

Covert Java: Techniques for Decompiling, Patching,
and Reverse Engineering
Copyright 0 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32638-8
Library of Congress Catalog Card Number: 2003116632
Printed in the United States of America

First Printing: May 2004
07 06 03 04

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales. For more information, please
contact

4 3 2 1

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the United States, please contact

International Sales
1-317-428-3341
international@pearsontechgroup.com

Trademarks

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information
provided is on an “as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Associate Publisher
Michael Stephens

Acquisitions Editor
Todd Green

Development Editor
Sean Dixon

Managing Editor
Charlotte Clapp

Project Editor
Elizabeth Finney

Production Editor
Megan Wade

Indexer
Mandie Frank

Proofreader
Katie Robinson

Technical Editor
Craig Pfeifer

Publishing
Coordinator
Cindy Teeters

Multimedia Developer

Dan Scherf

Interior Designer
Gary Adair

Cover Designer
Gary Adair

Page Layout
Brad Chinn

Contents at a Glance

O N O i AW N =

I B R e . D T D T R
N W™ > OV © N O i A W N = O ©

INtrodUCtiONcoiiiiiiiiiii 1
Getting Started.....ocuveiiiiiiiiiiie e 5
Decompiling Classes.........coocuiiiiiiiiiiiiiieeiiiiee e 13
ODbfuSCAting ClaSSES .eccuuvieiiiiiiiiiiiiieeeitee ettt eeeieeee e 27
Hacking Non-Public Methods and Variables of a Class..............ccccooeueine 43
Replacing and Patching Application Classescccooceeerrvieeernieeeenineeennns 51
Using Effective Tracingccccevviiiiiiiiiiiiiiiciiiic e 63
Manipulating Java SeCUTItYccccueiiriiieiiiiiiiiiic e 69
Snooping the Runtime Environment............cccoecciiiniiiiiniinniiiinieen, 75
Cracking Code with Unorthodox Debuggerscc.cccceeevvieeernieeeencnneennns 81
Using Profilers for Application Runtime Analysisccccoviiiiiiiiniinnn. 89
Load-Testing to Find and Fix Scalability Problems...........ccccoecvveeinnnneenn. 105
Reverse Engineering Applicationsccoecuveiiniiiiiiniiiiiniiiiiciiecceieee 121
Eavesdropping TeChniquescccueeeeriiiiiiiiieiiniiieeieeceeeceee e 127
Controlling Class LOading........cccccveeeviiiiiiiiiiiiniiiiiiiiiciieccieeeceeee 139
Replacing and Patching Core Java Classes........ccceerruereiniieeeeniieeennnneenn. 149
Intercepting Control FIOW........cccccviiiiiiiiiiiiiiiiniiiiiiiciecccecceee 155
Understanding and Tweaking Bytecodec.cccccevviiiiiniiiiinniieeinnnneenn. 165
Total Control with Native Code Patchingccccceeciiiiiiiiiininiinnnn. 185
Protecting Commercial Applications from Hacking...........cccoeevveeennnncenne 201
Commercial Software LIiCenseccceoviiiiiiiiiiiiiiiiiiicn 227
RESOUICES...cciiiiiiiiiiiiiiiiii e 233
QUIZ ATISWETS .uuueieeeiiiiiiieeeeeeeeitteeeeeeeeeesaaaeeeeeessssreaaeeeeessssnnaeesesessrannnaaeees 239

Table of Contents

Introduction 1
1 Getting Started 5
Techniques Overview—When and Why to Use Each Method 5
Improving Productivity with File Managerscccocccceerniieiinniieeeniieeennans 7
FAR and Total Commanderccccceevviiiiiiieiiiiiiiiiiieeee e 8

JAVA IDES ooituiiiieieiiiiiiee et e e e e e e e e e aaa s 10
Sample Application Functionality and Structurecccccoeeiiieniniennn. 11
QUICK QUIZ ettt e e e et ee e e e e e e e b eeeeeesseareeeeeesees 12
I Brief ..o 12
2 Decompiling Classes 13
Determining When to Decompilecccoccviiiniiiiiiiiiiiniiiiiiiiccceeeee 13
Knowing the Best DecOmpilerscccccceveiieiiniieiiinieiiniiieeeieeeeieeeee 14
Decompiling @ CLASSeeeeeruiiiiiiiiieieiieeeeiie ettt 16
What Makes Decompiling Possible?cccccceiriiiiiiniiieiniiiieiniee e, 22
Potential Problems with Decompiled Codeccocceiiviiiiiiniiiiiniininnn. 23
QUICK QUIZ tvvvuieeeeiieiiiiiiee e e et e e e e e e e ear i eeeeeeeeesssaeeeeeesssssnnaeaeaeens 25
In Brief ..o 25
3 Obfuscating Classes 27
Protecting the Ideas Behind Your Codecccccccovviiiiniiiiiiniiiininn, 27
Obfuscation As a Protection of Intellectual Propertyccccccceeevenneene. 28
Transformations Performed by Obfuscatorsccceccvvvevviiieiniincennnnnen. 29
Stripping Out Debug Informationcccecceeeviiieinniieiinniiccnnnneen. 29
Name Manglingcccceeevviiiiiniiieiiiiieeeeeee et 29
Encoding Java Stringsccoevveeiiiiiiiiiniieeeiteeeeeeeeeeeee e 30
Changing Control FIOWcccccciiiiiiiiiiiiiiiiiicc, 31
Inserting Corrupt Codeccccovviiiiiniiiiiiiiiiiiiiece e, 32
Eliminating Unused Code (Shrinking)ccccececeevviieiiniinccnnnneen. 33
Optimizing Bytecodeccoccceiimiiiiiiniiiiiniiiieiiiccciecceeec e 33
Knowing the Best ObfuSCatorsccccoeeiriiiiiiiniieeiiiiieeenieeeeeeeeeieee e 33
Potential Problems and Common SOIUtionscccccceeevvieeiiniieeennnneennn. 34
Dynamic Class Loadingcccccciiiviiiiiniiiiiiniiiiiiiiicce, 34

|2 0S] i (ot (o) o NPT UPPUPPUR 35

Serializationcoccoiiiiiiiiiiiiii
Naming Conventions Violationccc.cccceeveiiniiieiiniieinniiceennns
Maintenance Difficultiesccocciviiiiiii
Using Zelix KlassMaster to Obfuscate a Chat Applicationccccc.cc....
Cracking Obfuscated COdecceeeeeiiieeiiiiieiiiiieeeneeeeeeee e
QUICK QUIZ ..ot
IN BIHef oo

Hacking Non-Public Methods and Variables of a Class

Accessing Packages and Protected Class Membersccccccveeevciieeennnnen.
Accessing Private Class MemDberScccocciiiiiiiiiiiiiiiiiiiicciecce,
QUICK QUIZ wevviiieeeiieiiiiiiee e e e e e e e e e b eeeeeeeesssaaeeeeessssssannaeeaasens
In Brief ..o

Replacing and Patching Application Classes

What Do We Do When We Have Tried Every Road but Failed?
Finding the Class That Has to Be Patchedcccocceiiniiiiiiniiiiiniinnn.
The General APProachcccccccoeviiiiiiiiiiiiiiiiicec e
Searching for Text Stringsccoccceeimiieiiniiiiiiiecee e,
Working with Obfuscated Codeccoocuuieiriiiiieiniiieiiniiiceiieceee
A Sample Scenario That Requires Patchingcccoeciiiniiiiiiniicennnneen.
Using the Class NaIE@cccccveieieiiiiiiiiiiiieeeeeeeeeeeeee e eeiieeeeeeeees
Searching for Text Stringsccccccceviviiiiiniiiiiiniiiecee,
Using the Call Stack to Navigate Application LOgiCccccccceenuneee.
Patching a Class to Provide New LOZiCcccceeevviiiiiniiiiiiniiiiiiiiicceieeeene
Reconfiguring the Application to Load and Use the Patched Class
Patching Sealed Packagesccccccceoeiiieiiiiiiiiiiieiieteceeeeeeeee e
QUICK QUIZ ..ottt
I Brief ..o

Using Effective Tracing

Introduction to TraCingccceeeriiieiriiieeiiieee e
Tracing As an Effective Method of Learning the Software
Tracing and Logging Tools and APISccccceiiviiiiiiiiiiiiniiiceccee,
Tracing Do’s and DON'tScccccvveiiriiiiiiiiiiiniiiciccceee e

Tracing DO’S .coouiiiiiiiiiiiic et

Tracing DONES ...eeeivviiiiiiiiiiieiii et
QUICK QUIZ et e e e e e e e e e e raaans
IN BT oo

43

44
46
49
49

51

51
53
53
54
54
55
56
57
58
58
59
60
61
61

Covert Java: Techniques for Decompiling, Patching, and Reverse Engineering

7

10

Manipulating Java Security 69
Java Security OVEIVIEWcccciiiiiiiiiiiiiiiiiiiiiiiiiiiiceceeeeeceee e 69
Bypassing Security Checkscccccoriiiiiiiiieiinieeiiieceeieecceeeeeeeeee 71
The Security Manager Is Not Installedccocociiniinnn 72
The Security Manager Is Installed with a Default Policy 72
The Security Manager Is Installed with a Custom Policy 73
QUICK QUIZ wevtiieeeiieiiieeee et e e e e ee e e e e e e e s b e e eeeeesaateeeeeaeees 73
I Brief ..o 74
Snooping the Runtime Environment 75
The Value of Understanding the Runtime Environment 75
System PrOpPertiescccovviiiiiiiiiiiiiiiiiiiiiiiieicce e
System INformationcoocueeiiiiiiiiiiiiieice e
Memory INformationccocceeeiriiieiiiieeee e
Network INformationcoovuieiiiiiieiiiieeeeeee e
Accessing Environment Variablesccccccccoiiiiiiiiiiiiiniiiiinicen,
Quick Quiz
In Brief ..o
Cracking Code with Unorthodox Debuggers 81
Understanding the Internals of Unknown Applicationscccccceeeen. 81
Conventional Debuggers and Their Limitations
Hacking with an Omniscient Debugger
Recording Chat EXecutionccccccccevvvieiiniiiieiniiieeniieeceiee e
Navigating the Message Processing Code
Using ODB to Crack the Obfuscated Version of Chat 86
QUICK QUIZ trvviiieeieiiiiiiciee et e ettt e e e e e e e ea e e e eeesessaaaeeeeeessssaanaeeeasees 87
In Brief ..o 87
Using Profilers for Application Runtime Analysis 89
Why and When You Should Use Profilingccccevviiiiiiiiiiininnnnn. 89
The Best Profilers fOT JAVAcceeeeeeiiiiiieeeieeeeiiieee e e e eeeeeaaeas 90
Investigating Heap Usage and Garbage Collection
Frequency to Improve the Performanceccccccceveiveiiniiieinniiecinnneee. 90
Browsing Object Allocation and References to Find and Fix
MEMOTY LRAKS ..eeeiiiiiiiiiiiiiiiieiiie ettt e 92

Investigating Thread Allocation and Synchronization 96

vii

11

12

13

Contents
Identifying Expensive Methods to Improve Performance 100
Investigating an Application at Runtime Using a Thread Dump 101
QUICK QUIZ wevviieeieieieteee et e e et e e e e e e e e aatee e e e e eraabaeeeeees 102
In Brief ..o 103
Load-Testing to Find and Fix Scalability Problems 105
The Importance of Load-Testingccccceeveviiiiniiiiiiiiiiiiniieeeieee e, 105
Load-Testing RMI-Based Servers with JURNitcccoocvviiniiiiinniieeinnneen. 107
Load-Testing with JMeterccccceiiriiiiimiiiiiiiiiiiiiceeeceee e 110
JMeEter OVEIVIEW ..vvviiiieiiiiiiiiiieee e et e et e e e e e e eaaae e e e e e eeeaananns 111
WebCream OVEIVIEWccovvuiiiiiiiiiiiiiiiiiiiieciice s 112
Creating a Web Test Planccccccooviiiiiiiiiiiiniiiiiccecce, 113
QUICK QUIZ wevviieeeeeieiiiiiee et e e e e e e e e v e e e e e eessabaeeeeeesessannaeeens 119
In Brief ..o 120
Reverse Engineering Applications 121
User Interface Elements and Resourcescccccoovviiiiiiiiiiiiiininninnn, 121
HACKING TEXt ..oviiiiiiiiiiiiiieiieeee et 122
HacKing IMagescoeoviiiiiiiiieiniieeeiieceee ettt 123
Hacking Configuration Filesccccocccimiiiiiiniiiiiiniiiiiiieceiieceeieeene 125
QUICK QUIZ ..eeiieeeeiiee et e e e e e e eaaas 125
IN BT oo 126
Eavesdropping Techniques 127
Eavesdropping Definedccocoiiiiiiiiiiniiiiiiiiiiiiieceecceee e 127
Eavesdropping on HTTP ...ccccoiiiiiiiiiiiiiiicee et 128
Using a Tunnel to Capture the HTTP Message Exchange 128
Using a Network Sniffer to Capture the HTTP Message
EXCRANGE ..oiiiiiiiiiiiiiiiiic e 130
Protecting Web Applications from Eavesdroppingccccccceeuuee. 132
Eavesdropping on the RMI Protocolccccovviiiiiniiiiiniiieenniiecenieeenne 133
The RMI Transport Protocolcccveeiviiieiiniieiiiiicciniceeeieeeee 133
Using a Network Sniffer to Intercept RMI Messages 133
Protecting RMI Applications from Eavesdroppingcccccc... 135
Eavesdropping on JDBC Driver and SQL Statementsccccoceennenn. 135
QUICK QUIZ tevtiieeieiieieiee et e e et e e e e e e e e aabeeeeeeereabaeeeeees 137

TN BIIOE e et 138

14

15

16

17

Controlling Class Loading

JVM Internals from a Class Loading Perspectivecccccccceevcuieeennnneenn.
Writing a Custom Class LOAderccceeeeriiiiiniiieiiniiieeiiee e
QUICK QUIZ weviieieeieeiiiieee et e e e e e e et e e e e e e eeeaaaaeeeeeeesasannnaaaaes
In Brief oo

Replacing and Patching Core Java Classes

WRY BOTREI? ...ttt
Patching Core Java Classes Using the Boot Class Path
Example of Patching java.lang.Integercc..ciiinniieinnnneen.
QUICK QUIZ tevvieeeieiieiiiiiee et e e e e e e e e b eeeeeeeeeraataeeeeeesssraneeaees
In Brief ..o

