

January 23, 2013 Time: 01:54pm prelims.tex

Computational Solutions to

Practical Probability Problems

i

January 23, 2013 Time: 01:54pm prelims.tex

ii

January 23, 2013 Time: 01:54pm prelims.tex

Computational Solutions to

Practical Probability Problems

Paul J. Nahin

With a new preface by the author

Princeton University Press

Princeton and Oxford

iii

January 23, 2013 Time: 01:54pm prelims.tex

Copyright c© 2008 by Princeton University Press
Published by Princeton University Press,
41 William Street,
Princeton, New Jersey 08540
In the United Kingdom:
Princeton University Press,
6 Oxford Street,
Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

Cover design by Kathleen Lynch/Black Kat Design.
Illustration by Pep Montserrat/Marlena Agency.

All Rights Reserved

Second printing, and first paperback printing, with a new preface by the author,
2013

Library of Congress Control Number 2012954924
Cloth ISBN 978-0-691-12698-2
Paperback ISBN 978-0-691-15821-1

British Library Cataloging-in-Publication Data is available

This book has been composed in ITC New Baskerville

Printed on acid-free paper. ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2

iv

January 23, 2013 Time: 01:54pm prelims.tex

To the memories of

Victor Benedict Hassing (1916–1980)

who taught me mathematics at the “old’’ Brea-Olinda
Union High School, Brea, California (1954–58), and
who, when he occasionally walked to school with me in
the morning, would enthusiastically tell me of his latest
mathematical reading

and

Bess Louise (Lyman) Satterfield (1910–2001)

who, after a 1930s and ’40s “Golden Age’’ career in
Minnesota and Kentucky radio as a writer, editor, and
on-the-air performer, taught me how to write a proper
sentence in my senior English class at Brea-Olinda
High.

v

January 23, 2013 Time: 01:54pm prelims.tex

vi

January 23, 2013 Time: 01:54pm prelims.tex

Comments on Probability and Monte Carlo

An asteroid or comet impact is the only natural disaster
that can wipe out human society. . . . A large impact is an
improbable event that is absolutely guaranteed to occur.
Over the span of geological time, very large impacts have
happened countless times, and will occur countless more
times in ages to come. Yet in any given year, or in one
person’s lifetime, the chance of a large impact is vanishingly
small. The same, it should be noted, was also true when
the dinosaurs ruled Earth. Then, on one ordinary day,
probability arrived in the form of a comet, and their world
ended.
—Curt Pebbles, Asteroids: A History (Smithsonian Institution Press

2000), illustrating how even extremely-low-probability events
become virtually certain events if one just waits long enough

Monte Carlo is the unsophisticated mathematician’s friend.
It doesn’t take any mathematical training to understand and
use it.
—MIT Professor Billy E. Goetz, writing with perhaps just a bit too

much enthusiasm in Management Technology (January 1960)

January 23, 2013 Time: 01:54pm prelims.tex

viii Comments on Probability and Monte Carlo

The truth is that random events can make or break us. It is
more comforting to believe in the power of hard work and
merit than to think probability reigns not only in the casino
but in daily life.
—Richard Friedman, M.D., writing in the New York Times (April

26, 2005) on mathematics in medicine

Analytical results may be hard to come by for these cases;
however, they can all be handled easily by simulation.
—Alan Levine, writing in Mathematics Magazine in 1986 about a

class of probability problems (see Problem 13 in this book)

The only relevant difference between the elementary arith-
metic on which the Court relies and the elementary proba-
bility theory [of the case in hand] is that calculation in the
latter can’t be done on one’s fingers.
—Supreme Court Justice John Harlan, in a 1971 opinion

Whitcomb v. Chevis

January 23, 2013 Time: 01:54pm prelims.tex

Contents

Preface to the Paperback Edition xiii

Introduction 1

The Problems 35

1. The Clumsy Dishwasher Problem 37

2. Will Lil and Bill Meet at the Malt Shop? 38

3. A Parallel Parking Question 40

4. A Curious Coin-Flipping Game 42

5. The Gamow-Stern Elevator Puzzle 45

6. Steve’s Elevator Problem 48

7. The Pipe Smoker’s Discovery 51

8. A Toilet Paper Dilemma 53

9. The Forgetful Burglar Problem 59

10. The Umbrella Quandary 61

11. The Case of the Missing Senators 63

12. How Many Runners in a Marathon? 65

January 23, 2013 Time: 01:54pm prelims.tex

x Contents

13. A Police Patrol Problem 69

14. Parrondo’s Paradox 74

15. How Long Is the Wait to Get the Potato Salad? 77

16. The Appeals Court Paradox 81

17. Waiting for Buses 83

18. Waiting for Stoplights 85

19. Electing Emperors and Popes 87

20. An Optimal Stopping Problem 91

21. Chain Reactions, Branching Processes,
and Baby Boys 96

MATLAB Solutions To The Problems 101

1. The Clumsy Dishwasher Problem 103

2. Will Lil and Bill Meet at the Malt Shop? 105

3. A Parallel Parking Question 109

4. A Curious Coin-Flipping Game 114

5. The Gamow-Stern Elevator Puzzle 120

6. Steve’s Elevator Problem 124

7. The Pipe Smoker’s Discovery 129

8. A Toilet Paper Dilemma 140

9. The Forgetful Burglar Problem 144

10. The Umbrella Quandary 148

11. The Case of the Missing Senators 153

12. How Many Runners in a Marathon? 157

13. A Police Patrol Problem 160

14. Parrondo’s Paradox 169

January 23, 2013 Time: 01:54pm prelims.tex

Contents xi

15. How Long is the Wait to Get the Potato Salad? 176

16. The Appeals Court Paradox 184

17. Waiting for Buses 187

18. Waiting for Stoplights 191

19. Electing Emperors and Popes 197

20. An Optimal Stopping Problem 204

21. Chain Reactions, Branching Processes,
and Baby Boys 213

Appendix 1. One Way to Guess on a Test 221

Appendix 2. An Example of Variance-Reduction in the
Monte Carlo Method 223

Appendix 3. Random Harmonic Sums 229

Appendix 4. Solving Montmort’s Problem by
Recursion 231

Appendix 5. An Illustration of the Inclusion-Exclusion
Principle 237

Appendix 6. Solutions to the Spin Game 244

Appendix 7. How to Simulate Kelvin’s Fair Coin with a
Biased Coin 248

Appendix 8. How to Simulate an Exponential
Random Variable 252

Appendix 9. Index to Author-Created MATLAB
m-Files in the Book 255

Glossary 257
Acknowledgments 259
Index 261
Also by Paul J. Nahin 265

January 23, 2013 Time: 01:54pm prelims.tex

xii

January 23, 2013 Time: 01:54pm prelims.tex

Preface to the Paperback Edition

It is only the theoretic derivation of an answer that interests
me; not its computer confirmation. A Monte Carlo deriva-
tion only serves to taunt me in cases where a theoretic result
is not known.
— excerpt from a letter sent to the author by an unhappy

academic mathematician who had just finished reading the
hardcover edition of Digital Dice

As the opening quotation shows, the late, great Ricky Nelson was
right when he sang, in his classic 1972 soft-rock song “Garden
Party,’’ that “You can’t please everybody so you / got to please
yourself.’’ I was puzzled, and still am, at how one could be curious
about the numerical value of a probability only if it had been
calculated from a theoretically derived formula. I think that lack
of curiosity is carrying “purity’’ way too far. My correspondent’s
letter wasn’t all so extreme, however, as he was kind enough to
also include a detailed list of nontechnical concerns—what he called
“linguistic issues’’—that, in fact, I found quite helpful in preparing
this new edition of the book.

But not always. In particular, he took strong exception to the
book’s glossary definition of a concave set being one that is not
convex (a convex set is given the traditional topology textbook
definition in its own glossary entry). Quoting from his often

January 23, 2013 Time: 01:54pm prelims.tex

xiv Preface to the Paperback Edition

emphatic letter, “Surely you don’t really mean that all non-convex
regions are concave!’’

As I read that I thought (equally emphatically), “Well, in fact I
do!’’ His objection brought me up short—had I made a monumen-
tal blunder, one so embarrassingly awful as to make it impossible
for me to ever show up on campus again without wearing a bag
over my head?—and so I quickly scooted off to the University of
New Hampshire’s math library in Kingsbury Hall to look into the
matter. Soon I was sitting in the second-floor stacks, buried up to
my waist in the literally dozens of topology textbooks I had yanked
off the shelves. When I looked at their indexes I found that, while
all defined a convex set (just as given in this book’s glossary), none
of them—not one—defined a concave set. Topologists, apparently,
either don’t find the concept of concavity interesting or, far more
likely, I think, simply take it as obvious that concave means non-
convex.

And so, my curiosity sparked, I wrote back to my correspondent
to ask if he could please send me a sketch of a two-dimensional
set (the only kind considered in this book) that would illustrate just
what he had in mind. To his credit, he quickly replied to admit
that perhaps he had written a bit too hastily and that “I confess
to not having a general mathematical definition of the concept
‘concave’—certainly you would be free to make ‘non-convex’ the
official definition of ‘concave’ as far as it is to be used in your
book.’’

I mention all of this—the opening quotation and the con-
vex/concave set issue—to illustrate how far apart some (not all, of
course) pure mathematicians can be from engineers and physicists,
who are often confronted with problems that must be solved while
retaining all their grubby, annoying, realistic complications. To do
that, “impure’’ methods may have to be used because there are
no pure ones (yet) available. Digital Dice takes the decidedly prac-
tical approach of using computer simulation to study probability
problems (hence the book’s subtitle), under the assumption that
complicating details can’t always be ignored or swept under the
rug just because we want to obtain a theoretically pure, analytically
pretty solution. A theoretical solution that, precisely because all the

January 23, 2013 Time: 01:54pm prelims.tex

Preface to the Paperback Edition xv

annoying complications have been removed, may have absolutely
no connection with reality—“pretty’’ mathematically, that is, but
also pretty much irrelevant.

Physicists have a nice example of this sort of situation, the famous
conflict between “dry water’’ and “wet water.’’ “Wet water’’ is real
water, the stuff we drink and take baths in, and it is fantastically
difficult to reduce to analytical form. How do you solve equations
that contain within their symbols, all at the same time, thundering
tsunamis, gentle ripples, the foam of breaking waves on a shoreline,
the crazy eddies that form in ocean-connected inland bays where
the incoming tide smashes into the outgoing wake of a passing
motorboat, the vigorous swirls that form in the bowl when you
flush a toilet, the bubbles that form when you blow into a glass of
water through a straw, and on and on? Well, you don’t “solve’’ such
realistic equations, at least not by hand, on paper. You do it with a
computer, the tool at the center of this book.

The best that theoretical analysts have so far come up with is
“dry’’ water, imaginary stuff that is so simple to describe mathemati-
cally that its equations can be solved analytically. Unfortunately, dry
water has little to do (correction, just about nothing to do) with wet
water. Dry water makes a nice textbook example, but it doesn’t cut
any ice (Hey! Now there’s a thought—can dry water even freeze?)
with naval engineers who wonder, for example, how a new high-
speed torpedo design will actually run through the real, wet water
of a real, wet ocean.

Okay, on to what is new in this paperback edition of Digital Dice.
The hardcover edition prompted some quite interesting letters,
in addition to the one from the academic mathematician. Some
of them were so borderline bizarre that they were (sort of) fun
to read. For example, one reader wrote to vigorously complain
that in one of the MATLAB codes in the book there was a
missing parenthesis. He was right about that (and I wrote back to
apologize for my proofreading oversight, which has been corrected
in this new edition), but, after first claiming to be an experienced
MATLAB programmer, he then said the entire affair had been
quite traumatic, implying it had almost driven him to a nervous
breakdown. Huh? I wondered. MATLAB’s syntax checker gives an

January 23, 2013 Time: 01:54pm prelims.tex

xvi Preface to the Paperback Edition

immediate alert to a parentheses imbalance in a line, and even tells
you in which line the problem exists. A five-second look at that line
made it obvious where the dropped parenthesis went. Early in my
pre-academic career I worked for several years as a digital systems
logic designer and programmer, and ran into numerous situations
where things didn’t go quite right until after considerable tinkering,
but I never went home at night traumatized. Well, maybe he was just
having a bad day.

But maybe not, as that wasn’t the end of this particular corre-
spondent’s grumblings. He didn’t like my using names like size
and error in MATLAB codes because they are default MATLAB
function names; he claimed this is just awful and could result in
mass confusion, maybe even hysteria. Well, I can only assume that
as an experienced MATLAB programmer (taking him at his word),
he had temporarily forgotten about the function override feature
of MATLAB. MATLAB allows programmers to choose almost any
variable name they wish; in default, for example, pi is assigned the
value 3.14159265..., but if you want to make pi equal to five, well,
then, just write pi = 5 and from then on MATLAB is perfectly happy
to accommodate you. Nothing awful happens; computers don’t
melt and people certainly don’t start bumping into walls because
they are confused. As another example, it is common practice to
use the letter i as the index variable in a loop, but until you do that
i has the default value of

√−1.
I think it safe to assume that MathWorks designed a function

override feature into MATLAB because they expected it would be
used. To claim function override will terribly confuse people is, I
think, simply silly. I asked my correspondent if, when he writes a
MATLAB code and uses a particular variable name, is he never
going to use that same name again in any other code because the
earlier use will come back in his mind and confuse him? I hope not,
but who knows? I never got an answer.

Another reader was very angry with me because he didn’t have
access to a library that had all the literature cited in the book. To
that I could only write back and say that I really didn’t think his
lack of library access was my problem. He remained unconvinced,
however, and so I suppose his only hope—since I have absolutely no

January 23, 2013 Time: 01:54pm prelims.tex

Preface to the Paperback Edition xvii

idea what he expected me to do about his choice of where to live—is
to move to someplace that has decent library services.

Well, enough of the grumpy mail. Other readers provided
valuable feedback.

At the end of March 2008, for example, I received an email
from Stephen Voinea, then a junior math major at Caltech (and
later at MIT). He had spotted some numerical inconsistencies in
my discussion of the spin game, given as the final example of
the introduction. He was graciously modest and polite in his note
(“I imagine I am doing something wrong, or that what I believe
is a typo isn’t in fact a typo’’). Once Stephen had directed my
attention to his concerns, however, I soon had to write back to
say, “You have not made an error in catching . . . a screw-up. In
fact, there are three.’’ These were, fortunately, all easily corrected
typos that, but for Stephen’s sharp eye, would probably still be in
the book. Or perhaps not, because I also received a note (within
a week of Stephen’s) on the same issue from David Weiss, a high
school statistics teacher in Toronto, Canada. Thank you, Stephen
and David. All has now been put right.

In October 2008 I received an email from Shane G. Henderson,
a professor in the School of Operations Research and Information
Engineering at Cornell University. Shane wrote to tell me he
had found a complete, general, non-combinatorial analytical solution
to “Steve’s Elevator Problem’’! In the notation of that problem
(problem 6, pp. 48–50), Shane’s analysis gives the general answer

E(S) = 1 + (n − 3){1 − (
1 − 1

n

)k}.

You can partially check his formula against the three special cases
I mention in the book, to confirm that it does indeed reduce to
those special solutions. The details of Shane’s derivation are not
included here because I have decided to make them part of a new
book on probability problems, Will You Be Alive Ten Years from Now?
And Numerous Other Curious Questions in Probability, which Princeton
will be publishing in late 2013. So, until that new book appears, see
if you can derive Shane’s result.

January 23, 2013 Time: 01:54pm prelims.tex

xviii Preface to the Paperback Edition

Two papers I missed during my original writing of problem 20
(“An Optimal Stopping Problem’’) are: (1) Richard V. Kadison,
“Strategies In the Secretary Problem,’’ Expositiones Mathematicae,
November 2, 1994, pp. 125–144; and (2) John P. Gilbert and
Frederick Mosteller, “Recognizing the Maximum of a Sequence,’’
Journal of the American Statistical Association, March 1966, pp. 35–73.
Both papers include some additional interesting commentary on
the history of the problem (they date it back to at least 1953).

To end this commentary on material in the original edition
of this book, let me tell you an amusing story concerning the
great Princeton mathematician John von Neumann (see p. 29) and
appendix 8. In that appendix I show you how to generate random
numbers from an exponential distribution using a uniform distri-
bution. In a 1951 paper (“Various Techniques Used in Connection
With Random Digits’’) von Neumann treats the very same issue (in a
different setting from the one in this book’s problem). He mentions
the theoretical approach developed in appendix 8, which involves
calculating the natural logarithm of a number generated from a
uniform distribution, but then says that “it seems objectionable to
compute a transcendental function of a random number.’’ Earlier in
the paper von Neumann had already expressed this view: “I have
a feeling . . . that it is somehow silly to take a random number and
put it elaborately into a power series.’’ Just why he wrote that, I don’t
know.

Then, after describing what seems to me to be an overly com-
plicated alternative approach, von Neumann concludes with the
wry admission that “It is a sad fact of life, however, that under the
particular conditions of the Eniac [the world’s first all-electronic
computer, in the development of which von Neumann played a
central role] it was slightly quicker to use a truncated power series
for [the natural logarithm] than to [use his alternative method].’’
It’s not often you’ll read of von Neumann retreating on a technical
matter!

By the way, it is in that same 1951 paper that you’ll find von
Neumann describing how to make a fair coin out of a biased coin.
The result is what is called “Kelvin’s fair coin’’ in this book (see pp.
32–37 and 248–251). You would think the simple idea behind the

January 23, 2013 Time: 01:54pm prelims.tex

Preface to the Paperback Edition xix

method would have long been known, but, even as late as 1951, von
Neumann obviously felt it necessary to explain it to an audience of
mathematicians. All of us can always learn something new!

I thank my high school friend Jamie Baker-Addison for the
photograph of our high school English teacher, Bess Lyman, a lady
we both greatly admired. Jill Harris, the paperbacks manager at
Princeton University Press, made all the separate parts of this new
edition come together in the right order, and for that I am most
grateful. And finally, I thank my editor at Princeton University
Press, Vickie Kearn, for the opportunity to add this new material
to the paperback edition of Digital Dice.

Paul J. Nahin
Lee, New Hampshire
June 2012

January 23, 2013 Time: 01:54pm prelims.tex

xx

January 23, 2013 Time: 01:54pm prelims.tex

Computational Solutions to

Practical Probability Problems

xxi

January 23, 2013 Time: 01:54pm prelims.tex

xxii

October 22, 2007 Time: 02:55pm introduction.tex

Introduction

Three times he dropped a shot so close to the boat that the men at
the oars must have been wet by the splashes—each shot deserved
to be a hit, he knew, but the incalculable residuum of variables in
powder and ball and gun made it a matter of chance just where
the ball fell in a circle of fifty yards radius, however well aimed.
—from C. S. Forester’s 1939 novel Flying Colours (p. 227),

Part III of Captain Horatio Hornblower, the tale of a military man
who understands probability

This book is directed to three distinct audiences that may also enjoy
some overlap: teachers of either probability or computer science
looking for supplementary material for use in their classes, students
in those classes looking for additional study examples, and aficionados
of recreational mathematics looking for what I hope are entertaining
and educational discussions of intriguing probability problems from
“real life.’’ In my first book of probability problems, Duelling Idiots
and Other Probability Puzzlers (Princeton University Press, 2000), the
problems were mostly of a whimsical nature. Not always, but nearly
so. In this book, the first test a problem had to pass to be included
was to be practical, i.e., to be from some aspect of “everyday real life.’’

October 22, 2007 Time: 02:55pm introduction.tex

2 Introduction

This is a subjective determination, of course, and I can only hope I
have been reasonably successful on that score.

From a historical viewpoint, the nature of this book follows in a
long line of precedents. The very first applications of probability
were mid-seventeenth-century analyses of games of chance using cards
and dice, and what could be more everyday life than that? Then
came applications in actuarial problems (e.g., calculation of the value
of an annuity), and additional serious “practical’’ applications of
probabilistic reasoning, of a judicial nature, can be found in the three-
century-old doctoral dissertation (“The Use of the Art of Conjecturing
in Law’’) that Nikolaus Bernoulli (1687–1759) submitted to the law
faculty of the University of Basel, Switzerland, in 1709.

This book emphasizes, more than does Duelling Idiots, an extremely
important issue that arises in most of the problems here, that of
algorithm development—that is, the task of determining, from a possibly
vague word statement of a problem, just what it is that we are going to
calculate. This is nontrivial! But not all is changed in this book, as the
philosophical theme remains that of Duelling Idiots:

1. No matter how smart you are, there will always be probabilistic
problems that are too hard for you to solve analytically.

2. Despite (1), if you know a good scientific programming lan-
guage that incorporates a random number generator (and if it
is good it will), you may still be able to get numerical answers
to those “too hard’’ problems.

The problems in this book, and my discussions of them, elaborate
on this two-step theme, in that most of them are “solved’’ with a
so-called Monte Carlo simulation.1 (To maximize the challenge of the
book, I’ve placed all of the solutions in the second half—look there
only if you’re stumped or to check your answers!) If a theoretical
solution does happen to be available, I’ve then either shown it as well—
if it is short and easy—or provided citations to the literature so that you
can find a derivation yourself. In either case, the theoretical solution
can then be used to validate the simulation. And, of course, that
approach can be turned on its head, with the simulation results being
used to numerically check a theoretical expression for special cases.

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 3

In this introductory section I’ll give you examples of both uses of a
Monte Carlo simulation.

But first, a few words about probability theory and computer
programming. How much of each do you need to know? Well, more
than you knew when you were born—there is no royal road to the
material in this book! This is not a book on probability theory, and so I
use the common language of probability without hesitation, expecting
you to be either already familiar with it or willing to educate yourself if
you’re not. That is, you’ll find that words like expectation, random walk,
binomial coefficient, variance, distribution function, and stochastic processes
are used with, at most, little explanation (but see the glossary at the end
of the book) beyond that inherent in a particular problem statement.
Here’s an amusing little story that should provide you with a simple
illustration of the level of sophistication I am assuming on your part.
It appeared a few years ago in The College Mathematics Journal as an
anecdote from a former math instructor at the U.S. Naval Academy in
Annapolis:

It seems that the Navy had a new surface-to-air missile that could
shoot down an attacking aircraft with probability 1/3. Some top
Navy officer then claimed that shooting off three such missiles at
an attacking aircraft [presumably with the usual assumptions of
independence] would surely destroy the attacker. [The instructor]
asked his mathematics students to critique this officer’s reasoning.
One midshipman whipped out his calculator and declared “Let’s
see. The probability that the first missile does the job is 0.3333,
same for the second and same again for the third. Adding these
together, we get 0.9999, so the officer is wrong; there is still
a small chance that the attacking aircraft survives unscathed.’’
Just think [noted the instructor], that student might himself be
a top U.S. navy officer [today], defending North America from
attack.

If you find this tale funny because the student’s analysis is so wrong
as to be laughable—even though his conclusion was actually correct,
in that the top Navy officer was, indeed, wrong—and if you know how
to do the correct analysis,2 then you are good to go for reading this
book. (If you think about the math abilities of the politicians who make

October 22, 2007 Time: 02:55pm introduction.tex

4 Introduction

decisions about the viability of so-called anti-ballistic missile shields
and the equally absent lack of analytic talent in some of the people
who advise them, perhaps you will find this tale not at all funny but
rather positively scary.3)

The same level of expectation goes for the Monte Carlo codes
presented in this book. I used MATLAB 7.3 when creating my pro-
grams, but I limited myself to using only simple variable assignment
statements, the wonderful rand (which produces numbers uniformly
distributed from 0 to 1), and the common if/else, for, and while control
statements found in just about all popular scientific programming
languages. My codes should therefore be easy to translate directly
into your favorite language. For the most part I have avoided using
MATLAB’s powerful vector/matrix structure (even though that would
greatly reduce simulation times) because such structure is not found in
all other popular languages. MATLAB is an incredibly rich language,
with a command for almost anything you might imagine. For example,
in Problem 3 the technical problem of sorting a list of numbers comes
up. MATLAB has a built-in sort command (called—is this a surprise?—
sort), but I’ve elected to actually code a sorting algorithm for the Monte
Carlo solution. I’ve done this because being able to write sort in a
program is not equivalent to knowing how to code a sort. (However,
when faced again in Problem 17 with doing a sort I did use sort—okay,
I’m not always consistent!) In those rare cases where I do use some
feature of MATLAB that I’m not sure will be clear by inspection, I
have included some explanatory words.

Now, the most direct way to illustrate the philosophy of this book
is to give you some examples. First, however, I should admit that I
make no claim to having written the best, tightest, most incredibly
elegant code that one could possibly imagine. In this book we are
more interested in problem solving than we are in optimal MATLAB
coding. I am about 99.99% sure that every code in this book works
properly, but you may well be able to create even better, more efficient
codes (one reviewer, a sophisticated programmer, called my codes “low
level’’—precisely my goal!). If so, well then, good for you! Okay, here
we go.

For my first example, consider the following problem from
Marilyn vos Savant’s “Ask Marilyn’’ column in the Sunday newspaper

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 5

supplement Parade Magazine (July 25, 2004):

A clueless student faced a pop quiz: a list of the 24 Presidents
of the 19th century and another list of their terms in office, but
scrambled. The object was to match the President with the term.
He had to guess every time. On average, how many did he guess
correctly?

To this vos Savant added the words,

Imagine that this scenario occurs 1000 times, readers. On aver-
age, how many matches (of the 24 possible) would a student guess
correctly? Be sure to guess before looking at the answer below!

The “answer below’’ was simply “Only one!’’ Now that is indeed
surprising—it’s correct, too—but to just say that and nothing else
certainly leaves the impression that it is all black magic rather than
the result of logical mathematics.

This problem is actually an ancient one that can be traced back to
the 1708 book Essay d’analyse sur les jeux de hazard (Analyses of Games
of Chance), by the French probabilist Pierre Rémond de Montmort
(1678–1719). In his book Montmort imagined drawing, one at a
time, well-shuffled cards numbered 1 through 13, counting aloud
at each draw: “1, 2, 3,’’ He then asked for the probability that
no card would be drawn with a coincidence of its number and the
number being announced. He didn’t provide the answer in his book,
and it wasn’t until two years later, in a letter, that Montmort first
gave the solution. Montmort’s problem had a profound influence on
the development of probability theory, and it attracted the attention
of such illuminances as Johann Bernoulli (1667–1748), who was
Nikolaus’s uncle, and Leonhard Euler (1707–1783), who was Johann’s
student at Basel.

Vos Savant’s test-guessing version of Montmort’s problem is not
well-defined. There are, in fact, at least three different methods the stu-
dent could use to guess. What I suspect vos Savant was assuming is that
the student would assign the terms in a one-to-one correspondence to
the presidents. But that’s not the only way to guess. For example, a
student might reason as follows: If I follow vos Savant’s approach, it is
possible that I could get every single assignment wrong.4 But if I select

October 22, 2007 Time: 02:55pm introduction.tex

6 Introduction

one of the terms (any one of the terms) at random, and assign that
same term over and over to each of the twenty-four presidents, then
I’m sure to get one right (and all the others wrong, of course). Or how
about this method: for each guess the student just randomly assigns
a term from all twenty-four possible terms to each of the twenty four
presidents. That way, of course, some terms may never be assigned,
and others may be assigned more than once. But guess what—the
average number of correct matches with this method is still one. Now
that’s really surprising! And finally, there’s yet one more astonishing
feature to this problem, but I’ll save it for later.

Suppose now that we have no idea how to attack this problem
analytically. Well, not to worry, a Monte Carlo simulation will save
the day for us. The idea behind such a simulation is simple enough.
Instead of imagining a thousand students taking a test, let’s imagine
a million do, and for each student we simulate a random assignment
of terms to the presidents by generating a random permutation of the
integers 1 through 24. That is, the vector term will be such that term(j),
1 ≤ j ≤ 24, will be an integer from 1 to 24, with each integer appearing
exactly once as an element in term: term(j) will be the term assigned to
president j. The correct term for president j is term j, and so if term(j) = j,
then the student has guessed a correct pairing. With all that said, the
code of guess.m should be clear (in MATLAB, codes are called m-files
and a program name extension is always .m).

Lines 01 and 02 initialize the variables M (the length of the two
lists being paired) and totalcorrect (the total number of correct pairings
achieved after a million students have each taken the test). (The line
numbers are included so that I can refer you to a specific line in
the program; when actually typing a line of MATLAB code one does
not include a line number as was done, for example, in BASIC. The
semicolons at the end of lines 01 and 02 are included to suppress
distracting screen printing of the variable values. When we do want
to see the result of a MATLAB calculation, we simply omit the
terminating semicolon.) Lines 03 and 12 define a for/end loop that
cycles the code through a million tests, with lines 04 through 11
simulating an individual test. At the start of a test, line 04 initializes
the variable correct—the number of correct pairings achieved on that
test—to zero. Line 05 uses the built-in MATLAB command randperm(M)

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 7

to generate a random permutation of the integers 1 through M (= 24),
and lines 06 and 10 define a for/end loop that tests to see if the condi-
tion for one (or more) matches has been satisfied. At the completion
of that loop, the value of correct is the number of correct pairings for
that test. Line 11 updates the value of totalcorrect, and then another test
is simulated. After the final, one-millionth test, line 13 computes the
average number of correct pairings.

guess.m
01 M = 24;

02 totalcorrect = 0;

03 for k = 1:1000000

04 correct = 0;

05 term = randperm(M);

06 for j = 1:M

07 if term(j) == j

08 correct = correct + 1;

09 end

10 end

11 totalcorrect = totalcorrect + correct;

12 end

13 totalcorrect/1000000

When I ran guess.m, the code gave the result 0.999804, which is
pretty close to the exact value of 1. But what is really surprising
is that this result is independent of the particular value of M; that
is, there is nothing special about the M = 24 case! For example, when
I ran guess.m for M = 5, 10, and 43 (by simply changing line 01 in the
obvious way), the average number of correct pairings was 0.999734,
1.002005, and 0.998922, respectively. It’s too bad that vos Savant said
nothing about this. Now, just for fun (and to check your understanding
of the Monte Carlo idea), write a simulation that supports the claim I
made earlier, that if the student simply selects at random, for each
president, a term from the complete list of twenty four terms, then the

October 22, 2007 Time: 02:55pm introduction.tex

8 Introduction

average number of correct pairings is still one. You’ll find a solution in
Appendix 1.

Let me continue with a few more examples. Because I want to save
the ones dealing with everyday concerns for the main body of this
book, the ones I’ll show you next are just slightly more abstract. And,
I hope, these examples will illustrate how Monte Carlo simulations
can contribute in doing “serious’’ work, too. Consider first, then, the
following problem, originally posed as a challenge question in a 1955
issue of The American Mathematical Monthly. If a triangle is drawn “at
random’’ inside an arbitrary rectangle, what is the probability that
the triangle is obtuse? This is, admittedly, hardly a question from real
life, but it will do here to illustrate my positions on probability theory,
Monte Carlo simulation, and programming—and it is an interesting,
if somewhat abstract, problem in what is called geometric probability
(problems in which probabilities are associated with the lengths, areas,
and volumes of various shapes; the classic example is the well-known
Buffon needle problem, found in virtually all modern textbooks5).
The 1955 problem is easy to understand but not so easy to analyze
theoretically; it wasn’t solved until 1970. To begin, we first need to
elaborate just a bit on what the words “at random’’ and “arbitrary
rectangle’’ mean.

Suppose we draw our rectangle such that one of the shorter sides
lies on the positive x-axis, i.e., 0 ≤ x ≤ X, while one of the longer sides
lies on the positive y-axis, i.e., 0 ≤ y ≤ Y . That is, we have a rectangle
with dimensions X by Y. It should be intuitively clear that, whatever the
answer to our problem is, it is what mathematicians call scale invariant,
which means that if we scale both X and Y up (or down) by the same
factor, the answer will not change. Thus, we lose no generality by
simply taking the actual value of X and scaling it up (or down) to 1, and
then scaling Y by the same factor. Let’s say that when we scale Y this way
we arrive at L; i.e., our new, scaled rectangle is 1 by L. Since we started
by assuming Y ≥ X, then L ≥ 1. If L = 1, for example, our rectangle
is actually a square. To draw a triangle “at random’’ in this scaled
rectangle simply means to pick three independent points (x1, y1), (x2, y2),
and (x3, y3) to be the vertices of the triangle such that the xi are each
selected from a uniform distribution over the interval (0,1) and the yi

are each selected from a uniform distribution over the interval (0,L).

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 9

For a triangle to be obtuse, you’ll recall from high school geometry,
means that it has an interior angle greater than 90◦. There can,
of course, be only one such angle in a triangle! So, to simulate
this problem, what we need to do is generate a lot of random
triangles inside our rectangle, check each triangle as we generate it for
obtuseness, and keep track of how many are obtuse. That’s the central
question here—if we have the coordinates of the vertices of a triangle,
how do we check for obtuseness? The law of cosines from trigonometry
is the key. If we denote the three interior angles of a triangle by A, B,
and C and the lengths of the sides opposite those angles by a, b, and c,
respectively, then we have

a2 = b2 + c2 − 2bc cos(A),

b2 = a2 + c2 − 2ac cos(B),

c2 = a2 + b2 − 2ab cos(C).

Or,

cos(A) = b2 + c2 − a2

2bc
,

cos(B) = a2 + c2 − b2

2ac
,

cos(C) = a2 + b2 − c2

2ab
.

Since the cosine of an acute angle, i.e., an angle in the interval
(0,90◦), is positive, while the cosine of an angle in the interval
(90◦,180◦) is negative, we have the following test for an angle being
obtuse: the sum of the squares of the lengths of the sides forming
that angle in our triangle, minus the square of the length of the side
opposite that angle, must be negative. That is, all we need to calculate
are the numerators in the above cosine formulas. This immediately
gives us an easy test for the obtuseness-or-not of a triangle: to be
acute, i.e., to not be obtuse, all three interior angles must have positive
cosines. The code obtuse.m uses this test on one million random
triangles.

October 22, 2007 Time: 02:55pm introduction.tex

10 Introduction

obtuse.m
01 S = 0;

02 L = 1;

03 for k = 1:1000000

04 for j = 1:3

05 r(j) = rand;

06 end

07 for j = 4:6

08 r(j) = L*rand;

09 end

10 d1 = (r(1) − r(2))^2 + (r(4) − r(5))^2;

11 d2 = (r(2) − r(3))^2 + (r(5) − r(6))^2;

12 d3 = (r(3) − r(1))^2 + (r(6) − r(4))^2;

13 if d1 < d2 + d3&d2 < d1 + d3&d3 < d1 + d2

14 obtusetriangle = 0;

15 else

16 obtusetriangle = 1;

17 end

18 S = S + obtusetriangle;

19 end

20 S/1000000

Lines 01 and 02 initialize the variables S, which is the running
sum of the number of obtuse triangles generated at any given time,
and L, the length of the longer side of the rectangle within which we
will draw triangles. In line 02 we see L set to 1 (our rectangle is in
fact a square), but we can set it to any value we wish, and later I’ll
show you the results for both L = 1 and L = 2. Lines 03 and 19 are the
for/end loop that cycle the simulation through one million triangles.
To understand lines 04 through 09, remember that the notation I’m
using for the three points that are the vertices of each triangle is
(x1, y1) (x2, y2), and (x3, y3), where the xi are from a uniform
distribution over 0 to 1 and the yi are from a uniform distribution
over 0 to L. So, in lines 04 to 06 we have a for/end loop that assigns
random values to the xi , i.e., x1 = r (1), x2 = r (2), and x3 = r (3), and

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 11

in lines 07 to 09 we have a for/end loop that assigns random values
to the yi , i.e., y1 = r (4), y2 = r (5), and y3 = r (6). Lines 10, 11, and 12
use the r-vector to calculate the lengths (squared) of the three sides
of the current triangle. (Think of a2, b2, and c2 as represented by d1,
d2, and d3.) Lines 13 through 17 then apply, with an if/else/end loop,
our test for obtuseness: when obtuse.m exits from this loop, the variable
obtusetriangle will have been set to either 0 (the triangle is not obtuse) or
1 (the triangle is obtuse). Line 18 then updates S, and the next random
triangle is then generated. After the one-millionth triangle has been
simulated and evaluated for its obtusness, line 20 completes obtuse.m

by calculating the probability of a random triangle being obtuse. When
obtuse.m was run (for L = 1), it produced a value of 0.7247 for this
probability, which I’ll call P(1), while for L = 2 the simulation gave a
value of 0.7979 = P(2).

In 1970 this problem was solved analytically,6 allowing us to see just
how well obtuse.m has performed. That solution gives the theoretical
values of

P(1) = 97
150

+ π

40
= 0.72520648 · · ·

and

P(2) = 1,199
1,200

+ 13π

128
− 3

4
ln(2) = 0.79837429 · · · .

I think it fair to say that obtuse.m has done well! This does, however,
lead (as does the simulation results from our first code guess.m) to
an obvious question: What if we had used not a million but fewer
simulations? Theoretical analyses of the underlying mathematics of the
Monte Carlo technique show that the error of the method decreases
as N−1/2, where N is the number of simulations. So, going from
N = 100 = 102 to N = 10,000 = 104 (an increase in N by a factor of
102) should reduce the error by a factor of about

√
102 = 10.

To illustrate more exactly just what this means, take a look at
Figure 1, where you’ll see a unit square in the first quadrant, with an
inscribed quarter-circle. The area of the square is 1, and the area of
the circular section is 1

4π . If we imagine randomly throwing darts at the
square (none of which miss), i.e., if we pick points uniformly distributed

October 22, 2007 Time: 02:55pm introduction.tex

12 Introduction

1

10

Figure 1. The geometry of a Monte Carlo estimation of π .

over the square, then we expect to see a fraction (1/4)π
1 = 1

4π of them
inside the circular section. So, if N denotes the total number of random
points, and if P denotes the number of those points inside the circular
section, then the fundamental idea behind the Monte Carlo method
says we can write

P
N

≈ 1
4
π,

or

π ≈ 4P
N

.

We would expect this Monte Carlo estimate of π to get better and
better as N increases. (This is an interesting use of a probabilistic
technique to estimate a deterministic quantity; after all, what could
be more deterministic than a constant, e.g., pi!)

The code pierror.m carries out this process for N = 100 points, over
and over, for a total of 1,000 times, and each time stores the percentage
error of the estimate arrived at for pi in the vector error. Then a
histogram of the values in error is printed in the upper plot of Figure 2,
thus giving us a visual indication of the distribution of the error we can
expect in a simulation with 100 points. The width of the histogram

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 13

250

0
−25 0 25

Percent error

N
u

m
b

er
 o

f s
im

u
la

ti
o

n
s

5 10 15 20

200

150

100

50

−20 −15 −10 −5

0
−25 0 25

Percent error

N
u

m
b

er
 o

f s
im

u
la

ti
o

n
s

5 10 15 20

100

50

−20 −15 −10 −5

(a)

(b)

Figure 2. The error distribution in estimating π . a. Number of points per
simulation = 100. b. Number of points per simulation = 10,000.

is a measure of what is called the variance of the error. The lower
plot in Figure 2 shows what happens to the error variance when N
is increased by a factor of 100, to 10,000 points per simulation. As
mentioned earlier, theory says the error should decrease in this case
by a factor of ten, and that is just what even a casual look at Figure 2
shows has happened. (I have not included in the code the MATLAB
plotting and labeling commands that create Figure 2 from the vector
error.) With high confidence we can say that, with N = 100 points, the
error made by our Monte Carlo estimate of pi falls in the interval
±15%, and with high confidence we can say that, with N = 10,000
points, the error made in estimating pi falls in the interval ±1.5%.
The theory of establishing what statisticians call a confidence interval can
be made much more precise, but that would lead us away from the
more pragmatic concerns of this book.

The lesson we’ll take away from this is the more simulations the better,
as long as our computational resources and available time aren’t
overwhelmed. A consequence of this is that Monte Carlo simulations

October 22, 2007 Time: 02:55pm introduction.tex

14 Introduction

pierror.m
01 numberofpoints(1) = 100;

02 numberofpoints(2) = 10000;

03 for j = 1:2

04 N = numberofpoints(j);

05 for loop = 1:1000

06 P = 0;

07 for k = 1:N

08 x = rand;

09 y = rand;

10 if x^2 + y^2 < 1

11 P = P + 1;

12 end

13 end

14 error(loop) = (4*P − pi*N)*100/(N*pi);

15 end

16 end

of rare events will require large values for N, which in turn requires a
random number generator that is able to produce long sequences
of “random’’ numbers before repeating.7 This isn’t to say, however,
that running an ever longer simulation is the only way to reduce the
statistical error in a Monte Carlo simulation. There are a number
of other possibilities as well, falling into a category of techniques
going under the general name of variance reduction; in Appendix 2
there is a discussion of one such technique. My general approach to
convincing you that we have arrived at reasonably good results will be
not nearly so sophisticated, however; I’ll be happy enough if we can
show that 10,000 simulations and 1,000,000 simulations give pretty
nearly the same results. Mathematical purists may disagree with this
philosophy, but this is not meant to be either a rigorous textbook or
a theoretical dissertation. The variability of the estimates is due, of
course, to different random numbers being used in each simulation.
We could eliminate the variability (but not the error!) by starting each
simulation with the random number generator seeded at the same

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 15

point, but since your generator is almost surely different from mine,
there seems no point in that. When you run one of my codes (in
your favorite language) on your computer, expect to get pretty nearly
the results reported here, but certainly don’t expect to get the
same results.

Let’s try another geometric probability problem, this one of
historical importance. In the April 1864 issue of Educational Times,
the English mathematician J. J. Sylvester (1814–1897) submitted
a question in geometric probability. As the English mathematician
M. W. Crofton (1826–1915), Sylvester’s one-time colleague and
protégé at the Royal Military Academy in Woolwich, wrote in his 1885
Encyclopaedia Britannica article on probability,8 “Historically, it would
seem that the first question on [geometric] probability, since Buffon,
was the remarkable four-point problem of Prof. Sylvester.’’ Like most
geometric probability questions, it is far easier to state than it is to
solve: If we pick four points at random inside some given convex
region K, what is the probability that the four points are the vertices
of a concave quadrilateral? All sorts of different answers were received
by the Educational Times: 1

2 , 1
3 , 1

4 , 3
8 , 35

12π2 , and more. Of this, Sylvester
wrote, “This problem does not admit of a deterministic solution.’’
That isn’t strictly so, as the variation in answers is due both to a
dependency on K (which the different solvers had taken differently)
and to the vagueness of what it means to say only that the four points
are selected “at random.’’ All of this variation was neatly wrapped
up in a 1917 result derived by the Austrian-German mathematician
Wilhelm Blaschke (1885–1962): If P(K) is Sylvester’s probability, then

35
12π2 ≤ P(K) ≤ 1

3 . That is, 0.29552 ≤ P(K) ≤ 0.33333, as K varies over
all possible finite convex regions. For a given shape of K, however, it
should be clear that the value of P(K) is independent of the size of K;
i.e., as with our first example, this is a scale-invariant problem.

It had far earlier (1865) been shown, by the British actuary Wesley
Stoker Barker Woolhouse (1809–1893), that

P(K) = 4M(K)
A(K)

,

where A(K) is the area of K and M(K) is a constant unique to each K.
Woolhouse later showed that M(K) = 11A(K)

144 and M(K) = 289A(K)
3,888 if K is

October 22, 2007 Time: 02:55pm introduction.tex

16 Introduction

a square or a regular hexagon, respectively. Thus, we have the results

if K is a square, then P(K) = 4 × 11
144

= 11
36

= 0.3055,

and

if K is a regular hexagon, then P(K) = 4 × 289
3, 888

= 289
972

= 0.2973.

Both of these results were worked out by Woolhouse in 1867.
M(K) was also known9 for the case of K being a circle (a computation

first done by, again, Woolhouse), but let’s suppose that we don’t know
what it is and that we’ll estimate P(K) in this case with a computer
simulation. To write a Monte Carlo simulation of Sylvester’s four-point
problem for a circle, we have two separate tasks to perform. First, we
have to decide what it means to select each of the four points “at
random’’ in the circle. Second, we have to figure out a way to determine
if the quadrilateral formed by the four “random’’ points is concave or
convex.

To show that there is indeed a decision to be made on how to select
the four points, let me first demonstrate that there is indeed more than
one way a reasonable person might attempt to define the process of
random point selection. Since we know the problem is scale invariant,
we lose no generality by assuming that K is the particular circle with
unit radius centered on the origin. Then,

Method 1: Let a “randomly selected’’ point have polar coordi-
nates (r, θ), where r and θ are independent, uniform-
ly distributed random variables over the intervals
(0,1) and (0,2π), respectively.

Method 2: Let a “randomly selected’’ point have rectangular
coordinates (x, y), where x and y are independent,
uniformly distributed random variables over the
same interval (0, 1) and such that x2 + y2 ≤ 1.

The final condition in Method 2 is to ensure that no point is outside K;
any point that is will be rejected. Figure 3 shows 600 points selected “at
random’’ by each of these two methods. By “at random’’ I think most
people would demand a uniform distribution of the points over the

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 17

1.0

0

−1.0
0 0.5 1.0−1.0 −0.5

0.5

−0.5

1.0

0

−1.0
0 0.5 1.0−1.0 −0.5

0.5

−0.5

(a) (b)

Figure 3. Two ways to generate points “at random’’ over a circle.
a. Method 1. b. Method 2.

area of the circle, and Figure 3 shows by inspection that this feature is
present in Method 2 but is absent in Method 1 (notice the clumping of
points near the center of the circle). What “at random’’ means was still
a bit of a puzzle to many in the nineteenth century; Crofton wrote of
it, in an 1868 paper in the Philosophical Transactions of the Royal Society
of London, as follows:

This [variation] arises, not from any inherent ambiguity in
the subject matter, but from the weakness of the instrument
employed; our undisciplined conceptions [that is, our intuitions]
of a novel subject requiring to be repeatedly and patiently
reviewed, tested, and corrected by the light of experience and
comparison, before they [our intuitions, again] are purged from
all latent error.

What Crofton and his fellow Victorian mathematicians would have
given for a modern home computer that can create Figure 3 in a flash!

Method 2 is the way to properly generate points “at random,’’
but it has the flaw of wasting computational effort generating many
points that are then rejected for use (the ones that fail the x2 + y2 ≤ 1
condition). Method 1 would be so much nicer to use, if we could
eliminate the nonuniform clumping effect near the center of the circle.

October 22, 2007 Time: 02:55pm introduction.tex

18 Introduction

This is, in fact, not hard to do once the reason for the clumping is
identified. Since the points are uniformly distributed in the radial (r)
direction, we see that a fraction r of the points fall inside a circle of
radius r, i.e., inside a circle with area πr2. That is, a fraction r of the
points fall inside a smaller circle concentric with K, with an area r2 as
large as the area of K. For example, if we look at the smaller circle with
radius one-half, then one-half of the points fall inside an area that is
one-fourth the area of K and the other half of the points fall inside the
annular region outside the smaller circle—a region that has an area
three times that of the smaller circle! Hence the clumping effect near
the center of K.

