
A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

A Comparative Analysis of Methods of Defense against Buffer
Overflow Attacks

Istvan Simon
California State University, Hayward

Hayward, CA 94542
simon@csuhayward.edu

http://www.mcs.csuhayward.edu/~simon/security/boflo.html
January, 31 2001

Abstract

For the past several years Buffer Overflow attacks have been the main method of compromising a
computing system's security. Many of these attacks have been devastatingly effective, allowing the
attacker to attain administrator privileges on the attacked system. We review the anatomy of these
attacks and the reasons why conventional methods of defense have been ineffective, and likely to
remain so in the foreseeable future. Recently, however, several promising methods of defense have
been proposed. We compare the strengths and weaknesses of these defense methods.

1. Introduction

Buffer Overflows have been successfully used as a method of penetrating systems' security for over 12
years. One of the first buffer overflow attacks which attracted widespread attention due to its
spectacular success was Robert Morris's Internet Worm. In 1988 Morris released a program which
succeeded in infecting thousands of Unix hosts on the Internet. One of the methods Morris used to
gain access to a vulnerable system was a buffer overflow bug in the fingerd daemon [9, 29]. Once it
gained access to a vulnerable system, Morris's program installed itself on the machine, and used several
methods to attempt to spread itself to other machines. The original intent of Morris was to spread to
other systems relatively slowly and undetected, without causing a significant disruption on any of the
affected machines. However, his attack failed completely in this. Morris made a programming error
which caused his worm to spread at a much higher rate than originally intended. Because of this error,
machines were infected and reinfected so rapidly that the worm ended up overwhelming the attacked
systems. Of course this caused his program to be detected immediately, and transformed it into the
most devastating denial of service attack until that time. Morris's program usually did not gain
administrative root access, and did not destroy any information on the penetrated system, nor leave
time bombs or other malicious code behind [9].

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (1 of 16)8/1/2006 2:03:05 AM

http://www.mcs.csuhayward.edu/~simon/security/boflo.html

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

From 1988 to 1996 the number of buffer overflow attacks remained relatively low [2, 30]. The known
vulnerabilities were fixed, and because the attack method was little known and thought to be difficult
to execute few new vulnerabilities were discovered. This changed dramatically in 1996 when Levy
published a very well written paper [17] which simultaneously showed that it was very likely that
many programs harbored buffer overflow vulnerabilities, and also demonstrated techniques of
constructing buffer overflow attacks which were likely to succeed against a target program suspected of
being vulnerable, even if the attacker had no access to the actual source code of the target program.
The combination of these two factors stimulated attackers to a flurry of research activity which lead to
many discoveries of new vulnerabilities. In addition, many of the attacks were automated, which
permitted the attack to be carried out even by people with little or no knowledge. People who are
relatively unsophisticated but interested in such attacks are often called Script Kiddies. Unfortunately,
there are far too many script kiddies, who seem to have plenty of time on their hands, and also the
energy, patience and persistence to keep hacking systems this way. The unhappy result is that these
automated attacks have become a serious nuisance to the overworked system administrators responsible
for maintaining the integrity of their systems under continuous attack.

In this paper we review the anatomy of buffer overflow attacks and discuss the reasons why they are
so prevalent and deadly. We then examine the traditional methods of defense and show why they are
unlikely to succeed in stopping these attacks effectively in the near future. We also discuss more recent
approaches of defense, and discuss their relative weaknesses and strengths. While no method of
defense is 100% effective, we show why these newer methods are more likely succeed than their
predecessors.

2. What is a Buffer Overflow Attack?

A buffer overflow occurs in a program when the program stores more information in an array, the
buffer, than the space reserved for it. This causes the areas adjacent to the buffer to be overwritten,
corrupting the values previously stored there. Buffer overflows are always programming errors which
are typically introduced into a program because the programmer failed to anticipate that the
information copied into the buffer by the program may exceed its size. Unfortunately, as we shall soon
see, buffer overflow programming errors are quite common because of certain widely used and
dangerous C programming practices. Once a buffer overflow vulnerability is present in a program
inadequate testing may not uncover it, so that the vulnerability may lurk in the program hidden ,
undiscovered and silent for years. This potentially opens up the program to be the target of a sudden
attack which exploits the vulnerability to gain unauthorized access to a system.

A buffer overflow may happen accidentally during the execution of a program. When this happens,
however, it is very unlikely that it will lead to a security compromise of the system. Most often the
clobbering of information in areas adjacent to the buffer will cause the program to crash or produce
obviously incorrect results. In a buffer overflow attack, on the other hand, the objective of the attacker
is to use the vulnerability to corrupt information in a carefully designed way in order to execute attack

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (2 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

code previously planted by the attacker. If this succeeds, the attacker effectively hijacked the control of
the program. Once control is transferred to the attack code, it grants unauthorized access to the attacker.
Typically the attack code just spawns a shell, which allows the attacker to execute arbitrary commands
on the system.