Intercepting Control Flow

Control Flow Definedccccooiiiiiiiiiiiniiiiiiiiicn
Intercepting System EITOIScccccovviiiiiiiiiiiiiniiiiiiiinns
Intercepting System Streamscccccccvviiiiiiiiiiiiiiiiiiiiiiiies
Intercepting a Call tO System.eXit «.occcccrrieiiniieiiniiieeieeeeieeeeeeene
Reacting to a JVM Shutdown Using HOOKScccoecuveiiiiiiiiiniiicennineenn.
Intercepting Methods with a Dynamic Proxyccccoceviiiiiiiiinnnninn.
The Java Virtual Machine Profiler Interfaceccccccccvvviiiiviiiiiiiiiieeeennnn.
QUICK QUIZ wevvieeeeeiiiiiiiiee et e e e e e e e e b e e e e e e eesabaeeeeeeesssbanneeeans
In Brief ..o

Understanding and Tweaking Bytecode

Bytecode Fundamentalsccccccooviiiiiiniiiiiniiiiiiicecee
Viewing Class Files Using the jClassLib Bytecode Viewer
The JVM INSTIrUCtION SEt ovvvveieeeiiiiiiiiieeee et e eeeeeeeaes
Class File Formatccccccooiiiiiiiiiiiiiiiiii
Field and Method DesCriptorsccovvuiieiriiiiiiiniiieeiiieeceiee e
Class File StrucCtureccoovviiiiiieiiiiiiiieeeeeeeeeeee e
ARTIDULES ..o
Bytecode Verificationccccccccovviiiiiniiiiiiiiiiiiiiicciec e
Instrumenting and Generating Bytecodecccoeciiiviiiiiiiniiicinnineenn.
BCEL OVEIVIEW ..coiiiiiiiiiiiiiiiiiiiiiiciiccc e
Instrumenting Methodscccoviiiiriiiiiiniiiicec e
Generating Classescccooeviiiiiiiiiiiiiiiiiiec e
ASM LIDTIATIY .eooiiiiiiiiiiiiciiicceccee e

139

139
143
147
147

149

149
150
151
153
153

155

155
155
156
158
160
160
163
164
164

18

19

Contents
Bytecode Tweaking Compared with AOP and Dynamic Proxies 182
QUICK QUIZ wevviiieeiiiiiiiiiee et e e e e e e e e r e e e e e eeeasbaeeeeeeeearanneeeens 183
In Brief ..o 183
Total Control with Native Code Patching 185
Why and When to Patch Native Codecccocovviiiiiiiiiniiiiciniiiceie. 185
Native Code Usage in the Java Virtual Machinecccoccceiniiiinnnne. 186
JNT OVEIVIEW ..iiiiiiieiiieeeeeee e e e tee e et e e e e e eeaeeeeaaeesaeas 186
JNI Implementation Examplecccoccciiriiiiiiniiiiiiniiiciniieceee, 188
Generic Approaches to Patching Native Methodsccccccceevviieeininnenn. 190
Patching a Java Method Declarationccccoceiiviiiiiniiiiinnnnn. 190
Substituting Native Librariesccccccccovviiiiiniiiiiininiiicee. 190
Patching Native Codeccccccciviiiiiiiniiiiiiiiiieiiieceeec e 191
Patching Native Code on the Windows Platformc.cccceeciiernnnneenn. 191
Portable Executable Formatcccccoiiiiiiiiiiiiiiiiii, 191
Patching a Native Function Using the Function
Replacer UtIItY ..ooccvveeieeiiiiiiec e 194
Manual Patching Using Microsoft Detours Library 196
Patching Native Code on Unix Platformscccecciiiniiiiiiniieennnnneen. 198
QUICK QUIZ wevriieeeeeieiieee et e et e e e e e e e aabee e e e e e e eabaeeeeaes 199
In Brief ..o 200
Protecting Commercial Applications from Hacking 201
Setting Goals for Application Protectioncccceecveievciiiinniieeennnneenn. 201
Securing Data with Java Cryptography Architecturecccocceeevnneen. 202
Java Cryptography Architecture OVerviewccccococeeevvuveernnnee. 204
Securing Chat Messages With JCAcccceiriiiiiiiiiiiiiieceec e, 204
Protecting Application Distribution from Hackingc...ccccccevveenneen. 208
Protecting Bytecode from Decompilingccccccevvivieiniiicennnnn. 208
Protecting Bytecode from Hackingccccccevvviiiiiniiccinniieennnne. 209
Protecting Application Content from Hackingccceceeeennne. 212
Implementing Licensing to Unlock Application Featurescc.c........ 216
Modern Software Licensing Modelsccoccueeernieiiniieiinniieeennns 216
Implementing Licensing to Unlock Commercial Features 217
Web Activation and License Registrationc..ccccceeiiiiniiiinnns 224
QUICK QUIZ weviiieeieiieiiiiiee et e e e e e e e e r b eeeeeeeesaabeeeeeeeeeasaaneeeens 225

TN BII@E e e e e e 225

A Commercial Software License 227

B Resources 233
Utilities and TOOIScocoviiiiiiiiiiiiii 233
DeCOMPIIING ..oveiiiiiiiiiiiiieiieeec e 233
ODfUSCAING .evvveeiiiiiieeiiieee e 234
Tracing and LOZZING ..ccccvveiiiiiiiiiiiiiiiiiicettccee et 234
DEDUZZING ot 235
PrOfiliNG ..oooeiiiiiiiii e 235
Load-TeStINGcoorriiiiiiiiiiiiiiiiieiiec e 235
EavesdIOPPING ..coocvveeiiiiiieiiiieeeieeceec e 236
Bytecode TWeaKINgcccceeeviiiiiiiiiiiiiiiicciiec it 237
Native Code PatChingccovviiiiiiiiiiiiiiiiice e 237
Protection from Hackingcccoccveiiiiiiiiiiiiiieceeeeee 238

C Quiz Answers 239
CRAPTET 1 ittt 239
CRAPLET 2 oot 239
CRAPLET 3 ittt 240
CRapLer 4 ..o 240
CRAPLET S oo e 240
CRAPLET 6 oo 241
CRAPLET 7 oottt 241
CRAPLET 8 i 241
CRAPLET 9 et 242
Chapter 10 ..o 242
CRhapter 11 .o 243
CRAPLET 12 oo 243
CRAPLET 13 oot 244
CRAPLET 14 .ottt e 244
CRAPLET 1S ettt e s 245
CRAPLET 16 ..oeeiiiiiiiiiiiii e 245
CRAPLET 17 i 245
CRAPLET 18 .o 246
CRAPLET 19 oot 247

Index 249

About the Author

Alex Kalinovsky was born in Ukraine in 1974 and moved to the United States in
1997. He has been in the IT industry for more than 10 years, with experience that
ranges from writing C and C++ applications to developing enterprise Java solutions.
Since 1997, Alex has worked solely with Java and is proud to be one of its original
evangelists. He has taught more than 15 classes on Enterprise Java technologies and
worked as a mentor for many teams. Alex has written for various publications,
including JavaWorld, Sun JavaSoft, Information Week, and the Washington Post. He is a
Certified Enterprise Java Architect consulting for leading companies that use Java
and J2EE. He is also a lead architect for WebCream, a revolutionary Java product that
bridges Swing and HTML. In his spare time, Alex enjoys traveling, reading, wind-
surfing, snowboarding, and bodybuilding.

Dedication

I'would like to dedicate this book to my parents, Stanislav and
Lubov Kalinovsky, who have given me everything they could from
day one of my life. It is only with age that one starts to truly
understand and appreciate the impact that the family has on
one’s life, and I would like to take this opportunity to thank my
parents for all the sacrifices they made and for all the patience
they had. This work is also a tribute to the other two people who
had a tremendous influence on my life, my brother Andrew
Kalinovsky and my second dad and mentor Sergei Boiko. Thanks
and I love you all.

Acknowledgments

Throughout the long hours I have spent writing this book, many people have helped
me to accomplish this project. I would like to thank my closest friends LaWanda
Tetteh and Gleb Tulukin for giving me support and encouragement when I needed
it. Special credit goes to Amie Koker for being patient and understanding and to
Tricia Riviere for her sense of humor and quick wit. Troy Davis and Yves Noel have
been great in sharing their technical and personal views and in reviewing my work.
This book would not have been possible without Todd Green, Sean Dixon, and the
rest of the team at Sams Publishing who shared their expertise and professionalism. I
want to express my appreciation to everyone, mentioned here or not, who has
helped me in completing this goal.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we're doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you're willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can
email or write me directly to let me know what you did or didn't like about this
book[md]as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book.
We do have a User Services group, however, where I will forward specific technical questions
related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our
Web site at www. samspublishing.com. Type the ISBN (excluding hyphens) or the title
of a book in the Search field to find the page you're looking for.

Introduction

There are many good books written on Java. It sometimes amazes me how many books you
can see on the same subject. Searching on www.amazon.com for a book on Enterprise JavaBeans
(EJB) returns more than 50 results. Come on, people! EJB is a complex technology and today
every self-respecting Java developer has to have it on his resume, but 50 books? So, what
right do I have to add another tome to the Java bookshelf? Well, I believe that there are a few
less-publicized development techniques that, when used correctly, can yield astonishing
results. Most of the methods deal with core Java concepts and issues and therefore can be
used in a variety of applications. The techniques presented in this book are unorthodox solu-
tions to common problems in Java development. Some of them are controversial and should
be used with great care, but all of them are powerful methods of achieving what you want.
Learn them, and you will be able to separate yourself from the majority of other developers
by delivering a solution when everyone else is grasping to understand what the problem
really is. You might have used some of the techniques presented in this book already, and I
congratulate you if this is the case, but I am confident that you'll pick up at least a few
helpful new tricks as you peruse the advice I give here.

A large portion of the book is dedicated to techniques that are commonly considered to be
hacking. Hacking is used rather freely in the media and oftentimes with negative connota-
tion. Hackers are frequently portrayed as crazy geeks wanting to boost their self esteem, and
for some cases this is certainly true. The methods presented here, however, are intended for
professional software developers and each technique has a real-life application.

Who Will Benefit from This Book?

Java developers and architects stand the best chance of learning the most from this work. To
truly appreciate the problems and solutions presented in this book, you should have
completed at least a few significant Java applications and worked with third-party code. That
is not to say that junior developers have nothing to gain from this work. To keep the book
concise and focused on the main topics, little coverage is given to the subjects that are
expected to be well-known or well-documented. For example, when talking about hacking
non-public class members, the book does not explain the limitations imposed by each visibil-
ity modifier. Such information can be easily obtained from the Internet or books that cover
these topics in detail. Covert Java: Techniques for Decompiling, Patching, and Reverse Engineering
is about extreme techniques that punch through the commonly expected boundaries.

Covert Java: Techniques for Decompiling, Patching, and Reverse Engineering

It is worth noting that the techniques presented here are largely independent of one another.
Because the presentation of the material follows a “most common simpler methods first”
order, feel free to skip chapters and go directly to the one you are interested in. Chapter 1,
“Getting Started,” has a section that briefly describes each of the techniques and when to use
it, so I recommend familiarizing yourself with it first.

The Moral and Legal Aspects of Hacking

Most of the chapters are strictly technical, but it is extremely important to understand that
not all the techniques can be freely applied when working with applications. Not every
approach presented in the book is “hacking” but, if used without first checking the legal
consequences, it can certainly get you in trouble. Let’s start by trying to give a broad defini-
tion of hacking and then look at how to tread that treacherous water.

Merriam-Webster’s dictionary has the following definition for the term hacker: “an expert at
programming and solving problems with a computer.” However, there is another meaning
given right after it: “a person who illegally gains access to and sometimes tampers with infor-
mation in a computer system.” Being an expert at programming is certainly a great thing;
fiddling with illegal stuff lands you in jail. The short message is that this book is for the good
guys, and if you are a bad guy, please stop reading right now and get a new job with the
testing team. Any information or discovery can be used for good or ill. It is not the informa-
tion but the use of it that determines whether the outcome is considered positive or negative.

By now, there have been a number of high-profile court cases revolving around digital copy-
rights, reverse engineering, and patent violations. Companies and individuals have lost
millions of dollars and sometimes reputations as well. Although the laws are complex and
the license agreements are written by lawyers for lawyers, it is not that difficult to steer clear
of legal problems. Here are the two basic rules to follow:

B If an author expects you to pay for her work, do so.

B If you are tinkering with something, be sure that it does not hurt the author’s interests.

Simple and effective. The first rule is very easy to understand, but the second is the one that
is important to remember when applying the methods presented in the book. For example, if
you reverse engineer someone’s code to find a workaround for a bug, the author isn’t likely
to prosecute you. However, if you reverse engineer someone’s code and make a competitive
product based on the same unique principles, you are most likely to see the author in court.

Introduction

It is important to remember that the software we are working with is written by people just
like you and I, and just like you and I they have to pay bills. Open source is a different
phenomenon, and because the source code is freely available, you don’t need to use extreme
methods to learn something about or change something in the product. But most of the soft-
ware developed today is commercial and most of the innovation is done by commercial
vendors. Hacking the software to avoid paying the license fees is counterproductive because it
undermines the software market and indirectly hurts the developers. Stealing ice cream from
a shop next door will either raise the price of the ice cream or drive the shop out of business.
And if you own a bakery, the owner of the ice cream shop might start stealing cookies from
you.

The two rules cover the moral aspects of hacking, but what generally covers the legal aspects
are the copyright and intellectual property laws and end user license agreements (EULAS).
The laws are complex and not easy to read, but EULAs are a must because they generally are
more restrictive than the laws. They are written to provide the author with the protection
that might not be adequately granted by the respective laws, and users are generally required
to explicitly agree to the terms of the agreement before using a product. For example, even
though reverse engineering is not prohibited by law, most software products forbid it in the
EULA. It is therefore imperative to thoroughly study the EULA before using the techniques
described in this book on a product. To avoid repetition and to keep the contents of the book
strictly technical, the material of the chapters does not mention the legal aspects associated
with the techniques. It is your responsibility to ensure the legality of your actions.

Special Features of the Text

Several typographic conventions are used in Covert Java: Techniques for Decompiling, Patching,
and Reverse Engineering to make the text more readable. Ifalic font is used for emphasis and to
indicate new terms. Monospace font is used for parts of code, filenames, and URLs. Monospace
italic font indicates placeholders in code syntax.

In addition, a few special elements are used in this book. “Stories from the Trenches” describe
my own experiences in working with the various techniques described throughout Covert
Java: Techniques for Decompiling, Patching, and Reverse Engineering to help you understand how
these techniques work out in actual practice. Each chapter ends with an “In Brief” section
summarizing the main points of the chapter, as well as a quiz section to help you review the
material.

