
Reverse Engineering Linux ELF Binaries on the
x86 Platform

(c) 2002 Sean Burford
The University of Adelaide

mailto:sean.burford@adelaide.edu.au
http://www.adelaide.edu.au/ITS/

Reverse Engineering

● Reverse Engineering is the process of examining and probing
a compiled program, and determining the original design of the
program

● The documentation a reverse engineer writes can be used to
◆ Document the purpose of an unknown program (the target)
◆ Recreate source code for the target
◆ Implement another program that is compatible with the target

programs communication or data format
◆ Add or disable features of the target
◆ Discover and document undocumented behaviour of the target

The Honeynet Reverse Challenge

● The HoneyNet Project aims to discover and document the
current methods and tools being used by crackers
◆ To acheive this objective, the project puts monitored "Honeypot"

machines on the Internet and waits until they are cracked
◆ Once the honeypot is cracked, the attackers tools and methods are

examined
❐ Tools are recovered from the compromised honeypot and reverse

engineered
❐ Network dumps are examined to determine the crackers actions
❐ Modified kernels and shells record the attackers keystrokes
❐ The attackers methods are studied for new attack patterns
❐ Future attack trends are predicted

● Scan of the Month

● The HoneyNet Projects books

● http://www.honeynet.org/

Methodology

● Determine your objective

● Identify relevant code or data
◆ Dead Listing
◆ Tracing Program Execution
◆ Examining Network Traffic

● Document program design

● Repeat

Determine Your Objective

There are many approaches

● Your objective will determine your methodology
◆ Quick focussed exploration

❐ Determine key functions and data
❐ Use deadlisting and debugging to find calls to key functions or

modifications of key data
❐ Examine and document interesting functions from previous step

◆ In depth analysis
❐ Generate call tree
❐ Examine and document functions either top down or bottom up
❐ Test documentation by running test data through the target
❐ Rewrite target in high level language

Example of a quick focussed approach

● A Shareware Windows disassembler

● Shareware version popped up a message on start up, and
stopped working after X days
◆ Objective: Remove the time check and message
◆ Method

❐ Disassemble the disassembler
❐ Find references to string stating that the program would expire
❐ Examine disassembly near point where message box is displayed
❐ Modify code at time check using a hex editor to jump past shareware tests

◆ Result: unwanted feature removed

Example of an in depth analysis

● The Honeynet Reverse Challenge
◆ Objective: Determine and document program behaviour
◆ Method

❐ Disassemble program
❐ Find main()
❐ Work in from main() labelling functions
❐ Determine packet format and encoding by examining functions that

handle the packets
❐ Build test client and confirm server execution follows what has already

been discovered
❐ Use the test client to probe unknown functionality while tracing the server

in a debugger
❐ Document the-binary and network protocols

◆ Result: Program and network protocol documented

Identify relevant code or data

Basic Information

● Basic Unix utilities such as 'file' and 'strings' reveal information
about an unknown binary
◆ file reveals that the-binary is a statically linked and stripped ELF

binary, for the Intel x86 platform
 [slide@host]$ file the-binary
the-binary: ELF 32-bit LSB executable, Intel 80386, version 1,
 statically linked, stripped

◆ strings reveals a few clues about the-binary's purpose and the
platform it was built on

 [slide@host]$ strings the-binary
[mingetty]
/tmp/.hj237349
/bin/csh -f -c "%s" 1> %s 2>&1
TfOjG
...
/bin/sh
/bin/csh -f -c "%s"
...
@(#) The Linux C library 5.3.12
...
yplib.c,v 2.6 1994/05/27 14:34:43 swen Exp

Introduction to the ELF File Structure

Inside an ELF executable file
 File Offset File Section Virtual Address

 0x00000 ELF Header
(readelf -h)

0x8048000

 0x00024 Program Header Table
(readelf -l)

