UNDERGRADUATE TOPICS
in COMPUTER .SCIENCE

Programming
Languages.
Principles
and Paradigms

@ Springer uTiCs

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instruc-
tional content for undergraduates studying in all areas of computing and information
science. From core foundational and theoretical material to final-year topics and ap-
plications, UTiCS books take fresh, concise, and modern approach and are ideal
for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and
contain numerous examples and problems. Many include fully worked solutions.

For further volumes:
http://www.springer.com/series/7592

Maurizio Gabbrielli and Simone Martini

Programming
Languages:
Principles

and Paradigms

@ Springer

Prof. Dr. Maurizio Gabbrielli Prof. Dr. Simone Martini

Universita di Bologna Universita di Bologna
Bologna Bologna
Italy Italy

Series editor
Ian Mackie

Advisory board

Samson Abramsky, University of Oxford, UK

Chris Hankin, Imperial College London, UK

Dexter Kozen, Cornell University, USA

Andrew Pitts, University of Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA

Iain Stewart, University of Durham, UK

David Zhang, The Hong Kong Polytechnic University, Hong Kong

ISSN 1863-7310

ISBN 978-1-84882-913-8 e-ISBN 978-1-84882-914-5
DOI 10.1007/978-1-84882-914-5

Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010922995

Translated from the original Italian edition: “Linguaggi di programmazione: principi e paradigmi”, pub-
lished in 2006 by McGraw-Hill Companies, Publishing Group Italia.

© Springer-Verlag London Limited 2010

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Francesca and Antonella,
who will never want to read this book
but who contributed to it being written.

To Costanza, Maria and Teresa, who will read it perhaps,
but who have done everything to stop it being written.

Foreword

With great pleasure, I accepted the invitation extended to me to write these few lines
of Foreword. I accepted for at least two reasons. The first is that the request came
to me from two colleagues for whom I have always had the greatest regard, starting
from the time when I first knew and appreciated them as students and as young
researchers.

The second reason is that the text by Gabbrielli and Martini is very near to the
book that I would have liked to have written but, for various reasons, never have. In
particular, the approach adopted in this book is the one which I myself have followed
when organising the various courses on programming languages I have taught for
almost thirty years at different levels under various titles.

The approach, summarised in 2 words, is that of introducing the general concepts
(either using linguistic mechanisms or the implementation structures corresponding
to them) in a manner that is independent of any specific language; once this is done,
“real languages” are introduced. This is the only approach that allows one to re-
veal similarities between apparently quite different languages (and also between
paradigms). At the same time, it makes the task of learning different languages eas-
ier. In my experience as a lecturer, ex-students recall the principles learned in the
course even after many years; they still appreciate the approach which allowed them
to adapt to technological developments without too much difficulty.

The book by Gabbrielli and Martini has, as central reference point, an under-
graduate course in Computer Science. For this reason, it does not have complex
prerequisites and tackles the subject by finding a perfect balance between rigour
and simplicity. Particularly appreciated and successful is the force with which they
illuminate the connections with other important “areas of theory” (such as formal
languages, computability, semantics) which the book rightly includes (a further jus-
tification for their inclusion being that these topics are no longer taught in many
degree courses).

Giorgio Levi, Pisa.

vii

Introduction

Facilius per partes in cognitionem totius adducimur
(Seneca, Epist. 89,1)

Learning a programming language, for most students in computing, is akin to a
rite of passage. It is an important transition, soon recognised as insufficient. Among
the tools of the trade, there are many languages, so an important skill for the good
computer professional is to know how to move from one language to another (and
how to learn new ones) with naturalness and speed.

This competence is not obtained by learning many different languages from
scratch. Programming languages, like natural languages, have their similarities,
analogies and they inherit characteristics from each other. If it is impossible to learn
tens of languages well, it is possible completely to understand the mechanisms that
inspire and guide the design and implementation of hundreds of different languages.
This knowledge of the “parts” facilitates the understanding of the “whole” of a new
language and therefore underpins a fundamental methodological competence in the
life of the computing professional, at least as far as it allows them to anticipate
innovations and to outlive technologies that grow obsolete.

It is for these reasons that a course on the general aspects of programming lan-
guages is, throughout the world, a key step at advanced level for a computing pro-
fessional (at university or in a profession). The fundamental competences which a
computing professional must possess about programming languages are of at least
four types:

e Some aspects that are properly considered linguistic.

Knowledge of how language constructs can be implemented and the relative cost
of these implementations.

e Knowledge of those architectural aspects influencing implementation.

e Compilation techniques.

It is rare that a single course deals with all four of these aspects. In particular, de-
scription of architectural aspects and compilation techniques are both topics that are
sufficiently complex and elaborate to merit independent courses. The remaining 2
aspects are primarily the content of a general course on programming languages and
comprise the principle subject of this book.

ix

X Introduction

The literature is rich in texts dealing with these subjects. Generations of students
have used them in their learning. All these texts, though, have in mind an advanced
reader who already understands many different programming languages, who al-
ready has a more than superficial competence with fundamental mechanisms and
who is not afraid when confronted by a fragment of code written in an unknown
language (because they are able understand it by analogy using the differences be-
tween it and what they already know). These are texts, then, that we can say are
on “comparative languages”. These are long, deep and stimulating, but they are foo
long and deep (read: difficult) for the student who begins their career with a single
programming language (or at most 2) and who still has to learn the basic concepts
in detail.

This text aims to fill this gap. Experts will see that the content in large measure
reflects classical themes. But these very themes are treated in an elementary fashion,
assuming only the indispensable minimum of prerequisites. The book also avoids
being a catalogue of the differences between different existing programming lan-
guages. The ideal (or reference) reader is one who knows one language (well) (for
example, Pascal, C, C++ or Java). It is better if they have had some exposure to
another language or paradigm. References to languages that are now obsolete have
also been avoided and code examples are rarely written in a specific programming
language. The text freely uses a sort of pseudo-language (whose concrete syntax
was inspired by C and Java) and seeks, in this way, to describe the most relevant
aspects of different languages.

Every so often, the boxes at the top of pages contain development of material or
a note on a basic concept or something specific about common languages (C, C++,
Java; ML and L1SP for functional languages; PROLOG for logic-programming lan-
guages). The material in boxes can almost always be omitted on a first reading.

Every chapter contains a short sequence of exercises which should be understood
as a way of demonstrating an understanding of the material. There are no truly
difficult exercises or any that require more than 10 minutes for their solution.

Chapter 3 (Foundations) deals with themes that are not usually encountered in
a book on programming languages. It is, however, natural, while discussing static
semantics and comparing languages, to ask what are the limits to syntactic analysis
of programs and whether what can be done in one language can also be done in an-
other. Rather than send the reader to another text, given the cultural and pragmatic
relevance of these questions, we decided to answer these questions directly. In an
informal but rigorous manner, in the space of a few pages, we present the undecid-
ability of the halting problem. We also show that all general purpose programming
languages express the same class of functions. This helps students who do not al-
ways have complete courses on foundations understand the principal results on the
limitations on computations.

As well as principles, the text also introduces the three principal programming
paradigms: object oriented (a theme that is already obligatory in computing), func-
tional and logic programming. The need to write an introductory text is the reason
for the exclusion of important themes, such as concurrency and scripting languages,
whose mastery represent important skills.

Introduction xi

Use of the text The text is first of all a university textbook, even if there is an
almost total absence of mathematical and formal prerequisites (this lack makes the
book suitable for personal study by the professional who wishes to deepen their
knowledge of the mechanisms that lie behind the languages they use). The choice
of themes and the presentation style were largely influenced by the experience of
teaching the content as part of the degree course in Computer Science in the Faculty
of Mathematical, Physical and Natural Sciences at the University of Bologna.

In our experience, a course on programming languages for 6 credits in the second
year of a 3-year degree course can cover most of the fundamental aspects covered
in the first ten chapters (say 4/5 of them) and, perhaps, including a brief outline of
one of the remaining paradigms. With increase in student maturity, the quantity of
material that can be presented will clearly increase. In a master’s degree course, the
material could also be completed by a treatment of compilation.

Acknowledgements Our thanks to Giorgio Levi goes beyond the fact that he had
the grace to write the Foreword. Both of us owe to him our first understanding of
the mechanisms that underpin programming languages. His teaching appears in this
book in a way that is anything but marginal.

Ugo Dal Lago drew the figures using METAPOST, Cinzia Di Giusto, Wilmer
Ricciotti, Francesco Spegni and Paolo Tacchella read and commented attentively
on the drafts of some chapters. The following people pointed out misprints and er-
rors: Irene Borra, Ferdinanda Camporesi, Marco Comini, Michele Filannino, Matteo
Friscini, Stefano Gardenghi, Guido Guizzunti, Giacomo Magisano, Flavio Marchi,
Fabrizio Massei, Jacopo Mauro, Maurizio Molle, Mirko Orlandelli, Marco Pedicini,
Andrea Rappini, Andrea Regoli, Fabiano Ridolfi, Giovanni Rosignoli, Giampiero
Travaglini, Fabrizio Giuseppe Ventola. We gladly acknowledge the support of the
Dipartimento di Scienze dell’Informazione of the Universita di Bologna towards the
English translation.

Maurizio Gabbrielli
Bologna

Simone Martini
Bologna

Contents

1 Abstract Machines
1.1 The Concepts of Abstract Machine and of Interpreter
1.1.1 Thelnterpreter
1.1.2 An Example of an Abstract Machine: The Hardware

Machine L
1.2 Implementation of a Language
1.2.1 Implementation of an Abstract Machine
1.2.2 Implementation: The Ideal Case

1.2.3 Implementation: The Real Case and The Intermediate
Machine L
1.3 Hierarchies of Abstract Machines
1.4 Chapter Summary
1.5 BibliographicNotes
1.6 EXercises oo i i
References oo
2 How to Describe a Programming Language
2.1 Levelsof Description
2.2 Grammar and Syntaxo
2.2.1 Context-Free Grammars
2.3 Contextual Syntactic Constraints
24 Compilers
25 SemanticCso
2.6 Pragmatics
2.7 Implementation
2.8 Chapter Summary
2.9 Bibliographical Notes
2.10 EXEICISES « . . v v v v e e e e e e
References

13

17
21
24
24
24
25

27
27
28
30
39
41
45
52
52
53
53
53
54

Xiii

Xiv

Contents

Foundations 57
3.1 TheHaltingProblem 57
3.2 Expressiveness of Programming Languages 59
3.3 Formalisms for Computability 60
3.4 There are More Functions than Algorithms 61
3.5 Chapter Summary 63
3.6 Bibliographical Notes 64
37 EXercises i i 64
References L o 65
Names and The Environment 67
4.1 Names and Denotable Objects 67
4.1.1 Denotable Objects 69

4.2 Environmentsand Blocks oL 70
421 Blocks 71
422 Typesof Environment 72
4.2.3 Operations on Environments 75

43 ScopeRules 77
43.1 StaticScope 78
4.3.2 DynamicScope 80
43.3 Some Scope Problems 82

44 Chapter Summary 85
4.5 Bibliographical Notes 86
4.6 Exercises e 87
References 90
Memory Management 91
5.1 Techniques for Memory Management 91
5.2 Static Memory Management 93
5.3 Dynamic Memory Management Using Stacks 93
5.3.1 Activation Records for In-line Blocks 96

5.3.2 Activation Records for Procedures 97

5.3.3 Stack Management. 99

5.4 Dynamic Management UsingaHeap 101
5.4.1 Fixed-LengthBlocks 101

5.4.2 Variable-LengthBlocks 103

5.5 Implementation of Scope Rules 105
5.5.1 Static Scope: The Static Chain 105
5.5.2 Static Scope: The Display 109

5.5.3 Dynamic Scope: Association Listsand CRT 111

5.6 Chapter Summary 115
5.7 BibliographicNotes 116
5.8 EXercises 116

References 118

Contents

6

XV

Control Structure 119
6.1 EXpressions e 119
6.1.1 Expression Syntax 120

6.1.2 Semantics of Expressions 123

6.1.3 Evaluation of Expressions 125

6.2 The Conceptof Command 129
6.2.1 TheVariable 130

6.2.2 Assignment 131

6.3 Sequence Control Commands 136
6.3.1 Commands for Explicit Sequence Control 136

6.3.2 Conditional Commands 140

6.3.3 TIterative Commands 144

6.4 Structured Programming 0oL L. 150
6.5 Recursion 152
6.5.1 TailRecursion 155

6.5.2 Recursion or Iteration? 159

6.6 Chapter Summary 160
6.7 Bibliographical Notes 161
6.8 Exercises 161
References 163
Control Abstraction 165
7.1 Subprograms e e 166
7.1.1 Functional Abstraction. 167

7.1.2 Parameter Passing 169

7.2 Higher-Order Functions 178
7.2.1 Functions as Parameters 179
7.22 FunctionsasResults 184

7.3 Exceptions 186
7.3.1 Implementing Exceptions 190

7.4 Chapter Summaryot 191
7.5 Bibliographical Notes 193
T.6 EXErcises o e e 194
References 196
StructuringData 197
8.1 DataTypes o v i i i e 197
8.1.1 Types as Support for Conceptual Organisation 198

8.1.2 Types for Correctness 199

8.1.3 Types and Implementation 200

82 TypeSystems 201
8.2.1 Static and Dynamic Checking 202

83 ScalarTypes 203
83.1 Booleans 204

8.3.2 Characters i 204

XVvi

Contents

8.3.3 Integers 205

834 Realso 205

835 FixedPoint. oo 205

83.6 Complex 206

837 Void 207

8.3.8 Enumerations 207

839 Imtervals 208
83.10 Ordered Types 209

84 Composite Types o vt it 209
84.1 Records 209

8.4.2 Variant Recordsand Unions 211

843 Arrays 216

844 Sets. e 221

84.5 Pointers 222

84.6 Recursive Types 227

847 Functions. 229

85 Equivalence 230
8.5.1 Equivalenceby Name 231

8.5.2 Structural Equivalence 232

8.6 Compatibility and Conversion 234
8.7 Polymorphism 237
87.1 Overloading 238

8.7.2 Universal Parametric Polymorphism 239

8.7.3 Subtype Universal Polymorphism 241

8.7.4 Remarks on the Implementation 242

8.8 Type Checking and Inference 244
8.9 Safety: AnEvaluation 246
8.10 Avoiding Dangling References 247
8.10.1 Tombstone 248
8.10.2 LocksandKeys 249

8.11 Garbage Collection 250
8.11.1 Reference Counting 251
8.11.2 Markand Sweep 253
8.11.3 Interlude: Pointer Reversal 254
8.11.4 Markand Compact 255
8115 Copy . . o v v i e 255

8.12 Chapter Summary 258
8.13 BibliographicNotes 259
.14 EXErcises v v v v v it e e e e e 259
References 262
Data Abstractiono L 265
9.1 AbstractDataTypes 265
9.2 InformationHiding 268

9.2.1 Representation Independence 271

Contents Xvii
93 Modules 271
9.4 Chapter Summary 272
9.5 Bibliographical Notes 275
9.6 Exercises 275

References 276
10 The Object-Oriented Paradigm, ... 277
10.1 The Limits of Abstract Data Types 277
10.1.1 AFirstReview 281
10.2 Fundamental Concepts 281
10.2.1 Objects 282
1022 Classes v v v v i e e 283
10.2.3 Encapsulation 287
10.2.4 Subtypes 287
10.2.5 Inheritance 292
10.2.6 Dynamic Method Lookup 297
10.3 Implementation Aspectso 301
10.3.1 Single Inheritance 303
10.3.2 The Problem of Fragile Base Class 305
10.3.3 Dynamic Method Dispatchinthe JVM 306
10.3.4 Multiple Inheritance 309
10.4 Polymorphism and Generics 314
10.4.1 Subtype Polymorphism 315
10.4.2 GenericsinJava 317
10.4.3 Implementation of GenericsinJava 321
10.4.4 Generics, Arrays and Subtype Hierarchy 323
10.4.5 Covariant and Contravariant Overriding 325
10.5 Chapter Summary 328
10.6 Bibliographical Notes 328
10.7 EXercises o v v i e e 329
References L .. 331

11 The Functional Paradigm 333

11.1 Computations without State 333
11.1.1 Expressions and Functions 335
11.1.2 Computation as Reduction 337
11.1.3 The Fundamental Ingredients 338

11.2 Evaluation 339
11.2.1 Values 340
11.2.2 Capture-Free Substitution 340
11.2.3 Evaluation Strategies 341
11.2.4 Comparison of the Strategies 343

11.3 Programming in a Functional Language 345
11.3.1 Local Environment 345

11.3.2 Interactiveness o v v v i i i 346

xviii

12

13

Contents

1133 Types . . . o o o v e 346
11.3.4 Pattern Matching 347
11.3.5 Infinite Objects 349
11.3.6 Imperative Aspectso 350

11.4 Implementation: The SECD Machine 353
11.5 The Functional Paradigm: An Assessment 355
11.6 Fundamentals: The A-calculus 358
11.7 Chapter Summary 364
11.8 Bibliographical Note 365
11.9 EXercises o o i e e 365
References 366

The Logic Programming Paradigm 369
12.1 Deduction as Computation 369
12.1.1 AnExample 371

122 Syntax o e e 374
12.2.1 The Language of First-Order Logic 374
12.2.2 Logic Programs 376

12.3 Theory of Unification 377
12.3.1 The Logic Variable 377
12.3.2 Substitution 379
12.3.3 Most General Unifier 381
12.3.4 A Unification Algorithm 383

12.4 The Computational Model 387
12.4.1 The Herbrand Universe 387
12.4.2 Declarative and Procedural Interpretation 388
12.4.3 Procedure Calls 389
12.4.4 Control: Non-determinism 392
12.45 Some Examples 395

12.5 Extensions e 398
125.1 Prolog 398
12.5.2 Logic Programming and Databases 403
12.5.3 Logic Programming with Constraints 404

12.6 Advantages and Disadvantages of the Logic Paradigm 406
12.7 Chapter Summary 408
12.8 Bibliographical Notes 409
12.9 EXErcises v v v i e e e e e 409
References 411

A Short Historical Perspective 413
13.1 Beginnings e 413
13.2 Factors in the Development of Languages 415
133 1950sand 60s 417
134 The 1970s e 421
13,5 The 1980s o 425

13.6 1990s 428

Contents Xix

13.7 Chapter Summary 430
13.8 Bibliographical Notes 431
References 431

Chapter 1
Abstract Machines

Abstraction mechanisms play a crucial role in computing because they allow us to
manage the complexity inherent in most computational systems by isolating the
important aspects in a specific context. In the field of programming languages,
these mechanisms are fundamental, both from a theoretical viewpoint (many impor-
tant concepts can be appropriately formalised using abstractions) and in the practi-
cal sense, because programming languages today use common abstraction-creating
constructs.

One of the most general concepts employing abstraction is the abstract machine.
In this chapter, we will see how this concept is closely related to the programming
languages. We will also see how, without requiring us to go into the specific details
of any particular implementation, it allows us to describe what an implementation
of a programming language is. To do this, we will describe in general terms what
is meant by the interpreter and the compiler for a language. Finally, will see how
abstract machines can be structured in hierarchies that describe and implement com-
plex software systems.

1.1 The Concepts of Abstract Machine and of Interpreter

In the context of this book, the term “machine” refers clearly to a computing ma-
chine. As we know, an electronic, digital computer is a physical machine that ex-
ecutes algorithms which are suitably formalised so that the machine can “under-
stand” them. Intuitively, an abstract machine is nothing more than an abstraction of
the concept of a physical computer.

For actual execution, algorithms must be appropriately formalised using the con-
structs provided by a programming language. In other words, the algorithms we
want to execute must be represented using the instructions of a programming lan-
guage, .Z. This language will be formally defined in terms of a specific syntax and
a precise semantics—see Chap. 2. For the time being, the nature of .Z is of no con-
cern to us. Here, it is sufficient to know that the syntax of . allows us to use a given
finite set of constructs, called instructions, to construct programs. A program in £

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 1
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_1, © Springer-Verlag London Limited 2010

2 1 Abstract Machines

Interpreter

Sequence
Data control

Memory Data Operations

control

Program
Memory
management

Fig. 1.1 The structure of an abstract machine

(or program written in %) therefore is nothing more than a finite set of instructions
of .Z. With these preliminary remarks, we now present a definition that is central to
this chapter.

Definition 1.1 (Abstract Machine) Assume that we are given a programming lan-
guage, .Z. An abstract machine for £, denoted by .# ¢, is any set of data structures
and algorithms which can perform the storage and execution of programs written
in Z.

When we choose not to specify the language, ., we will simply talk of the ab-
stract machine, .#, omitting the subscript. We will soon see some example abstract
machines and how they can actually be implemented. For the time being, let us stop
and consider the structure of an abstract machine. As depicted in Fig. 1.1, a generic
abstract machine .Z ¢ is composed of a store and an interpreter. The store serves
to store data and programs while the interpreter is the component that executes the
instructions contained in programs. We will see this more clearly in the next sec-
tion.

1.1.1 The Interpreter

Clearly the interpreter must perform the operations that are specific to the language
it is interpreting, .Z. However, even given the diversity of languages, it is possible

1.1 The Concepts of Abstract Machine and of Interpreter 3

to discern types of operation and an “execution method” common to all interpreters.
The type of operation executed by the interpreter and associated data structures, fall
into the following categories:

1. Operations for processing primitive data;

2. Operations and data structures for controlling the sequence of execution of oper-
ations;

. Operations and data structures for controlling data transfers;

4. Operations and data structures for memory management.

W

We consider these four points in detail.

1. The need for operations such as those in point one is clear. A machine, even
an abstract one, runs by executing algorithms, so it must have operations for manip-
ulating primitive data items. These items can be directly represented by a machine.
For example, for physical abstract machines, as well as for the abstract machines
used by many programming languages, numbers (integer or real) are almost always
primitive data. The machine directly implements the various operations required to
perform arithmetic (addition, multiplication, etc.). These arithmetic operations are
therefore primitive operations as far as the abstract machine is concerned'.

2. Operations and structures for “sequence control” allow to control the execu-
tion flow of instructions in a program. The normal sequential execution of a pro-
gram might have to be modified when some conditions are satisfied. The interpreter
therefore makes use of data structures (for example to hold the address of the next
instruction to execute) which are manipulated by specific operations that are differ-
ent from those used for data manipulation (for example, operations to update the
address of the next instruction to execute).

3. Operations that control data transfers are included in order to control how
operands and data is to be transferred from memory to the interpreter and vice
versa. These operations deal with the different store addressing modes and the or-
der in which operands are to be retrieved from store. In some cases, auxiliary data
structures might be necessary to handle data transfers. For example, some types of
machine use stacks (implemented either in hardware or software) for this purpose.

4. Finally, there is memory management. This concerns the operations used to
allocate data and programs in memory. In the case of abstract machines that are
similar to hardware machines, storage management is relatively simple. In the limit
case of a physical register-based machine that is not multiprogrammed, a program
and its associated data could be allocated in a zone of memory at the start of exe-
cution and remain there until the end, without much real need for memory manage-
ment. Abstract machines for common programming languages, instead, as will be
seen, use more sophisticated memory management techniques. In fact, some con-
structs in these languages either directly or indirectly cause memory to be allocated
or deallocated. Correct implementation of these operations requires suitable data

1Tt should, however, be noted that there exist programming languages, for example, some declara-
tive languages, in which numeric values and their associated operations are not primitive.

4 1 Abstract Machines

»
Fetch

next instruction

Decode

!

Fetch
operands

!

Choose

l
v ' v '

Execute OP) Execute OP» Execute OP, Execute HALT

; ()
Store the

result

Fig. 1.2 The execution cycle of a generic interpreter

structures (for example, stacks) and dynamic operations (which are, therefore, exe-
cuted at runtime).

The interpreter’s execution cycle, which is substantially the same for all inter-
preters, is shown in Fig. 1.2. It is organised in terms of the following steps. First,
it fetches the next instruction to execute from memory. The instruction is then de-
coded to determine the operation to be performed as well as its operands. As many
operands as required by the instruction are fetched from memory using the method
described above. After this, the instruction, which must be one of the machine’s
primitives, is executed. Once execution of the operation has completed, any results
are stored. Then, unless the instruction just executed is a halt instruction, execution
passes to the next instruction in sequence and the cycle repeats.

Now that we have seen the interpreter, we can define the language it interprets as
follows:

Definition 1.2 (Machine language) Given an abstract machine, .# ¢, the language
& “understood” by .#Z ¢’s interpreter is called the machine language of M .

Programs written in the machine language of .# ¢ will be stored in the abstract
machine’s storage structures so that they cannot be confused with other primitive
data on which the interpreter operates (it should be noted that from the interpreter’s
viewpoint, programs are also a kind of data). Given that the internal representation
of the programs executed by the machine .# « is usually different from its external
representation, then we should strictly talk about two different languages. In any

1.1 The Concepts of Abstract Machine and of Interpreter 5

“Low-level” and “High-level” languages

A terminological note is useful. We will return to it in an historical perspective in
Chap. 13. In the field of programming languages, the terms “low level” and “high
level” are often used to refer, respectively, to distance from the human user and from
the machine.

Let us therefore call low-level, those languages whose abstract machines are
very close to, or coincide with, the physical machine. Starting at the end of the
1940s, these languages were used to program the first computers, but, they turned
out to be extremely awkward to use. Because the instructions in these languages
had to take into account the physical characteristics of the machine, matters that
were completely irrelevant to the algorithm had to be considered while writing pro-
grams, or in coding algorithms. It must be remembered that often when we speak
generically about “machine language”, we mean the language (a low-level one) of
a physical machine. A particular low-level language for a physical machine is its
assembly language, which is a symbolic version of the physical machine (that is,
which uses symbols such as ADD, MUL, etc., instead of their associated hardware
binary codes). Programs in assembly language are translated into machine code us-
ing a program called an assembler.

So-called high-level programming languages are, on the other hand, those
which support the use of constructs that use appropriate abstraction mechanisms
to ensure that they are independent of the physical characteristics of the computer.
High-level languages are therefore suited to expressing algorithms in ways that are
relatively easy for the human user to understand. Clearly, even the constructs of
a high-level language must correspond to instructions of the physical machine be-
cause it must be possible to execute programs.

case, in order not to complicate notation, for the time being we will not consider
such differences and therefore we will speak of just one machine language, .Z, for
machine .Z .

1.1.2 An Example of an Abstract Machine: The Hardware
Machine

From what has been said so far, it should be clear that the concept of abstract ma-
chine can be used to describe a variety of different systems, ranging from physical
machines right up to the World Wide Web.

As a first example of an abstract machine, let us consider the concrete case of a
conventional physical machine such as that in Fig. 1.3. It is physically implemented
using logic circuits and electronic components. Let us call such a machine .# 7y
and let .Z H be its machine language.

6 1 Abstract Machines

| ALU
| | |
| MAR !

Main memory

Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly fypes, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, . H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-

1.1 The Concepts of Abstract Machine and of Interpreter 7

tion with two operands, for example, requires one word of memory and has the
format:

OpCode Operandl Operand2

where OpCode is a unique code which identifies one of the primitive operations
defined by the machine’s hardware, while Operandl and Operand?2 are values
which allow the operands to be located by referring to the storage structures of the
machine and their addressing modes. For example,

ADD R5, RO

might indicate the sum of the contents of registers RO and RS, with the result being
stored in R5, while

ADD (R5), (RO)

might mean that the sum of the contents of the memory cells whose addresses are
contained in RO and RS is computed and the result stored in the cell whose address is
in RS. It should be noted that, in these examples, for reasons of clarity, we are using
symbolic codes such as ADD, R0, (R0). In the language under consideration, on the
other hand, we have binary numeric values (addresses are expressed in “absolute”
mode). From the viewpoint of internal representation, instructions are nothing more
than data stored in a particular format.

Like the instructions and data structures used in executing programs, the set of
possible instructions (with their associated operations and addressing modes) de-
pends on the particular physical machine. It is possible to discern classes of machine
with similar characteristics. For example, we can distinguish between conventional
CISC (Complex Instruction Set Computer) processors which have many machine
instructions (some of which are quite complex) and RISC (Reduced Instruction Set
Computers) architectures in which there tend to be fewer instructions which are, in
particular, simple enough to be executed in a few (possibly one) clock cycle and in
pipelined fashion.

Interpreter With the general structure of an abstract machine as a model, it is
possible to identify the following components of a physical (hardware) machine:

1. The operations for processing primitive data are the usual arithmetic and logi-
cal operations. They are implemented by the ALU (Arithmetic and Logic Unit).
Arithmetic operations on integers, and floating-point numbers, booleans are pro-
vided, as are shifts, tests, etc.

2. For the control of instruction sequence execution, there is the Program Counter
(PC) register, which contains the address of the next instruction to execute. It is
the main data structure of this component. Sequence-control operations specifi-
cally use this register and typically include the increment operation (which han-
dles the normal flow of control) and operations that modify the value stored in
the PC register (jumps).

8 1 Abstract Machines

3. To handle data transfer, the CPU registers interfacing with main memory are
used. They are: the data address register (the MAR or Memory Address Register)
and the data register (MDR or Memory Data Register). There are, in addition,
operations that modify the contents of these registers and that implement various
addressing modes (direct, indirect, etc.). Finally, there are operations that access
and modify the CPU’s internal registers.

4. Memory processing depends fundamentally on the specific architecture. In the
simplest case of a register machine that is not multi-programmed, memory man-
agement is rudimentary. The program is loaded and immediately starts executing;
it remains in memory until it terminates. To increase computation speed, all mod-
ern architectures use more sophisticated memory management techniques. In the
first place, there are levels of memory intermediate between registers and main
memory (i.e., cache memory), whose management needs special data structures
and algorithms. Second, some form of multi-programming is almost always im-
plemented (the execution of a program can be suspended to give the CPU to
other programs, so as to optimise the management of resources). As a general
rule, these techniques (which are used by operating systems) usually require spe-
cialised hardware support to manage the presence of more than one program in
memory at any time (for example, dynamic address relocation).

All the techniques so far described need specific memory-management data
structures and operations to be provided by the hardware. In addition, there are
other types of machine that correspond to less conventional architectures. In the
case of a machine which uses a (hardware) stack instead of registers, there is the
stack data structure together with the push and pop operations.

The interpreter for the hardware machine is implemented as a set of physical
devices which comprise the Control Unit and which support execution of the so-
called fetch-decode-execute cycle. using the sequence control operations. This cycle
is analogous to that in the generic interpreter such as the one depicted in Fig. 1.2. It
consists of the following phases.

In the fetch phase, the next instruction to be executed is retrieved from mem-
ory. This is the instruction whose address is held in the PC register (the PC register
is automatically incremented after the instruction has been fetched). The instruc-
tion, which, it should be recalled, is formed of an operation code and perhaps some
operands, is then stored in a special register, called the instruction register.

In the decode phase, the instruction stored in the instruction register is decoded
using special logic circuits. This allows the correct interpretation of both the instruc-
tion’s operation code and the addressing modes of its operands. The operands are
then retrieved by data transfer operations using the address modes specified in the
instruction .

Finally, in the execute phase, the primitive hardware operation is actually exe-
cuted, for example using the circuits of the ALU if the operation is an arithmetic or
logical one. If there is a result, it is stored in the way specified by the addressing
mode and the operation code currently held in the instruction register. Storage is
performed by means of data-transfer operations. At this point, the instruction’s exe-
cution is complete and is followed by the next phase, in which the next instruction is

1.2 Implementation of a Language 9

fetched and the cycle continues (provided the instruction just executed is not a stop
instruction).

It should be noted that, even if only conceptually, the hardware machine distin-
guishes data from instructions. At the physical level, there is no distinction between
them, given that they are both represented internally in terms of bits. The distinction
mainly derives from the state of the CPU. In the fetch state, every word fetched from
memory is considered an instruction, while in the execute phase, it is considered to
be data. It should be observed that, finally, an accurate description of the operation
of the physical machine would require the introduction of other states in addition
to fetch, decode and execute. Our description only aims to show how the general
concept of an interpreter is instantiated by a physical machine.

1.2 Implementation of a Language

We have seen that an abstract machine, .# «, is by definition a device which allows
the execution of programs written in .’. An abstract machine therefore corresponds
uniquely to a language, its machine language. Conversely, given a programming
language, .7, there are many (an infinite number) of abstract machines that have
£ as their machine language. These machines differ from each other in the way in
which the interpreter is implemented and in the data structures that they use; they
all agree, though, on the language they interpret—.%.

To implement a programming language . means implementing an abstract ma-
chine which has . as its machine language. Before seeing which implementation
techniques are used for current programming languages, we will first see what the
various theoretical possibilities for an abstract machine are.

1.2.1 Implementation of an Abstract Machine

Any implementation of an abstract machine, .# ¢ must sooner or later use some
kind of physical device (mechanical, electronic, biological, etc.) to execute the in-
structions of .Z. The use of such a device, nevertheless, can be explicit or implicit.
In fact, in addition to the “physical” implementation (in hardware) of .# ¢’s con-
structs, we can even think instead of an implementation (in software or firmware)
at levels intermediate between .# ¢ and the underlying physical device. We can
therefore reduce the various options for implementing an abstract machine to the
following three cases and to combinations of them:

e implementation in hardware;
e simulation using software;
e simulation (emulation) using firmware.

10 1 Abstract Machines

Microprogramming

Microprogramming techniques were introduced in the 1960s with the aim of pro-
viding a whole range of different computers, ranging from the slowest and most
economical to those with the greatest speed and price, with the same instruction
set and, therefore, the same assembly language (the IBM 360 was the most famous
computer on which microprogramming was used). The machine language of micro-
programmed machines is at an extremely low level and consists of microinstruc-
tions which specify simple operations for the transfer of data between registers, to
and from main memory and perhaps also passage through the logic circuits that
implement arithmetic operations. Each instruction in the language which is to be
implemented (that is, in the machine language that the user of the machine sees) is
simulated using a specific set of microinstructions. These microinstructions, which
encode the operation, together with a particular set of microinstructions implement-
ing the interpretation cycle, constitute a microprogram which is stored in special
read-only memory (which requires special equipment to write). This microprogram
implements the interpreter for the (assembly) language common to different com-
puters, each of which has different hardware. The most sophisticated (and costly)
physical machines are built using more powerful hardware hence they can imple-
ment an instruction by using fewer simulation steps than the less costly models, so
they run at a greater speed.

Some terminology needs to be introduced: the term used for simulation using
micro-programming, is emulation; the level at which microprogramming occurs is
called firmware.

Let us, finally, observe that a microprogrammable machine constitutes a single,
simple example of a hierarchy composed of two abstract machines. At the higher
level, the assembly machine is constructed on top of what we have called the mi-
croprogrammed machine. The assembly language interpreter is implemented in the
language of the lower level (as microinstructions), which is, in its turn, interpreted
directly by the microprogrammed physical machine. We will discuss this situation
in more depth in Sect. 1.3.