Getting Started

Techniques Overview—When
and Why to Use Each Method

Table 1.1 presents a brief overview of techniques that are
discussed in more detail in the corresponding chapters.
Use this as a road map to getting started with this book.

TABLE 1.1

Techniques Overview

CHAPTER TECHNIQUE USEFUL FOR

2 Decompiling classes Recovering lost source code

Learning the implemen-
tation of a feature or trick

Troubleshooting undoc-
mented code

Fixing urgent bugs in
production or third-party
code

Evaluating how your code
might be hacked

Protecting bytecode from
decompiling

3 Obfuscating classes

Protecting the intellectual
property inside the
bytecode

Preventing the applications
from being hacked

4 Hacking non-public Accessing functionality that
methods and variables exists but is not exposed
of a class

Changing the values of
internal variables
5 Replacing and patching Changing the implemen-

application classes tation of a class without
having to rebuild the entire
library
Altering the functionality of
a third-party application or
framework

IN THIS CHAPTER

Techniques Overview—
When and Why to Use
Each Method 5

Improving Productivity
with File Managers 7

Sample Application
Functionality and
Structure 11

Quick Quiz 12
In Brief 12

CHAPTER 1

TABLE 1.1

Getting Started

Continued
CHAPTER TECHNIQUE USEFUL FOR
6 Using effective tracing Creating applications that are easy to maintain and
troubleshoot
Learning the internal workings of an application
Inserting debug information into the existing applications to
understand the implementation details
7 Manipulating Java security ~ Adding or removing restrictions on access to critical system
resources
8 Snooping the runtime Determining the values of system properties
environment
Determining the system information, such as the number of
processors and memory limits
Determining a network configuration
9 Cracking code with Hacking applications that do not have good tracing
unorthodox debuggers
Analyzing the control flow of multithreaded applications
Cracking obfuscated applications
10 Using profilers for Investigating heap usage and garbage collection frequency
application runtime to improve performance
analysis
Browsing object allocation and references to find and fix
memory leaks
Investigating thread allocation and synchronization to find
the locking and data race problems and to improve
performance
Investigating an application at runtime to gain a better
understanding of its internal structure
11 Load testing to find and Creating automated test scripts that simulate a load
fix scalability problems on a system
Analyzing how well the application meets the service level
requirements such as scalability, availability, and failover
12 Reverse engineering Hacking the user interface elements such as messages,
applications warnings, prompts, images, icons, menus, and colors
13 Eavesdropping techniques Intercepting HTTP communication between the browser

and the Web server

Intercepting communication between the RMI client and
server

Intercepting SQL statements and values from the JDBC
driver

TABLE 1.1

Improving Productivity with File Managers

Continued
CHAPTER

TECHNIQUE

USEFUL FOR

14

15

16

17

18

19

Controlling class loading

Replacing and patching
core Java classes

Intercepting control flow

Understanding and
tweaking bytecode

Total control with
native code patching

Protecting commercial
applications from hacking

Implementing a custom class loader to control how and
from what source the classes are loaded

Using the custom class loader to instrument the bytecode
on-the-fly

Creating classes programmatically at runtime

Changing the implementations of system classes to alter
core behavior

Enhancing the core functionality of the |DK to suit the
application’s needs

Fixing bugs in the JDK implementation

Reacting gracefully to system errors such as out of memory
and stack overflow

Capturing the output to System.out and System.err
Intercepting calls to System.exit()
Reacting to JVM shutdown

Intercepting any method call, object allocation, or thread
lifecycle event via [VMPI

Altering class implementation at the bytecode level

Programmatically generating bytecode
Instrumenting bytecode to introduce new logic
Patching the implementation of native functions

Augmenting the JVM behavior on the lowest level
Protecting sensitive information using Java cryptography

Securing data integrity with digital signatures

Implementing secure license policy to unlock features of
commercial applications

Improving Productivity with File Managers

The techniques discussed here serve the purpose of increasing the productivity of the devel-
opment. At the end of the day, quality and productivity are what differentiate expert
programmers from novice programmers, and because this book is meant to turn readers into
experts, I feel it is my duty to introduce a few productivity tools. Hacking and regular devel-
opment require manipulation of files and directories, and getting the right tool can make

CHAPTER 1 Getting Started

doing so much easier. Obviously, it is up to you to decide whether to use a tool. You should
remember that most of the tools require upfront investment in installing, configuring, and
learning—not to mention the possible license fees. But as with most tools, the investment
pays off very quickly.

We are going to look at two advanced replacements for the combination of Windows
Explorer, Notepad/Text Editor, and CMD.EXE. We will focus on Windows because that is where
most of the Java development is taking place, but productivity tools might be available on
other platforms as well. It might sound silly that we’re starting an advanced Java book by
talking about Notepad and CMD.EXE, but a large number of the developers I have seen are still
using it, so I want to present a better alternative.

Windows Explorer is a simple shell easily understood by regular users, but it is not capable of
helping with the tasks a programmer needs to perform. A very simple example is creating and
running a .bat file. Using the default Windows interface, you would have to navigate to the
target directory, click the mouse through a few dialog boxes to create a new file, and then
open that file in Notepad and edit it. To run the file, you could double-click it, but any
output or errors would be lost with the CMD window that was automatically opened by
Explorer. A better way, therefore, is to open a CMD.EXE, navigate to the directory, and then
run the file. In the end, you must deal with three open windows that are not synchronized or
interrelated. A better alternative is using integrated file management software that combines
a directory navigating interface with a text editor, a command line for running scripts,
archive support, and a multitude of features that make common tasks easy.

FAR and Total Commander

File and Archive Manager (FAR) and Total Commander are both advanced file managers for
Windows that trace their roots back to the DOS days and Norton Commander. Distributed as
shareware, they can be used without time limitation until you are ready to register for a small
fee. They are packed with features for searching files, changing file attributes, and working
with multiple files and directories. They have built-in networking and FTP support that
presents remote FTP sites in a panel that looks just like a local directory panel. FAR has a
powerful built-in editor that can be configured for color highlighting. Both environments
have extensive sets of keyboard shortcuts, and FAR supports plug-ins. Both tools support
browsing the content of archive files, such as JAR and Zip files, in a panel just like browsing a
subfolder. This makes software such as WinZip unnecessary, and what is even better is that
the user does not have to deal with different current directories and user interfaces, as is the
case when working with nonintegrated software. Table 1.2 provides a list of features and a
side-by-side comparison of FAR and Total Commander.

Improving Productivity with File Managers

TABLE 1.2

FAR Versus Total Commander

FEATURE FAR TOTAL COMMANDER
Create, copy, view, edit, and delete Excellent Excellent

for files and folders

Internal and external viewer/editor Excellent Good (no internal editor)
Seamless browsing of archive contents Excellent Excellent
(JAR, Zip, and so on)

Extensive customization of features Excellent Good

and Ul

Windows-like look and feel Poor Good
Customizable user menus Excellent Excellent
Built-in Windows network support Yes Yes

Built-in FTP client Yes Yes
Keyboard shortcuts Excellent Good
Filename filters Excellent Excellent
Quick View Fair Excellent
Command, folder, view, and edit history Excellent Good
Customizable file associations Excellent Good

Files highlighting Excellent Excellent
Memory footprint 4MB-14MB 4MB-10MB
Plug-in APl and availability of various Excellent (more than Not available
plug-ins 500 plug-ins)

Registration cost of one copy $25 $28

Overall rating Excellent Good

Although both tools provide a better alternative to Windows Explorer reinforced with other
software, FAR proves to be more powerful. Even in its default packaging, it provides more
features and productivity gains than Total Commander. In addition, with more then 500
plug-ins written by other developers, its functionality is virtually boundless. The downside of
FAR is its somewhat unappealing user interface, although it is something you can get used to.
Total Commander, shown in Figure 1.1, looks more like Windows Explorer; if you don’t need
the ultimate customization and functionality, it can be a better choice.

Regardless of your preferences, please try an integrated file manager, even if you feel it is
difficult to use. It will pay off in the long run!

CHAPTER 1 Getting Started

'= | Tolal Commander 5.51 - NOT REGISTERED

Fles Mak Commands Net Show Corfiguation Stal Help.
BE|%? 4 ke |a88|)s ¥
|l-l:-] 'I Lnone_] B.751.744 k of 19486844 k free Moo |lel Tz Lnone_| 8.751.744 k of 19.486.044 k froe L5
THame= Ext |Size | Date {TNam Ext |Sier | Dale [AR
; | “ITbackup] <DIR> 11/27/2003 14:45—
1[Books] <DIR> 11/22/2003 18:05—
_[Dell] 1Dell] <DIR> 11/22/2003 12:26—
1D evelopment] _1IDevelopment] <DIR> 11/22/2003 20:26—
_“1[Documents and 5ettings] _1[Documents and Settings] «DIR> T11/22/2003 10:13—
_I[Download] IIDownload] <DIR> 12/D6/2003 20:59-a-
013861 1013861 <DIR> 11/22/2003 10:29—
_limages] C1Nmages] <DIR> 11/22/2003 18:14
_linstall] 1 Dimatall] <DIR> 11/22/2003 14:56
_iHaval Cilaval <DIR> 11/27/2003 14:53
1 [Music] 1 Music] <DIR> 11/22/2003 19:34
i [Pragram Files] —[Program Files] <DIR> 12/09/2003 17:21r-
_1[Projects] _1[Projests] <DIR> 11/22/2003 19:42
_[Usess] C1Msers] <DIRY 11/22/2003 19:52—
_1[Utils] 11utits] <DIR> 1172672003 17:36—
1 [Windows] 1 [windows] <DIRY 12/09/2003 17:23—
“Autoeec hat [TJAutoexee bat 0109/0:72002 00: 592~
E_Flinnhg_syi 10 09AIE 200 -a--
‘j.‘i;uﬁemlnfn i a7 10452008 F-a--
= tech_support. bt 200120072003 11: 23
:.1 Tntal Commander. hmp AHT_0FE 1200952000 17:30-a-
[backup] <DIR> 11/27/200314:45— 0k /A70kinD /5 files
eb | |
F3 View F4 Edit | F5 Copy FE Move | F7 MewFaolder FBDelcte | AlsF4 Exit

FIGURE 1.1 Total Commander.

Java IDEs

Most of the techniques in this book do not involve a lot of coding, and with a tool like FAR,
you can easily accomplish all the required tasks. However, integrated development environ-
ments (IDEs) make coding much easier, so this section presents a brief overview of the
leading IDEs and a recommendation of the one to use.

Today, when it comes to IDEs the question is not whether you should use IDEs or not, but
which IDE you should use. A lot of it has to do with development background and personal
preferences, so I won't spend a lot of time talking about them. The two leading free IDEs are
Eclipse (http://www.eclipse.org) promoted by IBM and NetBeans (http://
www.netbeans.org) promoted by Sun. Both are good, although Eclipse has a little more
steam and following. The best commercial IDEs are Intelli] IDEA, Borland JBuilder, and
Oracle JDeveloper.

Because you will be working with low-level coding and hacking, your best bet is a flexible
IDE with a small memory footprint. My personal favorite is IDEA because of its flexibility,
intuitive interface, and abundance of shortcuts and refactoring features. It is not free, so if
you can't afford a license, my second recommendation is Eclipse.

Sample Application Functionality and Structure

Sample Application Functionality and Structure

Throughout most of this book, we will be working with the same sample application. It is not
very sophisticated, but it does contain a basic set of components found in most standalone
Java programs. This section describes the application and its implementation.

Chat is a simple TCP/IP chat implementation in Java. It enables users to exchange instant
messages via the network. Chat maintains a history of the conversation and uses colors to
differentiate between the sent and received messages. It has a menu bar and About dialog
box. Chat can be started using chat.bat script in the distrib/bin directory. Figure 1.2 shows
Chat running.

“e. Chat Application BEE Chat is implemented using Java Swing for the
HeSten user interface and RMI for network communica-
[Hosttane: 1aaica =< il tion. When running, each instance of Chat
TAMAICA: Hello, world! creates an in-process RMI registry that is used
Vou: Hello, world!

by other instances to post messages to the user.
Users are required to enter the hostname of the
user to which they want to post a message.
When the user sends a message, Chat looks up
the remote server object and calls a method on
rw are you? it. For testing purposes, messages can be sent to

"localhost", in which case the same message is
added to the conversation as was sent and
FIGURE 1.2 The Chat application. received.

The UML class diagram for Chat is shown in Figure 1.3.

interface UnicastRemoteObject java.rmi.Remote
MessageListener ChatServer interface
ChatServerRemote

8

JFrame ChatApplication
ActionListener
MainFrame

FIGURE 1.3 A Chat class diagram.

CHAPTER 1 Getting Started

The Chat directory structure follows the de-facto standards for Java application development.
The “home” folder for the application directories is called CovertJava. The subdirectories it
contains are listed in Table 1.3.

TABLE 1.3

Chat Application Directory Structure

DIRECTORY NAME DESCRIPTION

bin Contains the scripts and the development and test scripts
build Contains Ant’s build.xml and other build-related files
classes Compiler output directory for .class files

distrib Contains the application in its distribution form
distrib\bin Contains scripts that run the application
distrib\conf Contains configuration files, such as Java policy files
distrib\1lib Contains libraries used to run the application
distrib\patches Contains patches for classes

lib Contains libraries used to build the application

src Contains application source files

A Chat application can be built by Ant using build.xml in the build directory.

Quick Quiz

1. Which techniques can be used to learn about the internal implementation of an
application?

2. Which techniques can be used to change the internal implementation of an
application?

3. Which techniques can be used to capture the communication between a client and
a server?

4. Which Windows applications are substituted by FAR and Total Commander?

In Brief

B Various techniques presented in this book can be used to learn about the internals of
implementation to hack an application or to work with the JDK at the system level.

B Integrated file management applications increase productivity and are worth the
investment.

Decompiling Classes

“When all else fails, read the manual.”

IN THIS CHAPTER

Murphy’s Technology Laws

Determining When to
Decompile 13

Determining When to
Decompile

Knowing the Best
Decompilers 14

In an ideal world, decompilation would probably be
unnecessary, except when learning how other people who
don’t like to write good documentation implemented a
certain feature. In the real world, however, there are often
situations where a direct reference to the source code can
be the best, if not the only, solution. Here are some of the

Decompiling a Class 16

What Makes Decompiling
Possible? 22

Potential Problems with
Decompiled Code 23

reasons to decompile:

Quick Quiz 25
In Brief 25

B Recovering the source code that was accidentally lost
B Learning the implementation of a feature or trick

B Troubleshooting an application or library that does
not have good documentation

B Fixing urgent bugs in third-party code for which no
source code exists

B Learning to protect your code from hacking

Decompiling produces the source code from Java bytecode.
It is a reverse process to compiling that is possible due to
the standard and well-documented structure of bytecode.
Just like running a compiler to produce bytecode from the
source code, you can run a decompiler to obtain the source
code for given bytecode. Decompiling is a powerful
method of learning about implementation logic in the
absence of documentation and the source code, which is
why many product vendors explicitly prohibit decompil-
ing and reverse engineering in the license agreement. Be
sure to check the license agreement or get an explicit
permission from the vendor if you are uncertain about the
legality of your actions.

