

Decompiling Java
GODFREY NOLAN

APress Media, LLC

Decompiling Java
Copyright © 2004 by Godfrey Nolan
Originally published by Apress in 2004
Softcover reprint of the hardcover 1 st edition 2004
Lead Editor: Gary Cornell

Technical Reviewer: John Zukowski

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
John Franldin, Jason Gilmore, Chris Mills, Steve Rycroft, Dominic Shakeshaft, Jim Sumser,
Karen Watterson, Gavin Wray, John Zukowski

Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole LeClerc

Copy Editor: Rebecca Rider

Production Manager: Kari Brooks

Production Editor: Katie Stence

Proofreader: Linda Seifert

Compositor and Artist: Kinetic Publishing Services, LLC

Indexer: Rebecca Plunkett

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Ubrary of Congress Cataloging-in-Publicatlon Data
Nolan, Godfrey.

Decompiling Java I Godfrey Nolan.
p.cm.

Includes index.
ISBN 978-1-4302-5469-0 ISBN 978-1-4302-0739-9 (eBook)
DOI 10.1007/978-1-4302-0739-9
1. Java (Computer program language) 1. TitIe.

QA76.73.J38N65 2004
005.13'3-dc22 2004014051

AU rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an "as is" basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any 10ss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

In memory of Hanpeter Van Vliet

Contents at a Glance

About the Author ... ix

About the Technical Reviewer xi

Acknowledgments ... xiii

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix

Introduction ... 1

Ghost in the Machine 17

Tools of the Trade 61

Protecting Your Source: Strategies for

Defeating Decompilers 79

Decompiler Design 121

Decompiler Implementation 159

Case Studies 237

Classfile Grammar 247

Index .. 255

v

Contents

About the Author ... ii

About the Technical Reviewer xi

Acknowledgments ... xiii

Chapter 1 Introduction 1

Compilers and Decompilers ... 2

Virtual Machine Decompilers 3

Why Java? ... 3
History: Basic Chronology ... 6
Legal Issues .. 9

Moral Issues ... 12

Protecting Yourself ... 13

Book Outiine ... 15

Conclusion ... 16

Chapter 2 Ghost in the Machine 17

The JVM: An Exploitable Design? 18

Inside a Class file .. 22
Conclusion ... 60

Chapter 3 Tools of the Trade 61

Employing Hexadecimal Editors 61
The Problem of Insecure Code 64

Disassemblers .. 67
Decompilers .. 72

Obfuscators .. 75
Conclusion ... 76

vii

Contents

Chapter 4 Protecting Your Source: Strategies
for Defeating Decompilers 79

Compilation Flags ... 81
Writing Two Versions of the Applet or Application 86
Employing Obfuscation ... 88
Web Services and Server-Side Execution 106
Encryption .. 108
Digital Rights Management 109
Fingerprinting Your Code 110
Selling the Source Code ... 117
Native Methods ... 117
Conclusion .. 119

Chapter 5 Decompiler Design 121

Introduction .. 122
Defining the Problem ... 125
(De)Compiler Tools ... 128
Strategy .. 141
Parser Design ... 149
Conclusion .. 157

Chapter 6 Decompiler Implementation 159

ClassToXML Output: An Overview 159
Jlex Specification ... 165
CUP Specification .. 170
Test Suite 182
Summarizing Decompiler Implementation 233
Conclusion .. 236

Chapter 7 Case Studies 237

Case Studies .. 237

Conclusion .. 244

Appendix Class file Grammar 247

Index .. . 255

viii

About the Author

Godfrey Nolan is President of RIIS LLC, where he specializes in web site
optimization. He has written numerous articles for different magazines and
newspapers in the US, the UK, and Ireland. Godfrey has had a healthy obsession
with reverse engineering bytecode ever since he wrote "Decompile Once, Run
Anywhere," which first appeared in Web Techniques in September 1997.

ix

About the
Technical Reviewer

John Zukowski is a freelance writer and strategic Java consultant for JZ Ventures,
Inc. His latest endeavor is to create a next-generation mobile phone platform
with SavaJe Technologies. Look for the 1.5 edition of his Definitive Guide to
Swing for Java 2 in the fall of 2004 (also published by Apress}.

xi

Acknowledgments

THERE ARE COUNTLESS PEOPLE I have to thank in some small way for helping me
with this book. Apologies if I've forgotten anyone.

• My wife, Nancy, and also my children, Rory and Dayna, for putting up with
all the times I've missed a family outing while writing this book. And we're
talking lots and lots of missed outings.

• Jonathon Kade, for all your hard work helping with the decompiler and
Chapter 6 in general.

• Gary Cornell, without whom this book would never have seen the light
of day.

• Tracy Brown Collins and Rebecca Rider at Apress, for putting up with my
countless missed deadlines. Do I need to say lots and lots again?

• John Zukowski, for all the helpful comments. And yes, I'm still ignoring the
one about having a comma in Hello World.

• Dave and Michelle Kowalske and all my other in-laws, for knowing when
not to ask, "Is that book finished yet?"

• Finally, to my parents, who have always taught me to aim high and who
have supported me when, more often than not, I fell flat on my face.

xiii

CHAPTER 1

Introduction

WHEN COREL BOUGHT WordPerfect for almost $200 million from the Novell
Corporation in the mid 1990s, nobody would have thought that in a matter of
months they would have been giving away the source code free. However, when
Corel ported WordPerfect to Java and released it as a beta product, a simple
program called Mocha1 could quickly and easily reverse engineer, or decompile,

significant portions of Corel's Office for Java back into source code.
Decompilation is the process that transforms machine-readable code into

a human readable format. When an executable, a Java class file, or a DLL is
decompiled, you don't quite get the original format; instead you get a type of
pseudo source code, often incomplete and almost always without the comments.
But often what you get is more than enough to understand the original code.

The purpose of this book is to address an unmet need in the programming
community. For some reason, the ability to decompile Java has been largely
ignored even though it is relatively easy for anyone with the appropriate mindset
to do. In this book, I would like to redress the balance by looking at what tools
and tricks of the trade are currently being employed by people who are trying to
recover source code and those who are trying to protect it using, for example,

obfuscation.
This book is for those who want to learn Java by decompilation, those who sim­

ply want to learn how to decompile Java into source code, those who want to protect
their code, and finally those who want to better understand Java bytecodes and the
Java VIrtual Machine (JVM) by building a Java decompiler.

This book takes your understanding of decompilers and obfuscators to the
next level by

• Exploring Java bytecodes and opcodes in an approachable but detailed

manner.

• Using examples that show you what to do when an applet only partially

decompiles.

• Providing you with simple strategies you can use to show users how to
protect their code.

• Showing you what it takes to build your own decompiler.

1. Mocha was one of the early Java decompilers. You'll see more on Mocha later in this chapter.

1

Chapter 1

2

Compilers and Decompilers

Computer languages were developed because most normal people cannot work
in machine code or its nearest equivalent, Assembler. Thankfully, we realized
pretty early in computing technology that humans just weren't cut out to program
in machine code. Computer languages, such as Fortran, COBOL, C, Visual Basic,
and more recently, Java and C#, were developed to allow us to put our ideas in
a human-friendly format that can then be converted into a format that a computer
chip can understand.

At its most basic, the compiler's job is to translate this textual representation­
source code-into a series of O's and 1 's-machine code-which the computer can
interpret as actions or steps that you want it to perform. It does this using a series
of pattern matching rules. A lexical analyzer tokenizes the source code2 and any
mistakes or words that are not in the compiler's lexicon are rejected immediately.
These tokens are then passed to the language parser, which matches one or more
tokens to a series of rules and translates these tokens into intermediate code
(some early versions ofVisual Basic, Pascal, and Java) or sometimes straight into
machine code (C and Fortran). Any source code that doesn't match a compiler's
rules is rejected and the compilation fails.

So now you know what a compiler does. Well, to be honest, you've only
scratched the surface; compiler technology has always been a specialized, and
sometimes complicated, area of computing. Modem advances mean things are
going to get even more complicated, especially in the virtual machine domain.
In part, this drive comes from Java and now .NET. Just in Time (JIT) compilers
have tried to close the gap between Java and C++ execution times by optimizing
the execution of Java bytecodes. This seems like an impossible task because
Java bytecode is, after all, interpreted, whereas C++ is compiled. But JIT com­
piler technology is making significant advances and is also making Java compilers
and virtual machines much more complicated beasts by incorporating these
advances.

From your point of view, you need to know that most compilers do a lot of
preprocessing and post-processing. The preprocessor readies the source code for
the lexical analysis by stripping out all unnecessary information, such as the
programmer's comments, and adding in any standard or included header files or
packages. A typical post-processor stage is coJe optimization, where the compiler
parses or scans the code, reorders it, and removes any redundancies, which will
hopefully increase the efficiency and speed of your code.

Decompilers, no big surprise here, translate the machine code or intermediate
code back into source code. In other words, the whole process is reversed. Machine
code is tokenized in some way and parsed or translated back into source code. This
transformation rarely results in original source code because some information is
lost in the pre- and post-processing stages.

2. Lexical comes from the word lexicon or dictionary.

Take the analogy of idioms in human languages, which are often the most diffi­
cult part of a sentence or phrase to translate. My favorite idiom is Z:esprit d'escalier,
which literally translates as the wit of the staircase. But what it really means is that
perfect witty comment or comeback that pops into your head half an hour too late.
Similarly (and I know I'm stretching it a bit here) source code can often be translated
into machine code in more than one way. Java source code is designed for humans
and not computers, and often some steps may be redundant or can be performed
more quickly in a slightly different order. Because of these lost elements, few (if any)
decompilations result in the original source.

Virtual Machine Decompilers

Several notable attempts have been made to decompile machine code; Christina
Cifuentes' dec is one of the most recent. 3 However, at the machine code level, the
data and instructions are commingled, and it is a much more difficult, but not
impossible, to recover the original code.

In a virtual machine, the code has simply passed through a preprocessor and
the decompiler's job becomes one of simply reversing the preprocessing stages of
compilation. This makes interpreted code much, much easier to decompile. Sure,
there are no comments, and worse still, no specification, but then again, there are
also no research and development (R&D) costs.

Why Java?

The original]VM was designed to run on a TV cable set-top box. As such, it was
a very small stack machine that pushed and popped its instructions on and off
a stack using only a limited instruction set. This made the instructions very easy
to understand with relatively little practice. Because the compilation process
was a two-stage process, the]VM als,o required the compiler to pass on a lot of
information, such as variable and method names, that would not otherwise be
available. These names could be almost as helpful as comments when you were
trying to understand decompiled source code.

The current design of the JVM is independent of the Java 2 Software Development
Kit (SDK). In other words, the language and libraries may change, but the]VM

and the opcodes are fixed. This means that if Java is prone to decompilation now,
then it is always likely to be prone to decompilation. In many cases, as you shall
see, decompiling a Java class is as easy as running a simple DOS or Unix command.

3. dec comes from cc, which used to be the standard command-line command for compiling
C programs, and still is, if like me you're IDE impaired.

Introduction

3

Chapterl

4

In the future, the JVM may very well be changed to stop decompilation,
but this would break any backward compatibility and all current Java code
would have to be recompiled. And although this has happened before in the
Microsoft world with different versions ofVisual Basic, a lot more companies
than Sun develop virtual machines.

JVMs are now available for almost every operating system and web browser. In
fact, Java applets and applications can run on any computer or chip from a main­
frame right down to a handheld or a smartcard as long as a JVM and appropriate
class libraries exists for that platform. So it's no longer as simple as changing one
JVM,

What makes this situation even more interesting is that companies that want
to Java enable their operating system or browser usually create their own JVMs.
Sun is now only really responsible for the JVM specification. It seems that things
have now progressed so far that any fundamental changes to the JVM specification
would have to be backward compatible. Modifying the JVM to prevent decompila­
tion would require significant surgery, and in all probability, it would break this
backward compatibility, thus ensuring that Java classes will decompile for the fore­
seeable future.

It's true that no such compatibility restrictions exist on the Java SDK, where
more and more functionality is added almost daily. And the first crop of decom­
pilers did dramatically fail when inner classes were first introduced in the Java
Development Kit (JDK) 1.1. However, this isn't really a surprise because Mocha
was already a year out of date when 1.1 was released and other decompilers were
quickly modified to recognize inner classes.

Top Ten Reasons Why Java Is More
Vulnerable to Decompilation

1. For portability, Java code is partially compiled and then interpreted
bytheJVM.

2. Java's compiled classes contain a lot of symbolic information for the JVM,

3. Because of backward compatibility issues, the JVM's design is not likely
to change.

4. The JVM has very few instructions or opcodes.

5. The JVM is a simple stack machine.

6. Standard applets and applications have no real protection against
decompilation.

7. Java applets are typically small and therefore intelligible without com­
ments.

8. Larger Java applications are automatically compiled into smaller modu­
lar classes.

9. Java applets are typically downloaded for free.

10. Java hype and cutthroat competition equal plenty of applications and
plenty of people willing to decompile them.

So unlike other Java books, I don't expect that this book will go out of date

with the next release of the JDK. Sure, some extra features may be added, but the

underlying architecture will remain the same. Let's begin with a simple example

in Listing 1-1.

Listing 1-1. Simple Java Source Code Example

public class Casting {

}

public static void main(String args[]){
for(char c=O; c < 128; C++) {

System.out.println("ascii " + (int)c + " character "+ c);
}

}

Listing 1-2 shows the output for a simple class file whose source is shown in

Listing 1-1 using javap, Sun's class file disassembler that came with the original
versions of Sun's JDK. You can decompile Java so easily because, as you'll see

later in the book, the NM is a simple stack machine with no registers and a lim­

ited number of high-level instructions or opcodes.

Listing 1-2.]avap Output

Compiled from Casting.java
public synchronized class Casting extends java.lang.Object

I* ACC_SUPER bit set *I
{

public static void main(java.lang.String[]);
I* Stack=4, Locals=2, Args_size=l *I

public Casting();
I* Stack=l, Locals=l, Args_size=l *I
}

Introduction

5

Chapter 1

6

Method void main(java.lang.String[])
o iconst_o
1 istore_1
2 goto 41
5 getstatic #12 <Field java.io.PrintStream out>
8 new #6 <Class java.lang.StringBuffer>

11 dup
12 ldc #2 <String "ascii ">
14 invokespecial #9 <Method java.lang.StringBuffer(java.lang.String)>
17 iload_1
18 invokevirtual #10 <Method java.lang.StringBuffer append(char)>
21 ldc #1 <String " character ">
23 invokevirtual #11 <Method java.lang.StringBuffer append(java.lang.String)>
26 iload_1
27 invokevirtual #10 <Method java.lang.StringBuffer append(char)>
30 invokevirtual #14 <Method java.lang.String toString()>
33 invokevirtual #13 <Method void println(java.lang.String)>
36 iload_1
37 iconst_1
38 iadd
39 i2c
40 istore_1
41 iload_1
42 sipush 128

4S if_icmplt 5
48 return

Method Casting()
o aload_o
1 invokespecial #8 <Method java.lang.Object()>
4 return<

It should be obvious that a lot of the source code information exists in
a class file; my aim is to show you how to take this information and reverse engi­
neer it into source code. However, in many cases, Java classes won't decompile
without some extra effort; you'll need to understand the underlying design and
architecture of a Java classfile and the JVM itself, which is what I'm going to pro­
vide you with in the remainder of this book.

History: Basic Chronology

Since before the dawn of the humble PC Scratch that. Since before the dawn
of COBOL, decompilers have been around in one form or another. In fact, you

have to go all the way back to ALGOL to find the earliest example of a decom­
piler. Donnelly and Englanderwrote.D-Neliac at the Naval Electronic Labs (NEL)
in 1960. Its primary function was to convert non-Neliac compiled programs into
Neliac compatible binaries. Neliac was an ALGOL-type language that stood for
the Navy Electronics Laboratory International ALGOL Compiler.

Over the years, there have been other decompilers for COBOL, Ada, Fortran,
and many other esoteric as well as mainstream languages running on IBM main­
frames, PDP/Us, and Univacs, among others. Probably the main reason for these
early developments was to translate software or convert binaries to run on dif­
ferent hardware.

More recently, reverse engineering and the Y2K problem have become the
acceptable face of decompilation. Converting legacy code to get around the Y2K
problem often required disassembly or full decompilation. Reverse engineering
is a huge growth area that has not disappeared since the tum of the millennium.
Problems caused by the Dow Jones hitting the 10-thousand mark-ah, such fond
memories-and the introduction of the Euro have all caused financial programs
to fall over.

Even without these developments reverse engineering techniques are being
used to analyze old code, which typically has thousands of incremental changes,
in order to remove any redundancies and convert these legacy systems into much
more efficient animals.

At a much more basic level, hexadecimal dumps of PC machine code have
always given programmers extra insight into how something is achieved or into
how to break any artificial restrictions placed on the software. Magazine CDs
were either time-bombed or had restricted copies of games; these could be patched
to change demonstration copies into full versions of the software using primitive
disassemblers such as the DOS debug command.

Anyone well versed in Assembler can learn to quickly spot patterns in code
and bypass the appropriate source code fragments. Pirate software is a huge
problem for the software industry; disassembling the code is just one technique
employed by the professional or amateur bootlegger. Hence the downfall of many
an arcane copy protection technique.

However, the DOS debug command and Hexidecimal editors are primitive tools
and it would probably be quicker to write the code from scratch than to try to re­
create the source code from Assembler. For many years now, traditional software
companies have also been involved in reverse engineering software. They have
studied new techniques, and their competition has copied these techniques all
over the world using reverse engineering and decompilation tools. Generally, this
is accomplished using in-house decompilers, which are not for public consump­
tion and are definitely not going to be sold over the counter.

It's likely that the first real Java decompiler was actually written in IBM and
not by Han peter Van Vliet, author of Mocha. Daniel Ford's whitepaper Jive: A Java

Decompiler, dated May 1996, appears in IBM Research's search engines. This
whitepaper just beat Mocha, which wasn't announced until July 1996.

Introduction

7

Chapter 1

8

Academic decompilers such as the University of Queensland's dec are avail­
able in the public domain. Fortunately for the likes of Microsoft, decompiling
Office using dec would create so much code that it would be about as user
friendly as Debug or a hexadecimal dump. Most modem commercial software's
source code is so large that it becomes unintelligible without the design docu­
ments and lots of source code comments. Let's face it; many people's C++ code
is hard enough to read six months after they wrote it. So how easy would it be
for someone else to decipher C code that came from compiled C++ code with­
out any help, even if the library calls aren't traversed?

What does come as a big surprise is the number of decompilers that are cur­
rently available but aren't that well publicized. Decompilers or disassemblers are
available for Clipper (Valkyrie), FoxPro (ReFox), Pascal, C (dec and decomp), Ada,
and, of course, Java. Even the Newton, loved by Doonesbury aficionados every­
where, isn't safe.

Not surprisingly, decompilers are much more common for interpreted lan­
guages, such as Visual Basic, Pascal, or Java, because of the larger amounts of
information being passed around. Some even have built-in dynamic compilers
that regenerate source code on the fly, which is then subsequently recompiled
into machine code, depending on the initial decompilation.

Visual Basic Decompilers

Let's take a look at Visual Basic (VB), another interpreted language, as an example
of what can happen to interpreted languages. Early versions ofVB were interpreted
by the vbrun. dll in a somewhat similar fashion to Java and the JVM; and just like
a Java classfile, the source code for VB programs is also bundled within the binary.
Bizarrely, Visual Basic 3 retains even more information than Java; this time even
the programmer's comments are included.

The original versions ofVB generated an intermediate pseudocode, called
p-code, which was also in Pascal and originates in the P-System.4 And before you
say anything, yes, Pascal and all its derivatives are just as vulnerable; this state­
ment also includes early versions of Microsoft's C compiler, just so that nobody
else feels left out. The p-codes are not dissimilar to bytecodes and are essentially
VB opcodes that are interpreted by vbrun. dll at run time. Ever wonder why you
need to include vbrun. dll with VB executables? Well now you know-you need to
include vbrun. dll so that it can interpret the p-code and execute your program.

Doctor (Hans-Peter) Diettrich from Germany is the author of the epony­
mously titled DoDi-perhaps the most famous Visual Basic decompiler. These
days DoDi-also known as Vbis3-is outdated because it only decompiles VB3
binaries, although there were rumors of a version for VB4. But because VB

4. http://www.threedee.com/jcm/psystem/

moved to compiled rather than interpreted code, the number of decompilers

completely fell away.
At one time, Visual Basic also had its own culture of decompilers and obfus­

cators, or protection tools as they're called in VB. Doctor Diettrich provides

VBGuard for free on his site, and other programs, such as Decompiler Defeater,
Protect, Overwrite, Shield, and VBShield, are available from other sources. But

they too have all but disappeared with VB5 and VB6.
This was, of course, before .NET. With the arrival of .NET, we've once again

come full circle and VB is once again interpreted. Not surprisingly, we're already

seeing decompilers and obfuscators such as the Exemplar andAnakrino decom­

pilers as well as Demeanor and Dotfuscator.

Hanpeter Van Vliet

Oddly enough for a technical subject, this book also has a very human element.

HanpeterVan Vliet wrote the first public domain decompiler, Mocha, while recov­

ering from a cancer operation in the Netherlands. He also wrote an obfuscator

called Crema that attempted to protect an applet's source code. If Mocha was the

Uzi machine gun, then Crema was the bulletproof jacket. In a now classic Internet

marketing strategy, Mocha was free, whereas there was a small charge for Crema.

The beta version of Mocha caused a huge controversy when it was first made

available on Hanpeter's web site, especially after it was featured in a clnet article.
Because of the controversy, Han peter took the very honorable step of removing

Mocha from his web site. He then held a vote about whether or not Mocha should

once again be made available. The vote was ten to one in favor of Mocha, and

soon after it reappeared on Hanpeter's web site.
However, Mocha never made it out of beta, and while I was conducting some

research for a Web Techniques article on this very subject, I learned from his wife
that Hanpeter's throat cancer finally got him. He died at the age of 34 on New
Year's Eve, 1996.

The source code for both Crema and Mocha were sold to Borland shortly
before Hanpeter's death, with all proceeds going to Hanpeter's wife, Ingrid. Some

early versions of]Builder shipped with an obfuscator, which was probably Crema

This attempted to protect Java code from decompilation by replacing ASCII variable

names with control characters.

I'll talk more about the host of other Java decompilers and obfuscators later

in the book.

Legal Issues

Before you start building your own decompiler, why don't you take this opportunity

to consider the legal implications of decompiling someone else's code for your own

enjoyment or benefit? Just because Java has taken decompiling technology out of

Introduction

9

Chapter 1

10

some very serious propeller head territory and into more mainstream computing
doesn't make it any less likely that you or your company will get sued. It may make
it more fun, but you really should be careful.

To start with, why don't you try following this small set of ground rules:

• Do not decompile an applet, recompile it, and then pass it off as your own.

• Don't even think of trying to sell a recompiled applet to any third parties.

• Try not to decompile an applet or application that comes with a license
agreement that expressly forbids decompiling or reverse engineering
the code.

• Don't decompile an applet to remove any protection mechanisms and
then recompile it for your own personal use.

Over the past few years, big business has tilted the law firmly in its favor
when it comes to decompiling software. Companies can use a number of legal
mechanisms to stop you from decompiling their software; these would leave you
with little or no legal defense if you ever had to appear in a court oflaw if some­
one discovered that you had decompiled their programs. Patent law, copyright
law, anti-reverse engineering clauses in shrink.wrap licenses, as well as a number
of laws such as the Digital Millennium Copyright Act (DMCA) may all be used
against you. Different laws may apply in different countries or states; for exam­
ple, the "no reverse engineering clause" software license is a null and void clause
in the European Union (EU), but the basic concepts are the same-decompile
a program for the purpose of cloning the code into another competitive product
and you're probably breaking the law.

The secret here is that you shouldn't be standing, kneeling, or pressing down
very hard on the legitimate rights-that is, the copyright rights-of the original
author. That's not to say that conditions exist in which it is OK to decompile.
However, certain limited conditions do exist where the law actually favors decom­
pilation or reverse engineering through a concept known as fair use. From almost
the dawning of time, and certainly from the beginning of the industrial age, many
of humankind's greatest inventions have come from an individual who has created
something special while standing on the shoulders of giants. For example, both the
invention of the steam train and the common light bulb were relatively modest
incremental steps in technology. The underlying concepts were provided by other
people, and it was up to Stephenson or Edison to create the final object. You can
see an excellent example of the Stephenson's debt to many other inventors such as
James Watt in the following timeline of the invention of the Stephenson's Rocket at
http: I !Wt~N. usgennet. org/usa/topic/steam/timeline. html. This concept ofstanding
on the shoulders of giants is one of the reasons why patents first appeared-to
allow people to build on other creations while still giving the original inventor
some compensation for their initial idea for period of, say, 20 years.

In the software arena, trade secrets are typically protected by copyright law
rather than through any patents. Sure, patents can protect certain elements of
a program, but it is highly unlikely that a complete program will be protected by
a patent or a series of patents. Software companies want to protect their invest­
ment, so they typically turn to copyright law or software licenses to prevent
people from essentially stealing their research and development efforts.

Copyright law is not rock solid; if it was, there would be no inducement to
patent an idea and the patent office would quickly go out of business. Copyright
protection does not extend to interfaces of computer programs, and a developer
can use the fair use defense if they can prove that they decompiled the program
to see how they could intemperate with any unpublished application program­
ming interfaces (APis) in the program.

If you are living in the EU, then more than likely you work under the EU
Directive on Legal Protection of Computer Programs. This states that you can
decompile programs under certain restrictive circumstances-for example,
when you are trying to understand the functional requirements you need to
create a compatible interface to your own program. Or, to put it another way,
if you need access to the internal calls of a third party program and the authors
refuse to divulge the APis at any price. Then, under the EU directive, you could
decompile the code to discover the APis. However, you'd have to make sure that
you were only going to use this information to create an interface to your own
program rather than create a competitive product. You also cannot reverse
engineer any areas that have been protected in any way.

For many years Microsoft's applications have allegedly gained unfair advan­
tage from underlying unpublished APis calls to Wmdows 3.1 and Wmdows 95
that are orders of magnitude quicker than the published APis. The Electronic
Frontier Foundation (EFF) has come up with a useful road map analogy to help
explain this. Say you are trying to travel from Detroit to New York, but your map
doesn't show any interstate routes. Sure, you'd eventually get there traveling on
the back roads, but the trip would be a lot shorter if you had the Microsoft map,
complete with interstates. If these conditions were true, the EU directive would
be grounds for disassemblingWmdows 2000 or Microsoft Office (MSOffice), but
you better hire a good lawyer before you try it. Personally, I don't buy it as I can't
believe MSOffice could possibly be any slower than it currently is, so if there are
any hidden APis, they certainly don't seem to be causing any impact on the
speed of any of the MSOffice applications.

There are precedents that allow legal decompilation in the US too. The most
famous case to date is Sega v. Accolade.5 In 1992, Accolade won a case against
Sega that ruled that their unauthorized disassembly of the Sega object code was
not copyright infringement. Accolade reverse engineered Sega's binaries into an
intermediate code that allowed them to extract a software key. This key allowed
Accolade's games to interact with Sega Genesis video consoles. Obviously Sega

5. http://www.eff.org/Legal/Cases/sega_v_accolade_977f2d1510_decision.html

Introduction

11

Chapter 1

12

was not going to give Accolade access to APis, or in this case, code, to unlock the
Sega game platform. The court ruled in favor of Accolade judging that the
reverse engineering constituted fair-use. But before you think this gives you
carte blanche to decompile code, you might like to know that Atari v. Nintendo6

went against Atari under very similar circumstances.
In conclusion-see you can tell this is the legal section-the court cases in the

US and the EU directive stress that under certain circumstances reverse engineer­
ing can be used to understand the interoperability and create a program interface.
It cannot be used to create a copy to sell as a competitive product. Most Java
decompilation will not fall into this interoperability category. It is far more likely
that the decompiler wants to pirate the code, or at best, understand the underlying
ideas and techniques behind the software.

It is not very clear if reverse engineering to discover how an applet was written
would constitute fair use. The US Copyright Act of 1976's exclusion of "any idea,
procedure, process, system, method of operation, concept, principle or discovery,
regardless of the form in which it is described" makes it sound like the beginning
of a defense for decompilation, and fear of the fair use clause is one of the reasons
why more and more software patents are being issued. Decompilation to pirate or
illegally sell the software cannot be defended.

However, from a developer's point of view, the situation looks bleak. The only
protection-in the form of a user's license-is about as useful as the laws against
copying music CDs or audiocassettes. It won't physically stop anyone from mak­
ing illegal copies and it doesn't act as any real deterrent for the home user. No
legal recourse will protect your code from a hacker, and it sometimes seems that
the people trying to create many of today's secure systems must feel like they are
standing on the shoulders of morons. You only have to look at the recent investi­
gation into eBook protection schemes7 and the whole DeCSS fiasco8 to see how
paper-thin a lot of the recent so called secure systems really are.

Moral Issues

Decompiling Java is an excellent way to learning both the Java language and how
the NM works. It helps people climb up the Java learning curve because they
learn by seeing other people's programming techniques. The ability to decompile
applets or applications can make the difference between a basic understanding of
Java and an in-depth knowledge. Learning by example is one of the most power­
ful tools. It helps even more if you can pick your own examples and modify them
to your own needs.

6. http://cyber.law.harvard.edu/openlaw/DVD/cases/atarivnintendo.html

7. http://slashdot.org/article.pl?sid=01/07/17/130226

8. http://cyber.law.harvard.edu/openlaw/DVD/resources.html

However, my book on decompiling would not be complete if I didn't discuss
the morality issues behind what amounts to stealing someone else's code. In the
early days of software, it was not uncommon to receive the source code with the
product. But in the last few decades, market economics have taken over and this
practice has almost disappeared with some notable open source exceptions such
as GNU and Linux. But now, due to a certain set of circumstances, we find that
Java comes complete with its source code.

The author, the publisher, the author's agent, and his agent's mother would
like to state that we are not advocating that readers of this book decompile pro­
grams for anything other than educational purposes. The purpose of this book is to
show readers how to decompile source code, but we are not encouraging anyone
to decompile other programmers' code and then try to use it, sell it, or repackage it
as if it was their own. Please be careful that you do not try to reverse engineer any
code that has a licensing agreement stating that you should not decompile it. It is
not fair, and you'll only get yourself in trouble. Having said that, there are thou­
sands of applets on the Web, which when decompiled, will help you understand
good and bad Java programming techniques.

To a certain extent, I'm pleading the "Don't shoot the messenger" defense.
I'm not the first to spot this flaw in Java, and I certainly won't be the last person
to write about the subject. My reasons for writing this book are, like the early
days of the Internet, fundamentally altruistic. Or, in other words, I found this
cool trick and I want to tell everyone about it.

Having said this, let me remind you that you can never be sure that the decom­
piler generated code that was 100 percent accurate. So you're in for a nasty surprise
if you intend to use Java decompilation as the basis for your own products.

Protecting Yourself

Pirated software is a big headache for many software companies and big business
for others. At the very least, software pirates could use decompilers to remove any
licensing restrictions, but imagine the consequences if the technology was available
to decompile Office 2000, recompile it, and sell it as a new competitive product. To
a certain extent, that could easily have happened when Corel released the beta ver­
sion of Corel's Office for Java.

Perhaps this realization is starting to dawn on Java software houses. We are
beginning to see two price scales on Java components: one for the classes and
one for the source code. This is entirely speculative, but it seems that companies
such as Sitraka (now Quest) realized that a certain percentage of their users
would decompile their classes, and as a result, a few years ago Sitraka chose to
sell the source code for JClass as well as other components. This makes any
decompilation redundant as the code is provided along with the classes and it
also makes some money for the developer by charging a little extra for the
source code.

Introduction

13

Chapter 1

14

But is all doom and gloom? Should you just resign yourselves to the fact that
Java code can be decompiled or is there anything you can do to protect your code?
Here are some options:

• License agreements

• Protection schemes within your code

• Code fingerprinting

• Obfuscation

• Intellectual Property Rights UPR) protection schemes

• Executable applications

• Server-side code

• Encryption

Although you'll look at all these in more detail later, you should know that
the first four only act as deterrents and the last four are effective, but have other
implications. Let me explain.

license agreements don't offer any real protection from a programmer who

wants to decompile your code.
Spreading protection schemes throughout your code, such as by using combi­

nations of getCodeBase and getDocumentBase or server authentication, is useless
because they can be simply commented out of the decompiled code.

Code fingerprinting is what happens when spurious code is used to watermark
or fingerprint source code, and it can be used in conjunction with license agree­
ments, but it is only really useful in a court of law. Better decompilation tools will
profile the code and remove any extra dummy code.

Obfuscation replaces the method names and variable names in a class file
with weird and wonderful names. This is an excellent deterrent, but the source
code is still visible and in conjunction with obfuscated code when the better
decompilers are used, so often this is not much better than compiling without
the debug flag. HoseMocha, another obfuscator, works by adding a spurious
pop bytecode after every return; it does nothing to the code but it does kill the
decompiler. However, developers can quickly modify their decompiler once
this becomes apparent, assuming they're still around to make the changes.

IPR protection schemes such as IBM's Cryptolope Live!, InterTrust's DigiBox,
and Breaker Technologies' SoftSEAL are normally used to sell HTML documents
or audio files on some pay-per-view basis or pay-per-group scheme. However,
because they typically have built in trusted HTML viewers, they allow Java applets
to be seen but not copied. Unfortunately IPR protection schemes are not cheap.

Worse still, some of the clients are written in 100 percent pure Java and can
therefore be decompiled.

The safest protection for Java applications is to compile them into executables.
This is an option on many Java compilers-SuperCede, for example. Your code will
now be as safe as any C or C++ executables-read a lot safer-but it will no longer
be portable because it no longer uses the NM.

The safest protection for applets is to hide all the interesting code on the
web server and only use the applet as a thin, front-end graphical user interface
(GUI). This has a downside; it may increase your web server load to unaccept­
able levels.

Several attempts have been made to encrypt a classfile's content and then
decrypt it in the classloader. Although at first glance this seems like an excellent
approach, sooner or later the classfile's bytecode has to be decrypted in order to
be executed by the NM, at which point it can be intercepted and decompiled.

Book Outline

Decompiling Java is not a normal Java language book. In fact, it is the complete
opposite of a standard Java textbook where the author teaches you how to trans­
late ideas and concepts into Java. You're interested in turning the partially compiled
Java bytecodes back into source code so that you can see what the original pro­
grammer was thinking. I won't be covering the language structure in depth, except
where it relates to bytecodes and the NM. All emphasis will be on Java's low-level
design rather than on the language syntax.

In the first part of this book, Chapters 2 through 4, I'll unravel the Java classfile
format and show you how your Java code is stored as bytecode and subsequently
executed by the NM. You'll also look at the theory and practice of decompilation
and obfuscation. I'll present some of the decompiler's tricks of the trade and explain
how to unravel the Java bytecode of even the most awkward class. You'll look at the
different ways people try to protect the source code and, when appropriate, learn to
expose any flaws or underlying problems with the different techniques so that you'll
be suitably informed before you purchase any source code protection tools.

The second part of this book, Chapters 5 and 6, I will primarily focus on how
to write your own Java decompiler. You'll build an extendable Java bytecode
decompiler. You'll do this for two reasons. First, although the NM design is fixed,
the language is not. Many of the early decompilers cannot handle Java con­
structs that appeared in the JDK 1.1, such as inner classes. Second, one of my
own personal pet peeves is reading a technical computer book that stops when
things are just getting interesting. The really difficult problems are then left to
the reader as an exercise. For some unknown reason, this seems to be particu­
larly true of Internet-related books. Partly as a reaction against that mentality,
I'm going to go into decompilers in some detail with plenty of practical examples
in hopefully as approachable a manner as possible.

Introduction

15

Chapter 1

16

And while we're on the subject of pet peeves-sorry, I'll try to keep them to
a minimum-I won't be covering a potted history of the Internet or indeed Java.
This has been covered too many times before. If you want to know about the
ARPANET and Oak, then I'm afraid you're going to have to look elsewhere. 9

Conclusion

Java decompilation is one of the best learning tools for new Java programmers.
What better way to find out how to write code than by taking an example off the
Internet and decompiling it into source code? It's also a necessary tool when
some dotcom web developers have gone belly up and the only way to fix their
code is to decompile it yourself. But it's also a menace if you're trying to protect
the investment of countless hours of design and development.

The aim of this book is to create some dialog about decompilation and
source code protection. I also want to separate the fact from fiction and show
you how easy it is to decompile code and what measures you can take to protect
it. Both Sun and Microsoft will tell you that decompilation isn't an issue and that
a developer can always be trained to read a competitor's Assembler, but separate
the data from the instructions and this task becomes orders of magnitude easier.
Don't believe it? Then read on and decide for yourself.

9. Such as Core Java 2, 6th edition, by CayS. Horstmann and Gary Cornell (Prentice Hall PTR,
2002).

CHAPTER 2

Ghost the Machine • 1n

IF You'RE TRYING to understand just how good an obfuscator or decompiler really
is, then it helps to be able to see what's going on inside a classfile. Otherwise you're
relying on the word of a third-party vendor or, at best, a knowledgeable reviewer.
For most people, that's not good enough when you're trying to protect mission
critical code. At the very least, you should be able to talk intelligently about the
area and ask the obvious questions to understand just what's happening.

Pay no attention to the man behind the curtain.
-Wizard ofOz

At this moment, all sorts of noises are coming out of Microsoft in Redmond
saying that there really isn't anything to worry about when it comes to decompil­
ing .NET code. Sure, hasn't everyone been doing it for years at the Assembly level?
Similar noises were made when Java was in its infancy.

So, in this chapter, you'll be pulling apart a Java classfile to lay the founda­
tion for the following chapters on obfuscation theory and to help you during
the design of your decompiler. In order to get to that stage, you need to under­
stand bytecodes, opcodes, classfiles, and how they relate to the Java Virtual
Machine (JVM).

Several very good books are on the market about the JVM. The best is Bill
Verner's Inside the Java Virtual Machine (McGraw-Hill, 1998). Some of the
book's chapters are available online at http://www.artima.com/insidejvm/ed2/.
If you can't find this book, then check out Verner's equally excellent "Under
the Hood" articles inJavaWorld. This series of articles was the original mater­
ial on which the book was based. Sun's Java Virtual Machine Specification
(2nd Edition), written by Tim Lindholm and Frank Yellin, is both comprehen­
sive and very informative for would-be decompiler writers. But because it is
a specification, it is not what you would call a good read. This book is available
online at http: I /java. sun. com/docs/books/vmspec or you can purchase it
(Addison-Wesley, 1999).

Oddly enough, I've yet to see a book that covers how to build a JVM; every
book published so far focuses on the abstract JVM rather than how someone
would implement one. With the rise of alternative JVMs from IBM and others,
I really expected to see at least one JVM book full of C code for converting byte­
code to executable native code, but it never came. Perhaps this is because it

17

Chapter2

18

would have a very limited audience and its sales would be in the hundreds rather
than the thousands.

However, my focus is very different from other JVM books. You could say I'm
approaching things from the completely opposite direction. Your task is to get
from bytecode to source, whereas everyone else wants to know how source is
translated into bytecode and ultimately executed. You should be much more
interested in how a classfile can be turned into source rather than how a classfile
is interpreted.

In this chapter, you'll be looking at how a classfile can be disassembled into
bytecodes and how these bytecodes can be turned into source. Of course, you
need to know how each bytecode functions, but you should be less interested in
what happens to them when they are within the]VM, and my emphasis will dif­
fer accordingly.

The JVM: An Exploitable Design?

Java classfiles are designed to be quickly transmitted across a network or via the
Internet. As a result, they are compact and are relatively simple to understand.
For portability, a classfile is only partially compiled into bytecodes by javac, Sun's
Java compiler. This is then interpreted and executed by a JVM, usually on a com­
pletely different machine or operating system.

The JVM's classfile interface is strictly defined by Sun's Java Virtual Machine
Specification. But how a JVM ultimately turns bytecodes into machine code is
left up to the developer. However, that really shouldn't concern you, because
once again, your interest should stop at the JVM. It may help if you think of
classfiles as being analogous to object files in other languages, such as C or C++,
waiting to be linked and executed by the JVM only with a lot more symbolic
information.

There are many good reasons why a classfile carries around so much infor­
mation. For many, the Internet is seen as a bit of a modern day Wild West where
crooks and criminals are plotting to infect your hard disk with a virus or waiting
to grab any credit card details that might pass their way. As a result, the JVM was
designed from the bottom up to protect web browsers from any rogue applets.
Through a series of checks, the JVM and the class loader make sure that no mali­
cious code can be uploaded onto a web page.

However, all checks have to be performed lightning-quick to cut down on the
download time, so it's not really surprising that the original JVM designers opted
for a simple stack machine with lots of information available for those crucial
security checks. In fact, the design of the JVM is pretty secure even though some
of the early browser implementations made a couple or three serious blunders.

Unfortunately for developers, what keeps the code secure also makes it much
easier to decompile. The JVM's restricted execution environment and uncomplicated

Ghost in the Machine

architecture, as well as the high-level nature of many ofits instructions, all conspire
against the programmer in favor of the decompiler.

At this point, it is probably also worth mentioning the fragile superclass prob­
lem. When a new method is added in C++, all classes that reference that class need
to be recompiled. Java gets around this by putting all the necessary symbolic infor­
mation into the classfile. The NM then takes care of all the linking and final name
resolution, loading all the required classes-including any externally referenced
fields and methods-on the fly. This delayed linking or dynamic loading, possibly
more than anything else, is why Java is so much more prone to decompilation.

By the way, I'm going to ignore native methods in these discussions. Native
methods, of course, are when some native C or C++ code is incorporated into the
application. This spoils Java application portability, and is one surefire way to
prevent a Java program from being decompiled.

So without further ado, let's take a brief look at the design of the NM.

Simple Stack Machine

The NM is in essence a simple stack machine with a program register to take
care of the program flow thrown in for good luck. The Java class loader takes the
class and presents it to the NM.

You can split the NM into four separate but distinct parts.

• Heap

• Program counter registers

• Method area

• Stack

Every application or applet has its own heap and method area and every thread
has its own register or program counter and program stack. Each program stack is
then further subdivided into stack frames, with each method having its own stack
frame. That's a lot of information for one paragraph, so in Figure 2-1, I illustrate this
in a simple diagram.

19

Chapter2

20

Method Area
(every app)

Heap
(every app)

Figure 2-1. The Java Virtual Machine

Heap

Java Stacks
(every thread)

PC Registers
(every thread)

I'll deal with the heap first to get it out of the way because it has little or no effect
on the Java decompilation process.

Unlike, say, C or C++, Java programmers cannot allocate and deallocate
memory; it's all taken care of by the NM. The new operator allocates objects
and memory on the heap, which is automatically freed by the NM garbage
collector when an object is no longer being referenced by the program.

There are several good reasons for this. Security dictates that there are no
pointers in Java, so hackers cannot break out of an applet and into the operating
system. No pointers mean that someone/thing else-in this case the NM-'""has to
take care of the allocating and freeing memory. Memory leaks should also become
a thing of the past, or so the theory goes. Some applications written in C and C++
are notorious for leaking memory like a sieve because programmers don't pay
enough attention to freeing up any unwanted memory at the appropriate point in
the program-not that anybody reading this would be guilty of such a sin. Garbage
collection should also make programmers more productive with less time spent
on debugging memory problems.

However if you do want to know more about what's going on in your heap, try
Sun's Heap Analysis Tool (HAT). It uses the hprof file dumps or snapshots of the
NM heap that can be generated by Java 2 SDK, version 1.2 and above. It was
designed to, now get this, "debug unnecessary object retention," which translates
to memory leaks to you and me. See, garbage collection algorithms, such as refer­
ence counting or mark and sweep techniques, aren't 100 percent accurate either.
Classfiles can have threads that don't terminate properly, or Actionlisteners that
fail to deregister, or simply static references to an object that hang around long
after the object should have been garbage collected.

HAT has little or no impact on the decompilation process. I only mention
it because it's either something interesting to play with or a crucial utility that
helps debug your Java code, depending on your mindset or where your boss is
standing.

This now leaves us with three areas to focus on: program registers, the stack,
and the method area.

Ghost in the Machine

Program Counter Registers

For simplicity's sake, the NM uses very few registers-the program counter that
controls the flow of the program and three other registers in the stack. Having
said that, every thread has its own program counter register, which holds the
address of the current instruction being executed on the stack. Sun chose to use
a limited number of registers to cater to architectures that could support very
few registers.

Method Area

If you skip ahead to the next section, "Inside the Classfile," where the classfile is
broken down into its many constituents, you'll see exactly where the methods
can be found. Within every method is its own code attribute, which contains the
bytecodes for that particular method.

Although the classfile contains information about where the program counter
should point for every instruction, it is the class loader that takes care of where the
actual code is placed in the memory area before the code begins to execute.

As the program executes, the program counter keeps track of the current
position of the program by moving it to point to the next instruction. The byte­
code within the method area goes through its Assembler-like instructions using
the stack' as a temporary storage area as it manipulates its variables while the
program steps through the complete bytecode for that method. A program's
execution is not necessarily linear within the method area; jumps and gotos are
very common.

Stack

The stack is no more than a temporary storage area for holding temporary vari­
ables. All program execution and variable manipulation takes place by pushing
and popping the variables off a stack frame. Each thread has its very own stack
frame.

The stack consists of three different sections for the local variables: (vars), the
execution environment (frame), and the operand stack (optop). The vars, frame,
and optop registers point to each different area of the stack. The program method is
executed in its own environment and the operand stack is used as the workspace
for the bytecode instructions. The optop register points to the top of the operand
stack.

21

Chapter2

22

As I said, the JVM is a very simple machine that pops and pushes temporary
variables onto the operand stack and keeps any local variables in the vars, while
continuing to execute the method in the stack frame. The stack is sandwiched
between the heap and the· registers.

Because the stack is so simple, no complex objects can be stored there. These
are farmed out to the heap.

Inside a Classfile

To get an overall view of a classfile, take a look at an applet version of "Hello,
World" (see Listing 2-1). Compile it using javac and then make a hexadecimal
dump of the binary classfile, shown in Listing 2-2.

Listing 2-1. Hello.java

import java.applet.Applet;
import java.awt.Graphics;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class Hello extends Applet {

}

public String getlocalHostName() {
try {

}

}

InetAddress address = InetAddress.getlocalHost();
return address.getHostName();

catch (UnknownHostException e) {
return "Not known";

}

public void paint{Graphics g) {
g.drawString{"Hello " + getlocalHostName() + "!", so, 25);

}

Listing 2-2. Hello. class

CAFEBABE0000002E00340AOOOF001AOA001B001COA001B001D07001E08001F0700200A0006001A080
0210A000600220AOOOE00230800240A000600250A002600270700280700290100063C696E69743E01
0003282956010004436F646501000F4C696E654E756D6265725461626C650100106765744C6F63616
C486F73744E616D6501001428294C6A6176612F6C616E672F537472696E673B0100057061696E7401
0016284C6A6176612F6177742F47726170686963733B295601000AS36F7572636546696C6501000A4
86S6C6C6F2E6A6176610C0010001107002AOC002B002COC002D001501001D6A6176612F6E65742FSS

Ghost in the Machine

6E6B6E6F776E486F7374457863657074696F6E0100094E6F74206B6E6F776E0100166A6176612F6C6

16E672F537472696E67427S66666572010006486S6C6C6F200C002E002FOC00140015010001210COO

3000150700310C00320033010005486S6C6C6F0100126A6176612F6170706C65742F4170706C65740

100146A6176612F6E65742F496E65744164647265737301000C6765744C6F63616C486F7374010018

28294C6A6176612F6E65742F496E6574416464726573733B01000B676574486F73744E616D6501000

66170706S6E6401002C284C6A6176612F6C616E672F537472696E673B294C6A6176612F6C616E672F

537472696E67427S666665723B010008746FS37472696E670100116A6176612F6177742F477261706

869637301000A64726177537472696E67010017284C6A6176612F6C616E672F537472696E673B4949

29560021000EOOOF000000000003000100100011000100120000001D00010001000000052AB70001B

1000000010013000000060001000000060001001400150001001200000035000100020000000DB8oo

024C2BB60003B04C1205B000010000000900090004000100130000000E0003000000090004000AOOO

9000D000100160017000100120000004000040002000000242BBB000659B700071208B600092AB600

OAB60009120BB60009B6000C10321019B6000DB10000000100130000000A000200000011002300120

0010018000000020019

As you can see, the classfile in Listing 2-2 is small and compact, but it con­

tains all the necessary information for the JVM to execute the "Hello, World" code.

To open up the classfile further, in this chapter, you're going to simulate the

actions of a disassembler by breaking down the classfile into its different parts. In

the meantime, build your own primitive disassembler called ClassToXML,1 which

takes the classfile and outputs the code into an easy-to-readXML format.
You can break the classfile into the following constituent parts:

• Magic number

• Minor and major version numbers

• Constant pool count

• Constant pool

• Access flags

• This class

• Super class

• Interfaces count

• Interfaces

• Field count

1. You can download the ClassToXML code in its entirety from the downloads section of the
Apress web site (www.apress.com).

23

Chapter2

24

• Fields

• Methods count

• Methods

• Attributes count

• Attributes

Sun's JVM specification uses a struct-like format to show the classfile's differ­
ent components, as shown in Listing 2-3.

Listing 2-3. Classfile Struct

Classfile {

}

int
short
short
short
cp_info
short
short
short
short
short
short
field_info
short
method info
short
attributes info

magic,
minor_version,
major_version,
constant_pool_count,
constant_pool[constant_pool_count-1],
access_flags,
this_class,
super_class,
interfaces_count,
interfaces [interfaces_count],
fields_count,
fields [fields_count],
methods_count,
methods [methods_count],
attributes_count
attributes[attributes_count]

However, this always seemed to be a very cumbersome way of displaying the
classfile, so you're going to use an XML format because it allows you to traverse
in and out of the classfile's inner structures a lot more quickly. It also makes the
classfile information a heck of a lot easier to understand as you try to unravel its
meaning. You can see the complete classfile structure-with all the XML nodes
collapsed-in Listing 2-4.

Ghost in the Machine

Listing 2-4. Disassembled Classfile in XML

<?xml version="l.O" encoding="UTF-8" ?>

- <root>
<MagicNumber>Oxcafebabe</MagicNumber>
<MajorVersion>46</MajorVersion>
<MinorVersion>O</MinorVersion>
<ConstantPool_Count>52</ConstantPool_Count>

+ <Constantpool>
<AccessFlags>Ox21</AccessFlags>
<ThisClass>14</ThisClass>
<SuperClass>15</SuperClass>
<Interface Count>O</Interface Count> - -
<Interfaces />
<Field_Count>O</Field_Count>
<Fields I>

<Metbod_Count>3</Method_Count>
+ <Methods>

<Attributes_Count>l</Attributes_Count>
+ <Attributes>

<!root>

You'll now look at each of the different nodes and I'll attempt to explain their
form and function.

Magic Number

It's pretty easy to find the magic and version numbers because they come at the
start of the classffie-you should be able to make them out in Listing 2-2. The
magic number in hex is the first four bytes (i.e., OxCAFEBABE), and it just tells
the JVM that it is receiving a classffie. Curiously enough, these are also the first
four bytes in multiarchitecture binary (MAB) IDes on the NeXT platform. I guess
some cross-pollination of staff must have occurred between Sun and NeXT dur­
ing early implementations of Java.

OxCAFEBABE was chosen for a number of reasons. First of all, it is pretty hard
to come up with meaningful eight letter words out of the letters A-E Secondly,
rumor has it that it was chosen in honor of some waitresses in a nearby cafe. It was
then only a very small step to choose Java as the new name of the programming
language formerly known as Oak. It probably helped that Java was originally
designed for kitchen and household appliances.

Mind you, OxCAFEBABE is also a great lesson in why it isn't a very good
idea to choose nerdy names during the prototype stage. More often than not
they stay around longer than planned. My first reaction was to think that it's
a real pity OxGETALIFE isn't a legitimate hexadecimal string, but then I couldn't
come up with any other meaningful hexadecimal name either.

25

Chapter2

26

Microsoft's Common Language Runtime (CLR) files have also got a similar
header, BSJB, which was chosen after four of the original developers of the .NET
platform, namely Brian Harry, Susan Radke-Sproull, Jason Zander, Bill Evans. OK,
maybe OxCAFEBABE isn't so bad after all.

Minor and Major Versions

The minor and major version numbers are the next four bytes, OxOOOO and
Ox002E, or minor version 0 and major version 46 (see Listing 2-2), which means
the code was compiled by the JDK 1.4. The NM uses these major and minor
numbers to make sure that it recognizes and fully understands the format of
the class file. NMs will refuse to execute any classfile with a higher major and
minor number.

The minor version is for small changes that require an updatedNM; the
major number is for wholesale fundamental changes that require a completely
different and incompatible NM, like one designed to stop decompiling.

It is probably worth noting that Sun and Microsoft's NMs-assuming you
can find one of them-are still compatible at the interface level, or, in other
words, they use the same bytecodes. It's the different standard classes that cause
all the problems, not the underlying NM.

Constant Pool Count

All class or interface constants are stored in the constant pool. And surprise,
surprise-the constant pool count, which takes up the next two bytes, tells you
how many variable-length elements follow in the constant pool.

Ox0034 or integer 52 is the number in Listing 2-4. The NM specification tells
us that constant_pool[O] is reserved by the NM. In fact, it doesn't even appear in
the classfile, so the constant pool elements are stored in constant_pool[l] to
constant_pool[51].

Constant Pool

The next item is the constant pool itself, which is of type cp_info, shown in
Listing 2-5.

Listing 2-5. cp_info Structure

cp_info {

}

byte tag,
byte info[]

Ghost in the Machine

The constant pool is made up of an array of variable length elements. It's full
of symbolic references to other entries in the constant pool with the constant pool
count telling you just how many variables are in the constant pool.

Every constant and variable name required by the classfile can be found in
the constant pool. These names are typically strings, integers, floats, method
names, and so on, all of which remain fixed. Each constant is then referenced by
its constant pool index everywhere else in the classfile.

Each element of the constant pool-remember there are 52 in our
example-begins with a tag that tells exactly what type of constant is coming
next. Table 2-1 shows a list of valid tags and their corresponding value used in
the classfile.

Table 2-1. Constant Pool Tags

Constant Pool Tag Value
CONSTANT_UtfB 1

CONSTANT_Integer 3

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

CONSTANT_Class 7

CONSTANT_String 8

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_NameAndType 12

Many of the tags in the constant pool are symbolic references to other
members of the constant pool. For example, each CONSTANT_String_info
points at a CONSTANT_Utf8_info tag where the string is ultimately stored.
The CONSTANT_Utf8_info has the data structure shown in Listing 2-6.

Listing 2-6. CONSTANT_UtfB_info Structure

CONSTANT_Utf8_info {
byte tag,
int length,
byte bytes[length]

}

27

Chapter2

28

I've collapsed these data structures wherever possible in my XML output of
the constant pool, as you can see in Listing 2-7, so that you can read it easily and
remove redundant information to save space.

