< Day Day Up > [nexTap

) Java™ Puzzlers: Traps, Pitfalls, and
AVA Corner Cases

- -
L -'_f,_é_.l;-t RS By Joshua Bloch, Neal Gafter

Publisher: Addison Wesley
Professional

Pub Date: June 24, 2005
ISBN: 0-321-33678-X

Table of Contents | Index
Overview

"Every programming language hasits quirks. This lively book reveal s oddities of the Java
programming language through entertaining and thought-provoking programming puzzes."

--Guy Steele, Sun Fellow and coauthor of The Java™ Language Specification
"I laughed, | cried, | threw up (my handsin admiration)."
--Tim Pelerls, president, Prior Artisans LLC, and member of the JSR 166 Expert Group

How well do you really know Java? Are you a code d euth? Have you ever spent days chasing a
bug caused by atrap or pitfall in Javaor itslibraries? Do you like brainteasers? Then thisisthe
book for you!

In the tradition of Effective Java™, Bloch and Gafter dive deep into the subtl eties of the Java
programming language and its core libraries. | llustrated with visually stunning optical illusions,
Java™ Puzzersfeatures 95 diabolica puzzlesthat educate and entertain. Anyone with a
working knowledge of Javawill understand the puzzl es, but even the most seasoned veteran
will find them challenging.

Mogt of the puzzles take the form of a short program whose behavior isn't what it seems. Can
you figure out what it does? Puzzl es are grouped |oosely according to the features they use, and
detail ed sol utions fol low each puzzle. The solutions go well beyond a simple explanation of the
program's behavior--they show you how to avoid the underlying traps and pitfalIsfor good. A
handy catalog of traps and pitfalls at the back of the book provides a concise taxonomy for
future reference.

Solve these puzzles and you'll never again fall prey to the counterintuitive or obscure behaviors
that can fool even the most experienced programmers.

< Day Day Up >

LS e [nexT e

- ' Java™ Puzzlers: Traps, Pitfalls, and
|1 AVA Corner Cases
1.

%L]: RS By Joshua Bloch, Neal Gafter

Publisher: Addison Wesley
Professional

Pub Date: June 24, 2005
ISBN: 0-321-33678-X

Table of Contents | Index

Copyright
Preface

Acknowledgments

Chapter 1. Introduction

Chapter 2. Expressive Puzzlers
Puzzle 1: Oddity
Puzzle 2: Time for a Change
Puzzle 3: Long Division
Puzzle 4: It's Elementary
Puzzle 5: The Joy of Hex
Puzzle 6: Multicast
Puzzle 7: Swap Meat
Puzzle 8: Dos Equis
Puzzle 9: Tweedledum
Puzzle 10: Tweedledee

Chapter 3. Puzzlers with Character
Puzzle 11: The Last Laugh
Puzzle 12: ABC
Puzzle 13: Animal Farm
Puzzle 14: Escape Rout
Puzzle 15: Hello Whirled
Puzzle 16: Line Printer
Puzzle 17: Huh?
Puzzle 18: String Cheese
Puzzle 19: Classy Fire
Puzzle 20: What's My Class?
Puzzle 21: What's My Class, Take 2
Puzzle 22: Dupe of URL
Puzzle 23: No Pain, No Gain

Chapter 4. Loopy Puzzlers
Puzzle 24: A Big Delight in Every Byte
Puzzle 25: Inclement Increment
Puzzle 26: In the Loop
Puzzle 27: Shifty i's
Puzzle 28: Looper
Puzzle 29: Bride of Looper
Puzzle 30: Son of Looper
Puzzle 31: Ghost of Looper
Puzzle 32: Curse of Looper

Puzzle 33: Looper Meets the Wolfman
Puzzle 34: Down for the Count
Puzzle 35: Minute by Minute
Chapter 5. Exceptional Puzzlers
Puzzle 36: Indecision
Puzzle 37: Exceptionally Arcane
Puzzle 38: The Unwelcome Guest
Puzzle 39: Hello, Goodbye
Puzzle 40: The Reluctant Constructor
Puzzle 41: Field and Stream
Puzzle 42: Thrown for a Loop
Puzzle 43: Exceptionally Unsafe
Puzzle 44: Cutting Class
Puzzle 45: Exhausting Workout
Chapter 6. Classy Puzzlers
Puzzle 46: The Case of the Confusing Constructor
Puzzle 47: Well, Dog My Cats!
Puzzle 48: All | Get Is Static
Puzzle 49: Larger Than Life
Puzzle 50: Not Your Type
Puzzle 51: What's the Point?
Puzzle 52: Sum Fun
Puzzle 53: Do Your Thing
Puzzle 54: Null and Void
Puzzle 55: Creationism
Chapter 7. Library Puzzlers
Puzzle 56: Big Problem
Puzzle 57: What's in a Name?
Puzzle 58: Making a Hash of It
Puzzle 59: What's the Difference?
Puzzle 60: One-Liners
Puzzle 61: The Dating Game
Puzzle 62: The Name Game
Puzzle 63: More of the Same
Puzzle 64: The Mod Squad
Puzzle 65: A Strange Saga of a Suspicious Sort
Chapter 8. Classier Puzzlers
Puzzle 66: A Private Matter
Puzzle 67: All Strung Out
Puzzle 68: Shades of Gray
Puzzle 69: Fade to Black
Puzzle 70: Package Deal
Puzzle 71: Import Duty
Puzzle 72: Final Jeopardy
Puzzle 73: Your Privates Are Showing
Puzzle 74: Identity Crisis
Puzzle 75: Heads or Tails?
A Glossary of Name Reuse
Chapter 9. More Library Puzzlers
Puzzle 76: Ping Pong
Puzzle 77: The Lock Mess Monster
Puzzle 78: Reflection Infection
Puzzle 79: It's a Dog's Life

Puzzle 80:
Puzzle 81:
Puzzle 82:
Puzzle 83
Puzzle 84:
Puzzle 85:
Chapter 10.
Puzzle 86:
Puzzle 87:
Puzzle 88:
Puzzle 89:
Puzzle 90:
Puzzle 91:
Puzzle 92:
Puzzle 93:
Puzzle 94:
Puzzle 95:
Appendix A.
Section 1.
Section 2.
Section 3.
Section 4.
Section 5.
Section 6.
Section 7.
Section 8.
Section 9.

Section 10.
Section 11.
Section 12.
Section 13.
Section 14.
Section 15.

Appendix B.

Further Reflection
Charred Beyond Recognition
Beer Blast

: Dyslexic Monotheism

Rudely Interrupted

Lazy Initialization

Advanced Puzzlers
Poison-Paren Litter

Strained Relations

Raw Deal

Generic Drugs

It's Absurd, It's a Pain, It's Superclass!
Serial Killer
Twisted Pair

Class Warfare

Lost in the Shuffle
Just Desserts

Catalog of Traps and Pitfalls
Lexical Issues

Integer Arithmetic
Floating-Point Arithmetic
Expression Evaluation

Flow of Control

Class Initialization

Instance Creation and Destruction

Other Class- and Instance-Related Topics

Name Reuse
Strings
1/0
Threads
Reflection
Serialization
Other Libraries
Notes on the Illusions

Ambiguous Figures

Impossible Figures

Geometrical lllusions: Size

Geometrical lllusions: Direction

Subjective

Contours

Anomalous Motion lllusions

lllusions of Lightness

Compound lllusions

References
Index

< Day Day Up >

8 FREV < Day Day Up > | NExTHp |

Copyright

Many of the des gnations used by manufacturers and sellersto distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital lettersor in al capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include el ectronic versions and/or custom covers and content particul ar
to your busi ness, training goal s, marketing focus, and branding interests. For more information,

pl ease contact:

U.S. Corporate and Governnment Sal es
(800) 382-3419

cor psal es@ear sont echgr oup. com

For sales outside the U.S,, please contact:

| nt er nati onal Sal es

i nt ernational @ear soned.com

Vist uson the Web: www.awprofessional.com

Library of Congress Catal ogi ng-in-Publication Data

Bl och, Joshua.

Java puzzlers : traps, pitfalls, and corner cases.
p. cm

I ncl udes bibliographical references and index.

| SBN 0- 321-33678- X (pbk. : al k. paper)

1. Java (Conputer programlanguage) |. Gafter, Neal. Il. Title.

QA76. 73.338B58 2005
005. 13" 3—dc22

2005015278

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storagein aretrieva system, or transmission in any form or by any means, el ectronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Educati on, | nc.
Rights and Contracts Departnent
One Lake Street

Upper Saddl e R ver, NJ 07458

Text printed in the United States on recycled paper at Courier in Stoughton, M assachusetts.
Frst printing, June 2005

Dedication

To the memory of our fathers:
FritzW. Bloch (May 2, 1911-May 24, 2003)

Benjamin Abraham Gafter (June 15, 1923-December 14, 2003)

4@ FREV | < Day Day Up > | NEXT |

8 FREV < Day Day Up > | NExTHp |

Preface

Like many books, this one had along gestation period. We've collected Java puzzlesfor aslong as
we've worked with the platform: since mid-1996, in case you're curious. In early 2001, we came up
with the idea of doing atalk consisting entirely of Java puzzles. We pitched theideato Larry
Jacobs, then at Oracle, and he bought it hook, line, and sinker.

We gavethefirg "Java Puzzlers' talk at the Oracle Open World conference in San Francisco in
November 2001. To add a bit of pizazz, we introduced ourselves as "Click and Hack, the Type-it
Brothers' and stole a bunch of jokesfrom Tom and Ray Magliozzi of Car Talk fame. The
presentati on was voted best-in-show, and probably would have been even if we hadn't voted for
ourselves. We knew we were on to something.

Dressed in spiffy blue mechanic's overal Is embl azoned with the " cup and steam” Java logo, we
recycled the Oracle talk at JavaOne 2002 to rave reviews—at |east from our friends. In the years
that foll owed, we came up with three more "Java Puzzlers" talks and presented them at countless
conferences, corporations, and collegesin cities around the g obe, from Od o to Tokyo. The talks
were almost universally well liked, and we got very little fruit thrown at us. In the March 2003 issue
of Linux Magaz ne, we published an article cons sting entirely of Java puzzles and received amost
no hate mail. Thisbook contains nearly al the puzzesfrom our talks and articles and many, many
more.

Although this book draws attention to the traps and pitfalls of the Java platform, we do not mean to
denigrateit in any way. It is because we love the Java platform that we've devoted nearly a decade
of our professional livesto it. Every platform with enough power to do real work has some
problems, and Java has far fewer than most. The better you understand the problems, the lesslikely
you are to get hurt by them, and that's where this book comesin.

Mogt of the puzzles in the book focus on short programs that appear to do one thing but actually do
something else. That's why we've chosen to decorate the book with optica illusions—drawings that
appear to be one thing but are actually another. Also, you can stare at them while you're trying to
figure out what in the world the programs do.

Above all, we wanted this book to be fun. We sincerel y hope that you enjoy solving the puzzles as
much as we enjoyed writing them and that you learn as much from them as we did.

And by all means, send us your puzzlers! If you have a puzz e that you think belongs in afuture
edition of thisbook, write it on the back of a $20 bill and send it to us, or e-mail it to
puzzlers@javapuzzl ers.com. If we use your puzzle, we'll give you credit.

Last but not |east, don't code like my brother.

@ FREV < Day Day Up > | NEXT WP

| 4m PREV < Day Day Up > NEXT o |

Acknowledgments

We thank the whol e team at Addison-Wedley for their kindness and prof essionalism. Early in the
life of this project, Ann Sellerswas our editor. Her infecti ous enthusiasm hel ped get the project off
to agood start. When Ann moved on, Greg Doench, executive editor, took over. Gregisa
wonderful editor and a perfect gentleman. He accommodated the many demands of this proj ect
without batting an eyelash. Greg's editoria assistant is Noreen Regina. Our project editor is Tyrrel
Albaugh and our marketing manager is Stephane Nakib. Our cover designer is Chuti Prasertsith and
our copy editor is Evelyn Pyle. They all did great work under atight schedule.

We thank our management at Google for their support. Our director, Prabha Krishna, was
unfailingly encouraging. We thank Sergey Brin, Larry Page, and Eric Schmidt for creating the best
engineering environment on the planet.

We thank the many Java programmers who submitted bug reports to Sun over the years, especially
those who submitted bug reports that turned out not to describe real bugs. Such bug reports were
perhaps the richest source of puzzler material: If correct behavior mised programmersinto thinking
that they had discovered abug, it probably represents atrap or pitfal. In asimilar vein, we thank
Sun for having the courage and wisdom to put the entire Java bug database on the Web in 1996
[Bug]. This action was unheard of at thetime; eventoday itisrare.

"Send usyour puzzlers,” we said at the end of each talk, and send them you did—from al over the
world. Special thanks are due Ron Gabor and Mike "madbot” McCloskey for the sheer magnitude
of their contributions. Ron contributed Puzzles 28, 29, 30, and 31 and Mike contributed Puzzles 18,
23, 40, 56, and 67. We thank Martin Buchhol z for contri buting Puzzle 81; Armand Dijamco for
contributing Puzzle 14; Prof. Dr. Dominik Gruntz for contributing Puzzles 68 and 69; Kai Huang for
contributing Puzzle 77; Jm Hugunin for contributing Puzzle 45; Tim Huske for contributing Puzzle
41; Peter Kesder for contributing Puzzle 35; Michael Klobe for contributing Puzzle 59; Magnus
Lundgren for contributing Puzzle 84; Scott Seligman for contributing Puzzle 22; Peter Sout for
contributing Puzzle 39; Michael Tennes for contributing Puzzle 70; and Martin Traverso for

contri buting Puzzle 54.

We thank the dedicated band of reviewers who read the chapters of this book in raw form: Peter
von der Ahé, Pablo Belver, Tracy Bialik, Cindy Bloch, Dan Bloch, Beth Bottos, Joe Bowbeer, Joe
Darcy, Bob Evans, Brian Goetz, Tim Halloran, Barry Hayes, Tim Huske, Akiyoshi Kitaoka, Chris
Lopez, Mike "madbot” McCloskey, Michael Nielsen, Tim Peierls, Peter Rathmann, Russ Rufer,
Steve Schirripa, Y ashiki Shibata, Marshall Spight, Guy Seele, Dean Sutherland, Mark Taylor,
Darlene Wallach, and Frank Yéllin. They found flaws, suggested improvements, offered
encouragement, and hurled invective. Any flawsthat remain are the fault of my coauthor.

We thank the queen of the bloggers, Mary Smaragdis, for providing a home for us on her celebrated
blog [MaryBlog]. She gracioudy let us try out the material that became Puzzles 43, 53, 73, 87, and
94 on her readers. We judged the sol utions and Mary gave out the prizes. For the record, the
winners were Tom Hawtin, Tom Hawtin (again), Bob "Crazybob" Lee, Chris Nokleberg, and the
mysterious AT of Odessa, Ukraine. The discussions on Mary's blog contributed greatly to these
puzzles.

We thank our many supporters who responded enthusi astically to Java Puzzlers over the years. The
members of SDForum Java SIG served as guinea pigsfor each talk in its preliminary form. The
JavaOne program committee provided a home for the talks. Y uka Kamiya and Masayoshi Okutsu
made the "Java Puzzlers’ talks a successin Japan, where they took the form of real game shows
with onstage contestants. Remarkably, the same person won every single contest: The undisputed
Java Puzzler champion of Japan is Yasuhiro Endoh.

We thank James Godling and the many fine engineers who created the Java platform and improved
it over the years. A book like this makes sense only for a platform that i s rock solid; without Java,
there could be no "Java Puzzlers."

Numerous colleagues at Googl e, Sun, and €l sewhere parti cipated in technical discussionsthat
improved the quality of thisbook. Among others, Peter von der Ahé, Dan Bloch, and Gilad Bracha
contributed useful insights. We give specia thanks to Doug Lea, who served as a sounding board
for many of the ideasin the book. Once again, Doug was unfailingly generous with histime and
knowl edge.

We thank Professor Akiyoshi Kitaoka of the Department of Psychology at Ritsumeikan University
in Kyoto, Japan, for permission to use some of hisoptical illusionsto decorate thiswork. Professor
Kitaoka'sillusions are, quite smply, astonishing. Words cannot do them justice, so you owe it to
yourself to take a look. He has two volumes availabl e in Japanese [Kitaoka02, Kitaoka03]. An
English trand ation encompassi ng both volumesis coming soon [Kitaoka05]. In the meantime, pay a
visit to hisWeb site: http://www.ritsumel .ac.j p/~akitaokal/index-e.html. You won't be disappointed.

We thank Tom and Ray Magliozzi of Car Talk for providing jokesfor usto steal, and we thank
their legal counsel of Dewey, Cheetham, and Howe for not suing us.

We thank Josh's wife, Cindy, for hel ping us with FrameMaker, writing the index, helping us edit the
book, and designing the decorative stripe at the beginning of each chapter. Last but not |east, we
thank our families—Cindy, Tim, and Matt Bloch, and Ricki Lee, Sarah, and Hannah Gafter—for
encouraging us to write and for putting up with us while we wrote.

Josh Bloch

Neal Gafter

San Jose, California
May 2005

| 4m PREV < Day Day Up > NEXT o |

http://www.ritsumei.ac.jp/~akitaoka/index-e.html

| 4m PREV < Day Day Up > NEXT o |

Chapter 1. Introduction

This book isfilled with brainteasers about the Java programming language and its core libraries.
Anyone with a working knowl edge of Java can understand these puzzl es, but many of them are
tough enough to challenge even the most experienced programmer. Don't feel bad if you can't solve
them. They are grouped loosely according to the features they use, but don't assume that the trick to
apuzzleisrelated to its chapter heading; we reserve the right to midead you.

Mogt of the puzzles exploit counterintuitive or obscure behaviors that can lead to bugs. These
behaviors are known astraps, pitfalls, and corner cases. Every platform has them, but Java has far
fewer than other platforms of comparable power. The goa of the book isto entertain you with
puzzles while teaching you to avoid the underlying traps and pitfals. By working through the
puzzles, you will become lesslikely to fal prey to these dangersin your code and more likely to
spot them in code that you are reviewing or revising.

This book is meant to be read with acomputer at your side. To get the most out of the puzzles,
you'll need a Java devel opment environment, such as Sun's JDK [JDK-5.0]. It should support
release 5.0, as some of the puzzlesrely on featuresintroduced in thisrelease. You can download the
source code for the puzzles from www.javapuzzlers.com. Unless you're a glutton for puni shment,
we recommend that you do this before solving the puzzles. It's a heck of alot easier than typing
them in yourself.

Most of the puzzles take the form of a short program that appearsto do one thing but actually does
something else. It's your job to figure out what the program does. To get the most out of these
puzzles, we recommend that you take this approach:

1. Study the program and try to predict its behavior without using a computer. If you don't see a
trick, keep looking.

2. Once you think you know what the program does, run it. Did it do what you thought it woul d?
If not, can you come up with an explanation for the behavior you observed?

3. Think about how you might fix the program, assumingit is broken.
4. Then and only then, read the solution.

Some of the puzZ esrequire you to write asmall amount of code. To get the most out of these
puzzles, we recommend that you try—at |east briefl y—to solve them without using a computer, and
then test your solution on a computer. If your code doesn't work, play around with it and see
whether you can make it work before reading the sol ution.

Unlike most puzzle books, this one aternates between puzzles and their solutions. This all ows you
to read the book without flipping back and forth between puzzles and sol utions. The book islaid out
so that you must turn the page to get from a puzzleto its solution, so you needn't fear reading a
solution accidentally while you're still tryingto solve a puzzle.

We encourage you to read each solution, even if you succeed in solving the puzzle. The solutions
contain analysis that goeswell beyond a smple explanation of the program's behavior. They discuss
the relevant traps and pitfalls, and provide lessons on how to avoid faling prey to these hazards.
Like most best-practice guidelines, these |essons are not hard-and-fast rules, but you should violate
them only rarely and with good reason.

Most solutions contain references to rel evant sections of The Java™ Language Specification, Third
Edition [JLS]. These references aren't essential to understanding the puzzes, but they are useful if
you want to del ve deeper into the language rules underlying the puzzles. S milarly, many solutions
contain references to relevant itemsin Effective Java™ Programming Language Guide [EJ]. These
references are useful if you want to del ve deeper into best practices.

Some solutions contain discussi ons of the language or API design decisions that led to the danger
illustrated by the puzzle. These "lessons for language designers' are meant only asfood for thought
and, like other food, should be taken with agrain of salt. Language design decisions cannot be made
in isolation. Every language embodies thousands of design decisions that interact in subtle ways. A
design decision that isright for one language may be wrong for another.

Many of the traps and pitfallsin these puzzles are amenabl e to automatic detection by static
analysis: analyzing programs without running them. Some excellent tool s are avail abl e for detecting
bugs by static analys' s, such as Bill Pugh and David Hovemeyer's FindBugs [Hovemeyer04]. Some
compilersand IDEs, such as Jikes and Eclipse, perform bug detection aswell [Jikes, Eclipse]. If
you are using one of these compilers, it is especially important that you not compile a puzzl e until
you've tried to solve it: The compiler's warning messages may give away the solution.

The appendix of this book isa catalog of the traps and pitfallsin the Java platform. It provides a
concise taxonomy of the anomalies exploited by the puzzes, with references back to the puzzles
and to other relevant resources. Do not ook at the appendix until you're done solving the puzzes.
Reading the appendix first would take all the fun out of the puzzles. After you've finished the
puzzles, though, thisisthe place you'll turn to for reference.

| #m FREV < Day Day Up > NEXT @ |

LS e [nexT e

Chapter 2. Expressive Puzzlers

The puzzlesin this chapter are smple. They invol ve only expression evaluation. But remember, just
because they're s mple doesn't make them easy.

LS R A AN R =y

8 FREV < Day Day Up > | NExTHp |

Puzzle 1: Oddity

The following method purports to determine whether its sole argument is an odd number. Does the
method work?

public static bool ean isOdd(int i) {

return i %2 == 1;

Solution 1: Oddity

An odd number can be defined as an integer that isdivisible by 2 with a remainder of 1. The
expressoni % 2 computes the remainder wheni isdivided by 2, so it would seem that this
program ought to work. Unfortunately, it doesn't; it returns the wrong answer one quarter of the
time.

Why one quarter? Because half of all i nt values are negative, and the i sodd method fails for all
negative odd values. It returnsf al se when invoked on any negative value, whether even or odd.

This is a consequence of the definition of Java's remainder operator (9. It is defined to satisfy the
following identity for al i nt vauesa and all nonzeroi nt valuesb:

(al b) *b+(a%b) == a

In other words, if you divide a by b, multiply the result by b, and add the remai nder, you are back
where you started [JLS 15.17.3]. Thisidentity makes perfect sense, but in combination with Javas
truncating integer division operator [JLS 15.17.2], it impliesthat when the remainder operation
returnsa nonzero result, it has the same sign asitsleft operand.

Thei sadd method and the definition of the term odd on which it was based both assume that all
remai nders are positive. Although this assumption makes sense for some kinds of division [Boxing],
Java's remai nder operation is perfectly matched to itsinteger division operation, which discards the
fractional part of itsresult.

Wheni isanegative odd number,i % 2 isequal to - 1 rather than 1, so thei sodd method
incorrectly returnsf al se. To prevent this sort of surprise, test that your methods behave properly
when passed negative, zer o, and positive valuesfor each numerical parameter.

The problem is easy to fix. Simply comparei % 2 to 0 rather than to 1, and reverse the sense of the
compari son:

public static bool ean i sGdd(int i) {

return i %2 !'= 0;

If you are using thei sodd method in a performance-critical setting, you would be better off using
the bitwise AND operator (&) in place of the remainder operator:

public static bool ean i sCdd(int i) {

return (i & 1) !'= 0;

The second version may run much faster than the first, depending on what platform and virtual
machine you are using, and isunlikely to run dower. Asageneral rule, the divide and remainder
operations are dow compared to other arithmetic and logical operations. It'sa bad ideato
optimize prematurely, but in this case, the faster version isas clear asthe original, so thereisno
reason to prefer the original.

In summary, think about the signs of the operands and of the result whenever you use the remai nder
operator. The behavior of this operator is obviouswhen its operands are nonnegative, but itisnt so
obvious when one or both operands are negative.

4@ FREV | < Day Day Up > | NEXT |

8 FREV < Day Day Up > | NExTHp |

Puzzle 2: Time for a Change

Consider the following word problem:

Tom goesto the auto parts store to buy a spark plug that costs $1.10, but all he hasin his
wallet are two-dollar bills. How much change should he get if he pays for the spark plug with
atwo-dollar bill?

Here is a program that attempts to solve the word problem. What doesit print?

public class Change {
public static void main(String args[]) {

Systemout.println(2.00 - 1.10);

Solution 2: Time for a Change

Naively, you might expect the program to print 0. 90, but how could it know that you wanted two
digits after the decima point? If you know something about the rules for converting doubl e values
to strings, which are specified by the documentation for Doubl e. t oSt ri ng [Java-API], you know
that the program prints the shortest decimal fraction sufficient to distinguish the doubl e value from
its nearest nel ghbor, with at least one digit before and after the decimal point. It seems reasonable,
then, that the program should print 0. 9. Reasonabl e, perhaps, but not correct. If you ran the
program, you found that it prints0. 8999999999999999.

The problem isthat the number 1.1 can't be represented exactly as adoubl e, SO it isrepresented by
the closest doubl e value. The program subtracts this value from 2. Unfortunately, the result of this
caculation is not the closest doubl e value to 0.9. The shortest representation of the resulting

doubl e value isthe hideous number that you see printed.

More generally, the problem isthat not all decimals can be represented exactly using binary
floating-point. If you are using release 5.0 or alater release, you might be tempted to fix the
program by using the pri nt f facility to set the precision of the output:

/'l Poor solution - still uses binary floating-point!

Systemout.printf("% 2f%", 2.00 - 1.10);

This printsthe right answer but does not represent a general sol ution to the underlying problem: It
still uses doubl e arithmetic, which is binary floating-point. Hoating-point arithmetic provides good
approximati ons over awide range of values but does not generally yield exact results. Binary
floating-point is particularly ill-suited to monetary calculations, asit isimpossi ble to represent
0.1—or any other negative power of 10—exactly as afinite-length binary fraction [EJ Item 31].

One way to solve the problemisto use an integral type, such asi nt or | ong, and to perform the
computation in cents. If you go this route, make sure the integral type islarge enough to represent
all the values you will use in your program. For this puzzle, i nt isample. Hereishow theprintin
looksif werewriteit usngi nt valuesto represent monetary valuesin cents. Thisversion prints 90
cent s, which isthe right answer:

Systemout.println((200 - 110) + " cents");

Another way to solve the problem is to use Bi gbeci mal , which performs exact decimal arithmetic.
It also interoperates with the SQL DECI MAL type via JDBC. Thereis one caveat: Always use the

Bi gDeci mal (Stri ng) constructor, never Bi gDeci mal (doubl) . Thelatter constructor creates an
instance with the exact value of itsargument: new Bi gDeci mal (. 1) returns aBi gDeci mal
representing 0.1000000000000000055511151231257827021181583404541015625. Using

Bi gDeci mal correctly, the program prints the expected result of 0. 90:

i nport java.mat h. Bi gDeci mal ;
public class Change {
public static void main(String args[]) {
System out. printl n(new Bi gDeci nmal ("2.00").

subt ract (new BigDecimal ("1.10")));

This version is not terribly pretty, as Java provides no linguistic support for Bi gDeci mal .
Calculations with Bi gDeci mal are also likely to be dower than those with any primitive type, which
might be an issue for some programs that make heavy use of decimal calculations. It is of no
consequence for most programs.

In summary, avoid f | oat and doubl e where exact answersar erequired; for monetary

calculations, useint, 1ong, Or Bi gDeci mal . For language designers, consider providing linguistic
support for decimal arithmetic. One approach isto offer limited support for operator overloading,
so that arithmetic operators can be made to work with numerical reference types, such as

Bi gDeci mal . Another approach isto provide a primitive decimal type, asdid COBOL and PL/I.

| 4@ FREV < Day Day Up > | NExTHp |

Puzzle 3. Long Division

This puzzleiscalled Long Division because it concerns a program that dividestwo | ong values.
The dividend represents the number of microseconds in a day; the divisor, the number of
milliseconds in aday. What does the program print?

public class LongDivision {
public static void main(String[] args) {

final 1ong M CRCS_PER DAY

24 * 60 * 60 * 1000 * 1000;
final long MLLIS PER DAY = 24 * 60 * 60 * 1000;

Systemout.printl n(MCRCS _PER DAY / M LLIS PER DAY);

Solution 3: Long Division

This puzzl e seems reasonably straightforward. The number of milliseconds per day and the number
of microseconds per day are constants. For clarity, they are expressed as products. The number of
microseconds per day is (24 hours/day - 60 minutes/hour - 60 seconds/minute - 1,000
milliseconds/second - 1,000 microseconds/millisecond). The number of milliseconds per day differs
only inthat it is missing the final factor of 1,000. When you divide the number of microseconds per
day by the number of milliseconds per day, all the factors in the divisor cancel out, and you are | eft
with 1,000, which isthe number of microseconds per millisecond. Both the divisor and the dividend
are of typel ong, which is eas ly large enough to hold either product without overflow. It seems,
then, that the program must print 1000. Unfortunately, it prints5. What exactly is going on here?

The problem isthat the computation of the constant M CRoS_PER DAY does overflow. Although the
result of the computation fitsin al ong with roomto spare, it doesn't fit in ani nt . The computation
isperformed entirely ini nt arithmetic, and only after the computation completesisthe result
promoted to al ong. By then, it'stoo late: The computation has already overflowed, returning a
value that is too low by afactor of 200. The promotion fromi nt to1 ong isawidening primitive
conversion [JLS 5.1.2], which preservesthe (incorrect) numerical value. Thisvaue isthen divided
by M LLI S_PER DAY, which was computed correctly because it does fit inan i nt . The result of this
divisonisb.

So why isthe computation performed ini nt arithmetic? Because all the factors that are multiplied

together arei nt values. When you multiply two i nt values, you get another i nt value. Java does
not have target typing, alanguage feature wherein the type of the variable in which aresult isto be
stored influences the type of the computation.

It's easy to fix the program by usingal ong litera in place of ani nt asthefirst factor in each
product. This forces al subsequent computationsin the expression to be done with | ong arithmetic.
Although it is necessary to do this only in the expression for M CROS_PER DAY, itisgood form to do
itin both products. Similarly, it isn't always necessary to use al ong asthefirst value in a product,
but it is good form to do so. Beginning both computationswith | ong values makesit clear that they
won't overflow. This program prints 1000 as expected:

public class LongDivision {

public static void main(String[] args) {

final 1ong M CROS_PER DAY = 24L * 60 * 60 * 1000 * 1000;

final Iong MLLIS PER DAY

24L * 60 * 60 * 1000;

Systemout.printl n(MCRCS _PER DAY / M LLIS PER DAY);

The lesson issmple: When working with large numbers, watch out for overflow—it'sa silent
killer. Just because avariableis large enough to hold aresult doesnt mean that the computation
leading to the result is of the correct type. When in doubt, perform the entire computation using

| ong arithmetic.

Thelesson for language designers isthat it may be worth reducing the likelihood of silent overflow.
This could be done by providing support for arithmetic that does not overflow silently. Programs
could throw an exception instead of overflowing, as does Ada, or they could switch to a larger
internal representation automatically asrequired to avoid overflow, as does Lisp. Both of these
approaches may have performance penalties associated with them. Another way to reduce the
likelihood of silent overflow isto support target typing, but thisadds significant complexity to the
type system [Modula-3 1.4.8].

4 FREV < Day Day Up > NEXT o

8 FREV < Day Day Up > | NExTHp |

Puzzle 4: It's Elementary

OK, so the last puzzle was a hit tricky, but it was about divison. Everyone knowsthat divisonis
tough. This program involves only addition. What does it print?

public class H enentary {
public static void main(String[] args) {

Systemout.printl n(12345 + 5432|);

Solution 4. It's Elementary

On theface of it, thislookslike an easy puzzle—so easy that you can solve it without pencil or
paper. The digits of the left operand of the plus operator ascend from 1 to 5, and the digits of the
right operand descend. Therefore, the sums of corresponding digits remain constant, and the
program must surely print 66666. There is only one problem with this analysis: When you run the
program, it prints 17777. Could it be that Java has an aversion to printing such a beastly number?
Somehow this doesn't seem like a plausibl e explanation.

Things are seldom what they seem. Take this program, for instance. It doesn't say what you think it
does. Take acareful look at the two operands of the + operator. We are adding the i nt value 12345
tothel ong value 54321 . Note the subtle difference in shape between the digit 1 at the beginning of
the left operand and the lowercase | etter € at the end of the right operand. The digit 1 has an acute
angle between the horizontal stroke, or arm, and the vertical stroke, or stem. The lowercase | etter
el, by contrast, has aright angle between the arm and the stem.

Before you cry "foul," note that this issue has caused real confusion. Also note that the puzzle's title
contained a hint: It's El-ementary; get it? Finaly, note that thereisarea lesson here. Alwaysuse a
capital & (L) in1 ong literals, never alowercase e (I). This completely eliminates the source of
confusion on which the puzzlerelies:

Systemout. println(12345 + 5432L);

Similarly, avoid using alone€ (1) asavariable name. It isdifficult to tell by looking at this code
snippet whether it printsthelist| or the number 1:

/'l Bad code - uses el (l) as a variable nane
List<String> 1 = new ArrayList<String>();
| .add("Foo");

Systemout.printin(l);

In summary, the lowercase | etter el and the digit 1 are nearly identical in most typewriter fonts. To

avoid confusi ng the readers of your program, never use alowercase e to terminate al ong litera or
as a variable name. Javainherited much from the C programming language, including its syntax for
| ong literas. It was probably amistake to allow | ong literalsto be written with alowercase d.

@ FREV < Day Day Up > | NEXT @ |

Puzzle 5: The Joy of Hex

The following program adds two hexadecimal, or "hex," literals and prints the result in hex. What
does the program print?

public class JoyOh Hex {
public static void main(String[] args) {
System out . printl n(

Long. t oHexStri ng(0x100000000L + Oxcafebabe));

Solution 5: The Joy of Hex

It seems obvious that the program should print 1caf ebabe. After al, that isthe sum of the hex
numbers 10000000016 and cafebabe;s. The program uses| ong arithmetic, which permits 16 hex
digits, so arithmetic overflow isnot an issue. Y et, if you ran the program, you found that it prints
caf ebabe, with no leading 1 digit. This output represents the low-order 32 bits of the correct sum,
but somehow the thirty-third bit getslost. It is asif the program were doing i nt arithmetic instead

of | ong, or forgetting to add the first operand. What's going on here?

Decimal literals have a nice property that is not shared by hexadecimal or octal literals: Decimal
literalsare al positive [JLS 3.10.1]. To write a negative decimal constant, you use the unary
negation operator (-) in combination with adecimal literal. In thisway, you can write anyi nt or

| ong value, whether positive or negative, in decimal form, and negative decimal constantsar e
clearly identifiable by the presence of a minussign. Not so for hexadecimal and octal literals.
They can take on both positive and negative values. Hex and octal literalsare negative if their
high-order bit isset. In this program, the number oxcaf ebabe iSani nt constant with its high-order
bit set, soitisnegative. It isequivalent to the decimal value - 889275714.

The addition performed by the program is a mixed-type computation: The |eft operand is of type
| ong, and the right operand isof typei nt . To perform the computation, Java promotesthei nt
value to al ong with awidening primitive conversion [JLS 5.1.2] and addsthetwo | ong values.
Becausei nt isasgned integral type, the conversion performs sign extension: It promotes the
negativei nt value to anumerically equal | ong value.

The right operand of the addition, oxcaf ebabe, IS promoted to the | ong value
OxffffffffcafebabelL. Thisvalueisthen added to theleft operand, which isox100000000L. When
viewed asani nt , the high-order 32 bits of the sign-extended right operand are - 1, and the high-
order 32 hits of the | eft operand are 1. Add these two val ues together and you get 0, which explains
the absence of the leading 1 digit in the program's output. Here i s how the addition looks when done
inlonghand. (The digits at the top of the addition are carries.)

1111111
Oxffffffffcaf ebabel

+ 0x0000000100000000L

0x00000000c af ebabelL

Fixing the problem isas simple asusing al ong hex literal to represent the right operand. This
avoids the damaging sign extension, and the program prints the expected result of 1caf ebabe:

public class JoyO Hex {
public static void main(String[] args) {
System out . printl n(

Long.t oHexStri ng(0x100000000L + Oxcafebabel));

The lesson of this puzZeisthat mixed-type computations can be confusing, more so given that hex
and octal literals can take on negative val ues without an explicit minus sign. To avoid this sort of
difficulty, it is generally best to avaoid mixed-type computations. For language designers, it is
worth considering support for unsigned integral types, which eliminate the possi bility of sign
extension. One might argue that negative hex and octal literals should be prohibited, but thiswould
likely frustrate programmers, who often use hex literals to represent values whose sign is of no
sgnificance.

= Day Day Up >

| 4@ FREV < Day Day Up > | NExTHp |

Puzzle 6: Multicast

Casts are used to convert aval ue from one type to another. This program uses three castsin
success on. What does it print?

public class Milticast {
public static void main(String[] args) {

Systemout.println((int) (char) (byte) -1);

Solution 6;: Multicast

This program is confusing any way you diceit. It sartswith thei nt vaue - 1, then caststhei nt to
abyt e, thentoachar, and finaly back to ani nt . Thefirst cast narrowsthe value from 32 bits
down to 8, the second widens it from 8 bitsto 16, and the final cast widens it from 16 bits back to
32. Does the val ue end up back where it started? If you ran the program, you found that it does not.
It prints 65535, but why?

The program's behavior depends critically on the sign extension behavior of casts. Java uses two's-
complement binary arithmetic, sothei nt value - 1 hasall 32 bitsset. The cast fromint tobyteis
straightforward. It performs a narrowing primitive conversion [JLS 5.1.3], which smply lops off all
but the low-order 8 bits. Thisleavesabyt e value with all 8 bits set, which (still) represents—1.

The cast from byt e to char istrickier because byt e isasigned type and char unsigned. It isusually
possible to convert from one integral type to awider one while preserving numerical value, but it is
impossible to represent a negative byt e value asachar . Therefore, the conversion from byt e to
char isnot considered awidening primitive conversion [JLS 5.1.2], but a widening and narrowing
primitive conversion [JLS 5.1.4]: Thebyt e isconvertedto ani nt and thei nt toachar.

All of this may sound abit complicated. Luckily, thereisasimplerule that describesthe sign
extensi on behavior when converting from narrower integral typesto wider: Sign extension is
performed if thetype of the original value issigned; zer oextension if it isachar, regar dless of
the type to which it is being converted. Knowing this rule makes it easy to solve the puzzle.

Because byt e isasigned type, sign extens on occurs when converting the byt e value =1 to achar.
The resulting char value hasall 16 bitsset, soit isequal to 216 — 1, or 65,535. The cast from char
toi nt isasoawidening primitive conversion, so theruletellsusthat zero extenson is performed

rather than sign extension. The resultingi nt value is 65535, which isjust what the program prints.

Although there is asimple rul e describing the sign extension behavior of widening primitive
conversions between signed and unsigned integral types, it is best not to write programs that depend
on it. If you are doing awidening conversion to or from achar , which isthe only unsigned integra
type, it isbest to make your intentions explicit.

If you are converting fromachar value c to awider type and you don't want Sign extension,
consider using abit mask for clarity, even though it isn't required:

int i =c & Oxffff;

Alternatively, write acomment describing the behavior of the conversion:

int i =c; // Sign extension is not perforned

If you are converting fromachar value c to awider integral type and you want sign extension, cast
thechar toashort, which isthe same width as achar but signed. Given the subtl ety of this code,
you should al so write acomment:

int i = (short) c; // Cast causes sign extension

If you are converting from abyt e value b to achar and you don't want sign extension, you must use
abit mask to suppress it. Thisisacommon idiom, so no comment i s necessary:

char ¢ = (char) (b & Oxff);

If you are converting from abyt e to achar and you want Sign extension, write acomment:

char ¢ = (char) b; // Sign extension is perforned

Thelessonissmple: If you can't tell what a pr ogr am does by looking at it, it probably doesn't
dowhat you want. Strive for clarity. Although asimple rule describes the sign extension behavior
of widening conversionsinvolving signed and unsigned integral types, most programmers don't
know it. If your program depends on it, make your intentions clear.

4 FREV < Day Day Up > NEXT

s < Day Day Up > |

Puzzle 7: Swap Meat

This program uses the compound assignment operator for exclusive OR. The technique that it
illustrates is part of the programming folklore. What doesit print?

public class O everSwap {

public static void main(String[] args) {

int X 1984; /] (0x7cO0)

int y 2001; // (0x7d1)

X/\:y/\:xl\:y;

Systemout.println("x =" + x +"; y =" +1y);

Solution 7. Swap Meat

Asits nameimplies, this program is supposed to swap the values of the variablesx andyy. It you ran
it, you found that it fails miserably, printingx = 0; y = 1984.

The obvious way to swap two variablesisto use a temporary variable:

int tnmp = x;
X =y;
y = tnp;

Long ago, when central processing units had few registers, it was discovered that one could avoid
the use of a temporary variabl e by taking advantage of the property of the exclusive OR operator (*)
that(x »~ y » x) ==y:

/'l Swaps variables without a tenporary - Don't do this!

X =x "Ny,
y =y " x
X =y ™ X;

Even back in those days, this technique was seldom justified. Now that CPUs have many regi sters,
itisnever judtified. Like most "clever" code, it is far |ess clear than its naive counterpart and far
dower. Sill, some programmers persist in using it. Worse, they complicate matters by using the
idiom illustrated in this puzzle, which combines the three exclusive OR operations into asingle
statement.

This idiom was used in the C programming |anguage and from there made its way into C++ butis
not guaranteed to work in either of these languages. It is guaranteed not to work in Java. The Java
|anguage speci fication says that oper ands of oper ators are evaluated from left toright [JLS
15.7]. To eva uate the expression x ~= expr, the value of x issampled before expr is evaluated, and
the exclusive OR of these two values is assigned to the variable x [JLS 15.26.2]. Inthe Cl ever Swap
program, the variable x is sampled twice—once for each appearance in the expresson—nbut both
samplings occur before any assgnments.

The following code snippet describes the behavior of the broken swap idiom in more detail and
explains the output that we observed:

/'l The actual behavior of x ~=y ~= x *= vy in Java

int tnpl = x; /1 First appearance of x in the expressi on

int tmp2 = vy; /'l First appearance of y

int tnp3 = x *y; // Conpute x "y

X = tnmp3; /1 Last assignnent: Store x 'y in X

y =tnmp2 N tnp3; // 2nd assignment: Store original x value iny
X =tnmpl N vy, I/l First assignnent: Store 0 in X

In C and C++, the order of expression eval uation is not specified. When compiling the expression x
~=expr, many C and C++ compilers sampl e the value of x after evaluating expr, which makesthe
idiom work. Although it may work, it runs afoul of the C/C++ rule that you must not modify a

vari abl e repeatedly between success ve sequence points [1SO-C]. Therefore, the behavior of this

idiom isundefined even in C and C++.

For what it'sworth, it is possible to write a Java expression that swaps the contents of two variables
without using a temporary. It is both ugly and usel ess:

/'l Rube ol dberg woul d approve, but don't ever do this!

y = (x *=(y "=x)) "y,

Thelesson issimple: Do not assign to the same variable morethan oncein a single expression.
Expressions contai ning multipl e assignments to the same variabl e are confusing and seldom do
what you want. Even expressions that assign to multiple variables are suspect. More generally,
avoid clever programming tricks. They are bug-prone, difficult to maintain, and often run more
dowly than the straightforward code they replace [EJ Item 37].

Language designers might consider prohibiting multiple assgnments to the same variable in one
expression, but it would not be feasible to enforce this prohibition in the general case, because of
diasing. For example, consider theexpressionx = a[i]++ - a[j]++. Doesit increment the same
variable twice? That depends on thevaluesof i andj at the time the expression is eval uated, and
thereisno way for the compiler to determine thisin general .

48 FREV < Day Day Up > NEXT ajp

8 FREV < Day Day Up > | NExTHp |

Puzzle 8: Dos Equis

This puzzl e tests your knowledge of the conditional operator, better known as the "question mark
colon operator.” What does the foll owing program print?

public class DosEquis {
public static void main(String[] args) {
char x ='X;
int i = 0;
Systemout.print(true ? x : 0);

Systemout.print(false ?2 i : Xx);

Solution 8: Dos Equis

The program consists of two variable declarations and two pri nt statements. Thefirst pri nt
statement eval uates the conditional expresson (true ? x : 0) and printstheresult. Theresult is
the value of thechar variablex, whichis' x . The second pri nt statement eval uates the
conditional expression (false ? i : x) and printstheresult. Again the result isthe value of x,
whichisstill' X , so the program ought to print xx. If you ran the program, however, you found that
it prints x88. This behavior seems strange. Thefirst pri nt statement prints X and the second prints
88. What accountsfor their different behavior?

The answer liesin a dark corner of the specification for the conditional operator [JLS 15.25]. Note
that the types of the second and third operands are different from each other in both of the
conditional expressions: x isof typechar, whereas 0 andi are both of typei nt . Asmentioned in
the solution to Puzzle 5, mixed-ty pe computation can be confusing. Nowhereis thismore
apparent than in conditional expressions. You might think that the result types of the two
conditional expressionsin this program would be identical, astheir operand types are identica,
though reversed, but it isnt so.

The rulesfor determining the result type of a conditional expression are too long and complex to
reproduce in their entirety, but here are three key points.

1. If the second and third operands have the same type, that isthe type of the conditional
expression. In other words, you can avoid the whol e mess by steering clear of mixed-type
computation.

2. If one of the operands is of type T where T isbyt e, short, or char and the other operand isa
constant expression of type i nt whose value is representable in type T, the type of the
conditional expressionisT.

3. Otherwise, binary numeric promotion is applied to the operand types, and the type of the
conditional expression isthe promoted type of the second and third operands.

Points 2 and 3 are the key to this puzzle. In both of the two conditiona expressions in the program,
one operand is of type char and the other isof typei nt . In both expressions, the value of thei nt
operand is O, which isrepresentable asa char . Only thei nt operand in the first expression,
however, is constant (0); the i nt operand in the second expression isvariable (i). Therefore, point
2 applies to the first expression and its return typeischar . Point 3 applies to the second conditional
expression, and its return type isthe result of applying binary numeric promotiontoi nt and char,
whichisint [JLS5.6.2].

The type of the conditional expression determineswhich overloading of the pri nt method is
invoked. For the first expression, Pri nt St ream pri nt (char) isinvoked; for the second,

Print Stream print(int). Theformer overloading prints the val ue of the variable x asa Unicode
character (X), whereasthe latter printsit as adecimal integer (88). The mystery is solved.

Putting thef i nal modifier on the declaration for i would turni into a constant expression, causing
the program to print xx, but it would still be confusing. To e iminate the confusion, it is best to
changethetypeof i fromi nt tochar, avoiding the mixed-type computation.

In summary, it isgenerally best to use the same type for the second and third oper andsin
conditional expressions. Otherwise, you and the readers of your program must have a thorough
understanding of the complex specification for the behavior of these expressions.

For language designers, perhapsit is poss ble to design a conditional operator that sacrifices some
flexibility for increased smplicity. For example, it might be reasonable to demand that the second
and third operands be of the same type. Alternatively, the conditional operator could be defined
without special treatment for constants. To make these alternatives more palatabl e to programmers,
asyntax could be provided for expressing literals of all primitive types. This may be agood ideain
itsown right, asit adds to the cons stency and compl eteness of the language and reduces the need
for casts.

4 FREV < Day Day Up > MEXT wlp

4 PREV < Day Day Up > | NExT o |

Puzzle 9: Tweedledum

Now it's your turn to write some code. On the bright side, you have to write only two linesfor this
puzzle and two linesfor the next. How hard could that be? Provide declarations for the variables x
andi suchthat thisisalegal statement:

X +=1i;

but thisis not:

X =X +1;

Solution 9: Tweedledum

Many programmersthink that the first statement in this puzzle (x += i) issmply ashorthand for
thesecond (x = x + i). Thisisn't quite true. Both of these statements are assignment expr essions
[JLS 15.26]. The second statement uses the simpl e assignment operator (=), whereasthe first usesa
compound assignment operator. (The compound assignment operatorsare +=, - =, *=, / =, %, <<=,
>>=, >>>=, &=, =, and | =.) The Javalanguage specification says that the compound assignment E1
op= E2 isequivaent to thesimpleassgnment E1 = (T) ((EL1) op(E2), where T isthetype of
E1, except that E1 isevauated only once [JLS 15.26.2].

In other words, compound assignment expr essions automatically cast theresult of the
computation they perfor mtothetype of the variable on their left-hand side. If the type of the
result isidentical to the type of the variable, the cast has no effect. If, however, the type of the result
iswider than that of the variable, the compound assgnment operator performs a silent narrowing
primitive conversion [JLS 5.1.3]. Attempting to perform the equivalent smple assi gnment would
generate a compilation error, with good reason.

To make this concrete and to provide a solution to the puzzle, suppose that we precede the puzzl €'s
two assi gnment express ons with these declarations:

short x = O;

int i = 123456;

The compound assignment compil es without error:

X +=1; // Contains a hidden cast!

Y ou might expect the value of x to be 123,456 after this statement executes, but it isn't; it's—7,616.
Thei nt value 123456 istoo bigtofitinashort. The automatically generated cast silently lops off
the two high-order bytes of thei nt value, which is probably not what you want.

The corresponding smple assignment isillegal because it attemptsto assgnani nt valueto a
short variable, which requiresan explicit cast:

X =x +1; [/ Wn't conpile - "possible | oss of precision”

It should be apparent that compound assignment expressions can be dangerous. To avoid unpl easant
surprises, do not use compound assignment oper atorson variables of typebyt e, short, or

char . When using compound assignment operators on variables of typei nt , ensure that the
expression on the right-hand side is not of typel ong, f I oat , Or doubl e. When using compound
assignment operators on variables of typef | oat , ensure that the expression on the right-hand sideis
not of type doubl e. These rules are sufficient to prevent the compiler from generating dangerous
narrowing casts.

In summary, compound ass gnment operators silently generate a cast. If the type of the result of the
computation iswider than that of the variable, the generated cast is a dangerous narrowing cast.
Such casts can silently discard precision or magnitude. For language designers, it isprobably a
mistake for compound assignment operators to generate invis ble casts; compound assi gnments
where the variable has a narrower type than the result of the computation should probably be

illegal.

< Day Day Up = NEXT ajp

8 FREV < Day Day Up > | NExTHp |

Puzzle 10: Tweedledee

Contrariwise, provide declarations for the variablesx and i such that thisisa legal statement:

X =X +1i;

but thisis not:

X += i

At first gance, this puzzle might appear to be the same as the previous one. Rest assured, it's
different. The two puzzles are opposite in terms of which statement must be legal and which must
beillegal.

Solution 10: Tweedledee

Like the previous puzzle, this one depends on the detail s of the specification for compound
assignment operators. That iswhere the similarity ends. Based on the previous puzzl e, you might
think that compound assignment operators are less restrictive than the s mple assignment operator.
Thisisgeneraly true, but the smple assignment operator is more permissive in one area.

Compound assignment operators require both operandsto be primitives, such asi nt , or boxed
primitives, such as| nt eger , with one exception: The += operator allowsits right-hand operand to
be of any type if the variable on the left-hand sideis of type Stri ng, in which case the operator
performs string concatenation [JL S 15.26.2] . The simple assignment operator (=) is much less picky
when it comes to all owing object ref erence types on the left-hand side: Y ou can use them to your
heart's content so long as the expression on the right-hand side i s ass gnment compati ble with the
variableonthe left [JLS 5.2].

You can exploit thisdifference to solve the puzzle. To perform string concatenation with the +=
operator, you must declare the variable on its left-hand side to be of type stri ng. Using the smple
assi gnment operator, the results of a string concatenation can be stored in a variabl e of type j ect.