Implementation in Hardware

The direct implementation of .# ¢ in hardware is always possible in principle and
is conceptually fairly simple. It is, in fact, a matter of using physical devices such as
memory, arithmetic and logic circuits, buses, etc., to implement a physical machine
whose machine language coincides with .Z. To do this, it is sufficient to imple-
ment in the hardware the data structures and algorithms constituting the abstract
machine.”

2Chapter 3 will tackle the question of why this can always be done for programming languages.

1.2 Implementation of a Language 11

The implementation of a machine .# ¢ in hardware has the advantage that the
execution of programs in .Z will be fast because they will be directly executed by
the hardware. This advantage, nevertheless, is compensated for by various disad-
vantages which predominate when .Z is a generic high-level language. Indeed, the
constructs of a high-level language, .Z, are relatively complicated and very far from
the elementary functions provided at the level of the electronic circuit. An imple-
mentation of .# ¢ requires, therefore, a more complicated design for the physical
machine that we want to implement. Moreover, in practice, such a machine, once
implemented, would be almost impossible to modify. In would not be possible to
implement on it any future modifications to .Z without incurring prohibitive costs.
For these reasons,in practice, when implementing .# ¢, in hardware, only low-level
languages are used because their constructs are very close to the operations that can
be naturally defined using just physical devices. It is possible, though, to imple-
ment “dedicated” languages developed for special applications directly in hardware
where enormous execution speeds are necessary. This is the case, for example, for
some special languages used in real-time systems.

The fact remains that there are many cases in which the structure of a high-
level language’s abstract machine has influenced the implementation of a hardware
architecture, not in the sense of a direct implementation of the abstract machine in
hardware, but in the choice of primitive operations and data structures which permit
simpler and more efficient implementation of the high-level language’s interpreter.
This is the case, for example with the architecture of the B5500, a computer from
the 1960s which was influenced by the structure of the Algol language.

Simulation Using Software

The second possibility for implementing an abstract machine consists of implement-
ing the data structures and algorithms required by .# ¢ using programs written in
another language, ¢, which, we can assume, has already been implemented. Us-
ing language .¢’’s machine, .#",,, we can, indeed, implement the machine .#Z ¢
using appropriate programs written in .’ which interpret the constructs of .# by
simulating the functionality of .Z .

In this case, we will have the greatest flexibility because we can easily change the
programs implementing the constructs of .# . We will nevertheless see a perfor-
mance that is lower than in the previous case because the implementation of .Z ¢
uses another abstract machine .#",,, which, in its turn, must be implemented in
hardware, software or firmware, adding an extra level of interpretation.

Emulation Using Firmware

Finally, the third possibility is intermediate between hardware and software imple-
mentation. It consists of simulation (in this case, it is also called emulation) of the
data structures and algorithms for .# ¢ in microcode (which we briefly introduced
in the box on page 10).

12 1 Abstract Machines

Partial Functions

A function f: A — B is a correspondence between elements of A and elements of
B such that, for every element a of A, there exists one and only one element of B.
We will call it f(a).
A partial function, f : A — B, is also a correspondence between the two sets

A and B, but can be undefined for some elements of A. More formally: it is a
relation between A and B such that, for every a € A, if there exists a corresponding
element b € B, it is unique and is written f(a). The notion of partial function, for
us, is important because, in a natural fashion, programs define partial functions. For
example, the following program (written in a language with obvious syntax and
semantics and whose core will however be defined in Fig. 2.11):

read(x) ;

if (x == 1) then print(x);

else while (true) do skip

computes the partial function:

1 ifx=1
fm = undefined otherwise

Conceptually, this solution is similar to simulation in software. In both cases,
M s is simulated using appropriate programs that are executed by a physical ma-
chine. Nevertheless, in the case of firmware emulation, these programs are micro-
programs instead of programs in a high-level language.

As we saw in the box, microprograms use a special, very low-level language
(with extremely simple primitive operations) which are stored in a special read-only
memory instead of in main memory, so they can be executed by the physical ma-
chine at high speed. For this reason, this implementation of an abstract machine
allows us to obtain an execution speed that is higher than that obtainable from soft-
ware simulation, even if it is not as fast as the equivalent hardware solution. On
the other hand, the flexibility of this solution is lower than that of software simula-
tion, since, while it is easy to modify a program written in a high-level language,
modification of microcode is relatively complicated and requires special hardware
to re-write the memory in which the microcode is stored. The situation is anyway
better than in the hardware implementation case, given that microprograms can be
modified.

Clearly, for this solution to be possible, the physical machine on which it is used
must be microprogrammable.

Summarising, the implementation of .# ¢ in hardware affords the greatest speed
but no flexibility. Implementation in software affords the highest flexibility and least
speed, while the one using firmware is intermediate between the two.

1.2 Implementation of a Language 13

1.2.2 Implementation: The Ideal Case

Let us consider a generic language, ., which we want to implement, or rather, for
which an abstract machine, .# ¢ is required. Assuming that we can exclude, for the
reasons just given, direct implementation in hardware of .# ¢, we can assume that,
for our implementation of .# ¢, we have available an abstract machine, .# 0 «,,
which we will call the host machine, which is already implemented (we do not care
how) and which therefore allows us to use the constructs of its machine language
Zo directly.

Intuitively, the implementation of .Z on the host machine .# 0, takes place
using a “translation” from .Z to .Zo. Nevertheless, we can distinguish two con-
ceptually very different modes of implementation, depending on whether there is
an “implicit” translation (implemented by the simulation of .#Z ¢ ’s constructs by
programs written in .Z0) or an explicit translation from programs in . to cor-
responding programs in -Zo. We will now consider these two ways in their ideal
forms. We will call these ideal forms:

1. purely interpreted implementation, and
2. purely compiled implementation.

Notation

Below, as previously mentioned, we use the subscript ¢ to indicate that a particular
construct (machine, interpreter, program, etc.) refers to language .. We will use
the superscript < to indicate that a program is written in language .Z. We will use
@rog‘z to denote the set of all possible programs that can be written in language
2, while 2 denotes the set of input and output data (and, for simplicity of treatment,
we make no distinction between the two).

A program written in .Z can be seen as a partial function (see the box):

P%:9—> 9
such that
PpZ (Input) = Output

if the execution of 2% on input data Input terminates and produces Output as its
result. The function is not defined if the execution of 27 on its input data, Input,
does not terminate.’

31t should be noted that there is no loss of generality in considering only one input datum, given
that it can stand for a set of data.

14 1 Abstract Machines

Program in L

\ \7777777777777777
Interpreter for L ! Output data !
written in LO } |
ooy B e |
! Input data i "Execution on MO
L ___ i
MO

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for .# ¢ is implemented using a set of instruc-
tions in Zo. That is, a program is implemented in .20 which interprets all of .£’s
instructions; this is an interpreter. We will call it .# 5 ‘.

Once such interpreter is implemented, executing a program - (written in lan-
guage .Z’) on specified input data D € &, we need only execute the program .# :g ¢
on machine .#0.«,, with 2% and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language £, written in language
Zo, is a program which implements a partial function:

IZ0 (Prog? x 9)— 2 suchthat IZ(PZ, Input) = 2 (Inpur) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of .#, therefore, programs in & are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of .Z, the interpreter .% 5 9 uses a set of instructions in .Zo which
corresponds to an instruction in language .Z. Such decoding is not a real translation
because the code corresponding to an instruction of .Z is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine .# 0 ,,. The language -Z o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of .Z takes place by explicitly translating
programs written in % to programs written in -Zo. The translation is performed
by a special program called compiler; it is denoted by ¥« _«,. In this case, the
language £ is usually called the source language, while language Zo is called
the object language. To execute a program P24 (written in language £’) on input

1.2 Implementation of a Language 15

! Input data |
Program Compiler Program ! |
> — — Output dat |
written in L from L to LO written in LO i utput cata i
Execution on M A Execution MO
\/ \/
JAbstract macchine M A Host macchine MO

Fig. 1.5 Pure compiled implementation

data D, we must first execute ¢, ¢, and give it P as input. This will produce
a compiled program PcZ0 as its output (written in .Z0). At this point, we can
execute Zc<° on the machine .# 0 ¢, supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from £ to Zo is a program which imple-
ments a function:

Cy.vo: Prog? — ProgZ°

such that, given a program 2 | if
Cep, 20(P7) = PP, (1.2)
then, for every Inpute 2*:
P (Input) = PcZ° (Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if .#Z0 ¢, is
the only machine available to us, and therefore if .Z o is the only language that we
can use, the compiler will also be a program written in .Zo. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for .#Z0.¢,.

“It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

16 1 Abstract Machines
Comparing the Two Techniques

Having presented the purely interpreted and purely compiled implementation tech-
niques, we will now discuss the advantages and disadvantages of these two ap-
proaches.

As far as the purely interpreted implementation is concerned, the main disadvan-
tage is its low efficiency. In fact, given that there is no translation phase, in order to
execute the program %< | the interpreter .# 5 ? must perform a decoding of .£’s
constructs while it executes. Hence, as part of the time required for the execution
of 2% | it is also necessary to add in the time required to perform decoding. For
example, if the language . contains the iterative construct for and if this construct
is not present in language .Z o, to execute a command such as:

Pl: for (I = 1, I<=n, I=I+1l) C;

the interpreter .¥ :g ? must decode this command at runtime and, in its place, execute
a series of operations implementing the loop. This might look something like the
following code fragment:

P2:
R1 =1
R2 = n

Ll: if R1 > R2 then goto L2
translation of C

Rl =Rl + 1
goto L1
L2:

It is important to repeat that, as shown in (1.1), the interpreter does not generate
code. The code shown immediately above is not explicitly produced by the inter-
preter but only describes the operations that the interpreter must execute at runtime
once it has decoded the for command.

It can also be seen that for every occurrence of the same command in a program
written in %, the interpreter must perform a separate decoding steep; this does
not improve performance. In our example, the command C inside the loop must be
decoded n times, clearly with consequent inefficiency.

As often happens, the disadvantages in terms of efficiency are compensated for
by advantages in terms of flexibility. Indeed, interpreting the constructs of the pro-
gram that we want to execute at runtime allows direct interaction with whatever is
running the program. This is particularly important, for example, because it makes
defining program debugging tools relatively easy. In general, moreover, the devel-
opment of an interpreter is simpler than the development of a compiler; for this
reason, interpretative solutions are preferred when it is necessary to implement a
new language within a short time. It should be noted, finally, that an interpretative
implementation allows a considerable reduction in memory usage, given that the

1.2 Implementation of a Language 17

program is stored only in its source version (that is, in the language .¥’) and no new
code is produced, even if this consideration is not particularly important today.

The advantages and disadvantages of the compilational and interpretative ap-
proaches to languages are dual to each other.

The translation of the source program, P< to an object program, Pc?°, oc-
curs separately from the latter’s execution. If we neglect the time taken for compi-
lation, therefore, the execution of P¢Z° will turn out to be more efficient than an
interpretive implementation because the former does not have the overhead of the
instruction decoding phase. In our first example, the program fragment P1 will be
translated into fragment P2 by the compiler. Later, when necessary, P2 will exe-
cuted without having to decode the for instruction again. Furthermore, unlike in
the case of an interpreter, decoding an instruction of language . is performed once
by the compiler, independent of the number of times this instruction occurs at run-
time. In our example, the command C is decoded and translated once only at compile
time and the code produced by this is executed » times at runtime. In Sect. 2.4, we
will describe the structure of a compiler, together with the optimisations that can be
applied to the code it produces.

One of the major disadvantages of the compilation approach is that it loses all
information about the structure of the source program. This loss makes runtime in-
teraction with the program more difficult. For example, when an error occurs at
runtime, it can be difficult to determine which source-program command caused it,
given that the command will have been compiled into a sequence of object-language
instructions. In such a case, it can be difficult, therefore, to implement debugging
tools; more generally, there is less flexibility than afforded by the interpretative ap-
proach.

1.2.3 Implementation: The Real Case and The Intermediate
Machine

Burly purely compiled and interpreted implementations can be considered as the
two extreme cases of what happens in practice when a programming language is
implemented. In fact, in real language implementations, both elements are almost
always present. As far as the interpreted implementation is concerned, we immedi-
ately observe that every “real” interpreter operates on an internal representation of
a program which is always different from the external one. The translation from the
external notation of . to its internal representation is performed using real trans-
lation (compilation, in our terminology) from .Z to an intermediate language. The
intermediate language is the one that is interpreted. Analogously, in every compiling
implementation, some particularly complex constructs are simulated. For example,
some instructions for input/output could be translated into the physical machine’s
language but would require a few hundred instructions, so it is preferable to trans-
late them into calls to some appropriate program (or directly to operating system
operations), which simulates at runtime (and therefore interprets) the high-level in-
structions.

18 1 Abstract Machines

Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, ., that we want to
implement, how can we be sure that it is possible to implement a particular program
54 :g ¢ in language -Z 0 which performs the interpretation of all the constructs of .Z?
How, furthermore, can we be sure that it is possible to translate programs of £ into
programs in .%o using a suitable program, €' _«,?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
Zo, that we are using for the implementation is sufficiently expressive with respect
to the language, %, that we want to implement. As we will see, every language
in common use, and therefore also our .Z0, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in .Zo. Given that the interpreter
for .Z is no more than a particular algorithm that can execute the instructions of
Z, there is clearly no theoretical difficulty in implementing the interpreter .# 5 ‘,
As far as the compiler is concerned, assuming that it, too, is to be written in Lo,
the argument is similar. Given that . is no more expressive than Zo, it must be
possible to translate programs in . into ones in -Zo in a way that preserves their
meaning. Furthermore, given that, by assumption, .Z’o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program €« ¢, that implements the translation.

Program Compiler Program
written in L from L to Li written in Li
Interpreter for Li 1
written] Output data
in Lo or RTS L

Program Compiler Program
written in L from L to Li written in Li .
Execution on MO

Compilation on M A

MA MO

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language .# that has
to be implemented and assume also that a host machine .Z 0 ¢, exists which has
already been constructed. Between the machine .# ¢ that we want to implement and

1.2 Implementation of a Language 19

the host machine, there exists a further level characterised by its own language, .Z’i
and by its associated abstract machine, .#i o»;, which we will call, the intermediate
language and intermediate machine, respectively.

As shown in Fig. 1.6, we have both a compiler €'« _¢; which translates £ to £
and an interpreter % ﬁ” which runs on the machine .# 0 ¢, (which simulates the
machine .#i ;). In order to execute a generic program, P | the program must
first be translated by the compiler into an intermediate language program, PiZl
Next, this program is executed by the interpreter .# :g;". It should be noted that, in
the figure, we have written “interpreter or runtime support (RTS)” because it is not
always necessary to implement the entire interpreter .# é‘f;". In the case in which the
intermediate language and the host machine language are not too distant, it might be
enough to use the host machine’s interpreter, extended by suitable programs, which
are referred to as its runtime support, to simulate the intermediate machine.

Depending on the distance between the intermediate level and the source or host
level, we will have different types of implementation. Summarising this, we can
identify the following cases:

1. M = Migp;: purely interpreted implementation.
2. My # Mip; F# Mop,.

(a) If the interpreter of the intermediate machine is substantially different from
the interpreter for .# 0 ¢,, we will say that we have an implementation of an
interpretative type.

(b) If the interpreter of the intermediate machine is substantially the same as the
interpreter for .# 0.¢,, (of which it extends some of its functionality), we will
say that we have a implementation of a compiled type.

3. Miypi = Mo, we have a purely compiled implementation.

The first and last cases correspond to the limit cases already encountered in the
previous section. These are the cases in which the intermediate machines coincide,
respectively, with the machine for the language to be implemented and with the host
machine.

On the other hand, in the case in which the intermediate machine is present, we
have an interpreted type of implementation when the interpreter for the intermedi-
ate machine is substantially different from the interpreter for .# 0 «,. In this case,
therefore, the interpreter .# %" must be implemented using language -Zo. The dif-
ference between this solution and the purely interpreted one lies in the fact that not
all constructs of .Z need be simulated. For some constructs there are directly corre-
sponding ones in the host machine’s language, when they are translated from .Z to
the intermediate language -Zi, so no simulation is required. Moreover the distance
between .#i »; and .# 0 ¢, is such that the constructs for which this happens are
few in number and therefore the interpreter for the intermediate machine must have
many of its components simulated.

In the compiled implementation, on the other hand, the intermediate language is
closer to the host machine and the interpreter substantially shares it. In this case,
then, the intermediate machine, .Zi ¢;, will be implemented using the functional-
ity of .# 0 «,, suitably extended to handle those source language constructs of &

20 1 Abstract Machines

which, when also translated into the intermediate language .##, do not have an im-
mediate equivalent on the host machine. This is the case, for example, in the case
of some I/O operations that are, even when compiled, usually simulated by suitable
programs written in .Zo. The set of such programs, which extend the functional-
ity of the host machine and which simulate at runtime some of the functionality of
the language .Zi, and therefore also of the language %, constitute the so-called
run-time support for £ .

As can be gathered from this discussion, the distinction between the interme-
diate cases is not clear. There exists a whole spectrum of implementation types
ranging from that in which everything is simulated to the case in which everything
is, instead, translated into the host machine language. What to simulate and what
to translate depends a great deal on the language in question and on the available
host machine. It is clear that, in principle, one would tend to interpret those lan-
guage constructs which are furthest from the host machine language and to compile
the rest. Furthermore, as usual, compiled solutions are preferred in cases where in-
creased execution efficiency of programs is desired, while the interpreted approach
will be increasingly preferred when greater flexibility is required.

It should also be noted that the intermediate machine, even if it is always present
in principle, is not often actually present. The exceptions are cases of languages
which have formally stated definitions of their intermediate machines, together with
their associated languages (which is principally done for portability reasons). The
compiled implementation of a language on a new hardware platform is a rather big
task requiring considerable effort. The interpretive implementation is less demand-
ing but does requires some effort and often poses efficiency problems. Often, it
is desired to implement a language on many different platforms, for example when
sending programs across a network so that they can be executed on remote machines
(as happens with so-called aplets). In this case, it is extremely convenient first to
compile the programs to an intermediate language and then implement (interpret)
the intermediate language on the various platforms. Clearly, the implementation of
the intermediate code is much easier than implementing the source code, given that
compilation has already been carried out. This solution to the portability of imple-
mentations was adopted for the first time on a large scale by the Pascal language,
which was defined together with an intermediate machine (with its own language,
P-code) which was designed specifically for this purpose. A similar solution was
used by the Java language, whose intermediate machine (called the JVM—Java Vir-
tual Machine) has as its machine language the so-called Java Byte Code. It is now
implemented on every type of computer.

As the last note, let us emphasise the fact, which should be clear from what we
have said so far, that one should not talk about an “interpreted language” or a “‘com-
piled language”, because each language can be implemented using either of these
techniques. One should, instead, talk of interpretative or compiled implementations
of a language.

1.3 Hierarchies of Abstract Machines 21

Fig. 1.7 The three levels of a
microprogrammed computer Software

Firmware

[Hardware j

1.3 Hierarchies of Abstract Machines

On the basis of what we have seen, a microprogrammed computer, on which a
high-level programming language is implemented, can be represented as shown in
Fig. 1.7. Each level implements an abstract machine with its own language and its
own functionality.

This schema can be extended to an arbitrary number of levels and a hierarchy
is thus produced, even if it is not always explicit. This hierarchy is largely used
in software design. In other words, hierarchies of abstract machines are often used
in which every machine exploits the functionality of the level immediately below
and adds new functionality of its own for the level immediately above. There are
many examples of hierarchies of this type. For example, there is the simple activity
of programming. When we write a program & in a language, .Z, in essence, we
are doing no more than defining a new language, -Z4 (and therefore a new abstract
machine) composed of the (new) functionalities that &2 provides to the user through
its interface. Such a program can therefore be used by another program, which will
define new functionalities and therefore a new language and so on. It can be noted
that, broadly speaking, we can also speak of abstract machines when dealing with
a set of commands, which, strictly speaking, do not constitute a real programming
language. This is the case with a program, with the functionality of an operating
system, or with the functionality of a middleware level in a computer network.

In the general case, therefore, we can imagine a hierarchy of machines .Z),
M, ..., Mpy. The generic machine, .# ; is implemented by exploiting the
functionality (that is the language) of the machine immediately below (.Z &; _1). At
the same time, .# «; provides its own language .Z; to the machine above .# ¢ 1,
which, by exploiting that language, uses the new functionality that .# ¢; provides
with respect to the lower levels. Often, such a hierarchy also has the task of masking
lower levels. .# ¢; cannot directly access the resources provided by the machines
below it but can only make use of whatever language .%;_| provides.

The structuring of a software system in terms of layers of abstract machines
is useful for controlling the system’s complexity and, in particular, allows for a
degree of independence between the various layers, in the sense that any internal
modification to the functionality of a layer does not have (or should not have) any
influence on the other layers. For example, if we use a high-level language, .Z,
which uses an operating system’s file-handling mechanisms, any modification to
these mechanisms (while the interface remains the same) does not have any impact
on programs written in .Z.

22 1 Abstract Machines

Fig. 1.8 A hierarchy of

abstract machines E-Business machine (on-line commerce applications)

Web Service machine (languages for web services)

‘Web machine (browser etc.)

HL machine (Java)

Intermediate machine (Java Bytecode)

Operating System machine

Firmware machine

[Hardware machine j

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy® of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

3In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.

1.3 Hierarchies of Abstract Machines 23

Program Transformation and Partial Evaluation

In addition to “translation” of programs from one language to another, as is done
by a compiler, there are numerous transformation techniques involving only one
language that operate upon programs. These techniques are principally defined with
the aim of improving performance. Partial evaluation is one of these techniques
and consists of evaluating a program against an input so as to produce a program
that is specialised with respect to this input and which is more efficient than the
original program. For example, assume we have a program P (X, Y) which, after
processing the data X, performs operations on the data in ¥ depending upon the
result of working on X. If the data, X, input to the program are always the same, we
can transform this program to P’(Y), where the computations using X have already
been performed (prior to runtime) and thereby obtain a faster program.

More formally, a partial evaluator for the language . is a program which
implements the function:

Peval ¢ - (@rog‘z X D) — @rog‘z

which has the following characteristics. Given a generic program, P, written in .Z,
taking two arguments, the result of partially evaluating P with respect to one of its
first input D is:

Pevaly (P, D1) = P’

where the program &’ (the result of the partial evaluation) accepts a single argument
and is such that, for any input data, Y, we have:

Iz (P,(D1,Y)) = Iz (PY)

where .# ¢ is the language interpreter.

in this case) is not normally the last level of the hierarchy. At this point, in fact,
we could have one or more applications which together provide new services. For
example, we can have a “web machine” level in which the functions required to
process Web communications (communications protocols, HTML code display, ap-
plet running, etc.) are implemented. Above this, we might find the “Web Service”
level providing the functions required to make web services interact, both in terms
of interaction protocols as well as of the behaviour of the processes involved. At
this level, truly new languages can be implemented that define the behaviour of
so-called “business processes” based on Web services (an example is the Business
Process Execution Language). Finally, at the top level, we find a specific applica-
tion, in our case electronic commerce, which, while providing highly specific and
restricted functionality, can also be seen in terms of a final abstract machine.

24 1 Abstract Machines

1.4 Chapter Summary

The chapter has introduced the concepts of abstract machine and the principle meth-
ods for implementing a programming language. In particular, we have seen:

e The abstract machine: an abstract formalisation for a generic executor of algo-
rithms, formalised in terms of a specific programming language.

e The interpreter: an essential component of the abstract machine which charac-
terises its behaviour, relating in operational terms the language of the abstract
machine to the embedding physical world.

e The machine language: the language of a generic abstract machine.

e Different language typologies: characterised by their distance from the physical
machine.

e The implementation of a language: in its different forms, from purely interpreted
to purely compiled; the concept of compiler is particularly important here.

e The concept of intermediate language: essential in the real implementation of any
language; there are some famous examples (P-code machine for Pascal and the
Java Virtual Machine).

e Hierarchies of abstract machines: abstract machines can be hierarchically com-
posed and many software systems can be seen in such terms.

1.5 Bibliographic Notes

The concept of abstract machine is present in many different contexts, from pro-
gramming languages to operating systems, even if at times it is used in a much more
informal manner than in this chapter. In some cases, it is also called a virtual ma-
chine, as for example in [5], which, however, presents an approach similar to that
adopted here.

The descriptions of hardware machines that we have used can be found in any
textbook on computer architecture, for example [6].

The intermediate machine was introduced in the first implementations of Pascal,
for example [4]. For more recent uses of intermediate machine for Java implemen-
tations, the reader should consult some of the many texts on the JVM, for example,
[3].

Finally, as far as compilation is concerned, a classic text is [1], while [2] is a
more recent book with a more up-to-date treatment.

1.6 Exercises

1. Give three examples, in different contexts, of abstract machines.
2. Describe the functioning of the interpreter for a generic abstract machine.

References 25

3. Describe the differences between the interpretative and compiled implementa-
tions of a programming language, emphasising the advantages and disadvan-
tages.

4. Assume you have available an already-implemented abstract machine, C, how
could you use it to implement an abstract machine for another language, L?

5. What are the advantages in using an intermediate machine for the implementa-
tion of a language?

6. The first Pascal environments included:

e A Pascal compiler, written in Pascal, which produced P-code (code for the
intermediate machine);

e The same compiler, translated into P-code;

e An interpreter for P-code written in Pascal.

To implement the Pascal language in an interpretative way on a new host ma-
chine means (manually) translating the P-code interpreter into the language on
the host machine. Given such an interpretative implementation, how can one ob-
tain a compiled implementation for the same host machine, minimising the effort
required? (Hint: think about a modification to the compiler for Pascal also written
in Pascal.)

7. Consider an interpreter, .& gl (X, Y), written in language .Z, for a different lan-
guage, Z1, where X is the program to be interpreted and Y is its input data.
Consider a program P written in .Z’1. What is obtained by evaluating

@evalg(ﬂgl, P)

i.e., from the partial evaluation of .# _g | with respect to P? (This transformation
is known as Futamura’s first projection.)

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, 1988.

2. A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press, Cam-
bridge, 1998. This text exists also for C and ML.

3. T. Lindholm and F. Yellin. The Java Virtual Machine Specification, 2nd edition. Sun and
Addison-Wesley, Cleveland, 1999.

4. S. Pemberton and M. Daniels. Pascal Implementation: The p4 Compiler and Interpreter. Ellis
Horwood, Chichester, 1982.

5. T. Pratt and M. Zelkowitz. Programming Languages: Design and Implementation, 4th edition.
Prentice-Hall, New York, 2001.

6. A. Tannenbaum. Structured Computer Organization. Prentice-Hall, New York, 1999.

Chapter 2
How to Describe a Programming Language

A programming language is an artificial formalism in which algorithms can be ex-
pressed. For all its artificiality, though, this formalism remains a language. Its study
can make good use of the many concepts and tools developed in the last century in
linguistics (which studies both natural and artificial languages). Without going into
great detail, this chapter poses the problem of what it means to “give” (define or un-
derstand) a programming language and which tools can be used in this undertaking.

2.1 Levels of Description

In a study which has now become a classic in linguistics, Morris [6] studied the
various levels at which a description of a language can occur. He identified three
major areas: grammar, semantics and pragmatics.

Grammar is that part of the description of the language which answers the ques-
tion: which phrases are correct? Once the alphabet of a language has been defined
as a first step (in the case of natural language, for example, the Latin alphabet of 22
or 26 letters, the Cyrillic alphabet, etc.), the lexical component, which uses this al-
phabet, identifies the sequence of symbols constituting the words (or tokens) of the
language defined. When alphabet and words have been defined, the synfax describes
which sequences of words constitute legal phrases. Syntax is therefore a relation be-
tween signs. Between all possible sequences of words (over a given alphabet), the
syntax chooses a subset of sequences to form phrases of the language proper.

'In linguistics, obviously, things are more complicated. In addition to the lexical and the syntactic
levels, there is also a morphological level which is distinct from the two previous ones. At the
morphological level, the different forms assumed by words (or phrases) as a function of their
grammatical function are defined. For example in the lexicon (that is, the dictionary, the thesaurus
of the language in question), we find the word “bear” with the associated lexical value given by
the image of the animal that everybody knows. At the morphological level, on the other hand, the
word is the convertible into the root “bear” and the morpheme “-s” which signals the plural. The
natural language’s phonetic aspects are also present but they are of no interest to us here.

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 27
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_2, © Springer-Verlag London Limited 2010

28 2 How to Describe a Programming Language

Semantics is that part of the description of the language which seeks to answer
the question “what does a correct phrase mean?” Semantics, therefore, attributes a
significance to every correct phrase. In the case of natural languages, the process of
attribution of meaning can be very complex; in the case of artificial languages the
situation is rather simpler. It is not difficult to assume, in this case, that semantics
is a relation between signs (correct sentences) and meanings (autonomous entities
existing independently of the signs that are used to describe them). For example,
the meaning of a certain program could be the mathematical function computed by
that program. The semantic description of that language will be constructed using
techniques allowing us, when given a program, to fix the function the program com-
putes.

It is at the third level that the principal actor makes its appearance on the scene,
the person who uses a certain language. Pragmatics is that part of a language de-
scription which asks itself “how do we use a meaningful sentence?”” Sentences with
the same meaning can be used in different ways by different users. Different linguis-
tic contexts can require the use of different sentences; some are more elegant, some
are antiquated, or more dialect-based than others. Understanding these linguistic
mechanisms is no less important than knowing the syntax and semantics.

In the case of programming languages, we can add a fourth level to the three
classical ones: the implementation level. Given that the languages that interest us
are procedural languages (that is, languages whose correct phrases specify actions),
it remains for us to describe “how to execute a correct sentence, in such a way that
we respect the semantics”. A knowledge of the semantics is, in general, enough for
the language user, but the software designer (and more importantly the language
designer) is also interested in the process with which operative phrases implement
the state under consideration. It is precisely this which is described by the language
implementation.

We can give a fairly rudimentary example which we hope will serve our pur-
poses. Let us consider the natural language used to express recipes in cooking. The
syntax determines the correct sentences with which a recipe is expressed. The se-
mantics is about explaining “what is” a recipe, independent of its (specific) execu-
tion. Pragmatics studies how a cook (“that cook”) interprets the various sentences of
the recipe. In the end, the implementation describes the way (where, and with what
ingredients) the kitchen recipe transforms into the dish that the semantics prescribes.

In the next sections, we analyse the role performed by the four levels when they
are applied to programming languages.

2.2 Grammar and Syntax

We have already said that the grammar of a language first establishes the alphabet
and lexicon. Then by means of a syntax, it defines those sequences of symbols corre-
sponding to well-formed phrases and sentences (or to “sentences” in short). Clearly,
at least from the viewpoint of natural language, the definition of the (finite) alphabet
is immediate. Even the lexicon can be defined, at least to a first approximation, in

2.2 Grammar and Syntax 29

a simple fashion. We will be content, for the time being, with a finite vocabulary;
we can simply list the words of interest to us. This is certainly what happens with
natural languages, given that dictionaries are finite volumes!?

How do we describe the syntax? In a natural language, it is the same natural
language which is used, in general, to describe its own syntax (classical examples
are grammar textbooks for various languages). Also a syntax for a programming
language is often described using natural language, particularly for the older lan-
guages. Natural language, though, often introduces ambiguity in its syntactic de-
scription and, in particular, it is of no use in the process of translating (compiling) a
program in a high-level language into another (generally, at a lower level) language.

Linguistics, on the other hand, through the work in the 1950s of the American
linguist Noam Chomsky, has developed techniques to describe syntactic phenom-
ena in a formal manner. This description uses formalisms designed specifically to
limit the ambiguity that is always present in natural language. These techniques,
known as generative grammar, are not of much use in describing the syntax of natu-
ral languages (which are too complex and highly sophisticated). Instead, they are a
fundamental tool for describing the syntax of programming languages (and particu-
larly their compilation, as we will briefly see in Sect. 2.4).

Example 2.1 We will describe a simple language. It is the language of palindromic
strings, composed of the symbols a and b.> Let us therefore begin by fixing the
alphabet, A = {a, b}. We must now select, from all strings over A (that is finite
sequences of elements of A), the palindromic strings. The simplest way to do this is
to observe that there is a simple recursive definition of a palindromic string. Indeed,
we can say (this is the basis of the induction) that @ and b are palindromic strings.
If, then, s is any string that we know already to be palindromic, then so are asa and
bsb (this is the induction step).

It is not difficult to convince ourselves that this definition captures all and only
the palindromic strings of odd length over A. It remains to account for even-length
strings, such as abba. To include these as well, we add the fact that the empty string
(that is the string which contains no symbol from the alphabet) is also a palindromic
string to the base case of the inductive definition. Now our definition categorises all
and only the palindromic strings over the alphabet A. If a string really is a palin-
dromic string, for example aabaa, or abba, there exists a sequence of applications
of the inductive rule just mentioned which will construct it. On the other hand, if a
string is not a palindromic string (for example aabab), there is no way to construct
it inductively using the rules just introduced.

Context-Free Grammars, which we introduce in the next section, are a notation
for the concise and precise expression of recursive definitions of strings such as

2In programming languages, the lexicon can also be formed from an infinite set of words. We will
see below how this is possible.

3 A string is palindromic if it is identical to its mirror image. That is, the string is the same when

read from left to right or right to left. A famous example in Latin is, ignoring spaces, the riddle “in
girum imus nocte et consumimur igni”.

30 2 How to Describe a Programming Language

the one we have just seen. The inductive definition of palindromic strings can be
expressed in grammatical form as:

P —
P—a
P—b
P — aPa
P —DbPb

In these rules, P stands for “any palindromic string”, while the arrow — is read
as “can be”. The first three lines will be immediately recognised as the basis of the
inductive definition, while the last two form the induction step.

2.2.1 Context-Free Grammars

The example just given is an example of a context-free grammar, a fundamental
device for the description of programming languages. We begin by introducing a
little notation and terminology. Having fixed a finite (or denumerable) set A, which
we call the alphabet, we denote by A* the set of all finite strings over A (that is
finite length sequences of elements of A; the * operator is called Kleene'’s star). Let
us immediately observe that, according to the definition, the sequence of length zero
also belongs to A*—this is the empty string, denoted by €.

A formal language over the alphabet A is nothing more than a subset of A*.
A formal grammar serves to identify a certain subset of strings from all those possi-
ble over a given alphabet.*

Definition 2.1 (Context-Free Grammar) A context-free grammar is a quadruple
(NT, T, R, S) where:

1. NT is a finite set of symbols (non-terminal symbols, or variables, or syntactic
categories).

2. T is afinite set of symbols (terminal symbols).

3. R is a finite set of productions (or rules), each of which is composed of an ex-
pression of the form:

V-ow

where V (the head of the production) is a single non-terminal symbol and w (the
body) is a string composed of zero or more terminal or non-terminal symbols
(that is w is a string over T U NT).