Listing 2-7. Constant Pool for Hello. class

<ConstantPool>
<Tag_l>

<Type>CONSTANT_Methodref</Type>
<Class_Index>15</Class_Index>
<NameType_Index>26</NameType_Index>

</Tag_l>
<Tag_2>

<Type>CONSTANT_Methodref</Type>
<Class_Index>27</Class_Index>
<NameType_Index>28</NameType_Index>

</Tag_2>
<Tag_3>

<Type>CONSTANT_Methodref</Type>
<Class_Index>27</Class_Index>
<NameType_Index>29</NameType_Index>

</Tag_3>
<Tag_4>

<Type>CONSTANT_Class</Type>
<Value>30</Value>

</Tag_4>
<Tag_S>

<Type>CONSTANT_String</Type>
<Value>31</Value>

</Tag_S>
<Tag_6>

<Type>CONSTANT_Class</Type>
<Value>32</Value>

</Tag_6>
<Tag_?>

<Type>CONSTANT_Methodref</Type>
<Class_Index>6</Class_Index>
<NameType_Index>26</NameType_Index>

</Tag_?>
<Tag_8>

<Type>CONSTANT_String</Type>
<Value>33</Value>

</Tag_8>

<Tag_9>
<Type>CONSTANT_Methodref</Type>
<Class_Index>6</Class_Index>
<NameType_Index>34</NameType_Index>

</Tag_9>
<Tag_10>

<Type>CONSTANT_Methodref</Type>
<Class_Index>14</Class_Index>
<NameType_Index>35</NameType_Index>

</Tag_10>
<Tag_11>

<Type>CONSTANT_String</Type>
<Value>36</Value>

</Tag_11>
<Tag_12>

<Type>CONSTANT_Methodref</Type>
<Class_Index>6</Class_Index>
<NameType_Index>37</NameType_Index>

</Tag_12>
<Tag_13>

<Type>CONSTANT_Methodref</Type>
<Class_Index>38</Class_Index>
<NameType_Index>39</NameType_Index>

</Tag_13>
<Tag_14>

<Type>CONSTANT_Class</Type>
<Value>40</Value>

(/Tag_14>
<Tag_15>

<Type>CONSTANT_Class</Type>
<Value>41</Value>

</Tag_15>
<Tag_16>

<Type>CONSTANT_Utf8</Type>
<Value><init></Value>

</Tag_16>
<Tag_17>

<Type>CONSTANT_Utf8</Type>
<Value>()V</Value>

</Tag_17>
<Tag_18>

<Type>CONSTANT_Utf8</Type>
<Value>Code</Value>

</Tag_18>

Ghost in the Machine

29

Chapter2

30

<Tag_19>
<Type>CONSTANT_Utf8</Type>
<Value>LineNumberTable</Value>

</Tag_19>
<Tag_20>­

<Type>CONSTANT_Utf8</Type>
<Value>getlocalHostName</Value>

</Tag_20>
<Tag_21>

<Type>CONSTANT_Utf8</Type>
<Value>()Ljava/lang/String;</Value>

</Tag_21>
<Tag_22>

<Type>CONSTANT_Utf8</Type>
<Value>paint</Value>

</Tag_22>
<Tag_23>

<Type>CONSTANT_Utf8</Type>
<Value>(Ljava/awt/Graphics;)V</Value>

</Tag_23>
<Tag_24>

<Type>CONSTANT_Utf8</Type>
<Value>SourceFile</Value>

</Tag_24>
<Tag_25>

<Type>CONSTANT_Utf8</Type>
<Value>Hello.java</Value>

</Tag_25>
<Tag_26>

(Type>CONSTANT_NameAndType</Type>
<UTF8Name_Index>16</UTF8Name_Index>
<Utf8Desc_Index>17</Utf8Desc_Index>

</Tag_26>
<Tag_27>

<Type>CONSTANT_Class</Type>
<Value>42</Value>

</Tag_27>
<Tag_28>

<Type>CONSTANT_NameAndType</Type>
<UTF8Name_Index>43</UTF8Name_Index>
<Utf8Desc_Index>44</Utf8Desc_Index>

</Tag_28>

<Tag_29>
<Type>CONSTANT_NameAndType</Type>
<UTF8Name_Index>45</UTF8Name_Index>
<Utf8Desc Index>21</Utf8Desc Index> - -

</Tag_29>
<Tag_30>

<Type>CONSTANT_Utf8</Type>
<Value>java/net/UnknownHostException</Value>

</Tag_30>
<Tag_31>

<Type>CONSTANT_Utf8</Type>
<Value>Not known</Value>

</Tag_31>
<Tag_32>

<Type>CONSTANT_Utf8</Type>
<Value>java/lang/StringBuffer</Value>

</Tag_32>
<Tag_33>

<Type>CONSTANT_Utf8</Type>
<Value>Hello</Value>

</Tag_33>
<Tag_34>

<Type>CONSTANT_NameAndType</Type>
<UTF8Name_Index>46</UTF8Name_Index>
<Utf8Desc_Index>47</Utf8Desc_Index>

</Tag_34>
<Tag_35>

<Type>CONSTANT_NameAndType</Type>
<UTF8Name Index>20</UTF8Name Index> - -
<Utf8Desc Index>21</Utf8Desc Index> - -

</Tag_35>
<Tag_36>

<Type>CONSTANT_Utf8</Type>
<Value>!</Value>

</Tag_36>
<Tag_37>

<Type>CONSTANT_NameAndType</Type>
<UTF8Name_Index>48</UTF8Name_Index>
<Utf8Desc Index>21</Utf8Desc Index> - -

</Tag_37>
<Tag_38>

<Type>CONSTANT_Class</Type>
<Value>49</Value>

</Tag_38>

Ghost in the Machine

31

Chapter2

32

<Tag_39>
<Type>CONSTANT_NameAndType</Type>
<UTF8Name_Index>SO</UTF8Name_Index>
<Utf8Desc_Index>S1</Utf8Desc_Index>

</Tag_39>
<Tag_40>

<Type>CONSTANT_Utf8</Type>
<Value>Hello</Value>

</Tag_40>
<Tag_41>

<Type>CONSTANT_Utf8</Type>
<Value>java/applet/Applet</Value>

</Tag_41>
<Tag_42>

<Type>CONSTANT_Utf8</Type>
<Value>java/net/InetAddress</Value>

</Tag_42>
<Tag_43>

<Type>CONSTANT_Utf8</Type>
<Value>getlocalHost</Value>

</Tag_43>
<Tag_44>

<Type>CONSTANT_Utf8</Type>
<Value>()Ljava/net/InetAddress;</Value>

</Tag_44>
<Tag_45>

<Type>CONSTANT_Utf8</Type>
<Value>getHostName</Value>

</Tag_45>
<Tag_46>

<Type>CONSTANT_Utf8</Type>
<Value>append</Value>

</Tag_46>
<Tag_47>

<Type>CONSTANT_Utf8</Type>
<Value>(Ljava/lang/String;)Ljava/lang/StringBuffer;</Value>

</Tag_47>
<Tag_48>

<Type>CONSTANT_Utf8</Type>
<Value>toString</Value>

</Tag_48>
<Tag_49>

<Type>CONSTANT_Utf8</Type>
<Value>java/awt/Graphics</Value>

</Tag_49>

Ghost in the Machine

<Tag_SO>
<Type>CONSTANT_Utf8</Type>
<Value>drawString</Value>

</Tag_SO>
<Tag_51>

<Type>CONSTANT_Utf8</Type>
<Value>{Ljava/lang/String;II)V</Value>

</Tag_51>
</ConstantPool>

It really is a simple, yet elegant, design when you take the time to examine
the output of the class file. Take the first method reference, constant_pool[l], for
instance:

<Tag_1>
<Type>CONSTANT_Methodref</Type>
<Class_Index>15</Class_Index>
<NameType_Index>26</NameType_Index>

</Tag_1>

This tells you that its belongs to the class in constant_pool[l5]:

<Tag_15>
<Type>CONSTANT_Class</Type>
<Value>41</Value>

</Tag_15>

which points to constant_pool[41], the applet class:

<Tag_41>
<Type>CONSTANT_Utf8</Type>
<Value>java/applet/Applet</Value>

</Tag_41>

But you also have a Name'!YPe_Index to resolve, which will give you the
Name and '!YPe of the method.

<Tag_26>
<Type>CONSTANT_NameAndType</Type>
<UTF8Name Index>16</UTF8Name Index> - -
<Utf8Desc_Index>17</Utf8Desc_Index>

</Tag_26>

33

Chapter2

34

Elements 16 and 17 of the constant pool point at the method name and its
descriptors. According the JVM specification, method descriptors take the fol­
lowing form:

(ParameterDescriptor *) ReturnDescriptor.

The return descriptor can be either V for void or one of the field types, shown
in Table 2-2.

<Tag_16>
<Type>CONSTANT_Utf8</Type>
<Value><init></Value>

</Tag_16>
<Tag_17>

<Type>CONSTANT_Utf8</Type>
<Va1ue>()V</Va1ue>

</Tag_17>

In this case, the name of the method is <init>, an internal JVM method that
is in every classfile; its method descriptor is ov; or void, for the field descriptor
mapping (see Table 2-2).

So, you can now re-create the method as follows:

void init()

Table 2-2. Field Descriptors

Descriptor Nae

B Byte

c Char

D Double

F Float

I Int

J Long

L<classname> Class

s Short

z Boolean

Array

Ghost in the Machine

You can try to unravel some other classes too. It may help if you work back­
ward from the target class or method. Some of the strings are pretty unintelligible,
but with a little practice, the method signatures become clear.

The earliest types of obfuscators simply renamed these strings to something
completely unintelligible, which stopped primitive decompilers, but didn't harm
the classfile because the JVM uses a pointer to the string in the constant pool
and not the string itself-well, so long as you didn't rename internal methods
such as <ini t> or destroy the references to any Java classes in an external library.

You already know what classes you need for your import statements from
the following entries: constant_pool[30,32,41,42,49]. Note that no interfaces or
static final classes exist in the earlier simple example (see listing 2-1). These
would come up as field references in the constant pool, but so far, your simple
class parser is complete enough to handle any classfile you care to throw at it.

Access Flags

Access flags tell you whether you are dealing with a class or an interface, if it is
public or abstract, and assuming it is a class rather than an interface, whether it
is final or not. All interfaces are abstract.

<AccessF1ags>Ox21</AccessFlags>

At the moment, there are only five access flag types (see Table 2-3), but there
may be more in the future. ACC_SUPER was a relatively recent addition; it tells
the JVM that the class was compiled with a JDK 1.1 compiler and to treat the
superclass methods differently.

Table 2-3. Access Flags

Nalle Value Description
ACC_PUBUC OxOOOl Class or interface

ACC_FINAL Ox0002 Class

ACC_SUPER Ox0020 JDKl.l compiler or above

ACC_INTERFACE Ox0200 Interface

ACC_ABSTRACT Ox0400 Class or interface

Access flags are or'd together to come up with a description of the modifier
before each variable. This tells you that the Hello class is a public class, which
you can verify is true by going all the way back to listing 2-1.

35

Chapter2

36

This and Super

The next two values point at the constant pool index for this class and the
super class.

<ThisClass>14<1ThisClass>
<SuperClass>15<1SuperClass>

If you follow the XML output in Usting 2-8, constant_pool[l4] points at con­
stant_pool[40]. This CONSTANT_Utf8_info structure contains the string Hello,
telling us that this is the Hello class. The super class is in constant_pool[l5] or
the applet class as described in constant_pool[41].

Interfaces

The current example doesn't have any interfaces, so you really have to look at
a different example to get a better understanding of how interfaces are imple­
mented in the classfile, as shown in Usting 2-8.

Listing 2-8. Human Interfaces

interface !Programmer {

}

public void code{);
public void earnmore();

interface !Writer {

}

public void pullhairout();
public void earnless();

public class Person implements !Programmer, !Writer {

}

public Person() {

}

Geek g = new Geek(this);
Author t = new Author(this);

public void code() { I* ••••. *I }
public void earnmore() { I* *I }
public void pullhairout() { I*• *I }
public void earnless() { I* •••.. *I }

Ghost in the Machine

class Geek {

}

!Programmer iprog = null;

public Geek{IProgrammer iprog) {
this.iprog = iprog;
iprog. code{);
iprog.earnmore();

}

class Author {

}

!Writer iwriter = null;

public Author(IWriter iwriter) {
this.iwriter = iwriter;
iwriter.pullhairout();
iwriter.earnless();

}

listing 2-8 has two interfaces: !Programmer and !Writer. When you run
classtoxml against the class files, you get the following information in the inter­
faces section.

<Interface_Count>2</Interface_Count>
<Interfaces>
<Interface>B</Interface>
<Interface>9</Interface>

<!Interfaces>

which resolves to the !Programmer and !Writer strings in the constant pool as
follows:

<Tag_8>
<Type>CONSTANT_Class</Type>
<Value>27</Value>

</Tag_8>
<Tag_9>

<Type>CONSTANT_Class</Type>
<Value>28<1Value>

</Tag_9>

37

Chapter2

38

<Tag_27>
<Type>CONSTANT_Utf8</Type>
<Value>IProgrammer</Value>

</Tag_27>
<Tag_28>

<Type>CONSTANT_Utf8</Type>
<Value>IWriter</Value>

</Tag_28>

Fields

As it stands, Hello.class has no field information. This is simply because the class­
file has no instance variables. As a result, you need to make some simple changes
to the original code to declare some variables in the classfile before anything will
show up in the classfile fields (see Listing 2-9). In this listing, you also make them
static and final to force a ConstantValue field attribute.

Listing 2-9. Hello Localhost with Initializers

import java.applet.Applet;
import java.awt.Graphics;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class Hello extends Applet {

}

static final String s = "Hello ";
static final int w = so;
static final int h = 25;

public String getlocalHostName() {
try {

}

}

InetAddress address = InetAddress.getLocalHost();
return address.getHostName();

catch (UnknownHostException e) {
return "Not known";

}

public void paint(Graphics g) {
g.drawString(s + getlocalHostName() + "!", w,h);

}

Ghost in the Machine

If you pull out the relevant section in the XML, you see that there are three
fields. The first of these is shown in Listing 2-10.

Listing 2-10. Human Interface's Fields

<Field_Count>3</Field_Count>
<Fields>

</Field>
<Field>

<Field>
<AccessFlags>Ox0018</AccessFlags>
<NameType_Index>16</NameType_Index>
<Description_Index>17</Description_Index>

<Attribute_Count>1</Attribute_Count>
<Attributes>
<Attribute>
<Attribute_Type>ConstantValue</Attribute_Type>
<Attribute_Length>2</Attribute_Length>
<Attribute_Value_Index>8</Attribute_Value_Index>
</Attribute>

</Attributes>

<AccessFlags>Ox0018</AccessFlags>
<NameType_Index>19</NameType_Index>
<Description_Index>20</Description_Index>
<Attribute_Count>1</Attribute_Count>

<Attributes>
<Attribute>
<Attribute_Type>ConstantValue</Attribute_Type>
<Attribute_Length>2</Attribute_Length>

<Attribute_Value_Index>21</Attribute_Value_Index>
</Attribute>
</Attributes>

</Field>
<Field>

<AccessFlags>Ox0018</AccessFlags>
<NameType_Index>22</NameType_Index>
<Description_Index>20</Description_Index>

<Attribute_Count>1</Attribute_Count>
<Attributes>
<Attribute>

39

Chapter2

40

<Attribute_Type>ConstantValue</Attribute_Type>
<Attribute_Length>2</Attribute_Length>

<Attribute_Value_Index>23</Attribute_Value_Index>
</Attribute>

</Field>
</Fields>

</Attributes>

Field Access flags, as shown in Table 2-4, tell you whether the field is public,
private, protected, static, final, volatile, or transient.

Table 2-4. Access Flags

NaH Value Description
ACC_PUBUC OxOOOl Class or interface

ACC_PRIVATE Ox0002 Class

ACC_PROTECTED 0x0004 Class

ACC_STATIC 0x0008 Class or interface

ACC_FINAL OxOOIO Class or interface

ACC_ VOlATILE 0x0040 Class

ACC_TRANSIENT Ox0080 Class

The first five keywords should be obvious to anyone who has written any Java.
However, the volatile keyword tells a thread that the variable may be updated by
another thread, and the transient keyword is used in object serialization and was
introduced in the JDK 1.1. An Access Flag of0x0018 denotes a static final field

You'll need to go back to Table 2-2 to refresh your memory before you
unravel the different field descriptors.

<Field>
<AccessFlags>Ox0018</AccessFlags>
<NameType_Index>16</NameType_Index>
<Description_Index>17</Description_Index>
< ••• >

</Field>

<Tag_16>
<Type>CONSTANT_Utf8</Type>
<Value>s</Value>

</Tag_16>

Ghost in the Machine

<Tag_17>
<Type>CONSTANT_Utf8</Type>
<Value>Ljava/lang/String;</Value>

</Tag_17>

The descriptor points back to the field s, which has the field descriptor con­
stant_pool[l7] or Ljava/lang/String, which is an instance of a String class.

Field Attributes

Attributes count is, no surprise, the number of attributes, which is immediately fol­
lowed by the attributes themselves. Several different attribute types are found in the
field data structure, the methods data structure, and the attributes data structure
itself-the final element of the classfile data structure. However, really only two pos­
sible field attributes exist ConstantValue and Synthetic. ConstantValue is used for
constant variables, such as those declared as static and final in the current example.
The Synthetic variable was introduced in JDK 1.1 to support inner classes. Users
can define their own attribute types, but they're irrelevant to the current discussion.

<Attribute_Count>1</Attribute_Count>
<Attributes>

<Attribute>
<Attribute_Type>ConstantValue</Attribute_Type>
<Attribute_Length>2</Attribute_Length>
<Attribute_Value_Index>8</Attribute_Value_Index>

</Attribute>
</Attributes>

The attribute for the first field is a constant that can be found in
constant_pool[8], a string, which, in turn, points at the string Hello.

<Tag_8>
<Type>CONSTANT_String</Type>
<Value>41</Value>

</Tag_8>

<Tag_41>
<Type>CONSTANT_Utf8</Type>
<Value>Hello, </Value>

</Tag_41>

You have now decompiled the first field into its original format:

static final String s = "Hello, ";

41

Chapter2

42

Methods

And now, for the most important part of the classiDe, the methods. All the source
code is converted into bytecode and stored or contained in the method_info area.
Well it's actually in the Code attribute within the methods, but you are getting very
close. If someone can get at the bytecode, then they can try to convert it back into
source. The methods in Listing 2-1's classiDe are shown in Listing 2-11.

Listing 2-11. Methods from Hello. class

<Methods>
<Method>
<AccessFlags>OxOOOl</AccessFlags>
<NameType_Index>16</NameType_Index>
<Description_Index>17</Description_Index>
<AttributeCount>l</AttributeCount>
<Attributes>
<Attribute>

<Attribute_Type>Code</Attribute_Type>
<Attribute_Length>29</Attribute_Length>
<Max_Stack>l</Max_Stack>
<Max_Locals>l</Max_Locals>
<Code_Length>S</Code_Length>
<Code>2ab70001b1</Code>
<Exception_Table_Length>O</Exception_Table_Length>
<Exception_Table_Attributes I>
<Code_Attribute_Count>l</Code_Attribute_Count>
<Code_Attribute_Name_Index>19</Code_Attribute_Name_Index>
<Code_Attribute_Length>6</Code_Attribute_Length>
<Code Attributes>

<Code Attribute>start pc: 0 line number 6</Code_Attribute>
</Code Attributes>

</Attribute>
</Attributes>

</Method>
<Method>
<AccessFlags>Ox0001</AccessFlags>
<NameType_Index>20</NameType_Index>
<Description_Index>21</Description_Index>
<AttributeCount>l</AttributeCount>
<Attributes>
<Attribute>
<Attribute_Type>Code</Attribute_Type>
<Attribute_Length>53</Attribute_Length>

<Max_Stack>1</Max_Stack>
<Max_Locals>2</Max_Locals>
<Code_Length>13</Code_Length>
<Code>b800024c2bb60003b04c1205bO</Code>
<Exception_Table_Length>1</Exception_Table_Length>
<Exception_Table_Attributes>

<Start_PC>O</Start_PC>
<End_PC>9</End_PC>
<Handler_PC>9</Handler_PC>
<Catch_Type>4</Catch_Type>

</Exception_Table_Attributes>
<Code_Attribute_Count>1</Code_Attribute_Count>
<Code_Attribute_Name_Index>19</Code_Attribute_Name_Index>
<Code_Attribute_Length>14</Code_Attribute_Length>
<Code_Attributes>
<Code_Attribute>start pc: o line number 9</Code_Attribute>
<Code_Attribute>start pc: 4 line number 10</Code_Attribute>
<Code_Attribute>start pc: 9 line number 13</Code_Attribute>

</Code_Attributes>
</Attribute>

</Attributes>
</Method>
<Method>

<AccessFlags>Ox0001</AccessFlags>
<NameType_Index>22</NameType_Index>
<Description_Index>23</Description_Index>
<AttributeCount>1</AttributeCount>
<Attributes>
<Attribute>
<Attribute_Type>Code</Attribute_Type>
<Attribute_Length>64</Attribute_Length>
<Max_Stack>4</Max_Stack>
<Max_Locals>2</Max_Locals>
<Code_Length>36</Code_Length>
<Code>2bbb000659b700071208b600092ab6oooab60009120bb60009b

6000c10321019b6ooodb1</Code>
<Exception_Table_Length>O</Exception_Table_Length>
<Exception_Table_Attributes I>
<Code_Attribute_Count>1</Code_Attribute_Count>
<Code_Attribute_Name_Index>19</Code_Attribute_Name_Index>
<Code_Attribute_Length>10</Code_Attribute_Length>

Ghost in the Machine

43

Chapter2

44

<Code_Attributes>
<Code_Attribute>start pc: o line number 17</Code_Attribute>
<Code_Attribute>start pc: 35 line number 18</Code_Attribute>

</Code_Attributes>
</Attribute>

</Attributes>
</Method>

</Methods>

The Methods element is preceded by a method count and the data structure is
not dissimilar to the field_info structure in the previous section. This time around,
three types of attributes normally appear in method_info: Code, :Exceptions, and
once again, Synthetic for inner classes.

Different access flags are set for each method depending on what modifiers
were used in the original source (see Table 2-5). A number of restrictions exist

because some of the access flags are mutually exclusive-in other words,
a method cannot be declared as both ACC_PUBUC and ACC_PRIVATE or even

ACC_PROTECTED. However, you won't normally be disassembling illegal byte­

codes, so you're unlikely to come across any such eventualities.

<AccessFlags>Ox0001</AccessFlags>

All of the methods in the example are public methods.

Table 2-5. Method Access Flags

Na• Value Description
ACC_PUBLIC OxOOOl Class or interface

ACC_PRIVATE 0x0002 Class

ACC_PROTECTED Ox0004 Class

ACC_STATIC 0x0008 Class

ACC_FINAL OxOOlO Class

ACC_SYNCHRONIZED Ox0020 Class

ACC_NATIVE OxOlOO Class or interface

ACC__ABSTRACT Ox0400 Abstract

ACC_STRICT Ox0800 Strict

You can now find the name and the method descriptors of the final method.

Ghost in the Machine

<NameType_Index>22<1NameType_Index>
<Description_Index>23<1Description_Index>

Then you pull out the name and description of the method from
constant_pool[22) and constant_pool[23).

<Tag_22>
<Type>CONSTANT_Utf8<1Type>
<Value>paint<IValue>

<1Tag_22>
<Tag_23>

<Type>CONSTANT_Utf8<1Type>
<Value>(LjavalawtiGraphics;)V<IValue>

<1Tag_23>

You can now reassemble the method without any of the underlying code.

public void paint(java.awt.Graphics g) {
I* *I

}

Or simply

import java.awt.Graphics;

public void paint(Graphics g) {
I* *I

}

The remaining methods fall out of the constant pool in a similar fashion.

Method Attributes

Attributes appear in the field, method, and attributes elements of the classfile
structure. Each attribute begins with an attribute_name_index that references
the constant_pool and an attribute length. But the meat of the classfile is within
the method attributes, as shown in Listing 2-12.

Listing 2-12. Paint Method Attributes

<AttributeCount>1<1AttributeCount>
<Attributes>
<Attribute>
<Attribute_Type>Code<IAttribute_Type>

45

Chapter2

46

<Attribute_Length>64</Attribute_Length>
<Max_Stack>4</Max_Stack>
<Max_Locals>2</Max_Locals >
<Code_Length>36</Code_Length>
<Code>2bbb000659b700071208b600092ab6oooab6ooo

9120bb60009b6000c10321019b60oodb1</Code>
<Exception_Table_Length>O</Exception_Table_Length>
<Exception_Table_Attributes I>
<Code_Attribute_Count>1</Code_Attribute_Count>
<Code_Attribute_Name_Index>19</Code_Attribute_Name_Index>
<Code_Attribute_Length>10</Code_Attribute_Length>
<Code_Attributes>
<Code_Attribute>start pc: 0 line number 17</Code_Attribute>
<Code_Attribute>start pc: 35 line number 18</Code_Attribute>

</Code_Attributes>
</Attribute>

</Attributes>

The attribute type above is a code attribute. The attribute_length is the length
of the code attribute minus the first 6 bytes. 2 The Max stack and Max locals gives
the maximum number of variables on the operand stack and local variable sec­
tions of the stack frame.

<Code_Length>36</Code_Length>
<Code>2bbboo0659b700071208b600092ab6oooab6ooo

9120bb60009b6oooc10321019b6ooodb1</Code>

<Code_Length></Code_Length> gives the size of the following code array.
The code array is simply a series of bytes where each bytecode is a reserved byte
value or opcode followed by zero or more operands; or, to put it another way,

opcode operand

Looking at the output from running classtoxml on Hello.class (see
Listing 2-1), you see that there are three methods for the applet, namely
getLocalHostName, paint, and the empty constructor that the Java compiler always
adds when the developer chooses not to add their own constructor. Each
method has its own Code array. Listing 2-12 shows the attributes for the paint
method only.

2. The attribute type and attribute name take up the first 6 bytes and are not included in the
attribute length.

Ghost in the Machine

<ini t> Method

Before I explain what bytecode maps onto which opcode, let's look at the simplest
method to unravel, the first code segment.

<Code>2ab70001b1</Code>

When you convert this into opcodes and operands, it becomes

2a
b70001
b1

aload o
invokespecial #1

return

2a becomes aload 0. This loads the local variable, 0, onto the stack as required
by invokespecial. b70001 becomes invokespecial #1, where invokespecial is used
to invoke a method in a limited number of cases, such as an instance initialization
method or <ini t> to you and me, which is what you have here. #1 is a reference to
constant_pool[1], a CONSTANT_Methodref structure. You can collect all the con­
stant pool references for constant_pool[1] as shown here:

<Tag_1>
<Type>CONSTANT_Methodref</Type>
<Class_Index>15</Class_Index>
<NameType_Index>26</NameType_Index>

</Tag_1>

<Tag_15>
<Type>CONSTANT_Class</Type>
<Value>41</Value>

</Tag_15>

<Tag_26>
<Type>CONSTANT_NameAndType</Type>
<UTF8Name_Index>16</UTF8Name_Index>
<Utf8Desc_Index>17</Utf8Desc_Index>

</Tag_26>

<Tag_16>
<Type>CONSTANT_Utf8</Type>
<Value><init></Value>

</Tag_16>

47

Chapter2

48

<Tag_17>
<Type>CONSTANT_Utf8</Type>
<Value>()V</Value>

</Tag_17>

You can resolve the symbolic references by hand to

<Method java.applet.Applet.<init>()V>

This is the empty constructor that the javac compiler adds to all classes that
don't already have a constructor. The final bl opcode is a simple return statement.
So your first method can be converted straight back into the following code, an

empty constructor.

public Hello(){
}

getLocalHostName() Method

The second code attribute is a much less trivial affair. To get any further, you really
need to know what hexadecimal values map onto what opcodes, (see Table 2-6).
You will also need to know how each element of the Java language is compiled
into bytecode so that you can reverse the process.

Table 2-6. Bytecode to Opcode Mapping

Ope ode Hex Value Opcocle Mnelllonic

0 (OxOO) nap

1 (OX.Ol) aconst_null

2 (Ox02) iconst_ml

3 (Ox03) iconst_O

4 (Ox04) iconst_l

5 (Ox05) iconst_2

6 (Ox06) iconst_3

7 (0x07) iconst_4

8 (0x08) iconst_5

9 (Ox09) Iconst_O

Ghost in the Machine

Table 2-6. Bytecode to Opcode Mapping (continued)

Ope ode Hex Value Opcode Mne110nic

10 (OxOa) lconst_1

11 (OxOb) fconst_O

12 (OxOc) fconst_1

13 (OxOd) fconst_2

14 (OxOe) dconst_O

15 (OxOf) dconst_1

16 (Ox10) bipush

17 (Ox11) sipush

18 (Ox12) ldc

19 (Ox13) ldc_w

20 (Ox14) ldc2_w

21 (Ox15) iload

22 (Ox16) lload

23 (Ox17) flo ad

24 (Ox18) dload

25 (Ox19) aload

26 (Ox1a) iload_O

27 (Ox1b) iload_1

28 (Ox1c) iload_2

29 (Ox1d) iload_3

30 (Oxle) lload_O

31 (Ox1f) lload_1

32 (Ox20) lload_2

33 (Ox21) lload_3

34 (Ox22) fload_O

35 (Ox23) fload_1

36 (Ox24) fload_2

37 (Ox25) fload_3

38 (Ox26) dload_O

49

Chapter2

Table 2-6. Bytecode to Opcode Mapping (continued)

Ope ode Hex Value Opcode Mne11011ic

39 (Ox27) dload_l

40 (Ox28) dload_2

41 (Ox29) dload_3

42 (Ox2a) aload_O

43 (Ox2b) aload_l

44 (Ox2c) aload_2

45 (Ox2d) aload_3

46 (Ox2e) iaload

47 (Ox2f) laload

48 (Ox30) faload

49 (Ox31) daload

50 (Ox32) aaload

51 (Ox33) baload

52 (Ox34) caload

53 (Ox35) saload

54 (Ox36) istore

55 (Ox37) lstore

56 (Ox38) fstore

57 (Ox39) dstore

58 (Ox3a) as tore

59 (Ox3b) istore_O

60 (Ox3c) istore_l

61 (Ox3d) istore_2

62 (Ox3e) istore_3

63 (Ox3f) lstore_O

64 (Ox40) lstore_l

65 (Ox41) lstore_2

66 (Ox42) lstore_3

67 (Ox43) fstore_O

50

Ghost in the Machine

Table 2-6. Bytecode to Opcode Mapping (continued)

Ope ode Hex Value Opcode Mnemonic

68 (Ox44) fstore_l

69 (Ox45) fstore_2

70 (Ox46) fstore_3

71 (Ox47) dstore_O

72 (Ox48) dstore_l

73 (Ox49) dstore_2

74 (Ox4a) dstore_3

75 (Ox4b) astore_O

76 (Ox4c) astore_l

77 (Ox4d) astore_2

78 (Ox4e) astore_3

79 (Ox4f) iastore

80 (Ox50) lastore

81 (Ox51) fastore

82 (Ox52) dastore

83 (Ox53) aastore

84 (Ox54) bas tore

85 (Ox55) castore

86 (Ox56) sastore

87 (Ox57) pop

88 (Ox58) pop2

89 (Ox59) dup

90 (Ox5a) dup_xl

91 (Ox5b) dup_x2

92 (Ox5c) dup2

93 (Ox5d) dup2_xl

94 (Ox5e) dup2_x2

95 (Ox5f) swap

96 (Ox60) iadd

51

Chapter2

Table 2-6. Bytecode to Opcode Mapping (continued)

Ope ode Hex Value Opcode Mne1110nic

97 (Ox61) ladd

98 (Ox62) fadd

99 (Ox63) dadd

100 (Ox64) isub

101 (Ox65) lsub

102 (Ox66) fsub

103 (Ox67) dsub

104 (Ox68) imul

105 (Ox69) lmul

106 (Ox6a) fmul

107 (Ox6b) dmul

108 (Ox6c) idiv

109 (Ox6d) ldiv

100 (Ox6e) fdiv

111 (Ox6f) ddiv

112 (Ox70) irem

113 (Ox71) lrem

114 (Ox72) frem

115 (Ox73) drem

116 (Ox74) ineg

117 (Ox75) lneg

118 (Ox76) fneg

119 (Ox77) dneg

120 (Ox78) ishl

121 (Ox79) lshl

122 (Ox7a) ishr

123 (Ox7b) lshr

124 (Ox7c) iushr

125 (Ox7d) lushr

52

Ghost in the Machine

Table 2-6. Bytecode to Opcode Mapping (continued)

Ope ode Hex Value Opcode Mnellonic

126 (Ox7e) iand

127 (Ox7f) land

128 (Ox80) ior

129 (Ox81) lor

130 (Ox82) ixor

131 (Ox83) lxor

132 (Ox84) line

133 (Ox85) i21

134 (Ox86) i2f

135 (Ox87) i2d

136 (Ox88) 12i

137 (Ox89) 12f

138 (Ox8a) 12d

139 (Ox8b) f2i

140 (Ox8c) f21

141 (Ox8d) f2d

142 (Ox8e) d2i

143 (Ox8f) d2l

144 (Ox90) d2f

145 (Ox91) i2b

146 (Ox92) i2c

147 (Ox93) i2s

148 (Ox94) lcmp

149 (Ox95) fcmpl

150 (Ox96) fcmpg

151 (Ox97) dcmpl

152 (Ox98) dcmpg

153 (Ox99) ifeq

154 (Ox9a) ifne

53

Chapter2

Table 2-6. Bytecode to Opcode Mapping (continued)

Ope ode Hex Value Opcode Mne1110nic

155 (Ox9b) iflt

156 (Ox9c) ifge

157 (Ox9d) ifgt

158 (Ox9e) ifle

159 (Ox9f) if_icmpeq

160 (OxaO) if_icmpne

161 (Oxa1) if_icmplt

162 (Oxa2) if_icmpge

163 (Oxa3) if_icmpgt

164 (0xa4) if_icmple

165 (Oxa5) if_acmpeq

166 (Oxa6) if_acmpne

167 (Oxa7) go to

168 (Oxa8) jsr

169 (Oxa9) ret

170 (Oxaa) tableswitch

171 (Oxab) lookupswitch

172 (Oxac) ire tum

173 (Oxad) lretum

174 (Oxae) fretum

175 (Oxaf) dreturn

176 (OxbO) are turn

177 (Oxb1) return

178 (Oxb2) getstatic

179 (Oxb3) putstatic

180 (Oxb4) getfield

181 (Oxb5) putfield

182 (Oxb6) invokevirtual

183 (Oxb7) invokespecial

54

Ghost in the Machine

Table 2-6. Bytecode to Opcode Mapping (continued)

Ope ode Hex Value Opcode Mnemonic
184 (Oxb8) invokestatic

185 (Oxb9) invokeinterface

186 (Oxba) xxxunusedxxx

187 (Oxbb) new

188 (Oxbc) newarray

189 (Oxbd) anewarray

190 (Oxbe) arraylength

191 (Oxbf) a throw

192 (OxcO) checkcast

193 (Oxc1) instanceof

194 (Oxc2) monitorenter

195 (Oxc3) monitorexit

196 (Oxc4) wide

197 (Oxc5) multianewarray

198 (Oxc6) ifnull

199 (Oxc7) ifnonnull

200 (Oxc8) goto_w

201 (Oxc9) jsr_w

Let me clarify a few things before I continue. First, this list is shorter than
most other opcode lists because we're ignoring any opcodes above 201. These
are reserved for future use. True, Sun is already using 203 to 228 for "quick"
versions of some existing opcodes. Sun's JVM, for example, will replace any
invoke_ virtual with an invoke_virtual_quick immediately after resolving the
relevant constant_pool entries for the initial invoke_ virtual. The _quick version
is faster because it uses the stored result of the earlier resolution; as a result, it
doesn't need to do any subsequent checking. However, because any JIT or JVM
transformations have no effect on the original bytecode in a classfile, you can
safely forget about them.

I'm not going to examine how to turn the bytecode into source just yet.
However, you can still see how the remaining Code attributes can be turned
into opcodes and their operands.

55

Chapter2

56

In the second method

public String getlocalHostName()

you have an exception or a try-catch block.

<Exception_Table_Length>1</Exception_Table_Length>
<Exception_Table_Attributes>
<Start_PC>O</Start_PC>
<End_PC>9</End_PC>
<Handler_PC>9</Handler_PC>
<Catch_Type>4</Catch_Type>

</Exception_Table_Attributes>

The exception is thrown when the program counter (pc) equals 0, which is
then caught between a pc count of 9 and 11. You can easily calculate what the pc
counter is at any stage. Some opcodes take no operands, such as aload_O, some
take one, and some even take two operands. The pc is incremented for every
byte and each opcode or operand takes a single byte. This helps you judge where
to insert the try and catch blocks.

<Code>b800024c2bb60003b04C1205b0</Code>

The Code attribute can then be broken down as shown in Table 2-7.

Table 2-7. Method 2 Code Attribute Breakdown

PC Bytecode Operand Ope ode Constant Pool Resolution
(If Applicable)

0: b80002 invokestatic #2 <Method InetAddress
InetAddress.getLocalHostO>

3: 4c astore_l

4: 2b aload_l

5: b60003 invokevirtual #3 <Method String
lnetAddress.getHostNameO>

8 bO are turn

9 4c astore_1

10 1205 ldc #5 <String "Not known">

12 bO return

invokestatic invokes the static method getLocalHost(). invokestatic invokes
a class method directly and doesn't require any local variables to be placed on
the stack before the calculation. The result is then stored, astore_1, as a local

Ghost in the Machine

variable. invokevirtual invokes the getHostName(). Of the four method invocation
operands, invokevirtual is the most common. It begins with an aload_l that
pushes the object reference address onto the stack where it can be used by
getHostName(). The return value from the method invocation, a String, is then
returned from the method, via a return.

If an exception was thrown, say, if the localhost could not be determined, then
the Ide operand pushes the Not Known string in constant_pool[5] onto the stack
where it is then returned from the method.

If the class is compiled without the -0 option, you can see how the line number
attribute shows where the pc matches up with the original code.

<Code_Attributes>
<Code_Attribute>start pc: 0 line number 9</Code_Attribute>
<Code_Attribute>start pc: 4 line number 10</Code_Attribute>
<Code_Attribute>start pc: 9 line number 13</Code_Attribute>

</Code_Attributes>

This is useful, but not exactly crucial information from a decompilation
point of view. Admittedly, you would have to fill in a lot more gaps, but you
should be able to see how the code begins to look like the original method.

9 public String getlocalHostName() {
10 try {

11 InetAddress address = InetAddress.getlocalHost();
12 return address.getHostName();
13 } catch (UnknownHostException e) {
14
15 }

return "Not known";

16 }

Be careful not to place too much faith in the line number attribute because
a note in the JVM specification says that the javac in Sun's JDK 1.0.2 can generate
LineNumberTable attributes that are not in line number order. Or, to put that
another way, sometimes there isn't a one-to-one mapping of the bytecode with
the original source, which is a shame. It is also worth mentioning that backward
compatibility means that this may not be fixed in future versions.

paint() Method

The final method has the following 36-byte Code attribute.

<Code_Length>36</Code_Length>
<Code>2bbb0006S9b700071208b600092ab6oooab60009120bb6ooo

9b6oooc10321019b6ooodb1</Code>

57

Chapter2

58

You can break this down in a similar fashion to the previous method, as you
can see in Table 2-8.

Table 2-8. The Third Method-Code Attribute Breakdown

PC Bytecode Operand Ope ode Constant Pool Resolution (If Applicable)
0 2b aload_1

1 bb0006 new #6 <Class StringBuffer>

4 59 dup

5 b70007 invokespecial #7 <Method void StringBuffer(String)>

7 1208 ldc1 #8 <String "Hello">

9 b6009 invokevirtual #9 <Method String getLocalHostNameO>

12 2a aload_O

13 b6000a invokevirtual #10 <Method StringBuffer
StringBuffer.append(String)>

16 b6009 invokevirtual #9 <Method String getLocalHostNameO>

19 120b ldc1 #11 <String "!">

21 b6000e invokevirtual #14 <Method StringBuffer
StringBuffer.append(String)>

24 b60013 invokevirtual #19 <Method String StringBuffer.toStringO>

27 1032 bipush 50

29 1019 bipush 25

31 b6000d invokevirtual #15 <Method void Graphics.drawString(String,
int, int)>

34 b1 return

35

new creates a new StringBuffer class object. dup makes a copy of this object
reference. The stack now has two copies of an uninitialized StringBuffer. Ide loads
a copy of constant_pool[4] string, Hello, onto the stack, which is then turned into
a StringBuffer by the static class method StringBuffer(). getlocalHostNarne() is once
again loaded on the stack, popped, and appended using StringBuffer.append(String).
The ! string is pushed onto the stack by Ide, where it is once again popped and

Ghost in the Machine

appended. The StringBuffer is then converted to a string. The two integers are
bipush'd onto the stack, and the drawString method is called by popping the two
integers and the recently converted string. Finally, the whole result is returned out
of the method.

<Code_Attributes>
<Code_Attribute>start pc: 0 line number 17</Code_Attribute>
<Code_Attribute>start pc: 35 line number 18</Code_Attribute>

</Code_Attributes>

Once again, you can re-create the method using your analysis, and you can
add the line numbers using the line number attribute.

17 public void paint(Graphics g) {
18 g.drawString(s + getlocalHostName() + "!", w,h);
19 }

ClassToXML, available from the downloads area of the Apress web site, will
output bytecode like a true disassembler. And now that you've seen just how
easy it is to write a disassembler, you can see why so many disassemblers have
user interfaces.

The only piece of information I haven't mentioned is which opcodes take
zero, one, or more operands; until you know this, you don't know when one
command starts and another finishes. I'll return to this in Chapter 6.

Attributes

The final two elements contain the number of classfile attributes and the remain­
ing attributes, which are usually the SourceFlle or InnerClasses attributes.

<Attributes>
<Attribute>
<Attribute_Type>SourceFile</Attribute_Type>
<Attribute_Length>2</Attribute_Length>
<Source_File>sourcefile: Hello.java</Source_File>

</Attribute>
</Attributes>

SourceFlle is the name of the Java file that was used to originally generate
the code. The InnerClasses attribute is a bit more complicated and is ignored by
several decompllers that cannot yet handle inner classes.

You're not just limited to the SourceFlle and lnnerClasses attribute either.
You can define new attributes here or indeed in any of the field or methods

59

Chapter2

60

attribute sections. You may have your own reasons why you want to store infor­

mation in a custom attribute, perhaps using it for some low-level check or for

storing encrypted Code attributes to possibly prevent decompilation. Assuming

your new Code attribute follows the format of all other attributes, you can add

any attribute you want, which will be ignored by the JVM. Each attribute needs

to begin with a two-byte attribute_name_index to resolve the reference to the

name of the attribute in the constant pool, and a four-byte attribute_length that

gives the length of the remaining bytes in the attribute.

Conclusion

You've finally come to the end of the guts of the classfile and built your own dis­

assembler classtoxml in the process. Hopefully, you can see, or at least begin to

see, how it all fits together. Although the design of the classfile is neat and com­

pact, because of the split between the initial and final compilation stages, you

have an awful lot of information to help you recover the source. For many years,

programmers have been protected by the encryption that compiling to an exe­

cutable usually offers, but splitting the compilation and carrying around so

much information at the intermediate stage is just asking for trouble.
In Chapter 4, you'll take a look at both the theory and practice of the science

of obfuscation. Now that you know how a classfile is put together, you will find it
a lot easier to see how the different tactics that people employ really protect your
code.

CHAPTER 3

Tools of the Trade

IN THE LAST CHAPTER, you looked at the very heart of a Java classfile. In the next
chapter, you'll perform an in-depth study of all the different ways to protect your
code using everything from encryption to obfuscation. After that, you'll move on
to build your own simple decompiler.

In this chapter, you're going to look at some of the automated tools as well as
some simple techniques that hackers could use to modify your code, or worse, to
recover your underlying source code. You'll also take a brief look at all the major
obfuscators from third-party vendors, because obfuscation is by far the most
popular tool for protecting source code. I'll be covering the theory behind these
obfuscators in the next chapter.

But let's begin the chapter by looking at the how someone might crack your
applet or application. That way, you can avoid some of the most obvious pitfalls
when you're attempting to protect your code. Typically, you might use a key, an
applet parameter, or even hard code in the IP address of a server so that only
a licensed user can use your program. You'll now look at just some of the ways
someone might disable your protection schemes.

Employing Hexadecimal Editors

For many years, hackers have been using hexadecimal editors and other more
sophisticated tools such as NuMega's SoftiCE and SmartCheck to get around
licensing schemes on time-bombed versions of all kinds of software. Cracking
demonstration versions of games that came with almost every computer maga­
zine in the late 1980s and 1990s was a rite of passage for many of my fellow
programmers.

Typically the programmer tried to protect their game or utility by checking
to see if the date was 30 days after the installation date. After 30 days, the evalua­
tion copy would cease to run. Alternatively, if they just couldn't afford to buy the
real thing, they'd set the time of their computer so that it would permanently be
a couple of days before the evaluation expired. Or, if they were a bit clever, they'd
realize that the developer had to store the install date somewhere. If they were
lucky, it would be somewhere simple like in the INI file or the registry, and they
could permanently set it to some far-off date, such as 1999.

The rite of passage was truly complete when the programmer could just
about read Assembler, could set a breakpoint to narrow in on the security func­
tions, could find the piece of code that checked the evaluation date, and could

61

Chapter3

62

disable it or create a serial number or key that the program would accept so that
the evaluation copy became a fully functional version of the software.

There were countless more sophisticated mechanisms for protecting the more
expensive programs-the dongle immediately springs to mind, which has to rate
as one of the most useless inventions known to man-with varying degrees of suc­
cess. Usually most protection mechanisms did little more than keep the average
person from disabling or cracking them. The tool of choice for this type of attack
in the Java world is the Hexadecimal editor.

Far from learning from the past, most programmers are condemned to
repeat it. The vast majority of license protection examples out there rely on
something as simple as a conditional jump.

if condition = true {
continue;

} else {
print "Evaluation Copy expired";

System. exit();
}

Suppose you come across an applet or application that you'd like to use
yourself, but for some reason or other, you decide that you just don't want to pay
for it. Let's look at an example of how this might work.

Applets are exceptionally easy to download; these days they mostly come
in handy jar files, which make one neat, compact file. However, more often than
not, they won't work the first time if you try to serve the applet up on your own
web server, because the applet is protected using a copyright parameter or
getDocumentBase and getHost to restrict the applet to its original web server.
The code sample below will cause the applet to exit before it reaches main () if it
is not being served up from the Apress web site.

import java.applet.*;

public class Test extends Applet {
public void init() {

String host, validDomain;
boolean isValid = false;

host = getDocumentBase().getHost();
validDomain = "www. a press. com";
isValid = host.equals(validDomain);

II Continue if the applet is on the licensed domain otherwise exit
if (isValid == false) {

System.exit(1);
}

Tools of the Trade

}

public void main() {

II real work happens here

}

}

However, you can edit a hexadecimal version of the file (see Listing 3-1) to

change the condition so that it will work on any web server other than the

Apress web site.

isValid == true

Alternatively, you can edit the string www.apress.com to whatever domain

you want to use with your favorite hexadecimal editor such as WinHex.1

Listing 3-1. Hex Dump of Test Class
00000000 CA FE BA BE 00 03 00 2D 00 27 OA 00 08 00 11 OA ~-Q3/4 •.. -.' •••.••

00000010 00 08 00 12 OA 00 13 00 14 08 00 15 OA 00 16 00
00000020 17 OA 00 18 00 19 07 00 1A 07 00 18 01 00 06 3C ••••••••••••••• <

00000030 69 6E 69 74 3E 01 00 03 28 29 56 01 00 04 43 6F init> .•• ()V .•• Co

00000040 64 65 01 00 OF 4C 69 6E 65 4E 75 6D 62 65 72 54 de ••. LineNumberT

00000050 61 62 6C 65 01 oo 04 69 6E 69 74 01 00 04 6D 61 able .•• init ••• ma

00000060 69 6E 01 00 OA 53 6F 75 72 63 65 46 69 6C 65 01 in ••. SourceFile.

00000070 00 09 54 65 73 74 2E 6A 61 76 61 OC 00 09 00 OA .. Test.java ..•••

00000080 OC 00 1C 00 1D 07 oo 1E OC 00 1F 00 20 01 00 OE
00000090 77 77 77 2E 61 70 72 65 73 73 2E 63 6F 6D 07 oo www.apress.com ..

OOOOOOAO 21 oc 00 22 00 23 07 00 24 oc 00 25 00 26 01 00 ! .• ".# .. $.. %.& ••

00000080 04 54 65 73 74 01 00 12 6A 61 76 61 2F 61 70 70 .Test •.. java/app

000000(0 6C 65 74 2F 41 70 70 6C 65 74 01 00 OF 67 65 74 let/Applet .•. get

00000000 44 6F 63 75 6D 65 6E 74 42 61 73 65 01 00 10 28 DocumentBase ... (

OOOOOOEO 29 4C 6A 61 76 61 2F 6E 65 74 2F 55 52 4C 3B 01)Ljava/net/URL;.

OOOOOOFO 00 OC 6A 61 76 61 2F 6E 65 74 2F 55 52 4C 01 oo .. java/net/URL •.

00000100 07 67 65 74 48 6F 73 74 01 oo 14 28 29 4C 6A 61 .getHost ••. ()Lja

00000110 76 61 2F 6C 61 6E 67 2F 53 74 72 69 6E 67 3B 01 va/lang/String;.

00000120 00 10 6A 61 76 61 2F 6C 61 6E 67 2F 53 74 72 69 •. javallang/Stri

00000130 6E 67 01 oo 06 65 71 75 61 6C 73 01 oo 15 28 4C ng ••. equals •.• (L

00000140 6A 61 76 61 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 java/lang/Object

00000150 3B 29 SA 01 00 10 6A 61 76 61 2F 6C 61 6E 67 2F ;)Z ••• java/lang/

00000160 53 79 73 74 65 6D 01 oo 04 65 78 69 74 01 00 04 System ..• exit ••.

00000170 28 49 29 56 00 21 00 07 00 08 00 00 00 00 00 03 (I)V.! ..••...••.

00000180 00 01 00 09 00 OA 00 01 00 OB 00 00 00 1D 00 01

1. http://www.sf-soft.de/winhex/index-m.html

63

Chapter3

64

00000190 00 01 00 00 00 OS 2A 87 00 01 81 00 00 00 01 00 *· •• ± •••••
000001AO oc 00 00 00 06 00 01 00 00 00 03 00 01 00 00 00
00000180 OA 00 01 00 08 00 00 00 4C 00 02 00 04 oo oo oo •••••••• L. ••••••
000001(0 1C 03 3E 2A 86 00 02 86 00 03 4C 12 04 40 28 2C •• >*~ •. ~ .. L .• M+,
00000100 86 00 OS 3E 10 9A oo 07 04 88 00 06 81 00 00 00 ~ .. >.5 ..•... ± •••
000001EO 01 oo OC oo oo oo 1E oo 07 00 00 00 06 00 02 00
000001FO 08 00 OA 00 09 00 00 00 OA 00 13 00 00 00 17 00
00000200 OE 00 18 00 10 00 01 00 OE 00 OA 00 01 00 08 00
00000210 00 00 19 00 00 00 01 00 00 00 01 81 00 00 00 01 ••••••••••• ± ••••
00000220 00 oc 00 00 00 06 00 01 00 00 00 13 00 01 00 OF
00000230 00 00 00 02 00 10

I'll return to this topic in the next chapter to examine ways around this
problem and strategies you might want to employ to properly protect your code.

The Problem of Insecure Code

Even though in many cases no more than a hexadecimal editor is required to dis­
able any protection mechanisms you might employ, nothing will stop a "would
be" attacker from employing some lateral thinking. If you want to protect your
code, then you should start thinking laterally too because plenty of other possibil­
ities exist that take almost as little work as editing the binary directly.

Let's start with something a little less obvious than a Hexadecimal editor.
Instead of disassembling or decompiling an applet, why not take advantage of
a classfile's object-oriented nature and just extend it. You can hide static meth­
ods or simply override nonstatic methods. Take a look at the insecure code in
listing 3-2, for example.

Listing 3-2. Insecure Code

class TestOverride {

}

public static void main{String[] args) {
SecurityCheck sc = new SecurityCheck{);
sc.test();

}

class SecurityCheck {

SecurityCheck{) {

}

System.out.println{"In Security Check constructor");
test();

}

void test() {

}

II Security checks go in here
System.out. println("In SecurityCheck. test()");

You can co-opt this code by writing Listing 3-3.

Listing 3-3. Taking Advantage of Insecure Code

class TestOverride {

}

public static void main(String[] args) {

}

II SecurityCheck sc = new SecurityCheck();
II sc.test();

InSecurityCheck isc = new InSecurityCheck();
isc.test();

class SecurityCheck {

}

SecurityCheck() {

}

System.out.println("In Security Check constructor");
test();

void test() {
II Security checks go in here
System. out. println ("In Securi tyCheck. test()");

}

class InSecurityCheck extends SecurityCheck {

InSecurityCheck() {

}

II Super class constructor is automatically
II called before subclass constructor is executed
System.out.println("In InSecurityCheck constructor");

Thols of the Trade

65

Chapter3

66

void test() {
II overrides test() in Super
System.out. println("In InSecurityCheck. test()");

}

}

In listing 3-3, you can potentially override the test method if it's poorly pro­
tected. In a Java classfile, you have access to the public and protected members
with the code. The only things you can't modify are the private members. But
coders are an inherently lazy bunch, and more often than not, the code is not
marked private.

Gary McGraw and Ed Felten laid out just what to avoid in their Java World
article "Twelve Rules for Developing More Secure Java Code,"2 which ultimately
ended up in their book Securing Java: Getting Down to Business with Mobile
Code (John Wiley & Sons, 1999). Here are those 12 rules:

1. Don't depend on initialization.

2. limit access to your classes, methods, and variables.

3. Make everything final (unless there's a good reason not to).

4. Don't depend on package scope.

5. Don't use inner classes.

6. Avoid signing your code.

7. If you must sign your code, put it in one archive file.

8. Make your classes noncloneable.

9. Make your classes nonserializable.

10. Make your classes nondeserializable.

11. Don't compare classes by name.

12. Secrets stored in your code won't protect you.

2. http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html

Tools of the Trade

There is even an automated tool, JSUnt, that rips through static code to deter­
mine where someone's code is not following these 12 rules. Unfortunately
JSUnt-not to be confused with another JSUnt, the JavaScriptVerifier-is no longer
publicly available.

For your purposes, Rule 2 and Rule 3 are the most important. Wherever pos­
sible, define your class, method, and variables as private and final unless you
have a good reason not to.

If you're interested in studying this subject further, check out the nasty little
Java file called Public Enemy. java from Mark LaDue, which is widely available on
the Web.3 This searches for Java files on your hard drive and changes the access
flags for a class; by doing this, it doesn't change the classfile's ability to run, but it
breaks as many of the rules above as possible.

Disassemblers

If you've spent any time with Java bytecode, you've gradually noticed different
patterns and language constructs. With practice and a lot of patience, you will
find that bytecode becomes just another language.

So far you've seen two disassemblers: javap, which comes as part of the JDK
and ClassfileToXML from Chapter 2, which disassembles the classfile into an
XML structure (see the downloads area oftheApress web site for the source code).
Let's take a brief look at some other disassemblers to see how they improve on
the examples you've seen to date. It's worth noting that most of these disassem­
blers are now purely of historical or academic interest and are virtually impossible
to find, but as you would imagine, they are relatively easy to re-create.

• IceBreaker

• ClassNavigator

• JavaDump

IceBreaker is useful for cracking classfiles that don't fully decompile,
ClassNavigator is an easy-to-use interactive graphical user interface (GUD that helps
you make your way around the classfile, and JavaDump4 gives you an excellent
HTML output of any classfile in case you prefer HTML to XML. No current URLs
were available for IceBreaker or ClassNavigator at the time of this writing.

3. http://www.cigital.com/hostile-applets/

4. http: I /www. ddj. com/ftp/1998/1998_ 01/class. txt (requires registration)

67

Chapter3

68

Other worthy mentions go to Chuck McManis's "Dumping Java Class Files"
code, 5 and Jasmine, 6 a Java assembler or reassembler from Jon Meyer's and Troy
Downing's book, the Java Virtual Machine (O'Reilly, 1997). I'm sure there are
many, many more out there, so I apologize to anyone I've left out.

IceBreaker

Disassemblers can sometimes be much more effective than decompilers, espe­
cially when the decompilation process goes wrong. You may have come across
your own examples where, under certain conditions, your favorite decompiler
cannot recover the source.

Let's take the example of when a decompiled classfile won't recompile because
Mocha's control flow analysis wasn't strong enough for the job. The resultant Java
source is a mixture of partially decompiled Java code and some of the original Java
bytecode commands-typically a number of goto statements that are not part of
the Java language.

If this happens, then your options are pretty limited. You could disassemble
the code yourself and try and guess what the original source might have been, or
you can use IceBreaker, shown in Figure 3-1, to simplify the job.

Fie Actions Oollon> ~

void IIOISUino sUing]
t

CJ.auet:: IRnaaiNs"• 3 WfJthodr.