But now suppose that we make the radial distribution of the points
vary not as directly with r, but rather as

√
r. Then a fraction r of the

points fall inside a circle with area πr (remember, r itself is still uniform
from 0 to 1), which is also a fraction r of the area of K. Now there is no
clumping effect! So, our method for generating points “at random’’ is
what I’ll call Method 3:

Method 3: Let r and θ be independent, uniformly distributed
random variables over the intervals (0,1) and (0,2π),
respectively. Then the rectangular coordinates of a
point are (

√
r cos(θ),

√
r sin(θ)).

Figure 4 shows 600 points generated by Method 3, and we see that
we have indeed succeeded in eliminating the clumping, as well as the
wasteful computation of random points that we then would reject.

We are now ready to tackle our second task. Once we have four
random points in K, how do we determine if they form a concave
quadrilateral? To see how to do this, consider the so-called convex hull
of a set of n points in a plane, which is defined to be the smallest
convex polygon that encloses all of the points. A picturesque way to
visualize the convex hull of a set of points is to imagine that, at each
of the points, a slender rigid stick is erected. Then, a huge rubber
band is stretched wide open, so wide that all the sticks are inside the
rubber band. Finally, we let the rubber band snap tautly closed around
the sticks. Those sticks (points) that the rubber band catches are the
vertices of the convex hull (the boundary of the hull is the rubber band
itself). Clearly, if our four points form a convex quadrilateral, then all

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 19

0.8

1.0

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1.0
0 0.5 1.0−1.0 −0.5

Figure 4. A third way to generate points “at random’’ over a circle.

four points catch the rubber band, but if the quadrilateral is concave,
then one of the points will be inside the triangular convex hull defined
by the other three points.

There are a number of general algorithms that computer scientists
have developed to find the convex hull of n points in a plane, and
MATLAB actually has a built-in function that implements one such
algorithm.10 So, this is one of those occasions where I’m going to tell
you a little about MATLAB. Let X and Y each be vectors of length 4.
Then we’ll write the coordinates of our n = 4 points as (X(1), Y(1)),
(X(2), Y(2)), (X(3), Y(3)), and (X(4), Y(4)). That is, the point with
the “name’’ #k, 1 ≤ k ≤ 4, is (X(k), Y(k)). Now, C is another vector,
created from X and Y, by the MATLAB function convhull; if we write C
= convhull(X, Y), then the elements of C are the names of the points

October 22, 2007 Time: 02:55pm introduction.tex

0.9

1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 5. Convex hull of a concave quadrilateral.

0.9

1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6. Convex hull of a convex quadrilateral.

20

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 21

on the convex hull. For example, if

X = [0.7948 0.5226 0.1730 0.2714],

Y = [0.9568 0.8801 0.9797 0.2523],

then

C = [4 1 3 4],

where you’ll notice that the first and last entry of C are the name of the
same point. In this case, then, there are only three points on the hull
(4, 1, and 3), and so the quadrilateral formed by all four points must
be concave (take a look at Figure 5). If, as another example,

X = [0.7833 0.4611 0.7942 0.6029],

Y = [0.6808 0.5678 0.0592 0.0503],

then

C = [4 3 1 2 4],

and the quadrilateral formed by all four points must be convex because
all four points are on the hull (take a look at Figure 6).

We thus have an easy test to determine concavity (or not) of a
quadrilateral: If C has four elements, then the quadrilateral is concave,
but if C has five elements, then the quadrilateral is convex. The
MATLAB function length gives us this information (length(v) = number
of elements in the vector v), and it is used in the code sylvester.m,
which generates one million random quadrilaterals and keeps track
of the number of them that are concave. It is such a simple code
that I think it explains itself. When sylvester.m was run it produced an
estimate of P(K = circle) = 0.295557; the theoretical value, computed
by Woolhouse, is 35

12π2 = 0.295520. Our Monte Carlo simulation
has done quite well, indeed! (When run for just 10,000 simulations,
sylvester.m’s estimate was 0.2988.)

For the final examples of the style of this book, let me show you two
problems that I’ll first analyze theoretically, making some interesting
arguments along the way, which we can then check by writing Monte
Carlo simulations. This, you’ll notice, is the reverse of the process we

October 22, 2007 Time: 02:55pm introduction.tex

22 Introduction

sylvester.m
01 concave = 0;

02 constant = 2*pi;

03 for k = 1:1000000

04 for j = 1:4

05 number1 = sqrt(rand);

06 number2 = constant*rand;

07 X(j) = number1*cos(number2);

08 Y(j) = number1*sin(number2);

09 end

10 C = convhull(X,Y);

11 if length(C) == 4

12 concave = concave + 1;

13 end

14 end

15 concave/1000000

followed in the initial examples. Suppose, for the first of our final
two problems, that we generate a sequence of independent random
numbers xi from a uniform distribution over the interval 0 to 1, and
define the length of the sequence as L, where L is the number of
xi in the sequence until the first time the sequence fails to increase
(including the first xi that is less than the preceding xi). For example,
the sequence 0.1, 0.2, 0.3, 0.4, 0.35 has length L = 5, and the sequence
0.2, 0.1 has length L = 2. L is clearly an integer-valued random
variable, with L ≥ 2, and we wish to find its average (or expected) value,
which we’ll write as E(L). Here’s an analytical approach11 to calculating
E(L).

The probability that length L is greater than k is

P(L > k) = P(x1 < x2 < x3 < · · · < xk) = 1
k!

since there are k! equally likely permutations of the k xi , only one
of which is monotonic increasing. If xk+1 < xk , then L = k + 1, and
if xk+1 > xk , then L > k + 1. In both cases, of course, L > k, just as
claimed. Now, writing P(L = k) = pk , we have by definition the answer

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 23

to our question as

E(L) =
∞∑

k=2

kpk = 2p2 + 3p3 + 4p4 + 5p5 + · · ·,

which we can write in the form

E(L) = p2 + p3 + p4 + p5 + · · ·
+ p2 + p3 + p4 + p5 + · · ·
+ p3 + p4 + p5 + · · ·
+ p4 + p5 + · · ·
+ · · · .

The top two rows obviously sum to 1 (since all sequences have some
length!). Thus,

E(L) = 2 +P(L > 2) + P(L > 3)+(P > 4) + · · · = 2 + 1
2!

+ 1
3!

+ 1
4!

+ · · ·.

But, since

e = 1
0!

+ 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+ · · · = 2 + 1
2!

+ 1
3!

+ 1
4!

+ · · ·,

we see that E(L) = 2.718281 · · · . Or is it? Let’s do a Monte Carlo
simulation of the sequence process and see what that says. Take a
look at the code called mono.m—I think its operation is pretty easy
to follow. When run, mono.m produced the estimate E(L) = 2.717536,
which is pretty close to the theoretical answer of e (simulation of 10,000
sequences gave an estimate of 2.7246).

This last example is a good illustration of how a lot of mathematics
is done; somebody gets an interesting idea and does some experimen-
tation. Another such illustration is provided with a 1922 result proven
by the German-born mathematician Hans Rademacher (1892–1969):
suppose tk is +1 or −1 with equal probability; if

∑∞
k=1 c2

k < ∞, then∑∞
k=1 tkck exists with probability 1 (which means it is possible for the

sum to diverge, but that happens with probability zero, i.e., “hardly
ever’’). In particular, the so-called random harmonic series (RHS),∑∞

k=1
tk
k , almost surely exists because

∑∞
k=1

1
k2 is finite. The question

October 22, 2007 Time: 02:55pm introduction.tex

24 Introduction

mono.m
01 sum = 0;

02 for k = 1:1000000

03 L = 0;

04 max = 0;

05 stop = 0;

06 while stop == 0

07 x = rand;

08 if x > max

09 max = x;

10 else

11 stop = 1;

12 end

13 L = L + 1;

14 end

15 sum = sum + L;

16 end

17 sum/1000000

of the distribution of the sums of the RHS is then a natural one
to ask, and a theoretical study of the random harmonic series was
done in 1995. The author of that paper12 wanted just a bit more
convincing about his analytical results, however, and he wrote, “For
additional evidence we turn to simulations of the sums.’’ He calculated
a histogram—using MATLAB—of 5,000 values of the partial sums∑100

k=1
tk
k , a calculation (agreeing quite nicely with the theoretical result)

that I’ve redone (using instead 50,000 partial sums) with the code
rhs.m, which you can find in Appendix 3 at the end of this book. I’ve
put it there to give you a chance to do this first for yourself, just for
fun and as another check on your understanding of the fundamental
idea of Monte Carlo simulation (you’ll find the MATLAB command
hist very helpful—I used it in creating Figure 2—in doing this; see the
solution to Problem 12 for an illustration of hist).

Now, for the final example of this Introduction, let me show you
a problem that is more like the practical ones that will follow than
like the theoretical ones just discussed. Imagine that a chess player,

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 25

whom I’ll call A, has been challenged to a curious sort of match by
two of his competitors, whom I’ll call B and C. A is challenged to play
three sequential games, alternating between B and C, with the first
game being with the player of A’s choice. That is, A could play either
BCB (I’ll call this sequence 1) or CBC (and this will be sequence 2).
From experience with B and C, A knows that C is the stronger player
(the tougher for A to defeat). Indeed, from experience, A attaches
probabilities p and q to his likelihood of winning any particular game
against B and C, respectively, where q < p. The rule of this peculiar
match is that to win the challenge (i.e., to win the match) A must win
two games in a row. (This means, in particular, that even if A wins the
first and the third games—two out of three games—A still loses the
match!) So, which sequence should A choose to give himself the best
chance of winning the match?

What makes this a problem of interest (besides the odd point I just
mentioned) is that there are seemingly two different, indeed contradic-
tory, ways for A to reason. A could argue, for example, that sequence
1 is the better choice because he plays C, his stronger opponent, only
once. On the other hand, A could argue that sequence 1 is not a good
choice because then he has to beat C in that single meeting in order to
win two games in a row. With sequence 2, by contrast, he has two shots
at C. So, which is it—sequence 1 or sequence 2?

Here’s how to answer this question analytically. For A to win the
match, there are just two ways to do so. Either he wins the first two
games (and the third game is then irrelevant), or he loses the first
game and wins the final two games. Let P1 and P2 be the probabilities A
wins the match playing sequence 1 and sequence 2, respectively. Then,
making the usual assumption of independence from game to game,
we have

for sequence 1 : P1 = pq + (1 − p)q p
and

for sequence 2 : P2 = q p + (1 − q)pq .

Therefore

P2 − P1 = [q p + (1 − q)pq] − [pq + (1 − p)q p] = (1 − q)pq − (1 − p)q p

= pq [(1 − q) − (1 − p)] = pq (p − q) > 0

October 22, 2007 Time: 02:55pm introduction.tex

26 Introduction

because q < p. So, sequence 2 always, for any p > q , gives the greater
probability for A winning the challenge match, even though sequence
2 requires A to play his stronger opponent twice. This strikes most, at
least initially, as nonintuitive, almost paradoxical, but that’s what the
math says. What would a Monte Carlo simulation say?

The code chess.m plays a million simulated three-game matches;
actually, each match is played twice, once for each of the two se-
quences, using the same random numbers in each sequence. The code
keeps track of how many times A wins a match with each sequence, and

chess.m
01 p = input(’What is p?’);

02 q = input(’What is q?’);

03 prob(1,1) = p;prob(1,3) = p;prob(2,2) = p;

04 prob(1,2) = q;prob(2,1) = q;prob(2,3) = q;

05 wonmatches = zeros(1,2);

06 for loop = 1:1000000

07 wongame = zeros(2,3);

08 for k = 1:3

09 result(k) = rand;

10 end

11 for game = 1:3

12 for sequence = 1:2

13 if result(game) < prob(sequence,game)

14 wongame(sequence,game) = 1;

15 end

16 end

17 end

18 for sequence = 1:2

19 if wongame(sequence,1) + wongame(sequence,2) == 2|...
wongame(sequence,2) + wongame(sequence,3) == 2

20 wonmatches(sequence) = wonmatches(sequence)+1;

21 end

22 end

23 end

24 wonmatches/1000000

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 27

so arrives at its estimates for P1 and P2. To understand how the
code works (after lines 01 and 02 bring in the values of p and q),
it is necessary to explain the two entities prob and wongame, which
are both 2 × 3 arrays. The first array is defined as follows: prob(j,k) is
the probability A wins the kth game in sequence j, and these values
are set in lines 03 and 04. Line 05 sets the values of the two-element
row vector wonmatches to zero, i.e., at the start of chess.m wonmatches(1)

= wonmatches(2) = 0, which are the initial number of matches won by
A when playing sequence 1 and sequence 2, respectively. Lines 06 and
23 define the main loop, which executes one million pairs of three-
game matches. At the start of each such simulation, line 07 initializes
all three games, for each of the two sequences, to zero in wongame,
indicating that A hasn’t (not yet, anyway) won any of them. Then, in
lines 08, 09, and 10, three random numbers are generated that will be
compared to the entries in prob to determine which games in each of
the two sequences A wins. This comparison is carried out in the three
nested loops in lines 11 through 17, which sets the appropriate entry
in wongame to 1 if A wins that game. Then, in lines 18 through 23, the
code checks each row in wongame (row 1 is for sequence 1, and row
2 is for sequence 2) to see if A satisfied at least one of the two match

winning conditions: winning the first two or the last two games. (The
three periods at the end of the first line of line 19 is MATLAB’s way
of continuing a line too long to fit the width of a page.) If so, then
line 20 credits a match win to A for the appropriate sequence. Finally,
line 24 give chess.m’s estimates of P1 and P2 after one million match
simulations.

The following table compares the estimates of P1 and P2 produced
by chess.m, for some selected values of p and q, to the numbers

Theoretical Simulated

p q P1 P2 P1 P2

0.9 0.8 0.7920 0.8640 0.7929 0.8643
0.9 0.4 0.3960 0.5760 0.3956 0.5761
0.4 0.3 0.1920 0.2040 0.1924 0.2042
0.4 0.1 0.0640 0.0760 0.0637 0.0755

October 22, 2007 Time: 02:55pm introduction.tex

28 Introduction

P11

P12

P21

P22

x1
x2

Figure 7. A spin game.

produced by the theoretical expressions we calculated earlier. You can
see that the simulation results are in excellent agreement with the
theoretical values.

Here’s a little Monte Carlo challenge problem, of the same type as
the chess player’s problem, for you to try your hand at (a solution is
given in Appendix 6). Consider the following game, which uses the
two spinner disks shown in Figure 7. Suppose a player spins one or
the other of the pointers on the disks according to the following rules:
(1) if the player spins pointer i and it stops in the region with area pij,
he moves from disk i to disk j (i and j are either 1 or 2); (2) if a pointer
stops in the region with area xi, the game ends; (3) if the game ends in
the region with area x1, the player wins, but if the pointer stops in the
region with area x2 the player loses. What is the probability the player,
starting with disk 1, wins? Assume the area of each disk is one, so that
x1 + p11 + p12 = 1, as well as that x2 + p21 + p22 = 1 (that is, all the x’s
and p’s are actually the probabilities that the pointer of either disk
stops in the respective region). This game can be analyzed theoretically
(which allows the code to be completely validated), and you’ll find that
solution in Appendix 6, too. Run your code for the case of p11 = 0.2,
p12 = 0.4, p21 = 0.3, and p22 = 0.35.

I’ll end this introduction—so we can get to the fun stuff of the
problems—with two quotations. The first is from from Professor Alan
Levine (see Problem 13), and it forms the central thesis of this book:

From a pedagogical point of view, the problem and its solution
as we have presented it here illustrate the fact that mathematics

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 29

is discovered in much the same way as any other science—
by experimentation (here, simulation) followed by confirmation
(proof). All too often, students think mathematics was created by
divine inspiration since, by the time they see it in class, all the
“dirty work’’ has been “cleaned up.’’

In this book, we’ll be paying close attention to the “dirty work’’!
The second quote is from the mathematical physicist W. Edwards

Deming (1908–1993), and it makes a forceful statement on the
value of being able to write computer codes like the ones in this
book:

If you can’t describe what you are doing as a process [read process
as computer code], you don’t know what you are doing.

Right on!

References and Notes

1. Computer programs that use a random number generator to simu-
late a physical process are called Monte Carlo codes, in recognition of
the famous gambling casino. This term was used by the pioneers of the
method—Stanislaw Ulam (1909–1984), John von Neumann (1903–1957),
and Nicholas Metropolis (1915–1999)—from the earliest days, and in his
paper, “The Beginning of the Monte Carlo Method,’’ published in Los Alamos
Science (Special Issue, 1987, pp. 125–130), Metropolis reveals that he was
the originator of the name. In a paper written some years later (“The Age
of Computing: A Personal Memoir,’’ Daedalus, Winter 1992, pp. 119–130),
Metropolis wrote the astonishing words, “The Monte Carlo method . . . was
developed by Ulam and myself without any knowledge of statistics; to this
day the theoretical statistician is unable to give a proper foundation to the
method.’’ I think the general view among mathematicians is that this last
statement is not so. Computer scientists have introduced the general term
of randomized algorithm, which includes Monte Carlo simulations of physical
processes as a subset. A randomized algorithm is any algorithm (computer
code) that uses a random number generator. In addition to Monte Carlo
codes, there is now another category called Las Vegas codes (which are of no
interest in this book). You can find more on all of this in a fascinating paper
by Don Fallis, “The Reliability of Randomized Algorithms’’ (British Journal for
the Philosophy of Science, June 2000, pp. 255–271).

October 22, 2007 Time: 02:55pm introduction.tex

30 Introduction

2. I hope no reader thinks I am picking on Annapolis by repeating this
tale (one that I suspect is quite popular at the United States Military Academy
at West Point). I taught during the academic year 1981–1982 at the Naval
Postgraduate School in Monterey, California, and many of my students were
Annapolis graduates who were quite good at mathematics. The correct answer
to the missile intercept problem is that if a missile successfully intercepts its
target with probability 1/3, then of course it misses its target with probability
2/3. Three identical, independent missiles all fail to hit the same target, then,
with probability (2/3)3 =8/27. So, at least one of the missiles does hit the
target with probability 1 − (8/27) = 19/27 = 0.704, considerably less than the
certainty thought by the “top Navy officer.’’ As the opening quotation makes
clear, however, not all naval officers are ignorant of the inherent uncertainty of
success in a three-missile attack on a target. An explanation of Hornblower’s
observation can be found in A. R. Hall, Ballistics in the Seventeenth Century,
(Cambridge: Cambridge University Press, 1952, p. 55): “Nothing was uniform
in spite of official efforts at standardisation; powder varied in strength from
barrel to barrel by as much as twenty per cent; shot differed widely in
weight, diameter, density and degree of roundness. The liberal allowances
for windage, permitting the ball to take an ambiguous, bouncing path along
the barrel of the gun, gave no security that the line-of-sight would be the
line of flight, even if the cannon had been perfect. There was little chance
of repeating a lucky shot since, as the gun recoiled over a bed of planks, it
was impossible to return it to its previous position, while the platform upon
which it was mounted subsided and disintegrated under the shock of each
discharge.’’

3. Consider, for example, this quotation (Washington Post, July 22, 2005)
from Air Force Lt. Gen. Henry Obering, director of the U.S. Missile Defense
Agency: “We have a better than zero chance of successfully intercepting, I
believe, an inbound warhead.’’ This is no doubt true—but of course a high-
flying eagle lost in a snowstorm with a mininuke clamped in its beak could
make the same claim. After all, though “rather small,’’ it is still true that
10−googolplex > 0.

4. The probability of that happening—of getting no pairings of presidents
and terms correct—is 0.368, which is not insignificant. In general, the
probability of getting m correct pairings when assigning M terms to M
presidents, where the M terms are each uniquely assigned to a president,
is given by 1

m!

∑M−m
k =0

(−1)k

k! . For m = 0 and M = 24 this formula gives the
probability of zero correct pairings as very nearly e–1 ≈ 0.368. See, for
example, Emanuel Parzen, Modern Probability Theory and Its Applications (New
York: John Wiley & Sons, 1960, pp. 77–79). You can find a scholarly,
readable history of Montmort’s problem, including detailed discussions of
how the greats of yesteryear calculated their solutions to the problem, in
L. Takács, “The Problem of Coincidences’’ (Archive for History of Exact Sciences,

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 31

21 [no. 3], 1980, pp. 229–244). The standard textbook derivation of the above
formula uses combinatorial arguments and the inclusion-exclusion principle
of probability. There is, however, a very clever way to numerically calculate
the probability of no pairings, to any degree of accuracy desired, by using
recursion. See Appendix 4 for how to do that, along with a MATLAB code that
estimates the probability of no pairings with a Monte Carlo simulation. The
inclusion-exclusion principle is discussed in Appendix 5, both theoretically
and experimentally (i.e., it is illustrated with a simple MATLAB code).

5. In addition to one or more of those texts, you can find some interesting
discussion on the Buffon needle problem in “Nineteenth-Century Develop-
ments in Geometric Probability: J. J. Sylvester, M. W. Crofton, J.-É. Barbier,
and J. Bertrand’’ (Archive for History of Exact Sciences, 2001, pp. 501–524), by
E. Senata, K. H. Parshall, and F. Jongmans.

6. Eric Langford, “A Problem in Geometric Probability’’ (Mathematics Mag-
azine, November–December 1970, pp. 237–244). This paper gives the general
solution for all L ≥ 1, not just for the special cases of L =1 and L =2. The
analysis in that paper inspired the following related question. If two points
are independently and uniformly located in the unit interval, they divide that
interval into three segments. What is the probability that those three segments
form an obtuse triangle? You can find a theoretical analysis of this question in
Mathematics Magazine (November–December 1973, pp. 294–295), where the
answer is given as 9

4 − 3 ln(2) = 0.170558 · · · . The Monte Carlo code obtuse1.m

produced the estimate 0.170567 using one million simulations of randomly
dividing the unit interval into three parts. The variable S in line 01 is the same

obtuse1.m
01 S=0;
02 for k=1:1000000
03 point1=rand;
04 point2=rand;
05 if point1>point2
06 temp=point1;
07 point1=point2;
08 point2=temp;
09 end
10 a=point1;
11 b=point2−point1;
12 c=1−point2;
13 if a+b>c&a+c>b&b+c>a
14 d1=a^2;
15 d2=b^2;

(continued)

October 22, 2007 Time: 02:55pm introduction.tex

32 Introduction

(continued)
16 d3=c^2;
17 if d1<d2+d3&d2<d1+d3&d3<d1+d2
18 obtusetriangle=0;
19 else
20 obtusetriangle=1;
21 end
22 S=S+obtusetriangle;
23 end
24 end
25 S/1000000

S as in obtuse.m. Lines 03 and 04 define the variables point1 and point2, and lines
05 through 09 ensure that their values are such that 0 < point1 < point2 < 1.
Thinking of point1 and point2 as the two points selected at random in the unit
interval, then lines 10, 11, and 12 calculate the values of a, b, and c as the
lengths of the three sides of a would-be triangle. Line 13 determines whether
those sides do, in fact, satisfy the triangle inequalities that must be satisfied if
and only if a triangle is possible (in a triangle, the sum of the lengths of any
two sides is greater than the length of the remaining side); if they do, then
the rest of the code is simply that of obtuse.m, which determines whether the
triangle is an obtuse triangle.

7. For more on random number generators, see my book, Duelling
Idiots (Princeton, N. J.: Princeton University Press, 2000, pp. 175–197). The
generator in MATLAB 7.3, for example, will produce 21492 > 10449 random
numbers before repeating. If that generator had begun producing numbers at
the prodigious rate of one trillion per second from the moment the universe
was created (famously known as the Big Bang), about fifteen billion years ago,
then it would have produced about 4.5 × 1029 numbers up to now. This is
an infinitesimal fraction of the 7.3 generator’s cycle length. To gain some
historical appreciation of modern random number generators, consider the
following complaint made by Lord Kelvin (Scottish engineer, physicist, and
mathematician William Thomson [1824–1907]) in a lecture given in April
1900 at the Royal Institution of Great Britain (you can find his talk in the
July 1901 issue of The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science under the title, “Nineteenth Century Clouds over the
Dynamical Theory of Heat and Light’’). When studying a problem in theo-
retical thermodynamics, Kelvin performed what may be the very first Monte
Carlo simulation of a physical process. To select, with equal probability, from
among 200 possibilities, he used 100 cards numbered from 0 to 99 (subjected
before each drawing to a “very thorough shuffling’’) and coupled the result
with the outcome of a coin toss. Alas, any real coin is almost certainly not

October 22, 2007 Time: 02:55pm introduction.tex

Introduction 33

fair, but Kelvin said nothing about how he accounted for that bias—this
can be done for any coin; do you see how? The answer is in Appendix 7.
In a footnote Kelvin says he also tried to replace the cards with small pieces
of paper drawn from a bowl, but found “In using one’s finger to mix dry
[pieces] of paper, in a bowl, very considerable disturbance may be expected
from electrification [i.e., from static electricity!].’’ Kelvin would have loved
MATLAB’s rand, but truly practical Monte Carlo had to wait until the invention
of the high-speed electronic computer more than forty years later (as well as
for advances in theoretical understanding on how to build random number
generators in software). For a nice discussion on the modern need to achieve
very high-speed generation of random numbers, see Aaldert Compagner,
“Definitions of Randomness’’ (American Journal of Physics, August 1991,
pp. 700–705).

8. For more on Crofton’s contributions to geometric probability, see
B. Eisenberg and R. Sullivan, “Crofton’s Differential Equation’’ (American
Mathematical Monthly, February 2000, pp. 129–139).

9. Richard E. Pfiefer, “The Historical Development of J. J. Sylvester’s Four
Point Problem’’ (Mathematics Magazine, December 1989, pp. 309–317).

10. So, unlike my argument about sort, I am not going to create the detailed
code for implementing a convex hull algorithm. And why not, you ask? Well,
I have to leave something for you to do! See, for example, R. L. Graham, “An
Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set’’
(Information Processing Letters, 1972, pp. 132–133).

11. Harris S. Shultz and Bill Leonard, “Unexpected Occurrences of the
Number e ’’ (Mathematics Magazine, October 1989, pp. 269–271). See also
Frederick Solomon, “Monte Carlo Simulation of Infinite Series’’ (Mathematics
Magazine, June 1991, pp. 188–196).

12. Kent E. Morrison, “Cosine Products, Fourier Transforms, and Random
Sums’’ (American Mathematical Monthly, October 1995, pp. 716–724) and Byron
Schmuland, “Random Harmonic Series’’ (American Mathematical Monthly, May
2003, pp. 407–416). The probabilistic harmonic series is interesting because
the classic harmonic series, where ck = +1, always, diverges. For more
discussion on this and on the history of

∑∞
k =1 1/k2, see my book, An Imaginary

Tale: The Story of
√−1 (Princeton, N. J.: Princeton University Press, 1998, 2006

[corrected ed.], pp. 146–149).

October 22, 2007 Time: 02:55pm introduction.tex

34

January 21, 2013 Time: 01:50pm prob01.tex

The Problems

January 21, 2013 Time: 01:50pm prob01.tex

January 21, 2013 Time: 01:50pm prob01.tex

1. The Clumsy Dishwasher Problem

A broken dish is not something to take lightly. It was a broken,
dirty banquet dish that killed the French mathematician Edouard
Lucas in 1891; he died, at age forty-nine, from an erysipelas
infection resulting from a cut after a sharp fragment from a dish
dropped by a waiter flew up and hit him in the face.

Suppose a restaurant employs five dishwashers. In a one-week interval
they break five dishes, with four breakages due to the same individual.
His colleagues thereafter call him “clumsy,’’ but he claims it was just
bad luck and could have happened to any one of them. The problem
here is to see if he has some valid mathematical support for his
position. First, see if you can calculate the probability that the same
dishwasher breaks at least four of the five dishes that are broken (this
includes, of course, the event of his breaking all five). It’s an easy
combinatorial calculation. Assume the dishwashers are equally skilled
and have identical workloads, and that the breaking of a dish is a
truly random event. If this probability is small, then the hypothesis
that the given dishwasher actually is clumsy is more compelling than
the hypothesis that a low-probability event has occurred. (What “low’’
means is, of course, subjective.) Second, after you have calculated this
probability—and even if you can’t—write a Monte Carlo simulation
that estimates this probability. Are the two approaches in agreement?

August 21, 2007 Time: 05:52pm prob02.tex

2. Will Lil and Bill Meet at the Malt Shop?

Journeys end in lovers meeting . . .

—Shakespeare, Twelfth Night

The introduction used some examples of geometric probability from
pure mathematics to open this book, and here’s a problem from real
life that can also be solved with a geometric probability approach. It
can, however, also be easily attacked with a Monte Carlo simulation
if the theoretical solution escapes you, and so I think it perfect for
inclusion in this collection.

I used this problem in every undergraduate probability class I taught
at the University of New Hampshire, and I originally thought the
initial puzzlement I saw on my students’ faces was because the math
was strange to them. Then I learned it was mostly due to not knowing
what a malt shop is—or I should say was. In New England, an ice cream
milkshake is called a frappe, a term that, as a born-in-California boy,
I had never heard before moving to New Hampshire in 1975. (Older
readers can relive the nostalgia by watching Episode 189—“Tennis,
Anyone?’’—or Episode 195—“Untogetherness’’—of Leave It to Beaver
on the TV Land channel in which casual mentions of “the malt shop’’
are made. Younger readers, ask your grand parents !) So, if the malt
shop is a problem for you, we could simply have Lil and Bill meeting
instead at the theater, the high school gym, the local fast-food outlet,

August 21, 2007 Time: 05:52pm prob02.tex

Will Lil and Bill Meet at the Malt Shop? 39

and so on, but as a fellow who went to high school in the 1950s, I still
like the malt shop. Anyway, here’s the problem.

Lil and Bill agree to meet at the malt shop sometime between 3:30
and 4 o’clock later that afternoon. They’re pretty casual about details,
however, because each knows that the other, while he or she will show
up during that half-hour, is as likely to do so at any time during
that half-hour as at any other time. If Lil arrives first, she’ll wait five
minutes for Bill, and then leave if he hasn’t appeared by then. If Bill
arrives first, however, he’ll wait seven minutes for Lil before leaving if
she hasn’t appeared by then. Neither will wait past 4 o’clock. What’s
the probability that Lil and Bill meet? What’s the probability of their
meeting if Bill reduces his waiting time to match Lil’s (i.e., if both
waiting times are five minutes)? What’s the probability of their meeting
if Lil increases her waiting time to match Bill’s (i.e., if both waiting
times are seven minutes)?

October 12, 2007 Time: 11:16am prob03.tex

3. A Parallel Parking Question

Starting with an n-dimensional random distribution of points,
if each point is joined to its nearest neighbor, clusters are formed
such that each point in a cluster is the nearest neighbor to another
point in the cluster. I believe this may be a novel method of clus-
tering with interesting applications in other fields—astrophysics
and the traveling salesman problem, to name two.
—Daniel P. Shine, the creator of the original form of the following

problem

Suppose n ≥ 2 cars parallel park in a long, straight, narrow lot of
length L. To make things easy, we’ll imagine that the cars have no
extensions but instead can be modeled as simply points distributed
along a line segment of length L. We’ll measure the parking location or
position of a car by its distance from the lot entrance at the origin, and
so each car is located in the interval (0,L). Now, each car will obviously
have a nearest neighbor. For example, if n = 3 and if the positions of
car1, car2, and car3 are 0.05, 0.17, and 0.56, respectively, then the
nearest neighbor of car2 is car1 (and, of course, the nearest neighbor—
the only neighbor!—for car1 is car2; car1 and car2 are mutual nearest
neighbors in this example). What is the probability that, if a car is
picked at random, it is the nearest neighbor of the car that is its nearest

October 12, 2007 Time: 11:16am prob03.tex

A Parallel Parking Question 41

neighbor? That is, if a car is picked at random, what is the probability
it is one of a pair of mutual nearest neighbors?

For n = 2 cars, the answer is obviously one. For n = 3 cars, we see
that car1 always has car2 as its nearest neighbor, and car3 always has
car2 as its nearest neighbor. Car2 will have either car1 or car2 as its
nearest neighbor. That is, either car1 and car2 are mutual nearest
neighbors (and car3 is not part of a mutual nearest neighbor pair)
or car2 and car3 are mutual nearest neighbors (and car1 is not part of
a mutual nearest neighbor pair). In other words, for n = 3 there will
always be precisely one mutual neighbor pair (involving two cars) and
one lonely car that is not part of a pair. Thus, if we pick one of the
three cars at random, it will be part of a mutual nearest neighbor pair
with probability 2

3 . Now, what if n = 4 cars? If n = 5 cars? And so on.
Notice, whatever is the value of L, if after the n cars have parked

we scale L by any positive factor, then the property of being a
nearest neighbor is unaffected. That is, the property of neighborness
is scale invariant. Thus, with no loss in generality, let’s take L = 1. To
simulate the parking of n cars at random in the lot, all we need do
is to generate n numbers from a distribution uniform from 0 to 1,
i.e., to make n calls to MATLAB’s random number generator. Next,
we sort these n numbers in increasing value, which is equivalent to
determining the positions of the cars from left to right. We then simply
proceed through these n numbers to determine how many are mutual
nearest neighbors. Each increase in the mutual neighbor count means
two more cars that are mutual nearest neighbors.

So, that’s the problem: to write a Monte Carlo simulation to get esti-
mates for the probabilities of a randomly selected car being part of a
mutual nearest neighbor pair for the cases of n = 4, 5, 6, . . . , 12, and
for n = 20 and n = 30 cars. Do you notice anything interesting about
the results? Are you, in fact, surprised by the simulation results? Can
you guess what the probabilities are for any positive integer n? Can you
derive those probabilities?

October 12, 2007 Time: 11:19am prob04.tex

4. A Curious Coin-Flipping Game

In 1876 Edouard Lucas (remember him from Problem 1?)
showed indirectly that 267 − 1 could not, as had been conjectured
since the early 1600s, be a prime number. Lucas could not,
however, actually factor this enormous number. Then, in 1903,
the American mathematician Frank Cole (1861–1926) gave a
remarkable paper at a meeting of the American Mathematical
Society. Without saying a word, he walked to the blackboard and
calculated 267 − 1. Then he multiplied out, longhand,

193,707,721 × 761,838,257,287.

The two calculations agreed, and the audience erupted as one into
a thunderous, standing ovation. Cole later said it took him twenty
years of Sunday afternoons to factor

267 − 1 =147,573,952,589,676,412,927.

Unsolved problems in mathematics are fun to play with because if
you manage to solve one, you’ll become famous—or at least as famous
as mathematicians get to be. When Andrew Wiles (born 1953) finally
put Fermat’s Last Theorem to rest in 1995, he became really famous,
but that sort of general fame is rare. Frank Cole’s experience is more
typical; after his death, the American Mathematical Society named

October 12, 2007 Time: 11:19am prob04.tex

A Curious Coin-Flipping Game 43

a prize in his honor in 1928, but don’t look for any breathless
announcements about the yearly winner on your local newscast. (That
important honor is reserved for the up-to-the-minute details on the
latest Hollywood romance.) Almost as much fun as still unsolved
problems are recently solved unsolved problems. They’re fun because
one can enjoy two simultaneous pleasures: (1) knowing the solution
and (2) knowing that, until recently, nobody knew the solution. The
best sort of this class of problem is one that is so easy to state
that anybody, even a nonmathematician, can understand it, but until
recently nobody could solve.

Here’s an example of such a problem, first stated as a challenge
question in the August–September 1941 issue of the American Mathe-
matical Monthly (p. 483). It defied solution for a quarter-century, until
1966. As stated by its originator (G. W. Petrie, of the South Dakota State
School of Mines):

Three men have respectively l, m, and n coins which they match
so that the odd man wins. In case all coins appear alike they
repeat the throw. Find the average number of tosses required until
one man is forced out of the game.

An unstated assumption is that all of the coins are fair; i.e., when
flipped, all coins will show heads or tails with equal probability. The
1966 theoretical solution holds only for the case of fair coins. Now, just
to be sure you have this game firmly in mind, here’s a slight elaboration
on Petrie’s terse statement. When playing, each man selects one of his
coins, and then all three simultaneously flip. If two coins show the same
side and the third coin shows the opposite side, then the two men
whose coins matched give those coins to the odd man out. If three
heads or three tails is the outcome, however, nobody wins or loses on
that toss. This process continues until one of the men loses his last
coin. Notice that when you lose, you lose one coin, but when you win,
you win two coins.

Write a Monte Carlo simulation that accepts values for l, m, and n,
and then plays a large number of toss sequences, keeping track for
each sequence of the number of tosses until one of the men goes broke
(or, as mathematicians usually put it, is ruined). From that, the average
number of tosses is easy to calculate. One advantage a simulation has

October 12, 2007 Time: 11:19am prob04.tex

44 Problem 4

over the theoretical analysis is that the fair assumption can be relaxed;
more generally, we can write p for the probability that any coin will
show heads, and the fair coin case of p = 1/2 becomes simply one
special case. (One other significant plus for a simulation is that, even
for just fair coins, there is no known theoretical answer for the case
of more than three players; that, however, is a trivial extension for a
simulation.) Write your code so that, along with the values of l, m,
and n, the value of p is also an input parameter. To help you check
your code, if l = 1, m = 2, and n = 3, then the theoretical answer (for
p = 1/2, of course) is that the average length of a sequence until one
man is ruined is two tosses. Make sure your code gives a result pretty
close to that value. Now, what is the answer if l = 2, m = 3, and n = 4?
If l = m = n = 3? If l = 4, m = 7, and n = 9? How do these answers
change if p = 0.4?

October 12, 2007 Time: 11:22am prob05.tex

5. The Gamow-Stern Elevator Puzzle

No opium-smoking in the elevators.
—sign in a New York City hotel (1907)

This is excellent advice, in general, and particularly so while
studying the following problem, as you’ll need all your wits
unfogged if you are to have any chance of success.

Elevators are a wonderful source of fascinating probabilistic questions.
They are easy to understand—elevators, after all, even though they are
built to go straight up (with the exception of the fascinating elevators
in the Luxor casino and hotel in Las Vegas)—aren’t rocket science,
and yet they present numerous situations in which the analyses are
subtle and the results often nonintuitive. One such question that I
knew would be in this book the moment I laid eyes on it is due to
the mathematician Marvin Stern (1935–1974) and the physicist George
Gamow (1904–1968). The problem originally appeared in a puzzle
book by Gamow and Stern (Puzzle-Math, New York: Viking, 1958), but
they did not have quite the correct theoretical analysis. So, let me quote
from a paper1 written by the computer scientist Donald Knuth that,
more than a decade later, gave the correct solution to the problem:

An amusing mathematical problem was devised by George
Gamow and Marvin Stern, after they had been somewhat

October 12, 2007 Time: 11:22am prob05.tex

46 Problem 5

frustrated by the elevator service in their office building. Gamow’s
office was on the second floor and Stern’s on the sixth floor of
a seven-story building. Gamow noted that, whenever he wished
to visit Stern, the first elevator to arrive at the second floor was
almost always “going down’’ not up. It seemed as though new
elevators were being created at the top floor and destroyed at the
ground floor, since no elevator ever would bypass the second floor
intentionally on its way up. But when waiting for a descending
elevator on the sixth floor, precisely the opposite effect was
observed; the first elevator to pass was almost always “going up’’!

To both Gamow and Stern it seemed almost as if there was a
conspiracy to make them wait. In a world in which a conspiracy theory
is put forth almost every day, in just about any imaginable setting,
this is probably what many people would actually believe. There is,
however, a perfectly logical mathematical explanation for what Gamow
and Stern observed. The case of a building with just one elevator is easy
to understand. We imagine that the elevator is continually running,
going up and down all day long,2 and so it seems reasonable to assume
that, if Gamow requested its service at some arbitrary time, then with
probability 1/6 it would be below his floor and with probability 5/6
it would be above his floor. Therefore, with probability 5/6 it would
eventually arrive at his floor going down. For Stern it would be just
the opposite, i.e., the elevator would, with probability 5/6, be going up
when it arrived at his floor. This is what Gamow and Stern wrote and,
so far so good. But then they blundered.

As Knuth wrote,

When there is more than one elevator, Gamow and Stern say
that “the situation will, of course, remain the same.’’ But this is
not true! Many a mathematician has fallen into a similar trap,
being misled by something which seems self-evident, and nearly
every example of faulty reasoning that has been published is
accompanied by the phrase “of course’’ or its equivalent.

Knuth then quickly demonstrates that if there are two independent
elevators, then the first elevator to arrive at Gamow’s floor will be going
down with probability 13/18, which is not equal to 5/6 = 15/18. Check

October 12, 2007 Time: 11:22am prob05.tex

The Gamow-Stern Elevator Puzzle 47

Knuth’s calculation with a Monte Carlo simulation. Also, what is the
probability that the first-arriving elevator at Gamow’s floor is going
down in a three-elevator building?

References and Notes

1. Donald E. Knuth, “The Gamow-Stern Elevator Problem’’ (Journal of
Recreational Mathematics 2, 1969, pp. 131–137).

2. As Knuth wrote, “Let us assume that we have an ‘ideal’ elevator system,
which everyone knows does not exist, but which makes it possible to give a
reasonable analysis. We will assume that each elevator goes continually up and
down from the bottom floor to the top floor of the building, and back again
in a cyclic fashion (independent of the other elevators). At the moment we
begin to wait for an elevator on some given floor of the building [floor 2 for
Gamow], we may assume that each elevator in the system is at a random point
in its cycle, and that each will proceed at the same rate of speed until one
[first] reaches our floor.’’

October 12, 2007 Time: 11:23am prob06.tex

6. Steve’s Elevator Problem

Much drinking, little thinking.
(So, no opium-smoking or boozing if you want to solve this
problem!)

In March 2004 I received the following e-mail from a California reader
of my first probability book, Duelling Idiots. That reader, Mr. Steve Saiz,
wrote to ask for some help with an elevator problem different from the
one in the last problem:

Every day I ride up to the 15th floor in an elevator. This elevator
only goes to floors G, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, and
17. On average, I noticed that I usually make 2 or 3 stops when
going from the ground floor, G, to 15, but it really depends on
the number of riders in the elevator car. Is it possible to find the
expected value for the number of stops the elevator makes during
my ride up to the 15th floor, given the number of riders?

Steve told me that he had written a Monte Carlo program in BASIC
(using 10,000 simulations for each value of the number of riders),
but he wasn’t sure if it was correct. He assumed that the elevator
stops are influenced only by the riders, and not by anyone on a
floor waiting to get on. (This may, in fact, not be a bad assumption

October 12, 2007 Time: 11:23am prob06.tex

Steve’s Elevator Problem 49

for Steve’s situation—arriving at work in the early morning probably
means there are few, if any, people on the upper floors waiting for
elevator service.) For example, if Steve was alone on the elevator he
would always experience just one stop on the way up to his floor.
The first thing I did after reading Steve’s e-mail was to write my own
MATLAB simulation and check its results against the results produced
by Steve’s BASIC code. Here’s that comparison, where my code used
one million simulations for each value of the number of riders:

Average number of stops

Number of riders Steve’s simulation My simulation

1 1 1
2 1.7295 1.727191
3 2.3927 2.388461
4 2.9930 2.989917
5 3.5457 3.535943

It seemed pretty likely from this comparison that Steve and I were
getting the right numbers from our two independent simulations; but
of course, the next obvious question is, is there an analytic expression
for these numbers? If we let k denote the number of riders on the
elevator in addition to Steve, then I was quickly able to work out such
expressions for the k = 1 and k = 2 cases. Let me show you the k = 1
analysis, i.e., the case of two riders. To start, let’s rephrase Steve’s
problem in a slightly more general way, as follows. There are n floors
(1, 2, 3, . . . , n, where n = 11 in Steve’s problem) above floor G. One
particular rider (Steve) always gets off on floor n − 2. Other riders, if
present, can get off at any floor, each floor having probability 1

n as an
exit floor. So, if there is one extra rider, i.e., if there are two riders on
the elevator at floor G, then

there is one stop for Steve if the other rider gets off at Steve’s floor
or above

(
this happens with probability 3

n

)

October 12, 2007 Time: 11:23am prob06.tex

50 Problem 6

or

there are two stops for Steve if the other rider gets off at any floor
below Steve’s floor

(
this happens with probability n−3

n

)
.

Thus, the average number of stops for Steve, when k = 1, is 1 × 3
n +

2 × n−3
n = 2 − 3

n . For n = 11, this is 2 − 3
11 = 19

11 = 1.7273, which agrees
nicely with the simulation results.

Here is the problem assignment for you. First, work out a theoretical
expression for the k = 2 case (there are three riders on the elevator at
floor G). Second, write a Monte Carlo simulation—you can check its
performance against the table of values I gave earlier—and use it to
extend the table to include the cases of 5 ≤ k ≤ 9 (the cases of six to
ten riders, including Steve). As a special credit question, can you find
an exact theoretical expression for the average number of stops for
Steve, valid for any integer value of k? It can be done!

October 12, 2007 Time: 11:27am prob07.tex

7. The Pipe Smoker’s Discovery

It is better to light one candle than curse the darkness.
—Motto of the Christopher Society

(Yes, but first one needs to have a match.)

On one of the bookshelves next to my desk I have an old, well-thumbed
1970s textbook on computer programming which has, as one of its
homework problems, the following interesting assignment:

A pipe smoker has two booklets of matches in his pocket, each
containing 40 matches initially. Whenever a match is required he
picks one of the booklets at random, removing one match. Write
a program using random numbers to simulate the situation 100
times and determine the average number of matches that can be
removed until one booklet is completely empty.

I recall that the authors’ answer at the back of the book (H. A. Maurer
and M. R. Williams, A Collection of Programming Problems and Techniques
[Prentice-Hall, 1972]) at first struck me as a bit strange—“between 61
and 79’’—because the average value of a random quantity is a single
number, not an interval. The answer as given is of course okay as the
interval in which the average appears, and I soon realized that their

October 12, 2007 Time: 11:27am prob07.tex

52 Problem 7

answer was simply a helpful hint to the reader, giving some guidance
as to the correct answer without giving the entire game away. So, what
is the average number of matches removed until one booklet is empty?
(Much progress in computer speed has been made since the 1970s,
and so you can run a lot more than 100 simulations.)

This problem is not at all academic, and variations of it occur
in unexpected places. See, for example, the next problem (A Toilet
Paper Dilemma) for a generalization of enormous societal importance.
Here’s yet another one for you to think about right now, put forth some
years ago by a physicist (I’ll give you the citation in the solution): “To
avoid running out of dental floss unexpectedly while traveling, I put
two identical boxes, each containing 150 ft of floss, in my travel bag.
I choose between the boxes randomly, and use 1 ft of floss each time.
When one box becomes empty, how much floss can I expect to find in
the other?’’ Matches, floss, toilet paper—, it’s the same problem.

October 12, 2007 Time: 11:31am prob08.tex

8. A Toilet Paper Dilemma

No job is over until all the paperwork is done.
—Graffiti written on at least half of all college dorm bathroom stalls

in America

Up to now all the problems in this book have been studied with
the aid of Monte Carlo simulations run on a computer. Not all
probability problems that a computer is useful on use the Monte Carlo
approach, however, and this problem is an example of that. A quarter-
century ago Donald Knuth (look back at the Gamow-Stern elevator
problem) published a paper in the American Mathematical Monthly that
has achieved minor cult status among mathematicians and computer
scientists. It analyzed a problem suggested to him by the architect of a
new computer science building at Stanford University, and the paper1

opens with a stunning flourish:

The toilet paper dispensers in a certain building are designed to
hold two roles of tissues, and a person can use either roll. There
are two kinds of people who use the rest rooms in the building:
big-choosers and little-choosers. A big-chooser always takes a piece of
toilet paper from the roll that is currently larger; a little-chooser
does the opposite. However, when the two rolls are the same
size, or when only one roll is nonempty, everybody chooses the

October 12, 2007 Time: 11:31am prob08.tex

54 Problem 8

nearest nonempty roll. When both rolls are empty, everybody has
a problem.