0x8048024

 0x00080 Text Section
(contains segments: .init
 .text __libc_subinit .fini
 .rodata)
Read Only, Executable
0x24222 bytes

0x8048080

 0x24228 Data Section
(contains segments: .data
 .ctors .dtors .bss)
Read Write
0xc094 bytes

0x806d228

ELF Symbol Table

● Programmers usually make use of libraries of functions

● Program source code is compiled to create the program
binary, which the operating system can then run

● To save space and memory, the library functions that
programmers use are stored in a seperate file, referred to as a
shared library

● When a program is about to be run, the operating system runs
another program, called a dynamic linker, which loads the
required libraries into memory and links the program to them

● The dynamic linker uses the ELF binaries symbol table to
determine which libraries to load, and to modify the loaded
program so that it knows how to access the library functions

● The symbol table lists library functions that a program
uses

ELF Static Binaries

● Library functions can be built into the binary by the compiler,
rather than having the dynamic linker load them
◆ This enables the binary to run on computers that do not have the

necessary shared libraries installed
◆ The downside of this portability is that the library function cannot be

upgraded by simply replacing the shared library. Instead, the
binary has to be recompiled against the new library. This can be a
security problem if a hole is found in the library function.

● A static binary no longer needs a symbol table, as it does not
load functions from shared libraries. It may have one anyway,
listing the functions that are included inside the binary. These
function names help identify functions when you disassemble
the binary.

● The binary can be stripped of its symbol table, along with
debugging information such as function names, to reduce its
size

Rebuilding a stripped symbol table

● The Reverse Challenge binary is a static binary, so it does not
use any external libraries

● It has been stripped, so we do not know what the functions
built into the binary are

● The symbol table can be rebuilt
◆ 1. Generate a fingerprint of the first few bytes of each library

function that you think the binary include
◆ 2. Generate a list of functions within the binary
◆ 3. Create a fingerprint of the first few bytes of each function
◆ 4. Compare each function fingerprint from the binary with the library

function fingerprint set, and update the binaries symbol table with
the name of any matching functions

● The 'dress' utility, that comes with the Fenris debugging
package, can automatically rebuild symbol tables. It comes
with a collection of library function fingerprints.

Program and Data Structures

Loading an ELF binary

● When an ELF binary is loaded into memory, the operating
system loads each section into a different area of virtual
memory. It also allocates any memory required by the .bss
(uninitialised data) section. Finally, it creates a stack for short
term storage.

[root@host]# ps axc | fgrep the-binary
 987 ? S 0:00 the-binary
[root@host]# cat /proc/987/maps
// The text (code) section is mapped at 0x08048000
08048000-0806d000 r-xp 00000000 16:06 598925
 /home/slide/src/rev-challenge/reverse/the-binary
// The data section is mapped at 0x0806d000
0806d000-0807a000 rw-p 00024000 16:06 598925
 /home/slide/src/rev-challenge/reverse/the-binary
// The uninitialised data segment .bss is allocated at 0x0807a000
0807a000-0807f000 rwxp 00000000 00:00 0
// The stack is allocated at 0xbfffa000
bfffa000-c0000000 rwxp ffffb000 00:00 0

The Stack

● The stack is a First in Last out buffer in memory that is used to
store local variables and function call arguments

● Two CPU registers (variables) keep track of the stack:
◆ ESP Stack Pointer: points to the bottom of the stack
◆ EBP Branch Pointer: points to top of the stack for the current

function

● Two assembly instructions are provided for manipulating the
stack:
◆ push <register>: Stores a value onto the bottom of the stack, and

decrements ESP
◆ pop <register>: Retrieves a value from the bottom of the stack,

and increments ESP

● The stack is often manipulated to directly using offsets from
EBP, rather than using push and pop

Function Calls

● When a function is about to get called, its arguments are put
onto the bottom of the stack.