II ~ touing - nul) goto 51 el•o 4;
II geiApple<C.....,dlJ_oh>wlloc....,nl("'"' URL(gollloc...ntBooo(J. •bing));
lot [W'tl i. 0; i (10; i-) (

l

J
II goiApploiConto.tU.•howSiet•otot•ing);

ntiUin;
II doop

void go ljavaJang.Siring) (

OIICUIId 0
I 11tore_2
2 (I<Oo 8
51W'C <•li.Kk>2 1
8olo.d_2
9 bopuoh 10
1H_...,R5
14. rotUin

Caoiling RoveaiNctn .. j.ava ...
B.nld OK
Po~~~utd Reve.Wewa.iava. ..

void go roovo.lo<>g.Sbing] t

0 ·- 1 I lfnul51
• olood 0
~ .nvokewlual 15& <Method ..-v• .pplet.Applelget/tppletCont
8 new 132 <taYe.netURL>
II dup
12olo.d_O
1 J rnvokewtuel: 158 < W:alhod .. v.a. ~t.A.pplot get()~..-cn

Oiteuembled 10111ca Reve•Newa.et..-a. .. (Or9MIJ ~ fi<MI Rovo..,owt.Nnl
Diffenancing dit:aniiUIIbled b:rle coda• ..•

Figure 3-1. Disassembling with IceBreaker

5. http://www.javaworld.com/javaworld/jw-08-1997/jw-08-indepth.html

6. http://mrl.nyu.edu/-meyer/jasmin/

Tools of the '!rade

IceBreaker's graphical interface consists of four panes. Your attempt at the
target source code is in the top section of the GUI, and its corresponding byte­
code is in the bottom-left frame. You can see that the target bytecode is in the
bottom-right frame. Any differences in the bytecode show up in red. The fourth
section at the very bottom of the application displays the output from IceBreaker.
Your mission, should you choose to accept it, is to modify your code, rebuild it,
and gradually remove any red lines so that your bytecode and the target bytecode
are the same. When you reach that stage, you can be pretty sure that your code
and the original source are identical, except, of course, for any original program­
mer comments. You can also conveniently do this method by method, rather than
by having to bite off the whole classfile all at once.

NOTE IceBreaker was written by a friend of mine, Martin Lambert, who is
now CTO of SealedMedia. He hails from Surrey. near London, in the UK and
he's the only person I've ever known who has an Irish passport issued by the
Irish consulate in Tehran. So better ask him to go ahead if you ever meet him
in Customs.

IceBreaker really shines if your decompiled source breaks when you try to
run the recompiled code. Because it allows a side-by-side comparison, you're
able to see whether the decompiler did its job correctly.

When decompilers were in their infancy, IceBreaker was very useful because
none of the early decompilers was 100 percent effective. Difficult problems in the
class files could be smoothed out and the source code could be reverse engineered
by hand. However, now that the likes of the Java Decompiler (JAD) and SourceAgain
are so effective, IceBreaker is probably more useful as a benchmarking tool.
IceBreaker makes it very, very easy to tell just how precise a decompiler is because
it immediately pinpoints any differences between your bytecode and the target
bytecode.

ClassNavigator

Jim Alateras from Comware in Australia is the author of one of my favorite disas­
semblers, ClassNavigator. To be honest it is my favorite disassembler. The interface
is all encompassing without being difficult to use, and all the information you
need is presented in one neat, intuitive GUI.

ClassNavigator, shown in Figure 3-2, displays a hierarchical map of the
methods with the corresponding bytecode for each method as well as context­
sensitive constant pool information in the top-right frame.

69

Chapter3

70

.::J!Oo~-

~ ~<~ I <~ I~I>~!.JJY!]

"'.'e~ ·-. 1'00
· --... '<) · -""'*'1 ·--•...o
•o
• ...a
. <(.......) -------...... -------------_, .. y ----.. -..... --------

1;:
..,.
""' -f1ll11
1111111 ,
"'" 01111

"""' ""' ""'
""' "" -""' ,

"" --
-.. .. --· --~ ... ---.. -... -... --· ---~ -...._, ·--_,

)I -
-­'