CHAPTER 2 Decompiling Classes

Some people might argue that you shouldn’t have to resort to extreme measures such as
decompiling and that you should rely on vendors of the bytecode for support and bug fixing.
In a professional environment, if you are a developer of an application, you are responsible
for the functionality being flawless. The users and management do not care whether a bug is
in your code or in third-party code. They care about the problem being fixed, and they will
hold you accountable for it. Contacting the vendor of the third-party code should be a
preferred way. However, in urgent cases when you must provide a solution in a matter of
hours, being able to work with the bytecode will give you that extra edge over your peers,
and maybe a bonus as well.

Knowing the Best Decompilers

To embark on the task of decompiling, you need the right tools. A good decompiler can
produce the source code that will be almost as good as the original source code that was
compiled into bytecode. Some decompilers are free, and some are commercially available.
Although I support the principles behind commercial software, it needs to offer a useful
premium over its free counterparts for me to use it. In the case of decompilers, I have not
found the free ones lacking any features, so my personal recommendation is to use a free tool
such as JAD or JODE. Table 2.1 lists some of the commonly used decompilers and includes a

rogiks kronv T rrEnaris T

At Riggs Bank we were preparing to go live with a very large and important J2EE application that
was deployed into a cluster of application servers from a leading J2EE vendor. Several teams were
waiting for the production environment to be ready, but for some strange reason the application
server would not start on some of the hosts. The exact same installation would run on some
machines but fail on others with an error message about an invalid configuration URL. To make
matters worse, the URL in the error message could not be found in any of the configuration files,
shell scripts, or environment variables.

Several days were spent trying to fix the problem in vain, and the situation was ready to explode
because several teams were about to miss a critical deadline. After copying and reinstalling the
application server failed, we finally resorted to finding the class in the application server libraries
that was producing the error message. Decompiling it, and a few other classes that were using it,
revealed that the URL was programmatically generated based on the server installation directory.
The installation directory was determined by executing the pwd Unix command. It turned out that
on the failing hosts there were no permissions to execute pwd, but the misleading error message
did not make that obvious. Fixing the permissions took a matter of minutes, and the whole process
from the time we found and decompiled the class took less than an hour. Thus, a looming disaster
was turned into a big win for the IT team.

Knowing the Best Decompilers

short description highlighting the quality of each one. The URLs presented might become
outdated, so doing a Google search is typically the best way of finding the decompiler’s home
page and the latest version to download.

A very important criterion is how well the decompiler supports more advanced language
constructs such as inner classes and anonymous implementations. Even though the bytecode
format has been very stable since JDK 1.1, it is important to use a decompiler that is
frequently updated by its authors. The new language features in JDK 1.5 will require an
update in decompilers, so be sure to check the release date of the version you are using.

TABLE 2.1

Decompilers
TOOL/RATING LICENSE DESCRIPTION

JAD/Excellent Free for noncommercial use JAD is a very fast, reliable, and sophisticated
decompiler. It has full support for inner classes,
anonymous implementations, and other advanced
language features. The generated code is clean,
and imports are well organized. Several other
decompiling environments use command-line JAD
as the decompiling engine.

JODE/Excellent GNU public license JODE is a very good decompiler written in Java
and available with the full source code on
SourceForge.net. It might not be as fast and
widespread as JAD, but it produces excellent
results, at times even cleaner than JAD. Having the
source code for the decompiler itself cannot be
underestimated for educational purposes.

Mocha/Fair Free Mocha is the first well-known decompiler that has
generated a lot of legal controversy but also a
wave of enthusiasm. Mocha made it obvious that
Java source code can be reconstructed almost to
its original form, which was cheered by the
development community but feared by the legal
departments. The public code has not been
updated since 1996, although Borland has
presumably updated and integrated it into
JBuilder.

Although you might find other decompilers on the market, JAD and JODE are certainly good
enough and therefore widely used. Many products provide graphical user interfaces (GUIs)
but rely on a bundled decompiler to do the actual work. For instance, Decafe, DJ, and Cavaj
are GUI tools bundled with JAD and therefore were not included in the review. For the rest of
this book, we will use command-line JAD to produce the source code. Most of the time, the
command-line decompiler is all you need, but if you prefer to use a GUI, just be sure that it
uses a solid decompiler such as JAD or JODE.

CHAPTER 2 Decompiling Classes

Decompiling a Class

In case you haven'’t used one before, let’s see how good a job a decompiler can do. We will
work with a slightly enhanced version of the MessageInfo class, which is used by Chat to
send the message text and the attributes to a remote host. MessageInfoComplex.java, shown
in Listing 2.1, has an anonymous inner class (MessageInfoPK) and a main() method to illus-
trate some of the more complex cases of decompiling.

LISTING 2.1 MessageInfoComplex Source Code

package covertjava.decompile;

/**

* MessageInfo is used to send additional information with each message across
* the network. Currently it contains the name of the host that the message

* originated from and the name of the user who sent it.

*/
public class MessageInfoComplex implements java.io.Serializable {

String hostName;
String userName;

public MessageInfoComplex(String hostName, String userName) {
this.hostName = hostName;
this.userName = userName;

/**
* @return name of the host that sent the message
*/
public String getHostName() {
return hostName;

/**
* @return name of the user that sent the message
*/
public String getUserName() {
return userName;

Decompiling a Class

/**
* Convenience method to obtain a string that best identifies the user.
* @return name that should be used to identify a user that sent this message
*/
public String getDisplayName() {
return getUserName() + " (" + getHostName() + ")";

/**
* Generate message id that can be used to identify this message in a database
* The format is: <ID><UserName><HostName>. Names are limited to 8 characters
* Example: 443651_Kalinovs_JAMAICA would be generated for Kalinovsky/JAMAICA
*/
public String generateMessageld() {
StringBuffer id = new StringBuffer(22);

String systemTime = "" + System.currentTimeMillis();
id.append(systemTime.substring (0, 6));

if (getUserName() != null && getUserName().length() > 0) {
// Add user name if specified
id.append('_");
int maxChars = Math.min(getUserName().length(), 8);
id.append(getUserName().substring (@, maxChars));

if (getHostName() != null && getHostName().length() > 0) {
// Add host name if specified
id.append('_");
int maxChars = Math.min(getHostName().length(), 7) ;
id.append(getHostName().substring (@, maxChars));

}

return id.toString();

/**
* Include an example of anonymous inner class
*/
public static void main(String[] args) {
new Thread(new Runnable() {

CHAPTER 2 Decompiling Classes

LISTING 2.1 Continued

public void run() {
System.out.println("Running test");
MessageInfoComplex info = new MessageInfoComplex("JAMAICA", "Kalinovsky");

System.out.println("Message id = " + info.generateMessageld());
info = new MessageInfoComplex(null, "JAMAICA");
System.out.println("Message id = " + info.generateMessageld());
}
}).start();
}
/**

* Inner class that can be used as a primary key for MessageInfoComplex
*/
public static class MessageInfoPK implements java.io.Serializable {
public String id;

After compiling MessageInfoComplex.java using javac with default options, we get three
class files: MessageInfoComplex.class, MessageInfoComplex$MessageInfoPK.class, and
MessageInfoComplex$1.class. As you might know, inner classes and anonymous classes have
been added to Java in JDK 1.1, but the design goal was to preserve bytecode format compati-
bility with earlier versions of Java. That is why these language constructs result in somewhat
independent classes, although they do retain the association with the parent class. The final
step of our test is to run the decompiler on the class file and then compare the generated
source code with the original. Assuming that you have downloaded and installed JAD and
added it to the path, you can run it using the following command:

jad MessageInfoComplex.class

Upon completion, JAD generates the MessageInfoComplex.jad file. This is renamed to
MessageInfoComplex_FullDebug. jad, as shown in Listing 2.2.

LISTING 2.2 MessageInfoComplex Decompiled Code

/| Decompiled by Jad vi1.5.7g. Copyright 2000 Pavel Kouznetsov.

// Jad home page: http://www.geocities.com/SiliconValley/Bridge/8617/jad.html
// Decompiler options: packimports(3)

/] Source File Name: MessageInfoComplex.java

Decompiling a Class

package covertjava.decompile;

import java.io.PrintStream;
import java.io.Serializable;

public class MessageInfoComplex
implements Serializable

public static class MessageInfoPK
implements Serializable

{
public String id;
public MessageInfoPK()
{
}

}

public MessageInfoComplex(String hostName, String userName)

{
this.hostName = hostName;
this.userName = userName;
}
public String getHostName()
{
return hostName;
}
public String getUserName()
{
return userName;
}
public String getDisplayName()
{
return getUserName() + " (" + getHostName() + ")";
}

public String generateMessageld()

CHAPTER 2 Decompiling Classes

LISTING 2.2 Continued

{
StringBuffer id = new StringBuffer(22) ;
String systemTime = "" + System.currentTimeMillis();
id.append(systemTime.substring (0, 6));
if(getUserName() != null && getUserName().length() > 0)
{
id.append('_"');
int maxChars = Math.min(getUserName().length(), 8);
id.append(getUserName().substring(@, maxChars));
}
if(getHostName() != null && getHostName().length() > 0)
{
id.append('_"');
int maxChars = Math.min(getHostName().length(), 7);
id.append(getHostName().substring (@, maxChars));
}
return id.toString();
}
public static void main(String args[])
{
(new Thread(new Runnable() {
public void run()
{
System.out.println("Running test");
MessageInfoComplex info = new MessageInfoComplex("JAMAICA", "Kalinovsky");
System.out.println("Message id = " + info.generateMessageld());
info = new MessageInfoComplex(null, "JAMAICA");
System.out.println("Message id = " + info.generateMessageld());
}
})).start();
}

String hostName;
String userName;

Decompiling a Class

Take a few moments to review the generated code. As you can see, the code is almost a 100%
match to the original! The order of variables, methods, and inner class declarations is differ-
ent, and so is the formatting, but the logic is absolutely the same. We have also lost the
comments, but well-written Java code such as ours is self-evident, isn’t it?

Our case produced good results because full debugging information is included by javac
when the -g option is used. If the source code was compiled without the debug information
(the -g:none option), the decompiled code would lose some of the clarity, such as the para-
meter names of methods and names of local variables. The following code shows the
constructor and a method that uses local variables for MessageInfoComplex with no debug-
ging information included:

public MessageInfoComplex(String s, String si)
{

hostName = s;

userName = si;

public String generateMessageld()

{
StringBuffer stringbuffer = new StringBuffer(22);
String s = "" + System.currentTimeMillis();
stringbuffer.append(s.substring(0, 6));
if(getUserName() != null && getUserName().length() > 0)

{
stringbuffer.append('_"');
int i = Math.min(getUserName().length(), 8);
stringbuffer.append(getUserName().substring(0, 1i));
}
if (getHostName() != null && getHostName().length() > 0)
{
stringbuffer.append('_"');
int j = Math.min(getHostName().length(), 7);
stringbuffer.append(getHostName().substring(0, j));
}

return stringbuffer.toString();

CHAPTER 2 Decompiling Classes

What Makes Decompiling Possible?

Java source is not compiled to binary machine code like C/C++ source is. Compiling Java
source produces intermediate bytecode, which is a platform-independent representation of
the source code. Bytecode can be interpreted or compiled after loading, which results in a
two-step transformation of the high-level programming language into the low-level machine
code. It is the intermediate step that makes decompiling Java bytecode nearly flawless.
Bytecode carries all the significant information found in a source file. Even though the
comments and formatting are lost, all the methods, variables, and programming logic are
obviously preserved. Because the bytecode does not represent the lowest-level machine
language, the format of the code closely resembles the source code. The JVM specification
defines a set of instructions that match Java language operators and keywords, so a fragment
of Java code such as

public String getDisplayName() {
return getUserName() + " (" + getHostName() + ")";

is represented by the following bytecode:

new #4 <java/lang/StringBuffer>

dup

aload_0

invokevirtual #5 <covertjava/decompile/MessageInfoComplex.getUserName>
8 invokestatic #6 <java/lang/String.valueOf>

11 invokestatic #6 <java/lang/String.valueOf>

14 invokespecial #7 <java/lang/StringBuffer.<init>>

17 ldc #8 < (>

19 invokevirtual #9 <java/lang/StringBuffer.append>

22 aload_0

23 invokevirtual #10 <covertjava/decompile/MessageInfoComplex.getHostName>
26 invokevirtual #9 <java/lang/StringBuffer.append>

29 ldc #11 <)>

31 invokevirtual #9 <java/lang/StringBuffer.append>

34 invokestatic #6 <java/lang/String.valueOf>

37 invokestatic #6 <java/lang/String.valueOf>

40 areturn

a b~ O

Bytecode format is covered in detail in Chapter 17, “Understanding and Tweaking Bytecode,”
but you can see the resemblance by just looking at the bytecode. The decompiler loads the
bytecode and tries to reconstruct the source code based on the bytecode instructions. The
names of class methods and variables are typically preserved, whereas the names of method
parameters and local variables are lost. If the debugging information is available, it provides
the decompiler with parameter names and line numbers—and that makes the reconstructed
source file even more readable.