When a new shell is spawned in a Unix system, it inherits the access privileges of the process that
spawned it. Consequently, if the attacked process containing the buffer overflow vulnerability runs
with root privileges, the attacker will also get a root shell. We remark that though we limited our
discussion to UNIX systems, buffer overflows are applicable to most Operating Systems . In
particular, many attacks have been successful against Windows NT and Windows 2000 systems [8, 12,
13, 21, 22, 26]. Axelsson [1] compared the security of Windows NT and UNIX systems against known
types of attack, and found them to be roughly equally vulnerable.

A buffer overflow attack may be local or remote. In a local attack the attacker already has access to the
system and may be interested in escalating his/her access privilege. A remote attack is delivered
through a network port, and may achieve simultaneously both gaining unauthorized access and
maximum access privilege.

Summarizing , we see that a buffer overflow attack usually consists of three parts:

1. The planting of the attack code into the target program;

2. The actual copying into the buffer which overflows it and corrupts adjacent data structures;

3. The hijacking of control to execute the attack code;

We now examine in more detail the main type of buffer overflow attacks.

3. Smashing the Stack

One classification of buffer overflow attacks depends on where the buffer is allocated. If the buffer is a
local variable of a function, the buffer resides on the run-time stack. This is the type of attack examined
in Levy's article [17], and it is by far the most prevalent form of buffer overflow attack.

When a function is called in a C program, before the execution jumps to the actual code of the called
function , the activation record of the function must be pushed on the run-time stack. In a C program
the activation record consists of the following fields:

1. space allocated for each parameter of the function;
2. the return address;

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (3 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

3. the dynamic link;
4. space allocated to each local variable of the function.

For convenience we will consider the address of the dynamic link field to be the base address of the
activation record. The function must be able to access it's parameters and local variables. This requires
that during the execution of the function a register hold the base address of the activation record of the
function., i.e. the address of the dynamic link field. Parameters are below this address on the stack, and
local variables above. When the function returns, this register must be restored to its previous value, to
point to the activation record of the calling function. To be able to do this, when the function is called
the value of this register is saved in the dynamic link field. Thus the dynamic link field of each
activation record points to the dynamic link field of the previous activation record on the stack, which in
turn points to the dynamic link field of the previous activation record, and so on, all the way to the
bottom of the stack. The first activation record on the stack is that of main(). This chain of pointers is
called the dynamic chain.

In many C compilers the buffer grows towards the bottom of the stack. Thus if the buffer overflows and
the overflow is long enough the return address will be corrupted, (as well as everything else in
between, including the dynamic link.) If the return address is overwritten by the buffer overflow so as
to point to the attack code, this will be executed when the function returns. Thus, in this type of attack,
the return address on the stack is used to hijack the control of the program.

Overwriting the return address, as explained above, gives the attacker the means of hijacking the control
of the program, but where should the attack code be stored? Most commonly it is stored in the buffer
itself. Thus the payload string which is copied into the buffer will contain both the binary machine
language attack code as well as the address of this code which will overwrite the return address.

There are a few difficulties that the attacker must overcome to carry out this plan. If the attacker has the
source code of the attacked program it may be possible to determine exactly how big the buffer is and
how far it is from the return address, determining how big the payload string must be. Also, the payload
string cannot contain the null character since this would abort the copying of the payload into the buffer.
Some copying routines of the C library use carriage returns and new lines as a delimiter instead, so these
characters should also be similarly avoided in the payload string.

Access to the source code is nowadays quite common for many Operating Systems, e.g. Linux,
OpenBSD, Free BSD, and even Solaris. Levy [17] shows, however, that there is no need to have
access to the source, or even knowledge of the exact details of how the attacked program works. The
address of the attack code can be guessed, and through various techniques an approximate guess will
do. For example, the attack code could start with a long list of no operation instructions, so that control
could be passed to any of these in order to correctly execute the crucial part of the attack code which
spawns the shell and comes after the no ops. This technique was already used in the Morris worm.
Similarly, the tail of the payload string could consist of a repeated list of the guessed address of the
attack code that we want to overwrite the return address with. These techniques increase considerably

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (4 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

the chances of guessing the address of the attack code close enough for the attack to work. For more
details check Levy's article [17].

We now examine why buffer overflows are so common. Suppose that the buffer is a character array
used to store strings. Most programs have string inputs or environment variables which can be used by
the attacker to deliver the attack. The program must read this input and parse it in order to make the
appropriate response to the input. Often, to parse the input,the program will first copy it into a local
variable of a function and then parse it. To do this the programmer reserves a large enough buffer for
any reasonable input. To copy the input into the buffer the program will typically use a string copying
function of the standard C library such as strcpy(). If done carelessly, this introduces a buffer overflow
vulnerability. This pattern is so well established in the C programmer's repertoire that it makes very
likely that many programs will contain buffer overflow vulnerabilities.