● The assembly instruction call <address> is used to call the
function. Call pushes the return address onto the bottom of
the stack

● The function then pushes EBP onto the stack, points EBP to
the bottom of the stack (EBP), and adjusts ESP to make space
for local variables
◆ Arguments to the function can now be referred to using positive

offsets from EBP
◆ Local variables can now be refered to using negative offsets from

EBP

● Before returning from the function, ESP is set back to EBP and
EBP is popped off the stack

● The assembly instruction ret (return) returns to the location
pointed to by the value at the bottom of the stack

Function Calls

● Example: the-binary inside main()
◆ __init() has called main(int argc, char *argv[], char *envp[]):

__entry_point__()
{
...
 main(int argc, char *argv[], char *envp);
...
}

main(int argc, char *argv[], char *envp)
{
...
}

Function Calls

● Example: the-binary inside main()
◆ At this point, the stack looks like this:

ESP=0xbfffb604
EBP=0xbffffb04
Stack:
// Bottom of stack is at 0xbfffb604
0xbffffb04: 0xbffffb18 // EBP value for return to __init
0xbffffb08: 0x080480eb // Return address from main()
0xbffffb0c: 0x00000001 // argc = 1
0xbffffb10: 0xbffffb24 // argv[] = ("the-binary", "")
0xbffffb14: 0xbffffb2c // envp[] = ("PWD", "/home/slide/...")
// End of arguments to main()
0xbffffb18: 0x00000000 // EBP value for return to __init
0xbffffb1c: 0x00000000 // Return address from __init()
// Top of stack is at 0xc0000000

◆ Note that __init() does not return, so no return value is stored on
the stack

Conditionals and Loops

● Compilers generate "signature" code for different program
structures, such as conditional statements (if, else, switch) and
loops (for, do while)

● By recognising this assembly code, we can guess what the
original program structure looked like
◆ The assembly representation of various C instructions changes,

depending on the compiler and the level of optimisation it does

● With concentration and time, we can reconstruct the original
program source

● A good paper on this is StrIkeR_MaN's tutorial "Introduction to
Reverse Engineering Software in Linux"
◆ http://www.acm.uiuc.edu/sigmil/RevEng/t1.htm

Automating Program Structure Analysis

● Reverse engineering the structure of a function is slow and
difficult

● Why not automate it?
◆ (because optimisation makes that difficult)

Automating Program Structure Analysis

● Reverse engineering the structure of a function is slow and
difficult

● Why not automate it?
◆ (because optimisation makes that difficult)

● REC - The Reverse Engineers Compiler
◆ Disassembles and decompiles executable to C like source
◆ Works wonders on the Reverse Challenge binary
◆ http://www.backerstreet.com/rec/rec.htm

Examining Deadlisting

Finding Relevant Functions

● Remove known functions to remove clutter

● Examine the call tree

● Search for calls to key functions

● Search for accesses to key data

The Call Tree - an in depth analysis tool

● A call tree shows which functions are called from within each
function

● Drawing a call familiarises you with the program structure, and
provides a quick reference as to the likely behaviour of each
function

__entry_point__()
 _exit()
 main()
 geteuid()
 fork()
 socket()
 receive()
 decrypt()
 cmd_01__status()
 encrypt()
 rand()
 send_response()
 cmd_02__configure()
...

Calls to Key Functions - a focussed examination
method

● By searching for calls key functions, we can quickly identify
interesting functions that are worth more investigation

● The key functions you are interested in will depend on the
functionality you are investigating

● For example, if you are interested in the format of packets that
the-binary accepts, you would start by searching for calls to
the recv() function

● Once you find the call to recv() in main(), you quickly find
decode() is the next function call!