Potential Problems with Decompiled Code

Potential Problems with Decompiled Code

Most of the time, decompiling produces a readable file that can be changed and recompiled.
However, on some occasions decompiling does not render a file that can be compiled again.
This can happen if the bytecode was obfuscated, and the names given by the obfuscator
result in ambiguity at the compilation. The bytecode is verified when loaded, but the verifica-
tions assume that the compiler has checked for a number of errors. Thus, the bytecode veri-
fiers are not as strict as compilers and obfuscators can take advantage of that to better protect
the intellectual property. For example, here is the JAD output on the anonymous inner class
from the MessageInfoComplex main() method that was obfuscated by the Zelix ClassMaster

obfuscator:

L1

static class ¢

implements Runnable

public void run()

{

boolean flag = a.b;
System.out.println(a("*4%p\002\026&kj\016\0135"));
b b1 = new b(a("2\000\006_\";\0"), a("3 'w\005\02778u\022"));
System.out.println(a("5$8m\n\037$kw\017X k") .concat(String.valueOf
0 (String.valueOf(b1.d()))));
b1 = new b(null, a("2\000\006 \";\0"));
System.out.println(a("5$8m\n\037$kw\017X k") .concat(String.valueOf
0 (String.valueOf(b1.d()))));
if (flag)

b.c = Ib.c;

private static String a(String s)

{

char ac[];

int i;

int j;

ac = s.toCharArray();

i = ac.length;

j=0;

if(i > 1) goto _L2; else goto _L1

ac;
i

CHAPTER 2 Decompiling Classes

_L10:
JVM INSTR dup2 ;
JVM INSTR caload ;
j % 5;
JVM INSTR tableswitch @ 3: default 72
/1l 0 52
/1l 1 57
/1l 2 62
/1l 3 67;
goto _L3 _L4 _L5 L6 _L7
_La:
0x78;
goto _L8
_L5:
65;
goto _L8
_L6:
75;
goto _L8
_L7:
30;
goto _L8
_L3:
107;
_L8:
JVM INSTR ixor ;
(char);
JVM INSTR castore ;
+4;
if(i != 0) goto _L2; else goto _L9
_L9:
ac;
i
goto _L10
_L2:
if(j >= 1)
return new String(ac);
if(true) goto _L1; else goto _L11
L11:

In Brief

As you can see, it is a total fiasco, not even closely resembling Java source. What's more
disturbing, JAD produced source code that cannot be compiled. The other two decompilers
have reported an error on the class file. Needless to say, the JVM recognizes and loads the
bytecode in question with no problems. Obfuscation is covered in detail in Chapter 3,
“Obftuscating Classes.”

A powerful way of protecting the intellectual property is encoding the class files and using a
custom class loader to decode them on loading. This way, the decompilers cannot be used on
any of the application classes except for the entry point and the class loader. Although not
unbreakable, encoding makes hacking much more difficult. A hacker would first have to
decompile the class loader to understand the decoding mechanism and then decode all the
class files; only then could he proceed with decompiling. Chapter 19, “Protecting
Commercial Applications from Hacking,” provides information on how to best protect the
intellectual property in Java applications.

Quick Quiz

1. What are the reasons to decompile bytecode?
2. Which compiler options affect the quality of decompilation, and how?
3. Why is decompiled Java bytecode almost identical to the source code?

4. How can you protect the bytecode from decompiling?

In Brief

B Decompiling produces the source code from bytecode, which is almost identical to the
original.

B Decompiling is a powerful method of learning about implementation logic in the
absence of documentation and source code. However, decompiling and reverse engi-
neering might be explicitly prohibited in the license agreement.

B Decompiling requires downloading and installing a decompiler.

B Decompiling Java classes is effective because the bytecode is an intermediate step
between the source code and machine code.

B A good obfuscator can make decompiled code very hard to read and understand.

Obfuscating Classes

“Any sufficiently advanced technology is indistinguishable from
magic.”

Murphy’s Technology Laws

Protecting the Ideas Behind
Your Code

Reverse engineering and hacking have been around since
the early days of software development. As a matter of fact,
stealing or replicating someone else’s ideas has always been
the easiest way of creating competitive products. There is,
of course, a perfectly acceptable method of building on
previous discoveries by others—and as long as the others
don’t mind, it works fine. Most inventors and researchers,
however, would like to get credit and possibly a financial
reward for their work. In simpler terms, they also have
mortgages to pay and vacations to take.

A good way of protecting intellectual property is for the
author to obtain copyrights and patents on the unique
features of the work. This is certainly recommended for
inventions and major discoveries that required a lot of
investment into research and development. Copyrighting
software is a rather easy and cost-effective process, but it
protects only the “original” code of the application, not
the ideas behind it. Others would not be able to take copy-
righted code and use it in their applications without the
author’s permission, but if they have their own implemen-
tation of the same feature, it would not be considered a
violation to use that. Patents provide a much better protec-
tion because they cover the ideas and algorithms rather
than a specific implementation, but they are expensive to
file and can take years to obtain.

IN THIS CHAPTER

Protecting the Ideas
Behind Your Code 27

Obfuscation As a
Protection of
Intellectual Property 28

Transformations Performed
by Obfuscators 29

Knowing the Best
Obfuscators 33

Potential Problems and
Common Solutions 34

Using Zelix KlassMaster to
Obfuscate a Chat
Application 36

Cracking Obfuscated Code
40

Quick Quiz 41
In Brief 41

CHAPTER 3 Obfuscating Classes

Is the risk of having your application hacked real? If it has good ideas, then absolutely. Most
of the widely publicized reverse engineering cases at the time of this writing did not occur
with Java products, but here’s an excerpt from a Java vendor (DataDirect Technologies):

ROCKVILLE, MD., July 1, 2002—DataDirect Technologies, Inc., an industry-leading data connectivity
vendor has filed a lawsuit against i-net Software GmbH alleging copyright infringement and breach of
contract. DataDirect Technologies is seeking both preliminary and permanent injunctive relief to prevent
i-net from engaging in further efforts to market and sell products which DataDirect Technologies
believes were illegally reverse-engineered from its products.

DataDirect Technologies claims that a competitor reverse engineered its product, and yet
even today its product has only minimal protection from decompiling.

In the real world, copyrighting the code and getting a patent for an approach cannot provide
adequate protection if a competitor or hacker can easily learn the implementation from the
source code. The issues of legal protection are discussed in a separate chapter, but for now,
let’s focus on smart ways to protect the intellectual property (IP) of Java applications.

Obfuscation As a Protection of
Intellectual Property

Obfuscation is the process of transforming bytecode to a less human-readable form with the
purpose of complicating reverse engineering. It typically includes stripping out all the debug
information, such as variable tables and line numbers, and renaming packages, classes, and
methods to machine-generated names. Advanced obfuscators go further and change the
control flow of Java code by restructuring the existing logic and inserting bogus code that
will not execute. The premise of the obfuscation is that the transformations do not break the
validity of the bytecode and do not alter the exposed functionality.

Obfuscation is possible for the same reasons that decompiling is possible: Java bytecode is
standardized and well documented. Obfuscators load Java class files, parse their formats, and
then apply transformations based on supported features. When all the transformations are
applied, the bytecode is saved as a new class file. The new file has a different internal struc-
ture but behaves just like the original file.

Obfuscators are especially necessary for products and technologies in which the implementa-
tion logic is delivered to the user. That is the case for HTML pages and JavaScript where the
product is distributed in source code form. Java doesn’t fare much better because, even
though it is typically distributed in binary bytecode, using a decompiler as described in the
previous chapter can produce the source code—which is almost as good as the original.

Transformations Performed by Obfuscators

Transformations Performed by Obfuscators

No standards exist for obfuscation, so the level of protection varies based on the quality of
the obfuscator. The following sections present some of the features commonly found in
obfuscators. We will use ChatServer’s sendMessage method to illustrate how each transforma-
tion affects the decompiled code. The original source code for sendMessage is shown in
Listing 3.1.

LISTING 3.1 Original Source Code of sendMessage

public void sendMessage(String host, String message) throws Exception {
if (host == null || host.trim().length() == 0)
throw new Exception ("Please specify host name");

System.out.println("Sending message to host " + host + ": " + message);
String url = "//" + host + ":" + this.registryPort + "/chatserver";
ChatServerRemote remoteServer = (ChatServerRemote)Naming.lookup(url);

MessageInfo messageInfo = new MessageInfo(this.hostName, this.userName);
remoteServer.receiveMessage (message, messageInfo);
System.out.println("Message sent to host " + host);

Stripping Out Debug Information

Java bytecode can contain information inserted by the compiler that helps debug the
running code. The information inserted by javac can contain some or all of the following:
line numbers, variable names, and source filenames. Debug information is not needed to run
the class but is used by debuggers to associate the bytecode with the source code.
Decompilers use this information to better reconstruct the source code. With full debug infor-
mation in the class file, the decompiled code is almost identical to the original source code.
When the debug information is stripped out, the names that were stored are lost, so decom-
pilers have to generate their own names. In our case, after the stripping, sendMessage para-
meter names would appear as s1 and s2 instead of host and message.

Name Mangling

Developers use meaningful names for packages, classes, and methods. Our sample chat appli-
cation’s server implementation is called ChatServer and the method that sends a message to
another user is called sendMessage. Good names are crucial for development and mainte-
nance, but they mean nothing to the JVM. Java Runtime (JRE) doesn’t care whether
sendMessage is called goShopping or abcdefg; it still invokes it and executes it. By renaming

CHAPTER 3 Obfuscating Classes

the meaningful human-readable names to meaningless machine-generated ones, obfuscators
make the task of understanding the decompiled code much harder. What used to be
ChatServer.sendMessage becomes d.a; when many classes and methods exist with the same
names, the decompiled code is extremely hard to follow. A good obfuscator takes advantage
of polymorphism to make matters worse. Three methods with different names and signatures
doing different tasks in the original code can be renamed to the same common name in the
obfuscated code. Because their signatures are different, it does not violate the Java language
specification but adds confusion to the decompiled code. Listing 3.2 shows an example of a
decompiled sendMessage after obfuscation that stripped the debugging information and
performed name mangling.

LISTING 3.2 Decompiled sendMessage After Name Mangling

public void a(String s, String si)
throws Exception

if(s == null || s.trim().length() == 0)
{
throw new Exception("Please specify host name");
} else
{
System.out.println(String.valueOf (String.valueOf ((
new StringBuffer("Sending message to host ")
) .append(s).append(": ").append(sl))));
String s2 = String.valueOf (String.valueOf ((
new StringBuffer("//")).append(s).append(":")
.append(b).append("/chatserver")));
b b1 = (b)Naming.lookup(s2);
MessageInfo messageinfo = new MessageInfo(e, f);
b1.receiveMessage(s1, messageinfo);
System.out.println("Message sent to host ".concat(
String.valueOf (String.value0f(s))));
return;

Encoding Java Strings

Java strings are stored as plain text inside the bytecode. Most of the well-written applications
have traces inside the code that produce execution logs for debugging and audit trace. Even if
class and method names are changed, the strings written by methods to a log file or console

Transformations Performed by Obfuscators

can betray the method purpose. In our case, ChatServer.sendMessage outputs a trace
message using the following:

System.out.println("Sending message to host " + host + ": " + message);

Even if ChatServer.sendMessage is renamed to d.a, when you see a trace like this one in the
decompiled message body, it is clear what the method does. However, if the string is encoded
in bytecode, the decompiled version of the class looks like this:

System.out.println(String.valueOf(String.valueOf((new
StringBuffer(a("A\025wV6,\0279 :a\003xU:2\004v\0227}\003m\022"))
) .append(s).append(a("(P")).append(si))));

If you look closely at the encoded string, it is first passed to the a() method, which decodes
it and returns the readable string to the System.out.println() method. String encoding is a
powerful feature that should be provided by a commercial-strength obfuscator.

Changing Control Flow

The transformations presented earlier make reverse engineering of the obfuscated code
harder, but they do not change the fundamental structure of the Java code. They also do
nothing to protect the algorithms and program control flow, which is usually the most
important part of the innovation. The decompiled version of ChatServer.sendMessage
shown earlier is still fairly understandable. You can see that the code first checks for valid
input and throws an exception upon error. Then it looks up the remote server object and
invokes a method on it.

The best obfuscators are capable of transforming the execution flow of bytecode by inserting
bogus conditional and goto statements. This can slow down the execution somewhat, but it
might be a small price to pay for the increased protection of the IP. Listing 3.3 shows what
sendMessage has become after all the transformations discussed earlier have been applied.

LISTING 3.3 Decompiled sendMessage After All Transformations

public void a(String s, String s1)
throws Exception

boolean flag = MessageInfo.c;

S;

if(flag) goto _L2; else goto L1
_L1:

JVM INSTR ifnull 29;

goto _L3 _L4

_L3:

s.trim();

CHAPTER 3 Obfuscating Classes

LISTING 3.3 Continued

L2:
if(flag) goto _L6; else goto _L5
_L5:
length();
JVM INSTR ifne 42;
goto L4 L7
_La:
throw new Exception(a("\002)qUe7egDs1,rM6:*g@6<$yQ"));
_L7:
System.out.println(String.valueOf (String.valueOf ((
new StringBuffer(a("\001 zP\177<\"4Ys!6uSsr1{\024~=6"1024"))
) .append(s).append(a("he")).append(s1))));
String.valueOf (String.valueOf (
(new StringBuffer(a("}j"))).append(s).append(":")
.append(b).append(a("}& Ub! fBs "))));
_L6:
String s2;
S2;

covertjava.chat.b b1 = (covertjava.chat.b)Naming.lookup(s2);
MessageInfo messageinfo = new MessageInfo(e, f);
b1.receiveMessage(s1, messageinfo);
System.out.println(a("\037 gGw5 4Gs<i4@yr-{Gbr").concat(String.valueOf
0 (String.valueOf(s))));
if(flag)
b.c = lb.c;
return;

Now that’s a total, but powerful, mess! sendMessage is a fairly small method with little condi-
tional logic. If control flow obfuscation was applied to a more complex method with for
loops, if statements, and local variables, the obfuscation would be even more effective.

Inserting Corrupt Code

Inserting corrupt code is a somewhat dubious technique used by some obfuscators to prevent
obfuscated classes from decompiling. The technique is based on a loose interpretation of the
Java bytecode specification by the Java Runtime. JRE does not strictly enforce all the rules of
bytecode format verification, and that allows obfuscators to introduce incorrect bytecode into
the class files. The introduced code does not prevent the original code from executing, but an
attempt to decompile the class file results in a failure—or at best in confusing source code full
of JVM INSTR keywords. Listing 3.3 shows how a decompiler might handle corrupt code. The
risk of using this method is that the corrupted code might not run on a version of JVM that

Knowing the Best Obfuscators

more closely adheres to the specification. Even if it is not an issue with the majority of JVMs
today, it might become a problem later.

Eliminating Unused Code (Shrinking)

As an added benefit, most obfuscators remove unused code, which results in application size
reduction. For example, if a class called A has a method called m() that is never called by any
class, the code for m() is stripped out of A’s bytecode. This feature is especially useful for code
that is downloaded via the Internet or installed in unsecured environments.

Optimizing Bytecode

Another added benefit touted by obfuscators is potential code optimization. The vendors
claim that declaring nonfinal methods as final where possible and performing minor code
improvements can help speed up execution. It is hard to assess the real performance gains,
and most vendors do not publish the metrics. What is worth noting here is that, with every
new release, JIT compilers are becoming more powerful. Therefore, features such as method
finalization and dead code elimination are most likely performed by it anyway.