“4In formal languages, a sequence of terminal symbols which appears in a language is usually called
a “word” of the language. We do not use this terminology; instead we speak of strings, to avoid
ambiguity with words and phrases of a language (natural or artificial), in the sense in which they
are normally understood.

2.2 Grammar and Syntax 31
4. §is an element of NT (the initial symbol).

According to this definition, therefore, the grammar in the example shown in
Example 2.1 is composed of the quadruple ({ P}, {a, b}, R, P), where R is the set
of productions used in the example.

Let us observe that, according to the definition, a production can have an empty
body, that is, it can be composed of the null symbol, or, more properly, can be
formed from the empty string, €. We will see in a later section how a given grammar
defines a language over the alphabet formed from its terminal symbols. Let us begin
however with an example.

Example 2.2 Let us see a simple grammar that describes arithmetic expressions
(over the operators +, *, —, both unary and binary). The atomic elements of these
expressions are simple identifiers formed from finite sequences of the symbols a
and b.

We define the grammar G = ({E, I}, {a,b, +, %, —, (,)}, R, E), where R is the
following set of productions:

E—1
.E—-E+E
E— ExE
EFE—FE—F
E— —F
.E— (E)

oL E W

7.1 —a

8.1—b

9.1 — Ia
10. I — Ib
Unlike the grammar in Example 2.1, this one has more than one non-terminal sym-
bol corresponding, in an informal way, to an expression (E) or to an identifier (/).
Note, once more, how the productions are a synthetic way to express recursive def-
initions. In this case, we are dealing with two definitions (which have been graphi-

cally separated), of which one (the one for E) uses in its base case the non-terminal
symbol inductively defined using the other recursive definition.

BNF In the context of programming languages, context-free grammars were used
for the first time in the definition of the language Algol60. In the report that intro-
duced Algol60, the grammar that defines the language is described using a notation
that is slightly different from the one we have just introduced. This notation, (con-
sidered, among other things, to be usable with a reduced character set, that does
not include arrow, cursives, upper case, etc.) goes under the name of Backus Naur
normal form (BNF), named after two authoritative members of the Algol committee
(John Backus who had previously directed the Fortran project and had written the
compiler for it—the first high-level language, and Peter Naur). In BNF:

32 2 How to Describe a Programming Language

Fig. 2.1 A derivation of the E =3 ExE

string ab * (a + b) =, [+ E
=10 Ib*x E
=7 abx E
=¢ abx (E)

=, abx (E+ E)
= abx (I + F)
=7 abx(a+ E)
=1 abx(a+1)
=g abx (a+Db)

il

e The arrow “—” is replaced by “::=".

e The non-terminal symbols are written between angle brackets (for example (Exp)
and (Ide) could be the two non-terminal symbols of the grammar of Example 2.2).

e Productions with the same head are grouped into a single block using vertical bar
(“]”) to separate the productions. In Example 2.2, the productions for E could
therefore be expressed as follows:

(E) m= (1) [(E) + (E) | (E) % (E) [(E) — (E) | =(E) | (E})).

Moreover, some notations mix symbols (for example, use of the vertical bar, the
arrow and non-terminal symbols written in italic upper case).

Derivations and languages A grammar inductively defines a set of strings. We
can make explicit the operative aspect of this inductive definition using the concept
of derivation.

Example 2.3 We can ensure that the string ab * (a 4+ b) is correct according to
the grammar of Example 2.2, reading the productions as “rewriting rules”, and by
repeatedly applying them. We use a bigger arrow (“=") to denote the operation of
string rewriting. We can then proceed as follows. We start with the initial symbol,
E, and rewrite it using a production (which we are allowed to select). Let us, for
example, use production (3), and we obtain the rewriting £ = E * E. Now we
concentrate on the right-hand side of this production. We have two E’s that can be
rewritten (expanded) independently of each other. Let us take the one on the left
and apply production (1) to obtain E x E = I % E. We can now choose whether we
expand / or E (or the other way round). Figure 2.1 shows the rewriting that we have
just started, developed until the string ab * (a + b) has been derived. The production
used is represented by each =5’ subscript.

We can capitalise on this example in the following definition.

Definition 2.2 (Derivation) Having fixed a grammar, G = (N7, T, R, S), and as-
signed two strings, v and w over NT U T, we say that w is immediately derived

2.2 Grammar and Syntax 33

Fig. 2.2 A derivation tree for E =3 ExE
the string ab x (a +b) =¢ E* (E)

=, Ex(E+E)
=1 Ex(E+1)
=3 Ex(E+b)
=1 Ex(I+b)
=7 Ex(a+Db)
=1 Ix(a+b)
=10 Ibx(a+b)
=7 abx(a+b)

from v (or: v is rewritten in a single step into w), if w is obtained from v by sub-
stituting the body of a production of R whose head is V for a non-terminal symbol,
V, in v. In this case, we will write v = w.

We say that w is derived from v (or: v is rewritten to w) and we write v =* w, if
there exists a finite (possibly empty) sequence of immediate derivations v = wo =
w|p == w.

Using the notation just introduced, and using the grammar for expressions that
we have used so far we can write, for example E * E =* ab * (a +). Particularly
interesting are those derivations where on the left of the =* symbol there is the
grammar’s initial symbol and on the right is a string solely composed of terminal
symbols. In a certain sense, these are maximal derivations which cannot be extended
(by rewriting a non-terminal) either on the left or right. Following the intuition that
has led us to the introduction of grammars, these derivations are the ones that give
us the correct strings as far as the grammar is concerned.

Definition 2.3 (Generated Language) The language generated by a grammar G =
(NT,T,R,S)istheset Z(G)={weT*|S=*w).

Note that this definition, in accordance with everything we said at the start of
Sect. 2.2.1, defines precisely a language over T*.

Derivation Trees The derivation of a string is a sequential process. In it, there are
steps that must be performed in a certain order. For example, in Fig. 2.1, it is clear
that the first = |9 must follow the first =3 because production (10) rewrites the non-
terminal symbol I which does not exist in the initial string (which is composed of
only the initial symbol E) which is introduced by production (3). But there are some
steps whose order could be exchanged. In the derivation in Fig. 2.1, for example,
each time that it is necessary to rewrite a non-terminal symbol, the leftmost is always
chosen. We could imagine, on the other hand, concentrating first on the rightmost
non-terminal symbol, thereby obtaining the derivation shown in Fig. 2.2.

The two derivations that we have given for the string ab * (a + b) are, in a highly
intuitive way, equivalent. Both reconstruct the structure of the string in the same
way (in terms of non-terminal and terminal strings), while they differ only in the

34 2 How to Describe a Programming Language

Fig. 2.3 A derivation tree for E
the string ab * (a + b) / \
E * E
« E)

VAN

+

~— 1y

g—~—"1"

order with which the productions are applied. This fact is made explicit in Fig. 2.3
which represents the derivation of the string ab * (a 4+ b) in the form of a tree.

Definition 2.4 Given a grammar, G = (NT,T, R, S), a derivation tree (or parse
tree) is an ordered tree in which:

Each node is labelled with a symbol in NTU T U {€}.

The root is labelled with S.

Each interior node is labelled with a symbol in NT.

If a certain node has the label A € NT and its children are m1, ..., mj labelled
respectively with X, ..., Xi, where X; e NTUT for all i € [1, k], then A —
X1 ... X is a production of R.

5. If anode has label €, then that node is the unique child. If A is its parent, A — €
is a production in R.

R e

It is easy to see that, a derivation tree can be obtained from any derivation. It is
enough to start at the root (labelled with the initial symbol) and successively adding
a level of children corresponding to the production used during the derivation. By
applying this procedure to the derivation of Fig. 2.1, the derivation tree of Fig. 2.3
is obtained. Let us now apply this construction procedure to the derivation tree in
Fig. 2.2. Again, the tree in Fig. 2.3 is obtained. The two derivations result in the
same tree, and this fact corresponds to the intuition that the two derivations were
substantially equivalent.

Derivation trees are one of the most important techniques in the analysis of pro-
gramming language syntax. The structure of the derivation tree indeed expresses,
by means of its subtrees, the logical structure that the grammar assigns to the string.

2.2 Grammar and Syntax 35

Trees

The concept of tree is of considerable importance in Computer Science and is also
used a great deal in common language (think of a genealogical tree, for example).
A tree is an information structure that can be defined in different ways and that exists
in different “spaces”. For our purposes, we are interested only in ordered, rooted
trees (or simply trees) which we can define as follows. A (rooted, ordered) tree is
a finite set of elements called nodes, such that if it is not empty, a particular node
is called the root and the remaining nodes, if they exist, are partitioned between the
elements of an (ordered) n-tuple (S, S2, ..., Sp), n > 0, where each S;, i € [1, N]
is a tree.

Intuitively, therefore, a tree allows us to group nodes into levels where, at level
0, we have the root, at level 1 we have the roots of the trees Si, >, ..., S, and so
on.

Another (equivalent) definition of tree is often used. It is probably more signif-
icant for the reader who is familiar with genealogical trees, botanical classifications,
taxonomies, etc. According to this definition, a tree is a particular case of a graph: a
(rooted, ordered) tree is therefore a pair T = (N, A), where N is a finite set of nodes
and A is a set of ordered pairs of nodes, called arcs, such that:

e The number of arcs is equal to one less than the number of nodes.

e T is connected, that is, for each pair of nodes, n, m € N, there exists a sequence of
distinct nodes ng, n1, ..., ng such that nop = n and ny = m and the pair (n;, n;+1)
is an arc, fori =0, ...,k — 1.

e A (unique) node, r, is said to be the rootr and the nodes are ordered by level
according to the following inductive definition. The root is at level O; if a node n
is at level i, and there exists the arc (n, m) € A then node m is at level i + 1.

e Given a node, n, the nodes m such that there exists an arc (n, m) € A are said to
be the children of n (and n is said to be their parent); for every node n € N, a
total order is established on the set of all the children of n.

Using a curious mix of botanical, mathematical and “familiar” terms, nodes
with the same parent are said to be siblings while nodes without children are said to
be leaves. The root is the only node without a parent.

For example, the tree in Fig. 2.4 corresponds to the following derivation:

E=,E+E
=>3ExE+E
= IxE+E
=7axE+FE
=iaxl+ FE
=gaxb+ E
=iaxb+1
=7axb+a

36 2 How to Describe a Programming Language

Fig. 2.4 A derivation tree for

E
the stringaxb +a /
E

+ E
SN
E * E 1
o
1 1 a
|
a b
Fig. 2.5 Another derivation E
tree for the stringaxb 4 a / \
E * E
/N
1 E + E
o
a 1 1
|
b a

In the tree in Fig. 2.4, we can see that the subexpression a x b appears as a left child
of a sum. This expresses the fact that the string a xb + a must be interpreted as “first
multiply a by b and add the result to a”, given that in order to compute the sum, the
operand present in the left subtree is needed.

Ambiguity Let us consider the following derivation (again using the grammar of
Example 2.2):

E=3ExE
=1 1xE
=7axFE
=saxE+ E
=i1axl+E
=ga*xb+ E
=i1axb+1/
=7axb+a

If we construct the corresponding derivation tree, we obtain the tree in Fig. 2.5.
Comparing the trees in Figs. 2.4 and 2.5, it can be seen that we have two different
trees producing the same string. Reading the leaves of the two trees from left to
right, in both cases, we obtain the string a x b 4 a. Let us observe, however, that
the two trees are radically different. The second assigns a structure to the same
string that is quite different (and therefore reveals a different precedence implicit in
the arithmetic operators). If we want to use derivation trees to describe the logical

2.2 Grammar and Syntax 37

structure of a string, we are in a bad position. The grammar of Example 2.2 is
incapable of assigning a unique structure to the string in question. According to
how the derivation is constructed, the precedence of the two arithmetic operators
differs. Let us now see a formal definition of these concepts.

First, let us be clear about what it means to read or visit the leaves of a tree
“from left to right”. Visiting a tree consists of following a path through the tree’s
nodes so that each node is visited exactly once. There are different ways to visit
nodes (depth-, breadth-first and symmetric), which, when applied to the same tree,
produce different sequences of nodes. If only the leaves are considered, however,
each and every one of these methods produces the same result for which we can use
the following definitions:

Definition 2.5 Let T = (N, A), be a non-empty, ordered tree with root r. The result
of the left-to-right traversal of T is the sequence of nodes (leaves) obtained by the
following recursive definition:

e If r has no children, the result of the traversal is r.

e If r has k children, m,...,my, let Ty, ..., T; be the subtrees of T such that
T; has m; as its root (7; therefore contains m; and all of that part of 7" which is
underneath this node). The result of the traversal is the sequence of nodes obtained
by visiting T to T in turn, from left to right.

A this point, we can say what it means for a string to admit a derivation tree.

Definition 2.6 We say that a string of characters admits a derivation tree 7 if it is
the result of a left-to-right traversal of T'.

Finally, we can give the definition that interests us.

Definition 2.7 (Ambiguity) A grammar, G, is ambiguous if there exists at least one
string of .Z(G) which admits more than one derivation tree.

We remark that ambiguity comes not from the existence of many derivations for
the same string (a common and innocuous property) but from the fact that (at least)
one string has more than one derivation tree.

An ambiguous grammar is useless as description of a programming language
because it cannot be used to translate (compile) a program in a unique fashion.
Fortunately, given an ambiguous grammar it is often possible to transform it into
another, unambiguous, grammar that generates the same language.’ Techniques for
grammar disambiguation are outside the scope of this book. By way of example,
Fig. 2.6 shows an unambiguous grammar whose generated language coincides with
the one in Example 2.2.

SThere exist pathological cases of languages which are generated only by ambiguous grammars.
These languages have no relevance to programming languages.

38 2 How to Describe a Programming Language

Fig. 2.6 An unambiguous G =(E,T,A I}, {a,b,+,%,— ()}, R,E)
grammar for the language of

expressions E>T|T+E|T—E

T — A|AxT
A—T|—A|(E)
I —>alb|Ia|Ib

We have a grammar which interprets the structure of an expression according
to the usual concept of arithmetic operator precedence. Unary minus (“-”’) has the
highest precedence, followed by :, followed in their turn by + and binary — (which
have the same precedence). The grammar interprets, then, a sequence of operators
at the same level of precedence by association to the right. For example, the string
a+ b + a will be assigned the same structure as the string a + (b 4+ a). The absence
of ambiguity is paid for by increased complexity. There are more non-terminals and
the intuitive interpretation of the grammar is therefore more difficult.

The need to provide unambiguous grammars explains the contortions that appear
in the definitions of some programming languages. For example, Fig. 2.7 shows an
extract of the official grammar for Java’s conditional command (its if) (the non-
terminal symbols are printed in italic, while the terminal symbols in this extract are
if, else and brackets).

This grammar is interesting for two reasons. First, note that what are formally
considered single symbols (terminal or non-terminal) in context-free grammars are
here represented by words composed of a number of characters. For example, if
represents a single terminal symbol and, analogously, IfThenElseStatement repre-
sents a non-terminal symbol.

This happens because, in the definition of a programming language, it is prefer-
ential to use meaningful words (i f, then, else) which can, up to certain limits,
suggest an intuitive meaning, rather than symbols which would be harder to under-
stand by the language user. In other words, as we will better see in the next chap-
ters, that the use of (meaningful) symbolic names definitely makes programming
easier. Analogously, for non-terminal symbols, they make the grammar easier to
understand. It is definitely better to use names such as Statement rather than single
symbols.

The second interesting aspect of the grammar is its complex nature. This com-
plexity is necessary to resolve the ambiguity of strings (programs) such as the one
exemplified by the following skeleton program:

if (expressionl) if (expression2) commandl;
else command?2;

Java, like a great many other programming languages allows conditional com-
mands both with an else branch and without it. When an if command without
else is combined with an i f with an else branch (as in the case of the program
appearing above), it is necessary to determine which of the two 1ifs is the owner
of the single else. The grammar in Fig. 2.7 is an unambiguous one which makes

2.3 Contextual Syntactic Constraints 39

Statement ::= . ..| IfThenStatement | [fThenElseStatement |
StatementWithoutTrailingSubstatement
StatementWithoutTrailingSubstatement ::=...| Block | EmptyStatement |
ReturnStatement
StatementNoShortlf ::= .. .| StatementWithoutTrailingSubstatement |
IfThenElseStatementNoShortlf
IfThenStatement ::= i £ (Expression) Statement
IfThenElseStatement ::=
if (Expression) StatementNoShortlf else Statement
IfThenElseStatementNoShortlf ::=
if (Expression) StatementNoShortlf else StatementNoShortlf

Fig. 2.7 Grammar for Java conditional commands

“an else clause belong to the innermost if to which it might possibly belong”
(from the Java definition [3]). In simple words, the else is paired with the second
if (the one which tests expression2). Intuitively, this happens because, once
an i1f command with an else is introduced by use of the non-terminal symbol
IfThenElseStatement, the command in the then branch will be unable to hold an i £
command without an else, as can be seen by inspection of the rules which define
the non-terminal symbol StatementNoShortlf.

2.3 Contextual Syntactic Constraints

The syntactic correctness of a phrase of a programming language sometimes de-
pends on the context in which that phrase occurs. Let us consider, for example,
the assignment I = R+3 ;. Assuming that the productions in the grammar that are
used permit the correct derivation of this string, it might be, though, incorrect at the
exact point in the program at which it occurs. For example, if the language requires
the declaration of variables, it is necessary for programs to contain the declarations
of T and R before the assignment. If, then, the language is typed, it would not accept
the assignment if the type of the expression R+3 is not compatible® with that of the
variable T.

Strings that are correct with respect to the grammar, therefore, can be legal only
in a given context. There are many examples of these contextual syntactic con-
straints:

e An identifier must be declared before use (Pascal, Java).
e The number of actual parameters to a function must be the same as the formal
parameters (C, Pascal, Java, etc.).

6 All these concepts will be introduced below. For now, an intuitive understanding of these concepts
will suffice.

40 2 How to Describe a Programming Language

e In the case of assignment, the type of an expression must be compatible with that

of the variable to which it is assigned (C, Pascal, Java, etc.).

Assignments to the control variable of a for loop are not permitted (Pascal).

Before using a variable, there must have been an assignment to it (Java).

e A method can be redefined (overridden) only by a method with the same signature
(Java) or with a compatible signature (Java$).

These are, to be sure, syntactic constraints. However, their contextual nature
makes it impossible to describe them using a context-free grammar (the name of this
class of grammars was chosen purpose). A book on formal languages is required to
go into detail on these issues; here, it suffices to note that there exist other types
of grammar, called contextual grammars.” These grammars permit the description
of cases such as this. These grammars are difficult to write, to process and, above
all, there are no automatic techniques for efficient generation of translators, such as
exist, on the other hand, for context-free grammars. This suggests, therefore, that
use of grammars should be limited to the non-contextual description of syntax and
then to express the additional contextual constraints using natural language or using
formal techniques such as transition systems (which we will see in Sect. 2.5 when
we consider semantics).

The term static semantic constraint is used in programming language jargon to
denote the contextual constraints that appear in the syntactic aspects of a language.
In the jargon, “syntax” in general means “describable using a context-free gram-
mar”, “static semantics” means “describable with verifiable contextual constraints
on a static basis using the program text”, while “dynamic semantics” (or simply
“semantics”) refers to everything that happens when a program is executed.

The distinction between context-free and context-dependent syntax (that is, static
semantics) is established precisely by the expressive power of context-free gram-
mars. The distinction between syntax and semantics is not always clear. Some cases
are clear. Let us assume, for example, that we have a language whose definition es-
tablishes that should a division by 0 happen during execution, the abstract machine
for the language must report it with an explicit error. This is clearly a dynamic se-
mantic constraint. But let us assume, now, that the definition of another language is
specified as follows:

A program is syntactically incorrect when a division by 0 can happen.

The program in Fig. 2.8 would be syntactically incorrect in this hypothetical lan-
guage because there exists a sequence of executions (those in which the read com-
mand assigns the value O to A) which causes division by zero. Does the constraint
that we have stated above (which certainly cannot be expressed in a free grammar)
belong to static or dynamic semantics? It is clear that it refers to a dynamic event

In extreme synthesis, in a contextual grammar, a production can take the form (which is more
general than in a context-free grammar) u Av — uwv, where u, v and w are strings over 7 U NT.
Fundamental to this production, the non-terminal symbol A can be rewritten to w only if it appears
in a certain context (the one described by u and v).

2.4 Compilers

Fig. 2.8 A program that can
cause a division by 0

Fig. 2.9 An abstract syntax
tree

int A, B;
read(A) ;
B = 10/A;

ComCond

ThenBranch

ElseBranch

41

RN | |

Exp Eq Exp /C om\ /C om\
Assn Exp

X Assn Exp X

0 1

(division by zero) but the constraint, to be meaningful (that is, that it really does
exclude some programs) would have to be detected statically (as we have done for
the simple program given above). A person can decide that it is syntactically incor-
rect without executing it but only from looking at the code and reasoning about it).
More important than its classification, is understanding whether we have a verifiable
constraint or not. Otherwise stated, is it really possible to implement an abstract ma-
chine for such a language, or does the very nature of the constraint imply that there
can exist no abstract machine which is able to check it in a static fashion for an
arbitrary program?

These are questions that we cannot immediately answer, even though they are
very important, because they concern what we can, and cannot, do with an ab-
stract machine. We will concern ourselves with these questions in the next chapter
(Chap. 3).

2.4 Compilers

The moment has arrived at which to see in outline how the syntactic description of a
language can be used automatically to translate a program. We know from Chap. 1
that such an automatic translator is called a compiler, whose general logical struc-
ture is shown in Fig. 2.10. It is characterised by a cascaded series of phases. The
various phases, starting with a string representing the program in the source lan-
guage, generate various internal intermediate representations until a string in the
object language is generated. Note that, as seen in the previous chapter, in this con-
text, “object language” does not necessarily equate to “machine code” or to “low-
level language”. It is merely a language towards which the translation is directed.
In what follows, we briefly describe the different phases of compilation. We do not
pretend to explain how to construct a compiler (see [1]), but just to fix some ideas
useful for our study of programming languages.

Lexical analysis The aim of lexical analysis is to read the symbols (characters)
forming the program sequentially from the input and to group these symbols into

42 2 How to Describe a Programming Language

Fig. 2.10 Organisation of a
compiler
Source Program

Lexical
analysis

Token list

Syntactic
analysis

Derivation tree
table

Semantic
analysis

Symbol

Augmented derivation tree

Generation of
intermediate form

Intermediate form

Optimisation

Optimised intermediate form
Code
generation

\
Object code

meaningful logical units, which we call tokens, (which are analogous, for our pro-
gramming language, to the words in the dictionary of a natural language). For ex-
ample, the lexical analyser of C or Java, when presented with the string x = 1
+ foo++; will produce 7 tokens: the identifier x, the assignment operator =, the
number 1, the addition operator +, the identifier foo, the auto increment operator
++ and finally the command termination token ;. Particularly important tokens are
the reserved words of the language (such as for, 1 £, else, etc.), operators, open
and close brackets (such as { and } in C or Java, but also those such as begin
and end in Pascal). Lexical analysis (or scanning) is a very simple operation which
scans the input text of the source program from left to right, taking a single pass
to recognise tokens. No check is yet made on the sequence of tokens such as, for
example, checking that brackets are correctly balanced. As discussed in detail in
the box, the technical tool used for lexical analysis is a particular class of generative
grammars (regular grammars). The use of a grammar to describe the elements of the
lexicon is due both to the necessity of efficiently recognising these elements, and to

2.4 Compilers 43

Abstract and Concrete Syntax

The grammar of a programming language defines the language as a set of strings.
This set of strings corresponds in a natural way to the set of their derivation trees.
These trees are much more interesting than the strings. First, they abstract from the
specific lexical characteristic of the tokens. It can also happen that lexically different
structures can result in the same tree. The tree depicted in Fig. 2.9 could correspond
to the Pascal string:

if A=0 then X:=0 else X:=1

or to the Java string:
if (A==0) X=0; else X=1;

As we have already repeatedly observed, derivation trees are interesting be-
cause they express the canonical structure that can be assigned to the string.

Not all derivation trees correspond to legal programs. We know that static se-
mantic analysis has the task of selecting those trees satisfying the contextual con-
straints of the language. The set of trees resulting from this process constitutes the
abstract syntax of language. This is a much more convenient way of thinking of a
language if we are interested in its manipulation (and not merely in writing correct
programs in it).

the fact that, unlike the case of natural language lexicons, lexicons for programming
languages can be formed from an infinite set of words and therefore a simple list,
so the one used in a normal dictionary is inadequate (think, for example, of the pos-
sibility of defining identifiers as sequences of characters of arbitrary length starting
with a particular letter).

Syntactic analysis Once the list of tokens has been constructed, the syntactic anal-
yser (or parser) seeks to construct a derivation tree for this list. This is, clearly, a
derivation tree in the grammar of the language. Each leaf of this tree must corre-
spond to a token from the list obtained by the scanner. Moreover, these leaves, read
from left to right, must form a correct phrase (or a sequence of terminal symbols) in
the language. We already know that such trees represent the logical structure of the
program which will be employed by the successive phases of compilation.

It can happen that the parser is unable to construct a derivation tree. This hap-
pens when the input string is not correct with reference to the language’s grammar.
In such a case, the parser reports the errors it has encountered and compilation is
aborted. In reality, lexical and syntactic analysis are interleaved in a more direct
fashion than appears from these notes (in particular, the two phases are not sequen-
tial but the scanner produces a token for each invocation of the parser); more details
can be obtained from one of the many texts on compilers.

44 2 How to Describe a Programming Language

Regular Grammars

The difference between lexical and syntactic analysis can be made precise using
a formal classification of grammars. If a grammar has all productions of the form
A — bB (orin the form A — Bb), where A and B are non-terminal symbols (B can
also be absent or coincide with A) and b is a single terminal symbol, the grammar
is said to be regular. In Example 2.2, the (sub-) grammar based on the non-terminal
symbol I is a regular grammar (while the subgrammar for E is not).

The expressive power of regular grammars is highly limited. In particular, using
a regular grammar, it is not possible to “count” an arbitrary number of characters.
As a consequence, it is not possible to express the balancing of syntactic structures
such as brackets using a regular grammar.

Technically, lexical analysis is the first phase of translation which checks that
the input string can be decomposed into tokens, each of which is described by a
regular grammar (in Example 2.2, lexical analysis would have recognised the se-
quences of a and b as instances of the non-terminal symbol 7).

Once the sequence of tokens has been obtained, syntactic analysis takes place
using a properly context-free grammar which uses the tokens produced by the pre-
ceding lexical analysis as its terminal symbols.

Semantic analysis The derivation tree (which represents the syntactic correctness
of the input string) is subjected to checks of the language’s various context-based
constraints. As we have seen, it is at this stage that declarations, types, number of
function parameters, etc., are processed. As these checks are performed, the deriva-
tion tree is augmented with the information derived from them and new structures
are generated. By way of an example, every token that corresponds to a variable
identifier will be associated with its type, the place of declaration and other useful
information (for example its scope, see Chap. 4). To avoid the useless duplication
of this information, it is, in general, collected into structures external to the deriva-
tion tree. Among these structures, the one in which information about identifiers
is collected is called the symbol table. The symbol table plays an essential role in
successive phases.

At the cost of boring the reader, so that we do not confuse it with what we call
semantics in Sect. 2.5, let us note that the term semantic analysis is an historical
relic and that it is concerned with context-based syntactic constraints.

Generation of intermediate forms An appropriate traversal of the augmented
derivation tree allows an initial phase of code generation. It is not yet possible to
generate code in the object language, given that there are many optimisations left to
do and they are independent of the specific object language. Moreover, a compiler
is often implemented to generate code for a whole series of object languages (for
example, machine code for different architectures), not just one. It is useful, there-
fore, to concentrate all choices relating to a specific language in a single phase and

2.5 Semantics 45

to generate code to an intermediate form, which is designed to be independent of
both the source and the object languages.

Code optimisation The code obtained from the preceding phases by repeatedly
traversing the derivation tree is fairly inefficient. There are many optimisations that
can be made before generating object code. Typical operations that can be performed
are:

e Removal of useless code (dead code removal). That is, removal of pieces of code
that can never be executed because there is no execution sequence that can reach
them.

e [n-line expansion of function calls. Some function (procedure) calls can be sub-
stituted by the body of the associated function, making execution faster. It also
makes other optimisations possible.

e Subexpression factorisation. Some programs compute the same value more than
once. If, and when, this fact is discovered by the compiler, the value of the com-
mon subexpression can be calculated once only and then stored.

e Loop optimisations. Iterations are the places where the biggest optimisations can
be performed. Among these, the most common consists of removing from inside
a loop the computation of subexpressions whose value remains constant during
different iterations.

Code generation Starting with optimised intermediate form, the final object code
is generated. There follows, in general, a last phase of optimisation which depends
upon the specific characteristics of the object language. In a compiler that generates
machine code, an important part of this last phase is register assignment (decisions
as to which variables should be stored in which processor registers). This is a choice
of enormous importance for the efficiency of the final program.

2.5 Semantics

As is intuitively to be expected, the description of the semantics of a programming
language is somewhat more complex than its syntactic description. This complexity
is due both to technical problems, as well to the need to mediate between two op-
posing issues: the need for exactness as well as for flexibility. As far as exactness is
concerned, a precise and unambiguous description is required of what must be ex-
pected from every syntactically correct construct so that every user knows a priori
(that is before program execution), and in a manner independent of the architecture,
what will happen at runtime. This search for exactness, however, must not preclude
different implementations of the same language, all of which are correct with respect
to the semantics. The semantic specification must therefore also be flexible, that is,
it must not anticipate choices that are to be made when the language is implemented
(and which therefore do not play a part in the definition of the language itself).

It would not be difficult to achieve exactness at the expense of flexibility. It is
enough to give the semantics of a language using a specific compiler on a specific

46 2 How to Describe a Programming Language

architecture. The official meaning of a program is given by its execution on this
architecture after translation using that compiler. Apart form the difficulty of speak-
ing in general about the semantics of the language’s constructs, this solution has no
flexibility. Although we have constructed what we claim to be a semantics, there ex-
ists only one implementation (the official one) and all the other implementations are
completely equivalent. But to what level of detail is the canonical implementation
normative? Is the computation time of a particular program part of its definition? Is
the reporting of errors? How can typically architecture-dependent input/output com-
mands be ported to a different architecture? When the implementation technology
of the physical machine changes, how is the semantics, which we have incautiously
defined in terms of a specific machine, affected?

One of the difficulties of semantic definition is really that of finding the happy
medium between exactness and flexibility, in such a way as to remove ambiguity,
still leaving room for implementation. This situation suggests using formal methods
to describe the semantics. Methods of this kind have existed for a long time for the
artificial languages of mathematical logic and they have been adapted by computer
scientists for their own ends. Yet, some semantic phenomena make formal descrip-
tion complex and not easily usable by anyone who does not have the appropriate
skills. It is for this reason that the majority of official programming language def-
initions use natural language for their semantic description. This does not detract
from the fact that formal methods for semantics are very often used in the prepara-
tory phases of the design of a programming language, or to describe some of its
particular characteristics, where it is paramount to avoid ambiguity at the cost of
simplicity.

Formal methods for semantics divide into two main families: denotational and
operational semantics.® Denotational semantics is the application to programming
languages of techniques developed for the semantics of logico-mathematical lan-
guages. The meaning of a program is given by a function which expresses the in-
put/output behaviour of the program itself. The domain and codomain of this func-
tion are suitable mathematical structures, such as the environment and the memory
(store), that are internal to the language. Refined mathematical techniques (continu-
ity, fixed points, etc.) allow the appropriate treatment of phenomena such as iteration
and recursion (see [8]).

In the operational approach, on the other hand, there are no external entities (for
example, functions) associated with language constructs. Using appropriate meth-
ods, an operational semantics specifies the behaviour of the abstract machine. That
is, it formally defines the interpreter, making reference to an abstract formalism at a
much lower level. The various operational techniques differ (sometimes profoundly)
in their choice of formalism; some semantics use formal automata, others use sys-
tems of logico-mathematical rules, yet others prefer transition systems to specify
the state transformations induced by a program.

8For completeness, we should also talk about algebraic and axiomatic semantics, but simplicity
and conciseness require us to ignore them.

2.5 Semantics 47

Num =:=1|2|3]...
Var =X X2 X3]...

AExp ::= Num | Var | (AExp + AExp) | (AExp — AExp)
BExp .= tt | ff | (AExp == AExp) | ~BExp | (BExp A BExp)

Com ::=skip | Var := AExp | Com; Com |
if BExp then Com else Com | while BExp do Com

Fig. 2.11 Syntax of a simple imperative language

This is not a book in which an exhaustive treatment of these semantic techniques
can be given. We content ourselves with a simple example of techniques based on
transition systems to give a semantics for a rudimentary imperative language. This
technique, called SOS (Structured Operational Semantics, [7]), is highly versatile
and has been effectively used in giving the semantics to some languages including
Standard ML (an influential functional language).

Figure 2.11 shows the grammar of a simple language. For reasons of readability
(and so that we can obtain a concise semantics), we have a grammar with infinite
productions for the Num and Var non-terminal symbols. The explicit presence of
brackets around each binary operator application eliminates possible problems of
ambiguity.

We need to introduce some notation. We will use # to denote an arbitrary Num
(numeric constant); using X, we will denote an arbitrary Var (variable). We write a
for an arbitrary AExp (arithmetic expression). We use b to denote an arbitrary BExp
(boolean expression, where tt and ff denote the values true and false, respectively).
We write ¢ for arbitrary Comm (commands). We use, when needed, subscripts to
distinguish between objects of the same syntactic category (for example, we will
write ap, a», etc., for AExps).

State The semantics of a command in our language uses a simple memory model
which stores values of Var. In this model, a state is a finite sequence of pairs of
the form (X, n) which we can read as “in the current state, the variable X has the
value n” (in our little language, the value will always be an integer but we can easily
imagine more complex situations). Given a command c (that is a derivation tree
that is correct according to the grammar in Fig. 2.11), its reference state is given by
a sequence of pairs which includes all Vars which are named in ¢. We denote an
arbitrary state by o or t, with or without subscripts.

We need to define some operations on states: modification of an existing state
and the retrieval of a variable’s value in the current state. To this end, given a state,
o, a Var X and a value v, we write o[X < v] to denote a new state that is the same
as o but differs from it by associating X with the value v (and thereby losing any
previous association to X). Given a state, o, and a variable, X, we write o (X) for
the value that o associates with X; this value is undefined if X does not appear in
the domain of o (o is therefore a partial function).