.,

~~~-1.1·•-==========================:J:JJ!~~~ !.1 r 

Figure 3-2. The ClassNavigator interface 

JavaDump 

Many disassemblers are by-products of articles, or as in this case, a book. However, 
not everyone writes their article while they're in high school. Matt Yourst wrote 
JavaDump for a Dr. Dobb's Journal article called "Inside Java Class Files." This article 
first appeared in January 1998, the year before he made it into MIT. 

JavaDump, shown in Figure 3-3, uses a classfile manipulation library called 
JCF and is perfect if all you want to do is to get an HTML version of the structure 
of a classfile in a format not too dissimilar from Javadoc. 



Tools of the Trade 

Thlmp ofclu" 

Hello 
(Or,.....u<~ Wld.\prD917:H:/7 Hur100J 

CollSWlt Pool (Slsloa) 

WuTJPo D.,. 
1 Nt<hod dan!l.}~ype!ru 

2 ),!<tho<! ot.usm ~ypem 
) Nt<hod ciass /IV ~ype /129 

~ Clan """"' !Ul! 
~ s..,. diiO!ll 
6 au. ...,.m 
7 Nt<hod oLus j! ~ype lli 
8 s..,. diiO lli 
9 lhlbod clan j! l)'pe lli 
10 lhlbod ciass !J.i ~J~>e ru 
11 s..,. dll0t36 
12 lhlbo4 ws l!§ rn>< m 
13 lhlbo4 cias• !li ~JP• !12 
1~ au. -~ •< -

Figure 3-3. ]avaDump output 

JavaDump breaks the classfile into the following sections: 

• Constant pool 

• Class descriptor 

• Interfaces 

• Fields 

• Methods 

• Attributes 

Items in the HTML file are typically hotlinked so that you can bounce around 
the constant pool, resolving any pointers to their corresponding data very quickly. 

JavaDump uses the JDK 1.1 and is invoked using the following command, 
make sure that jcfutils.zip is in your classpath. 

java lti.java.javadump.javadump [classfile.class] [-noconstpool] 

7l 



Chapter3 

72 

The JCF utilities also include a StripDebug program that removes any debug 
information, line number attributes, and so on, and rewrites and saves your 
classfiles. 

Decompilers 

In 1991, James Gosling lead a team of Sun engineers who wrote the first Java 
Virtual Machine (JVM), which was known as Oak at the time. They then spent 
the next three years working on making inroads into the cable and telecommu­
nications market with little or no success. It was early 1995 before the rest of the 
world began to take a real interest in Java, when HotJava and early beta versions 
of the JDK hit the developer community with a massive, resounding bang. 

And yet it was only a year later when the first decompilers began to appear. 
It looks like the first public mention of a Java decompiler comes not from 
Mocha, but in a paper by Daniel Ford, an IBM researcher, in a whitepaper enti­
tled "Jive: A Java Decompiler," which describes a working decompiler. 

The first and only beta of Mocha appeared very soon afterward, in June of 
1996. Its author, HanpeterVan Vliet, named Mocha after the place where Dutch 
colonists stole a coffee plant from the Yemenese, marking the beginning of the 
Java coffee trade in what was then known as the Dutch East Indies. Nobody paid 
any real attention to Mocha until the following August when an article appeared 
inclnet. 

Since then, we've seen at least a dozen decompilers: Jive, Mocha, WingDis, 
the Java Optimize and Decompile Environment (JODE), SourceAgain, DejaVu, 
JAD, HomeBrew, JReveal, Decafe, JReverse, and jAscii. There are also a number of 
programs-Jasmine and NMI are two examples-that provide a front end to JAD 
or Mocha for the command-line impaired. Some, like Mocha, are hopelessly out 
of date, and several others are no longer available. 

Let's take a look at some of my favorite decompilers: 

• Mocha 

• SourceAgain 

• JAD 

• JODE 

Apologies once again if I've missed your favorite decompiler, but many of the 
early decompilers, such as DejaVu and WingDis, have all but disappeared. I'm 
covering Mocha because it's the most famous decompiler, SourceAgain because it 
is a great example of a professional supported decompiler, JAD because it is the 
best of the free decompilers, and JODE because it is one of only two open source 
decompilers that I know about-the other is HomeBrew. 



Tools of the Irade 

Mocha 

Many of the earliest decompilers have long since disappeared; in fact, Jive never 

even saw the light of day. Mocha's life, like its author, Han peter Van Vliet, was 

short-lived. The original beta from June 1996 had a sister program, Crema, 

which cost $39. This protected classfiles from being decompiled by Mocha using 

obfuscation. 
Because it is one of the earliest decompilers, Mocha is a simple command­

line tool with no front-end GUI. It was distributed as a zip file of classes, which 

were obfuscated by Crema. Mocha is primed to recognize and ignore class files 

obfuscated by Crema. Not surprisingly jar files are not supported by Mocha; they 

didn't exist when Mocha was originally written. 
Mocha uses the JDK 1.02. If you are going to decompile a file using Mocha, 

make sure the mocha. zip file is in your classpath, and decompile it using the fol­

lowing command: 

java mocha.Decompiler [-v] [-o] Hello.class 

The decompiler was only ever released as a beta, and as I said, its author met 

with an untimely demise before he could tum it into what I would call production 

quality. Mocha's flow analysis is incomplete and it fails on a number of Java con­

structs. JYpically something like IceBreaker would have to be used in conjunction 

with Mocha to decompile anything other than the simplest Java classfiles. Several 

individuals have tried to patch Mocha, but these have been largely wasted efforts. 

It makes much more sense to use either JAD or SourceAgain. Like all early decom­

pilers, Mocha could not decompile inner classes, which didn't appear until JDK 1.1 

Just before Han peter died he sold the code for Mocha and Crema to Borland, 
and some of the Crema obfuscation code made it into early versions of JBuilder. 

Just a few weeks after Van Vliet's death, Mark LaDue's HoseMocha appeared; this 

allowed anyone to protect their files from being decompiled with Mocha without 

having to pay for Crema. 

SourceAgain 

Paul Martino, the founder of Ahpah Software, is the brains behind SourceAgain.7 

The original version was released in October 1997. There are actually two versions: 

a command-line version, and a professional version that can be plugged into 

several IDEs such as Symantec's Visual Cafe. 
Both SourceAgain and JAD are not written in Java; I suspect either C or C++. 

The SourceAgain program is distributed as an executable, and its installation is 

7. http://www.sourceagain.com 

73 



Chapter3 

74 

straightforward. Ahpah Software claims that SourceAgain decompiles all Java's 
language constructs, and as yet, I'm not going to disagree with that statement. 

For our purposes, SourceAgain helps separate the early decompilers like 
Mocha and DejaVu from a second generation of decompilers because their 
capabilities are so different. First-generation decompilers can be defined as 
decompilers that cannot handle inner classes. SourceAgain is a very good 
example of a second-generation decompiler and it supports up to JDK 1.3. 
Not only can it handle inner classes, it also offers variable name massaging 
for obfuscated code that has mangled variable and method names. 

The Java Decompiler (JAD) 

JAD is fast, free, and very effective, and it was one of the first decompilers to 
handle inner classes properly. It's probably the simplest command-line tool 
to use in this entire chapter. The last available version of JAD is vl.58 from 
November 2001, and according to the FAQ, the major known bug is that it 
doesn't handle inline functions very well, which really shouldn't be an issue 
because most compilers leave it to the JIT engines to perform any inlining. 

JAD8 is the work of Pavel Kouznetsov, a graduate of the Faculty of Applied 
Mathematics at Moscow State Aviation School, who was living in Cyprus a few 
years ago. 

For most cases, all you need to do to use JAD is type the following: 

jad target.class 

For a one-man show, JAD is remarkably complete. Its most interesting fea­
ture is that it can annotate source code with the relevant parts of a classfile's 
bytecode so that you can see just where each part of the decompiled code came 
from. This is a great tool for understanding bytecode. 

There are many, many GUis that use JAD as the decompiler engine such as 
NMI9 (which originally used Mocha) and Front End Plus (no URL available) 
from the UK. 

JODE 

Jochen Hoenicke first wrote guavad, which according to his web page, is a Java 
disassembler not too dissimilar from javap, while working at the University of 

8. http://kpdus.tripod.com/jad.html 

9. http://www.trinnion.com/javacodeviewer 



Tools of the Ttade 

Oldenberg in Germany. Over the past few years, this has gradually turned into 
a full-scale decompiler and obfuscator package named JODE,10 which appears in 
Figure 3-4. 

••: II • · 

oil• p1tn: J oc\i:tmp~cl!:1 .1.6\llb\ch.a....z f p ,o:\llmp\lodt'iod• jar,.,c:\ltmp\ldlc-1 1.G\bln\ .\ci a~UJ,o:\ten 

cl.la n1me: I Jodt .deoompllti.Wlndow 

P" verbose P"' p,.tty st.rt I un 

,. IJIJ'ulow • D•co,.. U od. by .JODI: 
• Vhh:l ho~p : //jo4•·••Qcc•fu:9• · "'•"/ 
•I 

p&d•l• jod.o . dt~COII!Ip U u :; 
i. .. OUt ~&Va . .. WII: . IU'CI\Ion; 
h'l'•~'• java . a• . Chockbox ; 
,.., • .,. java . a .. . Con1;1atnu:; 
,.., . """ ; ...... . . . . ru.Dt•l•• • 
b~~po1:0 jav& . &WIJ . J'on.t~~ 

u.poc-o java.oW~:: . r~: .... ; 
i.JIIpoc-o j&va.o-e . G-cUI•f(•n•t:catl\e.• ; 
i.lfiii'OI'D :)&v& . & ... . G-I:iO&tLayo'l&\1 ; 
t..,6rb java.-.Lalul ; 
i~~~portt java. &Witl , T•xt~A~:•a ; 

&.pore java . .. M~.T•aot~rld<4 ; 

t.,oco j&v& • .fo'Wti . IIYIII'I.\I . A.«<f.onl:vol\o ; 
,.., • .-'CI j•va , .aW~J . •von\l . k'llior.ot.i•••·"•c , 

l.,.o~~:'D j.ava . .. Witl , •vol"'.\1 , llillin4owU&JI'••c ; 
i ... orb j av.a. •WI:! . •vontl . llillin..SowEv•n.tF ; 

Figure 3-4. The ]ODE Decompiler 

The best way to call JODE is to use the applet window as shown here: 

java jode.decompiler.Window 

An applet not too dissimilar to Figure 3-4 appears. Enter the classfile you want 
to decompile, click start, and assuming it's on your editable classpath, the source 
will appear in the main frame. 

If, after you finish this book, you get the sudden urge to write your own 
decompiler, then another place to look is at one or the other of the open source 
decompilers. Jochen's JODE decompiler is a very good place to start. 

Obfuscators 

Wherever there is a decompiler, you can be pretty sure that you'll find some sort 
of obfuscator. Java decompilers are so successful because a classfile carries so 
much information around with it. Even without the programmer's comments, 
the variable names and method names help anyone reading decompiled source 
to understand the flow and logic of the Java program. 

10. http ://jode.sourceforge.net 

75 



Chapter3 

76 

Obfuscators cannot prevent decompilation, but they can scramble the names 
into unintelligible control characters or Java-like keywords to make it more diffi­
cult for humans to understand. However, and you'll see more of this in the next 
chapter, it's a pretty sad indictment of Java obfuscators that the introduction of 
Java inner classes in the JDK 1.1 were far more effective at stopping decompilers 
than most obfuscation techniques currently in use. 

In a scene reminiscent of the cold war arms race during the 1960s and 1970s, 
obfuscators and decompilers will no doubt battle it out to see who can control the 
source code. But like the arms race, it is the missile or, in this case, the decompiler 
that almost always wins. 

You'll look at obfuscation in much greater detail in the next chapter, but for 
the moment, the main players in the history of obfuscation are as follows: 

• Crema 

• SourceGuard 

• DashO 

• Zelix KlassMaster 

There are many others-the Java Obfuscator (JOBE), Shroudlt, JZipper, 
ObfuscatePro, and Mandate OneClass, to name but a few. By and large, many of 
the early obfuscators have simply given up the ghost and closed up shop. Crema, 
like Mocha, is so out of date that even if you did find a copy, you'd probably have 
to go back to a very early JDK to get it to work. 4thPass software, the creator of 
SourceGuard, has moved on from obfuscation and now operates primarily in the 
wireless market. DashO is still being sold by PreEmptive Solutions. In fact, they 
are also selling .NET versions of their products. Finally Zelix KlassMaster is 
notable in that it modifies the bytecode flow so that the original source code 
cannot be recovered from the classfile. However, this type of approach is very 
susceptible to the Java bytecode verifier, which can refuse to run the code and 
can potentially make your code much less portable. 

I'll cover all these points and more in the next chapter, which hopefully will 
go some way toward explaining just why Java obfuscation has not exactly been 
a growth market. 

Conclusion 

Often books show their age when they review products. It's a form of technologi­
cal carbon dating that usually makes a book out of date before it hits the presses. 
However, this book is different because I'm really telling a story of how different 



1bols of the Trade 

people have approached the problem of Java decompilation almost as soon as 
the language appeared. 

If there is a point that's worth making, it would be that you need to think 
outside the box because you can be sure your attackers will be using every possi­
ble way to get at your code if they really ~t it. Hopefully I've shown you the 
types of tools and techniques that are out there-both to protect your code and, 
just as importantly, to make it easier to get at your code. 

77 



CHAPTER 4 

Protecting Your 
Source: Strategies for 
Defeating Decompilers 

Now THAT WE'VE ADDRESSED the problem, you're probably wondering if there is any 
way you can protect your code. If you're at the point of asking why you should be 
producing Java applets or applications that can be easily circumvented, then this 
is the chapter for you. 

In the previous chapters, you've seen that, for a number of reasons, Java class­
files contain an unusually large amount of symbolic information. Classfiles that 
haven't been protected in some way return code that is almost identical to the 
original-except, of course, that it completely lacks any programmer comments. 
This chapter looks at the steps you can take to limit the amount of information in 
a classfile and hopefully, make the decompiler's job as difficult as possible. 

Decompilation is a nasty problem from a developer's perspective. What is the 
point of trying to license an applet or even produce demo copies that someone 
can decompile or disassemble to circumvent all your protections? It seems that it 
is almost impossible to build in any failsafe protection mechanisms. So in this 
chapter, I'll introduce you to the current protection schemes as well as touch on 
what might be coming around the comer. 

Readers of this book will probably have a foot in one of two different camps: 
as programmers, they may be interested in understanding how others achieve 
interesting effects, but from a business point of view, nobody will want someone 
else relabeling their code and selling it to third parties as if it was their own. Worse 
still, under certain circumstances, decompiling Java code can allow someone to 
attack other parts of your systems. A classic example of this type of problem or 
method of attack is when database logins and passwords are exposed after some 
JDBC code is decompiled. Worse still, Trojan horses can be placed in legitimate 
applets, which are subsequently recompiled and passed off as the original while 
they collect information such as logins and passwords for possible later use. 

79 



Chapter4 

80 

NOTE As a quick aside, you may have a much simpler reason for wanting to 
protect your code. Maybe decompilation should be a standard tool for the 
CTO or even the CEO. When this book was in its infancy, I was in the habit of 
decompiling everything in sight to see different styles and techniques. 
However, a number of times I came across code that really should never have 
seen the light of day. My favorite example was a software company that was 
about to go public that had a method in their program called updateS**t ();. 

What would be ideal would be a black box application that would take a class­
file as input, and output an equivalent protected version. Unfortunately, as of yet, 
nothing out there can offer complete protection. It probably helps if I defined 
exactly what I am aiming to do when I talk about protecting your source. Perhaps 
the following quote will help. 

[We want] to protect the code by making reverse engineering so technically 

difficult that it becomes impossible or at the very least economically inviable. 

-Collberg, Thomborson, and Law 

It is difficult to define criteria for evaluating each strategy. I'll try to measure 
just how effective each tool or technique is using the following three criteria: 

• Just how confused is the decompiler (potency)? 

• Can it repel all attempts at decompilation (resilience)? 

• What is the application overhead (cost)? 

You're looking for the potency, or strength, of each technique; you also need 
to measure how resilient the strategy is against some means of automatically 
removing the protection; and finally, you need to know what the overhead, or 
cost, associated with protecting the source is. If the performance of the code is 
badly degraded, then that's probably going to make the cost too high, or if you 
convert your code into server-side code using web services, for example, then 
that's going to incur a much greater ongoing cost than a standalone application. 

Let's look at what strategies you can apply to reach your goal-to learn what 
obfuscators and other tools are available on the market and how effective they 
are at protecting your code. I'll also talk about how to measure their effectiveness 
and also touch on what to look out for in the future. 

In the first chapter, you already saw the examples of how code can be protected 
in the judicial system. The following is an almost complete list of ways of protecting 
your Java source code before it gets to that stage. 

1. ''A Taxonomy of Obfuscating Transformations" http: I !www. cs. arizona. edu/~collberg/ 
Research/Publications/CollbergThomborsonlow97a/ 



Protecting Your Source: Strategies for Defeating Decompilers 

• Using compilation flags and third-party compilers 

• Writing two versions of the applet or application 

• Employing obfuscation 

• Applying web services and server-side execution 

• Using encryption 

• Using digital rights management 

• Fingerprinting your code 

• Selling the source code 

• Using native methods 

Compilation Flags 

1\vo different types of compilation flags appear to have an impact on the generated 
bytecode. These are as follows: 

javac -g:nonel{source,lines,vars) 
javac -0 

The -g flag is responsible for generating all debugging information. This tells 
javac to add line numbers (lines option) and local variable names (vars option), 
which means that the classfile and constant pool is that much bigger with the 
added variables and the line number attributes. In Chapter 2, you saw how this 
allows you to map the bytecode onto the original source code. If you use this option, 
you can store the name of the original source file in the attributes (source 
option). Compiling with -g: none will keep lines, vars, and the source file attribute 
information out of your classfile. You can use HelloWorld.java in listing 4-1 to see 
what effect compilation flags have on the bytecode. 

Listing 4-1. HelloWorld.java 

import java.applet.Applet; 
import java.awt.Graphics; 
import java.net.InetAddress; 
import java.net.UnknownHostException; 

81 



Chapter4 

82 

public class HelloWorld extends Applet { 

} 

public String getlocalHostName() { 
try { 

} 

} 

InetAddress address = InetAddress.getlocalHost(); 
return address.getHostName(); 

catch (UnknownHostException e) { 
return "Not known"; 

} 

public void paint(Graphics g) { 
public void paint(Graphics g) { 

} 

String s = "Hello "; 
int w = so; 
int h = 25; 

g.drawString(s + getlocalHostName() + "!", w,h); 

I compiled the HelloWorld.java example in listing 4-1 using 
-g:source,line, vars and then output the classfile's information using javap -c -1 
in listing 4-2. If you compile the source using -g with no options, the compiler 
drops the local variables section but still includes line number and source file 
attributes. Compiling with -g: none flags will further remove the line number and 
source file information. 

Listing 4-2. HelloWorld.classfile 

Compiled from HelloWorld.java 
public class HelloWorld extends java.applet.Applet { 

public HelloWorld(); 

} 

public java.lang.String getlocalHostName(); 
public void paint(java.awt.Graphics); 

Method HelloWorld() 
o aload_o 
1 invokespecial #1 <Method java.applet.Applet()> 
4 return 

Line numbers for method HelloWorld() 
line 6: o 



Protecting Your Source: Strategies for Defeating Decompilers 

Local variables for method HelloWorld() 
HelloWorld this pc=O, length=S, slot=O 

Method java.lang.String getlocalHostName() 
0 invokestatic #2 <Method java.net.InetAddress getlocalHost()> 
3 astore_1 
4 aload_1 
5 invokevirtual #3 <Method java.lang.String getHostName()> 
8 areturn 
9 astore_1 

10 ldc #5 <String "Not known"> 
12 areturn 

Exception table: 
from to target type 

0 9 9 <Class java.net.UnknownHostException> 

Line numbers for method java.lang.String getlocalHostName() 
line 10: o 
line 11: 4 
line 14: 9 

Local variables for method java.lang.String getlocalHostName() 
HelloWorld this pc=O, length=13, slot=O 
java.net.InetAddress address pc=4, length=S, slot=1 
java.net.UnknownHostException e pc=10, length=3, slot=1 

Method void paint(java.awt.Graphics) 
0 ldc #6 <String "Hello, "> 
2 astore_2 
3 bipush so 
5 istore_3 
6 bipush 25 
8 istore 4 

10 aload_1 
11 new #7 <Class java.lang.StringBuffer> 
14 dup 
15 invokespecial #8 <Method java.lang.StringBuffer()> 
18 aload_2 
19 invokevirtual #9 <Method java.lang.StringBuffer append(java.lang.String)> 
22 aload_o 
23 invokevirtual #10 <Method java.lang.String getlocalHostName()> 
26 invokevirtual #9 <Method java.lang.StringBuffer append(java.lang.String)> 
29 ldc #11 <String "!"> 
31 invokevirtual #9 <Method java.lang.StringBuffer append(java.lang.String)> 

83 



Chapter4 

84 

34 invokevirtual #12 <Method java.lang.String toString()> 
37 iload_3 
38 iload 4 
40 invokevirtual #13 <Method void drawString(java.lang.String, int, int)> 
43 return 

line numbers for method void paint(java.awt.Graphics) 
line 18: o 
line 19: 3 
line 20: 6 
line 22: 10 
line 23: 43 

local variables for method void paint(java.awt.Graphics) 
HelloWorld this pc=O, length=44, slot=O 
java.awt.Graphics g pc=O, length=44, slot=1 
java.lang.String s pc=3, length=40, slot=2 
int w pc=6, length=37, slot=3 
int h pc=10, length=33, slot=4 

If you decompile the code using Jad, you can see, in listing 4-3, that compiling 
with the -g: none option is about the same as running the classfile through a very 
primitive renaming obfuscator, but the code is still very much intact. 

Listing 4-3. Decompiled Verison of HelloWorld.java 

II Decompiled by Jad v1.5.8e2. Copyright 2001 Pavel Kouznetsov. 
II Jad home page: http:llkpdus.tripod.comljad.html 
II Decompiler options: packimports(3) 

import java.applet.Applet; 
import java.awt.Graphics; 
import java.net.InetAddress; 
import java.net.UnknownHostException; 

public class HelloWorld extends Applet 
{ 

public HelloWorld() 
{ 
} 

public String getlocalHostName() 
{ 

try 



Protecting Your Source: Strategies for Defeating Decompilers 

} 

} 

{ 

} 

InetAddress inetaddress = InetAddress.getlocalHost(); 
return inetaddress.getHostName(); 

catch(UnknownHostException unknownhostexception) 
{ 

return "Not known"; 
} 

public void paint(Graphics g) 
{ 

} 

String s = "Hello, "; 
byte byteo = so; 
byte byte1 = 25; 
g.drawString(s + getlocalHostName() + IIIII . , byteo, byte1); 

Once, the -0, or optimization flag, did perform some rudimentary optimizations, 
but since Java 2 SDK, version 1.2 was introduced, this flag does not seem to have 
performed any optimization. In earlier versions of the JDK the optimization flag 
inlined static, final, and private methods, which meant they executed margin­
ally faster and could handle slightly larger classfi.les. One can only suspect that 
nT compilers such as Hotspot are much more efficient at optimizing bytecode at 
runtime, so you don't really need an optimization flag at compile time. The -0 flag 
now only exists for backward compatibility reasons. No doubt plenty of makefi.les 
and Ant scripts would crash if the -0 option was pulled from the next version of 
javac. 

If you do a lot of debugging and like the -g flag, then it will help protect the 
code a little if you use -g: none because all the variable name and line number 
information will be lost. So change the flag before doing a final build, and if you 
are using a third-party Java IDE, make sure that the default compilation flag is set 
to -g: none. As you can see from listings 4-1 and 4-3, I'm not exactly talking about 
huge impediments to the decompilation process, but why give the decompiler 
any more information than necessary? 

Although other third-party Java compilers may be different, I've found that 
IBM's Jikes compiler performs almost identically to Sun's javac. So, currently, it 
looks like the compilation flags are not going to get very far in protecting your 
source. 

Finally, a small word of warning to developers-method names and variables 
are very visible in Java. The Reflection API will return all the methods in a classfi.le, 
so please do not choose embarrassing names for methods or variables in Java. I'm 
sure vulgar method names are pretty common in other languages, but such names 
are just so much easier to recover in Java, and therefore, are much more likely to 

85 



Chapter4 

86 

embarrass you or your company in the long run. Enough preaching, but if you do 
tend to use strange and unusual names, then whatever you do, obfuscate with one 

of the better obfuscators. Nothing is better at hurting a business proposal or gen­
erating adverse publicity before an Initial Public Offering (IPO) than some bad 

publicity from a badly chosen method or variable name-assuming the days of the 

software IPO return again someday. 

Writing Two Versions of the Applet or Application 

Standard marketing practice in the software industry, especially on the Web, is to 

allow users to download a fully functional evaluation copy of the software that 

stops working after a certain period of time or number of uses. The theory behind 
this try-as-you-buy system is that after the allotted time, say 30 days, the user has 

become so accustomed to your program that they happily pay for a full version. 
However, most software developers realize that these fully ftmctional evaluation 

programs are a double-edged sword. They show the full ftmctionality of the program 
but are often very difficult to protect no matter what language we're talking about In 
Chapter 3, you saw how handy hexadecimal editors are at ripping through licensing 

schemes whether they are written in C++, VISual Basic, or indeed Java. 
Many different types of protection schemes can be employed, but in the world 

of Java, you only have one very simple protection tool: 

if boolean : true 
execute 

else 
exit 

These types of schemes have been cracked since the first time they appeared 

in VB shareware. The protection is simply modified by flipping a portion of code 

in the hexadecimal editor to the following: 

if boolean : false 
execute 

else 
exit 

A number of software packages claim to be able to protect and license your 
software. My advice is to treat this type of program very skeptically unless it is obvi­

ous that the software is offering a new angle to this problem. Ask for an example of 

a protected program and use your favorite decompiler and disassemblers to see if it 
is truly protected. 

The simplest way to steal an applet doesn't even require a decompiler or 

disassembler. Assuming you've viewed the applet in your browser, open the 

HTML to find the name of the applet and then copy it from your cache onto 



Protecting Your Source: Strategies for Defeating Decompilers 

your web server. Create a new HTML page and copy everything with the original 
<applet></applet> tags into your HTML. 

When Java was in its infancy-to protect from this dastardly behavior-applets 
used all sort of getDate(), getDocumentBase(), getCodeBase(), getHost(), and 
getlocalHost() combinations to try to make sure that your applet was only down­
loaded from a licensed server, but these are exceptionally simple protection schemes 
and are trivial to bypass, even without a decompiler. 

getDocumentBase() returns the host that served the web page containing the 
applet, and getCodeBase() returns the address of the applet class files. So you can 
make sure that the web page is only one server up from your web server by 
writing some code similar to Listing 4-4. 

Listing 4-4. Simple Protection Mechanism 
public void init() { 

} 

String s = urlencode(getDocumentBase().getHost()); 

if((s.compareTo("www.riis.com")) == o ){ 

II continue 
}else{ 

System.exit(o); 

} 

You can make the program execute on another web server by changing 
the ==0 to !=0 using a disassembler, which leaves you in the ironic position 
where the modified applet now runs on every web server except the original 
web server. You could also decompile the code, remove the offending check, 
and recompile it to create an unprotected applet. 

Several licensing schemes extended this idea by adding public and private keys 
to attempt to protect your applet. ]Timer from lnetSoft Technology Corporation 
was one such licensing tool. Mark laDue-author of HoseMocha-took their tool 
apart in a similar fashion to what I just showed you in Listing 4-4 in his paper "The 
Maginot License: Failed Approaches to Licensing Java Software Over the Internet." 
Personally I agree with Mark laDue's analysis and I don't like the primitive licensing 
schemes that were so prevalent when Java was mostly used for writing applets. 

How much better it would be if you could write a demonstration applet or 
application that gives the potential customer enough of a flavor of the product 
without giving away the goods? For instance, you could consider crippling the 
demo by removing all but the basic functionality while still leaving in the menu 
options. If that's too much, then consider using a third-party vendor such as Web Ex. 
It allows the potential customer to see your application, but the customer never 
gets a chance to run it against a decompiler. 

Of course, this doesn't stop anyone from decompiling a legitimate copy of the 
fully functional version after they've bought it, removing any licensing schemes, 

87 



Chapter4 

88 

and then passing it on to other third parties. But they will have to pay to get that 
far, and often that is enough of an impediment to hackers that they will simply 
look elsewhere. 

NOTE A not exactly trivial alternative to this licensing approach for applets 
would be to create an automated robot that searches the web for applets with 
the same name, size, and fingerprint. The robot could then automatically send 
an email to the people listed in the DNS record for that domain name to ask 
them to remove your applet, assuming that the fingerprint matches. 

In the next section, we'll look at what obfuscators are available and what they 
can do to help you get over this hurdle. 

Employing Obfuscation 

Maybe a dozen or so different Java obfuscators have seen the light of day. Most 
of the earlier versions of this type of technology are now pretty difficult to find. 
You can still find traces of them on the Web if you look hard enough, but apart 
from one or two notable exceptions, Java obfuscators have mostly faded into 
obscurity-yet another example of the bottom falling out of the dotcom market. 

This leaves you with the interesting problem of how you tell if any of the 
remaining handful of obfuscators are any good. Or perhaps we've lost something 
very useful in the original obfuscators that would have protected your code but 
couldn't hold on long enough when the market took a turn for the worse? You 
need to understand what obfuscation really means because you have no way of 
knowing whether one obfuscator is better than another, unless you use market 
demands as your deciding factor. 

When obfuscation is outlawed, only outlaws will sijjdifdm wofiefiemf eifm. 

-Paul1}'ma, PreEmptive Solutions 

In this section, you're going to look at obfuscation theory, and you'll get a little 
practice. To begin with, it might help if we borrow from Christian Collberg's 
"Taxonomy of Obfuscating Transformations" to help shed some light on where 
exactly we stand. In his paper, Christian splits obfuscation into three distinct areas. 

• Layout obfuscation 

• Control obfuscation 

• Data obfuscation 



Protecting Your Source: Strategies for Defeating Decompilers 

Table 4-llists a reasonably complete set of obfuscations that I've separated 
into these three different types, and in some cases, further classified. You'll take 
a look at the more important transformations in each section, as this chapter 
progresses. 

Table 4-1. Obfuscation Transformations (with apologies to Christian Collbergl 

Obfuscation Type Classification 
Layout 

Control Computations 

Aggregations 

Ordering 

Transfonation 
Scramble identifiers 

Insert dead or irrelevant code 

Extend loop condition 

Reducible to non-reducible 

Add redundant operands 

Remove programming idioms 

Parallelize code 

Inline and outline methods 

Interleave methods 

Clone methods 

Loop transformations 

Reorder statements 

Reorder loops 

Reorder expression 

Data Storage and encoding Change encoding 

Split variable 

Aggregation 

Convert static to procedural data 

Merge scalar variables 

Factor class 

2. Some transformation types, which are particularly ineffective for Java, are omitted in this 
table. 

89 



Chapter4 

90 

Table 4-1. Obfuscation Transformations (with apologies to Christian Collberg) 
(continued) 

Obfuscation Type Classification 

Ordering 

Transfonation 
Insert Bogus class 

Refactor class 

Split array 

Merge arrays 

Fold array 

Flatten array 

Reorder methods and Instance variables 

Reorder arrays 

Most of the Java obfuscators you'll meet only perform layout obfuscation with 
some limited data and control obfuscation. This is partly due to the Java verification 
process throwing out any illegal bytecode syntax. The Java Verifier is very impor­
tant if you write mostly applets because remote code is always verified. These 
days, where there are fewer and fewer applets, the main reason Java obfuscators 
don't feature more high-level obfuscation techniques is because the obfuscated 
code has to work on a variety of Java Vrrtual Machines (JVMs). 

Although the JVM specification is pretty well defined, each JVM has its own 
slightly different interpretation of the specification, which leads to lots of idiosyn­
crasies when it comes to how a JVM will handle bytecode that can no longer be 
represented by Java source. JVM developers don't pay much attention to testing 
this type of bytecode, and your customers aren't interested in whether or not it's 
syntactically correct; they just want to know why it won't run on their platform. 

As you look into these different areas, please remember that you'll need to 
employ a certain degree of tightrope walking in advanced forms of obfuscation, 
what I call high-mode obfuscation, so you need to be very careful about what 
these programs can do to your bytecode. The more vigorous the obfuscation, the 
more difficult it is to decompile, but the more likely it will fail to pass the Java 
Verifier or crash some obscure JVM. 

The best obfuscators will perform multiple transformations without 
breaking the Java Verifier or any JVM. Not surprisingly, the obfuscation com­
panies err on the side of caution, which inevitably means less protection for 
your source code. 



Protecting Your Source: Strategies for Defeating Decompilers 

Layout Obfuscations 

Most obfuscators work by obscuring the variable names or scrambling the iden­
tifiers in a classfile to try and make the decompiled source code useless. As you 
saw in Chapter 2, this doesn't stop the bytecode from getting executed because 
the classfile uses pointers to the methods names and variables in the constant 
pool rather than the actual names. 

Obfuscated code mangles the source code output by a decompiler by renaming 
the variables in the constant pool with automatically generated garbage variables 
while still leaving the code syntactically correct. In effect, it removes all clues that 
a programmer gives when naming variables (most good programmers will have 
chosen meaningful variable names). It also means that the decompiled code will 
require some rework before it can be recompiled. 

However, most capable programmers can make their way through obfuscated 
code with or without the aid of hints from the variable names. With due care and 
attention-and perhaps the aid of a profiler to understand the program flow and 
maybe a disassembler to rename the variables-most obfuscated code can be 
changed back into something easier to handle no matter how significant the 
obfuscation. 

Crema is the original obfuscator and was a complementary program to the 
oft -mentioned Mocha, written by the late Han peter Van Vliet. Mocha was given 
away free, but Crema cost somewhere around $30. To safeguard against Mocha, 
you had to buy Crema. It performed some rudimentary obfuscation and had one 
interesting side effect. It flagged class files so that Mocha refused to decompile 
any applets or applications that had been previously run through Crema. However, 
other decompilers soon came onto the market, and they were not so Crema friendly. 

Early obfuscators such as JOBE3 replaced the method names with 
a,b,c,d .•. z(). Crema's identifiers were much more unintelligible, using 
Java-like keywords to confuse the reader, as shown in Listing 4-5. Several 
other obfuscators went one step further by using Unicode style names, which 
had the nice side effect of crashing many of the existing decompilers. 

Listing 4-5. Crema-Protected Code 

private void _mth015E(void 867 % static 931){ 
void short + = 867 % static 931.openConnection(); 
short +.setUseCaches(true); 
private01200126013D = new DatainputStream(short +.getinputStream()); 
if(private01200126013D.readint() != oxsdaa749) 

throw new Exception("Bad Pixie header"); 
void do const throws = private01200126013D.readShort(); 

3. http://www-personal.engin.umich.edu/java/unsupported/jobe/doc.html 

91 



Chapter4 

92 

if(do const throws != 300) 
throw new Exception("Bad Pixie version " + do const throws); 

_fld015E = _mth012B(); 
for = _mth012B(); 
_mth012B(); 
_mth012B(); 
_mth012B(); 
short01200129 = _mth012B(); 
_mth012B(); 
_mth012B(); 
_mth012B(); 
_mth012B(); 
void I= = _mth012B(); 
_fld013D013D0120import = new byte[l=]; 
void void = I= I 20 + 1; 

private = false; 
void = = getGraphics(); 
for(void catch 11 final = o; catch 11 final < I=;){ 

void while if = I= - catch 11 final; 
if(while if > void) 

while if = void; 
private01200126013D.readFully(_fld013D013D0120import, 

catch 11 final, while if); 

} 

catch 11 final += while if; 
if(= != null){ 

const = (float)catch 11 final I (float)l=; 
=.setColor(getForeground()); 
=.fillRect(o, size().height - 4, 

(int)(const * size().width), 4); 

} 

} 

JOBE is probably more useful as an unobfuscator than as an obfuscator 

because of the way it renames methods and variables, getting rid of any Unicode 

or Java keyword names in the process-nothing wrong with a bit of lateral thinking, 

especially in the field of reverse engineering. Alternatively you can use something 

like SourceAgain's automatic variable name generation. 
Most of the obfuscators we've met, such as Crema and JOBE, are much better 

at reducing the size of a classfi.le rather than protecting the source. However, there 

is a small twist in the tale, because PreEmptive Solutions holds a patent that breaks 

the link between the original source and obfuscated code and goes some way 
toward protecting your code. 

All the methods are renamed to a, b, c, d, and so on. But unlike other programs, 
as many methods as possible are renamed using operator overloading wherever 



Protecting Your Source: Strategies for Defeating Decompilers 

possible. Overloaded methods have the same name but have different numbers of 
parameters, so more than one method can be renamed a (), as shown here: 

get Payroll() 
makeDeposit(float amount) 
sendPayment(String dest) 

becomes 
becomes 
becomes 

a() 

a(float a) 
a(String a) 

The classic example from PreEmptive shows the following: 

II Before Obfuscation 

private void calcPayroll(RecordSet rs) { 

} 

while (rs.hasMore()) { 

} 

Employee = rs.getNext(true); 
Employee.updateSalary(); 
DistributeCheck(employee); 

II After Obfuscation 

private void a(a rs) { 

} 

while (rs.a()) { 

} 

a = rs.a(true); 
a.a(); 

a(a); 

Giving multiple names to the different methods can be very confusing. 'lhle, 
the overloaded methods are difficult to understand, but they are not impossible 
to comprehend. They too can be renamed into something easier to read. Having 
said that, operator overloading has proved to be one of the best layout techniques 
to beat because it does break the link between the original and the obfuscated 
Java code. 

Control Obfuscations 

The concept behind control obfuscations is to confuse anyone looking at 
decompiled source by breaking up the control flow of the source. 

93 



Chapter4 

94 

Functional blocks that belong together are broken apart and functional blocks 
that don't belong together are intermingled to make the source much more 
difficult to understand. 

Collberg's paper breaks down control obfuscations further into three differ­
ent classifications of computation, aggregation, and ordering. You'll now look at 
some of the most important of these obfuscations or transformations in a little 
more detail. 

Computation 

If you refer back to the computation classification section of Table 4-1, you see 
that it can be broken down into the following transformations. 

Insert Dead or Irrelevant Code 

You can insert dead code or dummy code to confuse your attacker; this can include 
extra methods or simply a few lines of irrelevant code. If you don't want the perfor­
mance of your original code affected, then add the code so that it never gets 
executed. But be careful, because many decompilers and even obfuscators remove 
code that never gets called 

Don't just limit yourself to thinking about inserting Java code; there's no rea­
son why you can't insert irrelevant bytecode. Mark LaDue wrote a small program 
called HoseMocha that altered a classfile by adding a pop bytecode instruction at 
the end of every method. As far as most JVMs were concerned, this was an irrele­
vant instruction and was simply ignored. However Mocha couldn't handle it and 
crashed. No doubt if Mocha's author had survived, then it could have been easily 
fixed, but he didn't. 

Extend Loop Condition 

Obfuscate the code by making the loop conditions much more complicated. 
You do this by extending the loop condition with a second or third condition 
that doesn't do anything. It should not affect the number of times the loop is 
executed or decrease the performance. Try to use the bitshift or 1 operator in 
your extended condition for some added spice. 

Reducible to Nonreducible 

The Holy Grail of obfuscation is to create obfuscated code that cannot be converted 
back into its original format To do this, you need to break the link between the 
bytecode and the original Java source. The obfuscator transforms bytecode control 
flow from its original reducible flow to something nonreducible. Because Java 
bytecode is, in some ways, more expressive than Java, you can use the Java bytecode 
goto statement to help out. 



Protecting Your Source: Strategies for Defeating Decompilers 

Let's revisit an old computing adage, which states that using the goto state­
ment is the biggest sin that can be committed by any self-righteous computer · 
programmer. Edsger W. Dijkstra's "Go To Statement Considered Harmful" paper4 
was the beginning of this particular religious fervor. The anti-goto statement 
camp produced enough anti-goto command sentiment in its heyday to put it 
right up there with the best Usenet flame wars. 5 

Common sense tells us that it's perfectly acceptable to use the goto statement 
under certain limited circumstances. For example, you can use the goto state­
ment to replace how Java uses the break and continue statements. The issue is in 
using goto to break out of a loop or having two goto statements operate within 
the same scope. You may or may not have seen it in action, but bytecode uses 
the goto statement extensively as a way to control the code flow. However, the 
scope of no two goto's ever cross. 

The Fortran statement in Listing 4-6 illustrates a goto statement breaking out 
of a control loop. One of the principal arguments against using this type of coding 
style is that it can make it almost impossible to model the control flow of a program 
and introduces an arbitrary nature into a computer program-which, almost by 
definition, is a recipe for disaster. At this point, we say that the control flow has 
become irreducible. 

Listing 4-6. Breaking Out of a Control Loop Using a goto Statement 

do 40 i = 2,n 
if(dx(i).le.dmax) goto 50 

dmax = dabs(dx(i)) 
40 continue 
50 a = 1 

As a standard programming technique, it's a very bad idea to attempt to have 
goto statements that cross scope because not only is it likely to introduce unfore­
seen side effects-because it's no longer possible to reduce the flow into a single 
flow graph-but it also makes the code unmanageable. 

However, some argue that this is the perfect tool for protecting bytecode if 
you can assume that the person writing the protection tool to produce the illegal 
gotos knows what they are doing and won't introduce any nasty side effects. It 
certainly makes it much harder to reverse engineer because the code flow does 
indeed become irreducible, but it's important that any new constructs added are 
as similar as possible to the original. 

A few of words of warning before I leave this topic: where it is almost without 
a doubt that a traditionally obfuscated classfile is functionally the same as its 

4. http://www.acm.org/classics/oct95/ 

5. It is rumored that the hot air generated in such debates as Vi vs. Emacs, Microsoft vs. Unix, 
and now .NET vs. Java, would be enough to heat the town of Cwmbran in south Wales until 
2010. 

95 



Chapter4 

96 

original counterpart, the same cannot be said of a rearranged version. A large 
amount of trust has to be placed in the protection tool, otherwise it will always be 
blamed for odd intermittent applet or application behavior. 

More importantly, although current JVMs are lax about letting bytecodes 
through, future ones may not be so forgiving. Tools that use encryption or rearrange 
or generally corrupt the original bytecode might not pass bytecode verification in 
these stricter JVMs or might simply fail to work. After all, JVM developers were 
almost certainly not using irreducible byte code as part of their test suites. There 
is already one example of a JIT not executing classfiles with irreducible flow 
modifications. Also, several defunct obfuscators were based on this technique. If 
possible, always test your transformed code on your target JVMs. 

The other downside to this technique is that many reducible to nonreducible 
transformations can already be easily reversed using an automatic deobfuscator. 
In the end, I suspect that this Holy Grail is not going to defeat decompilation in 
the Java world. 

Add Redundant Operands 

Add extra insignificant terms to some of your basic calculations and round up 
the result before you use it. For example the following code prints k = 2. 

import java.io.*; 

public class redundantOperands { 

} 

public static void main(String argv[]) { 
int i=l; 

} 

int j=2; 
int k; 

k = i * j; 
System.out.println{"k = " + k); 

Add some redundant operands to the code as follows, and the result will be 
exactly the same because you've cast k to an integer before you printed it: 

import java.io.*; 

public class redundantOperands { 



Protecting Your Source: Strategies for Defeating Decompilers 

} 

public static void main(String argv[]) { 
int i = 1, j = 2; 

} 

double x = 0.0001, y = 0.0006, k; 

k = (i * j) + (x * y); 
System.out.println(" k = " + (int)k); 

I should stress that using this technique throughout your code has the 
potential to degrade the performance of your application. 

Remove Programming Idioms (or Write Sloppy Code) 

Most good programmers will amass a body of knowledge over their careers and 
will constantly be adding to it.6 For increased productivity, they will use the same 
components, methods, modules, and classes over and over again in a slightly 
different way each time. Like osmosis, a new language gradually evolves until 
everyone decides to do some things in more or less the same way. Martin Fowler's 
book Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999) 
is an excellent collection of how to take some existing code and refactor it into 
shape. Judging by the sales of this book, this has created a standard way of doing 
things in Java. 

However, this type of language standardization creates a series of idioms that 
give the hacker way too many helpful hints, even if they can only decompile part 
of your code. So throw out all your programming knowledge, stop using design 
patterns or classes that you know have been borrowed by lots of other programmers, 
and defactor your existing code. 

Writing sloppy code is easy and a heretical approach that gets under my skin 
and ultimately affects the performance and long-term maintenance of your code. 
A more difficult and, from my point of view, better alternative would be to rewrite 
a common Java class from the SDK and reference the renamed class from your 
application so that the hacker gets a little more confused and hopefully gives up. 

Parallelize Code 

Converting your code to threads can significantly increase its complexity. The code 
does not necessarily have to be thread-compatible as you can see in the HelloThread 
example in Listing 4-7. The flow of control has sifted from a sequential model to 
a quasi-parallel model with each thread being responsible for printing a different 
word. 

6. Until someone forces them to become a manager. 

97 



Chapter4 

98 

Listing 4-7. Hello World Thread Example 

import java.util.*; 

public class HelloThread extends Thread 
{ 

} 

private String theMessage; 

public HelloThread(String message) { 
theMessage = message; 
start(); 

} 

public void run() { 
System.out.println(theMessage); 

} 

public static void main(String []args) 
{ 

} 

new HelloThread("Hello, "); 
new HelloThread("World"); 

The downside of this approach is the programming overhead involved in 
making sure that the threads are timed correctly and any interprocess communi­
cation is working correctly so that the program executes as intended. The upside 
is that it could take significantly longer to realize that the code can be collapsed 
into a sequential model. 

Aggregations 

Aggregations as a form of obfuscation occur when certain elements of the code 
are folded together to make their structure less obvious. In this section, you will 
become familiar with aggregating methods and loops. 

lnline and Outline Methods 

In the "Compilation Flags" section, I mentioned that inlining methods-where 
every method call is replaced with the actual body of the method-is often used 
to optimize code because it removes the overhead of the call. In your Java code, 
this has the side effect of ballooning the code, often making it a much more 
daunting task to understand. You can also balloon the code by taking some of 



Protecting Your Source: Strategies for Defeating Decompilers 

the inlined methods and outlining them into a dummy method that looks like 
it's being called but doesn't actually do anything. 

Mandate's OneClass obfuscator took this transformation to the extreme by 
inlining every class in an application into a single Java class. Like all early obfus­
cation tools, Mandate's OneClass is no longer with us. 

Interleave Methods 

Although it is a relatively simple task to interleave two methods, it is much more 
difficult to break them apart. 

Listing 4-8 shows two independent methods, and in Listing 4-9, I have inter­
leaved the code together so that it all appears to be connected. This example 
assumes that you want to show the balance and email the invoice, but there is 
no reason why it couldn't be interleaved to allow you to only email the invoice. 

Listing 4-8. showBalance and emaillnvoice 

void showBalance(double customerAmount, int daysOld) { 
if{daysOld > 60) { 

printDetails{customerAmount * 1.2); 
} else { 

printDetails{customerAmount); 
} 

} 

void email!nvoice(int customerNumber) { 
printBanner(); 
printitems(customerNumber); 
printFooter(); 

} 

Listing 4-9. showBalanceEmaillnvoice 

void showBalanceEmailinvoice{double customerAmount, 

} 

int daysOld, int customerNumber) { 
printBanner(); 
if{daysOld > 60) { 

printitems(customerNumber); 
printDetails{customerAmount * 1.2); 

} else { 

} 

printitems(customerNumber); 
printDetails{customerAmount); 

print Footer(); 

99 



Chapter4 

100 

Clone Methods 

Clone a method so that the same code but different methods are called under 
nearly identical circumstances. You could call one method over another based 
on the time of day to give the appearance that external factors exist when they 
really do not. Use a different style in the two methods or use it in conjunction 
with the Interleave Method transformation so that the two methods look very 
different but are really performing the same function. 

Loop Transformations 

Compiler optimizations often perform a number of loop optimizations. You can 
perform the same optimizations by hand or code them in your tool to obfuscate 
the code. Loop unrolling reduces the number of times a loop is called and loop 
fission converts a single loop into multiple loops. For example, if you know 
maxNum is divisible by 5, you can unroll the for loop as shown in Listing 4-10. 

Listing 4-10. Loop Unrolling 

II Before 
for (int i = o; i<maxNum; i++){ 

sum += val[i]; 
} 
II After 
for (int i = o; i<maxNum; i+=S){ 

sum += val[i] + val[i+l] + val[i+2] + val[i+3] + val[i+4]; 
} 

for (x=O; x < maxNum; x++){ 
i[x] += j[x] + k[x]; 

} 

for (x=O; x < maxNum; X++) i[x] += j[x]; 
for (x=O; x < maxNum; x++) i[x] += k[x]; 

Ordering 

If you take a look at the Ordering Classification in Table 4-1, you can see that it 
can be broken down into the following transformations. 

Reorder Statements and Expressions 

Reordering statements and expressions have a very minor effect on obfuscating 
the code. However, there is one example where reordering the expressions at 



Protecting Your Source: Strategies for Defeating Decompilers 

a bytecode level can have a much more significant impact-when it once again 
breaks the link between bytecode and Java source. 

PreEmptive Solutions uses a concept known as 'Ii"ansient Variable Caching 
(TVC) to reorder a bytecode expression. TVC is a straightforward technique that 
has been implemented in DashO. Say you want to swap two variables, x andy. 
The easiest way to accomplish this is to use a temporary variable, as shown in 
Listing 4-11. Otherwise you may end up with both variables containing the same 
value. 

Listing 4-11. Variable Swapping 

temp = x; 
X = y; 
y = temp; 

This produces the bytecode in Listing 4-12 to complete the variable swap. 

Listing 4-12. Variable Swapping in Bytecode 

iload_1 
istore_3 
iload 2 
istore_1 
iload_3 
istore_2 

However, the stack behavior of the JVM means that you don't really need 
a temporary variable. The temporary or transient variable is cached on the stack 
and the stack now doubles as a memory location. You can quite happily remove 
the load and store operations for the temporary variable as shown in Listing 4-13. 

Listing 4-13. Variable Swapping in Bytecode Using DashO's TVC 

iload_1 
iload 2 
istore 1 
istore_2 

The downside to this is that many decompilers know about this trick and can 
quickly revert to the original code. 

Reorder Loops 

You can transform a loop, making it go backward (see Listing 4-14). This probably 
won't do much in the way of optimization, but it is one of the simpler obfuscation 
techniques. 

101 



Chapter4 

102 

Listing 4-14. Loop Reversals 

x = o; 
while (x < maxNum){ 

i[x] += j [x]; 

x++; 
} 

x = maxNum; 
while (x > o){ 

X--; 
i[x] += j [x]; 

} 

Data Obfuscations 

Take a look at the Data Obfuscation type in Table 4-1. You can break this down 
into the classifications discussed in the following sections. 

Storage and Encoding 

Many of the transformations you have seen so far exploit the fact that program­
mers write code following some standard conventions. Thrn these conventions 
on their head and you have the basis of a good obfuscation process or tool. The 
more transformations you employ, the less likely it will be for anyone or any tool 
to understand the original source. In this section, you will see Data Obfuscations 
that reshape the data into less natural forms. 

Changing Encoding 

Collberg's paper shows simple encoding example-an integer variable inti= 1 is 
transformed to i' = x*i + y. If you choose x = 8 andy =3, you get the transforma­
tion shown in listing 4-15. 

Listing 4-15. Variable Obfuscations 

int i = 1; 
while (i < 1000) { 

val = A[i]; 
i++; 

} 

int i = 11; 
while {i<8003) { 

} 

val = A[(i-3)/8]; 
i+=8; 



Protecting Your Source: Strategies for Defeating Decompilers 

Split Variables 

Variables can also be split into two or more parts to create a further level of 
obfuscation. Collberg suggests a lookup table. For example, if you're trying to 
define the Boolean value of a= true, then you'd split the variable into al =0 and 
a2=1 and make a lookup table like the one shown in Table 4-2 to convert it back 
into the Boolean value. 

Table 4-2. Boolean Split Lookup Table 

a1 

1 

0 

a2 

0 

1 

a 

false 

true 

Convert Static to Procedural Data 

An interesting if not very practical transformation is to hide the data by converting 
it from static data to procedural data. For example, the copyright information in 
a string could be generated programmatically within your code possibly using 
a combination of interleave transformation discussed earlier. The method to 
output the copyright notice could use a lookup table method similar to the one 
shown in Table 4-2, or it could work by combining the string from several different 
variables spread throughout the application. 

Aggregation 

Taking a look at the Aggregation Classification in Table 4-1. You can break this 
down into the following transformations. 

Merge Scalar Variables 

Variables can be merged together, or converted to a different base and then 
merged together. The variables values can be stored in a series of bits and pulled 
out using a variety of bitmask operators. 

Class Transformations 

One of my favorite transformations is to use threads to confuse the hacker 
who is trying to steal code. There is an overhead because threads are harder to 
understand, harder to get right. If someone is dumb enough to try to decompile 

103 



Chapter4 

104 

code instead of writing their own, then most likely they'll be scared off by lots 
of threads. 

Sometimes, however, it just isn't practical to use threads because the overhead 
is just too big; the next best obfuscation is to use a series of class transformations. 
The complexity of a class increases with the depth of a class. Many of the transfor­
mations that we've discussed go against the programmer's natural sense of what's 
good and right in the world; however, if you use inheritance and interfaces to the 
extreme, then you'll be glad to hear that this will create deep hierarchies that the 
hacker will need time to understand. 

You also don't have to defactor (see "Remove Programming Idioms") if you 
don't want to; you can refactor instead but with a twist. Normally refactoring 
simplifies code making it much more maintainable, but we can also refactor two 
similar classes into a parent class, leaving behind a buggy version of one or more 
of the refactored classes. You might also want to try refactoring two dissimilar 
classes into a parent class. 

Army Transformations 

Like variables, arrays can be split, merged, or interleaved into a single array, 
folded into multiple dimensions, or flattened into a one- or twa-dimensional 
array. A straightforward approach is to split an array into two separate arrays, 
one containing even and the other odd indices of the array. A programmer who 
uses a two-dimensional array does so for a purpose; changing the dimension of 
the array will create a significant impediment in trying to understand your code. 

Ordering Transformations 

Ordering the data declarations will remove a lot of the pragmatic information in 
any decompiled code. Typically data is declared at the beginning of a method or 
just before it is first referenced. Spread the data declarations throughout your code, 
while still keeping the data elements in the appropriate scope. 

Obfuscation Conclusion 

The best obfuscator would use a number of the techniques that you've seen here. 
Like many of these transformations, you don't need to buy an obfuscator; you can 
add lots of these transformations yourself. The aim here_ is to confuse the would-be 
decompiler as much as possible by removing as much information as possible. You 
can do this programmatically using your own tools or simply as you write your 
code. Some of the transformations ask the developer to simulate what happens in 
an optimization stage of a compiler; others are simply bad coding practice 
designed to throw the hacker off the scent. 



Protecting Your Source: Strategies for Defeating Decompilers 

Let me mention a couple of caveats before I leave this section. First, remember 
that if you're going to obfuscate your code by using the same identifier multiple 
times in the constant pool, then you might want to talk to PreEmptive Solutions 
first, because they hold the patent on it. Second, you take your chances with any 
form of high-mode obfuscation because usually you won't have the luxury of 
insisting that your code is only run on certain specific JVMs. Finally, writing really 
bad code will make your code very difficult to read. Be careful that you don't throw 
the baby out with the bath water. Obfuscated code is hard to maintain and, depend­
ing on the transformation, could destroy the performance of your code. Be careful 
what transformations you apply. 

Building Your Own Simple Obfuscator 

I couldn't complete the section on obfuscation without showing you how to build 
your own obfuscator. The design is so simple it's almost primitive and should only 
be considered a starting point for your own design, but it is an obfuscator. 

In Chapter 2, you got a relatively in-depth look inside the classffie structure. 
It won't hurt to go back to that chapter to remind yourself of the overall structure 
of a Java classffie. By the end of Chapter 2, you could create an XM:L dump of any 
Java classffie. 

To obfuscate your target IDe, first run it through your disassembler-you'll 
find the ClassToXM:L code in the downloads area of the Apress web site. Open 
the XM:L file using your favorite editor, go to the constant pool section, and 
scramble some of the identifiers by changing the names to such identifiers as$,!, 
and =. The constant pool number is used throughout the classffie-that is, the 
pointer to the string rather than the string itself-so changing the string to 
something illegal in Java will not affect the functionality of your code. 

Now all that remains is to turn the XM:L me back into a classme. You'll find the 
complimentary code to your disassembler, XMil'oQass, also available on the Apress 
web site. This takes the XM:L me and reassembles the me back into a binary classme. 

Let's take a look at an example of how you hand edit the XM:L in Listings 4-16 
and 4-17 to demonstrate. 

Listing 4-16. Before Obfuscation 

<Tag_40> 
<Type>CONSTANT_Utf8</Type> 
<Value>Hel1o</Value> 

</Tag_40> 
<Tag_41> 

<Type>CONSTANT_Utf8</Type> 
<Va1ue>java/applet/Applet</Value> 

</Tag_41> 

105 



Chapter4 

106 

<Tag_42> 
<Type>CONSTANT_Utf8</Type> 
<Value>java/net/InetAddress</Value> 

</Tag_42> 
<Tag_43> 

<Type>CONSTANT_Utf8</Type> 
<Value>getlocalHost</Value> 

</Tag_43> 

We'll now take the original strings and convert them to dollar signs ($), as 
shown in Listing 4-17, but you're free to choose whatever character or seri~s of 

characters you want. The only restriction is that the original string should be the 

same size as the obfuscated string. You also need to make sure that any public 
methods or fields are typically called by outside programs and are not modified. 

Listing 4-17. After Obfuscation 

<Tag_40> 
<Type>CONSTANT_Utf8</Type> 
<Value>Hello</Value> 

</Tag_40> 
<Tag_41> 

<Type>CONSTANT_Utf8</Type> 
<Value>java/applet/Applet</Value> 

</Tag_41> 
<Tag_42> 

<Type>CONSTANT_Utf8</Type> 
<Value>java/net/InetAddress</Value> 

</Tag_42> 
<Tag_43> 

<Type>CONSTANT_Utf8</Type> 
<Value>get$$$$$$$$$</Value> 

</Tag_43> 

Web Services and Server-Side Execution 

Sometimes it's the simplest ideas that are the most effective. One of the simpler 

ideas for protecting code is to split your applet or, indeed, your application, and 

keep your source code on a remote server away from any prying eyes. The down­

loaded applet or application is then a straightforward GUI front end without any 

really interesting code. The server code doesn't even have to be written in Java. 



Protecting Your Source: Strategies for Defeating Decompilers 

CAUTION If you're already splitting your applet to access databases, then be 
careful about using existing two-tier UDBC) or three-tier (dbAnywhere) archi­
tectures for your applets because SQL passwords can be decompiled along 
with the rest of the code. 

This approach is particularly suited to code that can be reworked as a web 
service so that not only can you protect your code but you can also register the 
web service with a third-party web services7 server, creating another revenue 
stream in the process. This might go toward offsetting the increased server load 
and any new costs you might incur by taking this approach. 

If this appeals to you, then you have several ways you can split the applica­
tion. For fully functional applications, you might want to look to the Swing classes 
to create your interface and Java Web Start to get it and the correct NM out to 
your customers. Server-side Java servlets can then do the real work behind the 
scenes. Web Start also makes it easy to sign your code. This helps prevent some­
one from disassembling your code and trying to hack into your back-end system 
by sending bogus transmissions in an attempt to uncover what's happening on 
the server. If you want to create a true web service application, then you'll prob­
ably want to put some time into investigating the Simple Object Access Protocol 
(SOAP). 

However, by far the easiest way to split your application is to use XML-RPC 
where the client applet makes requests via an HTTP POST request in an XML 
format, as shown in Listing 4-18. 

Listing 4-18. XML-RPC Client Method Call 

c?xm1 version="1.0"?> 
cmethodCall> 

cmethodName>getCubec/methodName> 
cparams> 

c/params> 
c/methodCall> 

cparam> 
cvalue>cint>3</int>c/value> 

c/param> 

On the server side, the method for calculating the cube of an integer is safely 
secured from prying eyes. True, you will need some extra servlet code for handling 
the XML-RPC wrapper for the responses, but the code is minimal, as you can see 
in Listing 4-19, which shows an example XML-RPC response. 

7. Using UDDI, see http : I lwww . uddi.org for more information. 

107 



Chapter4 

108 

Listing 4-19. XML-RPC Response 

<?xml version="1.0"?> 
<method Response> 

<params> 
<param> 

</param> 
</params> 

</methodResponse> 

<value><int>27</int></value> 

Unfortunately each of these approaches has the same disadvantage of creating 
or, at the very least, increasing the server load and applet or application execution 
speed so that it is probably only ideal for you under certain circumstances, like 
when you want to start charging for your web service. 

Encryption 

Throughout the ages, mankind has turned to encryption when trying to protect 
secret transmissions. Not surprisingly, several attempts have been made to prevent 
decompilation by encrypting classfiles so that nothing can read them except for 
the target ]VM. If the classfile is encrypted until just before it gets executed, then 