Well! Where in the world (I can imagine most subscribers to the
scholarly American Mathematical Monthly thinking when they read that)
is Knuth going with this? Pretty far, as it turns out.

Knuth continues:

Let us assume that people enter the toilet stalls independently at
random, with probability p that they are big-choosers and with
probability q = 1 − p that they are little-choosers. If the janitor
supplies a particular stall with two fresh rolls of toilet paper,
both of length n, let Mn(p) be the average number of portions
left on one roll when the other roll empties. (We assume that
everyone uses the same amount of paper, and that the lengths
are expressed in terms of this unit.)

The similarity of this problem to the pipe smoker’s problem is striking.
Knuth’s paper analytically studies the behavior of Mn(p) for a fixed

p, as n → ∞. Here, we’ll be more interested in the behavior of Mn(p),
0 ≤ p ≤ 1, for a fixed, finite n. (This problem can be attacked with
the Monte Carlo approach, but just for a change of pace we’ll take a
different road here.) To this end, there are some things we can say
about Mn(p) for any value of n. In his paper, for example, Knuth
writes, “It is easy to establish that M1(p) = 1, M2(p) = 2 − p, M3(p) =
3 − 2p − p2 + p3, Mn(0) = n, Mn(1) = 1.’’ The first and the last two, of
these statements are, in fact, actually obvious (with just a little thought).
For the first, we start with two rolls, each of length 1, and the very first
user picks one and so immediately empties that roll. The other roll
obviously still has length 1. QED.

The penultimate statement is equally obvious as well, as p = 0
means all the users are little-choosers. The first user picks a roll and
uses it (thereby making it the little roll), and all subsequent users pick
it as well by definition (remember, p = 0) and run its length down to
zero. The other roll is never picked during that process and so is left
with all of its original n pieces as the other roll empties. QED.

The last statement is only slightly more complicated to establish.
To start, we notice that p = 1 means all the users are big-choosers.

October 12, 2007 Time: 11:31am prob08.tex

A Toilet Paper Dilemma 55

A

B

A = B

q

p

p

q

A > B
(here, big-choosers pick A and
little-choosers pick B)

A < B
(here, big-choosers pick B and
little-choosers pick A)

1

p

1–
2

q

1–
2

q

1–
2

1–
2

1–
2

p

1–
2

p

1–
2

1–
2

1–
2

1–
2

Figure P8.1. Calculating M2(p).

The first such user picks a roll and uses it (thereby making it the
little roll). The next user therefore picks the other (big) roll, thereby
making both rolls equal in length (n − 1) once again. This back-and-
forth process continues, which means that eventually we’ll arrive at the
state of two rolls with equal length 1. The next user then picks a roll
and empties it, thereby leaving the other roll with length 1. QED.

What about the other expressions, for M2(p) and M3(p)? Where do
they come from? Knuth doesn’t say explicitly, but it seems clear from
his paper that it might have been as follows. Call the two rolls A and B
and, as indicated by the first-quadrant lattice points (those points with
integer-valued coordinates) in Figure P8.1, points on the diagonal line
A = B represent rolls of equal length. Points above the diagonal are all
the different ways A > B (that is, A is the big roll and B is the little
roll), and points below the diagonal are all the different ways A < B.
M2 is for the case where we start at the upper right lattice point at
(2, 2), and users then drive the rolls from lattice point to lattice point

October 12, 2007 Time: 11:31am prob08.tex

56 Problem 8

until the state of the system reaches either the A-axis (B = 0) or the
B-axis (A = 0), where one of the rolls is empty. Along each dashed
line showing the possibility of a transition from one lattice point to the
next I’ve written the probability of that transition, and next to each
lattice point I’ve written (in a circle) the probability of being at that
lattice point. If lattice point x can transition to lattice point x ′, then the
probability of point x ′ is the probability of point x times the transition
probability. From the figure we can now immediately write

M2(p) = 2 × (1
2q

) + 1 × (1
2 p

) + 1 × (1
2 p

) + 2 × (1
2q

)

= q + 1
2 p + 1

2 p + q

= 2q + p = 2(1 − p) + p = 2 − 2p + p = 2 − p,

as given by Knuth.
You’ll find, if you repeat the above analysis for M3(p), that you’ll

arrive at Knuth’s expression once again, but only after somewhat more
algebra. Indeed, the algebraic demands with this approach go up
pretty fast as the n in Mn(p) increases, and this approach would be
quite unattractive for computing, say, M100(p). For something like that,
we need a different approach. The key idea is provided by Knuth.
Following him, let’s make a seemingly innocuous extension of our
notation, writing Mm, n(p) as the average number of portions remaining
on one roll when the other roll empties, given that we start with m
portions on one roll and n portions on the other. Then we immediately
have, by definition, the statement

(a) Mn, n(p) = Mn(p).

A second statement that is trivially obvious is

(b) Mn,0(p) = n.

Two additional statements are

(c) Mn, n(p) = Mn, n−1(p), n > 0.

October 12, 2007 Time: 11:31am prob08.tex

A Toilet Paper Dilemma 57

and

(d) Mm, n(p) = pMm−1, n(p) + q Mm, n−1(p), m > n > 0.

To establish (c), reason as follows: Given that we are at the diagonal
lattice point (n, n), then with probability 1/2 we move to lattice point
(n, n − 1) and with probability 1/2 we move to lattice point (n − 1, n).
Thus,

Mn,n(p) = 1
2

Mn, n−1(p) + 1
2

Mn−1, n(p) = 1
2

[Mn, n−1(p) + Mn−1, n(p)].

But physically, Mn, n−1(p) = Mn−1, n(p)—in both expressions we are
starting with two rolls, one of length n and the other of length n − 1—
and so we immediately have (c):

Mn, n(p) = Mn, n−1(p).

To understand (d), simply observe that, with p the probability a user is
a big-chooser, we go from lattice point (m, n) to lattice point (m − 1, n)
with probability p, and to lattice point (m, n − 1) with probability
q = 1 − p. The constraints m > n > 0 mean that the starting lattice
point (m, n) is below the diagonal. Now, why do we even care about
these statements? Because, as Knuth writes, “The value of Mn(p) can
be computed for all n [my emphasis] from these recurrence relations,
since no pairs (m ′, n′) with m ′ < n′ will arise.’’ Because of this we can
study the behavior of Mn(p) even if we can’t find a direct formula
for Mn(p).

As an example of such a calculation, let’s use the four recurrences to
calculate M3(p). We have

M3 = M3,3 = M3,2 = pM2,2 + q M3,1

or, as M2,2 = M2 = 2 − p, then

M3,3 = p(2 − p) + q [pM2,1 + q M3,0] = p(2 − p) + q pM2,1 + 3q 2

= p(2 − p) + (1 − p)p[pM1,1 + q M2,0] + 3(1 − p)2

= p(2 − p) + (1 − p)p[pM1,0 + 2q] + 3(1 − p)2

= p(2 − p) + (1 − p)p[p + 2(1 − p)] + 3(1 − p)2

October 12, 2007 Time: 11:31am prob08.tex

58 Problem 8

= p(2 − p) + (1 − p)p[p + 2 − 2p] + 3(1 − p)2

= 2p − p2 + (1 − p)p(2 − p) + 3(1 − p)2

= 2p − p2 + p(2 − 3p + p2) + 3 − 6p + 3p2

= 2p − p2 + 2p − 3p2 + p3 + 3 − 6p + 3p2

= 3 − 2p − p2 + p3,

which is Knuth’s expression that I gave earlier.
Okay, at last, here’s your problem. Use Knuth’s recurrences to

calculate the numerical values of M200(p) as p varies from 0 to 1, and
plot M200(p). (In his paper, Knuth gives the plot for M100(p), but that
seems like small rolls for the industrial-strength bathroom stalls you’d
expect to find in the computer science building of a major2 university!)
Do you notice anything interesting happening around p = 0.5?

References and Notes

1. Donald E. Knuth, “The Toilet Paper Problem’’ (American Mathematical
Monthly, October 1984, pp. 465–470.)

2. I hope readers understand I am not making fun of Stanford—I am, after
all, a member of the Stanford class of 1962. It was at Stanford, in 1960, that
I first learned computer programming—machine language programming—
of the IBM 650, a terrifying experience that later allowed me to instantly
appreciate modern computer languages.

October 12, 2007 Time: 11:40am prob09.tex

9. The Forgetful Burglar Problem

Were it not better to forget
Than but remember and regret?
—from Letitia Elizabeth Landon’s Despondency, with the following

problem as a counter-example.

Imagine an old-time medicine-man show, wandering from town to
town, selling narcotic-laced bottles of “Doctor Good’’ to the local hicks.
Imagine further that the star of the show indulges in his own product
just a bit too much for his own good, and so can’t remember where
he has already been in his travels. If he should put his tent up in a
previously visited town, there may be a painful penalty extracted by
enraged former customers who have since discovered the inability of
narcotics to cure poor eyesight, arthritis, and thinning hair. A similar
concern exists for a burglar who wanders up and down a street of
homes plying his trade but who can’t remember which houses he has
already robbed. A return to a previously burgled home may result in a
confrontation with an angry homeowner—who may be an armed and
lethal member of the NRA!

For both our drunk medicine man and forgetful burglar, we are
led to the following interesting mathematical question, first posed in
1958: Starting from an arbitrary town (home), if our medicine man
(burglar) wanders up and down along an infinity of towns (homes) that

October 12, 2007 Time: 11:40am prob09.tex

60 Problem 9

are spaced uniformly along a line, taking with equal probability steps
of either one or two towns (homes) in either direction (also with equal
probability) to arrive at his next location, how long can our man get
away with his crooked trade? That is, how long is it before a previously
hoodwinked town or a previously burgled home is revisited? This is a
very difficult problem to attack analytically, but it’s all duck soup for a
Monte Carlo simulation. In particular, find the probabilities that either
of the men end up revisiting an old location on the kth step, where
1 ≤ k ≤ 7. (The answer for the first case of k = 1 is, of course, trivial!
Right?)

December 4, 2007 Time: 11:38am prob10.tex

10. The Umbrella Quandary

Rain, rain, go away,
Come again another day.
—popular children’s nursery rhyme

Imagine a man who walks every day between his home and his office.
Because of the ever-present threat of rain, he likes to keep an umbrella
at each location; that way, so goes his reasoning, if it is raining when
he is about to leave one location to walk to the other, he won’t get wet.
The only flaw in his grand plan is that if it isn’t raining he invariably
neglects to take an umbrella with him. If you think about this for about
five seconds, you should see that this can easily result in one location
eventually having both umbrellas and the other location having none.
If he then happens to be about to leave the no-umbrella location when
it is raining, well, he’s going to get wet!

We are thus led to the following pretty problem. If it is raining
with probability p at the time the man is about to start each of his
walks, then, on average, how many times will he remain dry before
experiencing his first soaking? To make the problem just a bit more
general, suppose we start the man off at home with x > 0 umbrellas,
and with y > 0 umbrellas at the office, where x and y are input
parameters to a Monte Carlo simulation. Use your simulation to
answer the above question for the two cases of x = y = 1 and x = y = 2,

December 4, 2007 Time: 11:38am prob10.tex

62 Problem 10

as p varies from 0.01 to 0.99. That covers the entire spectrum from a
very dry place (it rains, on average, once every 100 walks) to a very wet
place (it doesn’t rain, on average, once every 100 walks). Do you see
why we don’t need to run a simulation for either of the two extreme
values of p = 0 (it never rains) and of p = 1 (it always rains)? That is,
are the answers for these two special cases obvious to you by inspection?

October 12, 2007 Time: 11:43am prob11.tex

11. The Case of the Missing Senators

Every vote counts.
—platitude heard before every election (occasionally it’s even true)

Every vote counts, so vote early and often.
—cynical response to the first quote

Imagine that the U.S. Senate is about to vote on an important bill. It is
known that there are more for votes than there are against votes, and so
if all 100 senators show up, then the bill will pass. Let’s suppose there
are A senators who are against the bill, and thus there are 100 − A
senators who are for it, where A < 50. If A = 49, for example, it will be
a close 51 to 49 vote to pass the bill—if all the senators vote (and they
don’t always do!). Suppose, in fact, that M of the senators miss the vote.
We are to imagine that these M senators are absent for purely random
reasons (traffic delays, illness, forgetfulness, etc.) having nothing to
do with whether a senator is either for or against the bill. It is then
possible for the vote to go the wrong way, i.e., for the senators who do
show up to collectively defeat the bill. What is the probability of that
happening?

To answer this question, write a Monte Carlo simulation that accepts
the values of A and M as input parameters. As a partial check on

October 12, 2007 Time: 11:43am prob11.tex

64 Problem 11

your code, the theoretical answer for the particular case of A = 49 and
M = 3 is 51

396 = 0.12878787 (In the solution, I’ll show you how to
calculate this.) Make sure your code gives an estimate pretty close to
this value for these values of A and M. What is the probability for
A = 49 and M = 4? For A = 49 and M = 5?

October 12, 2007 Time: 11:44am prob12.tex

12. How Many Runners in a Marathon?

In the Middle East a few years ago I was given permission
by Israeli military authorities to go through the entire Merkava
Tank production line. At one time I asked how many Merkavas
had been produced, and I was told that this information was
classified. I found it amusing, because there was a serial number
on each tank chassis.
—a former military officer, thus proving that history still has lessons

to teach, as the problem below explains

In any war, it is always of value to one side to have good intelligence
on the weapons resources of the other side.1 During the Second
World War, for example, Allied military planners eagerly searched for
ways to accurately estimate the Axis production of tanks, aircraft, and
numerous other weapons platforms. In the specific case of German
tanks, a very clever way to do that was based on using either the
stamped serial numbers or the gearbox markings on captured Mark I
or Mark V tanks, respectively.2 As a modern writer (my source for
the above quotation) explained, however, this type of problem has
far wider applications than simply counting tanks:3

Suppose we have a population of objects labelled 1, 2, 3, . . . , N
with [the value of] N unknown. From a random sample X1, X2,

October 12, 2007 Time: 11:44am prob12.tex

66 Problem 12

X3, . . . , Xn of size n without replacement from this population
we consider how to estimate N. One may estimate the number
of runners in a race [hence the name of this problem], taxicabs
in a city, or concession booths at a fair, for instance, based upon
seeing just a sample of these labelled items.

It can be shown, in fact, that if one looks at a large number of such
samples, each of size n, then the average value (the expected value) of
all the maximum Xi ’s taken from each sample is given by

E(max Xi) = n(N + 1)
n + 1

.

This is not difficult to derive,4 but we’ll take it as a given here.
Remember, what we are after is an estimate for N, the actual (unknown)
maximum value in the population (equivalent, for this problem, to the
size of the population). Solving for N gives

N = n + 1
n

E(max Xi) − 1,

and if we assume that E(max Xi) is approximated by the maximum
value observed in the sample we have, then we can form an estimate
of N. For example, suppose we record the jersey numbers on fifteen
marathon runners as they pass us at some point along the race—the
assumption is that the numbers are from 1 to N, and were handed
out before the race to the runners at random—and that the biggest
number we see is 105. Then our estimate for N is

N ≈ 16
15

× 105 − 1 = 112 − 1 = 111.

There are at least a couple of interesting observations we can make
about our estimation formula. First, since the observed maximum
value in any sample of size n must be at least n, then the estimate
for N must be at least

n + 1
n

× n − 1 = n,

which says that the estimate for N can never be less than the largest
value actually observed. This may seem absurdly obvious, but in fact

October 12, 2007 Time: 11:44am prob12.tex

How Many Runners in a Marathon? 67

there are other estimation formulas that people have considered that
do not have this property! And second, if we have a sample of size N,
i.e., if we have looked at the entire population, then our estimate for N
will actually be exact. This is because in such a situation we are certain
to have actually observed the maximum value N, and so our estimate is

N + 1
N

× N − 1 = N,

which again makes absurdly obvious sense. It is, of course, possible for
our estimation formula to make big errors, too. For example, suppose
N = 800 and n = 5. A perfectly possible sample is [1, 2, 3, 4, 5], which
gives the grossly incorrect estimate for N of

5 + 1
5

× 5 − 1 = 5.

Another possible sample is [1, 2, 3, 4, 800], in which we (unknow-
ingly) have observed the actual value of N. Our formula, however,
estimates N as

5 + 1
5

× 800 − 1 = 6
5

× 800 − 1 = 960 − 1 = 959,

a value significantly greater than N = 800.
We can experimentally see how well our formula works in practice

with a Monte Carlo simulation. That is, you are to write a program that,
first, randomly picks the value of N (let’s say N can be any integer from
100 to perhaps 1,000 or so), and then asks for the value of the sample
size n as a percentage of N. That is, if you answer this question with 5,
that means the sample size is to be 5% of the value the program picked
for N; e.g., if N = 260, then the sample size will be 0.05 × 260 = 13.
It is important to keep in mind that while you of course know the
sample size percentage, you do not know the actual sample size
because you do not know the value of N. The program then generates,
randomly, n different integers5 in the interval 1 to N (the program
does know N, of course!), determines the maximum of those integers,
and then uses our above estimation formula to arrive at an estimated
value for N. This estimate can then be compared with the actual value
of N to determine how well our estimation formula has performed.
Specifically, have your code compute the percentage error in its

October 12, 2007 Time: 11:44am prob12.tex

68 Problem 12

estimate for each of 10,000 simulations using a fixed sample size
percentage of 2% and plot a histogram of those errors. Repeat for
sample size percentages of 5%, 10%, and 20%. Do your histograms
have any interesting features?

References and Notes

1. The American invasion of Iraq in May 2003, justified in large part by
erroneous information on weapons capabilities, is the most recent (as I write)
illustration of how steep can be the price paid for faulty intelligence.

2. Richard Ruggles and Henry Brodie, “Empirical Approach to Economic
Intelligence in World War II’’(Journal of the American Statistical Association,
March 1947, pp. 72–91). See also David C. Flaspohler and Ann L. Dinkheller,
“German Tanks: A Problem in Estimation’’ (Mathematics Teacher, November
1999, pp. 724–728).

3. Roger W. Johnson, “Estimating the Size of a Population’’ (Teaching
Statistics, Summer 1994, pp. 50–52).

4. Saeed Ghahramani, Fundamentals of Probability (Upper Saddle River,
N. J.: Prentice-Hall, 1996, pp. 146–148). Johnson (previous note) also derives
E(max Xi), but in a more heuristic way.

5. This should remind you of the previous problem (The Case of the
Missing Senators), in which we had M randomly selected different senators
missing a vote. In the language of a statistician, we had there a problem in
sampling a population (the 100 senators who could potentially show up for the
vote) without replacement to determine the M senators who miss the vote. You
might want to review the code used in that problem—missing.m—for how that
was accomplished, but for this problem you might also want to consider an
elegant alternative (A. C. Bebbington, “A Simple Method of Drawing a Sample
Without Replacement,’’ Applied Statistics, 1975, no. 1, p. 136). As described by
Bebbington, to select n items without replacement from N items, one simply
looks one after the other at each of the N items. As you proceed, “after
considering whether to select [initially, with probability n

N] each [item], N is
reduced by 1, and if that [item] was selected, n is also reduced by 1. The next
[item considered] is then selected with the new probability.’’ Bebbington then
writes the all-important “It is easily shown that this scheme must result in
exactly n [items] being selected, and that every possible sample of the required
size has an equal chance of occurring.’’

October 22, 2007 Time: 03:31pm prob13.tex

POLI
CE

13. A Police Patrol Problem

When constabulary duty’s to be done,
The policeman’s lot is not a happy one.
—Pirates of Penzance, Gilbert and Sullivan

Imagine a long, straight stretch of high-speed, two-lane road that is
routinely monitored by the state police for accidents.1 There are many
different ways that we can imagine how this monitoring could be
implemented. For example:

(a) A police patrol car sits on a side of the road at the midpoint of
the road, waiting for a radio call request for aid at the scene of
an accident;

(b) A police patrol car continuously travels up and down from one
end of the road to the other end and back again, listening for
a radio request for aid;

(c) Two patrol cars independently implement (b), with the closer
car responding to a request for aid.

To be even more general, we can imagine at least two additional ways
to complicate methods (b) and (c):

(1) The stretch of road is a divided road, with the lanes in each
direction separated by a grassy median strip whichallows a

October 22, 2007 Time: 03:31pm prob13.tex

70 Problem 13

patrol car to immediately drive to the accident, even if the
accident is in the other lane and even if the patrol car has to
reverse direction;

(2) The two lanes are separated by a concrete barrier, which
means a patrol car can change lanes only at the two ends of
the road.

With these possibilities, we therefore have six possible patrol scenarios:
(a) and (1), (a) and (2), (b) and (1), (b) and (2), (c) and (1), and (c)
and (2).

With these multiple scenarios available, an obvious question to ask
is, which is best? This is an important issue that state officials might
be faced with in deciding both how a highway should be constructed
and how it should be policed. Not so obvious, however, is what we
should use as a measure of “goodness,’’; i.e., what are our criteria for
“best’’? There can easily be more than one answer to this question! We
could, for example, argue that the best scenario is the one that, on
average, gets a police car to the accident in the shortest time (which
is equivalent to saying it is the scenario for which the police car has,
on average, the shortest distance to travel). This is probably the first
criterion that most people think of when presented with this question.
But that isn’t the only reasonable way to define what is meant by
best. Here’s another way. Let’s suppose there is a critical, maximum
response time T, beyond which even minor injuries may well become
serious ones. This is equivalent to saying there is some travel distance
D, beyond which even minor injuries may well become serious ones.
So, another way to define the ‘best’ scenario is to say it is the one that
minimizes the probability that the travel distance is greater than D. To
keep the problem easy, however, let’s agree to limit ourselves to the first
criterion; i.e., for us, here, best will mean the fastest response time (the
shortest travel distance) to the accident for the responding patrol car.

To study the six possible patrol scenarios, we can write Monte Carlo
simulations of each and evaluate them using the above measure of best.
In setting up these simulations, let’s suppose accidents can happen, at
random, at any location along the road in either lane, with x denoting
the location of the accident. (Let’s agree to measure all distances
from the left end of the stretch of road.) We can, with no loss

October 22, 2007 Time: 03:31pm prob13.tex

A Police Patrol Problem 71

Lane 2

traffic direction

Lane 1

traffic direction

0 1

grassy median OR concrete barrier

long stretch of two-lane road

Figure P13.1. The geometry of the police patrol problem.

in generality, take the length of the road as unity, i.e., 0 ≤ x ≤ 1.
See Figure P13.1 for an illustration of all of this, where you’ll notice
I’ve labeled the lane with traffic flow to the right as Lane 1 and the lane
with traffic flow to the left as Lane 2. Finally, we’ll take the probability
that an accident occurs in one lane or the other as equally likely.

Now, let’s concentrate on a particular patrol car and write y as its
distance from the left end of the road. Can you can see that there
are eight distinct possibilities for the relative positions of the patrol
car and the accident, taking into account the lanes that each is in?
Specifically, if we define the direction of the patrol car to be either
0 or 1, depending on whether the patrol car is heading away from
or toward the accident, respectively, at the instant the radio call for
aid arrives, then the following table lists all eight possibilities. For
each possibility the associated travel distance is given in the rightmost
column for each of the two cases of interest, the grassy median between
the two lanes and the concrete barrier between the two lanes. With this
table in hand, we can now simulate each of the six patrol scenarios.
Simply generate a random accident location (the value of x and the
lane the accident is in) and a patrol car location (for (a) set y = 1/2—in
either lane—it doesn’t matter which, and for (b) use rand to set both the
value of y and the lane the patrol car is in). Do this a million times, each

October 22, 2007 Time: 03:31pm prob13.tex

72 Problem 13

Patrol car lane Accident lane Direction Distance to accident

1 1 0 y − x for grass
2 + x − y for concrete

1 1 1 x − y

1 2 0 y − x for grass
2 − x − y for concrete

1 2 1 x − y for grass
2 − x − y for concrete

2 1 0 x − y for grass
x + y for concrete

2 1 1 y − x for grass
x + y for concrete

2 2 0 x − y for grass
2 − x + y for concrete

2 2 1 y − x

time using the table to calculate the travel distance for the patrol car,
both for a grassy median strip and a concrete barrier. To simulate (c),
simply generate two (or more) randomly located patrol cars, calculate
the travel distance to the accident for each car, and use the minimum
of those values.

Your problem is to write the code that does all this for each of
the six patrol scenarios, and then to determine which of the single
car scenarios is, on average, best. Also, what is the impact of adding
a second, random patrol car? Of adding a third or fourth car? As a
final comment, I personally found this problem sufficiently busy with
details that it was a great help, before starting to write code, to first
construct a logic flow diagram. It is my understanding that the use of
flow charts has fallen from grace with not just a few modern academic
computer scientists, who consider their use to be akin to having to
count on your toes to get beyond ten. If you feel that way, well, then,
don’t follow my suggestion. (But I really do think you’ll find it helpful
to draw a flow diagram.2) As a partial check on your code, it can be

October 22, 2007 Time: 03:31pm prob13.tex

A Police Patrol Problem 73

shown that for scenario (a) and (1) the average travel distance is 1/4,
while for scenario (b) and (1) the average travel distance is 1/3. And for
scenario (a) and (2), the average travel distance is 1. Use these special
cases to partially validate the operation of your code.

References and Notes

1. This problem was inspired by the paper written by Alan Levine, “A Patrol
Problem’’ (Mathematics Magazine, June 1986, pp. 159–166). I have, however,
made some changes from Levine’s original statement of the problem.

2. Two writers who agree with me are Andi Klein and Alexander Godunov,
who write in their book Introductory Computational Physics (Cambridge: Cam-
bridge University Press, 2006), in a section titled “Good Programming,’’ that,
before writing code, one should “design’’ a program and that “the best way
to do that is with a flow chart.’’ If you look at Appendix 6 (Solutions to the
Spin Game) you’ll see that I found it quite helpful to create a flow chart
there, too, before beginning to write code. Many years ago, in the late 1960s,
I worked for Hughes Aircraft Company in Southern California. During that
employment I wrote the biggest program I’ve ever done, one that had over five
thousand lines of assembly language code with real-time hardware/software
interfaces between the computer and its magnetic tape drives and high-speed
line printers. Believe me, I drew a lot of flow charts, for weeks, before I wrote
even the first line of code!

October 12, 2007 Time: 11:49am prob14.tex

14. Parrondo’s Paradox

“Two wrongs don’t make a right” is an old saying parents are
fond of telling their children. And it’s probably true, in a general
sort of way, but there can be exceptions. Consider, for example,
the following. . . .

Here’s another gambling problem based on coin flipping. While
Problem 4 dated from 1941, this one is of much more recent vintage
and is at least as challenging. It is, in fact, downright mystifying!
Imagine that we have two games, called A and B, both based on
flipping coins. Game A is quite easy to understand: you flip a so-called
biased coin, i.e., a coin with unequal probabilities of showing heads and
tails. Let’s say that if the coin shows heads (with probability 1/2 − ε,

ε > 0), you win one dollar, otherwise you lose one dollar. It takes no
great mathematical insight to appreciate that, on average, game A is
a losing game. That is, if you play game A over and over, sometimes
you’ll win and the other times you’ll lose, but you’ll lose more than
you win, and so, as you play more and more A games, your financial
situation, as measured by your capital M, will worsen (M will decline).

Our other game is game B, with slightly more complicated rules:
now you have two biased coins. If, at the time just before you select one
of the coins to flip, your capital M is a multiple of three dollars, you will
choose coin 1, which shows heads with probability 1/10 − ε. Otherwise

October 12, 2007 Time: 11:49am prob14.tex

Parrondo’s Paradox 75

you choose coin 2, which shows heads with probability 3/4 − ε. Again,
as in game A, heads means you win one dollar and tails means you lose
one dollar. It is not as obvious as it is with game A, but game B is a
losing game, too. So, as with game A, if you play B over and over, your
capital will tend to decline. This can be established analytically without
too much trouble, but it is even easier to show by simply writing a
Monte Carlo simulation, but don’t do that—at least not yet!

Suppose now that you do the following: during a long sequence of
games you randomly switch back and forth between playing loser game
A and playing loser game B. It would seem obvious to most people,
I think, that your capital M will definitely decline as you play. But is
that really so? That question prompts your two assignments. First, write
a Monte Carlo simulation of game B and thus demonstrate that B
is, on average, a loser game as claimed. Second, write a Monte Carlo
simulation of a gambler switching randomly between A and B during a
long sequence of games, and plot the gambler’s capital M as a function
of time (imagine playing at the rate of one coin flip per second).

Since what we are studying here is a random process that evolves
over time—what mathematicians call a stochastic process (the next
problem, from queuing theory, is another example of a stochastic
process)—we have to be careful about what we mean by talking of
the average behavior of M(k), where k = 0, 1, 2, 3, . . . is the number
of coin flips the gambler has made. For example, if we imagine that
“a long sequence of games’’ means 100 coin flips, then each time
we play through such a sequence we’ll almost certainly observe a
different plot for M(k) vs. k. Mathematicians call each such observation
a sample function of the stochastic process. So, what your simulations of
sequences of length 100 games should do is to play through many
such sequences and then plot the average of the resulting sample
functions, a calculation that produces what is called the ensemble average
of the stochastic process (for the capital). Thus, if your codes simulate
10,000 sequences, each of length 100 games—a total of one million
coin flips—and if the j th sequence produces the sample function
Mj (k), then the ensemble average that your codes should plot is
M(k) vs. k, where M(k) = 1

10,000

∑10,000
j=1 Mj (k), 1 ≤ k ≤ 100. For both of

your simulations use ε = 0.005, assume the capital at k = 0 is always
zero (negative capital means, of course, that you owe money), and in

October 12, 2007 Time: 11:49am prob14.tex

76 Problem 14

the second simulation, where you switch back and forth between the
two games at random, play A and B with equal probability.

Are you surprised, perhaps even astonished, by the result from the
second simulation? Nearly everyone is, and that’s why this problem is
called Parrondo’s paradox, after the Spanish physicist Juan Parrondo,
who discovered it in 1997.

October 9, 2007 Time: 12:42pm prob15.tex

15. How Long Is the Wait to Get
the Potato Salad?

But the waiting time, my brothers,
Is the hardest time of all.
—Psalms of Life (1871) by Sarah Doudney

Probability theory has been a branch of mathematics for several
hundred years, but new subspecialities are added on a fairly regular
basis. About a hundred years ago the still active field of queueing theory
was founded, which is the mathematical study of waiting. We all know
what it is to have to wait for just about any sort of service, and examples
of waiting are nearly endless. You have to wait, for example, or at least
have to expect the possibility of waiting when you go into a haircutting
salon, when you approach a checkout station at a grocery store, when
you approach the toll booths on an interstate highway, when you wait
for a washing machine in the hotel where you are staying on a trip,
when you go to the DMV to apply for a driver’s license, and on and on
it goes.

The original motivation behind queueing theory was the develop-
ment of the telephone exchange, with numerous subscribers asking
for service from the exchange’s finite processing resources (i.e., human
operators). The mathematical questions raised by that technological

October 9, 2007 Time: 12:42pm prob15.tex

78 Problem 15

development prompted the Danish mathematician Agner Erlang
(1878–1929) to perform the first theoretical studies (published in
1909) of queues for the Copenhagen Telephone Company. Since
Erlang’s day, an enormous number of specific cases of queues have
been analyzed, and the literature abounds with equations. For the
problem here, however, we’ll ignore all that and simply simulate the
physics of a particularly common queue, the one that forms at most
grocery store delicatessen counters.

As customers arrive at such counters, it is common practice to
ask them to pull a numbered ticket out of a dispenser and then to
wait as one or more clerks work their way through the numbers in
sequential order.1 Customers present themselves at the deli counter at
an easily measured average rate (λ customers per hour, let’s say), and
the deli clerk takes various amounts of time to fill the various orders
(of different sizes) of the customers. We’ll take the service time for
each customer to again be a random quantity, but as before, there will
be an easily measured average rate of service (µ customers per hour,
let’s say). The store management will be interested in the answers to
such mathematical questions as the following: (1) What is the average
total time at the deli counter for the customers (total time is the
sum of the waiting time and the service time)? (2) What is the maximum
total time experienced by the unluckiest of the customers? (3) What
is the average length of the customer waiting queue? and (4) What is
the maximum length of the customer waiting queue? The answers to
these questions are directly related to customer satisfaction and to the
issue of how much physical space the store should expect to set aside
for waiting customers to occupy. A fifth question is, What happens
to the answers to the first four questions if a second, equally skilled
deli clerk is hired? It should be obvious that the answers will all
decrease, but more interesting is by how much? That answer will help
store management decide if the second clerk is worth the additional
expense in salary and benefits. An interesting sixth question might
be, What is the fraction of the work day that the clerk(s) are idle (not
serving a customer)?

The deli queue is a well-defined physical process, and so is an
obvious candidate for a Monte Carlo simulation. Before we can do
that, however, we need to define, carefully, what the phrases “random

October 9, 2007 Time: 12:42pm prob15.tex

How Long Is the Wait to Get the Potato Salad? 79

customer arrival’’ and “random customer service’’ mean. Suppose
the deli opens for business at what we’ll call time t0 = 0. If customers
thereafter arrive randomly at times t1, t2, t3, . . . , then the intervals
between consecutive arrivals are �t1 = t1 − t0, �t2 = t2 − t1, �t3 =
t3 − t2, and so on. Under very weak mathematical assumptions2 (one
of which is that more than one customer arriving at the same instant
never happens), it turns out that these intervals are values of an
exponentially distributed random variable (not a uniform one); i.e., if
customers arrive at the average rate of λ per hour, then the �t ’s are
values of the random variable with the probability density function

λe−λt , t ≥ 0

0, t < 0.

In Appendix 8 you’ll find a discussion on how to generate values for
such a random variable from the values of a uniform random variable,
and how to code the technique. In the same way, it is found that the
values of the service times are the values of an exponential random
variable with parameter µ; i.e., simply replace λ with µ in the above
probability density function.

Write a Monte Carlo simulation of the deli queue over a single
ten-hour business day (36,000 seconds) with the number of clerks
(either one or two), λ, and µ as inputs. Notice that, in the case
of a single deli clerk, there is the tacit assumption that µ > λ; i.e.,
on average, the clerk can process customers faster than they arrive,
else the queue length will tend to increase over time without limit,
which would present an obvious problem for the store! This is more
a mathematical than a practical concern, however, as we would see an
unbounded queue only if the deli counter never closes. If the number
of clerks is greater than one, however, it is mathematically possible to
have µ < λ and still have a queue that would always remains finite.
For each combination of values for λ, µ, and the number of clerks,
run your code five times to observe the variation in the answers one
might expect to see from day to day. In particular, answer the above
six questions for the case of λ = 30 customers per hour and µ = 40
customers per hour. Repeat for λ = 30 customers per hour and µ = 25
customers per hour.

October 9, 2007 Time: 12:42pm prob15.tex

80 Problem 15

References and Notes

1. This is called a queue with a first-come, first-served discipline. For a deli,
this seems like the obvious, fair way to do things (and it does indeed promote
civility among even normally pushy customers), but it isn’t the only possible
discipline. For example, a hospital admitting desk might use a first-come, first-
served discipline until a seriously ill or injured person arrived, and then that
person would be given priority service even before all those who had arrived
earlier were served. Yet another queue discipline was until recently routinely
practiced by airlines when boarding passengers. Since passengers generally all
board through the same cabin door at the front of the plane, it would seem
logical to board passengers by their ticketed seating, with coach passengers at
the rear of the plane boarding first, and then working forward to the front of
the plane. And this was, in fact, what was done, with one exception. All the
first-class passengers, who sit in the front of the plane, boarded first, and then
the logical boarding order discipline was followed, generally causing much
bumping, aisle congestion, and contorted maneuvering between the first-class
passengers still in the aisle and coach passengers trying to get to the rear of the
plane. First-class passengers should be boarded last, but apparently last is such
a pejorative that it is thought, by the airline mental wizards who implement
this goofy queue discipline, to be desirable. More recently, a number of airlines
have adopted the discipline of boarding all window seat passengers “first’’ (but
first-class passengers are still boarded first).

2. The technical name given by mathematicians to the random arrival
of customers at our deli queue is that of Poisson process, after the French
mathematician Simeon-Denis Poisson (1781–1840), who first (1837) described
the probability density function of what we now call the Poisson random
variable, which gives the probability of the total number of customers who
have arrived at the deli by any time t > 0. The specific application of
his mathematics to queues, however, came long after Poisson’s death. Any
good book on stochastic processes or operations research will develop the
mathematics of Poisson queues.

October 9, 2007 Time: 12:49pm prob16.tex

16. The Appeals Court Paradox

How dreadful it is when the right judge judges wrong!
—Sophocles (495–405 b.c.)

Imagine a criminal appeals court consisting of five judges; let’s
call them A, B, C , D, and E. The judges meet regularly to vote
(independently, of course) on the fate of prisoners who have petitioned
for a review of their convictions. The result of each of the court’s
deliberations is determined by a simple majority; for a petitioner to
be granted or denied a new trial requires three or more votes. Based
on long-term record keeping, it is known that A votes correctly 95% of
the time; i.e., when A votes to either uphold or to reverse the original
conviction, he is wrong 5% of the time. Similarly, B, C , D, and E vote
correctly 95%, 90%, 90%, and 80% of the time. (There are, of course,
two different ways a judge can make a mistake. The judge may uphold
a conviction, with new evidence later showing that the petitioner was
in fact innocent. Or the judge may vote to reverse a conviction when
in fact the petitioner is actually guilty, as determined by the result of a
second conviction at the new trial.)

Write a Monte Carlo simulation of the court’s deliberations, and
use it to estimate the probability that the court, as an entity, makes an
incorrect decision. (As a partial check on your code, make sure it gives
the obvious answers for the cases of all five judges always being correct

October 9, 2007 Time: 12:49pm prob16.tex

82 Problem 16

or always being wrong.) Then, change the code slightly to represent
the fact that E no longer votes independently but rather now always
votes as does A. Since A has a better (by far) voting record than does
E, it would seem logical to conclude that the probability the court is in
error would decrease. Is that what your simulation actually predicts?

August 21, 2007 Time: 06:04pm prob17.tex

17. Waiting for Buses

All things come to him who will but wait.
—Longfellow, 1863

Here’s another sort of waiting problem, one that big-city dwellers
probably face all the time. Imagine that you’ve just moved to a large
city, and a friendly neighbor has told you about the local public
transportation system. There are two independently operated bus
lines, both of which stop in front of your apartment building. One stops
every hour, on the hour. The other also stops once an hour, but not on
the hour. That is, the first bus line arrives at . . ., 6 a.m., 7 a.m., 8 a.m.,
etc., and the second bus line arrives at . . ., (6 + x) a.m., (7 + x) a.m.,
(8 + x) a.m., etc., where x is a positive constant. Unfortunately, your
neighbor (who walks to work and doesn’t use either bus line) doesn’t
know the value of x. In the absence of any other information, then,
let’s assume that x is a particular value of random quantity uniformly
distributed from 0 to 1. Our question is then easy to state: What is the
average waiting time (until a bus arrives) that inexperienced visitors to
the city can expect to wait if they arrive at the stop “whenever’’?

This problem can be generalized in the obvious way, as follows: Let
there be a total of n independently scheduled bus lines, all making
hourly stops (only one is on the hour) in front of your apartment
building (n = 2 is the above, original problem). What is the average

August 21, 2007 Time: 06:04pm prob17.tex

84 Problem 17

waiting time until a bus of one of the bus lines arrives for a rider who
arrives at the stop at random? Write a Monte Carlo simulation of this
scenario and run it for n = 1, 2, 3, 4, and 5. To partially check your
code, the theoretical answer for the n = 1 case is obviously one-half
hour (30 minutes), while for the n = 2 case the answer is the not so
obvious one-third hour (20 minutes). From your simulation results, can
you guess the general answer for any value of n?

October 12, 2007 Time: 02:22pm prob18.tex

18. Waiting for Stoplights

Down these mean streets a man must go who is not himself
mean, who is neither tarnished nor afraid. . . .
—Raymond Chandler, “The Simple Art of Murder’’ (Atlantic Monthly,

December 1944)

Yes, but even Philip Marlowe, Chandler’s quintessential hard-
boiled, tough-guy private eye of 1940s Los Angeles, waited
(usually) for red traffic lights to turn green before crossing the
street.

This waiting problem first appeared in the early 1980s. With reference
to Figure P18.1, imagine a pedestrian starting out on a shopping trip
in the Big City, m blocks east and n blocks north of her ultimate
destination at (1, 1). That is, she starts at (m + 1, n + 1). (In the figure,
m = n = 2, and she starts from (3, 3)). She slowly works her way down
the streets, shopping and window gazing, letting the traffic lights at
each intersection control which way she’ll go next. In other words, as
she reaches each intersection she always goes either west or south, with
the direction selected being the one with the green light. This process
will eventually bring her either to the horizontal boundary line k = 1
or to the vertical boundary line j = 1, at which point she will no longer
have a choice on which way to go next. If she arrives at the horizontal

October 12, 2007 Time: 02:22pm prob18.tex

86 Problem 18

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

j = 1 line

k = 1 line

start

destination

Figure P18.1. The big city.

line k = 1 she will thereafter have to always go west, i.e., to the left
along that line, and if she arrives at the vertical line j = 1 she will
thereafter have to always go south, downward along that line.

Until she hits one of the two boundary lines she never has to
wait at an intersection, as there is always a green light in one of the
two directions that moves her ever closer to (1, 1). Once on either
of the boundary lines, however, she may well come to intersections
at which the traffic light in the one direction she can move along
happens, at that moment, to be red, and so she’ll have to wait until
the light turns green. And that’s the question here: How many red
lights, on average, will she have to wait for on her journey from (m + 1,
n + 1) to (1, 1)? Determine that average for each of the 1,001 cases
of 0 ≤ m = n ≤ 1,000 (notice that the average number of stops for the
case of m = 0 is zero—use this as a check case) and plot it. Assume that
when she reaches any intersection that the traffic lights there are as
likely to be green (or red) in one direction as in the other direction.

October 12, 2007 Time: 12:10pm prob19.tex

19. Electing Emperors and Popes

You have chosen an ass.

— The words of James Fournier, after his unanimous election in
1334 as Pope (Benedict XII). Whether he meant to be humble
or ironic (or perhaps simply honest) is unclear.

Imagine there is a group of N people who wish to elect one of them-
selves as leader of the group. Each member of the group casts a vote, in
a sequence of secret ballots, until one of them receives at least M votes.
Two historically interesting examples of this situation are the so-called
Imperial Election problem1 (N = 7 and M = 4, i.e., a simple majority
is required to win) and the election of the pope (N is the membership
of the College of Cardinals and M is the first integer equal to or greater
than two-thirds of N). If each member of the group votes for one of the
group’s members (perhaps even for themselves) at random, what is
the probability a leader will be chosen on any given ballot?

Let’s now add a little twist by further assuming that rather than
voting at random for any member of the group, all vote at random
for one of their colleagues in a subset of N, of size n ≤ N. All N people
follow this restriction, including those in the subset. If n = N, we have
the original problem. Obviously, n > 0 if we are to even have a vote.

October 12, 2007 Time: 12:10pm prob19.tex

88 Problem 19

And equally obvious is the answer for the n = 1 case: the probability
of electing a leader on the first ballot is one. It is for n ≥ 2 that the
problem is of mathematical interest. This twist is motivated by a story
told in Valérie Pirie’s 1936 book The Triple Crown, a history of papal
conclaves since 1458. In particular, the one of 1513 is said to have
begun with such a divergence in support for a leader that, on the
first ballot, all the voting cardinals independently decided to vote for
one or another of those cardinals in a small subset of cardinals that
were generally thought to have little (if any) support. They all did
this, apparently, with each thinking they were the only ones doing
so and thus would learn which way the wind was blowing. Much to
the surprise (if not horror) of all, however, one of these unworthies
received 13 votes, nearly enough to be elected pope (in 1513, N = 25
cardinals present and so M = 17). This would have been a disaster, as
Pirie declared this almost-pope to be “the most worthless nonentity
present.’’

Such disasters are said to actually have happened. In a famous
eight-volume work by the dean of St. Paul’s in London, Henry Hart
Milman (History of Latin Christianity, 1861), for example, we find the
following two passages; the first describes the conclave of 1334 (twenty
four cardinals present) and the second the conclave of 1431 (fourteen
cardinals present):

In the play of votes, now become usual in the Conclave, all
happened at once to throw away their suffrages on one for
whom no single vote would have been deliberately given. To
his own surprise, and to that of the College of Cardinals and
of Christendom . . . James Fournier found himself Pope [see the
quote that opens this problem]. (vol. 7, p. 121)

The contest lay between a Spaniard and a French Prelate. Neither
would make concessions. Both parties threw away their suffrages
on one whom none of the College desired or expected to succeed:
their concurrent votes fell by chance on the Cardinal of Sienna
[Pope Eugene IV]. (vol. 7, p. 538)

It has been mathematically argued, however, that these two events are
most unlikely to have actually occurred as described by Milman.2

October 12, 2007 Time: 12:10pm prob19.tex

Electing Emperors and Popes 89

Estimating the probability of selecting the group leader by such
random voting as a function of N, M, and n is duck soup for
a computer, and your assignment here is to write a Monte Carlo
simulation that accepts the values of N, M, and n as inputs. Use your
code to estimate the probability for the case of N = 7 (the Imperial
Election problem), and for N = 25 (the 1513 Pope problem3) run your
code for the cases of n = 2, 3, and 4. Do these simulations for the two
cases of (1) each person possibly voting for himself and (2) not being
allowed to vote for himself.

References and Notes

1. The Imperial Election problem is motivated by the election of the
emperor of the Holy Roman Empire by seven electors. The so-called prince-
electors of the Holy Roman Empire (the predecessor to what we call Austria
and Germany today) didn’t, however, elect one of themselves. Some of the
electors were actually archbishops and hardly candidates for the title of King
of the Romans. The king became emperor only after being crowned in Rome
by the pope. The Empire, abolished in 1806 after existing for 900 years,
was famously described in 1756 by Voltaire: “This agglomeration which was
called and which still calls itself the Holy Roman Empire was neither Holy,
nor Roman, nor an Empire.’’

2. In his paper “An Unlikely History Story’’ (The Mathematical Gazette,
December 1986, pp. 289–290), Professor Anthony Lo Bello of Allegheny
College’s math department explains: “If there are r cardinals, m of whom are
not serious candidates, in how many different ways, we ask, can the cardinals
vote among the m “dark horses,’’ where the voting is random except for the
fact that no one may vote for himself, and where we call two votes different
if they are cast by different cardinals, even if they go to the same candidate?
Since each of the m “dark horses’’ has m − 1 choices [can’t vote for themselves],
while each of the r − m likely candidates has m choices, the number of allowed
outcomes, which are all equiprobable, is

mr−m(m − 1)m .