To make this concrete and to provide a solution to the puzzle, suppose that we precede the puzzl €'s
two assignment expressi ons with these declarations:

Obj ect X "Buy ";

String i "Effective Javal";

The ssmple assignment islegal becausex + i isof typestring, and Stri ng iSassgnment
compatible with bj ect :

X =X +i;

The compound assignment isillegal because the | eft-hand side has an object reference type other
than stri ng:

X +=1i;

This puzzle haslittle in the way of alesson for programmers. For language designers, the compound
assignment operator for addition could allow the | eft-hand side to be of type ouj ect if the right-
hand side were of type stri ng. This change would eliminate the counterintuitive behavior
illustrated by this puzzle.

LS e [nexT e

Chapter 3. Puzzlers with Character
This chapter contains puzzesthat concern strings, characters, and other textua data.

LS RpAR AN @y

8 FREV < Day Day Up > | NExTHp |

Puzzle 11: The Last Laugh

What does the following program print?

public class LastLaugh {
public static void main(String args[]) {
Systemout.print("H + "a");

Systemout.print("H + "a');

Solution 11: The Last Laugh

If you are like most peopl e, you thought that the program would print HaHa. It looks as though it
concatenates Hto a in two ways, but |ooks can be deceiving. If you ran the program, you found that
it prints Ha169. Now why would it do athing like that?

As expected, thefirst call to Syst em out. print prints Ha: Itsargument isthe expresson" H' +"a",
which performs the obvious string concatenation. The second call to Syst em out. print isanother
story. Itsargument istheexpression' H + 'a'. Theproblemisthat' H and' a arechar literals.
Because neither operand is of type stri ng, the + operator performs addition rather than string
concatenation.

The compil er evaluates the constant expresson' H + ' a' by promoting each of the char -valued
operands(H and' a') toi nt valuesthrough a process known as widening primitive conversion
[JLS5.1.2, 5.6.2]. Widening primitive conversion of achar toani nt zero extends the 16-bit char
value to fill the 32-bitint . Inthecase of ' H , thechar valueis72 andinthecase of ' a' ,itis97, so
theexpresson' H + 'a' isequivaent totheint constant 72 + 97, or 169.

From alingui stic standpoint, the resembl ance between char values and stringsisillusory. Asfar as
the language is concerned, achar isan unsigned 16-bit primitive integer—nothing more. Not so for
the libraries. They contain many methods that take char arguments and treat them as Unicode
characters.

So how do you concatenate characters? Y ou could use the libraries. For example, you could use a
string buffer:

StringBuffer sb = new StringBuffer();
sb. append(' H);
sb. append(' a');

Systemout . println(sb);

This works, but it's ugly. There are ways to avoid the verbosity of this approach. Y ou can force the
+ operator to perform string concatenation rather than addition by ensuring that at least one of its
operandsis a string. The common idiom is to begin a sequence of concatenati ons with the empty
string ("), as foll ows:

Systemout.print("" +'H + '"a');

This idiom ensures that subexpressions are converted to strings. Although useful itisabit ungainly
and can lead to some confusion itself.

Can you guess what the foll owing statement prints? If you arent sure, try it:

Systemout.println("2 + 2 =" + 2+2);

Asof release 5.0, you a so have the option of usingthepri nt f facility:

Systemout.printf("%%", 'H, 'a');

In summary, use the string concatenation operator with care. The + oper ator performsstring
concatenation if and only if at least one of itsoperands isof type Stri ng; otherwise, it performs
addition. If none of the values to be concatenated are strings, you have severa choices: prepend the
empty string; convert the first value to a string explicitly, using Stri ng. val ueOf ; use astring
buffer; or if you are using release 5.0, use the pri nt f facility.

This puzzl e al so contains alesson for |anguage desi gners. Operator overloading, even to the limited
extent that it is supported in Java, can be confusing. It may have been a mistake to overload the +
operator for string concatenation.

4 FREV < Day Day Up > NEXT ap

8 FREV < Day Day Up > | NExTHp |

Puzzle 12: ABC

This puzzl e asks the musical question, What does this program print?

public class Abc {

public static void main(String[] args) {

String letters "ABC';

char[] nunmbers ={ '1', "2, '3 };

Systemout.printin(letters + " easy as " + nunbers);

~
—_J
Solution 12: ABC

One would hope that the program prints ABC easy as 123. Unfortunately, it doesnot. If you ran it,
you found that it prints something like ABC easy as [c@l6f 0472. Why isthe output so ugly?

Although char isanintegral type, many librariestreat it specially, because char values usually
represent characters rather than integers. For example, passingachar vaueto print I n prints a
Unicode character rather than its numerical code. Character arrays get similar specia treatment:
Thechar[] overloading of pri nt1n prints al of the characters contained in the array, and the
char [] overloadingsof String. val ueOf and Stri ngBuf fer. append behave analogoudy.

The string concatenati on operator, however, isnot defined in terms of these methods. It is defined
to perform string conversion on both of its operands and then to concatenate the resulting strings.
String conversion for object references, which include arrays, is defined as follows [JLS 15.18.1.1]:

If the referenceisnul I, itisconverted to the string" nul | ". Otherwise, the conversion is
performed asif by an invocation of the t oSt ri ng method of the referenced object with no

arguments, but if the result of invoking the t oSt ri ng method isnul 1, thenthe string " nul 1 " i<
used instead.

So what is the behavior of invokingt oSt ri ng on anon-null char array? Arraysinherit the

t oSt ri ng method from obj ect [JLS 10.7], whose specification says, "Returns a string consisting of
the name of the class of which the object isan instance, the at-sign character* @, and the unsigned
hexadecimal representation of the hash code of the object” [Java-API]. The specification for

Cl ass. get Name saysthat the result of invoking this method on the class object for char [] isthe
string"[C'. Putting it all together gives the ugly string printed by our program.

There are two ways to fix it. Y ou can explicitly convert the array to a string before invoking string
concatenation:

Systemout.printlin(letters + " easy as " +

String. val ued (nunbers));

Alternatively, you can break the Syst em out. print | n invocation in two to make use of the char []
overloading of printIn:

Systemout.print(letters + " easy as ");

Systemout. println(nunbers);

Note that these fixeswork only if you invoke the correct overloading of theval uec or printin
method. In other words, they depend critically on the compile-time type of the array reference. The
following program illustrates this dependency. It looks as though it incorporates the second fix
described, but it produces the same ugly output asthe original program because it invokes the

Obj ect overloading of pri nt I n instead of the char [] overloading:

/'l Broken - invokes the wong overloading of println!
class Abc {

public static void main(String[] args) {

String letters = "ABC';

Obj ect nunbers

new char[] { "1', '2', '3 };

Systemout.print(letters + " easy as ");

Systemout.printl n(nunmbers); // Invokes println(Object)

To summarize, char arraysare not strings. Toconvert achar array to a string, invoke

String. val ueCf (char[]) . Some library methods do provide stringlike support for char arrays,
typically having one overloading for Obj ect and another for char []; only the latter has the desired
behavior.

The lesson for language designers isthat the char [] type should probably have overridden
t oSt ri ng to return the characters contained in the array. M ore generally, the array types should
probably have overridden t oSt r i ng to return a string representation of the contents of the array.

< Day Day Up > e

8 FREV < Day Day Up > | NExTHp |

Puzzle 13: Animal Farm

Readers of George Orwell's Animal Farm may remember old Mg or's pronouncement that "all
animasare equa." The following Java program attemptsto test this pronouncement. What does it
print?

public class Ani mal Farm {

public static void main(String[] args) {

final String pig "lengt h: 10";

final String dog = "length: " + pig.length();

Systemout.println("Aninmals are equal : "

+ pi g == dog);

Solution 13: Animal Farm

A superficial analysis of the program might suggest that it should print Ani mal's are equal: true.
After all, pi g and dog are both final stri ng variablesinitialized to the character sequence” | engt h:
10" . In other words, the strings referred to by pi g and dog are and will forever remain equal to each
other. The == operator, however, does not test whether two objectsare equal; it tests whether two
object references areidentical. In other words, it tests whether they refer to precisely the same
object. In this case, they do not.

Y ou may be aware that compile-time constants of type Stri ng areinterned [JLS 15.28]. In other
words, any two constant expressions of type Stri ng that designate the same character sequence are
represented by identical object references. If initialized with constant expressions, both pi g and dog
would indeed refer to the same object, but dog isnot initialized with a constant expression. The
|anguage constrai ns which operations are permitted to appear in a constant expression [JL S 16.28],
and method invocation is not among them. Therefore the program should print Ani mal's are

equal : false,right?

Well, no, actually. If you ran the program, you found that it printsf al se and nothing el se. It doesn't
print Ani mals are equal: . How could it not print this string literal, which is right there in black
and white? The solution to Puzzle 11 contains a hint: The + operator, whether used for addition or

string concatenation, binds more tightly than the == operator. Therefore, the parameter of the
pri nt | n method isevaluated likethis.

Systemout.printlin(("Animals are equal: " + pig) == dog);

The value of the bool ean expressionis, of course, f al se, and that i s exactly what the program
prints. Thereisone surefire way to avoid this sort of difficulty: When using the string
concatenation operator, always parenthesize nontrivial operands. More genera ly, when you are
not sure whether you need parentheses, err on the side of caution and include them. If you
parenthesize the comparison in the pri nt | n statement asfollows, it will produce the expected
output of Ani mal's are equal: fal se:

Systemout.println("Aninals are equal: " + (pig == dog));

Arguably, the program is ill broken. Your code shouldrarely, if ever, depend on theinterning
of string constants. Interning was designed sol ely to reduce the memory footprint of the virtual
machine, not as atool for programmers. Asthis puzzle demonstrates, it isn't always obvious which
expressions will result in string constants. Worse, if your code depends on interning for its correct
operation, you must carefully keep track of which fields and parameters must be interned. The
compiler can't check these invariants for you, because interned and noninterned strings are
represented by the sametype (Stri ng). The bugsthat result from the failure to intern a string are
typically quite difficult to detect.

When comparing object references, you should use the equal s method in preferenceto the ==
oper ator unless you need to compare object identity rather than value. Applying thislesson to our
program, here is how the pri nt I n statement should look. It isclear that the program prints TRue
when it isfixed in thisfashion:

Systemout . println("Animals are equal: + pi g.equal s(dog));

This puzzl e has two lessons for language des gners. The natural precedence of string concatenation
might not be the same as that of addition. Thisimplies that it is problematic to overload the +
operator to perform string concatenation, as mentioned in Puzzle 11. Also, reference equality is
more confusing than value equality for immutable types, such as stri ng. Perhaps the == operator
should perform val ue compari sons when applied to immutabl e ref erence types. One way to achieve
thiswould be to make the == operator a shorthand for the equal s method, and to provide a separate
method to perform reference identity comparison, akinto Syst em i dent i t yHashCode.

8 FREV < Day Day Up > ME=T mp

8 FREV < Day Day Up > | NExTHp |

Puzzle 14: Escape Rout

The following program uses two Uni code escapes, which represent Unicode characters by their
hexadecima numeric codes. What does the program print?

public class EscapeRout {
public static void main(String[] args) {
/1 \u0022 is the Unicode escape for doubl e quote (")

System out. println("a\u0022.1 ength() + \u0022b".|ength());

Solution 14: Escape Rout

A naive analysi s of the program suggests that it should print 26 because there are 26 characters
between the quotation marks that bound the string " a\ u0022. I ength() + \u0022b". A deeper
analysis suggests that the program should print 16, as each of the two Unicode escapes requires six
charactersin the source file but represents only one character in the string. The string is therefore
ten characters shorter than it appears. Running the program tells a different story. It prints neither 26
nor 16 but 2.

The key to understanding this puzzleisthat Java provides no special treatment for Unicode
escapeswithin string literals. The compil er translates Unicode escapesinto the charactersthey
represent beforeit parses the program into tokens, such as strings literals[JLS 3.2]. Therefore, the
first Unicode escape in the program closes a one-character string literal (*a"), and the second one
opens a one-character string literal (" b). The program prints the value of the expression
"a".length() + "b".length(),Or2.

If the author of the program had actually wanted this behavior, it would have been much clearer to
say:
Systemout.printin("a".length() + "b".length());

More likely, the author wanted to put the two double quote charactersinto the string literal. You
can't do this with Unicode escapes, but you can do it with escape sequences[JLS 3.10.6]. The
escape sequence representing a doubl e quote is a backd ash fol lowed by a double quote (\). If the

Uni code escapesin the origina program are replaced with this escape sequence, it will print 16 as
expected:

Systemout.printlin("a\".length() + \"b".length());

There are escape sequences for many characters, including the single quote (\ '), linefeed (\ n), tab
(\t), and backdash (\\). Y ou can use escape sequences in character literalsas well asin string
literals. In fact, you can put any ASCII character into a string literal or a character literal by usinga
special kind of escape sequence called an octal escape, but it is preferable to use normal escape
sequences where possible. Both normal escape sequences and octal escapes are far preferable to
Uni code escapes because unlike Unicode escapes, escape segquences are processed after the
program is parsed into tokens.

All the programsin this book are written using the ASCII subset of Unicode. ASCII isthe lowest
common denominator of character sets. ASCII has only 128 characters, but Unicode has more than
65,000. A Unicode escape can be used to insert any Unicode character into a program using only
ASCII characters. A Unicode escape means exactly the same thing as the character that it
represents.

Uni code escapes are designed for use when a programmer needs to insert a character that can't be
represented in the source fil€'s character set. They are used primarily to put non-ASCII characters
into identifiers, string literal's, character literals, and comments. Occasionally, a Unicode escape

adds to the clarity of a program by positively identifying one of several similar-looking characters.

In summary, prefer escape sequencesto Unicode escapesin string and character liter als.

Uni code escapes can be confusing because they are processed so early in the compil ation sequence.
Do not use Unicode escapesto represent ASCII characters. Inside of string and character literals,
use escape sequences; outside of these literal's, insert ASCII characters directly into the sourcefile.

> D

(,'.'
e 9
e

| 4m PREV < Day Day Up > HE=T i |

¢

8 FREV < Day Day Up > | NExTHp |

Puzzle 15: Hello Whirled

The following program isaminor variation on an old chestnut. What does it print?

/**

* Cenerated by the IBM I DL-to-Java conpiler, version 1.0
* from F:\ Test Root\ apps\ al\ uni ts\i ncl ude\ Pol i cyHone. i dl
* \Wednesday, June 17, 1998 6:44:40 o' cl ock AM GVMI+00: 00
*/
public class Test {
public static void main(String[] args) {
Systemout.print("Hell");

Systemout.println("o world");

Solution 15: Hello Whirled

This puzzle |ooks fairly straightforward. The program contai ns two statements. Thefirst prints Hel |
and the second printso wor I d on the same line, effectively concatenati ng the two strings.
Therefore, you might expect the programto print Hel 1 o wor 1 d. You would be sadly mistaken. In
fact, it doesnt compile.

The problem isin the third line of the comment, which contai ns the characters\ uni t s. These
characters begin with a backdash (\) followed by the letter u, which denotes the start of a Unicode
escape. Unfortunately, these characters are not foll owed by four hexadecimal digits, so the Unicode
escapeis ill-formed, and the compiler is required to reg ect the program. Unicode escapes must be
well for med, even if they appear in comments.

It islegal to place awell-formed Unicode escape in a comment, but thereisrarely areason to do so.
Programmers sometimes use Unicode escapes in Javadoc commentsto generate specia characters
in the documentation:

/'l Questionable use of Unicode escape in Javadoc comrent

/**

* This nethod calls itself recursively, causing a
* <tt>StackOverflowError</tt> to be thrown.
* The algorithmis due to Peter von der Ah\uOOE9.

*/

This techni que represents an unnecessary use of Unicode escapes. Use HTML entity escapes
instead of Unicode escapesin Javadoc comments.

/**

* This nethod calls itself recursively, causing a
* <tt>StackOverflowError</tt> to be thrown.
* The algorithmis due to Peter von der Ahé.

*/

Either of the preceding comments should cause the name to appear in the documentation as "Peter
von der Ahé," but the latter comment is a so understandable in the sourcefile.

In case you were wondering, the comment in this puzzl e was derived from an actual bug report. The
program was machine generated, which made it difficult to track the problem down to its source, an
IDL-to-Java compiler. To avoid placing other programmersin this position, tools must not put
Windows filenamesinto commentsin generated Java sour ce fileswithout first processing them
to eliminate backd ashes.

In summary, ensure that the characters\ u do not occur outside the context of avalid Unicode
escape, even in comments. Be particularly wary of this problem in machine-generated code.

8 FREV < Day Day Up > | NExTHp |

Puzzle 16: Line Printer

The line separator isthe name given to the character or characters used to separate lines of text,

and variesfrom platform to platform. On Windows, it isthe CR character (carriage return) foll owed
by the LF character (linefeed). On UNIX, itisthe LF character alone, often referred to asthe
newline character. The foll owing program passes this character to pri nt I n. What doesit print?Is
its behavior platform dependent?

public class LinePrinter {
public static void main(String[] args) {
/'l Note: \UuOOOA is Unicode representation of |inefeed (LF)
char ¢ = Ox000A

Syst em out. println(c);

Solution 16: Line Printer

The behavior of this program is platform independent: It won't compile on any platform. If you tried
to compile it, you got an error message that |ooks something likethis:

LinePrinter.java:3: ';' expected

/'l Note: \UuOOOA is Unicode representation of |inefeed (LF)

AN

1 error

If you are like most people, this message did not help to clarify matters.

The key to this puzzleisthe comment on the third line of the program. Like the best of comments,

thisoneistrue. Unfortunately, thisone isabit too true. The compiler not only trandates Unicode
escapes into the characters they represent before it parses a program into tokens (Puzzle 14), but it
does so before discarding comments and white space [JLS 3.2].

This program contains a single Unicode escape (\ u000A), located in its sole comment. Asthe
comment tells you, this escape represents the linefeed character, and the compiler duly trand ates it
bef ore di scarding the comment. Unfortunately, this linefeed character isthefirst line terminator
after the two dash characters that begin the comment (/ /) and so terminates the comment [JLS 3.4].
The words following the escape (i s Unicode representation of |inefeed (LF)) aretherefore
not part of the comment; nor are they syntactically valid.

To make this more concrete, here iswhat the program |ooks like after the Unicode escape has been
trand ated into the character it represents:

public class LinePrinter {
public static void main(String[] args) {
/1 Note:
i's Unicode representation of |inefeed (LF)
char ¢ = 0x000A:

Systemout.println(c);

The easiest way to fix the program is to remove the Unicode escape from the comment, but a better
way isto initialize ¢ with an escape sequence instead of ahex integer literal, obviating the need for
the comment:

public class LinePrinter {
public static void main(String[] args) {

char ¢ = '"\n';

Systemout.println(c);

Once this has been done, the program will compile and run, but it's still a questionable program. It
is platform dependent for exactly the reason suggested in the puzz e. On certain platforms, such as
UNIX, it will print two complete line separators; on others, such as Windows, it won't. Although the
output may look the same to the naked eye, it could easily cause problemsif it were saved in afile
or piped to another program for subsequent processing.

If you want to print two blank lines, you should invoke pri nt I n twice. As of release 5.0, you can
usepri nt f instead of pri nt I n, with the format string " %a%m" . Each occurrence of the characters vm
will cause pri nt f to print the appropriate platf orm-specific line separator.

Hopefully, the last three puzzles have convinced you that Unicode escapes can be thoroughly
confusing. Thelesson issimple: Avoid Unicode escapes except wher ethey ar etruly necessary.
They arerarely necessary.

48 FREV < Day Day Up > NEXT o

8 FREV < Day Day Up > | NExTHp |

Puzzle 17: Huh?

Isthisalegal Javaprogram? If so, what doesit print?

\ u0070\ u0075\ uUO062\ U006\ L0069\ U063\ UO020\ U0O020\ u0020\ u0020
\ u0063\ u006¢\ u0061\ u0073\ u0073\ u0020\ UO055\ UO067\ UO06C\ UOO79
\ u007b\ u0070\ UOO75\ u0062\ uOO6C\ UO069\ UO063\ U0O020\ u0020\ u0020
\ u0020\ u0020\ u0020\ u0020\ u0073\ u0074\ u0061\ UOO74\ UO069\ L0063
\ u0076\ u006f\ u0069\ UO064\ U0020\ UO06d\ UO061\ UOOEI\ UOD6E\ L0028
\ u0053\ u0074\ u0072\ uO069\ uO06e\ u0067\ uO05b\ uO05d\ u0020\ u0020
\ u0020\ u0020\ u0020\ u0020\ u0061\ U0072\ u0067\ UOO73\ u0029\ UOO7b
\ u0053\ u0079\ u0073\ u0074\ u0065\ UO06d\ uO02e\ u006f \ uUO075\ UOO74
\ u002e\ u0070\ u0072\ u0O069\ uO06e\ u0074\ u006c\ u006e\ u0028\ ud020
\ u0022\ u0048\ u0065\ U006\ UO06C\ UOO6F \ UO020\ L0077\ u0022\ U002b

\ u0022\ u006f\ u0O072\ uO06C\ UO064\ u0022\ u0029\ u003b\ u007d\ uO07d

Solution 17: Huh?

Of course it'salegal Javaprogram! Isnt it obvious? It printsHel | o wor I d. Well, maybe it isn't so
obvious. In fact, the program is totally incomprehens ble. Each time you use a Unicode escape
unnecessarily, you make your program abit less comprehensible, and this program takesthe
concept to itslogical extreme. In case you are curious, here iswhat the program looks like after the
Uni code escapes are trand ated to the characters they represent:

publi c
class Wly
{public

static

voi d mai n(
String[]
ar gs){
System out
.println(
"Hello w'+

“orld"); 1}

Hereis how it |ooks after cleaning up the formatting:

public class Wly {
public static void main(String[] args) {

Systemout.printin("Hello w + "orld");

The lesson of this puzZeis. Just because you can doesn't mean you should. Alternatively, If it hurts
when you do it, don't do it! More serioudly, this puzzle servesto reinforce the lessons of the
previous three: Unicode escapes ar e essential when you need to insert charactersthat can't be
represented in any other way into your program. Avoid them in all other cases. Unicode
escapes reduce program clarity and increase the potential for bugs.

For language designers, perhapsit should beillegal to use Unicode escapes to represent ACI|
characters. Thiswould make the programsin Puzzles 14, 15, and 17 (this puzzle) invalid,
eliminating a great deal of confusion. This restriction would cause no great hardship to
programmers.

< Day Day Up >

| 4m PREV < Day Day Up > NEXT o |

Puzzle 18: String Cheese

This program creates a string from a sequence of bytes, then iterates over the charactersin the string
and prints them as numbers. Describe the sequence of numbers that the program prints:

public class StringCheese {
public static void main(String args[]) {
byte bytes[] = new byte[256];
for(int i =0; i < 256; i++)
bytes[i] = (byte)i;

String str = new String(bytes);

for(int i =0, n=str.length(); i < n; i++)
Systemout.print((int)str.charAt(i) + " ");

55

Solution 18: String Cheese

‘

Hrgt, the byt e array isinitialized with every possible byt e value from 0 to 255. Then these byt e
values are trandated into char valuesby the stri ng constructor. Finally, the char valuesare cast to
i nt valuesand printed. The printed val ues are guaranteed to be nonnegative, because char values
are unsigned, so you might expect the program to print the integers from 0 to 255 in order.

If you ran the program, maybe you saw this sequence. Then again, maybe you didn't. Weran it on
four machines and saw four different sequences, including the one described previoudy. This
program isn't even guaranteed to terminate normally, much lessto print any particular sequence. Its
behavior is completely unspecified.

Theculprit hereisthe stri ng(byte[]) constructor. Its specification says: "Constructs a new

Stri ng by decoding the specified byt e array using the platform's default charset. The length of the
new Stri ngisafunction of the charset, and hence may not be equal to the length of the byt e array.
The behavior of this constructor when the given bytes are not valid in the default charset is
unspecified" [Java-API].

What exactly isa charset? Technicaly, it is"the combination of a coded character set and a
character-encoding scheme" [Java-API]. In other words, a charset is a bunch of characters, the
numerical codes that represent them, and away to trandate back and forth between a sequence of
character codes and a sequence of bytes. The trand ation scheme differs greatly among charsets.
Some have a one-to-one mapping between characters and bytes, most do not. The only default
charset that will make the program print the integers from 0 to 255 in order is1SO-8859-1, more
commonly known as Latin-1 [ISO-8859-1].

A J2SE Runtime Environment's default charset depends on the underlying operating system and
locale. If you want to know your JRE's default charset and you are using release 5.0 or a later
release, you can find out by invoking j ava. ni o. char set . Charset . def aul t Charset () . If you are
using an earlier rel ease, you can find out by reading the system property "fi | e. encodi ng" .

Luckily, you are not forced to put up with the vagaries of default charsets. When trandating
between char sequencesand byt e sequences, you can and usually should specify a char set
explicitly. A stri ng constructor that takes a charset name in addition to abyt e array is provided for
this purpose. If you replace the st r i ng constructor invocation in the original program with the one
that foll ows, the program is guaranteed to print the integers from 0 to 255 in order, regardless of the
default charset:

String str = new String(bytes, "ISO 8859-1");

This constructor is declared to throw Unsuppor t edEncodi ngExcepti on, SO you must catch it or,
preferably, declare the mai n method to throw it, or the program won't compile. The program won't
actually throw the exception, though. The specification for Char set mandates that every
implementation of the Java platf orm support certain charsets, and 1SO-8859-1 is among them.

Thelesson of this puzdeisthat every timeyou trandate a byt e sequencetoastri ng, you are
using a charset, whether you specify it explicitly or nat. If you want your program to behave
predictably, specify a charset each time you use one. For APl designers, perhaps it was not such a
good ideato provideastri ng(byte[]) constructor that depends on the default charset.

48 FREV < Day Day Up > MEST wl

s < Day Day Up > |

Puzzle 19: Classy Fire

The following program uses a method to classify characters. What does the program print? In case
you are not familiar with the Stri ng. i ndex0f (char) method, it returnsthe index of the first
occurrence of the specified character in the string, or —1 if the string doesn't contain the character:

public class dassifier {
public static void main(String[] args) {
System out . printl n(
classify('n') + classify('+) + classify('2"));
}
static String classify(char ch) {
If ("0123456789". i ndexOf (ch) >= 0)
return "NUVERAL “;
i f ("abcdefghijkl mopgr st uvwxyz".indextf (ch) >= 0)
return "LETTER ";
/* (Operators not supported yet)
if ("+*/&!=".indexC (ch) >= 0)
return "OPERATOR ";
*/

return " UNKNOWN " :

Solution 19: Classy Fire

If you guessed that this program printS LETTER UNKNOWN NUVBER, you fell for the trap. The program

doesn't even compile. Let'stake another look at the rel evant section, this time highlighting the block
comment in boldface:

i f ("abcdefghij kl mopqgr st uvwxyz".indext (ch) >= 0)
return "LETTER ";
/* (Operators not supported yet)
if ("+*/&!=".indexC (ch) >= 0)
return "OPERATOR ";
*/

return " UNKNOM ":

Asyou can see, the comment ends ins de the string, which quite naturaly containsthe characters
* /. The resulting program is syntactically invalid. Our attempt to comment out a section of the
program failed because string literalsar e not treated specially within comments.

More generaly, the text inside of commentsisnot treated specialy in any way [JLS 3.7]. Therefore,
block comments do not nest. Consider the foll owing code snippet:

[* Add the nunbers from1l to n */
int sum= 0;
for (int i =1; i <= n; i++)

sum += i;

Now suppose that we try to comment out the snippet with a block comment. Again, we highlight
the entire comment in bol dface:

/*

[* Add the nunbers fromto 1 to n */

int sum= 0;
for (int i =1; i <=n; i++)
sum += i ;

*/

Asyou can see, we failed to comment out the original snippet. On the bright side, the resulting code
contains a syntax error, so the compiler will tell us that we have a problem.

Y ou may occasionally see a section of code that is disabled with ani f statement whose bool ean
expression isthe constant f al se:

/'l Code commented out with an if statement - doesn't al ways wor k!
i f (false) {

/* Add the numbers from1l to n */

int sum= 0;

for (int i =1; 1 <=n; i++)

sum += i ;

The language specification recommends this as a technique for conditional compilation [JLS
14.21], but it is not well suited to commenting out code. It can't be used unlessthe code to be
disabled is a sequence of valid statements.

The best way to comment out a section of code isto use a sequence of single-line comments.
Most IDEs automate this process:

/'l Code comented out with a sequence of single-line conments
Il /* Add the numbers from1 to n */
Il int sum= 0;

/1 for (int i =1; 1 <=n; i++)

/1 sum += i ;

In summary, a block comment does nat reliably comment out a section of code. Use a sequence
of single-line commentsinstead. For language designers, note that nestable block comments are not
agood idea. They force the compiler to parse the text inside block comments, which causes more
problemsthan it solves.

8 FREV < Day Day Up > | NExTHp |

Puzzle 20: What's My Class?

This program was designed to print the name of itsclass file. In case you aren't familiar with class
literals, Me. cl ass. get Nare() returns the fully qualified name of the class Me, or
"com javapuzzlers. Me". What doesthe program print?

package comj avapuzzl ers;
public class M {
public static void main(String[] args) {
System out . printl n(

Me. cl ass. get Nane(). replaceAll (".", "/") + ".class");

Solution 20: What's My Class?

The program appears to obtain its classname (" com j avapuzzl ers. Me"), replace all occurrences of
thestring"." with" /", and append the string " . ¢l ass" . You might think that the program would
print con j avapuzzl er s/ Me. cl ass, which isthe class file from which it was loaded. If you ran the
program, you found that it actually prints//////1111111111111.cl ass. What's going on here? Are
we avictim of the dasher?

The problem isthat string. repl aceAl | takesaregular expresson asitsfirst parameter, not a
literal sequence of characters. (Regular expressions were added to the Java platform in release 1.4.)
Theregular expression " . " matches any single character, and so every character of the class name
isreplaced by adash, producing the output we saw.

To match only the period character, the period in the regular expression must be escaped by
preceding it with a backslash (\). Because the backdash character has special meaningin a string
literal—it begins an escape sequence—the backdash itsalf must be escaped with a second
backslash. This produces an escape sequence that generates a backd ash in the string literal. Putting
it al together, the following program printscom j avapuzzl er s/ Me. cl ass as expected:

package comj avapuzzl ers;

public class M {
public static void main(String[] args) {
System out . printl n(

Me. cl ass. get Nane(). replaceAll ("\\.", "/") + ".class");

To solve thiskind of problem, release 5.0 provides the new static method

java. util.regex. Pattern. quote. It takesastring as a parameter and adds any necessary escapes,
returning aregular expression string that matches the input string exactly. Here is how the program
|ooks when modified to make use of this method:

package com javapuzzl ers;

i nport java.util.regex. Pattern;

public class M {
public static void main(String[] args) {
System out . printl n(Me. cl ass. get Name() .

replaceAll (Pattern. quote("."), "/") + ".class");

Another problem with this program isthat the correct behavior is platform dependent. Not all file
systems use the d ash character to separate hierarchical filename components. To get a valid
filename for the platform on which you are running, you should use the correct platform-dependent
separator character in place of the dash. That isexactly what the next puzzle does.

: 48 FREV ' < Day Day Up > NEXT i '

8 FREV < Day Day Up > | NExTHp |

Puzzle 21: What's My Class, Take 2

This program does exactly what the one in the previous puzzl e did, but doesn't assume that the dash
character isused to separate filename components. Instead, the program uses

java.io.Fil e. separator, whichisapublic stri ng field specified to contain the platform-specific
filename separator. Does the program print the correct pl atf orm-specific name of the classfile from
which it was | oaded?

package comj avapuzzl ers;

i mport java.io.File;

public class MeToo {
public static void main(String[] args) {
System out . printl n(MeToo. cl ass. get Name() .

replaceAl I ("\\.", File.separator) + ".class");

Solution 21: What's My Class, Take 2

The program displays one of two behaviors depending on the underlying platform. If the file
separator is adash, asitison UNIX, the program printscont j avapuzzl er s/ MeToo. cl ass, whichis
correct. If, however, the file separator is abackdash, asit ison Windows, the program prints
something like this:

Exception in thread "nmain"
StringlndexQut Of BoundsException: String index out of range: 1
at java.lang.String.charAt(String.java: 558)

at java.util.regex. Mat cher. appendRepl acenent (Mat cher . | ava: 696)

at java.util.regex. Mat cher. replaceAll (Matcher.java: 806)
at java.lang.String.replaceA | (String.java:2000)

at comjavapuzzl ers. MeToo. mai n(MeToo. j ava: 6)

Although this behavior is platf orm dependent, it isn't exactly what we were looking for. What went
wrong on Windows? It turns out that the second parameter of Stri ng. repl aceAl | isanot an
ordinary string but a replacement string, as defined inthej ava. uti | . regex Specification [Java
API]. A backdash appearing in a replacement string escapes the foll owi ng character, causing it to
be treated literally. When you run the program on Windows, the replacement string is alone
backslash character, which isinvalid. Admittedly, the exception could be alittle more informative.

So how do you solve this problem? Release 5.0 provides not one but two new methods that solveit.
Oneisjava. util.regex. Mat cher . quot eRepl acenent , which trandates a string into the
corresponding repl acement string. Here is how to fix the program by using this method:

Systemout. println(MeToo. cl ass. get Nanme() . repl aceA | (

“\\.", Matcher. quoteRepl acenent (Fil e. separator))

+ ".class");

The second method introduced in release 5.0 provides an even better solution. This method,

String. repl ace(Char Sequence, Char Sequence) , doesthe samething assStri ng. repl aceAl |, but
treats both the pattern and the replacement as literal strings. Hereis how to fix the program by using
this method:

Systemout . println(MeToo. cl ass. get Nanme() .

replace(".", File.separator) + ".class");

But what if you are using an earlier Java rel ease? Unfortunately, there is no easy way to generate
the replacement string. It is easier to dispense with regular expressions entirely and to use
String. repl ace(char, char):

Systemout . println(MeToo. cl ass. get Name() .

replace('.', File.separatorChar) + ".class");

The main lesson of this puzzle and the previous one is. Be car eful when using unfamiliar library
methods. When in doubt, consult the Javadoc. Also, regular expressions are tricky: Problemstend
to show up at run time rather than compile time.

For API designers, it isimportant to use a method-naming scheme that di sti nguishes methods whose
behavior differsin significant ways. Javas stri ng classis not perfect in this regard. For many
programmers, it is not easy to remember which string-replacement methods use literal strings and
which ones use regular expressi ons or replacement strings.

.||‘H H |“||-

8 FREV < Day Day Up > | NExTHp |

Puzzle 22: Dupe of URL

This puzzl e takes advantage of a little-known feature of the Java programming language. What does
this program do?

public class Browser Test {
public static void main(String[] args) {
Systemout.print("iexplore:");
ht t p: // ww. googl e. com

Systemout.println(":maxi mze");

Solution 22: Dupe of URL

Thisisabit of atrick question. The program doesn't do anything specia. It smply prints

i expl ore: : maxim ze. The URL that appears in the middle of the program is a statement label [JLS
14.7] followed by an end-of-line comment [JLS 3.7]. Labelsarerarely needed in Java, which
thankfully lacksagot o statement. The "little-known feature of the Java programming language” to
which the puzzle refersisthat you are allowed to put alabel on any statement. This program label s
an expr ession statement, which islegal but useless.

For what it's worth, this would be a more reasonabl e way to format the program, assuming that you
realy want to include the | abel:

public class Browser Test {
public static void main(String[] args) {

Systemout.print("iexplore:");

http: /'l www. googl e. com

Systemout.println(": mxi mze");

That said, there isno earthly reason to include the label or the comment, which has nothing to do
with the program.

Thelesson of this puzZeisthat miseading comments and extraneous code cause confusion. Write
comments car efully and keep them up to date. Excise dead code. Al o, if something seems too
strange to betrue, it's probably false.

< Day Day Up >

LS e [nexT e

Puzzle 23: No Pain, No Gain

This program prints aword, using arandom number generator to select the first character. Describe
the behavior of the program:

i nport java.util.Random

public class Rhymes {

private static Random rnd = new Randon();

public static void main(String[] args) {
StringBuffer word = nul|;
switch(rnd.nextInt(2)) {

case 1: word = new StringBuffer('P);

case 2: word new StringBuffer('G);

defaul t: word = new StringBuffer('M);
}
wor d. append(' a');
wor d. append('i');
wor d. append(' n');

System out. printl n(word);

Solution 23: No Pain, No Gain

At first glance, this program might appear to print out the words Pai n, Gai n, and Mai n with equal
likelihood, varying from run to run. It appears to choose the first | etter of the word, depending on
the value chosen by the random number generator: mfor O, P for 1, and Gfor 2. The puzzle'stitle
might have provided you with a clue that it doesn't actually print Pai n or Gai n. Perhaps more
surprisingly, it doesn't print Mai n either, and its behavior doesn't vary from run to run. It aways
prints ai n.

Three bugs conspire to cause this behavior. Did you spot them al? Thefirst bug isthat the random
number is chosen so the swi t ch statement can reach only two of itsthree cases. The specification
for Random next I nt (i nt) says: "Returns a pseudorandom, uniformly distributed i nt value between
0 (inclusive) and the specified value (exclusive)' [Java-API]. This means that the only possible
values of the expression r nd. next I nt (2) are0 and 1. The swi t ch statement will never branch to
case 2, which suggests that the program will never print Gai n. The parameter to next I nt should
have been 3 rather than 2.

Thisisafairly common source of problems, known as afencepost error. The name comes from the
common but incorrect answer of 10 to the question, If you build a fence 100 feet long with posts 10
feet apart, how many posts do you need? Both 11 and 9 are correct answers, depending on whether
there are posts at the ends of the fence, but 10 iswrong. Watch out for fencepost errors.
Whenever you are working with lengths, ranges, or moduli, be careful to determine which
endpoints should be included, and make sure that your code behaves accordingly.

The second bug isthat there are no break statements between the cases. Whatever the val ue of the
sw t ch expression, the program will execute that case and all subsequent cases[JLS 14.11]. Each
case assigns avaue to the variable wor d, and the last assgnment wins. The last ass gnment will
alwaysbethe onein thefinal case (def aul t), whichisnew Stri ngBuffer (' M). This suggests that
the program will never print Pai n or Gai n but always Mai n.

The absence of break statementsin swi t ch casesis acommon error that tools can help you catch.
Asof release 5.0, j avac providesthe - X i nt: fal | t hrough flag to generate warnings when you
forget abreak between one case and the next. Don't fall thr ough from one nonempty caseto
another. It's bad style because it's unusual and therefore confusing to the reader. Nine times out of
ten, it indicates an error. If Java had not been model ed after C, itsswi t ch statement would probably
not require breaks. The lesson for language designers isto consider providing a structured swi t ch
statement.

Thelast and most subtle bug is that the expression new Stri ngBuf fer (* M) probably does not do
what you think it does. Y ou may not be familiar with the Stri ngBuf fer (char) constructor, and
with good reason: It does not exist. There is a parameterl ess constructor, one that takesastri ng
indicating theinitial contents of the string buffer and one that takesani nt indicatingitsinitial
capacity. In this case, the compiler selectsthei nt constructor, applying awidening primitive
conversion to convert thechar value' M into thei nt value 77 [JLS 5.1.2]. In other words, new
StringBuffer (' M) returns an empty string buffer with an initial capacity of 77. The remainder of
the program appends the charactersa, i , and n to the empty string buffer and prints out its contents,
which are awaysai n.

To avoid this kind of problem, use familiar idiomsand APlIswhenever possible. If you must use
unfamiliar APIs, read the documentation car efully. In this case, the program should have used
the common Stri ngBuf fer constructor that takes astri ng.

This corrected version of the program fixesall three bugs, printing Pai n, Gai n, and Mai n with equal
likelihood:

I mport java.util.Random

public class Riynes {

private static Random rnd = new Randon();

public static void main(String[] args) {
StringBuffer word = nul|;
switch(rnd.nextInt(3)) {
case 1:
word = new StringBuffer("P');
break;
case 2:
word = new StringBuffer("G);
break;
def aul t:
word = new StringBuffer("M);

break;

}

wor d. append(' a');
wor d. append('i');
wor d. append(' n');

System out . printl n(word);

Although this program fixes the bugs, it is overly verbose. Here is a more elegant version:

i mport java.util.Random

public class Riynes {
private static Randomrnd = new Random() ;
public static void main(String args[]) {

Systemout.println("PGM.charAt(rnd.nextInt(3)) + "ain");

Better till isthe following version. Although dightly longer, itismore general. It does not depend
on the fact that the possible outputs differ only in their first characters:

i nport java.util.Random

public class Riynes {
public static void main(String args[]) {

String a[] = {"Main", "Pain", "Gain"};

System out. printl n(randont enent (a));

private static Random rnd = new Randon();
private static String randontElement(String[] a) {

return a[rnd. nextlnt(a.length)];

To summarize: First, be careful of fencepost errors. Second, remember to put abreak after each
casein sw t ch statements. Third, use common idioms and APIs, and consult the documentation
when you stray from the well-worn path. Fourth, achar isnotastri ng but ismorelike anint .

Finaly, watch out for sneaky puzzlers.

RpAR AN R

LS e [nexT e

Chapter 4. Loopy Puzzlers
All the puzzlesin this chapter concern loops.

LS RpAR AN @y

8 FREV < Day Day Up > | NExTHp |

Puzzle 24:. A Big Delight in Every Byte

This program loops through the byt e values, looking for a certain value. What does the program
print?

public class BigDelight {
public static void nain(String[] args) {
for (byte b = Byte. MN _VALUE; b < Byte.MAX VALUE, b++) {
if (b == 0x90)

System out . print("Joy!");

Solution 24: A Big Delight in Every Byte

Theloop iterates over al the byt e values except Byt e. MAX_VALUE, looking for ox90. This value fits
in abyteand isnot equal to Byt e. MAX_VALUE, S0 you might think that the loop would hit it once and
print Joy! on that iteration. Looks can be deceiving. If you ran the program, you found that it prints
nothing. What happened?

Simply put, ox90 isani nt constant that is outs de the range of byt e values. Thisis counterintuitive
because 0x90 isatwo-digit hexadecimal literal. Each hex digit takes up 4 bits, so the entire value
takes up 8 hits, or 1 byte. The problemisthat byt e isasgned type. The constant 0x90 isapositive
i nt value of 8 bitswith the highest bit set. Legal byt e valuesrange from -128 to +127, but thei nt
constant 0x90 isequal to +144.

The comparison of abyt e toani nt isamixed-type comparison. If you think of byt e values as
applesandi nt values as oranges, the program is comparing appl es to oranges. Consider the
expression ((byt e) 0x90 == 0x90) . Appearances notwithstanding, it evaluatestof al se. To
compare the byt e value (byt e) 0x90 to thei nt value 0x90, Java promotesthe byt e toani nt witha
widening primitive conversion [JLS 5.1.2] and comparesthetwo i nt values. Because byt e isa
signed type, the conversion performs sign extension, promoting negative byt e values to numerically
equal i nt values. In this case, the conversion promotes (byt e) 0x90 to thei nt value - 112, whichis
unequal to thei nt value 0x90, or +144.

Mixed-type comparisons are always confusing because the system isforced to promote one operand
to match the type of the other. The conversion isinvisible and may not yield the results that you
expect. There are several waysto avoid mixed-type comparisons. To pursue our fruit metaphor, you
can choose to compare applesto apples or oranges to oranges. You can cast thei nt to abyt e, after
which you will be comparing one byt e value to another:

if (b == (byte)0x90)

System out. println("Joy!");

Alternatively, you can convert the byt e to ani nt , suppressing sign extension with amask, after
which you will be comparing one i nt value to another:

if ((b & Oxff) == 0x90)

System out. println("Joy!");

Either of these solutionsworks, but the best way to avoid this kind of problem isto move the
congtant value outside the loop and into a constant decl aration.

Hereis afirst attempt:

public class BigbDelight {
private static final byte TARGET = 0x90; // Broken!
public static void main(String[] args) {
for (byte b = Byte. MN_VALUE; b < Byte.MAX VALUE, b++)
if (b == TARGET)

Systemout.print("Joy!");

Unfortunately, it doesn't compile. The constant declaration is broken, and the compiler will tell you
the problem: 0x90 isnot avalid value for the type byt e. If you fix the declaration as follows, the
program will work fine:

private static final byte TARGET = (byte) 0x90;

To summarize: Avoid mixed-type comparisons, because they are inherently confusing (Puzzle
5). To help achieve thisgoa, use declared constantsin place of " magic number s." You already
knew that thiswas a good idea; it documents the meanings of constants, centralizes their
definitions, and eliminates duplicate definitions. Now you know that it also forces you to give each
constant atype appropriate for its use, eliminating one source of mixed-type compari sons.

Thelesson for language designers is that sign extension of byt e valuesis a common source of bugs
and confusion. The masking that is required in order to suppress sign extens on clutters programs,
making them less readabl e. Therefore, the byt e type should be unsigned. Also, consider providing
literalsfor al primitive types, reducing the need for error-prone type conversions (Puzzle 27).

8 FREV < Day Day Up > | NExTEp |

8 FREV < Day Day Up > | NExTHp |

Puzzle 25: Inclement Increment

This program increments a variable repeatedly and then printsits value. What is it?

public class Increnent {

public static void main(String[] args) {

int j = 0;
for (int i = 0; i < 100; i++)
] =)+

Systemout.println(j);

Solution 25: Inclement Increment

At first gance, the program might appear to print 100. After dl, it doesincrement j 100 times.
Perhaps surprisingly, it does not print 100 but 0. All that incrementing gets us nowhere. Why?

Asthe puzzle'stitle suggests, the problem liesin the statement that does the i ncrement:

j =i+

Presumably, the author of the statement meant for it to add 1 to the value of j , which iswhat the
expression j ++ does. Unfortunately, the author inadvertently assigned the value of this expression
back toj . When placed after avariable, the ++ operator functions as the postfix increment oper ator
[JLS 15.14.2]: The value of the expression j ++ isthe original value of j beforeit wasincremented.
Therefore, the preceding assgnment first savesthe value of j , then setsj toitsvalue plus 1, and,
finally, resetsj back toitsoriginal vaue. In other words, the assignment is equivalent to this
sequence of statements:

3

The program repeats this process 100 times, after which the value of j isexactly what it was before
the loop, or O.

Fixing the program is as simple as removing the extraneous ass gnment from the loop, leaving:

for (int i =0; i < 100; i++)

j ++;

With this modification, the program prints 100 as expected.

Thelesson isthisthe same asin Puzzle 7: Do not assign to the same variable morethan oncein a
single expression. An expression containing multi ple assgnments to the same variable is confusing
and seldom does what you want.

T < Day Day Up > =

Puzzle 26: In the Loop

The following program counts the number of iterations of aloop and prints the count when the loop
terminates. What doesit print?

public class InTheLoop {
public static final int END = | nteger. MAX_VALUE;

public static final int START = END - 100;

public static void main(String[] args) {
int count = O;
for (int i = START, i <= END; i++)
count ++;

Systemout.println(count);

Solution 26: In the Loop

If you don't look at the program very carefully, you might think that it prints 100; after all, ENDis
100 more than START. If you look a bit more carefully, you will see that the program doesn't use the
typical loop idiom. Most | oops continue as long as the loop index islessthan the end value, but this
one continues aslong as the index islessthan or equal to the end value. So it prints 101, right?
Wéll, no. If you ran the program, you found that it prints nothing at al. Worse, it keeps running
until you kill it. It never gets a chance to print count , because it's stuck in an infinite loop.

The problem isthat the loop continues aslong asthe loop index (i) islessthan or equd to

| nt eger . MAX_VALUE, but all i nt variablesare always lessthan or equal to I nt eger . MAX_VALUE. It
is, after all, defined to be the highesti nt value in existence. Wheni getsto | nt eger . MAX_VALUE
and isincremented, it silently wraps around to | nt eger . M N_VALUE.

If you need aloop that iterates near the boundaries of thei nt values, you are better off using al ong
variable asthe loop index. Simply changing the type of the loop index fromi nt to 1 ong solvesthe
problem, causi ng the program to print 101 as expected:

for (long i = START; i <= END; | ++)

More generaly, the lesson hereisthat i nt sare not integers. Whenever you use an integral type,
be awar e of the boundary conditions. What happens if the value underflows or overflows? Often
itisbest to use alarger type. (The integral typesare byt e, char, short,int,and| ong.)

It is possible to sol ve this problem without resorting to al ong index variable, but it's not pretty:

int i = START;
do {
count ++;

} while (i++ != END);

Given the paramount importance of clarity and simplicity, itisamost aways better to usea |l ong
index under these circumstances, with perhaps one exception: If you are iterating over al (or nearly
al) thei nt values, it's about twice asfast to stick with ani nt . Hereis an idiom to apply afunction
f toall four billioni nt values:

/'l Apply the function f to all four billion int val ues
int i = Integer.M N _VALUE;
do {
FCi)s
} while (i++ !'= Integer. MAX VALUE);

Thelesson for language designers is the same asthat of Puzzle 3: It may be worth considering
support for arithmetic that does not overflow silently. Also, it may be worth providing support for
|oops desi gned specifically to iterate over ranges of integral values, as many |anguages do.

=

< Day Day Up >

8 FREV < Day Day Up > | NExTHp |

Puzzle 27: Shifty i's

Like the program in the Puzzle 26, this one contains aloop that keeps track of how many iterations
it takesto terminate. Unlike that program, this one uses the | eft-shift operator (<<). Asusual, your
jobisto figure out what the program prints. When you read it, remember that Java uses two's-
complement binary arithmetic, so the representation of -1 in any signed integral type (byt e, short,
int,orlong)hasall itshbits set:

public class Shifty {
public static void main(String[] args) {
int i = 0;
while (-1 << i !=0)

i ++;

Systemout.println(i);

Solution 27: Shifty i's

The constant - 1isthei nt value with all 32 bitsset (oxf fffffff). Theleft-shift operator shifts
zeroesin from theright to fill the low-order bits vacated by the shift, so the expresson (-1 << i)
hasits rightmost i bitsset to 0 and the remaining 32 - i bitssetto 1. Clearly, the loop completes
32iterations, as-1 << i isunequal to Ofor anyi lessthan 32. You might expect the termination
testtoreturnt al se wheni is32, causingthe programto print 32, but it doesnt print 32. In fact, it
doesn't print anything but goes into an infinite loop.

The problemisthat (-1 << 32) isequa to -1 rather than O, because shift operatorsuse only the
fivelow-or der bitsof their right operand asthe shift distance, or six bitsif the left operand isa
| ong [JLS 15.19]. Thisappliesto al three shift operators. <<, >>, and >>>. The shift distanceis
always between 0 and 31, or 0 and 63 if the left operand isal ong. It is calculated mod 32, or mod
64 if the left operand is al ong. Attempting to shift ani nt value 32 bitsor al ong value 64 bitsjust
returns the valueitsalf. There is no shift distance that discards all 32 bitsof ani nt value or al 64
bitsof al ong value.

Luckily, thereis an easy way to fix the problem. Instead of repeatedly shifting - 1 by a different shift

distance, save the result of the previous shift operation and shift it one more bit to the | eft on each
iteration. Thisversion of the program prints 32 as expected:

public class Shifty {

public static void main(String[] args) {

int distance 0;

for (int val -1; val !'=0; val <<=1)

di st ance++;

System out. printl n(distance);

The fixed program illustrates a general principle: Shift distances should, if possible, be constants.
If the shift distanceis staring you in the face, you are much lesslikely to exceed 31 or, if the left
operand isal ong, 63. Of course, it isn't always possibl e to use a constant shift distance. When you
must use a honconstant shift distance, make sure that your program can cope with this problematic
case or does not encounter it.

There is another surprising consequence of the aforementioned behavior of shift operators. Many
programmers expect a right-shift operator with a negative shift distance to function as aleft shift
and vice-versa. Thisisnot the case. A right shift always functions asaright shift, and aleft shift
alwaysfunctions as a | eft shift. Negative shift distances are made positive by |opping off all but the
five low-order bits—six bitsif theleft operand isal ong. So, for example, shifting ani nt to the | eft
with a shift distance of -1 has the effect of shiftingit 31 bitsto the | eft.

In summary, shift distances are calculated mod 32 or, if the left operand is al ong, mod 64. Itis
theref ore impossi bl e to shift away an entire val ue by using any shift operator or distance. Also, it is
impossible to perform aleft shift with aright-shift operator or vice-versa. Use a constant shift
distanceif possible, and exercise careif the shift distance can't be made constant.

