

This is where we define how much we could actually lose monetarily
if a loss event were to occur. This is categorized into sections that
we allocate dollar amounts to. Unless you have access to company
financials, you will have to defer this section to a company CFO. I
would actually recommend doing this even if you do have access
to financial information because CFOs or their equivalent are much
more likely to come up with numbers that more accurately represent
reality. These categories are:

Productivity•	

Response•	

Replacement•	

Fines and Judgements•	

Competitive Advantage•	

Reputation•	

Once you assign dollar amounts to these categories, you can come
up with an actual analysis of the risk involved with your vulnerability.
Let’s say the total in our case amounts to US$8,000.

Magnitude Range Low End Range High End

Severe (SV) $10,000,000 -

High (H) $1,000,000 $9,999,999

Significant (Sg) $100,000 $999,999

Moderate (M) $10,000 $99,999

Low (L) $1,000 $9,999

Very Low (VL) $0 $999

Conclusion: Probable Loss Magnitude = Low

45

risk

Now that we have all of our answers, the culmination of risk is a
simple as our Loss Event Frequency in correspondence with our
Probable Loss Magnitude. What is our company’s tolerance level for
realistically losing $60,000 once every (let’s say) 12 years? What’s
the likelihood that your application will still be in production in 12
years in the form that it is now? How much would it cost to fix this
vulnerability up front?

We have a Loss Event Frequency of Low and a Probable Loss Magni-
tude of Low, resulting in an overall Low risk.

M MML L

L ML M M

ML HM H

HM CM H

HHM CC

CHH CC

VL L M H VH

Low

Moderate

Significant

High

Severe

Loss Event Frequency

P
ro

b
ab

le
 L

os
s

M
ag

n
it

u
d
e

Risk

Very Low

Conclusion: Risk = Low

Conclusions

46

In our test scenario, we proved that fixing our vulnerability was just
not worth it. Some will be much more significant and require immedi-
ate attention, but I wanted to demonstrate that not all vulnerabilities
merit attention.

If you constantly strive for perfection and must have it right, then risk
analysis won’t even be on your radar. In the real world however, costs
sometimes outweigh the need to have perfect security in all areas.

47

Final Thoughts
chapter 7
Throughout the auditing process, you will probably go down several
rabbit holes that go down more rabbit holes. Normal development
practices tell you that this is a bad idea (commonly referred to as
yak shaving), but when you are auditing, you should just let it hap-
pen. You will probably do a lot of refactoring in the process. These
things strengthen you as a developer.

The critical element here is to keep notes. You need to meticulously
detail everything you are doing and hope to do later. If you are using
a Mac, Taskpaper (http://hogbaysoftware.com/products/taskpaper) is a won-
derful application for keeping track of what you have completed and
what still needs to be done. If you are using emacs, create a notes
buffer and use it to keep track of things. The key is to document
everything! I promise you will need it later.

Create Guidelines, not Rules!
Applying rules to security auditing will drive you insane. It’s great to
start with a nice set of rules, especially if this is your first audit, but
in the end they just get in the way. Instead, replace these rules with
guidelines and use good judgement when dealing with things that
surface as problems. If in doubt, ask someone. If your problem has
NDA-related material, then make up a pseudo problem similar to
your own and ask people on the Internet.

Take your now secure application and deploy it with more confidence
than you ever had before! When your pointy haired boss (http://
en.wikipedia.org/wiki/Pointy_Haired_Boss) brings up the security question,
you can respond in confidence and tell him or her it’s all good in the
hood.

http://hogbaysoftware.com/products/taskpaper
http://en.wikipedia.org/wiki/Pointy_Haired_Boss
http://en.wikipedia.org/wiki/Pointy_Haired_Boss

	So You Want to Audit your Rails App?
	You write tests don’t you?
	I don’t know the first thing about security!
	Keep Notes!!!
	Be Brutal

	Securing Models
	SQL Injection
	Unapproved Data Manipulation
	Unauthorized Access Escalation

	Securing Views
	Cross Site Scripting (XSS)
	Cross Site Request Forgery (CSRF)

	Crawling and Fuzz Testing
	Running the test
	What does it all mean?
	How do I fix it?
	Disclaimer!

	Keeping your Host on Lockdown
	Platforms
	Firewall
	Ssssshhhh, don’t tell them we moved SSH
	General Rules of Thumb

	What’s the Risk?
	Why do I care about Risk Analysis?
	Conclusions

	Final Thoughts
	Create Guidelines, not Rules!