48 2 How to Describe a Programming Language

Example 2.4 Let us fix 0 = [(X, 3), (Y,5)], we have o[X < 7] =[(X,7), (¥, 5)].
We also have o (Y) =5 and o[X < 7](X) = 7; o (W) is undefined.

Transitions Structured operational semantics can be seen as an elegant way of
defining the functioning of an abstract machine without going into any details about
its implementation.” This functioning is expressed in terms of the elementary com-
putational steps of the abstract machine. The formal way in which structured oper-
ational semantics defines the meaning of a program, c, is in terms of a transition
which expresses a step in the transformation (of the state and/or of the program
itself) induced by the execution of the command. The simplest form of transition
is:

(c,o0)—> 1,

where c is a command, o the starting state and t the terminal state. The interpreta-
tion that we give to this notation is that if we start the execution of c in the state o,
the execution terminates (in a single step) with state 7. For example, the transition
which defines the skip command is

(skip, o) — o.

It can be seen that we have a command that does nothing. Starting in any state,
o, skip terminates leaving the state unchanged.

In more complex cases, a ferminal situation will be reached not in a single large
step, but rather in many little steps which progressively transform the state (starting
with o); the command, c, is progressively executed a part at a time until the whole
has been “consumed”. These little steps are expressed by transitions of the form:

(c,o) = (c,d').
For example, one of the transitions which define the conditional command will be:
(if tt then c; else ¢y, 0) — (c1,0),

This means that if the boolean condition is true, the command in the then branch
must be executed. Some transitions, finally, are conditional: if some command, ¢y,
has a transition, then the command ¢ has another transition. Conditional transitions
take the form of a rule, expressed as a fraction:

(c1,01) = (c],00) {c2,00) = (¢}, 03)

(c,0) — (c',0")

We read this rule in the following way. If the command, c1, starting in state o7,
can perform a computational step that transforms itself into command ¢} in state

9Using terminology which we will use again in the final chapters of this book, we can say that it is
a declarative description of the language’s abstract machine.

2.5 Semantics 49

(X,0) = (0(X),0)

((n+m),0)— (p,o) ((n—m),0)— (p,o)
where p=n+m where p=n—men>m
(a1, 0) —> {d',0) (a2, 0) = (a",0)

((a1 +az),0) = (@' +az),0) ((a1 +a2),0) = ((a1 +a"),0)

(a1,0) > (d', o) (a2,0) > (a",0)

((a1 —a2),0) = ((@' —az),0) ((a1 —a2),0) = ((a1 —a"), o)

Fig. 2.12 Semantics of arithmetic expressions

oy, and if the command c;, starting in o7, can perform a computational step and
transform itself into the command c’2 in state 02’, then the command, c, starting in
the state o can perform a computational step and transform itself into the command
¢’ in state o’. It is clear that a specific rule will express a number of meaningful
relationships between c, ¢ and ¢, (and their respective states). In general, ¢1 and ¢;
will be subcommands of ¢.!0

Expression semantics Figure 2.12 shows the rules for the semantics of arithmetic
expressions. The first three rules are terminal rules (that is, the computation to the
right of the arrow is in a form to which no more transitions can be applied). In order
of presentation, they define the semantics of a variable, of addition in the case in
which both of the summands are constants, of subtraction in the case in which both
its arguments are constants and its result is a natural number. Note that no semantics
is given for expressions such as 5 — 7. The second group of four rules is formed
of conditional rules. The first pair defines the semantics of sums and expresses the
fact that to calculate the value of a sum, it is necessary first to evaluate its two
arguments separately. Note how the semantics specifies no order of evaluation for
the arguments of an addition. Subtraction is handled in a similar fashion.

Figure 2.13 shows the semantics of logical expressions and adopts the same ideas
as for arithmetic expressions. Note that in this figure, bv denotes a boolean value (tt
or ff).

Command semantics It can be seen how the state, o, always remains unaltered
during the evaluation of an expression and how it is only used to obtain the value
of a variable. This changes for the semantics of commands as shown in Fig. 2.14.
Note how the rules in the Figure are essentially of two types: those which, for every
command, express the actual computational step for that command (this holds for
rules (cl), (c2), (c4), (c6), (c7) and (c9)), as well as those which serve just to make

107¢ will not have escaped the attentive reader that what we have called conditional rules are, in
reality, inductive rules forming part of the definition of transition relations.

50 2 How to Describe a Programming Language

(n==m), o) — (tt, o) (n==m),o0) — {ff, o)
ifn=m ifn#m

((bvy A bvy),0) — (bv, o)
where bv is the and of bv; and bv,

(—tt, o) — (ff, o) (—ff, o) — (tt, o)
(a1,0) = (d',0) (a,0) = (d",0)

(a1 == @), 0) — ((@' == @), 0) ((a1 == ap),0) — ((a1 ==a"), 0)
(b1,0) = (b, 0) (by,0) — (b",0)

(b1 Ab2), o) = (B Ab2), 0) (b1 Ab2), o) = (b1 AD"), 0)

(b,o) — (b',0)
(=b,0) — (—b, o)

Fig. 2.13 Semantics of boolean expressions

(skip, o) > o (cl)

(a,0) = (a’,0)
(X:=n,0)—>o[X<«<n] (2 X:=a,0)—> (X:=d,0)

(c3)

(c1,0) =0’ (cd) (c1,0) = (c]. o)
C
(c15¢2,0) = {c2,0) (cr15c2,0) = (c}5c2,07)

(c5)

(if tt then ¢ else ¢, 0) — {(c1,0) (c6)
(if ff then ¢ else ¢y, 0) — {(c2,0) (c7)

(b,o)— (b',0)
(if b then c; else ¢p, o) — (if b’ then c; else ¢;, o)

(c8)

(while b do ¢, o) — (if b then c; while b do c else skip, o) (c9)

Fig. 2.14 Semantics of commands

the computation of a subcommand (or of a subexpression) progress. The semantic
description of our language is now complete.

Computations A computation is a sequence of transitions which cannot be ex-
tended by another transition. Moreover, each transformation in a computation must
be described by some rule.

2.5 Semantics 51

Example 2.5 Let us consider the following program, c:
X :=1; while (X ==0do X :=(X—-1)

Let us fix a state which includes all the variables mentioned in the program, for
example, o = [(X, 6)]. We can calculate the computation of ¢ in o as follows. To
abbreviate the notation, we write ¢’ to denote the iterative command while —(X ==
0) do X := (X — 1). It is not difficult to see that the computation generated by c is
the following:

(c,o

— (c,o[X < 1])

— (if ~(X ==0) then X := (X — 1); ¢’ else skip, o [X < 1])
— (if =(1 ==0) then X := (X — 1); ¢/ else skip, o[X <« 1])
— (if —ff then X := (X — 1); ¢’ else skip, o[X « 1])

— (if tt then X := (X — 1); ¢’ else skip, o[X « 1])

- (X =X-1;c,0[X < 1]

- (X:=0-1);c,0[X < 1]

- (X:=0;c,0[X < 1])

— (', o[X < 0])

— (if =(X ==0) then X := (X — 1); ¢’ else skip, o[X <« 0])
— (if =(0 ==0) then X := (X — 1); ¢’ else skip, o[X <« 0])
— (if —tt then X := (X — 1); ¢’ else skip, o [X < 0])

— (if ff then X := (X — 1); ¢’ else skip, o [X <« 0])

— (skip, o[X <« 0])

— o[X < 0]

The computation in the example just discussed is a terminated computation, in
the sense that, after a certain number of transitions, a situation is reached in which
no other transition is possible. It can be seen that, moreover, the definition of com-
putation that we have given above does not require that a computation be finite but
only that it cannot be extended. There is, therefore, the possibility that there are
infinite computations, as the following example demonstrates:

Example 2.6 Consider the following program, d:
X :=1; while (X == 1) do skip

Assume we are in the state T = [(X, 0)]. Let d’ be the command while (X == 1)
do skip. We have:

(d, 1)

- (d,T[X < 1])

— (if (X ==1) then skip ; d’ else skip, T[X <« 1])
— (if (1 ==1) then skip ; d’ else skip, T[X <« 1])

52 2 How to Describe a Programming Language

— (if tt then skip ; d’ else skip, T[X < 1])
— (skip;d’, t[X < 1])
— (', t[X < 1])

There exist, therefore, two fundamentally different types of computations: finite
ones (also called terminating) and divergent ones (that is, infinite ones which corre-
spond, intuitively, to looping programs).

2.6 Pragmatics

If a precise description of the syntax and semantics of a programming language is
(and must be) given, the same is not true of the pragmatics of the language. Let
us recall that, for our purposes, the pragmatics of a language answers the question
“what is the purpose of this construct?” or “what use is a certain command?” It is
clear, therefore, that the pragmatics of a programming language is not established
once and for all during its definition (that is, the definition of its syntax and seman-
tics). On the contrary, it evolves with the use of the language. All suggestions about
programming style are part of pragmatics. For example, there is the principle that
jumps (gotos) should be avoided at all possible times. The choice of the most ap-
propriate mode for passing parameters to a function is also a pragmatic question, as
is the choice between bounded and unbounded iteration.

In a sense, the pragmatics of a programming language coincides with software
engineering (the discipline which studies methods for the design and production of
software) and is not much studied there. For many other aspects, on the other hand,
clarifying the purpose and use of constructs is an essential part of the study of a
programming language. It is for this that we will often refer below to pragmatics,
possibly without making it explicit that we are so doing.

2.7 Implementation

The final level of programming language description will not be considered in this
book in details. As we amply saw in the previous chapter, implementing a language
means writing a compiler for it, as well as implementing an abstract machine for
the compiler’s object language; or to write an interpreter and implement the abstract
machine in the language in which the interpreter is written. Alternatively, as hap-
pens in practice, a mix of both techniques is employed. Once more, this is not a
book in which we can be exhaustive about these matters. But it would not be correct
to present the constructions of programming languages without some reference to
their implementation cost. Even without specifying the set of constructions in an in-
terpreter, for each construct, we should always ask: “How is it to be implemented?”,
“At what cost?” The answer to these questions will also help us better to understand

2.8 Chapter Summary 53

the linguistic aspect (because a certain construct is formed in a certain way), as well
as the pragmatic one (how can a certain construct best be used).

2.8 Chapter Summary

The chapter introduced the fundamental techniques for the description and imple-
mentation of a programming language.

e The distinction between syntax, semantics, pragmatics and implementation. Each
of these disciplines describes a crucial aspect of the language.

e Context-free grammars. A formal method essential for the definition of a lan-
guage’s syntax.

e Derivation trees and ambiguity. Derivation trees represent the logical structure
of a string. The existence of a unique tree for every string permits a canonical
interpretation to be assigned to it.

e Static semantics. Not all syntactic aspects of a language are describable using
grammars: Static semantic checks are concerned with eliminating from legal pro-
grams those strings which, though correct as far as the grammar is concerned, do
not respect additional contextual constraints.

e The organisation of a compiler.

e Structured operational semantics. A formal method for describing the semantics
of programming languages based on transition systems.

2.9 Bibliographical Notes

The literature on the topics of this chapter is enormous, even considering only in-
troductory material. We limit ourselves to citing [4], the latest edition of a classic
text on formal languages used by generations of students. For compiler-construction
methods, we refer the reader to [1] and [2]. An introduction to operational seman-
tics 1s [5], which also deals with denotational semantics; at a more advanced level,
see [8], which also deals with denotational semantics.

2.10 Exercises

1. Consider the grammar G”, obtained from that in Fig. 2.6 by substituting the
productions for the non-terminal symbol 7 with the following:

T— A|ExT.

Show that G” is ambiguous.
2. Give the obvious ambiguous grammar for the conditional command if, then,
else.

54

3

10.

2 How to Describe a Programming Language

. Using the grammar fragment in Fig. 2.7 as a reference point, construct a deriva-

tion tree for the string

if (expressionl) if (expression2) commandl
else command2

Assume that the following derivations exist:
Expression =* expressionl,

Expression =* expression2,
StatementWithoutTrailingSubstatement =* command,
StatementWithoutTrailingSubstatement =* command.

. Define a grammar that will generate all the pairs of balanced curly brackets

(braces).

. Define a grammar that generates the language {a"b™ | n, m > 1} using only pro-

ductions of the form N — tM or N — t, where N and M are any non-terminal
symbol and ¢ is any terminal symbol. Try to give an intuitive explanation of why
there exists no grammar with these characteristics which generates the language
{a"b" |n > 1}.

. Modify the rule of Fig. 2.12 so as to describe a right-to-left evaluation of arith-

metic expressions.

. Calculate the computation of the command

X :=1; while (X ==3)do X :=(X +1)

starting with a chosen state.

. In Example 2.5, the last transition has as its right member only a state (and not

a pair composed of a command and a state). Is this always the case in a finite
computation? (Hint: consider the command X := 0; X := (X — 1), starting with
any state whatsoever which includes X.)

. State what the computation corresponding to the following command is:

X=1 X=X-1); X=X-1); X:=5

Considering Exercises 8 and 9, state a criterion which allows the division of
finite computations into those which are correct and those which terminate be-
cause of an error.

References

1.

2.

3.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, 1988.

A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press, Cam-
bridge, 1998.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, 3/E. Addison
Wesley, Reading, 2005. Available online at http://java.sun.com/docs/books/jls/index.html.

References 55

4. J. E. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, 2001.

5. C. Laneve. La Descrizione Operazionale dei Linguaggi di Programmazione. Franco Angeli,
Milano, 1998 (in Italian).

6. C. W. Morris. Foundations of the theory of signs. In Writings on the Theory of Signs, pages
17-74. Mouton, The Hague, 1938.

7. G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
University of Aarhus, 1981.

8. G. Winskel. The Formal Semantics of Programming Languages. MIT Press, Cambridge, 1993.

Chapter 3
Foundations

In this chapter, we will not be concerned with programming languages but with the
limits of the programs that we can write, asking whether there exist problems that no
program can solve. A motivation for this research is the question that we asked at the
end of Sect. 2.3: that is, is it possible to construct a static semantic analyser which
can verify constraints imposed by the programming language’s definition? We will
soon discover, however, that the answer to the question is rather more general and is,
in reality, a kind of absolute limit to what can (and cannot) be done with a computer.
Although the material in this chapter can appear abstract, our treatment is wholly
elementary.

3.1 The Halting Problem

In Sect. 2.3, we asked if there exists a static semantic analyser able to determine
whether a program can generate a division by zero error during execution. Instead
of tackling this problem, we will examine a larger problem, one that is also more in-
teresting. We will ask whether there exists a static analyser able to discover whether
a program, when provided with certain input data, will loop. There is no need to
emphasise the usefulness of a check of this kind. If we know, prior to execution,
that a given program will loop when presented with some input data, we will have a
way of showing automatically that it definitely contains an error.

A static analyser is nothing more than a program used as a subprogram of a
compiler. Let us, therefore, fix a programming language, .Z, in which we will write
programs. Given a program, P, and an input x, we write P(x) to denote the result
of the computing P on x. We should note that, in general, the program P might
not terminate on x because of a loop or of an infinite recursion. Writing P (x),
therefore, we do not necessarily indicate a computation that terminates. Without
loss of generality, we can now reformulate the question as:

Does there exist a program, H, that, having been given as input a program P (in the lan-
guage .Z’) and its input data x, will terminate and print “yes” if P(x) terminates, and ter-
minate and print “no” if P (x) loops?

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 57
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_3, © Springer-Verlag London Limited 2010

58 3 Foundations

We emphasise that H has two inputs. It must always terminate (we do not want
a compiler that loops!) and it must function on every program, P, written in .Z
and every input x. We can then assume, again without loss of generality, that H
is written in the language .Z, since .Z, to be interesting, must be in a language in
which it is possible to write all possible programs.!

We now show our hand. We want to show that there exists no program H with
the behaviour we have just discussed. We will argue by contradiction, assuming we
can have such an H, and from this we will derive a contradiction. The reasoning
might seem a little contorted at first sight but requires no advanced knowledge. The
argument, however, is subtle and elegant; the reader should read it more than once
and be sure of understanding the critical role of self application.

1. Let us assume, by contradiction, that we have a program H with the properties
stated above.

2. Using H, we can write a program K, with only one input (which will be another
program), with the following specification:

The program K, given P as input, terminates printing “yes” if H (P, P) prints “no”; it
goes into a loop if H(P, P) prints “yes”.

Writing the program K, given that H is available, is simple. We read the input P,
call H as a subprogram, passing P as first and second parameter. We wait until
H terminates (this will certainly happen, given H’s specification). If H(P, P)
terminates and prints “no” (we can assume that we can intercept this printing
and stop it from appearing on the output), K prints “yes”. If, on the other hand,
H(P, P) prints “yes”, then K goes into an infinite loop programmed for the

purpose.
If we recall the specification of H, we can summarise the semantics of K as:

K(P) = “yes” ‘ ?f P (P) does not tf:rminate, 3.1)
does not terminate if P(P) does terminate.

At first sight the application of P to itself seems strange. There is no miracle. P
will receive an input consisting of a string representing the text of P.2

3. Let us now execute K on its own text. That is, we focus on K (K). What is its
behaviour? If we substitute K for P in (3.1), we obtain:

“yes” if K(K) does not terminate,
k=17 TR . (3.2)
does not terminate if K (K) does terminate.

4. Now let us observe that (3.2) is absurd! It says that K (K) terminates (printing
“yes”) when K (K) fails to terminate and that it does not terminate when K (K)
terminates.

I Clarifying the sense of “all possible programs” is actually one of the aims of this chapter.

2If we had assumed that the input to P was a number, the string comprising the text of P can read
as a number: a number i, whose bits denote the individual characters in the text of P.

3.2 Expressiveness of Programming Languages 59

5. Where does this contradiction come from? Not from K itself, which, as we have
seen, is a simple program which uses H. The contradiction arises from having to
assume the existence of a program with the properties of H. Therefore, H cannot
exist.

We have therefore proved that there exists no decision procedure (in the language
£) capable of determining whether any another program in . terminates on an
arbitrary input. We use here decision procedure in the technical sense of a program
that: (i) works for arbitrary arguments; (ii) always terminates and (iii) determines
(by responding “yes” or “no”) those arguments which are solutions to the problem
and those which are not.

This result, one of fundamental importance in computing, is called the undecid-
ability of the halting problem. Many other interesting problems are undecidable in
the same way. We will discuss some in the next section after first having discussed
the characteristics of . from which the result derives. We can thus tackle the prob-
lem of the expressive power of programming languages.

3.2 Expressiveness of Programming Languages

At first sight, the result we obtained in the last section can appear fairly limited.
If we take a language different from ., perhaps the program H can exist without
generating a contradiction.

Upon reflection, though, we have not assumed much about .. We have used .Z
in an implicit way to define the program K, given H (that is, at Step 2 of the proof).
To be able truly to write K, the following conditions must be satisfied:

1. There must be some form of conditional available in .Z, so that the cases in the
definition of K can be distinguished;

2. It must be possible to define functions which do not terminate in .Z (we must
therefore have at our disposal some form of iteration or recursion).

At this level of detail, .Z is nothing special. What programming language does not
provide these constructs? If a language provides these constructs, it can be used in
place of .Z in the proof, showing that a program like H exists in no programming
language worth its salt.

The undecidability of the halting problem is not, therefore, a contingent fact, re-
lated to any particular programming language, nor is it the expression of our inabil-
ity as programmers. On the contrary, it is a limitation that is in some way absolute,
indissolubly linked to the intuitive concepts of program (algorithm) and with that
of programming language. It is a principle of nature, similar to the conservation of
energy or to the principles of thermodynamics. In nature, there exist more prob-
lems and functions than there are programs that we can write. There are problems
to which there correspond no program that is anything but insignificant; the halting
problem is definitely one of them.

Rather, as argued in Sect. 3.3, the problems for which there exists a program for
their solution constitute only a tiny part of the set of all possible problems.

60 3 Foundations

As with the halting problem, when we say that some problem is undecidable,
we mean that there exists no program such that: (i) it accepts arbitrary arguments;
(i) it always terminates and (iii) it determines which arguments are solutions to the
problem and which are not. We will stray too far if we begin a proof of the undecid-
ability of any other important problems; the interested reader can consult any good
text on the theory of computability for them. We can however list some undecid-
able problems without attempting to explain all the terms used or to undertake any
proofs.

The following problems are undecidable:

Determine whether a program computes a constant function;

Determine whether two programs compute the same function;

Determine whether a program terminates for every input;

Determine whether a program diverges for every input;

Determine whether a program, given an input, will produce an error during its
execution;

e Determine whether a program will cause a type error (see the box on page 204).

Undecidability results tell us that they do not exist general software tools which
will automatically establish significant properties of programs.

3.3 Formalisms for Computability

To make the discussion of . more precise, we need to fix a programming language
and show that the reasoning of the previous section applies to it. Historically, the
first language in which the impossibility of writing program H was shown was
the language of the Turing Machine. The Turing Machine language is a notation
which is, at first sight, highly rudimentary. It was introduced in the 1930s by the
mathematician Alan M. Turing. It is summarised in the Turing Machines box. It is
at first sight surprising that such a rudimentary formalism (there is no predefined
arithmetic; everything turns on the positioning of a finite number of symbols on
a tape) could be good enough to express computations as sophisticated as those
needed to write K on the basis of H. More surprising is the fact that there exists a
Turing Machine which can act as an interpreter for others; that is a machine which,
once an input has been written on its own tape, as well as the (appropriately coded)
description of a generic machine and an input for it, executes the computation which
that machine would perform on that input. This interpreter is, to all intents and
purposes, a (very simple) computer like those that we know today (program and
data in memory, fundamental cycle which interprets program instructions).

A function is computable in a language £ if there exists a program in .£ which
computes it. More precisely, the (partial—see the box on page 12) function ' : A —
B is computable if there exists a program P with the following properties: for each
element a € A, whenever P is executed on an input a, which we write P(a), it
terminates providing as an output f(a) if f(a) is defined; the computation P (a)
does not terminate if f is undefined at a.

3.4 There are More Functions than Algorithms 61

Turing Machines

A Turing machine is composed of an infinite tape, divided into cells, each of which
stores a single symbol from a finite alphabet. A mobile head reads from and writes
to the tape. At any time, the head is positioned over a single cell. The machine is
controlled by a finite-state controller. At each step in the computation, the machine
reads a symbol from the tape and, according to the state of the machine and sym-
bol that it has read, the controller decides which symbol to substitute for it on the
tape and if the head is to move to the left or to the right; the controller therefore
enters another state (remember, there is a finite number of states). The controller of
a Turing machine can be seen as its associated program.

We might expect there to be fewer functions computed by a Turing Machine
than those which can be computed by a sophisticated, modern programming lan-
guage. In investigating this question, there have been many suggestions since the
1930s formalisms for expressing algorithms (programs), amongst which there are
the General Recursive Functions of Church-Gédel and Kleene (which make no ref-
erence to programming languages), the Lambda Calculus (which we will examine
in Chap. 11), and then all current programming languages. Indeed, all these for-
malisms and languages can be simulated by each other. That is, it is possible in
each of these formalisms to write an interpreter for any of the others. From this,
it follows that they are all equivalent in terms of the functions that they compute.
They all compute exactly the same functions as the Turing Machine. In principle,
therefore, every algorithm is expressible in any programming language. This is fre-
quently expressed by saying that all programming languages are Turing complete
(or Turing equivalent). The undecidability results can also be expressed by saying
that there exist functions which cannot be computed (with a Turing Machine, or, by
the above, in any programming language).

If all languages are equivalent with respect to the functions they compute, it
is clear that they are not equivalent as far as their flexibility of use, pragmatics,
abstraction principles and so on, are concerned. And often this complex of properties
is referred to as the expressiveness of a language.

While all these computability formalisms provide a definite result about equiv-
alence in terms of the functions that can be expressed, these same formalisms are
useless when discussing the expressiveness of languages. In fact, even now, there is
no agreement on how formally to tackle these aspects.

3.4 There are More Functions than Algorithms

In Sect. 3.1, we gave a specific example of a uncomputable function. We can give
another proof that there exist functions which cannot be computed using a simple
cardinality argument (though, unlike in Sect. 3.1, we will not produce a specific
example). That is, we show that, in nature, there are more functions than algorithms.

62 3 Foundations

First of all, let us consider any formal system which allows us to express algo-
rithms and which, for simplicity we can assume to be a programming language,
£, (this could, however, be generalised to a wider definition). It is easy enough
to see that the set of all possible (finite) programs that can be written in .Z is de-
numerable, that is, they can be put into one-one correspondence with the natural
numbers (which we denote by N). We can, in fact, first consider the set P; contain-
ing all programs of length one (which contain a single character), then the set P,
containing all programs of length two, and so on. Every set, P;, is finite and can be
ordered, for example lexicographically (first all programs which begin with a, then
all those which begin with b, and so on by succeeding characters). It is clear that
by doing this, by taking into account the ordering produced by the subscript in the
sets P1, Pa, ..., and then doing the same with the internal indices in each set, we
can count (or enumerate) all possible programs and therefore put them into one-one
correspondence with the natural numbers. In more formal terms, when this has been
done, we can say that the cardinality of the set of all programs writable in .Z is
equal to the cardinality of the naturals. Let us now consider the set .% containing all
the functions N — {0, 1}. An important theorem of Cantor states that this set is not
denumerable but has a cardinality which is strictly greater than that of N. Given that
every program expresses a unique function, the set N is too small to contain all the
functions in .% as programs in .Z.

Let us see a direct proof of the fact that .% is not denumerable. Let us assume that
Z is denumerable, that is it is possible to write .7 = { f;} jen. Let us observe, first
of all, that we can put .% into one-one correspondence with the set 4 of all the infi-
nite sequences of binary numbers. To each f; € .7, there corresponds the sequence
bj1,bj2,bj3,...,whereb;; = f;(i), fori, j € N. Therefore if # is denumerable,
so too is the set Z. Since 4 is denumerable, we can enumerate its elements one af-
ter the other, listing, for each element (for every sequence), the binary digits which
comprise it. We can arrange such an enumeration in an infinite square matrix:

bi,1, b1, b13,
by1, byp, ba3,
b3 1, b3z, b33,

where row j contains the sequence for the jth function. Writing b for the comple-
ment of the binary number b, let us now consider the sequence of binary numbers
51,1, 52,2, 53’3, This sequence (since it is an infinite sequence of binary num-
bers) is certainly an element of %, however it does not appear in our matrix (and
therefore does not appear in our enumeration) for the reason that each line is dif-
ferent at at least one point. Along the diagonal, the sequence found in the matrix
has elements b; ;, while, by construction, the new sequence has the element b j,j in
position j.

We have therefore a contradiction: we had assumed that % = {f;}jen was an
enumeration of all functions (that is, of all sequences), while we have constructed

3.5 Chapter Summary 63

Church’s Thesis

The proofs of equivalence of the various programming languages (and between the
various computability formalisms) are genuine theorems. Given the languages .Z
and ., write first in .Z the interpreter for .’ and then write in %’ the interpreter
for .£. At this point .Z and ¢’ are known to be equivalent. A proof of this type
has been effectively given for all existing languages, so they are therefore provably
equivalent. This argument would, in reality, leave open the door to the possibility
that sooner or later someone will be in a position to find an intuitively computable
function which is not associated with a program in any existing programming lan-
guage. All equivalence results proved over more than the last 70 years, however,
amount to convincing evidence that this is impossible. In the mid-1930s, Alonzo
Church proposed a principle (which since then has become known as Church’s, or
the Church-Turing, Thesis) that states exactly this impossibility. We can formulate
Church’s Thesis as: every intuitively computable function is computed by a Turing
Machine.

In contrast to the equivalence results, Church’s Thesis is not a theorem because
it refers to a concept (that of intuitive computability) which is not amenable to for-
mal reasoning. It is, rather, a philosophical principle which the computer science
community assumes with considerable strength to be true so that it will not even be
discredited by new computational paradigms, for example quantum computing.

a function (a sequence) which did not belong to the enumeration. Therefore the
cardinality of .# is strictly greater than that of N.

It can be shown that .% has the cardinality of the real numbers. This fact indicates
that the set of programs (which is denumerable) is much smaller than that of all
possible functions, and therefore of all possible problems.

3.5 Chapter Summary

The phenomenon of computation on which Computer Science is founded has its
roots in the theory of computability which studies the formalisms in which one can
express algorithms and their limits. The chapter has only presented the main result
of this theory. This is a fact of the greatest importance, one that every computer
scientist should know. The principal concepts which were introduced are:

e Undecidability: there exist many important properties of programs which cannot
be determined in a mechanical fashion by an algorithm; amongst these is the
halting problem.

o Computability: a function is computable when there exists a program which com-
putes it. The undecidability of the halting problem assures us that there exist
functions which are not computable.

64 3 Foundations

e Partiality: the functions expressed by a program can be undefined on some argu-
ments, corresponding to those data for which the program will fail to terminate.

e Turing Completeness: every general-purpose programming language computes
the same set of functions as those computed by a Turing Machine.

3.6 Bibliographical Notes

The original undecidability result is in the paper by A.M. Turing [3] which ought to
be necessary reading for every computer scientist with an interest in theory. More
can be found on the arguments of this chapter in any good textbook on computability
theory, among which, let us recommend [1], which we cited in Chap. 2, and the clas-
sic [2] which after more than 40 years continues to be one of the most authoritative
references.

3.7 Exercises

1. Proof that the restricted halting problem is undecidable. That is, determine
whether a program terminates when it is applied to itself. (Suggestion: if the
problem were decidable, the program which decides it would have to have the
same property as program K, which can be derived by contradiction in the usual
fashion.)

2. Show that the problem of verifying whether a program computes a constant func-
tion is undecidable. Hint: given a generic program P, consider the program Qp,
with a single input, specified as follows:

1 if P(P) terminates,
Op(y)= . .
does not terminate otherwise.

(i) Write the program Q p;
(ii) assume now that P is a program such that P(P) terminates. What is the
behaviour of Q p, as y varies?
(iii) what is, on other hand, the behaviour of Q p, as y varies, if P(P) does not
terminate?
(iv) from (ii) and (iii), it can be obtained that Q p computes the constant function
one if and only if P(P) terminates;
(v) if it were now decidable whether a program computes a constant function,
the restricted halting problem would also be decidable, given that the trans-
formation that, given P, constructs Q p is completely general.

References 65

References

1. J. E. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, 2001.

2. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New
York, 1967.

3. A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc.
Lond. Math. Soc., 42:230-365, 1936. A Correction, ibidem, 43 (1937), 544-546.

Chapter 4
Names and The Environment

The evolution of programming languages can be seen in large measure as a process
which has led, by means of appropriate abstraction mechanisms, to the definition of
formalisms that are increasingly distant from the physical machine. In this context,
names play a fundamental role. A name, indeed, is nothing more than a (possibly
meaningful) sequence of characters used to represent some other thing. They allow
the abstraction either of aspects of data, for example using a name to denote a loca-
tion in memory, or aspects of control, for example representing a set of commands
with a name. The correct handling of names requires precise semantic rules as well
as adequate implementation mechanisms.

In this chapter, we will analyse these rules. We will, in particular, look at the
concept of environment and the constructs used to organise it. We will also look at
visibility (or scope) rules. We leave until the next chapter treatment of the imple-
mentation of these concepts. Let us immediately observe how, in languages with
procedures, in order to define precisely the concept of environment one needs other
concepts, related to parameter passing. We will see these concepts in Chap. 7. In
the case of object-oriented languages, finally, there are other specific visibility rules
which we will consider in Chap. 10.

4.1 Names and Denotable Objects

When we declare a new variable in a program:
int fie;

or we define a new function:

int foo(){

)
fie = 1;
}

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 67
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_4, © Springer-Verlag London Limited 2010

68 4 Names and The Environment

we introduce new names, such as £ie and foo to represent an object (a variable
and a function in our example). The character sequence £ie can be used every time
that we want to refer to the new variable, just as the character sequence foo allows
us to call the function that assigns to f£ie the value 1.

A name is therefore nothing more than a sequence of characters used to represent,
or denote, another object.!

In most languages, names are formed of identifiers, that is by alphanumeric to-
kens, moreover other symbols can also be names. For example, + and - are names
which denote, in general, primitive operations.

Even though it might seems obvious, it is important to emphasise that a name
and the object it denotes are not the same thing. A name, indeed, is just a character
string, while its denotation can be a complex objects such as a variable, a function,
a type, and so on. And in fact, a single object can have more than one name (in
this case, one speaks of aliasing), while a single name can denote different objects
at different times. When, therefore, we use, as we may, the phrase “the variable
fie” or the phrase “the function £00”, it should be remembered that the phrases
are abbreviations for “the variable with the name fie” and “the function with the
name foo”. More generally, in programming practice, when a name is used, it is
almost always meant to refer to the object that it denotes.

The use of names implements a first, elementary, data abstraction mechanism.
For example, when, in an imperative language, we define a name using a variable,
we are introducing a symbolic identifier for a memory location; therefore we are
abstracting from the low-level details of memory addresses. If, then, we use the
assignment command:

fie = 2;

the value 2 will be stored in the location reserved for the variable named fie. At
the programming level, the use of the name avoids the need to bother with whatever
this location is. The correspondence between name and memory location must be
guaranteed by the implementation. We will use the term environment to refer to that
part of the implementation responsible for the associations between names and the
objects that they denote. We will see better in Sect. 6.2.1 what exactly constitutes a
variable and how it can be associated with values.

Names are fundamental even for implementing a form of control abstraction.
A procedure?” is nothing more than a name associated with a set of commands, to-
gether with certain visibility rules which make available to the programmer its sole
interface (which is composed of the procedure’s name and possibly some parame-
ters). We will see the specifics of control abstraction in Chap. 7.

'Here and in the rest of this chapter, “object” is intended in a wide sense, with no reference to
technical terms used in the area of object-oriented languages.

2Here and elsewhere, we will use the generic term “procedure” for procedures as well as functions,
methods and subprograms. See also Sect. 7.1.

4.1 Names and Denotable Objects 69

4.1.1 Denotable Objects

The objects to which a name can be given are called denotable objects. Even if
there are considerable differences between programming languages, the following
is a non-exhaustive list of possible denotable objects:

e Objects whose names are defined by the user: variables, formal parameters, pro-
cedures (in the broad sense), user-defined types, labels, modules, user-defined
constants, exceptions.

e Objects whose names are defined by the programming language: primitive types,
primitive operations, predefined constants.

The association (or binding) between a name and an object it denotes can there-
fore be created at various times. Some names are associated with objects during the
design of a language, while other associations are introduced only when a program
is executed. Considering the entire process ranging from a programming language’s
definition to the execution of a specific program, we can identify the following
phases for the creation of bindings of names to objects:

Design of language In this phase, bindings between primitive constants, types and
operations of the language are defined (for example, + indicates addition, and int
denotes the type of integers, etc.).