Language designers should perhaps cons der restricting shift distancesto the range from 0 to the
type size in bits and changing the semantics of shifting avalue by the type size to return 0. Although
thiswould avoid the confusion illustrated by this puzzle, it could have negative performance
consequences; Javas semanticsfor the shift operators are those of the shift instructions on many
Processors.

| 4@ FREV < Day Day Up > | NExTEp |

8 FREV < Day Day Up > | NExTHp |

Puzzle 28: Looper

This puzzl e and the five that follow turn the tables on you. Instead of showing some code and
asking what it does, they make you write the code, abeit in small amounts. These puzzles are called
loopers. You will be shown a loop that | ooks as though it ought to terminate quickly, and it will be
your job to come up with a variable declaration that makes it |oop indefinitely, when placed
immediately above the loop. For example, consider this f or |oop:

for (int i =start; i <= start + 1; 1++) {

}

It looks as though it should run for only two iterations, but it can be made to |oop indefinitely by
taking advantage of the overflow behavior illustrated in Puzzle 26. The following declaration does
thetrick:

int start = I nteger. MAX_ VALUE - 1;

Now it's your turn. What declaration turns thisloop into an infinite loop?

while (i ==i + 1) {

}

Solution 28: Looper

Looking at the whi | e loop, it really seems asthough it ought to terminate immediately. A number is
never equa to itsalf plus 1, right? Well, what if the number isinfinity? Java mandates the use of
|EEE 754 fl oating-point arithmetic [|[EEE-754], which |ets you represent infinity asadoubl e or
f1oat . Aswelearned in school, infinity plus 1 isstill infinity. If i isinitialized to infinity before the
loop starts, theterminationtest i == i + 1) evaluatestot rue, and the loop never terminates.

You caninitializei with any floating-point arithmetic expression that evaluatesto infinity; for

example:

double i = 1.0/ 0.0;

Better yet, you can take advantage of a constant that is provided for you by the standard libraries:

doubl e i = Doubl e. POSI TI VE_I NFI N TY;

In fact, you don't haveto initializei to infinity to make the loop spin forever. Any sufficiently large
floating-point value will do; for example:

doubl e i = 1. 0e40;

This works because the larger a fl oati ng-point value, the larger the di stance between the value and
its successor. Thisdistribution of floating-point val uesis a consequence of their representation with
afixed number of significant bits. Adding 1 to afloating-point value that is sufficiently large will
not change the value, because it doesnt "bridge the gap" to its successor.

Hoating-point operations return the floating-point value that is closest to their exact mathemati cal
result. Once the distance between adjacent floating-point valuesis greater than 2, adding 1 to a
floating-point value will have no eff ect, because the half-way point between val ues won't be
reached. For thef | oat type, the least magnitude beyond which adding 1 will have no effect is 225,
or 33,554,432; for the doubl e type, itis2°4, or approximately 1.8 x 1016,

The distance between adjacent floating-point valuesis called an ulp, which isan acronym for unit
inthelast place. Inrelease 5.0, the Mat h. ul p method was introduced to calculate the ulp of af | oat
or doubl e value.

In summary, it is possible to represent infinity asa doubl e or afloat . Most peoplefind this
somewhat surprising the first time they hear of it, perhaps because you can't represent infinity by
using any of theintegral types. Second, adding a small floating-point valueto a large one will nat
change thelarge value. This too may be counterintuitive, asit isn't true for the real numbers. It is
worth remembering that binary floating-point arithmeticisonly an approximation to real
arithmetic.

LS AR A AN R =y

8 FREV < Day Day Up > | NExTHp |

Puzzle 29: Bride of Looper

Provide adeclaration for i that turnsthisloop into an infinite loop:

while (i '=i) {

}

Solution 29: Bride of Looper

This looper is perhaps even more puzzling than the previous one. It really seemsthat it ought to
terminate immediately, no matter what declaration precedesit. A number is always equal to itself,
right?

Right, but IEEE 754 floating-point arithmetic reserves a specia value to represent a quantity that is
not a number [IEEE-754]. This value, known as NaN (short for "Not a Number"), isthe value of all
floating-point computations that do not have well-defined numeric values, suchas0.0 / 0.0. The
specification saysthat NaN is not equal to any floating-point value, including itself [JLS
15.21.1]. Therefore, if i isinitialized to NaN before the loop starts, the terminationtest (i !'= i)
eval uates to TRue, and the loop never terminates. Strange but true.

You caninitializei with any floating-point arithmetic expression that evaluatesto NaN; for
example:

double i = 0.0/ 0.0;

Once again, you can add clarity by using a constant that i s provided for you by the standard
libraries:

doubl e i = Doubl e. NaN:;

NaN holds other similar surprises. Any floating-point operation evaluatestoNaN if one or more
of itsoperandsare NaN. This rule is perfectly reasonabl e, but it has strange consequences. For

example, thisprogram printsf al se:

class Test {
public static void main(String[] args) {
double i = 0.0/ 0.0;

Systemout.println(i - i == 0);

The principle underlying the rules for computing with NaN isthat once it generates NaN, a
computation isdamaged, and nofurther computation can repair the damage. The NaN valueis
intended to allow a damaged computation to proceed to a point where it is convenient to deal with
the situation.

In summary, thef 1 oat and doubl e types have a special NaN value to represent a quantity that is not
anumber. Therules for computationsinvolving NaN are smple and sensible, but the consequences
of these rules can be counterintuitive.

@ rne < Day Day Up >

| 4m PREV < Day Day Up > NEXT o |

Puzzle 30: Son of Looper

Provide adeclaration for i that turnsthisloop into an infinite loop:

while (i '=i + 0) {

}

Unlike previous loopers, you must not use floating-point in your answer. In other words, you must
not declarei to be of typedoubl e or f | oat .

G |
g
e
—

4
Fag
-

[
L !!
e

E
-

.

_ il
!

i
A

Eﬁi. .
R .

.

Solution 30: Son of Looper

Like the previous puzzl e, this one seemsimpossible at first glance. After all, anumber is aways
equal to itself plus 0, and you were forbidden from using floating-point, so you can't use NaN.
There isno NaN equivalent for the integral types. What gives?

The inescapable conclusion is that the type of i must be non-numeric, and therein lies the solution.
The only non-numeric type for which the + operator isdefined isstri ng. The + operator is
overloaded: For the stri ng type, it performs not addition but string concatenation. If one operand in
the concatenation is of sometype other than Stri ng, that operand is converted to a string prior to
concatenation [JLS 15.18.1].

Infact,i canbe initialized to any value so long asit isof type Stri ng; for example:

String i = "Buy seventeen copi es of Effective Java!";

Thei nt value 0 isconverted to the stri ng value " 0" and appended to the blatant plug. The
resulting string is not equal to the original as computed by the equal s method, so it certainly can't
beidentical, as computed by the == operator. Therefore, the bool ean expresson (i !'= i + 0)
eval uates to TRue and the loop never terminates.

In summary, oper ator overloading can be very mideading. The plussign in the puzzle |ooks like
addition, but it is made to perform string concatenation by choosing the correct type for the variable
i , whichisstring. The puzzle is made even more mideading because the variableisnamedi , a
namethat is usually reserved for integer variables. Good variable, method, and classnames are at
least asimportant to program readability as good comments.

Thelesson for language designers isthe same asin Puzzles 11 and 13. Operator overl oading can be
confusing. Perhaps the + operator should not have been overloaded for string concatenation. It may
well be worth providing a string concatenation operator, but it doesn't haveto be +.

@ FREV < Day Day Up > | NEXT WP

LS e [nexT e

Puzzle 31: Ghost of Looper

Provide adeclaration for i that turnsthisloop into an infinite loop:

while (i !'= 0)

i >>>= 1

Recall that >>>= isthe assgnment operator corresponding to the unsigned right-shift operator.
Zeros are shifted in from the left to fill bits vacated by the shift, even if the value being shifted is
negative.

Solution 31: Ghost of Looper

This looper isabit more complex than the three that preceded it, as the |oop has a nonempty body.
In the body, the value of i isreplaced by itsvalue shifted right by one bit position. For the shift to
belegal,i must beof anintegral type (byt e, char, short,int, orl ong). The unsigned right-shift
operator shiftszerosin from the I eft, so it might seem that the loop could perform only as many
iterations as the number of bitsin the largest integral type, which is64. Thisisindeed what would
happen if you preceded the loop with this decl arati on:

long i =-1; // -1L has all 64 bits set

How could you possibly turn thisinto an infinite loop? The key to solving this puzzleis that >>>=is
a compound assignment operator. (The compound assignment operatorsare * =, / =, %, +=, - =, <<=,
>>=, >>>=, &=, =, and | =.) An unfortunate fact about the compound assignment operatorsis that
they can silently perform narrowing primitive conversions [JLS 15.26.2], which are conversions
from one numeric type to aless expressive numeric type. Nar rowing primitive conversions can
lose infor mation about the magnitude or precison of numeric values[JLS 5.1.3].

To make this concrete, suppose that you precede the loop with the foll owing declaration:

short i = -1;

Because theinitial value of i ((short) 0xffff)isnonzero, the body of the loop isexecuted. The
first step in the execution of the shift operation isthat the value of i ispromoted to ani nt . All
arithmetic operations do thisto operands of type short, byt e, Or char . This promotionisa
widening primitive conversion, so no information islost. This promotion performs sign extension,
so theresulting i nt value isoxf fffffff. Thisvaueisthen shifted to the right by one bit without
sgn extensontoyieldthei nt value ox7fffffff. FHnally, thisvalueisstored back intoi . In order
to storethei nt value into theshort variable, Java performsthe dreaded narrowing primitive
conversion, which smply lops of f the high-order 16 bits of the value. Thisleaves (short) Oxffff,
and we are back where we started. The second and successive iterations of the |loop behave
identically, so the loop never terminates.

Similar behavior occursif you declarei to beashort or byt e variableinitialized to any negative
value. You will not get an infiniteloop if you declarei to beachar, aschar valuesare unsigned,
so the widening primitive conversion that occurs prior to the shift doesn't perform sign extension.

In summary, do not use compound assignment operatorson short, byt e, or char variables. Such
express ons perform mixed-type arithmetic, which can be confusingin and of itself. Far worse, they
perform an implicit narrowing cast, which can discard information. The results can be disastrous.

Thelesson for language designers is that languages should not perform narrowing conversions
slently. One could well argue that Java should have disallowed the use of compound ass gnment
operatorsonshort , byt e, and char variables.

< Day Day Up >

8 FREV < Day Day Up > | NExTHp |

Puzzle 32: Curse of Looper

Provide declarationsfori andj that turn thisloop into an infinite loop:

while (i <= &&j <=i && i '=j) {

}

Solution 32: Curse of Looper

Oh, no, not another seemingly impossible looper! If i <= j andj <= i, surelyi mustequal j ? This
property certainly holds for the real numbers. In fact, it is so important that it has aname: The S
relation on the real numbers is said to be antisymmetric. Java's <= operator used to be antisymmetric
bef ore release 5.0, but no longer.

Until release 5.0, Java's numerical comparison operators(<, <=, >, and >=) required both of their
operands to be of a primitive numeric type (byt e, char, short,int, | ong, float, Or doubl €) [JLS2
15.20.1]. In release 5.0, the specification was changed to say that the type of each operand must be
convertible to a primitive numeric type [JLS 15.20.1, 5.1.8]. Therein lies the rub.

In release 5.0, autoboxing and auto-unboxing were added to the language. If you are unfamiliar with
them see: http://java.sun.con/j 2se/5.0/docs/gui de/l anguage/autoboxing.html [Boxing]. The <=
operator isstill antisymmetric on the set of primitive numeric values, but now it appliesto operands
of boxed numeric types aswell. (The boxed numeric types are Byt e, Char act er, Short, | nt eger,
Long, Fl oat , and Doubl e.) The <= operator is not antisymmetric on operands of these types, because
Java's equality operators (== and ! =) perform reference identity comparison rather than value
comparison when applied to object references.

To make this concrete, the following declarations give theexpresson (i <= j &&j <=i && i !=
j) thevaluet rue, turning the loop into an infinite loop:

| nt eger | new I nteger (0);

| nt eger | new | nteger (0);

Thefirst two subexpressions (i <= j andj <= i) perform unboxing conversions[JLS 5.1.8] oni
andj and compare theresultingi nt values numerically. Bothi andj represent 0, so both of these

http://java.sun.com/j2se/5.0/docs/guide/language/autoboxing.html

subexpressions evauate to TRue. The third subexpression (i ! = j) performsan identity comparison
on the object referencesi and j . The two variablesrefer to distinct objects, as each wasinitialized
toanew I nt eger instance. Therefore, the third subexpression also evaluatestot rue, and the loop
spins forever.

Y ou might wonder why the language specification wasn't changed to make the equality operators
perform value comparisons when applied to boxed numeric types. The answer is Ssmple:
compatibility. When alanguage iswidely used, it is unacceptabl e to change the behavior of existing
programs in ways that violate exi sting specifications. The foll owing program was always
guaranteed to print f al se, and so it must remain:

public class ReferenceConparison {
public static void main(String[] args) {

Systemout.printl n(new Integer(0) == new I nteger(0));

The equality operators do perform numerical comparison when only one of their two operandsis of
aboxed numeric type and the other is of a primitive type. Because thiswasillegal prior to release
5.0, there are no compatibility problems. To make this concrete, the following program wasillegal
inrelease 1.4 and prints TRue in release 5.0:

public class Val ueConpari son {
public static void main(String[] args) {

Systemout.printl n(new Integer(0) == 0);

In summary, ther eisa fundamental differ enceintheway numerical comparison operator sand
equality operator s behave when both operands ar e of boxed numeric types: Numerical
comparison operator s per form value comparisons, while equality operators perfor mr efer ence
identity comparisons.

For language designers, life might have been ssimpler and more pleasant if the equality operators

had always performed val ue compari sons (Puzzle 13). Perhaps the real |esson isthat language
designers should acquire high-quality crystal ballsin order to predict the future of the language and
make all design decisions accordingly. More serioudy, designers should think about how the
language might evolve and should attempt to mini mize constraints on evolution.

| 4@ FREV < Day Day Up > | NExTHp |

Puzzle 33: Looper Meets the Wolfman

Provide adeclaration fori that turnsthisloop into an infinite loop. This one doesn't require the use
of any release 5.0 features:

while (i '=0 &% i == -i) {

}

Solution 33: Looper Meets the Wolfman

Y et another puzzling looper. In the bool ean expression (i !'= 0 && i == -i), the unary minus
operator isapplied toi , which impliesthat itstype must be numeric: Itisillegal to apply the unary
minus operator to a non-numeric operand. Therefore, we are looking for a nonzero numeric value
that is equal to its own negation. NaN does not satisfy this property, asit isnot equal to any val ue,
S0 i must represent an actual number. Surely there is no number with this property?

Weéll, there is no real number with this property, but none of Java's numeric types mode the real
numbers perfectly. Hoating-point values are represented with a sign bit; a significand, informally
known as the mantissa; and an exponent. No floating-point val ue other than O isequal to itself with
the sign bit flipped, so the type of i must be integral.

The signed integral types use two's-complement arithmetic: To negate avalue, you flip every bit and
add 1 to theresult [JLS 15.15.4]. One big advantage of two's-complement arithmetic isthat thereis
aunique representation for 0. If you negate thei nt value 0, you get oxffffffff + 1, whichiso.
There is, however, a corresponding disadvantage. There exist an even number of i nt values—232 to
be precise—and one of these valuesis used to represent 0. That |eaves an odd number of i nt values
to represent positive and negative integers, which meansthat there must be a different number of
positive and negativei nt values. Thisin turnimpliesthat thereisat least onei nt value whose
negation cannot be correctly represented as ani nt value.

In fact, there isexactly one suchi nt value, and it is1 nt eger . M N_VALUE, or - 231, |ts hexadecimal
representation is0x8000000. Thesign bit is1, and all the other bitsare 0. If we negate this value,
we getox7fffffff + 1, whichis0x8000000, or | nt eger. M N_VALUE! In other words,

| nt eger . M N_VALUE iSitsSOown negation, asisLong. M N_VALUE. Negating either of these values
causes an overflow, but Javaignores overflowsin integer computations. The results are well
defined, even if they are not always what you want them to be.

This declaration will make the bool ean expression (i '=0 & i == -i) evaluatetotrue,
causing the loop to spin indefinitely:

int i = Integer. M N _VALUE;

So will thisone;

long i = Long.M N _VALUE;

In case you're familiar with modul ar arithmetic, it's worth pointing out that this puzzl e can be solved
algebraicaly. Javasi nt arithmetic isactually arithmetic mod 232, so the puzzle requires a nonzero
solution to this linear congruence:

i =i (mod 232
Addingi to both sides, we get:
2i = 0 (mod 232)

The nonzero solution to this congruenceis i = 231. Although thisvalue is not representabl e as an
i nt, itiscongruent to -231, whichis! nt eger. M N_VALUE.

In summary, Java uses two's-complement arithmetic, which is asymmetric. The signed integral
types (i nt, 1 ong, byt e, and shor t) each have one more negative val ue than positive, which is
always the minimum val ue representable in the type. Negating I nt eger . M N_VALUE doesn't change
itsvalue, and the same holds true for Long. M N_VALUE. Negating Shor t . M N_VALUE and casting the
resultingi nt value back to ashort returns the original value (Short . M N_VALUE). A smilar result
holdsfor Byt e. M N_VALUE. More generally, watch out for over flow: Likethe Wadfman, it'sa
killer.

The lesson for language designers isthe same asin Puzzle 26. Consider providing linguistic support
for some form of integer arithmetic where overflow does not happen silently.

48 FREV < Day Day Up > NEXT o

8 FREV < Day Day Up > | NExTHp |

Puzzle 34: Down for the Count

Like the programsin Puzzles 26 and 27, this program has a single |oop, keeps track of the number
of iterations, and prints that number when the loop terminates. What does the program print?

public class Count {
public static void main(String[] args) {
final int START = 2000000000;
int count = O;
for (float f = START; f < START + 50; f++)
count ++;

Systemout . println(count);

Solution 34; Down for the Count

A superficial analysis might suggest that this program would print 50. After al, the loop variable (f)
isinitialized to 2,000,000,000, the final value is 50 more than the initia value, and the loop hasthe
traditiona "half-open" form: It usesthe < operator, which causesit to include theinitia val ue but
not the final value.

This analysis, however, misses a key point: The loop variable isaf | oat rather than the traditional
i nt . Remember back to Puzzle 28; it is apparent that the increment (f ++) will not work. The initial
value of f iscloseto I nt eger. MAX_VALUE, S0 it requires 31 bitsto express precisely, and thef | oat
type provides only 24 bits of precision. Incrementing such alargef I oat value will not change it.
Therefore, it would appear that this program should loop indefinitely, with f never getting any
closer to itsterminal value. If, however, you ran the program, you found that it doesn't loop
indefinitely; in fact, it terminates immediately, printing 0. What gives?

The problem isthat the termination test fail sin much the same way that the increment does. The
loop runsonly so long asthe loop index f islessthan (f1 oat) (START + 50) . The promotion from
int tofloat isperformed automatically when comparingani nt toafloat [JLS 15.20.1].
Unfortunately, this promotion is one of the three widening primitive conversions that can result in

loss of precision [JLS 5.1.2]. (The others arel ong tof 1 oat and | ong to doubl e.)

Theinitia vaue of f isso large that adding 50 to it and converting theresult to af | oat produces
the same value as simply convertingf to afloat . In other words, (f1 oat) 2000000000 ==
2000000050, SO the expressionf < START + 50 isfalse before the loop body has executed even
once, and the loop body never gets a chance to run.

Fixing this program is as simple as changing the type of the loop variable from afloat toanint .
This avoids all the imprecision associated with fl oatingpoint computation:

for (int i = START; i < START + 50; i++)

count ++;

Without using a computer, how could you possibly have known that 2,000,000,050 has the same
float representation as 2,000,000,000? The key isto observe that 2,000,000,000 has ten factors of
2: It beginswith a2 and has nine factors of 10, each of whichis5 x 2. This meansthat the binary
representation of 2,000,000,000 endsin ten Os. The binary representation of 50 requires only six
bits, so adding 50 to 2,000,000,000 doesnt influence any bit higher than the sixth from theright. In
particular, the seventh and eighth bits from the right are still 0. Promoting this 31-bit i nt to afl oat
with 24 bits of precision rounds between the seventh and eighth bits, which smply discards the
rightmost seven bits. The rightmost six bits are the only ones on which 2,000,000,000 and
2,000,000,050 differ, so their f 1 oat representations are identical .

Themora of thispuzzleissimple: Do not use floating-point loop indices, becauseit can lead to
unpredictable behavior. If you need afloating-point value in the body of aloop, take thei nt or

| ong loop index and convert it to af I oat or doubl e. YOu may |lose precision when converting an
int or longtoafloat Or al ong toadoubl e, but at least it will not affect the loop itself. When
you use floating-point, use doubl e rather than f | oat unlessyou are certain that f | oat provides
enough precision and you have a compelling performance need to use f | oat . The timeswhen it's
appropriate to usef 1 oat rather than doubl e are few and far between.

The lesson for language designers, yet again, isthat silent |oss of precision can be very confusing to
programmers. See Puzzle 31 for further discussion.

| ¢m PREV < Day Day Up > | NExT & |

8 FREV < Day Day Up > | NExTHp |

Puzzle 35: Minute by Minute

The following program simulates a simple clock. Itsloop variabl e represents a millisecond counter
that goes from 0 to the number of milliseconds in an hour. The body of the loop increments a
minute counter at regular intervals. Finally, the program prints the minute counter. What does it
print?

public class d ock {
public static void main(String[] args) {

0;

Int mnutes
for (int mse = 0; ns < 60*60*1000; nB++)
if (ms % 60*1000 == 0)
m nut es++;

System out . printl n(m nutes);

Solution 35: Minute by Minute

Theloop in this programisthe standard idiomatic f or loop. It steps the millisecond counter (ns)
from O to the number of millisecondsin an hour, or 3,600,000, including the former but not the
latter. The body of the loop appears to increment the minute counter (mi nut es) each time the
millisecond counter isamultiple of 60,000, which isthe number of millisecondsin a minute. This
happens 3,600,000 / 60,000, or 60 timesin the lifetime of the loop, so you might expect the
program to print 60, which is, after all, the number of minutesin an hour. Running the program,
however, tells adifferent story: It prints 60000. Why does it increment ri nut es so often?

The problem liesin the bool ean expression (nms % 60* 1000 == 0) . You might think that this
expression isequivalentto (ns % 60000 == 0), but it isn't. The remainder and multiplication
operators have the same precedence [JLS 15.17], so the expression ns % 60* 1000 iSequivaent to
(ms % 60) * 1000. Thisexpressionisequal to Oif (ns % 60) iSO, so the loop increments i nut es
every 60 iterations. Thisaccountsfor the fina result being off by afactor of athousand.

The easiest way to fix the programisto insert a pair of parenthesesinto the bool ean expression to

force the correct order of evauation:

if (ms % (60 * 1000) == 0)

m nut es++;

There is, however, amuch better way to fix the program. Replace all magic numberswith
appropriately named constants.

public class d ock {

private static final int MS PER HOUR 60 * 60 * 1000;

private static final int MS PER M NUTE

60 * 1000;

public static void main(String[] args) {

int m nutes 0;
for (int ms = 0; ns < MS_ PER HOUR;, ns++)
if (ns % M5_PER M NUTE == 0)

m nut es++;

Systemout . printl n(mnutes);

The expressonms % 60* 1000 in the original program was laid out to fool you into thinking that
multiplication has higher precedence than remainder. The compiler, however, ignores thiswhite
Space, SO never use spacing to express grouping; use parentheses. Spacing can be deceptive, but
parentheses never lie.

= Day Day Up >

LS e [nexT e

Chapter 5. Exceptional Puzzlers

The puzzlesin this chapter concern exceptions and the closely related t ry-final Iy statement. A
word of caution: Puzzle 44 is exceptionally difficult.

LS R A AN R =y

s < Day Day Up > |

Puzzle 36: Indecision

This poor little program can't quite make up its mind. The deci si on method returnst rue. But it
asoreturnst al se. What doesit print? Is it even legal ?

public class Indecisive {
public static void main(String[] args) {

System out . println(decision());

static bool ean decision() {

try {

return true;

} finally {

return false;

Solution 36: Indecision

You might think that thisprogramisillegal. After al, the deci si on method cant return both TRue
andf al se. If youtried it, you found that it compiles without error and printsf al se. Why?

Thereasonisthat inatry-final 1y statement, thefinal Iy block isalways executed when
control leaves thetry block [JLS 14.20.2]. Thisistrue whether the t ry block completes normally
or abruptly. Abrupt completion of a statement or block occurs when it throws an exception,
executesa break Or cont i nue to an enclosing statement, or executes ar et ur n from the method as
in this program. These are called abrupt compl etions because they prevent the program from
executing the next statement in sequence.

When both the TRy block and the f i nal Iy block compl ete abruptly, the reason for the abrupt
completion inthet ry block isdiscarded, and the whole TRy- f i nal Iy statement completes abruptly
for the samereason asthefinal Iy block. In this program, the abrupt completion caused by the

r et ur n statement in the TRy block is discarded, and the TRy-f i nal |y statement completes abruptly
because of ther et ur n statement in thef i nal I'y block. Simply put, the program tri es tOret urn
truebutfinallyitreturns false.

Discarding the reason for abrupt completion isalmost never what you want, because the original
reason for abrupt compl etion might be important to the behavior of a program. It is especialy
difficult to understand the behavior of a program that executesabreak, cont i nue, Of r et urn
statement in a TRy block only to have the statement's behavior vetoed by afinal 1'y block.

In summary, every final I'y block should complete normally, barring an unchecked exception.
Never exit afinal Iy block with areturn, break, continue, or t HRow, and never allow a
checked exception to propagate out of afinal I'y block.

For language designers, f i nal 'y blocks should perhaps be required to complete normally in the
absence of unchecked exceptions. Toward thisend, aTRy- f i nal I y construct would require that the
final Iy block can complete normally [JLS 14.21]. A r et ur n, break, Or cont i nue Statement that
transfers control out of afinal I'y block would be disall owed, as would any statement that could
cause a checked exception to propagate out of thef i nal 'y block.

8 FREV < Day Day Up > | NExTEp |

s < Day Day Up > |

Puzzle 37: Exceptionally Arcane

This puzzl e tests your knowledge of the rulesfor declaring exceptions thrown by methods and
caught by cat ch blocks. What does each of the foll owing three programs do? Don't assume that all
of them compile:

i nport java.io.| CeException;
public class Arcanel {
public static void main(String[] args) {
try {
Systemout.println("Hello world");
} catch (I Cexception e) {

Systemout.printIn("l've never seen println fail!");

public class Arcane2 {
public static void main(String[] args) {
try {
/1 1f you have nothing nice to say, say nothing
} catch (Exception e) {

Systemout.println("This can't happen");

interface Typel {

void f() throws CloneNot SupportedException;

}

interface Type2 {

void f() throws InterruptedException;

}
interface Type3 extends Typel, Type2 {

}
public class Arcane3 inplenents Type3 {

public void f() {

Systemout.println("Hello world");

}

public static void nmain(String[] args) {
Type3 t3 = new Arcane3();

t3.1();

Solution 37: Exceptionally Arcane

Thefirst program, Arcanel, illustrates a basic principle of checked exceptions. It may look as
though it should compile: Thet ry clause does 1/0O, and the cat ch clause catches| CExcept i on. But
the program does not compile because the pri nt I n method isn't declared to throw any checked
exceptions, and | CExcept i on isachecked exception. The language specification saysthat it is a
compile-timeerror for acat ch clauseto catch a checked exception type E if the corr esponding
TRy clause can't throw an exception of some subtype of E [JLS 11.2.3].

By the same token, the second program, Arcane2, may ook as though it shouldn't compile, but it
does. It compiles becauseits sole cat ch clause checksfor Excepti on. Although the JLS is not
terribly clear on this point, catch clauses that catch Excepti on or Thr owabl e arelegal regardless
of the contents of the corr esponding t ry clause. Although Arcane2 isalegal program, the
contents of itscat ch clause will never be executed; the program prints nothing.

The third program, Arcane3, also looks as though it shouldn't compile. Method f isdeclared to
throw checked exception Cl oneNot Support edExcept i on in interface Typel and to throw checked
exception | nt er rupt edExcepti on ininterface Type2. Interface Type3 inherits from Type1 and
Type2, o it would seem that invoking f on an object whose static typeis Type3 could potentialy
throw either of these exceptions. A method must either catch each checked exception its body can
throw, or declare that it throws the exception. The mai n method in Arcane3 invokes f on an object
whose dtatic typeis Type3 but does neither of these thingsfor Cl oneNot Support edExcept i on Or

| nt er rupt edExcepti on. Why does the program compile?

Theflaw in thisanalysis is the assumption that Type3. f can throw either the exception declared on
Typel.f or the one declared on Type2. f. This simply isn't true. Each interface limits the set of
checked exceptions that method f can throw. T he set of checked exceptionsthat a method can
throw istheintersection of the sets of checked exceptionsthat it isdeclared to throw in all
applicable types, not the union. Asaresult, thef method on an object whose static typeis Type3
can't throw any checked exceptions at all. Therefore, Arcane3 compiles without error and prints
Hel l o world.

In summary, thefirst program illustrates the basic requirement that cat ch clauses for checked
exceptions are permitted only when the correspondingt ry clause can throw the exceptionin
question. The second program illustrates a corner case where this requirement does not apply. The
third program illustrates the interaction of multiple inherited t HRows clauses, which reduces rather
than increases the number of exceptions that amethod is permitted to throw. The behaviors
illustrated by this puzzle don't generally cause subtle bugs, but they can be abit surprising the first
time you see them.

4 FREV < Day Day Up > NEXT

s < Day Day Up > |

Puzzle 38: The Unwelcome Guest

The program in this puzzle model s a system that attemptsto read a user ID from its environment,
defaulting to aguest user if the attempt fails. The author of the program was faced with a Situation
whereby the initializing expression for astatic field could throw an exception. Because Java doesn't
alow daticinitializersto throw checked exceptions, theinitialization must be wrapped inatry-
final 'y block. What does the program print?

public class Unwel coneGuest {

public static final |ong GUEST USER ID = -1;

private static final |ong USER I D
static {
try {
USER | D = get User | dFr onEnvir onnment () ;
} catch (lIdUnavail abl eException e) {
USER | D = GUEST_USER | D;

Systemout. println("Logging in as guest");

private static | ong getUser|dFronEnvironment ()
t hrows | dUnavail abl eException {

throw new | dUnavai | abl eException(); // Sinmulate an error

public static void main(String[] args) {

Systemout.println("User ID: " + USER ID);

class IdUnavail abl eExcepti on extends Exception {

| dUnavai | abl eException() { }

Solution 38: The Unwelcome Guest

This program seems strai ghtforward. The call to get User | dFr onEnvi r onnent appearsto throw an
exception, causing the program to assign the value of GUEST_USER | D (- 1L) to USER_I D and to print
Loggi ng in as guest. Thenthemi n method executes, causing the programto print User 1D: -1.
Once again, appearances are deceiving. The program doesn't compile. If you tried to compile it, you
saw an error message that looked something like this:

Unwel comeGuest . j ava: 10:
vari abl e USER ID m ght already have been assigned

USER | D = GUEST USER I D;

JAN

What's the problem?The USER_I Dfield isablank final, which isafinal field whose declaration
lacksaninitializer [JLS 4.12.4]. It isclear that the exception can be thrown in the t ry block only if
the assignment to USER_| Dfalls, soit is perfectly safeto assignto USER_I Dinthecat ch block. Any
execution of the tatic initializer block will cause exactly one assignment to USER | D, which isjust
what isrequired for blank finas. Why doesn't the compiler know this?

Determining whether a program can perform more than one assignment to a blank fina isahard
problem. In fact, it's impossible. It is equivalent to the classic halting problem, which isknown to
be unsolvable in general [Turing36]. To make it possible to write a Java compiler, the language
specification takes a conservative approach to thisissue. A blank final field can be assigned only
at pointsin the program whereit is definitely unassigned. The specification goes to great | engths
to provide a precise but conservative definition for thisterm [JLS 16]. Becauseit is conservative,
ther e are some provably safe programsthat the compiler must reject. This puzzleillustrates one
such program.

Luckily, you do not have to |earn the gory detail s of definite assignment to write Java programs.
Usually the definite assgnment rules don't get in the way. If you happen to write a program that
realy can assign to ablank final more than once, the compiler will hel pfull y point this out to you.
Only rarely, asin this puzze, will you write a program that i s saf e but does not sati sfy the formal
requirements of the specification. The compiler will complain just asif you had written an unsafe
program, and you will have to modify your program to satisfy it.

The best way to solve this kind of problem is to turn the offending field from ablank final into an
ordinary final, replacing the static initializer block with a static field initializer. Thisis best done by
refactoring the code in the static block into a hel per method:

public class Unwel coneGuest {
public static final |ong GUEST USER ID = -1;
private static final |ong USER I D = get Userl dOr Quest () ;
private static |long getUserldO Guest () {
try {
return getUser | dFronknvironnent () ;
} catch (IdUnavail abl eException e) {
Systemout. println("Logging in as guest");

return GUEST USER | D

[/l The rest of the programis unchanged

This version of the program is clearly correct and is more readabl e than the origina because it adds
a descriptive name for the field val ue computation, where the original version had only an
anonymous static initializer block. With this change to the program, it works as expected.

In summary, most programmers do not need to learn the details of the definite assignment rules.
Usually the rulesjust do the right thing. If you must r efactor a program to eiminate a
compilation error caused by the definite assignment r ules, consider adding a new method.
Besides solving the definite assignment problem, it may offer an opportunity to make the program
more readable.

LS e [nexT e

8 FREV < Day Day Up > | NExTHp |

Puzzle 39: Hello, Goodbye

This program adds an unusual twist to the usual Hel 1 o wor I d program. What doesit print?

public class Hel |l oGodbye {

public static void main(String[] args) {

try {

Systemout.printlin("Hello world");
Systemexit(0);

} finally {

System out. println("Goodbye world");

Solution 39: Hello, Goodbye

The program containstwo pri nt | n statements: onein at ry block and the other inthe
correspondingfinal I'y block. The TRy block executesitspri nt I n and fini shes execution
prematurely by calling Syst em exi t . At thispoint, you might expect control to transfer to the
final I'y block. If you tried the program, though, you found that it never can say goodbye: It prints
only Hel I o wor I d. Doesnt thisviolate the principle explained in Puzzle 36?

Itistruethat afinal I'y block isexecuted when at ry block completes execution whether normally
or abruptly. In this program, however, thet ry block does not compl ete execution at al. The

Syst em exit method haltsthe execution of the current thread and all athersdead in their
tracks. The presence of afinal Iy clause does not give a thread specia permission to continue
executing.

When Syst em exi t iscalled, the virtual machine performs two cleanup tasks before shutting down.
Hrdt, it executes all shutdown hooks that have been registered with Runt i ne. addShut downHook .
This is useful to rel ease resources externa to the VM. Use shutdown hooks for behavior that
must occur beforethe VM exits. The following version of the program demonstratesthis

technique, printing both Hel | o wor I d and Goodbye wor | d, as expected:

public class Hel |l oGoodbye {
public static void main(String[] args) {
Systemout.println("Hello world");
Runti ne. get Runt i me() . addShut downHook(
new Thread() {
public void run() {

System out . println("Goodbye world");

1),

Systemexi t(0);

The second cleanup task performed by the VM when syst em exit iscalled concernsfinalizers. If
either Syst em runFi nal i zersOnExit oritsevil twin Runti ne. runFi nal i zer sOnExi t has been
called, the VM runsthe finalizers on al objects that have not yet been finalized. These methods
were deprecated along time ago and with good reason. Never call Syst em r unFi nal i zer sOnExi t
or Runti me. runFi nal i zer sOnExi t for any reason: They are among the most dangerous
methods in the Java libraries[ThreadStop]. Calling these methods can result in finalizers being
run on live objects while other threads are concurrently mani pulating them, resulting in erratic
behavior or deadlock.

In summary, Syst em exit stopsall program threads immediately; it does not causefinal Iy blocks
to execute, but it does run shutdown hooks before halting the VM. Use shutdown hooksto
terminate external resources when the VM shuts down. It is possible to halt the VM without
executing shutdown hooks by calling Syst em hal t , but thismethod is rarely used.

< Day Day Up >

@ rev | < Day Day Up > =

Puzzle 40: The Reluctant Constructor

Although itiscommon to see at hr ows clause on amethod declaration, it isless common to see one
on a constructor declaration. The following program has such a declaration. What doesit print?

public class Reluctant {

private Rel uctant internallnstance = new Rel uctant();

public Reluctant() throws Exception {

throw new Exception("l'mnot com ng out");

public static void main(String[] args) {
try {
Rel uctant b = new Rel uctant();
Systemout. println("Surprise!");
} catch (Exception ex) {

Systemout.printin("l told you so");

Solution 40;: The Reluctant Constructor

The mai n method invokes the Rel uctant constructor, which throws an exception. You might
expect the cat ch clause to catch thisexception and print1 tol d you so. A closer look at the
program revealsthat the Rel uct ant instance contains a second interna instance, and its constructor
al so throws an exception. Whichever exception gets thrown, it |ooks as though the cat ch clausein

mai n should catch it, so it seems a safe bet that the programwill print |1 t ol d you so. But if you
tried running it, you found that it does nothing of the sort: It throwsast ackover f1 ower r or . Why?

Like most programsthat throw aStackQver f1 ower r or , this one contains an infinite recursion.
When you invoke a constructor, theinstance variableinitializer srun befor e the body of the
consgtructor [JLS 12.5]. In this case, the initializer for the variable i nt er nal | nst ance invokes the
constructor recursively. That constructor, in turn, initializesitsowni nt er nal I nst ance field by
invoking the Rel uctant constructor again and so on, ad infinitum. These recursi ve invocations
cause astackQver fl owkr ror before the constructor body ever gets a chance to execute. Because
StackOver fl owEr ror isasubtype of Error rather than Excepti on, thecat ch clausein mai n doesn't
catch it.

It is not uncommon for an object to contain instances of its own type. This happens, for example, in
linked list nodes, tree nodes, and graph nodes. Y ou must initialize such contai ned instances
carefully to avoid aStackQver fl owError .

Asfor the nominal topic of this puzzle—constructors declared to throw exceptions—note that a
constructor must declare any checked exceptionsthrown by itsinstanceinitializers. This
program, which illustrates a common service-provider pattern, won't compile, because it viol ates
thisrule:

public class Car {
private static Class enginedass = ... ; [/ Service provider
private Engi ne engi ne = (Engi ne) engi ned ass.new nst ance();

public Car() { } // Throws two checked exceptions!

Although it has no body, the constructor throws two checked exceptions: | nst ant i ati onExcept i on
and 111 egal AccessExcepti on. They arethrown by Cl ass. newl nst ance, which is called when
initializing the engi ne field. The best way to fix thisisto create a private static hel per method that
computes theinitial value of the field and handles exceptions appropriately. In this case, let's
assumethat the c ass object referred to by engi neCl ass was chosen to guarantee that it is both
accessible and ingtantiable. The following version of car compil es without error:

/'l Fixed - instance initializers don't throw checked excepti ons
public class Car {
private static Class enginedass = ... ;

private Engi ne engi ne = newkngi ne();

private static Engi ne newengi ne() {
try {
return (Engine) engineCl ass. new nstance();
} catch (Il egal AccessException e) {
t hr ow new AssertionError(e);
} catch (Instantiati onException e) {

t hrow new AssertionError(e);

}
public Car() { }

In summary, instance initializers run before constructor bodies. Any exceptions thrown by instance
initializers propagate to constructors. If initializers throw checked exceptions, constructors must be
declared to throw them too, but this should be avoided, because it is confusing. Fnally, beware of

infinite recursion when designing cl asses whose instances contai n other instances of the same class.

@ FREV < Day Day Up > | NEXT @ |

s < Day Day Up > |

Puzzle 41: Field and Stream

This method copies onefile to another and was designed to close every stream it creates, evenif it
encounters 1/O errors. Unfortunately, it doesn't always do this. Why not, and how can you fix it?

static void copy(String src, String dest) throws | OException {
| nputStreamin = null;
Qut put Stream out = nul | ;
try {
in = new Fil el nput Strean(src);
out = new Fi | eQut put St rean{ dest);
byte[] buf = new byte[1024];
int n;
while ((n = in.read(buf)) >= 0)

out.wite(buf, 0, n);

} finally {
if (in!=null) in.close();
if (out !'= null) out.close();
}

Solution 41: Field and Stream

This program seems to have all the bases covered. The stream fields (i n and out) areinitialized to
nul I and set to the new streams as soon asthey are created. The final |y block closesthe stream
referred to by each field if itisnon-null. An error during the copy would cause an | CExcept i on, but
thefinal I'y block would still execute before the method returns. What could go wrong?

Theproblem isinthefinal 'y block itself. Thecl ose method can throw an | CExcept i on too. If

this happenswheni n. cl ose iscalled, the exception preventsout . cl ose from getting caled, and
the output stream remains open.

Note that this program viol ates the advice of Puzzle 36: The callsto cl ose can causethefinal Iy
block to complete abruptly. Unfortunately, the compiler doesnt help you find the problem, because
cl ose throwsthe same exception type asr ead and wri t e, and the enclosing method (copy) is
declared to propagate it.

The solutionistowrap each call tocl ose inanested t ry block. The following version of the
final I'y block isguaranteed to invoke cl ose on both streams:

} finally {
if (int1=null) {
try {
in.close();
} catch (I CException ex) {

/'l There is nothing we can do if close fails

if (out !'=null) {
try {
out . cl ose();
} catch (I Cexception ex) {

/'l Again, there is nothing we can do if close fails

As of release 5.0, you can refactor the code to take advantage of the d oseabl e interface:

} finally {
cl osel gnori ngException(in);

cl osel gnori ngException(out);

private static void closel gnoringExcepti on(d oseable c) {
if (c!=null) {
try {
c.close();
} catch (I Cexception ex) {

/1l There is nothing we can do if close fails

In summary, when you call the cl ose method in afinal 'y block, protect it with anested TRy-

cat ch to prevent propagation of the | CExcept i on. More generally, handle any checked exception
that can bethr own within afinal I'y block rather than letting it propagate. This is a special
case of the lesson in Puzzle 36, and the same lessons for language designers apply.

@ rne < Day Day Up >

s < Day Day Up > |

Puzzle 42: Thrown for a Loop

The following program loops through a sequence of i nt arrays and keepstrack of how many of the
arrays satisfy a certain property. What does the program print?

public class Loop {
public static void main(String[] args) {
int[][] tests ={ {6, 5 4, 3, 2, 1}, {1, 2},
{12 3} {1 2 3 4}, {1} }

int successCount = O;

try {
int i = 0;
while (true) {
if (thirdElenentl sThree(tests[i++]))
successCount ++;
}
} catch (Arrayl ndexQut Of BoundsExcepti on e) {
/1 No nore tests to process

}

Systemout . printl n(successCount);

private static bool ean thirdElementl sThree(int[] a) {

return a.length >= 3 & a[2] ==

Solution 42: Thrown for a Loop

The program tests each element of the array t est s with thet hi r dB enent | sThree method. The
loop through this array is certainly not traditional: Rather than terminating when the loop index is
equal to the array length, the loop terminates when it attempts to access an array €l ement that isnt
there. Although nontraditional, thisloop ought to work. Thet hi r dB ement | sThree method returns
true if itsargument hasthree or more elements and the third element isequal to 3. Thisistrue for
two of thefivei nt arraysintests, S0 it looks as though the program should print 2. If you ran it,
you found that it prints 0. Surely there must be some mi stake?

In fact, there are two mistakes. The first mistake isthat the program uses the hideous loop idiom
that depends on an array access throwing an exception. This idiom is not only unreadabl e but also
extremely dow. Do not use exceptions for loop contr dl; use exceptionsonly for exceptional
conditions[EJ Item 39]. To correct this mistake, replace the entiret ry-f i nal 1y block with the
standard idiom for looping over an array:.

for (int i =0; I < tests.length; i++)
if (thirdE enentlsThree(tests[i]))

successCount ++;

If you are using release 5.0 or alater release, you can use the for-each construct i nstead:

for (int[] test : tests)
if (thirdE enmentl sThree(test))

successCount ++;

Asbad asthe first mistake is, it aloneis not sufficient to account for the observed behavior. Fixing
this mistake will, however, help usto find the real bug, which is more subtle. If we fix the first
mistake and run the program again, it failswith this stack trace:

Exception in thread "nmain"

j ava. | ang. Arr ayl ndexQut & BoundsExcepti on: 2
at Loop.thirdElenentl sThree(Loop.java: 19)

at Loop. mai n(Loop.java: 13)

Clearly, thereisabug in thet hi r dB ement | sThree method: It is throwing an
Arrayl ndexQut O BoundsExcept i on. This exception was previousy masquerading as the end of the
hi deous exception-based | oop.

Thet hi r dE enent | sThree method does return TRue if its argument has three or more elements and
thethird element isequal to 3. The problem iswhat it does when these conditions do not hold. If
you look closely at the bool ean expression whose valueit returns, you'll seethat it isabit different
from most bool ean AND operations. Theexpressonisa.length >= 3 & a[2] == 3. Usualy, you
see the && operator used under these circumstances. This expression uses the & operator. Isnt that
the bitwise AND operator?

It turns out that the & operator has another meaning. In addition to its common use asthe bitwise
AND operator for integral operands, it isoverloaded to function asthelogical AND operator when
applied to bool ean operands [JLS 15.22.2]. This operator differs from the more commonly used
conditional AND operator (&&) in that the & operator aways evaluates both of its operands, whereas
the && operator does not evaluate itsright operand if its|eft operand evaluatesto f al se [JLS 15.23].
Therefore, thet hi r dB enent | sThree method attempts to access the third element of its array
argument even if it has fewer than three elements. Fxing this method is as S mple as replacing the &
operator with the && operator. With this change, the program prints 2 as expected:

private static boolean thirdE enmentlsThree(int[] a) {

return a.length >= 3 && a[2] == 3;

Just asthere isa logica AND operator to go with the more commonly used conditional AND
operator, thereis alogical OR operator (|) to go with the conditional OR operator (| |) [JLS
15.22.2, 15.24]. The| operator always evaluates both of its operands, whereasthe | | operator does
not evaluate its right operand if itsleft operand evaluatesto TRue. It iseasy to use the logical
operator rather than conditional operator by accident. Unfortunately, the compiler won't help you
find thiserror. Intentional uses of the logical operators are so rare that al uses are suspect; if you
realy want to use one of these operators, make your i ntentions clear with acomment.

In summary, do not use the hideous loop idiom where an exception is used in preference to an
explicit termination test; thisidiom isunclear, dow, and masks other bugs. Be awar e of the
existence of thelogical AND and OR oper ators, and do not fall prey to unintentional use. For

language designers, thisis another example where operator overloading is confusing. It is not clear
that there isacase for providing thelogical AND and OR operatorsin addition to their conditional
counterparts. If these operators are to be supported, they should be visually distinct from their
conditional counterparts.

XYY
XTI
TR
se0000000
IS
I — XXX
se0000

=333
L Bttt
A EAX XX AR
SR80 G000
SRR NN TTRINNININS
80000000000
PPN
T E RN
AR R

e < Day Day Up > =

8 FREV < Day Day Up > | NExTHp |

Puzzle 43: Exceptionally Unsafe

InJDK 1.2, Thr ead. st op, Thr ead. suspend, and afew other thread-rel ated methods were
deprecated because they are unsafe [ThreadStop] . The following method demonstrates one of the
horribl e things you could do with Thr ead. st op:

/1 Don't do this - circunvents exception checking!
public static void sneakyThrow(Throwable t) {

Thread. current Thread().stop(t); // Deprecated!!

This nasty little method does exactly what the t HRow statement does, except that it bypassesall
exception checking by the compiler. Y ou can (sneakily) throw any exception, checked or otherwise,
from any point in your code, and the compiler won't bat an eyel ash.

It is possible to write a method that i s functionally equivalent to sneakyThr ow without using any
deprecated methods. In fact, there are at |east two waysto do it. One of them worksonly in release
5.0 and | ater releases. Can you write such amethod? It must be written in Java, notin VM
bytecode. You must not change the method after its clients are compiled. Your method doesn't have
to be perfect: Itisacceptableif it can't throw one or two subclasses of Excepti on.

Solution 43: Exceptionally Unsafe

One solution to this puzzl e takes advantage of adesign deficiency inthe Cl ass. new nst ance
method, which instantiates a class refl ectively. To quote from the documentation for this method
[Java-API]: "Note that this method propagates any exception thrown by the nullary [in other words,

parameterless] constructor, including a checked exception. Use of this method eff ectively bypasses
the compil e-time exception checking that would otherwise be performed.” Once you know this, it's
not too hard to write asneakyThr ow equivalent:

/1 Don't do this either - circunvents excepti on checking!

public class Thrower {

private static Throwable t;

private Thrower() throws Throwable {

throw t;

public static synchronized void sneakyThr ow Thr owabl e t) {
Thrower.t =t;
try {
Thr ower. cl ass. newl nst ance();
} catch (Instantiati onException e) {
t hrow new | || egal Argunent Exception();
} catch (Il egal AccessException e) {
t hrow new | I | egal Argunent Exception();

} finally {

Thrower.t = null; // Avoid nenory |eak

A few subtle things are going on in this solution. The exception to be thrown during constructor
execution can't be passed to the constructor as a parameter, because Cl ass. newl nst ance invokes a

class's parameterl ess constructor. Therefore, the sneakyThr ow method stashes this exceptionin a
static variable. To make the method thread-safe, it must be synchronized. This causes concurrent
invocations to take turns using the static t field.

Notethat thet fieldisnulled outinafinal I'y block: Just because the method is sneaky doesn't
mean it should also be leaky. If thisfield weren't nulled out, it would prevent the exception from
bei ng garbage col lected. Finally, note that the method will fail withan 111 egal Ar gument Excepti on
if you ask it to throw an | nst ant i ati onException Or I 11 egal AccessException. Thisisan
inherent limitation of the technique.

The documentation for Cl ass. newl nst ance goes on to say that "the Const ruct or . newl nst ance
method avoi ds this problem by wrappi ng any exception thrown by the constructor in a (checked)

| nvocat i onTar get Except i on." Clearly, Cl ass. new nst ance should have done the same thing, but
it's far too | ate to correct this deficiency. Doing so woul d introduce a source-level incompatibility,
breaking the many programs that depend on Cl ass. new nst ance. It would not be practical to
deprecate this method either, becauseit is so commonly used. Just be aware when you use it that

Cl ass. new nst ance can throw checked exceptionsthat it doesnot declare.

Generics, which were added in release 5.0, enable a compl etely different solution to this puzzle. For
maximal compatibility generics are implemented by type erasure: Gener ic type information is
checked at compiletimebut nat at run time [JLS 4.7]. The following sol ution expl oitsthis:

/1 Don't do this either - circunvents excepti on checking!
class Ti ger Thrower <T extends Throwabl e> {
public static void sneakyThrow Throwabl e t) {

new Ti ger Thr ower <Error >().sneakyThr ow2(t);

private voi d sneakyThrow2(Throwabl e t) throws T {

throw (T) t;

This program will generate a warning when you compileit:

Tiger Thrower. java: 7. warni ng: [unchecked] unchecked cast

f ound . java.lang. Throwabl e, required: T

throw (T) t;

N

A warningisthe compiler's way of telling you that you may be shooting yourself in the foot, and in
fact you are. The unchecked cast warningtellsyou that the cast in question will not be checked at
run time. When you get an unchecked cast warning, modify your program to eiminate it, or
convince yourself that the cast cannot fail. If you don't, some other cast may fail at an
undetermined time in the future, and you may have a hard time tracing the error to its source. In this
case, it'seven worse: The exception that isthrown at run time may not conform to the signature of
the method. The sneakyThr ow2 method expl oits this methodically.

There are severa lessons for platform designers. When designing libraries that are i mplemented
outside the language, such asthe reflection library, preserve al guarantees made by the language.
When desi gning from scratch a platf orm that supports generic types, consider enforcing their
correctness at run time. The designers of Java's generic typing facility did not have thisluxury, as
they were constrained by the requirement that generified librariesinteroperate with existing clients.
To eliminate the possibility of an exception that viol ates a method's signature, consider enforcing
exception checking at run time.