Of these outcomes, there are exactly m(m − 1) in which one of the ‘long
shots’ receives r − 1 votes and some other one of them [of the long shots] gets
the winner’s vote [and who didn’t, of course, vote for himself]. The probability
that some “dark horse’’ ends up getting all the votes but his own is

October 12, 2007 Time: 12:10pm prob19.tex

90 Problem 19

therefore

m(m − 1)
mr−m(m − 1)m = 1

mr−m−1(m − 1)m−1 .

Professor Lo Bello then calculated the value of this expression for the two
conclaves described by Milman. Under the assumption of m = 5 (and r = 24)
for the 1334 conclave, we get the probability of the event described to be

1
524−5−1 × (5 − 1)5−1 = 1

518 × 44 = 1.02 × 10−15.

For the 1431, conclave we are told there were only two serious candidates, and
so, with r = 14, we have m = 12. The probability of the event described by
Milman is thus

1
1214−12−1 × (12 − 1)12−1 = 1

12 × 1111 = 2.92 × 10−13.

These two probabilities are so small that, as Professor Lo Bello concluded, the
two stories told by Milman “are thus fable[s] and can not be believed.’’

3. For the curious, the final result was the election of Giovanni de’ Medici
(Leo X), who served until 1521.

October 12, 2007 Time: 12:13pm prob20.tex

20. An Optimal Stopping Problem

“The very best” is the enemy of “good enough.”
—an old saying among designers of military weapons systems

A good example of the above assertion is the cruise missile. A cruise
missile is powered by a lightweight, inexpensive jet engine that, by its
very nature, has a life expectancy after launch measured in a very small
number of hours at most. The whole point of a cruise missile, after
all, is to successfully vanish in a stupendous fireball once it arrives on
target, and so why use a reliable, long-life, expensive engine? “Good
enough’’ is all you need. When it comes to affairs of the heart, however,
our practical engineering dictum loses all its force. When looking for
a mate, who wants to settle for anyone less than perfect? But how do
you find that special one, that unique soul-mate with whom to spend
the next seventy years in wedded bliss? Well, as America’s 50% divorce
rate testifies, it ain’t easy!

The generally accepted procedure is that of dating. That is, reduc-
ing the search for love to the level of searching for low-priced gasoline,
one first gains experience by sampling for a while among potential
mates, and then at some point a decision is made to buy. To start the
casting of this situation into mathematical terms, let’s suppose that the

October 12, 2007 Time: 12:13pm prob20.tex

92 Problem 20

search for that special one obeys the following rules:

1. There is a known total population of potential special ones
from which you can select the one;

2. You can date from the total population, one after the other,
for as long as you like (or until you have dated the entire
population);

3. After each date you have to decide if that person is the one—
if not, then you date again if you haven’t exhausted the
population (if you have exhausted the population then you are
stuck with the final date);

4. After you decide not to pursue the current date, you can never
date that particular person again.

This situation was nicely discussed a few years ago in a popular,
math-free book1 by a physicist, who asked the following central
question:

The selection problem is obvious. You want the best spouse, but
how can you maximize your [chances of finding him/her] under
these rules? If you plunge too early in your dating career, there
may be finer, undated fish in the sea, and you may go through
life regretting a hasty marriage. . . . Yet if you wait too long
the best may have slipped through your fingers, and then it is
too late.

So, what should you do? Our physicist suggests the following general
strategy where, just to have some specific numbers to talk about, he
assumes that there is an initial population of one hundred potential
special ones:

[Y]ou shouldn’t choose the first [date] who comes along—it would
really be an amazing coincidence (a chance in a hundred) if the
best of the lot showed up first. So it would make sense to use the
first group of dates, say ten of them, as samplers . . . and then marry
the next date who rates higher than any of [the samplers]. That’s a way
of comparing them, and is not far from real life2. . . . All you’re
doing is using the first ten dates to gain experience, and to rate
the field. That’s what dating is all about.

October 12, 2007 Time: 12:13pm prob20.tex

An Optimal Stopping Problem 93

This strategy is only probabilistic, of course, and it doesn’t guarantee
that you will do well. In fact, as our physicist goes on to explain,

There are two ways you can lose badly. . . . If the first ten just
happen to be the worst of the lot—luck of the draw—and the
next one just happens to be the eleventh from the bottom, you
will end up with a pretty bad choice—not the worst, but pretty
bad—without ever coming close to the best. You have picked
the eleventh from the bottom because [he/she] is better than the
first ten—that’s your method—while the best is still out there. . . .
The other way you can lose is the opposite: by pure chance
the best may have actually been in the first ten, leading you to
set an impossibly high standard. . . . You will then end up going
through the remaining ninety candidates without ever seeing
[his/her] equal, and will have to settle for the hundredth. . . . The
hundredth will be, on average, just average.

The value of ten used above was just for purposes of explanation,
as determining what should be the size of the sample lot is actually
the core of the problem. And, in fact, there is a very pretty theoretical
analysis that gives the value of that number (as a function of the total
population of potential special ones that you start with), as well as the
probability that using that number will result in your selecting the very
best possible mate in the entire population. (For an initial population
of 100, the optimal size of the sample lot is significantly greater than
ten.) I’ll show you the derivation of that formula in the solution, but
for now let’s assume that you don’t know how to derive it (that’s the
whole point of this book, of course). This means, as you’ve no doubt
already guessed, that you are to write a Monte Carlo simulation of
this strategy. Your simulation should ask for the size of the initial
population (call it n) and then, for all possible sizes of the sample lot
(which can obviously vary from 0 up to n − 1), estimate the probability
that you select the very best. The optimal value of the sample lot size
is, of course, the value that maximizes the probability of selecting the
very best person. Assume that each person has a unique ranking from
1 to n (the very best person has rank 1, and the worst person has rank
n). The order in which you date people from the initial population is
what is random in this problem. For a population of size n, there are

October 12, 2007 Time: 12:13pm prob20.tex

94 Problem 20

n! possible orders (which quickly becomes enormous as n increases)
and so for large n, your code will examine only a small fraction of all
possible orders. In fact, write your simulation so that you will consider
your quest for a mate a success as long as you select a person who is
one of the top two (or three or four or . . .), which includes, as a special
case, that of selecting the very best. Your code will be very helpful in
this generalization of the problem, as the pretty theoretical analysis I
mentioned above holds only in the case of picking the very best. As
some particular results to use in partially validating your simulation,
for the case of n = 11 the theoretical results are:

Sample Probability of selecting
size the very best person

0 0.0909
1 0.2663
2 0.3507
3 0.3897
4 0.3984
5 0.3844
6 0.3522
7 0.3048
8 0.2444
9 0.1727

10 0.0909

Notice that the first and last rows make immediate sense. If the sample
size is zero, that means you will select the first person you date, and
that person is the very best person with probability 1/11 = 0.0909. If
the sample size is ten, then you will, by default, select the last person
you date, and the probability that person is the best person is also
1/11 = 0.0909. For n = 11, we see from the table that the sample lot
size should be four; i.e., you should date (and reject) the first four
people you meet while remembering the best of those four, and then
propose to the first person thereafter who is better (has a smaller
ranking number) than the best you saw in the first four. This strategy

October 12, 2007 Time: 12:13pm prob20.tex

An Optimal Stopping Problem 95

will result in you proposing to the very best person with a probability
of 0.3984 (which is, I think, surprisingly high).

Use your code to answer the following questions:

1. For n = 11, what are the optimal sample sizes (and what are the
associated probabilities of success) if you are happy if you select
a person from the top two, three, four, and five?

2. For n = 50, what is the optimal sample size if you insist on being
happy only if you select the very best person?

3. For n = 50, repeat the simulations of (1).

References and Notes

1. H. W. Lewis, Why Flip a Coin? The Art and Science of Good Decisions,
(New York: John Wiley & Sons, 1997, pp. 4–11) (“The Dating Game’’).

2. An amusing illustration of the dating game from the history of science,
can be found in the second marriage of the German astronomer Johannes
Kepler (1571–1630). (Kepler is famous for his formulation of the three
planetary laws of motion from direct observational data. The laws were later
shown in Isaac Newton’s Principia [1686] to be mathematical consequences
of the fact that gravity is an inverse-square, central force.) After the death of
his first wife—an unhappy, arranged union—Kepler decided to take matters
into his own hands and to choose a wife by rational means: he interviewed
eleven women (this is why I used n = 11 as an example at the end of the
above discussion) before arriving at his decision! The rules of Kepler’s dating
were not the same as the rules we are using here, but still, the spirit of the
dating game is clearly centuries old. You can find all the fascinating details
in the biography of Kepler by Arthur Koestler, The Watershed (New York:
Anchor Books, 1960); in particular, see Chapter 10, “Computing a Bride’’
(pp. 227–234).

October 12, 2007 Time: 12:13pm prob21.tex

21. Chain Reactions, Branching Processes,
and Baby Boys

The trees in the street are old trees
used to living with people,

Family trees that remember your
grandfather’s name.

—Stephen Vincent Benét, John Brown’s Body

Initially I toyed with the idea of making the previous problem (with its
suggestive title) the last problem in the book. But with this problem
we’ll end with what comes after (usually) all the dating—babies! But
before I formulate the central problem to be posed here, let me start
by discussing what might seem to be a totally off-the-wall and unrelated
topic—atomic bombs! You’ll soon see the connection.

One can’t read newspapers or watch television and not be aware
that the worldwide fear of nuclear weapons is as strong today as it
was in the 1950s, at the height of the cold war between the United
States and the old Soviet Union. Today both the Americans and the
Russians still have their thousands of nuclear weapons, as do, in
lesser numbers, the French, British, Israeli, Chinese, Pakistani, and
Indian governments. Seemingly on the verge of joining this elite group
are (as I write) North Korea and Iran. Modern nuclear weapons are

October 12, 2007 Time: 12:13pm prob21.tex

Chain Reactions, Branching Processes, and Baby Boys 97

vastly more sophisticated than were the first atomic detonation in the
Alamagordo, New Mexico, desert and the two atomic bombs dropped
by America on Japan in 1945, but the underlying mechanism of atomic
fission is still of interest today. Atomic fission bombs are measured
in tens or hundreds of kilotons (of TNT) of destructive energy, while
the newer thermonuclear fusion bombs are measured in megatons of
explosive energy. It still takes a fission process to achieve the enormous
temperatures (at least 70 million degrees!) and pressures (that at the
center of the Earth!) required to initiate or trigger a fusion process,
however, and so fission is of continuing interest.

The question of how fission weapons work seems, therefore, to be
one appropriate to any discussion of technically significant practical
problems and, as I discuss next, probability plays a central role.
Imagine a blob of what is called a fissionable material (an isotope
of uranium, U-235, is a well-known example; another is plutonium-
239), by which is meant stuff whose atoms are borderline unstable.
(The numbers 235 and 239 refer to the so-called atomic weight of
the uranium and plutonium atoms, respectively, a concept we don’t
have to pursue here.) That is, with the proper external stimulus any of
those atoms can be made to come apart, or split, into what are called
fission fragments, along with the release of some energy. Each such
fission produces only a very tiny amount of energy, but with 2.5 × 1024

atoms in each kilogram of U-235 or Pu-239, it doesn’t take a lot of
either to make a really big hole in the ground. The first atomic bomb
dropped on Japan (Hiroshima), for example, fissioned less than one
kilogram of U-235 (out of a total fissionable mass of sixty kilograms,
a mass with the volume of a grapefruit) but produced an explosion
equivalent to fifteen thousand tons of TNT. Similarly for plutonium, as
the second Japan bomb (Nagasaki) fissioned just a bit more than one
kilogram of Pu-239 (out of a total fissionable mass of 6.2 kilograms),
with the result being a 23-kiloton explosion. (Totally fissioning one
kilogram of either U-235 or Pu-239 produces what was, and may
still be, called the nominal atomic bomb, equivalent to about twenty
kilotons of TNT.)

The proper external stimulus is an energetic, electrically neutral
particle (a neutron) that plows unimpeded through an atom’s outer
electron cloud and into that atom’s nucleus, and so splits that nucleus.

October 12, 2007 Time: 12:13pm prob21.tex

98 Problem 21

Among the resulting fission fragments are two or three more neutrons
that are now able to go on to potentially smash into other nearby
nuclei, thereby creating even more neutrons. And so we have the
famous chain reaction. If the reaction goes forward in such a way that
the cascade of neutrons grows ever larger, then the total release of
energy can be stupendous. It is a distinguishing characteristic of chain
reactions that they develop with fantastic speed, with the time lapse
between a neutron being released as a fission fragment until it in turn
causes the next level of fission being something like 10 nanoseconds
(10 × 10−9 seconds). Therefore, in just one-half microsecond (0.5 ×
10−6 second), there can be fifty so-called chain reaction generations.
Now, if each fission produces an average of 2.5 neutrons (e.g., half
the fissions produce two neutrons and the other half result in three
neutrons), each of which goes on to cause another fission, then, starting
with one neutron (the zero-th generation), we have the exponentially
growing sequence 1, 2.5, 2.52, 2.53, After the nth generation we
will have generated a total of 2.5 + 2.52 + 2.53 + · · · + 2.5n neutrons,
i.e., a geometric series easily summed to give a total of 2/3 × (2.5)n+1

neutrons. If we set this equal to 2.5 × 1024 (that is, if we imagine we
have totally fissioned a one-kilogram blob of either U-235 or Pu-239)
we find that n = 61 (which, from start to finish of the chain reaction,
takes just 0.61 microseconds). The release of a stupendous amount of
energy in less than a microsecond is unique to atomic explosions. By
comparison, ordinary chemical explosions involve vastly less energy
released over time intervals measured in milliseconds; i.e., chemical
explosions are both less energetic and a thousand times (or more)
slower than atomic explosions. Notice, too, that in an exponential
chain reaction explosion most of the energy is released in just the final
few generations.

One problem with all the above, however, is that not all the
neutrons in the chain reaction cascade of neutrons necessarily result
in subsequent fissions. Not even the very first neutron has that
guarantee, and if it fails to cause a fission, then of course there is
no neutron cascade at all, and the bomb is a dud from the start.2 It
was, therefore, an important problem in the American atomic bomb
program (code-named the Manhattan Project) to study neutron chain
reaction cascades with this important realistic complication taken into

October 12, 2007 Time: 12:13pm prob21.tex

Chain Reactions, Branching Processes, and Baby Boys 99

account. The problem was mathematically formulated in 1944 by the
Manhattan Project mathematician Stanislaw Ulam as follows: Suppose
pi , i = 0, 1, 2, 3, . . ., are the probabilities a neutron will result in a
fission that produces i new neutrons. In particular, then, p0 is the
probability a neutron does not result in a fission (the only way to get
zero neutrons from an initial neutron is to not have a fission). Ulam’s
question, then, was that of calculating the probability distribution of
the number of neutrons produced in the nth generation of a chain
reaction cascade, with a single neutron as the lone occupant of the 0th
generation.

Ulam thought his neutron chain reaction question was new with
him, but later learned (after he and his Los Alamos colleague David
Hawkins solved it1) that it was actually a hundred years old! In
1874 an analysis of the extinction probability of a family name in
the British peerage had been done by the English mathematicians
Sir Francis Galton (1822–1911) and Henry Watson (1827–1903), and
they in turn had been anticipated by the French mathematician
Irénée-Jules Bienaymé (1796–1878), who had written on a similar
problem in 1845. The family name extinction problem is simply this:
as Hawkins writes, “Assume that each male Jones produces i male
offspring with probability pi (and that this probability does not vary
from one generation to another). What then is the probability that a
given Jones has k males in the nth generation of his descendents?’’
The probability for k = 0 is the probability of the family name of
Jones vanishing at the nth generation. Just substitute “neutron’’ for
“male offspring’’ and you have the nineteenth-century family name
problem transformed into Ulam’s twentieth-century neutron chain
reaction problem. Hawkins’s explanation of the family name extinction
problem is, however, incomplete on one crucial issue: we are interested
only in those males in each generation who trace their ancestors back
to the initial lone male strictly through their fathers. That is, there can
be male descendents who are the result of daughters in the family tree,
but of course in that case the original family name does not continue.

There is an elegant theoretical solution to what is now called a
problem in stochastic branching processes, and I’ll tell you a little
bit about it in the simulation solution, where I’ll use it to partially
verify my Monte Carlo code, but for now concentrate on developing

October 12, 2007 Time: 12:13pm prob21.tex

100 Problem 21

that code yourself. When you write your code, use the result of a
study done in the 1930s by the American mathematician Alfred Lotka
(1880–1949), who showed that, at least in America, the pi probabilities
are closely approximated by p0 = 0.4825 and pi = (0.2126)(0.5893)i−1

for i ≥ 1. Specifically, what does your code estimate for the probability
of there being two male descendents in the second generation? Of
there being four male descendents in the second generation? Of there
being six male descendents in the third generation? Lotka’s formula
assumes that a man can have any number of sons, which is clearly not
reasonable. In your simulation, therefore, assume that no male ever
has more than seven sons. This will allow the (unlikely) possibility of
there being, in the third generation, a seventh son of a seventh son of
a seventh son—that possibility has little mathematical significance, but
it does appeal to my mystical side!

References and Notes

1. David Hawkins, “The Spirit of Play: A Memoir for Stan Ulam’’ (Los
Alamos Science [Special Issue], 1987, pp. 39–51).

2. For this reason, all practical atomic fission bomb designs include a built-
in neutron generator that floods the bomb core with neutrons at the instant
before the desired instant of detonation, a flood that ensures there will indeed
be a detonation.

October 12, 2007 Time: 12:19pm soln-1.tex

The Solutions

October 12, 2007 Time: 12:19pm soln-1.tex

October 12, 2007 Time: 12:19pm soln-1.tex

1. The Clumsy Dishwasher Problem

We can calculate the theoretical probability as follows. There are
4
(5

4

) + (5
5

)
ways to assign any four, or all five, of the broken dishes to

“clumsy.’’ The factor of 4 in the term 4
(5

4

)
is there because, after we have

“clumsy’’ breaking four dishes, the remaining fifth broken dish can be
assigned to any of the other four dishwashers. There are a total of 55

different ways to assign the broken dishes among all five dishwashers.
So, the answer to the question of the probability of “clumsy’’ breaking
at least four of the five broken dishes at random is

4
(

5
4

)
+

(
5
5

)

55 = 20+1
3,125

= 21
3,125

= 0.00672.

The code dish.m simulates the problem, assuming the broken dishes
occur at random, where the variable brokendishes is the number of
dishes broken by “clumsy.’’ If the value of the variable clumsy is the total
number of times “clumsy’’ breaks four or more dishes (that is, clumsy is
the total number of simulations in which brokendishes > 3), then, with
each such simulation, clumsy is incremented by one. When dish.m was
run, line 14 produced an estimate for the probability that “clumsy’’
breaks at least four of the five broken dishes, due strictly to random
chance, as 0.00676 (when run several times for just 10,000 simulations,
the estimates varied from 0.0056 to 0.0083). Theory and experiment

October 12, 2007 Time: 12:19pm soln-1.tex

104 Solution 1

are in pretty good agreement, and in my opinion, this probability is
sufficiently small that a reasonable person could reasonably conclude,
despite his denials, that “clumsy’’ really is clumsy! With some non-zero
probability (see above), of course, that “reasonable’’ conclusion would
actually be incorrect.

dish.m
01 clumsy = 0;

02 for k = 1:1000000

03 brokendishes = 0;

04 for j = 1:5

05 r = rand;

06 if r < 0.2

07 brokendishes = brokendishes + 1;

08 end

09 end

10 if brokendishes > 3

11 clumsy = clumsy + 1;

12 end

13 end

14 clumsy/1000000

October 12, 2007 Time: 12:28pm soln-2.tex

2. Will Lil and Bill Meet at the Malt Shop?

Let’s denote the arrival times of Lil and Bill by L and B, respectively,
where L and B are taken as independent and uniformly distributed
random variables over the interval 0 to 30 (0 means arriving at 3:30
and 30 means arriving at 4 o’clock). Obviously, if L < B, then Lil
arrives first, and otherwise (L > B) Bill arrives first. So, we can now
immediately write

i f L < B, then Lil and Bill will meet i f B − L < 5

and

i f L > B then Lil and Bill will meet i f L − B < 7.

Figure S2.1 shows the geometric interpretation of these two inequali-
ties. The 30 × 30 square and its interior points (called the sample space
of the problem by mathematicians) represents the infinity of all pos-
sible pairs of arrival times for Lil and Bill—its diagonal line L = B is
the separation between the two possibilities of Lil arriving first and Bill
arriving first (the third possibility, Lil and Bill arriving simultaneously,
has zero probability, and is represented by the collection of all the
sample space points on the diagonal line).

With a little manipulation we can write these two inequalities in the
following alternative way:

Lil and Bill will meet i f B < L < B + 7

October 12, 2007 Time: 12:28pm soln-2.tex

106 Solution 2

L

B

30

0 305

7

L = B + 7
L = B

L = B − 5

L < B
L > B

Figure S2.1. Geometric interpretation of Lil and Bill’s meeting inequalities.

and

Lil and Bill will meet i f B − 5 < L < B.

The area of sample space corresponding to the first of these two
double inequalities is the shaded area above the sample space
diagonal, and the area of sample space corresponding to the second
double inequality is the shaded area below the sample space diagonal.
According to the fundamental idea underlying geometric probability,
we can write

probability Lil and Bill meet = shaded area
total area of sample space

= (total area above diagonal – unshaded area above diagonal)
total area of sample space

+ (total area below diagonal – unshaded area below diagonal)
total area of sample space

=

(
450 − 1

2
× 23 × 23

)
+

(
450 − 1

2
× 25 × 25

)

900

October 12, 2007 Time: 12:28pm soln-2.tex

Will Lil and Bill Meet at the Malt Shop? 107

=
900 − 1

2
(232 + 252)

900
= 1 − 529 + 625

2 × 900
= 1 − 1,154

1,800

= 0.358889.

The code malt.m is a Monte Carlo simulation of the problem, which
directly implements our two double inequalities for a total of one
million potential meetings. When run, line 11 produced an estimate
for the probability of Lil and Bill meeting of 0.359205, which is in
good agreement with the theoretical calculation.

malt.m
01 meetings = 0;

02 for loop = 1:1000000

03 L = 30*rand;

04 B = 30*rand;

05 if B<L&L<B + 7

06 meetings = meetings + 1;

07 elseif L<B&L>B − 5

08 meetings = meetings + 1;

09 end

10 end

11 meetings/1000000

If Bill reduces his waiting time to five minutes, then the probability
of meeting becomes

1 −
1
2

(252 + 252)

900
= 1 − 1,250

1,800
= 0.305556,

and if Lil increases her waiting time to seven minutes, then the
probability of meeting becomes

1 −
1
2

(232 + 232)

900
= 1 − 1,058

1,800
= 0.412222.

October 12, 2007 Time: 12:28pm soln-2.tex

108 Solution 2

If we change line 05 to if B<L&L<B+5, then malt.m gives the estimate
0.305754 for the meeting probability in the first case, and if we change
line 07 to elseif L<B&L>B−7, then malt.m gives the estimate 0.41199 for
the meeting probability in the second case. These estimates are seen
to be in pretty good agreement with the theoretical calculations.

October 12, 2007 Time: 12:29pm soln-3.tex

3. A Parallel Parking Question

This problem originally appeared in 1978, as a challenge question. As
stated then,1

Four birds land at random positions on a finite length of wire.
Upon landing, each bird looks at its nearest neighbor.

a. What is the probability that a bird picked at random is
looking at another bird that is looking at it?

b. What is the probability if there are n birds, with n > 4?

The solution appeared the next year.2 (I have converted the birds into
cars and the wire into a car lot to, I hope, make the problem more
“relevant’’.)

A Monte Carlo simulation for this problem is provided by the code
car.m, which uses the two row vectors pos and nn. The vector pos is de-
fined to be such that pos(j) gives the position of the j th car (1 ≤ j ≤ n),
where 0 ≤ pos(j) ≤ 1; we’ll say that the j th car has the number-name j .
It is assumed that pos(j) monotonically increases as j increases, and
you’ll see how that property is established in just a bit. The vector nn is
the nearest neighbor vector, defined to be such that nn(j) is the number-
name of the nearest neighbor car of the j th car, e.g., nn(1) = 2 and
nn(n) = n − 1, always, for any integer values of n ≥ 2. The code car.m

works as follows.
Line 01 initializes the variable totalmn to zero (this variable’s role will

be explained later), and line 02 sets the value of the variable n, which,
of course, is the number of cars. Line 03 is the start of the outermost
loop, the loop that controls a total of one million simulations of n

October 12, 2007 Time: 12:29pm soln-3.tex

110 Solution 3

cars parked in the lot. Line 04 is the start of an individual simulation;
lines 04 through 06 assign, at random, the parking positions of the n
cars. Those positions are not, however, necessarily such that pos(1) <

pos(2)< · · · < pos(n), and so lines 07 through 20 sort the position vector
elements to ensure that a monotonic condition is indeed satisfied.

There are numerous sorting algorithms available, but I have
used one commonly called, by computer scientists, the bubble-sort
algorithm.3 It works by comparing each value in the pos row vector
with the value next to it (to the “right’’) and interchanges the two
values, if necessary, to achieve a local increase in values. The algorithm
continually loops through pos, repeating this process until it makes a
complete pass through the pos vector without any swapping occurring
(that condition is determined by the value of the variable check—
if check = 0 at line 08, then no swapping was done on the last pass
through pos), which means pos is now guaranteed to be in monotonic
increasing order from left to right. This ordering has occurred because
the larger values in pos have “bubbled’’ their way to the right, while the
smaller values in pos have drifted to the left. The bubble-sort algorithm
is notoriously inefficient, but it is very easy to understand—for a
programmer in his mid-sixties (your author), that’s a very big plus!—
and for small values of n (say, n < 100), the computational inefficiency
is of no real practical concern. On my quite ordinary computer, for
example, a million simulations with n = 30 takes only about seventy-
five seconds. Lines 21 through 29 then use the sorted pos vector to
create, in the obvious way, the row vector nn.

Lines 30 through 42 are the heart of car.m, using nn to determine the
number of pairs of cars that are mutual neighbors. The total number
of cars that are members of the mutual pair set is, of course, twice the
number of pairs. At the completion of a simulation, the variable mn will
be the number of mutual neighbor pairs; line 30 initializes mn to zero.
Lines 31 through 33 treat the special starting case of determining if
the first two cars, located at nn(1) and nn(2), are a mutual neighbor pair.
Thereafter the rest of the pos vector is examined by lines 34 through
42 to find all the remaining mutual pairs. Starting with j=2, the code
checks to see if nn(j) and nn(j+1) are the locations of a mutual neighbor
pair—if so, then mn is updated and j is incremented by two. If not, then
j is simply incremented by one and the checking process repeated until
the entire pos vector has been examined. To see how the results look,

October 12, 2007 Time: 12:29pm soln-3.tex

A Parallel Parking Question 111

car.m
01 totalmn = 0;

02 n = input(’What is n?’);

03 for loop = 1:1000000

04 for k = 1:n

05 pos(k) = rand;

06 end

07 check = 1;

08 while check == 1

09 check = 0;

10 i = 1;

11 while i < n

12 if pos(i) > pos(i + 1)

13 temp = pos(i + 1);

14 pos(i + 1) = pos(i);

15 pos(i) = temp;

16 check = 1;

17 end

18 i = i + 1;

19 end

20 end

21 nn(1) = 2;

22 nn(n) = n − 1;

23 for j = 2:n − 1

24 if pos(j) − pos(j − 1)<pos(j + 1) − pos(j)

25 nn(j) = j − 1;

26 else

27 nn(j) = j + 1;

28 end

29 end

30 mn = 0;

31 if nn(2) == 1

32 mn = mn + 1;

33 end

34 j = 2;

35 while j<n

36 if nn(j) == j + 1&nn(j + 1) == j
(continued)

October 12, 2007 Time: 12:29pm soln-3.tex

112 Solution 3

(continued)

37 mn = mn + 1;

38 j = j + 2;

39 else

40 j = j + 1;

41 end

42 end

43 totalmn = totalmn + mn;

44 end

45 2*totalmn/(1000000*n)

when one run of car.m was looked at in detail, for the n = 7 case, the
pos and nn vectors were:

pos = [0.0210 0.2270 0.2274 0.3853 0.6461 0.6896 0.7971]
nn = [2 3 2 3 6 5 6].

You should be sure you understand why these two vectors are consis-
tent. Once mn is calculated at the end of each simulation, totalmn is
updated in line 43. At the completion of one million simulations, line
45 gives us the probability of a randomly selected car being one of a
nearest neighbor pair (2*totalmn is the total number of such cars out of
a total of 1000000*n cars).

When car.m was run, it produced the following results:

n Probability

3 0.66667
4 0.66628
5 0.66697
6 0.6665
7 0.66674
8 0.66671
9 0.66691

10 0.66675
11 0.66684
12 0.66667
20 0.66666
30 0.66662

October 12, 2007 Time: 12:29pm soln-3.tex

A Parallel Parking Question 113

One cannot look at these numbers without immediately being struck
by the nearly constant value of the probability, even as n changes by a
lot. That is, car.m strongly suggests that this probability is always, for
any n ≥ 3, equal to 2

3 . This is, I think, not at all intuitively obvious!
A clever proof 2 of this suggestion appeared in 1979, and two years
later a more direct proof was published4 that had the added virtue of
being extendable, in an obvious way, to the cases of two-dimensional
and three-dimensional parking lots (the last case is, of course, simply
an ordinary multilevel parking garage). There it was shown that, in the
limit as n → ∞, the probabilities for a randomly selected car being one
of a nearest neighbor pair are:

for two dimensions,
6π

8π + 3
√

3
= 0.621505

and

for three dimensions,
16
27

= 0.592592.

References and Notes

1. Daniel P. Shine, “Birds on a Wire’’ (Journal of Recreational Mathematics,
10[3], 1978, p. 211).

2. John Herbert, “Birds on a Wire (Solution)’’ (Journal of Recreational
Mathematics, 11[3], 1979, pp. 227–228).

3. I could have simply used MATLAB’s built-in sorting command sort: if
x is a row vector of n elements, then y = sort(x) creates the vector y with the
same n elements arranged in ascending order from left to right; that is, the
element values increase with increasing value of the vector index. If your
favorite language doesn’t have a similar handy command, then you’ll have to
write the sorting algorithm yourself. In the solution to Problem 17, however,
where a sorting procedure also occurs, I reversed myself and elected to use sort.
As I neared the end of my writing I became ever more willing to let MATLAB
do the heavy lifting!

4. Charles Kluepfel, “Birds on a Wire, Cows in the Field, and Stars in the
Heavens’’ (Journal of Recreational Mathematics, 13[4], 1980–81, pp. 241–245).

January 21, 2013 Time: 03:01pm soln-4.tex

4. A Curious Coin-Flipping Game

The code broke.m simulates this problem. But first, before getting into
its details, let me give you the theoretical answer1 for the fair coins
case. It is amazingly simple: the average number of tosses until one
of the men is ruined is 4lmn

3(l+m+n−2) . So, if l = m = n = 1, the answer is
4(1)(1)(1)

3(1+1+1−2) = 4
3 as given in the problem statement. And for l = 1, m = 2,

and n = 3, the answer is 4(1)(2)(3)
3(1+2+3−2) = 24

12 = 2. If l = 2, m = 3, and n = 4,
the answer is 4(2)(3)(4)

3(2+3+4−2) = 32
7 = 4.5714; if l = m = n = 3, the answer is

4(3)(3)(3)
3(3+3+3−2) = 36

7 = 5.1428; and if l = 4, m = 7, and n = 9, the answer is
4(4)(7)(9)

3(4+7+9−2) = 1,008
54 = 18.6667. For p = 0.4, we have no theory to guide

us (as I’ll elaborate on a bit at the end, this is not strictly true), and the
simulation will be essential.

Here’s how broke.m works, where it is assumed that the values of l, m,
n, and p have already been input (see line 02 of car.m in the solution for
Problem 3 for how MATLAB does that). The code simulates 100,000
coin-flipping sequences, and the value of the variable totalflips is the
total number of simultaneous flips that the three men execute during
the 100,000 sequences. Line 01 initializes totalflips to zero. The loop
defined by the for/end statements of lines 02 and 44 cycle broke.m

through the 100,000 sequences. During each individual sequence, the
value of the variable sequenceflips is the number of simultaneous flips
the three men execute, and line 03 initializes sequenceflips to zero. The
three-element vector man is defined to be such that the value of man(j)

January 21, 2013 Time: 03:01pm soln-4.tex

A Curious Coin-Flipping Game 115

is the current number of coins possessed by the j th man, 1 ≤ j ≤ 3.
Lines 04, 05, and 06 initialize the elements of man to their starting
values of l, m, and n. The playing of a sequence then continues until
the first time one of the elements of man is driven to zero; the while/end

loop of lines 07 and 40 control this play. Lines 08, 09, and 10 represent
the outcomes of the current simultaneous triple flip by the three men:
the three-element vector flip is first randomly loaded, and then lines 11
through 17 map the elements of flip into either 0 or 1. Specifically, flip(j)

is mapped into 1 with probability p, and into 0 with probability 1 − p.
To see why this is done, consider the following.

There are eight possible mappings for the elements of the flip vector,
as shown in the three leftmost columns of the following table. The
fourth column shows the sum of the flip vector elements (a calculation

broke.m
01 totalflips = 0;

02 for sequences = 1:100000

03 sequenceflips = 0;

04 man(1) = l;

05 man(2) = m;

06 man(3) = n;

07 while man(1)>0&man(2)>0&man(3)>0

08 flip(1) = rand;

09 flip(2) = rand;

10 flip(3) = rand;

11 for j = 1:3

12 if flip(j)<p

13 flip(j) = 1;

14 else

15 flip(j) = 0;

16 end

17 end

18 test = sum(flip);

19 if test == 1|test == 2

20 if test == 1
(continued)

January 21, 2013 Time: 03:01pm soln-4.tex

116 Solution 4

(continued)

21 for j = 1:3

22 if flip(j) == 0

23 flip(j) = –1;

24 else

25 flip(j) = 2;

26 end

27 end

28 else

29 for j = 1:3

30 if flip(j) == 0

31 flip(j) = 2;

32 else

33 flip(j) = –1;

34 end

35 end

36 end

37 for j = 1:3

38 man(j) = man(j) + flip(j);

39 end

40 end

41 sequenceflips = sequenceflips + 1;

42 end

43 totalflips = totalflips + sequenceflips;

44 end

45 totalflips/100000

performed in line 18, using the handy MATLAB command sum, which
replaces the obvious alternative of a for/end loop), and the rightmost
column shows the name of the winner (if any) on the current flip.
Remember, the odd man out wins.

Notice that when test = 1, the winner is the j th man, where flip(j) =
1, and when test = 2, the winner is the j th man, where flip(j) = 0.
This observation suggests a second mapping of the elements in the
flip vector that we’ll then be able to use to update the man vector.
Specifically, the if in line 19 determines whether test is 1 or 2, or either 0

January 21, 2013 Time: 03:01pm soln-4.tex

A Curious Coin-Flipping Game 117

flip(1) flip(2) flip(3) test =
3∑

j=1

flip(j) Winner

0 0 0 0 None
0 0 1 1 Man 3
0 1 0 1 Man 2
0 1 1 2 Man 1
1 0 0 1 Man 1
1 0 1 2 Man 2
1 1 0 2 Man 3
1 1 1 3 None

or 3 (these last two possibilities are the cases of no winner, which results
in broke.m skipping over the man vector update). If test is 1, then lines
21 through 27 map flip(j) = 0 into flip(j) = −1 and flip(j) = 1 into flip(j) = 2.
Notice that this second mapping of flip has been cleverly designed to
represent the winnings of the j th man, and so man(j) can be updated
by simply adding flip(j) to man(j)—see line 38. Similarly, if test is 2 then
lines 29 through 35 map flip(j) = 0 into flip(j) = 2, and flip(j) = 1 into
flip(j) = −1, which again agrees with the winnings of the j th man. Lines
37, 38, and 39 then update the man vector. Line 41 increments the
number of tosses completed so far in the current sequence and, once
that sequence is done (as determined by the while condition in line 07),
line 43 updates totalflips. When 10,000 sequences are completed, line
45 gives us the average number of tosses until one of the men is ruined.

How well does broke.m perform? The following table gives us an
idea:

Theoretical broke.m’s Estimate if
l m n answer estimate (p = 1

2) p = 0.4

1 1 1 1.3333 1.335 1.3877
1 2 3 2 2.0022 2.0814
2 3 4 4.5714 4.5779 4.7721
3 3 3 5.1428 5.161 5.36
4 7 9 18.6667 18.8065 19.4875

January 21, 2013 Time: 03:01pm soln-4.tex

118 Solution 4

Notice that decreasing p from 0.5 to 0.4 increases the average number
of tosses until one of the men is ruined. Can you think of a reason for
this, i.e., of an argument that one could use to arrive at this conclusion
without having to actually run broke.m? Think about this for a while,
as I show you a way we can analytically treat this problem, for unfair
coins, if the total number of coins is small. In particular, I’ll show you
how to calculate the answer for any p in the case l = m = n = 1. The
method can be extended to any set of values for l, m, and n, but the
computations involved increase exponentially as l + m + n increases,
and the difficulties soon overwhelm anyone’s wish to know the answer!

Let E(l, m, n) denote the average number of tosses until one of the
men is ruined. The probability that all three coins show the same side
on a toss—and so there is no winner, and thus no coins change hands—
is p3 + (1 − p)3 = 1 − 3p + 3p2. In this event, E(l, m, n) tosses are still
expected in addition to the one toss that was just done. The probability
the first man wins is p(1 − p)2 + (1 − p)p2 = p(1 − p). In this event,
E(l + 2, m − 1, n − 1) tosses are still expected. By symmetry, we can say
the same thing for the second and the third man. Thus,

E(l, m, n) = [1 + E(l, m, n)](1 − 3p + 3p2)

+ [1 + E(l + 2, m − 1, n − 1)]p(1 − p)

+ [1 + E(l − 1, m + 2, n − 1)]p(1 − p)

+ [1 + E(l − 1, m − 1, n + 2)]p(1 − p).

Now, E(l, m, n) = 0 if any of l, m, or n is zero. So immediately we have

E(1, 1, 1) = [1 + E(1, 1, 1)](1 − 3p + 3p2) + 3p(1 − p).

A little easy algebra gives us

E(1, 1, 1)[1 − (1 − 3p + 3p2)] = E(1, 1, 1)(3p − 3p2)

= 1 − 3p + 3p2 + 3p(1 − p) = 1

or

E(1, 1, 1) = 1
3p − 3p2 = 1

3p(1 − p)
.

January 21, 2013 Time: 03:01pm soln-4.tex

A Curious Coin-Flipping Game 119

If p = 1
2 then E(1, 1, 1) = 1

3× 1
4

= 4
3 , just as our general formula for fair

coins does. But, now we know the theoretical answer for E(1, 1, 1) for
any p; for p = 0.4 we have E(1, 1, 1) = 1

3(0.4)(0.6) = 1.3889, which agrees
well with the estimate in the table provided by broke.m.

Our formula for E(1, 1, 1) shows that, for p = 1
2 , E(1, 1, 1) is the

smallest it can be. As p deviates more and more from 1
2 in either

direction, E(1, 1, 1) increases, just as reported by broke.m. The reason
for this is that as p → 0 or as p →1, it becomes more and more likely
that all three coins will show the same face on a toss. Since such an
outcome results in no coins changing hands, this raises the number of
tosses we expect to see before one of the men is ruined.

References and Notes

1. R. C. Read, “A Type of ‘Gambler’s Ruin’ Problem’’ (American Mathematical
Monthly, February 1966, pp. 177–179).

October 12, 2007 Time: 12:34pm soln-5.tex

5. The Gamow-Stern Elevator Puzzle

Rather than simulate the two-elevator and the three-elevator problems
separately, the code gs.m simulates the general n-elevator problem for
any integer n ≥ 1. We imagine that the height of the building is scaled
so that floor 1 (the bottom stop of an elevator) is at height 0 and floor 7
(the highest stop of an elevator) is at height 1. Thus, Gamow’s elevator
stop on the second floor is at height G = 1

6 . We further imagine, as
described by Knuth, that all the elevators are, independently, at the
moment that Gamow requests elevator service, at random heights, as
well as independently moving either up or down with equal probability.
The heart of gs.m is the n-by-4 array called elevator, in which the j th
row describes the state of the j th elevator. Specifically,

elevator(j,1) = direction (up or down) the j th elevator is moving
when Gamow requests service;

elevator(j,2) = height of the j th elevator when Gamow requests
service;

elevator(j,3) = distance the j th elevator has to travel to reach
Gamow’s stop;

elevator(j,4) = direction (up or down) the j th elevator is moving
when that elevator reaches Gamow’s stop.

In gs.m “down’’ is coded as 0 and “up’’ is coded as 1.

October 12, 2007 Time: 12:34pm soln-5.tex

The Gamow-Stern Elevator Puzzle 121

We can now deduce the following four rules, for each elevator.

• if the height < G and the initial elevator direction is down,
then the travel distance to Gamow’s stop is G + height, and the
arrival direction is up;
• if the height < G and the initial elevator direction is up, then the

travel distance to Gamow’s stop is G − height, and the arrival
direction is up;
• if the height > G and the initial elevator direction is down, then

the travel distance to Gamow’s stop is height − G, and the arrival
direction is down;
• if the height > G and the initial elevator direction is up,

then the travel distance to Gamow’s stop is (1 − height) + 5
6

= 11
6 − height, and the arrival direction is down.

To answer the central question of this problem—what is the probability
that the first elevator arriving at Gamow’s stop is going in the “wrong’’
direction, i.e., down?—all we need do is to calculate which of the n
elevators has the least travel distance to traverse, and to then observe
in which direction that elevator is moving when it arrives at Gamow’s
stop. With these preliminary observations out of the way, you should
now be able to follow the logic of gs.m. Lines 01, 02, 03, and 04
are initialization commands: setting G = 1

6 (a constant used so often
in the simulation that it is computationally far better to calculate it
just once rather than to continually repeat the division); inputting
the number of elevators, n; setting the variable totalgoingdown to zero,
which, when gs.m ends, will be the total number of elevators that are
the first to arrive at Gamow’s floor while moving in the down direction;
and defining the n-by-4 array elevator. Lines 05 through 41 are the
for/end loop that runs gs.m through one million requests by Gamow
for elevator service. An individual request is simulated by lines 06
through 29.

For each of the n elevators, lines 07 through 12 assign the up or the
down direction, with equal probability, at the moment Gamow requests
service. This establishes all the values of elevator(j,1), 1 ≤ j ≤ n. Line
13 places each elevator at a random height, which establishes all the
values of elevator(j,2). Then, lines 14 through 28 implement the four
rules we deduced above, which establishes all the values of elevator(j,3)

October 12, 2007 Time: 12:34pm soln-5.tex

122 Solution 5

and elevator(j,4). Lines 30 through 37 search through all the values of
elevator(k,3) to find that value k = index for which the elevator travel
distance to Gamow’s stop is minimum. Line 38 determines if this first-
to-arrive elevator is traveling in the down direction, and if it is, the
variable totalgoingdown is incremented. Line 42 gives us an estimate
of the probability we are interested in once the one million service
requests have been simulated.

Now, before I tell you how well gs.m performs, let me give you the
theoretical answers. Knuth showed, in two different (both extremely
clever) ways that for the original Gamow-Stern problem the first-
to-arrive elevator at Gamow’s stop is going down with probability
1
2 + 1

2

(2
3

)n. (Knuth actually solved the more general problem of a
building with any number of floors, with Gamow’s floor as any one
of the building’s floors.) For n = 1 we see this probability is, as Gamow
and Stern argued, equal to 1

2 + 2
6 = 5

6 = 0.833333. For n = 2, Knuth’s
answer is 1

2 + 4
18 = 13

18 = 0.722222, as given in the problem statement.
And, for n = 3, Knuth’s formula gives the probability as 1

2 + 8
54 = 35

54
= 0.648148.

When gs.m was run, the estimates it produced for the n = 1, 2, and
3 cases were 0.833579, 0.722913, and 0.647859, respectively. This is,
I think, in good agreement with Knuth’s theoretical analysis. Ah, the
power of a random number generator!

gs.m
01 G = 1/6;

02 n = input(’How many elevators?’);

03 totalgoingdown = 0;

04 elevator = zeros(n,4);

05 for loop = 1:1000000

06 for j = 1:n

07 decision(j) = rand;

08 if decision(j) < 0.5

09 elevator(j,1) = 0;

10 else

11 elevator(j,1) = 1;

12 end
(continued)

October 12, 2007 Time: 12:34pm soln-5.tex

The Gamow-Stern Elevator Puzzle 123

(continued)

13 elevator(j,2) = rand;

14 if elevator(j,2) < G

15 if elevator(j,1) == 0

16 elevator(j,3) = G + elevator(j,2);

17 else

18 elevator(j,3) = G − elevator(j,2);

19 end

20 elevator(j,4) = 1;

21 else

22 if elevator(j,1) == 0

23 elevator(j,3) = elevator(j,2) − G;

24 else

25 elevator(j,3) = (11/6) − elevator(j,2);

26 end

27 elevator(j,4) = 0;

28 end

29 end

30 min = elevator(1,3);

31 index = 1;

32 for k = 2:n

33 if elevator(k,3) < min

34 min = elevator(k,3);

35 index = k;

36 end

37 end

38 if elevator(index,4) == 0

39 totalgoingdown = totalgoingdown + 1;

40 end

41 end

42 totalgoingdown/1000000

January 21, 2013 Time: 01:53pm soln-06.tex

6. Steve’s Elevator Problem

For the k = 2 analysis (the riders at floor G are Steve and two others),
we can write

• there is one stop for Steve if

a. both of the other riders get off on Steve’s floor(
probability = 1

n2

)
, or

b. one of the other riders (either one) gets off on Steve’s
floor and the other gets off on a floor above Steve’s(
probability = 2 × 1

n × 2
n = 4

n2

)
, or

c. both of the other riders get off on a floor above Steve’s(
probability = 2

n × 2
n = 4

n2

)
;

• there are two stops for Steve if

a. one of the other riders (either one) gets off on Steve’s
floor and the other gets of on any floor below Steve’s(
probability = 2 × 1

n × n−3
n = 2(n−3)

n2

)
, or

b. both of the other riders get off on the same floor below
Steve’s

(
probability = n−3

n × 1
n = n−3

n2

)
, or

c. one of the other riders (either one) gets off on a floor
below Steve’s and the other gets off on a floor above
Steve’s

(
probability = 2 × n−3

n × 2
n = 4(n−3)

n2

)
;

January 21, 2013 Time: 01:53pm soln-06.tex

Steve’s Elevator Problem 125

• there are three stops for Steve if

a. each of the two other riders gets off on a different floor
below Steve’s

(
probability = n−3

n × n−4
n = (n−3)(n−4)

n2

)
.