Knowing the Best Obfuscators

Plenty of obfuscators are available, and most of them contain the same set of core features.
Table 3.1 includes just a few of the most popular products, both free and commercial.

TABLE 3.1

Popular Obfuscators

PRODUCT KLASSMASTER PROGUARD RETRO GUARD DASH-O JSHRINK
Version 4.1 1.7 1.1.13 2.x 2.0
Price $199-$399 Free Free $895-$2995 $95
Stripping out of debug Yes Yes Yes Yes Yes
information

Name mangling Yes Yes Yes Yes Yes
Encoding of Java strings Yes No No No Yes
Changing of control flow Yes No No No No
Insertion of corrupt code Yes No No No No
Elimination of unused Yes Yes No Yes Yes
code (shrinking)

Optimizing of bytecode No No No Yes Yes
Flexibility of scripting Excellent Excellent Good Not rated Good
language and obfuscation

control

Reconstruction of Yes Yes No No No

stack traces

CHAPTER 3 Obfuscating Classes

For commercial applications that contain intellectual property, I recommend Zelix
KlassMaster primarily because of its unique control flow obfuscation. This technique makes
the obfuscated code truly hard to crack, so the product is worth every dollar you will pay for
it. At the time of writing, it is the only obfuscator known to have this feature. ProGuard is
available free from www.sourceforge.net and is the best choice for the budget-conscious user
with applications that do not require commercial-strength protection.

Potential Problems and Common Solutions

Obfuscation is a reasonably safe process that should preserve application functionality.
However, in certain cases the transformations performed by obfuscators can inadvertently
break code that used to work. The following sections look at the common problems and
recommended solutions.

Dynamic Class Loading

The renaming of packages, classes, methods, and variables works fine as long as the name is
changed consistently throughout the system. Obfuscators ensure that any static references
within the bytecode are updated to reflect the new name. However, if the code performs
dynamic class loading using Class.forName() or ClassLoader.loadClass() passing an origi-
nal class name, a ClassNotFound exception can result. Modern obfuscators are pretty good
with handling such cases, and they attempt to change the strings to reflect the new names. If
the string is created at runtime or read from a properties file, though, the obfuscator is inca-
pable of handling it. Good obfuscators produce a log file with warnings pointing out the
code that has potential for runtime problems.

| sroRies rrov mHE rREnapes T

The most innovative product from CreamTec is WebCream, which is available for a free download
from the Web. The free edition is limited to five concurrent users; to get more users, you must buy
a commercial license. Having grown up in the Ukraine, | knew many people who would prefer to
crack the licensing to turn the free edition into an unlimited edition that would normally be worth
thousands of dollars. At CreamTec, we used a simple, free obfuscator that didn’t do much more
than name mangling. We thought it was good enough until a friend of mine, who views limited-
functionality commercial software as a personal insult, cracked our licensing code in less than 15
minutes. The message was clear enough, and we decided to purchase Zelix KlassMaster to protect
the product as well as we could. After we used the aggressive control flow obfuscation with a few
extra tricks, our friend has not been able to get to the licensing code with the same ease as
before—and because he didn’t want to spend days figuring it out, he has given up.

Potential Problems and Common Solutions

The simplest solution is to configure the obfuscator to preserve the names of dynamically
loaded classes. The content of the class, such as the methods, variables, and code, can still be
transformed.

Reflection

Reflection requires compile-time knowledge of method and field names, so it is also affected
by obfuscation. Be sure to use a good obfuscator and to review the log file for warnings. Just
as with the dynamic class loading, if runtime errors are caused by obfuscation, you must
exclude from obfuscation the method or field names that are referenced in Class.getMethod
or Class.getField.

Serialization

Serialized Java objects include instance data and information about the class. If the version of
the class or its structure changes, a deserialization exception can result. Obfuscated classes
can be serialized and deserialized, but an attempt to deserialize an instance of a nonobfus-
cated class by an obfuscated class will fail. This is not a very common problem, and it can
usually be solved by excluding the serializable classes from obfuscation or avoiding the
mixing of serialized classes.

Naming Conventions Violation

The renaming of methods can violate design patterns such as Enterprise JavaBeans (EJB),
where the bean developer is required to provide methods with certain names and signatures.
EJB callback methods such as ejbCreate and ejbRemove are not defined by a super class or an
interface. Providing these methods with a specific signature is a mere convention prescribed
by EJB specification and enforced by the container. Changing callback method names violates
the naming convention and makes the bean unusable. You should always be sure to exclude
the names of such methods from obfuscation.

Maintenance Difficulties

Last, but not least, obfuscation makes maintaining and troubleshooting applications more
difficult. Java exception handling is an effective way of isolating the faulty code, and looking
at the stack trace can generally give you a good idea of what went wrong and where. Keeping
the debugging information for source filenames and line numbers enables the runtime to
report the exact location in code where the error occurred. If done carelessly, obfuscation can
inhibit this feature and make debugging harder because the developer sees only the obfus-
cated class names instead of the real class names and line numbers.

CHAPTER 3 Obfuscating Classes

You should preserve at least the line number information in the obfuscated code. Good
obfuscators produce a log of the transformations, including the mapping between the origi-
nal class names and methods and the obfuscated counterparts. The following is an excerpt
from the log file generated by Zelix KlassMaster for the ChatServer class:

Class: public covertjava.chat.ChatServer = covertjava.chat.d

Source: "ChatServer.java"

FieldsOf: covertjava.chat.ChatServer
hostName => e
protected static instance => a
messageListener = d
protected registry => c
protected registryPort => b
userName => f

MethodsOf: covertjava.chat.ChatServer
public static getInstance() => a
public getRegistry(int) => a
public init() => b
public receiveMessage(java.lang.String, covertjava.chat.MessageInfo)
ONameNotChanged
public sendMessage(java.lang.String, java.lang.String) => a
public setMessagelListener(covertjava.chat.MessagelListener) => a

So, if an exception stack trace shows the covertjava.chat.d.b method, you can use the

log and find out that it was originally called "init" in a class that was originally called
covertjava.chat.ChatServer. If the exception occurred in covertjava.chat.d.a, you would
not know the original method name for sure because multiple mappings exist (witness the
power of overloading). That’s why line numbers are so important. By using the log file and
the line number in the original source file, you can quickly locate the problem area in the
application code.

Some obfuscators provide a utility that reconstructs the stack traces. This is a convenient way
of getting the real stack trace for the obfuscated stack trace. The utility typically uses the
same method as we used earlier, but it automates the job—so why not save ourselves some
time? It also allows scrambling the line numbers for extra protection.

Using Zelix KlassMaster to Obfuscate
a Chat Application

Even though each obfuscator has its own format of configuring the transformations, they all
support a common set of features. The Chat application does not contain state-of-the-art
algorithms or patent-pending inventions, but it is dear to our hearts so we are going to use
Zelix KlassMaster to protect it from the prying eyes of hackers and thieves.

Using Zelix KlassMaster to Obfuscate a Chat Application

First, we obtain a copy of Zelix KlassMaster and install it on a local machine. Remember that
we refer to the Chat application’s home directory as Covertdava. Next, we copy ZKM. jar from
KlassMaster’s installation directory to our project 1ib directory so we can script against it. The
easiest way to create the obfuscation script is with KlassMaster’s GUI. Using the command

java -jar ZKM.jar

from the 1ib directory, we run the GUI Then, in the initial helper dialog box that appears,
we select the Set Classpath option. We now select the runtime libraries of the JDK we’re using
and, in the Open Classes dialog box that appears next, we select CovertJdava/lib/chat.jar.
After that, KlassMaster should load all the classes of the Chat application and we should

be able to view the internal structure of the bytecode. The screen should look similar to
Figure 3.1.

Zelix KlassMaster S ES
File Tools Options Help
v aupuent Keyhdapter name ChatSener AN
covartjava.chiat MainFrame$1 Tl netingtance |
pansalani. Olject methods petitegistng
covertjava.chat.ChatApplication constants it -
covertjava.chat.Chat Serverfemnte recefetessage abstract Changs
covertjava.chiat Messagelnfo seniMessane || |static
covertjava.chat MessagelListener sethessagel istener fimal
coverljava.decompile.Messagelnfa |SynCllllllmU
cavertjava.decampile MessagelnfaCor native Rustarn
covertjava.decompile.MessagelnfoCor
covertjava.decampile.MessagelnfaCor
cover - |
i serveg RematalStnh public vold sendMessagedas lang Siing locall, javalang 5iing I0cal2) thraws Java tang Excep’
civertjava, .ChatSerner _Stub Int Incald;
. server. LnicastRemateObject Int lncald;
cowertjava.cliat.ChatSorver Int local3;
pceeMIng,iaiog aload_t push reference from (ocalt
Covarl v ChaLABUDintg il |_1ne||p figato latel if ohjectat== null
rzscaving. Frame aload_t fjpush reference from (ocalt
covertjava.chat.MainFrame Irwokeviriual ava lang Strin g trimi fiinvoke [#va lan
Irvokevirual Java lang Stringlenath 0 ffirnke [avalan
Ine labai2 Hooto labeld ifint=10
lanel
new java lang Exceplion (new |avalang Exception
dup ifduplicste top stack ward
Ide *Flease specify host name” fipush“Please specity host nama® from constant

Irvnkazpacial java lang Exception <ini={&valanoSting) finvoke [ava lano Excsplon,<init
athrowe_iAhree referenea. ciment on sack X
Ll 5 T) N e e |

{14 classes opened in 1 seconds. 27 36K of memany used.

FIGURE 3.1 Chat classes loaded into the KlassMaster GUI.

While working with the GUI, you can easily see just how flexible KlassMaster is. You can
manually change the names of classes, methods, and fields; modify the visibility of classes or
methods; make methods final; change text strings; and do other cool stuff. KlassMaster
attempts to propagate the changes throughout the loaded code, so if other classes refer to a
method and you change its name, the referring classes are updated to reflect the change.
After making all your changes, you can save the classes as is or trim and obfuscate them first.
Classes loaded into the GUI environment can be further modified after the obfuscation, even
though I can’t think of a reason why someone would need to do so. For details of
KlassMaster’s features and how to use it, please refer to its user manual.

CHAPTER 3 Obfuscating Classes

A well-written Java application provides scripts to build it, so let’s integrate obfuscation into
our build script. We start by using KlassMaster’s GUI to create the obfuscation script. Then,
we update it manually to make it more flexible. It is entirely possible to write the script
manually or copy and modify a sample script. We run the GUI and select ZKM Script Helper
from the Tools menu. Then, we do the following:

1.

2.

3.

Read the instructions on the Introductory Page and click Next.
On the Classpath Statement page, select rt.jar and click Next.

On the Open Statement page, navigate to Covertdava/distrib/chat.jar and click > to
select it for opening. We only need one file because all our application classes are pack-
aged in it. Click Next.

On the TrimExclude Statement page, the default exclusions are preset to exclude the
cases where obfuscation is likely to result in an error. For example, renaming methods
of an EJB implementation class makes it unusable, so EJBs are excluded by default.

On the Trim Statement page, select the Delete Source File Attributes check box and the
Delete Deprecated Attributes check box to get rid of the debug information; then click
Next.

. In the Don’t Change Main Class Name combo box on the Exclude Statement page,

select covertjava.chat.ChatApplication to preserve its name. This keeps JAR manifest
entries valid and enables users to continue invoking the chat using a human-readable
name.

. On the Obfuscate Statement page, select Aggressive in the Obfuscate Control Flow

combo box. Then select Aggressive in the Encrypt String Literals combo box, and select
Scramble in the Line Number Tables combo box. This ensures adequate protection for
the code but enables us to translate stack traces later. Make sure that Produce a Change
Log File is checked and click Next.

On the SaveAll Statement page, navigate to CovertJava/distrib and create a subdirec-
tory called obfuscated. Select the newly created directory for output and click Next.

The next page should show the script text and allow us to save it to a directory. Save it
as obfuscate_script.txt in the CovertJdava/build directory and exit the GUIL

The resulting script should look similar to Listing 3.4.

LISTING 3.4 Obfuscation Script Generated by the GUI

/**/

/* Generated by Zelix KlassMaster 4.1.1 ZKM Script Helper 2003.08.13 17:03:43 */

/**/

Using Zelix KlassMaster to Obfuscate a Chat Application

classpath "c:\java\jdk1.4\jre\lib\rt.jar"
"c:\java\jdk1.4\jre\lib\sunrsasign.jar"
"c:\java\jdk1.4\jre\lib\jsse.jar"
"c:\java\jdk1.4\jre\lib\jce.jar"
"c:\java\jdk1.4\jre\lib\charsets.jar";

open "C:\Projects\Covertdava\distrib\chat.jar";

trim deleteSourceFileAttributes=true
deleteDeprecatedAttributes=true
deleteUnknownAttributes=false;

exclude covertjava.chat."ChatApplication” public static main(java.lang.String[]);

obfuscate changeLogFileIn=""
changeLogFileOut="ChangelLog.txt"
obfuscateFlow=aggressive
encryptStringLiterals=aggressive
lineNumbers=scramble;

saveAll archiveCompression=all "C:\Projects\Covertdava\distrib\obfuscated";

A good idea would be to replace the absolute file paths with the relative ones, so that instead
of opening C:\Projects\CovertJdava\distrib\chat.jar, the script opens distrib\chat.jar.
Finally, we will integrate obfuscation into the build process by declaring a custom task and
adding a target that calls it. KlassMaster is written in Java and can be called from any build
script. Conveniently, it provides a wrapper class for Ant integration, so all we have to do is
add the following to Chat’s build.xml:

<!-- Define a task that will execute Zelix KlassMaster to obfuscate classes -->
<taskdef name="obfuscate" classname="ZKMTask" classpath="${basedir}/1ib/ZKM.jar"/>

<!-- Define a target that produces obfuscated version of Chat -->
<target name="obfuscate" depends="release">
<obfuscate scriptFileName="${basedir}/build/obfuscate script.txt"
logFileName="${basedir}/build/obfuscate_log.txt"
trimLogFileName="${basedir}/build/obfuscate_trim_log.txt"
defaultExcludeFileName="${basedir}/build/obfuscate_defaultExclude.txt"
defaultTrimExcludeFileName="${basedir}/build/obfuscate_defaultTrimExclude.txt"
defaultDirectoryName="${basedir}"
/>
</target>

CHAPTER 3 Obfuscating Classes

We can now run Ant on obfuscate target. If the build is successful, a new file (chat.jar) is
created in CovertJava/distrib/obfuscated. This file contains the obfuscated version of Chat
that can still be invoked using the java -jar chat.jar command. Take a few moments to
look inside that JAR and try decompiling some of the classes.