Accesses to Key Data - a focussed examination
method

● By searching for manipulation of key data, we can quickly
identify interesting functions that are worth more investigation

● A disassembler that cross references data with variables in
code is really handy for this

● For example, the code to send responses to the controller of
the-binary uses an array of IP addresses as a list of addresses
to send response packets to

● By searching for accesses to this array, we quickly discover
that command 2 configures this list of response addresses

Limitations of Dead Listing

● Cannot see inside encrypted/encoded code or data

● May miss code hidden in sections other than .text

● Cannot easily examine variable values specified points of
execution

● May fall foul of anti-disassembly tricks

Tracing Program Execution

About Execution Tracing

● Provides opportunity to probe data values or program
behaviour

● When dealing with unknown binaries, this is a stupid, but
necessary, method
◆ Hit code hidden in library functions
◆ Lose control of execution
◆ Hit anti-debugger measures
◆ Accidentally launch attacks or modify system

● Use a virtual machine
◆ Easier to monitor
◆ Filesystem easy to restore
◆ Examples include User Mode Linux (linux under linux) or VMWare

Before Execution of an Untrusted Binary

● Baseline filesystem using tripwire or similar

● Take a snapshot of network state (netstat, nmap)

● Setup monitoring of network activity on a seperate machine

● Harden the monitoring hosts

● Disconnect from live networks

Gathering Information about a Running Program

● /proc
◆ Process Status (status)
◆ Command Line (cmdline)
◆ Environment (environ)
◆ Memory Map (maps)
◆ Open File Descriptors (fd)

● Tracing
◆ System Calls (strace)
◆ Library Calls (ltrace)
◆ Debugging (gdb, aegir, pice)

● Network Profile
◆ Network Footprint (netstat, nmap, lsof)
◆ Network Activity (ethereal, tcpdump)

Tracing using Strace

● strace shows system calls
[slide@host]$ strace -fxi ./the-binary
[????????] execve("./the-binary", ["./the-binary"], [/* 21 vars */]) = 0
[080480b6] personality(PER_LINUX) = 0
[08057216] geteuid() = 500
[08057562] _exit(-1) = ?
[slide@host]$

Tracing using Strace

● strace shows system calls
[root@host]# strace -fxi ./the-binary
[????????] execve("./the-binary", ["./the-binary"], [/* 24 vars */]) = 0
[080480b6] personality(PER_LINUX) = 0
[08057216] geteuid() = 0
[080574f9] sigaction(SIGCHLD, {SIG_IGN}, {SIG_DFL}, 0x40086558) = 0
[080571f2] fork() = 971
[pid 970] [08057562] _exit(0) = ?
[08057346] setsid() = 971
[080574f9] sigaction(SIGCHLD, {SIG_IGN}, {SIG_IGN}, 0x80575a8) = 0
[080571f2] fork() = 972
[pid 972] [08057142] chdir("/") = 0
[pid 972] [0805716e] close(0) = 0
[pid 972] [0805716e] close(1) = 0
[pid 972] [0805716e] close(2) = 0
[pid 972] [08057452] time(NULL) = 1029748047
[pid 972] [08056d1e] socket(PF_INET, SOCK_RAW, 0xb /* IPPROTO_??? */) = 0
[pid 972] [080574f9] sigaction(SIGHUP, {SIG_IGN}, {SIG_DFL}, 0x40054558) = 0
[pid 972] [080574f9] sigaction(SIGTERM, {SIG_IGN}, {SIG_DFL}, 0x40054558) = 0
[pid 972] [080574f9] sigaction(SIGCHLD, {SIG_IGN}, {SIG_IGN}, 0x80575a8) = 0
[pid 972] [080574f9] sigaction(SIGCHLD, {SIG_IGN}, {SIG_IGN}, 0x80575a8) = 0
[pid 972] [08056b74] recv(0,

Examining the State of a Process

● About the raw socket
◆ The socket is listening for packets that are using IP protocol 11
◆ This is a transport layer protocol
◆ Other transport layer protocols include TCP and UDP
◆ Transport layer protocols sit on top of network layer protocols such

as IP (in this case) or IPX

● Protocol 11 is reserved for Network Voice Protocol, a protocol
that is not widely used and is probably dead