nobody can decompile the code--or so the theory goes, anyway. 

The developer first encrypts the classffies to secure them. When the application 
is executed, the encrypted classfiles are loaded by a custom ClassLoader, which 
decrypts the classfiles just before passing them to the JVM. The standard way of 
encrypting anything in Java is to use the Java Cryptography Extension (JCE). 

Now it turns out that creating a custom ClassLoader and decrypting the data 
is a relatively easy thing to do, as you can see in Listing 4-20. 

Listing 4-20. Custom Class Loaders 

Class CustomClassloader extends Classloader { 
String key; 
CustomClassloader (String key) { 

this key = key; 
} 

public Class findClass(String name) { 
byte[] b = loadClassData(name); 
return defineClass(name, b, o, b.length); 



Protecting Your Source: Strategies for Defeating Decompilers 

} 

} 

private byte[] loadClassData(String name) { 
I I load class 

I /decrypt class 

} 

So does it hold water? Or is it about as safe as an Enigma machine on D-Day? 
Well it doesn't take long to realize that this approach has a number of holes. At the 
very least, a compromised JVM can simply output the decrypted classfile to a file 
for later analysis. But there are also several places where the encrypted file is no 
longer encrypted and is vulnerable to attack. For example, the custom ClassLoader 
program can be decompiled, modified so that the decrypted file can be captured 
as a stream of bytecode, and recompiled so that it dumps the classfile just before 
it is passed to the JVM. 

Other problems are related to key security because the cryptographic key 
needs to be part of the application so that you can decrypt the classes in the cus­
tom class loader. If the hacker can find the key, then they can decrypt your classfiles 
before they get into the class loader. 

But perhaps the biggest problem with this approach is that J2EE application 
servers, such as IBM's WebSphere or BENs WebLogic, are fundamentally based on 
custom class loaders making this an altogether much more difficult approach. 

It is more expensive and not that practical, but it might be possible to con­
vert the JVM and the associated encryption routines to a hardware solution. 
Then nobody could access your decrypted code, because the key would be hard 
wired into the chip. 

However, this approach has two major disadvantages: first, you would destroy 
Java's portability in the process of creating your encrypted JVM on a chip; and 
second, you would create a very limited market for your software in the process. 
Aside from the marketing implications of this decision, the entire security of this 
solution is also predicated on the hardwired encryption key never falling into the 
wrong hands. Lots of electronic devices employ similar encryption mechanisms 
such as DVD players and cable TV set top boxes. And if you've ever heard of DeCSS 
or cable TV descramblers, you'll realize why this isn't necessarily the best 
approach. 

Digital Rights Management 

Perhaps we're approaching the problem from the wrong angle. We know that we 
need to keep bytecode out of the hands of the end user in order to be able to 
prevent decompilation. So why not secure the browser and class loader using 

109 



Chapter4 

110 

a trusted browser where the end user cannot access the internals of the 
browser-the browser cache . 

. Digital Rights Management (DRM) or Intellectual Property Rights (IPR) soft­
ware is the future of mainstream computing whether you like it or not. Little by 
little, the media and the larger software companies are moving to a licensing model. 
The only way to control this is to use DRM to enforce the licensing restrictions. 

The logic behind DRM or IPR protection schemes with respect to Java is that 
if you can't get at the classfile, then you cannot possibly decompile it, and to do 
that, you need a secure browser cache. Typically this type of technology uses 
a trusted browser that carefully controls its own cache and restricts access to any 
classfiles, HTML, and images. 

'Ihlsted browsers are typically used as a mechanism to protect data from being 
viewed by unauthorized users. This mechanism aims to handle the super distribu­
tion model where one user who buys a legitimate copy can pass the data-be it an 
image, HTML, or text file-to other users. The next user in the chain cannot view 
the data without contacting the original server to obtain a new key. User's rights, 
such as printing and the number of times the file can be viewed, can also be strictly 
controlled. Inter'Ihlst and Sealed Media are two examples of companies working in 
this arena. 

It's important to note that the trusted browser should not be written in Java 
because otherwise it too can be decompiled, allowing access once again to the 
bytecode, albeit after a lot more work than what you've encountered so far. Be 
careful too that using a trusted browser to deploy your applet does not drasti­
cally limit what platforms you can support. And if you can't use Java, then each 
trusted browser needs to be ported to different operating systems to support 
multiple platforms. 

To take this one stage further, Bruce Schneier's Cryptogram8 recently talked 
about Microsoft's Palladium architecture. This is Microsoft's implementation of 
the 'Ihlsted Computing Platform Alliance (TCPA) specification for a trusted com­
puter where even the administrator does not have full access to the underlying 
files on a PC. 

For the moment, this technology is in its infancy, but expect it to grow. Similar 
protection schemes in the future are likely to provide the best chance of success in 
nailing the decompiler issue once and for all. Like the Homeland Security bill, this 
is a double-edged sword-sure, you protect your code, but in the process, you give 
up your access to your computer's operating system. 

Fingerprinting Your Code 

Although it does not actually protect your code, putting a digital fingerprint in 
your software will allow you to later prove that you wrote your code. Ideally, this 

8. http://www.schneier.com/crypto-gram-0208.html 



Protecting Your Source: Strategies for Defeating Decompilers 

fingerprint-usually in the form of a copyright notice-will act like a software 
watermark that you can retrieve at any time, even if your original code has 
been through a number of changes or manipulations before it made it into 
someone else's Java application or applet. As I've said several times now, no sure­
fire, 100-percent effective way for protecting your code exists, but sometimes 
that might not matter if you can recover some losses by proving that you wrote 
the original code. 

In case you might be confused, I should point out that digitally fingerprinting 
your code is completely different than signing your applet or application. Signed 
applets don't have any effect when it comes to protecting your code. Signing an 
applet helps the person downloading or installing the software decide whether to 

trust an applet or not by looking at the digital certificate associated with the 
software. It is a protection mechanism for someone using your software; it allows 
them to certify that this application was written by XYZWidget Corp. The user can 
then decide whether or not he or she trusts XYZ Widget Corp before continuing to 
download the applet or launching the application. A digital fingerprint, on the 
other hand, is typically recovered using a decoding tool that displays the original 
fingerprint or watermark. It helps protect the copyright of the developer, not the 
end user's hard drive. 

Several attempts at fingerprinting try to protect the entire application using, 
for example, a defined coding style. More primitive types of fingerprinting encode 
the fingerprint into a dummy method or variable name. This method name or 
variable might be made up of a variety of parameters such as the date, the developer's 
name, the name of the application, and so on. However, this approach can create 
a Catch-22. If you put a dummy variable in your code and someone just happens 
to cut and paste the decompiled method complete with the dummy variable into 
his or her program, how are you going to know it's your code without decompiling 
their code and probably breaking the law in the process? 

Having said that, most decompilers, and even some obfuscators, will strip 
this information because it does not take an active role as the code is interpreted 
or executed. So ultimately you need to be able to convince the decompiler or 
obfuscator that any protected method is part of the original program by invoking 
the dummy method or by using a fake conditional clause that will never be true 

so that the method will never get called. Here is an example: 

if(false) then{ 
invoke dummy method 

} 

A smart individual will be able to see a dummy method even if the decompiler 
cannot see that this clause will never be true, and he or she will come to the con­
clusion that the dummy method is probably some sort of a fingerprint. So you 
need to attach the fingerprint information at the method level to make it more 
robust. 

111 



Chapter4 

112 

Finally, you don't want the fingerprint to damage the functionality or perfor­
mance of your application. Because you've seen that the Java Verifier often plays 
a significant role in determining what protection mechanisms you can apply to 
your code, you really need to make sure that your fingerprint does not stop your 
bytecode from making it through the Verifier. 

Let's use the points made in the previous discussion to define the criteria for 
a good digital fingerprinting system. 

• No dead-code dummy methods or dummy variables should be used. 

• The fingerprint needs to work even if only part of the program is stolen. 

• The performance of the applet or application shouldn't be affected. The 
end user of the program should not notice a difference between the fin­
gerprinted and nonfingerprinted code. 

• The fingerprinted code should be functionally equivalent to the original 
code. 

• The fingerprint must be robust enough to survive a decompilation attack 
as well as any obfuscation tools. 

• The bytecode should be syntactically correct to get past the Java Verifier. 

• The classfile needs to be able to survive someone else fingerprinting the 
code with his or her own fingerprint. 

• You also need a corresponding decoding tool to recover and view the fin­
gerprint using, preferably, a secret key, because the fingerprint shouldn't 
be visible to the naked eye or to other hackers. 

You shouldn't be too concerned about whether the fingerprint is highly visi­
ble or not. On the one hand, if it's both visible and robust then it's likely to scare 
off the casual hacker. On the other hand, the more seasoned attacker will know 
exactly where to attack. However, if it isn't visible, the casual hacker doesn't know 
the application is protected, and then there's no up front deterrent to look 
elsewhere. 

Several fingerprinting systems out there satisfy some of our criteria. Let's 
take a look at one in particular-jmark from the Nara Institute of Science and 
Technology in Japan.9 It seems to meet most of our criteria, except unfortunately 
you do need to insert a dummy method to make it work. This also means you'll 
need to insert a dummy method invocation if you're not going to lose the water­
mark to an obfuscator. This makes it much harder to automate. However, the 

9. jmark can be found at http:/ /se.aist-nara.ac.jp/jmark/ 



Protecting Your Source: Strategies for Defeating Decompilers 

only serious alternative, SandMark, according to it's web site, needs a series of 
"annotations throughout the source."10 

jmark uses the structure of the opcodes to encode the fingerprint and it claims 
to be able to recover a fingerprint when the original classfile is decompiled, sub­
sequently recompiled, and finally run through an obfuscator. Because you're using 
a dummy method, it really doesn't matter if you replace iadd with isub because the 
bytecode will remain syntactically correct and still get through the Java Verifier. 

It turns out that you can replace iadd with any of the following: isub, imu1, 
idiv, irem, iand, ior, or ixor. And of course this applies to the other seven opcodes 
too. So you now have 3 bits of information into these opcodes, so let's assign 0002 

to iadd, 0012 to isub, and continue in this manner all the way up to 1112 ixor. 
Now your fingerprinting tool just has to exploit this bytecode replacement 

concept by converting your fingerprint or copyright notice into base 2 or a string 
of bits. And every time you come across one of the eight opcodes in your dummy 
method, all you have to do is replace it with the next bit of your fingerprint. The 
decoding tool works by trawling through all the methods looking for the target 
opcodes, reassembling them into a base 2 string, and then converting it back into 
readable text. 

So assuming that the dummy method is big enough for the copyright notice, 
then you have yourself a fingerprinting system that will survive both decompilation 
and obfuscation. 

Fingerprinting Example 

OK, so much for the theory, let's see if fingerprinting is indeed a practical solu­
tion. listing 4-21 shows another simple example you want to protect. 

Listing 4-21. Casting Target Class 

public class Casting { 

} 

public static void main(String args[]){ 
for(char c=O; c < 128; c++) { 

System.out.println("ascii " + (int)c + " character "+ c); 

} 

} 

You'll begin with a simple class file that prints out a list of ASCII characters 
from 0 to 127. In Listing 4-22, you insert a dummy method with lots of operators 
and create a conditional statement that will never be true so that the dummy 
code doesn't get executed. 

10. SandMark can be found at http: I /cgi. cs. arizona. edu/-sandmark/sandmark. html 

113 



Chapter4 

114 

Listing 4-22. Casting Class with a Dummy Method 

public class Casting { 

} 

public static void main(String args[]){ 
int i=O; 

} 

char c; 
for(c=O; c < 128; c++) { 

System.out.println( 11ascii II + (int)c + II character 11+ c); 

} 

if(i==(int)c) { 
check_std(i); 

} 

II dummy method 
private static void check_std(int k){ 

int i, j; 

} 

for(i = o; i < 10 ; i++) 
for(j = o; j < 10 ; j++) k+=i*10+j; 

System.out.println( 11 k = II + k); 
for(i = o; i < 20 ; i++) 

for(j = o; j < 30 ; j++) k+=i*3-j; 
System.out.println( 11 k = II + k); 

for(i = o; i < 25 ; i++) 
for(j = o; j < 20 ; j++} k+=i*4-j*3; 

System.out.println("k = II + k); 

First compile the code using javac. In Listing 4-23, run jmark with no param­
eters to find its usage. 

Listing 4-23. jmark Command-Line Parameters 

jmark version 1.3.1 
Copyright (C) 1997-2002 Akita Monden 
Usage: jmark target_file(.class) method_number "watermark" [options] 
Options: -k11 •••• II : key phrase 

-ao ••• 2 : algorithm (default= o) 
-d : disassemble 

Remember that there is always a constructor, by default, even if you haven't 
created one; this means that in this instance, your target method is method_number 3. 
As a result, you then insert the copyright notice as shown in Listing 4-24. 



Protecting Your Source: Strategies for Defeating Decompilers 

Listing 4-24. Creating a Fingerprint 

c:\>jmark Casting.class 3 "{C) RIIS LLC" -k "2secret4me" 
#classfile: Casting.class 
#method: 3 
#watermark: "{C) RIIS LLC" 
#key: "2secret4me" 
#algorithm: o {default} 

listing 4-25 shows the format you would use to uncover the fingerprint. You 
simply run the companion program jdecode against the classfile. 

Listing 4-25. Recovering the Fingerprint 

c:\>jdecode Casting.class -k "2secret4me" 
#classfile: Casting.class 
#key: "2secret4me" 
#algorithm: o {default} 
#begin{ watermark} 
1 

2 "GQZQ" 

3 "{C) RIIS LLC {C) RIIS LLC " 
#end{ watermark} 

If you decompile the program using Jad, you can see how the dunvny _method 
has been altered. It's changed pretty dramatically, so make sure you target the 
dummy method if you don't want to ruin your perfectly good code. The water­
mark is encoded by changing the bytecodes for imul, isub, and so on so that the 
original code, although still syntactically correct, is always different from the 
original dummy method (see listing 4-26). 

Listing 4-26. Decompiled Fingerprinted Code 

II Decompiled by Jad v1.S.8e2. Copyright 2001 Pavel Kouznetsov. 
II Jad home page: http:llkpdus.tripod.comljad.html 
II Decompiler options: packimports(3) 
II Source File Name: Casting.java 

import java.io.PrintStream; 

ll5 



Chapter4 

116 

public class Casting 
{ 

} 

public Casting() 
{ 

} 

public static void main(String args[]) 
{ 

} 

int i = o; 

char c; 
for(c = '\o'; c < 128; c++) 

System.out.println("ascii " + (int)c + " character " + c); 

if(i == c) 
check_std(i); 

private static void check_std(int i) 
{ 

} 

for(int j = o; j < 10; j++) 
{ 

} 

for(int i1 = o; i1 < 10; i1++) 
i += j * 10 + i1; 

System.out.println("k = " + i); 
for(int k = o; k < 20; k++) 
{ 

} 

for(int jl = o; jl < 30; j1++) 
i += k * 3 - jl; 

System.out.println("k = " + i); 
for(int l = o; l < 25; l++) 
{ 

} 

for(int k1 = o; k1 < 20; k1++) 

i += l * 4 - k1 * 3; 

System.out.println("k = " + i); 

Because Casting.java is such a simple program, it is pretty obvious that the 

functionality of the new classfile didn't change because of the fingerprint or 

watermark, because our dummy method never gets called. However, it's not good 

enough to assume that is the case when you're fingerprinting real applications. 



Protecting Your Source: Strategies for Defeating Decompilers 

If you don't have a test suite to test the functionality of your code, then you're 
probably going to need to create one. 

jmark or any other system isn't going to be 100-percent secure because a smart 
hacker or developer will be able remove the dummy methods, especially if they 
take the time to run the application through a debugger. Putting different dummy -
methods in different classes is a good strategy to increase your odds of at least one 
fingerprint surviving, and doing so will certainly catch the casual hacker. 

Selling the Source Code 

If source code is so readily accessible, then why not just sell it at a higher price? 
If your asking price is not too high, you could convince a would-be decompiler 
to pay for the code, as programmer's comments are usually very informative. The 
intent is to convince someone that it just doesn't make any sense to decompile, 
given the time and energy that it sometimes requires. 

This won't be for everyone, but why not make some money on the fact that 
some people will decompile your code to copy it? In the process, you might gain 
some extra revenue by helping to discourage these otherwise illegal activities by 
selling the code at a marginally higher price. 

Native Methods 

If Java really is that difficult to protect, then why not protect your code by writing 
it in C++ or C? Java allows you to do this by using native methods through the Java 
Native Interface (JNO. This may not be to everyone's liking because of the porta­
bility issues, but it does safeguard the code within the imported object. Now there 
may be an argument that, for example, the compiled C++ isn't that much safer 
than Java, but in my opinion, if you want to protect your algorithms, then the 
safest place to put them is in a native method that can then be called by the rest 
of your Java application. 

There are several versions native methods APis. The original JDK 1.0.2 ver­
sion used the Native Method Interface {NMI) that was cumbersome at best. 
NMI was replaced by the JNI in JDK 1.1, which was subsequently enhanced in 
the JDK 1.2.11 

You can incorporate a native method into your code by declaring it as shown 
in listing 4-27 in the appropriate method. 

11. Microsoft also had another flavor called )Direct many moons ago for those interested in 
pure Java trivia. 

117 



Chapter4 

118 

Listing 4-27. Native Method Example 

class JavaHelloWorld { 

} 

II declare the native method 
public native void nativeHelloWorld(); 

II load libhello.so or hello.dll 
II depending on your platform 
static { 

System.loadLibrary("hello"); 
} 

II invoke the Java class and call 
II the native method Hello World 
public static void main(String[] args) { 

new JavaHelloWorld().nativeHelloWorld(); 
} 

Run the following command on your compiled Java classfile: 

javah -jni JavaHelloWorld 

This creates the header file for your native method, shown in Listing 4-28. 

Listing 4-28. ]NI header file 

I* DO NOT EDIT THIS FILE - it is machine generated *I 
#include <jni.h> 
I* Header for class JavaHelloWorld * 

#ifndef Included JavaHelloWorld - -
#define Included JavaHelloWorld - -
#ifdef __ cplusplus 
extern "C" { 
#end if 
I* 
* Class: 
* Method: 

JavaHelloWorld 
nativeHelloWorld 

* Signature: ()V 
*I 

JNIEXPORT void JNICALL Java_JavaHelloWorld_nativeHelloWorld 
(JNIEnv *, jobject); 



Protecting Your Source: Strategies for Defeating Decompilers 

#ifdef __ cplusplus 
} 

#endif 
#endif 

Now create your native method using the same ftmction that was auto-generated 
in the header file: 

#include "JavaHelloWorld.h" 
#include <stdio.h> 

JNIEXPORT void JNICALL Java_JavaHelloWorld_nativeHelloWorld 
(JNIEnv *, jobject); 

{ 

printf("Hello, Native World!"); 
} 

You compile using your favorite C compiler in libhello. so if you're on the 
Solaris platform or use hello. dll if you're in Windows. Now you're good to go. 
The Java classfile loads the native library and prints: 

Hello, Native World! 

A word of warning, don't be tempted to just put your protection mechanism 
in the native code because the hacker will simply comment out the check in 
the Java code. You'll also need to be careful about connection strings to data­
bases because a good hexdump using a disassembler will recover the login and 
passwords-native methods or not. 

Conclusion 

The fact that the Java classfile format contains so much information makes it 
exceptionally difficult to protect the underlying source. Yet most software devel­
opers continue to ignore the consequences, leaving their intellectual property at 
some risk. What you're looking for in your obfuscator is a process that takes 
polynomial time to produce and exponential time to reverse. 

I hope that the pretty exhaustive list of obfuscation transformations I went over 
in this chapter helps you approach something nearing that goal. At the very least, 
check out Christian Collberg's paper, which has enough information to digest for 
any developer who wants to get started in this area. 

It seems that a JVM's bytecode is too open to interpretation to protect with 
strong obfuscation that will work on he different flavors of the JVM. Table 4-3 
summarizes the approaches that you've seen in this chapter. 

119 



Chapter4 

120 

Although it does seem like an awful lot of trouble to go to when you could just 
write the application in native code, the portability of Java is very attractive. I believe 
that there are more than enough obfuscating transformations to make decompi­
lation a very difficult process; I also think that it is possible to make the code so 
illegible that it will take very close to exponential time to understand the code event 
if it is completely decompiled. The problem is that you can't achieve that in anything 
close to a polynomial time frame just yet. 

NOTE Perhaps it is worth noting that many of the original obfuscation tools 
didn't survive the dotcom implosion and that the companies have either 
folded or moved into other areas of specialization. So perhaps the market 
demands aren't even there and people are more than happy to live with the 
fact that people can recover the source from a classfile. 

Table 4-3. Protection Strategies Overview 

Strategy Potency Resilience Cost Notes 
Compilation flags Low Low Low 

Writing two versions of High High Medium 
the applet or application 

Obfuscation Medium Medium Medium Can break some NMs 

Web services and High High High 
server-side execution 

Encryption Low Low Low 

Digital Rights High High High 
Management 

Fingerprinting your code Low Low Low Useful for legal 
protection 

Selling the source code Low Low Low 

Native methods High High Low Breaks code 
portability 

One final word-be very careful about relying on obfuscation as your only 
method of protection. Remember that disassemblers can also be used to rip 
apart your classfile and allow someone to edit the bytecode directly. Don't forget 
that interactive demonstrations over the Web or seriously crippled demonstra­
tion versions of your software can also be very effective. 



CHAPTER 5 

Decompiler Design 

FoR THE REMAINDER OF THIS BOOK, I'm going to focus on how you can create your 
own decompiler, which is, in fact, a cross-compiler that translates bytecode to 
source code. Although I will be covering the theory behind the relevant design 
decisions as they arise, my intention is to give you enough background informa­
tion to get you going rather than to give you a full-blown chapter on compiler 
theory. 

Don't expect your decompiler (ClassToSource in this chapter) to be more 
comprehensive or better than anything currently on the market; to be honest, 
it is probably closer to Mocha than JAD or SourceAgain. like most development, 
the first 80 to 90 percent of our decompiler is the easiest and the last 10 to 20 
percent takes much longer to complete. But ClassToSource will show you the 
basic steps of how to write a simple Java decompiler that can reverse engineer 
the majority of code you will come across. 

I cover the general design of your ClassToSource decompiler in this chap­
ter and delve into its implementation in Chapter 6. I'll round off the book 
with a number of case studies and a look at what the future may have in store 
for Java decompilers, obfuscators, and bytecode rearrangers. 

The tone of the next two chapters will be as practical as possible and I'll try 
not to burden you with too much theory. It is not that I don't want to pad out 
the book with endless pages of compiler theory, it's just that there are too many 
other good books on the subject. Compilers: Principles, Techniques and Tools, by 
Aho, Sethi, and Ullman (Pearson Higher Education, 1985), otherwise known as 
the Dragon book (so called because of its cover design), is just one of the better 
examples that quickly springs to mind. Appel's Modem Compiler 
Implementation in Java (Cambridge University Press, 2002) is another highly rec­
ommended tome. I'm going more for the style of Crafting a Compiler with C, by 
Fischer and LeBlanc (Addison-Wesley, 1991). Having said that, if I think there are 
some theoretical considerations that you need to know about, then I'll discuss 
them as necessary. 

121 



ChapterS 

122 

Introduction 

As I mentioned earlier, writing a decompiler is pretty similar to writing a com­
piler or cross-compiler because both translate data from one format to another. 
The essential difference between a decompiler and a compiler is that they go in 
opposite directions. In a standard compiler, source code is converted to tokens 
and then it is parsed and analyzed to finally produce a binary executable. 

As it happens, decompiling is very similar to compiling, only this time, the 
back end of the compiler is changing the intermediary symbols back into source 
code rather than into Assembler. Because of the binary format of a Java classfile, 
you can quickly transform the binary into bytecode and then treat the bytecode 
as just another language. It might help to think of your decompiler as a cross­
compiler or source code translator that transforms bytecode to Java. And 
remember, with ClassToXML, you've already got a way of converting the binary 
format of a classfile into XML. You'll be using this XML as the input to your 
decompiler. 

An abundance of other source code translators translate between different 
languages-for example, you can translate from COBOL to C, or even from Java 
to Ada or C, which will give you plenty of places to look for ideas. 

NOTE In case you're confused about the difference between opcodes and byte­
cocks, an opcode is a singk instruction, such as iload, that may or may not be 
followed by a data value or operand. Opcodes and operands together are gen­
erally referred to as bytecodes. 

Overall, the task of writing a decompiler is simpler; there are several signifi­
cant reasons for this. 

Limited Number of Opcodes 

You only need to understand a limited number of possible opcodes. You don't 
need to worry too much about syntax errors because the Java bytecode language 
is machine generated. This makes it tightly defined and very predictable. Sure, 
bytecode rearrangers or optimizers may cause problems, but rearrangers are 
a very special case. In general, you won't come across them because they have 
an awful habit of not being able to pass Java Verifiers or, worse still, of not work­
ing on some obscure NM implementation. 



Decompiler Design 

No Registers 

If James Gosling hadn't turned the hardware clock back 20 years and decided to 
go for a stack-based architecture, it's very unlikely that this book would ever see 
the light of day. Most hardware architectures use a minimum of three registers for 
typical computations, such as the simple equation a + b = c where values a and b 
are stored in the first two registers, and the result c is stored in a third register or 
used as part of a much larger computation. 

But a Java Virtual Machine (JVM) is a stack-based machine that pushes two 
operands onto the stack and then adds the top two stack elements by popping 
the stack twice-performing the addition and then pushing the result back onto 
the stack. No doubt, any design decisions are made because the virtual stack 
machine is easy to write and implement on any number of different platforms, 
from phones to SunFire El5,000's. But this portability is also the JVM's Achilles' 
heel as it simplifies the design of the JVM tremendously with the JVM designers 
adopting a Lowest Common Denominator approach to cater for all these diverse 
architectures. 

Data and Instruction Separation 

A further reason for the JVM's simple design is Java's security model. The separa­
tion of a stack machine's data and instructions allow the JVM to quickly scan the 
bytecodes and verify that each class file is not going to misbehave. 

We know the format of the bytecode at all times on all platforms. ln most 
modem compilers, the original source is translated into several intermediary for­
mats. Typically, a number of transformations are moving from a higher level, such 
as Cor C++, to a much lower level, such as Assembler. Normally these internal lan­
guages are rarely if ever published, but as luck would have it, the specification for 
Java bytecode is published. Thanks to Java's portability and the JVM specification, 
for the most part, we know what source produces what combinations of opcodes 
and operands on any number of platforms. 

Outside Java, any intermediate languages are much harder to decipher because 
the specification is rarely published. Decompiler writers have to recognize that 
sequences oflow-level operators represent some high-level functionality by 
a process of trial and error, with data and instructions scattered everywhere. Even 
the people behind decompiling early Visual Basic interpreted code have a harder 
time than their Java counterparts because, unlike Sun, Microsoft didn't publish 
a specification forVB's intermediate p-code language. 

Only a few papers or books cover the whole area of decompilation. One of 
the best resources is Dr. Cristina Cifuentes' thesis1 on Reverse Compilation 

1. http://www.itee.uq.edu.au/-cristina/dcc.html#thesis 

123 



ChapterS 

124 

Techniques available from the Queensland University of Technology in Australia. 
Dr. Cifuentes takes the much more arduous task of turning executables, rather 
than our partly compiled bytecode, back into the original higher-levellanguage. 
In terms of difficulty, there really is no comparison between converting a class­
file back into Java source and converting any executable back into C code. The 
output isn't defined at all, the data and instructions are not partitioned in any 
way, and different platforms and even different compilers on the same machine 
can produce completely different output. For example, a case statement com­
piled into binary by Visual C++ is a whole lot different than the output produced 
by a Watcom compiler. And as I suggested earlier, registers exponentially compli­
cate what happens at run time. 

JIT Optimization 

In compiled or noninterpreted languages, compilers do most of the hard work, 
such as optimization during the compilation phase. Interpreted languages such 
as Java do all their work when they are finally executed. The technologies for' 
increasing Java speed-TIT and inlining or hotspot technology being the obvious 
examples-all focus on speeding up the interpreting phase. They completely 
ignore the initial compilation in an attempt to overcome the limitations of the 
stack-based virtual machine design. Interpreters are by and large much easier to 
decompile as you're always looking at an intermediate format with all the required 
information still intact in its original form. 

Fragile Super Class 

The next reason why Java is particularly susceptible to decompilation comes from 
Java's object-oriented (00) nature and is called the fragile super class problem. 
Because of the nature of other 00 languages such as C++, it is often necessary 
to recompile or relink an application when a class in another library is changed. 
This is true if the implementation of a given method changes or when new 
methods are added. Java gets around this by adopting a static architecture. All 
classes are dynamically linked on demand as and when they are needed during 
execution. Or in English, all classes including the core classes are only linked at 
runtime. 

For this to work, all the symbolic names and types need to be in the classfile. 
And for simplicity's sake, Java's original designers put all the methods and fields 
in the class as well as provide pointers to all externally referenced fields and meth­
ods in the classfile's constant pool. This separates the data and instructions in 
any given classfile and gives us a complete map of the program. 



Decompiler Design 

Simple Control Structures 

Almost as important, from our point of view, is the simplicity of the control 
structure in Java. Program flow in Java is all based around conditional and non­
conditional goto statements, which is one of the reasons why many decompilers 
find it hard to tell the difference between a while loop and a for loop. But it also 
means that we don't need to handle complex flows such as any indirect calls. It's 
also unlikely that this will change in the near future because, thanks to the JVM, 
design and security restrictions on possible bytecode combinations will only offer 
very limited scope for any real optimization, especially for any code run through 
the Java Verifier. 

So where do we go from here? I'll begin with a recap of the overall problem 
domain. Then I'll quickly review what tools are available to help you solve the 
problem. In addition, I'll show you how to investigate some of the strategies that 
others before us have used to create a decompiler. Finally I'll outline the design 
and conclude with some simple decompiler examples. 

Defining the Problem 

Perhaps now is a good time to recap what you already know about the classfile 
and the JVM before I get into the design of your decompiler. 

Although the main area of focus in this chapter is the bytecode in the class 
methods where most of the decompilation will take place, you will still need to 
use much of the other information in the remainder of the classfile, such as the 
constant pool, to create good decompiled code. 

If you quickly review the classfile, you can break it down into the following 
parts. 

• Magic number 

• Major and minor versions 

• Constant pool 

• Access flags 

• Interfaces 

• Class fields 

• Class methods 

• Class attributes 

125 



ChapterS 

126 

If you leave out any attributes for simplicity's sake, you know that the constant 
pool follows the OxCAFEBABE magic number and the major and minor versions 
of the compiler. The constant pool contains all the symbolic information and 
constants used in the rest of the classfile. The symbolic information appears as 
short character-encoded strings in a Unicode-like format, which detail method 
signatures as well as parameter and type information for each field and method. 

The constant pool is followed by a series of access flags that tell you the type 
of method, namely class or interface, and whether it's public or private; they also 
give you a pointer to the name of the superclass in the constant pool. 

The remaining three elements of the classfile-interfaces, class fields, and 
class methods-are all arrays. Interfaces contain the definitions of any interfaces 
defined in the classfile; class fields contain a series of pointers or indices into the 
constant pool giving the name and type information for the class; and finally, class 
methods can be either Java methods or native methods. Note that you cannot 
decompile native methods because they are essentially C or C++ dynamically 
linked libraries. 

From Chapter 2, you know that the JVM is an abstract stack processor and that 
each method maintains a unique operand stack, stack pointer, program counter, 
and an array of local variables that act as general purpose registers. Ukewise, in 
Chapter 2, you also learned the format of the classfile and how to read it in from 
a file. Figure 5-l shows a diagram of its architecture. 

Stack 

Stack 1 
Pointer 

bipush 10 
Prog 3 newarray int 

Counter astore 1 
iconst-1 ••c•• 

Local istore-2 
Variables goto 3 

aload 1 "a" 

(this) 
iload-2 
iconsf 1 

isub-

lv_1 iload 2 
iload-2 

imuf 
lv_2 iload 2 

imuf 
iastore 

lv_3 iinc2 1 
inload 2 
bipush -10 

lv_n if_icmple 10 
return 

Figure 5-1. Java Virtual Machine architecture 



Decompiler Design 

The execution frame uses both a stack and a series of local variables that act 
like general-purpose registers. Whereas lv_o is always the address of this, the 
current method, lv_1, lv_2 ... lv_n, are the local variables created as the bytecode 
is interpreted. The stack is used as a temporary storage area and the stack pointer 
and program counter enable the NM to know what opcodes need to be executed 
and where to find their operands on the stack. 

The NM's instruction set of 200 odd opcodes has the usual mathematical, 
logical, and stack operators as well as a number of high-level opcodes that perform 
dynamic memory allocation (new), function invocation (invokevirtual), array 
indexing (aaload), exception processing (throw), type checking (checkcast), and 
monitors (monitorenter, monitorexit). tableswitch and lookupswitch allow for 
multiway conditional and unconditional branching as well as the more standard 
goto and label statements using statements such as i fcmple (goto label if less than 
or equal). 

What you now need is a bytecode grammar that you can use to match the 
opcodes and convert the data back into Java source. You also need to be able 
mirror the control flow and any explicit transfers, such as goto or jsr (jump sub­
routine) statements, as well as being able to handle any corresponding labels. 

From the NM specification, bytecodes can be broken down into the follow­
ingtypes. 

• Load and save instructions 

• Arithmetic instructions 

• Type conversion instructions 

• Object creation and manipulation 

• Operand stack management instructions 

• Control transfer instructions 

• Method invocation and return instructions 

• Handling exceptions 

• Implementing finally 

• Synchronization 

Each and every opcode has a defined behavior that you use in the parser to 
re-create the original Java. Both Sun's original NM specification and the Java 
Virtual Machine (O'Reilly and Associates, 1997) are very good at describing 

127 



ChapterS 

128 

opcodes in what can only be termed Technicolor detail. You can use this infor­
mation in your decompiler's grammar. 

(De)Compiler Tools 

All the constraints described in this chapter's introduction enforce a type of 

computational grammar on your bytecode. The stack-based last in first out 

(LIFO) architecture is one of the simplest you can encounter. You can codify 

these actions in a parser so that you can fairly easily reconstruct the source 

code from these series of opcodes. 
You need to make a number of choices before you write your decompiler. You 

could code the entire decompiler by hand, and several Java decompilers almost 

certainly take that approach, or you could look at a number of tools that would 

make your job a whole lot easier. 
Flow analysis tools such as Java 'Ii"ee Builder (JTB)2 or J]'Ii"ee3-which you won't 

be using-generate control flow graphs to help you figure out where and why the 

code branched. You can use compiler-compiler tools such as Lex and Yacc to scan 

and parse the bytecode; many developers have used them for more complex tasks. 

Lex and Yacc allow you to codify the grammar into a series of production rules that 
pattern match the bytecode and whose associated actions generate the source code 

fragments. 
You'll get to look at as many other solutions as possible. I suspect that all 

high-level code transformations used by Jive, Mocha, and even SourceAgain are 

hard-coded transformations looking for specific constructs rather than taking 
a more general approach. It's unlikely that any of these programs tries to inter­
pret rather than predict all combinations of high-level structures. 

I will focus on the simpler approach where the high-level structures are hard 
coded, because it fits in well with your parser methodology. But you will also look 
at some advanced strategies where the decompiler infers all complicated high-level 

structures from the series of goto statements in the bytecode. 

Compiler-Compiler Tools 

Although you will be looking at the different strategies that have been used to 

decompile Java, your core parser will be a Lex/Yacc parser written in Java using 

]Lex and CUP where the bytecode is recovered from the bottom up rather than the 
top down. You don't want to reinvent the wheel, and wherever possible, you'll use 

existing tools like ]Lex and CUP to implement the functionality you need in 

2. http://www.cs.purdue.edu/jtb/ 

3. http://www.j-paine.org/jjtree.html 



Decompiler Design 

your language translator. You'll see that decompiling the basic code blocks is 
straightforward with the exception of a few rather awkward bytcodes. 

If you've never come across Lex and Yacc before, they operate on textual input 
files. The Lex input file defines how the byte stream is to be tokenized using pattern 
matching. The Yacc input file consists of a series of production rules for the tokens. 
These define the grammar, and the corresponding actions generate a user-defined 
output. 

After running these input files through Lex and Yacc, the generated output 
in C or even Java becomes the source code for your decompiler engine. I have 
two principal reasons for using compiler-compiler tools: firstly, these tools dra­
matically reduce the number of lines of code, which makes it a whole lot easier 
for readers to understand concepts; and secondly, it cuts development time in 
half. JLex and CUP are available on any platform that can support a NM. 

On the negative side, once compiled, the generated code can be a lot slower 
than what you can achieve by handcrafting a compiler front end. However, making 
the code easy to follow is a prerequisite of this book. Nobody-especially yours 
truly-wants to read through reams of code to understand just what is happening, 
so I'll be sticking to Lex and Yacc. 

By a bizarre twist, using compiler-compiler tools such as JLex and CUP is 
a great way of hiding program logic and defeating decompilers because the rules 
and logic are at a much higher level. Even if someone decompiles the classfiles 
associated with ClassToSource, they would need to take another step to recover 
the original JLex and CUP files from the generated Java. Unfortunately this only 
has limited applications in the real world. 

Now dozens of different compiler-compiler tools exist for different operating 
systems and target languages. Lex and Yacc are the most commonly known, and 
they come in Windows as well as the original Unix flavors. There are both free 
and commercial versions, which output Pascal, C, C++, and Java code. No doubt 
many other varieties exist that are too numerous to mention (see the comp.com­
pilers FAQ4 for more information). 

Apart from one or two notable exceptions, explanations of Lex and Yacc 
are always too theoretical and lack that practical dimension of how to put it all 
together. A number of steps are simple once they are explained, but more often 
than not, they lead to a great deal of confusion. 

NOTE The first example of Lex and Yacc that I ever came across was a simple 
calculator. In fact, the second and almost every other example that I've subse­
quently found were also for calculators of varying degrees of difficulty. You 
might say that the calculator is the "Hello, World" of the compiler-compiler 
tool community. 

4. http://compilers.iecc.com/faq.txt 

129 



ChapterS 

130 

A myriad of alternatives are not based on Lex and Yacc. If you take Java as 
the target language and start with JLex and CUP as the Lex and Yacc variants, 
you'll also come across ANother Tool for Language Recognition (ANTLR)5, the 
compiler-compiler tool formerly known as PCCTS. And, of course, you'll come 
across Jack (Get it? It rhymes with Yacc.), which became JavaCC.6 

Lex 

Lex uses regular expressions to break up the input stream into tokens, and Yacc 
tries to take these tokens and match them to a number of production rules using 
a shift/reduce mechanism. Most production rules are associated with an action, 
and it's these context-sensitive actions that output, in this case, Java source code. 

Tokens are also known as terminals, and production rules are identified by 
a single non-terminal. Each non-terminal is made up of a series of terminals and 
other non-terminals. An analogy that most people use explains this as thinking 
of terminals (tokens) as leaves and non-terminals as the branches. 

Yacc 

CUP, like Yacc, is a standard, bottom-up lALR(l) parser (lALR stands for lookahead 
left -right). By bottom-up, I mean that you can construct the parse tree from the 
leaves, whereas a top-down parser tries to construct the tree from the root. IALR(l) 
means that the type of parser processes tokens supplied by the scanner Lex from 
left to right (IALR(l)) using the rightmost derivation (LALR{l)) and can look ahead 
one token (LALR(l)). An LR parser is also known as a predictive parser, and an 
IALR is the result of merging two LR sets whose items are identical except for 
the lookahead sets. lALR(l) parsers are very similar to LR(l) parsers, but LALR(l) 
parsers are typically much smaller because the lookahead token helps reduce the 
number of possible patterns. 

LALR(l) parser generators are the de facto standard in the rest of computing 
world. However, Java parsers are more likely to fall into the LL(k) category of 
parsers. LL(k) parsers are top down parsers, scanning from left to right (LL(k)) 
using the leftmost derivation (LL(k))-which is where the top down comes 
from-and can look ahead k tokens. 

Although LL(k) parsers are allegedly easier to write and the user-defmable 
number of lookahead tokens is a major attraction, all my experience is with 
IALR(l) parsers, so personally, I feel more at home with LALR(l) parsers such 
as CUP. Many of the standard compiler construction tomes also heavily feature 

5. http://www.antlr.org/ 

6. https :/ /javacc.dev .java .net/ 



Decompiler Design 

Lex and Yacc rather than any other LL(k) alternatives, so there are plenty of exam­

ples to get you going. Not surprisingly then, I'm going to use JLex and CUP in 

ClassToSource. 
Hopefully some of you will already familiar with Lex and Yacc, which will help 

cut any learning curve. Feel free to play around with the other parsers-it comes 

down to personal preferences and what you feel most comfortable with.7 

JLex 

Eliot Berk originally developed JLex at Princeton University, but now it is maintained 

by Andrew Appel, also at Princeton, the author of Modern Compilers in ]ava/MUC 
(Cambridge University Press, 1997). Like all versions of Lex, JLex allows you to use 

regular expressions to break up the input stream and turn it into tokens. You'll use it 

in conjunction with CUP to define your decompiler bytecode grammar, but first I'll 
show you how to use JLex on its own as a simple scanner ( see Listing 5-l in the 

"Regular Expression Rules" section). 

Lex, whether it's running on Unix or DOS, inC or in Java, is a preprocessing 

language that transforms the specification or rules into the target language. 

A C language specification becomes lex. yy. c and a Java specification becomes 

filename .lex. java after it's run through the Lex program. You then need to compile 

the code output like any other Cor Java program. Lex is normally used in con­

junction with Yacc, but you can also use it on its own for simple tasks such 

as removing comments from source code. However, if you need to attach any 

logic to the program, then you'll almost certainly need to hook it up to some sort 

of parser, such as Yacc, or in your case, CUP. 

During the introduction to this section, I mentioned how Lex and Yacc have 

been used for many years by compiler developers in the Unix community. If you're 

more used to Lex, then JLex does differs in a number of ways. A JLex file is split 

into three sections: 

• User code 

• JLex directives 

• Regular expression rules 

Although the structure (shown in Listing 5-1) is different from the Unix 

version of Lex-typically compiled using C instead of Java-and the definitions 

and macros are quite different too, thankfully, the regular expression rules use 

7. See http: I /dinosaur .compilertools.net/ for more information and links to some excellent 
resources. 

131 



ChapterS 

132 

standard regular expressions. So if you're already familiar with Lex, or even vi 
or Perl, then it won't seem like you've strayed too far from familiar ground. 

User Code 

User code is everything that precedes the first%%. It is copied "as-is" into the gen­
erated Java file. JYpically, this is a series of import statements. And, as you're going 
to use JLex in conjunction with CUP, your user code will consist of the following: 

import java_cup.runtime.Symbol; 

JLex Directives 

The directives section is next, beginning after the first %% and ending with another 
%%.These directives or flags tell JLex how to behave. For example, if you use the 
%notunix operating system compatibility directive, then JLex will expect a new line 
to be represented by \r\n and not \n as it is in the Unix world. The remaining direc­
tives, listed here, allow you to enter your own code into various parts of the generated 
file or change the default name of the generated Lex class, function, or type (e.g., 
from yylex to scanner). 

• Internal code 

• Init class code 

• End of File class 

• Macro definitions 

• State declarations 

• Character counting 

• Line counting 

• Java CUP compatibility 

• Component titles directive 

• Default Token JYpe directive 

• End of File directive 



Decompiler Design 

• Operating system compatibility 

• Character sets 

• Format to and from file 

• Exceptions code 

• End-of-File return value 

• Interface to implement 

• Making the Generated class public 

You are only interested in a few of the directives, such as the %cup or CUP 
compatibility directive. For your purposes, the directives section will be something 
as simple as the following: 

%% 

%cup 

digit = [0-9] 
whites pace 
%% 

[\ \t\n\r] 

Regular Expression Rules 

The regular expressions section is where the real scanning takes place. The rules are 
a collection of regular expressions that break up the incoming stream into tokens so 
the parser can do its job. If you're familiar with regular expression in Perl or vi, then 
you really shouldn't have any problems. If you haven't come across regular expres­
sions before, then the ]Lex manual8 is a great place to start. 

Let's take a simple example to put this all together. Listing 5-l adds line 
numbers to any file input from the command line. 

Listing 5-l. Num.lex Scanner for Adding Line Numbers to Files 

II include the import statement in the generated scanner 
import java.io.IOException; 

8. http://www.cs.princeton.edu/-appel/modern/java/Jlex/ 

133 



ChapterS 

134 

II start of the directives 
%% 

II define the class as public 
%public 
II rename the class to Num 
%class Num 

II Yytoken return type is void 
%type void 

II Java code for execution at end-of-file 
%eofval{ 

return; 
%eofval} 

II turn line counting on 
%line 

II internal code added to make it a standalone scanner 
%{ 

public static void main {String args []) { 
Num num = new Num(System.in); 

} 

%} 

%% 

try { 
num.yylex(); II call the scanner 

} catch {IOException e) { System.err.println{e); } 

II regular expressions section 

\n {System.out.println(yyline+1);} 
.*$ { System.out.println((yyline+1)+"\t"+yytext()); } 

Install JLex by obtaining a copy of Main. java from the URL provided. Copy it 
into a directory called JLex and compile it using your favorite Java compiler. Save 
the Num .lex file (see listing 5-l), and compile it as follows: 

java Jlex.Main Num.lex 
mv Num.yylex.java Num.java 
javac Num.java 



Decompiler Design 

Now you can add line numbers to your file by typing the following: 

java Num < Num.java > Num_withlineno.java 

Normally in a scanner/parser combination the scanner operates as parser 
input. In the first example, you didn't even generate any token, so you have noth­
ing to pass to CUP, your Java parser. You'll see later that JLex and CUP can 
interoperate with some small modifications. Lex generates a yylex() function 
that eats tokens and passes them on to yyparse(), which is generated byYacc. 
You'll rename these functions or methods to scanner() and parse(), but the idea 
is the same. 

I doubt if many commercial compilers ate built around Lex and Yacc because 
they have limited functionality and cannot deal with quirky aspects of some pro­
gramming languages. Fortran, for example, is a nightmare to tokenize, because it 
is completely oblivious to whitespace. But for your purposes, Lex and Yacc are 
excellent utilities, because JVM bytecode is so tightly defined and because they 
offer a simple and neat way to see how bytecode fits together. 

CUP 

Yacc, as you may or may not know, stands for "Yet another compiler-compiler" 
and is essentially a parser generator. Don't worry if up until now you thought 
Yacc could just as easily have stood for "Yamanashi area communication com­
munity" because I'll try to explain in the simplest possible terms exactly what 
I'm talking about and why it is such a useful tool. 

Simply put, Yacc allows you to define grammar rules for parsing incoming 
lexical tokens, and hopefully, it produces the desired output as defined by your 
grammar. CUP9-also known as JavaCUP-is a public domain Java variant of 
Yacc, which, because of Java's portability, will compile on any machine that has 
a JVM and JDK. Like Yacc, CUP is almost certainly a contrived acronym as it comes 
from mildly cumbersome Construction of Useful Parsers. 

Stephen Johnson at the AT&T Bell Laboratories in New Jersey wrote the 
original version ofYacc. Lex and Yacc as well as sed and awk were almost always 
included in every Unix implementation since the early days of Berkeley in the 
1980s. sed and awk would typically be used for simple command-line parsing 
tools with Lex and Yacc being reserved for more complicated parsers. Unix sys­
tem administrators and developers typically use some or all of these tools from 
time to time in an effort to transform or translate an input file into some other 
format. These days, Perl has largely taken over from all such utilities, with Lex 
and Yacc being reserved for only the most difficult of tasks, if at all. 

9. http://www.cs.princeton.edu/-appel/modern/java/CUP/ 

135 



ChapterS 

136 

Yacc as well as Lex have been copied many times and are available on many 
platforms. Commercial and public domain variants of Lex and Yacc are available 
on Windows and DOS, for example, from MKS and from GNU (Flex/Bison). Be 
warned, however, CUP does not have exactly the same functionality or format 
as a Yacc grammar written for any C compiler, but it does behave in a somewhat 
similar fashion. CUP can be compiled on any operating system that supports 
JDK. 

CUP, being a Yacc parser, is closest to an IALR(l) parser and is just one of 
a number of different Yacc parser generators written for the Java language. Byacc 
and Jell are two other examples. If you're happier with an LL parser and don't want 
to use an LALR grammar, then you might want to look at ANTLR or JavaCC from 
Sun. But for our purposes I'm going to focus primarily on CUP. 

To install CUP, copy the source files from the URL provided. An installation 
script (INSTALL) is provided for Unix along with a makefile for Windows 95/NT 
(nmake10). However, it is very straightforward to compile by typing the following 
in the CUP root directory: 

javac java_cup/*java java_cup/runtime/*.java 

CUP files are made up of the following four sections: 

• Preamble or declarations sections 

• User routines 

• List of symbols or tokens 

• Grammar rules 

Declarations 

The declarations section consists of a series Java package and import statements 
that vary depending on what other packages or classes you want to import. 
Assuming that the CUP classes are in your classpath, add the following line of 
code to include the CUP classes: 

import java_cup.runtime*; 

All other imports or package references are optional. A start declaration will 
tell the parser where to look for the start rule if you want it to start with some 
other rule. The default is to use the top production rule, so in most grammars, 
you'll come across the start rule and find that it is redundant information. 

10. Available with Visual C++ 



Decompiler Design 

User Routines 

Four possible user routines are allowed in CUP (see Listing 5-2): action and parser, 
which are used to insert new code and override default scanner code and variables, 
ini t for any parser initialization, and finally scan, which is used by the parser to 
call the next token. All four possible user routines are optional. 

Listing 5-2. User Routines Examples 

action code {: 

:} ; 

II allows code to be included in the parser class 
public int max_narrow = 10; 

public double narrow_eps = 0.0001; 

parser code {: 

:} ; 

II allows methods and variable to be placed 
II into the generated parser class 
public void report_error(String message, Token tok) { 

errorMsg.error(tok.left, message); 
} 

II Preliminaries to set up and use the scanner. 
init with {: scanner.init(); :}; 
scan with {: return scanner.yylex(); :}; 

Both ini t and scan are commonly used even if it is only to use scan to change 
the name of the scanner !lexer to something more meaningful than yy lex (). Any 
routines within init are executed before the first token is requested. 

Most parsers will have a series of actions defined in the grammar section. CUP 
puts all these actions in a single class file. The action user routine allows you to 
define variables and add extra code, for example, symbol table manipulation rou­
tines that can be referenced in the nonpublic action class. parser routines are for 
adding extra code into the generated parser class-don't expect to use this very 
often, if at all, except maybe for better error handling. 

Symbols 

CUP, like the original Yacc, acts like a stack machine. Every time a token is read it 
is converted into a symbol and placed or shifted onto the stack. These tokens are 
defined in the "Symbols" section of the parser. 

Symbols can be either terminal or non-terminal. Unreduced symbols are 
called terminal symbols and symbols that have been reduced into some sort of 

137 



ChapterS 

138 

rule or expression are called non-terminal symbols. Or to put it another way, termi­
nal symbols are the symbols/tokens used by the ]Lex Scanner, and non-terminal 
symbols are what the terminals become after they satisfy one of the patterns or 
rules in the "Grammar" section of the parser. Usting 5-3 shows a good example of 
both terminal and non-terminal tokens. 

Symbols can have associated Integer, Float, or String values, which are prop­
agated up the grammar rules until the group of tokens either satisfy a rule and 
can be reduced or crash the parser if no rule is ever satisfied. 

Listing 5-3. Parser. cup 

mport java_cup.runtime.*; 

II Interface to scanner generated by Jlex. 
parser code {: 

Parser(Scanner s) { super(); scanner = s; } 
private Scanner scanner; 

:}; 
scan with {: return scanner.yylex(); :}; 

terminal NUMBER, BIPUSH, NEWARRAY, !NT, ASTORE_1, ICONST_1; 
terminal ISTORE_2, GOTO, ALOAD_1, ILOAD_2, !SUB, IMUL; 
terminal IASTORE, !INC, IF_ICMPLE, RETURN, END; 

non terminal 
non terminal 

functions 

function 

keyword 

function, functions, keyword; 
number; 

function 
functions function 

number keyword number number END 
I number keyword number END 
I number keyword keyword END 
I number keyword END 
I END 

.. - BIPUSH 

I NEWARRAY 

I INT 

I ASTORE 1 

I ICONST_1 



Decompiler Design 

number NUMBER 

ISTORE_2 
GOTO 
ALOAD_l 
ILOAD_2 
!SUB 
IMUL 
IASTORE 
IINC 
IF_ICMPLE 
RETURN 

A parser's functionality depends on its ability to interpret a stream of input 
tokens and how it turns these tokens into the desired output as defined by the 
language's grammar. In order for the parser to have any chance of success, it needs 
to know every symbol along with its type before any shift/ reduce cycles can take 
place. A symbol table is generated from the list of terminals and non-terminals 
by CUP and output as a Sym.java file, which needs to be imported into the JLex 
scanner for JLex and CUP to work together. 

Grammar 

CUP is an LALR(l) machine, meaning that it can look ahead one token or symbol 
to try and satisfy a grammar rule. If a production rule is satisfied, then the symbols 
are popped off the stack and reduced with the production rule. The aim of every 
parser is to convert these input symbols into a series of reduced symbols right 
back to the start symbol or token. 

In layman's terms, given a string of tokens and a number of rules, the goal is 
to trace the rightmost derivation in reverse by starting with the input string and 
working back to the start symbol. You reduce your series of non-terminals to 
a terminal using bottom-up parsing. All input tokens are terminal symbols that 
are subsequently combined into non-terminals or other intermediate terminals 
using this shift/reduce principle. As each group of symbols is matched to produc­
tion rule, it ultimately kicks off an action that generates some sort of output defined 
in the production rule action. You'll see how this works in a simple example at the 
end of this chapter in Listing 5-15. 

You'll see that under certain circumstances, it's possible that input tokens or 
intermediate symbols can satisfy multiple production rules; this is what is known 
as an ambiguous grammar. The precedence keyword mentioned in the "Symbol" 

139 



ChapterS 

140 

section allows the parser to decide which symbol will take a higher precedence. For 

example, the symbols for multiplication and division might take precedence over 

the addition or subtraction symbols. 
It's worth mentioning that CUP will allow you to dump the shift/reduction 

table for debugging purposes. Listing 5-4 shows the command that produces 

a human-readable dump of the symbols and grammar, the parse state machine, 

the parse tables, and the complete transitions. Some of the output is also shown. 

Listing 5-4. Partial Debug Output 

java java_cup.Main -dump < Parser.cup 

# Initializing parser 
# Current Symbol is #2 
# Shift under term #2 to state #3 
# Current token is #3 
# Reduce with prod #23 [NT=4, SZ=1] 
# Goto state #4 
# Shift under term #3 to state #6 
# Current token is #2 
# Reduce with prod #8 [NT=3, SZ=1] 
# Goto state #19 
# Shift under term #2 to state #3 
# Current token is #18 
# Reduce with prod #23 [NT=4, SZ=1] 
# Goto state #24 
# Shift under term #18 to state #25 
# Current token is #2 
# Reduce with prod #4 [NT=1, SZ=4] 
# Goto state #5 
# Reduce with prod #O [NT=2, SZ=1] 
# Goto state #2 
# Shift under term #2 to state #3 
# Current token is #4 
# Reduce with prod #23 [NT=4, SZ=1] 
# Goto state #4 

Now that you've seen what tools you're going to use, you should begin to think 

about what steps you need to take to create your decompiler. First, you have to 

find some way to break up the classfile into an appropriate syntax so that it can be 

tokenized, similar to javap output. ClassToXM:L will suffice for your purposes. Next 

you need to write the JLex Scanner to tokenize the output from ClassToXM:L and 
finally you'll need to define the CUP grammar and associated actions to convert 

these tokens back into source. 



Decompiler Design 

Strategy 

A significant part of the problem with building a decompiler is making it general 
enough to deal with arbitrary cases. When Mocha comes across an unexpected 
language idiom, it either aborts or shoots out illegal gotos. Ideally, you should be 
able to code a general solution decompiler rather than one that is little more than 
a series of standard routines and an awful lot of exception cases. You don't want 
ClassToSource to fail on any construct, so a general solution is very attractive. 

Before you take that approach, though, you need to know if there are any 
disadvantages to this approach and whether you will gain a better solution at the 
expense of outputting illegible code that looks nothing like the original source. Or 
worse still, whether it will take an inordinate amount of time to get there. You could 
replace all the control structures in a program with a program counter and a sin­
gle while loop, but that would destroy the mapping and cause you to lose structural 
or syntactical equivalence, which is definitely not your goal even if it is a general 
solution. 

From our discussions, you know that unlike other languages, such as C++, 
which doesn't use an interpreter, you don't have the headache of separating data 
and instructions because all of your data is in the constant pool. In the remainder 
of this chapter and in the next, you'll also see that recovering source-level expres­
sions is relatively easy. So it seems that your main problem and any corresponding 
strategy you use is going to mainly concern handling the bytecode's control flow. 

After the previous "CUP" section, you may be asking why you need to have 
a strategy, why can't you just build a grammar in Lex and Yacc and see what comes 
out the other side? Well unfortunately the parser can recognize only sequential 
instruction sequences. So you might not be able to parse all NM instructions in 
a single bottom-up pass because bytecodes have this awful habit of branching. 
The stack is used as a temporary storage area, and you need to be able to control 
what happens to that partial sequence when the code branches. On their own, 
Lex and Yacc just don't offer that level of functionality, so you need to figure out 
what approach you need to take to store these partially recognized sequences. 

This section looks at a couple of different strategies you can try to help over­
come this problem of synthesizing high-level control constructs from goto-like 
primitives. As I said, the ideal general solution would be where you could decom­
pile every possible if, then, else, or for loop combination without needing any 
exception cases and while still keeping the source as close as possible to the origi­
nal. The alternative is to attempt to anticipate all high-level control idioms. 

The first choice is to use the techniques based on Cristina Cifuentes' work as 
described in the paper "A Methodology for Decompilation."11 This describes dec, 
Cifuentes' decompiler for C programs on Intel boxes. Although dec recovers C 
and not Java code, a great deal of the discussion and design of Cifuentes' Universal 
Decompiler is directly applicable to the task at hand. 

11. www.itee.uq.edu.au/-cristina/cleil.ps 

141 



ChapterS 

142 

The second choice is the more general approach-where you transform goto 
statements into equivalent forms. It would be so much simpler if you could just 
fire off a Lex/Yacc scanner and parser at the classfile and decompile the code in 
a single pass or, at the very least, dispense with any control flow analysis. Well 
that's what Todd Proebsting and Scott Watterson attempt to do in their "Krakatoa: 
Decompilation in Java'' paper.12 Krakatoa, an early decompiler that is now part of 