Program writing Given that the programmer chooses names when they write a
program, we can consider this phase as one with the partial definition of some
bindings, later to be completed. The binding of an identifier to a variable, for ex-
ample, is defined in the program but is effectively created only when the space for
the variable is allocated in memory.

Compile time The compiler, translating the constructs of the high-level language
into machine code, allocates memory space for some of the data structures that
can be statically processed. For example, this is the case for the global variables of
a program. The connection between a variable’s identifier and the corresponding
memory location is formed at this time.

Runtime This term denotes the entire period of time between starting and termina-
tion of a program. All the associations that have not previously been created must
be formed at runtime. This is the case, for example, for bindings of variable iden-
tifiers to memory locations for the local variables in a recursive procedure, or for
pointer variables whose memory is allocated dynamically.

In the previous description we have ignored other important phases, such as link-
ing and loading in which other bindings (for example for external names referring
to objects in other modules). In practice, however, two principle phases are distin-
guished using the terms “static” and “dynamic”. The term “static” is used to refer
to everything that happens prior to execution, while “dynamic” refers to everything
that happens during execution. Thus, for example, static memory management is
performed by the compiler, while dynamic management is performed by appropri-
ate operations executed by the abstract machine at runtime.

70 4 Names and The Environment

Fig. 4.1 A name denoting {int fie;
different objects fie = 2;
{char fie;
fie = a;

}

4.2 Environments and Blocks

Not all associations between names and denotable objects are fixed once and for
all at the start of program execution. Many can vary during execution. To be able
to understand how these associations behave, we need to introduce the concept of
environment.

Definition 4.1 (Environment) The set of associations between names and denotable
objects which exist at runtime at a specific point in the program and at a specific time
during execution, is called the (referencing) environment.

Usually, when we speak of environments, we refer only to associations that are
not established by the language definition. The environment is therefore that compo-
nent of the abstract machine which, for every name introduced by the programmer
and at every point in the program, allows the determination of what the correct as-
sociation is. Note that the environment does not exist at the level of the physical
machine. The presence of the environment constitutes one of the principle charac-
teristics of high-level languages which must be simulated in a suitable fashion by
each implementation of the language.

A declaration is a construct that allows the introduction of an association in the
environment. High-level languages often have explicit declarations, such as:

int x;
int £ (){
return O;

}
type T = int;

(the first is a declaration of a variable, the second of a function named £, the third
is declaration of a new type, T, which coincides with type int). Some languages
allow implicit declarations which introduce an association in the environment for a
name when it is first used. The denoted object’s type is deduced from the context in
which the name is used for the first time (or sometimes from the syntactic form of
the name).

As we will see in detail below, there are various degrees of freedom in associa-
tions between names and denotable objects. First of all, a single name can denote
different objects in different parts of the program. Consider, for example, the code
of Fig. 4.1. The outermost name fie denotes an integer variable, while the inner
one is of type character.

4.2 Environments and Blocks 71

It is also possible that a single object is denoted by more than one name in dif-
ferent environments. For example, if we pass a variable by reference to a procedure,
the variable is accessible using its name in the calling program and by means of the
name of the formal parameter in the body of the procedure (see Sect. 7.1.2). Alter-
natively, we can use pointers to create data structures in which the same object is
then accessible using different names.

While different names for the same object are used in different environments, no
particular problems arise. The situation is more complicated when a single object
is visible using different names in the same environment. This is called aliasing
and the different names for the same object called aliases. If the name of a variable
passed by reference to a procedure is also visible inside the same procedure, we have
a situation of aliasing. Other aliasing situations can easily occur using pointers. If X
and Y are variables of pointer type, the assignment X = Y allows us to access the
same location using both X and Y.

Let us consider, for example, the following fragment of C program where, as we
will do in the future, we assume that write (Z) is a procedure which allows us to
print the value of the integer variable Z:

int *X, *Y; // X,Y pointers to integers
X = (int *) malloc (sizeof (int));
// allocate heap memory
*X = 5; // * dereference
Y=X; // Y points to the same object as X
*Y=10;
write (*X);

The names X and Y denote two different variables, which, however, after the execu-
tion of the assignment command X = Y, allow to access the same memory location
(therefore, the next print command will output the value 10).

It is, finally, possible that a single name, in a single textual region of the program,
can denote different objects according to the execution flow of the program. The
situation is more common than it might seem at first sight. It is the case, for example,
for a recursive procedure declaring a local name. Other cases of this type, which are
more subtle, will be discussed below in this chapter when will discuss dynamic
scope (Sect. 4.3.2).

4.2.1 Blocks

Almost all important programming languages today permit the use of blocks, a
structuring method for programs introduced by ALGOL60. Block structuring is fun-
damental to the organisation of the environment.

Definition 4.2 (Block) A block is a textual region of the program, identified by a
start sign and an end sign, which can contain declarations local to that region (that
is, which appear within the region).

72 4 Names and The Environment

The start- and end-block constructs vary according to the programming language:
begin ... end for languages in the ALGOL family, braces { ...} for C and
Java, round brackets (.. .) for LISP and its dialects, let ... in ... endin
ML, etc. Moreover, the exact definition of block in the specific programming lan-
guage can differ slightly from the one given above. In some cases, for example, one
talks about block only when there are local declarations. Often, though, blocks have
another important function, that of grouping a series of commands into a syntactic
entity which can be considered as a single (composite) command. These distinc-
tions, however, are not relevant as far as we are concerned. We will, therefore, use
the definition given above and we distinguish two cases:

Block associated with a procedure This is a block associated with declarations
local to a procedure. It corresponds textually to the body of the procedure itself,
extended with the declarations of formal parameters.

In-line block This is a block which does not correspond to a declaration of pro-
cedure and which can appear (in general) in any position where a command can
appear.

4.2.2 Types of Environment

The environment changes during the execution of a program. However, the changes
occur generally at two precise times: on the entry and exit of a block. The block
can therefore be considered as the construct of least granularity to which a constant
environment can be associated.’

A block’s environment, meaning by this terminology the environment existing
when the block is executed, is initially composed of associations between names de-
clared locally to the block itself. In most languages allowing blocks, blocks can be
nested; that is, the definition of one block can be wholly included in that of another.
An example of nested anonymous blocks is shown in Fig. 4.1. The overlapping of
blocks so the last open block is not the first block to be closed is never permitted. In
other words a sequence of commands of the following kind is not permitted in any
language:

open block A;
open block B;
close block A;
close block B;

Different languages vary, then, in the type of nesting they permit. In C, for ex-
ample, blocks associated with procedures cannot be nested inside each other (that
is, there cannot be procedure declarations inside other procedures), while in Pascal
and Ada this restriction is not present.*

3Declarations in the block are evaluated when the block is entered and are visible throughout the
block. There exist many exceptions to this rule, some of which will be discussed below.

4The reasons for this restriction in C will be made clear in the next chapter when we will have
discussed techniques for implementing scope rules.

4.2 Environments and Blocks 73

Block nesting is an important mechanism for structuring the environment. There
are mechanisms that allow the declarations local to a block to be visible in blocks
nested inside it.

Remaining informal for the time being, we say that a declaration local to a block
is visible in another block when the association created by such a declaration is
present in the second block. Those mechanisms of the language which regulate how
and when the declaration is visible are called visibility rules. The canonical visibility
rule for languages with blocks is well known:

A declaration local to a block is visible in that block and in all blocks listed within it, unless
there is a new declaration of the same name in that same block. In this case, in the block
which contains the redefinition the new declaration hides the previous one.

In the case in which there is a redefinition, the visibility rule establishes that only
the last name declared will be visible in the internal block, while in the exterior
one there is a visibility hole. The association for the name declared in the external
block will be, in fact, deactivated for the whole of the interior block (containing
the new declaration) and will be reactivated on exit from the inner block. Note that
there is no visibility from the outside inwards. Every association introduced in the
environment local to a block is not active (or rather the name that it defines is not
visible) in an exterior block which contains the interior one. Analogously, if we have
two blocks at the same nesting level, or if neither of the two contains the other, a
name introduced locally in one block is not visible in the other.

The definition just given, although apparently precise, is insufficiently so to es-
tablish with precision what the environment will be at an arbitrary point in a pro-
gram. We will assume this rule for the rest of this section, while the next will be
concerned with stating the visibility rules correctly.

In general we can identify three components of an environment, as stated in the
following definition.

Definition 4.3 (Type of environment) The environment associated with a block is
formed of the following components:

Local environment This is composed of the set of associations for names declared
locally to the block. In the case in which the block is for a procedure, the local en-
vironment contains also the associations for the formal parameters, given that they
can be seen, as far as the environment is concerned, as locally declared variables.

Non-local environment This is the environment formed from the associations for
names which are visible from inside a block but which have not been declared
locally.

Global environment Finally, there is the environment formed from associations
created when the program’s execution began. It contains the associations for names
which can be used in all blocks forming the program.

The environment local to a block can be determined by considering only the dec-
larations present in the block. We must look outside the block to define the non-local
environment. The global environment is part of the non-local environment. Names

74 4 Names and The Environment

Fig. 4.2 Nested blocks with A:{int a =1;
different environments
B:{int b = 2;
int ¢ = 2;

C:{int c =3;
int d;
d = a+b+c;
write(d)

}

D: {int e;
e = atb+c;
write(e)

introduced in the local environment can be themselves present in the non-local en-
vironment. In such cases, the innermost (local) declaration hides the outermost one.

The visibility rules specify how names declared in external blocks are visible in
internal ones. In some cases, it is possible to import names from other, separately
defined modules. The associations for these names are part of the global environ-
ment.

We will now consider the example in Fig. 4.2, where, for ease of reference, we
assume that the blocks can be labelled (as before, we assume also that write (x)
allows us to print an integer value). The labels behave as comments as far as the
execution is concerned.

Let us assume that block A is the outermost. It corresponds to the main program.
The declaration of the variable a introduces an association in the global environ-
ment.

Inside block B two variables are declared locally (b and ¢). The environment for
B is therefore formed of the local environment, containing the association for the
two names (b and c) and from the global environment containing the association
for a.

Inside block C, 2 local variables (c and d) are declared. The environment of
C is therefore formed from the local environment, which contains the association
for the two names (c and d) and from the non-local environment containing the
same global environment as above, and also the association for the name b which
is inherited from the environment of block B. Note that the local declaration of ¢ in
block C hides the declaration of ¢ present in block B. The print command present in
block C will therefore print the value 6.

In block D, finally, we have a local environment containing the association for the
local name e, the usual global environment and the non-local environment, which,
in addition to the association for a contains the association for the names b and c
introduced in block B. Given that variable ¢ has not been internally re-declared, in
this case, therefore, the variable declared in block B remains visible and the value
printed will be 5. Note that the association for the name d does not appear in the

4.2 Environments and Blocks 75

environment non-local to D, given that this name is introduced in an exterior block
which does not contain D. The visibility rules, indeed, allows only the inheritance
of names declared in exterior blocks from interior ones and not vice versa.

4.2.3 Operations on Environments

As we have seen, changes in the environment are produced at entry to and exit from
a block. In more detail, during the execution of the program, when a new block is
entered, the following modifications are made to the environment:

1. Associations between locally declared names and the corresponding denotable
objects are created.

2. Associations with names declared external to and redefined inside the block are
deactivated.

Also when the block is exited, the environment is modified as follows:

1. The associations for names declared locally to the block and the objects they
denote are destroyed .

2. The associations are reactivated between names that existed external to the block
and which were redefined inside it.

More generally, we can identify the following operations on names and on the
environment:

Creation of associations between names and denoted object (naming) This is
the elaboration of a declaration (or the connection of a formal to an actual param-
eter) when a new block containing local or parameter declarations is entered.

Reference to a denoted object via its name This is the use of the name (in an ex-
pression, in a command, or in any other context). The name is used to access the
denoted object.

Deactivation of association between name and denoted object = This happens
when entering a block in which a new association for that name is created locally.
The old association is not destroyed but remains (inactive) in the environment. It
will be usable again when the block containing the new association is left.

Reactivation of an association between name and denoted object When leav-
ing block in which a new association for that name is created locally, reactivation
occurs. The previous association, which was deactivated on entry to the block, can
now be used.

Destruction of an association between name and denoted object (unnaming)
This is performed on local associations when the block in which these associa-
tions were created is exited. The association is removed from environment and can
no longer be used.

Let us explicitly note, however, that any environment contains both active and
inactive associations (they correspond to declarations that have been hidden by the

76 4 Names and The Environment

effects of the visibility rules). As far as denotable objects are concerned, the follow-
ing operations are permitted:

Creation of a denotable object This operation is performed while allocating the
storage necessary to contain the object. Sometimes, creation includes also the ini-
tialisation of the object.

Access to a denotable object Using the name, and hence the environment, we can
access the denotable object and thus access its value (for example, to read the
content of a variable). Let us observe that the set of rules which locate the environ-
ment has, as its aim, making the association between a name and the object which
it refers one-to-one (at a given point in the program and during a given execution).

Modification of a denotable object It is always possible to access the denotable
object via a name and then modify its value (for example, by assigning a value to
a variable).

Destruction of a denotable object An object can be destroyed by reallocating the
memory reserved for it.

In many languages, the operations of creating an association between the name
and a denotable object and that of creating a denotable object take place at the same
time. This is the case, for example, in a declaration of the form:

int x;

This declaration introduces into the environment a new association between the
name x and an integer variable. At the same time, it allocates the memory for the
variable.

Yet, this is not always the case and, in general, it is not stated that the lifetime of a
denotable object, that is the time between the creation of the object and its destruc-
tion, coincides with the lifetime of the association between name and object. Indeed,
a denotable object can have a lifetime that is greater than the association between a
name and the object itself, as the case in which a variable is passed to a procedure
by reference. The association between the formal parameter and associated variable
has a lifetime less than that of the variable itself. More generally, a situation of this
type occurs when a temporary name (for example, one local to a block) is introduced
for an object which already has a name.

Note that the situation we are considering is not that shown in Fig. 4.2. In this
case, indeed, the internal declaration of the variable, ¢, does not introduce a new
name for an existing object, but introduces a new object (a new variable).

Even if, at first sight, this seems odd, it can also be the case that the lifetime of
an association between name and a denoted object is greater than that of the object
itself. More precisely, it can be the case that a name allows access to an object
which no longer exists. Such an anomalous situation can occur, for example, if we
call by reference an existing object and then deallocate the memory for it before
the procedure terminates. The formal parameter to the procedure, in this case, will
denote an object which no longer exists. A situation of this type, in which it is
possible to access an object whose memory has been reallocated, is called a dangling
reference and is a symptom of an error. We will return to the problem dangling
references in Chap. 8, where we will present some methods to handle them.

4.3 Scope Rules 77

4.3 Scope Rules

We have seen how, on block entry and exit, the environment can change as a result
of the operations for the creation, destruction, activation and the deactivation of
associations. These changes are reasonably clear for local environments, but are less
clear where the non-local environment is concerned. The visibility rules stated in
the previous section indeed lend themselves to at least two different interpretations.
Consider for example the following program fragment:

A:{int x = 0;

void fie(){
x = 1;

}

B:{int x;
fie();
}

write(x);

Which value will be printed? To answer this question, the fundamental problem
is knowing which declaration of x refers to the non-local occurrence of this name
appearing in the assignment in procedure £ie’s body. On the one hand, we can
reasonably think that the value 1 is printed, given that procedure f£ie is defined in
block A and, therefore, the x which appears in the body of the procedure could be
that defined on the first line of A. On the other hand, however, we can also reason as
follows. When we call procedure £ie, we are in block B, so the x that we are using
in the assignment present in the body of the procedure is the one declared locally
to block B. This local variable is now no longer visible when we exit block B, so
write (x) refers to the variable x declared and initialised to O in block A and never
again modified. Therefore the procedure prints the value 0.

Before the reader tries to find possible tricks in the above reasoning, we must
assert that they are both legitimate. The result of the program fragment depends on
the scope rule being used, as will become clear at the end of the section. The visibil-
ity rule that we have stated above establishes that a “declaration local to a block is
visible in that block and all the blocks nested within it” but does not specify whether
this concept of nesting must be considered in a static (that is based on the text of
the program) or dynamic (that is based on the flow of execution) fashion. When
the visibility rules, also called scope rules, depend only on the syntactic structure
of the program, we will talk of a language with static or lexical scope. When it
is influenced also by the control flow at runtime, we are dealing with a language
with dynamic scope. In the following sections we will analyse these two concepts
in detail.

78 4 Names and The Environment

4.3.1 Static Scope

In a language with static (or lexical) scope, the environment in force at any point
of the program and at any point during execution depends uniquely on the syntactic
structure of the program itself. Such an environment can then be determined com-
pletely by the compiler, hence the term “static”.

Obviously there can be different static scope rules. One of the simplest, for ex-
ample, is that of the first version of the Basic language which allowed a single global
environment in which it was possible to use only a small number of names (some
hundreds) and where declarations were not used.

Much more interesting is the static scope rule that is used in those block-
structured languages that allow nesting. This was introduced in ALGOL60 and is
retained, with few modifications, by many modern languages, including Ada, Pas-
cal and Java. The rule can be defined as follows:

Definition 4.4 (Static Scope) The static scope rule, or the rule of nearest nested
scope, is defined by the following three rules:

(i) The declarations local to a block define the local environment of that block. The
local declarations of a block include only those present in the block (usually
at the start of the block itself) and not those possibly present in blocks nested
inside the block in question.

(i1) If a name is used inside a block, the valid association for this name is the one
present in the environment local to the block, if it exists. If no association for
the name exists in the environment local to the block, the associations exist-
ing in the environment local to the block immediately containing the starting
block are considered. If the association is found in this block, it is the valid
one, otherwise the search continues with the blocks containing the one with
which we started, from the nearest to the furthest. If, during this search, the
outermost block is reached and it contains no association for the name, then
this association must be looked up in the language’s predefined environment.
If no association exists here, there is an error.

(iii) A block can be assigned a name, in which case the name is part of the lo-
cal environment of the block which immediately includes the block to which
the name has been assigned. This is the case also for blocks associated with
procedures.

It can be immediately seen that this definition corresponds to the informal visibil-
ity rules that we have already discussed, suitably completed by a static interpretation
of the concept of nesting.

Among the various details of the rule, the fact should not escape us that the
declaration of a procedure introduces an association for name of a procedures in
the environment local to the block containing the declaration (therefore, because of
nesting, the association is also visible in the block which constitutes the body of
the procedure, a fact which permits the definition of recursive procedures). The pro-
cedure’s formal parameters, moreover, are present only in the environment local to

4.3 Scope Rules 79

Fig. 4.3 An example of {int x = 0;
static scope void fie(int n) {
X = n+l;
}
fie(3);
write(x) ;
{int x = 0;
fie(3);
write(x);
}
write(x);

}

the procedure and are not visible in the environment which contains the procedure’s
declaration.

In a language with static scope, we will call the scope of a declaration that portion
of the program in which the declaration is visible according to Definition 4.4.

We conclude our analysis of static scope by discussing the example in Fig. 4.3.
The first and third occurrences of write print the value 4, while the second prints
the value 0. Note that the formal parameter, n, is not visible outside of the body of
the procedure.

Static scope allows the determination of all the environments present in a pro-
gram simply by reading its text. This has two important consequences of a positive
nature. First, the programmer has a better understanding of the program, as far as
they can connect every occurrence of a name to its correct declaration by observing
the textual structure of the program and without having to simulate its execution.
Moreover, this connection can also be made by the compiler which can therefore
determine each and every use of a name. This makes it possible, at compile time,
to perform a great number of correctness tests using the information contained in
types; it can also perform considerable number of code optimisations. For exam-
ple, if the compiler knows (using declarations) that the variable x which occurs in
a block is an integer variable, it will signal an error in the case in which a character
is assigned to this variable. Similarly, if the compiler knows that the constant fie
is associated with the value 10, it can substitute the value 10 for every reference
to f£ie, so avoiding having to arrange for this operation to be performed at run-
time, therefore, it updates the code. If, instead, the correct declaration for x and for
fie can be determined only at execution time, it is clear that these checks and this
optimisation are not possible as compilation time.

Note that, even with the static scope rules, the compiler cannot know in general
which memory location will be assigned to the variable with name x nor what its
value might be, given that this information depends on the execution of the program.
When using the static scope rule, moreover, the compiler is in possession of some
important information about the storage of variables (in particular it knows the off-
sets relative to a fixed position, as we will see in detail in the next chapter), that
it uses to compile efficient accesses to variables. As we will see, this information
is not available using dynamic scope, which, therefore, leads to less efficient exe-

80 4 Names and The Environment

Fig. 4.4 An example of {const x = 0;
dynamic scope void fie() {
write(x);

}
void foo(){
const x =1;
fie();
}
foo();
}

cution. For these reasons, most current languages (for example ALGOL, Pascal, C,
C++, Ada, scheme and Java) use some form of static scope.

4.3.2 Dynamic Scope

Dynamic scope was introduced in some languages, such as, for example, APL, L1SP
(some versions), SNOBOL and PERL, mainly to simplify runtime environment
management. In fact it is true that static scope imposes a fairly complicated runtime
regime because the various non-local environments are involved in a way that does
not reflect the normal flow of activation and deactivation of blocks. We seek to un-
derstand the problem by considering the fragment of code in Fig. 4.4 and following
its execution. First, the outermost block is entered and the association between the
name x and the constant O is created, as well as that between the names fie, foo
and associated procedures (as we said above, this association can be performed by
the compiler). Next the call to the procedure foo is executed and control enters the
block associated with the procedure. In this block, the link between the name x and
the constant 1 is created; then the call to procedure fie is executed which causes
entry to a new block (the one for the latter procedure). It is at this point that the
command write (x) is executed and given that x is not a name local to the block
introduced by the procedure fie, the association for the name x must be looked
up in outer blocks. However, according to the rules of static scope, as presented in
the last section, the first external block in which to look for the association for x is
not the last block to be activated (it is the one for procedure foo in our example);
such an external block depends on the structure of the program. In this case, then,
the correct association for the name x used by fie is the one located in the first
block and consequently the value O is printed. The block belonging to procedure
foo, even if it contains a declaration for x and is still active, is not considered.
Generalising from the previous example, we can say that, under static scope,
the sequence of blocks that must be considered to resolve references to non-local
names is different from the sequence of blocks that is opened and exited during
the program’s normal flow of control. The opening and closing can be handled in a
natural manner using the LIFO (Last In First Out) discipline, that is using a stack.
The sequence of blocks that need examining to implement static scope depends on

4.3 Scope Rules 81

Fig. 4.5 Another example of {const x = 0;
dynamic scope void fie() {
write(x);

7

}
void foo () {
const x = 1;
{const x = 2;
}
foo();
}
foo();
}

the syntactic structure of the program and being able to handle it correctly at runtime
depends upon the use of additional data structures, as we will see in detail in the next
chapter.

To simplify the management of the runtime environment some languages use
then the dynamic scope rule. This rule determines the associations between names
and denoted objects using the backward execution of the program. In such lan-
guages, resolving non-local names requires only a stack dedicated to handling
blocks at runtime. In our example, this means that, when the command write (x)
is executed, the association for the name and x is sought in the second block (rela-
tive to procedure f£oo), rather than in the first block, because this is the last block,
different from the current one, in which we entered and from which we have not yet
exited. Given that in the second block, we find the declaration const x = 1, in
the case of dynamic scope the preceding program prints the value 1.

With more precision the dynamic scope rule, also called the rule of the most
recent association, can be defined as follows.

Definition 4.5 (Dynamic Scope) According to the rule of dynamic scope, the valid
association for a name X, at any point P of a program, is the most recent (in the
temporal sense) association created for X which is still active when control flow
arrives at P.

It is appropriate to observe that this rule does not contradict the informal visibility
rule that we stated in Sect. 4.2.2. A moment’s reflection shows, indeed, that the
dynamic scope rule expresses nothing other than the same visibility rule but the
concept of block nesting is understood in a dynamic sense.

Let us again note how the difference between static and dynamic scope enters
only into the determination of the environment which is currently not local and not
global. For the local and global environment, the two rules coincide.

Let us conclude by discussing the example in Fig. 4.5. In a language with dy-
namic scope, the code prints the value 1 because when the command write (x) is
executed, the last association created for x which is still active associates x with 1.
The association which associates x to 2, even if it is the most recent one to be
created, is no longer active when procedure f£ie is executed and is therefore not
considered.

82 4 Names and The Environment

Note that dynamic scope allows the modification of the behaviour of procedure
or subprogram without using explicit parameters but only by redefining some of the
non-local variables used. To explain this point, assume that we have a procedure
visualise (text) which can visualise text in various colours, according to the
value of the non-local variable colour. If we assume that in the majority of cases,
the procedure visualises text in black, it is natural to assume that we do not wish to
introduce another parameter to the procedure in order to determine the colour. If the
language uses dynamic scope, in the case in which the procedure has to visualise a
text in red, it will be enough to introduce the declaration for the variable colour
before the call of the procedure. We can therefore write:

{var colour = red;
visualise (head) ;

}

Then the call to procedure visualise now will use the colour red, because of the
effect of dynamic scope.

This flexibility of dynamic scope, is, on the one hand, advantageous, yet, on the
other, it often makes programs more difficult to read, given that the same procedure
call, in conditions differing by only one non-local variable can produce different re-
sults. If the variable (colour in our example) is modified in an area of program that
is distant from the procedure call, understanding what has happened will probably
turn out to be difficult.

For this reason, as well as for low runtime efficiency, dynamic scope remains
little used in modern general-purpose languages, which instead use the static scope
rule.

4.3.3 Some Scope Problems

In this section, we will discuss some questions about static scope. The major dif-
ferences between the rules for static scope in various languages are based on where
declarations can be introduced and what will be the exact visibility of the local
variables. The scope rules just introduced, lend themselves to more than one inter-
pretation and, in some cases, they can also be the cause of anomalous behaviour. Let
us discuss here some different and important situations that can happen.

Let us, first, take the case of Pascal in which the static scope rule that we have
already seen is extended with the following additional rules:

1. Declarations can appear only at the start of a block.

2. The scope of a name extends from the start to the end of the block in which
the declaration of the name itself appears (excluding possible holes in scope)
independent of the position of that declaration.

4.3 Scope Rules 83

3. All names not predefined by the language must be declared before use.

It is an error therefore to write:

begin
const fie = value;
const value = 0;
end

This is because value is used before its definition. It could be assumed that such
a fragment might be correct if it were inserted into a block already containing a
definition of value. Also in this case, though, an error is produced. In fact, let us
write:

begin
const value = 1;
procedure foo;
const fie = value;
const value = 0;

begin
end
end

Now, the rules that we have seen tell us that the declaration of the procedure foo
introduces an internal block in which the local declaration of value (which initialises
to the constant to 0) covers the external declaration (which initialises the constant
to 1). Therefore the name value appearing in the declaration

const fie = value;

must refer to the declaration

const value = 0;

in the internal block. However this declaration occurs after the use of the name,
therefore contravening Rule 3. In such a case, therefore, the more correct behaviour
for a Pascal compiler is to raise a static semantic error as soon as it has analysed
the declaration of £ie. Some compilers, though, assign to £ie the value 1; this is
clearly incorrect for the reason that it violates the visibility rule.

To avoid this type of problem, some languages with static scope, such as C and
Ada, limit the scope of declarations to that portion of the block between the point
at which the declarations occur and the end of the book itself (excluding, as usual,
holes in scope).

In these languages, therefore, we do not encounter the above problem where the
name value appearing in the declaration

84 4 Names and The Environment

Head ——b — —

Fig. 4.6 A list

const fie = value;

would refer to the declaration in the external block, given that the name internally
declared is no longer visible. However, also in these languages names must be de-
clared before being used. So also in this case the following declarations

const fie = value;
const value = 0;

produce an error if value is not declared in an external block.

Rule 3, which prescribes declaration before use, is particularly burdensome in
some cases. Indeed, it forbids the definition of recursive types or mutually recursive
procedures.

Let us assume, for example, that we want to define a data type like a list which,
as we know, is a variable-length data structure formed of a (possibly empty) ordered
sequence of elements of some type and in which it is possible to add or remove
elements. In a list, only the first element can be directly accessed (to access an
arbitrary element, it is necessary to traverse the list sequentially). A list, as shown in
Fig. 4.6, can be implemented using a sequence of elements, each of which is formed
of two fields: the first will contain the information we want to store (for example,
an integer); the second will contain a pointer to the next element of the list, if it
exists, otherwise it stores the value nil if the list has ended. We can access the list
using the pointer of the first element of the list (which is usually called the head). In
Pascal, we can define the list type as follows:

type list = "element;

type element = record
information: integer;
successor: list
end

Here T denotes the type of pointers to objects of type T. A value of type 1istisa
pointer to an arbitrary element of the list. The value of type element corresponds
to an element of the list, which is composed of an integer and by a field the type
1list which allows it to connect to the next element. This declaration is incorrect
according to Rule 3. In fact, whatever the order of the declarations of list and el-
ement may be, it can be seen that we use a name which has not yet been defined.
This problem is resolved in Pascal by relaxing Rule 3. For data of a pointer type,
and only for them, is it permitted to refer to a name that has not yet been declared.
The declaration given above for list are therefore correct in Pascal.

In the case of C and Ada, on the other hand, the analogues of the previous dec-
larations are not permitted. To specify mutually recursive types, it is necessary to

4.4 Chapter Summary 85

use incomplete declarations which introduce a name which will later be specified in
full. For example, in Ada we can write:

type element;

type list is access element;

type element is record
information: integer;
successor: list;
end record;

This solves the problem of using a name before its declaration.

The problem presents itself in the analogous case of the definition of mutually
recursive procedures. Here, Pascal uses incomplete definitions. If procedure fie is
to be defined in terms of procedure foo and vice versa, in Pascal, we must write:

procedure fie(A:integer); forward;
procedure foo(B: integer);
begin

fie(3);

end
procedure fie;

begin

foo(4);
end

In the case of function names, it is strange to observe that C, on the other hand,
allows the use of an identifier before its declaration. The declaration of mutually
recursive functions does not require any special treatment.

Rule 3 is relaxed in as many ways as there are programming languages. Java, for
example, allows a declaration to appear at any point in a block. If the declaration
is of a variable, the scope of the name being declared extends from the point of
declaration to the end of the block (excluding possible holes in scope). If, on the
other hand, the declaration refers to a member of a class (either a field or a method),
it is visible in all classes in which it appears, independent of the order in which the
declarations occur.

4.4 Chapter Summary

In this chapter we have seen the primary aspects of name handling in high-level
languages. The presence of the environment, that is of a set of associations between
names and the objects they represent, constitute one of the principal characteristics
that differentiate high-level from low-level languages. Given the lack of environ-
ment in low-level languages, name management, as well as that of the environment,

86 4 Names and The Environment

is an important aspect in the implementation of a high-level language. We will see
implementation aspects of name management in the next chapter. Here we are in-
terested in those aspects which must be known to every user (programmer) of a
high-level language so that they fully understand the significance of names and,
therefore, of the behaviour of programs.

In particular, we have analysed the aspects that are listed below:

e The concept of denotable objects. These are the objects to which names can be
given. Denotable objects vary according to the language under consideration,
even if some categories of object (for example, variables) are fairly general.

e Environment. The set of associations existing at runtime between names and de-
notable objects.

e Blocks. In-line or associated with procedures, these are the fundamental construct
for structuring the environment and for the definition of visibility rules.

e Environment Types. These are the three components which at any time charac-
terise the overall environment: local environment, global environment and non-
local environment.

e Operations on Environments. Associations present in the environment in addition
to being created and destroyed, can also be deactivated, a re-activated and, clearly,
can be used.

e Scope Rules. Those rules which, in every language, determine the visibility of
names.

e Static Scope. The kind of scope rule typically used by the most important pro-
gramming languages.

e Dynamic Scope. The scope rule that is easiest to implement. Used today in few
languages.

In an informal fashion, we can say that the rules which define the environment are
composed of rules for visibility between blocks and of scope rules, which charac-
terise how the non-local environment is determined. In the presence of procedures,
the rules we have given are not yet sufficient to define the concept of environment.
We will return to this issue in Chap. 7 (in particular at the end of Sect. 7.2.1).

4.5 Bibliographical Notes

General texts on programming languages, such as for example [2, 3] and [4], treat
the problems seen in this chapter, even if they are almost always viewed in the con-
text of the implementation. For reasons of clarity of exposition, we have chosen to
consider in this chapter only the semantic rules for name handling and the environ-
ment, while we will consider their implementation in the next chapter.

For the rules used by individual languages, it is necessary to refer to the specific
manuals, some of which are mentioned in bibliographical notes for Chap. 13, even
if at times, as we have discussed in Sect. 4.3.3, not all the details are adequately
clarified.

The discussion in Sect. 4.3.3 draws on material from [1].

4.6 Exercises 87
4.6 Exercises

Exercises 6—13, while really being centred on issues relating to scope, presuppose
knowledge of parameter passing which we will discuss in Chap. 7.

1. Consider the following program fragment written in a pseudo-language which
uses static scope and where the primitive read (Y) allows the reading of the
variable Y from standard input.

int X = 0;

int Y;
void fie() {
X++;

}
void foo() {
X++;
fie();
}
read(Y) ;
if Y > 0{int X =
foo();}
else foo();
write(X);

5;

State what the printed values are.
2. Consider the following program fragment written in a pseudo-language that
uses dynamic scope.

int X;
X =1;
int Y;
void fie() {
foo();
X = 0;
}
void foo(){
int X;
X =5;
}
read(Y) ;
if Y > 0{int X;
X = 4;
fie();}
else fie();
write(X);

State which is (or are) the printed values.
3. Consider the following code fragment in which there are gaps indicated by (*)
and (**). Provide code to insert in these positions in such a way that:

88

4 Names and The Environment

a. If the language being used employs static scope, the two calls to the proce-
dure foo assign the same value to x.

b. If the language being used employs dynamic scope, the two calls to the pro-
cedure foo assign different values to x.

The function f£oo must be appropriately declared at (*).

{int 1i;
(*)
for (i=0; i<=1; 1i++){
int x;
(**)
x= foo();
}
}

. Provide an example of a denotable object whose life is longer than that of the

references (names, pointers, etc.) to it.

. Provide an example of a connection between a name and a denotable object

whose life is longer than that of the object itself.

. Say what will be printed by the following code fragment written in a pseudo-

language which uses static scope; the parameters are passed by a value.

{int x = 2;
int fie(int y){
X =X +Yvy;

}

{int x = 5;
fie(x);
write(x);
}

write(x) ;

}

. Say what is printed by the code in the previous exercise if it uses dynamic scope

and call by reference.

. State what is printed by the following fragment of code written in a pseudo-

language which uses static scope and passes parameters by reference.