● Packets using protocol 11 will bypass certain firewalls, for
example the RedHat 7.2 firewall blocks most TCP and UDP,
however protocol 11 is allowed through by default

Examining the State of a Process

● About the raw socket
◆ The socket is listening for packets that are using IP protocol 11
◆ This is a transport layer protocol
◆ Other transport layer protocols include TCP and UDP
◆ Transport layer protocols sit on top of network layer protocols such

as IP (in this case) or IPX

● Protocol 11 is reserved for Network Voice Protocol, a protocol
that is not widely used and is probably dead

● Packets using protocol 11 will bypass certain firewalls, for
example the RedHat 7.2 firewall blocks most TCP and UDP,
however protocol 11 is allowed through by default

● We now have enough information to block the-binary's
control channel at our firewall

Examining the State of a Process

● Discovering open files
[root@host]# /usr/sbin/lsof -p 972
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
the-binar 972 root cwd DIR 22,6 4096 2 /
the-binar 972 root rtd DIR 22,6 4096 2 /
the-binar 972 root txt REG 22,6 205108 598925
 /home/slide/src/rev-challenge/reverse/the-binary
the-binar 972 root 0u raw 5345
 00000000:000B->00000000:0000 st=07

● The raw entry is the raw socket, listening on protocol 11 (0x0B)

● Why has it opened the-binary?

Examining the State of a Process

● Discovering open files
[root@host]# /usr/sbin/lsof -p 972
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
the-binar 972 root cwd DIR 22,6 4096 2 /
the-binar 972 root rtd DIR 22,6 4096 2 /
the-binar 972 root txt REG 22,6 205108 598925
 /home/slide/src/rev-challenge/reverse/the-binary
the-binar 972 root 0u raw 5345
 00000000:000B->00000000:0000 st=07

● The raw entry is the raw socket, listening on protocol 11 (0x0B)

● Why has it opened the-binary?
[root@host]# cat /proc/972/maps
08048000-0806d000 r-xp 00000000 16:06 598925
 /home/slide/src/rev-challenge/reverse/the-binary
0806d000-0807a000 rw-p 00024000 16:06 598925
 /home/slide/src/rev-challenge/reverse/the-binary
0807a000-0807f000 rwxp 00000000 00:00 0
bfffb000-c0000000 rwxp ffffc000 00:00 0

● Every ELF program has itself open, as its .code and .data
sections are mapped into memory with mmap()

Examining the State of a Process

● Discovering network sockets
◆ (Assuming netstat has not been replaced)

● Take a netstat baseline
[root@host]# netstat -ln --protocol=inet
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

Examining the State of a Process

● Discovering network sockets
◆ (Assuming netstat has not been replaced)

● Take a netstat baseline
[root@host]# netstat -ln --protocol=inet
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

● Run the program
[root@host]# ./the-binary

Examining the State of a Process

● Discovering network sockets
◆ (Assuming netstat has not been replaced)

● Take a netstat baseline
[root@host]# netstat -ln --protocol=inet
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

● Run the program
[root@host]# ./the-binary

● Compare netstat output
[root@host]# netstat -ln --protocol=inet
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
raw 0 0 0.0.0.0:11 0.0.0.0:* 7

● This raw socket matches what strace and lsof show

Using a Debugger

● Tools available in debugging enviroments
◆ Breakpoints to pause execution

❐ When execution reaches a specified point
❐ When specified memory is accessed of modified

◆ Examine memory and CPU registers
◆ Modify memory and execution path

● Tools available in advanced debugging enviroments
◆ Attach comments to code or data
◆ Track higher level logic

❐ Level of function call nesting
❐ Memory, map and file descriptor tracking

◆ Function fingerprinting and naming
◆ Data structure templates and naming

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Previous examination had revealed that a particular packet sent to

the-binary caused it to spawn a shell that listened on port
23281/TCP, and that it required password