the Sumatra/Toba project, uses Ramshaw's algorithm13 to transform gotos into 
loops and multilevel breaks. It claims to offer a neat one-pass solution while still 
keeping the original structure. The Krakatoa approach is tempting, because it is 
less likely to fail due to any control flow analysis problems. 

The third choice comes from Daniel Ford of IBM Research and was part of 
possibly the very first decompiler, Jive, which I believe never even made it out of 
IBM Research. Daniel, in his paper "Jive: A Java Decompiler'' -which unfortunately 
is no longer available-puts forward a truly multipass decompiler that "integrates 
its parse state information with the sequence of machine instructions it is parsing." 
Jive decompiles by reducing tokens as more and more information becomes avail­
able with each successive pass. 

Your fourth choice would be to take the truly simple approach. You'd look at 
a single pass using Lex/Yacc in which you'd use a lot of buffers to maintain the 
state of each reduction before a branch, and then you'd continue where you left 
off after the function returns control back to where it was before the jump. Or 
you could go one step further and use peephole optimization as a second pass 
parser. Peephole optimization is where you hard code combinations of instruc­
tions and simply hope you don't come across any new idioms. 

Perhaps you could go for something more esoteric, such as some sort of pat­
tern matching AI parser. It's conceivable that a neural network could be trained 
to output source after it was trained on numerous applets and applications. Strings 
are passed in at one end of the neural network as tokens push a Java representa­
tion of code at the other end. You then train the neural network to turn bytecode 
phrases into Java phrases similar to your more conventional approaches. Additional 
code would then take this output information to recover the complete structure. 
The neural network, like your previous choices, would still be matching patterns 
because, after all, no matter what tools you use, you are always going to be using 
pattern matching to some degree. Even if this approach does seem a bit unob­
tainable, it would have one advantage over other techniques. Due to the fuzzy 
nature of the solution, it would be better at overcoming any new combinations 
of bytecodes that might make it possible to handle any bytecode rearranging 
techniques. 

12. www.usenix.org/publications/library/proceedings/coots97/full_papers/proebsting2/ 
proebsting2.pdf 

13. Lyle Ramshaw's paper "Eliminating go to's While Preserving Program Structure" was written 
at Digital's System Research Center in Palo Alto in 1985. 



Decompiler Design 

Universal Decompiler 

First a word of warning from Cristina Cifuentes in "A Methodology for 
Decompilation." "A naive approach to decompilation attempts to enumerate all 
valid phrases of an arbitrary attribute grammar and then to perform a reverse 
match of these phrases to their original source code." Or to put it another way, if 
you were thinking that you could simply use Lex and Yacc to recover code, then 
you better think again. 

I have already mentioned Cristina Cifuentes' decompiler dec several times 
in this book. Essentially dec is an incomplete decompiler written at the Queensland 
University of Technology during 1993 and 1994. dec was different from other ear­
lier decompilers because it recovered source code from binaries rather than from 
partially compiled objects. 

Although it seems that Cifuentes and her colleagues hit a number of roadblocks, 
they did introduce some interesting concepts that you can take advantage of, espe­
cially because you're dealing with bytecode that is more analogous to objects than 
Intel binaries. 

dec consists of three modules: the front-end loader/parser, the universal 
decompiling machine (UDM), and the back-end code generator. The front 
and rear ends are platform dependent, whereas the UDM is machine and 
language independent. ClassToSource's front end will always be reading in 
the same stream of Java bytecodes, but there is no reason why the back end 
couldn't output any language such as Ada, which can already be compiled to 
bytecode. And, of course, ClassToXML could always be rewritten to handle 
other input streams such as Visual Basic 3 and 4 or even VB.NET objects. 

Front End 

The front end simulates an operating system loader, parses the incoming stream, 
and produces a higher level intermediate code. dec's front -end parser starts at the 
entry point determined by the virtual loader and follows every path sequentially, 
creating a new node at every jump until the final instruction has been mapped. 
Because of the lack of separation between data and instructions, dec's loader needs 
to be a much more complicated module than you need. 

The intermediate code generator works closely with the parser, giving each 
instruction an intermediate code representation as well as associating any used 
or defined registers. An optimization phase eliminates any redundant instructions 
by finding obvious combinations or language idioms. This is one of the reasons why 
the front end cannot be used for more than one language-different languages 
have different idioms. After this optimization phase, the condensed tokenized 
version of the input is passed onto the UDM. 

143 



ChapterS 

144 

Universal Decompiler Machine (UDM) 

The UDM performs the flow analysis of the program constructing a control flow 
graph {CFG) {not to be confused with a context free grammar) and splitting the 
high-level program into a series of basic blocks. 

Cifuentes defines a basic block as being "a sequence of instructions that has 
a single point of entry and single point of exit." The UDM builds a linked list, or 
tree, of these basic blocks for every branch, whether it's a loop, a procedure call, 
or an end of program. 

This is followed by a control flow analysis phase, which reduces the CFG into 
likely control structures, if-then-else, while, and for loops as well as case statements. 
Irreducible graphs are also converted into reducible versions at this stage, or in 
extreme circumstances, labeled and output as Assembler. 

A structuring algorithm interprets this information and outputs a high-level 
version of the code, and a data flow analysis module analyzes the defined and used 
data information to understand the type and scope of the variables. 

Back-End Processing 

The back end takes the high-levellanguage and maps it onto the target language. 
Not surprisingly in the case of dec, the target language is C. Global variables are 
declared, and then code is generated on a procedure-by-procedure basis from 
the blocks defined in the UDM, with local variables being declared as necessary. 

Ramshaw,s Algorithm 

The full title of Lyle Ramshaw's paper is "Eliminating go to's While Preserving 
Program Structure".14 The paper originally came out of some work that Ramshaw 
was doing during the early 1980s while he was trying to convert Donald E. 
Knuth's TeX. source from Pascal to a programming language called Mesa. You're 
looking at the algorithm because it can and has been used to convert goto-laden 
bytecode into goto-free Java source code. 

Ramshaw's idea is straightforward; replace all goto statements and their 
corresponding labels with an exit statement and appropriately labeled 
repeat-endloop pairs. Listing 5-5 shows a pseudocode example of putting the 
theory into practice. 

14. http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/SRC-004.pdf 



Decompiler Design 

Listing 5-5. Replacing go to Statements 

source 

actionl 
if test2 then goto L 
action2 
L:action3 

target 

actionl 
repeat 

if test2 then exit L 
action2 
exit L 

endloop:L 

Control flow in Java bytecode is largely dependent on the simple goto state­
ment. You can use Ramshaw's ideas to replace the goto bytecode statements with 
the equivalent for(;;), do-while loops, and break commands. 

Ramshaw went to a great deal of trouble to keep the Mesa and Pascal code 
structurally equivalent, which is exactly what you are trying to accomplish. 
However, your problem is that although the code is syntactically equivalent, it is 
the bytecode that will remain syntactically equivalent and not the original source. 
Ramshaw's algorithm changes the order of the bytecode and makes it more diffi­
cult for you to recover the original source. 

For this reason, Ramshaw's work is not going to be of much use in your quest 
for a good general decompiler. It may be very useful to an optimizing compiler 
where the source is not as important and finding a good general solution becomes 
the main criteria. However, there may be a single case where the algorithm is very 
useful. 

Normally in bytecode you don't have to worry about gotos with crossing 
scope, but you may come across some obfuscators that can introduce this sort 
of problem. Ramshaw deals with several categories of this irreducible graph 
problem in his paper. 

Although a Pascal to Mesa translator already existed, Ramshaw found that he 
needed to extend the translator to compensate for the fact that Mesa had only 
a limited version of the goto statement. 

Listing 5-6 shows a classic example of a how not to write goto statements. 
The scope of the gotos cross and create an irreducible graph that cannot be 
recovered unless the code is rewritten. Ramshaw describes a mechanism called 
stretching loops where he uses go to graphs to get around the simplest irreducible 
flow problems. 

145 



ChapterS 

146 

Listing 5-6. Poor Choice of go to Statements 

goto M 
action1 
Label L 
action2 
Label M 
action3 
goto L 

Mesa's author was influenced by Knuth's article "Structured Programming 
with go to Statements"15 where Knuth recommended not using goto statements 
that passed control into the center of a loop. So it is mildly ironic that almost 
a decade later, Ramshaw finds himself converting those very goto statements 
that Knuth and many others so vehemently opposed in code written by none 
other than Donald E. Knuth. Having said that, Ramshaw does say that there 
were little or no occurrences of the offending goto statements and that they 
were quickly removed from later versions of TeX. 

Jive 

Jive was probably the first Java decompiler. It was written by Daniel Ford, a man­
ager in the Web Technologies department at the IBM Almaden Research Center, 
in San Jose, California. The original paper is not available online, but you might 
be lucky if you request a paper copy by going to http: I lwww. research. ibm. com/. 

In this approach to decompilation, you use a multipass scanner. After each 
successive pass, the bytecode is gradually transformed into something that resem­
bles the original Java source code. The bytecode is converted into statements and 
idioms to make it easier to recognize and recover the building blocks of the original 
Java code. listing 5-7 demonstrates this. 

Listing 5-7. Simple if Statement Java Source 

public class simpleif { 
public static void main(String[] args) { 

int a = 12; 

int b = 13; 
if (al=b) { 

a=b; 

15. D. E. Knuth. "Structured programming with go to statements." Computing Surveys, pages 
261-302, Dec 1974. 



Decompiler Design 

} 

} 

} 

The main method in Listing 5-7 has the bytecode in Listing 5-8. 

Listing 5-8. Simple if Statement in Bytecode 

o bipush 12 
2 istore 1 
3 bipush 13 
5 istore_2 
6 iload 1 
7 iload_2 
8 if_icmpeq 13 

11 iload_2 
12 istore 1 
13 return 

This is then converted into Java in a series of steps; each step adds more and 
more information until the entire class file can be assembled into source. You then 
create a series of tokens in your parser that would produce the output shown in 
Listing 5-9. 

Listing 5-9. Simple if Class-First Pass 

PushVMI [0] bipush 12 
StoreVMI [2] istore 1 
PushVMI [3] bipush 13 
StoreVMI [5] istore 2 
LoadVMI [6] iload 1 
LoadVMI [7] iload 2 
BranchVMI [8] if_icmple 13 
LoadVMI [11] iload 2 
StoreVMI [12] istore 1 
ControlVMI [13] return 

Although you didn't have any real reductions in the first pass, it soon 
becomes apparent where you're going at the end of the second pass (see 
Listing 5-10), because the number of lines is halved. 

147 



ChapterS 

148 

Listing 5-l 0. Simple if Class-second Pass 

AssignStatement [0-2] a = 12; 
AssignStatement [2-4] b = 13; 
IfStatement [6-10] Goto 13 if: (a!=b) 
AssignStatement [11-12] a = b; 
ControlVMI 1-> [13] return 

The tokens generated in the first pass are used to create the building blocks 
in the second pass. Note the introduction of the 1-> tag, which tells the next pass 
where the if branch ends. In the next and final pass (see Listing 5-11), the code 
can now be easily resolved into something resembling your original Java code in 
Listing 5-7. 

Jive does decompile more complicated structures than your if statement 
using the same approach of breaking the byte code into statements, but it uses 
a lots more passes to do so. To date, I have not been able to track down the origi­
nal Jive decompiler. 

Single Pass Parser 

Stack machines, virtual or otherwise, directly mimic the operation of a parser. 
The parser's constant shifts and reductions are analogous to a stack machine's 
pop and push actions. This leads us nicely to the fourth and final strategy. 

You know it's possible to create a scanner that can handle every possible 
bytecode instruction. However, you may not have realized that is it possible to 
code the parser to cover every eventuality that it could possibly come across. 
The parser grammar would not need to handle nonreducible bytecode-that is 
such a rare occurrence that you can safely ignore-but it would still need to be 
at least as good as Mocha. 

The main problem here is not how the parser handles simple lines of code such 
as initializations or assignments. The real difficulty would be how a single-pass 
parser could handle control flow. It would, by default, not be a general solution 
and you will have to throw a test suite of Java classfiles at it to make sure it can 
handle most eventualities. 

Strategy Conclusion 

You've briefly looked at four strategies for recovering source code from bytecodes 
in a classfile. The first option was to take Dr. Cifuentes design and reuse the 
existing code, as described in her thesis. Although dec is primarily used to recover 
C source from DOS executables, Dr. Cifuentes thesis describes a more general 
approach of using it to decompile any binary to a higher-levellanguage. It would 
be conceivable to use Dr. Cifuentes' UDM for your purposes. It might be tempting 



Decompiler Design 

to use a Babel Fish decompiler for all computer languages, however, because 
your task is so much simpler than other decompilation problems, doing so would 
really be over-engineering a solution. 

Alternatively, you can take Lyle Ramshaw's approach and rewrite the goto 
statements into a series of repeat- and endloop-like conditions. Or you could take 
the Jive approach and code the decompiler in a series of passes/ decompilation 
phases. 

The final option is to use ]Lex and Yacc to create a single-pass decompiler. 
I deliberately didn't go into this in too much detail, because this option-the sim­
plest option-is the one that you're going to take. In the "Parser Design'' section, 
I'll explain how to use the single-pass solution to decompile a simple Hello World 
example. In the Chapter 6, you're going to see how you can extend the CUP gram­
mar to handle a much more complicated suite of examples. 

Parser Design 

Human and computer languages share a lot of common elements, namely key­
words and a grammar or a sequence of rules. Different languages use completely 
different sets of keywords and rules and sometimes even a different alphabet. 
Subconsciously your mind processes these keywords or tokens and applies them 
to your version of the English language. My version of the rules of the English 
language will be slightly different from your version, unless you grew up in the 
same area of Dublin, Ireland. Somehow, I doubt if anyone will ever read this in 
any other language than English (oh, the humility). But if you are reading this in 
French or German then someone must have translated the original syntax into 
yet another set of keywords and grammar rules, namely your language or native 
tongue. 

The main difference between understanding a conversation and a compiler 
generating machine code is that the compiler requires a lot fewer keywords and 
rules to produce output that the computer can understand-what is called its 
native format. If compiling a computer program is a smaller subset of understand­
ing a human language, then decompiling Java is a smaller subset yet again. Let's 
take a look at Listing 5-11 and Listing 5-12 to demonstrate. 

Listing 5-11. Hello.java 

public class Hello 
{ 

} 

public static void main(String args[]) 
{ 

System.out.println("Hello, World"); 
} 

149 



ChapterS 

150 

The number of keywords and the limited number of grammar rules allow you 
to easily tokenize the input and subsequently parse the tokens into Java phrases. 
Thrning this back into code requires some further analysis, but I'll get to that a lit­
tie later. What you need to do is tum the input data stream into tokens, as shown 
in listing 5-12. 

Listing 5-12. Hello.class Bytecode Usingjavap 

Compiled from Hello.java 
public class Hello extends java.lang.Object { 

public Hello(); 
public static void main{java.lang.String[]); 

} 

Method Hello() 
o aload o 
1 invokespecia1 #6 <Method java.1ang.Object()> 
4 return 

Method void main{java.lang.String[]) 
o getstatic #7 <Field java.io.PrintStream out> 
3 ldc #1 <String "Hello, World"> 
s invokevirtual #8 <Method void println{java.lang.String)> 
8 return 

Ultimately, you'll be using the XML output from ClassToXML as the input 
file for your parser. But for the moment, you're going to use the output of javap 
to get started. Looking at main method in listing 5-12, which javap generated 
from listing 5-11, you can see that tokens can be split into the following types. 

• identifiers 

• integers 

• keywords 

• whitespace 

Bytecode identifiers are typically constant pool references that take the fol­
lowing form: 

1 invokespecial #3 

Integers are usually the data or numbers that follow the opcode to make up 
a complete bytecode statement. Good examples are numbers that get placed on 
the stack or labels for a goto statement. 



Decompiler Design 

Keywords are the 200 or so opcodes that make up the bytecode language-you'll 
be looking at these and their constructs in the next chapter. 

Finally we need to account for whitespace, which of course includes tabs, 
blank spaces, new lines, and carriage returns if you're using DOS or Windows. 
Most decompilers would not be encountering a lot of whitespace in a real classffie, 
but you need to deal with it in your javap and ClassToXl\11. output. 

All these tokens are crucial in order for the parser to be able to do its job and 
to try to match them with the predefined grammatical rules. You could write your 
own tokenizer and parser by hand, which would search for the different tokens 
within the bytecode; however, there are plenty of tools to help you along, so why 
not take advantage of them? A handcrafted parser would be quicker, 16 but you're 
looking for ease of use rather than an optimized production quality application. 

]Lex is the first part of your decompilation process. ]Lex reads or scans input 
from a data stream and turns it into valid tokens that are passed on to the CUP 
parser, which interprets the tokens. The generated yylex program scans each 
incoming characters of the input bytecode using regular expressions that break 
the input into strings and tokens. The scanner's primary function is to keep track 
of the current position in the input stream and generate the tokens for the parser. 
Listing 5-13 shows some sample bytecode input using the classfile compiled 
from Listing 5-11. 

Listing 5-13. Main Method Bytecode 

o getstatic #7 <Field java.io.PrintStream out> 
3 ldc #1 <String "Hello World"> 
S invokevirtual #8 <Method void println(java.lang.String)> 
8 return 

So without much further ado, let's create a scanner to tokenize the main 
method in Listing 5-13. First, you'll isolate the javap bytecode so that you're only 
dealing with the information in Listing 5-14. 

Listing 5-14. Decompiler.lex 

II create a package for the Decompiler 
package Decompiler; 

II import the CUP classes 
import java_cup.runtime.Symbol; 

16. This may not be 100 percent true because the performance section in the JLex manual 
mentions a lexical analyzer or scanner that soundly outperformed a handwritten scanner. 

151 



ChapterS 

152 

%% 
%cup 
%% 

"getstatic" 
"ldc" 
"invokevirtual" 
"Method" 
"return" 
\"[a-zA-Z ]+\" 
[a-zA-Z\. ]+ 
\< 

\> 

\( 

\) 

\#[0-9]+1 [0-9]+ 

II CUP declaration 

{ return new Symbol(sym.GETSTATIC, yytext()); } 
{ return new Symbol(sym.LDC, yytext()); } 
{ return new Symbol(sym.INVOKEVIRTUAL, yytext()); } 
{ return new Symbol(sym.METHOD, yytext()); } 
{ return new Symbol(sym.RETURN, yytext()); } 
{ return new Symbol(sym.BRSTRING, yytext()); } 
{ return new Symbol(sym.BRSTRING, yytext()); } 
{ return new Symbol(sym.LABR, yytext()); } 
{ return new Symbol(sym.RABR, yytext()); } 
{ return new Symbol(sym.LBR, yytext()); } 
{ return new Symbol(sym.RBR, yytext()); } 
{ return new Symbol(sym.NUMBER, yytext());} 

[ \t\r\n\f] { I* ignore white space. *I } 

{ System.err.println("Illegal character: "+yytext()); } 

As yet, this is only a very simple lexical analyzer because it is only a partial speci­
fication of the possible opcodes, but it should point you in the right direction. 

Gradually, as each character is read, it becomes obvious which regular expres­
sion is going to be satisfied and what token will be generated. This assumes that 
your specification is complete, which at this stage, it most certainly is not, but it 
will work for this simple example. Tokens are defined by regular expressions in the 
scanner and the set of these lexical tokens defines the elements of the byte code 
language. If there is a syntax error in the input stream or, in other words, if the input 
isn't syntactically correct, then the scanner will jam. You should also make sure 
that your regular expressions are not ambiguous, because only the first match will 
be chosen when two conditions are satisfied, and as a result, the wrong token may be 

generated. 
]Lex, and indeed all Lex programs, convert these regular expressions (regexp) 

into two types of finite automata First, the regexp are converted to nondetermin­
istic finite automata (NFA) where it is still possible to match any condition in more 
than one way. The aim is to tum the regexps ultimately into deterministic finite 
automata (DFA) where all transitions from one state to another are singularly 
defined by, amongst other things, removing all redundant transitions. Or, in other 
words, all tokens can only be generated in one particular way. A DFA is essentially 
the set of regular expressions mapped onto a large sparse matrix. It has the 
disadvantage of being slower to generate, but the significant advantage of being 
a much quicker simulator. 



Decompiler Design 

Ultimately what we are trying to do is create a parse tree using CUP. JLex will 

generate tokens for the longest sequence of characters from the startirig position 
to the current position that matches a specific regular expression. The parser 
requests a token from the scanner and then tries to construct a parse tree using 
a series of shift and reduce operations. Let's take a look at what your first attempt 
at the CUP parser looks like, in Listing 5-15. You won't define any actions just yet; 
you just want to make sure it parses. 

Listing 5-15. Decompiler.cup 

package Decompiler; 

import java_cup.runtime.*; 
import java.util.*; 

parser code {: 
public static void main(String args[]) throws Exception { 

new parser(new Yylex(System.in)).parse(); 
}:} 

terminal GETSTATIC, NUMBER, LDC, INVOKEVIRTUAL, RETURN, LBR, RBR, LABR; terminal 
RABR, BRSTRING, METHOD; 

non terminal expr_list, expr_part, expr, vstack, number; 

expr_list ::= expr_list expr I expr; 
expr ::= expr_part:e1 expr_part:e2 expr_part:e3 

I number RETURN 

expr_part ::= number:n1 GETSTATIC:s number:n2 vstack 
number:nl LDC:s number:n2 vstack 
number:nl INVOKEVIRTUAL:s number:n2 vstack 

vstack ::= LABR BRSTRING:s1 BRSTRING:s2 RABR 
I LABR BRSTRING:s1 BRSTRING:s2 BRSTRING:s3 RABR 
I LABR METHOD BRSTRING:s1 BRSTRING:s2 LBR BRSTRING:s3 RBR RABR 

number ::= NUMBER:n 

153 



ChapterS 

154 

You can now compile decompiler .lex and decompiler. cup as follows: 

java JLex.Main decompiler.lex 
mv decompiler.lex.java Yylex.java 
java java_cup.Main decompiler.cup 
javac -d • parser.java sym.java Yylex.java 

It's nothing to write home about just yet, but it does scan and parse each 
line from the main method. 

Take the second line: 

3 ldc #1 <String "Hello World"> 

This scanner breaks the line into tokens, where LABR is a left angle bracket: 

NUMBER LDC NUMBER LABR BRSTRING BRSTRING RABR 

This is then reduced into the non-terminals as follows: 

LABR BRSTRING BRSTRING RABR -> vstack 
NUMBER -> number 
NUMBER -> number 
number LDC number vstack -> expr_part 

You need all three lines if you're going to reduce all the way back to expr_list. 
It might also help if you add the actions to see how you get back to the original 
code. To do this, you'll first need to add some action code so that you can have 
a variable stack and a type stack for some temporary storage space while you're 

decompiling the code. 
The complete parser for your very simple example is in listing 5-16. 

Listing 5-16. Decompiler. cup-Complete Version 

package Decompiler; 

import java_cup.runtime.*; 
import java.util.*; 



parser code {: 

:} 

public static void main(String args[]) throws Exception { 
new parser(new Yylex(System.in)).parse(); 

} 

action code {: 

:} 

Stack tStack = new Stack(); 
Stack vStack = new Stack(); 

terminal GETSTATIC, NUMBER, LDC, INVOKEVIRTUAL, RETURN; 
terminal LBR, RBR, LABR, RABR, BRSTRING, METHOD; 

non terminal expr_list, expr_part, expr, vstack, number; 

expr_list ::= expr_list expr I expr; 
expr ::= expr_part:el expr_part:e2 expr_part:e3 

expr_part 

{: 

System.out.println(el + "." + e3 + "(" + e2 + ");" ); 

:} 

number RETURN 
{: 

System.out.println("return;"); 
:} 

number:nl GETSTATIC:s number:n2 vstack 
{: 

RESULT=(vStack.pop()); 
:} 

number:nl LDC:s number:n2 vstack 
{: 

RESULT=(vStack.pop()); 
:} 

number:nl INVOKEVIRTUAL:s number:n2 vstack 
{: 

RESULT=(vStack.pop()); 
:} 

Decompiler Design 

155 



ChapterS 

156 

vstack 

number 

::= LABR BRSTRING:sl BRSTRING:s2 RABR 
{: 

:} 

tStack.push(sl); 
vStack.push(s2); 

LABR BRSTRING:sl BRSTRING:s2 BRSTRING:s3 RABR 
{: 

:} 

tStack.push(s2); 
vStack.push("System." + s3); 

LABR METHOD BRSTRING:sl BRSTRING:s2 LBR BRSTRING:s3 RBR RABR 
{: 

:} 

: := NUMBER:n 
{: 

tStack.push(sl); 
vStack.push(s2); 

RESULT=n; 
:} 

If you run the code now, the information that you need to extract out of the 
bytecode is stored on the vStack and you pop off the information when the com­
plete expression has been recovered. If you now compile and run the decompiler, 
you'll get the following output: 

System.out.println("Hello, World"); 
return; 

If you're paying attention, you'll notice that System wasn't exactly derived 
from the bytecode. However because this snU>pet of bytecode doesn't have any 
access to the constant pool, you'd have to add this little kludge to get your little 
example to work. 

In the Chapter 6, you'll be pulling whatever information you need from 
wherever you need it in the classfile. You first need to preprocess the classfile by 
converting it to XML using ClassToXML. Next you'll load the XML and decompile 
each of the individual methods, resolving the constant pool references as you go. 



Decompiler Design 

Conclusion 

So far I've talked about the tools you can use to create a small working decompiler. 
You've looked at the different strategies that you might or might not employ, and 
finally, I created a toy example to show you how your single-pass decompiler will 
function. 

By the end of Chapter 6, you'll have a working decompiler that will be able 
to handle the majority of Java classes. Chapter 6 will also look at the different 
internal structures and gradually create a more effective decompiler that can 
handle a lot more than the "Hello World" example. 

157 



CHAPTER 6 

Decompiler 
Implementation 

WE ARE NOW at the point where you will learn to actually deal with the individual 
bytecodes, decompile the opcodes into partial statements and expressions and, 
ultimately (well that's the plan anyway), back into complete blocks of source code. 

If I'm gauging my audience correctly, this chapter, and possibly Chapter 5, 
will appeal to a significant cross section of readers. We're now at the nub of the 
problem of how to implement a decompiler using using Java versions of Lex and 
Yacc, namely JLex and CUP. 

To keep this as practical as possible, I'll use a test suite of ten simple pro­
grams, each with a different language construct. For each program, I'll 
reconstruct the original source gradually, building the decompiler as I go. Each 
program is first compiled, then disassembled and converted into XML using 
ClassToXML. I'll then look at the Java source and the corresponding method 
bytecode and create a CUP specification for each example to convert the byte­
code back into source. 

I'm taking an easy, yet powerful, approach to dealing with the classfile: by 
having the decompiler pretend to be the Java Virtual Machine (]VM). The 
decompiler will simulate stack operations as the assembly directs, but it will be 
working with variable names rather than actual data. 

And because the classfile is more than method bytecode, I'll also need to be 
able to incorporate the remaining information in the classfile to recover import 
statements, package names, and variable names from the constant pool. So to 
begin with, I'll take a look at the format of the ClassToXML output, that is, the 
input for our decompiler that does not deal with recovering the actual code from 
the bytecodes. This is the supporting cast for the code recovery section. Then I'll 
expand the section that deals with recovering the expressions and code structure 
while looking at the test suite. 

ClassToXML Output: An Overview 

You have seen the ClassToXML format in earlier chapters, where we used it to 
create a simple obfuscator. It is now going to be used as input for the decom­
piler. To parse ClassToXML, I first create a JLex specification and then, using the 
terminal symbols, I create a skeleton CUP file for the classfile grammar. 

159 



Chapter6 

160 

From the point of view of the decompiler, every ClassToXML output file has 
the same format: 

• A start token, (<root>), to allow initialization of variables. 

• The contents of the constant pool, which contain all the metadata for 
the class. 

• Divider tokens (<Fields>, <Methods>, etc.), to separate data and to allow 
processing between individual sections of the ClassToXML file. 

• The class data, which includes properties and the constant pool index, fol­
lowed by a divider token. 

• The field data, which includes properties and constant pool indices, fol­
lowed by a divider token. If no fields are used within the class, this may 
be blank. 

• The method data, which includes properties, constant pool indices, and 
assembly code. Methods are separated by semicolons, which can be 
thought of as subdivider tokens. 

• An end token (</root>). 

Let's take a look at each section of ClassToXML listed above in more detail. 

Constant Pool Overview 

Constant pool entries consist of the following: 

• Index 

• Type (which can be Integer, Long, Float, Double, UTF-8, String, Class, 
NameAndType, FieldRef,MethodRef,orlnterfaceMethodRef) 

• Data (which can be either a constant value or an index-or a pair of 
indices-to another constant pool entry) 

For example, a MethodRef type to the println function links to its Class and 
NameAndType entries, which each link to strings, as shown in Listing 6-1. 



Decompiler Implementation 

Listing 6-1. ClassToXML Output for the Constant Pool 

<Tag> 
<ConstantPoo1_Index>12</ConstantPoo1_Index> 
<Type>CONSTANT_Methodref</Type> 
<Va1ue>43,44</Va1ue> 

</Tag> 

<Tag> 
<ConstantPoo1_Index>43</ConstantPoo1_Index> 
<Type>CONSTANT_C1ass</Type> 
<Va1ue>57</Va1ue> 

</Tag> 
<Tag> 
<ConstantPoo1_Index>44</ConstantPoo1_Index> 
<Type>CONSTANT_NameAndType</Type> 
<Va1ue>S8,59</Va1ue> 

</Tag> 

<Tag> 
<ConstantPoo1_Index>57</ConstantPoo1_Index> 
<Type>CONSTANT_Utf8</Type> 
<Va1ue>CONSTVALjava/io/PrintStream</Va1ue> 

</Tag> 
<Tag> 
<ConstantPoo1_Index>S8</ConstantPoo1_Index> 
<Type>CONSTANT_Utf8</Type> 
<Va1ue>CONSTVALprint1n</Va1ue> 

</Tag> 
<Tag> 
<ConstantPoo1_Index>59</ConstantPoo1_Index> 
<Type>CONSTANT_Utf8</Type> 
<Va1ue>CONSTVAL(Ljava/1ang/String;)V</Va1ue> 
</Tag> 

Obviously, you'll have to load the constant pool into memory and resolve 
cross-references between elements in order to create any sort of a useful decom­
piler. Otherwise, you'll have code without any of the original names of variables 
and methods. 

161 



Chapter6 

162 

Class Data Overview 

The second section of ClassToXML is the class data. In this limited decompiler, 
the class data you use consists of merely the class's access flags and ThisClass. 
You just parse and discard SuperClass and the interface data. The class data for 
a Hello World program might consist of the following: 

<AccessFlags>public</AccessFlags> 
<ThisClass>15</ThisClass> 
<SuperClass>16</SuperClass> 

Field Data Overview 

The third section of ClassToXML is the field data. Field entries consist of the 
following: 

• Access information (public, private, etc.) and properties (static, volatile, etc.) 

• Constant pool index of Name 

• Constant pool index of Description 

• Attribute count 

• Attributes 

Again, for this decompiler, you need to assume that no attributes belong to 
any fields. For example, you can see the ClassToXML field data for Listing 6-2 in 
Listing 6-3. 

Listing 6-2. Original arr Field 

public static int[] arr = {1, 8, 27, 64, 125, 216, 343, 512, 
729, 1000}; 

public int a = S; 

Listing 6-3. arr Field Data and Constant Pool Output 

<Field> 
<AccessFlags>public static</AccessFlags> 
<Name_Index>17</Name_Index> 
<Description_Index>18</Description_Index> 
<Attribute_Count>O</Attribute_Count> 



Decompiler Implementation 

<Attributes I> 

</Field> 

<Field> 
<AccessFlags>public</AccessFlags> 
<Name_Index>19</Name_Index> 
<Description_Index>20</Description_Index> 
<Attribute_Count>O</Attribute_Count> 
<Attributes I> 

</Field> 
<Tag> 

<ConstantPool_Index>17</ConstantPool_Index> 
<Type>CONSTANT_Utf8</Type> 
<Value>CONSTVALarr</Value> 

</Tag> 
<Tag> 

<ConstantPool_Index>18</ConstantPool_Index> 
<Type>CONSTANT_Utf8</Type> 
<Value>CONSTVAL[I</Value> 

</Tag> 
<Tag> 

<ConstantPool_Index>19</ConstantPool_Index> 
<Type>CONSTANT_Utf8</Type> 
<Value>CONSTVALa</Value> 
</Tag> 

<Tag> 
<ConstantPool_Index>20</ConstantPool_Index> 
<Type>CONSTANT_Utf8</Type> 
<Value>CONSTVALI</Value> 

</Tag> 

Method Data Overview 

The method data is the fourth section of ClassToXML. Method data entries of 
ClassToXML consist of the following: 

• Access information (e.g., whether it's public or not} and properties (e.g., 
whether it's static or volatile} 

• Constant pool index of Name 

• Constant pool index of Parameters 

163 



Chapter6 

164 

All other data included in the XML file is discarded. 
For example, method data XML for the recurse method shown in Listing 6-4 

can be seen in Listing 6-5. 

Listing 6-4. recurse Method 

public static String recurse(int num) 
{ 

} 

if (num!=O) 
return "crap! " + recurse(num-1); 

else 
return "dammit!"; 

Listing 6-5. ClassToXML Method Data Output for recurse 

<Method> 
<AccessFlags>public static</AccessFlags> 
<Name_Index>17</Name_Index> 
<Description_Index>18</Description_Index> 
<Attribute_Count>1</Attribute_Count> 
<Attributes> 

<Attribute> 
<Attribute_Type>Code</Attribute_Type> 
<Attribute_Length>40</Attribute_Length> 
<Max_Stack>2</Max_Stack> 
<Min_Stack>1</Min_Stack> 
<Code_Length>12</Code_Length> 
<Code> 

<Line>OOO: getstatic 2</Line> 
<Line>003: bipush 25</Line> 
<Line>OOS: invokestatic 3</Line> 
<Line>008: invokevirtual 4</Line> 
<Line>011: return</Line> 

</Code> 
<ExceptionTable_Length>O</ExceptionTable_Length> 
<ExceptionTable I> 
<CodeAttribute_Count>1</CodeAttribute_Count> 
<CodeAttribute_Name_Index>16</CodeAttribute_Name_Index> 
<CodeAttribute_Length>10</CodeAttribute_Length> 
<LineNumTable_Count>2</LineNumTable_Count> 
<LineNumTable> 



Decompiler Implementation 

<LineNumMapping> 
<StartPC>O</StartPC> 

<LineNum>4</LineNum> 
</LineNumMapping> 
<LineNumMapping> 

<StartPC>ll</StartPC> 
<LineNum>S</LineNum> 

</LineNumMapping> 
</LineNumTable> 
</Attribute> 

</Attributes> 
</Method> 

The constant pool entries shown in Listing 6-6 provide the necessary 
information. 

Listing 6-6. ClassToXML Constant Pool Output for recurse 

<Tag> 
<ConstantPool_Index>19</ConstantPool_Index> 
<Type>CONSTANT_Utf8</Type> 
<Value>CONSTVALrecurse</Value> 

</Tag> 
<Tag> 

<ConstantPool_Index>20</ConstantPool_Index> 
<Type>CONSTANT_Utf8</Type> 
<Value>CONSTVAL(I)Ljava/lang/String;</Value> 

</Tag> 

The parameter description <ConstantPool_Index>20</ConstantPool_Index> is 
the most important thing here, and I will cover it in greater detail later (see the 
discussion in the "CUP Specification" section). The type codes inside parenthe­
ses, for example (I) within the <Value><IValue> node in Listing 6-6, are the 
types of data passed into the method, while those outside are the return types 
of the method. 

Jlex Specification 

To begin the decompiler discussion, I should probably show you the complete 
lexical specification for breaking down the bytecode into tokens because that 
will be unchanged from start to finish. 

165 



Chapter6 

166 

In Listing 6-7, each of the 200 or so bytecodes is broken down into a token 
along with all the classfile's associated labels and numbers. As I've already men­
tioned, I'm using the output from the disassembler, ClassToXML, as the input for 
the ]Lex scanner. 

Listing 6-7. ]Lex Specification 

package XMLToSource; 
import java_cup.runtime.Symbol; 

%% 

%cup 
%% 

"<?xml version=\""1"?>" 

"<root>" 
"</root>" 
"<MagicNumber>" 
"</MagicNumber>" 
"<MajorVersion>" 
"</MajorVersion>" 
"<MinorVersion>" 
"</MinorVersion>" 
"<ConstantPool_Count>" 
"</ConstantPool_Count>" 
"<ConstantPool>" 
"</ConstantPool>" 
"<Tag>" 
"</Tag>" 
"<ConstantPool_Index>" 
"</ConstantPool_Index>" 
"<Type>" 
"</Type>" 
"<AccessFlags>" 
"</AccessFlags>" 
"<Class_Index>" 
"</Class_Index>" 
"<NameType_Index>" 
"</NameType_Index>" 
"<Name Index>" 
"</Name_Index>" 
"<Description_Index>" 
"</Description_Index>" 
"<Value>" 

{ /* ignore */ } 

{ return new Symbol(sym.ROOT,yytext()); 
{ return new Symbol(sym.XROOT,yytext()); 
{ return new Symbol(sym.MAGICNUM,yytext()); 

} 
} 

} 

{ return new Symbol(sym.XMAGICNUM,yytext()); } 
{ return new Symbol(sym.MAJORVER,yytext()); } 
{ return new Symbol(sym.XMAJORVER,yytext()); } 
{ return new Symbol(sym.MINORVER,yytext()); } 
{ return new Symbol(sym.XMINORVER,yytext());} 
{ return new Symbol(sym.CPCOUNT,yytext()); } 
{ return new Symbol(sym.XCPCOUNT,yytext()); } 
{ return new Symbol(sym.CONSTPOOL,yytext()); } 
{ return new Symbol(sym.XCONSTPOOL,yytext());} 
{ return new Symbol(sym.CPTAG,yytext()); } 
{ return new Symbol(sym.XCPTAG,yytext()); } 
{ return new Symbol(sym.CPINDEX,yytext()); } 
{ return new Symbol(sym.XCPINDEX,yytext()); } 
{ return new Symbol(sym.TYPETAG,yytext()); } 
{ return new Symbol(sym.XTYPETAG,yytext()); } 
{ return new Symbol(sym.ACCFLAGS,yytext()); } 
{ return new Symbol(sym.XACCFLAGS,yytext()); } 
{ return new Symbol(sym.NT_INDEX,yytext()); } 
{ return new Symbol(sym.XNT_INDEX,yytext()); } 
{ return new Symbol(sym.NT_INDEX,yytext()); } 
{ return new Symbol(sym.XNT_INDEX,yytext()); } 
{ return new Symbol(sym.NAMEINDEX,yytext()); } 
{ return new Symbol(sym.XNAMEINDEX,yytext());} 
{ return new Symbol(sym.DESCINDEX,yytext()); } 
{ return new Symbol(sym.XDESCINDEX,yytext());} 
{ return new Symbol(sym.VALTAG,yytext()); } 



"</Value>" 
"<ThisClass>" 
"</ThisClass>" 
"<SuperClass>" 
"</SuperClass>" 
"<Interface_Count>" 
"</Interface_Count>" 
"<Interfaces>" 
"<!Interfaces>" 
"<Field Count>" 
"</Field_Count>" 
"<Fields>" 
"</Fields>" 
"<Field>" 
"</Field>" 
"<Method Count>" 
"</Method_Count>" 
"<Methods>" 
"</Methods>" 
"<Method>" 
"</Method>" 
"<Attribute_Count>" 
"</Attribute Count>" 
"<Attributes>" 
"</Attributes>" 
"<Attribute>" 
"</Attribute>" 
"<Attribute_Type>" 
"</Attribute_Type>" 
"<Attribute_Length>" 
"</Attribute_Length>" 
"<Max_Stack>" 
"</Max_Stack>" 
"<Min_Stack>" 
"</Min_Stack>" 
"<Code_Length>" 
"</Code_Length>" 
"<Code>" 
"</Code>" 
"<Line>" 
"</Line>" 
"<ExceptionTable_Length>" 
"</ExceptionTable_Length>" 
"<ExceptionTable>" 

Decompiler Implementation 

{ return new Symbol(sym.XVALTAG,yytext()); } 
{ return new Symbol(sym.THISCL,yytext()); } 
{ return new Symbol(sym.XTHISCL,yytext()); } 
{ return new Symbol(sym.SUPERCL,yytext()); } 
{ return new Symbol(sym.XSUPERCL,yytext()); } 
{ return new Symbol(sym.INTCNT,yytext()); } 
{ return new Symbol(sym.XINTCNT,yytext()); } 
{ return new Symbol(sym.INTERFACES,yytext()); } 
{ return new Symbol(sym.XINTERFACES,yytext()); } 
{ return new Symbol(sym.FIELDCNT,yytext()); } 
{ return new Symbol(sym.XFIELDCNT,yytext()); } 
{ return new Symbol(sym.FIELDS,yytext()); } 
{ return new Symbol(sym.XFIELDS,yytext()); } 
{ return new Symbol(sym.FIELD,yytext()); } 
{ return new Symbol(sym.XFIELD,yytext()); } 
{ return new Symbol(sym.METHCNT,yytext()); } 
{ return new Symbol(sym.XMETHCNT,yytext()); } 
{ return new Symbol(sym.METHODS,yytext()); } 
{ return new Symbol(sym.XMETHODS,yytext()); } 
{ return new Symbol(sym.METHOD,yytext()); } 
{ return new Symbol(sym.XMETHOD,yytext()); } 
{ return new Symbol(sym.ATTCNT,yytext()); } 
{ return new Symbol(sym.XATTCNT,yytext()); } 
{ return new Symbol(sym.ATTRIBS,yytext()); } 
{ return new Symbol(sym.XATTRIBS,yytext()); } 
{ return new Symbol(sym.ATTRIB,yytext()); } 
{ return new Symbol(sym.XATTRIB,yytext()); } 
{ return new Symbol(sym.ATTTYPE,yytext()); } 
{ return new Symbol(sym.XATTTYPE,yytext()); } 
{ return new Symbol(sym.ATTLENGTH,yytext()); } 
{ return new Symbol(sym.XATTLENGTH,yytext());} 
{ return new Symbol(sym.MAXSTACK,yytext()); } 
{ return new Symbol(sym.XMAXSTACK,yytext()); } 
{ return new Symbol(sym.MINSTACK,yytext()); } 
{ return new Symbol(sym.XMINSTACK,yytext()); } 
{ return new Symbol(sym.CODELEN,yytext()); } 
{ return new Symbol(sym.XCODELEN,yytext()); } 
{ return new Symbol(sym.CODETAG,yytext()); } 
{ return new Symbol(sym.XCODETAG,yytext()); } 
{ return new Symbol(sym.LINETAG,yytext()); } 
{ return new Symbol(sym.XLINETAG,yytext()); } 
{ return new Symbol(sym.EXCLEN,yytext()); } 
{ return new Symbol(sym.XEXCLEN,yytext()); } 
{ return new Symbol(sym.EXCTABLE,yytext()); } 

167 



Chapter6 

168 

"</ExceptionTable>" 
"<CodeAttribute_Count>" 
"</CodeAttribute_Count>" 
"<CodeAttribute_Name_Index>" 
"</CodeAttribute_Name_Index>" 
"<CodeAttribute_Length>" 
"</CodeAttribute_Length>" 
"<LineNumTable_Count>" 
"</LineNumTable_Count>" 
"<LineNumTable>" 
"</LineNumTable>" 
"<LineNum>" 
"</LineNum>" 
"<LineNumMapping>" 
"</LineNumMapping>" 
"<StartPC>" 
"</StartPC>" 
"<EndPC>" 
"</EndPC>" 
"<HandlerPC>" 
"</HandlerPC>" 
"<CatchType>" 
"</CatchType>" 

{ return new Symbol(sym.XEXCTABLE,yytext()); } 
{ return new Symbol(sym.CODEATTCNT,yytext()); } 
{ return new Symbol(sym.XCOOEATTCNT,yytext()); } 
{ return new Symbol{sym.CODEATTNAME,yytext()); } 
{ return new Symbol{sym.XCODEATTNAME,yytext());} 
{ return new Symbol{sym.CODEATTLEN,yytext()); } 
{ return new Symbol{sym.XCODEATTLEN,yytext()); } 
{ return new Symbol{sym.LNTABLECNT,yytext()); } 
{ return new Symbol{sym.XLNTABLECNT,yytext()); } 
{ return new Symbol(sym.LINENUMTABLE,yytext()); } 
{ return new Symbol(sym.XLINENUMTABLE,yytext());} 
{ return new Symbol(sym.LINENUM,yytext()); } 
{ return new Symbol{sym.XLINENUM,yytext()); } 
{ return new Symbol{sym.LNMAP,yytext()); } 
{ return new Symbol{sym.XLNMAP,yytext()); } 
{ return new Symbol{sym.STARTPC,yytext()); } 
{ return new Symbol{sym.XSTARTPC,yytext()); } 
{ return new Symbol{sym.ENDPC,yytext()); } 
{ return new Symbol{sym.XENDPC,yytext()); } 
{ return new Symbol{sym.HANDLER,yytext()); } 
{ return new Symbol{sym.XHANDLER,yytext()); } 
{ return new Symbol{sym.CATCHTYPE,yytext()); } 
{ return new Symbol(sym.XCATCHTYPE,yytext());} 

"SourceFile"I"ConstantValue"I"Code"I"Exceptions"I"InnerClasses"I"Synthetic"l 
"LineNumberTable"I"LocalVariableTable"I"Deprecated" 

{ return new Symbol(sym.ATTRIBNAME,yytext());} 
"public"l"private"l"protected" { return new Symbol(sym.ACCESS,yytext()); } 
"static"l"final"l"volatile"l"interface"l"abstract" 

{ return new Symbol(sym.PROPERTY,yytext());} 
"CONSTVAL"+[_A-Za-z0-9! ?<>/\ \$&\[\]=().,; "\ \ "]+ 

"CONSTANT_" 
"Utf8" 
"Integer" 
"Float" 
"Long" 
"Double" 
"String" 
"Class" 
"Fieldref" 
"Methodref" 
"InterfaceMethodref" 
"NameAndType" 

{ return new Symbol(sym.CONSTNAME,yytext());} 
{ return new Symbol(sym.CONSTANT,yytext()); } 
{ return new Symbol(sym.CHARRAY,yytext()); } 
{ return new Symbol(sym.INTEGER,yytext()); } 
{ return new Symbol(sym.FLOAT,yytext()); } 
{ return new Symbol(sym.LONG,yytext()); } 
{ return new Symbol(sym.DOUBLE,yytext()); } 
{ return new Symbol(sym.STRING,yytext()); } 
{ return new Symbol(sym.CLASSREF,yytext()); } 
{ return new Symbol(sym.FIELDREF,yytext()); } 
{ return new Symbol(sym.METHODREF,yytext()); } 
{ return new Symbol(sym.INTERFACEREF,yytext());} 
{ return new Symbol(sym.NAMEANDTYPE,yytext());} 



Decompiler Implementation 

II II 

' 

[0-9]+ 

{ return new Symbol(sym.DECIMALPT,yytext()); } 

{ return new Symbol(sym.COMMA,yytext()); } 

{ return new Symbol(sym.NEGATIVE,yytext()); } 

{ return new Symbol(sym.NUMBER, new 

"ox"+[0-9a-f]+ 
n.n 

[ \t\r\n]+ 
"nop" 
"m1" 

"cmp"+[lg] 
[bcifld]+"2" 

Integer(yytext())); } 
{ return new Symbol(sym.HEXNUM,yytext()); 

{ /* ignore */ } 

{ /* ignore white space */ } 

{ return new Symbol(sym.NOP,yytext()); 

{ return new Symbol(sym.Ml,yytext()); 

{ return new Symbol(sym.CMP,yytext()); 

{ return new Symbol(sym.I2L,yytext()); 

I* This is actually [bcifld]+"2"+[bcifld] */ 

"bipush" I "sipush" { return new Symbol(sym.BIPUSH,yytext()); 

"ldc"+("2" I "2_w")? { return new Symbol(sym. LDC,yytext()); 

[abcsilfd] { return new Symbol(sym.TYPE,yytext()); 

"null" { return new Symbol(sym.NULL,yytext()); 

"const"+" "? { return new Symbol(sym.CONST,yytext()); 

[bciflda]+"aload" { return new Symbol(sym.ALOAD,yytext()); 

"load"+" "? { return new Symbol(sym.LOAD,yytext()); 

[bciflda]+"astore" { return new Symbol(sym.ASTORE,yytext()); 

"store"+" "? { return new Symbol(sym.STORE,yytext()); 

"pop"+("2")? { return new Symbol(sym.POP,yytext()); 

"dup"+("2")? { return new Symbol(sym.DUP,yytext()); 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 
} 

} 

"dup"+("_xl" I "_x2" I "2_x1" I "2_x2") { return new Symbol(sym.DUPX,yytext()); 

"swap" { return new Symbol(sym.SWAP,yytext()); 
} 

} 

"neg" { return new Symbol(sym.NEG,yytext()); 

"add" { return new Symbol(sym.ADD,yytext()); 

"sub" { return new Symbol(sym.SUB,yytext()); 

"mul" { return new Symbol(sym.MUL,yytext()); 

"div" { return new Symbol(sym.DIV,yytext()); 

"rem" { return new Symbol(sym. REM,yytext()); 

"shr" { return new Symbol(sym.SHR,yytext()); 

"shl" { return new Symbol(sym.SHL,yytext()); 

"and" { return new Symbol(sym.AND,yytext()); 

"or" { return new Symbol(sym.OR,yytext()); 

"xor" { return new Symbol(sym.XOR,yytext()); 

"iinc" { return new Symbol(sym.IINC,yytext()); 

"if_icmp"+("eq" l"lt"l"le" l"ne" l"gt" I "ge") 

{return new Symbol(sym.IF_ICMP,yytext ()); 

"if"+("eq"l"lt"l"le"l"ne"l"gt"l"ge"l"null"l"nonnull") 

"goto"+("_w")? 
"jsr .. +("_w")? 
"ret" 

{ return new Symbol(sym.IF,yytext()); 

{ return new Symbol(sym.GOTO,yytext()); 

{ return new Symbol(sym.JSR,yytext()); 

{ return new Symbol(sym.RET,yytext()); 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

169 



Chapter6 

170 

"tableswitch" 
"lookupswitch" 
"return" 
"getstatic" 
"getfield" 
"putstatic" 
"putfield" 

{ return new Symbol(sym.TABLESWITCH,yytext()); } 
{ return new Symbol(sym.LOOKUPSWITCH,yytext());} 
{ return new Symbol(sym.RETURN,yytext()); } 
{ return new Symbol(sym.GETSTATIC,yytext()); } 
{ return new Symbol(sym.GETFIELD,yytext()); } 
{ return new Symbol(sym.PUTSTATIC,yytext()); } 
{ return new Symbol(sym.PUTFIELD,yytext()); } 

"invoke"+("special"l"virtual"l"static") 

"new" 
"newarray" 
"array length" 
"athrow" 
"checkcast" 
"instanceof" 
"monitorenter" 
"monitorexit" 
"wide" 
"multianewarray" 

{ return new Symbol(sym.INVOKE,yytext()); } 
{ return new Symbol(sym.NEW,yytext()); } 
{ return new Symbol(sym.NEWARRAY,yytext()); } 
{ return new Symbol(sym.ARRAYLENGTH,yytext()); } 
{ return new Symbol(sym.ATHROW,yytext()); } 
{ return new Symbol(sym.CHECKCAST,yytext()); } 
{ return new Symbol(sym.INSTANCEOF,yytext()); } 
{ return new Symbol(sym.MONITORENTER,yytext()); } 
{ return new Symbol(sym.MONITOREXIT,yytext()); } 
{ return new Symbol(sym.WIDE,yytext()); } 

{ return new Symbol(sym.MULTIANEWARRAY,yytext()); } 
{ /*System.out.print(yytext());*/ } 

The JLex specification tokenizes or scans the input. But every scanner needs 
a corresponding parser. The next stage in the deompiler is to create a CUP speci­
fication to turn these tokens back into the original source. 

CUP Specification 

Listing 6-8 is the beginning of our CUP specification. The aim of this chapter is 
to turn our CUP specification into a full-blown decompiler, but for now, I'll just 
show the skeleton of the decompiler specification (Listing 6-8) so that we have 
something that can be compiled together with our JLex scanner. 

Although the decompiler isn't nearly complete at this stage, I have included 
much of the action code in the following listings that is crucial for creating our 
application-to resolve the constant pool references, for instance. 

Listing 6-8. Skeleton CUP Specification 

package XMLToSource; 

import java_cup.runtime.*; 
import java.util.*; 
import java.lang.*; 



Decompiler Implementation 

parser code {: 

:} 

public static void main(String args[]) throws Exception { 
new parser(new Yylex(System.in)).parse(); 

} 

action code {: 
boolean forOrWhile, newArray=false, skipFinish = false; 
BitSet varslnUse = new BitSet(OxFF); //FF variables possible 
int level, lowest_num=9999, staticAdjustment=O, lastline; 
int arrayCounter, arrayElements; 
Object temp; 
String finalMethods=""; 
String type, ClassName, MethodName, MethodParam, MethodProperties="", 

space="", outstandingType=""; 

Arraylist ConstantType=new Arraylist(); 
Arraylist ConstantVal=new Arraylist(); 
Arraylist FieldType=new Arraylist(); 
Arraylist FieldName=new Arraylist(); 

int lineNum=O; 

Stack oStack = new Stack(); //analogous to the operand stack 
Stack ifStack = new Stack(); //keeps track of where an if statement ends 
Stack gotoStack = new Stack(); //keeps track of goto statements branching 
Stack fieldStack = new Stack(); //stores parsed assembly 
Stack finalStack = new Stack(); //eventually stores code 

resolveConstant recursively resolves the constant pool entry associated with 
constantPoollndex and returns it as a string, as shown in listing 6-9. 

Listing 6-9. The resolveConstant Method 

public String resolveConstant (int constantPoollndex) 
{ 

String constType, constVal, tempString=""; 
int templ, temp2; 
constType = ConstantType.get(constantPoollndex).toString(); 
constVal = ConstantVal.get(constantPoollndex).toString(); 

if (constType.equals("Integer")) 
tempString = constVal; 

else if (constType.equals("Long")) 
tempString = constVal; 

171 



Chapter6 

{ 

172 

else if (constType.equals("Float")) 
tempString = constVal; 

else if (constType.equals("Double")) 
tempString = constVal; 

else if (constType.equals("String")) 
{ 

} 

tempString = "\""+ 
ConstantVal.get(Integer.parseint(constVal)) 

. toString ()+"\""; 
type = "String"; 

else if (constType.equals("Class")) 
tempString = ConstantVal.get(Integer.parseint(constVal)).toString(); 

else if (constType.equals("NameAndType")) 

temp1 = Integer.parseint(constVal.substring(o, constVal.indexOf(","))); 
temp2 = Integer. parseint( constVal. substring( constVal. indexOf(", ")+1)); 
tempString = ConstantVal.get(temp1).toString() + 

ConstantVal.get(temp2).toString(); 
} 

else if (constType.equals("Fieldref")) 
{ 

} 

temp1 = Integer. parseint(constVal. substring(o, constVal.indexOf(", "))); 
temp2 = Integer.parseint(constVal.substring(constVal.indexOf(",")+1)); 
if (!resolveConstant(temp1).toString().equals(ClassName)) 
{ 

tempString = resolveConstant(temp1) + "."; 
} 

else 
{ 

tempString = ""; 
tempString += resolveConstant(temp2); 
tempString = tempString.substring(o,tempString.length()-1); 

if (tempString.indexOf("[")!=-1) 
tempString = tempString.substring(o,tempString.length()-1); 

else if (constType.equals("Methodref") II 
constType.equals("InterfaceMethodref")) 

{ 

temp1 = Integer.parseint(constVal.substring(o, constVal.indexOf(","))); 
temp2 = Integer.parselnt(constVal.substring(constVal.indexOf(",")+1)); 



Decompiler Implementation 

} 

} 

tempString = resolveConstant(templ) + "."; 
tempString += resolveConstant(temp2); 

else 
tempString = "Error"; 

return tempString; 

We use a number of stacks to help resolve the constant pool; oStackDebug 
and finalStackDebug dump the contents of each of those stacks for ease of 
debugging, as shown in listing 6-10. 

Listing 6-10. oStackDebug and finalStackDebug 

public void oStackDebug(String calledFrom) 
{ 

Stack tempStack = new Stack(); 
while (!oStack.empty()) 

tempStack.push(oStack.pop()); 
System.out.println("oStackDebug called from " + calledFrom + 

... "); 
for(int i=l; !tempStack.empty(); i++) 
{ 

System.out.println("oStack" + i + ": " + 
tempStack.peek().toString()); 

oStack.push(tempStack.pop()); 
} 

} 

public void finalStackDebug(String calledFrom) 
{ 

} 

Stack tempStack = new Stack(); 
while (!finalStack.empty()) 

tempStack.push(finalStack.pop()); 
System.out.println("finalStackDebug called from " + 

calledFrom + "."); 
for(int i=l; !tempStack.empty(); i++) 
{ 

} 

System.out.println("finalStack" + i + ": " + 
tempStack.peek().toString()); 

finalStack.push(tempStack.pop()); 

:} 

173 



Chapter6 

174 

Next, let us look at the terminal and non-terminal symbol declarations. 
The terminals are the same as the tokens coming in from scanner and the non­
terminals are what we resolve the terminals into, to gradually tum the tokens 
or terminals into source code. First are the XML tag terminals, which you can 
see Listing 6-11. There's nothing surprising here; refer to the JLex specification 
(Listing 6-7) to match the terminal name to the tag. 

Listing 6-11. ClassToXML Terminals 

terminal ROOT, MAGICNUM, MAJORVER, MINORVER, CPCOUNT; 
terminal CONSTPOOL, CPTAG, CPINDEX, TYPETAG, ACCFLAGS; 
terminal XROOT, XMAGICNUM, XMAJORVER, XMINORVER; 
terminal XCPCOUNT, XCONSTPOOL, XCPTAG, XCPINDEX, XTYPETAG; 
terminal XACCFLAGS, NT_INDEX, NAMEINDEX, DESCINDEX, VALTAG; 
terminal THISCL, SUPERCL, INTCNT, INTERFACES, FIELDCNT; 
terminal FIELDS, FIELD, XNT_INDEX, XNAMEINDEX, XDESCINDEX; 
terminal XVALTAG, XTHISCL, XSUPERCL, XINTCNT, XINTERFACES; 
terminal XFIELDCNT, XFIELDS, XFIELD, METHCNT, METHODS,; 
terminal METHOD, ATTCNT, ATTRIBS, ATTRIB, ATTTYPE; 
terminal ATTLENGTH, MAXSTACK, MINSTACK; 
terminal XMETHCNT, XMETHODS, XMETHOD, XATTCNT, XATTRIBS; 
terminal XATTRIB, XATTTYPE, XATTLENGTH, XMAXSTACK, XMINSTACK; 
terminal CODELEN, CODETAG, LINETAG, EXCLEN, EXCTABLE; 
terminal CODEATTCNT, CODEATTNAME, CODEATTLEN; 
terminal LNTABLECNT, LINENUMTABLE; 
terminal XCODELEN, XCODETAG, XLINETAG, XEXCLEN, XEXCTABLE; 
terminal XCODEATTCNT, XCODEATTNAME, XCODEATTLEN; 
terminal XLNTABLECNT, XLINENUMTABLE, LINENUM, LNMAP; 
terminal STARTPC, ENDPC, HANDLER, CATCHTYPE, XLINENUM; 
terminal XLNMAP, XSTARTPC, XENDPC, XHANDLER, XCATCHTYPE; 

Next Listing 6-12 shows the terminals for the each of the individual opcodes: 

Listing 6-12. Opcode Terminals 

terminal ACCESS, PROPERTY, CONSTNAME, CONSTANT, DECIMALPT; 
terminal COMMA ,CHARRAY, INTEGER, FLOAT, LONG, DOUBLE, STRING, CLASSREF; 
terminal FIELDREF, METHODREF, INTERFACEREF, NAMEANDTYPE; 
terminal NULL, M1, NEGATIVE, HEXNUM, NUMBER, TYPE, ATTRIBNAME; 
terminal NOP, CONST, BIPUSH, LDC, LOAD, STORE, POP, POP2, DUP, DUPX; 
terminal NEW, ASTORE, ALOAD, NEWARRAY, ARRAYLENGTH; 
terminal SWAP, NEG, ADD, SUB, MUL, DIV, REM, SHL, SHR, AND, OR, XOR, !INC; 
terminal I2L, CMP, IF, IF_ICMP, GOTO, JSR, RET, RETURN; 



Decompiler Implementation 

terminal TABLESWITCH, LOOKUPSWITCH, GETSTATIC, GETFIELD, PUTSTATIC; 
terminal PUTFIELD, INVOKE, ATHROW, CHECKCAST, INSTANCEOF; 
terminal MONITORENTER, MONITOREXIT, WIDE, MULTIANEWARRAY, IFNULL; 

Finally, the non-terminals are shown in Listing 6-13. These break up the XML 
file into bite-sized pieces so that they can be dealt with more easily and can be 
ultimately converted into code. In CUP and Yacc grammars, general terminals 
always resolve into non-terminals as part of the parsing process. 

Listing 6-13. Listing of All the Non-Terminals 

non terminal startfile, file, constantpool, constantelement; 
non-terminal classname, interfaces, fields, field, methods, method; 
non-terminal definitionparts, stmts, expr_part, other; 
non terminal property, properties, number, type, access, return, invoke; 
non terminal load, bipush, iinc, canst, stackops, cmp, if_icmp, if, store; 
non-terminal goto, arith, conv, object, arrayops, astore, aload, newarray; 
non-terminal arraylength, codeattribs, endcodeattribs, linenumtable; 
non-termnal linenummapping, exceptiontable; 

I'll now look at each non-terminal in a little more detail. In all CUP parsers, 
well all Yacc parsers to be exact, we convert the scanned tokens or terminals 
into the final output by converting terminals and non-terminals into other non­
terminals until we reach the final non-terminal and the parser exists. 

CUP is not unlike the JVM itself, acting like a simple stack machine where 
each terminal and non-terminal is popped onto a stack. Then when a rule in 
the parser (specified by the non-terminal) is satisfied, the terminals and non­
terminals are popped off the stack and replaced with the new non-terminal. 
The parser ultimately exists when there are no more terminals to parse and the 
final rule has been resolved, which in our case, is the file non-terminal, and 
then the source code is output. 

The file Non-Terminal 

Select the file non-terminal as the start symbol: 

start with file; 

The file non-terminal definition describes the entire higher-level schema of 
the ClassToXML output, as just described. Because you're parsing most of the 
"useless" class information (such as field and method counts) in file, the non­
terminal definition is very unwieldy, as you can see in Listing 6-14. 

175 



Chapter6 

176 

Remember, the code following these definitions is executed only once the 
symbol has been parsed. Once the whole class is decompiled, you will output 
the final parenthesis as using a simple System.out .println. 

NOTE From here on, until we get to the test suite, that is, I will only show the ter­
minals and not the code that manages the terminals. You can find and download 
the remaining code from the Apress web site (http: I !w.M. apress. com). 

Listing 6-14. file Non- Terminal 

file ::= startfile CPCOUNT number XCPCOUNT CONSTPOOL 
constantpool XCONSTPOOL classname interfaces FIELDCNT number 
XFIELDCNT FIELDS XFIELDS METHCNT number XMETHCNT 
METHODS methods XMETHODS ATTCNT number XATTCNT 
ATTRIBS ATTRIB ATTTYPE ATTRIBNAME XATTTYPE XATTRIB 
XATTRIBS XROOT 
startfile CPCOUNT number XCPCOUNT CONSTPOOL constantpool 
XCONSTPOOL classname interfaces FIELDCNT number XFIELDCNT 
FIELDS fields XFIELDS METHCNT number XMETHCNT METHODS 
methods XMETHODS ATTCNT number XATTCNT ATTRIBS ATTRIB 
ATTTYPE ATTRIBNAME XATTTYPE XATTRIB XATTRIBS XROOT 

The startfile Non-Terminal 

In Listing 6-15, you use the startfile symbol so that you can set up the constant 
pool arrays before parsing begins. Null is added at the start of the arrays to match 
the 1-based indexing used in the bytecode. 

Listing 6-15. startfile Non- Terminal 

startfile ::=number DECIMALPT number ROOT MAGICNUM 
HEXNUM XMAGICNUM MAJORVER number XMAJORVER 
MINORVER number XMINORVER 

The constantpool Non-Terminal 

Now you can actually read in the constant pool. First set up the superstructure 
for parsing-the constantpool non-terminal, as shown in Listing 6-16. As you saw 
earlier, this allows the parser to read in every constant pool element. 



Decompiler Implementation 

Listing 6-16. constantpool Non-Terminal 

constantpoo1 ::= constantpoo1 CPTAG constante1ement XCPTAG 
I CPTAG constante1ement XCPTAG 

The constantelement Non-Terminal 

The constante1ement non-terminal is the key to the problem. You just have to 
break it down into the various types of constant element, as shown in 
Listing 6-17. 

Listing 6-17. constantelement Non-Terminal 

constante1ement ::= CPINDEX number:n XCPINDEX TYPETAG CONSTANT 
CHARRAY:t XTYPETAG VALTAG CONSTNAME:s XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT INTEGER:t 

XTYPETAG VALTAG number:intVa1 XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT INTEGER:t XTYPETAG 
VALTAG NEGATIVE number:intVa1 XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT LONG:t XTYPETAG 
VALTAG number:1ongVa1 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT LONG:t XTYPETAG 
VALTAG NEGATIVE number:longVal XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT FLOAT:t XTYPETAG 
VALTAG number:f1 DECIMALPT number:f2 XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT FLOAT:t XTYPETAG 
VALTAG NEGATIVE number:f1 DECIMALPT number:f2 XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT DOUBLE:t XTYPETAG 
VALTAG number:d1 DECIMALPT number:d2 XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT DOUBLE:t XTYPETAG 
VALTAG NEGATIVE number:d1 DECIMALPT number:d2 XVALTAG 

CPINDEX number:n XCPINDEX TYPETAG CONSTANT 
STRING:t XTYPETAG VALTAG number:index XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT CLASSREF:t 
XTYPETAG VALTAG number:index XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT FIELDREF:t 

XTYPETAG VALTAG number:c1assindex COMMA number:NaTindex XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT METHODREF:t 
XTYPETAG VALTAG number:c1assindex COMMA number:NaTindex XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT INTERFACEREF:t 

177 



Chapter6 

178 

XTYPETAG VALTAG number:classindex COMMA number:NaTindex XVALTAG 
CPINDEX number:n XCPINDEX TYPETAG CONSTANT NAMEANDTYPE:t 
XTYPETAG VALTAG number:nameindex COMMA number:typeindex XVALTAG 
error 

First, you will need to read in the primitive types: the UTF-8 char array, int, 
long, float, and double. The eight-byte constants (double and long) require two 
constant pool entries, but you have already dealt with this in ClassToXML by 
merely filling both entries with the whole eight-byte constant value. Negative 
numbers must include the NEGATIVE terminal. You need to do some tricky string 

manipulation to correctly read in spaces with their escape characters and to 
replace &lt; and &gt;, the XML codes for< and>. 

Next, you have the more complex constant data types: String, Class, 
NameAndType, Field, Methodref, and InterfaceMethodref. These types consist of index 

values to other elements in the constant pool. Once we deal with the constant data 

types, the constant pool will be ready to use. Decompiling the bytecode without 
using the constant pool information will not make the source code very readable. 

The classname Non-Terminal 

Now you need to prepare the class structure by reading in the access properties 

and the constant pool index of the class name and also by parsing the super­
class constant pool index. But, since you don't resolve the superclass, you can 
discard it. 

classname ::= ACCFLAGS access:a XACCFLAGS THISCL number:classnum 
XTHISCL SUPERCL number XSUPERCL 

The interfaces Non-Terminal 

Now read in the (empty) headers for the interfaces. As stated earlier, I am assum­

ing that there are no interfaces in the test suite. 

interfaces .. - INTCNT number XINTCNT INTERFACES XINTERFACES 

The fields Non-Terminal 

Next, you must read in the fields. In Listing 6-18, I am using the fields non­

terminal to collect them all. The parameter symbols given in the constant pool 



Decompiler Implementation 

(I, B, L, J, etc.) are outlined by the Java specification. J, for instance, is used for 
long variables because L is already reserved for class references. 

Listing 6-18. fields Non-Terminal 

fields ::= fields FIELD field XFIELD I FIELD field XFIELD 

field ::= ACCFLAGS access:a definitionparts:params ATTCNT 
number XATTCNT ATTRIBS XATTRIBS 

The methods Non-Terminal 

Next read in the methods using the methods non-terminal to collect them all. 

methods ::= methods METHOD method XMETHOD 
I METHOD method XMETHOD 

For your purposes, each method consists of an access flag (public, private, 
protected, etc.), an indefinite number of properties (static, volatile, etc.), and 
constant pool indices for the name and passed/returned parameter types. However, 
reading in the relevant data requires reading in a lot of data you do not use first, 
which leads to extremely long non-terminal declarations. To minimize this, 
you'll need to break the method non-terminal into pieces. In Listing 6-19, the 
codeattribs non-terminal will precede stmts, which is the assembly code for the 
method; endcodeattribs will follow it. 

Listing 6-19. codeattribs Non-Terminal 

codeattribs ::= ATTCNT number XATTCNT ATTRIBS ATTRIB ATTTYPE 
ATTRIBNAME XATTTYPE ATTLENGTH number XATTLENGTH 
MAXSTACK number XMAXSTACK MINSTACK number XMINSTACK 
CODELEN number XCODELEN CODETAG 

endcodeattribs ::= XCODETAG EXCLEN number XEXCLEN EXCTABLE exceptiontable 
XEXCTABLE CODEATTCNT number XCODEATTCNT CODEATTNAME number 
XCODEATTNAME CODEATTLEN number XCODEATTLEN LNTABLECNT number 
XLNTABLECNT LINENUMTABLE linenumtable XLINENUMTABLE XATTRIB 
XATTRIBS 

The line number table is an often-present attribute of methods; it matches 
pieces of the bytecode to assembly code line numbers. Again, you just parse and 

179 



Chapter6 

180 

forget it. By doing so, you accumulate an unknown number of line-number 
mappings with the linenumtable non-terminal and individual mappings with 
linenummapping, as shown in Listing 6-20. 

Listing 6-20. linenumtable and linenummapping Non-Terminal 

linenumtable ::= linenumtable LNMAP linenummapping XLNMAP 
I LNMAP linenummapping XLNMAP 

linenummapping ::= I STARTPC number XSTARTPC LINENUM number XLINENUM 

And, finally, it's time to deal with the exception table (see Listing 6-21). You 
need to consider that the exception table may be empty, and so you'll need to 
add a blank definition. I've included this for completeness's sake because I don't 
implement the try/catch/finally decompilation in this version, which is the pri­
mary use of the exception table. 

Listing 6-21. exceptiontable Non-Terminal 

exceptiontable .. -
STARTPC number XSTARTPC ENDPC number XENDPC HANDLER 
number XHANDLER CATCHTYPE number XCATCHTYPE 

You then get the method data (access flags, definition parts, and code 
attributes) using the method non-terminal. The program code is then picked up 
iteratively using the stmts non-terminal as shown in Listing 6-22. Note that the 
return type and parameter types are resolved in this non-terminal: 

Listing 6-22. method Non-Terminal 

method ::= ACCFLAGS access:a definitionparts:desc codeattribs 
stmts endcodeattribs 

In non-static methods, the local variable o is used to hold the this reference; 
you need to use a global variable, staticAdjustment, to correct for static methods. 
I also use the level variable to denote the number of conditional statement lev­
els. We won't be addressing conditional statements for some time, however. 

Because all the decompiled code is in finalStack backwards, you need to 
pop objects and add them to the front of outString. Finally, you should add the 
method information you collected at the start of this function and output it. 
Note that I skip the dnit> and <clinit> methods, because they only exist to ini­
tialize field objects; they are dealt with separately. 



Decompiler Implementation 

definitionparts, see Listing 6-23, is the non-terminal you use to set the field 
and method properties (static, final, etc.), name, and parameters. You must sepa­
rate it from the field and method non-terminals so that you know the current 
object's name while you are analyzing the assembly code. 

Listing 6-23. definitionparts Non- Terminal 

definitionparts::= properties XACCFLAGS NAMEINDEX number:name 
XNAMEINDEX DESCINDEX number:params XDESCINDEX 

stmts, shown in Listing 6-24, is the accumulating non-terminal for assembly 
code. If a new line of code is being added to a preexisting stack, you need to 