{int x = 2;
void fie(reference int vy) {

X = X + V;
y =y +1;

}

{int x = 5;
int vy = 5;
fie(x);
write(x);

}

write(x) ;

}

4.6 Exercises 89

9. State what will be printed by the following code fragment written in a pseudo-
language which uses static scope and passes its parameters by value (a com-
mand of the form foo (w++) passes the current value of w to foo and then
increments it by one).

{int x = 2;
void fie(value int vy) {
X =X + Vy;
}
{int x = 5;
fie(x++);
write(x);
}
write(x);

}

10. State what will be printed by the following fragment of code written in a
pseudo-language which uses static scope and call by name.

{int x = 2;
void fie(name int vy) {
X = X + V;
}
{int x = 5;
{int x = 7
}
fie(x++);
write(x);
}
write(x);

}

11. State what will be printed by the following code written in a pseudo-language
which uses dynamic scope and call by reference.

{int x = 1;

int v = 1;

void fie(reference int z) {
z =X+ Yy + zZ;

12. State what will be printed by the following fragment of code written in a
pseudo-language which uses static scope and call by reference.

90 4 Names and The Environment

{int x = 0;
int A(reference int y) {
int x =2;
y=y+1;
return B(y) +X%;
}
int B(reference int vy) {
int C(reference int vy) {
int x = 3;
return A (y)+xX+y;
}
if (y==1) return C(x)+y;
else return x+y;
}
write (A(x));
}

13. Consider the following fragment of code in a language with static scope and
parameter passing both by value and by name:

{int z= 0;
int Omega () {
return Omegal() ;
}
int foo(int x, int vy){
if (x==0) return x;
else return x+y;
}
write(foo(z, Omega()+z));

}

(1) State what will be the result of the execution of this fragment in the case in
which the parameters to foo are passed by name.

(i1) State what will be the result of the execution of this fragment in the case in
which the parameters to foo are passed by value.

References

1. R. Cailliau. How to avoid getting schlonked by Pascal. SIGPLAN Not., 17(12):31-40, 1982.
doi:10.1145/988164.988167.
2. T.W. Pratt and M.V. Zelkowitz. Programming Languages: Design and Implementation.

Prentice-Hall, New York, 2001.
3. M. L. Scott. Programming Language Pragmatics. Morgan Kaufmann, San Mateo, 2000.
4. R.Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley, Reading, 1996.

Chapter 5
Memory Management

An important component of an abstract machine’s interpreter is the one dealing
with memory management. If this component can be extremely simple in a physical
machine, memory management in an abstract machine for a high-level language is
fairly complicated and can employ a range of techniques. We will see both static and
dynamic management and will examine activation records, the system stack and the
heap. One section in particular is dedicated to the data structures and mechanisms
used to implement scope rules.

Conceptually, garbage-collection techniques, techniques for the automatic recov-
ery of memory allocated in a heap, are included in memory management. How-
ever, to make the presentation more coherent, these techniques will be explained in
Sect. 8.12, after having dealt with data types and pointers.

5.1 Techniques for Memory Management

As we said in Chap. 1, memory management is one of the functions of the interpreter
associated with an abstract machine. This functionality manages the allocation of
memory for programs and for data, that is determines how they must be arranged
in memory, how much time they may remain and which auxiliary structures are
required to fetch information from memory.

In the case of a low-level abstract machine, the hardware, for example, memory
management is very simple and can be entirely static. Before execution of the pro-
gram begins, machine language program and its associated data is loaded into an
appropriate area of memory, where it remains until its execution ends.

In the case of a high-level language, matters are, for various reasons, more com-
plicated. First of all, if the language permits recursion, static allocation is insuf-
ficient.! In fact, while we can statically establish the maximum number of active
procedures at any point during execution in the case of languages without recursion,

'We will see below an exception to this general principle. This is the case of so-called tail recursion.

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 91
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_5, © Springer-Verlag London Limited 2010

92 5 Memory Management

when we have recursive procedures this is no longer true because the number of si-
multaneously active procedure calls can depend on the parameters of the procedures
or, generally, on information available only at runtime.

Example 5.1 Consider the following fragment:

int fib (int n) {
if (n == 0) return 1;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

which, if called with an argument n, computes (in a very inefficient way) the value
of the nth Fibonacci number. Let us recall that Fibonacci numbers are the terms
of the sequence2 defined inductively as follows: Fib(0) = Fib(1) = 1; Fib(n) =
Fib(n — 1) 4+ Fib(n — 2), for n > 1. It is clear that the number of active calls to
Fib depends, other than on the point of execution, on the value of the argument, n.
Using a simple recurrence relation, it can be verified that the number, C(n), of
calls to Fib necessary to calculate the value of the term Fib(n) (and, therefore,
the simultaneously active calls) is exactly equal to this value. From a simple inspec-
tion of the code, indeed, it can be seen that C(n) = 1 for n =0 and n = 1, while
C(n)=C(n—1)4+C(n—2) forn > 1. It is known that the Fibonacci numbers grow
exponentially, so the number of calls to £1b is of the order of O (2").

Given that every procedure call requires its own memory space to store param-
eters, intermediate results, return addresses, and so on, in the presence of recursive
procedures, static allocation of memory is no longer sufficient and we have to allow
dynamic memory allocation and deallocation operations, which are performed dur-
ing the execution of the program. Such dynamic memory processing can be imple-
mented in a natural fashion using a stack for procedure (or in-line block) activations
since they follow a LIFO (Last In First Out) policy—the last procedure called (or
the last block entered) will be the first to be exited.

There are, however, other cases which require dynamic memory management for
which a stack is not enough. These are cases in which the language allows explicit
memory allocation and deallocation operations, as happens, for example, in C with
the malloc and free commands. In these cases, given that the allocation opera-
tion (malloc) and the one for deallocation (free) can be alternated in any order
whatsoever, it is not possible to use a stack to manage the memory and, as we will
better see as the chapter unfolds, a particular memory structure called a heap is used.

2The sequence takes the name of the Pisan mathematician of the same name, known also as
Leonardo da Pisa (ca., 1175-1250), who seems to have encountered the sequence by studying
the increase in a population of rabbits. For information on inductive definition, see the box on
page 153.

5.2 Static Memory Management 93
5.2 Static Memory Management

Static memory management is performed by the complier before execution starts.
Statically allocated memory objects reside in a fixed zone of memory (which is
determined by the compiler) and they remain there for the entire duration of the
program’s execution. Typical elements for which it is possible statically to allocate
memory are global variables. These indeed can be stored in a memory area that is
fixed before execution begins because they are visible throughout the program. The
object code instructions produced by the compiler can be considered another kind
of static object, given that normally they do not change during the execution of the
program, so in this case also memory will be allocated by the compiler. Constants
are other elements that can be handled statically (in the case in which their values
do not depend on other values which are unknown at compile time). Finally, various
compiler-generated tables, necessary for the runtime support of the language (for
example, for handling names, for type checking, for garbage collection) are stored
in reserved areas allocated by the compiler.

In the case in which the language does not support recursion, as we have antic-
ipated, it is possible statically to handle the memory for other components of the
language. Substantially, this is done by statically associating an area of memory in
which is stored the information local to the procedure with each procedure (or sub-
routine)? itself. This information is composed of local variables, possible parameters
of the procedure (containing both arguments and results), the return address (or the
address to which control must pass when the procedure terminates), possible tem-
porary values used in complex calculations and various pieces of “bookkeeping”
information (saved register values, information for debugging and so on).

The situation of a language with only static memory allocation is shown in
Fig.5.1.

It will be noted that successive calls to the same procedure share the same mem-
ory areas. This is correct because, in the absence of recursion, there cannot be two
different calls to the same procedure that are active at the same time.

5.3 Dynamic Memory Management Using Stacks

Most modern programming languages allow block structuring of programs.*
Blocks, whether in-line or associated with procedures, are entered and left using

the LIFO scheme. When a block A is entered, and then a block B is entered, before

leaving A, it is necessary to leave B. It is therefore natural to manage the memory

31t would be more correct to speak of subroutines because this was the term used in languages that
used static memory allocation, such as, for example, the first versions of FORTRAN from the 1960s
and 70s.

4We will see below that important languages, such as C, though, do not offer the full potential
of this mechanism, in that they do not permit the declaration of local procedures and functions in
nested blocks.

94 5 Memory Management

Fig. 5.1 Static memory
management

System
Information

Return
Address

Parameters

Local
Variables

Intermediate;
Results

Procedure 1 Procedure 2 B Procedure n

space required to store the information local to each block using a stack. We will
see an example.

Example 5.2 Let us consider the following program:

A:{int a = 1;
int b 0;

B:{int c = 3;
int b = 3;
}

b=a+1;

}

At runtime, when block A is entered, a push operation allocates a space large
enough to hold the variables a and b, as shown in Fig. 5.2. When block B is entered,
we have to allocate a new space on the stack for the variables ¢ and b (recall that
the inner variable b is different from the outer one) and therefore the situation, after
this second allocation, is that shown in Fig. 5.3. When block B exits, on the other
hand, it is necessary to perform a pop operation to deallocate the space that had
been reserved for the block from the stack. The situation after such a deallocation
and after the assignment is shown in Fig. 5.4. Analogously, when block A exits, it
will be necessary to perform another pop to deallocate the space for A as well.

The case of procedures is analogous and we consider it in Sect. 5.3.2.

The memory space, allocated on the stack, dedicated to an in-line block or to an
activation of a procedure is called the activation record, or frame. Note that an acti-

5.3 Dynamic Memory Management Using Stacks 95

Fig. 5.2 Allocation of an
activation record for block A
in Example 5.2

b
a 1 Act Rec for A
Fig. 5.3 Allocation of
activation records for
blocks A and B in
Example 5.2
b 0
a 1 Act Rec for A

3 Act Rec for B

Fig. 5.4 Organisation after
the execution of the
assignment in Example 5.2

a 1 Act Rec for A

vation record is associated with a specific activation of a procedure (one is created
when the procedure is called) and not with the declaration of a procedure. The val-
ues that must be stored in an activation record (local variables, temporary variables,
etc.) are indeed different for the different calls on the same procedure.

The stack on which activation records are stored is called the runtime (or system)
stack.

96 5 Memory Management

Fig. 5.5 Organisation of an
activation record for an Dynamic chain pointer
in-line block

Local variables

Intermediate results

It should finally be noted, that to improve the use of runtime memory, dynamic
memory management is sometimes also used to implement languages that do not
support recursion. If the average number of simultaneously active calls to the same
procedure is less than the number of procedures declared in the program, using a
stack will save space, for there will be no need to allocate a memory area for each
declared procedure, as must be done in the case of entirely static management.

5.3.1 Activation Records for In-line Blocks

The structure of a generic activation record for an in-line block is shown in Fig. 5.5.
The various sectors of the activation record contain the following information:

Intermediate results When calculations must be performed, it can be necessary to
store intermediate results, even if the programmer does not assign an explicit name
to them. For example, the activation record for the block:

{int a =3;
b= (a+x)/ (x+y);}

could take the form shown in Fig. 5.6, where the intermediate results (a+x) and
(x+y) are explicitly stored before the division is performed. The need to store
intermediate results on the stack depends on the compiler being used and on the
architecture to which one is compiling. On many architectures they can be stored
in registers.

Local variables Local variables which are declared inside blocks, must be stored
in a memory space whose size will depend on the number and type of the vari-
ables. This information in general is recorded by the compiler which therefore will
be able to determine the size of this part of the activation record. In some cases,
however, there can be declarations which depend on values recorded only at run-
time (this is, for example, the case for dynamic arrays, which are present in some
languages, whose dimensions depend on variables which are only instantiated at
execution time). In these cases, the activation record also contains a variable-length

5.3 Dynamic Memory Management Using Stacks 97

Fig. 5.6 An activation record A
with space for intermediate
results a 3

at+zx value

T+y value

part which is defined at runtime. We will examine this in detail in Chap. 8 when
discussing arrays.

Dynamic chain pointer This field stores a pointer to the previous activation record
on the stack (or to the last activation record created). This information is necessary
because, in general, activation records have different sizes. Some authors call this
pointer the dynamic link or control link. The set of links implemented by these
pointers is called the dynamic chain.

5.3.2 Activation Records for Procedures

The case of procedures and functions? is analogous to that of in-line blocks but with
some additional complications due to the fact that, when a procedure is activated,
it is necessary to store a greater amount of information to manage correctly the
control flow. The structure of a generic activation record for a procedure is shown
in Fig. 5.7. Recall that a function, unlike a procedure, returns a value to the caller
when it terminates its execution. Activation records for the two cases are therefore
identical with the exception that, for functions, the activation record must also keep
tabs on the memory location in which the function stores its return value.
Let us now look in detail at the various fields of an activation record:

Intermediate results, local variables, dynamic chain pointer The same as for
in-line blocks.

Static chain pointer This stores the information needed to implement the static
scope rules described in Sect. 5.5.1.

Return address Contains the address of the first instruction to execute after the call
to the current procedure/function has terminated execution.

Returned result Present only in functions. Contains the address of the memory
location where the subprogram stores the value to be returned by the function when
it terminates. This memory location is inside the caller’s activation record.

Parameters The values of actual parameters used to call the procedure or function
are stored here.

The organisation of the different fields of the activation record varies from im-
plementation to implementation. The dynamic chain pointer and, in general, every

SHere and below, we will almost always use the terms “function” and “procedure” as synonyms.
Although there are is no agreement between authors, the term “procedure” should denote a sub-
program which does not directly return a value, while a function is a subprogram that returns one.

98 5 Memory Management

Fig. 5.7 Structure of the
activation record for a Dynamic Chain Pointer
procedure

Static Chain Pointer

Return Address

Address for Result

Parameters

Local Variables

Intermediate Results

pointer to an activation record, points to a fixed (usually central) area of the activa-
tion record. The addresses of the different fields are obtained, therefore, by adding
a negative or positive offset to the value of the pointer.

Variable names are not normally stored in activation records and the compiler
substitutes references to local variables for addresses relative to a fixed position in
(i.e., an offset into) the activation record for the block in which the variables are
declared. This is possible because the position of a declaration inside a block is
fixed statically and the compiler can therefore associate every local variable with an
exact position inside the activation record.

In the case of references to non-local variables, also, as we will see when we dis-
cuss scope rules, it is possible to use mechanisms that avoid storing names and there-
fore avoid having to perform a runtime name-based search through the activation-
record stack in order to resolve a reference.

Finally, modern compilers often optimise the code they produce and save some
information in registers instead of in the activation record. For simplicity, in this
book, we will not consider these optimisations. In any case for greater clarity, in the
examples, we will assume that variable names are stored in activation records.

To conclude, let us note that all the observations that we have made about variable
names, their accessibility and storage in activation records, can be extended to other
kinds of denotable object.

5.3 Dynamic Memory Management Using Stacks 99

5.3.3 Stack Management

Figure 5.8 shows the structure of a system stack which we assume growing down-
wards (the direction of stack growth varies according to the implementation). As
shown in the figure, an external pointer to the stack points to the last activation
record on the stack (pointing to a predetermined area of the activation record which
is used as a base for calculating the offsets used to access local names). This pointer,
which we call the activation record pointer, is also called the frame or current envi-
ronment pointer (because environments are implemented using activation records).
In the figure, we have also indicated where the first free location is. This second
pointer, used in some implementations, can, in principle, also be omitted if the
activation-record pointer always points to a position that is at a pre-defined distance
from the start of the free area on the stack.

Activation records are stored on and removed from the stack at runtime. When a
block is entered or a procedure is called, the associated activation record is pushed
onto the stack; it is later removed from the stack when the block is exited or when
the procedure terminates.

The runtime management of the system stack is implemented by code fragments
which the compiler (or interpreter) inserts immediately before and after the call to a
procedure or before the start and after the end of a block.

Let us examine in detail what happens in the case of procedures, given that the
case of in-line blocks is only a simplification.

First of all, let us clarify the terminology that we are using. We use “caller” and
“callee” to indicate, respectively, the program or procedure that performs a call (of
a procedure) and the procedure that has been called.

Start of Stack »

Act Rec
>
- \\\
Act Rec \\\
<--_ i\a Dynamic Chain

L, Pointer

1
Act Rec Pointer :‘—D —
Act Rec
Pointer to Stack |:
Top -

Free memory
area for stack

Fig. 5.8 The stack of activation records

100 5 Memory Management

Stack management is performed both by the caller and by the callee. To do this,
as well as handling other control information, a piece of code called the calling
sequence is inserted into the caller to be executed, in part, immediately before the
procedure call. The remainder of this code is executed immediately after the call.
In addition, in the callee two pieces of code are added: a prologue, to be executed
immediately after the call, and an epilogue, which is executed when the procedure
ends execution. These three code fragments manage the different operations needed
to handle activation records and correctly implement a procedure call. The exact
division of what the caller and callee do depends, as usual, on the compiler and on
the specific implementation under consideration. Moreover, to optimise the size of
code produced, it is preferable that the larger part of the activity is given to the callee,
since the code is added only once (to the code associated with the declaration of the
call) instead of many times (to the code associated with different calls). Without
therefore further specifying the division of activities, they consist of the following
tasks:

Modification of program counter This is clearly necessary to pass control to the
called procedure. The old value (incremented) must be saved to maintain the return
address.

Allocation of stack space The space for the new activation record must be pre-
allocated and therefore the pointer to the first free location on the stack must be
updated as a consequence.

Modification of activation record pointer The pointer must point to the new acti-
vation record for the called procedure; the activation record will have been pushed
onto the stack.

Parameter passing This activity is usually performed by the caller, given that dif-
ferent calls of the same procedure can have different parameters.

Register save Values for control processing, typically stored in registers, must be
saved. This is the case, for example, with the old activation record pointer which
is saved as a pointer in the dynamic chain.

Execution of initialisation code Some languages require explicit constructs to ini-
tialise some items stored in the new activation record.

When control returns to the calling program, i.e. when the called procedure ter-
minates, the epilogue (in the called routine) and the calling sequence (in the caller)
must perform the following operations:

Update of program counter This is necessary to return control to the caller.

Value return The values of parameters which pass information from the caller to
the called procedure, or the value calculated by the function, must be stored in
appropriate locations usually present in the caller’s activation record and accessible
to the activation record of the called procedure.

Return of registers The value of previously saved registers must be restored. In
particular, the old value of the activation record pointer must be restored.

Execution of finalisation code Some languages require the execution of appropri-
ate finalisation code before any local objects can be destroyed.

5.4 Dynamic Management Using a Heap 101

Deallocation of stack space The activation record of the procedure which has ter-
minated must be removed from the stack. The pointer to (the first free position on)
the stack must be modified as a result.

It should be noted that in the above description, we have omitted the handling of
the data structures necessary for the implementation of scope rules. This will be
considered in detail in Sect. 5.5 of this chapter.

5.4 Dynamic Management Using a Heap

In the case in which the language includes explicit commands for memory alloca-
tion, as for example do C and Pascal, management using just the stack is insufficient.
Consider for example the following C fragment:

int *p, *q; /* p,qg NULL pointers to integers */
p = malloc (sizeof (int));
/* allocates the memory pointed to by p */

g = malloc (sizeof (int));
/* allocates the memory pointed to by q */
p = 0; / dereferences and assigns */
qg = 1; / dereferences and assigns */
free(p); /* deallocates the memory pointed to by p */
free(q); /* deallocates the memory pointed to by g */

Given that the memory deallocation operations are performed in the same order
as allocations (first p, then g), the memory cannot be allocated in LIFO order.

To manage explicit memory allocations, which can happen at any time, a partic-
ular area of memory, called a heap, is used. Note that this term is used in computing
also to mean a particular type of data structure which is representable using a binary
tree or a vector, used to implement efficiently priorities (and used also in the “heap
sort” sorting algorithm, where the term “heap” was originally introduced). The def-
inition of heap that we use here has nothing to do with this data structure. In the
programming language jargon, a heap is simply an area of memory in which blocks
of memory can be allocated and deallocated relatively freely.

Heap management methods fall into two main categories according to whether
the memory blocks are considered to be of fixed or variable length.

5.4.1 Fixed-Length Blocks

In this case, the heap is divided into a certain number of elements, or blocks, of fairly
small fixed length, linked into a list structure called the free list, as shown in Fig. 5.9.
At runtime, when an operation requires the allocation of a memory block from the
heap (for example using the malloc command), the first element of the free list is
removed from the list, the pointer to this element is returned to the operation that

102 5 Memory Management

Fig. 5.9 Free list in a heap E—’
with fixed-size blocks LL Start]

r

!

!

Fig. 5.10 Free list for heap LL Start E

of fixed-size blocks after
allocation of some memory.
Grey blocks are allocated (in
use)

requested the memory and the pointer to the free list is updated so that it points to
the next element.

When memory is, on the other hand, freed or deallocated (for example using
free), the freed block is linked again to the head of the free list. The situation after
some memory allocations is shown in Fig. 5.10. Conceptually, therefore, manage-
ment of a heap with fixed-size blocks is simple, provided that it is known how to
identify and reclaim the memory that must be returned to the free list easily. These
operations of identification and recovery are not obvious, as we will see below.

5.4 Dynamic Management Using a Heap 103

5.4.2 Variable-Length Blocks

In the case in which the language allows the runtime allocation of variable-length
memory spaces, for example to store an array of variable dimension, fixed-length
blocks are no longer adequate. In fact the memory to be allocated can have a size
greater than the fixed block size, and the storage of an array requires a contiguous
region of memory that cannot be allocated as a series of blocks. In such cases, a
heap-based management scheme using variable-length blocks is used.

This second type of management uses different techniques, mainly defined with
the aim of increasing memory occupation and execution speed for heap management
operations (recall that they are performed at runtime and therefore impact on the
execution time of the program). As usual, these two characteristics are difficult to
reconcile and good implementations tend towards a rational compromise.

In particular, as far as memory occupancy is concerned, it is a goal to avoid the
phenomenon of memory fragmentation. So-called internal fragmentation occurs
when a block of size strictly larger than the requested by the program is allocated.
The portion of unused memory internal to the block clearly will be wasted until
the block is returned to the free list. But this is not the most serious problem. In-
deed, so-called external fragmentation is worse. This occurs when the free list is
composed of blocks of a relatively small size and for which, even if the sum of the
total available free memory is enough, the free memory cannot be effectively used.
Figure 5.11 shows an example of this problem. If we have blocks of size x and y
(words or some other unit—it has no relevance here) on the free list and we re-
quest the allocation of a block of greater size, our request cannot be satisfied despite
the fact that the total amount of free memory is greater than the amount of mem-
ory that has been requested. The memory allocation techniques tend therefore to

Free Memory

Occupied

LL Memory

Requested
Memory

r+y>=z
T <z
y <z

Fig. 5.11 External fragmentation

104 5 Memory Management

“compact” free memory, merging contiguous free blocks in such a way as to avoid
external fragmentation. To achieve this objective, merging operations can be called
which increase the load imposed by the management methods and therefore reduce
efficiency.

Single free list The first technique we examine deals with a single free list, ini-
tially composed of a single memory block containing the entire heap. It is indeed
convenient to seek to maintain blocks of largest possible size. It makes no sense,
therefore, initially to divide the heap into many small blocks as, on the other hand,
we did in the case of fixed-size blocks. When the allocation of a block of n words
of memory is requested, the first n words are allocated and the pointer to the start
of the head is incremented by n. Successive requests are handled in a similar way,
in which deallocated blocks are collected on a free list. When the end of the heap’s
memory space is reached, is necessary to reuse deallocated memory and this can be
done in the two following ways:

(i) Direct use of the free list In this case, a free list of blocks of variable size is
used. When the allocation of a memory block n words in length is requested,
the free list is searched for a block of size k words, where k is greater than
or equal to n. The requested memory is allocated inside this block. The unused
part of the block (of size k —n) if longer than some predefined threshold, is used
to form a new block that is inserted into the free list (internal fragmentation is
permitted below this threshold). The search for a block of sufficient size can be
performed using one of two methods. Using first fit, the search is for the first
block of sufficient size, while using best fit, the search is for a block whose size
is the least of those blocks of sufficient size. The first technique favours pro-
cessing time, while the second favours memory occupation. For both, however,
the cost of allocation is linear with respect to the number of blocks on the free
list. If the blocks are held in order of increasing block size, the two schemes
are the same, because the list is traversed until a large enough block is found.
Moreover, in this case, the cost of insertion of a block into the free list increases
(from constant to linear), because is necessary to find the right place to insert it.
Finally, when a deallocated block is returned to the free list, in order to reduce
external fragmentation, a check is make to determine whether the physically
adjacent blocks are free, in which case they are compacted into a single block.
This type of compaction is said to be partial because it compacts only adjacent
blocks.

(i) Free memory compaction In this technique, when the end of the space initially
allocated to the heap is reached, all blocks that are still active are moved to the
end; they are the blocks that cannot be returned to the free list, leaving all the
free memory in a single contiguous block. At this point, the heap pointer is
updated so that it points to the start of the single block of free memory and
allocation starts all over again. Clearly, for this technique to work, the blocks
of allocated memory must be movable, something that is not always guaranteed
(consider blocks whose addresses are stored in pointers on the stack). Some
compaction techniques will be discussed in Sect. 8.12, when we discuss garbage
collection.

5.5 Implementation of Scope Rules 105

Multiple free lists To reduce the block allocation cost, some heap management
techniques use different free lists for blocks of different sizes. When a block of
size n is requested, the list that contains blocks of size greater than or equal to n
is chosen and a block from this list is chosen (with some internal fragmentation if
the block has a size greater than n). The size of the blocks in this case, too, can be
static or dynamic and, in the case of dynamic sizes, two management methods are
commonly used: the buddy system and the Fibonacci heap. In the first, the size of
the blocks in the various free lists are powers of 2. If a block of size n is requested
and k is the least integer such that 2k > 1 then a block of size 2* is sought (in the
appropriate free list). If such a free block is found it is allocated, otherwise, a search
is performed in the next free list for a block of size 25*! and it is split into two parts.
One of the two blocks (which therefore has size 2%) is allocated, while the other is
inserted into the free list for blocks of size 2¥. When a block resulting from a split is
returned to the free list, a search is performed for its “buddy”, that is the other half
that was produced by the split operation, and it is free, the two blocks are merged to
re-form the initial block of size 2K*!. The Fibonacci heap method is similar but uses
Fibonacci numbers instead of powers of 2 as block sizes. Given that the Fibonacci
sequence grows more slowly than the series 2", this second method leads to less
internal fragmentation.

5.5 Implementation of Scope Rules

The possibility of denoting objects, even complex ones, by names with appropri-
ate visibility rules constitutes one of the most important aspects that differentiate
high-level languages from low-level ones. The implementation of environments and
scope rules discussed in Chap. 4 requires, therefore, suitable data structures. In this
section, we analyse these structures and their management.

Given that the activation record contains the memory space for local names, when
a reference to a non-local name is encountered, the activation records that are still
active must be examined (that is, the ones present on the stack) in order to find the
one that corresponds to the block where the name in question was declared; this will
be the block that contains the association for our name. The order in which to exam-
ine the activation records varies according to the kind of scope under consideration.

5.5.1 Static Scope: The Static Chain

If the static scope rule is employed, as we anticipated in Chap. 4, the order in which
activation records are consulted when resolving non-local references is not the one
defined by their position on the stack. In other words, the activation record directly
connected by the dynamic chain pointer is not necessarily the first activation record
in which to look in order to resolve a non-local reference; the first activation record
within which to look is defined by the textual structure of the program. Let us see
an example.

106 5 Memory Management

A e e |- -,
vy [i] 0 !
.
e B |
[<«------ |
B -T I
x int 0O &7 o
fie | fun —% Code Pointer
Do
! |
b Statlc. Chain >
e p---- ! ! Pointer
C il 1 Dynamic Chain
x ‘ int ‘ 1 : Pointer
|

fie e H—' ‘ Act Rec Pointer

n Jine [2

Fig. 5.12 Activation stack with static chain (see Example 5.3)

Example 5.3 Consider the following code (as usual, for ease of reference, we have
labelled the blocks):

A:{int y=0;
B:{int x = 0;
void (int n) {

X = n+l;
Yy = n+2;

}

C:{int x = 1;
fie(2);
write(x) ;
}

}

write(y);

After executing the call £ie (2), the situation on the activation-record stack is
that shown in Fig. 5.12. The first activation record on the stack (the uppermost one
in the figure) is for the outermost block; the second is the one for block B; the third
is for C and finally the fourth is the activation record for the call to the procedure.
The non-local variable, %, used in procedure fie, as we know from the static scope
rule is not the one declared in block C but the one declared in block B. To be able

5.5 Implementation of Scope Rules 107

Fig. 5.13 A block structure r

A of
d

to locate this information correctly at runtime, the activation record for the call to
the procedure is connected by a pointer, called the static chain pointer, to the record
for the block containing the declaration of the variable. This record is linked, in its
turn, by a static chain pointer to the record for block 2, because this block, being
the first immediately external to B, is the first block to be examined when resolving
references non-local to B. When inside the call to procedure fie, the variables x
and y are used, to access the memory area in which they are stored the static chain
pointers are followed from fie’s activation record until first the record for B is
encountered (for x) and then that for A (when searching for y).

Generalising this example, we can say that, for the runtime management of static
scope, the activation of the generic block B is linked by the static chain pointer to the
record for the block immediately enclosing B (that is the nearest block that contains
B). It should be noted that in the case in which B is the block for a procedure call, the
block immediately enclosing B is the one containing the declaration of the procedure
itself. Moreover if B is active, that is if its activation record is on the stack, then also
the blocks enclosing B must be active and therefore can be located on the stack.

Hence, in addition to the dynamic chain, which is formed from the various
records present on the system stack (linked in the order of the stack itself), there
must exist a static chain, formed from the various static chain pointers used to rep-
resent the static nesting structure of the blocks within the program.

As an example, consider Fig. 5.13 which shows a generic structure of blocks
which results from nested procedures. Consider now the sequence of calls: A, B,
C, D, E, C, where it is intended that each call remains active when the next call
is made. The situation on the activation-record stack, with is various static chain
pointers, after such a sequence of calls is that shown in Fig. 5.14.

The runtime management of the static chain is one of the functions performed
by the calling sequence, prologue and epilogue code, as we saw above. Such a man-
agement of the static chain can be performed by the caller and the callee in various
ways. According to the most common approach, when a new block is entered, the
caller calculates the static chain pointer and then passes it to the called routine. This

108 5 Memory Management

Fig. 5.14 Static chain for the
previous structure and the
sequence of calls A, B, C, D,
E,C

[[o Static Chain
Pointer

Dynamic Chain
Pointer

Wﬁﬁﬁﬁ
o)
Tu
v

computation is fairly simple and can be easily understood by separating the two
cases:

The called routine is external to the caller In this case, by the visibility rules de-
fined by static scope, for the called routine to be visible, it must be located in an
outer block which includes the caller’s block. Therefore, the activation record for
such an outer block must already be stored on the stack. Assume that among the
caller and the called routines, there are k levels of nesting in the program’s block
structure; if the caller is located on nesting level n and the called routine is on level
m, we can assume therefore that k = n — m. This value of k can be determined by
the compiler, because it depends only on the static structure of the program and
therefore can be associated with the call in question. The caller can then calculate
the static chain pointer for the called procedure simply by dereferencing its own
static chain pointer k times (that is, it runs k steps along its own static chain).

Called inside calling routine In this case, the visibility rules ensure that the called
routine is declared in same the block in which the call occurs and therefore the
first block external to the called one is precisely that of the caller. The static chain
pointer of the called routine must point to the caller’s activation record. The caller
can simply pass to the called routine the pointer to its own activation record as a
pointer to the static chain.

Once the called routine has received the static chain pointer, it need only store it in
the appropriate place in its activation record, an operation that can be performed by
the prologue code. When a block exit occurs, the static chain requires no particular
management actions.

We have hinted at the fact that the compiler, in order to perform runtime static-
chain management, keeps track of the nesting level of procedure calls. This is done
using the symbol table, a sort of dictionary where, more generally, the compiler
stores all the names used in the program and all the information necessary to man-
age the objects denoted by the names (for example to determine the type) and to
implement the visibility rules.

In particular, a number is maintained that depends on the nesting level and indi-
cates the scope that contains the declaration of a name; this allows to associate to

5.5 Implementation of Scope Rules 109

each name a number indicating the scope when the declaration for such a name is
made. Using this number, it is possible to calculate, at compile time, the distance be-
tween the scope of the call and that of the declaration which is necessary at runtime
to handle the static chain.

It should be noted that this distance is calculated statically and it also allows
the runtime resolution of non-local references without having to perform any name
searches in the activation record on the stack. Indeed, if we use a reference to the
non-local name, x, to find the activation record containing the memory space for x
it suffices to start at the activation record corresponding to the block that contains
the reference and follow the static chain for a number of links equal to the value
of the distance. Inside the activation record that is thus found, the memory location
for x is also fixed by the compiler and, therefore, at runtime, there is no need for a
search but only the static offset of x with respect to the activation record pointer is
needed.

However, it is clear that, in a static model, the compiler cannot completely resolve
a reference to a non-local name and it is always necessary to follow the static-chain
links at runtime. This is why, in general, it is not possible to know statically what
the number of activation records present on the stack is.

As a concrete example of what has just been said, consider the code in Exam-
ple 5.3. The compiler “knows” that to use variable y in procedure fie, it is nec-
essary to pass two external blocks (B and A) to arrive at the one containing the
declaration of the variable. It is enough, therefore, to store this value at compilation
time so that it can subsequently be known, at runtime, that to resolve the name v, it
is necessary to follow two pointers in the static chain. It is not necessary to store the
name y explicitly because its position inside the activation record for the block A is
fixed by the compiler. Analogously, the type information that we, for clarity, have
included in Fig. 5.12, is stored in the symbol table, and after appropriate compile-
time checks, can, in a large part, be omitted at runtime.

5.5.2 Static Scope: The Display

The implementation of static scope using the static chain has one inconvenient prop-
erty: if we have to use a non-local name declared in an enclosing block, k levels of
block away from the point at which we currently find ourselves, at runtime we have
to perform k memory accesses to follow the static chain to determine the activation
block that contains the memory location for the name of interest. This problem is
not all that severe, given that in real programs it is rare that more than 3 levels of
block and procedure nesting are required. The technique called the display, however,
allows the reduction of the number of accesses to a constant (2).

This technique uses a vector, called the display, containing as many elements
as there are levels of block nesting in the program, where the kth element of the
vector contains the pointer to the activation record at nesting level k that is cur-
rently active. When a reference is made to a non-local object, declared in an block

110 5 Memory Management

123 .

[t] D E

Fig. 5.15 Display for the structure in Fig. 5.13 and the call sequence A, B, C, D, E, C

external to level k, the activation record containing this object can be retrieved sim-
ply by accessing the kth position in the vector and following the pointer stored
there.