◆ A quick examination of the relevant function in the REC
disassembly revealed that the string "TfOjG" was somehow
compared to the password the user enters

◆ Telnetting to port 23281 and entering TfOjG did not give access to
the bindshell

◆ While waiting for the user to enter a password, the bindshell
function would be blocked in a recv() call

◆ I decided to use a debugger to determine what was happening to
the password I was entering

◆ I knew that the-binary and its children had a process name of
[mingetty]

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Modified REC disassembly of the bindshell function of the-binary

(at 0x08048984)
 client = accept(sockfd, raddrptr, raddrlenptr);
 if(client != 0) {
 if(fork() != 0) { goto L08048984; }
 recv(client, buffer, bufferlen, 0);
 ebx = 0;
 do {
 al = buffer[ebx];
 if(al == 0xa || al == 0xd) {
 buffer[ebx] = 0;
 } else {
 buffer[ebx]++;
 }
 } while(++ebx);
 if(memcmp(buffer, "TfOjG", 6) > 0) {
 send(client, escapecode, 4, 0);
 close(client);
 exit(1);
 }

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Request that the-binary launches a bindshell

[root@host]# ./the-client -i tap0 -s 192.168.32.1
 -d 192.168.32.32 bindshell

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Request that the-binary launches a bindshell

[root@host]# ./the-client -i tap0 -s 192.168.32.1
 -d 192.168.32.32 bindshell

◆ Telnet to the bindshell to reach recv()
[root@host]# telnet 192.168.32.32 23281

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Request that the-binary launches a bindshell

[root@host]# ./the-client -i tap0 -s 192.168.32.1
 -d 192.168.32.32 bindshell

◆ Telnet to the bindshell to reach recv()
[root@host]# telnet 192.168.32.32 23281

◆ Attach a debugger
target# ps ax | fgrep mingetty
 454 ? S 0:00 [mingetty]
 507 ? S 0:00 [mingetty]
 508 ? S 0:00 [mingetty]
target# gdb
(gdb) attach 508
Attaching to process 508
0x08056b74 in ?? ()
(gdb) bt // Examine stack
#0 0x08056b74 in ?? () // recv()
#1 0x080489cf in ?? () // bindshell function
#2 0x080480eb in ?? () // main()

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Set breakpoint on password compare (memcmp)

(gdb) disassemble 0x080489cf 0x08048a1b
Dump of assembler code from 0x80489cf to 0x8048a1b:
0x80489cf: xor %ebx,%ebx
0x80489d1: add $0x10,%esp
0x80489d4: mov 0xffffbc44(%ebx,%ebp,1),%al
...
0x8048a0f: mov $0x6,%ecx
0x8048a14: cld
0x8048a15: test $0x0,%al
0x8048a17: repz cmpsb %es:(%edi) ("TfOjG"),%ds:(%esi) (buffer)
0x8048a19: je 0x8048a44
End of assembler dump.
(gdb) break *0x8048a0f
Breakpoint 1 at 0x8048a0f
(gdb) cont
Continuing.

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Type the password "TfOjG" into the telnet session, the breakpoint

will be reached
(gdb) cont
Continuing.

Breakpoint 1, 0x08048a0f in ?? ()
(gdb) x/6c $edi // Examine the password
0x8067617: 84 'T' 102 'f' 79 'O' 106 'j' 71 'G' 0 '\000'
(gdb) x/6c $esi // And the encoded buffer
0xbfffb748: 85 'U' 103 'g' 80 'P' 107 'k' 72 'H' 0 '\000'

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell
◆ Type the password "TfOjG" into the telnet session, the breakpoint

will be reached
(gdb) cont
Continuing.