The problem arises partly because C represents strings in a dangerous way. The length of a string is
determined by terminating the sequence of characters by a null character. This representation is
convenient, because strings can have arbitrary length and yet it allows for efficient processing of
strings. But at the same time it is also dangerous, because the scheme breaks down if a string is not null
terminated, and because there is no way of knowing the length of the string prior to processing all its
characters. The typical C culture emphasizes efficiency over correctness, prudence or safety, which
compounds the problem. It would require a massive amount of education to change this well
entrenched programming practice. A consequence of this is that it is unlikely that buffer overflow
vulnerabilities can be eradicated at the source by not introducing them into a program in the first
place. Not only it will be difficult to eliminate the vulnerability from the enormous quantity of software
already deployed, but it seems likely that programmers will continue to write new vulnerable software.

Miller [20] studied the behavior of UNIX utilities when given random input in many distributions, both
commercial and open source. His study is important and relevant to our discussion, because while
unexpected input is not necessarily directly related to buffer overflows, the inability of programs to
handle unexpected input comes from the same tendency of programmers to concentrate only on
reasonable input that leads also to buffer overflow flaws. Attackers are not reasonable. On the contrary,
they wish to exploit this blind spot of programmers for unreasonableness, to find a hole in the program's
logic that they can use for their own purposes. So Miller's study provides some evidence on how
common buffer overflow problems are likely to be. Unfortunately, in almost all distributions more than
half of the utilities crashed under Miller's experiment.

Miller also gives us some insight into the speed with which vendors are making progress in improving
the quality of their software, if at all, because he repeated the study five years later. Indeed, his results
show that progress is being made. But progress has been very modest.

Another interesting result of Miller is the confirmation of the widely held anecdotal belief that Open
Source provides significantly higher quality software than commercial offerings. This seems to suggest
the power of somewhat chaotic large-scale parallelism over better organization of small-scale

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (5 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

parallelism. The former is prevalent in the Open Source model, in which many pairs of eyes scrutinize
the software but relatively uncoordinated. The latter is characteristic of commercial organizations, with
fewer pairs of eyes scrutinizing the software but in a much more systematic and organized fashion.

4. Traditional defenses

We now examine some traditional defenses against buffer overflow vulnerabilities such as the ones
discussed in the last section. We already mentioned the first and most obvious of these which is
eliminating the error from the target program. We have seen briefly at the end of the last section that
unfortunately this approach is unlikely to succeed. Here we elaborate on further obstacles to this
defense.

First, there is the magnitude of the problem. To eliminate the bug a very large number of programs
must be examined. The number of potential targets already deployed is very large. There are some
tools that one can use to automate the search for the vulnerability [11, 12, 30]. For example, a very
simple scheme would be to search for the use of the unsafe functions in the C library, which like strcpy
() have been identified, and replace them with safe functions which takes the size of the buffer into
account, like strncpy(). Still, manual auditing of the code must be used for each program which makes
this a massive and very expensive approach. This is not to say that this work should not be undertaken,
and indeed there are efforts under way to systematically audit the code of at least two free versions of
Unix , OpenBSD and Linux [19, 23]. In the case of the former this effort seems to have already
achieved considerable success, accounting for the reputation of OpenBSD among the security
community as being the most secure Unix distribution currently available. One wonders why similar
efforts are not under way by the commercial vendors of Operating Systems, which one would suppose
could better afford the cost. While the value of such systematic auditing of code has been
successfully demonstrated, the approach is not guaranteed to produce buffer-overflow-free code. Some
buffer overflows have been found even in already audited code [10].

Not surprisingly, most installations must rely on the vendor to provide them with reliable code. Even if
the source code is available, they must deploy code which they can't hope to fully understand
themselves. Unfortunately this reliance on the vendor seems misplaced in many cases, as
vulnerabilities seem to be all too common. with most vendors. This rather discouraging state of affairs
is very frustrating, yet seems to be the main approach traditionally recommended. Security specialists
[22, 26] recommend that the administrator of a system follow closely the release of security patches by
the vendor, so that as soon as they are released they can install them. This presumably makes their
systems more secure. However, this approach has serious shortcomings. The first problem is that it is
costly in terms of the administrator's time and effort. Many systems are administered not by
professional system administrators but by people whose primary job is something else. For these
systems this approach is simply too impractical and untenable. The cure is worse than the disease. Thus
the high cost of this method of defense guarantees that many systems will fail to install the patches in a
timely manner, which in turn provides attackers with plenty of vulnerable systems, even for

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (6 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

vulnerabilities which have already been fixed. Furthermore, as we remarked in the last section,
programmers keep introducing new vulnerabilities with every new release of the operating system.

5. Recent defenses

Recently new defenses have been discovered that are more promising than the traditional approaches
discussed above. We examine three methods and discuss their strengths and weaknesses. One of the
attractive features of all these three methods is that they are all relatively low cost measures that can be
easily implemented by any system administrator independently of the vendor and they are all effective
to some degree against buffer overflow vulnerabilities not yet discovered. So one of the common
characteristics of these three methods is that they offer valuable protection with current code which is
vulnerable. The other most significant advantage of these methods is that they are proactive methods of
defense rather than the reactive methods discussed in the previous section. They allow a significant
measure of protection without forcing the administrator to have to wait for the vendor to do something to
secure his system.