In summary, Java's exception checking is not enforced by the vir tual machine. It isacompile-
time facility designed to make it eas er to write correct programs, but it can be circumvented at run
time. To reduce your exposure, do not ignore compiler war nings.

9006000000008 0009
9000600000000 0CQS
00009006000 00000600
200000600000 00806
000900006020 900098
6000900006000 9000¢
0000000006000 000
2906000000080 0000
9090600000006 0009
2000600000096 000
0000000000000 00C
20000060200 9000060
00000006000 00008
0000900006000 000¢0
9000090000600 0000
2900000000960 0000

4@ FREV < Day Day Up > | NEXT #p

Puzzle 44. Cutting Class

Consider these two cl asses:

public class Strangel {
public static void main(String[] args) {
try {
M ssing m= new M ssing();
} catch (java.l ang. NoCl assDef FoundErr or ex) {

Systemout.println("Got it!");

public class Strange2 {
public static void main(String[] args) {
M ssing m
try {
m = new M ssing();
} catch (java.l ang. NoCl assDef FoundErr or ex) {

Systemout.printlin("Got it!");

Both strange1 and Str ange2 usethis class:

class Mssing {

M'ssing() { }

If you were to compile al three classes and then delete the file M ssi ng. cl ass before running
Strangel and Strange2, you'd find that the two programs behave differently. One throws an
uncaught NoCl assDef FoundErr or , whereas the other printsGot i t! Which iswhich, and how can
you explain the difference in behavior?

MINING

Solution 44: Cutting Class

The strangel program mentions the missing type only withinitst ry block, so you might expect it
to catch the NoCl assDef FoundError and print Got it! TheStrange2 program, on the other hand,
declares a variable of the missingtype outside thet ry block, so you might expect the

NoCl assDef FoundErr or generated there to be uncaught. If you tried running the programs, you saw
exactly the opposite behavior: strangel tHRows an uncaught NoCl assDef FoundErr or , and
Strange2 prints Got it! What could explain this strange behavior?

If you look to the Java language specification to find out where the NoCl assDef FoundErr or should
be thrown, you don't get much guidance. It says that the error may be thrown "at any point in the
program that (directly or indirectly) usesthetype" [JLS 12.2.1]. When the VM invokes the mai n
method of Strangel or Strange2, the program is using classM ssi ng indirectly, so either program
would be within itsrights to throw the error at this point.

The answer to the puzzle, then, isthat either program may exhibit either behavior, depending on the
implementation. But that doesn't explain why in practi ce these programs behave exactly opposite to
what you would naturally expect, on al Javaimplementationswe know of. To find out why thisis
S0, we need to study the compiler-generated bytecode for these programs.

If you compare the bytecode for Strangel and Strange2, you'll find them nearly identical. Aside
from the class name, the only difference isthe mapping of the catch parameter ex to aVM local
variable. Although the details of which program variables are assigned to which VM variables can
vary from compiler to compiler, they are unlikely to vary much for programs as smple as these.
Hereisthe codefor Strangel. mai n asdisplayed by j avap -¢ Strangel:

0: new #2; /1 class Mssing

3: dup

4: invokespecial #3; // Mthod Mssing."<init>":()V

7. astore_1

8: goto 20

11: astore_1

12: getstatic #5; // Fi eld Systemout:Ljaval/io/PrintStream
15: | dc #6; // String "CGot it!"

17: invokevirtual #7; // Method PrintStreamprintln: (String;)V
20: return

Exception table:

fromto target type

0O 8 11 d ass j ava/l ang/ NoCl assDef FoundErr or

The corresponding code for Str ange2. mai n differsin only one instruction:

11. astore_ 2

Thisisthe instruction that stores the caught exception of the cat ch block into the catch parameter
ex. In Strangel, thisparameter isstored in VM variable 1; in Strange2, itisstored in VM variable
2. That isthe only difference between these two classes, but what a difference it makesin their
behavior!

To run aprogram, the VM loads and initiaizes the class containingits mai n method. In between
loading and initialization, the VM must link the class[JLS 12.3]. Thefirst phase of linking is
verification. Verification ensuresthat a class iswell formed and obeys the semantic requirements of
the language. Verification iscritical to maintaining the guarantees that distingui sh a safe language
like Java from an unsafe language like C or C++.

In classes strangel and Strange2, the local variable mhappens to be stored in VM variable 1. Both
versions of mai n aso have ajoin point, where the flow of control from two different places
converge. Thejoin point isinstruction 20, which isthe instruction to return from mai n. Instruction

20 can be reached either by completing the TRy block normally, in which case we got 0 20 at
instruction 8, or by completing the cat ch block and falling through from instruction 17 to
instruction 20.

The existence of the join point causes an exception during the verification of classstrangel but not
classstrange2. When it performsflow analysis [JLS 12.3.1] of Strangel. mai n, the verifier must
merge the types contained in variabl e 1 when ingtruction 20 is reached by the two different paths.
Two types are merged by computing their first common superclass [JVMS 4.9.2]. The first common
superclass of two classes is the most specific superclass they share.

The state of VM variable 1 when instruction 20 isreached from instruction 8 in Str angel. nai n is
that it contains an instance of the class M ssi ng. When reached from instruction 17, it contains an
instance of the class NoCl assDef FoundErr or . In order to compute the first common superclass, the
verifier must |oad the class M ssi ng to determine its superclass. Because M ssi ng. cl ass hasbeen
deleted, the verifier can't load it and throws a NoCl assDef FoundEr r or . Note that this exception is
thrown during verification, before classinitiali zation and |ong before the mai n method begins
execution. Thisexplainswhy there is no stack trace printed for the uncaught exception.

Towrite aprogram that can detect when a classis missing, usereflection to refer to the class
rather than the usual language constructs [EJ Item 35]. Here is how the program looks when
rewritten to use thistechnique:

public class Strange {
public static void nmain(String[] args) throws Exception {
try {
Obj ect m= d ass.forNanme("M ssing").new nstance();
} catch (ClassNot FoundException ex) {

Systemerr.printin("Got it!");

In summary, do not depend on catching NoCl assDef FoundErr or . The language specification
carefully describes when classinitialization occurs[JLS 12.4.1], but class loading isfar less
predictable. More generally, it is rarely appropriateto catch Error or itssubclasses. These
exceptions are reserved for fail ures from which recovery is not feasible,

LS e [nexT e

Puzzle 45: Exhausting Workout

This puzzl e tests your knowledge of recursion. What does this program do?

public class Wrkout ({
public static void main(String[] args) {
wor kHar d() ;

Systemout.println("It's nap tinme.");

private static void workHard() ({

try {
wor kHard();

} finally {
wor kHard();

Solution 45: Exhausting Workout

If it werent for the TRy- fi nal | y statement, it would be obvious what this program does. The

wor kHar d method callsitself recursively until the program throwsa st ackOver f1 ower ror , @ which
point it terminates with an uncaught exception. Thetry-final | y statement complicates matters.
When it triesto throw aStackQver f1 ower r or , the program endsup in afinal I'y block in the

wor kHar d method, whereit callsitself recursively. This seemslike a prescription for an infinite
loop. Does the program loop indefinitely? If you run it, it appears to do exactly that, but the only
way to know for sureisto analyzeits behavior.

The Java virtua machine limitsthe stack depth to some preset level. When thislevel is exceeded,
the VM throwsastackover fl owe ror . In order to makeit eas er to think about the behavior of the
program, |et's pretend that the stack depth limit is much smaller than it really is: say, 3. Now let's
trace the execution.

The mai n method call swor kHar d, which callsitself recursively from itst ry block. Again it calls
itself fromits TRy block. At this point, the stack depth is 3. When the wor kHar d method attempts
once more to call itself from its TRy block, the call failsimmediately with a StackOver f1 owEr r or .
This error is caught in theinnermost i nal 1y block, where the stack depth isaready 3. From there
the wor kHar d method attemptsto call itself recursively, but the call failswith a

StackQver fl owError. This error iscaughtinthefinal I'y block one level up, where the stack depth
is2. Thecall fromthisfinal I'y block hasthe same behavior asthe call from the corresponding t ry
block: It results eventually in ast ackOver f1 owEr r or . A pattern appears to be emerging, and indeed
itis.

The execution of wor kaut isillustrated in Fgure 5.1. In thisfigure, callsto wor kHar d are
represented by arrows, and executions of wor kHar d are represented by circles. All callsare
recursive except for first one. Cals that result in an immediate St ackOver fl owEr ror are
represented by arrows leading to gray circles. Callsfrom TRy blocks are represented by arrows
pointing down and to the | eft, and callsfrom f i nal 1y blocks are represented by arrows pointing
down and to the right. The numbers on the arrows describe the sequence of calls.

Figure 5.1. The execution of wr kQut .

Call from depth main + Call from main method
—_ & Call from try block
LU 1 w Call from finally block

m Call sequence number
O Execution of workout
— StackOverflowError

The figure shows one call from depth 0—the call from mai n—two calls from depth 1, four calls
from depth 2, and eight calls from depth 3, atotal of fifteen calls. The eight callsfrom depth 3 each
result in animmediate St ackOver f1 ower ror . At least on a VM that limits the stack depth to 3, the
program is not an infinite loop: It terminates after fifteen calls and eight exceptions.

But what about on areal VM? It still isn't an infinite loop. The call diagram looks just like the one
in Agure 5.1 only much, much bigger.

How much bigger? A quick experiment shows that many VMs limit stack depth to 1,024. The
number of callsistherefore 1 + 2+ 4 + 8 ... + 21024 = 21.025_ 1 The number of exceptions thrown
is21.024 | et's assume that our machine can execute 100 calls per second and generate 1010
exceptions per second, which is quite generous by current standards. Under these assumptions, the
program will terminate in about 1.7 x 10%°1 years. To put thisin perspective, the lifetime of our sun
isestimated at 1010 years, so it is asafe bet that none of uswill be around to see this program
terminate. Although itisnt an infinite loop, it might aswell be.

Technically speaking, the call diagram isacomplete binary tree whose depth is the stack depth
limit of the VM. The execution of the wor kout program amounts to a preorder traversal of this
tree. In a preorder traversal, the program visits anode and then recursively visitsits|eft and right
subtrees. One call ismade for each edge in the tree, and one exception isthrown for each leaf node.

This puzzl e doesn't have much in the way of alesson. It does demonstrate that exponential
agorithms areimpractical for al but the smallest inputs, and it shows that you can write an
exponential al gorithm without even trying.

4 FREV < Day Day Up > NEXT ap

LS e [nexT e

Chapter 6. Classy Puzzlers

This chapter contains puzzersthat concern the use of classes and their instances, methods, and
fields.

LS R A AN R =y

8 FREV < Day Day Up > | NExTHp |

Puzzle 46: The Case of the Confusing Constructor

This puzzl e presents you with two Conf usi ng constructors. The mai n method invokes a constructor,
but which one? The program's output depends on the answer. What does the program print, or is it
even legal?

public class CGonfusing {
private Confusing(Object o) {

Systemout.println(" Chject");

private Confusing(double[] dArray) {

Systemout.println("double array");

public static void main(String[] args) {

new Conf using(null);

Solution 46: Case of the Confusing Constructor

The parameter passed to the constructor isthe null object reference, so at first glance, it seems that
the program should invoke the Obj ect overloading and print Obj ect . On the other hand, arrays are
reference typestoo, so nul | could just aswell apply to the doubl e[] overloading. Y ou might
theref ore conclude that the call is ambiguous, which suggests that the program shouldn't compile. If
you tried running the program, you found that neither of these intuitions is correct: The program
prints doubl e array. This behavior may seem perverse, but thereisa good reason for it.

Java's overl oad resolution process operates in two phases. The first phase selects al the methods or
congtructorsthat are access ble and applicable. The second phase selects the most specific of the

methods or constructors selected in the first phase. One method or constructor is | ess specific than
another if it can accept any parameters passed to the other [JLS 15.12.2.5].

In our program, both constructors are accessi ble and applicable. The constructor

Conf usi ng(Obj ect) accepts any parameter passed to Conf usi ng(doubl e[]), SO

Conf usi ng(Obj ect) isless specific. (Every doubl e array isan Obj ect, but not every Obj ect isa
doubl e array.) The most specific constructor istherefore Conf usi ng(doubl e[]) , which explainsthe
program's output.

This behavior makes sense if you pass avalue of type doubl e[] ; it is counterintuitive if you pass
nul | . The key to understanding this puzzleisthat thetest for which method or constr uctor is
most specific doesnot usethe actual parameters. the parameters appearing in the invocation.
They are used only to determine which overl oadings are applicable. Once the compiler determines
which overl oadings are applicable and accessible, it selects the most specific overloading, using
only the formal parameters: the parameters appearing in the decl aration.

To invoke the Conf usi ng(bj ect) constructor with anul I parameter, write new

Conf usi ng((Obj ect) nul'l) . This ensures that only Conf usi ng(Obj ect) isapplicable. More
generally, to force the compiler to select a specific overloading, cast actual par ameterstothe
declar ed types of the for mal par ameters.

Sel ecting among overl oadings in this fashion is unpleasant. In your APIs, ensure that clients arent
forced to go to these extremes. Ideally, you should avoid overloading: Use different namesfor
different methods. Sometimes, this is not possible. Constructors don't have names, so they can't be
given different names. You can, however, aleviate the problem by making constructors private and
providing public static factories[EJ Item 1]. If constructors have many parameters, you can reduce
the need for overloading with the Builder pattern [Gamma95].

If you do overload, ensure that all overloadings accept mutually incompatibl e parameter types, so
that no two are applicable at the same time. Failing that, ensure that al applicable overloadings
have the same behavior [EJ Item 26].

In summary, overload resolution can be confusing. Avoid overloading where possible. If you must
overload, obey the guidelines outlined here to minimize confusion. If apoorly designed API forces
you to sel ect among overloadings, cast actual parametersto the types of the forma parameters of
the desired overl oading.

4 FREV < Day Day Up > ME=T w

s < Day Day Up > |

Puzzle 47: Well, Dog My Cats!

This program usesacCount er classto keep track of how many times each kind of house pet makes a
noise. What does the program print?

class Counter {
private static int count;
public static void increment() { count++; }

public static int get Count () { return count; }

cl ass Dog extends Counter {

public Dog() { }

public void woof () { increment(); }

class Cat extends Counter {
public Cat() { }

public void neow() { increment(); }

public class Ruckus {

public static void main(String[] args) {

Dog dogs[] = { new Dog(), new Dog() };
for (int i = 0; i < dogs.length; i++)

dogs[i].woof ();

Cat cats[]

{ new Cat (), new Cat(), new Cat() };

for (int i 0; i < cats.length; i++)

cats[i]. meow();
System out . print(Dog.getCount() + " woofs and ");

Systemout.println(Cat.getCount() + " nmeows");

Solution 47: Well, Dog My Cats!

We have two dogs woofing and three cats meowing—a ruckus, to be sure—so the program should
print 2 woofs and 3 meows, NO? NO: It prints5 woofs and 5 neows. Where isall the extra noise
coming from, and what can we do to stop it?

The sum of the number of woofs and meows printed by the program is 10, fully twice what it
should be. The problem isthat Dog and Cat inherit the count field from acommon superclass, and
count isadtaticfield. A single copy of each datic field isshared among itsdeclaring classand
all subclasses, so Dog and Cat usethe samecount field. Each call to woof or meow incrementsthis
field, soit isincremented five times. The program readsit twice, by calling Dog. get Count and
Cat . get Count . In each case, 5isreturned and printed.

We cannot fix the problem by making count an instance field. That would create one counter per
pet rather than one counter per kind of pet. To fix the program, we must correct a fundamental
design error.

When designing one class to build on the behavior of another, you have two options: inheritance, in
which one class extends the other; or composition, in which one class contains an instance of the
other. Choose based on whether each instance of one classis an instance of the other class or hasan
instance of the other. In thefirst case, use inheritance; in the second, use composition. When in
doubt, favor composition over inheritance [EJ Item 14].

Neither adog nor acat isakind of counter, so it waswrong to use inheritance. Instead of extending
Count er , Dog and Cat should each have a counter field. One counter isrequired for each kind of
pet, rather than for each individual pet, so these fields must be static. We needn't bother with a
Count er class; ani nt will do fine. Hereisthe redesigned program, which prints2 woofs, 3 neows
as expected:

class Dog {

private static int woofCounter;

public Dog() { }

public static int woof Count() { return woof Counter; }

public void woof () { woof Counter ++; }

}
class Cat {
private static int neowCounter;
public Cat() { }
public static int meowCount () { return neowCounter; }
public void neow() { meowCounter ++; }
}

The Ruckus classisunchanged with the exception of the two print statements, which are modified
to use the new method names to access the counts:

System out . print (Dog. woof Count () + " woofs, ");

Systemout. println(Cat. mneowCount() + " nmeows");

In summary, static fields are shared by their declaring class and any subclasses. If you need a
separate copy of afield for each subclass, you must declare a separate dtatic field in each subclass.
If you need a separate copy for each instance, declare anonstatic field in the base class. Also, favor
composition over inheritance unless the derived classredlly isa kind of the base class.

< Day Day Up >

s < Day Day Up > |

Puzzle 48: All | Get Is Static

The following program model s the behavioral difference between Basenjis and other dogs. In case
you didnt know, the Basenji isabreed of small, curly-tailed dogs of African origin that do not bark.
What does the program print?

class Dog {
public static void bark() {

System out . print("woof ");

class Basenji extends Dog {

public static void bark() { }

public class Bark {

public static void main(String args[]) {

Dog woof er new Dog() ;

Dog ni pper new Basenji ();
woofer. bar k() ;

ni pper. bar k() ;

Solution 48: All | Get Is Static

On casual inspection, it would appear that this program should just print woof . After all, Basen;j i
extends Dog and defines itsbar k method to do nothing. The mai n method invokes the bar k method,
first on woof er the Dog and again on ni pper the Basenji . Basenjis don't bark, but apparently this
one does. If you ran the program, you found that it printswoof woof . What isthe matter with poor
Nipper?

Thetitle of thispuzzle gvesabig hint. The problemisthat bar k isastatic method, and ther eisno
dynamic dispatch on static methods [JLS 15.12.4.4]. When aprogram calls a static method, the
method to be invoked is selected at compile time, based on the compile-time type of the qualifier,
which isthe name we give to the part of the method invocation expression to the left of the dot. In
this case, the qualifiers of the two method invocations are the variableswoof er and ni pper, both of
which are declared to be of type Dog. Because they have the same compile-time type, the compiler
causes the same method to be invoked: Dog. bar k. This explains why the program printSwoof woof .
It doesnt matter that the runtime type of ni pper iSBasenji ; only itscompile-time typeis

consi dered.

To fix this program, ssmply remove the st at i ¢ modifier from the two bar k method declarations.
Then the bar k method in Basenji will override rather than hide the bar k method in Dog, and the
program will print woof instead of woof woof . With overriding, you get dynamic dispatch; with
hiding, you don't.

When you invoke a static method, you typically qualify it with aclass rather than an expression: for
example Dog. bar k Or Basenj i . bar k. When you read a Java program, you expect classes to be used
asthe qualifiersfor static methods, which are statically dispatched, and expressions to be used as
the qualifiers for i nstance methods, which are dynamically dispatched. Coupled with the different
naming conventions for classes and variables, this provides astrong visual cue as to whether a given
method invocation is static or dynamic. The programin this puzzle uses an expression asthe
qualifier for a static method invocation, which is mideading. Never qualify a static method
invocation with an expression.

The confusion is compounded by the appearance of overriding. The bar k method in Basenji has
the same signature asthe one in Dog. That isthe usual formulafor overriding, which suggests
dynamic dispatch. In this case, however, the methods are declared st at i c. Static methods cannot be
overridden; they can only be hidden, and just because you can doesn't mean you should. To avoid
confusion, do not hide static methods. There is nothing to gain, and much to lose, from reusing the
name of a superclasss static method in a subcl ass.

Thelesson for language designers is that invocations of class and instance methods should |ook
different from each other. One way to further this goal isto disallow the use of expressions as
qualifiersfor static methods. A second way to distinguish static and instance method invocationsis
to use different operators, as C++ does. A third aternativeisto finesse the issue by dispensing with
the concept of static methods atogether, as Smalltalk does.

In summary, qualify static methods invocati ons with a class name, or dont qualify them at all if
you're invoking them from within their own class, but never qualify them with an expression. Also,
avoid hiding static methods. Together, these guidelines help eliminate the misleadi ng appearance of
overriding with dynamic dispatch for static methods.

4 FREV < Day Day Up > ME=T wlp

s < Day Day Up > |

Puzzle 49: Larger Than Life

Lest you think that thisbook is going entirely to the dogs, this puzzle concernsroyalty. If the
tabloids are to be believed, the King of Rock 'n' Roll isstill alive. Not one of his many
impersonators but the one true Elvis. This program estimates his current belt size by projecting the
trend observed during his public performances. The program usesthe idiom

Cal endar . get | nst ance() . get (Cal endar . YEAR) , which returns the current calendar year. What
does the program print?

public class E vis {
public static final Elvis I NSTANCE = new Elvis();
private final int beltS ze;
private static final int CURRENT_YEAR =

Cal endar . get | nstance() . get (Cal endar. YEAR);

private Elvis() {

bel tSi ze = CURRENT_YEAR - 1930;

public int beltSize() {

return beltSi ze;

public static void main(String[] args) {
Systemout.println("E vis wears a size " +

| NSTANCE. belt Size() + " belt.");

Solution 49: Larger Than Life

At first glance, this program appearsto compute the current year minus 1930. If that were correct,
in the year 2006, the programwould print El vis wears a size 76 belt. If youtried running the
program, you learned that the tabloi ds were wrong, proving that you can't believe everything you
read in the papers. It printsEl vis wears a size -1930 bel t. Perhapsthe King has gone on to
inhabit an anti-matter universe?

This program suffers a problem caused by a circularity in the order of classinitialization [JLS
12.4]. Let'sfollow it in detail. Initialization of the class El vi s istriggered by the VM's call to its
mai n method. First, static fields are set to their default values[JLS 4.12.5]. Thefield | NSTANCE is
set tonul |, and CURRENT_YEAR IS Set to 0. Next, static field initializers are executed in order of
appearance. The first static field is1 NSTANCE. Its valueis computed by invoking the El vi s()
constructor.

The constructor initializesbel t Si ze to an expression involving the stati ¢ fiel d CURRENT_YEAR.
Normally, reading a static field is one of the things that causes a classto beinitialized, but we are
aready initializing the classEl vi s. Recursive initialization attempts are smply ignored [JLS
12.4.2, step 3]. Consequently, the value of CURRENT_YEAR still has its default value of 0. That iswhy
Elvissbelt size turns out to be - 1930.

Fnally, returning from the constructor to complete the classinitialization of El vi s, we initialize the
static field CURRENT_YEAR to 2006, assuming you're running the program in 2006. Unfortunately, it
istoo late for the now correct val ue of this field to aff ect the computati on of

El vi s. | NSTANCE. bel t Si ze, which aready hasthe value - 1930. This isthe value that will be
returned by all subsequent callsto El vi s. | NSTANCE. bel t Si ze().

This program showsthat it is possible to observe a final satic field beforeit is initialized, when
it till containsthe default value for itstype. That is counterintuitive, because we usually think of
fina fields as constants. Fina fields are constants only if the initializing expression is a constant
expression [JLS 15.28].

Problems arising from cyclesin classinitiaization are difficult to diagnose but once diagnosed are
usually easy to fix. Tofix a classinitialization cycle, reorder the atic field initializersso that
each initializer appearsbefore any initializers that depend on it. In this program, the declaration
for CURRENT_YEAR bel ongs before the declaration for | NSTANCE, because the creation of an Elvis
instance requires that CURRENT_YEAR beinitialized. Once the declaration for CURRENT_YEAR has been
moved, Elviswill indeed be larger than life.

Some common design patterns are naturally subject to initialization cycles, notably the Singleton
[Gammad5], which isillustrated in this puzzl e, and the Service Provider Framework [EJ Item 1].
The Typesafe Enum pattern [EJ Item 21] a so causes classinitialization cycles. Release 5.0 adds
linguistic support for this pattern with enum types. To reduce the likelihood of problems, there are
some restrictions on static initializersin enum types[JLS 16.5, 8.9].

In summary, be careful of classinitialization cycles. The smplest onesinvolve only asinge class,
but they can a so invol ve multiple classes. It isn't always wrong to have class initialization cycles,

but they may result in constructor invocation before static fields are initialized. Static fields, even
fina datic fields, may be observed with their default val ue before they are initialized.

LS AR A AN R =y

LS e [nexT e

Puzzle 50: Not Your Type

This puzzl e tests your understanding of Java's two classiest operators: i nst anceof and cast. What
does each of the fol lowing three programs do?

public class Typel {
public static void main(String[] args) {
String s = null;

Systemout.println(s instanceof String);

public class Type2 {
public static void main(String[] args) {

Systemout.printl n(new Type2() instanceof String);

public class Type3 {
public static void main(String args[]) {

Type3 t3 = (Type3) new bject();

Solution 50: Not Your Type

Thefirst program, Type1, illustrates the behavior of thei nst anceof operator when applied to anull
obj ect reference. Although nul | isasubtype of every referencetype, thei nst anceof oper ator is
defined to return f al sewhen itsleft operandisnul | . Therefore, Typel printsf al se. This turns
out be the most useful behavior in practice. If i nst anceof tellsyou that an object referenceisan
instance of a particular type, you are assured that you can cast it to that type and invoke methods of
the type without fear of a Gl assCast Except i on Or a Nul | Poi nt er Excepti on.

The second program, Type2, illustrates the behavior of thei nst anceof operator when testing an
instance of one class to see whether it is an instance of an unrelated class. You might expect this
programto print f al se. After al, an instance of Type2 isn't an instance of Stri ng, S0 the test should
fail, right? No. Thei nst anceof test faillsat compile time with an error message like this:

Type2.java: inconvertible types
found: Type2, required: java.lang.String

Systemout.printl n(new Type2() instanceof String);

AN

The program failsto compile because thei nst anceof oper ator requiresthat if both operands
are classtypes, one must be a subtype of the ather [JLS 15.20.2, 15.16, 5.5]. Neither Type2 nor
String isasubtype of the other, sothei nst anceof test resultsin acompile-time error. This error
helpsalert youtoi nst anceof tests that probably don't do what you want.

Thethird program, Type3, illustrates the behavior of the cast operator when the static type of the
expression to be cast is a superclass of the cast type. Likethei nst anceof operation, if both typesin
acadt operation are classtypes, one must be a subtype of the other. Although it is obviousto usthat
this cast will fail, the type system is not powerful enough to know that the run-time type of the
expression new oj ect () cannot be a subtype of Type3. Therefore, the program throws a

Cl assCast Except i on at run time. Thisisabit counterintuitive: The second program makes perfect
sense but doesn't compile; this one makes no sense but does.

In summary, thefirst program illustrates a useful corner case in the run-time behavior of

i nst anceof . The second program illustrates a useful corner case in its compile-time behavior. The
third program illustrates a corner case in the behavior of the cast operator where the compiler fails
to save you fromyour folly, and the VM is|eft to take up the dack at run time.

| ¢m PREV < Day Day Up > | NEXT o |

@ rev | < Day Day Up > =

Puzzle 51: What's the Point?

This program has two i mmutabl e val ue classes, which are classes whose i nstances represent val ues.
One class represents a point on the plane with integer coordinates, and the second class adds a bit of
color to the puzzle. The main program creates and prints an instance of the second class. What does
the program print?

class Point {
private final int x, vy;

private final String name; // Cached at construction time

Point(int x, int y) {

this.x X
this.y =vy;

name = nmakeNane() ;

protected String makeName() {

return "[" + x +"," +y +"]";

public final String toString() {

return nane;

public class Col or Poi nt extends Poi nt {

private final String col or;

ColorPoint(int x, int y, String color) {

super (X, Y);

this.color = color;

protected String nmakeName() {

return super. makeNane() + ":" + color;

public static void main(String[] args) {

Systemout.printl n(new ColorPoint(4, 2, "purple"));

Solution 51; What's the Point?

The mai n method creates and printsa Col or Poi nt instance. The pri nt | n method invokes the

t oSt ri ng method of the Col or Poi nt instance, which isdefined in Poi nt . Thet oSt ri ng method
simply returns the value of the name field, whichisinitialized in the Poi nt constructor by calling
the makeNanme method. For aPoi nt instance, the mekeName method returns a string of the form

[x, y] . For acol or Poi nt instance, makeNane s overridden to return astring of the form
[x,y]:color.Inthiscase X is4,Yyis2, and thecolor is purple, so the program prints

[4, 2] :purpl e, right? No. If you ran the program, you found that it prints[4, 2] : nul I . What isthe
matter with the program?

The program suffers from a problem with the order of instance initialization. To understand the
problem, we will trace the program execution in detail. Here is an annotated program listing to
guide us:

class Point {

protected final int x, vy;

private final String nane;

Point(int x, int y) {

this.x = x;
this.y =vy;

name = nmakeNane(); // 3. Invoke subcl ass net hod

protected String makeName() {

return"[" +X +II’II +y+ll]ll;

public final String toString() {

return nane,

public class Col or Poi nt extends Poi nt {

private final String col or;

ColorPoint(int x, int y, String color) {
super (X, Y); /1 2. Chain to Point constructor

this.color = color; // 5. Initialize blank final-Too late

protected String nakeNane() {

/'l 4. Executes before subclass constructor body!

return super. nmakeNane() + + col or;

public static void main(String[] args) {

/1 1. Invoke subcl ass construct or

Systemout.printl n(new ColorPoint(4, 2, "purple"));

In the explanation that follows, the numbersin parentheses refer to the numbers in the commentsin
the annotated listing. First, the program creates a Col or Poi nt instance by invoking the Col or Poi nt
constructor (1). Thisconstructor starts by chaining to the superclass constructor, as all constructors
do (2). The superclass constructor assigns 4 to the x field of the object under construction and 2 to
itsy field. Then the constructor invokes makeNarre, which is overridden by the subclass (3).

The makeName method in Col or Poi nt (4) executes before the body of the Col or Poi nt constructor,
and therein liesthe heart of the problem. The makeName method first invokes super . makeNane,
which returns| 4, 2] asexpected. Then the method appendsthe string " : * and the value of the

col or field, converted to a string. But what is the value of the col or field at this point? It has yet to
beinitialized, so it still containsits default value of nul | . Therefore, the makeNanme method returns
thestring " [4, 2]: nul | ". The superclass constructor assigns thisvalue to the narre field (3) and
returns control to the subclass constructor.

The subclass constructor then assignsthe value " pur pl e" tothecol or field (5), but it is too | ate.
Thecol or field hasalready been used to initialize the nane field in the superclass to an incorrect
value. The subclass constructor returns, and the newly created Col or Poi nt instance is passed to the
pri nt I n method, which duly invokesitst oSt ri ng method. This method returns the contents of its
nane field, "[4, 2] : nul I ", SO that iswhat the program prints.

This puzzleillustrates that it is possible to observe the value of a final instancefield beforeits
value has been assigned, when it still contains the default value for itstype. In asense, this puzzle
isthe instance analog of Puzzle 49, which observed the value of afina static field before itsvalue
had been assigned. In both cases, the puzzle resulted from a circularity in initialization. In Puzzle
49, it was classinitialization; in this puzzle, it isinstance initial ization. Both cases have the
potential for enormous confusion. Thereis one point where the anal ogy breaks down: Circular class
initialization isanecessary evil, but circular instance initialization can and should always be
avoided.

The problem ari seswhenever a constructor calls a method that has been overridden in its subcl ass.
A method invoked in thisway aways runs before the instance has been initialized, when its
declared fields still have their default val ues. To avoid this problem, never call overridable
methods from constructors, either directly or indirectly [EJ Item 15]. This prohibition extends to
instance initializers and the bodies of the pseudoconstructorsr eadbj ect and cl one. (These
methods are call ed pseudoconstructors because they create obj ects without invoking a constructor.)

You can fix the problem by initializing the field nane lazily, when it is first used, rather than
eagerly, when the Poi nt instance is created. With this change, the program prints| 4, 2] : pur pl e as
expected:

class Point {
protected final int x, vy,

private String nane; // Lazily initialized

Point(int x, int y) {
this.x = x;
this.y =vy;

/1 nane initialization renpved

protected String nmakeName() {

return"[" +X +II’II +y+ll]ll;

/'l Lazily conputes and caches nane on first use
public final synchronized String toString() {
I f (name == nul |)
name = makeNanme();

return nane;

Although lazy initialization fixes the problem, itisabad ideato have one val ue class extend
another, adding afield that affectsequal s comparisons. Y ou cant provide value-based equal s
methods on both the superclass and subclass without viol ating the general contract for

Obj ect. equal s or eliminating the possibility of meaningful compari sons between superclass and
subclassinstances [EJ Item 7].

The circular ingtance initiali zation problem is a can of wormsfor language des gners. C++
addresses the problem by chang ng the type of the object from the superclass type to the subclass
type during construction. With this solution, the original program in this puzzle would print [4, 2] .
We're not aware of any popul ar language that addresses this issue sati sfactorily. Perhapsit is worth
cons dering making circular instance initialization illegal by throwing an unchecked exception
when a superclass constructor calls a subcl ass method.

To summarize, you must never call an overridable method from a constructor under any
circumstances. Theresulting circularities in instance initialization can be fatal. The solution to this
problem islazy initialization [EJ Items 13, 48].

4@ FREV < Day Day Up > | NEXT #p

LS e [nexT e

Puzzle 52: Sum Fun

This program computes and caches a sum in one class and printsit from another. What doesthe
program print? Here'sa hint: As you may recall from algebra, the sum of theintegersfrom 1tonis
nin+1)/2.

class Cache {
static {

initializelfNecessary();

private static int sum
public static int getSunm() {
initializelfNecessary();

return sum

private static boolean initialized = fal se;
private static synchroni zed void initializel fNecessary() {
if (linitialized) {
for (int i =0; i < 100; i ++)
sum += i;

initialized = true;

public class dient {
public static void main(String[] args) {

Systemout . printl n(Cache. get Sun());

Solution 52; Sum Fun

On cursory inspection, you might think that this program adds the numbers from 1 to 100, but it
doesn't. Take a closer |ook at the loop. It isthe typical half-open loop, so it goesfrom 0 to 99. With
that in mind, you might think that the program prints the sum of the numbers from 0 to 99. Using
the formula from the hint, thissum is99 x 100/ 2, or 4,950. The program, however, thinks
otherwise. It prints 9900, fully twice thisvalue. What accounts for its enthusiasm?

The author of the program obviously went to a lot of trouble to make sure that sumwasi initialized
before use. The program combines |azy and eager initiali zation and even uses synchronization to
make sure that the cache worksin the presence of multiple threads. It seemsthat this program has
all the bases covered, yet it doesn't work. What's the matter with it?

Like the program in Puzzle 49, this program suffers from a classinitialization ordering problem. To
understand its behavior, let'strace its execution. Beforeit can invoke dl i ent. mai n, the VM must
initialize theclassc i ent. Thisinitidization isso smplethat it isnt worth talking about. The

Cli ent. mai n method invokes Cache. get Sum Before the get Summethod can be executed, the VM
must initiali ze the class Cache.

Recall that classinitialization executes static initializersin the order they appear in the source. The
Cache classhas two dtatic initidizers: thestat i ¢ block at the top of the classand the initialization
of thestaticfieldini tial i zed. The block appearsfirst. It invokes the method
initializelfNecessary, whichteststhefieldinitiali zed. Because no value has been assigned to
thisfield, it hasthe default bool ean vaue of f al se. Similarly, sumhasthe default i nt value of 0.
Therefore, thei ni ti al i zel f Necessar y method does what you'd expect, adding 4,950 to sumand
settinginitialized totrue.

After the static block executes, the static initiaizer for theinitial i zed field setsit back tof al se,
completing the classinitiali zation of Cache. Unfortunately, sumnow containsthe correct cached
value, butinitial i zed containsf al se: The Cache classstwo pieces of critical state are out of

sync.

Themai n method inthe di ent classthen invokes Cache. get Sum which in turn invokes
initializelfNecessary. Becausetheinitializedflagisfal se,theinitializelfNecessary
method entersitsloop, which adds another 4,950 to the val ue of sum increasing its val ue to 9,900.
The get summethod returns this value, and the program printsit.

Clearly, the author of this program didn't think about the order in which theinitiaization of the
cache classwould take place. Unable to decide between eager and lazy initialization, the author
tried to do both, resulting in abig mess. Use either eager initialization or lazy initialization,
never both.

If the time and space cost to initialize afield islow or thefield is required in every execution of the
program, eager initialization is appropriate. If the cost is high and the field might not be required in
some executions, lazy initialization may be preferable [EJ Item 48]. Also, lazy initiali zation may be
necessary to break acyclein class or instance initialization (Puzzle 51).

The cache class could be repaired either by reordering the static initializationsso theiniti al i zed
field was not reset to f al se after sumwasinitialized or by removing the explicit static initiaization
of theini tialized field. Although the resulting programs would work, they would still be
confusing and ill-structured. The Cache class should be rewritten to use eager initiaization. The
resulting version is obvioudy correct and much simpler than the original. With this version of the
Cache class, the program prints 4950 as expected:

class Cache {

private static final int sum = conputeSum);

private static int conputeSum() {

int result = 0;
for (int i = 0; i < 100; i++)
result +=1i:

return result;

public static int getSum() ({

return sum

Note that we use a helper method to initialize sum A hel per method is generally preferableto a
static block, asit lets you name the computation. In the rare cases when you must use a stati ¢ bl ock

toinitiadize agatic field, put the block immediately after the field declaration. This enhances clarity
and eliminates the possibility of static initialization competing with a static block, asin the origina
program.

In summary, think about classinitialization order, especially when it isnontrivial. Do your best
to keep the classinitiaization sequence simple. Use eager initialization unless you have some good
reason to use lazy initialization, such as performance or the need to break acycleininitialization.

s < Day Day Up > |

Puzzle 53: Do Your Thing

Now it's your turn to write some code. Suppose that you have alibrary class called Thi ng whose
sole constructor takesani nt parameter:

public class Thing {

public Thing(int i) { ... }

A Thi ng instance provides no way to get the value of its constructor parameter. Because Thi ng isa
library class, you have no access to itsinternals, and you can't modify it.

Suppose that you want to write a subclass called MyThi ng, with a constructor that computes the
parameter to the superclass constructor by invoking the method SomeCt her d ass. func(). The
value returned by this method changes unpredi ctably from call to cal. Finally, suppose that you
want to store the value that was passed to the superclass constructor in afina instance field of the
subclass for future use. Thisisthe code that you'd natural ly write:

public class M/Thing extends Thing {

private final int arg;

public M/Thing() {

super (arg = SonmeQ herCl ass. func());

Unfortunately, it isn't legal. If you try to compileit, you'l get an error message that | ooks something
like this:

MyThi ng. j ava:
can't reference arg before supertype constructor has been call ed

super(arg = SoneQ her d ass.func());

JAN

How can you rewrite MyThi ng to achieve the desired effect? The MyThi ng() constructor must be
thread-safe: Multiple threads may invoke it concurrently.

Solution 53: Do Your Thing

You could try to stash the result of the invocation SomeQt her A ass. func() inadatic field prior to
invoking the Thi ng congtructor. This solution isworkable but awkward. In order to achieve thread-
saf ety, you must synchronize accessto the stashed value, which requires unimaginabl e contortions.
Some of these contortions can be avoided by using a thread-local static field

(j ava. util.ThreadLocal), but amuch better solution exists.

The preferred solution isinherently thread- safe aswell as elegant. It invol ves the use of second,
private congtructor in MyThi ng:

public class M/Thing extends Thing {

private final int arg;

public M/Thing() {
thi s(SomeQt herCl ass. func());

private MyThing(int i) {
super (i) ;

arg = i;

This solution uses an alternate constructor invocation [JLS 8.8.7.1]. Thisfeature allows one
constructor in aclassto chain to another constructor in the same class. In this case, MyThi ng()
chainsto the private constructor MyThi ng(i nt) , which performs the required instance initiali zati on.
Within the private constructor, the value of the expression SomeQt her d ass. f unc() hasbeen
captured in the parameter i and can be stored in thefina field par amafter the superclass
constructor returns.

The Private Constructor Capture idiom illustrated by the solution to this puzzle is a useful pattern
to add to your bag of tricks. We've seen some genuinely ugy code that could have been avoided
with this pattern.

s < Day Day Up > |

| 4@ FREV < Day Day Up > | NExTHp |

Puzzle 54: Null and Void

Hereis yet another variant on the classic Hel | o Wor | d program. What does this one do?

public class Null {
public static void greet() {

Systemout.println("Hello world!");

public static void main(String[] args) {

((Nul'l) null).greet();

Solution 54; Null and Void

This program looks as though it ought to throw aNul | Poi nt er Excepti on. The mai n method
invokes the greet method on the constant nul |, and you can't invoke a method on nul | , can you?
Well, sometimes you can. If you ran the program, you found that it prints "Hel | o wor 1 d! "

The key to understanding this puzzleisthat Nul | . gr eet isastatic method. As you saw in Puzzle
48, itisabad ideato use an expression asthe quaifier in astatic method invocation, but that is
exactly what this program does. Not only does the run-time type of the object referenced by the
expression's val ue play no role in determining which method gets invoked, but al so the identity of
the object, if any, playsno role. In this case, there is no object, but that makes no difference. A
qualifying expression for a static method invocation isevaluated, but itsvalueis ignored. There
IS no requirement that the val ue be non-null.

To eliminate the confusion in this program, you could invoke the greet method by using its class as
aqualifier:

public static void main(String[] args) {

Null .greet();

Better yet, you could eliminate the qualifier entirely:

public static void main(String[] args) {

greet();

In summary, the lesson of this puzzleis exactly the same asthat of Puzzle 48: Qualify static method
invocations with a type, or don't qualify them at all. For language designers, it should not be
possible to pollute the invocation of a static method with an express on, which servesonly to
confuse.

s < Day Day Up > |

Puzzle 55: Creationism

Sometimes, it is useful for aclassto keep track of how many instances have been created. Thisis
typically done by having its congtructors increment a private static field. In the program that
follows, the Creat ur e class demonstrates thistechnique, and the Creat or class exercisesit, printing
the number of Creat ur e instancesit has created. What does the program print?

public class Oeator {
public static void main(String[] args) {
for (int i = 0; i < 100; i++)
Creature creature = new Geature();

Systemout. printl n(Creature. nunCreated());

class Geature {

private static | ong nunCreated = O;
public Oeature() {

nunQr eat ed++;

public static long nunmCreated() {

return nuntOr eat ed;

Solution 55: Creationism
Thisisatrick question. The program looks as though it ought to print 100, but it doesn't print

anything, because it doesnt compile. If you tried to compileit, you may have found the compiler
diagnosticsto be less than helpful. Thisiswhat j avac prints:

Creator.java: 4. not a statenent

Creature creature = new reature();

AN

Creator.java: 4. ';' expected

Creature creature new Creature();

AN

A local variable declaration |ooks like a statement but technically speaking is not; it isalocal
variable declaration statement [JLS 14.4]. The syntax of the language does not alow alocal
variable declaration statement as the statement repeated by a f or , whi | e, or do loop [JLS 14.12-14].
A local variable declaration can appear only as a statement directly within a block. (A block is
apair of curly braces and the statements and declarations contained within it.)

There are two ways to fix the problem. The obviousway is to place the declaration in a block:

for (int i =0; i < 100; i++) {

Creature creature = new Qeature();

Note, however, that the program is not using the local variable creat ur e. Therefore, it makes more
sense to replace the declaration with a naked constructor invocation, emphasizing that the reference
to the newly created object is being discarded:

for (int i =0; i < 100; i ++)

new Oreature();

If either of these changesis made, the program will print 100 as expected.

Note that the variable used to keep track of the number of Creat ur e instances (nuntCr eat ed) isa

| ong rather thanani nt . It is quite concelvable that a program might create more instances of some
classthan the maximum i nt value but not the maximum | ong value. The maximumi nt value is
231 -1, or about 2.1 x 107; the maximum | ong value is 23 - 1, or about 9.2 x 1018, Today, it is
possi ble to create about 108 objects per second, which means that a program would have to run
about three thousand years before al ong object counter would overflow. Even in the face of
increasing hardware speeds, | ong object counters should be adequate for the foreseeabl e future.

Also note that the creation counting strategy in this puzzle is not thread-safe. |f multiple threads can
create objectsin parallel, the code to increment the counter and the code to read it must be
synchroni zed:

/'l Thread-safe creation counter

class Geature {

private static | ong nunCreated,

public Oeature() {

synchroni zed (Creature.class) {

nunCr eat ed++;

public static synchronized Iong nunCreated() {

return nuntOr eat ed;

Alternatively, if you areusingrelease 5.0 or alater release, you can use an At oni cLong instance,
which obviates the need for synchronization in the face of concurrency.

/'l Thread-safe creation counter using Atom cLong;

i mport java.util.concurrent.atom c. Atom cLong;

class Geature {

private static Atom cLong nunC eated = new Atom cLong();

public Oeature() {

numOr eat ed. i ncr ement AndGet () ;

public static long nunCreated() {

return nuntCr eat ed. get () ;

Notethat it is not sufficient to declare nuntcr eat ed to be volatile. Thevol at i | e modifier
guarantees that other threads will see the most recent val ue assigned to a field, but it does not make
the increment operation atomic.

In summary, alocal variable declaration cannot be used as the repeated statement in af or , whi | e,
or do loop but can appear only as a statement directly within ablock. Also, when using a variable
to count instance creations, useal ong rather than ani nt , to prevent overflow. Fnaly, if you
are going to create instances in multiple threads, either synchronize accessto the instance counter
Or use an Atom cLong.

LS e [nexT e

Chapter 7. Library Puzzlers

The puzzlesin this chapter concern basic library-rel ated topics, such as obj ect methods,
collections, Dat e, and Cal endar .

LS R A AN R =y

8 FREV < Day Day Up > | NExTHp |

Puzzle 56: Big Problem

Asawarm-up, test your knowledge of Bi gl nteger. What does this program print?

i nport java. mat h. Bi gl nt eger;
public class Bi gProbl em{
public static void main(String[] args) {
Bi gl nteger fiveThousand = new Bi gl nteger("5000");
Bi gl nteger fiftyThousand = new Bi gl nt eger (" 50000");
Bi gl nteger fiveHundredThousand
= new Bi gl nt eger (" 500000");

Bi gl nteger total = Biglnteger.ZERQ
total . add(fi veThousand) ;
total .add(fiftyThousand);
total .add(fi veHundredThousand) ;

Systemout.println(total);

Solution 56: Big Problem

You might think that this program prints 555000. After all, it setst ot al to theBi gl nteger
representation for 0 and then adds 5,000, 50,000, and 500,000. If you ran the program, you found
that it doesn't print 555000 but 0. Apparently all that addition has no effect ont ot al .

There isagood reason for this: Bi gl nteger instancesare immutable. So are instancesof Stri ng,
Bi gDeci mal , and the wrapper types. I nt eger , Long, Shor t , Byt e, Char act er , Bool ean, Fl oat , and
Doubl e. You can't change their values. Instead of modifying existing instances, operations on these
typesreturn new instances. At first, immutabl e types might seem unnatural, but they have many
advantages over their mutabl e counterparts. Immutabl e types are easier to design, implement, and

use; they are less error prone and more secure [EJ Item 13].

To perform a computation on a variable containing a reference to an immutabl e object, assign the
result of the computation to the variable. Doing this yields the following program, which prints the
expected result of 555000:

i nport java. mat h. Bi gl nt eger;

public class Bi gProbl em {

public static void main(String [] args) throws Exception {

Bi gl nteger fiveThousand new Bi gl nt eger (" 5000");

Bi gl nteger fiftyThousand new Bi gl nt eger (" 50000") ;

Bi gl nteger fiveHundredThousand

= new Bi gl nt eger ("500000");

Bi glnteger total = Biglnteger.ZERQ

total = total.add(fiveThousand);
total = total.add(fiftyThousand);
total = total.add(fiveHundredThousand);

Systemout.println(total);

Thelesson of this puzdeis: Do not be mided into thinking that immutable types ar e mutable.
This isacommon error among beginning Java programmers. In fairness, the names of some
methods in Java's immutabl e types help to lead them astray. Names|ike add, subt r act , and negat e
suggest that these methods mutate the instance on which they're invoked. Better names would be
plus, m nus, and negat i on.

A lesson for API designers, then, is: When naming methods for immutabl e types, prefer
prepositions and nounsto verbs. Prepositions are appropriate for methods with parameters and
nouns for parameterl ess methods. A lesson for language designersis, asin Puzzle 2, that it might be
worth offering limited support for operator overloading so that arithmetic operators can be made to

work with numerical reference types, such asBi gl nteger . Not even a beginner would think that
eval uating the expressiont ot al + fiveThousand would have any effect on thevalue of t ot al .

LS AR A AN R =y

s < Day Day Up > |

Puzzle 57: What's in a Name?

This program consi sts of asimple immutabl e class that represents a name, with amai n method that
puts a nameinto a set and checks whether the set contains the name. What does the program print?

I nport java.util.*;

public class Name {

private final String first, |ast;

public Nane(String first, String last) {
this.first = first;

this.last = | ast;

publ i c bool ean equal s(bject 0) {
if (!'(o instanceof Nane))
return false;
Name n = (Nane) o;

return n.first.equal s(first) && n.l ast.equal s(l ast);

public static void main(String[] args) {
Set <Nanme> s = new HashSet <Nane>() ;
s. add(new Name("M ckey", "Muse"));

System out . printl n(

s.cont ai ns(new Name("M ckey", "Muse")));

Solution 57; What's in a Name?

A Nane instance consists of afirst name and alast name. Two Narre instances are equal, as
computed by the equal s method, if their first names are equal and their last names are equal. First
names and |ast names are compared using the equal s method defined in St ri ng. Two strings are
equal if they consist of the same charactersin the same order. Therefore, two Nane instances are
equal if they represent the same name. For exampl e, the following method invocation returnst r ue:

new Name(" M ckey", "Mouse"). equal s(new Nane("M ckey", "Mouse"))

The mai n method of the program creates two Nane instances, both representing Mickey Mouse. The
program puts the first instance into a hash set and then checks whether the set contains the second.
The two Nane instances are equal, so it might seem that the program should print t rue. If you ranit,
it amost certainly printed f al se. What iswrong with the program?

The bug isthat Nae violates the hashCode contract. This might seem strange, as Nane doesn't even
have ahashCode method, but that is precisaly the problem. The Nane class overridesthe equal s
method, and the hashCode contract demands that equal objects have equal hash codes. To fulfill
this contract, you must override hashCode whenever you overrideequal s [EJ Item §].

Because it faillsto override hashCode, the Name classinheritsits hashCode implementation from
Obj ect . This implementati on returns an identity-based hash code. In other words, distinct objects
arelikely to have unequa hash values, even if they are equal. Nane does not fulfill the hashCode
contract, so the behavior of a hash set containing Nane €lementsis unspecified.

When the program putsthe first Nane instance into the hash set, the set puts an entry for this
instance into a hash bucket. The set chooses the hash bucket based on the hash val ue of the
instance, as computed by itshashCode method. When it checks whether the second Nane instanceis
contained in the hash set, the program chooses which bucket to search based on the hash value of
the second i nstance. Because the second instance is distinct from the firgt, itislikely to have a
different hash value. If the two hash values map to different buckets, the cont ai ns method will
return f al se: The beloved rodent isin the hash set, but the set can't find him.

Suppose that the two Nane instances map to the same bucket. Then what? All HashSet
implementations that we know of have an optimization in which each entry stores the hash val ue of
its element in addition to the e ement itself. When searching for an el ement, the implementation

sel ects the appropriate hash bucket and traversesits entries, comparing the hash value stored in

each entry with the hash value of the desired element. Only if the two hash values are equal does
the implementation check the elementsfor equality. This optimization makes sense becauseitis
usua ly much cheaper to compare hash codes than elements.

Because of this optimization, it is not enough for the hash set to search in the right bucket; the two
Nane instances must have equal hash valuesin order for the hash set to recognize them as equal .
The oddsthat the program prints TRue are therefore the odds that two consecutively created objects
have the same identity hash code. A quick experiment showed these odds to be about one in
25,000,000. Results may vary depending on which Java implementation is used, but you are highly
unlikely to see the program print TRue on any JRE we know of.