Display processing is very simple, even if it is slightly more costly than static
chain handling; when an environment is entered or left, in addition to updating the
pointer stored in the vector, it is also necessary to save the old value. More precisely,
when a procedure is called (or an in-line block is entered) at level k, position k in the

5.5 Implementation of Scope Rules 111

display will have to be updated with the value of the pointer to the activation record
for the call, because this has become the new active block at level k. Before this
update, however, it is necessary to save the preceding contents of the kth position of
the display, normally storing it in the activation record of the call.

The need to save the old display value can be better understood by examining the
following 2 possible cases:

The called routine is external to the caller Let use assume that the call is at nest-
ing level n and the called routine is at level m, with m < n. The called routine and
the caller therefore share the static structure up to level m — 1 and also the display
up to position m — 1. Display element m is updated with the pointer to the activa-
tion record of the called routine and until the called routine terminates, the active
display is the one formed of the first m elements. The old value contained in posi-
tion m must be saved because it points to the activation record of the block which
will be re-activated when the called routine terminates; thereafter, the display will
go back to being the one used before the call.

The called routine is located inside the caller The nesting depth reached this far
is incremented. If the caller is located at level n, caller and called routine share the
whole current display up to position n and it is necessary to add a new value at
position n 4 1, so that it holds the pointer to the activation record for the caller.
When we have the first activation of a block at level n + 1, the old value stored
in the display is of no interest to us. However, in general, we cannot know if this
is the case. Indeed, we could have reached the current call by a series of previous
calls that also use level n + 1. In this case, as well, it will be necessary therefore to
store the old value in the display at position n + 1.

Both display update and the saving of the old value can be performed by the
called procedure. Figure 5.15 shows the handling of the display for the call sequence
A, B, C, D, E, C, using the block structure described in Fig. 5.13. The pointers on
the left of the stack denote storage of the old display value in the activation record
of the called routine, while the dotted pointer denotes a display pointer that is not
currently active.

5.5.3 Dynamic Scope: Association Lists and CRT

Conceptually, the implementation of the dynamic scope rule is much simpler than
the one for static scope. Indeed, given that non-local environments are considered in
the order in which they are activated at runtime, to resolve a non-local reference to
a name x, it suffices, at least in principle, to run backwards down the stack, starting
with the current activation record until the activation record is found in which the
name x is declared.

The various associations between names and the objects they denote which con-
stitute the various local environment can be stored directly in the activation record.
Let us consider, for example, the block structure shown in Fig. 5.16, where the

112 5 Memory Management

Fig. 5.16 A block structure [z
with local declarations r

sy

w

1—’—' ‘ Act Rec Pointer

Fig. 5.17 Environment for block D in Fig. 5.16 after the call sequence A, B, C, D, with dynamic
scope implemented using stored associations in the activation record. In grey: inactive associations

names denote local variable declarations (assuming the usual visibility rules). If we
execute the call sequence A, B, C, D (where, as usual, all the calls remain active)
when control reaches block D, we obtain the stack shown in Fig. 5.17 (the field
on the right of each name contains the information associated with the object de-
noted by its name). The environment (local or otherwise) of D is formed from all
the name-denoted object associations in which the information field is in white in
the figure. The association fields that are no longer active are shown in grey. An
association is not active either because the corresponding name is no longer visible
(this is the case for v) or because it has been redefined in an inner block (this is the
case for w and for the occurrences of x in A and B).

Other than direct storage in the activation record, name-object associations can
be stored separately in an association list, called an A-list, which is managed like a
stack. This solution is usually chosen for LISP implementations.

5.5 Implementation of Scope Rules 113

Fig. 5.18 Environment for
block D in Fig. 5.16, after the
call sequence A, B, C, D,
with dynamic scope
implemented using an A-list

type, location,
.= active/inactive, etc.

§ 5

= "

E

X

= N

A-List Start

[——

Le Ll gy Lot Lt [l [N

] "

When the execution of a program enters a new environment, the new local as-
sociations are inserted into the A-list. When an environment is left, the local as-
sociations are removed from the A-list. The information about the denoted objects
will contain the location in memory where the object is actually stored, its type, a
flag which indicates whether the association for this object is active (there can also
be other information needed to make runtime semantic checks). Figure 5.18 shows
how dynamic scope is implemented for the example in Fig. 5.16 using an A-list (the
fields in grey are implemented using the flags described above and are omitted from
the figure). Both using A-list and using direct storage in the activation record, the
implementation of dynamic scope has two disadvantages.

First, names must be stored in structures present at runtime, unlike in the scheme
that we saw for static scope. In the case of the A-list, this is clear (it depends on
its definition). In the case, on the other hand, in which activation records are used
to implement local environments, the need to store names depends on the fact that
the same name, if declared in different blocks, can be stored in different positions
in different activation records. Given that we are using the dynamic scope rule, we
cannot statically determine which is the block (and therefore the activation record)
that can be used to resolve a non-local reference; we cannot know the position in the
activation record to access in order to search for the association belonging the name
that we are looking for. The only possibility is therefore explicitly to store the name
and perform a search (based on the name itself) at runtime.

The second disadvantage is due to the inefficiency of this runtime search. It can
often be the case that is necessary to scan almost all of the list (which is either

114 5 Memory Management

an A-list or a stack of activation records) in the case reference is made to a name
declared in one of the first active blocks (as for “global” names).

Central Referencing environment Table (CRT) To restrict the effects of these
two disadvantages, at the cost of a greater inefficiency in the block entry and exit
operations, we can implement dynamic scope in a different way. This alternative
approach is based on the Central Referencing environment Table (CRT).

Using the CRT-based technique, environments are defined by arranging for all
the blocks in the program to refer to an single central table (the CRT). All the names
used in the program are stored in this table. For each name, there is a flag indicating
whether the association for the name is active or not, together with a value composed
of a pointer to information about the object associated with the name (memory lo-
cation, type, etc.). If we assume that all the identifiers used in the program are not
known at compile time, each name can be given a fixed position in the table. At
runtime, access to the table can, therefore, take place in constant time by adding the
memory address of the start of the table to an offset from the position of the name
of interest. When, on the other hand, all names are not known at compile time, the
search for a name’s position in the table can be make use of runtime hashing for ef-
ficiency. The block entry and exit operations now are, however, more complicated.
When entering block B from block A, the central table must be modified to describe
B’s new local environment, and, moreover, deactivated associations must be saved
so that they can be restored when block B exits and control returns to block A.
Usually a stack is the best data structure for storing such associations.

It should be observed that the associations for a block are not necessarily stored in
contiguous locations within the CRT. To perform the operations required of the CRT
on block entry and exit, it is necessary, therefore,to consider the individual elements
of the table. This can be done in a convenient fashion by associating with each entry
in the table (i.e., with every name present) a dedicated stack that contains the valid
associations at the top and, in successive locations, the associations for this name
that have been deactivated. This solution is shown in Fig. 5.19 (the second column
contains the flags).

Alternatively, we can use a single hidden stack separate from the central table
to store the deactivated associations for all names. In this case, for every name, the
second column of the table contains a flag which indicates whether the association
for this name is active or not, while the third column contains the reference to the
object denoted by the name in question. When an association is deactivated, it is
stored in the hidden stack to be removed when it becomes active again. Considering
the structure in Fig. 5.16 and the call sequence A, B, C, D, the development of the
CRT is shown in the upper part of Fig. 5.20; the lower portion of the Figure depicts
the evolution of the hidden stack.

Using the CRT, with or without the hidden stack. access to an association in the
environment requires one access to the table (either direct or by means of a hash
function) and one access to another memory area by means of the pointer stored in
the table. Therefore, no runtime search is required.

5.6 Chapter Summary

declared declared
in C in B
K_JH K_JH

declared
in A
—

B B = =

/]

o I e B i 74

[— P—
declared declared
in D in C

[]

type,location ,

115

Fig. 5.19 Environment for block D in Fig. 5.16 after the call sequence A, B, C, D, with dynamic

scope implemented using a CRT

Fig. 5.20 Environment for A AB ABC ABCD
block D of Fig. 5.16 after the R] 116 z]1m z|11m
call sequenceA.,B,C, D, with M 1 s v 11 o MRS
dynamic scope implemented 3
using a CRT and hidden stack | |0 |~ v|1|P v]0]5 v 10 |P
w0 - w|0|- w| 1|72 w|1l|d

ay

T |1 z |3

EA R

5.6 Chapter Summary

In this chapter, we have examined the main techniques for both static and dynamic
memory management, illustrating the reasons for dynamic memory management
using a stack and those that require the use of a heap. It remains to consider the
important exception to this: in the presence of a particular type of recursion (called
tail recursion) memory can be managed in a static fashion (this case will be given

detailed consideration in the next chapter).

We have illustrated in detail the following on stack-based management:

e The format of activation records for procedures and in-line blocks.

e How the stack is managed by particular code fragments which are inserted into
the code for the caller, as well as in the routine being called, and which act to
implement the various operations for activation record allocation, initialisation,

control field modification, value passing, return of results, and so on.

In the case of heap-based management, we saw:

e Some of the more common techniques for its handling, both for fixed- and

variable-sized blocks.

e The fragmentation problem and some methods which can be used to limit it.

116 5 Memory Management

Finally, we discussed the specific data structures and algorithms used to imple-
ment the environment and, in particular, to implement scope rules. We examined the
following in detail:

e The static chain.

e The display.

e The association list.

e The central referencing table.

This has allowed us better to understand our hint in Chap. 4 that it is more difficult
to implement the static scope rules than those for dynamic scope. In the first case,
indeed, whether static chain pointers or the display is used, the compiler makes
use of appropriate information on the structure of declarations. This information is
gathered by the compiler using symbol tables and associated algorithms, such as, for
example, LeBlanc-Cook’s, whose details fall outside the scope of the current text.
In the case of dynamic scope, on the other hand, management can be, in principle,
performed entirely at runtime, even if auxiliary structures are often used to optimise
performance (for example the Central Referencing Table).

5.7 Bibliographic Notes

Static memory management is usually treated in textbooks on compilers, of which
the classic is [1]. Determination of the (static) scopes to associate with the names in
a symbol table can be done in a number of ways, among which one of the best known
is due to LeBlanc and Cook [2]. Techniques for heap management are discussed in
many texts, for example [4].

Stack-based management for procedures and for scope was introduced in AL-
GOL, whose implementation is described in [3].

For memory management in various programming languages, the reader should
refer to texts specific to each language, some which are cited at the end of Chap. 13.

5.8 Exercises

1. Using some pseudo-language, write a fragment of code such that the maximum
number of activation records present on the stack at runtime is not statically
determinable.

2. In some pseudo-language, write a recursive function such that the maximum
number of activation records present at runtime on the stack is statically deter-
minable. Can this example be generalised?

3. Consider the following code fragment:

A:{int X= 1;

5.8 Exercises 117

Assume that B is nested one level deeper that A. To resolve the reference to
X present in B, why is it not enough to consider the activation record which
immediate precedes that of B on the stack? Provide a counter-example filling the
spaces in the fragment with dots with appropriate code.

4. Consider the following program fragment written in a pseudo-language using
static scope:

void P1 {
void P2 { body-ofi-P2
}
void P3 {
void P4 { body-of-P4
}
body-of-P3
}
body-o0f-P1
}

Draw the activation record stack region that occurs between the static and dy-
namic chain pointers when the following sequence of calls, P1, P2, P3,P4,P2
has been made (is it understood that at this time they are all active: none has
returned).

5. Given the following code fragment in a pseudo-language with goto (see
Sect. 6.3.1), static scope and labelled nested blocks (indicated by A: {

}):

A: { int x = 5;
goto C;
B: {int x = 4;
goto E;
}
C: {int x = 3;
D: {int x = 2;
}
goto B;
E: {int x = 1; // (**)
}
}
}

The static chain is handled using a display. Draw a diagram showing the dis-
play and the stack when execution reaches the point indicated with the comment
(**). As far as the activation record is concerned, indicate what the only piece
of information required for display handling is.

118 5 Memory Management

6. Is it easier to implement the static scope rule or the one for dynamic scope? Give

your reasons.

7. Consider the following piece of code written in a pseudo-language using static
scope and call by reference (see Sect. 7.1.2):
{int x = 0;
int A(reference int y) {
int x =2;
y=y+1;
return B (y) +x;
}
int B(reference int vy) {
int C(reference int vy) {
int x = 3;
return A (y)+xX+y;
}
if (y==1) return C(x)+y;
else return x+y;
}
write (A(x));
}
Assume that static scope is implemented using a display. Draw a diagram show-
ing the state of the display and the activation-record stack when control enters
the function A for the second time. For every activation record, just give value
for the field that saves the previous value of the display.
References
1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, 1988.
2. R.P.Cook and T. J. LeBlanc. A symbol table abstraction to implement languages with explicit
scope control. I[EEE Trans. Softw. Eng., 9(1):8-12, 1983.
3. B. Randell and L. J. Russell. Algol 60 Implementation. Academic Press, London, 1964.
4. C. Shaffer. A Practical Introduction to Data Structures and Algorithm Analysis. Addison-

Wesley, Reading, 1996.

Chapter 6
Control Structure

In this chapter, we will tackle the problem of managing sequence control, an im-
portant part in defining the execution of program instructions in a generic abstract
machine’s interpreter.

In low-level languages, sequence control is implemented in a very simple way,
just by updating the value of the PC (Program Counter) register. In high-level lan-
guages, however, there are special language-specific constructs which permit the
structuring of control and the implementation of mechanisms that are much more
abstract than those available on the physical machine. One thinks, for example, of
the simple evaluation of an arithmetic expression: even if we find them obvious and
natural, operations of this kind requires the use of control mechanisms that specify
the order in which operands are evaluated, and operator precedence, and so on.

In this chapter, we will consider the constructs used in programming languages
for the explicit or implicit specification of sequence control. We will first consider
expressions, spending some time on the syntactic aspects of the usual notation for
representing expressions, as well as the semantic aspects of their evaluation. We
will then move on to commands and, after discussing the concepts of variable and
assignment, we will see the main commands for sequence control present in mod-
ern languages, showing the difference between structured and unstructured control
and briefly illustrating the principles of structured programming. We will finally
examine some aspects that are significant to recursion and clarify an important ter-
minological distinction between imperative and declarative languages.

We will leave the examination of those constructs that allow the implementation
of mechanisms for control abstraction until the next chapter.

6.1 Expressions

Expressions, together with commands and declarations, are one of the basic compo-
nents of every programming language. We can say that expressions are the essential
component of every language because, although there exist declarative languages in

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 119
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_6, © Springer-Verlag London Limited 2010

120 6 Control Structure

which commands are absent, expressions, numeric or symbolic, are present in every
language.
First, let us try to clarify what sorts of object we are talking about.

Definition 6.1 (Expressions) An expressions is a syntactic entity whose evaluation
either produces a value or fails to terminate, in which case the expression is unde-
fined.

The essential characteristic of an expression, that which differentiates it from a
command, is therefore that its evaluation produces a value. Examples of numerical
expressions are familiar to all: 4+3*2, for example, is an expression whose evalu-
ation is obvious. Moreover, it can be seen that, even in such a simple case, in order
to obtain the correct result, we have made an implicit assumption (derived from the
mathematical convention) about operator precedence. This assumption, which tells
us that * has precedence over + (and that, therefore, the result of the evaluation
is 10 and not 14), specifies a control aspect for evaluation of expressions. We will
see below other more subtle aspects that can contribute to modify the result of the
evaluation of an expression.

Expressions can be non-numeric, for example in LISP, we can write (cons a
b) to denote an expression which, if it is evaluated, returns the so-called pair formed
by a and b.

6.1.1 Expression Syntax

In general, an expression is composed of a single entity (constant, variable, etc.) or
even of an operator (such as +, cons, etc.), applied to a number of arguments (or
operands) which are also expressions. We saw in Chap. 2 how expression syntax
can be precisely described by a context-free grammar and that an expression can
be represented by a derivation tree in which, in addition to syntax, there is also
semantic information relating to the evaluation of the expression. Tree structures are
also often used to represent an expression internally inside the computer. However,
if we want to use expressions in a conventional way in the text of a program, linear
notations allow us to write an expression as a sequence of symbols. Fundamentally,
the various notations differ from each other by how they represent the application
of an operator to its operands. We can distinguish three main types of notation.

Infix Notation In this notation, a binary operation symbol is placed between the
expressions representing its two operands. For example, we write x+y to denote
than the addition of x and vy, or (x+y) *z to denote the multiplication by z of the
result of the addition of x and y. It can be seen that, in order to avoid ambiguity in
the application of operator to operands, brackets and precedence rules are required.
For operators other than binary ones, we must basically fall back on their repre-
sentation in terms of binary symbols, even if, in this case, this representation is not

6.1 Expressions 121

Lisp and S-expressions

The programming language LISP (an acronym of LISt Processor), which was devel-
oped at the beginning of the 1960s by John McCarthy and by a group of researchers
at MIT (Massachusetts Institute of Technology), is a language designed for sym-
bolic processing, which has been particularly important in Artificial Intelligence. In
particular, in the 1970s, the language Scheme was developed from a dialect of Lisp;
Scheme is still in use in academic circles.

A Lisp program is composed of sequences of expressions to be evaluated by
the language’s interpreter. Some expressions are used to define functions which are
then called in other expressions. Control is exercised using recursion (there is no
iterative construct).

As the very name of the language implies, a LISP program mainly handles ex-
pressions constructed from lists. The basic data structures in LISP, in fact, is the
dotted pair, or rather a pair of data items written with a dot separating the two com-
ponents: for example, (A.B). A pair like this is implemented as a cons cell, or
rather by the application of the cons operator to two arguments, as in (cons A
B). As well as atomic types (integers, floating point numbers, character strings),
the two arguments of cons can be other dotted pairs so this data structure allows
the implementation of symbolic expressions, so-called S-expressions. S-expressions
are binary trees which allow the representation of lists as a particular case. For ex-
ample, it is possible to construct the list A B C as (cons A (cons B (cons
C nil))), where nil is a particular value denoting the empty list. Among the
many interesting characteristics of LISP, programs and data are represented using
the same syntax and the same internal representation. This allows the evaluation of
data structures as if they were programs and to modify programs as if they were
data.

the most natural. A programming language which insists on infix notation even for
user-defined functions is Smalltalk, an object oriented language.

Infix notation is the one most commonly used in mathematics, and, as a conse-
quence is the one used by most programming languages, at least for binary operators
and for user syntax. Often, in fact, this notation is only an abbreviation or, as we say,
a syntactic sugar used to make code more readable. For example, in Ada,a + bis
an abbreviation for + (a, b), while in C++ the same expression is an abbreviation
for a.operator+ (b).

Prefix Notation Prefix notation is another type of notation. It is also called prefix
Polish notation." The symbol which represents the operation precedes the symbols
representing the operands (written from left to right, in the same way as text). Thus,
to write the sum of x and y, we can write + (x, y), or, without using parentheses,

I'This terminology derives from the fact that the Polish mathematician W. Lukasiewicz was the
person to make prefix notation without parentheses fashionable.

122 6 Control Structure

+ x vy, while if we want to write the application of the function £ to the operands
a and b, we write £ (a b) or fab.

It is important to note that when using this kind of notation, parentheses and oper-
ator precedence rules are of no relevance, provided that the arity (that is the number
of operands) of every operator is already known. In fact there is no ambiguity about
which operator to apply to any operands, because it is always the one immediately
preceding the operands. For example if we write:

*(+(a b)+(c 4d))
or even

*+ ab+cd

we mean the expression represented by (a+b) * (c+d) in normal infix notation.
The majority of regular languages use prefix notation for unary operators (often
using parentheses to group arguments) and for user-defined functions. Some pro-
gramming languages even use prefix notation for binary operators. LISP represents
functions using a particular notation known as Cambridge Polish, which places op-
erators inside parentheses. In this notation, for example the last expression becomes:

(*(+ a b) (+ ¢ d)).

Postfix Notation Postfix notation is also called Reverse Polish. It is similar to
the last notation but differs by placing the operator symbol after the operands. For
example, the last expression above when written in postfix notation is:

ab+cd+ *.

Prefix notation is used in the intermediate code generated by some compilers. It
is also used in programming languages (for example Postscript).

In general, an advantage of Polish notation (prefix or otherwise) over infix is
that the former can be used in a uniform fashion to represent operators with any
number of operands. In infix notation, on the other had, representing operators with
more than two operands means that we have to introduce auxiliary operators. A sec-
ond advantage, already stated, is that there is the possibility of completely omitting
parentheses even if, for reasons of readability, both mathematical prefix notation
f(a b) and Cambridge Polish (f a Db) use parentheses. A final advantage of
Polish notation, as we will see in the next subsection is that it makes the evalua-
tion of an expression extremely simple. For this reason, this notation became rather
successful during the 1970s and 80s when it was used for the first pocket-sized
calculators.

6.1 Expressions 123

6.1.2 Semantics of Expressions

According to the way in which an expression is represented, the way in which its se-
mantics is determined changes and so, consequently, does its method of evaluation.
In particular, in infix representation the absence of parentheses can cause ambigu-
ity problems if the precedence rules for different operators and the associativity of
every binary operator are not defined clearly. When considering the most common
programming languages, it is also necessary to consider the fact that expressions are
often represented internally in the form of a tree. In this section we will discuss these
problems, starting with the evaluation of expressions in each of the three notations
that we saw above.

Infix Notation: Precedence and Associativity When using infix notation, we pay
for the facility and naturalness of use with major complication in the evaluation
mechanism for expressions. First of all, if parentheses are not used systematically,
it is necessary to clarify the precedence of each operator.

If we write 4 + 3 * 5, for example, clearly we intend the value of 19 as the
result of the expression and not 35: mathematical convention, in fact, tells us that we
have to perform the multiplication first, and the addition next; that is, the expression
istobereadas4 + (5 * 3) andnotas (4 + 3) * 5.In the case of less fa-
miliar operators, present in programming languages, matters are considerably more
complex. If, for example, in Pascal one writes:

x=4 and y=5

where the and is the logical operator, contrary to what many will probably expect,
we will obtain an error (a static type error) because, according to Pascal’s prece-
dence rules, this expression can be interpreted as

x=(4 and y)=5
and not as

(x=4) and (y=5).

In order to avoid excessive use of parentheses (which, when in doubt it is good to
use), programming languages employ precedence rules to specify a hierarchy be-
tween the operators used in a language based upon the relative evaluation order.
Various languages differ considerably in their definition of such rules and the con-
ventions of mathematical notation are not always respected to the letter.

A second problem in expression evaluation concerns operator associativity. If we
write 15-5-3, we could intend it to be read as either (15-5) -3 oras 15- (5-3),
with clearly different results. In this case, too, mathematical convention says that the
usual interpretation is the first. In more formal terms, the operator “—” associates

124 6 Control Structure

from left to right.” In fact, the majority of arithmetic operators in programming
languages associate from left to right but there are exceptions. The exponentiation
operator, for example, often associates from right to left, as in mathematical nota-
tion. If we write 532, or, using a notation more familiar to programmers, 5 ** 3
** 2. we mean 5(32), or5 ** (3 ** 2), and not (53)2, or ((5 ** 3) *x*
2). Thus, when an operator is used, it is useful to include parentheses when in doubt
about precedence and associativity. In fact, there is no lack of special languages that
in this respect have rather counter-intuitive behaviour.

In APL, for example, the expression 15-5-3 is interpreted as 15 - (5 - 3)
rather than what we would ordinarily expect. The reason for this apparent strange-
ness is that in APL there are many new operators (defined to operate on matrices)
that do not have an immediate equivalents in other formalisms. Hence, it was de-
cided to abandon operator precedence and to evaluate all expressions from right to
left.

Even if there is no difficulty in conceiving of a direct algorithm to evaluate an
expression in infix notation, the implicit use of precedence and associativity rules,
together with the explicit presence of parentheses, complicates matters significantly.
In fact, it is not possible to evaluate an expression in a single left-to-right scan (or
one from right to left), given that in some cases we must first evaluate the rest of
the expression and then return to a sub-expression of interest. For example, in the
case of 5+3 *2, when the scan from left to right arrives at +, we have to suspend the
evaluation of this operator but divert to the evaluation of 3*2 and then go back to
the evaluation of +.

Prefix Notation Expressions written in prefix Polish notation lend themselves to
a simple evaluation strategy which proceeds by simply walking the expression from
left to right using a stack to hold its components. It can be assumed that the se-
quence of symbols that forms the expression is syntactically correct and initially not
empty. The evaluation algorithm is described by the following steps, where we use
an ordinary stack (with the push and pop operations) and a counter C to store the
number of operands requested by the last operator that was read:

1. Read in a symbol from the expression and push it on the stack;

2. If the symbol just read is an operator, initialise the counter C with the number of
arguments of the operator and go to step 1.

If the symbol just read it is an operand, decrement C.

IfC+#0,goto 1.

5. If C =0, execute the following operations:

(a) Apply the last operator stored on the stack to the operands just pushed onto
the stack, storing the results in R, eliminate operator and operands from the
stack and store the value of R on the stack.

(b) If there is no operator symbol in the stack go to 6.

hali

2A binary operator, op, is said to be associative if x op (y op z) = (x op y) op 2z
holds; that is, whether it associates from the right to the left or left to right makes no difference.

6.1 Expressions 125

(c) Initialise the counter C to n — m, where n is the number of the argument of
the topmost operator on the stack, and m is number of operands present on
the stack above this operator.

(d) Goto4.

6. If the sequence remaining to be read is not empty, go to 1.

The result of the evaluation is located on the stack when the algorithm finishes.
It should be noted that the evaluation of an expression using this algorithm assumes
that we know in advance the number of operands required by each operator. This
requires that we syntactically distinguish unary from binary operators. Furthermore,
it is generally necessary to check that the stack contains enough operands for the
application of the operator (Step 5.(c) in the algorithm above). This check is not
required when using postfix notation, as we see below.

Postfix Notation The evaluation of expression in Polish notation is even simpler.
In fact, we do not need to check that all the operands for the last operator have been
pushed onto the stack, since the operands are read (from left to right) before the
operators. The evaluation algorithm is then the following (as usual, we assume that
the symbol sequence is syntactically correct and is not empty):

1. Read the next symbol in the expression and push it on the stack.

2. If the symbol just read is an operator apply it to the operands immediately below
it on the stack, store the result in R, pop operator and operands from the stack
and push the value in R onto the stack.

. If the sequence remaining to be read is not empty, go to 1.

4. If the symbol just read is an operand, go to 1.

w

This algorithm also requires us to know in advance the number of operands re-
quired by each operator.

6.1.3 Evaluation of Expressions

As we saw the start of the Chap. 2 and as we extensively discussed in that chapter,
expressions, like the other programming language constructs, can be conveniently
represented by trees. In particular, can be represented by a tree (called the expres-
sion’s syntax tree) in which:

e Every non-leaf node is labelled with an operator.

e Every subtree that has as root a child of a node N constitutes an operand for the
operator associated with N.

e Every leaf node is labelled with a constant, variable or other elementary operand.

Trees like this can be directly obtained from the derivation trees of an (unambigu-
ous) grammar for expressions by eliminating non-terminal symbols and by appro-
priate rearrangement of the nodes. It can be seen also that, given the tree representa-
tion, the linear infix, prefix and postfix representations can be obtained by traversing

126 6 Control Structure
/ * \
\ \
a/ ! C/ !

b b

Fig. 6.1 An expression

the tree in a symmetric, prefix or postfix order, respectively. The representation of
expressions as trees clarifies (without needing parentheses) precedence and associa-
tivity of operators. The subtrees found lower in the tree constitute the operands and
therefore operators at lower levels must be evaluated before those higher in the tree.
For example the tree shown in Fig. 6.1 represents the expression:

(a+f (b)) * (c+f (b))

This expression can be obtained (parentheses apart) from the symmetric-order
traversal of the tree (f is here an arbitrary unary operation).

For languages with a compilative implementation, as we have seen, the parser
implements syntactic analysis by constructing a derivation tree. In the specific case
of expressions then, infix representation in the source code is translated into a tree-
based representation. This representation is then used by successive phases of the
compilation procedure to generate the object code implementing runtime expres-
sions evaluation. This object code clearly depends on the type of machine for which
the compiler is constructed. In the case in which we have a traditional physical ma-
chine, for example, code of a traditional kind (i.e. in the form opcode operandl
operand?2) is generated which uses registers as well as a temporary memory loca-
tions to store intermediate results of evaluation.

In some particular cases, on the other hand, object code can be represented using
a prefix or postfix form which is subsequently evaluated by a stack architecture.
This is the case for example in the executable code for many implementations of
SNOBOL4 programs.

In the case of languages with an interpretative implementation, it is also con-
venient to translate expressions, normally represented in the source code in infix
notation, into a tree representation which can then be directly evaluated using a
tree traversal. This is the case, for example, in interpreted implementations of LISP,
where the entire program is represented as a tree.

It is beyond the scope of the present text to go into details on mechanisms for
generating code or for evaluating expression in an interpreter. However, it is impor-
tant to clarify some difficult points which often cause ambiguity. For convenience,
we will fix on the evaluation of expressions represented in infix form. We will see
that what we have to say applies equally to the direct evaluation of expressions rep-
resented as a tree, as well as to code generation-mechanisms.

6.1 Expressions 127

Subexpression Evaluation Order Infix notation precedence and associativity
rules (or the structure, when expressions are represented as trees) do not hint at
the order to evaluate an operator’s operands (i.e., nodes at the same level). For ex-
ample, in the expression in Fig. 6.1, nothing tells us that it is necessary first to
evaluate either a+f (b) or c+£ (b). There is also nothing explicit about whether
the evaluation of operands or operator should come first; nor, in general, whether
expressions which are mathematically equivalent can be inter-substituted without
modifying the result (for example, (a-b+c) and(a+c-b) could be considered
equivalent).

While in mathematical terms these differences are unimportant (the result does
not change), from our viewpoint these questions are extremely relevant and for the
following five reasons.

Side effects Inimperative programming languages, expression evaluation can mod-
ify the value of any variables through so-called side effects. A side effect is an
action that influences the result (partial or final) of a computation without other-
wise explicitly returning a value in the context in which it is found. The possibility
of side effects renders the order of evaluation of operands relevant to the final re-
sult. In our example in Fig. 6.1, if the evaluation of the function £ were to modify
the value of its operand through side effects, first executing a+f (b) rather than
c+£ (b), could change the value produced by the evaluation (see Exercise 1). As
far as side effects are concerned, languages follow various approaches. On the one
hand, pure declarative languages do not permit side effects at all, while languages
which do allow them in some cases forbid the use in expressions of functions that
can cause side effects. In other, more common cases where the presence of side
effects is permitted, the order with which expressions are evaluated is, though,
clearly stated in the definition of the language. Java, for example, imposes left-to-
right evaluation of expressions (while C fixes no order at all).

Finite arithmetic Given the set of numbers represented in a computer is finite (see
also Sect. 8.3), reordering expressions can cause overflow problems. For example,
if a has, as its value, the maximum integer representable and b and ¢ are positive
numbers such that b > c, right-to-left evaluation of (a-b+c) does not produce
overflow, while we have an overflow resulting from the evaluation from left to right
of (a+c-b). Moreover, when we do not have overflow, the limited precision of
computer arithmetic implies that changing the order of the operands can lead to
different results (this is particularly relevant in cases of floating point computation).

Undefined operands When the application of operator to operands is considered,
two evaluation strategies can be followed. The first, called eager evaluation, con-
sists of first evaluating all the operands and then applying the operator to the values
thus obtained. The strategy probably seems the most reasonable when reasoning
in terms of normal arithmetic operators. The expressions that we use in program-
ming languages, however, pose problems over and above those posed by arithmetic
expressions, because some can be defined even when some of the operands are
missing. Let us consider the example of a conditional expression of the form:

128 6 Control Structure
a==0"7?Db: b/a

‘We can write this in C to denote the value of b/a when a is non-zero and b, other-
wise. This expression results from the application of a single operator (expressed
in infix notation using two binary operators ? and :) to three operands (the boolean
expression, a==0, and the two arithmetic expressions b and b/ a). Clearly here we
cannot use eager evaluation for such conditional expressions because the expres-
sion b/a would have to be evaluated even when a is equal to zero and this would
produce an error.
In such a case, it is therefore better to use a lazy evaluation strategy which mainly
consists of not evaluating operands before the application of the operator, but in
passing the un-evaluated operands to the operator, which, when it is evaluated, will
decide which operands are required, and will only evaluate the ones it requires.
The lazy evaluation strategy, used in some declarative languages, is much more
expensive to implement than eager evaluation and for this reason, most languages
use eager evaluation (with the significant exception of conditional expressions as
we will see below). There are languages which use a mix of both the techniques
(ALGoOL, for example). We will discuss the various strategies for evaluating ex-
pressions in greater detail when we consider functional languages in Chap. 11.
Short-circuit evaluation The problem detailed in the previous point presents itself
with particular clarity when evaluating Boolean expressions. For example, consider
the following expression (in C syntax):

a == || b/a > 2

If the value of a is zero and both operands of | | are evaluated at the same time,
it is clear that an error will result (in C, “| | denotes the logical operation of dis-
junction). To avoid this problem, and to improve the efficiency of the code, C, like
other languages uses a form of lazy evaluation, also called short-circuiting evalua-
tion, of boolean expressions. If the first operand of a disjunction has the value true
then the second is not evaluated, given that the overall result will certainly have
the value frue. In such a case, the second expression is short-circuited in the sense
that we arrive at the final value before knowing the value of all of the operands.
Analogously, if the first operand of a conjunction has the value false, the second
is not evaluated, given that the overall result can have nothing other than the value
false.

It is opportune to recall that not all languages use this strategy for boolean ex-
pressions. Counting on the presence of a short-circuited evaluation, without being
certain that the language uses it, is dangerous. For example, we can write in Pascal

p := list;
while (p <> nil) and (p”.value <> 3) do
p := p~.next;

The intention of this code is to traverse a list until we have arrived at the end or
until we have encountered the value 3. This is badly written code that can produce

6.2 The Concept of Command 129

a runtime error. Pascal, in fact, does not use short-circuit evaluation. In the case in
whichwe havep = nil, the second operand of the conjunction (p~.value <>
3) yields an error when it dereferences a null pointer. Similar code, on the other
hand, mutatis mutandis, can be written in C without causing problems. In order
to avoid ambiguity, some languages (for example C and Ada), explicitly provide
different boolean operators for short-circuit evaluation. Finally, it should be noted
that this kind of evaluation can be simulated using a conditional command (see
Exercise 2).

Optimisation Frequently, the order evaluation of subexpressions influences the ef-
ficiency of the evaluation of an expression for reasons relating to the organisation
of the physical machine. For example, consider the following code:

a vector[il];
b = a*a + c*d;

In the second expression, it is probably better first to evaluate c*d, given that the
value of a has to be read from memory (with the first instruction) and might not be
yet available; in such a case, the processor would have to wait before calculating a
* a. In some cases, the compiler can change the order of operands expressions to
obtain code that is more efficient but semantically equivalent.