5.1 Disabling Stack Execution

 Several vendors now offer this method of defense. [7, 18] Most systems do not need code to be ever
executed on the stack. Since the most common buffer overflows, as seen in Section 3, rely on code to be
injected into the buffer and then executed, a simple solution is the option to install the operating system
with stack execution disabled. The idea is simple, inexpensive to install, and relatively effective against
the current crop of attacks.

There are some serious weaknesses to this approach. First, though rare, some programs do rely on the
stack to be executable. More importantly, the defense is weak. Though the code in the current crop of
stack based buffer overflows is often stored into the buffer, a little reflection will immediately reveal
that this is not really essential. The attacker does not care where the attack code is. All the attacker needs
is that this code be somewhere in memory and that it's address or approximate address be known to the
attacker so he can overflow the return address with it to hijack control. We think that it is only a matter
of time before a new crop of buffer overflow attacks will appear that do not store the code on the stack
and which will become immune to this defense. Wojtczuk explores methods to bypass the non
executable stack defense in [31]

5.2 Safer C library support

A much more robust alternative would be if we could provide a safe version to the C library functions on
which the attack relies to overwrite the return address. This idea seems to have occurred independently

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (7 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

to several people. Alexander Snarskii seems to have been the first one to think of it [28]. He
implemented it for the FreeBSD version of Unix and offered it to the development group of FreeBSD.
His explanation of the method was unfortunately a little obscure, and either he may not have fully
realized the true power of his method, or if he did, he certainly did not elaborate on it in his note. Thus
Snarskii's idea had less impact than it should have had. Baratloo, Tsai , and Singh from Bell Labs
independently rediscovered the idea , and wrote a much more substantial white paper about it [2].
This author also rediscovered this defense independently. The Bell Labs group implemented the
vulnerable functions in a library called LibSafe, which can be freely downloaded from their site.

Can we replace a vulnerable function in the C library by a safer version? We will discuss the idea in
terms of strcpy(), but it will become readily apparent that the method generalizes to any of the other
vulnerable string manipulation functions. At first sight a safer version of strcpy() appears impossible
because strcpy() does not know the size of the buffer that it is copying into. So complete avoidance of
overflowing the buffer is not possible. Nonetheless, strcpy() has access to the dynamic chain on the
stack, and successive dynamic links are like bright markers delimiting the activation records of all the
currently active functions. The idea is to use this information to prevent strcpy() from corrupting the
return address or the dynamic link fields.

Using these markers and the address of the buffer itself strcpy() can first determine which activation
record contains the buffer, or else that the buffer is not on the stack at all. To do this strcpy() finds the
interval [a,b] of consecutive dynamic links which contains the buffer. The cases in which the buffer is
either below the first activation record on the stack, or above the last activation record can be handled as
special cases with appropriate values of either a or b. Once the values of a and b are determined, we
can compute an upper bound on the size of buffer. For example, if the buffer grows towards the bottom
of the stack then |buffer -a | is an upper bound on the size of the buffer. This can be used by strcpy
() to limit the length of the copied string so that neither the dynamic link nor the return address are
overwritten. Furthermore, strcpy() can detect an attempt to do so, report the problem to syslog, and
safely terminate the application.

LibSafe does not replace the standard C library. The method relies instead on the loader searching
LibSafe before the standard C library, so that the safe functions are used instead of the standard library
functions. This scheme is more flexible than replacing the functions in the C library itself. For
example, it is possible to have one program use the C library functions and another use the LibSafe
versions. By setting appropriate environment variables LibSafe can be installed as the default library.
But from a security perspective, there seems to be little reason to keep the vulnerable functions
installed on the system, so the usefulness of this extra flexibility is somewhat questionable.

This defense has several advantages. It is effective against all buffer overflow attacks that attempt to
smash the stack in which the target program uses one of the vulnerable C library functions to copy into
the buffer. The method does not totally prevent buffer overflows. It can't, because it does not know the
true size of the buffer. It is still possible to overflow areas between the buffer and the dynamic link. But
the critical return address and the dynamic link fields are protected from being overwritten.

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (8 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

The method fails to provide any protection against heap based buffer overflow attacks (see below), or
attacks which do not need to hijack control by overwriting the return address. Both of these kinds of
attack, however, are much harder to pull off, and consequently much rarer. The method would also fail
to protect a program that does not use the standard C library functions to copy into the buffer. For
example, if the target program contains custom code to copy the string into the buffer it will not be
protected. However, it seems clear that few programs will have such custom code. Generally speaking
it is considered to be bad programming practice to "reinvent the wheel", so programmers are encouraged
to use the standard libraries.