To fix the problem, smply add an appropriate hashCode method to the Narre class. Although any
method whose return val ue is determined solely by the first and last name will satisfy the contract, a
high-quality hash function should attempt to return different hash values for different names. The
following method will do nicely [EJ Item 8]. Once this method is added, the program will print

t rue asexpected:

public int hashCode() {

return 37 * first.hashCode() + | ast. hashCode();

In summary, always override hashCode when you override equal s. More generally, obey the
general contract when you override a method that has one. Thisisan issue for most of the non-final
methods declared in obj ect [EJ Chapter 3]. Failureto follow thisadvice can result in arbitrary,
unspecified behavior.

< Day Day Up >

s < Day Day Up > |

Puzzle 58: Making a Hash of It

This puzzl e attempts to | earn from the mistakes of the previous one. Again the program consists of
aNane classand a mai n method that puts a name into a hash set and checks whether the set contains
the name. Thistime, however, the Name class does override the hashCode method. What doesthis
program print?

I nport java.util.*;

public class Name {

private final String first, |ast;

public Nane(String first, String last) {

this.first = first; this.last = | ast;

publ i c bool ean equal s(Nanme n) {

return n.first.equal s(first) && n.l ast.equal s(l ast);

public int hashCode() {

return 31 * first. hashCode() + | ast.hashCode();

public static void main(String[] args) {
Set <Name> s = new HashSet <Nane>() ;

s. add(new Nanme("Donal d", "Duck"));

System out. printl n(

s.cont ai ns(new Nane(" Donal d", "Duck")));

Solution 58: Making a Hash of It

Asin Puzzle 57, the mai n method of this program creates two Nane instances, both representing the
same name. This timeit, happensto be Donad Duck rather than Mickey M ouse, but that shouldn't
make much difference. Again, the mai n method puts the first instance into a hash set and then
checks whether the set contains the second. Thistime, the hashCode method is clearly correct, so it
looks as though the program ought to print TRue. Once again, appearances are deceiving: It always
prints f al se. What'swrong thistime?

Theflaw in thisprogramissimilar to the onein Puzzle 57. In that puzzle, Nane overridesthe
equal s method but fails to override hashCode; in this puzzle, Name overridesthe hashCode method
but failsto override equal s. That isnot to say that Nane doesn't declare an equal s method; it does,
but it's the wrong one. The Nare class declares an equal s method whose argument is of type Name
rather than aoj ect. The author of this class probably intended to override the equal s method but
mistakenly overloaded it [JLS 8.4.8.1, 8.4.9].

TheHashSet classusestheequal s(Object) method to test elements for equality; itisof no
consequence to HashSet that Name declares an equal s(Name) method. So where does Nane get its
equal s(Obj ect) method? It isinherited from bj ect. This method returnst rue only if its
argument and the object on which it isinvoked are one and the same. The mai n method of our
program inserts one Nane instance into the hash set and tests for the presence of another, so the test
isguaranteed to return f al se. To us, both instances may represent the wonderful waterfowl, but to
the hash map, they're just two unequal objects.

Fixing the program is as S mple as replacing the overloaded equal s method with the overriding one
found in Puzzle 57. With thisequal s method, the program prints TRue as expected:

publi c bool ean equal s(Obj ect 0) {

if (!(o instanceof Name))

return fal se;
Nane n = (Nane)o;

return n.first.equals(first) & n.last.equal s(Iast);

To make the program work, you merely have to add the overriding equal s method. Y ou don't have
to eliminate the overloaded one, but you are better off without it. Overloadingsrepresent
opportunitiesfor error and confusion [EJ Item 26]. If compatibility dictates that you must retain a
"self-typed" equal s method, implement the ooj ect overloadingin terms of the self-typed

overl oading to ensure identical behavior:

public bool ean equal s(Obj ect 0) {

return o instanceof Nanme && equal s((Nanme) o0);

Thelesson of this puzZdeis. Don't overload a method when you want to override. Toavoid
unintentional overloading, mechanically copy the declaration of each super class method that
you want to override, or better yet, let your IDE do it for you. Besides protecting you agai nst
unintentional overl oading, this protects you agai nst misspelling method names. I f you are using
release 5.0 or alater release, apply the @ver ri de annotation to each method declaration that is
intended to override a supercl ass method:

@verride public boolean equal s(hject o) { ... }

With this annotation, the program will not compile unless the annotated method overrides a
superclass method. For language designers, it isworth consi dering a mandatory modifier on each
method declaration that overrides a superclass method.

48 FREV < Day Day Up > | NExTEp |

8 FREV < Day Day Up > | NExTHp |

Puzzle 59: What's the Difference?

This program computes the differences between pairs of elementsinani nt array, putsthese
differencesinto aset, and printsthe size of the set. What does the program print?

I nport java.util.*;

public class Differences {
public static void main(String[] args) {
int vals[] = { 789, 678, 567, 456,
345, 234, 123, 012 };

Set<Integer> diffs = new HashSet <l nteger >();

for (int i = 0; i <vals.length; i++)
for (int j =1i; j <vals.length; j++)
di ffs.add(vals[i] - vals[j]);

Systemout.println(diffs.size());

Solution 59: What's the Difference?

The outer loop iterates over every element in the array. The inner loop iterates over every el ement
from the current element in the outer-loop iteration to the last e ement in the array. Therefore, the
nested | oop iterates over every possible pair of elements from the array exactly once. (Elements may
be paired with themselves.) Each iteration of the nested loop computes the (positive) difference
between the pair of elements and stores that difference in the set, which eliminates duplicates.
Therefore, this puzzle amounts to the question, How many unique positive diff erences are there
between pairs of e ementsfrom theval s array?

When you look at the array, a pattern becomes evident: The difference between consecutive element
is111. Therefore, the difference between two elementsisafunction of how far apart they arein the
array. If two elementsareidentical, the differenceis0O; if they're adjacent, it's 111; if they're separate
by one element, it's 222; and so on. It would appear that the number of differencesisthe same as the
number of distances, which isthe size of the array, or 8. If you ran the program, however, you found
that it prints 14. What's going on?

This analysi s contains one small flaw. To investigate the flaw, we can print out the contents of the &
by removing the characters . si ze() fromthepri nt | n statement. Doing this produces the foll owing
output:

[111, 222, 446, 557, 668, 113, 335, 444, 779, 224, 0, 333, 555, 666

Not all these numbers are multiples of 111. There must be two adjacent elementsin theval s array
whose differenceis 113. If you look at the array declaration, it may not be clear why this is so:

int vals[] ={ 789, 678, 567, 456,

345, 234, 123, 012 },

But if you print the contents of the array, hereiswhat you will see:

[789, 678, 567, 456, 345, 234, 123, 10]

Why isthefinal element of the array 10 instead of 127 Because integer literalsbeginning with a0
areinterpreted as octal values[JLS 3.10.1]. This obscure construct is a holdover fromthe C
programming language. C dates from the 1970s, when octal was much more commonly used than it
istoday.

Once you know that 012 == 10, it isobviouswhy the program prints 14: There are 6 unique nonzerc
differences not involving the final array element, 7 unique nonzero differences involvingthe fina
array element, and thereis zero, for atotal of 14 unique differences. It iseven more obvious how to
fix the program: Replace the octal integer literal 012 with the decimal integer literal 12. If you do
this, the program will print 8 as expected.

The lesson of this puzaeissmple: Never pad an integer literal with zeros; thisturnsitinto an
octal literal. The intentional use of octal integer literalsis so rare that you should probably comment

every use. Thelesson for language designersis to exercise restraint when deciding what featuresto
include. When in doubt, leave it out.

LS AR A AN R =y

| 4m PREV < Day Day Up > | NExT ap |

Puzzle 60: One-Liners

Now it's your turn to write some code. Each of the following puzzl es can be sol ved with a method
whose body contains but a single line. On your mark, get set, code!

A. Write amethod that takesa Li st of elements and returnsa new Li st containing the same
elements in the same order with the second and subsequent occurrences of any duplicate
elements removed. For example, if you passin alist containing " spant, " sausage" , " spant,
"spant', "bacon", "spant, "tomato", and " spant', you'll get back anew list containing "spant’,

"sausage", "bacon", and "t omat o".

B. Write amethod that takes a string containing zero or more tokens separated by commas and
returns an array of strings representing the tokensin the order they occur in the input string.
Each comma may be followed by zero or more white space characters, which must be ignored
by the method. For example, if you pass thestring " fear, surprise, ruthless
efficiency, an alnost fanatical devotion to the Pope, nice red uniforns",youll
get back afive-element string array containing "fear ", "surpri se", "rut hless efficiency",
"an alnost fanatical devotion to the Pope",and"nice red uniforns".

C. Suppose that you have amultidimensiona array that you want to print for debugging
purposes. You don't know how many levelsthe array has or what type of objects are stored at
each leve in the array. Write amethod that shows you all the elements at each level.

D. Write amethod that takestwo i nt values and returns TRue if the first value has more bits set
than the second in its two's-compl ement binary representation.

Solution 60;: One-Liners

A. Itiswell known that you can eliminate all the duplicate e ementsin a collection by putting its
contents into a Set . In this puzzle, you were also asked to preserve the order of the original
collection. Luckily, thereisa Set implementation that maintainsits elementsin insertion
order, and it offers near-HashMap performance to boot. It's called Li nkedHashSet , and it was
added to the platformin release 1.4. Interndly, it isimplemented as a hash table with alinked
list running through it. There is & so amap version that you can use to make custom caches.
Once you know about Li nkedHashSet , it's easy to solve this puzzle. The only other wrinkleis
that you were asked to return a Li st , S0 you haveto initialize aLi st with the contents of the
Li nkedHashSet . Putting it all together, hereisthe sol ution:

stati ¢ List<E> wi thout Duplicates(List<E> original) {

return new Arraylist<E>(new LinkedHashSet <E>(original));

B. When it comesto parsing a string into tokens, many programmers thoughts turn immediately
to StringTokeni zer . Thisismost unfortunate, asStri ngTokeni zer became obsol ete as of
release 1.4, when regular expressions were added to the platform (j ava. uti | . regex). If you
tried to solve this puzzle with st ri ngTokeni zer , you quickly realized that it isn't avery good
fit. With regular expressions, it'sasnap. To solvethis puzzle in one line, use the convenience
method Stri ng. spli t, which takesaregular expression describing the token delimiter. If you
haven't used regular expressions before, they may look a bit cryptic, but they're amazngly
powerful and well worth learning:

static String[] parse(String string) {

return string.split(",\\s*");

C. Thisisatrick question. Y ou dont even have to write amethod. The method is provided for
you in release 5.0 and | ater releases, and is called Arr ays. deepToSt ring. If you passit an
array of object references, it returns a nice string representation. It can deal with nested arrays
and even circular references, where an array element refersto the enclosing array, directly or
indirectly. Infact, the Arr ays classin release 5.0 provides a whole family of t oSt ri ng,
equal s, and hashCode methodsthat allow you to print, compare, or hash the contents of any
array of primitives or object references.

D. In order to solve this puzzle in one line, you need to know that awhole family of bit-twiddling
methods were added to the platform in release 5.0. The wrapper classesfor the integral types
(I nt eger, Long, Short, Byt e, and Char) now support common bit-manipul ation operations,
including hi ghest OneBi t, | owest OneBi t, nunber Of Leadi ngZer os, number Of Trai | i ngZer os,
bit Count, rot ateLeft,rotateRi ght,reverse,signum andrever seBytes. Inthiscase, what
you need iS | nt eger . bi t Count , which returns the number of set bitsinani nt vaue:

stati c bool ean hasMreBitsSet(int i, int j) {

return (I nteger.bitCount(i) > Integer.bitCount(j));

In summary, each major rel ease of the Java platform has afew new "hidden treasures’ in the
libraries. All four parts of this puzzle relied on such treasures. Each time a new release of the

platf orm comes out, you should study the new features and enhancements page so you don't miss
out on any of the goodies that the rel ease has to offer [Features-1.4, Features-5.0]. Knowing what's
inthe libraries can save you lotsof time and effort and can enhance the speed and quality of
your progr ams.

8 FREV < Day Day Up > | NExTHp |

Puzzle 61: The Dating Game

The following program exerci ses some basi ¢ features of the Dat e and Cal endar classes. What does
it print?

I nport java.util.*;

public class DatingGame {
public static void main(String[] args) {
Cal endar cal = Cal endar.getl nstance();
cal .set (1999, 12, 31); // Year, Month, Day

Systemout . print(cal.get(Cal endar. YEAR) + " ");

Date d = cal.getTine();

Systemout.println(d.getDay());

Solution 61: The Dating Game

This program creates a Cal endar instance that appears to represent New Year's Eve, 1999, and
prints the year followed by the day. It seemsthat the program should print 1999 31, but it doesnt; it
prints 2000 1. Could this be the dreaded Y 2K problem?

No, it's something much worse: It isthe dreaded Dat e/Cal endar problem. When the Java platform
was first released, its only support for calendar cal cul ations was the Dat e class. This classwas
limited in power, especialy when it came to support for internationalization, and it had abasic
design flaw: Dat e instances were mutable. In release 1.1, the Cal endar classwas added to the
platform to rectify the shortcomings of Dat e; most Dat e methods were deprecated. Unfortunately,
this only made a bad situation worse. Our program illustrates a few of the problemswith the Dat e
and Cal endar APIs.

The program'sfirst bugisin the method invocation cal . set (1999, 12, 31).When months are
represented numerically, convention dictates that the first month be assigned the number 1.
Unfortunately, Dat e represents January as0, and Cal endar perpetuatesthis mistake. Therefore,
this method invocation sets the calendar to the thirty-first day of the thirteenth month of 1999. But
the standard (Gregorian) calendar has only 12 months; surely this method invocation should cause
an il egal Argument Excepti on? It should, but it doesn't. The Cal endar class silently substitutesthe
first month of the next year, in this case, 2000. This explains the first number printed by our
program (2000).

There are two ways to fix this problem. You could change the second parameter of thecal . set
invocation from 12 to 11, but that would be confusing. The number 11 would suggest November to
readers. It would be better to use the constant that Cal endar declaresfor this purpose, which is

Cal endar . DECEMBER

What about the second number printed by the program? The cal . set invocation clearly indicates
that the calendar is set to the thirty-first day of the month. The Dat e instance d represents the same
point in time asthe Cal endar , S0 itsget day method should return 31, but the program prints 1.
What is going on?

To find out, you have to read the documentation, which saysthat Dat e. get Day returnsthe day of
the week represented by the Dat e instance, not the day of the month. The returned valueis 0-
based, starting at Sunday, so the 1 printed by the program indicates that January 31, 2000, fell on a
Monday. Note that the corresponding Cal endar method, get (Cal endar . DAY_OF VEEK),
inexplicably returns a day-of-the-week value that is 1-based, not 0-based like the val ue returned by
its Dat e counterpart.

There are also two waysto fix this problem. You could call the confusingly named Dat e. dat e
method, which returns the day of the month. Like most Dat e methods, however, it is deprecated, so
you would be better off di spensing with Dat e entirely and calling the Cal endar method

get (Cal endar . DAY_OF_MONTH) . With both problems fixed, the program prints 1999 31 as expected:

public class DatingGane {
public static void main(String[] args) {
Cal endar cal = Cal endar.getlnstance();
cal .set (1999, Cal endar. DECEMBER, 31);
Systemout.print(cal.get(Cal endar. YEAR) + " ");

Systemout.println(cal . get(Cal endar. DAY_C-_MONTH)) ;

This puzzle only scratches the surface of the defectsin Cal endar and Dat e. These APIs are
minefields. Other serious problems with cal endar include weak typing (nearly everythingisan
i nt), an overly complex state-space, poor structure, incons stent naming, and incons stent
semantics. Be careful when using Cal endar or Dat e; always consult the APl documentation.

Thelesson for API designersis: If you cant get it right the first time, at least get it right the second;
there may not be athird. If your first attempt at an AP has serious problems, your customers may
be forgiving and give you another chance. If your second attempt has problems, you may be stuck
with them for good.

@ rne < Day Day Up >

4 PREV < Day Day Up > | NExT o |

Puzzle 62: The Name Game

This program puts two mappingsinto amap and printsits size. What doesit print?

I nport java.util.*;

public class NaneGane {
public static void main(String args[]) {
Map<String, String> m=
new | dentityHashMap<String, String>();
m put ("M ckey", "Mouse");
m put ("M ckey", "Mantle");

Systemout.printl n(msize());

Solution 62;: The Name Game

A naive analysi s of this program suggests that it should print 1. The program puts two mappings
into the map, but both have the same key (M ckey). It'sa map, not a multimap, so the baseball
legend (Mickey Mantle) should overwrite the animated rodent (Mickey Mouse), leaving asingle
mapping in the map.

A more thorough analysi s casts doubt on this prediction. The documentation for | dent i t yHashMap
says, "this classimplements the Map interface with a hash table, using reference-equality in place of
[va ue]-equality when comparing keys' [Java-API]. In other words, the program will print 2 rather
than 1 if the second occurrence of the string literal " M ckey" evaluatesto adifferent Stri ng
instance from the first. So doesthe program print 1, doesit print 2, or might its behavior vary from
implementation to implementation?

If you tried running the program, you found that it prints 1, as suggested by our naive analysis, even
though the anaysisis flawed. Why? The language specification guarantees that string constants are
interned. In other words, string constants that are equal will also beidentical [JLS 15.28]. This

ensures that the second occurrence of the string literal " M ckey" in our program refers to the same
String instance asthefirst, so our use of an | dent i t yHashMap in place of a general-purpose Map
implementation, such as Hashmap, does not affect the program's behavior. Our naive anaysis
neglects two detail s, but these details effectively cancel each other out.

The important lesson of thispuzzleis: Don't use| dent i t yHashMap unless you need itsidentity-
based semantics; it isnot a gener al-pur pose Map implementation. These semantics are useful for
impl ementi ng topology-preserving object graph transformations, such as serialization or deep-
copying. A secondary lesson isthat string constants are interned. As mentioned in Puzzle 13,
programs should rarely, if ever, depend on this behavior for their correct operation.

Q)

N7
¢\

@ rev | < Day Day Up > =

Puzzle 63: More of the Same

This program is similar to the previous one, except this one is object-oriented. Learning from our
previous mistake, this version uses a general-purpose Map i mplementation, a HashMap, in place of
the previous program's| dent i t yHashMap. What does this program print?

I nport java.util.*;

public class MreNanes {

private Map<String, String> m = new HashMap<String, String>();

public void MreNanes() {
m put ("M ckey", "Mouse");

m put ("M ckey", "Mantle");

public int size() {

return msize();

public static void main(String args[]) {
Mor eNanes nor eNanmes = new MoreNanes() ;

System out. printl n(noreNanes. size());

Solution 63;: More of the Same

This program looks straightforward. The mai n method creates a Mor eNanes instance by invoking the
parameterless constructor. The Mor eNanes instance contains a private vap field (m), which is
initialized to an empty Hashvap. The parameterless constructor appears to put two mappingsinto
the map m both with the same key (M ckey). Aswe know from the previous puzzle, the ballplayer
(Mickey Mantle) should overwrite the rodent (Mickey M ouse), | eaving a single mapping. The mai n
method then invokes the si ze method on the Mor eNarres instance, which in turn invokessi ze on
the map mand returns the result, presumably 1. There's only one problem with thisanalysis: The
program prints o, not 1. What's wrong with the anal ysis?

The problem isthat Mor eNares has no programmer-declared constructor. What it does haveisa
voi d-returning instance method called Mor eNarres, which the author probably intended as a
constructor. Unfortunately, the presence of areturn type (voi d) turned the intended constructor
declaration into a method declaration, and the method never getsinvoked. Because the Mor eNanes
has no programmer-decl ared constructor, the compiler helpfully (?) generates a public
parameterless constructor that does nothing beyond initializing the field of the instance that it
creates. As previousy mentioned, misinitialized to an empty Hashvap. When the si ze method is
invoked on this Hashmap, it returns 0, and that is what the program prints.

Fixing the program is as smple asremoving the voi d return type from the Nanes declaration, which
turnsit from an instance method declaration into a constructor declaration. With this change, the
program prints 1 as expected.

Thelesson of this puzdeis: Don't accidentally turn a constr uctor declaration intoa method
declar ation by adding a return type. Although itislegal for amethod to have the same name as
the classin which it's declared, you should never do this. More generally, obey the standard
naming conventions, which dictate that method names begin with |owercase | etters, whereas class
names begin with uppercase | etters.

For language designers, perhapsit was not such agood idea to generate a default constructor
automatically if no programmer-declared constructor is provided. If such constructors are
generated, perhaps they should be private. There are severa other approachesto eliminating this
trap. Oneisto prohibit method namesthat are the same astheir class name, as does C#. Another is
to dispense with constructors altogether, as does Smalltalk.

48 FREV < Day Day Up > NEXT o

Puzzle 64: The Mod Squad

This program generates a histogram of the numbers mod 3. What doesit print?

public class Md {
public static void main(String[] args) {
final int MODULUS = 3;

int[] histogram= new i nt[MODULUS];

Il Iterate over all ints (ldiomfrom Puzzle 26)
int i = Integer.M N_VALUE;
do {

hi st ograni Mat h. abs(i) % MODULUS] ++;

} while (i++ !'= Integer. MAX VALUE);

for (int j = 0; j < MODULUS; j++)

Systemout.println(histogranfj] + " ");

Solution 64: The Mod Squad

The program initializesthe i nt array hi st ogr amwith one location for each of the mod 3 values (0,
1, and 2). All three locations areinitially 0. Then the program loopsthe variablei over all 232 nt
values, using the idiom introduced in Puzzle 26. Because the integer remainder operator (%9 can
return a negative value if itsfirst operand is negative, as discussed in Puzzle 1, the program takes
the absolute value of i before computing its remainder when divided by 3. Then it incrementsthe
array location indexed by this remainder. After the loop finishes, the program prints the contents of
the hi st ogr amarray, whose elements represent the number of i nt valueswhose mod 3 values are
0,1, and 2.

The three numbers printed by the program should be roughly equal to one another, and they should
add up to 232, If you want to know how to figure out their exact val ues and you're in the mood for a
bit of math, read the next two paragraphs. Otherwise, feel free to skip them.

The three numbers printed by the program can't be exactly equal, because they have to add up to
232 whichisnot divisible by 3. If you look at the mod 3 val ues of successive powersof 2, you'l see
that they alternate between 1 and 2: 22 mod 3is 1, 2! mod 3is2, 22 mod 3is 1, 23 nod 3is2, and so
forth. The mod 3 value of every even power of 2 is 1, and the mod 3 val ue of every odd power of 2
is2. Because 232 mod 3 is 1, one of the three numbers printed by the program will be one greater
than the other two, but which one?

The loop takes turns incrementi ng each of the three array values, so the last value incremented by
the loop must be the high one. Thisisthe value representing the mod 3 value of

I nt eger . MAX_VALUE or (231 - 1). Because 23! isan odd power of 2, itsmod 3 value is 2, so (231 - 1)
mod 3 is 1. The second of the three numbers printed by the program represents the number of i nt
valueswhose mod 3 valueis 1, so we expect this value to be one more that the first and the | ast.

The program shoul d therefore print floor (232 / 3) ceil(232/ 3) floor(232/ 3), or 1431655765
1431655766 1431655765—after running for afair amount of time. But doesit? No, it throwsthis
exception almost immediately:

Exception in thread "main" Arrayl ndexQut Of BoundsExcepti on: -2

at Mdd. mai n(Mod. | ava: 9)

What is going on here?

The problem liesin the program's use of the Mat h. abs method, which resultsin erroneous mod 3
values. Consider what happenswheni is-2. The program computes the value Mat h. abs(-2) % 3,
whichis2, but the mod 3 value of -2 is 1. Thiswould explain incorrect numerical results, but it
leaves usin the dark asto why the program throws an Arr ayl ndexQut & BoundsExcept i on. This
exception indicates that the program is using a negative array index, but surely that isimpossible:
The array index is cal cul ated by taking the absol ute value of i and computing the remainder when
thisvalueis divided by 2. Computing the remai nder when anonnegativei nt isdivided by a
positive i nt isguaranteed to produce a nonnegative result [JLS 15.17.3]. Again we ask, What is
going on here?

To answer that question, we must go to the documentation for Mat h. abs. This method is named a
bit deceptively. It nearly always returns the absolute value of its argument, but in one case, it does
not. The documentation says, "If the argument isequal to the value of I nt eger . M N_VALUE, the
result isthat same value, which is negative." Armed with this knowledge, it is obviouswhy the
program throws an immediate Arr ay I ndexQut O BoundsExcept i on. Theinitial value of the loop
indexi islInt eger. M N_VALUE, which generates an array index of Mat h. abs(1 nt eger. M N_VALUE)
% 3, which equals| nt eger . M N_VALUE % 3, Or 2.

To fix the program, we must repl ace the bogus mod calcul ation (Mat h. abs(i) % MODULUS) with
onethat actually works. If we replace this expression with an invocation of the following method,
the program produces the expected output of 1431655765 1431655766 1431655765:

private static int nmod(int i, int nmodulus) {
int result =1 % nodul us;

return result < 0 ? result + nodulus : result;

The lesson of this puzzZeisthat Mat h. abs isnot guar anteed to return a nonnegative result. If its
argument is| nt eger . M N_VALUE—Or Long. M N_VALUE for thel ong version of the method—it
returns its argument. The method is not doing this just to be ornery; this behavior stems from the
asymmetry of two's-complement arithmetic, which is discussed in more detail in Puzzle 33. Briefly,
thereisnoi nt value that representsthe negation of | nt eger . M N_VALUE and no | ong value that
represents the negation of Long. M N_VALUE. For library designers, it might have been preferable if
Mat h. abs threw 111 egal Ar gunent Excepti on when it was passed | nt eger . M N_VALUE Or

Long. M N_VALUE. One could, however, argue that the actual behavior is more consistent with Java's
built-in integer arithmetic operations, al of which overflow slently.

LS AR A AN R =y

| 4m PREV < Day Day Up > NEXT o |

Puzzle 65: A Strange Saga of a Suspicious Sort

This program sorts an array of randomly chosen | nt eger instances, using a custom comparator, and
then prints aword describing the order of the array. Recal | that the Conpar at or interface hasa
single method, conpar e, which returns a negative value if itsfirst argument islessthan its second,
zero if its two arguments are equal, and a positive value if itsfirst argument is greater than its
second. This program is a showcase for release 5.0 features. It uses autoboxing and unboxing,
generics, and enum types. What does it print?

i mport java.util.*;

public class SuspiciousSort {
public static void main(String[] args) {
Random rnd = new Random() ;

Integer[] arr = new Integer[100];

for (int i 0; i <arr.length; i++)

arr[i] rnd. nextlnt();

Conparat or <l nteger> cnp = new Conparat or <l nteger>() {
public int conpare(lnteger il, Integer i2) {

returni2 - i1;

}
Arrays.sort(arr, cnp);

Systemout.println(order(arr));

enum Order { ASCENDI NG, DESCENDI NG, CONSTANT, UNORDERED };

static O der order(Integer[] a) {
bool ean ascendi ng = fal se;

bool ean descending = fal se;

for (int i =1; i <alength; i++) {
ascending |= (a[i] > a[i-1]);

descending |= (a[i] < a[i-1]);

I f (ascending && !descendi ng)
return Order. ASCENDI NG
if (descendi ng & !ascending)
return Order. DESCEND NG,
if (!ascendi ng)
return Order. CONSTANT; /1 Al el enments equal

return Order. UNCRDERED; /1 Array is not sorted

Solution 65: A Strange Saga of a Suspicious Sort

The mai n method creates an array of | nt eger instances, initializes it with random values, and sorts
the array using the comparator cnp. This comparator's conpar e method returns its second argument
minusitsfirst, which ispositive if its second argument represents alarger value than itsfirst, zero if
they're equal, and negative if its second argument represents a smaller value than itsfirst. Thisisthe
opposite of what is normally done by the corpare method, so this comparator should impose a
descending order.

After sorting the array, the mai n method passesit to the static method or der and printsthe result
returned by this method. This method returns CONSTANT if all the el ementsin the array represent
equal values, ASCEND NG if the second el ement in every adjacent pair is greater than or equal to the
first, DESCENDI NGif the second element in every adjacent pair islessthan or equal to the first, and
UNORDERED if none of these conditions holds. Although it istheoretically possible that all 100
random numbersin the array are equal to one another, the odds of this happening are infinitessmal:
1in 23293 which is approximately 1in 5 x 1093, Therefore, it scems likely that the program
should print DESCENDI NG If you ran it, you amost certainly saw it print UNORDERED. Why would it
do such a thing?

The order method is straightforward, and it does not lie. The Arr ays. sort method has been around
for years, and it worksfine. Thisleaves only one place tolook for bugs: the comparator. At first
glance, it may seem unlikely that the comparator is broken. After all, it usesa standard idiom: If you
have two numbers and you want a val ue whose sign indicates their order, compute their difference.
This idiom has been around at | east since the early 1970s. It was commonly used in the early days
of UNIX. Unfortunately, this idiom never worked properly. Perhaps this puzzl e should have been
called "The Case of the Idiotic Idiom?' The problem with this idiomisthat afixed-width integer is
not big enough to hold the difference of two arbitrary integers of the same width. When you
subtract two i nt or | ong values, the result can overflow, in which case it will have the wrong sign.
For example, consider this program:

public class Overflow {

public static void main(String[] args) {

int X -2000000000;

int z 2000000000;

Systemout.println(x - 2z);

Clearly, x islessthan z, yet the program prints 294967296, which is positive. Given that this
comparison idiom is broken, why isit used so commonly? Because it works most of the time. It
breaks only if the numbersto which itisapplied differ by more than | nt eger . MAX_VALUE. This
means that for many applications, failureswon't be observed in practice. Worse, they may be
observed infrequently enough that the bug will never get found and fixed.

So what does this mean for the behavior of our program? If you look at the Conpar at or
documentation, you will see that the rel ation it implements must be transtive. In other words,
(conpare(x, y) > 0) & (conpare(y, z) > 0) impliesthat conpare(x, z) > 0. Consder the
casein which x and z have the valuesin the over f | ow example and y hasthe vaueo. Our
comparator violates trangtivity for these values. In fact, it returns the wrong vaue for one quarter of
alint pairschosen at random. Performing a search or sort with such acomparator or using it to
order a sorted collection can cause unspecified behavior, which iswhat we observed when we ran
the program. For the mathematically inclined, the general contract of the Conparat or. conpare
method requires that comparators impose atotal order, but this one failsto do so on several counts.

We can fix our program by substituting a Conpar at or implementation that obeys the general
contract. Because we want to reverse the natural order, we don't even have to write our own
comparator. The Col | ect i ons class provides onethat's made to order. If you replace the original
Arrays. sort invocation by Arrays. sort (arr, Collections.reverseO der()), theprogram will
print DESCENDI NG as expected.

Alternatively, you can write your own comparator. The following code is not "clever,” but it works,
causing the program to print DESCENDI NG as expected:

public int conpare(lnteger i1, Integer i2) {

return (i2<i11?-1: (i2=117?0:1)),;

This puzzle has several lessons. The most specific is: Do not use a subtraction-based compar ator
unless you ar e surethat the difference between valueswill never be greater than

| nt eger . MAX_VALUE [EJ Item 11]. More generally, beware of i nt overflow, asdiscussed in Puzzles
3, 26, and 33. Another lesson is that you should avoid "clever" code. Strive to write clear, correct
code, and do not optimizeit unlessit proves necessary [EJ Item 37].

For language designers, the lesson isthe same asfor Puzzles 3, 26, and 33: It is perhaps worth
consi dering support for some from of integer arithmetic that does not overflow silently. Also, it
might be worth providing athree-valued comparator operator in the language, as Perl does (the <=>
operator).

LS e [nexT e

Chapter 8. Classier Puzzlers
The puzzlesin this chapter concern inheritance, overriding, and other forms of name reuse.

LS RpAR AN @y

8 FREV < Day Day Up > | NExTHp |

Puzzle 66: A Private Matter

In this program, a subclass field has the same name as a superclass field. What does the program
print?

class Base {

public String cl assNanme = "Base";

class Derived extends Base {

private String classNane = "Derived";

public class PrivateMatter {
public static void main(String[] args) {

Systemout.printl n(new Derived().cl assNane);

Solution 66: A Private Matter

A superficial analysis of the program might suggest that it should print Der i ved, because that is
what isstored in the cl assNane field of each Der i ved instance. A deeper analysi s suggests that
classDer i ved won't compile, because the variable cl assName in Der i ved has more restrictive
accessthan it doesin Base: It isdeclared pri vate inDeri ved and publ i c in Base. If you tried
compiling the program, you found that neither analysisis correct. The program doesnt compile, but
theerrorisintheclasspri vatematter.

Had cl assNane been an instance method instead of an instance field, Deri ved. cl assName() would
have overridden Base. cl assNane() , and the program would have been illega . The access modifier
of an overriding method must provide at least as much access asthat of the overridden method [JLS

8.4.8.3]. Because cl assNane isafield, Deri ved. cl assNane hidesBase. cl assName rather than
overridingit [JLS 8.3]. It islegal, though inadvisable, for one field to hide another when the hiding
field has an access modifier that provides less access than the hidden field. In fact, itislegal for a
hiding field to have atype that is completely unrelated to that of the field it hides: The Deri ved
classwould belega evenif Deri ved. cl assNarme were of type Gregori anCal endar.

The compilation error in our program occurswhen classpri vatematt er TRiesto access

Der i ved. cl assName. Although Base hasa public field cl assNane, thisfield is not inherited into
Der i ved becauseit ishidden by Deri ved. cl assNamre. Within the class Der i ved, the field name

cl assNane refers to the private field Der i ved. cl assNane. Because this field isdeclared pri vate, it
iIsnot accessible to the classPri vat emat t er . Therefore, the compiler generates an error message
something like this:

PrivateMatter.java:11l: className has private access in Derived

Systemout.printl n(new Derived().cl assNane) ;

FAN

Notethat it is possibleto accessthe public field Base. cl assNanme inabDeri ved instance even
though it ishidden, by casting the Der i ved instance to Base. The following version of
PrivateMatter printsBase:

public class PrivateMatter {
public static void main(String[] args) {

Systemout.printl n(((Base)new Derived()).classNane);

This demonstrates a big difference between overriding and hiding. Once amethod isoverriddenin a
subclass, you can't invoke it on an instance of the subclass (except from within the subclass, by
using the super keyword). You can, however, access a hidden field by casting the subclass instance
to asuperclass in which the field is not hidden.

If you want the program to print Der i ved—that i's, you want it to exhibit overriding behavior—use
public methodsin place of public fields. Thisis, in any case, agood idea because it provides better
encapsulation [EJ Item 19]. The following version of the program uses this technique and prints
Der i ved as expected:

class Base {
public String getd assNanme() {

return "Base";

class Derived extends Base {
public String getd assNanme() {

return "Derived";

public class Publiciatter ({
public static void main(String[] args) {

Systemout.printl n(new Derived().getCl assNane());

Note that we declared the method get O assNamre to be publicin class Der i ved even though the
corresponding field was private in the original program. As mentioned previoudy, an overriding
method must have an access modifier that is no less redtrictive than the method it overrides.

The lesson of this puzZeisthat hiding is generally a bad idea. The language alows you to hide
variables, nested types, and even static methods (asin Puzzle 48), but just because you can doesn't
mean that you should. The problem with hidingisthat it leadsto confusion in the mind of the
reader. Are you using the hidden entity or the entity that is doing the hiding? To avoid this

confusion, simply avoid hiding.

A classthat hides afield with one whose accessibility is more restrictive than that of the hidden
field, asin our original program, viol ates the principle of subsumption, also known as the Liskov
Substitution Principle [Liskov87]. This principl e says that everything you can do with a base class,
you can al so do with aderived class. Subsumption isan integral part of the natural mental model of
obj ect-oriented programming. Whenever it is violated, a program becomes more difficult to
understand. There are other ways that hiding one field with another can viol ate subsumption: if the
two fields are of different types, if one field is static and the other isnt, if onefield isfina and the
other isnt, if onefield is constant and the other isn't, or if both are constant and have different
values.

For language designers, consider eliminating the possibility of hiding: for example, by making al
fieldsimplicitly private. If this seemstoo draconian, at |east consider restricting hiding so that it
preserves subsumption.

In summary, hiding occurs when you declare afield, a static method, or a nested type whose name
isidentical to an accessible field, method, or type, respectively, in a superclass. Hiding is confusing;
avoid it. Hiding fieldsin a manner that violates subsumption is especially harmful. More generally,
avoid name reuse other than overriding.

\I/INIZINTZNTZNT/
ST

\ﬁl}/\/\/\/
ZINIZINIZINIZINIZIN

NZNZNZNZN

@ PREV < Day Day Up > MEXT @

s < Day Day Up > |

Puzzle 67: All Strung Out

One name can be used to refer to multiple classesin different packages. This program explores
what happens when you reuse a platf orm class name. What do you think it does? Although thisis
the kind of program you'd normally be embarrassed to be seen with, go ahead and | ock the doors,
close the shades, and giveit atry:

public class StrungQut {
public static void main(String[] args) {
String s = new String("Hello world");

Systemout.println(s);

class String {

private final java.lang. String s;
public String(java.lang. String s) {

this.s = s;

public java.lang. String toString() {

return s;

Solution 67: All Strung Out

This program looks ssimple enough, if abit repulsive. The class Stri ng in the unnamed package is
simply awrapper for aj ava. | ang. St ri ng instance. It seems the program should print Hel | o

wor | d. If you tried to run the program, though, you found that you could not. The VM emits an error
message something like this:

Exception in thread "main" java.l ang. NoSuchMet hodError: main

But surely there isami n method: It'sright there in black and white. Why cant the VM find it?

The VM cant find the mai n method because it isn't there. Although St r ungout has a method named
mai n, it hasthe wrong signature. A mai n method must accept a single argument that is an array of
strings[JVMS 5.2]. What the VM is struggling to tell usisthat StrungQut . mai n accepts an array of
our stri ng class, which has nothing whatsoever to do with j ava. | ang. St ri ng.

If you really must write your own string class, for heaven's sake, don't call it Stri ng. Avoid reusing
the names of platform classes, and never reuse class namesfromj ava. | ang, because these
names are automatically imported everywhere. Programmers are used to seeing these namesin their
unqualified form and naturally assume that these names refer to the familiar classes from

j ava. I ang. If you reuse one of these names, the unqualified name will refer to the new definition
any timeit isused inside its own package.

To fix the program, smply pick areasonable name for the nonstandard string class. The following
version of the programis clearly correct and much easier to understand than the origina . It prints
Hel | o wor | d just as you'd expect:

public class StrungOut {

public static void nmain(String[] args) {

MyString s = new MyString("Hello world");

Systemout.println(s);

}
class MyString {

private final String s;

public MyString(String s) { this.s =s; }

public String toString() { returns; }

Broadly speaking, the lesson of this puzzle isto avoid the reuse of class names, especialy Java
platf orm class names. Never reuse class names from the packagej ava. | ang. The samelesson
appliesto library designers. The Java platform designers dipped up afew times. Notable examples
includej ava. sql . Dat e, which conflictswithj ava. uti | . Dat e, and org. ong. CORBA. Obj ect . ASin
many other puzzlesin this chapter, the lesson is a specific case of the principle that you should
avoid name reuse, with the exception of overriding. For platform implementers, the lesson is that
diagnosti cs should make clear the reason for a failure. The VM could easily have di stinguished the
case where there is no mai n method with the correct signature from the case where there isno mai n
method at all.

@ rne < Day Day Up >

LS e [nexT e

Puzzle 68: Shades of Gray

This program has two decl arati ons of the same name in the same scope and no obvious way to
choose between them. Doesthe program print Bl ack? Does it print Wi t e? ISit even legal ?

public class ShadesOf G ay {
public static void main(String[] args){

Systemout.println(XY.2);

}
}
class X {
static class Y {
static String Z = "Black";
}
static CY = new (0();
}
class C{

String Z = "Wite";

Solution 68: Shades of Gray

There isno obvious way to decide whether this program should print Bl ack or Wi t e. The compiler
generally rgjects ambiguous programs, and this one certainly appears ambiguous. Therefore, it
seems only natural that it should beillegal. If you tried it, you found that it islegal and printswhi t e.
How could you possibly have known?

It turns out that there is a rule that governs program behavior under these circumstances. When a
variable and a type have the same name and both arein scope, the variable name takes
precedence [JLS 6.5.2]. The variable name is said to obscure the type name [JLS 6.3.2]. Similarly,
variable and type names can odbscur e package names. This rule isindeed obscure, and any
program that dependson it islikely to confuse its readers.

Fortunately, programsthat obey the standard Java naming conventions almost never
encounter thisissue. Classes begin with a capital |etter and are written in M xedCase, variables
begin with alowercase | etter and are written in mi xedCase, and constants begin with a capital | etter
and arewritten in ALL_CAPS. Single capital |etters are used only for type parameters, asin the
generic interface Map<K, V>. Package names are writtenin| ower . case [JLS 6.98].

To avoid conflict between constant names and cl ass names, treat acronyms as ordinary wordsin
classnames [EJ Item 38]. For exampl e, a class representing a universally unique i dentifier should
be named wui d rather than uu D, even though the acronym is typically written UUID. (The Java
platform libraries violate this advice with such classnamesas uu D, UR_, and UR .) To avoid
conflicts between variable names and package names, don't use atop-level package or domain
name as avariable name. Specifically, don't name avariable com org, net , edu, j ava, Or j avax.

To remove al ambiguity from the ShadesOf Gray program, Ssmply rewrite it to obey the naming
conventions. It is clear that the following program prints Bl ack. As an added bonus, it sounds the
same asthe origina program when read aoud.

public class ShadesOf Gay {
public static void main(String[] args){

System out . printl n(Ex. Why. z) ;

class Ex {

static class Wy {

static String z = "Black";

}

static See y = new See();

class See {

String z = "Wite";

In summary, obey the standard naming conventionsto avoid conflicts between different
namespaces (and because your program will beillegibleif you violate these conventions). Also,
avoid variable names that conflict with common top-level package names, and use M xedCase for
class names even if they are acronyms. By following these rules, you'll ensure that your programs
never obscure class or package names. Y et again, this isa case of the general rule that you should
avoid name reuse except for overriding. For language des gners, consider eliminating the possibility
of obscuring. C# does this by putting fiel ds and nested classesinto the same name space.

e < Day Day Up >

Puzzle 69: Fade to Black

Suppose that you can't modify classes X and C in the previous puzzle (Puzzle 68). Can you write a
classwhose mai n method reads the value of the field z in class X. Y and printsit? Do not use
reflection.

Solution 69: Fade to Black

At firgt, this puzzle may appear impossible. After all, the class x. Y is obscured by afield of the
same name, so an attempt to name it will refer to the field instead.

Infact, it is possibleto refer to an obscur ed type name. Thetrick istousethenamein a
syntactic context where atypeis allowed but a variableisnot. One such context isthe region
between the parentheses in a cast express on. The following program solves the puzzl e by using this
technique and prints Bl ack as expected:

public class FadeToBl ack {
public static void main(String[] args){

Systemout.println(((X Y)null).2);

Note that we are accessing the z field of class x. Y by using an expression of type X. Y. Aswe saw in
Puzzles 48 and 54, accessing a static member using an expression in place of atype nameis alegal
but questionabl e practice.

You can a so solve this puzzle without resorting to questionabl e practi ces, by using the obscured
classin theext ends clause of aclass declaration. Because abase classis aways atype, names
appearing in ext ends clauses are never resolved as variable names. The following program
demonstrates this technique. It too prints Bl ack:

public class FadeToBl ack {

static class Xy extends XY { }

public static void main(String[] args){

System out . printl n(Xy. 2);

If you are using release 5.0 or alater release you can a so solve the puzzle by usng X. Y in the
ext ends clause of atype variable declaration:

public class FadeToBl ack {
public static <T extends X. Y> void main(String[] args) {

Systemout.println(T.2);

In summary, to solve a problem caused by the obscuring of a type by a variable, rename the type
and variabl e in accordance with standard naming conventions, as discussed in Puzzle 68. If this is
not possible, use the obscured type name in a context where only type names are alowed. With any
luck, you will never have to resort to such contortions, as most library authors are sane enough to
avoid the questionable practices that make them necessary. If, however, you do find yourself in this
dtuation, it's nice to know that there is aworkaround.

< Day Day Up >

Puzzle 70: Package Deal

This program involves the i nteraction of two classesin different packages. The mai n method isin
classhack. Typelt . What does the program print?

package hack;

i nport click. CodeTal k;

public class Typelt {
private static class Clicklt extends CodeTal k {
voi d print Message() {

Systemout. println("Hack");

public static void main(String[] args) {
dicklt clickit = new Clicklt();

clickit.dolt();

package cli ck;
public class CodeTal k {
public void dolt() {

print Message();

void printMessage() {

Systemout.println("dick");

Solution 70: Package Deal

This puzzl e appears straightforward. The mai n method in hack. Typelt instantiates the class
Typel t. O icklt and invokesitsdol t method, which isinherited from CodeTal k. This method, in
turn, callspri nt Message, whichisdeclared in Typel t. Cl i ckl t to print Hack. And yet, if you run
the program, it printsd i ck. How can this be?

This analysisincorrectly assumesthat hack. Typelt. Cli ckl t. pri nt Message overrides

click. CodeTal k. pri nt Message. A package-private method cannot bedirectly overridden by a
method in a different package [JLS 8.4.8.1]. Thetwo pri nt Message methods in this program are
unrelated; they merely have the same name. When the program calls pri nt Message from within the
package hack, the package-private method hack. Typelt. Cli ckl t. pri nt Message isrun. This
method printscl i ck, which explains the observed behavior.

If you want the pri nt Message method in hack. Typelt. di cklt to overridethe method in

cli ck. CodeTal k, you must add the prot ect ed or publ i ¢ modifier to the method declaration in

cli ck. CodeTal k. To make the program compile, you must also add a modifier to the overriding
declaration in hack. Typelt. Cli ckl t . This modifier must be no more restrictive than the one you
placed on the declaration for pri nt Message in hack. Typelt. Clicklt [JLS 8.4.8.3]. In other words,
both pri nt Message methods may be declared publ i ¢, both may be declared protected, or the
superclass method may be declared prot ect ed and the subclass method publ i c. If any of these
three changesis made, the program will print Hack, indicating that overriding is taking place.

In summary, package-private methods cannot be directly overridden outside the package in which
they're declared. Although the combination of package-private access and overriding can lead to
some confusion, Java's current behavior enabl es packages to support encapsulation of abstractions
larger than a single class. Package-private methods are implementati on detail s of their package, and
reuse of their names outside the package should have no effect inside the package.

| 4m PREV < Day Day Up > NEXT o |

| 4m PREV < Day Day Up > | NExT ap |

Puzzle 71: Import Duty

In release 5.0, the Java platform introduced a number of facilitiesthat make it easier to work with
arrays. This program uses varargs, autoboxing, static import (see

http://java.sun.com/j 2se/5.0/docs/gui de/l anguage [Java-5.0]) and the convenience method

Arrays. t oString (See Puzzle 60). What doesthe program print?

i mport static java.util.Arrays.toString;

class InmportDuty {
public static void main(String[] args) {

printArgs(l, 2, 3, 4, 5);

}

static void printArgs(ject... args) {
Systemout.println(toString(args));

}

-l’!“ ii’!!. i i!in. . T
:!'! ‘_"r'i! 'l_-l' n.':i

‘i! N W i' l

o
i -i"

e -‘u"'r"‘-"'u "L
W R W R .i'

http://java.sun.com/j2se/5.0/docs/guide/language

Solution 71: Import Duty

You might expect the programto print [1, 2, 3, 4, 5], andindeeditwould, if only it compiled.
Sadly, the compiler just cant seem to find theright t oSt r i ng method:

| nportDuty.java: 9: (hject.toString can't be applied to (Object[])

Systemout.println(toString(args));

N

Isthe compiler just being dense? Why would it try to apply Obj ect. t oSt ri ng(), which doesn't
match the call's parameter list, when Arr ays. t oSt ri ng(Qoj ect []) matches perfectly?

Thefirst thing the compiler does when sel ecting a method to be invoked at run timeisto choose the
scope in which the method must be found [JLS 15.12.1]. The compiler chooses the smallest

encl osing scope that has a method with the right name. In our program, this scope isthe class

| npor t Dut y, which containsthe t oSt r i ng method inherited from oj ect . This scope has no
applicable method for the invocation t oSt ri ng(ar gs), SO the compiler must reject the program.

In other words, the desired t oSt ri ng method isn't in scope at the point of the invocation. The
imported t oSt ri ng method is shadowed by a method with the same name inherited into

| npor t Dut y from Obj ect [JLS 6.3.1]. Shadowing isa lot like obscuring (Puzzle 68). The key
digtinction isthat a declaration can shadow another declaration only of the same kind: One type
declaration can shadow another, one variabl e declaration can shadow another, and one method
declaration can shadow another. By contrast, variable declarations can obscure type and package
declarations, and type declarati ons can obscure package decl arations.

When one declaration shadows another, the ssimple name refers to the entity in the shadowing
declaration. Inthiscase, t oSt ri ng refers to thet oSt ri ng method from oj ect . Simply put,
member sthat ar e naturally in scope take precedence over gaticimports. One consequenceis
that static methods with the same name as vj ect methods cannot be used with the static import
facility.

Since you cant use static import with Arrays. t oSt ri ng, use a normal import declaration instead.
Thisistheway Arr ays. t oSt ri ng was meant to be used:

I mport java.util.Arrays;
class InportDuty {
static void printArgs(Mject... args) {

Systemout.printl n(Arrays.toString(args));

If you are desperate to avoid qualifying Arr ays. t oSt ri ng invocations explicitly, you can write your
own private stati ¢ forwarding method:

private static String toString(ject[] a) {

return Arrays.toString(a);

The static import facility was intended for situations in which static members of another class are
used repeatedly, and qualifying each use would serioudly clutter a program. I n such situations, the
static import facility can significantly enhance readability. It isfar safer than implementing
interfaces to inherit their constants, which you should never do [EJ Item 17]. Overuse of the static
import facility can, however, harm readability by making the class of a static member unclear at the
point of use. Usethe static import facility sparingly and only when ther eisa compelling need.

For API designers, be aware that the static import facility cannot be used effectively on amethod if
itsnameisaready in scope. Thismeansthat static import can seldom be used on static methods
that share names with methods in common interfaces, and it can never be used on static methods
that share names with methods found in ooj ect . Once again, this puzzle demonstrates that name
reuse other than overriding is generally confusing. We have seen this with overloading, hiding, and
obscuring, and now we seeit with shadowing.

: 4 FREV ' < Day Day Up > NEXT) '

8 FREV < Day Day Up > | NExTHp |

Puzzle 72: Final Jeopardy

This puzzl e examines what happens when you attempt to hide afinal field. What does this program
do?

class Jeopardy {

public static final String PRIZE = "$64,000";

public class Doubl eJeopardy extends Jeopardy {

public static final String PRIZE = "2 cents";

public static void main(String[] args) {

System out . printl n(Doubl eJeopardy. PR ZE) ;

Solution 72: Final Jeopardy

Because the PR ZE field in Jeopardy isdeclared publ i ¢ and fi nal , you might think that the
|anguage would prevent you from reusing thisfield namein a subclass. After al, final methods
cannot be overridden or hidden. If you tried the program, you found that it compileswithout a hitch
and prints2 cents. What went wrong?

It turns out that the i nal modifier means something completely differ ent on methods and
fields. On amethod, f i nal means that the method may not be overridden (for instance methods) or
hidden (for static methods) [JLS 8.4.3.3]. On afield, f i nal meansthe field may not be assigned
more than once [JLS 8.3.1.2]. The keyword isthe same, but the behavior is unrelated.

In the program, the final field Doubl eJeopar dy. PR ZE hidesfinal field Jeopardy. PRI ZE, for anet
loss of $63,999.98. Although itis possibleto hide fields, itisgeneraly a bad idea. Aswe discussed
in Puzzle 66, hiding fields can viol ate subsumption and confound our intuition about the
relationship between types and their members.