Therefore, the average number of stops for Steve, for k = 2, is

1 ×
[

1
n2 + 4

n2 + 4
n2

]
+ 2 ×

[
2(n − 3)

n2 + n − 3
n2 + 4(n − 3)

n2

]

+ 3 ×
[

(n − 3)(n − 4)
n2

]
.

With a little algebra—which I’ll let you verify—this reduces to
3 − 7

n + 3
n2 . For Steve’s building, with n = 11 floors, this becomes

3 − 7
11 + 3

121 = 2.3884, which is in good agreement with the simulation
results given in the problem statement. You can now appreciate
why I didn’t do similar analyses for k ≥ 3; keeping track of all the
possible ways that Steve’s elevator companions could exit was just too
complicated! But that’s a moot issue for the Monte Carlo code steve.m.

S is the variable that, at the completion of one million elevator rides,
will equal the total number of stops experienced by Steve. Line 01 ini-
tializes S to zero, and line 02 sets the value of k, the number of riders at
floor G in addition to Steve. Lines 03 and 15 define the for/end loop that
cycle steve.m through the million rides, while lines 04 through 14 simu-
late an individual ride. The heart of the code is the 11-element vector
x; x(j) = 0 if the elevator did not stop at floor j , while x(j) = 1 if the
elevator did stop at floor j. So, line 04 initially sets x(j) = 0, 1 ≤ j ≤ 11,
and then line 05 immediately sets x(9) = 1 because floor 9 (two floors
below the top floor) is Steve’s floor and we know he always gets off
there. The question now is, where do the other k riders get off? That
question is answered by lines 06 through 09, which for each of those
riders randomly picks a floor from 1 to 11 (the value of the variable
rider) and sets x(rider) = 1. This is done with the aid of the MATLAB
command floor, which is a truncation command, e.g., floor(6.379) = 6
and floor(0.0931) = 0. Since 0<rand<1, then 0<11∗rand<11, and so
floor(11∗rand) is an integer in the set (0, 1, 2, . . . , 10). Therefore, rider is
an integer in the set (1, 2, 3, . . . , 11). Once x(j) is set equal to 1 for a par-
ticular value of j = j∗, then of course, other riders who may also exit at
that floor have no additional impact—x(j∗) just gets set equal to 1 again.

January 21, 2013 Time: 01:53pm soln-06.tex

126 Solution 6

The variable stops counts the number of floors at which the elevator
stopped on its way up to Steve’s floor; any stops above Steve’s floor are
of no interest. So, line 10 sets stops to 1 because we know x(9) = 1, and
then lines 11 through 13 count the stops that happened from floor 1
to floor 8. Line 14 updates S, and then another ride is simulated. Line
16 gives us the average number of stops experienced by Steve on his
morning ride to work after the one million rides have been completed.

steve.m
01 S = 0;

02 k = input(’How many riders in addition to Steve?’);

03 for loop = 1:1000000

04 x = zeros(1,11);

05 x(9) = 1;

06 for j = 1:k

07 rider = floor(11*rand) + 1;

08 x(rider) = 1;

09 end

10 stops = 1;

11 for j = 1:8

12 stops = stops + x(j);

13 end

14 S = S + stops;

15 end

16 S/1000000

When steve.m was run it produced the table given in the problem
statement, as well as the additional values asked for:

Number of riders Average number of stops

6 (k = 5) 4.03254
7 (k = 6) 4.48538
8 (k = 7) 4.894956
9 (k = 8) 5.267101

10 (k = 9) 5.608122

January 21, 2013 Time: 01:53pm soln-06.tex

Steve’s Elevator Problem 127

There is an amusing epilogue to the story of this problem. On
April 4, 2005, I gave an invited talk to the Junior Colloquium in the
mathematics department at the University of Tennessee, Knoxville. As
an example of the intersection of pure mathematics and computers,
I decided to discuss Steve’s Elevator Stopping Problem and included
a description of it in the advance announcement (which was placed
on the Web) of my talk. A few days before the talk I received an
e-mail from Michel Durinx, a member of the Theoretical Evolutionary
Biology program at Leiden University in the Netherlands. Surprised
as I was that someone in the Netherlands knew of my talk in Knoxville,
I was even more surprised to see that Michel had included a complete
theoretical solution to the problem. It’s a pretty complicated (no
surprise there!) combinatorial analysis, and the answer is that the
average number of stops for Steve is 9 − 8(10

11)k . This is such a simple
expression that, as Michel himself wrote, it “suggests that with a fresher
head, this result can be found [in a more elegant way].’’

For the cases to which I already knew the theoretical answers (k = 0,
1, and 2), Michel’s formula is in perfect agreement. For k ≥ 3, his
formula is ‘confirmed’ by the simulation results, i.e.,

k Michel’s formula

0 1
1 1.727272
2 2.388429
3 2.989481
4 3.535892
5 4.032629
6 4.484208
7 4.894735
8 5.267940
9 5.607219

You can compare this table with the entries in the table from the
problem statement (0 ≤ k ≤ 4) and the table I just gave (5 ≤ k ≤ 9). And
just why was Michel in the Netherlands reading announcements on the
Web from a math department in Tennessee? Well, actually he wasn’t.

January 21, 2013 Time: 01:53pm soln-06.tex

128 Solution 6

What happened is that a colleague of his at Leiden, Frans Jacobs, who
had had a postdoctoral appointment at the University of Tennessee,
was still on the department’s math server. Frans got the announcement
of my talk, shared it with his friend Michel, and the result was that I
got a solution. Ah, the power of the Web!

Note

See the preface for the general solution to Steve’s Elevator Problem.

October 12, 2007 Time: 12:41pm soln-07.tex

7. The Pipe Smoker’s Discovery

The code smoker.m simulates the problem one million times, as
controlled by the for/end loop defined by lines 03 and 16. Before
beginning those simulations, however, line 01 initializes the variable S

to zero, where the value of S will, at the completion of each simulation,
be the current total number of matches used (and so, when the
program completes the last of the one million simulations, S/1000000,
as computed in line 17, will be the answer to the original question, i.e.,
the average number of matches removed until one booklet is empty).
Also, line 02 initially sets all eighty elements of the row vector matches

to zero, where matches(x) will, at the completion of each simulation, be
the current number of times that the number of removed matches was
equal to x. You should see that 40 ≤ x ≤ 79, always. The “79’’ occurs
if the smoker has happened to pick booklets such that he eventually
arrives at the situation with each booklet having just one match left.
At this point, 78 matches have of course been removed. The next
selection will then remove the 79th match, leave one of the booklets
empty, and so immediately terminate the process. The case of “40’’
occurs, obviously, if the smoker selects the same booklet 40 times in
a row. Lines 03 through 16 are the heart of the program, carrying out
the logic of each individual one of the one million simulations. In line
04 the program sets the initial number of matches in the two booklets

October 12, 2007 Time: 12:41pm soln-07.tex

130 Solution 7

smoker.m
01 S = 0;

02 matches = zeros(1,80);

03 for k = 1:1000000

04 booklet1 = 40;booklet2 = 40;

05 while booklet1 > 0&booklet2 > 0

06 r = rand;

07 if r < 0.5

08 booklet1 = booklet1 − 1;

09 else

10 booklet2 = booklet2 − 1;

11 end

12 end

13 s = (40 − booklet1) + (40 − booklet2);

14 S = S + s;

15 matches(s) = matches(s) + 1;

16 end

17 S/1000000

18 bar(matches)

(booklet1 and booklet2) to 40. Line 05 controls how long each of the
individual simulations takes; it will, in general, be different from one
simulation to the next, depending on just how the smoker happens
to randomly select booklets. Line 05 says to keep going as long
as both booklets have at least one match left; as soon as one of
them (either one, it doesn’t matter which) is empty, then the while

statement will terminate the looping. As long as both match booklets
are nonempty, however, the looping (i.e., match removal) continues.
Line 06 generates a random number r from a distribution that is
uniform from 0 to 1, and lines 07 through 11 say that, with equal
probability (of 0.5), the smoker takes his match from one or the other
of the two booklets. When the while statement in line 05 finally detects
that one of the two booklets is empty, the simulation loop is exited
and the variable s is computed; (40–booklet1) and (40–booklet2) are the
number of matches that have been removed from booklet1 and booklet2,

October 12, 2007 Time: 12:41pm soln-07.tex

The Pipe Smoker’s Discovery 131

9×104

0
0 10 20 30 40 90

Number of matches removed from both booklets

N
u

m
b

er
 o

f s
im

u
la

ti
o

n
s

50 60 70 80

8×104

7×104

6×104

5×104

4×104

3×104

2×104

1×104

Figure S7.1. The pipe smoker’s problem.

respectively, and so line 13 computes the total number of matches
removed. Obviously, one of these two expressions in parentheses is
zero; i.e., the booklet that is empty has had all of its matches removed
by definition, but we don’t need to know which one it is. With s

computed, line 14 uses it to update S (the total number of matches
removed to date), and also to update the vector matches(s) that’s
keeping track of the number of simulations that have s matches
removed. With those two bookkeeping operations done, smoker.m then
starts another simulation until, after one million of them, the for/end

loop defined by lines 03 and 16 is exited and line 17 produces the
average number of matches removed per simulation. In line 18 the
MATLAB function bar generates a bar graph plot of matches—see
Figure S7.1. (I have not shown, in the coding for smoker.m, the program
statements that generate the figure labeling.)

The average number of matches removed from both booklets until
one of them was empty was reported by smoker.m to be 72.869, with
the range of values on the number of matches removed being 47 to

October 12, 2007 Time: 12:41pm soln-07.tex

132 Solution 7

79, with the 47 value occurring just once. We shouldn’t be surprised
that we didn’t see any occurrences of the number of removed matches
less than than 47, even after a million simulations. Such small numbers
of removed matches represent very low-probability events; e.g., the
probability of removing the smallest possible number of matches (40)
is just 2(1/2)40 ≈ 1.82 × 10−12 (the first factor of 2 is because either of
the two booklets could be the one that ends up as the empty booklet).
Higher numbers of removed matches, however, are quite likely, as
illustrated in Figure S7.1. For example, smoker.m reported the number
79 a total of 89,303 times, giving a probability of 0.0893.

The authors of the 1972 book on my bookshelf didn’t tell their
readers that this smoker’s problem is a variation on a famous prob-
ability problem called the Banach Matchbox Problem. Named after
the Polish mathematician Stefan Banach (1892–1945), the problem
was the creation of Banach’s close friend and fellow Pole Hugo
Steinhaus (1887–1972), who, at a conference in Banach’s honor, posed
it as follows:

A mathematician who loved cigarettes (Banach smoked up to five
packs a day and his early death at age 53 was, not surprisingly, of
lung cancer) has two matchboxes, one in his left pocket and one
in his right pocket, with each box initially containing N matches.
The smoker selects a box at random each time he lights a new
cigarette, and the problem is to calculate the probability that,
when the smoker first discovers that the box he has just selected is
empty, there are exactly r matches in the other box, where clearly
r = 0, 1, 2, . . . , N.

The reason for emphasizing the word discovers is that we are to imagine
that when the smoker takes the last match out of a box, he puts the box
back into the pocket it came from, and he only becomes aware that the
box is empty when he next selects that box. This isn’t as stupid as it may
sound on first encounter, if we imagine that the smoker doesn’t actually
look in a box as he removes a match but rather is so engrossed in
the deep mathematics he is scribbling on paper that he simply gropes
around inside the box with his fingers until he feels a match (or finally
realizes—i.e., discovers—that the box is in fact empty).

October 12, 2007 Time: 12:41pm soln-07.tex

The Pipe Smoker’s Discovery 133

Banach’s problem, then, is not quite the same as our original
smoker’s problem. In the original problem the booklet selection
process immediately stops at the moment one of the booklets is
exhausted. In Banach’s problem the selection process continues
until the empty box is once again selected. Therefore, one or more
additional matches may be removed from the nonempty box before
the smoker again selects the empty box. Indeed, in Banach’s problem
it is perfectly possible for both boxes to end up empty (the above
r = 0 case)! What does this new twist do to our simulation code
smoker.m? Actually, not too much, with the new smokerb.m being
the original smoker.m with some additional code inserted between
lines 12 and 13—that is, immediately after the while loop. Here’s
how it works.

All goes as before, but now when the while loop is exited smokerb.m

executes the new line 13, which sets the variable empty to zero, which
in turn will control the operation of a new, second while loop defined
by lines 14 and 29. The meaning of empty = 0 is that the booklet that
has just been emptied has not yet been reselected. Line 15 randomly
selects one of the booklets; lines 16 through 21 (executed if the selected
booklet is booklet1) takes a match from that booklet if it still contains at
least one match; otherwise, no match is taken and empty is set equal to
1. Lines 22 through 27 do the same for booklet2 if it is the selected
booklet. The first time the code encounters an empty booklet the
resulting empty = 1 condition terminates the while loop and, then all
goes as before, as it did in smoker.m.

When run, smokerb.m produced Figure S7.2, with the estimate 73.79
for the average number of removed matches, about 1 greater than
for the original problem. As Figure S7.2 illustrates, the possibility now
exists for both booklets to be exhausted, as I mentioned before.

We can analytically check these simulation results as follows, where
here I’ll use the dental floss version of the problem. (Is the dental floss
problem a version of the original problem, which terminates as soon
as one of the boxes is empty, or is it a form of Banach’s problem, which
terminates when the empty box is discovered on its next selection to
be empty? I think the argument for the original problem is stronger,
as one knows immediately when the floss runs out!)

October 12, 2007 Time: 12:41pm soln-07.tex

134 Solution 7

9×104

0
0 10 20 30 40 90

Number of matches removed from both booklets

N
u

m
b

er
 o

f s
im

u
la

ti
o

n
s

50 60 70 80

8×104

7×104

6×104

5×104

4×104

3×104

2×104

1×104

Figure S7.2. Banach’s problem.

As the author of that problem wrote,1

The probability of finding k ft of floss in a given box when the
other box becomes [my emphasis, and this is another clue for
the dental floss problem not being the Banach problem] empty
is the same as the probability of finding N − k tails in a sequence
of random [fair] coin tosses with exactly N heads, when the last
toss is a head and N = 150. The probability P(k) of finding k ft of
floss in either box is twice this, since either box can run out with
equal probability. The probability that the last toss is a head is
1/2, and so P(k) is just the probability of N − 1 heads and N − k
tails in a sequence of random tosses [of length 2N − k − 1]. This
is given by the binomial distribution; explicitly

P(k) = (1
2

)2N−k−1 (2N − k − 1)!
(N − 1)!(N − k)!

.

The expectation value of the length of remaining floss is 〈k〉
= ∑N

k=1k P(k); and, for N = 150, 〈k〉 = 13.8 ft.

October 12, 2007 Time: 12:41pm soln-07.tex

The Pipe Smoker’s Discovery 135

smokerb.m
01 S = 0;

02 matches = zeros(1,80);

03 for k = 1:1000000

04 booklet1 = 40;booklet2 = 40;

05 while booklet1 > 0&booklet2 > 0

06 r = rand;

07 if r < 0.5

08 booklet1 = booklet1 − 1;

09 else

10 booklet2 = booklet2 − 1;

11 end

12 end

13 empty = 0;

14 while empty == 0

15 r = rand;

16 if r < 0.5

17 if booklet1 > 0

18 booklet1 = booklet1 − 1;

19 else

20 empty = 1;

21 end

22 else

23 if booklet2 > 0

24 booklet2 = booklet2 − 1;

25 else

26 empty = 1;

27 end

28 end

29 end

30 s = (40 − booklet1) + (40 − booklet2);

31 S = S + s;

32 matches(s) = matches(s) + 1;

33 end

34 S/1000000

35 bar(matches)

October 12, 2007 Time: 12:41pm soln-07.tex

136 Solution 7

Just to clarify a bit what all of the above means: if we flip a fair coin
2N − k times, and if we observe that the coin shows heads N times
(heads means we use the floss box that will eventually be the empty
one) and shows tails N − k times (tails means we use the floss box that
will, when the other box becomes empty, still have k feet left in it), then
the probability of this happening is the probability that there are k feet
of floss left in the nonempty box. And, as explained above,

P(k) = (2)
(1

2

) [(
2N − k − 1

N − k

) (1
2

)2N−k−1
]

,

where the first factor of 2 is there because either box could be the one
that ends up empty, the second factor of (1

2) is the probability that the
last toss is a heads, and the final factor in braces is the probability of
N − k tails in the first 2N − k − 1 tosses. So,

P(k) = (1
2

)2N−k−1
(

2N − k − 1
N − k

)

as claimed. And, again as claimed,

〈k〉 =
N∑

k=1

k P(k) =
N∑

k=1

k(1
2)2N−k−1

(
2N − k − 1

N − k

)
.

This is easy to code in MATLAB using the nchoosek command to
evaluate the binomial coefficients—nchoosek(x,y)= (x

y

)
for x and y non-

negative integers. The code floss.m does the job, with the final value of
sum being 13.8 (as claimed) for N = 150.

In fact, we can use floss.m to check one last claim. As the author of
the problem wrote, “In general, 〈k〉 � √

N,’’ which means 〈k〉 increases
as

√
N, i.e., as N1/2. In other words, 〈k〉 � C N1/2, where C is some

constant2, and so log 〈k〉 = log C N1/2 = log C + 1/2 log N. This means
that if we do a log-log plot of 〈k〉 versus N, we should see a straight
line with slope 1/2. Figure S7.3 shows a log-log plot of 〈k〉 versus N as
N varies from 1 to 500, and it is indeed straight (at least to the eye).
To confirm that the slope is 1/2, I’ve also plotted (as a dashed line) the
reference line with 10

√
N on the vertical axis (the 10 is there simply

October 12, 2007 Time: 12:41pm soln-07.tex

The Pipe Smoker’s Discovery 137

100

103

102

N

<
k>

 in
 s

o
lid

,1
0

 N
 in

 d
as

h
ed

101

100

101 102 103

Figure S7.3. The Dental Floss Problem.

floss.m
01 sum = 0;

02 N = 150;

03 for k = 1:N

04 sum = sum + (k*nchoosek(2*N−k−1,N−k)/(2^(2*N−k−1)));

05 end

06 sum

to offset this reference line from the solid line), and you can see that
the two lines are indeed parallel (at least to the eye) and so have the
same slope.

For our original match booklet problem we simply run floss.m for
N = 40 and find that 〈k〉 = 7.114 matches left in the nonempty booklet.
This is in good agreement with the estimate from smoker.m of 72.872
matches removed (from the initial 80) when one of the booklets becomes
empty (80 − 72.872 = 7.128).

October 12, 2007 Time: 12:41pm soln-07.tex

138 Solution 7

One last comment: Why is the dental floss problem called a
paradox? The answer lies in understanding the difference between
the average value of k and the most probable value of k. They are very
different. Here’s why. Notice that

P(k + 1)
P(k)

=

(
1
2

)2N−(k+1)−1 (2N − (k + 1) − 1)!
(N − 1)!(N − (k + 1))!

(
1
2

)2N−k−1 (2N − k − 1)!
(N − 1)!(N − k)!

=
(

1
2

)−1

× (2N − k − 2)!
(2N − k − 1)!

× (N − 1)!(N − k)!
(N − 1)!(N − k − 1)!

= 2 × 1
2N − k − 1

× (N − k)

= 2N − 2k
2N − k − 1

,

which is clearly less than 1 for all k > 1 (and this ratio steadily decreases
as k increases). But, for k = 1, we have

P(2)
P(1)

= 2N − 2
2N − 2

= 1,

and so P(1) = P(2)>P(3)>P(4)> · · · . Notice that this is true for any
value of N. The most probable values of k, for any value of N, are the
equally probable k = 1 feet and k = 2 feet, and all other values of k (in
particular, 〈k〉) are steadily less probable.

References and Notes

1. Peter Palffy-Muhoray, “The Dental Floss Paradox’’ (American Journal of
Physics, October 1994, pp. 948 and 953).

2. The exact expression for the Banach problem is 〈k〉 = 2N +1
22N

(2N
N

) − 1,
which, using Stirling’s formula to approximate the factorials, reduces to

2
√

N
π

− 1. You can find this worked out (it is not easy to do!) in the second
edition of William Feller, An Introduction to Probability Theory and Its
Applications (New York; John Wiley & Sons, 1957, vol. 1, pp. 212–213). For

October 12, 2007 Time: 12:41pm soln-07.tex

The Pipe Smoker’s Discovery 139

some reason Feller omitted this calculation in the third edition. For N = 40,
the approximation gives 〈k〉 = 6.14, which agrees well with the estimate from
smokerb.m for the number of matches removed (from the initial 80), i.e.,
80 − 73.79 = 6.21. The exact expression gives 〈k〉 = 6.20, which is in even
better agreement with smokerb.m.

October 12, 2007 Time: 02:34pm soln-08.tex

8. A Toilet Paper Dilemma

The code rolls.m uses Knuth’s recurrence formulas to directly calculate
and plot M200(p). This program can be most easily understood by
referring to Figure S8.1, which again shows the underlying lattice point
structure of the problem. The one complication MATLAB itself, as
a programming language, introduces is that it does not allow zero
indexing of arrays. If your favorite language does, then rolls.m will still
work, but you could, if you wanted, actually rewrite the program with
fewer commands. As you can see, however, rolls.m is pretty short anyway.

Line 01 starts things off by defining M to be a 200 × 200 array.
The variable prob, initially set equal to zero in line 02, will be the
index into the row vector curve, where curve(prob) will be the value of
M200(p), with p=prob/1000, as in line 05. Here’s how that works. rolls.m

computes M200(p) for 0.001 ≤ p ≤ 1, in steps of 0.001, and so lines
03 and 20 define a for/end loop that will cycle a thousand times, each
time using p=prob/1000 as defined in line 05. Notice that p = 0.001 goes
with prob=1, that p = 0.002 goes with prob=2, and so on, because line
04 immediately increments prob by 1, to 1, from its initial value of
0 (remember, no zero indexing in MATLAB). Since, as explained in
the problem statement, M(1, 1) = 1 for any n and any p, line 06 does
precisely that. Lines 07 through 09 are a loop that is present because
of the zero indexing issue; looking at each lattice point in Figure S8.1,
the value of M at any given point is, by Knuth’s recurrence (d), the
weighted sum of the M-value at the lattice point to the immediate left

October 12, 2007 Time: 02:34pm soln-08.tex

A Toilet Paper Dilemma 141

4

3

2

1

0 1 2 3 4

A B

C

n

m

The value of M at point A is the weighted sum of the M values at
point B and point C for all lattice points below the diagonal line.

Figure S8.1. The lattice point structure of the toilet paper problem.

and at the lattice point directly below the given point. But of course, for
row 1 of M, all the points directly below that row would be in row 0—
which is an impossible row in MATLAB. So, line 08 directly calculates
M(m, 1) not as (1 − p)∗M(m, 0) + p∗M(m − 1, 1) but rather as shown in
rolls.m, with M(m, 0) replaced by m, as specified in Knuth’s recurrence
(b). Line 10 then completes the initial part of rolls.m by using Knuth’s
recurrence (c) to set the diagonal lattice point M-value at (2, 2), i.e.,
M(2, 2) = M(2, 1).

rolls.m now computes the value of M at all the remaining lattice
points in a vertical pattern. That is, for every column in M, starting
with the third column, the code computes M at each lattice point up
to the lattice point just below the lattice point on the diagonal. The
lattice point on the diagonal is assigned the same value given to the
lattice point just below it, as required by Knuth’s recurrence (c). This
is all accomplished by lines 11 through 18. The end result is that the

October 12, 2007 Time: 02:34pm soln-08.tex

142 Solution 8

rolls.m
01 M = zeros(200,200);

02 prob = 0;

03 for loop = 1:1000

04 prob = prob + 1;

05 p = prob/1000;

06 M(1,1) = 1;

07 for m = 2:200

08 M(m,1) = (1 − p)*m + p*M(m − 1,1);

09 end

10 M(2,2) = M(2,1);

11 diagonal = 3;

12 for m = 3:200

13 for n = 2:diagonal-1

14 M(m,n) = p*M(m − 1,n) + (1 − p)*M(m,n − 1);

15 end

16 M(m,n) = M(m,m − 1);

17 diagonal = diagonal + 1;

18 end

19 curve(prob) = M(200, 200);

20 end

value of M at (200, 200), for the current value of p (equal to prob/1000)
is arrived at and stored as the probth element in the curve vector.

When rolls.m was run (I have not included in the above listing the
specialized MATLAB plotting and axis-labeling commands) it created
Figure S8.2, and as you can see, the plot of M200(p) has a curious
feature in it around p = 0.5. As Knuth writes, “The function Mn(p)
is a polynomial in p of degree 2n − 3 [and so in Figure S8.2 we have
a curve of degree 397], for n ≥ 2, and it decreases monotonically from
n down to 1 as p increases from 0 to 1. The remarkable thing about
this decrease is that it changes in character rather suddenly when
p passes 1/2.’’

I mentioned in the original statement of this problem that Knuth’s
paper has achieved a certain level of fame among computer scientists.

October 12, 2007 Time: 02:34pm soln-08.tex

A Toilet Paper Dilemma 143

180

200

160

140

120

100

80

60

40

20

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

M
20

0(p
)

Figure S8.2. How the paper runs out.

This is because, in addition to discussing an interesting mathematical
problem, it treats a potentially taboo topic in a totally professional
manner—but I am sure that as he wrote his paper Knuth had at least
the hint of a smile on his face. Others, however, have since allowed
themselves to venture just a little further. For example, in one Web
discussion of the problem that I once came across, Knuth’s publication
was called a “tongue-in-cheek paper.’’ That same writer then suggested
a generalization of the problem whose solution would “certainly fill an
important gap.’’ Who says computer scientists don’t have a sense of
humor? Warped it may be, yes, but nonetheless it is there. If he ever
came across that Web site, I am sure Knuth would have let himself go
(oh, my, now I’m making potty jokes, too!) and have laughed out loud. I
know I did! Knuth doesn’t mention it, but I do find it amusing to note
the curious resemblance of the curve in Figure S8.2 with the actual
appearance of a long length of loose toilet paper hanging from a roll
onto a bathroom floor.

October 12, 2007 Time: 12:47pm soln-09.tex

9. The Forgetful Burglar Problem

The code of fb.m simulates ten million paths of the burglar, with each
path continuing until a previously visited house is revisited. Line 01
defines the row vector duration as having fifty elements, where duration(k)

is the number of paths with length k steps (each step is a move of
length 1 or 2). Lines 02 and 19 define the for/end loop that cycle fb.m

through its ten million simulations. Each simulation will continue as
long as the variable go is equal to 1, to which it is initially set in line 03.
Line 04 initializes the row vector whereyouvebeen to all zeros, where the
meaning of whereyouvebeen(k)=0 is that the burglar has (not yet) visited
location k. I have somewhat arbitrarily made whereyouvebeen of length
201, and have initially placed the burglar in the middle of the vector;
i.e., lines 05 and 06 force whereyouvebeen(101)=1. (This gives plenty of
room for the burglar to wander around in, in either direction.) That
is, the burglar’s criminal paths of robbery have to, obviously, always
start somewhere, and that place (and all subsequently visited places)
are marked with a 1 in whereyouvebeen. Then line 07 initializes the
variable steps to 0, the current length of the burglar’s path of crime.

The while loop, defined by lines 08 and 18, now performs an
individual simulation which will continue until, as explained above,
the condition go = 0 occurs (you’ll see how that happens soon). Line
09 probably needs some explanation. Since the burglar can move in
either direction (with equal probability) by either one or two houses

October 12, 2007 Time: 12:47pm soln-09.tex

The Forgetful Burglar Problem 145

(again, with equal probability) from his current victim’s house, we need
to generate the current move as one of the equally probable numbers
−2, −1, 1, and 2. Since rand generates a number uniformly distributed
between 0 and 1 (but never equal to either 0 or 1), then floor(2∗rand) is
equal to either 0 or 1 with equal probability. (Remember, as explained
in the solution to Problem 6, Steve’s Elevator Problem, floor is MAT-
LAB’s “rounding down’’ or truncation command.) Thus, floor(2*rand)+1

is equal to either 1 or 2 with equal probability. The command sign

implements what mathematicians call the signum function, i.e., sign(x)

= +1 if x > 0 and sign(x) = –1 if x < 0. Since rand−0.5 is positive and
negative with equal probability, then sign(rand−0.5) is +1 and −1 with
equal probability. Thus, line 09 generates the required −2, −1, 1, and
2 with equal probability and assigns that value to the variable move.

fb.m
01 duration = zeros(1,50);

02 for loop = 1:10000000

03 go = 1;

04 whereyouvebeen = zeros(1,201);

05 hereyouare = 101;

06 whereyouvebeen(hereyouare) = 1;

07 steps = 0;

08 while go == 1

09 move = sign(rand-0.5)*(floor(2*rand) + 1);

10 hereyouare = hereyouare + move;

11 steps = steps + 1;

12 if whereyouvebeen(hereyouare) == 1

13 go = 0;

14 duration(steps) = duration(steps) + 1;

15 else

16 whereyouvebeen(hereyouare) = 1;

17 end

18 end

19 end

20 duration/10000000

October 12, 2007 Time: 12:47pm soln-09.tex

146 Solution 9

Lines 10 and 11 then update hereyouare, the new location of the
burglar, and the variable steps.

Line 12 is the start of an if/end loop that determines if the new
location is a previously visited one; if so, line 13 sets go to zero, which
will terminate the while loop, and line 14 records the length of the now
terminated path of theft in the vector duration. If the new location has
not been previously visited, then line 16 marks that location as now
having been visited. The code continues in this fashion through all ten
million simulated paths, and then, finally, line 20 produces the fb.m’s
probability estimates for all path lengths from 1 to 50.

The following table compares the estimates produced by fb.m with
the theoretical probabilities of the forgetful burglar first returning to a
previously burgled home in exactly k steps, 1 ≤ k ≤ 7 (calculated from
a rather complicated formula1).

k Theoretical probability fb.m’s estimate
1 0 0
2 4

16 = 0.25 0.2500623
3 18

64 = 0.28125 0.2811653
4 50

256 = 0.1953125 0.1954533
5 120

1,024 = 0.1171875 0.1171681
6 280

4,096 = 0.0683594 0.0683619
7 638

16,384 = 0.0389404 0.0388911

This problem is a generalization of one type of a so-called random
walk with absorption. In the traditional form, the one usually given
in probability textbooks as a gambler’s ruin problem, the steps to the
left and to the right are the results of losses and wins, with the walk
terminated if the gambler reaches either the far left location, where
he has zero money and so is ruined, or the far right location, where
he has won all the money and his opponent is ruined. In both cases
the gambler is said to be absorbed at the location. In the forgetful bur-
glar problem, each newly visited location transforms into an absorbing
location because, if any location is visited a second time, the walk is

October 12, 2007 Time: 12:47pm soln-09.tex

The Forgetful Burglar Problem 147

immediately terminated. As far as I know, the general solution to this
form of random walk is still unknown.

References and Notes

1. Caxton Foster and Anatol Rapoport, “The Case of the Forgetful Burglar’’
(American Mathematical Monthly, February 1958, pp. 71–76).

October 22, 2007 Time: 03:10pm soln-10.tex

10. The Umbrella Quandary

The code umbrella.m performs 10,000 simulations of the man’s walks
for each of the ninety nine values of rain probability, from 0.01 to
0.99, in steps of 0.01. That is, it performs a total of 990,000 simulated
walks. We don’t have to simulate for p = 0 (it never rains) because,
obviously, in that case the man never gets wet; i.e., the answer for p = 0
is that he’ll walk an infinite number of times before his first soaking.
That’s the answer for p = 1, too (it always rains), but for a far different
reason. For p = 1 the man always carries an umbrella with him and so,
again, he never gets wet. These two cases of deterministic rain would
get a simulation in trouble, in any case: the looping would continue
forever while the code waited for the first soaking to occur! Where our
Monte Carlo simulation comes into its own is, naturally, for the far
more interesting cases of probabilistic rain.

Lines 01 and 02 bring in the values of the number of umbrellas
that the man starts with at home (xi) and at the office (yi). Line 03
defines the 99-element row vector duration, where duration (k) will, on
completion of program execution, be the average number of walks
before the man’s first soaking for the rain probability k/100; e.g.,
duration(17) will be the answer to our problem for p = 0.17. Lines 04
and 43 define the outermost for/end loop, a loop that will be executed
ninety nine times—once for each value of p from 0.01 to 0.99 in
steps of 0.01; line 05 sets the value of the rain probability p. Line
06 initializes the variable walksum to zero; walksum will be the total

October 22, 2007 Time: 03:10pm soln-10.tex

The Umbrella Quandary 149

number of walks, over 10,000 simulations of the problem with a given
p, before the man gets wet. (The variable walks, initialized at zero in
line 10, is the number of such walks for a single simulation.) Lines 07
and 41 define the for/end loop that runs umbrella.m through the 10,000
simulations for the current value of p. Lines 08 and 09 set x and y at
the start of each simulation to xi and yi, and line 10 initializes walks as
stated before.

Line 11 needs a little elaboration. To keep track of where the man
is at all times, I’ve coded “home’’ as −1 and “office’’ as 1. Thus,
to move the man back and forth, all we need do to get his new
location is to multiply the old location by −1 (because −1 × −1 = 1
and 1 × −1 = −1). Since the original problem statement said the man
always starts at home, then the variable location is initially set equal to
−1. Lines 13 and 40 define a while loop that controls the individual
simulations. This loop is executed an a priori undefined number of
times (until the man gets wet), and it is controlled by the variable wet;
wet=0 means the man is dry, and wet=1 means (surprise!) that he is wet,
the condition that terminates the while loop.

umbrella.m
01 xi = input(’Initial umbrellas at home?’);

02 yi = input(’Initial umbrellas at office?’);

03 duration = zeros(1,99);

04 for P = 1:99

05 p = P/100;

06 walksum = 0;

07 for loop = 1:10000

08 x = xi;

09 y = yi;

10 walks = 0;

11 location = − 1;

12 wet = 0;

13 while wet == 0

14 if rand > p

15 walks = walks + 1;
(continued)

October 22, 2007 Time: 03:10pm soln-10.tex

150 Solution 10

(continued)

16 location = − 1*location;

17 else

18 if location == − 1

19 if x == 0

20 walksum = walksum + walks;

21 wet = 1;

22 else

23 x = x − 1;

24 walks = walks + 1;

25 y = y + 1;

26 location = − 1*location;

27 end

28 else

29 if y == 0

30 walksum = walksum + walks;

31 wet = 1;

32 else

33 y = y − 1

34 walks = walks + 1;

35 x = x + 1;

36 location = − 1*location;

37 end

38 end

39 end

40 end

41 end

42 duration(P) = walksum/10000;

43 end

The while loop starts by determining (line 14) if it is raining when
the man starts his current walk. If it is not raining, then lines 15 and
16 simply increment the number of dry walks by one and move the
man to the other location. If it is raining then either the block of lines
from 18 through 26 is executed, or the block of lines from 29 through
36 is; which block is executed depends on where the man is. If he is at

October 22, 2007 Time: 03:10pm soln-10.tex

400

450

350

300

250

200

150

100

50

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probability of rain

A
ve

ra
g

e
n

u
m

b
er

 o
f w

al
ks

 b
ef

o
re

 fi
rs

t
so

ak
in

g

xi =1, yi = 1

Figure S10.1. The umbrella problem (plotted for xi=yi=1).

800

900

700

600

500

400

300

200

100

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probability of rain

A
ve

ra
g

e
n

u
m

b
er

 o
f w

al
ks

 b
ef

o
re

 fi
rs

t
so

ak
in

g

xi =2, yi = 2

Figure S10.2. The umbrella problem (plotted for xi=yi=2).

151

October 22, 2007 Time: 03:10pm soln-10.tex

152 Solution 10

home (if location=−1) then the code checks if there is a home umbrella
available (line 19). If there is not, then line 20 updates walksum and line
21 sets wet equal to 1, which will terminate that particular simulation,
i.e., will terminate the while loop. If there is a home umbrella available,
then x is decremented by one (line 23), walks is incremented by one
(line 24), y is incremented by one because the man has transported
an umbrella to his office during his walk (line 25), and the man’s
location is updated (line 26). If, on the other hand, the man is at his
office (location=1) then the second block of code does all the above
but with the obvious changes, e.g., if an umbrella is transported,
then it is y that is decremented and x that is incremented. When the
10,000 simulations are done for the current value of p, line 42 updates
duration, and then another 10,000 simulations are performed for the
next value of p.

Figures S10.1 shows a plot of duration vs. p for xi=yi=1, and
Figures S10.2 shows the plot for xi=yi=2. (I have not included the
MATLAB plotting and labeling commands in umbrella.m.) Both plots
illustrate the expected behavior in the limiting cases as p → 0 and
p → 1. For how to treat this problem analytically, see any good book
on the theory of Markov chains.

October 12, 2007 Time: 01:41pm soln-11.tex

11. The Case of the Missing Senators

The code missing.m simulates the problem of the absentee senators.
Lines 01 and 02 are by now obvious to you. Line 03 initializes the
variable defeats to zero; the value of this variable, at the end of the
program execution, will be how many times the bill was defeated
during one million simulated votes. Lines 04 and 26 define the for/end

loop that cycles the code through its one million simulations. Line 05
defines the 100-element row vector votes; votes(k) is the vote during
an individual simulation of the kth senator (if that senator actually
does vote), where −1 is a vote against the bill and 1 is a vote for the
bill. This explains the two for/end loops, in lines 06 through 08 and
again in lines 09 through 11. Lines 12 through 21 implement the logic
of randomly removing M of the senators from the vote. The key—
and easy to overlook, I think—observation is that we must be careful
to eliminate M different senators. That is, once a senator has been
eliminated, the code must not be allowed to later randomly select that
same senator for removal!

The net result, when the code reaches line 22, is that the senators
who show up for the vote are represented in the votes vector by either
a −1 (against) or a 1 (for), and the senators who miss the vote are
represented in votes by a 0. So, we can get the result of the vote by
simply summing the elements of votes, a calculation performed in line
22 with MATLAB’s nifty sum command; the result is assigned to the
variable vote. Clearly, vote > 0 means the bill passed and vote < 0 means

October 12, 2007 Time: 01:41pm soln-11.tex

154 Solution 11

the bill failed (and vote = 0 means a tie vote). This explains lines 23
through 25. Line 27, executed after one million voting simulations,
generates missing.m’s answer. When run for the check case I gave
you in the original problem statement (A = 49 and M = 3), missing.m

produced an estimate for the probability that the bill is defeated of
0.128492. This is in good agreement with the theoretical answer of
0.128787 · · · . Now, before giving you the Monte Carlo results for the
remaining questions I asked you to consider, let me show you how to
calculate the theoretical answers.

If we define x as the number of senators missing the vote that, if
present, would have voted for the bill, then M − x is the number of
senators missing the vote who would have voted against the bill. Now,
the bill will be defeated if (100 − A) − x < A − (M − x), or, after some
rearranging, the bill will be defeated if x > 50 − A + M

2 . Obviously,
senators come only in integers, and since M could be an odd integer,
then we more precisely write the condition for the bill being defeated
as x ≥ [

50 − A + M
2

] + 1, where the notation [y] means the largest
integer less than or equal to y . For example, [2.5] = 2 and [3] = 3.

missing.m
01 A = input(’Number of senators against bill?’);

02 M = input(’Number of senators missing vote?’);

03 defeats = 0;

04 for loop = 1:1000000

05 votes = zeros(1,100);

06 for k = 1:A

07 votes (k) = –1;

08 end

09 for k = A + 1:100

10 votes(k) = 1;

11 end

12 for k = 1:M

13 go = 1;

14 while go == 1

15 j = floor(100*rand) + 1;
(continued)

October 12, 2007 Time: 01:41pm soln-11.tex

The Case of the Missing Senators 155

(continued)

16 if votes(j)~ = 0

17 votes(j) = 0;

18 go = 0;

19 end

20 end

21 end

22 vote = sum(votes);

23 if vote < 0

24 defeats = defeats + 1;

25 end

26 end

27 defeats/1000000

The probability the bill is defeated is

Prob
(

x > 50 − A + M
2

)
=

M∑

k=[50−A+ M
2]+1

Prob(x = k).

The number of ways to pick k senators to miss the vote, from those
who would have voted for the bill, is

(100−A
k

)
, and the number of ways

to pick the other M − k senators who miss the vote, from those who
would have voted against the bill, is

(A
M−k

)
, and so the total number of

ways to pick the M missing senators, with exactly k of them being for
the bill but such that the bill is defeated, is

(100−A
k

)(A
M−k

)
. And since the total

number of ways to pick the M missing senators without any constraints
is

(100
M

)
, we have

Prob(x = k) =

(
100 − A

k

)(
A

M − k

)

(
100
M

) ,

i.e.,

Probability the bill is defeated =
M∑

k=[50−A+ M
2]+1

(
100 − A

k

)(
A

M − k

)

(
100
M

) .

October 12, 2007 Time: 01:41pm soln-11.tex

156 Solution 11

For the “check your code’’ case of A = 49 and M = 3, this probability is

3∑

k=3

(
100 − 49

k

)(
49

3 − k

)

(
100

3

) =

(
51
3

)(
49
0

)

(
100

3

) =
51!

3!48!
100!
3!97!

= 51 × 50 × 49
100 × 99 × 98

= 51
396

= 0.12878787 · · ·,

as given in the original problem statement.
I’ll leave it for you to confirm that the above theoretical analysis

gives the following probabilities to the two other cases you were to

consider: (51
4)

(100
4) = 0.06373 (for A = 49 and M = 4), and (51

4)(49
1) + (51

5)(49
0)

(100
5)

= 0.193845 · · · (for A = 49 and M = 5). When run, missing.m gave the
following estimates: 0.063599 and 0.193939, respectively. Okay!

January 21, 2013 Time: 01:51pm soln-12.tex

12. How Many Runners in a Marathon?

The code estimate.m simulates this problem. It is probably the most
MATLABy of all the codes in this book, with its use of several
specialized (but all quite easy to understand), highly useful vector
commands. All of these commands could be coded in detail—as I did
in Problem 3 with the bubble-sort algorithm, rather than just using
MATLAB’s sort command—but that would be tedious. If your favorite
language doesn’t have similar commands, I’ll let the tedium be yours!
And in estimate.m, since the code is so MATLABy anyway, I’ve made an
exception to my earlier decisions not to include the plotting and figure
labeling commands. All such commands in estimate.m are included here
for your inspection. Okay, here’s how the code works.

Line 01 defines the four element values of the vector size to be the
four sample size percentages for which you were asked to generate
performance histograms. For each such value, estimate.m will simulate
10,000 populations of randomly selected sizes, and the outermost
for/end loop defined by lines 02 and 29 cycle the code through those
four sample sizes. Line 03 sets the variable s equal to the current value
of the sample size percentage. Lines 04 and 22 define the for/end loop
that performs each of those 10,000 population simulations for a fixed
sample size percentage. Line 05 randomly picks an integer value from
the interval 100 to 1,000 for the population size N. (The MATLAB
command round rounds its argument to the nearest integer, unlike the
MATLAB command floor, which truncates its argument, i.e., rounds

January 21, 2013 Time: 01:51pm soln-12.tex

158 Solution 12

downward, and the command ceil, which rounds upward, “toward the
ceiling.’’) Line 06 uses the nifty MATLAB command randperm to create
the vector population, whose elements are a random permutation of
the integers 1 through N (you’ll remember we used randperm in the
code guess.m in the introduction; it’s also used in the code optimal.m

in the solution to Problem 20). It is population from which estimate.m

will be sampling without replacement. Line 07 then uses N and s to
set the integer variable n to the actual sample size. To prepare for that
sampling of population, the variables newN and newn are initialized to
the values of N and n, respectively, in line 08. And finally, line 09 defines
the vector observed, which will store the n values from population that are
generated by the sampling process.

Lines 10 through 19 are a direct implementation of
Bebbington’s sampling without replacement algorithm.
Once the n samples of population have been taken and
stored in observed, the Bebbington algorithm is exited,
and line 20 assigns the largest value found in observed

to the variable maximum (with the aid of MATLAB’s max command).

estimate.m
01 size(1) = 2;size(2) = 5;size(3) = 10;size(4) = 20;

02 for z = 1:4

03 s = size(z);

04 for loop = 1:10000

05 N = round(900*rand) + 100;

06 population = randperm(N);

07 n = round(s*N/100);

08 newN = N;newn = n;

09 observed = zeros(1,n);

10 j = 1;

11 for k = 1:N

12 p = newn/newN;

13 newN = newN − 1;

14 if rand < p

15 observed(j) = population(k);

16 j = j + 1;

17 newn = newn − 1;
(continued)

January 21, 2013 Time: 01:51pm soln-12.tex

How Many Runners in a Marathon? 159

(continued)

18 end

19 end

20 maximum = max(observed);

21 error(loop) = (((n + 1)/n)*maximum–1–N)*100/N;

22 end

23 subplot(2,2,z)

24 hist(error,100)

25 xlabel(’percent error’)

26 ylabel(’number of simulations (10,000 total)’)

27 title_str = [’sample size = ’int2str(size(z)) ’%’];

28 title(title_str)

29 end

Line 21 computes the percentage error made by our estimation
formula and stores it in the vector error (which has, of course, 10,000
elements). Once error is filled, lines 23 through 28 take care of printing
and labeling a histogram plot of the values in error. There will be four
such plots, of course, and I used MATLAB’s subplot command to place
all four plots on a single page to allow easy comparison. The format of
the command is that subplot(m,n,z) specifies plot z out of a total of mn

plots, and so subplot(2,2,z) means plot z—where 1 ≤ z ≤ 4 (take another
look at line 02)—out of four plots. The positioning of the plots on a
page is defined as follows: plot 1 is upper left, plot 2 is upper right,
plot 3 is lower left, and plot 4 is lower right.

In line 24 the actual histogram of error is generated by the incredibly
useful MATLAB command hist; i.e., hist(error,100) generates a 100-
bin histogram of the elements of error. Lines 25 and 26 produce the
obvious x-axis and y -axis labels; in MATLAB everything between the
beginning ’and the ending’ is the so-called string variable, which is
printed. Line 27 defines yet another string variable (which will be the
title line of the current plot) as the concatenation of three substrings:
sample size, int2str(size(z)), and %. The middle substring, different for
each of the four plots, is created by MATLAB’s integer-to-string
command, using the current value of size(z) as the argument. When
all four subplots have been so generated, the program terminates.

January 21, 2013 Time: 01:51pm soln-12.tex

160 Solution 12

1500

1000

−100

Percent error

N
um

be
r o

f s
im

ul
at

io
ns

500

−50 0 50

(a)
2000

−100

Percent error

N
um

be
r o

f s
im

ul
at

io
ns

1000

−50 50

(b)

0

2000

1500

−40

Percent error

N
um

be
r o

f s
im

ul
at

io
ns

500

−20 0 20

(c)
2000

−20

Percent error

N
um

be
r o

f s
im

ul
at

io
ns 1500

−10 0 10

(d)

1500

500

0

1000

500

0

1000

0

0

Figure S12.1. The bigger the sample size, the smaller the error (on average).
(a) Sample size = 2%. (b) Sample size = 5%. (c) Sample size = 10%.
(d) Sample size = 20%.