Though programs that rely on custom code may contain buffer overflow vulnerabilities just as much as
those that use the standard C library, they will be less likely to be detected. Because of this they will
enjoy some immunity from attack. This is security through obscurity, which in general is not a good way
to secure a system. Nonetheless it is of some security value.

The overhead of the safe functions is negligible, and the cost of installing the library and configure the
system to use it is very low. Another advantage is that it works with the binaries of the target program,
and does not require access to their source code. Finally, it can be deployed without having to wait for
the vendor to react to security threats, which is a very desirable feature. It is a much more robust
defense than disabling stack execution. Though we have discussed variants of attacks against which it
will offer no protection, it is very effective against the class of attacks that it is designed for, and it
cannot be easily circumvented. The attacker has no way of interfering with the detection of the buffer
overflow attack, because this occurs before the attacker has a chance to hijack control. We conclude that
overall, this defense offers a very significant improvement of the security of a system at very low cost.
In our opinion it is a sure winner.

We also mention Andrey Kolishak's BOWall protection [16]. This is available for Windows NT
systems, with full source. This solution has some similarities to both the safer Library approach, and to
the methods to be presented in the next Section.

Kolishak's approach is similar to the others in this Section, because it works by replacing the DLL's that
contain the vulnerable library functions with a safer library version. However, unlike LibSafe or
Snarskii's method, it seems to be a buffer overflow detection system, which is more similar to the
methods of the next Section. It works by saving the return address when the function enters, and
checking it before actually returning. If corruption of the return address is detected it does not return, so
hijacking of control is prevented. Kolishak also has a second component of BOWall which relies on
some specific Windows NT security features.

5.3 Compiler Techniques

Range checking of indices is a defense that is 100% effective against buffer overflow attacks. For

file:///C|/Documents%20and%20Settings/mwood/Desktop/...0Defense%20against%20Buffer%20Overflow%20Attacks.htm (9 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

example, buffer overflow attacks are impossible in a Java program, because Java automatically checks
that an array index is within the proper bounds. Unfortunately, full-blown range checking in C is
impossible, because of the dichotomy between arrays and pointers. Some compilers will offer
protection if the array is accessed with an indexing operation, like in the expression buffer[i] but not
in an expression like buffer + i . When the compiler compiles a function like strcpy(char* dest , char*
src) the two arguments are just pointers, and it is impossible for the compiler to know the lengths of the
corresponding arrays. So the compiler cannot generate code to do range checking inside of the
function. Jones and Kelly implemented some range checking techniques in C [14, 15].

C programmers do not always appreciate range checking because of the associated overhead, but this
excessive preoccupation with performance is often only justified in the most demanding applications.
Snappy performance is always a desirable feature, but for most applications it is much less of a critical
issue than programmers tend to assume. For example, the calendar manager daemon in Solaris has been
shown to be vulnerable to a buffer overflow attack which compromises root, yet there seems to be no
reason why such an application could not have been written in Java, which would have rendered the
attack impossible. We believe that performance would not have been a critical issue in this case. Some
security flaws have been uncovered in Java and quickly fixed. These flaws did not invalidate Java's
security model, which appears to be sound, but usually were implementation problems of the Java
Virtual Machine, which of course is just another C program, so subject to the same programmer errors as
any other program [6].

Cowan, Wagle, Pu, Beattie and Walpole [4] devised a fresh approach to the problem. Their method
does not prevent the corruption of the return address and dynamic link, but instead prevents the
hijacking of control by detecting that an attack took place before the control is hijacked. Just as was the
case with the safe library approach, the key idea is simple and elegant. It is based on the assumption that
if a buffer overflow attack took place then everything between the buffer and the return address is likely
to be corrupted. They propose to modify the compiler so that it protects the critical return address and
dynamic link part of the activation record by allocating an extra field aptly called the canary after the
dynamic link and before the local variables in the activation record. When the activation record is
pushed on the stack a value is stored in the canary field. Before the function returns the integrity of the
canary is checked. If it was corrupted the canary sings and the attack is detected. (Equivalently, another
possible metaphor, is to say that the attack makes the canary die. This is analogous to the use of canaries
in mines.) In this case, the program is gracefully terminated with an syslog error message alerting about
the buffer overflow thus thwarting the attack. These ideas were implemented in the StackGuard
project and used in some experiments to protect an entire Linux distribution recompiled with this
technique.

To avoid the possibility of the attacker forging the value stored in the canary they propose either
storing terminator symbols, like the null character, carriage return , line feed, and eof, whose inclusion
in the payload string would stop the copying operation by the various vulnerable functions of the C
library, or to choose a random canary value, chosen independently each time the program is started,
which would make its forging very difficult for the attacker.

file:///C|/Documents%20and%20Settings/mwood/Desktop...Defense%20against%20Buffer%20Overflow%20Attacks.htm (10 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

"Bulba" and "Kil3r" explored ways that StackGuard could be circumvented [3]. For example, they
reasoned that if a pointer variable were between the buffer and the return address, then a first buffer
overflow could corrupt this pointer variable, without corrupting anything else, so as to make it point to
the return address field. A second copying operation then could overwrite the return address without
corrupting the canary. This would defeat the StackGuard protection by avoiding the basic assumption
that everything between the buffer and the return address must have been corrupted by a buffer
overflow. To deal with such an attack Cowan proposed an even better choice to be stored in the
canary, namely he proposed to store a value that depended both on a random value and the correct
return address. Specifically, he proposed to compute the XOR of these two values. This
countermeasure was easy to implement, and it would detect the attack even if the canary was not
changed.