Breakpoint 1, 0x08048a0f in ?? ()
(gdb) x/6c $edi // Examine the password
0x8067617: 84 'T' 102 'f' 79 'O' 106 'j' 71 'G' 0 '\000'
(gdb) x/6c $esi // And the encoded buffer
0xbfffb748: 85 'U' 103 'g' 80 'P' 107 'k' 72 'H' 0 '\000'

◆ The password we entered, "TfOjG", has been turned into "UgPkH"
◆ Re-examining the REC disassembly reveals that the entered

password is rotated one character, so TfOjG becomes UgPkH
◆ Therefore, the correct password is SeNif

Using a Debugger - Quick focussed exploration

● Example: Examining the password handling of the-binary's
bindshell

[root@host]# telnet 192.168.32.32 23281
Trying 192.168.32.32...
Connected to 0.
Escape character is '^]'.
SeNiF
echo hi
hi
^]
telnet> close
Connection closed.

Examining Network Traffic

Capturing Network Traffic

● Network traffic can be captured and examined using a sniffer
◆ Sniffers include tcpdump, ethereal and snort

● In a switched environment, arp tools can help you capture
packets that are otherwise not sent to you
◆ Example arp tools include DugSongs arpspoof, or arp-sk
◆ It is easier to use a hub though...

Manipulating Network Traffic

● A proxy may help you manipulate traffic between a client and a
server
◆ Start with an existing proxy, such as udpproxy, and modify it to

intercept the packets you wish to modify

● The following iptables rule, from
http://www.thoughcrime.org/ie.html, will let you transparently
proxy certain connections, provided your proxy is listening on
the specified port:
◆ iptables -t nat -A PREROUTING -p tcp --source-port 1024:5000

--destination-port 443 -j REDIRECT --to-ports <$listenPort>

Prototyping Network Clients and Servers

● Using existing network libraries may speed development up
◆ libpcap: captures packets
◆ libnet: generates packets

● Modules to interface with these libraries from high level
languages such as Perl are probably available

Document program design

Take notes as you go

● Main features of examined code or data
◆ Functionality
◆ Algorithms
◆ Relationship to other programs
◆ Bugs
◆ Data structures
◆ Packet structures

● For examples, visit http://project.honeynet.org

Questions/Comments?

Links

Links - Papers

Honeynet

Honeynet Project:
 http://www.honeynet.org/

Reference

ELF Specification
 Text version with error corrections
 http://www.muppetlabs.com/~breadbox/software/ELF.txt
 http://www.muppetlabs.com/~breadbox/software/
 PDF version
 http://developer.intel.com/vtune/tis.htm
x86 Instruction reference
 Intel
 http://www.intel.com/design/pro/manuals/243191.htm
Linux syscall reference
 http://world.std.com/~slanning/asm/syscall_offline.html

Links - Papers
Tutorials

Tutorials from Fravia
 http://www.woodmann.com/fravia/student.htm
 http://tsehp.cjb.net/
Gij's IDA tutorial
 http://home.online.no/~reopsahl/files/gij!ida.txt
Tutorials from LinuxAssembly.org
 Startup state of Linux/i386 ELF binary
 http://linuxassembly.org/startup.html
 Self modifying code under Linux
 http://linuxassembly.org/self.html
Introduction to Reverse Engineering software in Linux: Striker Man
 http://www.acm.uiuc.edu/sigmil/RevEng/t1.htm
Linux Assembly howto
 http://www.tldp.org/HOWTO/Assembly-HOWTO/

Links - Papers
Articles

Phrack
 http://www.phrack.com/archives/
Linux Viruses, ELF File Format
 http://download.nai.com/products/media/vil/pdf/mvanvoers_VB_conf%202000.pdf
Cheating the ELF: Subversive Dynamic Linking to Libraries the grugq
 http://downloads.securityfocus.com/library/subversiveld.pdf
Papers by Silvio Cesare
 Kernel Function Hijacking
 http://www.big.net.au/~silvio/kernel-hijack.txt
 Linux Anti Debugging tricks - Fooling the debugger
 http://www.big.net.au/~silvio/linux-anti-debugging.txt
 etc...