Figure S12.1 shows the results when estimate.m was run. You can
see that as the sample size (percentages) increase, the spread in
the estimation error decreases (which makes sense), and that once
the sample size percentage has reached at least 10%, then the vast
majority of the estimates are less than ±5% in error. Further, notice
that independent of the sample size, the error histograms are all very
nearly symmetrical around zero error. That is, the plots suggest that
the average estimation error is zero, independent of the sample size.
This is what statisticians mean when they say an estimation formula is
unbiased.

October 22, 2007 Time: 03:18pm soln-13.tex

13. A Police Patrol Problem

Figure S13.1 shows a logical flow diagram of the simulation of this
problem, and the code patrol.m follows the flow diagram faithfully. The
code assumes that all of the patrol cars are randomly patrolling the
road; for scenario (a), that of a single patrol car sitting at y = 1/2,
only a simple extra line of code is required, which I’ll tell you about
in just a bit. To make the code crystal clear, the following comments
will almost certainly be helpful. The variables totalgrassdistance and
totalconcretedistance are the total travel distances accumulated (in one
million simulations) for the two traffic lanes separated by a grassy
median and by a concrete barrier, respectively. With number as the
number of patrol cars being used in each simulation, the row vectors
gdist and cdist are defined such that gdist(k) and cdist(k) are the travel
distances to the accident of the kth patrol car in the grassy median and
concrete barrier cases, respectively. The value of the variable acclane

is the lane in which the accident occurs, and the row vector patlane is
defined to be such that the value patlane(k) is the lane which the kth
patrol car occupies when notified that an accident has occurred. The
row vector y is defined to be such that the value y(k) is the distance of
the kth patrol car from the left end of the stretch of road when notified
an accident has occurred.

For scenario (a), that of a single patrol car sitting at y = 1/2 (in either
lane), we need only insert the line y(1)=0.5 between lines 20 and 21, and
then run patrol.m with one patrol car.

October 22, 2007 Time: 03:18pm soln-13.tex

162 Solution 13

distance =
x − y for grass

2 − x + y for concrete

distance =
y − x for grass

y − x for concrete

x > y
?

(2,2,0) (2,2,1)

distance =
y − x for grass

2 + x − y for concrete

distance =
x − y for grass

x − y for concrete

x > y
?

(1,1,1) (1,1,0)

common
lane = lane 1

?

accident
lane = patrol

lane?

patrol in
lane 1?

select accident
and patrol lanes

select x
and the y’s

A B

C

repeat for
each patrol car

For what the numeric codes mean, see
the table in the original problem statement.

No Yes

No Yes

No Yes

Yes NoYes No

Figure S13.1. Simulating the police patrol problem. Note: For the meaning
of the numeric codes, see the table in problem 13 (p. 72).

Before telling you the estimates produced by patrol.m, let me explain
the theoretical results I told you about in the original problem
statement, results that we can use to partially check the operation of
the code. First, consider scenario (a) and (1)—that of a single patrol
car sitting at y = 1/2 (in either lane) with a grassy median separating
the traffic lanes. The distance the patrol car must drive to reach a

October 22, 2007 Time: 03:18pm soln-13.tex

A Police Patrol Problem 163

distance =
x − y for grass

x + y for concrete

distance =
y − x for grass

x + y for concrete

x > y
?

(2,1,0) (2,1,1)

distance =
y − x for grass

2 − x − y for concrete

distance =
x − y for grass

2 − x − y for concrete

x > y
?

(1,2,1) (1,2,0)

C

BA

C

distance =
|x − y| for grass

x + y for concrete

distance =
|x − y| for grass

2 − x − y for concrete

BA

This can now obviously be simplified to:

NoYes YesNo

Figure S13.1. (continued)

random accident (in either lane) is a random variable (let’s call it Z)
given by Z =| X − 1/2 |, where X is uniform over 0 to 1. The values of
Z are obviously in the interval 0 to 1/2. The probability distribution
function of Z is FZ(z) = Prob(Z ≤ z) = Prob(| X − 1/2 |≤ z) = Prob(−z
≤ X − 1/2 ≤ z) = Prob(1/2 − z ≤ X ≤ 1/2 + z). That is, FZ(z) is the
probability that X is in a subinterval of length 2z (out of the entire
interval for X of length 1), and since X is uniform, we immediately
have FZ(z) = 2z, 0 ≤ z ≤ 1/2, i.e.,

FZ(z) =
2z, 0 ≤ z ≤ 1

2 ,

0, z ≤ 0

1, z ≤ 1
2 .

October 22, 2007 Time: 03:18pm soln-13.tex

164 Solution 13

patrol.m
01 number = input(’How many patrol cars?’);

02 totalgrassdistance = 0;

03 totalconcretedistance = 0;

04 for loop = 1:1000000

05 gdist = zeros(1,number);

06 cdist = zeros(1,number);

07 if rand < 0.5

08 acclane = 1;

09 else

10 acclane = 2;

11 end

12 x = rand;

13 for k = 1:number

14 y(k) = rand;

15 if rand <0.5

16 patlane(k) = 1;

17 else

18 patlane(k) = 2;

19 end

20 end

21 for k = 1:number

22 if acclane == patlane(k)

23 if acclane == 1

24 if x > y(k)

25 gdistance = x − y(k);

26 cdistance = x − y(k);

27 else

28 gdistance = y(k) − x;

29 cdistance = 2 + x − y(k);

30 end

31 else

32 if x > y(k)

33 gdistance = x − y(k);

34 cdistance = 2 − x + y(k);

35 else
(continued)

October 22, 2007 Time: 03:18pm soln-13.tex

A Police Patrol Problem 165

(continued)

36 gdistance = y(k) − x;

37 cdistance = y(k) − x;

38 end

39 end

40 else

41 if patlane(k) == 1

42 gdistance = abs(x − y(k));

43 cdistance = 2 − x − y(k);

44 else

45 gdistance = abs(x − y(k));

46 cdistance = x + y(k);

47 end

48 end

49 gdist(k) = gdistance;

50 cdist(k) = cdistance;

51 end

52 mingdistance = min(gdist);

53 mincdistance = min(cdist);

54 totalgrassdistance = totalgrassdistance + mingdistance;

55 totalconcretedistance = totalconcretedistance

+ mincdistance;

56 end

57 totalgrassdistance/1000000

58 totalconcretedistance/1000000

The probability density function of Z is

fZ(z) = d
dz

FZ(z) =
2, 0 ≤ z ≤ 1

2

0, otherwise,

and so the average (or expected) value of Z is E(Z), where

E(Z) =
1
2∫

0

z fZ(z) dz =
1
2∫

0

2z dz = (z2 |1/2
0 = 1

4
,

as claimed in the original problem statement.

October 22, 2007 Time: 03:18pm soln-13.tex

166 Solution 13

Y

X

1

0 1z

z

Y = X + z

Y = X − z

Figure S13.2. Calculating the distribution function for scenario (B) and (1).

If a single patrol car is not sitting at y = 1/2 waiting for a radio call
to respond to an accident but rather is located at a random location
(in either lane), then we have scenario (b) and (1), and the random
variable Z is now given by Z =| X − Y |, where both X and Y are
independently uniform from 0 to 1. The possible values of Z are now
in the interval 0 to 1. The distribution function of Z is now given by

FZ(z) = Prob(Z ≤ z) = Prob(| X − Y| ≤ z) = Prob(−z ≤ X − Y ≤ z)

= Prob(−z − X ≤ −Y ≤ z − X) = Prob(z + X ≥ Y ≥ −z + X)

or

FZ(z) = Prob(X − z ≤ Y ≤ X + z).

This probability is the probability of the shaded area in Figure S13.2
(take another look at the solution to Problem 2, too), which, because X
and Y are independently uniform, is geometrically given by

FZ(z) = 1 − 2
[1

2 (1 − z)2] = 1 − (1 − z)2, 0 ≤ z ≤ 1.

October 22, 2007 Time: 03:18pm soln-13.tex

A Police Patrol Problem 167

To find E(Z) in this case we could do as before, i.e., find fZ(z)
by differentiating FZ(z) and then evaluating

∫ 1
0 z fZ(z) dz, but it is

more direct to use the following easily established1 result: E(Z)
= 1 − ∫ 1

0 FZ(z) dz. Thus,

E(Z) = 1 −
1∫

0

{1 − (1 − z)2} dz = 1 −
1∫

0

dz +
1∫

0

(1 − z)2 dz

or

E(Z) =
1∫

0

(1 − z)2 dz.

This integral is easy to do: just change variable to u = 1 − z, and
we get

E(Z) =
1∫

0

u2 du = (1
3u3|10= 1

3

as claimed in the original problem statement.
Finally, suppose that we have scenario (a) and (2): a single patrol

car sitting at y = 1/2 with a concrete median. Suppose the patrol car is
in lane 1. If an accident occurs at x > 1/2, in lane 1, then the response
distance is x − 1/2, and that occurs with probability 1/4. If the accident
is in lane 1, with x < 1/2, then the response distance is 3/2 + x, and
that occurs with probability 1/4. And if the accident is in lane 2 (for
any value of x), then the response distance is 3/2 − x and that occurs
with probability 1/2. Thus, given that the patrol car is in lane 1, the
average response distance is

1
4 (x − 1

2) + 1
4 (3

2 + x) + 1
2 (3

2 − x) = 1.

By symmetry, if it is given that the patrol car is in lane 2, then the
average response distance is also 1. No matter which lane the patrol car
happens to be sitting in, the average response distance (with a concrete
median) is 1.

The following table shows the estimates produced by patrol.m. As you
would expect, the average response distance to an accident is always
more for the concrete median case, compared to the grassy median

October 22, 2007 Time: 03:18pm soln-13.tex

168 Solution 13

case. (Notice, too, that the code’s results agree quite well with the three
specific cases we calculated theoretically: scenarios (a) and (1), (b) and
(1), and (a) and (2).) What the code really tells us, however, is that
the average distance is considerably more for concrete compared to
grass. And it tells us that while for a grassy median, the single patrol
car sitting at the middle of the road is better than a single patrolling
car, for a concrete median there is no difference. As a final comment
on the code’s estimates, the numbers in the table hint at the following
analytical expressions for the average response distance, as a function
of n (the number of independent, random patrol cars):

1
2n + 1

for a grassy median

and
2

n + 1
for a concrete median.

If these expressions are correct, then as n increases the ratio of the
average concrete response distance to the average grassy response
distance approaches 4. Can you prove (or disprove) these guesses?

Average response distance by median

Nature of patrol Grass Concrete

One car at 1/2 0.2498 1.0004
One random car 0.3333 0.9997
Two random cars 0.2085 0.6671
Three random cars 0.1500 0.5005
Four random cars 0.1167 0.3999
Nine random cars 0.0545 0.2001

References and Notes

1. We start with E(Z) = ∫ 1
0 z fZ(z) dz. Then, integrating by parts, i.e., using

the well-known formula from calculus
∫ 1

0 u dv = (uv |10 − ∫ 1
0 v du, with u = z

and dv = fZ(z) dz, we have v = FZ(z) and du = dz. Thus, E(Z) = (zFZ(z) |10
− ∫ 1

0 FZ(z) dz = FZ(1) − ∫ 1
0 FZ(z) dz. Since FZ(1) = 1, we have our result.

October 12, 2007 Time: 03:04pm soln-14.tex

14. Parrondo’s Paradox

The code gameb.m simulates game B. The logic is pretty straightfor-
ward, but in a few places the code does take elementary advantage
of MATLAB’s vector capabilities. After line 01 establishes the value
of ε, line 02 creates the row vector Mtotal of length 100, with all of
its elements initially equal to zero. Mtotal(k) will be, when gameb.m

ends, the total capital of all 10,000 sequences at the end of k games,
1 ≤ k ≤ 100. (Line 26 divides Mtotal by 10,000 at the completion of
gameb.m to finish the calculation of the ensemble average.) Line 03
controls the 10,000 simulations gameb.m will perform, each of length
100 games. For each such simulation, line 04 initializes the starting
capital m at zero. A vector analogous to Mtotal but which applies to a
single 100-game sequence is samplefunction, which line 05 creates as a
row vector of length 100 (with each of its elements initially set equal
to zero). That is, samplefunction(k) is the capital of the gambler at the
end of the kth game (kth coin flip, 1 ≤ k ≤ 100) during each individual
100-game sequence.

Lines 06 through 23 play the sequences of 100 games. The only
line in that set of commands that probably needs explanation is line
07, which is MATLAB’s “remainder after division’’ command, rem;
executing rem(m,3) returns the remainder after dividing m by 3, and
so if m is a multiple of 3, then rem(m,3) = 0, which is precisely what
line 07 checks for. Lines 08 through 21 simulate the coin flip for an

October 12, 2007 Time: 03:04pm soln-14.tex

170 Solution 14

gameb.m
01 epsilon = 0.005;

02 Mtotal = zeros(1,100);

03 for loop = 1:10000

04 m = 0;

05 samplefunction = zeros(1,100);

06 for flips = 1:100

07 if rem(m,3) == 0

08 outcome = rand;

09 if outcome < 0.1 − epsilon

10 m = m + 1;

11 else

12 m = m − 1;

13 end

14 else

15 outcome = rand;

16 if outcome < 0.75 − epsilon

17 m = m + 1;

18 else

19 m = m − 1;

20 end

21 end

22 samplefunction(flips) = m;

23 end

24 Mtotal = Mtotal + samplefunction;

25 end

26 Mtotal = Mtotal/10000

individual game, and which sublist of commands (lines 08 through 13,
or lines 15 through 20) is performed depends, of course, on which
coin is selected to be flipped, i.e., on what happened in line 07. After
the coin flip, line 22 records the updated capital of the gambler in
the samplefunction vector. Once the for/end loop of lines 06 through
23 finishes the current sequence of 100 games, line 24 updates the

October 12, 2007 Time: 03:04pm soln-14.tex

Parrondo’s Paradox 171

ε = 0.005

0

−1.2

0 10 20 30 40 50 60 70 80 90 100

Number of coin flips

En
se

m
b

le
 a

ve
ra

g
e

o
f c

ap
it

al

−1.0

−0.8

−0.6

−0.4

−0.2

−1.4

Figure S14.1. Game B is a losing game.

Mtotal vector, and another 100-game sequence is started. And finally,
after 10,000 such sequences, line 26 computes the ensemble average
as mentioned above. It is that result, Mtotal/10000, that is plotted in
Figure S14.1 (I have omitted the axis labeling and plotting commands
in the code for gameb.m). As that figure clearly shows, the gambler’s
capital oscillates for a while but, after about twenty five games or
so, the oscillations have pretty much damped out, and thereafter the
capital steadily becomes ever more negative. That is, game B is a
losing game.

The code aandb.m simulates a gambler switching back and forth
at random between game A and game B. That code is simply the
code of gameb.m combined with additional code that implements the
simple rule of game A. Lines 01 through 06 of aandb.m are identical
to those of gameb.m, and it is not until line 07 that the decision is
made on which game to play: if the variable whichgame is less than
0.5, game A is played by the commands in lines 09 through 14. If

October 12, 2007 Time: 03:04pm soln-14.tex

172 Solution 14

1.4

−0.2

0 10 20 30 40 50 60 70 80 90 100

Number of coin flips

En
se

m
b

le
 a

ve
ra

g
e

o
f c

ap
it

al

0

0.2

0.6

0.8

1.2

−0.6

1.0

−0.4

0.4

ε = 0.005

Figure S14.2. Random back-and-forth switching between games A and B
wins!.

whichgame is greater than 0.5, game B is played, and, as you can verify,
lines 16 through 30 of aandb.m are identical to lines 07 through 21 of
gameb.m (line 31 of aandb.m is the end that completes the new “which
game’’ loop in aandb.m started by the if in line 08). Then, to finish
aandb.m, its lines 32 through 36 are identical to lines 22 through 26 of
gameb.m.

When the Mtotal/10000 vector for aandb.m is plotted, the result is
Figure S14.2, which clearly shows that, despite our intuitions, the
capital of the gambler is (after some preliminary oscillations) steadily
increasing! That is, randomly switching back and forth between two
loser games is a winning strategy—and if you’re not amazed by that,
well, I find that even more amazing! Now, let me end by telling you that
there is an explanation for this seemingly fantastic, counterintuitive
phenomenon, and you can read all about it in a paper1 by the man
responsible for confounding (most of2) us.

October 12, 2007 Time: 03:04pm soln-14.tex

Parrondo’s Paradox 173

aandb.m
01 epsilon = 0.005;

02 Mtotal = zeros(1,100);

03 for loop = 1:10000

04 m = 0;

05 samplefunction = zeros(1,100);

06 for flips = 1:100

07 whichgame = rand;

08 if whichgame < 0.5

09 outcome = rand;

10 if outcome < 0.5 − epsilon

11 m = m + 1;

12 else

13 m = m − 1;

14 end

15 else

16 if rem(m,3) == 0

17 outcome = rand;

18 if outcome < 0.1 − epsilon

19 m = m + 1;

20 else

21 m = m − 1;

22 end

23 else

24 outcome = rand;

25 if outcome < 0.75 − epsilon

26 m = m + 1;

27 else

28 m = m − 1;

29 end

30 end

31 end

32 samplefunction(flips) = m;

33 end

34 Mtotal = Mtotal + samplefunction;

35 end

36 Mtotal = Mtotal/10000

October 12, 2007 Time: 03:04pm soln-14.tex

174 Solution 14

References and Notes

1. J.M.R. Parrondo and Luis Dinís, “Brownian Motion and Gambling:
From ratchets to Paradoxical Games’’ (Contemporary Physics, March–April 2004,
pp. 147–157).

2. Not everybody finds the Parrondo paradox surprising: See Ora E.
Percus and Jerome K. Percus, “Can Two Wrongs Make a Right? Coin-Tossing
Games and Parrondo’s Paradox’’ (The Mathematical Intelligencer, Summer 2002,
pp. 68–72). The authors give a good mathematical explanation of what is
going on, and show that the paradox has an interesting, symmetrical twist to
it: “one can win at two losing games by switching between them, but one can
also lose by switching between two winning games.’’ That is a “paradoxical’’
result, too, I think. And finally, much physical insight for what is going on
can be gained from a paper by Hal Martin and Hans Christian von Baeyer,
“Simple Games to Illustrate Parrondo’s Paradox’’ (American Journal of Physics,
May 2004, pp. 710–714).

October 12, 2007 Time: 01:57pm soln-15.tex

15. How Long Is the Wait to Get the
Potato Salad?

To simulate the operation of the deli counter, the sequence of decisions
that the clerk(s) go through, at each moment of time, is as follows,
where, to simulate the flow of time, the code deli.m defines the variable
clock whose value at the opening of the deli counter is zero and is
36,000 at closing; i.e., clock advances the code through simulated time
in one-second increments:

(a) continue the service of the customer(s) presently being
processed;

then

(b) if there is a/are clerk/s available and the queue is not empty,
start the service of the person at the front of the queue (and
then advance all customers left remaining in the queue);

then

(c) if a new customer has arrived and if a clerk is available, start
the service of that new customer, but if a new customer has
arrived and a clerk is not available add that new customer to
the back of the queue;

October 12, 2007 Time: 01:57pm soln-15.tex

176 Solution 15

then

(d) if there is still at this point a clerk available, increase that
clerk’s idle time;

then

(e) increase the waiting time for all in the queue and check to
see if any customers presently being served have finished
being processed.

With the completion of (e), increase clock by one (second), return to (a),
and continue until the deli counter closes.

To help you understand the operation of deli.m, the following
variables are defined:

(1) clerkbusy1 and clerkbusy2 are set equal to 0 if the associated clerk
is available and to one if that clerk is busy; deli.m is written with
the assumption that there are two clerks, and I’ll tell you later
how the one-clerk case is handled as a special case by forcing
clerk two to never be available;

(2) the value of queuelength is the present number of people in the
queue; e.g., if queuelength = 0, then the queue is empty;

(3) servicetimeremaining1 and servicetimeremaining2 are equal to the
number of seconds left to complete the service of their present
customers by clerk 1 and by clerk 2, respectively;

(4) queue is a 2 × 200 matrix, where the values of queue(1,j) and
queue(2,j) are, respectively, the number of seconds the j th
person in the queue has been in the queue and the (random)
service time the j th person in the queue will require once
he/she reaches the deli counter;

(5) the values of clerkidletime1 and clerkidletime2 are the number of
seconds that clerk 1 and clerk 2 have not been involved with
servicing a customer, respectively, i.e., the number of seconds
of idle time for clerk 1 and clerk 2;

(6) the value of closedeli is the expected number of customers that
will appear at the deli in a thirty-hour period, and so closedeli

is a very conservative overestimate of the number of customers
the clerk(s) will have to serve in the ten hours that the deli is
open for business each day;

October 12, 2007 Time: 01:57pm soln-15.tex

How Long Is the Wait to Get the Potato Salad? 177

(7) customerarrivaltime is a vector of length closedeli, where customer-

arrivaltime(j) is the arrival time of the j th customer to appear at
the deli;

(8) the value of totaltime is the present sum of the total waiting times
of all the customers who have so far appeared at the deli, where
the waiting time for a customer is defined to be the sum of
his/her time in queue (if any) and the service time by a clerk;

(9) the value of maxtotaltime is the largest, to date, total waiting
time experienced by any individual customer who has been
processed by a clerk;

(10) the value of totalqueuelength is the sum of the lengths of the
queue, as measured each second;

(11) the value of maxqueuelength is, at any instant of time, the longest
the queue has been;

(12) the value of newcustomer is such that, at any time, if newcustomer

= j then j − 1 customers have already arrived, and the code
is looking for the arrival of the j th customer (newcustomer is
initialized to the value 1);

(13) clock is the code’s time keeper, increased by one once each
second of simulated time.

Now, let’s do a walkthrough of the code deli.m.
Lines 001 and 002 bring in the values of λ and µ (the variables

lambda and mu). Lines 003 through 008 initialize to zero the named
variables in those lines. Line 009 sets the variable closedeli to the value
discussed above in item (6). Line 010, using the theoretical analysis
done in Appendix 8, calculates the arrival time (in seconds, which is
why the factor of 3600 is present) of the first customer, where you’ll
notice that the use of the ceil command (MATLAB’s “round upward’’
command) ensures both that the result is an integer and that it is at
least 1. Then, lines 011 through 013 calculate the arrival times for
the next customer by first calculating the interarrival time and then
adding that value onto the previous arrival time; this is done until all
30*lambda arrival times have been calculated. (Recall that three dots at
the end of a line—see lines 012, 052, and 065—mean line continuation.)
Notice that the ceil command ensures that it will never happen that
two or more customers have the same arrival time (which is one of the

October 12, 2007 Time: 01:57pm soln-15.tex

178 Solution 15

deli.m
001 lambda = input(’What is the average customer arrival rate

per hour?’);

002 mu = input(’What is the average customer service rate per

hour?’);

003 clock = 0;

004 clerkbusy1 = 0;clerkbusy2 = 0;

005 queuelength = 0;

006 servicetimeremaining1 = 0;servicetimeremaining2 = 0;

007 queue = zeros(2,200);

008 clerkidletime1 = 0;clerkidletime2 = 0;

009 closedeli = ceil(lambda*30);

010 customerarrivaltime(1) = ceil(− 3600*log(rand)/lambda);

011 for i = 2:closedeli

012 customerarrivaltime(i) = customerarrivaltime(i − 1)...

+ ceil(− 3600*log(rand)/lambda);

013 end

014 for i = 1:closedeli

015 customerservicetime(i) = ceil(− 3600*log(rand)/mu);

016 end

017 totaltime = 0;

018 maxtotaltime = 0;

019 totalqueuelength = 0;

020 maxqueuelength = 0;

021 newcustomer = 1;

022 clerkcount = input(’Are there 1 or 2 clerks?’);

023 if clerkcount == 1

024 clerkbusy2 = 1;

025 servicetimeremaining2 = 10^10;

026 end

027 while clock < 36000

028 if servicetimeremaining1 > 0

029 servicetimeremaining1 = servicetimeremaining1 − 1;

030 end

031 if servicetimeremaining2 > 0

032 servicetimeremaining2 = servicetimeremaining2 − 1;
(continued)

October 12, 2007 Time: 01:57pm soln-15.tex

How Long Is the Wait to Get the Potato Salad? 179

(continued)

033 end

034 if (clerkbusy1 == 0 | clerkbusy2 == 0)&(queuelength > 0)

035 if clerkbusy1 == 0

036 clerkbusy1 = 1;

037 servicetimeremaining1 = queue(2,1);

038 else

039 clerkbusy2 = 1;

040 servicetimeremaining2 = queue(2,1);

041 end

042 totaltime = totaltime + queue(1,1) + queue(2,1);

043 if queue(1,1) + queue(2,1) > maxtotaltime

044 maxtotaltime = queue(1,1) + queue(2,1);

045 end

046 for i = 1:queuelength

047 queue(1,i) = queue(1,i + 1);

048 queue(2,i) = queue(2,i + 1);

049 end

050 queuelength = queuelength − 1;

051 end

052 if (clock == customerarrivaltime(newcustomer))&...

(clerkbusy1 == 0 | clerkbusy2 == 0)

053 if clerkbusy1 == 0

054 clerkbusy1 = 1;

055 servicetimeremaining1 = customerservicetime

(newcustomer);

056 else

057 clerkbusy2 = 1;

058 servicetimeremaining2 = customerservicetime

(newcustomer);

059 end

060 totaltime = totaltime + customerservicetime

(newcustomer);

061 if customerservicetime(newcustomer)

> maxtotaltime;

062 maxtotaltime = customerservicetime

(newcustomer);
(continued)

October 12, 2007 Time: 01:57pm soln-15.tex

180 Solution 15

(continued)

063 end

064 newcustomer = newcustomer + 1;

065 elseif (clock == customerarrivaltime(newcustomer))&...

(clerkbusy1 == 1&clerkbusy2 == 1)

066 queuelength = queuelength + 1;

067 queue(1,queuelength) = 1;

068 queue(2,queuelength) = customerservicetime

(newcustomer);

069 newcustomer = newcustomer + 1;

070 end

071 if clerkbusy1 == 0

072 clerkidletime1 = clerkidletime1 + 1;

073 end

074 if clerkbusy2 == 0

075 clerkidletime2 = clerkidletime2 + 1;

076 end

077 for i = 1:queuelength

078 queue(1,i) = queue(1,i) + 1;

079 end

080 if servicetimeremaining1 == 0

081 clerkbusy1 = 0;

082 end

083 if servicetimeremaining2 == 0

084 clerkbusy2 = 0;

085 end

086 totalqueuelength = totalqueuelength + queuelength;

087 if queuelength > maxqueuelength

088 maxqueuelength = queuelength;

089 end

090 clock = clock + 1;

091 end

092 disp(’average total time at deli = ’),disp(totaltime/

(newcustomer − 1 − queuelength))

093 disp(’maximum time at deli = ’),disp(maxtotaltime)
(continued)

October 12, 2007 Time: 01:57pm soln-15.tex

How Long Is the Wait to Get the Potato Salad? 181

(continued)

094 disp(’average length of queue = ’),disp(totalqueuelength/

clock)

095 disp(’maximum length of queue = ’), disp(maxqueuelength)

096 disp(’percent idle time for clerk 1=’),disp(100*clerkidletime1/

clock)

097 disp(’percent idle time for clerk 2=’), disp(100*clerkidletime2/

clock)

fundamental assumptions of a Poisson process). Lines 014 through 016
calculate the service times (in seconds) that each of those customers
will require once they reach an available clerk. Lines 017 through 021
initialize the named variables in those lines. Lines 022 through 026
determine if we are doing a one-clerk or a two-clerk simulation; if it
is two clerks then nothing is actually done in those lines. But if it is
one clerk, then clerkbusy2 is set equal to 1 (i.e., clerk 2 is busy) and
servicetimeremaining2 is set equal to 1010 seconds (i.e., clerk 2 will always
be busy).

Lines 027 and 091 define the outer while loop that runs deli.m

through one ten-hour day. Lines 028 through 033 implement task (a).
Lines 034 through 051 implement task (b); in particular, lines 046
through 051 advance the queue. Lines 052 through 070 implement
task (c); in particular, lines 066 through 069 add a new customer to
the back of the queue (line 067 initializes the time in queue for that
customer at one second). Lines 071 through 076 implement task (d).
Lines 077 through 085 implement task (e). Lines 086 through 089
update the variables totalqueuelength and maxqueuelength, and finally,
clock is incremented in line 090. Then the whole business is repeated
35,999 more times. When the while loop is finally exited, lines 092
through 097 give us the code’s estimates to the answers we are after—
the disp command is MATLAB’s ‘display,’ i.e., screenprint, command.
The logic behind line 092, in particular, is that the average total time at
the deli is totaltime divided by the number of customers who have been
served, i.e., by customers-1 (which equals the total number of customers
who have arrived at the deli) minus the number of customers who are
in the queue waiting for service when the deli closes.

October 12, 2007 Time: 01:57pm soln-15.tex

182 Solution 15

The following two tables are the output generated by deli.m for the
two cases of λ = 30 and µ = 40, and λ = 30 and µ = 25, five times each
for one and then for two clerks. (Each of these individual simulations,
on a three-GHz machine with one GByte of RAM, took between five
and seven seconds.) There is, of course, variation from simulation to
simulation, but not more than one might reasonably expect in real
life, day to day. When λ = 30 and µ = 40, we have a case where a
clerk can process customers, on average, faster than they arrive, and
so with a single clerk we see he is idle about 18% to 29% of the time.
Despite that, while the average queue length isn’t worrisome (1 to 3),
the maximum queue length is of concern (9 to 13). Also, while the
average total time for a customer at the deli isn’t terribly long (four
to seven minutes), the unluckiest of customers experience total times
three to four times longer! This is where deli.m proves its value, then,
in telling us what we gain by adding a second clerk: the average total
time is cut by a factor of about three, as is the maximum total time, and
the maximum queue length is reduced by nearly a factor of two. The
price paid for these improvements in service is that the idle time for
the original clerk is doubled, and the idle time of the new clerk is even
higher. Whether or not the second clerk is worth it is a management

λ = 30 and µ = 40

Average Maximum Average Maximum
total total queue queue Clerk 1 Clerk 2

time (sec.) time (sec.) length length idle time (%) idle time (%)

One clerk
426 1,717 2.8 13 18.4 ×
347 1,275 2.3 10 20.1 ×
244 1,028 1.3 11 28.6 ×
294 866 1.5 9 27.8 ×
319 1,012 2.1 10 18.8 ×

Two clerks
96 632 0.09 4 57.4 75.7

128 600 0.23 8 48.7 67.5
102 348 0.12 4 55.9 71.2
102 434 0.08 3 53.7 76.1
109 578 0.14 3 46.2 62.3

October 12, 2007 Time: 01:57pm soln-15.tex

How Long Is the Wait to Get the Potato Salad? 183

λ = 30 and µ = 25

Average Maximum Average Maximum
total total queue queue Clerk 1 Clerk 2

time (sec.) time (sec.) length length idle time (%) idle time (%)

One clerk
3,535 9,064 29.8 70 1.14 ×
1,785 6,491 15.5 46 6.7 ×
1,958 4,584 13.4 32 6 ×
4,789 7,549 33.4 53 0.33 ×
3,118 7,511 26.1 51 0.29 ×

Two clerks
199 758 0.5 7 36.3 51.3
291 1,336 1.2 9 27.2 41.8
260 1,292 1 9 23.6 32.3
172 955 0.4 5 41.9 50.4
182 1,042 0.3 5 38.8 53.4

decision, but at least now deli.m has given management some numbers
to consider.

The impact of a second clerk is even more dramatic in the case
where customers arrive faster, on average, than a single clerk can
process them (λ = 30 and µ = 25).

October 12, 2007 Time: 01:59pm soln-16.tex

16. The Appeals Court Paradox

The code jury.m simulates our five-judge appeals court. Line 01 sets
the value of p(k) equal to the probability the kth judge makes a correct
decision, where A is judge 1, B is judge 2, and so on. Line 02 sets
the variable mistakes equal to zero; at the end of ten million simulated
deliberations its value will be the number of incorrect court decisions.
Lines 03 and 16 define the for/end loop that executes the ten million
deliberations. At the start of each deliberation line 04 sets the variable
majority to zero; majority will be set equal to one if this deliberation
results in three or more incorrect votes (in line 13). Line 05 sets the
five-element row vector votes to zero, where votes(k) will be set equal
to one if the kth judge casts an incorrect vote. Lines 06 through 10
determine the votes for each of the judges; in the if/end loop of lines
07 through 09, with probability 1 − p(k) the vote of the kth judge is an
incorrect vote. Lines 11 through 14 determine the number of incorrect
votes and, if that sum exceeds two, then majority is set equal to one,
which indicates that the court has made an incorrect decision. In line
15 mistakes is incremented by majority (that is, by zero if no mistake
has been made, or by one if a mistake was made). Finally, line 17
gives us the code’s estimate of the probability that the court delivers
an erroneous decision. To partially check the code, if all the p(k) are
set equal to zero or to one (all the judges are either always wrong or
always correct), then the court has a probability of making a mistake of
either 1 or 0, respectively.

October 12, 2007 Time: 01:59pm soln-16.tex

The Appeals Court Paradox 185

jury.m
01 p(1) = 0.95;p(2) = 0.95;p(3) = 0.9;p(4) = 0.9;p(5) = 0.8;

02 mistakes = 0;

03 for loop = 1:10000000

04 majority = 0;

05 votes = zeros(1,5);

06 for k = 1:5

07 if rand > p(k)

08 votes(k) = 1;

09 end

10 end

11 result = sum(votes);

12 if result > 2

13 majority = 1;

14 end

15 mistakes = mistakes + majority;

16 end

17 mistakes/10000000

When run with the probabilities given in the original problem state-
ment (see line 01), jury.m produced a probability of 0.0070419, or about
a 0.7% chance that the court makes a mistake. To see what happens
when judge E no longer votes independently but rather always votes as
does judge A, it is only necessary to insert one additional line (between
lines 10 and 11): votes(5)=votes(1); this forces E’s vote to match A’s.
This seemingly innocent change results in jury.m producing an estimate
of the probability the court errs of 0.0119615, or about 1.2%. Thus,
if the worst judge follows the lead of the best judge, then we have
an increased (almost doubled) probability that the court errs! What
happens to the concept of setting a good example? Are you surprised
by this result? I certainly am, and in fact most people are.1

References and Notes

1. This problem was inspired by the discussion in a book by the Hungarian
mathematician Gábor J. Székely, with the fascinating title Paradoxes in

October 12, 2007 Time: 01:59pm soln-16.tex

186 Solution 16

Probability Theory and Mathematical Statistics (D. Reidel, 1986, p. 171). The
very last line in Professor Székely’s excellent book expresses perfectly my own
philosophy about probability: “Probability theory has evolved as a symbolic
counterpart of the random universe [and] it is to be hoped that the paradoxes
in this book will help the reader to find the best way through our random
world.’’

October 12, 2007 Time: 02:01pm soln-17.tex

17. Waiting for Buses

Our randomly arriving bus rider must obviously arrive at the bus stop
between some two consecutive hours, and we lose no generality by
labeling those two hours as hour 0 and hour 1. The given theoretical
value of one-half hour for the average waiting time until a bus arrives,
in the n = 1 case, immediately follows from the observation that the
possible waiting times vary from 0 to 1 (hour), and the average of
such a random quantity (with a uniform distribution) is 1/2. We can
compute the theoretical value for the n = 2 case with only slightly more
difficulty from the knowledge that the hour-on-the-hour bus arrives
at time 0 and the second bus line’s bus arrives at time x (where x is
uniformly distributed from 0 to 1). Here’s how.

A randomly arriving rider has probability x of arriving at the stop
between time 0 and time x (and so has an average waiting time of
1/2x), and similarly that rider has probability 1 − x of arriving at the
stop between time x and time 1 (and so has an average waiting time of
1/2(1 − x)). So, if we denote the waiting time by W, we have

1
2

x with probability x

W =
1
2

(1 − x) with probability 1 − x.

October 12, 2007 Time: 02:01pm soln-17.tex

188 Solution 17

The conditional expected value of W is thus

E[W | x] =
(

1
2

x
)

(x) +
[

1
2

(1 − x)
]

(1 − x) = 1
2

x2 + 1
2

(1 − x)2

= 1
2

x2 + 1
2

− x + 1
2

x2

= x2 − x + 1
2
.

Now, since E[W | x] is a conditional expectation (i.e., conditioned on
x), to find the expected waiting time E[W], we need to evaluate the
integral

E[W] =
∞∫

− ∞
E[W | x] fX(x) dx,

where fX(x) is the probability density function of the random variable
X (the random variable describing the offset of the second bus line’s
arrival from the on-the-hour bus line’s arrival). Since we are assuming
that X is uniform from 0 to 1, we have

E[W] =
1∫

0

(
x2 − x + 1

2

)
dx =

(
1
3

x3 − 1
2

x2 + 1
2

x
) ∣

∣∣
1

0
= 1

3
− 1

2
+ 1

2
= 1

3
,

as given in the original statement of the problem.
To work out the theoretical average waiting time for n indepen-

dently scheduled bus lines is a bit more work, as it involves evaluating
an (n − 1)-dimensional integral! I’ll not tell you the theoretical answer
until after we’ve taken a look at the simulation results produced by
the code bus.m. Line 01 allows for simulating any number of bus lines
(the variable n), and line 02 initializes the variable totalwaitingtime to
zero (this variable’s value will be the total waiting time experienced by
one million riders who randomly arrive at the bus stop at any time
between time 0 and time 1). Lines 03 and 25 define the for/end loop
that cycles bus.m through its one million simulations. Line 04, the
start of each individual simulation, initializes the vector busarrivals (of
length n) to all zeros. Its first element, busarrivals(1), is indeed zero, as
that is the arrival time of the hour-on-the-hour bus. The remaining
n − 1 elements are randomly generated by lines 05 through 07;

October 12, 2007 Time: 02:01pm soln-17.tex

Waiting for Buses 189

busarrivals will be used to generate the arrival times of the n buses after
some final processing by line 09 (line 08 sets the arrival time of the
rider—the variable riderarrival—to a random time between 0 and 1).
Line 09 sorts the vector busarrivals into ascending order, i.e., after line
09 is executed we have the vector sortedbus, where

0<sortedbus(1) = 0 ≤ sortedbus(2) ≤ · · · ≤ sortedbus(n) ≤ 1.

Lines 10 through 23 form the for/end loop that operates on sortedbus

to determine the waiting time until the first available bus. Lines 10
and 11 simply say that if the rider’s arrival time is after the last bus has
arrived (and departed), then the rider must wait until the hour-on-the-
hour bus arrives (at time 1). If that condition fails, however, then there
is an earlier bus that the rider can catch, i.e., the first bus to arrive
after the rider’s arrival time. The logic that determines which bus that
is is contained in lines 13 through 22. The variable test is initially set
equal to 1—the value of test will control the termination of the while

loop of lines 15 through 22. Starting with sortedbus(2), the code asks
if the rider arrived before that bus—if so, then the rider’s waiting time
is computed in line 17 and test is set equal to 0 (to terminate the while

loop). If not so, however, the index into sortedbus is incremented by one
(line 20), and the question is then asked again. This process is certain
at some point to assign a value to the variable waitingtime. Line 24
uses waitingtime to update totalwaitingtime, and then another simulation is
performed. Line 26 calculates the average of one million waiting times.

When I ran bus.m for 1 ≤ n ≤ 5, the code produced the following
results:

n Average waiting time (hours)

1 0.4996
2 0.3335
3 0.2503
4 0.2001
5 0.1667

From these numbers I think it is an obvious guess that the average
waiting time (in hours) for n bus lines is given by 1

n+1 , a guess that can
be analytically confirmed.1

October 12, 2007 Time: 02:01pm soln-17.tex

190 Solution 17

bus.m
01 n = input(’How many bus lines?’)

02 totalwaitingtime = 0;

03 for loop = 1:1000000

04 busarrivals = zeros(1,n);

05 for j = 2:n

06 busarrivals(j) = rand;

07 end

08 riderarrival = rand;

09 sortedbus = sort(busarrivals);

10 if riderarrival > sortedbus(n)

11 waitingtime = 1 − riderarrival;

12 else

13 test = 1;

14 j = 2;

15 while test == 1

16 if riderarrival < sortedbus(j)

17 waitingtime = sortedbus(j) − riderarrival;

18 test = 0;

19 else

20 j = j + 1;

21 end

22 end

23 end

24 totalwaitingtime = totalwaitingtime + waitingtime;

25 end

26 totalwaitingtime/1000000

References and Notes

1. Alan Sutcliff, “Waiting for a Bus’’ (Mathematics Magazine, March 1965,
pp. 102–103).

October 12, 2007 Time: 03:29pm soln-18.tex

18. Waiting for Stoplights

The code walk.m simulates our pedestrian’s walk from (m + 1, m + 1)
to (1,1) a hundred thousand times, for any given value of m. Lines 01
and 02 respectively bring in the value of m to be used and initialize the
variable totalwait to zero. When the program terminates, totalwait will be
the total number of red lights encountered in 100,000 simulated walks
from (m + 1, m + 1) to (1,1). Lines 03 and 26 define the for/end loop
that simulates a single one of those walks. At the start of a walk, lines 04
and 05 set the pedestrian at the starting point (j, k) = (m + 1, m + 1),
and line 06 initializes the variable wait to zero (this variable will, at the
end of the walk, be the number of red lights encountered). Lines 07
and 13 define a while loop that executes as long as the pedestrian has
not yet reached a boundary line, i.e., as long as both j and k are greater
than one. As long as that is true, at each step (the walking of a block),
j or k is decremented by one, with equal probability, under the control
of the if/end loop in lines 08 through 12.

When the while loop terminates, it must be because a boundary line
has been reached, i.e., either j = 1 (and k>1) or k = 1 (and j>1). From
then on the walk proceeds straight in towards the destination point
(1,1) along that boundary line. The if/end loop in lines 14 through
18 sets the variable z equal to the value of the one of j and k that
is greater than 1. Then, the while loop in lines 19 through 24 simply
decrements z by one (in line 23) after the internal if/end loop in lines
20 through 22 increments wait by one with probability 1/2 (a red light

October 12, 2007 Time: 03:29pm soln-18.tex

192 Solution 18

is encountered) or doesn’t increment wait with probability 1/2 (a green
light is encountered). This continues until z has been counted down to
1, which means the pedestrian has at last reached (1,1), at which point
line 25 updates totalwait. A new walk is then started. At the completion
of 100,000 walks, line 27 gives us walk.m’s estimate for the average
number of red lights encountered on a walk.

walk.m
01 m = input(’What is m?’);

02 totalwait = 0;

03 for loop = 1:100000

04 j = m + 1;

05 k = m + 1;

06 wait = 0;

07 while j > 1&k > 1

08 if rand < 0.5

09 j = j − 1;

10 else

11 k = k − 1;

12 end

13 end

14 if j == 1

15 z = k;

16 else

17 z = j;

18 end

19 while z > 1

20 if rand < 0.5

21 wait = wait + 1;

22 end

23 z = z − 1;

24 end

25 totalwait = totalwait + wait;

26 end

27 totalwait/100000

October 12, 2007 Time: 03:29pm soln-18.tex

Waiting for Stoplights 193

Before I tell you what walk.m produces for estimates to the questions
I put to you, let me show you how to solve the problem in the form
of a recurrence formulation that will give precise numerical answers.
That will give us checks on just how well the Monte Carlo simulation
has performed. We start by defining E(j ,k) as the expected (i.e.,
average) number of red lights encountered on a walk from (j ,k) to
(1,1). Obviously, E(1,1) = 0. As long as j and k are both greater
than 1, i.e., as long as the pedestrian is not yet on either of the two
boundary lines, then with probability 1/2 she will move through the
intersection at (j ,k) in the direction that eventually takes her to
the intersection at (j − 1,k), and with probability 1/2 she will move
through the intersection at (j, k) in the direction that eventually takes
her to the intersection at (j,k − 1). We thus have the recursion

(a) E(j,k) = 1
2 E(j − 1, k) + 1

2 E(j, k − 1), j, k>1.

If, however, either j or k is equal to 1, then we have the so-called
boundary conditions:

(b) E(1,k) = 1
2 (k − 1), k ≥ 1

because, once on the vertical boundary line she can only move
downward along that line and, at k − 1 intersections from her final
destination, she can expect half of them to have a red light; in the
same way

(c) E(j,1) = 1
2 (j − 1), j ≥ 1.

The answer to our problem is, by definition, E(m + 1, m + 1), which
we can find by using, over and over, the above three equations. For
example, suppose m = 2. Thus, the pedestrian’s walk starts at (3, 3), as
shown in Figure S18.1. We have, from (a),

E(2,2) = 1
2 E(1, 2) + 1

2 E(2, 1)

and since, from (b) and (c)

E(1,2) = 1
2 and E(2, 1) = 1

2

October 12, 2007 Time: 03:29pm soln-18.tex

194 Solution 18

18

0 200 400 600 800 1000 1200

m

E(
m

,m
)

14

16

0

12

10

8

6

4

2

Figure S18.1. Waiting for Red Lights.

we have

E(2,2) = 1
2 × 1

2 + 1
2 × 1

2 = 1
2 .

Then,

E(2,3) = 1
2 E(1,3) + 1

2 E(2,2) = 1
2 × 1 + 1

2 × 1
2 = 3

4

and

E(3,2) = 1
2 E(2,2) + 1

2 E(3,1) = 1
2 × 1

2 + 1
2 × 1 = 3

4 .

So, at last,

E(3,3) = 1
2 E(3,2) + 1

2 E(2,3) = 1
2 × 3

4 + 1
2 × 3

4 = 3
4 = 0.75.

We could continue with this process, working our way by hand
through the one million intersections that are in the 1,000 × 1,000
array with its northwest corner at (1001,1001), but for the obvious rea-
son, it is much more desirable to use a computer! The code easywalk.m

does that job (I’ve not included the labeling commands), and a plot of
E(m + 1, m + 1) for 0 ≤ m ≤ 1000 is shown in Figure S18.1.

October 12, 2007 Time: 03:29pm soln-18.tex

Waiting for Stoplights 195

easywalk.m
01 m = input(’What is m?’);

02 for j = 1:m + 1

03 E(j,1) = (j − 1)/2;

04 E(1,j) = E(j,1);

05 end

06 for k = 2:m + 1

07 for j = 2:m + 1;

08 E(j,k) = (E(j − 1,k) + E(j,k − 1))/2;

09 end

10 end

11 for k = 1:m + 1

12 x(k) = k;

13 y(k) = E(k,k);

14 end

15 plot(x,y)

In the following table are the specific values of E(m + 1, m + 1)
produced by walk.m for a few particular values of m, and the values
produced for the same values of m by easywalk.m. As you can see, the
agreement is quite good.

m E(m+1,m+1) by easywalk.m E(m+1,m+1) by walk.m

2 0.75 0.74936
5 1.23046875 1.22906

10 1.762 1.75866
20 2.5074 2.50673
50 3.97946 3.99415

100 5.6348479 5.63352
1,000 17.839 · · · · · · · · · · ·

As a final comment, it is possible to solve the recurrence equations
(a), (b), and (c) to get an analytical expression for E(m + 1, m + 1),
rather than using those equations directly as does easywalk.m. As the

October 12, 2007 Time: 03:29pm soln-18.tex

196 Solution 18

author of that solution wrote,1 with some humor,

Encouraged by our recent success in solving a similar (but
non-homogeneous) partial difference equation of first order, we
applied deductive reasoning [this is a euphemism for “educated
guessing’’!] and found, with the help of pencil, paper, and an
enormous wastepaper basket [this is the writer admitting to
his “educated guessing’’!] that . . . [there then follows a rather
complicated expression involving summations that incorporate
multiple binomial coefficients with variable parameters].