If you want to guarantee the prize in the Jeopar dy class even while preserving the ability to
subclassit, use afinal method instead of afinal field:

class Jeopardy {

private static final String PR ZE = "$64, 000";

public static final String prize() {

return PR ZE;

For language designers, the lesson isto avoid reusing the same keyword for unrelated concepts. A
keyword should be reused only for closely related concepts, where it helps programmers build an
intuition about the relationship among the |language featuresin question. In the case of the Javas
final keyword, reuseleadsto confusion. It should be noted that as alanguage ages, thereisa
natural tendency to reuse keywords for unrelated concepts. This avoids the need to introduce new
keywords, which is enormously destabilizing. When language designers do this, they are generaly
choosi ng the lesser of two evils.

In summary, avoid reusing names for unrelated variables or unrel ated concepts. Using distinct
names for unrel ated concepts hel ps readers and programmersto keep the concepts separ ate.

48 FREV < Day Day Up > | NExTEp |

| 4m PREV < Day Day Up > NEXT ®p |

Puzzle 73: Your Privates Are Showing

The ideabehind private members—methods, fields, and types—is that they're smply
implementation details: The implementer of a class can feel free to add new ones and change or
remove old ones without fear of harming clients of the class. In other words, private members are
fully encapsulated by the classthat contains them.

Unfortunately, there are afew chinksin the armor. For example, serialization can break this
encapsulation. Making a class serializable and accepting the default serialized form causesthe
class's private instance fiel ds to become part of its exported AP [EJ Items 54, 55]. Changesin the
private representation can then lead to exceptions or erratic behavior when clients use existing
serialized objects.

But what about compil e-time errors? Can you write a final "library” classand a"client” class, both
of which compile without error, and then add a private member to the library class so that it still
compiles but the client class no longer does?

Solution 73: Your Privates Are Showing

If your solution invol ves adding a private constructor to the library classto suppress the creation of
adefault public constructor, give yourself half apoint. The puzzle required you to add a private
member and, strictly speaking, constructors aren't members[JLS 6.4.3].

This puzzl e has severa solutions. One sol ution uses shadowing:

package li brary;

public final class Api {

/'l private static class String {}
public static String newString() {

return new String();

package client;
import library. Api;
public class Aient {

String s = Api.newstring();

Aswritten, the program compiles without error. If we uncomment the private declaration of the
local classstringiniibrary. Api , the method Api . newSt ri ng no longer has the return type
java.lang. String, sotheinitialization of the variable cli ent. s failsto compile:

client/Client.java:4: inconpatible types
found: library. Api.String, required: java.lang.String

String s = Api.newstring();

AN

Although the only textual change we made wasto add a private class declaration, we indirectly
changed the return type of an existing public method, which is an incompatible API change. We
changed the meaning of a name used in our exported API.

Many variations on this sol ution are possible. The shadowed type could come from an enclosing
classingtead of j ava. | ang. You could shadow a variabl e instead of atype. The shadowed variable
could come from astati ¢ i nport declaration or an enclosing class.

It is possible to solve this puzzl e without changing the type of an exported member of the library
class. Here is such a solution, which uses hiding in place of shadowing:

package li brary;
cl ass Api Base {
public static final int ANSWER = 42;
}
public final class Api extends ApiBase {

/'l private static final int ANSVER = 6 * 9;

package cli ent;
i nport library. Api;
public class Qient {

i nt answer = Api . ANSVER,

Aswritten, this program compiles without error. If we uncomment the private declaration in
library. Api , the client failsto compile:

client/Client.java:4: ANSWER has private access in library. Api

i nt answer = Api . ANSVER;

AN

The new private field Api . ANSVER hides the public field Api Base. ANSVER, which would otherwise
be inherited into Api . Because the new field isdeclared pri vat e, it can't be accessed fromd i ent.
Many variations on this sol ution are possible. Y ou can hide an instance field instead of a Static
field, or atypeinstead of afield.

You can a so solve this puzzle with obscuring. All the solutions involve reusing a nameto break the
client. Reusing namesis danger ous; avoid hiding, shadowing, and obscuring. Isthis startingto
sound familiar? Good!

LS e [nexT e

s < Day Day Up > |

Puzzle 74: Identity Crisis

This program isincomplete. It lacks a declaration for Eni gma, aclassthat extends
j ava. l ang. Obj ect . Provide adeclaration for Eni gma that makes the program print f al se:

public class Gonundrum {
public static void main(String[] args) {
Eni gma e = new Eni gma() ;

Systemout.println(e.equals(e));

Oh, and one more thing: You must not override equal s.

Solution 74: Identity Crisis

At first gance, this may seem impossible. The Obj ect. equal s method tests for object identity, and
the object passed to equal s by Eni gma is certainly the same asitself. If you can't override
Obj ect. equal s, the mai n method must print TRue, right?

Not so fast, cowboy. Although the puzzle forbids you to override Obj ect . equal s, you are permitted
to overload it, which leads to the foll owing solution:

final class Enigna {
/1 Don't do this!
publ i ¢ bool ean equal s(Eni gma ot her) {

return fal se;

Although this solves the puzzle, it isavery bad thing to do. It viol ates the advice of Puzzle 58: | f
two overloadings of the same method can be applied to some par ameter s, they should have
identical behavior. Inthiscase, e. equal s(e) and e. equal s((Obj ect)e) return different results.
The potentia for confusion is obvious.

There is, however, a solution that doesn't violate this advice:

final class Enigma {
public Enigma() {
Systemout.println(fal se);

Systemexi t(0);

Arguably, this solution violates the spirit of the puzzle: The pri nt I n invocation that producesthe
desired output appears in the Eni gma constructor, not the main met hod. Still, it does solve the
puzzle, and you have to admit it's cute.

Asfor the lesson, see the previous e ght puzzles and Puzzle 58. If you do overload a method, make
sure that all overloadings behave identically.

@ rney < Day Day Up >

s < Day Day Up > |

Puzzle 75: Heads or Tails?

The behavior of this program changed between release 1.4 of the Java platform and rel ease 5.0.
What does the program do under each of these releases? (If you have access only to release 5.0, you
can emul ate the 1.4 behavior by compiling with the - sour ce 1.4 flag.)

i nport java.util.Random

public class Coi nSide {

private static Random rnd = new Randon();

public static CoinSide flip() {
return rnd.next Bool ean() ?

Heads. | NSTANCE : Tail s. | NSTANCE;

public static void main(String[] args) {

Systemout.println(flip());

cl ass Heads ext ends Coi nSi de {
private Heads() { }

public static final Heads | NSTANCE = new Heads();

public String toString() {

return "heads";

class Tails extends Coi nSi de {
private Tails() { }

public static final Tails I NSTANCE = new Tails();

public String toString() {

return "tail s";

Solution 75; Heads or Tails?

This program doesn't appear to use any release 5.0 features at al, so it is difficult to see why there
should be any difference in behavior. In fact, the program failsto compilein release 1.4 or any
earlier release:

Coi nSi de.java: 7:
i nconpati ble types for ?: neither is a subtype of the other
second operand: Heads
third operand : Tails

return rnd.next Boolean() ?

AN

The behavior of the conditional (2 :) operator was more restrictive before release 5.0 [JLS2 15.25].
When both the second and third operands were of areference type, the conditional operator
required that one of them be a subtype of the other. As neither class Heads nor Tai | s isa subtype of
the other, thereisan error. To get this code to compile, you could cast one of the operandsto the

common supertype:

return rnd. next Boolean() ?

(Coi nSi de) Heads. | NSTANCE : Tail s. | NSTANCE;

In release 5.0 and | ater rel eases, the language is much more forgiving. The conditional operator is
alwayslegal when its second and third operands have reference types. The result type isthe least
common super type of these two types. A common supertype always exists, because ovj ect isthe
supertype of every object type. As apractical matter, the main consequence of this change isthat
the conditional operator just does the right thing more often and gives compile-time errors less
often. For the language nerds among us, the compile-time type of the result of the conditiona
operator for reference types is the same as the result of invoking the foll owing method on the
second and third operands [JLS 15.25]:

<T> T choose(T a, T h) { }

The problem illustrated by this puzzle did come up fairly often under release 1.4 and earlier
releases, forcing you to insert casts that served merely to obscure the purpose of your code. That
said, the puzzeitself isartificial. Before release 5.0, it would have been more natural to write
Coi nSi de using the Typesafe Enum pattern [EJ Item 21]:

i nport java.util.Random
public class Coi nSide {

public static final CoinS de HEADS

new Coi nSi de(" heads");

public static final CoinS de TAILS new Coi nSi de("tails");
private final String nane;
private Coi nS de(String name) {

thi s. name = nane;

public String toString() {

return nane,

private static Random rnd = new Randon();
public static CoinSide flip() {

return rnd.next Boolean() ? HEADS : TAILS;

public static void main(String[] args) {

Systemout.println(flip());

In release 5.0 and later releases, it is natural to write Coi nSi de asan enum type:

public enum Coi nSi de {

HEADS, TAILS;

public String toString() {

return nanme().toLowerCase();

/1 flip and nain same as in 1.4 inplenmentati on above

Thelesson of this puzZeis. Upgradeto thelatest release of the Java platform. Newer rel eases
include many improvements that make life easier for programmers. You don't have to go out of
your way to take advantage of al the new features; some of them benefit you with no effort on your

part. For language and library designers, the lesson is: Do not make programmers do thingsthat the
language or library could do for them.

s < Day Day Up > |

A Glossary of Name Reuse

Most of the puzzles in this chapter were based on name reuse. This section summarizes the various
forms of name reuse.

Overriding

Aninstance method overrides al access ble instance methods with the same signaturein
superclasses [JLS 8.4.8.1], enabling dynamic dispatch; in other words, the VM chooses which
overriding to invoke based on an instance's run-time type [JLS 15.12.4.4]. Overriding is
fundamental to object-oriented programming and is the only form of name reuse that is not
generally discouraged:

class Base {

public void f() { }

class Derived extends Base {

public void f() { } // overrrides Base.f()

Hiding

A field, static method, or member type hides al accessible fields, static methods, or member types,
respectively, with the same name (or, for methods, signature) in supertypes. Hiding a member
preventsit from being inherited [JLS 8.3, 8.4.8.2, 8.5]:

class Base {

public static void f() { }

class Derived extends Base {

public static void f() { } // hides Base.f()

Overloading

Methodsin aclass overload one another if they have the same name and diff erent signatures. The
overl oaded method designated by an invocation is selected at compiletime [JLS 8.4.9, 15.12.2]:

class QG rcuitBreaker {
public void f(int i) { } /1 int overl oading

public void f(String s) { } // String overl oading

Shadowing

A variable, method, or type shadows all variables, methods, or types, respectively, with the same
name in a textual ly enclosing scope. If an entity is shadowed, you cannot refer to it by itssimple
name; depending on the entity, you cannot refer toit at all [JLS 6.3.1]:

class WioKnows {

static String sentence = "1 don't know ";

public static void main(String[] args) {

String sentence = "1 know "; /! shadows static field

Systemout.println(sentence); // prints |local variable

Although shadowing is generally discouraged, one common idiom does involve shadowing.
Congtructors often reuse a field name from their class as a parameter name to pass the val ue of the
named field. Thisidiom isnot without risk, but most Java programmers have decided that the
styligtic benefits outweigh the risks:

class Belt {
private final int size;
public Belt(int size) { // Parameter shadows Belt. size

this.size = size;

Obscuring

A variable obscures atype with the same name if both arein scope: If the name is used where
variables and types are permitted, it refers to the variable. Smilarly, avariable or a type can
obscure a package. Obscuring isthe only kind of name reuse where the two names are in different
namespaces. variables, packages, methods, or types. If atype or a package is obscured, you cannot
refer to it by its Ssmple name except in a context where the syntax allows only aname fromits
namespace. Adhering to the naming conventions largely eliminates obscuring [JLS 6.3.2, 6.5]:

public class Cbscure {

static String System // Obscures type java.l ang. System

public static void main(String[] args) {
[/ Next line won't conpile: Systemrefers to static field

Systemout.println("hello, obscure world!");

LS REpAR AN [nexT e

LS e [nexT e

Chapter 9. More Library Puzzlers

The puzzlesin this chapter feature more advanced library topics, such asthreading, reflection, and
1/O.

LS R A AN R =y

8 FREV < Day Day Up > | NExTHp |

Puzzle 76: Ping Pong

This program consists entirely of synchronized static methods. What does it print? Isit guaranteed
to print the same thing every time you run it?

public class Pi ngPong {
public static synchronized void main(String[] a) {
Thread t = new Thread() {
public void run() { pong(); }
};
t.run();

Systemout.print("Ping");

static synchroni zed void pong() ({

Systemout. print("Pong");

Solution 76: Ping Pong

In amultithreaded program, itis generaly agood bet that the behavior can vary from run to run, but
this program always prints the same thing. Before a synchronized static method executes, it obtains
the monitor lock associated with itsd ass object [JLS 8.4.3.6]. Therefore, the main thread acquires
thelock on Pi ngPong. cl ass before creating the second thread. Aslong as the main thread holds on
to thislock, the second thread can't execute a synchronized static method. In particular, the second
thread can't execute the pong method until the mai n method prints Pi ng and completes execution.
Only then does the main thread relinqui sh the lock, alowing the second thread to acquire it and
print Pong. This analysisleaves little doubt that the program should aways print Pi ngPong. There is
one small problem: If you tried the program, you found that it always prints PongPi ng. What on

earth isgoing on?

Strange asit may seem, thisis not a multithreaded program. Not a multithreaded program? How
can that be? Surely it creates a second thread. Well, yes, it does create a second thread, but it never
startsthat thread. Instead, the main thread ssmply invokes the r un method of the new THRead
instance, and the r un method executes synchronoudly in the main thread. Because athread is
allowed to acquire the same lock repeatedly [JLS 17.1], the main thread is permitted to reacquire
the lock on Pi ngPong. cl ass when the r un method invokes the pong method. The pong method
prints Pong and returnsto the r un method, which returnsto the mai n method. Finally, the mai n
method prints Pi ng, which explains the program's output.

Fixing the program isassmpleaschangingt.run tot.start . Oncethisisdone, the program
reliably prints Pi ngPong as expected.

Thelesson issimple: Be careful not to invoke a thread'sr un method when you mean to invoke
itsstart method. Unfortunately, this mistake is all too common, and it can be very difficult to
spot. Perhaps the main lesson of this puzzleisfor API designers: If Thr ead didn't have apublicr un
method, it would be impossible for programmersto invoke it accidentally. The Thr ead class has a
public r un method because it implements Runnabl e, but it didn't have to be that way. An aternative
design would be for each THRead instance to encapsul ate a Runnabl e, giving rise to composition in
place of interface inheritance. As discussed in Puzzle 47, composition is generdly preferable to
inheritance. This puzzle demonstrates that the principle holds even for interface inheritance.

8 FREV < Day Day Up > | NExTHp |

@ rev | < Day Day Up > =

Puzzle 77: The Lock Mess Monster

This program runs alittle workplace smulation. It starts aworker thread that works—or at least
pretends to work—until quitting time. Then the program schedul es a timer task representing an evil
boss who triesto make sure that it's never quitting time. Fnally, the main thread, representing a
good boss, tell sthe worker when it's quitting time and waits for the worker to finish. What does the
program print?

I nport java.util.*;
public class Wrker extends Thread {
private vol atile bool ean quittingTinme = false;
public void run() {
while (!'quittingTine)
pret endToWrk();
Systemout.println("Beer is good");

}

private void pretendToWwrk() {
try {
Thr ead. sl eep(300); // Sl eeping on the job?
} catch (InterruptedException ex) { }
}
[/ 1t's quitting tine, wait for worker - Called by good boss
synchroni zed void quit() throws InterruptedException {
quittingTime = true;
join();
}
/'l Rescind quitting tine - Called by evil boss

synchroni zed voi d keepWrki ng() {

quittingTime = fal se;

public static void main(String[] args)
throws I nterruptedException {
final Worker worker = new Worker ();

wor ker. start ();

Timer t = new Timer(true); // Daenon thread
t. schedul e(new Ti mer Task() {
public void run() { worker.keepVWorking(); }

}, 500);

Thr ead. sl eep(400) ;

wor ker. quit();

Solution 77: The Lock Mess Monster

The best way to figure out what this program doesisto smulate its execution by hand. Here's an
approximate time line; the times are rel ative to the time the program starts running:

« 300 ms: Theworker thread checksthe volatile qui t t i ngTi e field to see whether it's quitting
time; itisnt, so the thread goes back to "work."

« 400 ms. The main thread, representing the good boss, invokes the qui t method on the worker
thread. The main thread acquires the lock on the worker THRead instance (becausequi t isa
synchronized method), setsqui t t i ngTi e to TRue, and invokesj oi n on the worker thread.
Thej oi n invocation does not return immediately but waits for the worker thread to complete.

« 500 ms: Thetimer task, representing the evil boss, executes. It triesto invoke the

keepWor ki ng method on the worker thread, but the invocation blocks because keepWor ki ng is
a synchroni zed method and the main thread is currently executing a synchronized method on
the worker thread (the qui t method).

« 600 ms: The worker thread again checks whether it's quitting time. Because the qui t t i ngTi me
field isvolatile, the worker thread is guaranteed to see the new value of TRue, SO it prints Beer
i s good and completes execution. This causes the main thread'sj oi n invocation to return,
and the main thread compl etes execution. The timer thread is adaemon, so it too compl etes
execution, and the program terminates.

Therefore, we expect the program to run for a bit under a second, print Beer is good, and
terminate normally. If you tried running the program, though, you found that it prints nothing; it just
hangs. What iswrong with our analysis?

There is no guarantee that the events will interleave asindicated in the time line. Neither the Ti ner
classnor the Thr ead. sl eep method offers real-time guarantees. That said, it'svery likely that these
events will interleave as indicated by the time line, as the time granul arity is so coarse. A hundred
millisecondsis an eternity to a computer. Moreover, the program hangs repeatably; it looks as if
there is something else at work here, and indeed thereis.

Our anaysis contains afundamental flaw. At 500 ms, when the timer task, representing the evil
boss executes, the time line indicates that its keepWor ki ng invocation will block because

keepWor ki ng isasynchronized method and the main thread is currently executing the synchronized
qui t method on the same object (waiting in THRead. j oi n). It is true that keepWr ki ng isa
synchronized method and that the main thread is currently executing the synchronized qui t method
on the same aobject. Even s0, the timer thread is able to obtain the lock on this object and execute
the keepWer ki ng method. How can this be?

The answer concerns the implementation of Thr ead. j oi n. It can't be found in the documentation
for this method, at least in releases up to and including release 5.0. Inter nally, Thr ead. j oi n calls
Obj ect. wait On the Thr ead instancerepresenting the thread being joined. Thisreleasesthe
lock for the duration of the wait. In the case of our program, this alows the timer thread,
representing the evil boss, to waltz in and set qui t t i ngTi me back to f al se, even though the main
thread is currently executing the synchronized qui t method. As a consequence, the worker thread
never sees that it's quitting time and keeps running forever. The main thread, representing the good
boss, never returns from thej oi n method.

The fundamental cause of the misbehavior of the program is that the author of the Wor ker Thr ead
class used the instance lock to ensure mutual exclusion between the qui t and keepWor ki ng
methods, but this use conflicts with the internal use of thislock by the superclass (THRead). The
lesson is: Don't assume anything about what a library classwill or won't dowith lockson its
instances or on the class, beyond what is guaranteed by the class's specification. Any call to a
library could result ina call towai t, noti fy, noti fyAl I, or a synchronized method. All these things
can have an effect on application-level code.

If you need full control over alock, make surethat no one else can gain accesstoit. If your
classextendsalibrary classthat might useitslocks or if untrusted parties might gain access to
instances of your class, don't use the locks that are automati cally associated with the classor its
instances. Instead, create a separate lock object in a private field. Prior to release 5.0, the correct
typeto use for thislock object was Ssmply Obj ect or atrivial subclass. As of release 5.0,

java.util.concurrent.| ocks providestwo aternatives: Reent rant Lock and

Reent rant ReadW i t eLock. These classes provide more flexibility than ovj ect but are abit more
cumbersome to use. They cannot be used with asynchroni zed block, but must be acquired and
released explicitly with the aid of a TRy-f i nal |y statement.

The most strai ghtforward way to fix the programisto add aprivate| ock field of type Obj ect and to
synchronize on thisobject in the qui t and keepwor ki ng methods. With these changes, the program
prints Beer is good asexpected. The correct behavior of the program is not dependent on its
obeying the time line shown in our previous analyss:

private final Object |lock = new Object();

/1l It's quitting time, wait for worker - Called by good boss
void quit() throw InterruptedException {
synchroni zed (lock) {
qui ttingTime = true;

join();

/'l Rescind quitting tine - Called by evil boss
voi d keepWorking() {
synchroni zed (lock) {

quittingTime = fal se;

It isalso possible to fix the program by having the wor ker classimplement Runnabl e rather than
extending THRead, and creating each worker thread using the THRead(Runnabl e) constructor. This
decouples the lock on each wor ker instance from the lock on its Thr ead instance. Itisalarger
refactoring and is | eft as an exerciseto the reader.

Just asalibrary classs use of alock can interfere with an application, an application's use of alock

can interfere with alibrary class. For example, in all releases up to and including release 5.0, the
system requires the classlock on Thr ead in order to create anew Thr ead instance. Executing the
following code would prevent the creation of any new threads:

synchroni zed (Thread. cl ass) {

Thread. sl eep(Long. MAX VALUE) ;

In summary, never make assumptions about what alibrary class will or won't do with itslocks. To
isolate yourself from the use of locks by alibrary class, avoid inheriting from library classes except
those specifically designed for inheritance [EJ Item 15]. To guarantee that your locks are immune to
external interference, prevent others from gaining accessto your locks by keeping them private.

For language designers, consider whether it is appropriate to associate a lock with every object. If
you elect to do so, consider restricting access to these locks. In Java, locks are effectively public
attributes of objects; perhapsit would make more sense if they were private. Also note that in Java,
an object effectively isalock: You synchronize on the object itself. Perhaps it would make more
sense if an object had alock that you could obtain by calling an accessor method.

4@ FREV < Day Day Up > | NEXT #p

Puzzle 78: Reflection Infection

This puzzle illustrates a ssmpl e application of reflection. What does this program print?

I nport java.util.*;

i nport java.lang.refl ect.*;

public class Reflector {
public static void main(String[] args) throws Exception {
Set<String> s = new HashSet <Stri ng>();

s. add("foo");

I[terator it = s.iterator();
Met hod m= it.getClass().get Method("hasNext");

Systemout.println(minvoke(it));

<@ &

< oo

Solution 78: Reflection Infection

The program creates a set with asingle element in it, gets an iterator over the set, invokes the
iterator'shasNext method reflectively, and prints the result of the method invocation. Astheiterator
hasn't yet returned the set's sole element, hasNext should return TRue. Running the program,
however, tells a different story:

Exception in thread "main" 11| egal AccessException:
Class Reflector can not access a nmenber of class HashMap
$Hashl terator with nodifiers "public"
at Refl ection. ensureMenber Access(Refl ecti on. java: 65)
at Met hod. i nvoke(Met hod. j ava: 578)

at Refl ector.mai n(Refl ector.java:1ll)

How can thisbe? Of course the hasNext method is public, just asthe exception tells us, and so can
be accessed from anywhere. So why should the reflective method invocation be illegal ?

The problem isn't the access level of the method; it's the access level of the type from which the
method is selected. Thistype plays the same role as the qualifying type in an ordinary method
invocation [JLS13.1]. In this program, the method is sel ected from the class represented by the
Class object that isreturned by i t. get d ass. This isthe dynamic type of the iterator, which
happens to be the private nested classj ava. uti | . HashMap. Keyl t erat or. The reason for the

| Il egal AccessExcept i on isthat thisclassisnot public and comes from another package: You
cannot legally accessa member of a nonpublic type from another package [JLS 6.6.1].

This prohibition applies whether the accessis normal or reflective. Hereisaprogram that runs
afoul of this rule without resorting to reflection:

package li brary;
public class Api {
static class PackagePrivate {}

public static PackagePrivate nenber = new PackagePrivate();

package client;
inmport library. Api;
class Aient {
public static void main(String[] args) {

System out . printl n(Api. nmenber. hashCode());

Attempting to compile the program resultsin thiserror:

Client.java:5: Object.hashCode() isn't defined in a public
class or interface; can't be accessed from outsi de package

System out . printl n(Api . nenber. hashCode());

N

This diagnostic makes about as much sense as the runtime error generated by the original reflective
program. The class vj ect and the method hashCode are both public. The problem isthat the

hashCode method isinvoked with aqualifyingtype that is inaccessible to the client. The qualifying
type of the method invocationislibrary. Api . PackagePri vate, which isanonpublic classin a
different package.

This does not imply that Cli ent can't invoke hashCode On Api . menber. To do this, it has merely to
use an accessibl e qualifying type, which it can do by casting Api . mrenber to Obj ect. With this
change, cli ent compilesand runs successfully:

Systemout. println(((Cbject) Api . nenber) . hashCode());

As a practical matter, this problem doesnt arisein ordinary nonrefl ective access, because API
writers use only public typesin their public APIs. Even if the problem wereto occur, it would
manifest itself asacompile-time error, so it would be fixed quickly and easily. Reflective accessis
another matter. Although common, theidiom obj ect. get Cl ass(). get Met hod(" et hodNane") 1S
broken and should not be used. It can easily result inan 1 11 egal AccessExcept i on at run time, as
we saw in the origina program.

When accessing a typer eflectively, usea Cl ass object that representsan access ble type. Going
back to our original program, the hasNext method is declared in the public type
java.util.lterator, SOitsclass object should be used for reflective access. With this change, the
Ref | ect or program prints TRue as expected:

Met hod m = Ilterator. cl ass. get Met hod(" hasNext");

You can avoid this whol e category of problem if you use reflection only for instantiation and use
interfaces to invoke methods [EJ Item 35]. Thisuse of reflection isolates the class that invokes
methods from the class that implements them and provides a high degree of type-safety. It is
commonly used in Service Provider Frameworks. This pattern does not solve every problem that
demands reflective access, but if it solves your problem, by all means use it.

In summary, itisillegal to access amember of anonpublic typein a different package, even if the
member isalso declared publ i ¢ in apublic type. Thisistrue whether the member is accessed
normally or reflectively. The problemislikely to manifest itself only in reflective access. For

platf orm designers, the lesson, asin Puzzle 67, isto make diagnostics as clear as possible. Both the
runtime exception and the compiler diagnosti c leave something to be desired.

4 FREV < Day Day Up > NEXT ap

s < Day Day Up > |

Puzzle 79: It's a Dog's Life

This class modelsthe life of a house pet. The mai n method creates aPet instance representing adog
named Fdo and letsit run. Although most dogs run in the backyard, this onerunsin the
background. What does the program print?

public class Pet {
public final String nare;
public final String food;

public final String sound,

public Pet(String name, String food, String sound) {

thi s. name = nane;

this. food f ood;

thi s. sound = sound;

public void eat() {

Systemout.println(name + ": Mmmm " + food);

}
public void play() {

Systemout.println(name + ": " + sound + " " + sound);

}
public void sleep() {

System out . printl n(name + Zzzzzz2..."),;

public void live() {
new Thread() {
public void run() {

while (true) {

eat ();
play();
sleep();
}
}
}.ostart();

public static void nmain(String[] args) {

new Pet ("Fido", "beef", "Wof").live();

Solution 79: It's a Dog's Life

The mai n method createsaPet instance representing FHdo and invokesiits1 i ve method. Thelive
method, in turn, creates and starts a Thr ead that repeatedly executestheeat , pl ay, and sl eep
methods from the enclosing Pet instance. Forever. Each of those methods prints asingle line, so
one would expect the program to print these three lines repeatedly:

Fido: Mmmm beef
Fido: Wof Wof

Fido: Zzzzzzz...

If you tried the program, you found that it won't even compile. The compiler error islessthan
hel pful:

Pet .j ava: 28: cannot find synbol

synbol : net hod sleep()

sleep();

N

Why can't the compiler find the symbol? It'sright there in black and white. Asin Puzzle 74, the
problem stems from the details of the overload resolution process. The compiler searchesfor the
method in the innermost encl osing scope containing a method with the correct name [JLS 15.12.1].
For the sl eep invocation in our program, that scope is the anonymous class containing the

i nvocation, which inherits the methods Thr ead. sl eep(1ong) and THRead. sl eep(long, i nt). These
are the only methods named s eep in that scope, and neither is applicable to thisinvocation
because both require parameters. As neither candidate for the invocation is applicabl e, the compiler
prints an error message.

The sl eep methodsinherited into the anonymous class from Thr ead shadow [JLS 6.3.1] the desired
sl eep method. As you saw in Puzzles 71 and 73, you should avoid shadowing. The shadowing in
this puzzleisindirect and unintentional, which makesit even more insidious than usual.

The obvious way to fix the program is to change the name of the sl eep method in Pet to snooze,
doze, or nap. Another way to fix the problem isto name the class explicitly in the method
invocation, using the qualified t hi s construct [JLS 15.8.4]. The resulting invocation is
Pet.this.sleep().

The third and arguably best way to fix the problem is to take the advice of Puzzle 77 and use the
THRead(Runnabl e) constructor instead of extending Thr ead. If you do this, the problem goes
away because the anonymous class does not inherit THRead. sI eep. This Smple modification to the
program produces the expected, if tiresome, output:

public void live() {
new Thr ead(new Runnabl e() {
public void run() {
while (true) {
eat () ;

play();

sl eep() ;

}

}).start();

In summary, beware of unintentional shadowing, and | earn to recognize compiler errors that
indicate its presence. For compiler writers, do your best to generate error messages that are
meaningful to the programmer. In this case, for example, the compiler could aert the programmer
to the exi stence of a shadowed method declaration that is applicabl e to the invocation.

s < Day Day Up > |

Puzzle 80: Further Reflection

This program produces its output by printing an object that is created reflectively. What doesthe
program print?

public class Quter {
public static void main(String[] args) throws Exception {

new Quter().greetWorld();

private void greetWorl d() throws Exception {

Systemout.println(lnner.cl ass.new nstance());

public class Inner {
public String toString() {

return "Hello worl d";

Solution 80: Further Reflection

This program looks like yet another unusual variant on the usual Hel | o wor I d program. The mai n
method in out er createsan Qut er instance and calls itsgreet Vor | d method, which printsthe string
form of anew I nner instancethat it creates reflectively. Thet oSt ri ng method of | nner aways
returns the standard greeting, so the output of the program should, asusual, be Hel | o wor | d. If you
try running it, you'll find the actual output to be longer and more confusing:

Exception in thread "main" Instantiati onException: Quter $l nner
at java.l ang. Cl ass. newl nst anceO(d ass.j ava: 335)
at java.l ang. Cl ass. newl nst ance(Cl ass. j ava: 303)
at Quter.greetWrld(Quter.java:7)

at Quter.main(Quter.java:3)

Why would this exception be thrown? As of release 5.0, the documentation for Cl ass. newl nst ance
saysthat it throws| nst ant i ati onExcept i on if the Cl ass object "represents an abstract class, an
interface, an array class, a primitive type, or void; or if the class has no nullary [in other words,
parameterless] constructor; or if the instantiation fails for some other reason” [Java-API]. Which of
these conditions apply? Unfortunately, the exception message fail sto provide even a hint.

Only the last two of these reasons could possibly apply: Either cut er . I nner hasno nullary
constructor or the instantiation failed "for some other reason.” When a class has no explicit
congructor, as isthe casefor aut er . | nner , Java automatically provides a default public constructor
that takes no parameters [JLS 8.8.9], so there should be a nullary constructor. Neverthel ess, the

newl nst ance invocation fails because out er . I nner has no nullary constructor!

The constructor of anon-static nested classis compiled such that it has asits first parameter an
additional implicit parameter representing the immediately enclosing instance [JLS 13.1]. This
parameter is passed implicitly when you invoke the constructor from any point in the code where
the compiler can find an appropriate enclosing instance. But this applies only when you invoke the
constructor normally: nonreflectively. When you invoke the constructor reflectively, thisimplicit
parameter must be passed explicitly, which isimpossible with Cl ass. newl nst ance. The only way
to passthisimplicit parameter isto use j ava. | ang. ref I ect. Const r uct or. When this change is
made to the program, it printsHel | o wor | d as expected:

private void greetWrld() throws Exception {
Constructor ¢ = Inner.cl ass. get Constructor (CQuter. cl ass);

System out. println(c. newl nstance(Quter.this));

Alternatively, you might observethat | nner instances have no need for an enclosing out er instance
and so declaretheclass | nner tobestati c. Unlessyou have a compelling need for an enclosing
instance, prefer static member classesover nonstatic [EJ Item 18]. This simple change will fix
the program:

public static class Inner { ... }

The reflective model of Java programsis not the same as the language model. Refl ection operates
at thelevel of the virtual machine, exposing many details of the trandation of Java programsinto
classfiles. Some of these details are mandated by the language specification, but others differ from
implementation to implementation. The mapping from Java programsinto class fileswas
straightforward in early versions of the language, but it became more complex with the addition of
advanced language features that are not directly supported in the VM, such as nested classes,
covariant return types, generics, and enums.

Because of the complexity of the mapping from Java programsto classfiles, avoid using reflection
to instantiate inner classes. More generally, be aware that when using reflection on program
elements defined with advanced language features, the reflective view of the program may differ
from the source view. Avoid depending on detail s of the trand ation that are not mandated by the
language specification. The lesson for platform implementersis, once again, to provide clear and
precise diagnostics.

8 FREV < Day Day Up > | NExTEp |

8 FREV < Day Day Up > | NExTHp |

Puzzle 81: Charred Beyond Recognition

This program appearsto do the usual thing in an unusual way. What doesit print?

public class Geeter {
public static void nain (String[] args) {
String greeting = "Hello world";
for (int i = 0; i < greeting.length(); i++)

Systemout.wite(greeting.charAt(i));

Solution 81: Charred Beyond Recognition

Although it's a bit strange, thereislittle reason to suspect that this program should misbehave. It
writes" Hel | o worl d" to Syst em out, one character at atime. Y ou may be awarethat thewri t e
method uses only the low-order byte of itsinput parameter. Thiswould cause trouble if "Hel | o

wor | d" contained any exotic characters, but it doesnt: It consists entirely of ASCII characters.
Whether you print it one character at atime or al at once, the result should be the same: The
program should print Hel | o wor I d. Yet, if you ran it, it amost certainly printed nothing. Where did
the greeting go? Perhaps the program just wasn't feeling all that cheerful ?

The problem isthat Syst em out isbuffered. The charactersinHel 1 o wor | d were written to the
buffer for Syst em out, but the buffer was never flushed. Most programmers believe that

Syst em out and Syst em er r flush themselves automatically whenever output is performed. Thisis
almost true but not quite. They are of type Pri nt St r eam Whose documentation says, as of release
5.0 [Java-API]:

A Pri nt St reamcan be created so as to flush automatically; this means that the f 1 ush method
isautomatically invoked after abyt e array iswritten, one of the pri nt I n methods isinvoked,
or a newline character or byte (\ n') iswritten.

The streams referenced by Syst em out and Syst em er r are indeed instances of the automatically
flushing variant of Pri nt &t r eam but no mention is made of thewri t e(i nt) method in the above
documentation. The documentation for wri t e(i nt) says. "Write the specified byt e to thisstream. If
the byt e isanewline and automatic flushing is enabled then the flush method will be invoked"

[Java-API]. In practice, wri t e(i nt) istheonly output method that doesnot flushaPri nt St ream
on which automatic flushing is enabled.

Curioudly, if the program is modified to use pri nt (char) instead of wri t e(i nt), it flushes
Syst em out and printsHel | o wor | d. This behavior contradicts the documentation for
pri nt (char) , which says[Java-API]:

Print acharacter. The character is trandated into one or more bytes according to the platform's
default character encoding, and these bytes are written in exactly the manner of the
wri te(i nt) method.

Similarly, if the program is modified to use pri nt (St ring) , it flushes the stream even though the
documentation prohibitsit. The documentation should almost certainly be changed to describe the
actual behavior; it would be too destabilizing to change the behavior.

The ssmplest change that fixesthe programisto add a Syst em out . f | ush invocation after the | oop.
If this change is made, the program printsHel | o wor | d as expected. It would, however, be far
better to rewrite the program to use the more familiar Syst em out . print I n idiom for producing
output on the console.

Thelesson of this program is, asin Puzzle 23: Use familiar idioms whenever possible; if you must
stray from familiar APIs, be sure to consult the documentation. There are three lessonsfor AP
designers. Make the behavior of your methods clear from their names, document this behavior
clearly, and correctly implement the documented behavior.

48 FREV < Day Day Up > | NEXT #p

@ rev | < Day Day Up > =

Puzzle 82: Beer Blast

Severa puzzlesin this chapter invol ved multiple threads, but this one invol ves multi ple processes.
What does this program print if you run it with the single command line argument si ave? What
doesit print if you run it with no command line arguments?

public class BeerBlast {
static final String COVWAND = "] ava BeerBl ast sl ave";
public static void main(String[] args) throws Exception {
iIf (args.length == 1 && args[0]. equal s("slave")) {
for (int i =99, i >0; i--) {
Systemout.printin(i +
bottles of beer on the wall");
Systemout.printin(i + " bottles of beer");
System out. println(
"You take one down, pass it around,");
Systemout.println((i-1) +
" bottles of beer on the wall");
Systemout. println();
}
} else {
/'l Mast er
Process process = Runtine. get Runti me(). exec(COVMMAND) ;
I nt exitVal ue = process. waitFor();

Systemout. println("exit value =" + exitVal ue);

Solution 82: Beer blast

If you run the program with the command line argument sl ave, it prints astirring rendition of that
classic childhood ditty, "99 Bottles of Beer on the Wall"—there's no mystery there. If you run it
with no command line argument, it starts a dave process that prints the ditty, but you won't see the
output of the dave process. The main process waits for the dave process to finish and then prints
the exit value of the dave. By convention, the value 0 indicates normal termination, so that iswhat
you might expect the program to print. If you ran it, you probably found that it just hung there,
printing nothing at all. It's asif the dave process were taking forever. Although it might feel like it
takes forever to listen to "99 Bottles of Beer on the Wall," especially if it issung out of tune, the
song has "only" 99 verses. Besides, computers are fast, so what's wrong with the program?

The clue to this mystery isin the documentation for the Process class, which says: "Because some
native platforms only provide limited buffer size, failure to promptly read the output stream of the
subprocess may cause the subprocess to block, and even deadlock” [Java-API]. That isexactly
what's happening here: There isinsufficient space in the buffer to hold the interminable ditty. To
ensure that the dave process terminates, the parent must drain its output stream, which is an input
stream from the perspective of the master. The following utility method performsthis task in a
background thread:

stati c voi d drai nl nBackground(final InputStreamis) {
new Thr ead(new Runnabl e() {
public void run() {
try {
while(is.read() >= 0) ;
} catch (1 OException e) {

/1 return on | OExcepti on

}

}).start();

If we modify the program to invoke this method prior to waiting for the slave process, the program
prints 0 as expected:

} else {
/'l Mast er
Process process = Runtine. get Runti me(). exec(COMVAND) ;
drai nl nBackgr ound(pr ocess. get | nput St ream()) ;
i nt exitValue = process. waitFor();

System out. pri ntl n(exitVal ue);

Thelesson isthat you must dr ain the output stream of a child processin or der to ensureits
termination; the same goesfor the error stream, which can be even more troublesome because
you cant predict when aprocesswill dump lots of output to it. In release 5.0, a class named
ProcessBui | der was added to help you drain these streams. ItSr edi r ect Err or St r eammethod
merges the streams so you have to drain only one. If you elect not to merge the output and error
streams, you must drain them concurrently. Attempting to drain them sequentially can cause the
child processto hang.

Many programmers have been bitten by thisbug over the years. The lesson for API designersisthat
the Process class should have prevented this problem, perhaps by draining the output and error
streams automati cal ly unless the client expressed intent to read them. More generally, APIs should
make it easy to do theright thing and difficult or impossibleto do the wr ong thing.

| 4m PREV < Day Day Up > NEXT i |

8 FREV < Day Day Up > | NExTHp |

Puzzle 83: Dyslexic Monotheism

Once upon atime, there was a man who thought there was only one exceptional dog, so he wrote
the following class, which he took to be a singleton [Gammad5]:

public class Dog extends Exception {
public static final Dog I NSTANCE = new Dog();
private Dog() { }
public String toString() {

return "Wof":

It turns out that this man was wrong. Can you create a second Dog instance from outside this class
without using reflection?

Solution 83: Dyslexic Monotheism

This class may look like asingleton, but it isn't. The problemisthat Dog extends Excepti on and
Excepti on implementsj ava. i o. Seri al i zabl e. This means that Dog is serializable, and

deseriali zati on congtitutes a hidden constructor. If you seriaize Dog. | NSTANCE and deseridize the
resulting byt e sequence, you will end up with another Dog, as demonstrated by the foll owing
program. It printsf al se, indicating that the new Dog instance is distinct from the original, and Wof ,
indicating that the new Dog instance is functional :

i mport java.io.*;

public class CopyDog { // Not to be confused with copycat
public static void main(String[] args) {

Dog newDog = (Dog) deepCopy(Dog. | NSTANCE) ;

System out . printl n(newbog == Dog. | NSTANCE) ;

System out . printl n(newDog);

/1 This nethod is very slow and generally a bad idea!
static public hject deepCopy(Object obj) {
try {
Byt eAr rayQut put Stream bos =
new Byt eArrayQut put Streanm() ;
new (bjectQut put Strean(bos). witeObject(obj);
Byt eArrayl nput Stream bin =
new Byt eArrayl nput St ream(bos. t oByt eArray());
return new bj ectl nput St ream(bi n). readQbj ect () ;
} catch (Exception e) {

t hrow new | | | egal Argunent Exception(e);

To fix the problem, add ar eadResol ve method to Dog, which turns the hidden constructor into a
hidden stati ¢ factory that returns the one true Dog [EJ Items 2, 57]. With the addition of this method
to Dog, CopyDog Will printt rue instead of f al se, indicating that the "copy" isin fact the original:

private (bj ect readResolve() {
/'l Accept no substitutes!

return | NSTANCE;

The main lesson of thispuzzleisthat a singleton classthat implementsSeri al i zabl e must have
areadResol ve method that retur ns its soleinstance. A secondary lesson isthat it is possible to
implement Seri al i zabl e unintentionally, by extending aclassthat implements Seri al i zabl e or
by implementing an interface that extends Seri al i zabl e. A lesson for platform designers is that
hidden constructors, such asthe one provided by serialization, can harm the reader's intuition about
program behavior.

H|

el < Day Day Up > =

4 PREV < Day Day Up > | NExT o |

Puzzle 84: Rudely Interrupted

In this program, a thread tries to interrupt itself and then checks whether it succeeded. What does
the program print?

public class Selflnterruption {
public static void main(String[] args) {

Thread. currentThread().interrupt();

If (Thread.interrupted()) {
Systemout.printlin("Interrupted: " +
Thread. interrupted());
} else {
Systemout. printlin("Not interrupted: " +

Thread. interrupted());

Solution 84: Rudely Interrupted

Although it isnot common for athread to interrupt itself, it isnt unheard of, either. When a method
catchesan | nt er rupt edExcepti on and is not prepared to deal with it, the method usually rethrows
the exception. Because it is a checked exception, amethod can rethrow it only if the method
declaration permits. If not, the method can "reraise” the exception without rethrowing it, by
interrupting the current thread. Thisworksfine, so our program should have no troubl e interrupting
itself. Therefore, the program should take the first branch of the i f statement and print
Interrupted: true. If yourantheprogram, you found that it doesnt. It doesnt print Not
interrupted: false,either;itprintsinterrupted: fal se.

It looks as if the program can't make up its mind about whether the thread was interrupted. Of

course, this makes no sense. What real ly happened was that the first invocation of

THRead. i nterr upt ed returned t rue and cleared the interrupted status of the thread, so the second
invocation—in thet hen branch of thei f- t hen- el se statement—returned f al se. Calling

Thr ead. i nterrupt ed always clearsthe inter rupted status of the cur rent thread. The method
name gives no hint of this behavior and, as of release 5.0, the one-sentence summary in the
documentation is equally misleading: "Tests whether the current thread has been interrupted” [Java-
API]. Therefore, it is understandable that many programmers are unaware that

Thr ead. i nterrupt ed hasany effect on the interrupted status of the thread.

The THRead class has two methods to query the interrupted status of athread. The other one isan
instance method named i si nt er r upt ed, and it does not clear the interrupted status of the thread. If
rewritten to use this method, the program produces the expected output of | nt er rupt ed: tr ue:

public class Sel flnterruption {
public static void main(String[] args) {

Thread. current Thread().interrupt ();

if (Thread.currentThread().islnterrupted()) {

Systemout.printlin("Interrupted: " +

Thread. currentThread().islnterrupted());
} else {
Systemout.println("Not interrupted: " +

Thread. current Thread().islnterrupted());

Thelesson of this puzdeis. Don't use THRead. i nter r upt ed unless you want to clear the
interrupted status of the current thread. If you just want to query it, usei sl nt er r upt ed instead.
The lesson for API designersisthat methods should have namesthat describe their primary
functions. Given the behavior of THRead. i nter r upt ed, it should have been named
clearInterruptsStatus. ltsreturn valueis secondary to the state change it effects. Especially when
amethod has a name that is less than perfect, it isimportant that its documentation clearly describe
its behavior.

LS e [nexT e

@ rev | < Day Day Up > =

Puzzle 85: Lazy Initialization

This poor little classis too lazy to initidize itself in the usua way, so it calls on the help of
background thread. What does the program print? Isit guaranteed to print the same thing every time
you run it?

public class Lazy {

private static boolean initialized = false;

static {
Thread t = new Thr ead(new Runnabl e() {
public void run() {

initialized = true;

b
t.start();
try {
t.join();
} catch (InterruptedException e) {

t hr ow new AssertionError(e);

public static void main(String[] args) {

Systemout.println(initialized);

Solution 85: Lazy Initialization

This program looks straightforward, if abit strange. The static fieldini ti al i zed isinitially setto

f al se. Then the main thread creates a background thread whose r un method setsi ni ti al i zed to

t rue. The main thread starts the background thread and waits for it to complete by callingj oi n.
Once the background thread has compl eted, there can be no doubt that i ni ti al i zed has been set to
TRue. Then and only then does the main thread invoke mai n, which printsthevalueof i ni ti al i zed.
Surely the program must print t rue? If only it were so. If you ran the program, you found that it
prints nothing; it just hangs.

In order to understand the behavior of this program, we have to smulate itsinitiali zation in detail .
When athread is about to access amember of aclass, the thread checksto seeif the class has been
initialized. Ignoring serious errors, there are four possible cases[JLS 12.4.2]:

1. Theclassisnot yet initialized.

2. Theclassisbeinginitialized by the current thread: arecursive request for initialization.
3. Theclassisbeinginitialized by some thread other than the current thread.

4. Theclassisaready initialized.

When the main thread invokes Lazy. mai n, it checks whether the class Lazy has been initialized. It
hasn't (case 1), so the thread records that initialization is now in progress and beginsto initidize the
class. As per our previous analyss, the main thread now setsi ni ti al i zed tof al se, createsand
starts a background thread whose r un method setsi ni ti al i zed to TRue, and waitsfor the
background thread to complete. Then the fun begins.

The background thread invokesits r un method. Before thethread setSLazy. initial i zed totrue,
it too checks whether the class Lazy hasbeen initialized. Thistime, the class is currently being
initialized by another thread (case 3). Under these circumstances, the current thread, which isthe
background thread, waits on the Cl ass object until initiaization is complete. Unfortunately, the
thread that is doing the initialization, the main thread, iswaiting for the background thread to
complete. Because the two threads are now waiting for each other, the program is deadl ocked.
That'sall there istoit, and what a pity itis.

There are two ways to fix the problem. By far the best way isnot to start any background threads
during classinitialization: Sometimes, two threads aren't better than one. More generdly, keep
classinitialization as smple as possible. A second way to fix the problem isto alow the main
thread to finish initializing the class before waiting for the background thread:

/1l Bad way to elim nate the deadl ock. Conpl ex and error prone.

public class Lazy {

private static boolean initialized = fal se;
private static Thread t = new Thread(new Runnabl e() {
public void run() {

initialized = true;

}
1)
static {
t.start();
}

public static void main(String[] args) {

try {
t.join();
} catch (InterruptedException e) {

t hrow new AssertionError(e);

}

Systemout.println(initialized);

Although this does eliminate the deadlock, it isa very bad idea. The main thread waitsfor the
background thread to finish itswork, but other threads don't have to. They can use the class Lazy as
soon as the main thread has finished initializingit, allowingthem to observei ni ti al i zed when its
vaue isdtill f al se.

In summary, waiting for a backgr ound thread during classinitialization islikely toresult in
deadlock. Keep class initialization sequences as smple as poss ble. Automatic class initialization is
known to be a very difficult language design problem, and Java's designersdid afinejob in this
area. Still, there are many waysto shoot yourself in the foot if you write complex classinitiaization
code.

LS e [nexT e

Chapter 10. Advanced Puzzlers

The puzzlesin this chapter concern advanced topics, such as nested classes, generics, serialization,
and binary compatibility.

LS R A AN R =y

4 PREV < Day Day Up > | NExT o |

Puzzle 86: Poison-Paren Litter

Can you come up with alegal Java expression that can be madeillegal by parenthesizing a
subexpression, where the added parentheses serve only to document the order of evaluation that
would take place in their absence?

Solution 86: Poison-Paren Litter

It seemsthat inserting apair of parentheses serving only to document the existing order of

eval uation should have no effect on the legality of a program. Indeed, thisistruein nearly all cases.
In two cases, however, inserting a seemingy innocuous pair of parentheses can make alegal Java
programillegal. This strange state of affairs stems from the asymmetry of the two's-complement
binary numbers, discussed in Puzzle 33 and Puzzle 64.

You may recall that the most negativei nt value has amagnitude that is one greater than the most
positive: | nt eger . M N_VALUE is-231, or -2,147,483,648, whereas| nt eger . MAX_VALUEis231 - 1, or
2,147,483,647. Java does not support negative decimal literals, negativei nt and | ong constants are
constructed by prefixing positive decimal literal s with the unary minus operator (-). A special
language rule governs this construction: The largest decimal literal of typei nt 1S2147483648.
Decimal literalsfrom 0 to 2147483647 may appear anywhereani nt litera may appear, but the
literal 2147483648 may appear only asthe operand of the unary negation operator [JLS 3.10.1].

Once you know thisrule, the puzzleis easy. The characters - 2147483648 form alega Java
expression consisting of the unary minus operator followed by thei nt literal 2147483648. Adding a
pair of parentheses to document the (trivial) order of evaluation gives - (2147483648) , which
violatesthe rule. Believeit or not, this program really does generate a compil e-time error, and the
error goes away if you remove the parentheses:

public class Poi sonParen {

int i = -(2147483648) ;

The situation for | ong literalsisana ogous. This program too generates a compile-time error that
goes away if you remove the parentheses.

public class Poi sonParen {

long] = -(9223372036854775808L) ;

Asfor alesson, this puzzle has none. It's a corner case, pure and simple. But you must admit, it's
amusing.

A ALAY R

| 4@ FREV < Day Day Up > | NExTHp |

Puzzle 87: Strained Relations

In mathematics, the equals sign (=) defines an equivalence rel ation on the real numbers. An
equivalence relation partitions a set into equivalence classes, each consisting of all the values that
are equivalent to one another. Other equivaence relationsinclude "is congruent to" on the set of all
triangles and " has the same number of pages as’ on the set of al books. Formally, arelation ~isan
equivalencereation if and only if itisreflexive, trangtive, and symmetric. These properties are
defined as follows:

o Reflexive: x ~ x for al x. In other words, every value isrelated to itsalf.

o Transitive: if x~yandy ~ z then x ~ z In other words, if one valueisrelated to a second and
the second isrelated to a third, the first value is related to the third.

o Symmetric: if x~y, theny ~ x. In other words, if one value is related to a second, the second
value isrelated to the first.