check to see whether any conditional statements end at that point in the pro­
gram. Conditional resolution is one of the most difficult parts of the program. 

Listing 6-24. stmts Non- Terminal 

stmts ::= stmts LINETAG expr_part XLINETAG 
I LINETAG expr_part XLINETAG 

Miscellaneous Non-Terminals 

At this point, I'm not yet adding instructions, so I'll just define the built-in error 
non-terminal as the only member of expr_part. 

expr_part ::=error; 

Here is the number non-terminal, a very simple non-terminal that is used 
repeatedly. 

number ::= NUMBER:n 

access is similarly simple, but some methods do not have access flags. To 
provide for these, you must include a "blank'' definition. 

access ::= I ACCESS:a; 

properties is similarly primitive. This is where you set the staticAdjustment 
variable if necessary. 

properties ::= properties property I property; 
property ::= I PROPERTY:p; 

181 



Chapter6 

182 

Finally, the type non-terminal provides type strings to the various instruc­
tions that need them. 

type ::= TVPE:t; 

Test Suite 

To complete the remainder of the decompiler code, in particular to build up the 

expr_part non-terminal, I use a test suite of programs. There are ten programs in 

the test suite, each demonstrating a different language construct. 

• HelloWorld.java 

• Basics. java 

• MathOps.java 

• DoWhile.java and IfTest.java 

• Recurses. java 

• Whileloop.java 

• Forloop.java 

• ArrayTest.java 

• Arrayinit.java 

For each of the programs, I begin with the original source and then show the 

important sections of ClassToXML-that is, the decompiler input. I then discuss 

the high -level grammar changes we need to make to accommodate this new 

construct. Next, I show the complete code for those of you who are interested in 

the details. Finally, I display the decompiler output. 

HelloWorld.java 

It's now time to start looking at the decompiler XMLToSource in earnest. There is no 

better place to begin than with a simple Hello World example (Listing 6-25). In this 

program, you'll see several important basic operations including constant loading, 

method invocation and return, and most importantly, resolution of constant pool 

elements. 



Decompiler Implementation 

Listing 6-25. HelloWorld.java 

public class HelloWorld { 

} 

public static void main(String[] args) 
{ 

} 

System.out.println("Hello World"); 
return; 

Input 

The decompiler currently recognizes the ClassToXML output; it will read in the 
constant pool and the class information as shown in the previous section. The 
additional input consists of two generated methods in the classfile separately: 
a dummy constructor (listing 6-26) and the main method (listing 6-27). 

Listing 6-26. Dummy Method 

<AccessFlags>public</AccessFlags> 
<Name_Index>9</Name_Index> 
<Description_Index>10</Description_Index> 

<Code> 
<line>OOO: aload_O</line> // pushes this onto the stack 
<line>001: invokespecial 1</line> //instantiate an object 
<line>004: return</line> II return function 
</Code> 

The second method (listing 6-27) is our main function. 

Listing 6-27. Annotated main Method 

<AccessFlags>public static</AccessFlags> 
<Name_Index>11</Name_Index> 
<Description_Index>12</Description_Index> 

<Code> 
<line>OOO: getstatic 2</line> 
<line>003: ldc 3</line> 

II get constant pool entry 2, System.out 
II load "Hello World" onto stack 

<line>OOS: invokevirtual 4</Line> // call println(Ljava/lang/PrintStream)V, 
<line>008: return</Line> 
</Code> 

II return function 

183 



Chapter6 

184 

No local variables are used in this method although localo is reserved as 
a reference to the String array of arguments Java requires of main functions. In 
this case, localo resolves to public static void main (String [] args). 

Grammar 

The grammar is as follows: 

expr_part -> error I return I store I load I invoke I object ; 
return -> number RETURN I number type RETURN; 
store -> number type STORE number; 
load -> number type LOAD number I number LDC number ; 
invoke -> number INVOKE number; 
object -> number NEW number I number GETSTATIC number 
type -> TYPE; 

The return Non-Terminal 

There are two return productions: line number and RETURN terminal; and line 
number, type of value to return, and RETURN terminal. 

The return non-terminal is fairly simple. It has two possible variations in the 
assembly: return is used to return void, whereas ireturn, dreturn, and so on, 
push a value onto the oStack and then return to the calling method. Note that 
non-terminal definitions must include the line number of the instruction so that 
you have immediate access to it. 

The store Non-Terminal 

The store production consists of the line number, the local variable type, the 
STORE terminal, and the index of the local variable being used. 

The store non-terminal is more complex. Every variable declaration creates 
a store instruction: primitives in their primitive type, higher-level objects as 
pointers (astore). To correctly parse an instruction, you have to check its type, 
verify whether the local variable it references has already been declared, and 
then store the top element of the oStack in the appropriate local variable. 

As with return; different primitive types are identified by a single-character 
prefix to the store instruction. It's very easy to identify the int, long, float, and 
double primitives, but what of the class variables stored using as tore (that is, 
stored by address)? 

This implementation of the type non-terminalloads the primitive types into 
a global string type, but ignores the "a" type. The higher-level objects must be 
addressed differently: the type can be set to String when a string constant is 
loaded from the constant pool. For other classes, you can use the new instruction 
to get the variable type. 



Decompiler Implementation 

The load Non-Terminal 

The load non-terminal contains two productions: one for the load instruction, 
which consists of the line number, the local variable type, the LOAD terminal, and 
the index of the local variable being loaded; and one for ldc, the "load constant" 
instruction, which consists of the line number, the LDC terminal, and the con­
stant pool index of the constant being loaded. 

The ldc instruction is easy to deal with: it gets the constant pool element 
specified by the index and pushes it onto the oStack. The definition for the load 
instruction is nearly as simple. First check to see whether the local variable 
whose value is being pushed onto the oStack has been used before. If it hasn't, it 
is a parameter of the method and you set the corresponding bit in varsinUse. 

if (!varsinUse.get(new Integer(n.toString()).intValue())) 
varsinUse.set(new Integer(n.toString()).intValue()); 

Since it's being loaded onto the oStack, the type of the variable doesn't mat­
ter and "local"+index (that is, localN) can be pushed onto the oStack. 

The invoke Non-Terminal 

The invoke production is deceptively simple, consisting of only the line number, 
the INVOKE terminal, and the constant pool index of the Method Ref for the method 
being invoked. 

The invoke non-terminal is the meatiest you'll encounter in this example: it 
is the trickiest, the most basic, and the most important. When dealing with invo­
cations, you must be concerned with whether the method being invoked is static 
(since it will not affect the current reference), virtual, or "special" -although you 
don't need to worry too much about the last, as it rarely comes up. 

The code first resolves the method reference (given by constant pool index), 
then isolates the number of passed parameters and pops that number of ele­
ments from the oStack. 

Once the constant pool data for the method has been loaded, the oStack 
must be checked. If the top element on the oStack is an invocation containing 
the typeCheck type, the method being invoked belongs to that reference and can 
be attached to it-for instance, a string concatenation, ( StringBuffer. append ()), 
may be attached to another if multiple strings are appended to a String Buffer. 

Next, the decompiler must check whether the method being called is <init>. 
If it is, this instantiates an object. If the object constructor takes a parameter, you 
must add it in. Then you need to check to see if the class method being invoked 
belongs to is the current reference. If it is, you must attach the previous chain of 
invocations (i.e., tempString.substring(o, tempString.indexOf(". ")).You use the 
outstandingType global string for this. You must check three things: whether 
outstandingType has been initialized, whether typeCheck (the class to which the 

185 



Chapter6 

186 

method being invoked belongs) starts with it, and whether the oStack is empty. 
You'll use this in successive cases, too. 

The next condition is a special case, the case of appending strings. If the 
method being invoked is .append("somevalue"), and the top element of the oStack 
begins with new StringBuffer() .append, you can insert+ "somevalue" into the 
argument of append. This returns you to a familiar and efficient style of string 
concatenation-for example ("valuel" + valuel + ". "). 

If none of these criteria apply, you need to check those same three criteria 
discussed above: outstandingType, typeCheck, and whether the oStack is empty. If 
the method returns void, you can push it to the finalStack; otherwise, you must 
push it to the oStack. 

If the outstandingType check fails, you check the return type. 

The object Non-Terminal 

At present, there are two productions for object; more will be added later. The 
first, for the new instruction, consists of the line number, the NEW terminal, and 
the constant pool index of the object being instantiated. The second, for the 
getstatic instruction, consists of the line number, the GETSTATIC terminal, and 
the constant pool index of the Class Ref being loaded. 

The object non-terminal is the last remaining, and it is fairly simple. The 
related opcodes put static, getfield, and putfield will not become important for 
some time. The new instruction just gets the class name from the constant pool, 
stores it in the global outstandingType string, and pushes the new instance of the 
class onto the oStack. The getstatic instruction is no more difficult: again, just 
resolve the constant pool reference and push it onto the oStack. 

Code 

The complete code to handle HelloWorld.java is shown in Listing 6-28. 

Listing 6-28. Decompiler Code for Hello World.java 

expr_part ::=error 
I return 
I store 
I load 
I invoke 
I object 



Decompiler Implementation 

return ::=number:! RETURN:c 
{: 

finalStack. push(space + "return; //"+1. toString()); 
:} 

number:! type:t RETURN:c 
{: 

:} 

if (!oStack.empty()) 
finalStack.push(space + "return " + 
oStack.pop(). toString() + "; //"+1. toString ()); 

store ::=number:! type:t STORE:s number:n 
{: 

if (!oStack.empty()) 
{ 

} 

:} 

if (varsinUse.get(new Integer(n.toString()).intValue())) 
finalStack.push(space + "local" + n + "=" 

+oStack.pop()+"; //" + l); 
else 
{ 

} 

finalStack.push(space + type + " local" + n + "=" 
+oStack.pop()+"; //" + l); 

varsinUse.set(new Integer(n.toString()).intValue()); 

load ::=number:! type:t LOAD:i number:n 
{: 

if (!varsinUse.get(new Integer(n.toString()).intValue())) 
varsinUse.set(new 

Integer(n.toString()).intValue()); 

:} 

if (t.toString().equals("a")) 
oStack.push("local"+n.toString()); 

else 
oStack.push("local"+n.toString()); 

number:! LDC:ld number:n 
{: 

oStack.push(resolveConstant(Integer.parselnt(n.toString()))); 
:} 

187 



Chapter6 

188 

invoke ::=number:! INVOKE:s number:n 
{: 

int varCount; 
String tempString, variables= .... > tempVarTypes > typeCheck= n II; 

String tempString = resolveConstant (Integer.parseint(n.toString ())); 

tempVarTypes = tempString.substring( 
tempString.indexOf("("),tempString.indexOf(")")+1); 

while (tempVarTypes.indexOf("L") != -1 && 
tempVarTypes.indexOf(";") != -1) 

tempVarTypes = 
tempVarTypes.substring(o,tempVarTypes.indexOf("L")+1) + 

tempVarTypes.substring(tempVarTypes.indexOf(";")+1, 
tempVarTypes.length ()); 

varCount = tempVarTypes.indexOf(")") - tempVarTypes.indexOf("(")-1; 

while (varCount > o) { 

} 

variables = oStack.pop() + ", " + variables; 
varCount--; 

if (variables.length() > o) 
variables = variables.substring(o,variables.length()-2); 

typeCheck = tempString; 

if (s.toString().equals("invokevirtual") && typeCheck.indexOf(".")l=-1) 
outstandingType=typeCheck.substring(o,typeCheck.indexOf{".")); 

while (typeCheck.indexOf(")L")!=-1) 
typeCheck = typeCheck.substring(typeCheck.indexOf(")L")+1); 

if (!oStack.empty() && oStack.peek().toString().indexOf(typeCheck)l=-1) 
{ 

} 

String StackTemp = oStack.pop().toString(); 
oStack.push(StackTemp.substring(o,StackTemp.indexOf{"L")) + "." 

+ tempString.substring(o,tempString.indexOf("."))+ 
"("+variables+")"); 

else if (tempString.substring(tempString.indexOf(".")+1, 
tempString.indexOf("(")).equals("<inib")) 

{ 

} 

if (outstandingType != "" && typeCheck.indexOf(outstandingType)!=-1 

&& loStack.empty()) 
oStack.push{oStack.pop() + "("+variables+")"); 

else 
oStack.push(tempString.substring(o,tempString.indexOf("."))+ 

"("+variables+")"); 

else if (tempString.substring(tempString.indexOf(".")+1, 



Decompiler Implementation 

:} 

{ 

} 

tempString.indexOf( 11 ( 11 )).equals( 11 toString11
) && 

oStack.peek(). toString(). startsWith( 11 new StringBuffer() .append (11
)) 

tempString = oStack.pop().toString(); 
tempString = tempString.substring(25); 
while (tempString.indexOf( 11 ).append( 11

) != -1) 
tempString = tempString.replaceA11( 11 .append 11 , 11 + 11 ); 

oStack.push(tempString); 

else if (outstandingType != 1111 && 
typeCheck.indexOf(outstandingType)!=-1 

&& !oStack.empty()) 
{ 

} 

String temp2 = oStack.pop().toString(); 
if (temp2.index0f( 11 Ljava 11 )!=-1) 

temp2 = temp2.substring(o,temp2.index0f( 11 Ljava 11
)); 

while (temp2.index0f( 11 1") !=-1) 
temp2 = temp2.substring(temp2.index0f( 11

/ 11 )+1); 
if (tempString.endsWith( 11V11 )) 

else 

finalStack.push(space + temp2 + 11
• 11 + 

tempString.substring (tempString.indexOf( 11
•

11 )+1, 
tempString.indexOf( 11 ( 11 ))+11 ( 11 +Variables+11 ); // 11+1); 

oStack.push(temp2 + 11 • 11 + 
tempString.substring(tempString.indexOf( 11 • 11 )+1, 

tempString.indexOf( 11 ( 11 ))+11 ( 11+Variables+11 ) 11 ); 

else if (tempString.endsWith( 11V11
)) 

else 

finalStack.push(space + 
tempString.substring(tempString.indexOf( 11 • 11 )+1, 

tempString.indexOf( 11 (
11 ))+11 ( 11+Variables+11 ); // 11+1); 

oStack.push(tempString.substring(tempString.indexOf( 11 • 11 )+1, 
tempString.indexOf( 11

(
11 ))+11

(
11+variableS+11 ) 11 ); 

object ::=number:! NEW:s number:n 
{: 

String tempString = 
resolveConstant (Integer.parseint(n.toString ())); 

outstandingType=tempString; 
while (tempString.indexOf( 11 / 11 )l=-1) 

tempString = 

189 



Chapter6 

190 

tempString.substring(tempString.indexOf("/")+1); 
type = tempString; 
oStack.push("new "+tempString); 

:} 

number:l GETSTATIC:s number:n 
{: 

:} 

String tempString = 
resolveConstant(Integer.parseint(n.toString ())); 

oStack.push(tempString); 

Output 

Once you recompile the CUP and JLex files and run the decompiler, the results 

you get are indistinguishable from the original (see Listing 6-29). 

Listing 6-29. Decompiled Method 

public class HelloWorld { 

} 

public static void main(String[] localo) 
{ 

} 

System.out.println("Hello World. "); 
return; 

Basics.java 

In this example, the decompiler is extended slightly to support a few more com­

mon operations. In this program, you'll see several important basic operations: 

primitive type assignation, recasting, initialization of variables, and non-void 

returns. We begin with the original code, shown in Listing 6-30. 

Listing 6-30. Basics.java 

public class Basics 
{ 

void main(String [] locall) 
{ 

int local2=12; 



Decompiler Implementation 

double local3=convertToDouble(local2); 
return; 

} 

public double convertToDouble(int local1) 
{ 

return (double) local1; 
} 

} 

Input 

The first method in ClassToXML's output will of course be the constructor, which 
can be disregarded. The second is the main function (shown in Listing 6-31). 

Listing 6-31. Annotated main Method 

<AccessFlags I> 

<Name_Index>9</Name_Index> 
<Description_Index>10</Description_Index> 

<Line>OOO: bipush 12</Line> //push 12 
<Line>002: istore_2</Line> //pop and store in local2 
<Line>003: aload 0</Line> //push this 
<Line>004: iload 2</Line> //push int value of local2 
<Line>OOS: invokevirtual 2</Line> //call type conversion function 
<Line>008: dstore_3</Line> //store result in local3 
<Line>009: return< I Line> I /return 

There is an interesting and important difference between static and non­
static methods within the bytecode. Since the main function is a non-static 
method, localo is used to store this. Change both functions to public static, 
recompile the program, and disassemble it with ClassToXML, and you will see 
that the assembly of the main function is quite different (Listing 6-32). 

Listing 6-32. Static main Method 

<AccessFlags>public static</AccessFlags> 

<Line>OOO: bipush 12</Line> 
<Line>002: istore 1</Line> 
<Line>003: iload 1</Line> 
<Line>004: invokestatic 2</Line> 
<Line>007: dstore 2</Line> 
<Line>008: return</Line> 

191 



Chapter6 

192 

No longer is this loaded before the type conversion method is invoked. 
Instead, only the contents of local1 (formerly local2) are loaded and the method 
is invoked. 

Last is the tiny type conversion method (Listing 6-33). Little is done within 
it, as type conversion between primitives requires only a single opcode. 

Listing 6-33. Annotated Type Conversion Method 

<AccessFlags>public</AccessFlags> 
<Name_Index>11</Name_Index> 
<Description_Index>12</Description_Index> 

<Line>OOO: iload_1</Line> 
<Line>001: i2d</Line> 
<Line>002: dreturn</Line> 

//load passed integer 
//convert integer to double 

//return double value 

Also note that the type of the return opcode reflects the return type of the 
method-this helps the NM ensure security. Though there can be multiple 
return statements in a method, they all must return the same type. 

Grammar 

The grammar is as follows: 

expr_part -> error I return store load invoke I object I 

const ipush conv; 
ipush -> number !PUSH number; 
const -> number type CONST number number type CONST M1 

I number type CONST NULL; 
conv-> number type T2T type; 

The ipush Non-Terminal 

The ipush production consists of the line number, the !PUSH terminal, and the 
byte or short value to convert to load to the oStack. 

Both bipush and sipush sign-extend a byte or a short, respectively, to int, 
then push it to the oStack. With the abstracted approach the decompiler uses, 
this is very easy to deal with: it just pushes the number. 

The Const Non-Terminal 

The const production consists of the line number, the type of constant to load, 
the CONST terminal, and the constant value to load. 



Decompiler Implementation 

Compared to ipush, const has a wider range of data types but a smaller range 
of values. Const can push data of type int, long, float, and double. iconst can 
push integers 0-5, as well as -1 (iconst_ml), onto the oStack; lconst longs 0 and l; 
fconst float 0.0, 1.0, and 2.0; and dconst double 0.0 and 1.0. There is also an 
aconst instruction that can push a null object reference. Again, this is easy to 
parse, requiring only that Ml and NULL terminals be defined. 

The conv Non-Terminal 

The conv production consists of the line number, the type of the value to be con­
verted, the T2T terminal, and the type to which it's being converted. 

There's one more immensely useful little instruction to address: type-to-type 
conversion (t2t). T2T has various forms (i2l, f2d) can convert most primitives to 
one another. This will take care of recasting values. You don't need to worry 
about what type a piece of data is being converted from, just what it will be con­
verted to. This and the way types are processed make things very simple: 

oStack.push("(" +type+ ") " + oStack.pop()); 

Code 

The complete code to handle Basics. java is shown in Listing 6-34. 

Listing 6-34. Decompiler Code for Basics.java 

bipush ::=number:! BIPUSH:p number:n 
{: oStack.push(n); :} 

const ::=number:! type:t CONST:c number:n 

{: 

:} 

if (type == "double" II type == "float") 
oStack.push(n+".o"); 

else 

oStack.push(n); 

number:! type:t CONST:c Ml:m 

{: /* iconst_ml */ 

:} 

if (type == "double" II type == "float") 
oStack.push("-1.0"); 

else 

oStack.push("-1"); 

193 



Chapter6 

194 

number:! type:t CONST:c NULL:n 
{: /* aconst_null */ 

oStack.push{n); 
:} 

conv ::=number:! I2L:i type:t 
{: 

oStack.push{"(" + type + ") " + oStack.pop ()); 
:} 

Output 

Once the CUP specification is updated and recompiled, the decompiler pro­
duces exactly the result we want (listing 6-35), although I must admit it's very 
unlikely that you'd choose local1, local2, and local3 for your variable names. 

Listing 6-35. Decompiler Results 

public class Basics 
{ 

} 

void main{String[] local1) 
{ 

} 

int local2=12; 
double local3=convertToDouble{local2); 
return; 

public double convertToDouble{int local1) 
{ 

return {double) local1; 
} 

MathOps.java 

The next step is to have programs that change the data in the oStack-to start 
with, a simple arithmetic program. You will see that all the arithmetic opera­
tions (add, sub, mul, div, and rem) work the same way. Only the iinc increment 
instruction needs to be handled differently. The original code is shown in 
listing 6-36. 



Decompiler Implementation 

Listing 6-36. MathOps.java 

public class MathOps 
{ 

public static void main(String[] args) 
{ 

double finalval = o.o; 
int test = 12; 
test += 1; 
test -= 4; 

test *= 5; 
test I= 3; 
finalval = (double) test + finalval; 

} 

} 

Input 

The main function from ClassToXML is shown in listing 6-37. The NM is com­
pletely stack-based, so the arithmetic operations work with the top two pieces of 
data on the oStack. For example, lines 19-23 of the assembly are equivalent to 
local1 += {double) local3; 

Listing 6-37. Annotated main Method 

<AccessFlags>public static</AccessFlags> 
<Name_Index>8</Name_Index> 
<Description_Index>9</Description_Index> 

<line>OOO: dconst_O</Line> 
<Line>001: dstore_1</Line> 
<Line>002: bipush 12</Line> 
<Line>004: istore_3</Line> 
<Line>005: iinc 3 1</Line> 
<Line>008: iinc 3 -4</Line> 
<Line>011: iload_3</Line> 
<Line>012: iconst_5</Line> 
<Line>013: imul</Line> 
<Line>014: istore_3</Line> 
<Line>015: iload_3</Line> 
<Line>016: iconst_3</Line> 

//load constant double 0.0 
//store it in local1 
//load int 12 
//store it in local3 
//increment local3 by 1 
//decrement local3 by 4 
//push value of local3 onto stack 
//push int 5 onto stack 
//multiply the two together 
//store product in local3 
//push value of local3 onto stack 
//push int 3 onto stack 

195 



Chapter6 

196 

<Line>017: idiv</Line> 
<Line>018: istore_3</Line> 
<Line>019: iload_3</Line> 
<Line>020: i2d</Line> 
<Line>021: dload_l</Line> 
<Line>022: dadd</Line> 
<Line>023: dstore_l</Line> 
<Line>024: return</Line> 

Grammar 

The grammar is as follows: 

//INTEGER divide local3 by 3 
//store quotient in local3 

//push value of local3 onto stack 
//convert it from integer to double 

//load locall onto stack 
//add locall to (double) local3 

//store sum in locall 
//and return 

expr_part -> error I return I store I load I invoke I object I const I bipush I 

conv I arith I iinc; 
arith -> number type NEG I number type REM I number type ADD 

I number type SUB I number type MUL I number type DIV; 
iinc -> number IINC number number 

I number IINC number NEGATIVE number; 

The arith Non-Terminal 

Each of the ari th productions consists of the line number, the type of the 
operand(s), and the appropriate opcode name (ADD, SUB, MUL, DIV, REM, or NEG). 

Parsing the arithmetic expressions is not difficult: just pop the top two val­
ues in the oStack and perform the appropriate arithmetic function; then push 
the combined instruction back onto the oStack. For lack of a better place to put 
it, the NEG opcode is also included in arith; this pops the top item on the oStack, 
switches the sign (whether it's a signed value or an arithmetic expression), and 
pushes it back. 

Unfortunately, arithmetic is a bit more complicated than it looks. If expres­
sions are chained, parentheses are necessary to ensure proper results. Addition 
and subtraction do not depend on the order of operations, while multiplication 
and subtraction do. Thus, the multiplication and division non-terminals must 
check for arithmetic signs as the NEG non-terminal does. 

The iinc Non-Terminal 

The iinc production consists of the line number, the !INC terminal, the index of 
the local variable to increment, and the integer increment value (which may be 
preceded by a negative sign). 

Integer increment (iinc) adds or subtracts given values from the value atop 
the oStack. This requires a new terminal definition, since iinc can take a negative 



Decompiler Implementation 

value as the increment. As negative numbers are not defined in the non-terminal 
expression number, two different productions are used for iinc: an increment and 

a decrement (IINC number NEGATIVE number). In addition, increment values 
of one can be caught and the format switched to "i++" from the clunkier "i+=l ". 

Code 

The complete code to handle Mat hOps. java is shown in Listing 6-38. 

Listing 6-38. Decompiler Code for MathOps.java 

arith ::= number:l type:t NEG:r 
{: 

:} 

if (oStack.peek().toString().indexOf("+") == -1 && 

oStack.peek().toString().indexOf("-") == -1 && 

oStack.peek().toString().indexOf("*") == -1 && 

oStack.peek().toString().indexOf("/") == -1) 
oStack.push("- ("+oStack. pop(). toString()+") "); 

else if (! oStack.peek(). to String(). trim(). startsWith ("- ")) 
oStack.push("-"+oStack.pop().toString()); 

else 
oStack.push(oStack.pop().toString().trim().substring(1)); 

number:l type:t REM:r 
{: 

:} 

temp = oStack.pop(); 
oStack.push(oStack.pop().toString() + "%" + 

temp.toString ()); 

number:l type:t ADD:m 
{: 

temp = oStack.pop(); 
oStack.push(oStack.pop().toString() + "+" + 

temp.toString ()); 
:} 

number:l type:t SUB:m 
{: 

:} 

temp = oStack.pop(); 

oStack.push(oStack. pop(). to String() + "-" + 

temp.toString ()); 

197 



Chapter6 

198 

number:l type:t MUL:m 
{: 

:} 

temp = oStack.pop(); 
if (temp.toString().indexOf("+") == -1 && 

temp.toString().indexOf("-") == -1 && 
temp.toString().indexOf("*") == -1 && 
temp.toString().indexOf("/") == -1 && 
oStack.peek().toString().indexOf("+") == -1 && 
oStack.peek(). toString() .indexOf("- ") == -1 && 
oStack.peek().toString().indexOf("*") == -1 && 
oStack.peek().toString().indexOf("/") == -1) 
oStack.push(oStack.pop().toString() + "*" + 

temp.toString ()); 
else if (temp. toString() .indexOf("+") == -1 && 

temp.toString().indexOf("-") == -1 && 
temp. toString() .indexOf("*") == -1 && 
temp.toString().indexOf("/") == -1) 
oStack.push("(" + oStack.pop().toString() + ")*" + 

temp.toString ()); 
else if (oStack.peek().toString().indexOf("+") == -1 && 

oStack.peek().toString().indexOf("-") == -1 && 
oStack.peek().toString().indexOf("*") == -1 && 
oStack.peek().toString().indexOf("/") == -1) 

else 

oStack.push(oStack.pop().toString() + "*(" + 

temp.toString ()+")"); 

oStack.push("(" + oStack.pop().toString() + ")*(" + 
temp.toString ()+")"); 

number:l type:t DIV:m 

{: 

temp = oStack.pop(); 
if (temp.toString().indexOf("+") == -1 && 

temp.toString().indexOf("-") == -1 && 

temp.toString().indexOf("*") == -1 && 
temp.toString().indexOf("/") == -1 && 

oStack.peek(). toString() .indexOf("+") == -1 && 
oStack.peek(). toString(). indexOf("- ") == -1 && 
oStack.peek().toString().indexOf("*") == -1 && 
oStack.peek(). toString(). indexOf(" /") == -1) 

oStack.push(oStack. pop(). toString() + "!" + 
temp.toString ()); 

else if (temp.toString().indexOf("+") == -1 && 

temp.toString().indexOf("-") == -1 && 



Decompiler Implementation 

temp.toString().indexOf("*") == -1 && 
temp. toString(). indexOf(" /") == -1) 

oStack.push("(" + oStack.pop().toString() + ")/" + 
temp.toString ()); 

else if (oStack.peek(). toString() .indexOf("+") == -1 && 
oStack.peek().toString().indexOf("-") == -1 && 
oStack.peek().toString().indexOf{"*") == -1 && 
oStack. peek(). toString() .indexOf(" !") == -1) 
oStack.push(oStack.pop().toString() + "!(" + 

else 

:} 

temp.toString ()+")"); 

oStack.push("(" + oStack.pop().toString() + 
")/(" + temp.toString ()+")"); 

iinc ::= number:l IINC:p number:n1 number:n2 

Output 

{: 
if (!n2.toString().equals("1")) 

finalStack.push(space + "local" + n1 + "+=" +n2+"; II" + l); 

else 
finalStack.push(space + "local" + n1 + "++; II" + l); 

:} 

I number:l IINC:p number:n1 NEGATIVE number:n2 
{: 

if (! n2. toString() .equals("1")) 
finalStack.push(space + "local" + n1 + "-="+n2+"; II" + l); 

else 
finalStack.push(space +"local" + n1 + "--; II" + l); 

:} 

Adding these into the CUP specification produces nice-looking results (see 
listing 6-39). 

Listing 6-39. Decompiler Results 

public class MathOps 
{ 

public static void main(String[] localo) 
{ 

double local1=0.0; 

int local3=12; 

199 



Chapter6 

200 

} 

} 

local3++; 
local3-=4; 
local3=local3*5; 
local3=local3/3; 
local1={double) local3 + local1; 
return; 

DoWhile.java and IfTest.java 

The next extension of the decompiler allows it to handle conditional statements. 
1\vo types of conditional statements do not require the goto opcode by nature­
the do-while loop (listing 6-40) and the if statement (listing 6-41)-so it is 
logical to start with them. This small change requires the addition of several new 
opcodes, the most complicated covered so far. 

Listing 6-40. Do While.java 

public class DoWhile 
{ 

} 

public static void main{String[] args) 
{ 

} 

double finalval = o.o; 
int test = 12; 
do{ test += 1; 

test -= 4; 

test *= 5; 
test I= 3; 

} while (test<=100); 
finalval += {double) test; 
return; 

Listing 6-41. Ifl'est.java 

public class IfTest 
- { 

public static void main{String[] args) 
{ 

double test = -3.14159; 
if (test > 100.0 && test < 200.0) 



Decompiler Implementation 

} 

} 

test=test - 100.0; 

return; 

Both main functions have only a single control-flow statement to deal with. 
Their organizations are exactly as you would expect. In the do-while loop, all 
statements are executed until the conditional test is reached. If it is true, the pro­
gram branches back to near the beginning; if not, it continues. In the if 
statement, the conditional is checked and the program branches or continues 
accordingly. 

Be careful here-you need to make sure the decompiler checks whether the 
line number to which the conditional branches falls before or after the current 
line. If it falls before the current line, the conditional is a do-while; if it falls after, 
it is either an if statement or a while or for loop. The opcodes if and cmp always 
go together; if_ icmp is a more efficient combination of the two operations that 
is used exclusively for integer comparisons. The two can be decompiled the 
same way, however. 

Input 

The main function of DoWhile . java is shown in listing 6-42. 

NOTE From now on, the <Line> and </Line> tags are omitted for brevity. 

Listing 6-42. Annotated main Method of Do While.java 

000: 
001: 
002: 
004: 
005: 
008: 
011: 
012: 
013: 
014: 
015: 
016: 
017: 

dconst o 
dstore 1 
bipush 12 
istore_3 
iinc 3 1 
iinc 3 -4 
iload_3 
iconst_5 
imul 
istore_3 
iload_3 
iconst_3 
idiv 

//see the assembly from MathOps.java, as this part is 
II very similar 

201 



Chapter6 

202 

018: 
019: 
020: 
022: 
025: 
026: 
027: 
028: 
029: 
030: 

istore_3 
iload_3 
bipush 100 
if_icmple 5 
dload 1 
iload_3 
i2d 
dadd 
dstore 1 
return 

//load local3 onto the stack 
//load 100 onto the stack 
//if local3 <= 100, branch back to 5 

//otherwise continue 

The main function ofifTest.java is shown in Listing 6-43. As the bytecode 
of the main function shows (lines 8-17), the double conditional becomes two 
nested comparison statements. 

Listing 6-43. Annotated main Method of lfi'est.java 

000: ldc2 w 2 //load double 3.14159265 from the constant pool 
003: dstore_1 //store it in local1 
004: dload 1 //load local 1 
005: ldc2_w 4 //load double 100.0 from the constant pool 
008: dcmpl //compare local1 to 100.0 
009: ifle 26 //if local1 < 100.0, goto 26 
012: dload_1 //else load local1 
013: ldc2 w 6 //load double 200.0 from the constant pool 
016: dcmpg //compare local1 to 200.0 
017: ifge 26 //if local1 > 200.0, goto 26 
020: dload 1 //load locall 
021: ldc2_w 4 //load 100.0 
024: dsub //subtract the two 
025: dstore_1 //store the difference in local1 
026: return //return 

Grammar 

The grammar is as follows: 

expr_part -> error I return I store I load I invoke I object I const 
I bipush I convl arith I iinc I if I cmp I if_icmp; 

if_icmp ->number IF_ICMP number; 
if -> number IF number; 
cmp -> number type CMP; 



Decompiler Implementation 

The if_icmp Non-Terminal 

Each of the new productions look simple and if_ icmp is no exception. It consists 

only of the line number, the IF _ICMP terminal, and the branch location. 
The first condition to test is whether the branch location is less than or 

greater than the current line number. If it's less, the loop is a do-while and the 

end of the loop has been reached. Now the decompiler must move back through 

the finalStack (popping and pushing lines onto the tempS tack) until the branch 

location is greater than or equal to the current line number. 
At this point, it injects "do {"into the finalStack, restores the contents of the 

finalStack, and outputs the actual while statement. Then the top two items on 
the oStack are compared. The first item on the oStack, also the rightmost in the 

while statement, is popped first and stored in a temporary variable. The second 
is then popped and the while statement is pushed onto the finalStack. 

finalStack.push(space +"}while (" + oStack.pop().toString() + ">=" 
+ temp.toString () +");"); 

If the branch location is greater than the current line number, however, the 
decompiler will assume an if statement and push it to the oStack. The goto pro­

duction, which will be covered later on, determines if that assumption is correct. 

The if Non-Terminal 

The if production consists of the line number, the IF terminal, and the branch 

location. 
Resolution of the if opcode is similar, but the difference is important: if_ icmp 

compares the top two oStack elements, while if merely compares the top element 
against zero. It is often used in conjunction with cmp to compare two values. 
Because cmp can only do less-than and greater-than comparisons, it is not suffi­
cient to set up the if statement conditionals. As a result, the decompiler ignores 
the comparison type (g or 1) of the cmp statement and merely preserves the names 
of the compared values. 

As you see in Listing 6-44, the conditional type is resolved in opposite ways 

in a do-while loop and in an if statement (or forward-branching loop). For 

example, if_icmpge becomes>= in a do-while loop but< in an if statement. The 

reason for this lies in the different constructions of do-while statements and if 

statements. In a do-while statement, the JVM branches back to the beginning if 

the conditional statement is true. In an if statement, it doesn't branch if the 

statement is true-only if the statement is false. Therefore the actual conditions 

being tested in each case are opposite, and so are the comparison signs. 

203 



Chapter6 

204 

The cmp Non-Terminal 

The cmp production consists of the line number, the type of the values being 
compared, and the CMP terminal (which can be either cmpg or cmpl). 

The non-terminal for cmp is self-explanatory: the decompiler checks whether 
the comparison is greater-than or less-than and pushes the comparison onto 
the oStack. 

Code 

The complete code to handle IfTest.java is shown in Listing 6-44. 

Listing 6-44. Decompiler Code for lfl'est.java 

if_icmp ::= number:l IF_ICMP:c number:n 
{: 

Integer nint=new Integer(n.toString()); 
Integer lint=new Integer(l.toString()); 
Stack tempStack=new Stack(); 
int linenum; 

II Is it a for/while or a do-while loop? 
if (nint.intValue()<lint.intValue()) 

{ 

//Does it surround other loops? 
if (nint.intValue() < lowest_num) 
{ 

lowest_num=nint.intValue(); 
//If so, set the lowest number to this 
if (!finalStack.empty()) 
{ 

} 

linenum=finalStack. peek(). toString(). indexOf(" I/"); 

if (linenum != -1) 
lint = new Integer 

(finalStack.peek().toString().substring(linenum+2)); 
while (nint.intValue()<=lint.intValue()) 
{ 

} 

tempStack.push(finalStack.pop()); 
linenum=finalStack. peek(). toString(). indexOf(" I/"); 

if (linenum I= -1) 
lint = new Integer 

(finalStack.peek().toString().substring(linenum+2)); 



} 

finalStack.push("do {"); 
while (!tempStack.empty()) 

finalStack.push(" " + tempStack.pop()); 
temp = oStack.pop(}; 

if (c.equals("if_icmpge")) 
finalStack.push(space + "} while (" + 

oStack.pop(}.toString () + ">=" + 
temp.toString() +");" + " II" + l}; 

else if (c.equals("if_icmple")) 
finalStack.push(space + "} while (" + 

oStack.pop().toString() + "<=" + 

temp. toString() +");" + " II" + 1}; 
else if (c.equals("if_icmpgt")) 

finalStack.push(space + "} while (" + 
oStack.pop().toString() + ">" + 

temp.toString() +");" + " II" + 1}; 
else if (c.equals("if_icmplt"}) 

finalStack.push(space + "} while (" + 
oStack.pop().toString() + "<" + 

temp.toString() +");" + " II" + 1}; 
else if (c.equals("if_icmpeq")) 

finalStack.push(space + "} while (" + 

oStack.pop(). toString() + "==" + 
temp.toString() +");" + " II" + 1}; 

else if (c.equals("if_icmpne")) 

else 

} 

finalStack.push(space + "} while (" + 
oStack.pop(}.toString() +"I="+ 

temp.toString() +");" + " II" + 1); 

finalStack.push(space + "} while (" + 

oStack.pop(}.toString() +"II"+ 
temp.toString() +");" + " II" + 1}; 

Decompiler Implementation 

else 
{ 

ifStack.push(n); 
temp = oStack.pop(); 

if (c.equals("if_icmpge")) 
finalStack.push(space + "if (" + oStack.pop(). toString() + 

"<" + temp.toString() +")" + " II" + 1}; 
else if (c.equals("if_icmple")) 

finalStack.push(space + "if (" + oStack.pop().toString() + 

205 



Chapter6 

206 

">" + temp.toString() +")" + " II" + l); 
else if (c.equals("if_icmpgt")) 

finalStack.push(space + "if (" + oStack.pop(). toString() + 
"<=" + temp.toString() +")" + " II" + l); 

else if (c.equals("if_icmplt")) 
finalStack.push(space + "if (" + oStack.pop().toString() + 

">=" + temp.toString() +")" +" II"+ l); 
else if (c.equals("if_icmpne")) 

finalStack.push(space + "if (" + oStack.pop().toString() + 
"==" + temp.toString() +")" + " II" + l); 

else if (c.equals("if_icmpeq")) 
finalStack.push(space + "if (" + oStack.pop().toString() + 

"!=" + temp.toString() +")" +" //" + l); 
else 

finalStack.push(space +"if (" + oStack.pop().toString() + 
"!!" + temp.toString() +")"+"II"+ l); 

finalStack.push(space + " {"); 

} 

:} 

level++; 
space = space + " 

if ::= number:l IF:c number:n 
{: 

". , 

int nint = Integer.parseint(n.toString()); 
int lint = Integer.parseint(l.toString()); 
Stack tempStack=new Stack(); 
int linenum; 
String condString; 
int trimpoint=-1; 

if {oStack.peek().toString().indexOf{"<") != -1) 
trimpoint = oStack.peek(). toString(). indexOf("<"); 

if {oStack.peek().toString().indexOf(">") != -1) 
trimpoint = oStack.peek(). toString(). indexOf(">"); 

if (nintclint) 
{ 

if (trimpoint != -1) 
{ 

String operandi = 
oStack.peek().toString().substring(o,trimpoint); 

String operand2 = 
oStack.pop().toString().substring(trimpoint + 1); 



Decompiler Implementation 

} 

if (c.equals("ifge")) 
condString = (operandl + " >= " + operand2); 

else if (c.equals("ifle") ) 
condString = (operandl + " <= " + operand2); 

else if (c.equals("ifgt")) 
condString = (operandl + " > " + operand2); 

else if (c.equals("iflt")) 
condString = (operandl + " < " + operand2); 

else if (c.equals("ifeq")) 
condString = (operandl + " == " + operand2); 

else if (c.equals("ifne")) 
condString = (operandl + " I= " + operand2); 

else 
condString = (operandl + " ! ! " + operand2); 

} 

else 
{ 

if (c.equals("ifge")) 
condString = (oStack.pop().toString() + " < o" ); 

else if (c.equals("ifle")) 
condString = (oStack.pop().toString() + " > 0" ); 

else if (c.equals("ifgt")) 
condString = (oStack.pop().toString() + " <= o" ); 

else if (c.equals("iflt")) 
condString = (oStack. pop(). toString() + " >= o" ) ; 

else if (c.equals("ifnull")) 
condString = (oStack.pop().toString() +" !=null" ); 

else if (c.equals("ifnonnull")) 
condString = ( oStack. pop(). toString() + " == null" ) ; 

else if (c.equals("ifeq")) 
condString = (oStack.pop().toString() + " != o"); 

else if (c.equals("ifne")) 
condString = (oStack.pop().toString() + " == o"); 

else 
condString = (oStack.pop().toString() + " == o)"); 

if (nint < lowest_num) 
{ 

lowest_num=nint; 
if (!finalStack.empty()) 
{ 

linenum=finalStack. peek(). toString(). indexOf ("I/"); 

207 



Chapter6 

208 

} 

} 

} 

} 

if (linenum != -i) 
lint = Integer.parseint(finalStack.peek(). 

toString().substring(linenum+2)); 
while (nint<=lint) 
{ 

tempStack.push(finalStack.pop()); 
linenum=finalStack.peek().toString().indexOf ("//"); 
if (linenum != -i) 

lint = Integer.parseint(finalStack.peek(). 
toString().substring(linenum+2)); 

finalStack.push("do {"); 
while (!tempStack.empty()) 

finalStack.push(" " + tempStack.pop()); 
finalStack.push(space + "} while (" + condString +");" + " //" + l); 

else 
{ 

if (trimpoint != -i) 
{ 

} 

String operandi = 
oStack.peek().toString().substring(O,trimpoint); 

String operand2 = 
oStack.pop().toString().substring(trimpoint + i); 

if (c.equals("ifge")) 
condString = (operandi + " < " + operand2); 

else if (c.equals("ifle") ) 
condString = (operandi + " > " + operand2); 

else if (c.equals("ifgt")) 
condString = (operandi + " <= " + operand2); 

else if (c.equals("iflt")) 
condString = (operandi + " >= " + operand2); 

else if (c.equals("ifeq")) 
condString = (operandi + " == " + operand2); 

else if (c.equals("ifne")) 
condString = (operandi + " != " + operand2); 

else 
condString = (operandi + " ! ! " + operand2); 

else 
{ 



Decompiler Implementation 

:} 

} 

if (c.equals("ifge")) 
condString = (oStack.pop().toString() + " < o" ); 

else if (c.equals("ifle")) 

condString = (oStack.pop().toString() + " > o" ); 
else if (c. equals ( "ifgt")) 

condString = (oStack.pop().toString() + " <= o" ); 

else if (c.equals("iflt")) 

condString = (oStack. pop(). toString() + " >= o" ) ; 
else if (c.equals("ifnull")) 

condString = (oStack.pop().toString() + " !=null" ); 

else if (c.equals("ifnonnull")) 

condString = (oStack.pop().toString() + " == null" ); 

else if (c.equals("ifeq")) 

condString = (oStack.pop().toString() + " != o"); 

else if (c.equals("ifne")) 

condString = (oStack.pop(). toString() + " == o"); 

else 

condString = (oStack.pop().toString() + " == o)"); 

finalStack.push(space + "if (" + condString.trim() + ")" + 
II //" + l); 

finalStack.push(space + " {"); 

level++; 

space = space + " "· , 

ifStack.push(n); 
lastline = Integer.parseint(l.toString()); 

} 

cmp ::= number:l type:t CMP:c 

{: 

:} 

temp = oStack.pop(); 

System.out.println(c.toString()); 

if (c. toString(). trim() .equals("cmpg")) 

oStack.push(space + oStack.pop().toString() + ">" 

+ temp.toString ()); 

else 

oStack.push(space + oStack.pop().toString() + "<" 

+ temp.toString ()); 

209 



Chapter6 

210 

Output 

By recompiling our specifications and running DoWhile and IfTest through them, 
we obtain exactly what we'd like, as shown in Listings 6-45 and 6-46. 

Listing 6-45. Decompiler Results for Do While 

public class DoWhile 
{ 

} 

public static void main(String[] localo) 
{ 

} 

double locall=O.o; 
int local3=12; 
do { 

local3++; 
local3-=4; 
local3=local3*S; 
local3=local3/3; 

} while (local3<=100); 
locall=locall+(double) local3; 
return; 

Listing 6-46. Decompiler Results for Ifl'est 

public class IfTest 
{ 

} 

public static void main(String[] localo) 
{ 

} 

double local1=3.14159; 
if (locall > 100.0) 

{ 

} 

if (locall < 200.0) 
{ 

local1=local1-100.0; 
} 

return; 



Decompiler Implementation 

Recurses.java 

Now that if statements are implemented, the decompiler can process a simple 
example of recursion, Recurses.java. Although this program (see Listing 6-47) 

does not introduce any new non-terminals, it demonstrates the difference 
between invocation of static methods and virtual methods and how if-else 
statements work. 

Listing 6-47. Recurses.java 

public class Recurses 
{ 

} 

Input 

public static void main(String[] args) 
{ 

} 

System.out.println(recurse(25)); 
return; 

public static String recurse(int num) 
{ 

} 

if (num!=O) 
return "crap! " + recurse(num-1); 

else 
return "dammit!"; 

Static invocations, by their nature, can't be chained with any other functions and 
don't require any references to external classes. If you check the chain of condi­
tionals in the invoke non-terminal, you will see that the invocation on line 5 
(Listing 6-48) fails every one and is pushed onto the oStack with its argument by 
the final else. 

Listing 6-48. Annotated main Method of Recurses.java 

ooo: getstatic 2 
003: bipush 25 
005: invokestatic 3 
008: invokevirtual 4 
011: return 

//load System.out 
//load int 25 

//invoke recurse(int)String 
//invoke System.out.println(string) 

//return 

211 



Chapter6 

212 

The major point of interest in the recursion function is the conditional state­
ment in line 1, see Listing 6-49. Because the comparison is against zero, cmp is 
not required. Since the whole body of the function consists of the two cases (if 

· and else), the else is optional and the decompiler omits it. 

Listing 6-49. Annotated Recurse Method: 

000: iload o //load localo, the passed value 
001: ifeq 29 //if localo ==0, load 
004: new 5 //new String 
007: dup //duplicate the reference 
008: invokespecial 6 //create new StringBuffer 
011: ldc 7 //load "crap! " 
013: invokevirtual 8 //append it to the StringBuffer 
016: iload_o //load the passed value 
017: iconst_1 //load int 1 
018: isub //decrement localo by 1 
019: invokestatic 3 //call recurse(int) 
022: invokevirtual 8 //append the returned value to the StringBuffer 
025: invokevirtual 9 //convert StringBuffer to String 
028: a return //return String 
029: ldc 10 //load "dammit! " 
031: areturn //return String 

Grammar 

The grammar is unchanged from the IfTest.java test. 

Code 

No new code is required. 

Output 

As we'd hope, the decompiler produces correct results as shown in Listing 6-50. 



Decompiler Implementation 

Listing 6-50. Decompiler Results for Recurses.java 

public class Recurses 
{ 

} 

public static void main(String[] localo) 
{ 

} 

System.out.println(recurse(25)); 
return; 

public static String recurse(int localo) 
{ 

} 

if (localo != o) 
{ 

return ("crap! ") + (recurse(local0-1)); 
} 

return "dammit!"; 

WhileLoop.java 

The next step is to build on the conditional statement resolution to resolve nor­

mal while and for loops. This means introducing the goto opcode, which makes 

resolving the more complex conditionals possible, though resolving it co"ectly 

remains difficult. We'll be looking at a "simple" loop in Listing 6-51-a standard 
while loop. 

Listing 6-51. WhileLoop.java 

public class WhileLoop 
{ 

} 

public static void main(String[] args) 
{ 

} 

String output = "outoutoutput"; 
while (output.indexOf("out")!=-1) 
{ 

} 

return; 

output = output.substring(3); 
System.out.println(output); 

213 



Chapter6 

214 

Input 

The main function ofWhileLoop.java is shown in Listing 6-52. 

Listing 6-52. Annotated main Method ofWhileLoop.java 

000: ldc 2 //load "outoutoutput" from the constant pool 
002: astore 1 //store a reference to it in local1 
003: aload 1 //load a reference to it 
004: ldc 3 //load "out" 
006: invokevirtual 4 //invoke output.indexOf(string) 
009: iconst m1 //load -1 
010: if_icmpeq 29 //if output.index0f("out")==1, branch to 29 
013: aload 1 //load a reference to local1 
014: iconst_3 //load int 3 
015: invokevirtual 5 //invoke output.substring(3) 
018: astore 1 //store a reference in local1 
019: getstatic 6 //load System.out 
022: aload 1 //load a reference to local1 
023: invokevirtual 7 //call System.out.println(local1) 
026: goto 3 //goto 3 
029: return //return 

Grammar 

The grammar is as follows: 

expr_part -> error I return I store I load I invoke object I const I 

bipush I conv I arith I iinc if I cmp I if_icmp I goto; 

goto -> number GOTO number; 

The goto Non-Terminal 

The goto production consists only of the line number, the GOTO terminal, and the 
branch location. 

The goto non-terminal is somewhat formidable. It serves two major pur­
poses: it can be used in conditional loops, or it can be used in if - else if -
else statements. In order to check which context it's being executed in, the 
decompiler needs to check the current line number and compare it to the 
branch address. If the branch line number is greater than the current line num­
ber, the expression is an if - else if - else sort statement and the branch line 
number is pushed to the gotoStack (much the same way the branch location was 



Decompiler Implementation 

treated in the forward-branching cases of the if and if_icmp statements). If it is 
less than the current line number, it is a conditional statement of some sort. This 
is the important context for the time being. 

The decompiler then pops finalStack items and pushes them onto the new 
tempStack, as it did for do-while statements, until it finds a line number less than 
or equal to the branch address. It then checks to see if the line it has found is the 
if statement that matches the goto statement. If it is not, it pushes items from 
the tempStack back onto the finalS tack until it is located, then it pops the if 
statement, trims off everything except for the conditional expression, and stores 
the conditional statement in a String variable. 

Once the loop is done, the decompiler decrements the conditional depth 
counter, shortens the spacing, pushes the final lines of code onto the finalS tack, 
and pops the now-resolved branch address from the i fStack. 

Code 

The complete code to handle While loop. java is shown in Listing 6-53. 

Listing 6-53. Decompiler Code for WhileLoop.java 

goto ::= number:l GOTO:c number:n 
{: 

int nint = Integer.parseint(n.toString()); 
int lint = Integer.parseint(l.toString()); 
int lastint=O; 
temp = ""; 

//finalStackDebug("goto"); 
Stack tempStack=new Stack(); 
int linenum, condStringlineNum=O, tempCounter=O; 
String condString="O", tempString="O"; 

if (nint<lint) 
{ 

tempString=" //"+1. to String(). trim(); 
if (!finalStack.empty()) 
{ 

linenum=finalStack.peek().toString().indexOf("/1"); 
if (linenum != -1) 

lint = Integer.parseint(finalStack.peek(). 
toString().substring(linenum+2)); 

while (nint<lint) 

215 



Chapter6 

} 

} 

{ 

} 
:} 

216 

{ 

} 

tempStack.push(finalStack.pop()); 
linenum=finalStack.peek(). toString(). indexOf{" I/"); 
lastint = lint; 
if {linenum != -1) 
lint = Integer.parseint(finalStack.peek(). 

toString().substring (linenum+2)); 

linenum=tempStack. peek() • toString () • indexOf ("if"); 
while {linenum == -1) 
{ 

} 

finalStack.push(tempStack.pop()); 
linenum=tempStack.peek(). toString() .indexOf{"if"); 

condStringlineNum = 
tempStack.peek(). toString(). trim().indexOf (") //"); 

condString=tempStack.pop().toString().trim(). 
substring(4, condStringlineNum); 

level--; 
if (space.length()>3) 

space = space.substring(3); 
else 

space = '"'; 

int tempcounter = o; 
finalStack.push(space + 

"while (" + condString + ") //" + condStringlineNum); 

while {ltempStack.empty()) 
finalStack.push{tempStack.pop{)); 

finalStack.push(space + " } ");// + tempString); 
ifStack. pop(); 
skipFinish = true; 

else 

gotoStack.push(n); 



Decompiler Implementation 

Output 

The decompiler now produces the expected results, as shown in listing 6-54. 

Listing 6-54. Decompiler Results for WhileLoop 

public class Whileloop 
{ 

} 

public static void main{String[] localo) 
{ 

} 

String local1="outoutoutput"; 
while {local1.index0f{"out")!=-1) 

{ 

} 

local1=local1.substring(3); 
System.out.println{local1); 

return; 

ForLoop.java 

In the beginning there was the while loop, and then a language designer said, 
"Hey, let's incorporate this initialize-and-increment stuff into a new conditional! 
Hell, let's call it a for loop!" And he looked and he saw it was good. 

The next problem is extending the implementation of the while loop in 
While loop. java to cover for loops. This is done very easily, as you can see in 
listing 6-55. 

Listing 6-55. ForLoop.java 

public class Forloop { 

} 

public static void main{String[] args) 
{ 

} 

String output = "outoutoutput"; 
while (output.indexOf{"out")!=-1) 
{ 

} 

return; 

System.out.println{output.substring(3)); 
output = output.substring(3); 

217 



Chapter6 

218 

This may look the same as While loop. java, and, in fact, it is. However, it 
meets the criteria for a for loop: 

• The line before the while statement assigns a variable within the while loop. 

• The last line inside the while loop reassigns or modifies the value of 
a variable. 

That said, it's now obvious that the program can be decompiled to the 
following: 

for (String output= "outoutoutput"; output.indexOf("out")!=-1; 
output = output.substring(3)) 

System.out.println(output.substring(3)); 

Input 

The main function of For loop. java is shown earlier in Usting 6-52. 

Grammar 

The grammar remains unchanged from Whileloop.java. 

The goto Non-Terminal, Redux 

The goto non-terminal is the only one that needs modification. At the beginning 
of the first case, the decompiler must test for an assignment, an increment, or 
a decrement in the top finalStack item. If any of these are true, it assumes a for 
loop, pops that top item, and stores it in a temporary variable. 

The next necessary change is near the end. Where the decompiler once 
could get away with pushing a while statement and restoring the finalStack, it 
must now test the forOrWhile boolean and proceed accordingly, then test to 
ensure the element before the conditional statement is an assignment. If it is not 
an assignment, it cancels the for loop treatment, pushes a while loop as before, 
and restores the temp variable to the finalStack. If it is, it must be trimmed and 
used as the assignment portion of the for loop. Then the decompiler can push 
the for statement and the body of the loop to the finalStack. 

Code 

The complete code to handle Forloop.java is shown in Usting 6-56. 



Decompiler Implementation 

Listing 6-56. Decompiler Code for ForLoop.java 

goto ::= number:l GOTO:c number:n 
{: 

int nint = Integer.parselnt(n.toString()); 
int lint = Integer.parselnt(l.toString()); 
int lastint=o; 
temp= ""; 

Stack tempStack=new Stack(); 
int linenum, condStringLineNum=O, tempCounter=O; 
String condString="O", tempString="O"; 
if (nint<lint) 
{ /* First set of modifications start here */ 

if (finalS tack. peek(). toString(). trim(). indexOf("=")! =-1 
II finalStack. peek(). to String(). trim(). indexOf("++")! =-1 
II finalS tack. peek(). toString(). trim(). indexOf(" -- ")! =-1) 
{ 

} 

forOrWhile =true; //can be rendered as a for loop 
linenum=finalStack. peek(). toString(). indexOf("; I/"); 

tempString= 
finalStack.peek().toString().substring(linenum+2).trim (); 
temp= finalStack.pop().toString(); 

else 
{ 

forOrWhile = false; 
tempString=" I 1"+1. toString(). trim(); 

} 

!* First set of modifications end here */ 

if (!finalStack.empty()) 
{ 

linenum=finalStack.peek().toString().indexOf("//"); 
if (linenum != -1) 

lint = Integer.parselnt( 
finalStack.peek().toString().substring(linenum+2)); 

while (nint<lint) 
{ 

tempStack.push(finalStack.pop()); 
linenum=finalStack.peek().toString().indexOf("/1"); 
lastint = lint; 
if (linenum != -1) 

lint = Integer.parselnt(finalStack.peek(). 

219 



Chapter6 

220 

toString().substring (linenum+2)); 
} 

linenum=tempStack.peek(). toString() .indexOf("if"); 
while (linenum == -1) 
{ 

finalStack.push(tempStack.pop()); 
linenum=tempStack. peek(). toString(). indexOf( "if"); 

} 

condStringlineNum = tempStack.peek().toString(). 
trim().indexOf (") //"); 

condString=tempStack.pop().toString().trim(). 
substring(4, condStringlineNum); 

} 

level--; 
if (space.length()>3) 

space = space.substring(3); 
else 

space = ""; 

int tempcounter = o; 
I* Second set of modifications start here*/ 
if (forOrWhile) 
{ 

linenum=finalStack.peek(). 
toString().indexOf ("//"); 

while (linenum == -1) 
{ 

} 

tempcounter++; 
tempStack.push(finalStack.pop()); 
linenum=finalStack.peek(). 

toString(). indexOf ("I/"); 

if (finalStack.peek().toString().indexOf("=")!=-1 && 
(finalStack.peek(). toString() .startsWith("local") II 
finalStack.peek().toString().indexOf(" local") != -1)) 

{ 

tempStack.push(finalStack.peek().toString(). 
substring(o, linenum)); 

while (tempcounter > o) 
{ 

finalStack.push(tempStack.pop()); 
tempcounter--; 



Decompiler Implementation 

} 

finalStack.push(space + "for (" + 
tempStack. pop(). toString(). trim() + " " + 
cqndString. trim() + "; " + 
temp.toString().substring(o, 
temp. toString(). indexOf("; ")).trim() + ") " + 
finalStack.pop().toString().substring(linenum)); 

} 

} 

else 
{ 

} 

} 

temp = ""; 

//executed if prior line not an assignment 
while (tempcounter > o) 
{ 

} 

finalStack.push(tempStack.pop()); 
tempcounter--; 

finalStack.push(space + 
"while (" + condString.trim () + ") //" 

+condStringlineNum); 

else //while statement from earlier example 
finalStack.push(space + "while (" + 

. condString + ") //" + condStringlineNum); 
I* Second set of modifications end here */ 

while (!tempStack.empty()) 
finalStack.push(tempStack.pop ()); 

if ( ! temp. equals ( 1111 )) 

finalStack.push(temp); 
finalStack.push(space + " } ");// + tempString); 
ifStack.pop(); 

skipFinish = true; //clean-up part of stmts 
} 

while (!tempStack.empty()) 
finalStack.push(tempStack.pop()); 

finalStack.push(space + " } ");// + tempString); 
ifStack.pop(); 
skipFinish = true; 

else 

221 



Chapter6 

222 

{ 

:} 

gotoStack.push(n); 
} 

Output 

Decompiling For loop now gives the expected for loop version (see Listing 6-57). 

Listing 6-57. Decompiler Results for ForLoop 

public class Forloop 
{ 

} 

public static void main(String[] localo) 
{ 

} 

for (String locall="outoutoutput"; 
locall. indexOf("out")! =-1; locall=locall. substring(3)) 

{ 

System.out.println(locall.substring(3)); 
} 

return; 

ArrayTest.java 

And now for something completely different. After the long, hard slog of condi­
tionals, arrays are easy. The initial sample program, see Listing 6-58 will use a for 

loop to load a three-element string array with the cubes of the array indexes. 
This requires three new array operations: array loading, array storing, and array 

initialization. 

Listing 6-58. ArrayTest.java 

public class ArrayTest 
{ 

} 

public static void main(String args[]) 
{ 

} 

String arr[] = new String[3]; 
for (int i = o; i <= 2; i++) 

arr[i] = "Result = " +i * i * i; 



Decompiler Implementation 

Input 

The ClassToXML input for the ArrayTest.java is shown in Listing 6-59. 

Listing 6-59. Annotated main Method for ArrayTest.java 

000: iconst_3 //load int 3 
001: anewarray 2 //initialize new three-element array of type String 
004: astore_1 //store ref to array in local1 
oos: iconst o //load into 
006: istore_2 //store in local2 
007: iload_2 //load local2 
008: iconst 2 //load int 2 
009: if_icmpgt 44 //if local2 > 2, branch to 44 
012: aload 1 //load ref to local1[] 
013: iload_2 //load local2 
014: new 3 //new String 
017: dup //duplicate it 
018: invokespecial 4 //initiate StringBuffer 
021: ldc 5 //load "Result = " 
023: invokevirtual 6 //append to StringBuffer 
026: iload_2 //load local2 
027: iload 2 //load local2 
028: imul //square local2 
029: iload_2 //load local2 
030: imul //cube local2 
031: invokevirtual 7 //append to StringBuffer 
034: invokevirtual 8 //convert to string 
037: aastore //store in local1[local2] 
038: iinc 2 1 //increment local2 by 1 
041: goto 7 //branch to 7 
044: return //return 

Grammar 

The grammar is as follows: 

expr_part -> error I return I store I load I invoke I object I canst I bipush 
I conv I arith I iinc I if I cmp I if_icmp I goto I arrayops; 

arrayops -> aload I astore I newarray; 
aload -> number ALOAD; 
astore -> number ASTORE; 
newarray -> number NEWARRAY number; 

223 



Chapter6 

224 

The aload Non-Terminal 

The a load production consists only of the line number and the ALOAD terminal. 

Because no argument is required, you might guess that everything is done using 

the oStack. You'd be right; the JVM loads the data at the index given by the top 

oStack element from the array given by the next-to-top oStack element. If this 

seems confusing, see the code below, see listing 6-60. 

The astore Non-Terminal 

The a store production consists only of the line number and the ASTORE terminal. 

Again, no argument is required. The top element on the oStack is stored at the 

index given by the next-to-top oStack element in the array given by the second­

to-top oStack element. 

The newarray Non-Terminal 

The newarray production consists of the line number, the NEWARRAY terminal, and 

the type of the new array. There are two forms of this opcode: newarray and 

anewarray. The newarray opcode is used to initialize primitive-typed arrays. Its 

argument, which ranges from 4 to 11, specifies the primitive type. The anewarray 

opcode is used for higher-level arrays; its argument is, as you'd expect, a con­

stant pool reference to the name of the class or interface the array is composed 
of. It can also be used with mul tianewarray to create a multidimensional array, 
but this decompiler does not implement that. 

Code 

The complete code to handle ArrayTest.java is shown in listing 6-60. 

Listing 6-60. Decompiler code for ArrayTest.java 

arrayops ::= aload 
I astore 
I newarray 

aload ::=number:! ALOAD:s 
{: 

String tempString=oStack.pop().toString(); 
oStack.push(oStack.pop() + "[" + tempString + "]"); 

:} 



astore ::= number:l ASTORE:s 
{: 

String tempString=oStack.pop().toString(); 
tempString = " [" + oStack. pop(). toString() + 

")="+tempString+";"; 
finalStack.push(space + oStack.pop() + tempString); 

:} 

newarray ::= number:l NEWARRAY:s number:n 
{: 

int testType=Integer.parselnt(n.toString()); 
String tempString; 

newArray = true; 
arrayElements = Integer.parselnt(oStack.peek().toString()); 

switch (testType) 
{ 

case 4: 
tempString = "boolean"; 
break; 

case s: 
tempString = "char"; 
break; 

case 6: 
tempString = "float"; 
break; 

case 7: 
tempString = "double"; 
break; 

case 8: 
tempString = "byte"; 
break; 

case 9: 
tempString = "short"; 
break; 

case 10: 
tempString = "int"; 
break; 

case 11: 
tempString = "long"; 
break; 

default: 
tempString = "error"; 
break; 

Decompiler Implementation 

225 



Chapter6 

226 

} 

type = tempString; 
oStack.push( 11 new II + tempString + 11 [ 11 + oStack.pop() +11 ] 11 ); 

:} 

number:! type:t NEWARRAY:s number:n 
{: 

type = resolveConstant(Integer.parseint(n.toString())); 
while (type.index0f( 11

/
11 )!=-1) 

type = type.substring(type.index0f( 111")+1); 
oStack.push( 11 new II +type + 11 [ 11 + oStack.pop() +11 ] 11 ); 

:} 

Output 

Recompiling the CUP spec and running the XML through the decompiler recovers 
the original program correctly, as shown in listing 6-61. 

Listing6-61. Decompiler Results for A"ayTest 

public class Arraytest 
{ 

} 

public static void main(String[] localo) 
{ 

} 

String local1[]=new String[3]; 
for (int local2=0; local2<=2; local2++) 

{ 

local1[local2]=( 11 Result = 11
) + ((local2*local2)*local2); 

} 

return; 

Arrayinit .java 

Finally, the decompiler will be extended to handle initialized arrays. To extend 
the decompiler, the remaining three opcodes from the object non-terminal are 
needed: putstatic, getfield, and putfield. 

This example {see listing 6-62) is also the first time the field-parsing non­
terminal is used. Initialization of variables stored in static {class) fields is done 
using a special initialization method called <clinit>. Initialization of other field 
variables is done in the <init> method, which up to now had been ignored. 



Decompiler Implementation 

Listing 6-62. Arraylnit.java 

public class Arrayinit 
{ 

public static int[] arr : {1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}; 
public int a : 5; 
public static String mork: "from Ork!"; 

public static void main(String args[]) 
{ 

int[] arr2 : {1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}; 
for (int i : o; i < 10; i++) 

System.out.println("arr[" + i + "] : " + arr[i]); 
} 

} 

Input 

The introduction of initialized fields has two effects on the code section of the 
XML file: first, it causes the < ini t> method, which was previously ignored, to 
become useful, since it is used to initialize a; second, it creates a new <clinit> 
method, which is used to fill the arr[] field and the mork variable (see 
Listing 6-63). 

Listing 6-63. Annotated <init> Method for Arraylnit.java 

000: aload o //load this 
001: invokespecial 1 //init Object 
004: aload o //load this 
005: iconst_5 //load int 5 
006: putfield 2 //store it in field 2 (a) 
009: return 

The initialization of arrays is done in a specific manner, which is shown in 
lines 5--61 of Listing 6-64. This produces a finalS tack that looks like the following: 

new int[10][0]:1; 
new int[10][1]:8; 
new int[10][2]:27; 
new int[10][3]:64; 
new int[10][4]:125; 
new int[10][5]:216; 
new int[10][6]:343; 

227 



Chapter6 

228 

new int[10][7]=512; 
new int[10][8]=729; 
new int[10][9]=1000; 

Although the syntax is incorrect, this gives you some idea of how the struc­
ture looks in memory. 

Listing 6-64. Annotated <clinit> Method for Arraylnit.java 

000: bipush 10 //load int 10 
002: newarray 10 //create ten-element int array 
004: dup //duplicate ref to array 
005: iconst o //load array index 
006: iconst_1 //load int value to store 
007: iastore //store 
008: dup //duplicate ref to array 
009: iconst_1 //load array index 
010: bipush 8 //load int value to store 
012: iastore //store 
013: dup //etc. 
014: iconst 2 
015: bipush 27 
017: iastore 
018: dup 
019: iconst_3 
020: bipush 64 
022: iastore 
023: dup 
024: iconst_4 
025: bipush 125 
027: iastore 
028: dup 
029: iconst_5 
030: sipush 216 
033: iastore 
034: dup 
035: bipush 6 
037: sipush 343 
040: iastore 
041: dup 
042: bipush 7 
044: sipush 512 
047: iastore 
048: dup 



Decompiler Implementation 

049: 
051: 

054: 

055: 
056: 

058: 

061: 

062: 

065: 

067: 

070: 

bipush 8 

sipush 729 
iastore 
dup 
bipush 9 
sipush 1000 

iastore 
putstatic 10 

ldc 13 

putstatic 14 

return 

//store reference to this array in static field 10 (arr []) 
//load "from Ork!" from constant pool 

//store the ref to the string in static field 14 (mork) 

The main method poses few surprises and does not expose any new con­
cepts, so we'll get straight to the new stuff. 

Grammar 

The grammar is as follows: 

object -> number GETSTATIC number I number GETFIELD number I number 
PUTSTATIC number I number PUTFIELD number; 

The getjield Non-Terminal 

The getfield production consists of the line number, the GETFIELD terminal, and 
the constant pool index of the field to access. 

The getfield opcode can be resolved in exactly the same manner as 
getstatic. 

The putjield Non-Terminal 

The putfield production consists of the line number, the PUTFIELD terminal, and 
the constant pool index of the field to access. 

To resolve putfield, the decompiler first checks to see whether the top item 
on the oStack is a new array. If the sum of the indices of [ and '] in the top item is 
greater than six (this eliminates all non-new array elements), it is regarded as an 
array assignment. The decompiler reads in the array length, pops that number of 
items from the oStack, trims off everything but the assigned values, and pro­
duces a curly-bracketed, comma-delimited result. 

If the current method name is <init>, the result must be stored in the 
fieldStack. The decompiler pops items from the fieldS tack and pushes them 
to a temporary stack until it finds the proper field name. It then inserts the 

229 



Chapter6 

230 

assignment operation and restores the fieldStack. If the current method name 
is not <init>, the result can be stored in the finalStack. 

The putstatic Non-Terminal 

The putstatic production consists of the line number, the PUTSTATIC terminal, 
and the constant pool index of the field to access. 

Resolution of putstatic is identical to that of putfield, but the current 
method must be <clinit> for the result to be stored in the fieldStack. 

Code 

The complete code to handle Arrayinit.java is shown in listing 6-65. 

Listing 6-65. Decompiler Code for Arraylnit.java 

object ::= number:l GETSTATIC:s number:n 
{: 

:} 

String tempString = 
resolveConstant(Integer.parseint(n.toString ())); 

oStack.push{tempString); 

number:! GETFIELD:s number:n 
{: 