"Bulba" and "Kil3r" demonstrate that their techniques work with examples of vulnerable code. But in
our opinion these attacks are somewhat optimistic about the conditions that must be present in the
target program for the attack to work, so that their techniques currently seem more a proof of concept
than a serious and immediate threat to defeat the StackGuard defense. It is quite possible that such
target programs exist and are deployed widely enough for their techniques to become a serious breach of
the defense, but that has not been demonstrated yet. Of course, one must be always vigilant when
dealing with security, and the prudent approach is always to assume that no defense is foolproof.

The performance overhead of StackGuard is worse than that of the LibSafe defense, in part because
StackGuard imposes an overhead on every function called, but better than the overhead of range
checking which incurs a small extra cost on every array access. In any event, this overhead is still
small. StackGuard is effective even against custom code, since StackGuard is a buffer overflow
detection method, so it does not care how the buffer overflow happened. However we noted that custom
code attacks seem to be less likely than those that rely on the standard library functions. On the other
hand, assuming that an administrator has access to the modified compiler, the cost of protection is
much larger than that of the LibSafe approach, because it requires recompilation of every target program
to be protected. This also means that one has to have access to the source code of the target program, or
put another way, StackGuard cannot protect a program for which we have no source code, whereas
LibSafe can.

In some ways the three methods discussed in this section are complementary, so they can be applied
independently and simultaneously. By doing so the robustness against future attacks circumventing the
defenses is also enhanced. Given the very low cost of deployment and overhead of the first two
methods, and moderate cost of deployment and low overhead for the last one, deploying these methods
should be recommended.

file:///C|/Documents%20and%20Settings/mwood/Desktop...Defense%20against%20Buffer%20Overflow%20Attacks.htm (11 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

6. Buffer Overflow Variants

We mentioned earlier that the Morris worm used several methods to try to infect a machine, one of
which was essentially a stack smashing attack on fingerd. This part of the worm sent a TCP/IP
packet to port 79, the finger port . The packet consisted of 400 VAX nop instructions, followed by
code that exec'd a shell, followed by a part that would overflow the return address to point to this
code. The worm also attacked Sun machines with a similarly constructed packet, but there was an error
in the part that was supposed to overwrite the return address in the Sun version, which caused it to fail,
even though the Suns were also vulnerable. fingerd parsed its input by reading it into a local buffer of
512 bytes with gets(). The above packet had 536 bytes, so this caused it to overflow and corrupt the
return address. Once the control was hijacked, the shell would read its input from the network
connection and write it's output to the network connection. The client side that had sent this packet
would then send over a C program of the worm, which was compiled and then run on the newly
infected machine [9].

Though the fingerd attack was a straightforward stack smashing attack, exactly as described in Section
3, initially it found few imitators. Perhaps it was not realized for a while how widespread the
vulnerability was in other targets as well. Another factor may have been that the worm was fairly
complex, and the fingerd attack was just one of several methods used by it. Because of this it may have
been understood by a relatively small number of people. It was not until the publication of Levy's paper
in Phrack that the hacker community seem to have realized that many programs were likely to harbor a
stack smashing vulnerability.

Once the stack smashing attack was well understood variants started to appear. We discuss some of
these variants in this section. Looking at the general steps of a buffer overflow attack that we discussed
in Section 2, we may see the possible variants. In some programs there is no need for Step 1 (planting
the attack code) because the code might be already present in the target program. In such cases Step 2
(overflowing the buffer) might seek to corrupt not the return address but another resource. For example,
the string that the code would exec. In this case the hijacking of control works differently.

 In the stack smashing examples, Step 1 (planting the attack code) might be accomplished in several
ways: through an input to the target program, or an environment variable, or a network port on which the
target program listens (as in fingerd, basically just another form of input). The buffer overflow of Step
2 copies the planted code into the buffer and overwrites the return address on the stack. The hijacking of
control occurs when the function returns to the wrong return address, and executes the attack code
instead.

While the stack is convenient for Steps 2 and 3 of the attack, we may look at other ways that a program
may hijack control not involving the stack. These will then lead to a different class of potential attacks.
Any structure in which function pointers are stored, or addresses to which the program will jump are
potential targets for Step 3. If these structures can be corrupted by a buffer overflow, we have a

file:///C|/Documents%20and%20Settings/mwood/Desktop...Defense%20against%20Buffer%20Overflow%20Attacks.htm (12 of 16)8/1/2006 2:03:05 AM

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

potential new technique for an attack. If the pattern necessary to carry this out is also sufficiently
widespread we have another dangerous variant.