That author still had to write a computer program to do an awful lot
of grubby number crunching,2 however, and it is not clear to me that
his analytical expression provides any significant computational ad-
vantage over the direct code of easywalk.m. This problem considerably
predates Sagan’s analysis.3

References and Notes

1. Hans Sagan, “On Pedestrians, City Blocks, and Traffic Lights’’ (Journal
of Recreational Mathematics, 21 [no. 2], 1989, pp. 116–119).

2. Sagan’s BASIC code has several uses of the GO TO statement, which fell
from grace some years ago. Or at any rate, it is a favorite target of academic
computer scientists. It never much bothered engineers, however, and it
was invented by mathematicians, who also didn’t seem to find it repulsive.
GO TO’s, I have to admit, can result (if overused) in computer codes so twisted
and convoluted as to look like some beastly spaghetti horror from the eighth
dimension. (In my younger days, I also have to admit, I wrote a few codes like
that!) So maybe the academic computer scientists are right.

3. Benjamin L. Schwartz, “A Pedestrian Problem’’ (Journal of Recreational
Mathematics 16 [no. 1], 1983–84, pp. 61–62). Schwartz’s solutions to his own
problem, by a Monte Carlo simulation (but no code is provided) and a
recurrence formula, appeared in the Journal of Recreational Mathematics (17
[no. 1], 1984–85, pp. 73–75). The mathematical formulation of the problem
by Schwartz, while correct, is in my opinion just a bit awkward, and so I’ve
followed the formulation used by Sagan (notes 1 and 2) in my presentation
here, with one exception. Sagan uses (0,0) as the pedestrian’s destination,
while I have used (1,1). The reason for this change is simply that Sagan used
BASIC, which allows zero indexing into arrays—which MATLAB does not
allow. This is a trivial change, of course, as a walk from (m + 1, n + 1) to (1,1)
is equivalent to a walk from (m, n) to (0,0).

October 12, 2007 Time: 03:31pm soln-19.tex

19. Electing Emperors and Popes

The code election.m gives us estimates for the election probability of
a leader for a group with N members, of whom n ≤ N are the dark
horse candidates who receive among themselves all N notes, with at
least M votes required for election. The operation of the code hinges
on the row vector result, of length n; if we number the n dark horse
candidates from 1 to n, then the value of result(j) will be the number
of votes received by candidate j . To start, lines 01 through 05 define
the basic variables of N, n, and M, as well as leader (the number of
times a vote actually elects a leader after 100,000 simulations), and
mayvoteforself (if set equal to zero, nobody is allowed to vote for him
or herself, while if set equal to 1 one is allowed to vote for oneself).
The for/end loop contained within lines 06 and 21 define an individual
vote. Line 07 initializes result to all zeros before each vote, and then the
for/end loop defined by lines 08 and 16 generates a random vote from
each of the N members of the group.

Without loss of generality, we can assume that the first n members
of the group are the n dark horse candidates who can be voted for,
which explains line 09; the variable select is there set equal to one
of the integers 1, 2, . . ., n. The for/end loop in lines 10 through 14
automatically accept this value for select if voting for oneself is allowed
(i.e., if mayvoteforself = 1), but if voting for oneself is not allowed, then
the code checks to see if the current vote has been cast by the voter
for himself (is the value of the loop control variable ballot equal to the

October 12, 2007 Time: 03:31pm soln-19.tex

198 Solution 19

value of select?). If a voter has voted for himself, then the code cycles in
the while loop of lines 11, 12, and 13, generating new values for select

until the current voter does vote for someone other than himself. Line
15 updates the vector result, which, as explained above, keeps track of
how many votes each of the n dark horse candidates has received.

Once all N votes have been cast, result is examined in line 17, and the
variable most is assigned a value equal to the number of votes received
by the best-performing candidate. Lines 18 through 20 then check to
see if most is at least equal to M—if so, a leader has been elected, and
leader is incremented by one. At the completion of 100,000 simulated
votes, line 22 calculates the probability a leader has been elected.

election.m
01 N = 7;

02 n = 7;

03 M = 4;

04 leader = 0;

05 mayvoteforself = 0;

06 for loop = 1:100000

07 result = zeros(1,n);

08 for ballot = 1:N

09 select = ceil(n*rand);

10 if mayvoteforself == 0

11 while select == ballot

12 select = ceil(n*rand);

13 end

14 end

15 result(select) = result(select) + 1;

16 end

17 most = max(result);

18 if most > = M

19 leader = leader + 1;

20 end

21 end

22 leader/100000

October 12, 2007 Time: 03:31pm soln-19.tex

Electing Emperors and Popes 199

Now, before I tell you what estimates election.m produced in answer
to the questions posed in the original problem statement, let me show
you a few simple calculations for some very elementary cases (small
values of N, M, and n) that we can use to (partially) validate the
code. First, suppose we have a group of three persons (N = 3), voting
at random among two of them (n = 2). We’ll use M = 2; i.e., it takes
a majority vote to be elected. This case is so elementary we can easily
write down all the possibilities—what mathematicians call the sample
space points of the problem. Since each of the three persons in the
group has two choices, there are eight such possibilities. As explained
in above discussion of election.m, persons 1 and 2 are the dark horse
candidates here, and, if we allow voting for oneself, then the following
table shows which of the eight sample points results in the election of
a leader; the entries in the jth column indicate for which dark horse
candidate person j votes.

Person 1 Person 2 Person 3 Leader elected?

1 1 1 Y(1)
1 1 2 Y(1)
1 2 1 Y(1)
1 2 2 Y(2)
2 1 1 Y(1)
2 1 2 Y(2)
2 2 1 Y(2)
2 2 2 Y(2)

In fact, every possible vote elects a leader! So, with mayvoteforself=1, the
code should produce an “estimate’’ of 1 for the probability of electing
a leader. It should now be obvious that mayvoteforself= 0 will result in
the same probability.

Let’s try something just a bit more complicated. Consider the sim-
plest possible Imperial Election, with three electors. Now N = 3, n = 3,
and M = 2. If we write down all possible votes (with voting for yourself
allowed), we find there are twenty seven sample points (as shown in the
following table), with twenty one of them resulting in the election of a

October 12, 2007 Time: 03:31pm soln-19.tex

200 Solution 19

leader. That is, the probability of electing a leader with mayvoteforself

= 1 is 21/27=7/9 = 0.77778. On the other hand, if voting for yourself
is not allowed, then the number of sample space points shrinks to just
eight (the ones whose rows are marked with asterisks). Since six of
those eight possibilities result in electing a leader, then the probability
of electing a leader with mayvoteforself = 0 is 6/8 = 3/4 = 0.75.

Person 1 Person 2 Person 3 Leader elected?

1 1 1 Y(1)
1 1 2 Y(1)
1 1 3 Y(1)
1 2 1 Y(1)
1 2 2 Y(2)
1 2 3 N
1 3 1 Y(1)
1 3 2 N
1 3 3 Y(3)
2 1 1 Y(1)*
2 1 2 Y(2)*
2 1 3 N
2 2 1 Y(2)
2 2 2 Y(2)
2 2 3 Y(2)
2 3 1 N*
2 3 2 Y(2)*
2 3 3 Y(3)
3 1 1 Y(1)*
3 1 2 N*
3 1 3 Y(3)
3 2 1 N
3 2 2 Y(2)
3 2 3 Y(3)
3 3 1 Y(3)*
3 3 2 Y(3)*
3 3 3 Y(3)

October 12, 2007 Time: 03:31pm soln-19.tex

Electing Emperors and Popes 201

When election.m was run the following estimates were produced.
First, suppose that voting for yourself is allowed. Then, for our first
test case (N = 3, n = 2, M = 2), the code’s estimate of the probability
of electing a leader was 1 (compare to the theoretical value of 1).
For our second test case (N = 3, n = 3, M = 2), election.m’s estimate
was 0.77698 (compare to the theoretical answer of 0.77778). If voting
for oneself is not allowed, the results were: code(1)/theory(1), and
code(0.75019)/theory(0.75000), respectively. For the Imperial Election
problem (N = 7, n = 7, M = 4), the probability of electing a leader if
one may (may not) vote for oneself is 0.07099 (0.05989).1 And finally,
for the papal election problem of 1513 (N = 25 and M = 17) election.m

gave the following estimates for the probability of randomly electing a
Pope from n candidates:

n Voting for self allowed Voting for self not allowed

2 0.10891 0.09278
3 0.00115 0.00094
4 0.00005 0.00004

Probably not too much can be concluded from the last line other than
it is very unlikely that a random vote would actually elect a pope. To
be really sure about the actual probabilities for n ≥ 4, we would need
to run considerably more than 100,000 simulated votes.

Some final comments. You may recall from the introduction that
I claimed one use of Monte Carlo is that of using simulation results
to check theoretical calculations. It was just that sort of use that first
attracted me to this problem, which I first read about in a fascinating
paper by Professor Anthony Lo Bello (Department of Mathematics,
Allegheny College).2 In that paper are a number of derived probability
formulas that are supposed to be the answers to questions about the
probability of electing a leader as a function (in the notation used
here) of N, n, and M. However, when I wrote and ran election.m,
there were significant differences between its estimates and the values
produced by the formulas—differences large enough, in fact, that it
was clear that something was not right. After carefully reading through

October 12, 2007 Time: 03:31pm soln-19.tex

202 Solution 19

Professor Lo Bello’s paper I identified where I believed things went
wrong in his theoretical analysis—and then wrote to him about it.
Professor Lo Bello quickly replied and, with admirable openness (not
all writers would do this), wrote, “Yes, I certainly blew it in that paper. I
subsequently handled the problem correctly. . .’’ and that second paper
(in The Mathematical Gazette) is the one I cite in the original statement
of this problem. Both of Professor Lo Bello’s papers provided nearly
all of the historical content provided in this book on the papal
election problem.

References and Notes

1. The sample space of this version of the Imperial Election problem is far
too large to consider writing it out point by point, as I did in our test cases.
By making only some elementary arguments, however, we can still calculate
how many sample points there are associated with electing a leader (which is
all we need) and so arrive at one more check on the coding of election.m. First,
suppose that anyone can vote for anyone. Since each of seven people can
vote for any of seven people, there are a total of 77 points in sample space.
For a particular one of the seven to be elected leader, he must receive either
exactly four votes or exactly five votes or exactly six votes or exactly seven votes.
Consider each case in turn.

• To receive exactly seven votes, the elected person must receive all the
votes, and there is only one way that can happen. So there is one
sample point associated with the elected person receiving seven votes.
• To receive exactly six votes, one person must not vote for the elected

person, and that can happen in as many ways as one can pick one
person from seven, i.e., in

(7
1

)
= 7 ways. That one person can vote for

any of the six people other than the elected person. So, there are
6 × 7 = 42 sample points associated with the elected person receiving
six votes.
• To receive exactly five votes, two people must not vote for the elected

person, and that can happen in
(7

2

)
= 21 ways. Each of those two people

can vote for any of six people. So, there are 21 × 6 × 6 = 756 sample
points associated with the elected person receiving five votes.
• To receive exactly four votes, three people must not vote for the elected

person, and that can happen in
(7

3

)
= 35 ways. Each of those three

people can vote for any of six people. So, there are 35 × 6 × 6 × 6
= 7, 560 sample points associated with the elected person receiving
four votes.

October 12, 2007 Time: 03:31pm soln-19.tex

Electing Emperors and Popes 203

Thus, the probability of a particular one of the seven people to be elected
leader is

(1 + 42 + 756 + 7, 560)/77 = 8, 359/77.

Since we are interested in the probability that someone (not just a particular
one) is elected leader, the probability we are after is seven times this, i.e.,

7 × 8, 359/77 = 8, 359/76 = 0.07105,

which compares nicely with the Monte Carlo estimate of 0.07099.
If none of the seven people is allowed to vote for himself, there

are simple modifications to the above arguments that let us calculate the new
probability of randomly electing a leader. First, observe that the only way to be
elected is to receive exactly four votes or exactly five votes or exactly six votes;
i.e., it is not possible to receive seven votes. Again, let’s consider each case in
turn for the election of a particular one of the seven.

• To receive exactly six votes, everybody else votes for the elected person,
which can happen in just one way. The elected person votes for any of
the other six. So, there are 1 × 6 = 6 sample points associated with the
elected person receiving six votes.
• To receive exactly five votes, there must be one person in the other six

who does not vote for the elected person, which can happen in six ways.
That person can vote for any of five people (neither the elected person
or himself), and the elected person can vote for any of the other six.
So, there are 6 × 5 × 6 = 180 sample points associated with the elected
person receiving five votes.
• To receive exactly four votes, there must be two persons in the other six

who do not vote for the elected person, which can happen in
(6

2

)
= 15

ways. Each of those two people can vote for any of five, and the elected
person can vote for any of six. So, there are 15 × 5 × 5 × 6 = 2,250
sample points associated with the elected person receiving four votes.

Thus, the probability of someone of the seven people being elected leader is

7
6 +180 +2,250

67 = 7 × 2,436
67 = 17,052

67 = 0.06091,

which again compares nicely with the Monte Carlo estimate of 0.05989.
2. Anthony Lo Bello, “A Papal Conclave: Testing the Plausibility of a

Historical Account’’ (Mathematics Magazine, September 1982, pp. 230–233).

October 12, 2007 Time: 03:33pm soln-20.tex

20. An Optimal Stopping Problem

The central idea of this problem has been around in the mathematical
world since 1875, when the English mathematician Arthur Cayley
(1821–1895) proposed something similar in the form of a lottery
problem.1 That problem does not follow the exact same rules that
we have in our dating game problem, and so at least one writer has
concluded Cayley’s problem doesn’t count as a historical precedent,
but I don’t agree. You can make up your own mind.2 It is generally
agreed, however, that our problem became widely known in 1960 only
after it appeared in Martin Gardner’s famous “Mathematical Games’’
column in Scientific American.3

Before discussing the Monte Carlo simulation code for this problem,
let me show you the theoretical answer for the proper sample lot size
in the special case where we are happy only in the event that we
select the very best person in the initial entire population. We can then
use this result to partially validate the code (which will, in fact, allow
the generalization to selecting somebody from the top k people,
where k ≥ 1, not just k = 1). I’ll start by defining r − 1 as the sample
lot size that we will use, where r ≥ 1. That is, our strategy is to reject
the first r − 1 dates out of hand (while remembering the best of those
dates), and to accept the first person thereafter who is better than the
remembered best. Our problem is to find that value of r that maximizes
the probability that the person we decide to accept is the very best
person in the entire initial population. Next, let’s write φn(r) as the

October 12, 2007 Time: 03:33pm soln-20.tex

An Optimal Stopping Problem 205

probability we accept the very best person, as a function of n (the size
of the entire initial population) and of r (one more than the size of the
sample lot). Then,

φn(r) =
n∑

j=r

{Prob (j th date is the very best person)}

× Prob (j th date is selected)}.

Since we will assume that all of the n! possible permutations of how we
can sequentially date n people are equally likely, then any particular
person is as likely to be the jth date as is anybody else, and so

Prob(j th date is the very best person) = 1
n
.

To calculate Prob(jth date is selected), we’ll treat the r = 1 and the
r>1 cases separately. The answer for r = 1 is immediately clear from
the same reasoning as above; i.e., r = 1 means the sample lot size is
zero, which means that you accept the very first person you date with
probability one, and so the probability that person is the very best
person is 1/n, i.e., φn(1) = 1/n. The case of r>1 requires just a slightly
more subtle argument.

For you to be able to select the very best person on the jth date, that
person obviously must be the jth date, an event that we have argued
has probability 1/n. Further, the best of the first r − 1 dates (that is, the
person who sets the standard for the person you will eventually select)
must actually be the best in the first j − 1 dates. This is so because if
there was somebody else in the first j − 1 dates who is better than the
best of the first r − 1 dates, then that person would by definition be a
date after the first r − 1 dates and so would be selected before the j th
date! So, imagine an external observer who can see the first j − 1 dates
all lined up in a row for you. The best of those j − 1 dates must occur
in the first r − 1 dates. Since that person is as likely to be any one of
the first j − 1 dates, then

Prob (you select jth person) = r − 1
j − 1

, r>1.

October 12, 2007 Time: 03:33pm soln-20.tex

206 Solution 20

Thus,

φn(r) =
n∑

j=r

1
n

× r − 1
j − 1

= r − 1
n

n∑

j=r

1
j − 1

, r>1.

To find the optimal value of r , for a given n, we need only evaluate
φn(r) for all possible r (1 ≤ r ≤ n) and pick that r that gives the largest
φ. For small n that’s not too hard to do by hand, but for n>10 it quickly
becomes tiresome. The code stopping.m does all the grubby number
crunching for us, and it is what I used to produce the table (for n = 11)
given in the original statement of the problem. (The code starts with
r = 2 in line 03 because for r = 1 we already know that φn(1) = 1/n
for any n ≥1.) The code is, I think, obvious, with perhaps just lines
10 and 11 deserving a bit of explanation. Line 10 assigns the value of
the maximum probability of success (of picking the very best person) to

stopping.m
01 n = input(’What is n?’);

02 prob = zeros(1,5000);

03 for r = 2:n

04 s = 0;

05 for j = r:n

06 s = s + 1/(j−1);

07 end

08 prob(r) = (r−1)*s/n;

09 end

10 [maximum,index] = max(prob)

11 n/(index−1)

the variable maximum, while index is assigned the location in the row
vector prob of that maximum probability. The size of the sample lot
is index-1, and so line 11 computes the ratio of the initial population
size to the size of the sample lot. It is interesting to see how that ratio
behaves as n increases, and the following table shows that behavior.

October 12, 2007 Time: 03:33pm soln-20.tex

An Optimal Stopping Problem 207

n n/Sample lot size Probability of selecting
the very best person

5 2.5 0.43333
10 3.33333 0.39869
20 2.85714 0.38421
50 2.77777 0.37427

100 2.7027 0.37104
200 2.73972 0.36946
500 2.71739 0.36851

1,000 2.71739 0.36819
2,000 2.71739 0.36804
5,000 2.71887 0.36794

You would have to be pretty obtuse not to suspect that our ratio
is approaching e = 2.71828 . . . as n → ∞. That is, for large n, the
optimal sample lot size is the fraction 1/e = 0.36787 . . . of the initial
population. Further, as the rightmost column suggests, the probability
of selecting the best person approaches 1/e as well, as n → ∞. To
answer the specific questions asked in the original statement of the
problem, I used the simulation code optimal.m. The logic of the code,
for a single simulation, is shown in Figure S20.1.

After line 01 brings in the value of n (the size of the initial dating
population), line 02 asks for how far down in the dating pool you are
willing to settle; e.g., top = 1 means you want the very best, top = 2
means you’ll be happy with either of the best two, and so on. Line 03
defines the row vector results, where results(j) will be the total number of
successful simulations (out of 10,000) when the size of the sample lot
is j , i.e., when the first j dates are automatically rejected. The length
of results is about 80% of the maximum possible number of sample lot
sizes. Lines 04 and 34 define the for/end loop that will sequentially run
the code through values of the sample lot size, from 1 to about 80%
of the maximum possible. When you look at Figures S20.2 and S20.3,
you’ll understand why it isn’t necessary to be concerned about larger
sample lot sizes.

October 12, 2007 Time: 03:33pm soln-20.tex

208 Solution 20

optimal.m
01 n = input(’Size of dating pool?’);

02 top = input(’Number of acceptable choices?’);

03 results = zeros(1,ceil(4*n/5));

04 for samplesize = 1:ceil(4*n/5)

05 check = zeros(1,samplesize);

06 success = 0;

07 for loop = 1:10000

08 order = randperm(n);

09 for j = 1:samplesize

10 check(j) = order(j);

11 end

12 bestinsample = min(check);

13 exit = 0;

14 k = samplesize + 1;

15 while exit == 0

16 if order(k) < bestinsample

17 select = order(k);

18 exit = 1

19 else

20 k = k + 1;

21 end

22 if k == n + 1

23 select = order(n);

24 exit = 1

25 end

26 end

27 for k = 1:top

28 if select == k

29 success = success + 1;

30 end

31 end

32 end

33 results(samplesize) = success;

34 end

35 results = results/10000;

36 bar(results)

October 12, 2007 Time: 03:33pm soln-20.tex

An Optimal Stopping Problem 209

N = total population
sample = number of samples

top = number of acceptable choices

order = random
permutation of first N integers

look at first sample values of
order and remember “best” one

j = sample + 1

order (j) >
best-in-sample

?

j = j + 1

j = N + 1
?

select = order(N)

select
in top

?

success = success + 1

1 = rating of the “best”
N = rating of the “worst”

best-in-sample = minimum of
the first sample values of order

No Yes

No Yes

No Yes

Figure S20.1. The logic of a single simulation of the dating problem.

Line 05 defines the vector check, of length samplesize, and initializes
it to zero, and line 06 initializes the variable success to zero. The best
person in the sample will be the minimum value in check, while the
value of success will be the number of times (out of 10,000 simulations
for the current value of samplesize) that the chosen one is among the
top people in the initial population. Lines 07 through 32 implement
the simulation logic illustrated in Figure S20.1, which is executed

October 12, 2007 Time: 03:33pm soln-20.tex

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 2 3 4

Sample lot size

Pr
o

b
ab

ili
ty

 o
f h

ap
p

in
es

s

5 6 8 97

Figure S20.2. The dating problem for n = 11 and top = 2.

0.7

0.8

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15 20 45

Sample lot size

Pr
o

b
ab

ili
ty

 o
f h

ap
p

in
es

s

25 30 35 35

Figure S20.3. The dating problem for n = 50 and top = 5.

210

October 12, 2007 Time: 03:33pm soln-20.tex

An Optimal Stopping Problem 211

10,000 times for each of the values of samplesize. When the code
exits that for/end loop the vector results is updated in line 33, and
then a new batch of 10,000 simulations is run for the next value of
samplesize. Once all the values of samplesize have been processed, line
35 normalizes results to a probability vector (the division by 10,000),
and line 36 prints a bar graph of the normalized results. Figures S20.2
(n = 11, top = 2) and 20.3 (n = 50, top = 5) show what these graphs
generally look like.

n top Optimal sample size Probability of being happy

11 2 3 0.589
11 3 3 0.7046
11 4 2 0.7803
11 5 2 0.8365
50 1 20 0.3767
50 2 16 0.5327
50 3 13 0.6225
50 4 13 0.6851
50 5 11 0.7295

These figures tell us that the curves of the probability of happiness
versus the size of the sample lot have broad maximums, which means
that the value of the optimal sample lot size is not much more effective
than are its near neighbors. The bar graphs rise monotonically to
their maximums and remain near those maximums over an interval
of values for the sample lot size, and then monotonically fall. And
that’s why it is not necessary to run optimal.m for all possible values
of the sample lot size (I somewhat arbitrarily selected the value of
≈80% of the maximum possible value). The following table shows
the estimates produced by optimal.m for all the questions asked in the
original problem statement.

References and Notes

1. Leo Moser, “On a Problem of Cayley’’ (Scripta Mathematica 22, 1956,
pp. 289–292).

October 12, 2007 Time: 03:33pm soln-20.tex

212 Solution 20

2. Thomas S. Ferguson, “Who Solved the Secretary Problem?’’ (Statistical
Science, August 1989, pp. 282–289). Ferguson’s title comes from casting the
problem in the form of selecting the best secretary from an initial population
rather than selecting the best spouse.

3. Scientific American (February 1960, pp. 152–153, and March 1960,
pp. 180–181).

October 12, 2007 Time: 03:37pm soln-21.tex

21. Chain Reactions, Branching Processes,
and Baby Boys

Before getting to the writing of a simulation code to estimate the
answers to the questions posed in the original problem statement, let
me show you a beautiful theoretical solution. I’ll then use this solution
to validate the code. If we have {pi } as the sequence of probabilities
that a man will have i sons, i ≥ 1 , then define the so-called generating
function of this sequence to be

f (x) = p0 + p1x + p2x2 + p3x3 + · · ·

where there is no physical significance to x. What Hawkins and Ulam
showed1 is that if we calculate the iterated functions fn(x) = f { fn−1(x)},
where f1(x) = f (x), then the probability that the nth generation
descendents of a lone man (the only member of the 0th generation)
includes k males through a direct chain of male ancestors is the
coefficient of the xk term of the power series form of fn(x).

For our problem, using the {pi } sequence in the original problem
statement gives

f (x) = 0.4825 + 0.2126x + 0.2126(0.5893)x2+0.2126(0.5893)2x3+ · · ·.

This is of the form (with a = 0.4825, b = 0.2126, and c = 0.5893)

f (x) = a + bx + bcx2 + bc2x3 + · · ·,

October 12, 2007 Time: 03:37pm soln-21.tex

214 Solution 21

which is easily summed (because you’ll notice that, except for the first
term, we have a geometric series) to give

f (x) = a − (ac − b)x
1 − cx

= 0.4825 – 0.0717x
1 – 0.5893x

.

Thus,

f2(x) =
0.4825 – 0.0717

{
0.4825 – 0.0717x

1 – 0.5893x

}

1 – 0.5893
{

0.4825 – 0.0717x
1 – 0.5893x

}

= 0.4825 − 0.4825(0.5893x) − (0.0717)(0.4825) + 0.0717(0.0717x)
1 − 0.5893x − (0.5893)(0.4825) + (0.5893)(0.0717x)

or,

f2(x) = 0.4479 − 0.2792x
0.7157 − 0.5470x

.

This is of the general form

f2(x) = d − ex
g − hx

,

which by direct long division can be written as

f2(x) = d
g

+ hd − eg
g2 x + (hd − eg)h

g3 x2 + (hd − eg)h2

g4 x3 + · · ·

or, since hd − eg = (0.5470)(0.4479) − (0.2792)(0.7157) = 0.0452, we
have

f2(x) = 0.4479
0.7157

+ 0.0452
(0.7157)2 x + 0.0452(0.5470)

(0.7157)3 x2

+0.0452(0.5470)2

(0.7157)4 x3 + · · ·.

October 12, 2007 Time: 03:37pm soln-21.tex

Chain Reactions, Branching Processes, and Baby Boys 215

And finally,

f3(x) = f { f2(x)} =
0.4825 − 0.0717

{
0.4479 – 0.2792x
0.7157 − 0.5470x

}

1 − 0.5893
{

0.4479 − 0.2792x
0.7157 − 0.5470x

}

= (0.4825)(0.7157)−(0.4825)(0.5470x)−(0.0717)(0.4479)+(0.0717)(0.2792x)
0.7157−0.5470x−(0.5893)(0.4479)+(0.5893)(0.2792x)

or,

f3(x) = 0.3132 – 0.2439x
0.4518 – 0.3825x

.

As with f2(x), f3(x) is of the general form d−ex
g−hx , with the values

of d , e, g, and h now equal to d = 0.3132, e = 0.2439, g = 0.4518,
and h = 0.3825. Since hd − eg = (0.3825)(0.3132) − (0.2439)(0.4518)
= 0.0096, we have

f3(x) = 0.3132
0.4518

+ 0.0096
(0.4518)2 x + 0.0096(0.3825)

(0.4518)3 x2

+0.0096(0.3825)2

(0.4518)4 x3 + · · ·.

We can now directly read off the numerical answers to our questions
from the power series forms of f2(x) and f3(x). Specifically,

the probability there are two male descendents in the second
generation via a male-only sequence of ancestors is 0.0452(0.5470)

(0.7157)3

= 0.0674; the probability there are four male descendents in
the second generation via a male-only sequence of ancestors
is 0.0452(0.5470)3

(0.7157)5 = 0.0394; the probability there are six male de-
scendents in the third generation via a male-only sequence of
ancestors is 0.0096(0.3825)5

(0.4518)7 = 0.0205;

Okay, let’s now suppose that we know none of the above; how can
we simulate the process of family name propagation through time
from one generation to the next, father to son? The code boom.m

October 12, 2007 Time: 03:37pm soln-21.tex

216 Solution 21

(which in turns calls the subroutine offspring.m) does that for the three
generations specifically asked about in the original problem statement.
Here’s how those codes work.

The variable gen1 and the vectors gen2 and gen3 in boom.m have
values that are equal to the number of males in the first, second, and
third generations, respectively. gen1 is set equal to the number of sons
born to our initial lone man; that number is selected from the integers
0 through 7 using Lotka’s probabilities. The code boom.m will, in fact,
be requesting such random integer numbers at several different places,
and so in the code I’ve elected to write that part of the simulation as the
subroutine offspring.m (this is the only problem solution in the book that
uses subroutine calls). So, what happens in boom.m, in lines 01 through
07, is first the Lotka probabilities p0 through p6 are calculated, and
then, using those probabilities, the variables zero, one, two, three, four,
five, and six are calculated in lines 08 through 14. For example, zero is
the probability a man has at most zero sons (i.e., has zero sons), while
three is the probability a man has at most three sons.

Let me now discuss how the subroutine function offspring.m works.
The syntax used to define a MATLAB function that has both input and
output arguments is shown in line 01: first, the word function is followed
by a list of output arguments (in offspring.m there is just one, sons), then
there is an = symbol, followed by the subroutine function name and
a list of input arguments. The input arguments are the values of zero,
one, . . ., six that have already been calculated in boom.m. The logic of
offspring.m should now be clear: in line 02 the variable luck is given a
random value from 0 to 1 and then, depending on what that value
is, the output variable sons receives an integer value from 0 to 7 with
the Lotka probability distribution. What follows next is how boom.m

itself works.
Line 15 initializes the three-element vector answer to zero, where

answer(1), answer(2), and answer(3) will, by the end of the simulation,
be the number of simulations that result in two and four males in the
second generation and six males in the third generation, respectively.
Line 16 sets the value of the variable total, which is the total number of
simulations performed by the code (I will give you the results produced
by boom.m for total equal to 10,000 and for total equal to 10,0000). Lines

October 12, 2007 Time: 03:37pm soln-21.tex

Chain Reactions, Branching Processes, and Baby Boys 217

17 and 40 define the main for/end loop that cycles the code through all
total simulations. Lines 18 and 19 initialize the vectors gen2 and gen3

to all zeros. gen2 is a seven-element vector where gen2(j) equals the
number of second generation males due to the jth male in the first
generation. gen3 is a forty-nine-element vector, where gen3(k) equals
the number of third-generation males due to the kth male in the
second generation; i.e., there could be as many as fourty nine second-
generation males. Now, with all of this preliminary setup work done,
the actual construction of a random family tree begins.

Line 20 sets gen1 equal to an integer between 0 and 7 inclusive, via
a call to the subroutine function offspring.m; gen1 receives the value of
offspring.m’s output variable sons, and this sets the number of males in
the first generation.

Each of the males in the first generation, a total of gen1, then
produces his sons (the second generation) with the loop in lines 21
through 23. Notice carefully that if (as is quite likely) gen1 < 7, then
the first gen1 cells of the vector gen2 will each be a number from 0 to
7, and the remaining cells of gen2 will remain at their initialized values
of zero. Notice, too, that if gen1 = 0, i.e., if the initial lone male of
the 0th generation fails to have any sons at all, then the loop1 loop is
automatically skipped, and there are no second-generation males (just
we would expect!).

And finally, the loop of lines 25 through 30 generates the third
generation. Since there could be 49 males in the second generation
(because each of the seven first-generation sons could himself, have
seven sons) there could be as many as 343 males in the third gener-
ation. That is, the vector gen3 has forty nine elements, with each cell
holding a number from 0 to 7. What boom.m does in lines 24 through
30 is to look at each of the gen1 total cells in gen2 and generate as
many Lotka-prescribed sons as the value specified by each gen2 cell;
those numbers are then stored in the cells of gen3, using the variable
index—initialized to 1 in line 24—as a pointer to the current cell
of gen3 ready to receive a value of sons. Lines 31 through 39 then
simply sum the elements of the gen2 and gen3 vectors and check to
see if the desired conditions are met and, if so, update the elements
in answer.

October 12, 2007 Time: 03:37pm soln-21.tex

218 Solution 21

boom.m
01 p0 = 0.4825;

02 p1 = 0.2126;

03 p2 = p1*0.5893;

04 p3 = p2*0.5893;

05 p4 = p3*0.5893;

06 p5 = p4*0.5893;

07 p6 = p5*0.5893;

08 zero = p0;

09 one = zero + p1;

10 two = one + p2;

11 three = two + p3;

12 four = three + p4;

13 five = four + p5;

14 six = five + p6;

15 answer = zeros(1,3);

16 total = 10000;

17 for loop = 1:total

18 gen2 = zeros(1,7);

19 gen3 = zeros(1,49);

20 gen1 = offspring(zero,one,two,three,four,five,six);

21 for loop1 = 1:gen1

22 gen2(loop1) = offspring(zero,one,two,three,four,

five,six);

23 end

24 index = 1;

25 for loop2 = 1:gen1

26 for loop3 = 1:gen2(loop2)

27 gen3(index) = offspring(zero,one,two,three,four,

five,six);

28 index = index + 1;

29 end

30 end

31 n = sum(gen2);

32 if n == 2

33 answer(1) = answer(1) + 1;
(continued)

October 12, 2007 Time: 03:37pm soln-21.tex

Chain Reactions, Branching Processes, and Baby Boys 219

(continued)

34 elseif n == 4

35 answer(2) = answer(2) + 1;

36 end

37 if sum(gen3) == 6

38 answer(3) = answer(3) + 1;

39 end

40 end

41 answer/total

offspring.m

01 function sons = offspring(zero,one,two,three,four,five,six)

02 luck = rand;

03 if luck < zero

04 sons = 0;

05 elseif luck < one

06 sons = 1;

07 elseif luck < two

08 sons = 2;

09 elseif luck < three

10 sons = 3;

11 elseif luck < four

12 sons = 4;

13 elseif luck < five

14 sons = 5;

15 elseif luck < six

16 sons = 6;

17 else

18 sons = 7;

19 end

When run three times for total = 10,000, and then three more times
for total = 100,000, the simulation produced the following estimates

October 12, 2007 Time: 03:37pm soln-21.tex

220 Solution 21

for the probabilities asked for:

Number of simulations = 10,000

2 males in second 4 males in second 6 males in third
generation generation generation

0.0706 0.0406 0.0226
0.0733 0.0396 0.0205
0.0727 0.0419 0.0226

Number of simulations = 100,000

2 males in second 4 males in second 6 males in third
generation generation generation

0.0688 0.0387 0.0206
0.0679 0.0409 0.0214
0.0680 0.0406 0.0212

The above probabilities are quite stable from run to run, for both
values of total, and all are pretty close to the theoretical values
computed earlier (although, as you would expect, the estimates for
100,000 simulations are the better ones). Remember, however, that the
theory assumed each male could have any number of sons.

References and Notes

1. David Hawkins and S. Ulam, “Theory of Multiplicative Processes’’ (Los
Alamos Scientific Laboratory Report LA-171, November 14, 1944, declassified
in 1956). This report is reproduced in Analogies Between Analogies (The
Mathematical Reports of S. M. Ulam and His Los Alamos Collaborators), A. R.
Bednarek and Francoise Ulam, editors (Berkeley and Los Angeles: University
of California Press, 1990, pp. 1–15). The word multiplicative has been replaced
in the modern probability literature with branching.

October 12, 2007 Time: 03:48pm appendix1.tex

Appendix 1

One Way to Guess on a Test

The code test.m simulates, a million times, the following method for
guessing on the matching test described in the introduction: the
student assigns to each president a term, selected at random each
time, from the entire term list. The code test.m is similar to guess.m

(the first four and the last nine lines are, in fact, identical), with only
the details of an individual test differing. Line 05 defines the vector
term with M elements (all initialized to zero). Lines 06 through 08 then
randomly set the M elements of term, each, to one of the integers 1 to
24 (the MATLAB command ceil is a “round up’’ command). That’s it!
When run for the values of M used in the introduction (5, 10, 24, and
43), test.m gave the following values for the average number of correct
pairings: 1.001114, 0.999015, 1.000011, and 1.000074, respectively.
These results strongly suggest that the average number of correct
pairings with this method of guessing is one, independent of the
value of M.

test.m

01 M = 24;

02 totalcorrect = 0;

03 for k = 1:1000000
(continued)

October 12, 2007 Time: 03:48pm appendix1.tex

222 Appendix 1

(continued)

04 correct = 0;

05 term = zeros(1,M);

06 for j = 1:M

07 term(j) = ceil(M*rand);

08 end

09 for j = 1:M

10 if term(j) == j

11 correct = correct + 1;

12 end

13 end

14 totalcorrect = totalcorrect + 1;

15 end

16 totalcorrect/1000000

October 22, 2007 Time: 03:39pm appendix2.tex

Appendix 2

An Example of Variance Reduction in the

Monte Carlo Method

The material in this appendix, somewhat more technical than most
of the rest of the book, is an elaboration on an issue raised in the
introduction: How good are the results of a Monte Carlo simulation?
This question is a very deep one, and one could, if one wished, spend
the rest of one’s career pursuing the answer. Because I don’t wish to do
so, this appendix will have to suffice. Still, if the discussion that follows
prompts you to look further into the matter on your own,1 that’s good,
and I applaud you. You’ll be a better analyst for the effort. For most
of us, however, it will be sufficient (as I state in the introduction) to be
convinced that running a simulation 10,000 times gives pretty nearly
the same answer(s) as does running it 1,000,000 times.2 But there are
some very clever things one could do, if one wished, that are more
subtle than the brute force “just simulate a lot’’ approach. What follows
is an example (dating from 1956) of just one such possibility.

Looking back at Figure 1 in the introduction, which shows the
geometry of a Monte Carlo estimation for π , you can see (once
you remember the area interpretation of integration, and that the
equation of the circle with radius 1 centered on the origin is y2

= 1 − x2) that what we are trying to do is equivalent to evaluating the

October 22, 2007 Time: 03:39pm appendix2.tex

224 Appendix 2

integral
∫ 1

0

√
1 − x2 dx. In the introduction I asked you to imagine a

random throwing of darts at the unit square in which a quarter-circle
is inscribed (mathematically described by y = f (x) = √

1 − x
2
), and we

then estimated π by looking at how many darts landed inside and how
many outside the circle. To do this, we used two random numbers per
dart to establish the landing coordinates for each dart. To illustrate one
way to decrease the Monte Carlo estimation error for π , as compared
to the brute force, throw-more-darts approach, let me now formulate
the evauation of the above integral in a slightly different way.

Let’s write the exact value of our integral as V , and the average
value of f (x) over the integration interval of 0 to 1 as F . Then, again
remembering the area interpretation of integration, we have

F = V
Upper limit – Lower limit

= V
1 – 0

= V .

This incredibly benign-looking result says that, to estimate π (actually,
π
4), all we need do is find the average value of f (x). We can do that by
simply taking a lot of random values of x, uniformly distributed over
the interval 0 to 1, calculate the value of f (x) for each random x, and
then calculate the average of those values. Our estimate for π is then
just four times this average. This is quite easy to do; the code average.m

does the job, and the results for N = 100, 10,000, and 1,000,000
random x ’s were 3.087 . . ., 3.1246 . . ., and 3.14077 . . ., respectively.
As N increases we see that the estimation error does indeed decrease
(although, even for N as large as a million, the accuracy of the estimate
for pi isn’t really very impressive).

average.m

01 N = input(’How many x-values?’);

02 sum = 0;

03 for loop = 1:N

04 x = rand;

05 sum = sum + sqrt(1–x^2);

06 end

07 4*sum/N

October 22, 2007 Time: 03:39pm appendix2.tex

Variance Reduction in the Monte Carlo Method 225

In the special case of an integral with a constant integrand, this
Monte Carlo approach is certain to produce the exact value of V for
any value of N. (This is not true for the throwing darts version of Monte
Carlo.) This is because, since F is f (x) as f (x) is constant, we have as
before that

V =
1∫

0

f (x) dx =
1∫

0

F dx = F.

And, of course, the average of any number of values, all equal to
F , is F , which we’ve just seen equals V . This behavior is a direct
consequence of the fact that the integral’s integrand doesn’t vary (has
zero variance) over the entire interval of integration. Returning to our
original problem of evaluating the integral

∫ 1
0 f (x) dx, where again

f (x) =
√

1 − x2, we can take advantage of the above observation by
writing our integral in the alternative form

V =
1∫

0

f (x) dx =
1∫

0

1
2

f (x) dx +
1∫

0

1
2

f (x) dx

which seems, at first glance, to be a trivial thing to do. But notice that
if in the second integral on the right we change variable to u = 1 − x,
then du = −dx and so

V = 1
2

1∫

0

f (x) dx + 1
2

0∫

1

f (1 − u)(−du)

= 1
2

1∫

0

f (x) dx + 1
2

1∫

0

f (1 − u) du

or, more interestingly,

V =
1∫

0

1
2

[f (x) + f (1 − x)] dx.

The reason for why this is interesting comes from the fact that

our new integrand,
√

1−x2 +
√

1 – (1– x)2

2 , is “more constant’’ over the
integration interval 0 to 1 than is our original integrand of

√
1 – x2 .

October 22, 2007 Time: 03:39pm appendix2.tex

226 Appendix 2

0.9

1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

In
te

g
ra

n
d

 v
al

u
e

antithetic integrand

original integrand

Figure A2.1. Our two integrands.

That is, our new integrand, when evaluated at random values of x to
support a calculation of F , will exhibit a reduced variance. This is the
result of f (x) and f (1 − x) varying in opposite senses as x varies from 0
to 1 (they have, as a mathematician would put it, negative correlation),
resulting in a reduced variation of their sum. And that is due to the
fact that, in our problem, f (x) is a monotonic function. If f (x) were
not monotonic than this method will be greatly, if not completely,
reduced in effectiveness.3 Figure A2.1 shows superimposed plots of
the two integrands (statisticians call 1 − x the antithetic of x, and so√

1−x2 +
√

1−(1−x)2

2 is the antithetic integrand.) And, in fact, when line 05
of average.m is replaced with

sum = sum + (sqrt(1−x^2) + sqrt(1−(1−x)^2))/2

the results for N = 100, 10,000, and 1,000,000 random x ’s were
(using the same random x ’s that were used in the first executions of
average.m): 3.16005 . . ., 3.136888 . . ., and 3.1417324 . . ., respectively.
These estimates have, for a given N, less error than before.

October 22, 2007 Time: 03:39pm appendix2.tex

Variance Reduction in the Monte Carlo Method 227

N = 100

150

100

−20

Percent error

N
um

be
r o

f s
im

ul
at

io
ns

50

−10 0 10

(a)

N = 10000

100

−1.0

Percent error

N
um

be
r o

f s
im

ul
at

io
ns

50

−0.5 0 1.0

(b)

0.5

N = 100

150

100

−4

Percent error

N
um

be
r o

f s
im

ul
at

io
ns

50

−2 0 4

(c)

N = 10000

100

−0.4

Percent error

N
um

be
r o

f s
im

ul
at

io
ns

50

−0.2 0 0.4

(d)

0.22

Figure A2.2. The error distribution in estimating using the original and the
antithetic integrands.
(a) Original integrand, with N = 100. (b) Original integrand, with
N = 10,000. (c) Antithetic integrand, with N = 100. (d) Antithetic integrand,
with N = 10,000.

To really get a proper idea of what this reformulation of the problem
has accomplished, however, we should do what was done in Figure 2
of the introduction, i.e., plot the error distribution in the estimation
of pi for each of the two integrands. This is done in Figure A2.2,
where 1,000 executions of average.m were performed for each of our
two integrands for the two cases of, first, 100 random x ’s and then,
second, 10,000 random x ’s. Histograms were then created from the
results, just as was done in pierror.m. For N = 100 we can say, with
high confidence, that the error made in estimating pi with the original
integrand is no more than about ±10%, while using the antithetic

October 22, 2007 Time: 03:39pm appendix2.tex

228 Appendix 2

integrand reduces the width of the error interval to about ±3%.
For N = 10, 000, the error intervals are ±1% (original integrand)
and ±0.3% (antithetic integrand). That is, for both N = 100 and
N = 10, 000, the antithetic integrand has reduced the width of the
error interval by a factor of about three.

References and Notes

1. See, for example, Reuven Y. Rubinstein, Simulation and The Monte Carlo
Method (New York: John Wiley & Sons, 1981), particularly Chapter 4, or
J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (New York:
Methuen & Co., 1964), particularly Chapter 5.

2. A wonderfully funny story, based on having a (much) too small sample
size, is told by E. Bright Wilson, a professor of chemistry at Harvard, in his
book, An Introduction to Scientific Research (NewYork: McGraw-Hill, 1952, p. 46):
In the past there have been many ludicrous cases of conclusions drawn from
an insufficient number of experiments. A story is told of an investigation in
which chickens were subjected to a certain treatment. It was then reported
that 33 1

3 % of the chickens recovered, 33 1
3 % died, and no conclusion could be

drawn from the other 33 1
3 % because that one ran away!

3. As Rubinstein (note 1) writes (p. 121), “Variance reduction can be viewed
as a means to use known information [my emphasis] about the problem. In fact,
if nothing is known about the problem, variance reduction cannot be achieved.
At the other extreme, that is, complete knowledge, the variance is equal to zero
and there is no need for simulation.’’ “Variance reduction cannot be obtained
from nothing; it is merely a way of not wasting information.’’ In the example I
use in the text, the “known information’’ is, of course, the monotonicity of the
integrand.

October 12, 2007 Time: 04:05pm appendix3.tex

Appendix 3

Random Harmonic Series

The code rhs.m produces a histogram of 50,000 values of the partial
sums (first 100 terms) of

∑∞
k=1

tk
k , where tk = −1 or + 1 with equal prob-

ability. This histogram, shown in Figure A3.1, suggests that the prob-
ability is very small that the absolute value of a partial sum exceeds 4.
But, remember, there is in fact no upper bound on the sum of the
RHS; with an extremely small probability a sum could exceed any
given finite value. The only “MATLABy’’ thing about rhs.m is the very
last command, the highly useful hist. (I used it in the introduction to
generate Figure 2, and in Appendix 2 to produce Figure A2.2.) That
command produces a 50-bin histogram of the 50,000 values of sum

stored in the vector sums. If your favorite language doesn’t have a
similar command, then you’ll have to write some additional code.

rhs.m
01 sums = zeros(1,50000);

02 for loop = 1:50000

03 sum = 0;

04 for k = 1:100

05 t = rand;
(continued)

October 12, 2007 Time: 04:05pm appendix3.tex

230 Appendix 3

(continued)

06 if t < 0.5

07 t = 1;

08 else

09 t = –1;

10 end

11 sum = sum + t/k;

12 end

13 sums(loop) = sum;

14 end

15 hist(sums,50)

1800

2000

1400

1200

1000

800

400

200

0
−4 4

Partial sum of the RHS

N
u

m
b

er
 o

f p
ar

ti
al

 s
u

m
s

0 1 2 3

600

1600

−3 −2 2

Figure A3.1. How the RHS behaves.