Links - Tools
Disassembly

Fenris lcamtuf@bos.bindview.com
 http://razor.bindview.com/tools/fenris/index.html
REC
 http://www.backerstreet.com/rec/rec.htm
BIEW
 http://sourceforge.net/project/showfiles.php?group_id=1475

In Kernel Debuggers

PICE KlausPG@SonicBLUE.com
 http://pice.sourceforge.net/downloads.html
The-Dude
 http://sourceforge.net/projects/the-dude

Development

NASM
 http://nasm.sourceforge.net/
LibNet
 http://www.packetfactory.net/libnet/
LibPCap
 http://www.tcpdump.org/

Links - Tools
Tracing

User Mode Linux
 http://user-mode-linux.sourceforge.net/
VMWare
 http://www.vmware.com/download/workstation.html
 Get a 30 day license at
 http://www.vmware.com/vmwarestore/newstore/wkst_eval_login.jsp

ltrace
 http://packages.debian.org/unstable/utils/ltrace.html

tripwire
 http://sourceforge.net/projects/tripwire/

The coroners toolkit
 http://www.porcupine.org/forensics/tct.html
 docs from http://www.rootprompt.org/article.php3?article=738

IDA Pro demo
 Get it from http://www.datarescue.com/idabase/

Data structure analysis

Stan
 http://www.roqe.org/stan/

Links - Tools
Network

Ethereal
 http://www.ethereal.com/

Snort
 http://www.snort.org/
 source and docs

UDP Proxy
 http://sourceforge.net/projects/udpproxy/

Netcat
 http://www.atstake.com/research/tools/index.html#network_utilities

NMap
 http://www.insecure.org/nmap/
 link to http://www.linuxgazette.com/issue56/flechtner.html

Links - Tools
Debuggers IDE

Bastard Disassembly Environment (plus libdasm)
 http://bastard.sourceforge.net/

Anti Debugging

Burneye
 http://teso.scene.at/releases.php
 + lcamtufs analysis from
 http://216.239.33.100/search?q=cache:DovUnJaje3gC:lcamtuf.coredump.cx/fenris/be.txt+burneye+lcamtuf&hl=en&ie=UTF-8

	Title
	Reverse Engineering
	The Honeynet Reverse Challenge
	Methodology
	Determine Your Objective
	There are many approaches
	Example of a quick focussed approach
	Example of an in depth analysis

	Identify relevant code or data
	Basic Information
	Introduction to the ELF File Structure
	Inside an ELF executable file
	ELF Symbol Table
	ELF Static Binaries
	Rebuilding a stripped symbol table

	Program and Data Structures
	Loading an ELF binary
	The Stack
	Function Calls
	Function Calls
	Function Calls
	Conditionals and Loops
	Automating Program Structure Analysis

	Examining Deadlisting
	Finding Relevant Functions
	The Call Tree - an in depth analysis tool
	Calls to Key Functions - a focussed examination method
	Accesses to Key Data - a focussed examination method
	Limitations of Dead Listing

	Tracing Program Execution
	About Execution Tracing
	Before Execution of an Untrusted Binary
	Gathering Information about a Running Program
	Tracing using Strace
	Tracing using Strace
	Examining the State of a Process
	Examining the State of a Process
	Examining the State of a Process
	Using a Debugger
	Using a Debugger - Quick focussed exploration
	Using a Debugger - Quick focussed exploration
	Using a Debugger - Quick focussed exploration
	Using a Debugger - Quick focussed exploration
	Using a Debugger - Quick focussed exploration
	Using a Debugger - Quick focussed exploration

	Examining Network Traffic
	Capturing Network Traffic
	Manipulating Network Traffic
	Prototyping Network Clients and Servers

	Document program design
	Take notes as you go

	Questions/Comments?
	Links
	Links - Papers
	Links - Papers
	Links - Papers
	Links - Tools
	Links - Tools
	Links - Tools
	Links - Tools