:} 

String tempString = 
resolveConstant{Integer.parseint(n.toString ())); 

oStack.push(tempString); 

number:! PUTFIELD:s number:n 
{: 

String tempString = oStack.pop{).toString(); 
if (tempString.startsWith{"new") && 

tempString.indexOf("[")+tempString.indexOf{"]")>6) 
{ 

int numOfElements = 
Integer.parseint(tempString.substring(tempString.indexOf{"[")+1, 

tempString.indexOf{"]"))); 
tempString = "}"; 
for (int i = o; i<numOfElements; i++) 
{ 

String tempi = finalStack.pop().toString(); 
tempString = tempi. substring( tempi. indexOf{"] =" )+2, 

temp1.index0f (";")) + tempString; 



Decompiler Implementation 

} 

} 

if ((numOfElements - i)>1) 
tempString=", " + tempString; 

tempString ="{" + tempString; 

if (MethodName.equals("<init>")) 
{ 

Stack tempStack = new Stack(); 
String tempFieldName = 

resolveConstant(Integer.parseint(n.toString ())); 
String newBetterType = ""; 
if (tempFieldName.indexOf("Ljava")!=-1) 
{ 

:} 

newBetterType = 
tempFieldName.substring(tempFieldName.indexOf("Ljava"), 

tempFieldName.length()); 
tempFieldName = tempFieldName.substring(o, 

tempFieldName.indexOf("Ljava")); 
while (newBetterType. indexOf(" !")! =-1) 

} 

newBetterType = newBetterType.substring 
(newBetterType.indexOf("/")+1); 

while (! fieldStack. peek(). toString() .endsWith(" " + 
tempFieldName + ";") && !fieldStack.empty()) 

tempStack.push(fieldStack.pop()); 
String temp1 = fieldStack.pop().toString(); 

fieldStack.push(space + temp1.substring(O, temp1.length()-1) + " = " 
+ tempString + ";"); 

while (!tempStack.empty()) 
fieldStack.push(tempStack.pop()); 

} 

else 
finalStack.push(space + 

resolveConstant(Integer.parseint(n.toString ())) + 
" = "+tempString+"; //" + l.toString()); 

I number:! PUTSTATIC:s number:n 
{: 

{ 

String tempString = oStack.pop().toString(); 
if (tempString.startsWith("new") && 

tempString.indexOf("[")+tempString.indexOf("]")>6) 

int numOfElements = 
Integer.parseint(tempString.substring(tempString.indexOf("[")+1, 

tempString.indexOf ("]"))); 

231 



Chapter6 

:} 

232 

} 

tempString = 11
}

11
; 

for (int i = o; i<numOfElements; i++) 
{ 

} 

String temp1 = finalStack.pop().toString(); 
tempString = temp1.substring(temp1.index0f( 11 ]=11 )+2, 

tempt. indexOf{ II; II)) + temp String; 
if ((numOfElements - i)>1) 

tempString= 11
, II + tempString; 

tempString =11
{

11 + tempString; 

if {MethodName.equals{ 11<clinit> 11
)) 

{ 

} 

Stack tempStack = new Stack(); 
String tempFieldName = 

resolveConstant{Integer.parseint(n.toString ())); 
String newBetterType = 1111 j 

if (tempFieldName.indexOf{ 11 Ljava 11 )!=-1) 
{ 

newBetterType = 
tempFieldName.substring(tempFieldName.indexOf{"Ljava 11

), 

tempFieldName.length{)); 
tempFieldName = tempFieldName.substring(o, 

tempFieldName.indexOf("Ljava")); 
while (newBetterType.indexOf( 11

/
11 )!=-1) 

newBetterType = newBetterType.substring 
(newBetterType.indexOf{ 11 1")+1); 

while {!fieldStack.peek().toString().endsWith{ 11 
II + tempFieldName + 11 j 11 ) 

&& lfieldStack.empty()) 
tempStack.push(fieldStack.pop()); 

String temp1 = fieldStack.pop().toString(); 
fieldStack.push{space + templ.substring(o, templ.length{)-1) + II = II 

while (!tempStack.empty()) 
fieldStack.push{tempStack.pop()); 

} 

else 

+ tempString + 11 j 11
); 

finalStack.push(space + 
resolveConstant(Integer.parseint(n.toString ())) + 

II = 11 +tempString+11 j // 11 + l.toString()); 



Decompiler Implementation 

Output 

Decompiling the class file using this new CUP spec returns the original program, 
see Listing 6-66. Note that, due to the implementation of the fieldStack, the 
order of the fields in the decompiled program is reversed. Obviously, this does 
not affect program execution. 

Listing 6-66. Decompiler Results for Arraylnit: 

public class Array!nit 
{ 

} 

public String mork = "From ork!"; 
public int a = 5; 
public int[] arr = {1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}; 
public void main{5tring[] local1) 

{ 

} 

int local[]={1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}; 
for (int local3=0; local3<10; local3++) 

{ 
localo.append{arr[local3]).println{toString()); 

} 

return; 

Summarizing Decompiler Implementation 

It's now time to take stock, take a step back and see exactly where we are. Read 
on and we'll explore this more. 

What We Have 

We now have a method for decompiling Java classes. Our lexical analyzer cuts 
ClassToXML's output into usable tokens for our parser to digest, and our parser 
returns something close to the original source of the program. How robust and 
how complete is our decompiler, though? 

What Remains 

Unfortunately, our decompiler is not very robust at present. There are opcodes 
we do not parse and facets of the class file structure that are not dealt with, such 

233 



Chapter6 

234 

as interfaces and the exception tables. Although these are important in a full­

scale decompiler, their inclusion here would occupy many, many more pages. 

We will review the remaining opcodes briefly and I will present hints and tips for 

decompiling them. 

Remaining Opcodes 

The first group of remaining opcodes are low-level NM operations. The first 
opcode, NOP, is the most useless (literally). Unless you want to do estimates of the 

NM's clock speed, you can just dump this command, which causes no operation 

to be performed. 
For our purposes, WIDE can also be discarded. This opcode specifies that the 

next local variable referenced is 16 bits rather than 8 bits. Obviously, this doesn't 

affect our particular NM. 
The next pair are also very simple. POP and POP2 merely pop and discard the 

top word and double word on the oStack, respectively. Implementation is trivial. 
SHL and SHR are identical and opposite operations. The top word is popped 

and shifted left and right by the number of digits specified by the five lower bits 

of the next word, and the result is pushed back onto the oStack. 

Next we have the three logical operators: AND, OR, and XOR. These perform 
the respective bitwise operations between the top two values on the oStack. 

Implementation for all three is simple. 
Next, we have subroutine commands. JSR jumps to a local subroutine defined 

within a method; practically speaking, it implements finally. It first pushes the 
contents of the program counter plus three onto the oStack, then it branches to 
the program counter value plus an offset provided by the argument of the opcode. 
This is a trickier command; implementation is similar to that of GOTO. 

RET returns from a subroutine. It just loads an address from a specified local 

variable and stores it in the program counter. Implementation is, again, tricky. 
The next group consists of opcodes similar to those we have already imple­

mented. The DUPX instruction is very similar to DUP, but it inserts the top word 
beneath the next item on the oStack. SWAP is another stack operation, which 

merely swaps the top two words on the oStack. Implementation is similar to DUP 

but will require a temporary storage area for stack items. 
MUL TIANEWARRAY (surprisingly enough) initializes a multidimensional array. 

The opcode itself takes two arguments: the type and the number of dimen­

sions being created. It then pops the top element of the oStack, which is the 
number of dimensional sizes stored on the oStack. Then come the dimensional 

sizes themselves; these specify the number of array elements in each dimen­

sion. This multidimensional array is a complicated construction, but it should 

be tractable if you've gotten this far. 
ARRAYLENGTH is a much simpler array command that returns the length of 

a given array in memory. Resolution is not too difficult. 



Decompiler Implementation 

TABLESWITCH and LOOKUPSWITCH are similar operations that use offset tables, 
allowing for computed jumps. The former branches to the table entry whose 
index is given by the object on top of the oStack; the latter actually does a com­
parison of values to choose the branch location and is thus produced by most 
switch statements. 

A THROW, as you might expect, throws an exception (see the discussion of 
exception handling tables momentarily) and checks for a handler. It's a very 
involved instruction and one you could commonly find in programs that use 
try/catch/finally statements. 

Next, we have some simple procedural operations. CHECKCAST checks whether 
the top oStack element can be cast to a different type. INSTANCEOF checks 
whether an object or array is a member of a particular class. Both are fairly 
simple, in that there's no other way to do what they do. Decompiling them, 
however, may be involved. 

Finally, we have two extremely particular commands: MONITORENTER and 
MONITOREXIT. These are used in multithreaded programs to lock and to release the 
thread's access to an object. Multithreaded operations are also beyond the scope 
of this book. 

Exception Handling Tables 

ClassToXML ignores the exception-handling tables that belong to each method. 
These come into use when we use try/catch/finally statements. They are essen­
tially another form of conditional statement, and resolution is very similar. One 
major catch, however, is that the tables are stored after the method code in the 
classfile-in order to process them using our parser, we would have to use 
a much more complicated program or change the order of information within 
the classfile when outputting it to XML. 

Other Problems of Decompilation 

A full-featured decompiler would have to deal with the interfaces directly. It 
would have to apply a robust, unshakeable, and powerful conditional resolution 
to defeat control-flow obfuscators-this is the weakest point of decompilers from 
.NET's Anakrino to Java's Mocha. It's much easier to know where a program needs 
to go and to make it difficult to get there than it is to reverse the changes in the 
flow of the program. 

Many of the remaining things in the classfile that we ignore don't hurt us. 
The line number table-which is not even present in final builds-is pretty 
much useless for our purposes. So too are most of the other possible attributes­
Source File, Synthetic, LocalVariableTable, and Deprecated with the possible 
exception of InnerClasses. 

235 



Chapter6 

236 

Conclusion 

The complete code for our decompiler, XMLToSource, is available on the Apress 
website (http:/ /www.apress.com). I plan to add new keywords and constructs over 
time as the Java language evolves past JDK 1.5. I will also add new constructs 
occassionally to make the decompiler much more robust and complete. I wel­
come any reader contributions to help in this effort. 



CHAPTER 7 

Case Studies 

WE ARE NOW almost at the end of our journey. By now you should have a sound 
understanding of the overall principles of how to decompile, and hopefully, how 
to make some attempts at protecting your code. Having said that, I've found from 
clients and colleagues that even if you understand what decompilation and obfus­
cation really mean, it still doesn't help you figure out what practical measures you 
can take to protect your code. A little knowledge can often create more questions 
than answers. 

The Competency Centre for Java (JCC) shows an example of this on their 
deCaf web site FAQ: 

Is it true that no one will ever be able to decompile my deCaf protected 
application? 

NO. deCaf does not make decompilation impossible. It makes it difficult. 
Making decompilation impossible is impossible. 

So, in this chapter we're going to look at some case studies to try to help you 
overcome this conundrum. Hopefully one of the cases will closely match your 
situation and help you come to a conclusion on how to best protect you code. 
Each of the case studies will have the following format: 

• Problem description 

• Pros and cons of the different options 

• Solution 

Case Studies 

To help provide you with more practical insights into how to protect your code, 
we'll now take a look at several case studies. Please note that the names of these 
companies have been changed to protect the innocent. 

Case Study 1: To J2ME or Not to J2ME? 

This case study looks at the implications of decompiling mobile Java code. 

237 



Chapter7 

238 

Problem Description 

WAP Corp has the rights to an image rendering application written in C++ that it 
wants to port to Java so that it can be used on cell phones running the Java 2 
Platform, Micro Edition (J2ME). Moving to Java will mean that they can roll out 
the application to many more phones than before because the Java VIrtual Machine 
(NM) offers a huge portability advantage over the previous proprietary systems. 
Multimedia cell phones have a significant market share in the US and an even 
larger market share elsewhere. 

WAP Corp believes that this new application will present a real competitive 
advantage in speed and views the Java application as a significant part of their 
future revenue. However, if there's one thing they don't want to do, it is to allow 
their code to end up in the hands of any of their rivals, which would cause their 
competitive edge to evaporate. 

WAP Corp sees the following as their only possible options: 

• Performing obfuscation 

• Moving to a server-based application 

• Seeking legal protection 

• Patenting the algorithm 

Pros and Cons 

Obfuscation is nowhere near 100 percent secure, but method overloading and 
code irreducibility are the most effective forms. However, when some form of code 
irreducibility is used, there is always the fear that the Java application might not 
pass the Java Verifier and might never get executed. Unfortunately, the application 
would have to be tested on all cell phones to ensure that it executed correctly after 
obfuscation, which would destroy the major portability advantage of moving to 
the Java platform. But if the code doesn't use the strongest obfuscation possible, 
then it's going to be decompiled with very little effort. 

Moving to a server-based application would protect the code. But because 
of the bandwidth considerations, the information passing between the server 
and the client cell phone needs to be kept to a minimum. The cell phone needs 
to render the data. It has the processing power, and the application speed is 
largely built around a client -server architecture. However, sending the rendered 
data to the cell phone will eat up the bandwidth and add several hundred milli­
seconds to the time it takes to display the image. 



Legal protections are only good after the fact. WAP Corp doesn't want to 
engage in a lengthy legal battle, which could bankrupt it before the courts come 
to any agreement. Some ofWAP Corp's competitors have much deeper pockets 
so they could survive if they won or lost in court and can almost certainly afford 
better lawyers. 

Patenting the algorithm would open it to the competition but would act as 
an extra revenue source if any competitors wanted to license it. 

Solution 

WAP Corp decided to employ a dual strategy: they obfuscated the code to provide 
some basic level of protection, but they also patented the algorithm in the US, 
Europe, and Japan because obfuscation would only offer "good enough'' protec­
tion to keep out the casual hacker. The obfuscation had the added benefit of 
shrinking the deployed classffies by 20 percent. 

Case Study 2: Consultant,s Code 

In this case study, we explore what happens when a consultant doesn't want the 
client to have access to his or her code. We're not exploring the reasons why, just 
how to meet the need to protect the code. 

Problem Description 

More often than not, a consultant's code belongs to the client. But sometimes 
it is in the consultant's interest not to give away the code. The consultants at 
Initiative Consulting are in just such a predicament; they have used the same 
inventory application code in many deployments. The last thing they want to 
do is allow the internal IT department at their present engagement to extend 
their code that has evolved over several engagements. Next year's business 
plan includes a significant portion of revenue coming from releasing the appli­
cation as a stand-alone product. 

This web-based Struts application has a significant business component and 
is always deployed at the client site. If the consultants had used a scripting lan­
guage such as Perl or VBScript, the code would be visible to anyone who has 
access to the web server's directories. But from previous client's support ques­
tions, it had become obvious over the past few months that their Java classffies 
are being decompiled and extended. 

Case Studies 

239 



Chapter7 

240 

Initiative Consulting's main objective is to protect their intellectual property. 
They see their options as follows: 

• Employ obfuscation 

• Use code generation 

• Use an Application Service Provider (ASP) model 

Pros and Cons 

Obfuscation has some major advantages for Initiative Consulting. This inventory 

application has only been rolled out to a limited number of clients and is not gener­

ally available. Assuming the obfuscator does more than simply rename the methods 

names, then it is unlikely that their clients would have the time or the expertise to 

decompile the obfuscated code. More importantly, it is very unlikely that the intel­

lectual property would be compromised by any source code finding its way into the 
hands of any potential competitors. The one caveat is that the obfuscator would also 

have to be able to handle any maintenance upgrades for software patches that get 

applied from time to time. 
When protecting intellectual property concerns are an issue, it can help to 

use code generation to move the code to a higher metadata level. Because this is 
a Struts application, each part of the front end code-web pages, forms, actions, 
and beans-could be generated from an XML definition file and converted into 
Java Server Pages (JSP) and Java. However, the majority of the business logic is in 

the business layer, which is not so easy to generate. 
Moving the code to an ASP model where the client enters their inventory data 

into remote databases would protect the real intellectual core of the code, but 
Initiative Consulting would need to move to a different business model to support 

this new infrastructure. Web services Application Programming Interfaces (APis) 

would also need to be developed so that clients could still integrate the code with 

existing applications. However, it would still be a hard sell for any existing clients. 

Solution 

Initiative Consulting decided that an obfuscator that could handle maintenance 
releases would be the best solution for their needs. The risk of a single client 

decompiling the code was significant, but the risk of a client going to the trouble 

of trying to unravel obfuscated code was not seen as very significant. Although 

code generation and an ASP model were interesting to entertain, the cost would 

have been too prohibitive at this time. 



Case Study 3: I Can~t Find My Code 

Here we investigate how decompilers can help when the source code is inadver­
tently lost or deleted. 

Problem Description 

Somewhere in the world just about now, some developer or manager has come 
to realize that they've lost their code. That sinking feeling is in their stomach as 
they hear the scraping sound of the hard drive whirr, a sound as unmistakable 
as a loose fan belt in a car, a sound that tells them that their code is now toast. 
Even if the developer has good backups, it can take considerable time for their 
network department to retrieve the appropriate backup tape. And, of course, this 
always happens close to a deadline or after the original developer who wrote the 
code has left. 

Usually this only happens once or twice and then the developer suddenly 
becomes very adept at backing up different copies of their code on a floppy, on 
a USB drive, on a CD, in Visual SourceSafe or CVS, 1 and so on. Those who have 
been badly hit often make multiple copies just to be sure. For many, this isn't 
a joke and is a really painful experience that results in missing a very public 
deadline, or getting overlooked for a job promotion or, worse still, getting fired. 

Sometimes, if they're lucky, they've written all the code in Java and have access 
to recent classfiles, and suddenly, a decompiler becomes their new best friend. 

Pros and Cons 

Decompilers really do recover the majority of the code. Sure, the comments are 
gone, but the developer can often use the Javadoc help files for their classes to 
re-create them. Thankfully, as long as they didn't obfuscate the code, it will be 
readable and will easily decompile. 

Solution 

The solution is to use a free decompiler that can be downloaded off the Web to 
decompile the classes. The only down side is that some of classfiles are apt to be 
a little out of date, but instead of losing countless hours of development time, if 
the developer uses such a decompiler, he or she will only loose a couple of days. 

The bigger picture solution is to invest in a proper backup solution on the 
network and make sure that it is backed up and tested at regular intervals. 

1. I never knew that CVS stood for Concurrent Version Systems until the editor made me look it 
up. 

Case Studies 

241 



Chapter7 

242 

Case Study 4: See No Evil, Hear No Evil 

In this case study, we examine the zero option or what happens if we completely 
ignore the decompllation and hope it goes away. 

Problem Description 

For many people, the fear of someone decompiling their Java application or applet 
is nowhere near the top of the list of things that they should do something about. 
It ranks way below installing the latest web server security patches. Sure, it's some­
thing that they'd like to protect against, but nobody has the time. 

There are two simple options in this scenario: 

• Use obfuscation to protect the application. 

• Ignore the problem because it's not really a problem. 

Pros and Cons 

Obfuscation does raise the bar and stops most people from recovering your 
source code. The cost of decompllation is that you are giving away money spent 
on research and development. 

However, there are many reasons to ignore the problem. It's a common 
belief that if you write good applications, then the source will protect itself. 
Using upgrades and having good support are much better ways to protect 
your code than obfuscation or any of the other techniques discussed in this 
book. 

Software development is about how you apply your knowledge, not about 
getting access to someone else's applications. The original code these days proba­
bly came from a design pattern, so nobody cares if it's hacked. And all developers, 
well the good ones anyway, can always think of a better way of doing something 
after it's completed, so why worry? 

Chances are that if someone is so unimaginative that they have to resort to 
stealing your code, then they won't be capable of building on the code and turn­

ing it into something useful. 
Surely the problem is that someone could crack the program, but that can 

happen on any platform. It's not as if the newspapers are full of reports about 
people who decompile a product and rebadge it as their own, and we're forever 
hearing about the latest Microsoft exploit, so it can't be a problem. 



Solution 

Although I talk about reasons to protect your code throughout this book, it 
is often worthwhile to take some time to play devil's advocate. The solution for 
many is to simply ignore the problem using the arguments I just laid out and to 
assume that it doesn't even exist as a real issue. 

Case Study 5: Ice Cream for Escrohf 

Remember, there are other ways of protecting your code other than simple 
obfuscation. Here, we take a look at protecting your code legally by housing the 
code using a third-party company that specializes in escrowing code. 

Problem Description 

T & C Solutions had a profiling application that they wrote in 100-percent Java 
to take advantage of Sun's marketing push in the late 1990s for pure Java appli­
cations. T & C knew that obfuscation only provided limited protection, so they 
wanted to explore some alternative options. 

The options that they saw open to them were as follows: 

• Source code escrow 

• Encryption 

• Fingerprinting 

Pros and Cons 

Source code escrow is typically an agreement created as a client safeguard in case 
the consultant company goes out of business or some disaster occurs that makes it 
so they can no longer support the code. However, escrow is also a fairly simple legal 
option that you can use to protect your intellectual copyright The source code can 
be mailed to your attorney by registered mail. This dates the source code in case 
any future litigation arises concerning who first produced the code. Also, several 
third-party companies such as Iron Mountain3 will allow you to upload product 
code in a much more structured web-based environment 

2. With apologies to Captain Beetheart. 

3. http://www.ironmountain.com 

Case Studies 

243 



Chapter7 

244 

In Chapter 4, I covered why encryption wasn't the best defense against decompi­
lation-sooner or later the classfile has to be unencrypted. With custom classloaders, 
it is always possible that a hacker can gain access to the bytecode. However, you can 
use the Digital Millennium Copyright Act (DMCA) as a defense because it makes it 
a crime to circumvent any anti-piracy or encryption mechanisms. So the very act of 
classfile encryption makes it a crime under the DMCA. However, be aware that you'll 
also experience a considerable performance hit if you unencrypt the code at runtime. 

It's worth noting that obfuscation could be considered an anti-piracy mech­
anism; this means that anyone decompiling obfuscated code may be subject to 
prosecution under the DMCA, but that has yet to be tested in court. 

I also covered fingerprinting in Chapter 4, which is where a copyright notice 
or watermark is applied to the binary code using a fingerprinting tool. This tool 
encodes the information in a dummy method that never gets executed. The 
fingerprint can be recovered at a later stage if the code was decompiled and then 
added to another application. Unfortunately, the hacker can strip the dummy 
method from your application, thereby removing the fingerprint. 

Solution 

T & C Solutions decided to escrow the code using a third-party web-based sys­
tem. This was used in conjunction with a series of fingerprints within the source 
code so that the code could be matched to the exact source code held in escrow, 
just in case anyone tried to repurpose the original source. 

Conclusion 

When the idea for this book was first conceived, it seemed that Java applets were 
going to take over the Web and march all over web pages as we knew them. But 
this never happened. The inevitable problems with download speeds and proba­
bly most importantly, the look and feel of a Java applet all conspired to turn Java 
applets into little more than a niche market on the World Wide Web. 

Having said that, Java has outgrown its early roots and is very unlikely to dis­
appear any time soon. As a language, Java is quite rightly in the top tier and is 
used in web-related and network applications and, more increasingly, in stan­
dard desktop applications where its object-oriented nature appeals to a 
different audience than, say, Visual Basic. It seems that Java has found itself 
a nice fit somewhere between the complexity of C and C++ applications. Applets 
have given way to applications and servlets, which of course, cannot be easily 
downloaded and decompiled. But Java classes, inside or outside of a jar file, still 
need to be distributed whenever Java programs are sold as shrinkwrapped soft­
ware, and so they are still just as susceptible to decompilation. 

The security restrictions on Java applets are, not surprisingly, pretty intense­
an applet has to get by the Java bytecode Verifier before it can run within the 



protected applet sandbox. The class loader and the Java Verifier conspire to make 
it even harder to obfuscate Java code. Many obfuscators and bytecode manglers 

fail to get past this stage, and so they are pretty much useless at protecting your 
applet code (classfile encryptors are particularly prone to this problem). However, 

now that we've all moved to a more application-centric class model, there is much 

more scope for protecting your Java code, that is, assuming your code does not 

have to pass through a Java Verifier. 
Having said that, no matter what anyone tells you, although there have been 

some significant developments in protecting bytecode, as yet, the only secure way 

of protecting your code is to compile it into an executable. Sun and others will tell 

you that executables are not exactly safe from decompilation either. But it is several 

orders of magnitude more difficult to decompile an executable than it is to decom­

pile intermediate bytecode. Unfortunately bypassing bytecode and converting it into 

native format destroys any portability you might hope to have because it can no 

longer be used on any other platform or operating system. You may then find your­

self asking the question "Well, why on earth did I write it in Java in the first place?" 

Will this change in the near future? Well, I may be tempting fate, but I have 

to feel that the JVM design will be fixed. It has taken a number of years to write 

this book, and during that time, nothing has changed fundamentally with the 

design. New keyword and constructs will always have to be added to the decom­

piler, but the basic architecture of the JVM will remain the same. So, unlike other 
programming books, I suspect that, because of backward compatibility issues, 

the Java classfile is always going to be susceptible to decompilation. 

The whole premise of this book is to show individual users how to decompile 

code from Java classes and what protection schemes are available and what 

they actually mean. In general, people are much more curious than fraudulent, 
and it is highly unlikely that anyone will use a decompiler to steal a software 
company's crown jewel. Instead, they just want to take a peek and see how it all 

fits together-Java decompilers enable the average programmer to look much 

further into what are normally just black boxes. This book helps the user peek 
over that edge. 

You might wonder where to go next. Things I'd suggest you try from here are 
using the JLex and CUP code in the downloads area of the Apress web site to try 

and extend the code if it doesn't decompile your particular classfile. There are 

also several open-source decompilers available on the Web, such as JODE, which 
also provide a wealth of information. 

I've tried my best to make this book easy to read. I've consciously decided to 

make it more practical than theoretical while still trying to avoid making it just an 

introduction to decompilers by including and analyzing a working decompiler. 

I hope it was worth the effort on my part and yours, and just remember, things 

change fast around here, so keep an eye on the Apress website4 for further updates. 

4. Or http: I lwww. decompilingj ava. com 

Case Studies 

245 



APPENDIX 

Class file Grammar 

ALTHOUGH THE complete code is on the Apress web site (http://www. a press. corn), 
I have included the complete CUP specification here (see Listing A-I). All the 
underlying code has been removed, but it does provide an overview of a class­
file's bytecode grammar. 

Listing A-1. Bytcode Grammar 

terminal ROOT, MAGICNUM, MAJORVER, MINORVER, CPCOUNT, CONSTPOOL, CPTAG; 
terminal CPINDEX, TYPETAG, ACCFLAGS, XROOT, XMAGICNUM, XMAJORVER; 
terminal XMINORVER, XCPCOUNT, XCONSTPOOL, XCPTAG, XCPINDEX, XTYPETAG; 
terminal XACCFLAGS, NAMEINDEX, DESCINDEX, VALTAG, THISCL, SUPERCL, INTCNT; 
terminal INTERFACES, FIELDCNT, FIELDS, FIELD, XNAMEINDEX, XDESCINDEX; 
terminal XVALTAG, XTHISCL, XSUPERCL, XINTCNT, XINTERFACES, XFIELDCNT; 
terminal XFIELDS, XFIELD, METHCNT, METHODS, METHOD, ATTCNT, ATTRIBS, ATTRIB; 
terminal ATTTYPE, ATTTYPEINDEX, ATTLENGTH, MAXSTACK, MINSTACK; 
terminal XMETHCNT, XMETHODS, XMETHOD, XATTCNT, XATTRIBS, XATTRIB; 
terminal XATTTYPE, XATTTYPEINDEX, XATTLENGTH, XMAXSTACK, XMINSTACK; 
terminal CODELEN, CODETAG, LINETAG, EXCLEN, EXCTABLE, CODEATTCNT; 
terminal CODEATTNAME, CODEATTLEN, LNTABLECNT, LINENUMTABLE; 
terminal XCODELEN, XCODETAG, XLINETAG, XEXCLEN, XEXCTABLE, XCODEATTCNT; 
terminal XCODEATTNAME, XCODEATTLEN, XLNTABLECNT, XLINENUMTABLE; 
terminal LINENUM, LNMAP, STARTPC, ENDPC, HANDLER, CATCHTYPE, SRCFILE; 
terminal CONSTIDX, XLINENUM, XLNMAP, XSTARTPC, XENDPC, XHANDLER; 
terminal XCATCHTYPE, XSRCFILE, XCONSTIDX, ACCESS, PROPERTY, CONSTNAME; 
terminal CONSTANT, DECIMALPT, COMMA, CHARRAY, INTEGER, FLOAT, LONG; 
terminal DOUBLE, STRING, CLASSREF, FIELDREF, METHODREF, INTERFACEREF; 
terminal NAMEANDTYPE, NEGATIVE, HEXNUM, NUMBER, TYPE, ATTRIBNAME; 
terminal NOP, CONST, BIPUSH, LDC, LOAD, STORE, POP, POP2, DUP, DUPX, NEW; 
terminal ASTORE, ALOAD, NEWARRAY, ARRAYLENGTH; 
terminal SWAP, NEG, ADD, SUB, MUL, DIV, REM, SHL, SHR, AND, OR, XOR, !INC; 
terminal I2L, CMP, IF, IF_ICMP, GOTO, JSR, RET, RETURN; 
terminal TABLESWITCH, LOOKUPSWITCH, GETSTATIC, GETFIELD, PUTSTATIC; 
terminal PUTFIELD, INVOKE, ATHROW, CHECKCAST, INSTANCEOF; 
terminal MONITORENTER, MONITOREXIT, WIDE, MULTIANEWARRAY, M1, NULL; 

247 



248 

non terminal startfile, file, constantpool, constantelement, classname; 
non terminal interfaces, fields, field, methods, method, attribs, attrib; 
non terminal definitionparts, stmts, expr_part, other, property; 
non terminal properties, number, type, access, return, invoke, load; 
non terminal bipush, iinc, const, stackops, cmp, if_icmp, if, store, goto, arith; 
non terminal conv, object, arrayops, astore, aload, newarray, codeattribs; 
non terminal endcodeattribs, linenumtable, linenummapping, exceptiontable; 

start with file; 

startfile ::=number DECIMALPT number ROOT MAGICNUM HEXNUM XMAGICNUM 
MINORVER number XMINORVER MAJORVER number XMAJORVER 

file ::= startfile CPCOUNT number XCPCOUNT CONSTPOOL constantpool XCONSTPOOL 
classname interfaces FIELDCNT number XFIELDCNT FIELDS XFIELDS METHCNT number 
XMETHCNT METHODS methods XMETHODS ATTCNT number XATTCNT ATTRIBS attribs 
XATTRIBS XROOT 

I startfile CPCOUNT number XCPCOUNT CONSTPOOL constantpool XCONSTPOOL 
classname interfaces FIELDCNT number XFIELDCNT FIELDS XFIELDS METHCNT number 
XMETHCNT METHODS methods XMETHODS ATTCNT number XATTCNT XROOT 

I startfile CPCOUNT number XCPCOUNT CONSTPOOL constantpool XCONSTPOOL 
classname interfaces FIELDCNT number XFIELDCNT FIELDS fields XFIELDS METHCNT 
number XMETHCNT METHODS methods XMETHODS ATTCNT number XATTCNT ATTRIBS 
attribs XATTRIBS XROOT 

I startfile CPCOUNT number XCPCOUNT CONSTPOOL constantpool XCONSTPOOL 
classname interfaces FIELDCNT number XFIELDCNT FIELDS fields XFIELDS METHCNT 
number XMETHCNT METHODS methods XMETHODS ATTCNT number XATTCNT XROOT 

attribs ::= attribs attrib 
attrib 

attrib ::= ATTRIB ATTTYPE ATTRIBNAME XATTTYPE ATTTYPEINDEX number 
XATTTYPEINDEX ATTLENGTH number XATTLENGTH SRCFILE number XSRCFILE 

XATTRIB 
I ATTRIB ATTTYPE ATTRIBNAME XATTTYPE ATTTYPEINDEX number 

XATTTYPEINDEX ATTLENGTH number XATTLENGTH CONSTIDX number XCONSTIDX 
XATTRIB 



Classfile Grammar 

constantpool ::= constantpool CPTAG constantelement XCPTAG 
I CPTAG constantelement XCPTAG 

constantelement ::= CPINDEX number:n XCPINDEX TYPETAG CONSTANT CHARRAY:t 
XTYPETAG VALTAG CONSTNAME:s XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT INTEGER:t 
XTYPETAG VALTAG number:intVal XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT INTEGER:t 
XTYPETAG VALTAG NEGATIVE number:intVal XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT LONG:t XTYPETAG 
VALTAG number:longVal 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT LONG:t XTYPETAG 
VALTAG NEGATIVE number:longVal XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT FLOAT:t XTYPETAG 
VALTAG number:fl DECIMALPT number:f2 XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT FLOAT:t XTYPETAG 
VALTAG NEGATIVE number:fl DECIMALPT number:f2 XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT DOUBLE:t XTYPETAG 
VALTAG number:dl DECIMALPT number:d2 XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT DOUBLE:t XTYPETAG 
VALTAG NEGATIVE number:dl DECIMALPT number:d2 XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT STRING:t XTYPETAG 
VALTAG number:index XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT CLASSREF:t 
XTYPETAG VALTAG number:index XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT FIELDREF:t 
XTYPETAG VALTAG number:classindex COMMA number:NaTindex XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT METHODREF:t 
XTYPETAG VALTAG number:classindex COMMA number:NaTindex XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT INTERFACEREF:t 
XTYPETAG VALTAG number:classindex COMMA number:NaTindex XVALTAG 

I CPINDEX number:n XCPINDEX TYPETAG CONSTANT NAMEANDTYPE:t 
XTYPETAG VALTAG number:nameindex COMMA number:typeindex XVALTAG 

I error 

249 



Appendu 

250 

classname ::= ACCFLAGS access:a XACCFLAGS THISCL number:classnum XTHISCL 
SUPERCL number XSUPERCL 

interfaces ::= INTCNT number XINTCNT INTERFACES XINTERFACES 

fields ::=fields FIELD field XFIELD I FIELD field XFIELD 

field ::= ACCFLAGS access:a definitionparts:params ATTCNT number XATTCNT ATTRIBS 
XATTRIBS 

methods ::=methods METHOD method XMETHOD I METHOD method XMETHOD 

codeattribs ::= ATTCNT number XATTCNT ATTRIBS ATTRIB ATTTYPE ATTRIBNAME 
XATTTYPE ATTTYPEINDEX number XATTTYPEINDEX ATTLENGTH number 
XATTLENGTH MAXSTACK number XMAXSTACK MINSTACK number XMINSTACK 
CODELEN number XCODELEN CODETAG 

endcodeattribs ::= XCODETAG EXCLEN number XEXCLEN EXCTABLE exceptiontable 
XEXCTABLE CODEATTCNT number XCODEATTCNT CODEATTNAME number 
XCODEATTNAME CODEATTLEN number XCODEATTLEN LNTABLECNT number 
XLNTABLECNT LINENUMTABLE linenumtable XLINENUMTABLE XATTRIB XATTRIBS 

linenumtable ::= linenumtable LNMAP linenummapping XLNMAP I LNMAP linenummapping 
XLNMAP 

linenummapping ::= 
STARTPC number XSTARTPC LINENUM number XLINENUM 

exceptiontable ::= 
I STARTPC number XSTARTPC ENDPC number XENDPC HANDLER number 

XHANDLER CATCHTYPE number XCATCHTYPE 

method ::= ACCFLAGS access:a definitionparts:desc codeattribs stmts 
endcodeattribs 



definitionparts ::=properties XACCFLAGS NAMEINDEX number:name XNAMEINDEX 

DESCINDEX number:params XDESCINDEX 
I XACCFLAGS NAMEINDEX number:name XNAMEINDEX DESCINDEX 

number:params XDESCINDEX 

stmts ::= stmts LINETAG expr_part XLINETAG 
LINETAG expr_part XLINETAG 

expr_part ::=store 
load 
stackops 
bipush 
canst 
cmp 
if_icmp 
if 
iinc 
arith 
conv 
go to 
number:l other 
invoke 
object 
return 
arrayops 

return ::= number:l RETURN:c 
number:l type:t RETURN:c 

store number:l type:t STORE:s number:n 

load .. - number:l type:t LOAD:i number:n 
number:l LDC:ld number:n 

invoke number:l INVOKE:s number:n 

Classfile Grammar 

251 



Appendix 

252 

object ::=number:! NEW:s number:n 
number:! PUTFIELD:s number:n 
number:! PUTSTATIC:s number:n 
number:! GETSTATIC:s number:n 
number:! GETFIELD:s number:n 

stackops ::=number:! DUP 

bipush ::=number:! BIPUSH:p number:n 

const ::=number:! type:t CONST:c number:n 
number:! type:t CONST:c M1:m 
number:! type:t CONST:c NULL:n 

conv . ·­.. - number:! I2L:i type:t 

arith . ·­.. - number:! type:t NEG:r 
number:! type:t REM:r 
number:! type:t ADD:m 
number:! type:t SUB:m 
number:! type:t MUL:m 
number:! type:t DIV:m 

iinc ::=number:! IINC:p number:nl number:n2 
number:! IINC:p number:n1 NEGATIVE number:n2 

cmp . ·­.. - number:! type:t CMP:c 

if_icmp ::=number:! IF ICMP:c number:n 

if ::=number:! IF:c number:n 



goto ::= number:l GOTO:c number:n 

arrayops ::= aload 

a load 

a store 

a store 
newarray 

number:l ALOAD:s 

number:l ASTORE:s 

newarray ::= number:l NEWARRAY:s number:n 
number:l type:t NEWARRAY:s number:n 

number ::= NUMBER:n 

access ::= I ACCESS:a 

properties ::=properties property I property 

property ::= PROPERTY:p 

type : := TYPE:t 

other : := NOP 

I POP 

I POP2 

I DUPX 

I SWAP 

I SHL 

I SHR 

I AND 

I OR 

Classfile Grammar 

253 



Appendix 

254 

XOR 
JSR 
RET 
TABLESWITCH 
LOOKUP SWITCH 
A THROW 
CHECKCAST 
INSTANCEOF 
MONITOR ENTER 
MONITOR EXIT 
WIDE 
MUL TIANEWARRAY 
ARRAYLENGTH 



Index 

A 
access flags 

field information in, 40-41 
for methods, 44 
overview, 35 

aggregation obfuscations, 98-102 
clone methods, 100 
defined, 98 
inline and outline methods, 98-99 
interleave methods, 99 
loop transformations, 100 

ALGOL, 7 
aload non-terminal, 224 
ANTLR, 130 
applets 

protection mechanism for, 87 
searching for unlicensed, 88 
splitting code in, 106-108, 120 
writing two versions of, 86-89, 120 

applications 
simple protection mechanism for, 87 
writing two versions of, 86-89, 120 

architecture of JVM, 126 
arith non-terminal, 196 
arithmetic operations in MathOps.java, 

194-200 
Arraylnit.java, 226-233 

<clinit> method, 226, 228-229 
code for decompiler, 230-232 
decompiler results for, 233 
getfield non-terminal, 229 
grammar for, 229-230 
<init> method for, 226, 227-228 
putfield non-terminal, 229-230 
putstatic non-terminal, 230 
sample listing, 227 

arrays. See also Arraylnit.java; 
ArrayTest.java 

array transformations, 104 
handling initialized, 226-233 
loading string, 222-226 

ArrayTest.java, 222-226 
aload non-terminal, 224 
annotated main method for, 223 
decompiler code for, 224-226 
decompiler results for, 226 
grammar for, 223-224 
newarray non-terminal, 224 
sample listing, 222 

astore non-terminal, 224 

Atari v. Nintendo, 12 
attributes 

classfile method, 45-46 
field, 41 
getLocalHostNameQ method, 56 
method, 45-46 
paint() method, 58 
SourceFile and InnerClasses, 59-60 

attributes count, field, 41 

B 
Basics.java, 190--194 

code for decompiler, 193-194 
const non-terminal, 192-193 
conv non-terminal, 193 
decompiler results, 194 
grammar for, 192-193 
ipush non-terminal, 192 
main method, 191 
original code, 190-191 
static main method, 191-192 
type conversion method, 192 

Boolean split lookup table, 103 
building obfuscators, 105-106 
bytecodes. See also recovering source 

c 

code from bytecode 
breaking into tokens, 165-170 
defined,l22 
mapping to opcodes, 48-55 
recovering source code from, 

141-148 
types of, 127 

case studies, 237-245 
ignoring problems of decompilation, 

242-243 
J2ME obfuscation strategies, 237-239 
overview, 237,244-245 
protecting consultant's code, 239-240 
reconstructing lost source code, 241 
source code escrow, 243-244 

Casting class, 114 
Cifuentes, Christina, 123-124, 141, 

143-144, 148 
class data section of ClassToXML, 160 

162 , 
class fields. See fields 
class methods. See methods 

255 



Index 

256 

class transformations, 103-104 
classfiles, 22-60. See also constant 

pools 
access flags, 35 
attributes count for fields, 41 
bytecode grammar for CUP 

specification, 247-254 
bytecode to opcode mapping for 

methods, 48-55 
constant pool, 26-35 
constant pool count, 26 
decompiler design and elements of, 

125-127 
design and function of, 18 
disassembled XML, 25 
fields, 38-41 
interfaces, 36-38 
JavaDump effects on, 71 
magic number, 25-26 
method attributes for, 45-46 
methods, 42-59 
minor and major version numbers, 

26 
parts of, 23-24 
SourceFile and InnerClasses 

attributes, 59-60 
structure of, 24 
This and Super classes, 36 

classname non-terminal, 178 
ClassNavigator, 67, 69-70 
ClassToSource decompiler, 121 
ClassToXML output file, 159-165 

ArrayTest.java main method, 223 
Basics. java main method, 191 
class data section of, 162 
constant pool entries for, 160-161, 

162-163, 165 
converting classfiles to XML, 156 
exception handling tables ignored by, 

235 
field data overview of, 162-163 
format of, 160 
MathOps.java main method, 195-196 
method data in, 163-165 
terminals, 17 4 

clone methods for aggregation 
obfuscations, 100 

cmp non-terminal, 204 
code fingerprinting, 14 
codeattribs non-terminal, 179 
compilation flags, 81-86, 120 

compiling with -g flags, 81-86 
decompiled version of 

Hello World. java, 84-86 · 
effect on HelloWorld.java bytecode, 

81-82 
removing information in 

HelloWorld.classfile with, 82-84 

compiler-compiler tools, 128-130. See 
also CUP compiler-compiler tool 

compilers, 2-3 
computation obfuscation, 94-98. See 

also obfuscators 
addingredundantoperands,96-97 
extending loop conditions, 94 
inserting dead or irrelevant code, 94 
parallelizing code, 97-98 
unreducible bytecode control flow, 

94-96 
writing sloppy code, 97 

conditional statements. See also loops 
DoWhile.java, 200--210 
extending loop conditions for 

obfuscation, 94 
ForLoop.java, 217-222 
Iffest.java, 200-210 
loops and goto statements, 95, 142 
resolving with WhileLoop.java, 

213-217 
WhileLoop.java, 213-217 

const non-terminal, 192-193 
constant pool count, 26 
constant pools, 26-35 

ClassToXML entries for, 160--161, 
162-163,165 

CONSTANT_UtfB_info structure, 27 
cp_info structure, 26 
Hello.class, 28-33 
JVM field descriptors, 34 
reading, 183 
tags, 27 

constantelement non-terminal, 177-178 
constantpool non-terminal, 176-177 
CONSTANT_UtfB_info structure, 27 
control obfuscations, 93-102 

aggregations,98-102 
computation transformations, 94-98 
ordering transformations, 100--102 
transformations with, 89 

conv non-terminal, 193 
converting static to procedural data, 103 
copyright laws and decompiled code, 

9-12 
costs 

defined,80 
overview of strategy, 120 

cp_info structure, 26 
Crema,9,91-92 
CUP compiler-compiler tool. See also 

CUP decompiler specification 
debugging output for, 139-140 
declarations in, 136 
derivative ofYacc parser, 135-136 
grammar for, 139-140 
installing, 136 
overview, 129 



symbols in, 137-139 
user routines, 137 

CUP decompiler specification 
bytecode grammar for, 247-254 
classname non-terminal, 178 
codeattribs non-terminal, 179 
constantelement non-terminal, 

177-178 
constantpool non-terminal, 176-177 
Decompiler. CUP decompiler 

specification, 153-156 
definitionparts non-terminal, 181 
exceptionable non-terminal, 180 
fields non-terminal, 178-179 
file non-terminal, 175-176 
interfaces non-terminal, 178 
linenumtable and linenummapping 

non-terminal, 180 
listing of all non-terminals, 175 
methods non-terminal, 179-181 
miscellaneous non-terminals, 

181-182 
opcode terminals for, 17 4-175 
resolveConstant method, 171-173 
skeleton specification for 

decompile~170-171 
startfile non-terminal, 176 
stmts non-terminal, 181 

custom class loaders, 108-109 

D 
data obfuscation, 89, 102-104 

converting static to procedural data, 
103 

storage and encoding methods, 
102-103 

transformation data via aggregation, 
103-104 

transformations with, 89-90 
dec decompiler 

back-end processing, 144 
front-end parser, 143 
origins of, 3 
UDM, 141, 143, 144 

dead code, 94 
declarations in CUP, 136 
decompiler code 

Arraylnit.java, 230-232 
ArrayTest.java, 224-226 
Basics.java, 193-194 
DoWhile.java and Iffest.java, 210 
ForLoop.java, 219-222 
Iffest.java, 204-209 
MathOps.java, 197-200 
Recurses.java, 213 
WhileLoop.java, 215-216 

Decompiler.cup, 153-156 

Decompiler.lex, 151-152 
decompilers, 72-75. See also 

ClassToXML output file; designing 
decompilers; implementing 
decompilers 

dcc,3, 141,143-144 
about decompiling, 1 
decompiled fingerprinted code, 

115-116 
decompiling exceptions, 56-57 
decompiling interpreters, 124 
development of, 6-9, 122-125 
functions of, 2-3 
ignoring problems of decompilation, 

242-243 
JAD, 74 
Java's vulnerability to, 3-5 
JODE, 74-75 
legal implications of, 9-12 
Mocha, 1, 9, 73 
moral issues of decompiling, 12-13 
overview, 72 
reconstructing lost source code, 241 
skeleton CUP, 170-171 
SourceAgain,73-74 
virtual machine, 3 
Visual Basic, 8-9 

definitionparts non-terminal, 181 
design of classfiles, 18 
designing decompilers, 121-157 

classfile and JVM elements in, 
125-127 

design of JVM and, 123 
parser design, 149-156 
recovering source code from 

bytecode, 141-148 
tools used, 128-140 
using compiler-compiler tools, 

128-130 
DFA (deterministic finite automata), 152 
Diettrich, Hans-Peter, 8-9 
digital fingerprinting code, 110-117, 120 

Casting class with dummy method, 
114 

Casting target class, 113 
criteria for good, 112 
decompiled fingerprinted code, 

115-116 
examples of, 113-117 
jmark command-line parameters, 

114 
recovering fingerprint, 115 

Digital Millennium Copyright Act 
(DMCA), 10 

Digital Rights Management (DRM) 
so~are, 109-110, 120 

directives in JLex, 132-133 
disassembled XML classfile, 25 

Index 

257 



Index 

258 

disassennblers,67-72 
ClassNavigator, 67,69-70 
IceBreaker, 67, 68--69 
JavalJurnnp, 70-72 
overview, 67-68 

divider tokens, 160 
DMCA (Digital Millenniurnn Copyright 

Act), 10 
DOS deconnpilers, 7 
DoWhile.java, 200-210 

annotated nnain nnethod of, 201-202 
cnnp non-teln1inal, 204 
deconnpiler results for, 210 
graD1D1ar for, 202-204 
ifnon-teln1inal, 203 
listing for, 200 

DRM (Digital Rights Managennent) 
so~~ 109-110, 120 

durnnnny constructors, 183 
durnnnny nnethods, 111, 112, 114 

E 
educational uses for Java 

deconnpilation,13,16 
encoding,102 
encryption,108-109,120 
end tokens, 160 
EU Directive on Legal Protection of 

Computer Programs, 11 
European Union (EU) licensing laws, 10, 

11 
evaluation copies, 86 
evolution of deconnpilers, 6-9 
exceptionable non-teln1inal, 180 
exceptions 

deconnpiling,56-57 
exception handling tables, 235 

F 
fair use laws, 10 
fields, 38-41 

attributes count, 41 
defined, 126 
field data section of ClassToXML, 

160, 162-163 
field descriptors for constant pool, 34 
finding hurnnan interface's, 39-40 
forcing field attributes in Hello 

localhost, 28 
information in access flags, 40-41 

fields non-teln1inal, 178-179 
file non-ternninal, 175-176 
files. See also classfiles 

adding line nurnnbers to JLex, 133-135 
classfiles, 22-25 
divisions ofJLex, 131 

fingerprinting. See digital fingerprinting 
code 

flow analysis tools, 128 
ForLoop.java, 217-222 

deconnpiler code for, 219-222 
deconnpiler results for, 222 
goto non-teln1inal for, 218 
sannple listings, 217-218 

fragile super classes, 124 

G 
-g flags, 81-86 
getfield non-teln1inal, 229 
getLocalHostNanneQ nnethod, 48-57 
goto non-teln1inal 

ForLoop.java, 218 
WhileLoop.java, 214-215 

goto statennents 
breaking out of control loop with, 95 
exannple of poor, 145-146 
pseudocode replacing, 145 
transfoln1ing into loops and breaks, 

142 
graD1D1ar 

H 

Arraylnit.java, 229-230 
ArrayTest.java, 223-224 
Basics.java, 192-193 
CUP, 139-140, 247-254 
deconnpiled HelloWorld.java, 

184-186 
DoWhile.java, 202-204 
Iffest.java, 202-204 
MathOps.java, 196-197 
Recurses.java, 212-213 
WhileLoop.java, 214-215 

HAT (Heap Analysis Tool), 20 
heap, 19,20 
Hello. class 

constant pool, 28-33 
hexadecinnal durnnp of, 22-23 
nnethods, 42-44 

Hello.java, 22, 149-150 
HelloWorld.classfile, 82-84 
HelloWorld.java 

basic deconnpiler operations with, 
182-190 

connpilation flag effects on bytecode 
in, 81-82 

deconnpiled version of, 84-86 
deconnpiler code for, 186-190 
durnnnny and nnain nnethods for, 

183-184 
graD1D1ar for deconnpiled, 184-186 
invoke non-ternninal in, 185-186 



load non-terminal in, 185 
object non-terminal in, 186 
return non-terminal in, 184 
store non-terminal in, 184 

Hello World thread example, 98 
hexadecimal dump of Hello. class, 22-23 
hexidecimal editors, 7, 61-64 
high-mode obfuscation, 90 
HoseMocha, 94 
human interfaces for classfile, 36-37 

I 
IceBreaker, 67, 68-69 
if non-terminal, 203 
if statements, 146-148 
if-else statements, 211 
if_icmp non-terminal, 203 
IITest.java, 20~210 

annotated main method of, 202 
cmp non-terminal, 204 
decompiler code for, 204-209 
decompiler results for, 210 
grammar for, 202-204 
if non-terminal, 203 
if_icmp non-terminal, 203 
listing for, 20~201 

iinc non-terminal, 196-197 
implementing decompilers, 159-236. 

See also test suite programs; and 
programs listed by name 

Arraylnit.java in test suite, 226-233 
ArrayTest.java in test suite, 222-226 
Basics.java in test suite, 19~194 
ClassToXML output file, 159-165 
CUP specification, 17~175 
dealing with remaining opcodes, 

234-235 
decompiler code for HelloWorld.java, 

186-190 
Do While. java and IITest.java in test 

suite, 20~210 
dummy and main methods for 

HelloWorld.java, 183-184 
exception handling tables, 235 
ForLoop.java in test suite, 217-222 
HelloWorld.java in test suite, 182-190 
JLex specification, 165-170 
MathOps.java in test suite, 194-200 
overview, 159 
problems of decompilation, 235 
programs in test suite, 182 
Recurses.java in test suite, 211-213 
summary of, 233-236 
tips for decompiling unparsed 

opcodes, 233-235 
WhileLoop.java in test suite, 

213-217 

<init> methods 
for Arraylnit.java, 226, 227-228 
unraveling, 47-48 

inline and outline aggregation methods, 
98-99 

InnerClasses attributes, 59-60 
insecure code, 64-67 
installing 

CUP, 136 
JLex, 134 

interface as classfile element, 36-38, 126 
interfaces non-terminal, 178 
interleaving aggregation methods, 99 
invoke non-terminal, 185-186 
IPR (Intellectual Property Rights) 

protection schemes, 14-15, 
109-110, 120 

ipush non-terminal, 192 
irrelevant code, 94 

J 
J2ME obfuscation strategies, 237-239 
JAD (Java Decompiler), 74 
Java 

bytecode to opcode mapping, 48-55 
decompiler design in, 123-125 
decompiling interpreters, 124 
educational uses for decompilation, 

13,16 
example of source code, 5 
fragile super classes, 124 
software protection for, 13-15 
taking advantage of insecure code, 

64-67 
vulnerability to decompilation, 3-5 

Java Decompiler (JAD), 74 
Java Native Interface (JNI), 117 
Java Tree Builder (JTB), 128 
Java Vrrtual Machine. See JVM 
JavaDump, 7~72 
javap source code output, 5-6 
Jive, 142, 146-148 
JJTree, 128 
JLex 

adding line numbers to files with 
scanner, 133-135 

breaking bytecodes into tokens with, 
165-170 

directives in, 132-133 
file divisions in, 131 
installing, 134 
main method bytecode, 151 
overview, 129, 131-132 
regular expression rules for, 133 
user code in, 132 

jmark, 112, 113 
JNI (Java Native Interface), 117, 118-119 

Index 

259 



Index 

260 

JOBE, 92-93 
JODE, 74-75 
JTB (Java Tree Builder), 128 
JVM (Java Virtual Machine). See also 

classfiles 

K 

architecture of, 126 
classfiles and classfile elements, 

22-25,125-127 
decompiler design and design of, 123 
decompiling Java with, 1, ~ 
field descriptors, 34 
heap,19,20 
Java's vulnerability to decompilation, 

3-5 
method area, 20, 21 
obfuscators compatible with, 90 
opcodesin,122,127-128 
program counter registers, 20, 21 
publications about, 17 
stack and stack processor, 20, 21, 126 
structure of, 19-20 

Krakatoa decompilation, 142, 144-146, 
149 

L 
LALR(l) parser, 130 
layout obfuscations, 89, 91-93 
legal implications of decompilers, 9-12 
Lex, 128,129,130 
licensing software, 86-88 
linenumtable and linenummapping 

non-terminal, 180 
LL(k) parsers, 130 
load non-terminal, 185 
loops 

M 

breaking out of control, 95 
extending loop conditions, 94 
goto conditional, 214-215 
implementing while, 217-222 
loop transformations, 100 
reorder, 101-102 
reversing, 102 
transforming for aggregation 

obfuscations, 100 
unrolling, 100 
WhileLoop.java, 213-217 

magic numbers, 25--26 
main method bytecode for JLex, 151 
MathOps.java, 194-200 

annotated main method in, 195--196 
arith non-terminal, 196 

decompiler code for, 197-199 
decompiler results for, 199-200 
grammar for, 196-197 
iinc non-terminal, 196-197 
original code for, 195 

merging scalar variables, 103 
methods, 42-59 

access flags for, 44 
annotated Recurses.java, 211-212 
Arraylnit.java <clinit>, 226, 228--229 
Arraylnit.java <init>, 226, 227-228 
ArrayTest.java main, 223 
attributes for, 45--46 
Basics.java, 191-192 
code attributes for exceptions, 56-57 
decompiling getLocalHostNameO, 

48--57 
DoWhile.java, 201-202 
dummy and main HelloWorld.java, 

183-184 
as element of classfile, 126 
Hello.class, 42-44 
invoking, 182-183 
MathOps.java, 195--196 
method area of JVM, 20, 21 
method data in ClassToXML output 

file,160, 163-165 
native, 19,117-119,120 
paintO, 57-59 
resolveConstant, 171-173 
unraveling <init>, 47-48 
WhileLoop.java main, 214 

methods non-terminal, 179-181 
Mocha, 1, 9, 73 
moral issues of decompiling Java, 12-13 

N 
Native Method Interface (NMI), 117 
native methods, 19,117-119,120 
newarray non-terminal, 224 
NMI (Native Method Interface), 117 
non-terminals 

aload, 224 
arith, 196 
astore, 224 
classname, 178 
cmp,204 
constantelement, 177-178 
constantpool, 176-177 
CUP specification, 175 
definitionparts,181 
exceptionable, 180 
fields, 178--179 
file, 175--176 
getfield, 229 
goto,214-215,218 
if,203 



if_icmp, 203 
line, 196-197 
interfaces, 178 
invoke,185-186 
ipush, 192 
linenumtable and linenummapping, 

180 
load, 185 
methods, 179-181 
miscellaneous CUP, 181-182 
newarray, 224 
object, 186 
parsing behavior in CUP, 175 
putfi.eld, 229-230 
putstatic, 230 
resolving tokens and terminals into, 17 4 
return, 184 
startfile, 176 
stmts, 181 
store, 184 

Num.lex scanner, 133-135 

0 
obfuscators, 88-106, 120. See also 

aggregation obfuscations; 
computation obfuscation; ordering 
obfuscations 

building, 105-106 
case study of J2ME obfuscation 

strategies, 237-239 
control obfuscation, 89, 93-102 
data obfuscation, 89, 102-104 
defeating decompilers with, 235 
high-mode obfuscation, 90 
layout obfuscation, 89, 91-93 
overview, 75-76, 88-90, 104-105 
protecting code with, 14-15 
types of, 89 

object non-terminal, 186 
opcodes 

dealing with remaining, 234-235 
defined, 122 
in NM instruction set, 122, 127-128 
mapping bytecodes to, 48-55 
tips for decompiling unparsed, 233-235 

ordering obfuscations, 100-102 
reorder loops, 101-102 
reorder statements and expressions, 

100-101 
ordering transformations, 104 
oStackDebug and finalStackDebug 

sample listings, 173 

p 
paintO method attributes, 45-46, 57-59 
parallelizing code, 97-98 

Parser.cup, 138-139 
parsers 

dec front-end, 143 
CUP and Yacc, 135-136 
designing, 149-156 
LALR(l), 130 
LL(k), 130 
Parser.cup sample listing, 138-139 
recovering source code with single 

pass parser, 142, 148 
single pass, 142, 148 
terminals and non-terminals in CUP, 

175 
p-code (pseudocode) 

overview, 9 
replacing goto statements, 145 

peephole optimization, 142 
potency, 80, 120 
program counter registers, 20, 21 
protecting source code, 79-120. See also 

obfuscators 
compilation flags, 81-86, 120 
digital fingerprinting code, 110-117, 

120 
digital rights management software, 

109-110, 120 
encryption,108-109,120 
native methods, 117-119, 120 
obfuscation, 88-106, 120 
overview, 79-81 
selling source code, 117, 120 
strategies for, 120 
web services and server-side 

execution,106-108,120 
writing two versions of code, 86-89, 

120 
pseudocode. Seep-code 
publicationsaboutNM,17 
putfi.eld non-terminal, 229-230 
putstatic non-terminal, 230 

R 
Ramshaw's algorithm, 142, 144-146, 149 
recovering source code from bytecode, 

141-148 
Jive,142,146-148 
overview, 141-142 
Ramshaw's algorithm, 142, 144-146, 

149 
single pass parser, 142, 148 
universal decompiling machine, 141, 

143-144 
recurse method 

annotated methods of Recurses.java, 
211-212 

ClassToXML constant pool output, 165 
ClassToXML data output for, 164-165 

Index 

261 



Index 

262 

Recurses.java, 211-213 
annotated methods of, 211-212 
decompiler results for, 213 
grammar, code, and output for, 

212-213 
sample listing, 211 

redundant operands, 96-97 
registers and decompiler design, 123 
regular expression rules for JLex, 133 
reorder loops, 101-102 
reorder statements and expressions, 

100-101 
resilience, 80, 120 
resolveConstant method, 171-173 
return non-terminal, 184 
reverse engineering, 10, 11 

s 
sample listings 

annotated Arraylnit.java <clinit> 
method, 228-229 

annotated Arraylnit.java <init> 
method, 227-228 

annotated Basics.java method, 191 
annotated DoWhile.java method, 

201-202 
annotated Iffest.java method, 202 
annotated MathOps.java method, 

195-196 
annotated type conversion method 

for Basics.java, 192 
arr field for ClassToXML, 162-163 
ArrayTest.java, 222 
breaking out of control loop with 

goto statement, 95 
Casting target class, 113 
classfile structure, 24 
ClassToXML constant pool output for 

recurse, 165 
ClassToXML terminals, 17 4 
codeattribs non-terminal, 179 
compilation flag effects on bytecode, 

81-82 
compilation flags in 

Hello World.classfile, 82-84 
const non-terminal for Basics.java, 

192-193 
constant pool entries for 

ClassToXML, 160-161 
constantelement non-terminal in 

CUP, 177-178 
constantpool non-terminal in CUP, 

176-177 
CONSTANT_UtfB_info structure, 27 
conv non-terminal for Basics. java, 

193 
cp_info structure, 26 

Crema-protected code, 91-92 
CUP non-terminals, 175 
CUP specification, 170-171 
CUP user routines, 137 
custom class loaders, 108-109 
debugging output for CUP, 139-140 
decompiled fingerprinted code, 

115-116 
decompiled HelloWorld.java, 84-86 
decompiled output for 

HelloWorld.java, 190 
decompiler code for Basics. java, 

193-194 
decompiler code for Hello World. java, 

186-190 
decompiler code for Iffest.java, 

204-209 
decompiler code for MathOps.java, 

197-199 
Decompiler.cup, 153-156 
Decompiler.lex, 151-152 
decompiler results for Arraylnit.java, 

233 
decompiler results for DoWhile.java 

and Iffest.java, 210 
decompiling if statements in Jive, 

146-148 
definitionparts non-terminal in CUP, 

181 
digital fingerprint, 115 
disassembled XML classfile, 25 
DoWhile.java, 200 
dummy and main methods for 

HelloWorld.java, 183-184 
exceptionable non-terminal in CUP, 

180 
fields of human interface, 39-40 
file non-terminal in CUP, 175-176 
Hello.class, 22-23 
Hello. class constant pool, 28-33 
Hello. class methods, 42-44 
Hello.java, 22, 149-150 
Hello Localhost with initializers, 38 
Hello World thread example, 98 
hex dump of test class, 63-64 
human interfaces for classfile, 36-37 
lffest.java, 200-201 
insecure code, 64-66 
Java source code, 5 
javap source code output, 5-6 
jmark command-line parameters, 

114 
JNI header file, 118-119 
linenumtable and linenurnmapping 

non-terminal in CUP, 180 
loop reversals, 102 
loop unrolling, 100 
main method bytecode, 151 



method non-terminal in CUP, 180 
native methods in code, 118 
Num.lex scanner, 133-135 
obfuscating strings added to 

XMLToClass example, 106 
opcode terminals for CUP 

specification, 17 4-175 
original Basics.java code, 19Q-191 
original code for MathOps.java, 195 
oStackDebug and finalStackDebug, 

173 
paint method attributes, 45-46 
Parser.cup, 138-139 
pseudocode replacing goto 

statements, 145 
recovering fmgerprint, 115 
recurse method data output in 

ClassToXML, 164-165 
Recurses.java, 211 
resolveConstant method, 171-173 
showBalance and emaillnvoice, 99 
showBalanceEmaillnvoice, 99 
simple protection mechanism for 

applications, 87 
startfile non-terminal in CUP, 176 
strnts non-terminal in CUP, 181 
variable obfuscations, 102-103 
variable swapping, 101 
XML-RPC client method call, 107 
XML-RPC response, 108 
XMLToClass example, 105-106 

SandMark, 113 
Sega v.Accolade, 11-12 
selling source code, 117, 120 
server-side protection of source, 

106-108, 120 
single pass parsers, 142, 148 
software 

Digital Rights Management, 109-110, 
120 

licensing, 86-88 
protection strategies for Java, 13-15 

source code. See also protecting source 
code; recovering source code from 
bytecode 

compilation flags in, 81-86, 120 
decompiling to understand JVM, 1 
digital fingerprinting of, 11Q-117, 120 
digital rights management software 

for, 109-110, 120 
encrypting, 108-109,120 
example of Java, 5 
native methods and, 117-119, 120 
obfuscation of, 88-106, 120 
protecting consultant's code, 

239-240 
reconstructing lost, 241 
recovering from bytecode, 141-148 

selling, 117, 120 
source code escrow, 243-244 
web services and server-side 

execution of, 106-108, 120 
writing two versions of, 86-89, 120 

SourceFile attributes, 59-60 
stacks 

defined,20,21 
operations in goto, 214-215 
resolving CUP constant pool with, 

173 
stack processor in JVM, 126 

start tokens, 160 
startfile non-terminal, 176 
static methods 

Basics.java, 191-192 
invocation of, 211 

strnts non-terminal, 181 
storage and encoding methods for data 

obfuscation, 102-103 
store non-terminal, 184 
stretching loops, 145 
Super class, 36 
symbols in CUP, 137-139 

T 
tags, constant pool, 27 
terminals. See also non-terminals 

ClassToXML, 17 4 
CUP opcode, 17 4-175 
parsing behavior in CUP, 175 
resolving into non-terminals, 174 

test suite programs. See also programs 
listed by name 

Arraylnit.java, 226-233 
ArrayTest.java, 222-226 
Basics.java, 19Q-194 
DoWhile.java, 200-210 
ForLoop.java, 217-222 
HelloWorld.java, 182-190 
Iffest.java, 200-210 
listing of, 182 
MathOps.java, 194-200 
Recurses.java, 211-213 
WhileLoop.java, 213-217 

This class, 36 
tokens 

breaking bytecodes into, 165-170 
ClassToXML output file, 160 
resolving into non-terminals, 174 

tools, 61-77, 128-140 
decompilers, 72-75 
disassemblers, 67-72 
flow analysis, 128 
hexidecimal editors, 61-64 
Lex, 128, 129, 130 
obfuscators, 75-76 

Index 

263 



Index 

264 

used for designing decompilers, 
128-140 

using compiler-compiler, 128-130 
transformations 

array, 104 
class, 103-104 
computation, 94-98 
data obfuscation and, 89-90 
loop, 100 
ordering, 104 
threads for confusing hackers, 

103-104 
'IVC ('fiansient Variable Caching) 

101 , 

u 
UDM (universal decompiling machine), 

141,143,144 
U.S. Copyright Act, 12 
user code in JLex, 132 
user routines in CUP, 137 

v 
Van Vliet, Hanpeter, 7, 9 
variables 

Basics. java handling of, 190-194 
merging scalar, 103 
splitting to create obfuscation, 103 
variable swapping, 101 

version numbers, 26 
virtual machine decompilers 3 
virtual methods, 211 ' 
Visual Basic decompilers, 8-9 

w 
web services and server-side execution, 

106-108,120 
WhileLoop.java, 213-217 

annotated main method of, 214 
decompiler code for, 215-216 
decompiler results for, 217 
goto non-terminal, 214-215 
grammar for, 214-215 
sample listings, 213 

X 
XML-RPC 

client method call, 107 
response, 108 

XMLToClass disassembler 
obfuscating strings added to 106 
original sample listing, 1os-io6 

XMI.J'oSource decompiler 

y 

resolveConstant method in CUP 
specification, 171-173 

skeleton CUP specification for, 
170-171 

viewing basic operations in 
HelloWorld.java, 182-190 

Yacc. See also CUP compiler-compiler 
tool 

CUP as derivative of, 135-136 
function of, 135 
overview, 128, 129, 130-131 



JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You'll find discussions that cover topics 
of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our 

forums, you can expect that some of the best minds in the business-especially Apress authors, who all write 

with The Expert's VoicerM_will chime in to help you. Why not aim to become one of our most valuable partic­

ipants (MVPs) and win cool stuff? Here's a sampling of what you'll find: 

DATABASES 

Data drives everything. 

Share information, exchange ideas, and discuss any database 
programming or administration issues. 

INTERNET TECHNOLOGIES AND NETWORKING 

Try living without plumbing (and eventually 1Pv6). 

Talk about networking topics including protocols, design, 
administration, wireless, wired, storage, backup, certifications, 
trends, and new technologies. 

JAVA 

We've come a long way from the old Oak tree. 

Hang out and discuss Java in whatever flavor you choose: 
J2SE, J2EE, J2ME, Jakarta, and so on. 

MAC OS X 

All about the Zen of OS X. 
OS X is both tihe present and tihe future for Mac apps. Make 
suggestions, offer up ideas, or boast about your new hardware. 

OPEN SOURCE 

Source code is good; understanding (open) source is better. 

Discuss open source technologies and related topics such as 
PHP. MySQL, Linux, Perl, Apache, Pytihon, and more. 

HOW TO PARTICIPATE: 

PROGRAMMING/BUSINESS 

Unfortunately, H is. 

Talk about tihe Apress line of books tihat cover software 
metihodology, best practices, and how programmers interact witih 
tihe 'suits.' 

WEB DEVELOPMENT/DESIGN 

Ugly doesn't cut H anymore, and CGI is absurd. 

Help is in sight for your s~e. Find design solutions for your 
projects and get ideas for building an interactive Web s~e. 

SECURITY 

Lots of bad guys out there-the good guys need help. 

Discuss computer and network security issues here. Just don't let 
anyone else know tihe answers! 

TECHNOLOGY IN ACTION 

Cool things. Fun things. 
H's after hours. Irs time to play. Whetiher you're into LEGO® 
MiNDSTORMS™ or turning an old PC into a DVR, tihis is where 
technology turns into fun. 

WINDOWS 

No defenestration here. 

Ask questions about all aspects of Windows programming, get 
help on Microsoft technologies covered in Apress books, or 
provide feedback on any Apress Windows book. 

Go to the Apress Forums site at http://forums.apress.com/. 

Click the New User link. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200058000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200061006e0064002000500069007400530074006f00700020005300650072007600650072002000200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




