
University of Virginia Helali Bhuiyan

August 16, 2007 1

Ptrace (Process Trace)
Helali Bhuiyan

Linux provides ptrace as a process tracing tool, which can intercept system

calls at their entry and exit points, made from another process. ptrace provides a
mechanism by which a parent process may observe and control the execution of another
process. It can examine and change a child process’s core image and registers, and is
used primarily to implement breakpoint debugging and system call tracing.

ptrace takes the following arguments,
long ptrace(enum __ptrace_request request,
 pid_t pid,
 void *addr,
 void *data);
where,
request = type of behavior of ptrace. For example, we can attach or detach from a
process, read/write registers, read/write code segment and data segment.
pid = process id of the traced process
addr = address
data = data

A process can be traced by two ways:
1. The traced application can be run as a child, executing fork() within the parent
process, or the tracer application. In this case, the traced application needs to call
ptrace with the following parameters

ptrace(PTRACE_TRACEME, 0, NULL, NULL);

This means, we need to modify the source code of the traced application to add
this line of code.

2. If an application is already running and we want to trace it, then the tracer application
can use the following format of ptrace

ptrace(PTRACE_ATTACH, pid_of_traced_process, NULL, NULL);

In this case, the traced application needs not to add any code. In both cases, all we
need is the process id or pid to trace an application. The pid of a running process is
obtained by executing the ps command in Linux. Once being traced, the traced
application becomes a child process of the tracer application.

Once a process is being traced, whenever the traced process executes a system

call or returns from a system call, the control of execution is handed over to the tracer
application. Then the tracer application can check the arguments of the system call or do
other things, such as looking into the registers, modifying register values, inject codes

University of Virginia Helali Bhuiyan

August 16, 2007 2

into the code segment. Also values returned from the system call can be accessed and
modified in a similar way. Once the tracer application is done examining the system call,
the traced application can continue with the system call.

Example:
This section demonstrates the idea of ptrace with some examples. Help on how to use
ptrace can be found in the following two websites

http://www.linuxjournal.com/article/6100
http://www.linuxjournal.com/node/6210/print

In order to demonstrate the usage of ptrace, I wrote a small server and a client
application. The client application connects to the server by opening a TCP socket.
Then the client prompts the user for an input string to send, which is later transmitted
to the server application. In this example, the server application is run on host
zelda4 and the client is run on host zelda1,

Server
[amb6fp@zelda4 tracer]$./server 5001
#CC algorithm: bic
Here is the message: Hello World

Client
[amb6fp@zelda1 tracer]$./client 198.124.42.17 5001
CLIENT: socket fd: 3
CLIENT: buffer size: 8192000
CLIENT: #CC algorithm: bic
CLIENT: Please enter the message: Hello World
CLIENT: I got your message

Once the client connects to the server, it prints some basic information of the
socket. For example, it prints the buffer size and the congestion-control algorithm being
used for this connection. Then the client asks for the message from the user, which is
later transmitted to the server and printed. In order to distinguish between outputs
printed by the client and the ptrace application (interceptor), which is
explained later, the print commands executed from the client start with CLIENT: .
Similarly outputs of the interceptor application start with INTERCEPTOR: .

Before explaining how interceptor works, the following example shows the output
when the client application is traced by the interceptor,

[amb6fp@zelda1]$./interceptor ./client 198.124.42.17 5001
Number of input 4
INTERCEPTOR: This is a SOCKET call
INTERCEPTOR: Family:2 Type:1 Protocol:0
CLIENT: socket fd: 3

University of Virginia Helali Bhuiyan

August 16, 2007 3

CLIENT: buffer size: 8192000
INTERCEPTOR: This is a CONNECT call
INTERCEPTOR: IP: 198.124.42.17, Port: 5001, Family: 2
CLIENT: #CC algorithm: bic
CLIENT: Please enter the message: Hello World
CLIENT: I got your message
INTERCEPTOR: Exited

In this example, the client application is passed as an argument (with client’s own
arguments) to the interceptor application. As displayed, the interceptor
application traces the client application and traps the socket system call. It also traps
the connect system call, and prints the destination IP address and the port number, which
were passed as arguments to the connect call.

The following code segment of the interceptor application describes the idea on
how to trace an application,

 char *cmd[10];
 for(i = 0; i < argc-1; i++){
 cmd[i] = argv[i+1];
 }
 cmd[i] = (char *)0;

 pid_t processid = fork();
 if(processid == 0){
 ptrace(PTRACE_TRACEME, 0, NULL, NULL);
 execvp(argv[1], cmd);
 }

At first, arguments passed to the interceptor are copied in an array. Then a child
process is created by executing the fork command. At this point, the child process is
just an image of the parent process (interceptor), but it does not do anything
meaningful. Before actually running the client application (which is passed in the
command list), tracing of the child process is started by calling the ptrace function call.
Therefore, the interceptor will trap every system call from the beginning that will be
made from this child process. Once the tracing is started, the client application is
executed by the execvp command.

The interceptor application then enters into a loop and waits for any system call that
will be made from the client application. Once a system call is trapped, using the
ptrace function call with appropriate arguments, parameters passed to that system call
can be viewed and also be modified.

The interceptor application can also be used if a circuit-setup decision needs to be
made. If the destination IP address that has been passed to the connect system call
matches with the desired IP address, before letting the connect call to continue, a circuit-

University of Virginia Helali Bhuiyan

August 16, 2007 4

setup procedure can be executed. Once the circuit is set up, the traced application
continues with the connect call and transmits data over the circuit. Attached source code
has some example codes that explain this idea.