But thisisn't abook about set theory; it's abook about Java. In Java, does the == operator define an
equivalence relation over the primitive values? If not, which of the three properties doesit viol ate?
Provide code snippets to demonstrate any violations.

i

Solution 87; Strained Relations

If you did Puzzle 29, you know that the == operator is not reflexive, because the expression
(Doubl e. NaN == Doubl e. NaN) evaluatestof al se, as doesthe expression (Fl oat. NaN ==

Fl oat . NaN) . But doesthe == operator violate symmetry or transitivity? It turns out that it does not
violate symmetry: (x == y) impliesthat (y == x) for al vauesx andy. trangitivity is another
matter entirely.

Puzzle 35 provides a clue asto why the == operator is not transitive over the primitive val ues. When
comparing two numeric primitive values, the == operator first performs binary numeric promotion
[JLS 5.6.2]. Thismay result in awidening primitive conversion on one of the two values[JLS
5.1.2]. Most widening primitive conversions are harmless, with three notabl e exceptions:
Converting an int or along valueto float, or along value to double can result in loss of
precison. This lossof precision can manifest itself as nontransitivity of the == operator.

Thetrick to achieving this nontrangtivity isto lose precision in two of the three val ue compari sons,

resulting in fal se positives. This can be accomplished, for example, by choosing large but distinct
| ong valuesfor x and z, and adoubl e value that is close to both | ong valuesfor y. The following

program does exactly that. It printsTRue true fal se, clearly demonstrating the nontransitivity of
the == operator over primitives:

public class Transitive {
public static void main(String[] args) throws Exception {
| ong x = Long. MAX_VALUE;

doubl e y = (doubl e) Long. MAX VALUE;

| ong z Long. MAX VALUE - 1;
Systemout.print ((x ==vy) + " "); [/l 1nprecise!
Systemout.print ((y ==2z) +" "); [l Inprecise!

Systemout.println(x == z); /'l Precise

Thelesson is. Bewar e of lossy widening primitive conversionsto float and double. They are
slent but deadly. They can violate your intuition and cause subtle bugs (Puzzle 34). More generally,
beware of mixed-type operations (Puzzles 5, 8, 24, and 31). The lesson for language designersis the
same asfor Puzzle 34: Silent loss of precision confuses programmers.

< Day Day Up >

s < Day Day Up > |

Puzzle 88: Raw Deal

This program consists of asingle classrepresenting a pair of like-typed objects. It makes heavy use
of release 5.0 features, including generics, autoboxing, varargs, and the for-each loop. See
http://java.sun.com/j 2se/5.0/docs/gui de/l anguage for an introduction to these features [Java-5.0].
The mai n method of this program gently exercises the class. What doesit print?

I nport java.util.*;

public class Pair<T> {
private final T first;

private final T second;

public Pair(T first, T second) {
this.first = first;

thi s. second = second;

public T first() {
return first;
}
public T second() {
return second;
}
public List<String> stringList() {
return Arrays.asList(String.valueO (first),

String. value (second));

http://java.sun.com/j2se/5.0/docs/guide/language

public static void main(String[] args) {
Pair p = new Pair<bject>(23, "skidoo");
Systemout.println(p.first() +" " + p.second());
for (String s : p.stringList())

Systemout.print(s + " ");

Solution 88: Raw Deal

This program appears reasonably strai ghtforward. It creates a pair whose first element isthe

| nt eger representing 23 and whose second element is the string " ski doo" . Then the program prints
thefirst and second elements of the pair, separated by a space. Finally, it iterates over the string
representations of these elements and prints them again, so it ought to print 23 ski doo twice. Sadly,
it doesn't even compile. Worse, the compiler's error message is terribly confusing:

Pai r.java: 26: inconpati bl e types;
found: Object, required: String

for (String s : p.stringList())

AN

This message would make senseif Pai r . st ri ngLi st were declared to return Li st <(oj ect >, but it
returns Li st <t ri ng>. What on earth is going on?

This rather surprising behavior is caused by the program's use of raw types. A raw typeissimply the
name of ageneric class or interface without any type parameters. For example, Li st <E> iSsageneric
interface, Li st <St ri ng> isaparameterized type, and Li st isaraw type. In our program, the sole
use of raw typesisthe declaration of the local variable p in mai n:

Pai r p = new Pair<Object>(23, "ski doo");

A raw typeislike its parameteri zed counterpart, but all itsinstance members are replaced by their
erased counterparts. In particular, each parameterized type appearing in an instance method
declaration isreplaced with itsraw counterpart [JLS 4.8]. The variable p in our program is of the
raw type Pai r, SO itsinstance methods are erased. Thisincludesthestri ngLi st method, whichis
declared to return Li st <&t ri ng>. The compiler interprets the program asif this method returned
theraw typelList .

WhileLi st <St ri ng> implements the parameterized type | ter abl e<St ri ng>, Li st implementsthe
raw typel ter abl e. Where | ter abl e<St ri ng> hasani ter at or method that returnsthe
parameterized typel terator<String>, I terabl e hasani terator method that returnsthe raw type
| terator. Where the next method of | terator<Stri ng> returns Stri ng, the next method of

| terator returns oj ect. Therefore, iterating over p. st ringList () requiresaloop variable of type
Obj ect , which explainsthe compiler's bizarre error message. The reason this behavior is so
counterintuitiveis that the parameterized type Li st <St ri ng>, which isthe return type of the

stri ngLi st method, has nothing to do with the type parameter of pai r, but it gets erased anyway.

You could attempt to fix the problem by changing the type of theloop variable from Stri ng to
bj ect .

/1 Don't do this; it doesn't really fix the problem
for (Object s : p.stringList())

Systemout.print(s + " ");

This does cause the program to generate the expected output, but it doesn't really fix the problem.
You lose all the benefits of generics, and the program wouldn't even compileif the loop invoked
any stri ng methodson s. The right way to fix the program isto provide a proper parameterized
declaration for the loca variable p:

Pai r<(ject> p = new Pair <Object >(23, "skidoo");

This underscores akey point: The raw type List is not the same asthe parameterized type

Li st <(j ect >. If the raw typeis used, the compiler has no idea whether there are any restrictions
on the type of elements permitted by the list, but it lets you insert elements of any type. Thisis not
typesafe: If you insert an object of the wrong type, you may get acCl assCast Except i on a any point
in the future execution of the program. If the parameterized type Li st <(j ect > isused, the
compiler knowsthat the list is allowed to contain elements of all types, so it issafeto let you insert
any object.

There isathird typethat is closaly related to these two: Li st <?> isaspecia kind of parameterized
type known as awildcard type. Like the raw type Li st , the compiler does not know what type of

element i s permitted, but because Li st <?> is a parameteri zed type, the |anguage requires stronger
type-checking. To avoid the possibility of acl assCast Except i on, the compiler won't |et you insert
any element except nul | into alist of type Li st <?>.

Raw types are a concess on to existing code, which could not use generics prior to release 5.0.
Many core library classes, such as collections, have been modified to take advantage of generics,
but existing clients of those classes continue to behave asin previous releases. The behavior of raw
types and their members was des gned to mirror the pre-5 language, so asto retain compatibility.

Thereal problem with the pai r program isthat the author did not decide what version of Javato
use. Although most of the program uses generics, the variable p isdeclared with araw type. To
avoid bewildering compile-time errors, avoid writing raw typesin code intended for release 5.0
or later. If an existing library method returns a raw type, storeitsresult in avariable of an
appropriate parameterized type. Better yet, upgrade to aversion of the library that use generics, if
possible. Although Java provides graceful interoperability between raw and parameterized types,
limitations of raw types can interfere with the utility of generics.

This issue can arisein practice when reading Cl ass annotations a run time with the

get Annot ati on method, which was added to classCl ass inrelease 5.0. Two Cl ass oObjects are
involved in each invocation of get Annot ati on: the object on which the invocation is made and the
object that is passed to indicate which annotation isdesired. In atypical invocation, the former is
obtained reflectively; the latter is aclassliteral, asin the following example:

Aut hor a = d ass. f or Nane(nane) . get Annot at i on(Aut hor . cl ass) ;

You do not have to cast the return value from get Annot ati on to Aut hor. Two things conspire to
make thiswork: (1) The get Annot ati on method isgeneric. It infersitsreturn typefromits
parameter type. Specifically, it takes a parameter of type Cl ass<T> and returns avalue of type T. (2)
Class literal s provide generic type information. For example, the type of Aut hor. cl ass IS

Cl ass<Aut hor >. The classliteral conveys both run-time and compil e-time type information. Class
literal s used in this fashion are known as type tokens [Bracha04].

In contrast to classliterals, Cl ass objects obtai ned through reflection do not provide full generic
type information: Thereturn type of Cl ass. f or Nane iSsthe wildcard type Cl ass<?>. It iscritical that
you use thiswildcard type rather than the raw type d ass for the expresson on which you invoke
the get Annot ati on method. If you use the raw type, the returned annotation will have the compile-
time type of Annot at i on instead of the type indicated by the classliteral. The foll owing program
fragment, which viol ates this advice, won't compile for the same reason that the origina program in
this puzzle did not:

Class ¢ = Class. forNanme(nane); /'l Raw type!

Aut hor a = c. get Annotation(Author.class); [// Type m smatch

In summary, the members of araw type are erased to ssmul ate the behavior of the type before
generics were added to the language. If you mix raw and parameteri zed types, you will not get the
full benefit of generics, and you may get some very confusing compile-time errors. Also, araw type
isnot the same as a parameteri zed type whose type parameter is Obj ect . Findly, if you are
migrating an existing code base to take advantage of generics, the best approach isto migrate one
API at atime and to avoid entirely the use of raw types in new code.

@ rne < Day Day Up >

s < Day Day Up > |

Puzzle 89: Generic Drugs

Like the previous puzzle, this one makes heavy use of generics. Learning from our previous
mistakes, we refrain from using raw types. This program implementsasmplelinked list data
structure. The main program builds alist with two elements and dumps its contents. What does the
program print?

public class LinkedLi st<E> {

private Node<E> head = nul|;

private class Node<BE> {
E val ue;

Node<E> next ;

/1 Node constructor links the node as a new head
Node(E val ue) {

t hi s.val ue = val ue;

t hi s. next = head;

head = this;

public void add(E e) {
new Node<E>(e);

/!l Link node as new head

public void dunp() {
for (Node<E> n = head; n !'= null; n = n.next)

Systemout.print(n.value + " ");

public static void main(String[] args) {
Li nkedLi st<String> |ist = new Li nkedLi st<String>();
list.add("world");

list.add("Hello");

l'ist.dunp();

Solution 89: Generic Drugs

Again, this program appears reasonably straightforward. New el ements are added to the head of the
list and the dump method printsthe list starting with the head. Therefore, elements are printed in the
opposite order they are added. In this case, the program first adds " wor | d" and then " Hel 1 0", SO it
looksasif it is just aconvoluted Hel | o wor | d program. Sadly, if you tried to compile it, you found
that it doesn't compile. The error messages from the compil er are downright baffling:

Li nkedLi st.java: 11: inconpatible types
found : LinkedLi st <E>. Node<E>
requi red: LinkedLi st <E>. Node<E>
t hi s. next = head;
A
Li nkedLi st . java: 12: inconpatibl e types
found : LinkedLi st <E>. Node<E>

requi red: LinkedLi st <E>. Node<E>

head = this;

N

It appearsthat the compiler is complaining that atype isn't compatible with itself! Appearances, as
usual, are deceiving. The "found" and "required” types are unrel ated to each other. They appear
identical because the program uses the same nameto refer to different types. Specificaly, the
program contains two different declarations for type parameters named E. Thefirgt is the type
parameter for Li nkedLi st, and the second isthe type parameter for the inner class

Li nkedLi st. Node. The latter shadows the former within the inner class. The lesson that we learned
in Puzzles 71, 73, and 79 applies here aswell: Avoid shadowing type parameter names.

There isno way to refer to atype parameter except by its Smple name, so the error message has no
way to tell you that these two uses of the name E refer to different types. The error message would
be clearer if we systematically renamed the type parameter for Node from E to, say, T. It wouldnt fix
the problem, but it would shed some light on it. This approach yields the following error messages:

Li nkedLi st . java: 11: inco>npati ble types
found : LinkedLi st <E>. Node<E>
requi red: LinkedLi st <E>. Node<T>

t hi s. next = head;

A

Li nkedLi st . java: 12: inconpatibl e types
found : LinkedLi st <E>. Node<T>
requi red: LinkedLi st <E>. Node<E>

head = this;

N

What the compiler istrying to tell usisthat the program isway too complicated. An inner class of
ageneric classhasaccessto thetype parametersof itsouter class. It wasthe clear intent of the
program'’s author that the type parameter for a Node would aways be the same asfor the enclosing
Li nkedLi st, so thereisno reason for Node to have atype parameter of itsown. To fix the program,
smply eliminate the type parameter in the inner class:

/'l Fixed but could be MJUCH better
public class LinkedLi st<E> {

private Node head = null;

private class Node {
E val ue;

Node next;

/1 Node constructor links the node as a new head
Node(E val ue) {

t hi s.val ue = val ue;

t hi s. next = head;

head = this;

public void add(E e) {
new Node(e);

// Link node as new head

public void dunp() {
for (Node n = head; n !=null; n = n.next)

Systemout.print(n.value + " ");

This isthe ssmplest change that fixes the program, but it is not the best. The original program used
an inner class unnecessarily. As mentioned in Puzzle 80, you should prefer static member classes
over nonstatic [EJ Item 18]. An instance of Li nkedLi st. Node contains not only the val ue and
next fieldsbut aso ahidden field containing a reference to the enclosing Li nkedLi st instance.

Although the enclosing instance is used during construction to read and then modify head, it isdead
weight once congtruction has compl eted. Worse, placing the side effect of changing head into the
congtructor makes the program confusing to the reader. Change instance fields of a class only in
itsown instance methods.

A better fix, then, isto modify the original program to move the manipulation of head into

Li nkedLi st. add, making Node a static nested class rather than atrue inner class. Static nested
classes do not have access to the type parameters of enclosing classes, so now Node really does need
atype parameter of its own. The resulting program is simple, clear, and correct:

class Li nkedList<E> {

private Node<E> head = nul|;

private static class Node<T> {

T val ue; Node<T> next;

Node(T val ue, Node<T> next) {

t hi s.val ue = val ue;

t hi s. next = next;

public void add(E e) {

head = new Node<E>(e, head);

public void dunp() {

for (Node<E> n = head; n !'= null; n = n.next)

Systemout.print(n.value + " ");

In summary, inner classes of generic classes have access to the enclosing classs type parameters,
which can be confusing. The misunderstanding illustrated in this puzzle is common among
programmers first learning generics. It isn't necessarily wrong to have an inner classin a generic
class, but the need for thisisrare, and you should cons der refactoring your code to avoid it. When
you have one generic class nested inside another, give their type parameters different names, even if
the nested classis static. For language designers, perhaps it makes sense to forbid shadowing of
type parameters, in the same way that shadowing of local variablesisforbidden. Such a rule would
have caught the bugin this puzzle.

Puzzle 90: It's Absurd, It's a Pain, It's Superclass!

The following program doesnt actually do anything. Worse, it won't compile. Why not? How can
you fix it?

public class Quter {

class Innerl extends Quter {}

cl ass Inner2 extends Innerl {}

Solution 90: It's Absurd, It's a Pain, It's Superclass

This program looks too simpl e to have anything wrong with it, but if you try to compileit, you get
this hel pful error message:

Quter.java: 3: cannot reference this before

supertype constructor has been called

class Inner2 extends Innerl {}

AN

OK, maybeit's not so helpful, but we'll work on that. The problem isthat the compil er-generated
default constructor for 1 nner 2 cannot find an appropriate enclosi ng instance for itSsuper
invocation. Let'slook at the program with the default constructorsincluded explicitly:

public class Quter {

public Quter() {}

class Innerl extends Quter {
public Innerl() {

super(); // invokes (hject() constructor

cl ass I nner2 extends Innerl {
public I nner2() {

super(); // invokes Innerl() constructor

Now the error message gives a bit more information:

Quter.java: 12: cannot reference this before

supertype constructor has been call ed

super(); // invokes I nnerl() constructor

AN

Because the superclass of | nner 2 isitself an inner class, an obscure language rule comesinto play.
Asyou know, the instantiation of an inner class, such as| nner 1, requires an enclos ng instance to
be supplied to the constructor. Normally, it is supplied implicitly, but it can also be supplied
explicitly with a superclass constructor invocation of the form expr essi on. super (ar gs) [JLS
8.8.7].

If the enclosinginstance is supplied implicitly, the compiler generatesthe expression: It uses the

t hi s reference for the innermost enclosing class of which the superclassisamember. This s,
admittedly, quite amouthful, but it iswhat the compiler does. In this case, the superclassis| nner 1.
Because the current class, | nner 2, extends aut er indirectly, it hasi nner 1 as an inherited member.
Therefore, the qualifying expression for the superclass constructor issimply t hi s. The compiler
supplies an enclosing instance, rewriting super tot hi s. super. Had we done this oursel ves, the
compilation error would have made even more sense:

Quter.java: 12: cannot reference this before
supertype constructor has been call ed

this.super();

AN

Now the problemisclear: The default | nner 2 constructor attemptsto referencet hi s before the
superclass constructor has been called, whichisillega [JLS 8.8.7.1]. The brute-force way to fix this
problem isto provide the reasonabl e enclos ng instance explicitly:

public class Quter {

class Innerl extends Quter { }

cl ass I nner2 extends Innerl {
public I nner2() {

Qut er . this. super();

This compiles, but it is mind-numbingly complex. Thereis abetter solution: Whenever you write
amember class, ask yourself, Doesthisclassreally need an enclosing instance? I f the answer i<
no, makeit static. Inner classes are someti mes useful, but they can easily introduce complications
that make a program difficult to understand. They have complex interactions with generics (Puzzle
89), reflection (Puzzle 80), and inheritance (this puzzle). If you declare | nner 1 to bestat i c, the
problem goes away. If you also declare! nner 2 to bestat i ¢, you can actually understand what the
program does: a nice bonusindeed.

In summary, itisrarely appropriate for one classto be both an inner class and a subclass of another.
More generaly, it israrely appropriateto extend aninner class; if you must, think long and
hard about the enclosing instance. Also, prefer static nested classes to nonstatic [EJ Item 18].
Most member classes can and should be declared st at i c.

@ FREY < Day Day Up > MEXT wp

@ rev | < Day Day Up > =

Puzzle 91: Serial Killer

This program creates an object and checksthat it obeys a class invariant. Then the program
seridizesthe object, deserializesit, and checks that the deserialized copy also obeysthe invariant.
Doesit? If not, why not?

I nport java.util.*;

I nport java.io.*;

public class SerialKiller {
public static void main(String[] args) {
Sub sub = new Sub(666) ;

sub. checkl nvari ant () ;

Sub copy = (Sub) deepCopy(sub);

copy. checklnvariant();

/1 Copies its argunent via serialization (See Puzzl e 83)
static public (bject deepCopy(Object obj) {
try {
Byt eArrayQut put Str eam bos =
new Byt eArrayCQut put Streanm() ;
new (bjectQut put Strean{bos). witeObj ect(obj);
Byt eArrayl nput Stream bi n =
new Byt eArrayl nput St ream(bos. t oByt eArray());

return new bj ectl nput St ream(bi n) . readQbj ect () ;

} catch (Exception e) {

t hrow new | || egal Argunent Exception(e);

class Super inplenents Serializable {

final Set<Super> set = new HashSet <Super>();

final class Sub extends Super {
private int id;
public Sub(int id) {
this.id = id;

set.add(this); // Establish invariant

public void checklnvariant () {
iIf (!set.contains(this))

t hr ow new AssertionError("invariant violated");

public int hashCode() {

return id;

publ i c bool ean equal s(hject 0) {

return (o instanceof Sub) && (id == ((Sub)o).id);

Solution 91: Serial Killer

Save for the fact that the program uses serialization, it looks smple. The subclass sub overrides
hashCode and equal s. The overriding methods satisfy the relevant general contracts[EJ Items 7, §].
The sub constructor establishes the class invariant, and does so without invoking an overridable
method (Puzzle 51). The Super class has asinglefield, of type Set <Super >, and the Sub class adds
another field, of typei nt . Neither Super nor Sub requires a custom serialized form. What could
possibly go wrong?

Plenty. Asof release 5.0, running the program producesthis stack trace:

Exception in thread "main" AssertionError
at Sub. checklnvariant (SerialKiller.java:41)

at SerialKiller.min(SerialKiller.java: 10)

Serializing and deseriaizing a Sub instance produces a corrupt copy. Why? Looking at the program
will not tell you, because the real source of the problem lies elsewhere. It is caused by the

readOoj ect method of the class HashsSet . Under certain circumstances, this method can indirectly
invoke an overridden method on an uninitialized object. In order to populate the hash set that is
being deserialized, HashSet . r eadbj ect calls HashMap. put , which in turn callshashCode on each
key. Because awhole object graph is being deserialized at once, there is no guarantee that each key
has been completely initialized when itshashCode method isinvoked. In practice, thisis rarely an
issue, but occasionally it causes utter chaos. The bugistickled by certain cyclesin the object graph
that is being deserialized.

To make this more concrete, let uslook at what happens when we deseriaize the sub instance in
the program. FHr, the seriaization system deserializes the Super fields of the Sub instance. The
only such field is set , which contains areference to aHashset . Internally, each HashSet instance
contains areference to a Hashivap, whose keys are the hash set's e ements. The HashSet classhas a

r eadObj ect method that creates an empty Hashiap and inserts a key-value mapping for each
element in the set, using the map's put method. This method calls hashCode on the key to determine
its bucket. In our program, the sole key in the hash map is the Sub instance whose set fieldis
currently being deserialized. The subclassfield of thisinstance, i d, has yet to beinitialized, so it
contains O, theinitial value assigned to all i nt fields. Unfortunately, the hashCode method in Sub
returns this value instead of 666, which will eventually be stored in thisfield.

Because hashCode returns the wrong value, the entry for the key-value mapping is placed in the
wrong bucket. By thetimethe i d field isinitialized to 666, it istoo late. Changing the value of this
field once the sub instanceisin the Hashiap corrupts it, which corrupts the HashSet , which
corrupts the sub instance. The program detects this corruption and throws an appropriate error.

This program illustrates that the serialization system as a whol e, which includes the r eadObj ect
method of HashMap, violatesthe rule that you must not invoke an overridable method of a class
fromits constructor or pseudoconstructor [EJ Item 15]. The (default) r eadOoj ect method of the
class super invokes the (explicit) r eadObj ect method of the class HashsSet , which invokes the put
method on itsinternal HashMap, which invokes the hashCode method on the sub instancethat is
currently in the process of creation. Now we are in big trouble: The hashCode method that Super
inherits from Obj ect isoverridden in Sub, and this overridden method executes before the
initialization of the sub field, on which it depends.

This failure isnearly identical in nature to the one in Puzzle 51. The only red difference isthat in
this puzzle, the r eadObj ect pseudoconstructor isat fault instead of the constructor. The
readQoj ect methods of HashMap and Hasht abl e are Smilarly affected.

For platform implementers, it may be possible to fix thisproblem in HashSet, HashMap, and
HashTabl e at adight performance penalty. The strategy, asit appliesto HashSet , isto rewrite the
r eadObj ect method to store the set's elementsin an array instead of putting them in the hash set at
deserialization time. Then, on the first invocation of a public method on the deserialized hash set,
the elementsin the array would be inserted into the set before executing the method.

The cost of thisapproach isthat it requires checking whether to popul ate the hash set on entry to
each of its public methods. Because HashSet, HashMap, and HashTabl e are al performance-
critical, this approach seems undesirable. It isunfortunate that all users would have to pay the cost,

even if they did not serialize the collections. Thisviolates the tenet that you should never have to
pay for functionality that you don't use.

Another possibl e approach would be for HashSet . r eadbj ect to call

Obj ect | nput St ream r egi st er Val i dat i on and to delay popul ation of the hash set until the

val i dat eQnj ect callback. Thisapproach seems more attractive in that it adds cost only to
deserialization, but it would break any code that tried to use a deseridized HashSet instance while
deserialization of the containing stream was still in progress.

Whether either of these approachesis practical remainsto be seen. In the meantime, we must live
with the current behavior. Luckily, thereis aworkaround: If a HashSet , Hasht abl e, Or HashMap
will be serialized, ensurethat its contentsdonot refer back toit, directly or indir ectly. By
contents, we mean elements, keys, and values.

There isa so alesson for devel opers of serializable classes: In r eadj ect Or r eadResol ve
methods, avaid invoking methods directly or indirectly on objects cur rently being deserialized.
If you must violate thisadvice in ther eadnj ect Or r eadResol ve method for some class C, ensure
that no instance of C appearsin acycle in the graph of objects being deserialized. Unfortunately,
thisisnot a local property: In general, you must cons der the whole system in order to verify it.

In summary, the Java serialization system isfragile. In order to serialize many classes correctly and
efficiently, you must write r eadObj ect Or r eadResol ve methods [EJ Items 55-57]. Thispuzzle
demonstrates that you must write these methods carefully in order to avoid corruption of
deserialized instances. Ther eadbj ect methods of HashSet , HashMap, and Hasht abl e are
susceptible to corruption. For platform designers, if you choose to provide a serialization system, try
to design one that is not so fragile. Robust serialization systems are notorioudy difficult to design.

Puzzle 92: Twisted Pair

This program performs an unnatural act with an anonymous class. What does the program print?

public class Tw sted {
private final String nane;
Twi sted(String nanme) {
thi s. name = nane;
}
private String nane() {
return nane;
}
private voi d reproduce() {
new Twi sted("reproduce") {
voi d printName() {
System out. printl n(name());
}
}.print Name();
}
public static void main(String[] args) {

new Tw sted("nain"). reproduce();

Solution 92: Twisted Pair

A superficial analysis suggests that the program shouldn't compile. The anonymous classins de
repr oduce TRiesto invoke the private method nane from the class Twi st ed. One class can't invoke
aprivate method of another, can it? If you tried to compil e the program, you found that it compiles
without a hitch. Within atop-level type—in this case, Twi st ed—all thelocal, inner, nested, and
anonymous classes can access one another's members without any restrictions[JLS 6.6.1]. It's all
one big happy family.

With that understanding, you might expect the program to print r epr oduce, because it invokes

pri nt Name on theinstance new Twi st ed(" reproduce") , which passesthe string " repr oduce" toits
superclass constructor to be stored in itsnane field. The pri nt Name method invokes the name
method, which returns the contents of thisfield. But if you ran the program, you found that it prints
mai n. Now why would it do athing like that?

The intuition behind this behavior isthat private member sare never inherited [JLS 8.2]. Inthis
case, the name method is not inherited into the anonymous classin r epr oduce. Therefore, the

pri nt Name invocation in the anonymous class must refer to the method in the enclosing (" nai n")
instance rather than the current (" repr oduce") instance. Thisisthe smallest enclosing scope that
contains a method of the correct name (Puzzles 71 and 79).

This program violates the advice of Puzzle 90: The anonymous class insde " repr oduce" isboth an
inner class of Twi st ed and extendsit. Thisaone is sufficient to make the program unreadable.
Throw in the complexity of invoking a private superclass method, and the program becomes pure
gobbledygook. This puzzl e serves to reinforce the lesson of Puzzle 6: If you can't tell what a
progr am does by looking at it, it probably doesn't dowhat you want. Strive for clarity.

Hl|[E=

4@ FREV < Day Day Up > | NEXT #p

s < Day Day Up > |

Puzzle 93: Class Warfare

This puzzl e tests your knowledge of binary compatibility: What happens to the behavior of one
class when you change another class on which the first class depends? More specifically, suppose
that you compile the following two classes. Thefirst is meant to represent aclient; the second, a
library class:

public class PrintWrds {

public static void main(String[] args) {

Systemout.printl n(Words. FIRST + " " +
Words. SECOND + " " +
Wor ds. THI RD) ;

public class Wrds {

private Words() { }; // Uninstantiable

public static final String FIRST = "the";
public static final String SECOND = nul | ;
public static final String THRD = "set";

Now suppose that you modify the library class as follows and recompile it but not the client
program:

public class Wrds {

private Words() { }; // Uninstantiable

public static final String FIRST = "physics";
public static final String SECOND = "chem stry";
public static final String THHRD = "bi ol ogy";

What doesthe client program print?

Solution 93: Class Warfare

A quick look suggests that the program should print physi cs cheni stry bi ol ogy; after al, Java
|oads classes at run time, so it always has access to the latest version of aclass. A deeper anaysis
suggests otherwise. Referencesto constant fields areresoved at compiletime tothe constant
valuesthey denote [JLS 13.1]. Such fields are technically, if oxymoronically, known as constant
variables. A constant variable isdefined as a variable of primitive type or type Stri ng that isfinal
and initialized with a compile-time constant expression [JLS 4.12.4]. With the benefit of this
knowl edge, it would be reasonabl e to think that the client program compilestheinitial values of
Wor ds. FI RST, Wor ds. SECOND, and Wor ds. THI RD into itsclassfileand printSt he nul | set,
regardless of whether the class wr ds has been modified.

Reasonabl e, perhaps, but not correct. If you ran the program, you found that it printst he

chem stry set. This seemstruly bizarre. Why would it do athing like that? The answer isto be
found in the precise definition of the term compil e-time constant expression [JLS 15.28]. The
definition istoo long to reproduce here, but the key to under standing the behavior of the program is
that null isnot a compile-time constant expression.

Because constant fields are compiled into clients, API designers should think long and hard
before expar ting a constant field. If a field represents atrue constant, such as p or the number of
daysin a week, there is no harm in making it a constant field. If, however, you want clients to adapt
to changesin the field, make sure that it isn't a constant. Thereis an easy way to do this: If you
initialize afield, even afina field, with an expression that isnt constant, the field isn't constant.
You can turn aconstant expression into a nonconstant by passing it to amethod that simply returns
itsinput parameter.

If we modify the class wr ds to use such amethod, Pri nt or ds will print physi cs chemi stry
bi ol ogy after wor ds isagain modified and recompil ed:

public class Wrds {

private Words() { }; // Uninstantiable

public static final String FIRST = ident("the");
public static final String SECOND = ident(null);
public static final String THHRD = ident("set");

private static String ident(String s) {

return s;

Despite their name, enum constants, introduced in release 5.0, are not constant variables. Y ou can
add enum constants to an enum type, reorder them, and even remove unused enum constants
without the need to recompile clients.

In summary, constant variables are compiled into classes that reference those variables. A constant
variableisany primitive or string variable that isinitialized with a constant expression.
Surprisingly, nul | isnot a constant expression.

For language designers, perhapsit isnot such agood ideato compile constant expressions into
clientsin alanguage that is otherwise dynamically linked. It is surprising to many programmers and
can produce bugs that are difficult to diagnose: The source code in which constants were defined
may no longer exist when a bug i s detected. On the other hand, compiling constant expressions into
clients does enable the use of i f statements to emul ate conditional compilation [JLS 14.21]. Itisa
matter of judgment whether the end justifies the means.

8 FREV < Day Day Up > | NExTEp |

@ rev | < Day Day Up > =

Puzzle 94: Lost in the Shuffle

The following shuf f | e method purports to shuffle itsinput array fairly. In other words, it purports
to generate all permutations with equa likelihood, assuming that the underlying pseudorandom
number generator isfair. Doesit make good on its promise? If not, how do you fix it?

i nport java.util.Random

public class Shuffle {

private static Random rnd = new Randon();

public static void shuffle(Chject[] a) {

for (int i =0; i <alength; i++)
swap(a, i, rnd.nextInt(a.length));
}
private static void swap(Object[] a, int i, int j) {
bject tnp = af[i];
a[i] =aljl;
a[j] = tnp;
}

Solution 94: Lost in the Shuffle

Looking at the shuf f | e method, there's nothing obvioudy wrong with it. It iterates through the
array, swapping arandomly chosen element from the array into each location. That ought to shuffle
the array fairly, right? Wrong. There's a big diff erence between saying "There's nothi ng obvioudy

wrong with this code" and "There's obvioudy nothing wrong with this code.” In this case, there's
something very wrong, but it isn't obvious unless you specialize in a gorithms.

If you call the shuf f I e method on an array of length n, the loop iterates n times. In each iteration,
the method chooses one of the n integers between 0 and n - 1. Therefore, there are n" possible
executions of the method. We assumed the random number generator is fair, so each execution
occurswith equal likelihood. Each execution generates one permutation of the array. Thereis,
however, one small problem: There are n! distinct permutations of an array of length n. (The
exclamation point after n indicatesthe factorial operation: n factorial is definedasnx (n-1) x (n-
2) X ..x 1.) The problemisthat n"isnot divisible by n! for any n greater than 2, because n! has
every prime factor from 2 through n, but N has only the prime factors that make up n. This proves
beyond a shadow of a doubt that the shuf f | e method generates some permutati ons more often than
others.

To make this concrete, let's consider an array of length 3 containing the strings"a", "b", and " c".
There are 33 = 27 possible executions of the shuf f I e method. All are equally likely, and each
generates some permutation. There are 3! = 6 distinct permutations of thearray: {"a", "b", "c"},
{ra", "c", "b"}, {"b", "a", "c"}, {"b", "c", "a'}, {"c", "a', "b"}, and {"c", "b",
"a"}. Because 27 isnot divisible by 6, some of these permutations must be generated by more
executions than others, so the shuf f | e method is not fair.

One problem with this proof isthat it offers no intuition into the biasinduced by the method; it
merely proves that a bias exists. Often the best way to gain some insight isto perform an
experiment. We ran aprogram that cal culates the expected value of the element at each position
when the method isrun on the "identity array,” where a[i] = i. Loosely speaking, the expected value
isthe average value that you'll seein the element if you run the shuf f | e method repeatedly. If the
shuf f I e method were fair, the expected value woul d be the same for each element: (n-1)/ 2).
Fgure 10.1 shows the expected value for each element in an array of length 9. Note the distinctive
shape of the graph: It starts|ow, increases beyond the fair value (4), and settles down to the fair
value in the last element.

Figure 10.1. Expected values for the shuf fIe method on the identity array.

4.2 4

4.1
4.0
3.9
3.8
3.7
36 -EI
0 1 2 3 4 5 6 7 8

Array Index

Expected Element Value

Fn-.'l e
£ N
I 1

Why does the graph have this shape? We don't know all the details but we can offer some intuition.
Let'srestrict our attention to the array'sfirst el ement. After thefirst iteration of the loop, it hasthe
correct expected value of (n- 1) / 2. In the second iteration, however, thereis 1 chance in n that the
random number generator will return 0 and the valuein the first element will be replaced by 1 or O.
In other words, the second iteration systematically reduces the expected val ue of the first element.
In the third iteration, there'safurther 1 chance in nthat the first element isreplaced by 2, 1, or 0,
and so on. For the first n/ 2 iterations of the loop, the expected value of the first element decreases.
For the second n/ 2 iterations, it increases but never catchesup to itsfair value. Note that the last
element in the array is guaranteed to have the correct expected value, as the last step in the
execution of the method isto select it a random from all the elementsin the array.

OK, so our shuf f 1 e method is broken. How do wefix it? Use the shuffle method provided by the
library:

I nmport java.util.*;
public class Shuffle {
public static void shuffle((hject[] a) {

Col l ections. shuffl e(Arrays. asList(a));

Whenever thelibraries provide a method that doeswhat you need, use it [EJ Item 30].
Generally speaking, the libraries provides high-quality solutions requiring a minimum of effort on
your part.

On the other hand, after you suffered through all that math, it ssemsunfair not to tell you how to fix
the broken shuf f I e method. Thefix isactualy quite strai ghtforward. In the body of the loop, swap
the current element with an element selected at random from the portion of the array starting at the
current element and extending to the end of the array. Do not touch an element once you've
swapped avaueinto it. This is essentialy the algorithm that i s used by the library method:

public static void shuffle(Object[] a) {
for (int i =0; I < a.length; i++)

swap(a, i, i + rnd.nextInt(a.length - i));

It's easy to prove this method fair by induction. For the base case, observe that it istrivially fair for
an array of length 0. For the induction step, if you apply the method to an array of lengthn> 0, it
correctly selects arandom el ement for the zeroth position of the result array. Then, it iterates over
the remainder of the array: At each position, it selects an e ement chosen at random from the
"subarray" beginning at that position and extending to the end of the original array. But that is
exactly what the method would do if it were applied directly to the subarray of length n - 1, starting
at position 1intheorigina array. Thiscompletesthe proof. It aso suggests a recursive formulation
of the shuf f I e method, whose details are left as an exercise for the reader.

You might think that that'sall thereisto this story, but there's one final chapter. Do you suppose
that the fixed shuf f | e method generates all permutations of a 52-card deck, represented as a 52-
element array, with equal likelihood? After al, we just proved it fair. It probably won't surprise you
at this point that the answer is an emphatic no. The problem isthat we assumed, way back at the
start of the puzzle, that "the underlying pseudorandom number generator isfair.” Itisnt.

The random number generator, j ava. ut i | . Random takes a 64-bit seed, and the sequence of
numbersit generatesisfully determined by that seed. There are 52! permutations of a 52-card deck,
but only 264 seeds. What fraction of the permutations does that cover? Would you believe 2.3 x 10-
47 percent? That is apolite way of saying "practically none." If you use

java. security. Secur eRandomin place of j ava. ut i | . Random you get a 160-bit seed, but that buys
you surprisingly little: The shuf f I e method still fails to return some permutations for arrays with
more than 40 el ements (because 40! > 2160), For a 52-element array, you still get only 1.8 x 10-18
percent of the possible permutations.

Does that mean that you shouldn't trust these pseudorandom number generators for shuffling cards?
It depends. They generate a negligible fraction of the possible permutations, but they have no
systematic biasthat we're aware of. It seemsfair to say that these generators are good enough for
casua use. If you need a state-of-the-art random number generator, you'll have to ook el sewhere.

In summary, shuffling an array, like many algorithms, istricky. It's easy to get it wrong and hard to
tell that you did. All other things being equal, you should use trusted librariesin preference to
handwritten code. If you want to learn more about the issues discussed in this puzzle, see [Knuth98
3.4.2].

4 FREV < Day Day Up > MEXT @l

@ rev | < Day Day Up > =

Puzzle 95: Just Desserts

Most of the puzzles in this chapter were quite challenging. Thisone isn't. What does each of the
following programs print? The first two were reported as platform bugs, if you can believe it [Bug
4157460, 4763901]:

public class ApplePie {
public static void main(String[] args) {
int count = O;
for (int i = 0; i < 100; i++); {
count ++;

}

Systemout . println(count);

i mport java.util.*;
public class BananaBread {
public static void main(String[] args) {
Integer[] array = { 3, 1, 4, 1, 5, 9 };
Arrays.sort(array, new Conparator<lnteger>() {
public int conpare(lnteger i1, Integer i2) {

returnil <i2 ?-1: (i2>i17?21: 0);

1)

Systemout.println(Arrays.toString(array));

public class Chocol at eCake {
public static void main(String[] args) {

Systemout.println(true?fal se:true == true?false:true);

Solution 95: Just Desserts

If you made it thisfar, you don't need detail ed explanations for these silly puzzles so well keep
them short and Sweet:

A. This program prints 1. It suffers from an excess of punctuation. (Cancer of the semicolon?)

B. Thisprogram prints[3, 1, 4, 1, 5, 9] onallimplementationsthat we're aware of.
Technically, its output is undefined. Its comparator suffersfrom "heads | win, tails you lose"
syndrome.

C. This program printsf al se. Itstypographical layout does not match the precedence of its
operators. A few parentheses might help.

Thelesson of this puzZe, and of this entire book, is: Don't code like my brother.

@ rne < Day Day Up >

Appendix A. Catalog of Traps and Pitfalls

Have you done the puzzles yet? If not, go to Chapter 1! Go directly to Chapter 1. Do not pass GO.
Do not collect $200. If you read thischapter before doing the puzzles, it will take all the fun out
of the book. Don't say we didn't warn you.

This chapter contains a concise taxonomy of traps and pitfallsin the Java platform. Each entry in
the catalog is divided into three parts:

A short description of thetrap or pitfall
Prescription: How to avoid the trap or reduce therisk of falling victim.

References. Pointers to additiona information concerning the trap. Thistypically includes a
reference to the puzzl e that i s based on the trap. Many entries a so have Java Language
Soecification and Effective Java references [JLS, EJ].

s < Day Day Up > |

1. Lexical Issues

This section concernsthe lexical structure of Java programs: the tokens that make up programs and
the characters that make up tokens.

1.1. The letter el looks like the digit 1 in many fonts

Prescription: Inlongliterals, always use acapital € (L), never alowercase e (I). Do not use alone
el (1) asavariable name.

References: Puzzle 4.

1.2. Negative hex literals appear positive

Prescription: Avoid mixed-type computation; usel ong literalsinstead of i nt literals where
appropriate.

References. Puzzle 5; [JLS 3.10.1].

1.3. Octal literals look like decimal literals

Prescription: Avoid octa literas. If you must use them, comment al usesto make your intentions
clear.

References. Puzzle 59; [JLS 3.10.1].

1.4. Unicode escapes for ASCII characters are confusing

Prescription: Don't use Unicode escapesfor ASCII characters. Where possible, use ASCI|
character directly. In string literals and character literd's, prefer escape sequencesto Unicode
escapes.

References. Puzzles 14, 16, and 17; [JLS 3.2, 3.3].

1.5. Backslashes must be escaped, even in comments

Prescription: If you are writing a system that generates Java source code, escape backd ashesin
generated character literas, string literals, and comments. Windows filenames are a common
source of trouble.

References. Puzzles 15 and 16; [JLS 3.3].

1.6. Block comments do not nest

Prescription: Use single-line comments to comment out code.

References. Puzzle 19; [JLS 3.7, 14.21].

LS REpAR AN @y

s < Day Day Up > |

2. Integer Arithmetic

This section concerns arithmetic on the integral types: byt e, char, short, i nt, and | ong.

2.1. Nonzero result of %operator has sign of left operand

Prescription: If you need a nonnegati ve remainder, process the result of the % operator by adding
the modulusif the result is negative.

References. Puzzles 1 and 64; [JLS 15.17.3].

2.2. Integer arithmetic overflows silently

Prescription: Use typesthat are sufficiently large to hold results, including intermediate results.
References: Puzzles 3, 26, 33, and 65; [JLS 4.2.2].

2.3. The sign of the difference of i nt values does not reliably indicate
their order

Prescription: Do not use a subtracti on-based comparator unless you are sure that the difference

between values will never be greater than | nt eger . MAX_VALUE. Note that thisisa special case of
Trap 2.2.

References. Puzzle 65; [EJ Item 11].

2.4. Compound assignment operators can cause silent narrowing cast

Prescription: Don't use compound assignment operators on vari ables of type byt e, short, Or char .

References. Puzzles 9 and 31; [JLS 15.26.2].

2.5. Integral types are asymmetric: | nt eger. M N_VALUE IS its own
negation, as is Long. M N_VALUE

Prescription: Program defensively. Usel ong instead of i nt if necessary.

References. Puzzles 33 and 64; [JLS 15.15.4].

2.6. Shift operators use only the low-order bits of their right operand

Prescription: Shift by aconstant amount; if you must shift by avariable amount, check that the
shift distanceisin range.

References. Puzzle 27; [JLS 15.19].

2.7. When converting between integral types, sign extension is
performed if the source type is signed

Prescription: Be careful when working with byt e values, which are signed. To suppresssign
extension, use a bit mask.

References. Puzzle 6; [JLS 5.1.2].

N 7
‘\/"

s < Day Day Up > |

3. Floating-Point Arithmetic

This section concerns arithmetic on the floating-point types. f 1 oat and doubl e.

3.1. Floating-point arithmetic is inexact

Prescription: Don't use fl oating-point where exact results are required; instead, use an integra type
Or Bi gDeci nmal .

Avoid floating-point |oop indices.

Avoid using the ++ and - - operators on floating-point variables, as these operators have no effect on
most floating-point val ues.

Avoid testing floating-point values for equality.
Prefer doubl e tof 1 oat .

References: Puzzles 2, 28, and 34; [JLS3 4.2.3], [EJ Item 31], and [|[EEE-754].

3.2. NaN is not equal to any floating-point value, including itself

Prescription: Avoid testing floating-point va ues for equality. This isnot aways sufficient to avoid
problems, but it'sagood Start.

References. Puzzle 29; [JLS 15.21.1] and [|[EEE-754].

3.3. Conversions fromint tofloat, | ongto float, and | ongto doubl e are
lossy

Prescription: Avoid computations that mix integral and floating-point types. Prefer integral
arithmetic to floating-point.

References. Puzzles 34 and 87; [JLS5.1.2].
3.4. The Bi gbeci mal (doubl) constructor returns the exact value of its
floating-point argument

Prescription: Always usethe Bi gDeci mal (St ri ng) constructor; never use Bi gDeci mal (doubl e) .

References: Puzzle 2.

< Day Day Up >

s < Day Day Up > |

4. Expression Evaluation

This section concerns aspects of expression evaluation that are not specific to integer or floating-
point arithmetic.

4.1. Mixed-type computations are confusing

Prescription: Avoid mixed-type computations.

When using the? : operator with numeric operands, use the same numeric type for both the second
and third operands.

Prefer constant variablesto inline magic numbers.

References: Puzzles 5, 8, and 24.

4.2. Operands of operators are evaluated left to right

Prescription: Avoid multiple assgnmentsto the same variable in the same expression. Especially
confusing are multiple compound assignment operatorsin the same expression.

References. Puzzles 7, 25, and 42; [JLS 15.7] and [EJ Item 37].

4.3. Operator precedence is not always obvious

Prescription: Use parentheses, not white space, to make precedence explicit. Replaceinline
congtant expressions with named constant variabl es.

References: Puzzles 11, 35, and 95.
4.4. Operators ==and ! = perform reference comparisons on boxed
primitive types

Prescription: To force avalue comparison, assign or cast one operand to the appropriate primitive
type before comparing.

References: Puzzle 32; [JLS 15.21, 5.1.8].

4.5. Constant variables are inlined where they are used

Prescription: Avoid exporting constant fiel ds unl ess they represents true constants that will never
change.

Use an identity function to make an expressi on nonconstant.

References. Puzzle 93; [JLS 4.12.4, 13.1, 15.28].
4.6. Operators & and | evaluate both operands even when used on
bool ean values

Prescription: Avoid the& and| operatorsfor bool ean operands. Document any intentional uses.

References: Puzzle 42; [JLS 15.22.2, 15.24].

AL A R

5. Flow of Control

This section concerns statements that affect flow of control, and exceptions.

5.1. Missing break in switch case causes fall-through

Prescription: Don't fall through from one nonempty case to another: Terminate each nonempty
case With abreak. Document any intentional fall-throughs.

References. Puzzle 23; [JLS 14.11].

5.2. It is difficult to terminate an i nt -indexed loop at I nt eger. MAX_VALUE

Prescription: Toterminateani nt -indexed loop at | nt eger . MAX_VALUE, use al ong loop index or
write the loop very carefully.

References: Puzzle 26.

5.3. Abrupt completion of afinal I y block masks pending transfer of
control

Prescription: Ensure that every final I'y block completes normally, barring afatal error. Do not
return from or throw an exception fromafinal Iy block.

References. Puzzles 36 and 41; [JLS 14.20.2].
5.4. Using exceptions for normal control flow leads to bugs and poor
performance

Prescription: Use exceptions only for exceptional cases, never for normal control flow.

References. Puzzle 42; [EJitem 39].

6. Class Initialization

This section concerns class |oading and initiali zation.

6.1. Order of class initialization is top to bottom

Prescription: Ensure that static fields are initiaized in an appropriate order. Use lazy initialization
to resol ve initialization cycles, which can involve one or more classes.

References. Puzzles 49 and 52; [JLS 12.4.2] and [EJ Item 48].

6.2. Timing of NoCl assDef FoundErr or is unreliable

Prescription: Do not catch NoCl assDef FoundErr or . Instead, use reflection and catch
Cl assNot FoundExcept i on.

More generally, don't catch Err or or its subclasses.

References: Puzzle 44; [JLS 12.2.1].

s < Day Day Up > |

7. Instance Creation and Destruction

This section concerns constructors, pseudoconstructors, instance initialization, and finalization.

7.1. Instance initializers execute before constructor body

Prescription: If a self-typed instance field causes recursion during construction, ensure that the
recursion terminates.

References. Puzzle 40; [JLS 12.5].

7.2. Invoking an overridden method from a constructor causes method
to run before instance is initialized

Prescription: Never invoke an overridable method from a constructor.
Use lazy initialization to resolve initiali zation cycles.

References: Puzzle 51; [EJ Items 15 and 48].

7.3. Failure to null out references can cause memory leaks

Prescription: Null out obsol ete object referencesin long-lived objects. Failure to do so resultsin
memory |leaks, more properly known as unintended object retentionsin garbage-col lected
languages, such as Java.

References: [EJ Item 5].

7.4. Failure to add a private constructor makes a class instantiable

Prescription: If you want a classto be uninstanti able, add a private constructor.
More generally, always provide at |east one constructor; never depend on the default constructor.

References: [EJ Item 3].

7.5. Finalizers are unpredictable, dangerous, and slow

Prescription: Avoid finalizers.

References. [EJ Item 6].

7.6. Cloned objects can share internal state

Prescription: Avoid implementing Cl oneabl e. If you implement it, copy any internal objects that
you do not want to share between the object and its clone.

References: [EJ Item 10].

s < Day Day Up > |

8. Other Class- and Instance-Related Topics

This section concerns method i nvocation, method design, class design, and generic types.

8.1. There is no dynamic dispatch on static methods

Prescription: Never qualify a static method invocation with an express on; aways use a type.

References. Puzzle 48; [JLS 15.12.4.4].

8.2. Inner classes are confusing

Prescription: Prefer static member classesto inner classes.

References. Puzzles 80, 89, 90, and92; [EJ Item 18].

8.3. Failure to make defensive copies destroys immutability

Prescription: Make defensi ve copies of input parameters and output val ues as required.

References: [EJ Item 24].

8.4. Implementing an interface affects the API of the implementing
class

Prescription: Do not implement an interface to gain unqualified accessto its static fields.
Do not write an interface cons sting solely of fields, a so-caled constant interface.

In release 5.0 and later rel eases, use static import as a replacement for the Constant Interface
antipattern.

References: [EJ Item 17] and [Java-5.0].

8.5. Using i nt constants as enum values is unsafe

Prescription: Use enumtypesor, if you are using arelease before 5.0, implement Typesafe Enums.

References: [EJ Item 21].

8.6. Mixing raw and parameterized types weakens type checking

Prescription: Eliminate "unchecked" warnings reported in your code.
Avoid using raw typesin code intended for use with release 5.0 or alater release.

References. Puzzle 88; [JLS 4.8].

8.7. Returning nul I instead of a zero-length array or collection is error
prone

Prescription: Don't return nul I from an array- or coll ection-returning method.

References: [EJ item 27].

s < Day Day Up > |

9. Name Reuse

This section concerns the many forms of name reuse possiblein Java. The overriding prescription
is: Avoid name reuse except for overriding. See aso "A Glossary of Name Reuse" on page 180.

9.1. It is easy to overload when you intend to override

Prescription: Mechanically copy the declaration of each superclass method that you intend to
override; better yet, let your IDE do it for you.

If you are using release 5.0 or alater release, use the @ver ri de annotation.

References: Puzzle 58.

9.2. Overload-resolution rules are not obvious

Prescription: Avoid overloading.
Provide stati ¢ factories rather than multiple constructors.

If two methodsin your API are both applicable to some invocation, ensure that both methods have
the same behavior on the same actua arguments.

References: Puzzles 11, 46, and 74; [JLS 15.12.2] and [EJ Items 1 and 26].

9.3. Programs that hide entities are difficult to understand

Prescription: Avoid hiding.

References. Puzzles 66, 72, 73, and 92; [JLS 8.3, 8.4.8.2, 8.5].

9.4. Programs that shadow entities are difficult to understand

Prescription: Avoid shadowing.
Do not reuse namesfromj ava. | ang. Obj ect in public APIs.
Don't try to use static import on aname that is aready defined.

References: Puzzles 71, 73, 79, and 89; [JLS6.3.1, 15.12.1].

9.5. Programs that obscure entities are difficult to understand

Prescription: Avoid obscuring. Obey the naming conventions.

References. Puzzles 68 and 69; [JLS 6.3.2, 6.5.2, 6.8] and [EJ Item 38].

9.6. A method with the same name as its class looks like a constructor

Prescription: Obey the naming conventions.