For example, heap based attacks are possible in C++ targets[24]. Each object has a virtual function
table where each entry points to the corresponding member function of the object. By corrupting the
virtual function table of an object , control can be hijacked when any of the object's operations is
invoked. Instead of executing the object's intended operation, the attack code will be executed. Every
object-oriented program will have this pattern, so in theory this looks quite promising. But the
difficulty here is finding an application in which an adjacent object has a buffer that can be overflown.
The order in which objects are allocated on the heap depends on the particular run-time conditions
present, so might be frequently difficult or impossible to predict. Consequently, the chances of a
successful attack through heap based buffer overflows that corrupt the virtual function table are much
more difficult to carry out than the stack smashing attack.

7. Conclusions

We have analyzed the characteristics of several buffer overflow attacks, the reasons for their
popularity, and the effectiveness and costs of various defenses against them. Until recently the attackers
seemed to have the upper hand, and the traditional defenses seemed largely impotent to stop these
attacks. We analyzed the reasons for this. Among the reasons we cited are the cost of deployment of the
traditional defenses, the reactive nature of the methods of defense, and the dependence of the average
installation on the operating system vendor to provide the solutions to the attacks. The recent
appearance of effective defenses that break some of these obstacles give reason for hope that finally the
defenders might have a chance to gain the upper hand against this type of attack.

8. References

1. Stefan Axelsson, A Comparison of the Security of Windows NT and UNIX, 1998
http://www.securityfocus.com/data/library/nt-vs-unix.pdf

2. Arash Baratloo, Timothy Tsai, and Navjot Singh, Libsafe: Protecting Critical Elements of Stacks
http://www.securityfocus.com/library/2267
http://www.bell-labs.com/org/11356/libsafe.html

3. Bulba and Kil3r, Bypassing StackGuard and Stackshield, Phrack Magazine 56 No 5, 1999.
http://phrack.infonexus.com/search.phtml?view&article=p56-5

4. Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole, Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade, in DARPA Information Survivability

file:///C|/Documents%20and%20Settings/mwood/Desktop...Defense%20against%20Buffer%20Overflow%20Attacks.htm (13 of 16)8/1/2006 2:03:05 AM

http://www.securityfocus.com/data/library/nt-vs-unix.pdf
http://www.securityfocus.com/library/2267
http://www.bell-labs.com/org/11356/libsafe.html
http://phrack.infonexus.com/search.phtml?view&article=p56-5

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

Conference and Expo 2000.
http://www.cse.ogi.edu/DISC/projects/immunix/publications.html
http://www.securityfocus.com/library/1674

5. David Curry, Improving the Security of your Unix System, 1990
http://www.securityfocus.com/library/1913

6. Drew Dean, Edward W. Felten, and Dan S. Wallach, Java Security: From HotJava to Netscape
and Beyond, in Proc. of the IEEE Symp. on Security and Privacy, 1996
http://www.cs.princeton.edu/sip/pub/secure96.html

7. Casper Dik, Non-Executable Stack for Solaris, posted to comp.security.unix January 2, 1997.
http://x10.dejanews.com/

8. DilDog, The TAO of Windows Buffer Overflow, 1998
http://www.cultdeadcow.com/cDc_files/cDc-351/

9. Mark W. Eichin and Jon A. Rochlis, With Microscope and Tweezers: An Analysis of the Internet
Virus of November 1988, 1988.
http://www.mit.edu:8001/people/eichin/www/virus/main.html

10. Chris Evans, Nasty Security Hole in lprm, posted in BugTraq, April 18, 1998
http://www.securityfocus.com/archive/1/9023

11. HalVar Flake, Auditing Binaries for Security Vulnerabilities, in Black Hat Europe Conference,
2000.
http://www.blackhat.com/html/bh-europe-00/bh-europe-00-speakers.html

12. Nishad Herath, (Joey_) Advanced Windows NT Security, in Black Hat Asia Conference, 2000.
http://www.blackhat.com/html/bh-asia-00/bh-europe-00-speakers.html#Joey

13. Barnaby Jack, (dark spyrit), Win32 Buffer Overflows (Location, Exploitation, and Prevention),
Phrack Magazine 55,(15), 1999.
http://phrack.infonexus.com/search.phtml?view&article=p55-15