Before we close the subject of using KlassMaster, I'd like to give a few more examples of script
file syntax for excluding classes and class members from obfuscation. The format shown in
Table 3.2 can be used for statements of obfuscation script that take in names as parameters.
ZKM script language supports wildcards, such as * (any sequence of characters) and ? (any
one character), and boolean operations, such as || (or) and ! (not). For a detailed explana-
tion and full syntax, please refer to KlassMaster documentation.

TABLE 3.2

Commonly Used Name Patterns for KlassMaster

SYNTAX WHAT IT MATCHES

packagel.package2. Package names package1 and package2. Other package names and
children of package2 are not matched.

*, All package names in the application.

Class1 The name of the class Class1.

packagei.Class1 The name of Class1 in package package1 but not package1’s name.

packagel.~Class1 The names of Class1 and package1l.

packagei.”Class1~ method1() The names of package1, Class1, and method1 with no parameters.

packagel.”Class1” method1(*) The names of packagei, Class1, and all overloaded versions of method1.

Cracking Obfuscated Code

Now that we have spent so much time talking about how to protect intellectual property
through obfuscation, a few words are due on the strength of the protection. Does a good
obfuscator make it hard to hack an application? Absolutely. Does it guarantee that the appli-
cation will not be hacked? Not at all!

Unless flow control obfuscation is used, reading and working with the obfuscated code is not
that difficult. The key point is finding a good starting point for decompiling. Chapter 2,
“Decompiling Classes,” presented several techniques for reverse engineering of applications,
but obfuscation can defeat many of them. For example, the most effective way of locating a
starting point is text searching through the class files. With string encoding, the search will
yield no results because the strings are not stored as plain text. Package names and class
names can no longer be used to learn about the application structure and to select a good
starting point. It is still technically possible to decompile the application entry point and
work your way through the control flow for a decent-size application, but it is not feasible.

In Brief

For flow-obfuscated code, the most sensible method of learning the application implementa-
tion is using a good old debugger. Most IDEs come with debugging capabilities, but our case
will require a heavyweight debugger capable of working without the source code. To find a
good starting point for decompiling, the application needs to be run in debug mode. Java has
a standard API for debuggers called Debugger API (duh!) that is capable of local as well as
remote debugging. Remote debugging enables the debugger to attach itself to an application
running in debug mode and is a preferred way of cracking the application. Good debuggers
display in-depth information about running threads, call stacks for each thread, loaded
classes, and objects in memory. They enable you to set a breakpoint and trace the method
executions. A key for working with obfuscated applications is to use the regular interface (Ul
or programming API) to navigate to a feature of interest and then to rely on the debugger to
learn about the class or classes that implement the feature. After the classes are identified,
they can be decompiled and studied as described in Chapter 2. Working with debuggers is
covered in detail in Chapter 9, “Cracking Code with Unorthodox Debuggers.”

Quick Quiz

1. What are the means of protecting intellectual property in Java applications?
2. Which transformations provided by obfuscators offer the strongest protection?

3. For each of the potential problems listed in this chapter, which transformation(s) can
cause it?

4. What is the most efficient way to study the obfuscated code?

In Brief

B Obfuscation can be the best way to protect the intellectual property in Java bytecode.

B Obfuscators perform some or all of the following transformations: stripping out debug
information, name mangling, encoding strings, changing control flow, inserting corrupt
code, eliminating unused code, and optimizing bytecode.

B Obfuscation introduces maintenance difficulties that can be minimized by configuring
the obfuscator.

B Obfuscated code is still readable unless control flow obfuscation and string encoding is
used.

Hacking Non-Public
Methods and
Variables of a Class IN THIS CHAPTER

“Anything can be made to work if you fiddle with it. If you fiddle
with something long enough, you’ll break it.” The Problem of

Murphy’s Technology Laws Encapsulation 43

Accessing Packages
and Protected Class

The Problem of Encapsulation Members 44

Accessing Private Class

Encapsulation is one of the pillars of object-oriented

programming. The purpose of encapsulation is separation Members 46
of the interface from implementation and modularity of Quick Quiz 49
application components. It is generally recommended that

you make data members private or protected and provide In Brief 49
public accessor and mutator functions (also known as getter
and setter functions). It is also sometimes recommended
that you make internal implementation methods private
or public to protect a class from being used incorrectly.
Following the principle of encapsulation helps create a
better application, but occasionally it can prove to be an
obstacle for usage that was not foreseen by the class
developer.

We will use java.awt.BorderLayout in our experiments.
Maybe at some point this will encourage JavaSoft engi-
neers to add public methods. We will obtain the source
code for BorderLayout from src.jar in the JDK installa-
tion directory.

CHAPTER 4 Hacking Non-Public Methods and Variables of a Class

Accessing Packages and Protected
Class Members

We will start by demonstrating how to easily access package-visible variables and methods.
Our example uses a package-visible variable, but the technique works equally well for
protected visibility. A variable or method is package visible when no specific visibility keyword
such as public, protected, or private is used for declaration. BorderLayout stores the
component that was added using the BorderLayout.CENTER constraint in a center variable
declared as follows:

package java.awt;
public class BorderLayout implements LayoutManager2, java.io.Serializable {

Component center;

Recall that package-visible members are accessible to the class that declared them and all
classes within the same package. In our example, any class in the java.awt package can
access the center variable directly. A simple solution therefore is to create a helper class,
AwtHelper, in the java.awt package and use it to access package-visible members of
BorderLayout instances. AwtHelper has a public function that takes in an instance of
BorderLayout and returns the component for a given layout constraint:

|| srories rrom mie nrenaaiest TR

WebCream is a product that converts Java AWT and Swing applications into interactive HTML Web
sites. It does it by emulating a graphical environment for the graphical user interface (GUI) applica-
tion running on the server side and capturing and converting the currently displayed top window
to an HTML page. To generate the HTML, WebCream iterates all containers and tries to mimic Java
layouts with HTML tables. One of the layouts WebCream needs to support is BorderLayout. For a
container with BorderLayout, the HTML rendering module needs to know which child component
has been added to the South section, which one to the North, and so on. BorderLayout stores
this information in the member variables south, north, and so on, and it even has a getChild()
method that can be used to obtain the component. The problem is that the variables are declared
with package visibility and the getChild method is declared as private. To get around the absence
of public access to BorderLayout’s child components, WebCream engineers had to rely on the
hacking techniques described in this chapter.

Accessing Packages and Protected Class Members

package java.awt;
public class AwtHelper {

public static Component getChild(BorderLayout layout, String key) {
Component result = null;

if (key == BorderLayout.NORTH)
result = layout.north;

else if (key == BorderLayout.SOUTH)
result = layout.south;

else if (key == BorderLayout.WEST)
result = layout.west;

else if (key == BorderLayout.EAST)
result = layout.east;

else if (key == BorderlLayout.CENTER)
result = layout.center;

return result;

Let’s write a test class called covertjava.visibility.PackageAccessTest that uses AwtHelper
to obtain the split pane instance from Chat’s MainFrame. The following source code excerpt is
what we are mostly interested in:

Container container = createTestContainer();

if (container.getlLayout() instanceof BorderLayout) {
BorderLayout layout = (BorderLayout)container.getlLayout();
Component center = AwtHelper.getChild(layout, BorderLayout.CENTER);
System.out.println("Center component = " + center);

We obtain the layout for the container and, if it is BorderLayout, we use AwtHelper to get the
center component. Chat’s MainFrame has the split pane in the center; therefore, if the code is
written correctly, we should see an instance of JSplitPane on the system console. Running
PackageAccessTest, we get the following exception:

java.lang.SecurityException: Prohibited package name: java.awt
The exception is thrown because java.awt is considered to be a system name space that

should not be used by regular classes. This would not have happened if we were trying to
hack a package-visible member of a third-party class, but we have intentionally picked a

CHAPTER 4 Hacking Non-Public Methods and Variables of a Class

system class to illustrate a real-life example. The only potential problem with using this tech-
nique for a nonsystem name space such as com.mycompany.mypackage occurs if the package is
sealed. Adding a helper class to a sealed package requires the same technique as is explained
for adding a patched class in Chapter 5, “Replacing and Patching Application Classes.”

Adding system classes is a little trickier because they are loaded and treated differently from
application classes. Chapter 16, “Intercepting Control Flow,” provides a comprehensive
discussion of system classes. For now, though, it would suffice to say that to add a class to the
system package, the class has to be placed on the boot class path. A directory or JAR file can
be prepended or appended to the boot class path using the -Xbootclasspath parameter to
the java command line. Because we already have a patches subdirectory for the Chat appli-
cation, we will use it for system classes as well. We modify build.xml to move the java.lang
directory with AwtHelper to distrib/patches and create a new script
(package_access_test.bat) in distrib/bin, as follows:

@echo off
set CLASSPATH=..\lib\chat.jar
java -Xbootclasspath/p:..\patches covertjava.visibility.PackageAccessTest

Running package_access_test.bat produces the following output:

C:\Projects\Covertdava\distrib\bin>package access_test.bat
Testing package-visible access
Center component = javax.swing.JSplitPane[,0,0,0x0,...]

Having to place classes on the system boot class path makes deployment a little more
involved because it requires modification of the startup script. For example, a Web applica-
tion that is deployed into a Web container, such as Tomcat or WebLogic, can no longer be
simply deployed through a console or the application deployment directory. The script that
starts the application server must be modified to include the -Xbootclasspath parameter.
Another disadvantage of this technique is that it does not work for private members. Last,
but not least, adding classes to packages can violate the license agreement. This is the case
with BorderLayout because a section in Sun’s Java license agreement explicitly prohibits
adding classes to packages that begin with java. The next section presents another alternative
that solves some of these problems.

Accessing Private Class Members

Private members are accessible only to the class that declares them. That is one of the ground
rules of the Java language that ensures encapsulation. But is it really so? Is it really enforced
all the time? If you said, “Well, this guy is writing about it, so there has to be a loophole of
some sort,” you'd be right. The Java compiler enforces the privacy of private members at
compile time. Thus, there can be no static references by other classes to private methods and

Accessing Private Class Members

variables of a class. However, Java has a powerful mechanism of reflection that enables query-
ing instance and class metadata and accessing fields and methods at runtime. Because reflec-
tion is dynamic, compile time checks are not applicable. Instead, Java runtime relies on a
security manager—if one exists—to verify that the calling code has enough privileges for a
particular type of access. The security manager provides enough protection because all the
functions of the reflection API delegate to it before executing their logic. What undermines
this protection is the fact that the security manager is often not set. By default, the security
manager is not set, and unless the code explicitly installs a default or a custom security
manager, the runtime access control checks are not in effect. Even if a security manager is set,
it is typically configured through a policy file, which can be extended to allow access to the
reflection APIL.

If you looked at the BorderLayout class carefully, you might have noticed that it already has
a method that returns a child component based on the position key. Not surprisingly, it is
called getChild and has the following signature:

private Component getChild(String key, boolean 1tr)

This sounds like good news because you don't really have to write your own implementation.
The problem is that the method is declared as private and there is no public method you can
use to call it. To leverage the existing JDK code, you must call BorderLayout.getChild()
using the reflection API. We will use the same test structure as in the previous section. This
time, though, instead of using AwtHelper, the test class delegates to its own helper function
(getChild()):

public class PrivateAccessTest {

public static void main(String[] args) throws Exception {
Container container = createTestContainer();
if (container.getlLayout() instanceof BorderLayout) {
BorderLayout layout = (BorderLayout)container.getlLayout();
Component center = getChild(layout, BorderlLayout.CENTER);
System.out.println("Center component = " + center);

public static Component getChild(BorderLayout layout, String key) throws Exception {
Class[] paramTypes = new Class[]{String.class, boolean.class};
Method method = layout.getClass().getDeclaredMethod("getChild", paramTypes);
// Private methods are not accessible by default
method.setAccessible(true);
Object[] params = new Object[] {key, new Boolean(true)};
Object result = method.invoke(layout, params);

CHAPTER 4 Hacking Non-Public Methods and Variables of a Class

return (Component)result;

The getChild() implementation is the core of the technique. It obtains the method object
through reflection and then calls setAccessible(true). A value of true is set to suppress the
access control checking and allow method invocation. The rest of the method is plain reflec-
tion API usage. Running covertjava.visibility.PrivateAccessTest produces the same
output you saw in the previous section:

C:\Projects\Covertdava\distrib\bin>private access_test.bat
Testing private access
Center component = javax.swing.JSplitPane[,0,0,0x0,...]

This was alarmingly easy. We might have to do a little more work if a security manager is set
using System.setSecurityManager or via a command line, which is the case for most applica-
tion servers and middleware products. If we run our test passing -Djava.security.manager to
the java command line, we get the following exception:

java.security.AccessControlException: access denied
(java.lang.RuntimePermission accessDeclaredMembers)

For our code to work with a security manager installed, we have to grant the permissions to
access declared members through reflection and to suppress access checks. We do so by
adding a Java policy file that grants these two permissions to our code base:

grant {
permission java.lang.RuntimePermission "accessDeclaredMembers";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
}

Finally, we create a new test script (private_access_test.bat) in the distrib\bin directory
that adds a command-line parameter (java.security.policy) to install our policy file:

set CLASSPATH=..\lib\chat.jar
set JAVA ARGS=%JAVA_ARGS% -Djava.security.manager
set JAVA_ARGS=%JAVA_ARGS% -Djava.security.policy=../conf/java.policy

java %JAVA_ARGS% covertjava.visibility.PrivateAccessTest
If a policy file is already installed, our grant clause needs to be inserted into it. Java security

files allow inclusion of additional policy files using the policy.url.n attribute. See Chapter
7, “Manipulating Java Security,” for a detailed discussion of Java security and policy files.

In Brief

The technique that relies on the reflection API can be used to access package and protected
members as well. This makes inserting helper classes into third-party packages unnecessary.
The drawback of the reflection API is that it is notoriously slow because it has to deal with
runtime information and might have to go through a number of security checks. When
speed is an issue, it is preferable to rely on the helper classes for package and protected
members. Yet another alternative is serializing an instance into a byte array stream and then
parsing the stream to obtain the values of the member variables. Obviously, this is a tedious
process that does not work for transient fields.

Quick Quiz

1. Which technique can be used to obtain a value of a protected variable?
2. Which technique can be used to obtain a value of a private variable?

3. What are the advantages and disadvantages of each technique?

In Brief

B Methods and variables that are not declared public can still be accessed.