References. Puzzle 63; [JLS 6.8] and [EJ Item 38].
9.7. Programs that reuse platform class names are difficult to
understand

Prescription: Avoid reusing platform class names, and never reuse class namesfromj ava. | ang.

References: Puzzle 67.

s < Day Day Up > |

10. Strings

This section concern character strings.

10.1. Arrays do not override Obj ect .t oSt ri ng

Prescription: For char arrays, use stri ng. val ueO to obtain the string representing the designated
sequence of characters. For other types of arrays, use Arrays. t oSt ri ng or, prior to release 5.0,
Arrays. asli st.

References: Puzzle 12; [JLS 10.7].

10.2. string.repl aceAl | takes aregular expression as its first argument

Prescription: Ensure that the argument isalegal regular expression, or use Stri ng. repl ace
instead.

References: Puzzle 20.
10.3. string.repl aceAl | takes areplacement string as its second
argument

Prescription: Ensure that the argument isalegal replacement string, or use Stri ng. repl ace
instead.

References: Puzzle 20.

10.4. Repeated string concatenation can cause poor performance

Prescription: Avoid using the string concatenation operator in loops.

References: [EJitem 33].

10.5. Conversion of bytes to characters requires a charset

Prescription: Always select a charset when converting abyt e array to astring or char array; if you
dont, the platform default charset will be used, |eading to unpredictable behavior.

References: Puzzle 18.

10.6. Values of type char are silently converted toi nt, not String

Prescription: To convert achar toastring, use Stri ng. val ueCf (char) .

References: Puzzles 11 and 23; [JLS5.1.2].

R AAY R

LS e [nexT e

11.1/0

This section concernsthe packagej ava. util .i o.

11.1. Stream cl ose can throw | CExcept i on

Prescription: Catch and, typically, ignore exceptionson cl ose.

References: Puzzle 41.

11.2.PrintStreamwrite(int) doesn't flush output streams

Prescription: Avoid Print Stream wri te(int). If youuseit, call f 1 ush asrequired.

References: Puzzle 81.

11.3. Consume the output of a process, or it may hang

Prescription: Always consume the output of processes you create.

References: Puzzle 82.

SRpA AN R

s < Day Day Up > |

12. Threads

This section concerns multithreaded programming. Multithreaded programming is difficult! The
overriding prescription is: Avoid low-level multithr eaded programming where possible. Instead,
use higher level multithreaded abstractions, such asthose introduced by j ava. uti | .concurrent in
release 5.0. Thisisan important specia case of theadvicein Trap 15.5.

12.1. Calling Thr ead. run doesn't start a thread

Prescription: Never call Thr ead. r un.

References: Puzzle 76.

12.2. Library classes may I ock or not i fy their instances

Prescription: Don't use an instance lock if you extend alibrary class. Instead, use a separate ock
obj ect stored in aprivate field.

References. Puzzle 77; [EJ Item 15].

12.3. Thread.i nt errupt ed clears the interrupted status

Prescription: Don't use Thr ead. i nter r upt ed unlessyou want to clear the interrupted status of the
current thread.

References: Puzzle 84.

12.4. Class initialization runs with the c ass lock held

Prescription: To avoid therisk of deadlock, never wait for a background thread during class
initialization.

References: Puzzle 85; [JLS 12.4.2].
12.5. Failure to synchronize when sharing mutable state can result in
failure to observe state changes

Prescription: Synchronize access to shared mutable state.

References: [EJ Item 48].

12.6. Invoking alien method from within a synchronized block can
cause deadlock

Prescription: Never cede control to an alien method from within a synchroni zed method or bl ock.

References: [EJ item 49].

12.7. Invoking wai t outside of a whi | e loop causes unpredictable
behavior

Prescription: Never invokewai t outside a whi | e loop.

References: [EJ item 50].

12.8. Depending on the thread scheduler may result in erratic and
platform-dependent behavior

Prescription: To write robust, responsive, portable multithreaded programs, ensure that few
threads are runnable at any given time.

References: [EJ item 51].

SRpAR AR

13. Reflection

This section concerns Java's core reflection APIs.

13.1. Reflection checks access to the entity and to its class

Prescription: Use reflection to instanti ate classes; interfaces to accessinstances.

References. Puzzle 78; [EJ Item 35].

13.2. Reflectively instantiating an inner class requires an extra
argument

Prescription: Don't use reflection on inner classes.
Prefer static member classesto inner classes.

References: Puzzle 80; [JLS 13.1] and [EJ Item 18].

13.3. Cl ass. new nst ance can throw undeclared checked exceptions

Prescription: Usej ava. | ang.reflect. Construct or. new nst ance instead of Cl ass. newi nst ance
if there isany possibility of the constructor throwing a checked exception.

References: Puzzle 43.

LS R ALAN R =y

s < Day Day Up > |

14. Serialization

This section concerns Java's obj ect serialization system.

14.1. Making a class serializable introduces a public pseudoconstructor

Prescription: Think twice before making a class serializable.
Think twice before accepting the default r eadObj ect method.
Write r eadoj ect methods defensively.

References: [EJ Items 54 and 56].

14.2. The serialized form is a part of a class's public API

Prescription: Design serialized forms with the same care that you would design any other AF.

Reference: [EJ Items 54 and 55].
14.3. Using the default serialized form leaks private fields into aclass's
public API

Prescription: Consider using acustom serialized form.

References: [EJ Item 55].

14.4. Using the default serialized form can cause poor performance

Prescription: Consider using acustom serialized form.

References: [EJ Item 55].

14.5. Maintaining instance-control invariants requires a r eadResol ve
method

Prescription: Alwayswrite ar eadResol ve method for singletons, handwritten Typesafe Enums,
and other i nstance-control led i nstanti abl e classes.

References. Puzzle 83; [EJ Items 2 and 57].

14.6. Failure to declare a serial version UID causes fragility

Prescription: Declare an explicit serial version UID in serializable classes.

References: [EJ Items 54 and 55].

14.7. I1f readObj ect Or r eadResol ve invokes overridable methods,
deserializing cyclic object graphs can cause corruption

Prescription: If a HashSet , HashMap, Or Hasht abl e will be serialized, ensure that its contents do
not refer back to it.

InreadObj ect and r eadResol ve methods, avoid invoking methods on objects currently being
deserialized. If you must viol ate this advice, ensure that no problematic cycles exist in the object

graph.

References: Puzzle 91.

DA VAN R

15. Other Libraries

This section concern various Java platform libraries.
15.1. Overriding equal s without overriding hashCode can cause erratic
behavior

Prescription: When overriding equal s, always override hashCode.

References. Puzzle 57; [EJ Item §].

15.2. cal endar and Dat e are poorly designed

Prescription: Be careful when using Cal endar and Dat e; aways consult the APl documentation.

References: Puzzle 61.

15.3. Many classes are immutable, their method names notwithstanding

Prescription: Do not be mided into thinking that immutabl e types are mutable. Immutable types
includestring, | nt eger, Long, Short, Byt e, Char act er , Bool ean, Fl oat , Doubl e, Bi gl nteger, and
Bi gDeci nal .

References: Puzzle 56.

15.4. Some deprecated methods are toxic

Prescription: Avoid deprecated methods, such as Thr ead. st op, Thr ead. suspend,
Runt i me. runFi nal i zer sOnExi t, and Syst em r unFi nal i zer sOnExit .

References. Puzzle 39 and 43; [ThreadStop].
15.5. Using homemade solutions instead of libraries tends to cause
wasted effort, bugs, and poor performance

Prescription: Know and use the libraries.

References. Puzzles 60, 62, and 94; [EJ Item 30].

LS e [nexT e

Appendix B. Notes on the lllusions

This appendix contai ns brief descriptions of the illusions that appear throughout the book. The
descriptions are grouped loosely by category. Within each category, the order is roughly
chronological.

R A A RS

s < Day Day Up > |

Ambiguous Figures

An ambiguous figure isadrawing that can be seen in two or more ways, though not at the same
time. One kind of ambiguous figure is atwo-dimensional drawing that can be seen to represent one
of several different three-dimensional figures. The Ambiguous Cube (page 67) can be seen in three
ways. as alarge cube with asmall cubic region missing from one corner, asasmall cube sitting
insgde a corner of alarger one, and asalarge cube with a small cube protruding from one corner.

Another kind of ambiguous figure isthe figure-ground illusion, which isadrawingthat can be seen
in two ways, depending on what you perceive as the figure and what you perceive asthe
background. The drawings on pages 158 and 231 can be seen as black arrows pointing outward

agai nst a white background, or as white arrows pointing inward againgt a black background. The
drawing on page 97 can be seen as white letters against a black background, or as black shapes

agai nst a white background.

e < Day Day Up > =

s < Day Day Up > |

Impossible Figures

An impossible figureisatwo-dimensiona perspective drawing of afigure that cannot exist in three
dimensions. The arrangement of cubes on page 122 is based on an impossible figure drawn by
Swedish artist Oscar Reutersvérd in 1934. This drawingisthought to be the first impossible figure
ever devised. Reutersvard devoted his career to impossible figures.

The Penrose Triangle (pages 36 and 126) is closely related to Reutersvard's triangle of cubes, but it
was created i ndependently by physicist Roger Penrose in 1954. The Penrose Stairway (page 63)
was created in the mid 1950s by geneticist and psychiatrist Lionel Penrose, the father of Roger
Penrose. The Penrose stairway forms the basis of M. C. Escher's famous lithograph Ascending and
Descending (1960).

The Three-Stick Clevis (pages 59 and 200) is al so known by many other names, such as Widgit,
Poiuyt, and Impossible Trident. Its origins are unknown, but it dates back at least to 1964, when D.
H. Schuster wrote an article about it in the American Journal of Psychology. The clevis also graced
the cover of the March 1965 issue of MAD Magazine, held aoft by asmiling Alfred E. Neuman.
The Ambihelical Hex Nut (pages 154 and 249) and the Impossible Ring (pages 109 and 164) are two
more impossi ble figures of unknown origin.

e < Day Day Up >

Geometrical lllusions: Size

The Jastrow illusion (page 85) was described by psychol ogist Joseph Jastrow in 1891. The two
shaded areas are identical in size and shape, but most peopl e perceive the top one to be smaller. The
Ebbinghaus (or Titchener) illusion (page 137) was described by psychol ogist Hermann Ebbinghaus
in 1897. The two central circles are the same size, but most peopl e perceive the one on theright to
be smaller.

The Shepard illusion (page 93) is based on a 1990 drawing by Stanford psychologi st Roger Shepard
[Shepard90]. The two tabletops are the same size and shape, but perspective cues make them look
very different. Shepard first demonstrated the effect in 1981.

@ rev | < Day Day Up > =

Geometrical lllusions: Direction

The Twisted Cord illusion (pages 13 and 221), a so known as the Fraser figure, was described by
psychologist James Fraser in 1908. The letters "CAFE babe" on page 13 are set straight and true; the
perceived tilt isillusory. What appearsto be atilted "square spira” on page 221 isin fact eight
concentric squares, set straight and true.

The Ehrenstein illusion (page 35) was described by psychol ogist Walter Ehrenstein in 1925. The
sides of the square are straight, but they appear to curve towards the center of the circles.

The Café Wall illusion (page 39) was first demonstrated by Fraser in 1908, and named by Richard
L. Gregory and PriscillaHeard [Gregory79]. The lines of black and white tiles appear danted but
they are perfectly level. Theillusion getsits name from the fact that it was found in atile pattern on
thewall of acaféin Bristol, England.

The Cushion illusion (page 152) was devised by vision scientist and artist Akiyoshi Kitaoka in
1998. This drawing consists solely of rectangles and squares, set straight and true; the curvatureis
al inyour mind. If you find this hard to believe, you can confirm it with a straightedge. The Bulge
illusion (page 65) and the Checkered Flag illusion (page 169) were al so devised by Kitaokain

1998. They consist solely of squares, set straight and true; the bulging and rippling are in your mind.
All three of these illusions are based on the same underlying effect.

The Turtlesillusion (page 225) was devised by Kitaoka in 2002. The vertical edges appear tilted but
they run straight up and down. The underlying effect, known asthe illusion of Fringed Edges, was
described by Kitaoka, Pinna and Brel staff [Kitaoka01].

e < Day Day Up >

s < Day Day Up > |

Subjective Contours

A subjective contour, a so known as an illusory contour, is a perceived edge that does not exist. The
classic example isfound in the Kanizsa triangle (pages 146 and 242), devised by Gestalt
psychologist Gaetano Kanizsain 1955. A white triangle appearsto float above a black triangular
outline, but the lines that form the white triangle don't exist. Your mind constructs them from the
contoursimplied by the "Pac-Man" figures. The variant on page 147 is based on afigure devised by
Branka Spehar [Spehar00], and the variant on pages 15 and 168 is based on afigure devised by
Takeo Watanabe and Patrick Cavanagh [Watanabe92]. The three-dimensional variants on pages
100 and 101 are based loosdly on the Subjective Necker cube of Bradley and Petry, discussed |ater
in this appendix. The Kanizsa Dot Window on page 69 is based on a figure drawn by Kanizsain
1979.

The Shadow Letters on page 27 are al so a subjective contour illusion. Y our mind perceives the
letters A, B, and C, when all that is present i s the shadows that these letters would cast.

< Day Day Up >

s < Day Day Up > |

Anomalous Motion lllusions

Anomalous motion illusions are drawings whose components appear to move. The MacKay's Rays
illusion (page 203) was described by Donald MacK ay in 1957. FHgure-eight patterns appear to move
about the drawing as you scan over it with your eyes. The drawings on pages 47, 192, and 230 are
based on the MacKay's Squaresillusion, described by MacKay in 1961. The figure appearsto blink
asyou look at it. Thisilluson formsthe basis of Reginald Neal's op art prints Square of Three
(1964) and Sguare of Two (1965).

The Ouchi illusion (page 173) was devised by artist Hajime Ouchi in 1973 [Ouchi 77]. Theinset
appears to be on a different plane from the main figure, and to vibrate.

The Scintillating Grid illusion (page 161) was discovered by Elke Lingelbach in 1994 [Schrauf97].
Black spots appear to sparkle in the white disks where the grid lines meet.

The drawing on page 96 is based on Kitaoka's Waves illusions (2004). Gentle waves appear to
undul ate through the circles. The Rotating Shakes illusion (page 136) was devised by Kitaoka in
2003. If you haven't seen the original, you owe it to yourself to visit
http://www.psy.ritsumei.ac.jp/~akitaoka/rotsnakee.html. The effect is breathtaking. Both waves and
rotating snakes are based on the stepwise luminance profile variant of the Peripheral Drift illusion
[Kitaoka03b].

< Day Day Up >

http://www.psy.ritsumei.ac.jp/~akitaoka/rotsnakee.html

8 FREV < Day Day Up > | NExTHp |

lllusions of Lightness

Anillusion of lightness is an image in which we misperceive the lightness (or luminance) of some
portion of the image. The smplest lightnessillusion isthe Smultaneous Contrast illusion, in which
areas of identical lightness appear lighter or darker depending on the background against which
they're displayed. This effect has been known since ancient times. It is demonstrated by the images
on pages 163 and 165. I n both of these images, the central rectangle and the second frame from the
outside are the same shade of gray throughout, but they appear to get lighter as the surrounding
frame gets darker.

The checkerboard pattern on page 23 is based loosely on the Craik-O'Brien-Cornsweet illusion. The
top and bottom squares appear lighter than the left and right squares, but al four squares are
identical. The lighter corners of the top and bottom squares point inward, while the lighter corners
of the left and right squares point outward. Changes in lightness at the edges where the squares
meet i nfluence your perception of the relative lightness of the squares.

Logvinenko's illusion (page 189) was devised by vision scientist Alexander Logvinenko
[Logvinenko99]. Strange as it may seem, the horizontal cube faces are all the same shade of gray. If
you think the horizontal facesin the first and third rows are lighter than the onesin the second and
fourth, cover the vertical faceswith amask and prepare to be surprised. The effect underlying this
illusion isclosaly related to the Craik-O'Brien-Cornsweet illusion.

A similar effect isexploited in Todorovic's Gradient Chessboard illusion (page 149), devised by
vision scientist Dgjan Todorovic [Todorovic97]. Though the disks on the checkerboard appear to be
of three diff erent shades of gray, they are al the same.

The Vasarely illusion, devised by op artist Victor Vasarely, is shown on pages 228 and 229. There
appears to be adark cross on the diagonals of the light version (page 228) and alight cross on the
diagonals of the dark version (page 229), but no such crosses exist.

The drawing on page 211 is based on White's effect [White79]. The gray bars separated by white
bars appear lighter than the gray bars separated by black bars, but al the gray bars are the same.

The drawing on page 135 is based on Adel son's | llusion of Haze [Adelson99]. The central diamond,
which appears clear, is exactly the same shade of gray as the two flanking diamonds, which appear

hazy.

The drawing on page 127 is based loosely on Kitaoka's Light of Chrysanthemums (2005), which
uses Zavagno's Glare effect [Zavagno99]. The center of the flower appears unnaturally bright and
an illusory fog appears between the petas.

48 FREV < Day Day Up > NEXT o

8 FREV < Day Day Up > | NExTHp |

Compound lllusions

Compound illusons combine two or moreillusory effects. The drawing on page 160 is based on
Ehrenstein'sfigure, discovered by Walter Ehrenstein in 1941. It combines subjective contours with
anillusion of lightness. Your mind perceives circleswhere the grid lines converge, and the circles
are unnaturally bright.

The Qubjective Necker Cube (pages 33 and 224) was devised by Bradley and Petry [Bradley77]. It
combines subjective contours with an ambiguous figure. You can see two cubes, one at atime, but
the figure contains none. It merely suggests the edges that compri se these cubes.

The drawing on page 57, based on an illusion by vision scientist Nicholas Wade, combines
subjective contours with an illusion of lightness: Y our mind percel ves concentric circles at the radii
where the arcs cross, and the circles appear brighter than the surrounding page.

The drawings on pages 48 and 49 are based on the Neon Squareilluson of Marc Albert and Donald
Hoffman [Albert99]. This illus on combines subjective contours with the Neon Soreading effect
[van Tuijl 75]. Not only do you perceive squares where none exist, but the squares have illusory
color. Theillusory square on page 48 appears hazy and the one on page 49 appears dark.

The drawing on page 125 uses an effect similar to the one that Kitaoka used in cushion, bulge, and
checkered flag. The drawing looks like a spiral, but it cons sts of concentric circles. If you move
towards the drawing or away from it, it appearsto rotate.

The drawing on page 92 combines the "out-of-focus” effect found in Kitaokas Earthquake (2001)
with MacKay's squares. The frame appears to fl oat above the defocused grid, and the grid appears
to vibrate.

Finally, the front cover illustration combines the Peripheral Drift illusion, the Scintillating Grid, and
athird unnamed illusion. The outer ring of fishes appearsto rotate clockwise, the inner ring appears
to rotate counterclockwise, the white disks at the intersections of the grid lines appear to sparkle,
and the grid inset appearsto move dightly relative to the fishes.

4 FREV < Day Day Up > NEXT

8 FREV < Day Day Up > | NExTHp |

References

[Adelson99] Adelson, E. H. "Lightness perception and lightnessillusions.” In M. S. Gazzaniga
(Ed.), The New Cognitive Neurosciences, MIT Press, 2nd ed., 1999: 339-351. ISBN: 0262071959.
Also availabl e as http://web.mit.edu/persci/peopl e/adel son/pub_pdfs/'gazzan. pdf

[Albert99] Albert, Marc K., and Donald D. Hoffman , "“The generic-viewpoint assumption and
illusory contours." In Perception, Vol. 29 (1999): 303—-312.

[Bradley77] Bradley, D. R., and H. M. Petry. "Organizati onal determinants of subjective contour:
the subjective Necker cube." In American Journal of Psychology, Vol. 90 (June 1977): 253-262.

[Boute92] Autoboxing. Sun Microsystems. 2004.
http://java.sun.com/j 2se/5.0/docs/gui def/l anguage/autoboxing.html

[Boxing] Boute, Raymond. "The Euclidean definition of the functions div and mod." In ACM
Transactions on Programming Languages and Systems, Vol. 14, No. 2 (April 1992): 127-144.

[Bracha04] Bracha, Gilad. Genericsin the Java Programming Language. 2004.
http://java.sun.com/j 2se/ 1.5/pdf/generics-tutorial.pdf

[Bug] Java Bug Database. Sun Microsystems, 1994—2005.
http://bugs.sun.com/bugdatabase/i ndex.jsp

[Eclipse] Eclipse Downloads. The Eclipse Foundation, 2002—2005.
http://www.eclipse.org/downloads/index.php

[EJ] Bloch, Joshua . Effective Java™ Programming Language Guide. Addison-Wed ey, 2001.
ISBN: 0201310058.

[Features-1.4] J2SE 1.4.2 Summary of New Features and Enhancements. Sun Microsystems, 2002.
http://java.sun.com/j 2se/1.4.2/docs/relnotes/features.html

[Features-5.0] New Features and Enhancements J2SE 5.0. Sun Microsystems, 2004.
http://java.sun.com/j 2se/5.0/docsrelnotes/features.html

[Gammad5] Gamma, Erich , Richard Helm , Ral ph Johnson , and John Vlissides . Design Patter ns:
Elements of Reusable Object-Oriented Softwar e. Addison-Wed ey, 1995. ISBN: 0201633612.

http://web.mit.edu/persci/people/adelson/pub_pdfs/gazzan.pdf
http://java.sun.com/j2se/5.0/docs/guide/language/autoboxing.html
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://bugs.sun.com/bugdatabase/index.jsp
http://www.eclipse.org/downloads/index.php
http://java.sun.com/j2se/1.4.2/docs/relnotes/features.html
http://java.sun.com/j2se/5.0/docs/relnotes/features.html

[Gregory79] Gregory, Richard L. , and PriscillaHeard . "Border |ocking and the Café Wall illusion.”
In Perception, Vol. 8 (1979): 365-380.

[Hovemeyer04] Hovemeyer, David , and William Pugh . FindBugs—Find Bugs in Java Programs.
2004—-2005. http://findbugs.sourcef orge.net

[[EEE-754] IEEE Standar d for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers. IEEE 754-1985 (R1990). 1990.

[1SO-8859-1] ISO/IEC JTC 1/SC 2/WG 3. 1SO 8859, 8-bit Sngle-Byte Coded Graphic Char acter
Sets—Part 1. Latin Alphabet No. 1. 1SO 8859-1:1987. 1987.

[1SO-C] Programming Languages—C. International Organization for Standardization. ISO/IEC
9899:1999. 1999.

[Java-5.0] Java Programming Language Enhancements in JDK 5. Sun Microsystems, 2004.
http://java.sun.com/j 2se/5.0/docs/gui de/l anguage

[Java-API] Java 2 Platform Sandard Edition 5.0 API Specification. Sun Microsystems, 2004.
http://java.sun.com/j 2se/5.0/docsapi

[JDK-5.0] Download Java 2 Platform Standard Edition 5.0. Sun Microsystems, 2004.
http://java.sun.com/j 2se/5.0/downl oad.j sp

[Jikes] Jikes Home. Open Source Technol ogy Group, 1997-2005. http://jikes.sourceforge.net

[JLS] Goding, James , Bill Joy, Guy Steele, and Gilad Bracha. The Java™ Language
Soecification, Third Edition. Addison-Wed ey, 2005. ISBN: 0321246780. Also available as
http://java.sun.com/docs/books/j Is/downl oad/l angspec-3.0.pdf

[JLS2] Godling, James, Bill Joy , Guy Steele, and Gilad Bracha. The Java™ Language
Soecification, Second Edition. Addison-Wed ey, 2000. ISBN: 0201310082.

[JVMS] Lindholm, Tim, and Frank Y elin. The Java™ Virtual Machine Specification, Second
Edition. Addison-Wed ey, 1999. ISBN: 0201432943.

[Kitaoka0D1] Kitaoka, A., B. Finna, and G. Brelstaff. "New variations of spira illusons." In
Perception, Vol. 30 (2001): 637-646.

[Kitaokal2] Kitaoka, Akiyoshi. Trick Eyes, Kanzen, Tokyo, 2002. ISBN: 4901782118.

[Kitaoka03] Kitaoka, Akiyoshi. Trick Eyes 2, Kanzen, Tokyo, 2003. ISBN: 4901782169.

http://findbugs.sourceforge.net
http://java.sun.com/j2se/5.0/docs/guide/language
http://java.sun.com/j2se/5.0/docs/api
http://java.sun.com/j2se/5.0/download.jsp
http://jikes.sourceforge.net
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf

[Kitaoka03b] Kitaoka, Akiyoshi, and Hiroshi Ashida. "Phenomenal characteristics of the periphera
drift illusion." In Vision (Japan), Vol. 15, No. 4 (2003): 261-262. Also available as
http://www.psy.ritsumei.ac.jp/~akitaoka/PDrift.pdf

[Kitaoka05] Kitaoka, Akiyoshi. Trick Eyes, Barnes and Noble Publishing, October 2005.

[Knuth98] Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Third Edition. Addison-Wed ey, 1998. ISBN: 0201896842.

[Liskov87] Liskov, B. "Data abstraction and hierarchy." In Addendum to the Proceedings of
OOPSLA'87 and SSGPLAN Notices, Vol. 23, No. 5: 17-34, May 1988.

[Logvinenko99] Logvinenko, Alexander D. "Lightnessinduction revisited." In Perception, Vol. 28
(1999): 803-816.

[MaryBlog] Smaragdis, Mary. Weblog: MaryMaryQuiteContrary. 2004—2005.
http://blogs.sun.com/rol | er/page/ mary

[Modula-3] Nelson, Greg (ed.). Systems Programming with Modul a-3. Prentice Hall, 1991. ISBN:
0135904641.

[Ouchi77] Ouchi, Hajime. Japanese Optical and Geometrical Art. Dover Publications, 1977. ISBN:
048623553X.

[Schrauf97] Schrauf, M., B. Lingelbach, and E. R. Wist. "The scintillating grid illusion.” In Vision
Research, Vol. 37 (1997): 1033-1038.

[Shepard90] Shepard, Roger N., Mind Sghts: Original Visual Illusions, Ambiguities, and Other
Anomalies, with a Commentary on the Play of Mind in Per ception and Art. W.H. Freeman and Co,
1990. ISBN: 0716721341.

[Spehar00] Spehar, B. "Degraded illusory contour formation with non-uniform inducersin Kanizsa
configurations: the role of contrast polarity.” In Vision Resear ch, Vol. 40, No. 19 (September 2000):
2653-2659.

[ThreadStop] Why Are Thread.stop, Thread.suspend, Thread.resume and
Runti me.runFinalizersOnExit Deprecated? Sun Microsystems, 1999.
http://java.sun.com/j 2se/5.0/docs/gui de/misc/threadPri miti veDeprecation.html

[Todorovic97] Todorovic, D. "Lightness and junctions.” In Perception, Vol. 26 (1997): 379-394.

[van Tuijl 75] van Tuijl, H. F. "A new visual illusion: neonlike col or spreading and complementary

http://www.psy.ritsumei.ac.jp/~akitaoka/PDrift.pdf
http://blogs.sun.com/roller/page/mary
http://java.sun.com/j2se/5.0/docs/guide/misc/threadPrimitiveDeprecation.html

color i nducti on between subjective contours.” In Acta Psychologica, Vol. 39 (1975): 441-445.

[Turing36] Turing, A. "On Computable Numbers, with an Application to the
Entscheidungsproblem.” In Proceedings of the London Mathematical Society, Series 2, Val. 42,
1936; reprinted in M. David (ed.), The Undecidable, Dover Publications, 2004.

[Watanabe92] Watanabe, T. , and P. Cavanagh. "Depth capture and transparency of regions
bounded by illusory, chromatic, and texture contours." In Vision Resear ch, Vol. 32 (1992):
527-532.

[White79] White, M. "A new effect of pattern on perceived lightness." In Perception, Vol. 8 (1979):
413-416.

[Zavagno99] Zavagno, D. "Some new luminance-gradient effects.”" In Perception, Vol. 28 (1999):
835-838.

= Day Day Up >

T < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

T < Day Day Up >

e < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] (3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

1= not equal to operator
%wremainder operator 2nd
% compound assignment operator for remainder 2nd
o printf end-of-line format
& AND operator 2nd
& conditional-AND operator
& compound assignment operator for AND 2nd
*= compound assignment operator for multiplication 2nd
+ addition operator 2nd 3rd

precedence of
+ string concatenation operator 2nd 3rd 4th
++ increment operator
+= compound assignment operator for addition 2nd
- subtraction operator
- unary negation operator 2nd 3rd
-= compound assignment operator for subtraction 2nd
-sour ce
-Xlint:fall through
/ division operator 2nd
/* */ comment delimiters
/1 end of line comment 2nd
/= compound assignment operator for division 2nd
42
< less-than relational operator 2nd 3rd
<< left shift operator
<<= compound assignment operator for left shift 2nd
<= less-than-or-equal relational operator
<=> Perl comparison operator
= assignment operator 2nd 3rd
== equal-to operator 2nd 3rd
== equal-to operator, vs. equal s
> greater-than relational operator 2nd
>= greater-than-or-equal relational operator
>> right shift operator
>>= compound assignment operator for right shift 2nd
>>> unsigned right shift operator
>>>= compound assignment operator for unsigned right shift 2nd 3rd
2. conditional operator 2nd

operand types and
@ver ri de annotation
\ escape character 2nd
\" single quote escape sequence
\\ escaped backslash
\n newline escape sequence
\t tab escape sequence
\u unicode escape sequence
~ exclusive-OR operator
~= compound assignment operator for exclusive-OR 2nd 3rd
| OR operator
| = compound assignment operator for OR 2nd

|| conditional-OR operator
~ bitwise complement operator

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

abrupt completion
access modifiers

hiding fields and

overriding methods and 2nd
accessing nonpublic types
acronyms, naming conventions and
addition operator

precedence of
advanced language features, reflection and
alternate constructor invocation
AND operators

bitwise

conditional

logical
annotations, @verride
annotations, d ass
antisymmetric relation
APl changes, incompatible
arithmetic

decimal

doubl e

floating point 2nd 3rd 4th

IEEE 754 2nd

int 2nd

I ong

mixed-type 2nd

modular

two's complement binary 2nd 3rd 4th
arithmetic operations, type conversions in
arithmetic operators

overloading 2nd

performance
A ray | ndexOut Of BoundsException 2nd
Arrays. aslLi st
Arrays. deepToStri ng
Arrays.equal s
Arrays. hashCode
Arrays.sort
Arrays.toString 2nd
assignment compatibility
assignment operators [See compound assignment operator, simple assignment operator]
assignment, definite
autoboxing 2nd 3rd

operators and

e < Day Day Uy >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [31 [K] [L1] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

backslash character 2nd
backward compatibility
Bi gDeci mal
Bi gDeci mal . si gnum
Bi gl nteger
Bi gl nteger. bit Count
Bi gl nteger. signum
binary compatibility
binary floating-point arithmetic 2nd
binary numeric promotion 2nd 3rd
bit

masks

shifts

twiddling
bitwise AND operator
blank finals
block comments
blocking
boxed numeric types
break statements
buffers, flushing
bugs, tools for finding 2nd
Byte. MAX_VALUE

s < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

Cal endar problems
callback, jectlInput Val i dation.vali dat etbject
cast operator
casting 2nd
hiding and
unchecked
catch clauses, rules for
char
arrays, string representation of
concatenation of
character literals, escape sequences and
character sets
character vs. integer interpretation
Character.reverseByt es
Charset. def aul t Charset
checked exceptions
catch clauses and
method declarations and 2nd
re-raising
static initializers and
d ass. forNane, return type of
d ass.getAnnot ati on
d ass. getNane
d ass. new nstance 2nd
specification for
VS. Const ructor . newl nstance
d assCastException 2nd
classes
extending inner 2nd
initialization cycles
initialization of 2nd
deadlock during
inner, generics and
library, constants and
member
static vs. nonstatic
missing
name reuse
naming 2nd
nested static, type parameters and
hject.toString and
precedence of members
reflection and
static vs. inner
d assNot FoundError
d oneNot Suppor t edExcept i on
d oseabl e.close
code migration to generics
Goll ecti ons

Coll ecti ons.rever seOrder

Coll ecti ons. shuffle
comments
delimiters 2nd 3rd
nesting
string literals in
Unicode escapes in
Conpar at or
subtraction based
comparison operators
numerical, list of
rules for operands of
comparisons
mixed-type 2nd 3rd
reference vs. value 2nd 3rd
compile-time constant expression
compilers
error detection by 2nd
halting problem and
composition, vs. inheritance 2nd
compound assignment operators 2nd
avoiding type conversion in
casting
for addition
for exclusive OR
list of
operands
result types of
rules for operands of
computations, mixed-type 2nd
concatenation
operator 2nd 3rd 4th
precedence of
string
conditional compilation
conditional expressions 2nd
operand types of
result types of
conditional operators
constant variables
constants
inheriting from interfaces
library classes and
naming
Vvs. magic numbers 2nd
Const ructor . new nstance
constructors
exception declarations by
hidden, serialization and
invoking superclass
of inner classes
of non-static nested classes
order of execution in
overridable methods and
signatures of
vs. members
vs. methods
conversions [See type conversions, unboxing conversions]
covariant return types, reflection and

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

Date problems
Date, name conflict with
deadlock 2nd
during class initialization
finalizers and
decimal arithmetic
decimal literals
declarations
obscuring and
of exceptions
parameterized
shadowing and
default constructors
definite assignment
deprecated methods
Runti ne. runFinal i zer sOnExi t
Systemr unFinalizersExit
THRead. st op
THRead. suspend
deserialization of object graphs
Doubl e. NaN 2nd
Doubl e. PCSI TIVE_| NFI N TY
Doubl e.t oSt ring
dynamic dispatch
static methods and

s < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

Elvis
encapsulation 2nd
end-of-line comment
enum constants
enum types 2nd
reflection and
equality
operators 2nd
reference
value
equal s, VS. ==
equivalence classes
Er ror
catching
error streams, draining
escape sequences
HTML entity
in character literals
in string literals 2nd
octal
Unicode
compilation and 2nd
in comments 2nd
in string literals
obfuscation and
Vs. escape sequences 2nd
Windows file names and
vs. Unicode escapes
evaluation order
Exception
catching
serialization and
exception checking, bypassing
exceptions [See also checked exceptions, unchecked exceptions]
checking
d ass. new nstance and
loop control and
verification and
exclusive OR operator 2nd
exponent in floating-point representation
exponential algorithms
expression statement
expressions, evaluation order of 2nd
extending inner classes 2nd

e < Day Day Uy >

s < Day Day Up >

Index

[SymBOL] [A] [B] [C] [P] [E] [F]1 [G] [H] [1] [31 [K] [L1] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

factorial
fairness of shuffling
fencepost errors
fields
hiding, access modifiers and
int, initial value of
Fi | e. separator
fi nal
fields, hiding and
methods vs. fields
finalizers, deadlock and
fi nal Iy clauses
exceptions in
exiting 2nd
first common superclass
flags for javac
-sour ce
-Xlint:fallthrough
Fl oat . NaN
floating point arithmetic
infinity in
NaN
floating-point representation 2nd
flow analysis
flushing buffers
for-each loop
formal parameters

e < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

generic interface
generics 2nd
inner classes and
reflection and
type checking for
Vs. raw types

< Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [31 [K] [L1] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

half-open loop form
halting problem
hashCode contract
hashCode, identity based
Hashvap 2nd 3rd
serialization and
HashSet, serlialization and
HashSet . readbj ect
Hasht abl e, serlialization and
hexadecimal 2nd 3rd 4th
hexadecimal representation of int
hidden constructors
hiding 2nd 3rd 4th
casting and
definition of
fields, access modifiers and
final fields and
vs. overloading
HTML entity escapes

= < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

identity-based hash-code
I dent i tyHashMap
idiom, private constructor capture
if statement to comment out code
Il egal AccessExcepti on 2nd
Il egal Argunent Exception 2nd
immutability
incompatible APl changes
inference, of return type
infinite recursion
infinity
inheritance
of private members
vs. composition 2nd 3rd
initialization
instance
of classes 2nd
of instance variables
of object graph
inner classes
default public constructor of
extending 2nd
generics and
Vs. static
instance
fields, updating
initialization
lock
methods, qualifiers of
variable initialization
instance™®
instantiation, reflection and
Instanti ati onExcepti on 2nd 3rd
integer division 2nd
integer literals
octal values of
padding
Integer. bit Count
Integer. highestneBi t
Integer. | owest OneBit
Integer. MaX_VALUE 2nd 3rd
subtraction-based Gonparat or and
Integer. MN_VALUE 2nd 3rd 4th
Math. abs and
I nteger. number O Leadi ngZer os
Integer. number & Trai | i ngZer os
Integer. reverse
Integer. reverseBytes
Integer. rot atelLef t

Integer. rot ateRi ght

Integer. si gnum
integral types, boundary conditions of
interfaces
for method invocation
inheriting constants from
interned strings 2nd
InterruptedException 2nd
Invocati onTarget Excepti on
| OExcept i on 2nd
islnterrupted

1SO-8859—41

< Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [31 [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

java. lang, name reuse and

java.lang.refl ect.Constructor, VS. d ass. new nstance
java. util.concurrent .| ocks

java. util.regex

java. uti | . ThreadLocal

javac 2nd

join points

e < Day Day Uy >

e < Day Day Uy -

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] KT [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [4]

keywords
fi nal
null 2nd
super
this 2nd

e < Day Day Uy >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [ND [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

languages, safe vs. unsafe
Latin-1 character set
least common supertype
left shift operators
less-than operator
libraries, development of
library classes
constants in
locking and
line separators
line terminators
Li nkedHashSet
linking, steps in
Liskov Substitution Principle
Li st
literals
class, generic types and
naming of
string, escape sequences and
string, in comments
Unicode escapes in
values of
local variable declaration statements
locking
library classes and
of instance vs. thread
locks, reentrant
logical operators
I ong arithmetic
Long. bi t Count
Long. hi ghest OneBi t
Long. | owest CneBi t
Long. M N_VALUE
Math. abs and
Long. number O Trai | i ngZer os
Long. reverse
Long. reverseBytes
Long. rot atelLef t
Long. rot ateR ght
Long. si gnum
loops
exceptions for control of
types of indices for

< 0ay Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L1 [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

magic numbers 2nd
mantissa, in floating-point representation
Nap
Mat cher. quot eRepl acenent
Mat h. abs
Mat h. si gnum
members
classes, static vs. nonstatic 2nd
precedence, vs. static imports
private, inheritance of
methods
dynamic dispatch and
exception declarations
naming 2nd
overloading 2nd
overridable, constructors and
overriding package-private
overriding, access modifiers and
qualification of 2nd
resolution of 2nd
signatures of overriding
synchronized
unintentional overloading of
Vs. constructors
migrating code to generics
mixed types
arithmetic on
comparisons of 2nd 3rd
computations with 2nd
conditional expressions and
equality operators and
modular arithmetic
monetary calculations
multiple assignments 2nd
multiplication operator
multithreading
locking and
mutual exclusion

s < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

name reuse 2nd
naming

classes 2nd

conflicts, within Java

constants

conventions 2nd

acronyms and

literals

methods 2nd

packages

type parameters

variables 2nd
NaN
narrowing primitive conversions 2nd 3rd
nested classes

type parameters and
nested classes, reflection and
nesting

comments

TRy-cat ch constructs
Nod assDef FoundEr ror
nonstatic member classes 2nd
No Suc hMet hodEr ror
notify
notifyA I
nul I keyword 2nd
Nul | Poi nter Except i on 2nd
numerical comparison operators 2nd

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

bj ect, name conflict with
(bject.clone
(bj ect.equals 2nd 3rd
overloading 2nd
object.getClass() . get Met hod(net hodNane)
(bj ect. hashCode
contract
identity-based
Cbject.noti fy
Cbject.noti fyAll
hject.toString 2nd
Cbject.wait
Cbj ectInput Str eam readObj ect 2nd
Cbjectinput Stream register Val i dation
CbjectInput Val idation.vali dat eChj ect
objects
graph, deserialization of
referencing during deserialization
obscuring
definition of
syntactic context and
workaround for
octal
escapes
literals
values
operands
of comparison operators
of compound assignment operators
of conditional expressions
of simple assignment operators
operators [See also compound assignment operator, simple assignment operator]
addition
arithmetic, precedence of
autoboxing and
bitwise AND
cast
comparison
operands of
rules for
concatenation
conditional AND
conditional OR
conditional vs. logical
equality 2nd
exclusive OR 2nd
instanced
integer division
left shift
less than

logical AND
logical OR
logical vs. conditional
multiplication
numerical comparison
list of
overloading of 2nd 3rd 4th
performance of arithmetic
postfix increment
precedence of 2nd
question-mark colon [See conditional expressions]
remainder 2nd 3rd
right shift
shifts, behavior of
string concatenation 2nd 3rd
precedence of
three-valued comparator
truncating integer division
unary negation 2nd
unsigned right shift 2nd
OR operators
conditional
logical
order of evaluations
output streams
draining
flushing
subprocesses and
overflow 2nd 3rd
silent 2nd
overloading
definition of
methods
(hj ect.equals 2nd
Print Stream print
PrintWiter.println
String. val ueof
St ringBuffer.append
of constructors
operators 2nd 3rd 4th
resolution of 2nd
unintentional
vs. hiding
overridable methods, constructors and
overriding
definition of
methods
access modifiers of
constructors and
method signatures
Chject.equal s
Cbj ect. hashCode
Cbject.toString
Print Streamprintlin
methods, constructors and
package-private methods and

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

package-private methods, overriding
packages

naming

precedence of names
parameterized declarations
parameterized type
parameters

formal

implicit, in inner class constructor

type, static nested classes and
parentheses 2nd

for grouping

order of evaluation and

string concatenation and
Pattern. quote
patterns, typesafe enum
platform dependencies

file name separators

line separators
postfix increment operator
precedence

members vs. static imports

of operators 2nd

variable names vs. types
precision, silent loss of
preorder traversal
Print Stream, specification of
PrintStreamprint 2nd
Print Stream printf
PrintStreamprintin 2nd 3rd 4th
Print Streamwite
print Witer.printf
PrintWiter.printlin 2nd
private constructor capture idiom
private members
Process 2nd
Pr ocessBui | der
Pr ocessBui | der .redirect ErrorStream
programming style, instance fields
pseudoconstructors
pseudorandom number generation, systematic bias in
punctuation, excessive

e < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

qualifiers
qualifying
static members
static methods
types
for method invocation
for reflective access
question-mark colon operator [See conditional expressions]

s < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L1 [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

Random
random number generation
raw types, vs. generics
real-time guarantee
recursion
infinite
Reent rant Lock
Reent rant ReadW it eLock
refactoring
definite assignment and
inner classes and generics
reference equality
reference identity comparisons 2nd
reflection
advanced language features and
class detection with
instantiating inner classes and
missing classes and
reflexivity
regular expressions 2nd
remainder operator 2nd 3rd
remainders
replacement strings
result types
of compound assignment operators
of conditional expressions
right shift operators
unsigned 2nd
Runti ne. add Shut downHook

Runti me. runFinal i zer sOnExi t

= < Day Day Up >

e < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

safe languages
Secur eRandom
Serializabl e
Serializabl e.readResol ve
serialization 2nd
encapsulation and
Set
shadowing 2nd 3rd
definition of
generics and
in constructors
shift distances
Short .rever seBytes
shuffling
shutdown hooks
sign extensions 2nd 3rd 4th 5th
sign-bit, in floating-point representation
significand, in floating-point representation
silent casting 2nd
silent loss of precision
silent overflow 2nd 3rd 4th 5th 6th
simple assignment operator
operands of
singleton
slash character
SQL DECIMAL type
St ackOverfl owError 2nd
statement labels
statements, abrupt completion of

static
classes
nested, type parameters and
VS. inner
dispatch 2nd
fields
imports

member classes
Vs. nonstatic
members, accessing
static analysis tools 2nd
streams, output, flushing
StrictMath. signum
string concatenation operator 2nd 3rd
precedence of
string conversion
string literals
escape sequences in 2nd
in comments
Unicode escapes and
String.i ndext:

String.repl ace 2nd
String.repl aceAl 2nd
String.valuedt 2nd
St ringBuffer.append
strings
concatenation of
conversion of
interned 2nd
St ri ngTokeni zer
subprocesses, streams and
subsumption
super keyword
superclasses
constructor invocation
first common
swapping variable values
swi tch statement
symmetric
synchronization
synchroni zed block, reentrant locks and
synchronized methods, behavior of
Systemerr
Systemexit 2nd
Systemhal t
System out
Systemout. flush
Systemout. print
Systemout. print(char)
Systemout. print(String)
Systemout. printl n 2nd 3rd
Systemout. wite(int)
Systemr unFinalizersExit

systematic bias

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T [V] [V] [W] [Z]

target typing 2nd
this construct
this keyword 2nd
THRead(Runnabl e)
Thread.i nterrupted
THRead. i sl nterrupted
Thread.join
Thread. run
THRead. sl eep
THRead. start
THRead. st op
THRead. suspend
threads
interrupted status of
state changes of
Thread.run VS. Thread. start
Throwabl e, catching
throws clauses, constructor declarations and
Ti mer
tools, for detecting bugs 2nd
topology-preserving object graph transformations
toString 2nd
total ordering, Conparat ors and
transitivity
of Conparat or
traversal, preorder
truncating integer division operator
TRy clauses
checked exceptions in
nesting
Systemexit and
TRy-finally constructs
flow of control in
interaction with systemexit
recursionin
reentrant locks and
static initializers and
two's-complement binary arithmetic 2nd 3rd
asymmetry in
type parameters
naming 2nd
static nested classes and
type tokens
type variable declaration
types [See also narrowing primitive conversions, widening primitive conversions]
conversions of
byte to char 2nd
byte tO int
byte tO String
char toint 2nd

char[] tO String
doubl e tO String
fl oat tOint
int to fl oat
I ong tO doubl e
long to fl oat
loss of precision in
to string 2nd
erasure of 2nd
precedence of
raw, vs. generics
typesafe enum pattern

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L1 [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

ulp
unary negation operator 2nd 3rd
unboxing 2nd
unchecked casts
unchecked exceptions 2nd
underflow
Unicode characters
char as
Unicode escapes
compiler and 2nd
in comments 2nd
VS. escape sequences
Windows file names and
unsafe languages
unsigned right shift operator 2nd
Unsuppor t edEnc odi ngExcepti on

e < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

value comparisons 2nd
value equality
varargs 2nd
variables
multiple assignments of 2nd
names, precedence of
naming 2nd
swapping values
verification
virtual machine
exception checking and
exiting

e < Day Day Up >

s < Day Day Up >

Index

[SYmBOL] [A] [B] [C] [P] [E] [F] [G] [H] [1] [9] [K] [L1 [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

wai t

white space 2nd 3rd 4th 5th 6th
for grouping
parsing and

widening primitive conversion 2nd 3rd 4th 5th 6th
loss of precision in 2nd

wildcard type

Windows file names, Unicode escapes and

s < Day Day Up >

@ rrey | R

Index

[SYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [Z]

zero-extension

_

	Java Puzzlers: Traps, Pitfalls, and Corner Cases
	Table of Contents
	Copyright
	Preface
	Acknowledgments

	Chapter 1. Introduction
	Chapter 2. Expressive Puzzlers
	Puzzle 1: Oddity
	Puzzle 2: Time for a Change
	Puzzle 3: Long Division
	Puzzle 4: It's Elementary
	Puzzle 5: The Joy of Hex
	Puzzle 6: Multicast
	Puzzle 7: Swap Meat
	Puzzle 8: Dos Equis
	Puzzle 9: Tweedledum
	Puzzle 10: Tweedledee

	Chapter 3. Puzzlers with Character
	Puzzle 11: The Last Laugh
	Puzzle 12: ABC
	Puzzle 13: Animal Farm
	Puzzle 14: Escape Rout
	Puzzle 15: Hello Whirled
	Puzzle 16: Line Printer
	Puzzle 17: Huh?
	Puzzle 18: String Cheese
	Puzzle 19: Classy Fire
	Puzzle 20: What's My Class?
	Puzzle 21: What's My Class, Take 2
	Puzzle 22: Dupe of URL
	Puzzle 23: No Pain, No Gain

	Chapter 4. Loopy Puzzlers
	Puzzle 24: A Big Delight in Every Byte
	Puzzle 25: Inclement Increment
	Puzzle 26: In the Loop
	Puzzle 27: Shifty i's
	Puzzle 28: Looper
	Puzzle 29: Bride of Looper
	Puzzle 30: Son of Looper
	Puzzle 31: Ghost of Looper
	Puzzle 32: Curse of Looper
	Puzzle 33: Looper Meets the Wolfman
	Puzzle 34: Down for the Count
	Puzzle 35: Minute by Minute

	Chapter 5. Exceptional Puzzlers
	Puzzle 36: Indecision
	Puzzle 37: Exceptionally Arcane
	Puzzle 38: The Unwelcome Guest
	Puzzle 39: Hello, Goodbye
	Puzzle 40: The Reluctant Constructor
	Puzzle 41: Field and Stream
	Puzzle 42: Thrown for a Loop
	Puzzle 43: Exceptionally Unsafe
	Puzzle 44: Cutting Class
	Puzzle 45: Exhausting Workout

	Chapter 6. Classy Puzzlers
	Puzzle 46: The Case of the Confusing Constructor
	Puzzle 47: Well, Dog My Cats!
	Puzzle 48: All I Get Is Static
	Puzzle 49: Larger Than Life
	Puzzle 50: Not Your Type
	Puzzle 51: What's the Point?
	Puzzle 52: Sum Fun
	Puzzle 53: Do Your Thing
	Puzzle 54: Null and Void
	Puzzle 55: Creationism

	Chapter 7. Library Puzzlers
	Puzzle 56: Big Problem
	Puzzle 57: What's in a Name?
	Puzzle 58: Making a Hash of It
	Puzzle 59: What's the Difference?
	Puzzle 60: One-Liners
	Puzzle 61: The Dating Game
	Puzzle 62: The Name Game
	Puzzle 63: More of the Same
	Puzzle 64: The Mod Squad
	Puzzle 65: A Strange Saga of a Suspicious Sort

	Chapter 8. Classier Puzzlers
	Puzzle 66: A Private Matter
	Puzzle 67: All Strung Out
	Puzzle 68: Shades of Gray
	Puzzle 69: Fade to Black
	Puzzle 70: Package Deal
	Puzzle 71: Import Duty
	Puzzle 72: Final Jeopardy
	Puzzle 73: Your Privates Are Showing
	Puzzle 74: Identity Crisis
	Puzzle 75: Heads or Tails?
	A Glossary of Name Reuse

	Chapter 9. More Library Puzzlers
	Puzzle 76: Ping Pong
	Puzzle 77: The Lock Mess Monster
	Puzzle 78: Reflection Infection
	Puzzle 79: It's a Dog's Life
	Puzzle 80: Further Reflection
	Puzzle 81: Charred Beyond Recognition
	Puzzle 82: Beer Blast
	Puzzle 83: Dyslexic Monotheism
	Puzzle 84: Rudely Interrupted
	Puzzle 85: Lazy Initialization

	Chapter 10. Advanced Puzzlers
	Puzzle 86: Poison-Paren Litter
	Puzzle 87: Strained Relations
	Puzzle 88: Raw Deal
	Puzzle 89: Generic Drugs
	Puzzle 90: It's Absurd, It's a Pain, It's Superclass!
	Puzzle 91: Serial Killer
	Puzzle 92: Twisted Pair
	Puzzle 93: Class Warfare
	Puzzle 94: Lost in the Shuffle
	Puzzle 95: Just Desserts

	Appendix A. Catalog of Traps and Pitfalls
	1. Lexical Issues
	2. Integer Arithmetic
	3. Floating-Point Arithmetic
	4. Expression Evaluation
	5. Flow of Control
	6. Class Initialization
	7. Instance Creation and Destruction
	8. Other Class- and Instance-Related Topics
	9. Name Reuse
	10. Strings
	11. I/O
	12. Threads
	13. Reflection
	14. Serialization
	15. Other Libraries

	Appendix B. Notes on the Illusions
	Ambiguous Figures
	Impossible Figures
	Geometrical Illusions: Size
	Geometrical Illusions: Direction
	Subjective Contours
	Anomalous Motion Illusions
	Illusions of Lightness
	Compound Illusions

	References
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_Z