14. Richard Jones, Bounds Checking Patches for gcc.
http://web.inter.NL.net/hcc/Haj.Ten.Brugge

15. Richard Jones and Paul Kelly, Bounds Checking for C, 1995
http://www-ala.doc.ic.ac.uk/phjk/BoundsChecking.html

16. Andrey Kolishak, BOWall, (Buffer Overflow Protection for Windows NT), 2000
http://developer.nizhny.ru/bo/eng/BOWall

file:///C|/Documents%20and%20Settings/mwood/Desktop...Defense%20against%20Buffer%20Overflow%20Attacks.htm (14 of 16)8/1/2006 2:03:05 AM

http://www.cse.ogi.edu/DISC/projects/immunix/publications.html
http://www.securityfocus.com/library/1674
http://www.securityfocus.com/library/1913
http://www.cs.princeton.edu/sip/pub/secure96.html
http://x10.dejanews.com/
http://www.cultdeadcow.com/cDc_files/cDc-351/
http://www.mit.edu:8001/people/eichin/www/virus/main.html
http://www.securityfocus.com/archive/1/9023
http://www.blackhat.com/html/bh-europe-00/bh-europe-00-speakers.html
http://www.blackhat.com/html/bh-asia-00/bh-europe-00-speakers.html#Joey
http://phrack.infonexus.com/search.phtml?view&article=p55-15
http://web.inter.nl.net/hcc/Haj.Ten.Brugge
http://www-ala.doc.ic.ac.uk/phjk/BoundsChecking.html
http://developer.nizhny.ru/bo/eng/BOWall/

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

17. Elias Levy (alpha1), Smashing the Stack for Fun and Profit, Phrack Magazine 49 (14), 1996.

http://phrack.infonexus.com/search.phtml?view&article=p49-14

18. The Linux OpenWall Project, Nonexecutable Stack Patch for Linux
http://www.openwall.com/linux/

19. The Linux Security Audit Project,
http://lsap.org/

20. Barton P. Miller, Fuzz Revisited: A Re-examination of the Reliability of Unix Utilities and
Services, 1998
http://www.securityfocus.com/library/2087

21. Mudge, How to Write Buffer Overflows, 1997
http://l0pht.com/advisories/buffero.html

22. Ryan Russel, Rain Forest Puppy, Elias Levy, Blue Boar, Dan Kaminsky, Oliver Friedrichs, Riley
Eller, Greg Hoglund, Jeremy Rauch, and Georgi Guninski, Hack Proofing Your Network Internet
Tradecraft, Syngress, 2000.

23. Theo Raadt, OpenBSD Security
http://openbsd.org/security.html

24. rix, Smashing C++ VPTRS, Phrack Magazine 56 (8), 2000.
http://phrack.infonexus.com/search.phtml?view&article=p56-8

25. W. Olin Sibert, Malicious Data and Computer Security, 1996.
http://www.securityfocus.com/library/2168

26. Joel Scambray, Stuart McClure, George Kurtz, Hacking Exposed, Network Security Secrets &
Solutions , Second Edition, Osborne/McGrawHill , 2001

27. Nathan P. Smith, Stack Smashing Vulnerabilities in the UNIX Operating System, 1997.
http://millcomm.com/nate/machines/security/stack-smashing/nate-buffer.ps

28. Alexander Snarskii, FreeBSD Stack Integrity Patch, 1997
ftp.lucky.net/pub/unix/local/libc-letter

29. Eugene Spafford, The Internet Worm Program: Analysis, Computer Communications Review,
1989

30. David Wagner, Jeffrey S Foster, Eric A. Brewer, and Alexander Aiken, A First Step towards
Automated Detection of Buffer Overrun Vulnerabilities, in Proc. 7th Network and Distributed

file:///C|/Documents%20and%20Settings/mwood/Desktop...Defense%20against%20Buffer%20Overflow%20Attacks.htm (15 of 16)8/1/2006 2:03:05 AM

http://phrack.infonexus.com/search.phtml?view&article=p49-14
http://www.openwall.com/linux/
http://lsap.org/
http://www.securityfocus.com/library/2087
http://l0pht.com/advisories/buffero.html
http://openbsd.org/security.html
http://phrack.infonexus.com/search.phtml?view&article=p56-8
http://www.securityfocus.com/library/2168
http://millcomm.com/nate/machines/security/stack-smashing/nate-buffer.ps
ftp://ftp.lucky.net/pub/unix/local/libc-letter

A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

System Security Symposium 2000.
http://www.cs.berkeley.edu/~daw/papers/overruns-ndss00.ps

31. Rafel Wojtczuk, Defeating Solar Designer's Non-Executable Stack Patch, in Bugtraq, January 30
1998
http://www.securityfocus.com/templates/archive.pike?
list=1&mid=8470&fromthread=0&date=1998-01-30

file:///C|/Documents%20and%20Settings/mwood/Desktop...Defense%20against%20Buffer%20Overflow%20Attacks.htm (16 of 16)8/1/2006 2:03:05 AM

http://www.cs.berkeley.edu/~daw/papers/overruns-ndss00.ps
http://www.securityfocus.com/templates/archive.pike?list=1&mid=8470&fromthread=0&date=1998-01-30
http://www.securityfocus.com/templates/archive.pike?list=1&mid=8470&fromthread=0&date=1998-01-30

	Local Disk
	A Comparative Analysis of Methods of Defense against Buffer Overflow Attacks