October 12, 2007 Time: 04:11pm appendix4.tex

Appendix 4

Solving Montmort’s Problem by Recursion

An alternative, everyday formulation of the President/term match-
ing problem discussed in the introduction is the so-called Dinner
Problem:

Suppose n people are invited to a dinner party. Seats are as-
signed and a name card made for each guest. However, floral
arrangements on the table unexpectedly obscure the name cards.
When the n guests arrive, they seat themselves randomly [for a
more precise explanation of just what “random seating’’ means,
read on]. What is the probability that no guest sits in his or her
assigned seat?

This is vos Savant’s president/term matching problem with the presi-
dents interpreted as the dinner guests and the terms interpreted as the
table seats.

Now, to be perfectly clear about the exact meaning of random
seating, imagine that nobody is seated until after all n people have
arrived. For a while, all n guests mill around munching crackers and
dip, eating peanuts, and chitchatting with one another. As they mix
and move about and around the table, we imagine that there is always
some seat that each person happens to be nearer to than is anyone else.

October 12, 2007 Time: 04:11pm appendix4.tex

232 Appendix 4

Then, as the clock strikes six o’clock in the evening, all simultaneously
sit in the seat that they are nearest to at that moment.

It is a curious fact that, to compute the probability that none has sat
in his or her assigned seat, a great simplification occurs in the analysis
if we generalize the problem and answer what appears to be a harder
question! Our original problem will be a special case of the harder
problem. (This is a clever idea that is one for any analyst to keep in
his or her bag of tricks; it can work in a variety of situations, not just
the one we are considering here.) Specifically, let’s imagine that when
each guest received the invitation they were told that if, at the last
minute, they couldn’t attend, it would be okay to send a substitute
in their place. Thus, there will always be n people at the dinner, but
not all will necessarily be original invitees; some may be what we’ll call
substitutes. We imagine that these substitutes arrive without giving prior
notification to the dinner host, and so there is no chance there will be
name cards on the table for them. This is, in fact, a uniquely defining
characteristic property of a substitute—it is impossible for a substitute
to sit at an assigned seat.

Let’s now make the following definition:

pn,k= probability that no one sits at an assigned seat when k of
the n people in attendance are substitutes, n ≥ k ≥ 0.

For example, if n = 1, then the one person who is at the dinner party
is either an invitee (k = 0) and so must sit at the one and only seat
available, which is, of course, assigned to her, or is a substitute (k = 1)
and so must sit at the one and only seat available, which is, of course,
not assigned to her. Thus, p1,0 = 0 and p1,1 = 1. Suppose now that n>1
and that there are no substitutes (k = 0). The value of pn,0 is the answer
to the original Montmort matching problem, and we can express it
recursively as follows.1

Fasten your attention on one (any one) of the n invitees. The
probability she will sit in one of the n − 1 seats assigned to someone
else is (n − 1)/n. This means the person who was assigned that seat
must sit in an unassigned seat. That is, it is impossible for that
displaced person to sit at the seat assigned to her, which you’ll recall
is the distinguishing characteristic of a substitute. So, with probability

October 12, 2007 Time: 04:11pm appendix4.tex

Solving Montmort’s Problem by Recursion 233

(n − 1)/n we have n − 1 original invitees plus one “substitute’’ sitting
down around the table. The probability none of them sit at an assigned
seat is, by definition, pn−1,1. Thus,

pn,0 = n − 1
n

pn−1,1, n>1.

This says, for n = 2, for example, that

p2,0 = 2 − 1
2

p1,1 = 1
2

× 1 = 1
2
,

a result clearly true by inspection. Our boxed expression isn’t quite
enough to allow the calculation of pn,0 for n >2, however. We need
something more.

To get that something more, imagine now that there is at least one
substitute (k ≥ 1) at the party, and fasten your attention on one (any
one) of those substitutes. There is, of course, no possibility that this
substitute will sit at an assigned seat. With probability k/n she will sit
in a seat assigned for one of the k original invitees who instead sent
substitutes (including herself), and with probability (n − k)/n she will
sit in a seat assigned to one of the original invitees who in fact actually
came to the party. Notice carefully that in this second case the original
invitee whose seat our substitute has taken now has no chance herself
of sitting at her assigned seat. That is, in this case the unseated original
invitee has taken on the uniquely defining characteristic of a substitute,
i.e., one for whom there is zero chance of sitting at an assigned seat.
In the first case (probability k/n) with our original substitute now
seated, there are n − 1 other people (of whom k − 1 are substitutes)
to be seated. The probability none of them sits at an assigned seat is,
by definition, pn−1,k−1. In the second case (probability (n − k)/n) with
our original substitute seated, there are n − 1 people and k (not k − 1)
substitutes left. The probability none of them sits at an assigned seat

October 12, 2007 Time: 04:11pm appendix4.tex

234 Appendix 4

is, by definition, pn−1,k . Together, all this gives us a second recursion:

pn,k = k
n

pn−1,k−1 + n − k
n

pn−1,k, n>1, n ≥ k>0.

Now we can calculate pn,0 for all n > 2.
For example, to calculate p3,0 we need to know the value of p2,1 and

so we write

p2,1 = 1
2

× p1,0 + 1
2

× p1,1 = 1
2

× 0 + 1
2

× 1 = 1
2

and then

p3,0 = 3 − 1
3

p2,1 = 2
3

× 1
2

= 1
3

= 0.3333 · · · .

These recursive calculations for pn,0 very quickly become ever
more tedious as n increases, and so we turn to MATLAB for help.
The code dinner.m computes the values for pn,0 for 2 ≤ n ≤ 20, and
the table immediately following shows how very quickly those values
converge to e−1 = 0.36787944117 · · · . Indeed, p14,0 agrees with e−1 out
to the 11th digit.

dinner.m
01 pkzero = zeros(1,20);

02 pkone = zeros(1,20);

03 pkone(1) = 1;

04 for n = 2:20

05 pkzero(n) = ((n−1)/n)*pkone(n−1);

06 pkzero(n)

07 pkone(n) = (1/n)*pkzero(n−1) + ((n–1)/n)*pkone(n−1);

08 end

To understand the operation of dinner.m, think of the values of pn,k

as numbers on the lattice points of a two-dimensional array, with n
and k on the horizontal and vertical axes, respectively. Then pkzero

October 12, 2007 Time: 04:11pm appendix4.tex

Solving Montmort’s Problem by Recursion 235

n pn,0

2 0.5
3 0.3333 · · · ·
4 0.375 · · · ·
5 0.3666 · · · ·
6 0.3680555 · · · ·
7 0.367857142857 · · · ·
8 0.367881944444 · · · ·
9 0.367879188712 · · · ·

10 0.367879464285 · · · ·
11 0.367879439233 · · · ·
12 0.367879441321 · · · ·
13 0.367879441160 · · · ·
14 0.367879441172 · · · ·

and pkone are row vectors equivalent to the lattice points along the
horizontal rows in that array associated with the k = 0 (the n-axis) and
k = 1 cases, respectively. The value of p1,0 is automatically set to zero in
line 01, and line 03 sets the value of p1,1 to one. Then, lines 04 through
08 simply implement the two boxed recursion equations.

The recursive method discussed here is a powerful one, and in his
paper Brawner applies it to a related problem that he calls the Dancing
Problem:

Suppose n married couples (2n people) are invited to a party.
Dance partners are chosen at random, without regard to gender.
What is the probability that nobody will be paired with his or her
spouse?

Here the recursive approach, interestingly, converges very slowly, but
still fast enough that Brawner could conjecture that the limiting
value of the probability in question, as n → ∞, is 1/

√
e = 0.60653 · · · .

His conjecture was soon shown to be correct, using a non-recursive
approach.2 The reason for why the dancing party problem, which at
first glance might seem to simply be the dinner problem in disguise
but instead has a quite different answer, is that while in the dancing
problem any person can be paired with any other person, in the dinner
problem nobody is going to mistake a person for a seat and sit on them!

October 12, 2007 Time: 04:11pm appendix4.tex

236 Appendix 4

References and Notes

1. This problem, and the recursion equations developed in this appendix,
find their inspiration in a paper by James N. Brawner, “Dinner, Dancing, and
Tennis, Anyone?’’ (Mathematics Magazine, February 2000, pp. 29–36).

2. Barbara H. Margolius, “Avoiding Your Spouse at a Bridge Party’’ (Math-
ematics Magazine, February 2001, pp. 33–41).

October 12, 2007 Time: 04:18pm appendix5.tex

Appendix 5

An Illustration of the Inclusion-Exclusion Principle

To appreciate the value of the inclusion-exclusion principle mentioned
in note 4 of the introduction, consider the following problem from the
excellent textbook by Saeed Ghahramani, Fundamentals of Probability,
(Upper Saddle River, N. J: Prentice-Hall, 1996, p. 69):

From a faculty of six professors, six associate professors, 10 as-
sistant assistant professors, and 12 instructors, a committee of size
6 is formed randomly. What is the probability that there is at least
one person from each rank on the committee?
Hint: Be careful, the answer is not

(
6
1

)(
6
1

)(
10
1

)(
12
1

)(
30
2

)

(
34
6

) = 1.397.

Professor Ghahramani then suggests the inclusion-exclusion principle
as the proper tool with which to answer the question.

The incorrect answer above is almost certainly what most beginning
probability students would indeed write, at least until they evaluate
the expression on the left and get that “probability’’ on the right that is

October 12, 2007 Time: 04:18pm appendix5.tex

238 Appendix 5

greater than one (a really big clue that something isn’t quite right)! The
first issue for us to dispose of, of course, is that of explaining just why
the expression on the left leads to such an obviously impossible answer.
The explanation is actually pretty simple. First, the denominator itself
is correct, as it is the number of ways to randomly select six people
from thirty four, i.e.,

(34
6

)
is the total number of distinct committees.

The individual binomial coefficients in the numerator are, respectively,
from left to right, the number of ways to select one professor from six,
one associate professor from six, one assistant professor from ten, one
instructor from twelve (at this point we have one person from each
rank), and then any two from the thirty people who haven’t yet been
selected. It is an easy jump from this to the conclusion that the product
of these individual numbers is the total number of committees with
the desired structure, but as we now know, that is a faulty jump. The
problem with the reasoning is that it counts many possible committees
more than once. And that’s why the incorrect expression is larger
than one. For example, suppose we number the thirty four people
as follows:

[1 to 6]
[
7 to 12

]
[13 to 22] [22 to 34]

full associate assistant instructor

Then one possible committee from the incorrect numerator is, from
left to right, 1, 7, 13, 23, 5, 8. But the incorrect numerator also
generates the committee 5, 8, 13, 23, 1, 7—which is, of course, the
same committee. What we need is a way to count all the distinct
committees that have the desired structure without repetition. That’s
what the inclusion-exclusion principle allows us to do.

So, you may now be asking, just what is the inclusion-exclusion
principle? Suppose E1, E2, . . . , En are n events defined on a common
sample space (the collection of all possible outcomes when some
experiment is performed; e.g., in our problem, the experiment is the
selection of six people from thirty four to form a committee). Then the
probability that at least one of these events occurs simultaneously is
given by (the ∪ symbol is the mathematician’s notation for the logical
inclusive-OR, equivalent to the plus sign commonly used by digital
circuit design engineers)1

October 12, 2007 Time: 04:18pm appendix5.tex

An Illustration of the Inclusion-Exclusion Principle 239

Prob(E1 ∪ E2 ∪ · · · ∪ En) =
n∑

i=1

Prob(Ei) −
n∑

i=1

n∑

j=i+1

Prob(Ei E j)

+
n∑

i=1

n∑

j=i+1

n∑

k= j+1

Prob(Ei E j Ek) − · · ·.

For n = 3, for example,

Prob(E1 ∪ E2 ∪ E3) = Prob(E1) + Prob(E2) + Prob(E3)

−Prob(E1E2) − Prob(E1 E3) − Prob(E2 E3)

+Prob(E1E2 E3).

For our committee problem, define four elementary events as
follows:

E1 = {“no full professors on the committee’’};
E2 = {“no associate professors on the committee’’};
E3 = {“no assistant professors on the committee’’};
E4 = {“no instructors on the committee’’}.

Then, the compound event E1 ∪ E2 ∪ E3 ∪ E4 is the event that at least
one of E1, E2, E3, E4 occur simultaneously, and so Prob(E1 ∪ E2 ∪ E3 ∪
E4) is the probability that at least one of the four elementary events
occurs. Thus, 1 − Prob(E1 ∪ E2 ∪ E3 ∪ E4) is the probability that none
of the four elementary events occurs, which is of course the probability
that there is at least one person of each rank on the committee—which
is just what we want to calculate. But 1 − Prob(E1 ∪ E2 ∪ E3 ∪ E4) is, by
the inclusion-exclusion principle, given by

1 − Prob(E1) − Prob(E2) − Prob(E3) − Prob(E4) + Prob(E1E2)

+ Prob(E1 E3) + Prob(E1E4) + Prob(E2 E3) + Prob(E2 E4)

+ Prob(E3 E4) − Prob(E1E2 E3) − Prob(E1E2 E4)

− Prob(E1 E3 E4) − Prob(E2E3 E 4) + Prob(E1E2 E3 E4).

October 12, 2007 Time: 04:18pm appendix5.tex

240 Appendix 5

Each of these terms is easily written down by inspection. For example,

Prob(E1) =

(
28
6

)

(
34
6

) = Prob(E2)

and

Prob(E1 E2) =

(
22
6

)

(
34
6

) .

The first numerator follows by noticing that for E1 to occur (no full
professors selected), all six members of the committee come from the
twenty eight people who are not full professors, and similarly for E2.
The second numerator follows by noticing that for E1 and E2 to both
occur (no full and no associate professors selected), all six members
of the committee come from the twenty two people who are neither
full nor associate professors. And of course, Prob(E1E2 E3 E4) = 0,
because every person on the committee is from some rank! So, the total
expression for the probability we are after is

1 +
−

(
28
6

)

−
(

28
6

)

−
(

24
6

)

−
(

22
6

)

+
(

22
6

)

+
(

18
6

)

(
34
6

)

+

(
16
6

)

+
(

18
6

)

+
(

16
6

)

+
(

12
6

)

−
(

12
6

)

−
(

10
6

)

(
34
6

)

October 12, 2007 Time: 04:18pm appendix5.tex

An Illustration of the Inclusion-Exclusion Principle 241

+
−

(
6
6

)

−
(

6
6

)

(
34
6

)

= 1 +
−2

(
28
6

)

−
(

24
6

)

+ 2

(
18
6

)

+ 2

(
16
6

)

−
(

10
6

)

−2

(
34
6

)

= 1 + −753,480 − 134,596 + 37,128 + 16,016 − 210 − 2
1,344,904

= 1 − 835,144
1,344,904

= 0.379.

Your confidence in this calculation would surely be enhanced if a
Monte Carlo simulation agrees, and that is what the code committee.m

confirms; after generating 100,000 random committees of six people
selected from thirty four, it produced an estimate for the probability
a committee has the desired structure of 0.3778, in pretty good
agreement with theory. The logic of committee.m is straightforward. In
line 01, the variable structure is initialized to zero; at the end of the
simulation its value will be the number of committees (out of 100,000)
that had the required membership. The loop defined by lines 02 and
27 perform each committee simulation. In line 03, count is initialized
to zero: once a committee is formed, count will be incremented by one
when a member puts a new rank in place for the first time. Line
04 generates a random permutation in the vector mix of the thirty
four total people available, where the integers 1 through 34 are to be
interpreted as we used them in the earlier part of this appendix, e.g.,
1 through 6 are the full professors, and so on. Lines 05, 06, and 07
take the first six elements of mix and use them to form the six-element
vector select, which is in fact the committee. All we need do now is
check select to see if the committee has the desired structure.

October 12, 2007 Time: 04:18pm appendix5.tex

242 Appendix 5

committee.m
01 structure = 0;

02 for loop = 1:100000

03 count = 0;

04 mix = randperm(34);

05 for i = 1:6

06 select(i) = mix(i);

07 end

08 rank = ones(1,4);

09 for i = 1:6

10 if select(i) < 7

11 count = count + rank(1);

12 rank(1) = 0;

13 elseif select(i) > 6&select(i) < 13

14 count = count + rank(2);

15 rank(2) = 0;

16 elseif select(i) > 12&select(i) < 23

17 count = count + rank(3);

18 rank(3) = 0;

19 else

20 count = count + rank(4);

21 rank(4) = 0;

22 end

23 end

24 if count == 4

25 structure = structure + 1;

26 end

27 end

28 structure/100000

To start this checking, line 08 creates the four-element vector
rank, with all its elements set equal to one. These elements, rank(1),
rank(2), rank(3), and rank(4), are to be associated with full, associate,
and assistant professors and instructors, respectively. Then, in the loop
defined by lines 09 and 26, the code looks at each committee member

October 12, 2007 Time: 04:18pm appendix5.tex

An Illustration of the Inclusion-Exclusion Principle 243

in turn (that is, at select(i) as i runs from 1 to 6) and determines which
rank that member has. Depending on that rank, count is incremented
by the corresponding element of rank — the first time this happens, for
each rank, that increment is one—and then the value of that element is
set equal to zero, which means that any subsequent committee member
with the same rank will increment count by zero, i.e., will have no
affect on determining the final value of count. After all six committee
members have been examined, the value of count will be 4 if and
only if there is at least one committee member of each rank. Lines
24 through 26 increment structure by one if count equals 4, and then
another simulated committee is formed. Line 28 gives committee.m’s
estimate of the probability a randomly generated committee has the
desired structure.

References and Notes

1. An analytical proof of a generalized inclusion-exclusion principle for an
arbitrary number of n events can be found in the book by Emanuel Parzen,
Modern Probability Theory and Its Applications (New York: John Wiley & Sons,
1960, pp. 76–85). If you are familiar with the digital circuit logic design tool
of Karnaugh maps (what a mathematician would call Venn diagrams), then it
is easy to construct visual proofs of the inclusion-exclusion principle that are
obvious by inspection for the n =2, 3, and 4 cases.

January 21, 2013 Time: 01:49pm appendix6.tex

Appendix 6

Solutions to the Spin Game

To theoretically analyze the spin game described at the end of the
introduction, start by defining P as the probability of the event that
the player, starting with disk 1, wins. Then we can write, as follows, all
the ways that event can happen:

(1) the pointer stops in area p11 n times in a row, where n =
0, 1, 2, 3 . . . , and then the pointer stops in area x1;

(2) the pointer stops in area p12, followed by the event that,
if the player starts with disk 2, he wins the game (i.e., the
pointer stops in area x1);

(3) the pointer stops in area p11 n times in a row, where n =
1, 2, 3, . . . , and then (2) occurs.

If we write Q as the probability that the player wins if he starts with
disk 2, then we can immediately write

P = (p0
11x1 + p11x1 + p2

11x1 + p3
11x1 + · · ·) + (p12 Q)

+ (p11 p12 Q + p2
11 p12 Q + p3

11 p12 Q + · · ·)

= x1(1 + p11 + p2
11 + p3

11 + · · ·) + p12 Q(1 + p11 + p2
11 + p3

11 + · · ·)

= (x1 + p12 Q)(1 + p11 + p2
11 + p3

11 + · · ·) = x1+p12 Q
1 − p11

= 1 − p11 − p12 + p12 Q
1 − p11

.

January 21, 2013 Time: 01:49pm appendix6.tex

Solutions to the Spin Game 245

We can find Q with the same sort of reasoning. That is, starting with
disk 2, the player wins if:

(1) the pointer stops in area p21, followed by the event that,
if the player starts with disk 1, he wins the game;

(2) the pointer stops in area p22 n times in a row, where n =
1, 2, 3, . . ., and then (1) occurs.

Thus,

Q = p21 P + p22 p21 P + p2
22 p21 P + p3

22 p21 P + · · ·

= p21 P(1 + p22 + p2
22 + p3

22 + · · ·) = p21 P
1 − p22

.

Inserting this result for Q into our earlier result for P, we have

P =
1 − p11−p12+p12

p21 P
1 − p22

1 − p11

which is easily solved for P to give

P = (1 − p11 − p12)(1 − p22)
(1 − p11)(1 − p12) − p22 p21

.

For the pi j values given in the original problem statement, this says

P = (1 − 0.2 − 0.4)(1 − 0.35)
(1 − 0.2)(1 − 0.35) − (0.4)(0.3)

= 0.65.

To write a Monte Carlo simulation of this game, the flow diagram of
Figure A6.1 illustrates the logic of determining the sequence of pointer
spins for a single simulated game, from the first spin of the pointer of
disk 1 until the game ends. The value of the variable disk is the current
disk being used, and p(i,j) =pi j . The code spin.m implements the logic

January 21, 2013 Time: 01:49pm appendix6.tex

246 Appendix 6

disk = 1

rand = random number

rand <
P(disk,1)

?

disk = 1

disk = 2

wins = wins + 1

disk = 1
?

rand < P(disk,2)
+ P(disk,1)

?

Yes No

Yes No

Yes No

Figure A6.1. The logic of a simulated spin game.

of Figure A6.1. When run for ten thousand simulated games, the code
produced an estimate of 0.6574 for P, while increasing the number of
simulated games to ten million gave an estimate for P of 0.6498, in
pretty good agreement with theory. Just in case you’re curious, while
the execution times of any simulation are of course dependent on the

January 21, 2013 Time: 01:49pm appendix6.tex

Solutions to the Spin Game 247

details of the computer used, my machine (with a 3-GHz Pentium 4 and
1 GByte of RAM) required 0.0073 seconds to simulate 10,000 games
and 4.6 seconds to run through 10,000,000 games.

spin.m
01 p(1,1) = 0.2;p(1,2) = 0.4;p(2,1) = 0.3;p(2,2) = 0.35;

02 wins = 0;

03 for loop = 1:10000

04 keepgoing = 1;

05 disk = 1;

06 while keepgoing == 1

07 spinpointer = rand;

08 if spinpointer < p(disk,1)

09 disk = 1;

10 else

11 if spinpointer < p(disk,1) + p(disk,2)

12 disk = 2;

13 else

14 keepgoing = 0;

15 if disk == 1

16 wins = wins + 1;

17 end

18 end

19 end

20 end

21 end

22 wins/10000

October 12, 2007 Time: 04:23pm appendix7.tex

Appendix 7

How to Simulate Kelvin’s Fair Coin with a

Biased Coin

Look again at note 7 in the introduction for the motivation behind
this appendix. Suppose the biased coin has probability p of showing
heads, and so probability 1 − p of showing tails. Suppose further
that we assume individual tosses of the coin are independent. Toss
the coin twice. It shows HH with probability p2, TT with probability
(1 − p)2, and either TH or HT with equal probability p(1 − p). So, if
TH appears, call it heads, and if HT appears, call it tails. If either
HH or TT appears, ignore the result and toss twice again. The price
we pay for making any coin into a fair coin by this method is time.
That is, we will have to toss the coin multiple times to get a decision,
while with a fair coin we get a decision on each toss. We can calculate
this price as follows. Suppose we get a decision on the kth double
toss. That means we did not get a decision on the previous k − 1
double tosses. Those k − 1 failures each occurred with probability
p2 + (1 − p)2, while the terminating success occurred with probability
2p(1 − p). The probability of getting a decision on the kth double toss
is therefore

[p2 + (1 − p)2]k−12p(1 − p), k ≥ 1.

October 12, 2007 Time: 04:23pm appendix7.tex

Simulating Kelvin’s Fair Coin with a Biased Coin 249

The average number of double tosses to get a decision is then given by

∞∑

k=1
k[p2 + (1 − p)2]k−12p(1 − p) = 2p(1−p)

c

∞∑

k=1
kck,

c = p2 + (1 − p)2.

Define

S =
∞∑

k=1

kck = c + 2c2 + 3c3 + 4c4 + · · · .

Thus,

c S = c2 + 2c3 + 3c4 + · · ·

and so

S − c S = (1 − c)S = c + c2 + c3 + c4 + · · ·

or,

S = c(1 + c + c2+c3+c4+ · · ·)
1 − c

.

Using the same trick to sum the geometric series 1 + c + c2 + c3

+ c4 + · · · gives us the result

S =
c

1
1 − c
1 − c

= c
(1 − c)2 .

Thus, the average number of double tosses required to get a decision is

2p(1 − p)
c

× c
[1 − p2−(1 − p)2]2 = 2p(1 − p)

(1 − p2−1 + 2p − p2)2

= 2p(1 − p)
(2p − 2p2)2 = 2p(1 − p)

4p2(1 − p)2 = 1
2p(1 − p)

.

October 12, 2007 Time: 04:23pm appendix7.tex

250 Appendix 7

If, for example, p = 0.4 then the average number of double tosses
required to get a decision is

1
(0.8)(0.6)

= 1
0.48

= 2.0833,

i.e., on average one has to toss this biased coin four times to get a fair
decision.

This problem also yields easily to a Monte Carlo simulation. The
code kelvin.m does the job and, for p = 0.4, estimates (after 10,000
simulations) the average number of double tosses required to get a
decision to be 2.085, which is in pretty good agreement with the
theoretical answer. Increasing the number of simulations to one million
(in line 03) gives the even better estimate of 2.0822. The operation of
kelvin.m should be clear, but just to be sure, let me point out that toss1

and toss2 are the results of tossing the biased coin twice, with a value
of 0 representing tails (T) and a value of 1 representing heads (H).
We get a decision for either HT or TH, i.e., when toss1 + toss2 = 1, as
determined in the if/end logic of lines 18 through 21. The while loop in
lines 06 through 21 keeps tossing the coin until decision is set equal to
1 in line 19. (The three periods at the end of the first “line’’ of line 22
are, as in the code chess.m at the end of the introduction, MATLAB’s
way of continuing a line too long to fit the width of a page.)

kelvin.m
01 p = 0.4;

02 totalnumberofdoubletosses = 0;

03 for loop = 1:10000

04 numberofdoubletosses = 0;

05 decision = 0;

06 while decision == 0

07 if rand < p

08 toss1 = 1;

09 else

10 toss1 = 0;
(continued)

October 12, 2007 Time: 04:23pm appendix7.tex

Simulating Kelvin’s Fair Coin with a Biased Coin 251

(continued)

11 end

12 if rand < p

13 toss2 = 1;

14 else

15 toss2 = 0;

16 end

17 numberofdoubletosses = numberofdoubletosses + 1;

18 if toss1 + toss2 == 1

19 decision = 1;

20 end

21 end

22 totalnumberofdoubletosses = totalnumberofdoubletosses

+ ... numberofdoubletosses;

23 end

24 totalnumberofdoubletosses/10000

October 22, 2007 Time: 03:50pm appendix8.tex

Appendix 8

How to Simulate an Exponential Random Variable

In Problem 15 (How Long Is the Wait to Get the Potato Salad?)
it is necessary to generate random numbers that are not uniformly
distributed from zero to one (which MATLAB’s rand does for us) but
rather are exponentially distributed from zero to infinity. That is, we
need to simulate a random variable T whose values are described by
the probability density function

fT(t) =
λe−λt , 0 ≤ t <∞

0, t < 0,

where λ is an arbitrary positive constant. (In Problem 15, λ has an
important physical interpretation.) MATLAB has no built-in function
that does this, and so we must write some code ourselves that does
the job. There are numerous approaches1 that one could take to
developing such a code, but the one I’ll show you here is perhaps the
easiest to understand as well as the simplest to implement.

Define U as MATLAB’s uniform random variable, and let FT(t) be
the distribution function of T, i.e.,

FT(t) = probability T ≤ t = P(T ≤ t).

October 22, 2007 Time: 03:50pm appendix8.tex

How to Simulate an Exponential Random Variable 253

As FT(t) is a probability we know 0 ≤ FT(t) ≤ 1, and since U is uniform
from 0 to 1 we then immediately have

P(U ≤ FT(t)) = FT(t).

But this says

FT(t) = P(F −1
T (U) ≤ t).

But since FT(t) = P(T ≤ t), we have our result: T = F −1
T (U).

For the particular case we are interested in, that of T as an
exponential random variable, we have

FT(t) =
t∫

0

λe−λs ds = (−e−λs
∣∣t
0 = 1 − e−λt .

Now, by the very definition of an inverse function,

FT(F −1
T (t)) = t

and so

t = 1 − e−λF −1
T (t).

This is easily solved for F −1
T (t), i.e.,

F −1
T (t) = −1

λ
ln(1 − t),

and since we showed earlier that F −1
T (U) = T, we thus have

T = −1
λ

ln(1 − U).

We can simplify this just a bit by noticing that since U is uniform
from 0 to 1, then clearly so is 1− U. But that means we can replace
1− U with U, thus saving a subtraction operation. Our final result is

October 22, 2007 Time: 03:50pm appendix8.tex

254 Appendix 8

that

T = −1
λ

ln(U).

Thus, when in Problem 15 the need arises to generate a value for a
random variable that is exponentially distributed from zero to infinity
with parameter λ (defined as the variable lambda), the MATLAB code
we will use is the single line

−log(rand)/lambda.

References and Notes

1. See, for example, John Dagpunar, Principles of Random Variate Generation
(Oxford: Oxford University Press, 1988, pp. 90–93).

2. This approach to simulating a nonuniform random variable from a
uniform one works only in the case where we can actually analytically invert
FT(t) to get F −1

T (t). This is not always possible. For example, an analytical
inversion can’t be done in the case of a Gaussian (normal) random variable.
Try it and see!

October 12, 2007 Time: 04:25pm appendix9.tex

Appendix 9

Author-Created MATLAB m-files and Their

Location in the Book

Name Location

1. aandb.m Problem 14 (solution)
2. average.m Appendix 2
3. boom.m Problem 21 (solution)
4. broke.m Problem 4 (solution)
5. bus.m Problem 17 (solution)
6. car.m Problem 3 (solution)
7. chess.m Introduction
8. committee.m Appendix 5
9. deli.m Problem 15 (solution)

10. dinner.m Appendix 4
11. dish.m Problem 1 (solution)
12. easywalk.m Problem 18 (solution)
13. election.m Problem 19 (solution)
14. estimate.m Problem 12 (solution)
15. fb.m Problem 9 (solution)
16. floss.m Problem 7 (solution)

October 12, 2007 Time: 04:25pm appendix9.tex

256 Appendix 9

Name Location

17. gameb.m Problem 14 (solution)
18. gs.m Problem 5 (solution)
19. guess.m Introduction
20. jury.m Problem 16 (solution)
21. kelvin.m Appendix 7
22. malt.m Problem 2 (solution)
23. missing.m Problem 11 (solution)
24. mono.m Introduction
25. obtuse.m Introduction
26. obtuse1.m Introduction
27. offspring.m Problem 21 (solution)
28. optimal.m Problem 20 (solution)
29. patrol.m Problem 13 (solution)
30. pierror.m Introduction
31. rhs.m Appendix 3
32. rolls.m Problem 8 (solution)
33. smoker.m Problem 7 (solution)
34. smokerb.m Problem 7 (solution)
35. spin.m Appendix 6
36. steve.m Problem 6 (solution)
37. stopping.m Problem 20 (solution)
38. sylvester.m Introduction
39. test.m Appendix 1
40. umbrella.m Problem 10 (solution)
41. walk.m Problem 18 (solution)

October 12, 2007 Time: 04:31pm glossary.tex

Glossary

Binomial coefficient: the number of ways to select k objects from n objects
(k ≤ n) without regard to the order of selection; written as

(n
k

)

= n!
k!(n − k)! .

Concave region: a region that is not convex.
Confidence interval: the interval of values within which a parameter of a

random variable X is declared to be with a specified probability; e.g.,
if the mean of X is estimated to be in the interval (a,b) with probability
0.95, then (a, b) is said to be a 95% confidence interval.

Convex region: a region is convex if and only if any two points in the region
can be connected by a straight line that has all of its points within the
region; a circular region is convex, while the same region with a hole
punched in it is not.

Ensemble average: the average over an infinity of sample functions for a
stochastic process at a given time; for a so-called stationary process,
this average is independent of the given time.

Expected value: the average or mean value of a random variable.
Fair coin: a coin with equal probability (1/2) of showing heads or tails when

flipped.
Histogram: a bar graph of the number of times the values of n measurements

of a random variable fall into equal width subintervals (called bins)
of an interval that spans the range from the smallest to the largest
measurement; the sum of all the bin numbers equals n.

Lattice point: any point with integer-valued coordinates.
Mean value: the average or expected value of a random variable, calculated

as follows: if X is a random variable with probability density function
fX (x), then the mean value of X is E(X) = m = ∫ ∞

−∞ x fX (x) dx.

Permutation: a random rearrangement of a set of objects; there are n!
permutations of n objects.

October 12, 2007 Time: 04:31pm glossary.tex

258 Glossary

Probability density function: any function fX (x) such that fX (x) ≥ 0 and∫ ∞
−∞ fX (x) dx = 1. If X is a random variable, then

∫ b
a fX (x) dx is the

probability a measurement of X will be in the interval (a, b). If
a probability density function of one random variable depends on
the particular value of another random variable we then have a
conditional probability density function, e.g., fX (x | Y = y), where the
vertical bar | is read as “given that.’’ fX (x) can be calculated from
fX (x | Y = y) = fX (x | y) as fX (x) = ∫ ∞

−∞ fX (x | y) dy .
Probability distribution function: the integral of a probability density func-

tion; i.e., FX (x) = ∫ x
−∞ fX (u)du is the probabilty a measurement of the

random variable X will be in the interval (−∞, x). That is, FX (x) is
the probability that X ≤ x. Since a distribution is a probability, then
0 ≤ FX (x) ≤ 1. We can also write fX (x) = d

dx FX (x).
Queue: a line of “customers’’ waiting for “service.’’
Random variable: a quantity that, in general, has a different value each time

it is measured, with the probability a measurement is in an interval as
the integral of a probability density function (over the interval).

Random walk: the steplike, time-discrete motion of a point, with the length
or direction (or both) of each step described by a random variable;
random walks can occur in spaces of dimension 1 (along a line),
dimension 2 (in a plane), dimension 3 (in a space), or in higher
dimensions as well.

Sample function: a particular observation over time of a stochastic process.
Sampling without replacement: the process of selecting, one at a time, a

subset of objects from a population of objects and not returning each
selected object to the population before making the next selection.
As the population increases in size, distinguishing between sampling
with or without replacement becomes unimportant.

Stochastic process: a random variable that is a function of time; if X is a
stochastic process, then X = X(t); more specifically, the probability
density function of X is a function of t, i.e., fX (x) = fX (x, t).

Uniform distribution: a probability density function that is constant over a
finite length interval and zero everywhere else; commonly available
in most computer-based random number generators over the interval
0 to 1.

Variance: a measure of the spread of a random variable, calculated as follows:
if X is a random variable with probability density function fX (x) and
mean value m, then the variance of X is σ 2

X = ∫ ∞
−∞ (x − m)2 fX (x) dx.

Vector: a one-dimensional sequence of n numbers is called a vector of length
n; e.g., if the vector is called bob, then bob(1), bob(2), and bob(n)
are the first, second, and nth (i.e., last) elements of the vector bob.
A two-dimensional array of numbers is called a matrix; a matrix can
be thought of as being constructed from either horizontal row vectors
or vertical column vectors.

October 12, 2007 Time: 04:36pm acknowledgments.tex

Acknowledgments

I had lots of help while writing this book. It was typed in Scientific
Word (MacKichan Software), and all the computer codes were written
in MATLAB (Mathworks). Both applications would have been science
fantasy when I was in high school—I remember well being told to both
take typing and to practice my slide-rule in those long-ago days!—and
they have changed how technical writers now work. I can’t imagine
life without my SW and MATLAB. At Mathworks, in particular, I thank
Courtney Esposito, who arranged for me to have the latest versions of
MATLAB and Symbolic Toolbox.

At Princeton University Press, my long-time editor, Vickie Kearn,
was ever helpful and supportive, and Debbie Tegarden made all the
details of getting a submitted typescript through production click and
clack rather than clash and clog. Marjorie Pannell, the book’s copy
editor, was a pleasure to work with.

The photograph of my high school math teacher Victor Hassing,
to whom I’ve dedicated this book, was provided by his wife, Joyce
Hassing. I am most grateful for her willingness to send a precious,
unique photo to someone thousands of miles away on the faith of a
telephone call out of the blue from a stranger.

My wife, Patricia Ann, made it all worth doing, even when I was
faced with exploding hard drives, accidentally deleted text files, and
evaporating backup disks. As I would sit in my study after each such
disaster, wondering if I could possibly find the strength to go on, she

October 12, 2007 Time: 04:36pm acknowledgments.tex

260 Acknowledgments

would tiptoe up behind me, gently massage my shoulders, and then
softly purr into an ear, “Better get writing again, sweetie! I just booked
us on a trip to see our moms and charged the plane tickets to your
credit card.’’ That got me going!

Paul J. Nahin
Lee, New Hampshire
September 2007

January 17, 2008 Time: 09:40am index.tex

Index

abs (MATLAB), 165
absorbing location, 146. See also random

walk
Allegany College, 89, 201
antithetic (variable or integrand), 226–228
average. See expectation

Banach, Stefans, 132
bar (MATLAB), 131, 208
Bebbington’s algorithm, 68, 158. See also

sampling without replacement
Benét, Stephen Vincent, 96
Bernoulli, Johann, 5
Bernoulli, Nikolaus, 2, 5
Bieneymé, Irénée-Jules, 99
binomial: (coefficient), 103, 155–156, 196,

202–203, 237–238, 240–241;
(distribution), 134, 136

Blaschke, Wilhelm, 15
branching process, 96–100, 213–220
Brawne, James N., 235–236
bubble sort algorithm, 110, 157
Buffon needle problem, 8, 15

Cayley, Arthur, 204
ceil (MATLAB), 158, 177–178, 198, 208, 221
chain reaction, 97–100. See also branching

process
Chandler, Raymond, 85
coin flipping, 32–33, 42–44, 74–75,

114–119, 134, 136, 169–170, 248–251

Cole, Frank, 42
concave quadrilateral. See four-point

problem
conditional expectation, 188
confidence interval, 13
convex hull, 18–21
convhull (MATLAB), 18
cosines (law of), 9
Crofton, M. W., 15, 17

darts (throwing of), 11–12, 224
Deming, W. Edwards, 29
density function, 165, 167, 188
disp (MATLAB), 181
distribution function, 163, 166–167,

252–254
Doudney, Sarah, 77
Durinx, Michel, 127–128

e (probabilistic estimation of), 22–23
elevators, 45–50, 120–128
ensemble average, 75, 169, 171
Erlang, Agner, 78
Euler, Leonhard, 5
event, 238–239, 244–245
expectation, 165, 167–168
exponential random variable (simulation

of), 79, 177, 252–254

family name extinction, 99–100
floor (MATLAB), 125–126, 145, 157

January 17, 2008 Time: 09:40am index.tex

262 Index

floss, 52, 133–134, 136–138. See also
matchbox problem

flowchart, 72–73, 161–163, 209, 245–246
Forester, C. S., 1
Fournier, James, 87–88
four-point problem, 15–21. See also

Sylvester, J. J.

Galton, Francis, 99
gambler’s ruin. See random walk
Gamow, George, 45–47, 120–122
Gardner, Martin, 204
geometric probability, 8, 15, 38, 105–108
geometric series, 214, 249
generating function, 213
Ghahramani, Saeed, 237
Gilbert and Sullivan, 69
Godunov, Alexander, 73
go to (BASIC), 196

harmonic series. See random harmonic
series

Hawkins, David, 99–100, 213, 220
hist (MATLAB), 159, 229
histogram, 12–13, 68, 157, 159–160, 227,

229–230

Imperial Election problem, 87, 89, 199–202
inclusion-exclusion principle, 237–243
inclusive-OR, 238
input (MATLAB), 26–27
int2str (MATLAB), 159

Jacobs, Frans, 128

Karnaugh map. See Venn diagram
Kelvin, 32–33
Kepler, Johannes, 95
Klein, Andi, 73
Knuth, Donald, 45–47, 53–54, 56–58, 122,

140–143

Landon, Letitia Elizabeth, 59
Las Vegas codes, 29
lattice point, 55–57, 140–141, 234–235
length (MATLAB), 21
Levine, Alan, 28, 73
line continuation (in MATLAB), 26–27,

177, 250–251
Lo Bello, Anthony, 89–90, 201–203
Longfellow, 83

Lotka, Alfred, 100
Lotka probabilities, 100, 216
Lucas, Edouard, 37, 42

Markov chains, 152
matchbox problem, 51–52, 129–139.

See also Banach, Stefans
max (MATLAB), 158–159, 198
Metropolis, Nicholas, 29
Milman, Henry Hart, 88, 90
min (MATLAB), 123
Monte Carlo (codes and simulations), 2–4,

6, 8, 11–14, 16–29, 31. See also any of the
MATLAB codes in this book

Montmort, Pierre Rémond de, 5

nchoosek (MATLAB), 136–7
nearest neighbors, 40–41, 109–113
New Hampshire, University of, 38

Obering, Henry, 30
obtuse triangle, 8–11, 31–32
ones (MATLAB), 242
optimal stopping, 91–95, 204–212

Parrondo, Juan, 76
Petrie, G. W., 43
pi (probabilistic estimation of), 11–13,

223–228
Pirie, Valérie, 88
Poisson process, 80,180–181
Poisson, Simeon-Denis, 80

queue discipline, 80
queue simulation, 175–183
queuing theory, 77–80

Rademacher, Hans, 23
rand (MATLAB), 4, 145
random harmonic series, 23–24, 229–230
random number generator, 14, 32–33
randperm (MATLAB), 6–7, 158, 208, 242
random walk, 59–60, 85–86, 144–152,

191–196
recurrence, 56–58, 118–119, 140–141,

193–195, 231–236
rem (MATLAB), 169–170
round (MATLAB), 157

Sagan, Hans, 196
sample function, 75

January 17, 2008 Time: 09:40am index.tex

Index 263

sample space, 105–106, 199–200, 202–203,
238

sampling without replacement, 65–68, 158.
See also Bebbington’s algorithm

Saiz, Steve, 48–50
scale invariant, 8, 15–16
Shine, Daniel P., 40, 113
sign (MATLAB), 145
Sophocles, 81
sort (MATLAB), 4, 113, 157, 189–190
Stanford University, 53, 58
Steinhaus, Hugo, 132
Stern, Marvin, 45–46
Stirling’s formula, 138
stochastic process, 75, 80, 99. See also

branching process
string variable, 159
subplot (MATLAB), 159
subroutines (in MATLAB), 216, 219
sum (MATLAB), 115–116, 153, 155, 185,

218–219
Sylvester, J. J., 15–16
Székely, Gábor J., 185–186

Tennessee, University of, 127–128
Thomson, William. See Kelvin

toilet paper, 53–58, 140–143. See also
matchbox problem

title (MATLAB), 159
triangle inequality, 31–32

Ulam, Stanislaw, 29, 99–100, 213, 220
unbiased estimate, 160

variance, 13
variance reduction, 14, 223–228
Venn diagram, 243
Voltaire, 89
von Neumann, John, 29
vos Savant, Marilyn, 4–5, 231

Watson, Henry, 99
Wiles, Andrew, 42
Woolhouse, Wesley Stoker Barker,

15–16

xlabel (MATLAB), 159

ylabel (MATLAB), 159

zeros (MATLAB), 26–27

January 17, 2008 Time: 09:40am index.tex

264

January 21, 2013 Time: 01:48pm alsoforpaul.tex

Also by Paul J. Nahin

Oliver Heaviside (1988, 2002)

Time Machines (1993, 1999)

The Science of Radio (1996, 2001)

An Imaginary Tale (1998, 2007, 2010)

Duelling Idiots (2000, 2002, 2012)

When Least Is Best (2004, 2007)

Dr. Euler’s Fabulous Formula (2006, 2011)

Chases and Escapes (2007, 2012)

Mrs. Perkins’s Electric Quilt (2009)

Time Travel (2011)

Number-Crunching (2011)

The Logician and the Engineer (2013)

January 21, 2013 Time: 01:49pm bm.tex

Paradoxes, Perplexities & Mathematical Conundrums
for the Serious Head Scratcher

Digital Dice: Computational Solutions to Practical Probability Problems,
by Paul J. Nahin

Towing Icebergs, Falling Dominoes, and Other Adventures in Applied
Mathematics, by Robert B. Banks

Slicing Pizzas, Racing Turtles, and Further Adventures in Applied
Mathematics, by Robert B. Banks

Chases and Escapes: The Mathematics of Pursuit and Evasion,
by Paul J. Nahin

Duelling Idiots and Other Probability Puzzlers, by Paul J. Nahin

Across the Board: The Mathematics of Chessboard Problems,
by John J. Watkins

1

	Cover
	Title
	Copyright
	Dedication
	Comments on Probability and Monte Carlo
	Contents
	Preface to the Paperback Edition
	Introduction
	The Problems
	1. The Clumsy Dishwasher Problem
	2. Will Lil and Bill Meet at the Malt Shop?
	3. A Parallel Parking Question
	4. A Curious Coin-Flipping Game
	5. The Gamow-Stern Elevator Puzzle
	6. Steve’s Elevator Problem
	7. The Pipe Smoker’s Discovery
	8. A Toilet Paper Dilemma
	9. The Forgetful Burglar Problem
	10. The Umbrella Quandary
	11. The Case of the Missing Senators
	12. How Many Runners in a Marathon?
	13. A Police Patrol Problem
	14. Parrondo’s Paradox
	15. How Long Is the Wait to Get the Potato Salad?
	16. The Appeals Court Paradox
	17. Waiting for Buses
	18. Waiting for Stoplights
	19. Electing Emperors and Popes
	20. An Optimal Stopping Problem
	21. Chain Reactions, Branching Processes, and Baby Boys

	MATLAB Solutions To The Problems
	1. The Clumsy Dishwasher Problem
	2. Will Lil and Bill Meet at the Malt Shop?
	3. A Parallel Parking Question
	4. A Curious Coin-Flipping Game
	5. The Gamow-Stern Elevator Puzzle
	6. Steve’s Elevator Problem
	7. The Pipe Smoker’s Discovery
	8. A Toilet Paper Dilemma
	9. The Forgetful Burglar Problem
	10. The Umbrella Quandary
	11. The Case of the Missing Senators
	12. How Many Runners in a Marathon?
	13. A Police Patrol Problem
	14. Parrondo’s Paradox
	15. How Long is the Wait to Get the Potato Salad?
	16. The Appeals Court Paradox
	17. Waiting for Buses
	18. Waiting for Stoplights
	19. Electing Emperors and Popes
	20. An Optimal Stopping Problem
	21. Chain Reactions, Branching Processes, and Baby Boys

	Appendix 1. One Way to Guess on a Test
	Appendix 2. An Example of Variance-Reduction in the Monte Carlo Method
	Appendix 3. Random Harmonic Sums
	Appendix 4. Solving Montmort’s Problem by Recursion
	Appendix 5. An Illustration of the Inclusion-Exclusion Principle
	Appendix 6. Solutions to the Spin Game
	Appendix 7. How to Simulate Kelvin’s Fair Coin with a Biased Coin
	Appendix 8. How to Simulate an Exponential Random Variable
	Appendix 9. Index to Author-Created MATLAB m-Files in the Book
	Glossary
	Acknowledgments
	Index
	Also by Paul J. Nahin