B A member with package or protected visibility can be accessed by inserting a helper
class into its package or using the reflection API.

B A member with private visibility can be accessed using the reflection APIL.

B If a security manager is installed, the Java policy needs to be altered to allow unre-
stricted access for the reflection API.

Replacing and
Patching Application
Classes

“How many software engineers does it take to change a light
bulb?” What Do We Do When We
Have Tried Every Road but
Failed? 51

IN THIS CHAPTER

“None. We’ll document it in the manual.”

“None. It’s a hardware problem.”

Finding the Class That Has
“One, but he’s not available till the year 2010.” to Be Patched 53

“Two. One always leaves in the middle of the project.” A Sample Scenario That
Requires Patching 55

“Four. One to design the change, one to implement it, one to

document it, and one to maintain it afterward.” Patching | (F e T [P

New Logic 58

What Do We Do When We Reconfiguring the

H Application to Load and
Have Tried Every Road but o o e o

Failed?
Patching Sealed Packages
Just about every developer at some point has used a library 60
or a component developed by someone else. Just about Quick Quiz 61
every developer at some point has also gotten frustrated
with the library to the point of being willing to find the In Brief 61

guy who decided to make a method private and talk some
sense into him. Well, most of us wouldn't go that far, but
it would certainly be nice to be able to change things that
make our lives miserable. It’s not that libraries are written
by mean people; it’s just that even the brightest designers
are unable to foresee all the possible ways that other devel-
opers would want to use their code.

Certainly, it is always better to resolve matters peacefully. If
you can get the vendor to change his code, or if you are in
a position to do it yourself, then certainly do so. But the

sheer fact that you are reading this book proves that in real

CHAPTER 5 Replacing and Patching Application Classes

life the conventional approach does not always work. And this is where things get interest-
ing. Having said that, when should you resort to replacing and patching classes? The follow-
ing are several of the situations that call for a hacker approach:

» You are using a third-party library that has the capability you need, but it
is not exposed through a public API—For example, until JDK 1.4, Java Swing did
not provide a method to obtain a list of JComponent listeners. The component would
store the listeners in a package-visible variable with no public access to it, so there was
no way to find out programmatically whether a component had event listeners.

» You are using a third-party class or an interface, but the functionality
exposed is not flexible enough for your application—A simple change in the
API can save you days of work or might be the only solution to your problem. In this
case, you are happy with 99% of the library, but the remaining 1% prevents you from
being able to use it effectively.

» There is a bug in the product or API you are using and you cannot wait for
the vendor to fix it—JRun 3.0, for instance, had a bug in the JVM version detection
on HP UX. While parsing the version string reported by Java Runtime, it would erro-
neously conclude that it was running under an older version of JDK and refuse to run.

» You need a very close integration with a product, but its architecture is
not open enough to satisfy your requirements—Many frameworks separate
interfaces from implementation. Internally interfaces are used to access functionality
and concrete classes are instantiated to provide the implementation. Java core libraries
for the most part allow specifying implementation classes through system properties.
This is the case for AWT Toolkit and SAX parser, where implementation classes can be
specified using the java.awt.toolkit and org.xml.sax.driver system properties,
respectively. Hacking would be required if you needed to provide a different implemen-
tation class for a library that does not provide means of customization.

» You are using third-party code, but the expected functionality is not
working—You are not sure whether it is because you are not using it correctly or
because of a bug in the code. The documentation does not refer to the problem and
you do not have a workaround. Temporarily inserting debug traces and messages into
the third-party code can help you understand what is happening in the system.

» You have an urgent production issue that has to be fixed—You also cannot
afford to go through risky redeployment of the new code to the production environ-
ment. The solution to the problem requires a small change in the code that affects only
a few classes.

If dealing with third-party code, you might be violating the license agreement, so be sure to
read it and run it by your legal department to be safe. Copyright laws can be strictly
enforced, and changing third-party code is often illegal. Get the vendor’s permission to

Finding the Class That Has to Be Patched

implement a solution rather than assuming responsibility for the hack. The good news is that
by using the method presented in this chapter, you aren’t making direct changes to the
library or the product you are using. You aren’t tampering with the code, but rather provid-
ing replacement functionality for the one you are not happy with. In a way, it is like deriving
your class from the vendor’s class to override a method, although this can be a slippery slope.
Legal issues aside, let’s see how you can go about doing this.

Finding the Class That Has to Be Patched

First, you have to determine what code has to be patched. Sometimes it’s fairly obvious and
you will know the specific class or interface right away. If you feel you are too smart to be
told how to locate the code, then by all means skip to the section that talks about how to
patch. Otherwise, sit back, relax, and learn several approaches to achieving the result.

The General Approach

The general method of locating a class to be patched consists of finding a starting point and
navigating the execution sequence until you get to the code you want to change. If you do
not encounter the code you want to change in the vicinity of the starting point, you must

||| srories lerom mhe nrenases [T

AT&T Wireless was upgrading its order entry system for cell phone activation. Written in Java, it
had to be migrated from JDK 1.2 to 1.3. The upgrade was crucial because of the bug fixes in
Swing and other Java packages and the fact that users were waiting for a better option. The perfor-
mance improvement and optimized memory consumption of JDK 1.3 were among other impor-
tant factors in making the upgrade decision. The development was done on Windows systems, but
the production environment was HP UX. When all the bugs were fixed and the unit tested under
JDK 1.3, the new version of Java was installed on the staging HP UX server to begin formal integra-
tion testing.

Unfortunately, it turned out that the application server used for J2EE services had a bug in detect-
ing the |DK version. There was an error in parsing the version string from the system properties,
but because it was different on Windows and Unix, the bug didn’t surface until the integration
testing phase. The application server refused to run on HP, believing that it was running on an
earlier version of Java. At that point, it was too late to go back to JDK 1.2, but there was no fix for
the problem. To save the project, the engineers resorted to decompiling the class from the applica-
tion server that was doing the version checking and fixing the bug themselves. After the patch was
deployed, the server was started and worked flawlessly in production. Unfortunately, none of the
engineers were sent to Jamaica as a reward—as was promised by management—but such is life.

CHAPTER 5 Replacing and Patching Application Classes

obtain a new starting point and repeat the process. A good starting point is crucial for quick
results. Sometimes picking a class to start is fairly obvious. For example, for API or logic
patching the entry point would be the interface or class you want to change. If you want to
make a private method of a class into a public method, the starting point is the class in ques-
tion. If you need to fix a bug that results in a Java exception, the starting point is the class at
the top of the stack trace.

Regardless of the situation, after establishing a starting class you should obtain the source
code (decompiling the bytecode if you must) and, if necessary, traverse to the class that actu-
ally needs to be patched. This process is similar to traversing a sequence diagram, starting
from the method just described and examining each class that is invoked on the way. In large
systems with hundreds of classes, you might have to identify several starting points and pick
the one that provides the shortest route to the code you need to change.

Searching for Text Strings

A large, sophisticated system has dozens of packages and hundreds of classes. If you don’t
have a clear starting point, you can easily get lost while trying to traverse the application
logic. Think about the startup code for an application server such as WebLogic. During
startup, WebLogic performs hundreds of tasks and uses many threads to accomplish them—
and even with an unlimited supply of caffeine, I would not advise you to try to crack it by
traversing from the weblogic.Server class.

The most reliable approach for such cases is a text-based search for a string that is known to
be close to the target class. Well-written products and libraries can be configured to produce
extensive debug information into a log file. Besides the obvious benefits for maintenance and
troubleshooting, this makes locating the code responsible for the functionality in question
easier. When you configure the application to write a detailed log of the execution sequence
and a problem occurs somewhere, you can use the last successful (or the first erroneous) log
message to identify the entry point. As you might know, the bytecode stores strings as plain
text, which means you can search through all .class files for a substring that you have seen
in a log file. Suppose while using the security framework, an exception with the text Invalid
username is thrown on certain names. The reason for rejection is unknown, and so is the
solution. The easiest way to get to the code if the stack trace is unavailable is by searching for
Invalid username in all the .class files of the framework. Most likely it will be one or two
instances in the entire code, and by decompiling the class file, you will be able to understand
the root of the problem. Likewise, you can search all the class files for a method or class
name, a GUI label, a substring of an HTML page, or any other string you think is embedded
in the Java code.

Working with Obfuscated Code

A worse scenario is when you have to deal with the obfuscated code. A good obfuscator
renames packages, classes, methods, and variables. The best products on the market even
encode Java strings, so searching for a trace message can yield no results. This turns your task

A Sample Scenario That Requires Patching

into a hellish toil of understanding the application piece by piece. Here you have to use a
more creative approach; otherwise, it is like trying to find a needle in a haystack. Knowing
the principles of obfuscation can help you in the navigation. Although the obfuscator has the
freedom to change the application class and method names, it cannot do so for system
classes. For example, if a library checks for the presence of a file and throws an exception if
the file is not there, doing a binary search on the exception string might yield no results if
the obfuscator was smart enough to encode it. However, doing a search on File or
FileInputStream can lead you to the related code. Similarly, if the application incorrectly
reads the system date or time, you can search for the java.util.Date or getTime method of
the Calendar class. The biggest problem is that obfuscated classes cannot always be recom-
piled after decompilation. Refer to Chapter 2, “Decompiling Classes,” for more information.

A Sample Scenario That Requires Patching

We are going to modify the Chat application presented earlier to show the username and
hostname instead of just the hostname in the conversation window. As you recall, the origi-
nal application displays the hostname followed by a colon for each message that is received,

as shown in Figure 5.1.

“&. Chat Application

File Help

| Host Name: !JAMNCA ﬂ 'ﬂ.l

JANMAICA: Hello, world!
Vou: Hello, warld!

I'{DU BEE FOUZ

FIGURE 5.1 The main window of the
original Chat.

This makes the implementation of the utility easy,
but users will certainly prefer to see from which
person they are getting messages rather than
which computer is used to send the messages.
Chat is free and open for enhancements, but no
source code exists for it.

As is common with Java applications, the byte-
code is shipped in one or several JAR files, so the
first task is to create a working directory and unjar
all the libraries into it. This allows easy navigation
and direct access to the .class files, which are the
target of our research. After creating a working
directory executing jar xf chat.jar, we see the
following files:

images
AboutDialog.class
ChatApplication.class
ChatServer.class
ChatServerRemote.class
MainFrame.class
MainFrame$1.class
MessageInfo.class
MessageListener.class

CHAPTER 5 Replacing and Patching Application Classes

Let’s try all the approaches of locating the starting point presented earlier and see which one
works best for this application.

Using the Class Name

Luckily, the bytecode is not obfuscated, so we can look at the class names and see whether
we can pick the winner. A 5-second examination should lead to the conclusion that
MainFrame is the best candidate for a first look. Browsing through the decompiled code, we
see that all recording of the conversation is done via the appendMessage method that looks
like this:

void appendMessage(String message, MessageInfo messageInfo) {

if (messageInfo == null) {
this.conversation.append("");
this.conversation.append("You");

}

else {
this.conversation.append("");
this.conversation.append(messageInfo.getDisplayName());

this.conversation.append(": ");
this.conversation.append("");

this.conversation.append(message);

this.conversation.append("
");

this.txtConversation.setText(this.conversation.toString() +
"</BODY></HTML>");

The implementation of the method uses the getDisplayName () method of the MessageInfo
class to obtain the name of the sender. This leads us to decompiling the MessageInfo class to
obtain the implementation of getDisplayName, shown here:

public String getDisplayName() {
return getHostName();

Bingo! We have found out that the Chat user interface relies on MessageInfo and that the
current implementation uses just the hostname. Our task is therefore to patch
MessageInfo.getDisplayName() to use both the hostname and username.

A Sample Scenario That Requires Patching

Searching for Text Strings

Let’s pretend that Chat is a large application with more than 500 classes in many different
packages. Hoping to guess the right class based on its name is like hoping your code will run
correctly after the first compile. You need to use a more reliable method to obtain a starting
point. The Chat utility writes pretty decent log messages, so let’s try to use it. After starting it,
we send a message to another user, get a reply, and get the following output on the Java
console:

Initializing the chat server...

Trying to get the registry on port 1149

Registry was not running, trying to create one...
ChatApplication server initialized

Sending message to host JAMAICA: test

Received message from host JAMAICA

It is not hard to guess that appending a new message to the conversation history occurs
when a message is sent or received. It is also fairly obvious that information such as the host
that sent or was a destination for a message would not be a part of a static string. Therefore,
we will use Received message from host as a search criteria for all the .class files in the
working directory. The search produces one file, ChatServer.class, which we promptly
decompile to get ChatServer. jad. Searching for the string inside the decompiled source code
leads us to the receiveMessage () method, which is as follows:

public void receiveMessage(String message, MessageInfo messageInfo)
throws RemoteException

{
System.out.println("Received message from host " + messageInfo.getHostName());
if (messagelListener != null)
messagelListener.messageReceived(message, messageInfo);
}

Searching ChatServer. jad for messageListener, we get to know that it is an interface and a
method called setMessageListener() sets the listener instance. Now we have two options:
One is to find the classes that implement MessageListener and see which one (if several
exist) is associated with ChatServer. Another approach is based on the fact that Java method
names are stored as text inside the bytecode. Because the code is not obfuscated, we can
search for setMessageListener () in all the class files. We will use the latter method and run
the search. In our case, it returns two classes, ChatServer and MainFrame. We conclude that
only MainFrame acts as a listener on ChatServer and proceed to decompile it. The rest of the
investigation is performed exactly as in the previous section where we used the class name to
find MainFrame. In our sample application, guessing the starting point from the class name
proved to be faster, but a certain factor of luck is involved. Using log messages is a more reli-
able approach that works better for most real-life applications.

CHAPTER 5 Replacing and Patching Application Classes

Using the Call Stack to Navigate Application Logic

Many problems in Java manifest themselves through exceptions. Exceptions can be thrown
by Java runtime classes or by the application itself, and of course the error message provided
by the exception together with the exception type is usually sufficient to solve the problem.
But the reason this book exists is because not all things are simple in life. You can get a
NullPointerException or an exception with no error message, and if you are dealing with
third-party code, you will have no clue as to how to work around it. As long as the license
does not prevent you from decompiling the source code, or if you have the source code itself,
you can embark on a search using a much less painful method.

The easiest and most certain way to understand what is causing an exception is to rely on the
call stack. You should be aware that operating systems use a stack to keep track of the
method calls. If method A calls method B, A’s information is placed on the stack. If B further
calls method C, B’s information is placed on the stack as well. As each method returns, the
stack is used to determine which method should resume execution. Anyway, in Java you can
access the call stack either through a debugger (by calling printStackTrace() o