The last point explains many of the semantic problems that appear while eval-
uating expressions. Given the importance of the efficiency of the object code pro-
duced by the compiler, it is given considerable liberty in the precise definition of
its expression evaluation method, without it being specified at the level of semantic
description of the language (as we have already said, Java is a rare exception). The
result of this kind of approach is that, sometimes, different implementations of the
same language produce different results for the same expression, or have errors at
runtime whose source is hard to determine.

Wishing to capitalise in a pragmatic prescription, given what has been said so far,
if we do not know the programming language well and the specific implementation
we are using, if we want to write correct code, it is wise to use all possible means
at our disposal to eliminate as many sources of ambiguity as possible in expres-
sion evaluation (such as brackets parentheses, specific boolean operations, auxiliary
variables in expressions, etc.).

6.2 The Concept of Command

If, as we were saying above, expressions are present in all programming languages,
the same is not true for commands. They are constructs that are typically present
(but not entirely restricted to them) in so-called imperative languages.

Definition 6.2 (Command) A command is a syntactic entity whose evaluation does
not necessarily return a value but can have a side effect.

130 6 Control Structure

A command, or more generally, any other construct, has a side-effect if it influ-
ences the result of the computation but its evaluation returns no value to the context
in which it is located.

This point is fairly delicate and merits clarification with an example. If the
print command in a hypothetical programming language can print character
strings supplied as an argument, when the command print “pippo” is eval-
uated, we will not obtain a value but only a side-effect which is composed of the
characters “pippo” appearing on the output device.

The attentive reader will be aware that the definition of command, just as the
previous definition of expression, it is not very precise, given that we have referred
to an informal concept of evaluation (the one performed by the abstract machine of
the language to which the command or the expression belongs). It is clear that we
can always modify the interpreter so that we obtain some value as a result of the
evaluation of the command. This is what happens in some languages (for example
in C assignment also returns the value to the right of =, see Sect. 6.2.2).

A precise definition and, equally, an exact distinction, between expressions and
commands on the basis of their semantics is possible only in the setting of a formal
definition of the semantics of language. In such a context, the difference between
the two concepts derives from the fact that, once a starting state has been fixed,
the result of the evaluation of an expression is a value (together with possible side-
effects). On the other hand, the result of evaluating a command is a new state which
differs from the start state precisely in the modifications caused by the side-effects
of the command itself (and which are due principally to assignments). Command
is therefore a construct whose purpose is the modification of the szate. The concept
of state can be defined in various ways; in Sect. 2.5, we saw a simple version, one
which took into account the value of all the variables present in the program.

If the aim of a command is to modify the state, it is clear that the assignment
command is the elementary construct in the computational mechanism for languages
with commands. Before dealing with them, however, it is necessary to clarify the
concept of variable.

6.2.1 The Variable

In mathematics, a variable is an unknown which can take on all the numerical values
in a predetermined set. Even if we keep this in mind, in programming languages, it
is necessary to specify this concept in more detail because, as we will see also in
Sects. 11.1 and 12.3, the imperative paradigm uses a model for variables which is
substantially different from that employed the in logic and functional programming
paradigms.

The classical imperative paradigm uses modifiable variables. According to this
model, the variable is seen as a sort of container, or location (clearly referring to
physical memory), to which a name can be given and which contains values (usually
of a homogeneous type, for example integers real, characters etc.). These values can

6.2 The Concept of Command 131
Fig. 6.2 A modifiable i
variable l

be changed over time, by execution of assignment commands (whence comes the
adjective “modifiable”). This terminology might seem tautological to the average
computer person, who is almost always someone who knows an imperative language
and is therefore used to modifiable variables. The attentive reader, though, will have
noted that, in reality, variables are not always modifiable. In mathematics a variable
represents a value that is unknown but when such a value is defined the link thus
created cannot be modified later.

Modifiable variables are depicted in Fig. 6.2. The small box which represents
the variable with the name x can be re-filled with a value (in the figure, the value
is 3). It can be seen that the variable (the box) is different from the name x which
denotes it, even if it is common to say “the variable x” instead of “the variable with
the name x”.

Some imperative languages (particularly object-oriented ones) use a model that
is different from this one. According to this alternative model, a variable is not a
container for a value but is a reference to (that is a mechanism which allows access
to) a value which is typically stored in the heap. This is a new concept analogous to
that of the pointer (but does not permit the usual pointer-manipulation operations).
We will see this in the next section after we have introduced assignment commands.
This variable model is called, in [8], the “reference model”, while in [6], where
it is discussed in the context of the language CLU, is called the “object model”.
Henceforth, we will refer to this as the reference model of variables.

(Pure) functional languages, as we will see in more detail in Sect. 11.1, use a
concept of variable similar to the mathematical one: a variable is nothing more than
an identifier that stands for a value. Rather, it is often said that functional languages
“do not have variables”, meaning that (in their pure forms) they do not have any
modifiable variables.

Logic languages also use identifiers associated with values as variables and, as
with functional languages, once a link between a variable identifier and a value is
created, it can never be eliminated. There is however a mode in which the value
associated with a variable can be modified without altering the link, as will be seen
in Sect. 12.3.

6.2.2 Assignment

Assignment is the basic command that allows the modification of the values asso-
ciated with modifiable variables. It also modifies the state in imperative languages.
It is an apparently very simple command. However, as will be seen, in different
programming languages, there are various subtleties to be taken into account.

Let us first see the case that will probably be most familiar to the reader. This
is the case of an imperative language which uses modifiable variables and in which

132 6 Control Structure

assignment is considered only as a command (and not also as an expression). One
example is Pascal, in which we can write

X := 2

to indicate that the variable X is assigned the value 2. The effect of such a command
is that, after its execution, the container associated with the variable (whose name
is) X will contain the value 2 in place of the value that was there before. It should be
noted that this is a side effect, given that the evaluation of the command does not on
its own, return any kind of value. Furthermore, every access to X in the rest of the
program will return the value 2 and not the one previously stored.

Consider now the following command:

X = X+1

The effect of this assignment, as we know, is that of assigning to the variable X its
previous value incremented by 1. Let us observe the different uses of the name, X,
of the variable in the two operands of the assignment operator. The X appearing to
the left of the : = symbol is used to indicate the container (the location) inside which
the variable’s value can be found. The occurrence of the X on the right of the :=
denotes the value inside the container. This important distinction is formalised in
programming languages using two different sets of values: /-values are those values
that usually indicate locations and therefore are the values of expressions that can
be on the left of an assignment command. On the other hand, r-values are the values
that can be stored in locations, and therefore are the values of expressions that can
appear on the right of an assignment command. In general, therefore, the assignment
command has the syntax of a binary operator in infix form:

expl OpAss exp2

where OpAss indicates the symbol used in the particular language to denote assign-
ment (:= in Pascal, = in C, FORTRAN, SNOBOL and Java, < in APL, etc.). The
meaning of such a command (in the case of modifiable variables) is as follows: com-
pute the I-value of exp1, determining, thereby, a container loc; compute the r-value
of exp2 and modify the contents of loc by substituting the value just calculated for
the one previously there.> Which expressions denote (in the context on the left of
an assignment) an l-value depends on the programming language: the usual cases
are variables, array elements, record fields (note that, as a consequence, calculation
of an 1-value can be arbitrarily complex because it could involve function calls, for
example when determining an array index).

In some languages, for example C, assignment is considered to be an operator
whose evaluation, in addition to producing a side effect, also returns the r-value thus
computed. Thus, if we write in C:

3Some languages, e.g., Java, allow the left-hand side to be evaluated before the right-hand side;
others (e.g., C), leave this decision to the implementer.

6.2 The Concept of Command 133
X = 2;

the evaluation of such a command, in addition to assigning the value 2 to x, returns
the value 2. Therefore, in C, we can also write:

This command assigns the value 2 to x as well as to y. In C, as in other languages,
there are other assignment operators that can be used, either for increasing code
legibility or avoiding unforeseen side effects. Let us take up the example of incre-
menting a variable. Once again we have:

x = x+1;

This command, unless optimised by the compiler, requires, in principle, two ac-
cesses to the variable x: one to determine the 1-value, and one to obtain the r-value.
If, from the efficiency viewpoint, this is not serious (and can be easily optimised by
the compiler), there is a question which is much more important and which is again
related to side-effects. Let us then consider the code:

b = 0;
alf(3)] = alf£(3)1+1;

where a is a vector and f is a function defined as follows:

int £ (int n){

if b == 0{
b=1;
return 1;

}

else return 2;

}

This function is defined in such a way that the non-local reference to b in the body
of f refers to the same variable b that is cleared in the previous fragment.
Given that £ modifies the non-local variable b, it is clear that the assignment

alf(3)] = alf(3)1+1

does not have the effect of incrementing the value of the element a [£ (3)] of the
array, as perhaps we wanted it to do. Instead, it has the effect of assigning the value
of a[1]+1 to a[2] whenever the evaluation of the left-hand component of the
assignment precedes the evaluation of the right-hand one. It should be noted, on the
other hand, that the compiler cannot optimise the computation of r-values, because
the programmer might have wanted this apparently anomalous behaviour.

134 6 Control Structure

To avoid this problem we can clearly use an auxiliary variable and write:

int j = £(3);
alj] aljl+1;

Doing this obscures the code and introduces a variable which expresses very little.
To avoid all of this, languages like C provide assignment operators which allow us
to write:

alf(3)] += 1;

This add to the r-value of the expression present on the left the quantity present on
the right of the += operator, and then assigns the result to the location obtained as the
I-value of the expression on the left. There are many specific assignment commands
that are similar to this one. The following is an incomplete list of the assignment
commands in C, together with their descriptions:

e X = Y: assign the r-value of Y to the location obtained as the I-value of X and
return the r-value of X;

e X += Y (or X -= Y): increment (decrement) X by the quantity given by the
r-value of Y and return of the new r-value;

e ++X (or -X): increment (decrement) X by and return the new r-value of X;

e X++ (or X-): return the r-value of X and then increment (decrement) X.

‘We will now see how the reference model for variables differs from the traditional
modifiable-variable one. In a language which uses the reference model (for example,
CLU and, as we will see, in specific cases, Java) after an assignment of the form:

xX=e

x becomes a reference to an object that is obtained from the evaluation of the ex-
pression e. Note that this does not copy the value of e into the location associated
with x. This difference becomes clear if we consider an assignment between two
variables using the reference model.

X=y

After such an assignment, x and y are two references to the same object. In the
case in which this object is modifiable (for example, record or array), a modification
performed using the variable x becomes visible through variable y and vice versa.
In this model, therefore, variables behave in a way similar to variables of a pointer
type in languages which have that type of data. As we will more clearly see in
Sect. 8.4.5, a value of a pointer type is no more than the location of some data item
(or, equivalently, its address in some area of memory). In many languages which
have pointer types, the values of such types can be explicitly manipulated (which
causes several problems as we will also see in Chap. 8). In the case of the reference
model, however, these values can be manipulated only implicitly using assignments

6.2 The Concept of Command 135

Environment and Memory

In Chap. 2, we defined the semantics of a command by referring to a simple notion

of state, which we defined as a function associating with every variable present in
the program, the value it takes. This concept of state, although adequate for didactic
purposes in mini-languages, is not sufficient when we want to describe the semantics
of real programming languages which use modifiable variables and assignments. In
fact, we have already seen in Chap. 4 (and will see in more detail in the next two
chapters) that parameter-passing mechanisms as well as pointers can easily create
situations in which two different names, for example X and Y, refer to the same
variable, or rather the same location in memory. Such case of aliasing cannot be
described using a simple function State: Names — Values because with a simple
function it is not possible to express the fact that a modification of the value asso-
ciated with (the variable denoted by) X also reflects on the value associated with Y.
To correctly express the meaning of modifiable variables, we therefore use two sep-
arate functions. The first, called the environment, mostly corresponds to the concept
of environment introduced in Chap. 4: in other words, it is a function Environment:
Names — DenotableValues which maps names to the values they denote. The set
(or, as one says in semantics jargon, the domain) of names often coincides with that
of identifiers. The domain DenotableValues, instead, includes all values to which
a name can be given; what these values are depends on the programming language
but if the language provides modifiable variables then this domain certainly includes
memory locations.

The values associated with locations are, on the other hand, expressed by a
function Memory: Locations — StorableValues which (informally) associates every
location with the value stored in it. In this case also, what exactly is a storable value
depends on the specific language.

Therefore, when we say that “in the current state the variable X has the value 5,
formally we mean to say that we have an environment p and a memory ¢ such
that o (p(X)) = 5. Note that when a variable is understood to be an I-value, we
are interested only in the location denoted by the name and, therefore, only in the
environment is specified, while when we understand it as an r-value the store is also
used. For example given environment p, and a store o, the effect of the command
X=Y is to produce a new state in which the value of p (o (Y)) is associated with p (X).
Let us recall, for completeness, that a third value domain important in the language
semantics is formed from ExpressibleValues: these are those values which can be
the result of the evaluation of a complex expression.

between variables. Java (which does not have pointers) adopts the reference model
for variables for all class types, but uses the traditional modifiable-variable model
for primitive types (integers, reals floating point, booleans and characters).

Below, unless otherwise specified, when we talk about variables, we mean the
modifiable variable.

136 6 Control Structure

6.3 Sequence Control Commands

Assignment is the basic command in imperative languages (and in “impure” declar-
ative languages); it expresses the elementary computation step. The remaining com-
mands serve to define sequence control, or rather serve to specify the order in which
state modifications produced by assignments, are to be performed. These other com-
mands can be divided into three categories:

Commands for explicit sequence control These are the sequential command and
goto. Let us consider, in addition, the composite command, which allows us to
consider a group of commands as a single one, as being in this category.

Conditional (or selection) commands These are the commands which allow the
specification of alternative paths that the competition can take. They depend on the
satisfaction of specific conditions.

Iterative commands These allow the repetition of a given command for a prede-
fined number of times, or until the satisfaction of specific conditions.

Let us consider these command typologies in detail.

6.3.1 Commands for Explicit Sequence Control

Sequential Command The sequential command, indicated in many languages by

a ‘", allows us directly to specify the sequential execution of two commands. If we
write:
cl1 ; c2

the execution of C2 starts immediately after C1 terminates. In languages in which
the evaluation of a command also returns a value, the value returned by the evalua-
tion of the sequential command is that of the second argument.

Obviously we can write a sequence of commands such as:

ClL ;C2; ... ; Cn

[t

with the implicit assumption that the operator *“;” associates to the left.

Composite Command In modern imperative languages, as we have already seen
in Chap. 4, it is possible to group a sequence of commands into a composite com-
mand using appropriate delimiters such as those used by Algol:

begin
end

or those in C:

6.3 Sequence Control Commands 137

Imperative and Declarative Languages

Denotable, storable and expressible values, even if they have a non-empty intersec-
tion, are conceptually distinct sets. In effect, many important differences between
various languages depend on how these domains are defined. For example, func-
tions are denotable but not expressible in Pascal, while they are expressible in Lisp
and ML. A particularly important difference between various languages concerns
the presence of storable value and the Memory semantic function which we saw in
the previous box. In fact, in a rather synthetic fashion, we can classify as imperative
those languages which have environments as well as memory functions; those lan-
guages which have only environments are declarative. Imperative languages, while
they are high-level languages, are inspired by the physical structure of the computer.
In them the concept of memory (or state) is interpreted as the set of associations be-
tween memory locations and values stored in those locations. A program, according
to this paradigm, is a set of imperative commands and computation consists of a
sequence of steps which modify the state, using as its elementary command the as-
signment. The terminology “imperative” here has to do with natural language: as
in an imperative phrase, we say “take that apple” to express a command, so with
an imperative command we can say “ assign to x the value 1”. Most programming
languages normally used belong to the imperative paradigm (Fortran, Algol, Pascal,
C, etc.).

Declarative languages were introduced with the aim of offering a higher level
programming paradigms, close to the notations of mathematics and logic, abstract-
ing from the characteristics of the physical machine on which the programs are
executed. In declarative languages (or at least in “pure” versions of them) there are
no commands to modify the state, given that there are neither modifiable variables
nor a semantic memory function. Programs are formed from a set of declarations
(from which the name is derived) of functions or relations which define new values.
According to the elementary mechanism used to specify the characteristics of the
result, declarative languages are divided into two classes: functional and logic pro-
gramming languages (the latter, also called logic languages for short). In the first
case, computation consists of the evaluation of functions defined by the program-
mer using rules of a mathematical kind (mostly composition and application). In
the second form of declarative language, on the other hand, computation is based
on first-order logical deduction. Let us recall that, in actuality, there exist “impure”
functional and logic languages that also have imperative characteristics (in particu-
lar, they include assignment). We will encounter both functional and logic languages
in two next chapters.

Such a composite command, also called a block, can be used in any context in
which a simple command is expected and therefore, in particular, can be used inside
another composite command to create a tree-like structure of arbitrary complexity.

138 6 Control Structure

A Quibble about “;”

66,9

Being rigorous, the *“;” used to separate commands is not always a sequential com-

mand. In C, C++ and Java, for example, it is a command terminator more than an

operator expressing concatenation. In fact, this can be easily seen when we deal with
TR

the last command in a block. In these languages, the “;” is always required, even if
the command is not followed by another as in

{(x=1;
x=x+1;

}

In languages like Pascal, on the other hand, “;” is really an operator that se-
quentialises commands. The same example as above can be written as:

begin
x:=1;
x:=x+1
end

6,

To insert a *“;”” without there being a command to follow it is, however, a venial
programming sin which the compiler absolves by inserting an empty command be-

tween the ““;” and the end. An empty command is denoted by nothing syntactically
and corresponds to no action.

Goto A unique place is occupied in the panorama of sequential control commands
by the goto. It was included in the first programming languages and continues to be
included in languages. It has 2 different forms (conditional or direct). This command
is directly inspired by jump instructions in assembler languages and therefore by the
sequence control of the hardware machine. The execution of the command

goto A

transfers control to the point in the program at which the label A occurs (different
languages differ in what exactly constitutes a label but these differences are not
relevant to us).

Despite its apparent simplicity and naturalness, the goto command has been at
the centre of a considerable debate since the start of the 1970s (see, for example, the
famous article by Dijkstra referred to in the bibliography), and, after about 30 years
of debate, we can say that it is the detractors who have beaten the supporters of this
command. To clarify the sense of this debate, let us, first of all, observe that the
goto is not essential to the expressiveness of a programming language. A theorem
due to Bohm and Jacopini in fact shows that any program can be translated into
an equivalent one which does not use the goto (the formulation of the theorem,

6.3 Sequence Control Commands 139

obviously, is much more precise than our account). This result, moreover, does not
come down on one side or the other. If, on the one hand, we can assert that, in
principle, the goto is useless, on the other, it is possible to object (as has been
done) that even this result shows that it is permissible to use the goto in programs.
If just we wish to eliminate this command, in fact, it can be done using the Bohm
and Jacopini transformation (which, in particular, completely destroys the structure
of the reformulated program).

The nexus of the question really is not of a theoretical nature but of a pragmatic
one. Using goto, it is easily possible to write code which soon becomes incompre-
hensible and which still remains incomprehensible when all gotos are eliminated.
We can think, for example, of a program of some considerable size where we have
inserted jumps between points which are some of thousands of lines of code apart.
Or, we can think of a subprogram in which exits are made at different points based
on some condition and the exits are performed by gotos. These and other arbitrary
uses of this construct make the code hard to understand, and therefore hard to mod-
ify, correct and maintain; this has the obvious negative consequences in terms of
cost. To all of this, we can add the fact that the goto with its primitive method of
transferring control, does not accord well with other mechanisms present in high-
level languages. What happens, for example, if we jump inside of a block? When
and how is the activation record for this block initialised so that everything works
correctly?

If goto were used in an extremely controlled fashion, locally to small regions
of code, the majority of these disadvantages would disappear. However, the cases
in which it can be useful to use this command, such as exit from loops, return from
a subprograms, handling of exceptions, can, in modern programming languages, be
handled by specific, more appropriate, constructs. We can therefore assert that in
modern high-level languages, the goto is a construct whose use is disappearing.
Java is the first commercial language to have completely removed it from its set of
admissible commands.

Other sequence control commands If goto is dangerous in its general form,
there are local and limited uses which are useful in given circumstances. Many lan-
guages make available limited forms of jump to confront these pragmatic necessities
without having to make use of the brute force of a goto. Among these commands
(which take on different forms in different languages), we find constructs such as
break (for terminating the execution of a loop, of a case, or, in some languages,
of the current block), continue (for terminating the current iteration in an iter-
ative command and force the starting of the immediately following command) or
return (to terminate the evaluation of the function, returning control to the caller,
sometimes also passing a value).

Finally, a more elaborate sequence control can be implemented using exceptions.
We will deal with these in a more detailed fashion in Sect. 7.3 below.

140 6 Control Structure

6.3.2 Conditional Commands

Conditional commands, or selection commands, express one alternative between
two or more possible continuations of the computation based on appropriate logical
conditions. We can divide conditional commands into two groups.

If The if command, originally introduced in the ALGOL60 language, is present
in almost all imperative languages and also in some declarative languages, in various
syntactic forms which, really, can be reduced to the form:

if Bexp then Cl else C2

where Bexp is a boolean expression, while C1 and C2 are commands. Informally,
the semantics of such a command expresses an alternative in the execution of the
computation, based on the evaluation of the expression Bexp. When this evaluation
returns true, the command C1 is executed, otherwise the command C2 is executed.
The command is often present in the form without the else branch:

if Bexp then C1

In this case, too, if the condition is false, the command C1 is not executed and
control passes to the command immediately after the conditional. As we saw in
Chap. 2, the presence of a branching i f as in the command

if Bexpl if Bexp2 then Cl else C2

causes problems of ambiguity, which can be resolved using a suitable grammar
which formally describes the rules adopted by the language (for example, the else
branch belongs to the innermost if; this is the rule in Java and it is used in almost
every language). To avoid problems of ambiguity, some languages use a “ termina-
tor” to indicate where the conditional command ends, as for example in:

if Bexp then Cl else C2 endif

Furthermore, in some cases, instead of using a list of nested 1f then elses,
use is made of an i f equipped with more branches, analogous to the following:

if Bexpl then C1
elseif Bexp2 then C2

elseif Bexpn then Cn
else Cn+l
endif

6.3 Sequence Control Commands 141

The implementation of the conditional command poses no problems, and makes use
of instructions for test and jump that are found in the underlying physical machine.*
The evaluation of the boolean expression can use the shorter circuit technique that
we saw above.

Case The command is a specialisation of the if command, just discussed, with
more branches. In its simplest form it is written as follows:

case Exp of

labell: C1;
label2: C2;
labeln: Cn;

else Cn+1l

where Exp is an expression whose value is of a type compatible with that of the
labels 1abell, ..., labeln, while C1, ..., Cn+1 are commands. Each label
is represented by one or more constants and the constant used in different labels
are different from each other. The type permitted for labels, as well as their form,
varies from language to language. In most cases, a discrete type is permitted (see
Sect. 8.3), including enumerations and intervals. So, for example, we can use the
constants 2 and 4 to denote a label, but in some languages we can also write 2, 4 to
indicate either the value 2 or the value 4, or 2 .. 4 to indicate all values between
2 and 4 (inclusive).

The meaning of this command, as stated above, is analogous to that of a multi-
branch if. Once the expression Exp has been evaluated, the command which oc-
curs in the unique branch whose label includes the value to which Exp evaluated is
executed. The else branch is executed whenever there is no other branch whose
label satisfies the condition stated above.

It is clear that whatever can be done using a case can certainly be expressed
using a nested series of ifs. Even so, many languages include some form of case
in their commands, either to improve the readability of the code, or because it is
possible to compile a case much more efficiently than a long series of nested 1 fs.
A case is, in fact, implemented in assembly language using a vector of contiguous
cells called a jump table, in which each element of the table contains the address
of the first instruction of the corresponding command in the case’s branches. The
use of such a table is shown in Fig. 6.3, where, for simplicity, it is assumed that
the labels 1abell,. ., labeln are the consecutive constants 0, 1,...,n — 1. As
should be clear in the figure, the expression which appears as an argument to the
case is evaluated first of all. The value thus obtained is then used as an offset
(index) to compute the position in the jump table of the instruction which performs
the jump to the chosen branch. The extension of this mechanism to the general case
in which labels are sets or intervals as simple (see Exercise 3).

4 At the assembly language level, and therefore in the language of the physical machine, there are
jump operations, conditional or not, analogous to the goto in high-level languages.

142 6 Control Structure

Fig. 6.3 Implementation of

case Instructions before case

Calculate value v of Exp Case Evaluation

If v<labell, then
Jump L (n+1)

Bounds Checks
If v>labeln, then

Jump L (n+1)

Jump LO+vx*k
L0 Jump L1
Jump L2

Jump Table

Jump Ln

L1l Command C
Jump END
L2 Command Cs
Jump END

Alternative branches

Ln Command C,,
Jump END
L (n+1) Command C,, 41 Else branch

Instructions following
case

END

This implementation mechanism for case gives greater efficiency than a series
of nested 1fs. Using a jump table, once the value of the expression is calculated,
two jump instructions are required to arrive at the code of the command to execute.
Using nested 1 fs, on the other hand, for n alternative branches (in the worst case of
an unbalanced 1if), it is necessary to evaluate O(n) conditions and perform O (n)
jumps before arriving at the command of interest. The disadvantage of using a jump
table is that, since it is a linear structure whose contiguous elements correspond
to successive label values, it can consume a lot of space when the label values are
dispersed over a fairly wide interval or when the individual labels are a type denoting
a wide interval. In this case alternative methods can be used for calculating the jump
address, such as sequential tests hashing or even methods based on binary search.

Different languages exhibit significant differences in their case commands. In
C, for example, the swi tch has the following syntax (also to be found in C++ and
in Java):

switch (Exp) body

6.3 Sequence Control Commands 143

where body can be any command that all. In general, though, the body is formed
from a block in which some commands can be labelled; that is they are of the form:

case label : command

while the last command of the block is of the form:

default : command

When the expression Exp is evaluated and control is to be transferred to the
command whose label coincides with the resulting value, if there are no labels with
such a value, control passes to the command with the label default. If there is no
default command, control passes to the first command following the switch. It
can be seen that, once a the branch of the switch has been selected, control then
flows into the immediately following branches. To obtain a construct with semantics
analogous to that of the case we discussed above, it is necessary to insert an explicit
control transfer at the end of the block, using a break:

switch (Exp) {
case labell: Cl break;
case label2: C2 break;

case labeln: Cn break;
default: Cn+l1 break;

It can be seen also that in a switch, the value returned by the evaluation of the
expression might not appear in any label, in which case the entire command has no
effect. Finally, lists or ranges of values are not permitted as labels. This however
is no real limitation, given that lists of values can be implemented using the fact
that control passes from one branch to its successor when break is omitted. If, for
example, we write:

switch (Exp) {
case 1:
case 2: C2 break;
case 3: C3 break;
default: C4 break;

in the case in which the value of Exp is 1, given that the corresponding branch does
not contain a break command, control passes from the case 1 branch immedi-
ately to the case 2 branch and therefore it is as if we had used a list of values 1, 2
for the label of C2.

144 6 Control Structure

6.3.3 Iterative Commands

The commands that we have seen up to this point, excluding goto, only allow us to
express finite computations, whose maximum length is determined statically by the
length of the program text.’> A language which had only such commands would be
of highly limited expressiveness. It would certainly not be Turing complete (recall
Sect. 3.3), in that it would not permit the expression of all possible algorithms (con-
sider, for example, scanning a vector of n elements, where » is not known a priori).
In order to acquire the expressive power necessary to express all possible algo-
rithms in low-level languages, jump instructions allowing the repetition of groups of
instructions by jumping back to the start of the code are needed. In high-level lan-
guages, given that, as has been seen, it is desirable to avoid commands like goto,
two basic mechanisms are employed to achieve the same effect: structured iteration
and recursion. The first, which we consider in this section, is more familiar from
imperative languages (and they almost always allow recursion as well). Suitable lin-
guistic constructs (which we can regard as special versions of the jump command)
allow us compactly to implement loops in which commands are repeated or iterated.
At the linguistic level, it is possible to distinguish between unbounded iteration and
bounded iteration. In bounded iteration, repetition is implemented by constructs that
allow a determinate number of iterations. Unbounded iteration, on the other hand,
is implemented by constructs which continue until some condition becomes true.
Recursion which we will consider in the next section, allows, instead, the ex-
pression of loops in an implicit fashion, including the possibility that a function
(or procedure) can call itself, thereby repeating its own body an arbitrary number
of times. The use of recursion is more common in declarative languages (in many
functional and logic languages there does not, in fact, exist any iterative construct).

Unbounded iteration Unbounded iteration is logically controlled iteration. It is
implemented by linguistic constructs composed of two parts: a loop condition (or
guard) and a body, which is composed of a (possibly compound) command. When
executed, the body is repeatedly executed until the guard becomes false (or true,
according to the construct).

In its most common form, this type of iteration takes the form of the while
command, originally introduced in ALGOL:while

while (Bexp) do C

The meaning of this command is as follows: (1) the boolean expression Bexp is
evaluated; (2) if this evaluation returns the value true, execute the command C and
return to (1); otherwise the while command terminates.

In some languages there are also commands that test the condition after execution
of the command (which is therefore always executed at least once). This construct
is for example present in Pascal in the following form:

51t can easily be seen that the maximum length of the computation is a linear function of the length
of the program.

6.3 Sequence Control Commands 145

repeat C until Bexp

This is no more than an abbreviation for:

C;
while not Bexp do C

(not Bexp here indicates the negation of the expression Bexp). In C an analogous
construct is do:

do C while (Bexp)

which corresponds to:

C;
while Bexp do C

(note that the guard is not negated as in the case of repeat.)

The while construct is simple to implement, given that it corresponds directly
to a loop that is implemented on the physical machine using a conditional jump in-
struction. This simplicity of implementation should not deceive us about the power
of this construct. Its addition to a programming language which contains only as-
signment and conditional commands immediately makes the language Turing com-
plete. Our mini-language from Chap. 2 is therefore Turing complete (or: it allows
the implementation of all computable functions). The same is not the case with
bounded iteration which we will now turn to.

Bounded iteration Bounded iteration (sometimes also called numerically con-
trolled iteration) is implemented by linguistic constructs that are more complex than
those used for unbounded iteration; their semantics is also more elaborate. These
forms are very different and not always “pure” as we will see shortly. The model
that we adopt in this discussion is that of ALGOL, which was then adopted by many
other languages of the same family (but not by C or Java).

Bounded iteration is implemented using some variant of the for command.
Without wishing to use any specific syntax, it can be described as:

for T = start to end by step do
body

where I is a variable, called the index, or counter, or control variable; start and
end are two expressions (for simplicity we can assume that they are of integer type
and, in general, they must be of a discreet type); step is a (compile-time) non-zero
integer constant; body is the command we want to repeat. This construct, in the
“pure” form we are describing, is subject to the important static semantic constraint
that the control variable can not be modified (either explicitly nor implicitly) during
the execution of the body.

The semantics of the bounded iteration construct can be described informally as
follows (assuming that step is positive):

146 6 Control Structure

1. The expression start is evaluated, as is end. The values are frozen and stored
in dedicated variables (which cannot be updated by the programmer). We denote
them, respectively, as start_save and end_save.

2. T is initialised with the value of start_save.

3. If the value of T is strictly greater than the value of end_save, execution of the
for command is terminated.

4. Execute body and increment I by the value of step.

5. Goto 3.

In the case in which step is negative, the test in step (3) determines whether T
is strictly less than end_save.

It is worth emphasising the importance of step (1) above and the constraint that
the control variable cannot be modified in the body. Their combined effect is to
determine the number of times and the body will be executed before the loop be-
gins execution. This number is given by the quantity, ic (iteration count), which is
defined as:

. end — start + step
ic=
step

if ic is positive, otherwise it is 0. It can be seen, finally, that there is no way of
producing an infinite cycle with this construct.

There are considerable differences, both syntactic and semantic, between the ver-
sions of this construct in different languages. First, not all languages require non-
modifiability of the control variable and/or the freezing of the control expressions.
Strictly speaking, such cases do not implement bounded iteration because they are
unable to compute ic once and once only. It is common, though, to continue speak-
ing of bounded iteration even when the language does not guarantee determinate-
ness, but this is obtained on any loop, by the programmer (modifying neither directly
nor indirectly the control variable and the start, end and step expressions). Also dif-
ferent other aspects constitute important differences between languages, of which
we mention four:

Number of iterations According to the semantics which we have just given, when
step is positive, if the value of start is initially (strictly) greater than the value
of end, body is not executed at all. Even this is not the case in all languages,
just the majority. Some languages execute the test in Step 3 after having executed
body.

Step The requirement that step is a (non-zero) constant is necessary for statically
determining its sign, so that the compiler can generate the appropriate code for the
test in step 3. Some languages (such as Pascal and Ada) use a special syntax to
indicate that step is negative, for example using downto or reverse in place
of to. Other languages, such as, for example, some versions of Fortran, do not
have a different syntax for the native step and their implementation of the for
directly uses the iteration counter rather than the test of I and end. The value ic is
computed and if this value is positive, it is used to control the loop, decrementing
it by 1 until it reaches the value 0. If, on the other hand, ic has a negative value or is

6.3 Sequence Control Commands 147

equal to 0, the loop is never repeated. It is the use of this implementation technique
that suggests the name numerically controlled iteration.

Final index value The other subtle aspect concerns the value of the control vari-
able I after the end of the loop. In many languages, T is a variable that is also
visible outside of the loop. The most natural approach seems to be that of consid-
ering the value of I to be the last value assigned to it during execution of the for
construct itself (in the case in which the loop terminates normally and the step is
positive, the last value assigned to the index T is the first value greater than end).
This approach, though, can generate type ambiguities or errors. Let us assume, for
example, that T is declared as being of an interval type 1 .. 10 (from 1 to 10).
If we use a command:

for T = 1 to 10 by 1 do
body

The final value assigned to I would have to be the successor of 10, which is clearly
not an admissible value. An analogous problem occurs for integer values when
the calculation of T causes an overflow. To avoid this problem, some languages
(for example Fortran IV or Pascal) consider the value of I to be indeterminate on
termination of the loop (that is, the language definition does not specify what it
should be). In other words, each implementation of these languages is allowed to
behave how it wishes, with the imaginable consequence of the non-portability of
programs. Other languages (for example: AlgolW, Algol 68, Ada, and, in certain
circumstances, C++) cut the matter short, decreeing that the control variable is a
variable that is local to the for; hence it is not visible outside the loop. In this
case the header of the for implicitly declares the control variable with a type that
is determined from that one of start and end.

Jump into a loop The last point which merits attention concerns the possibility of
jumping into the middle of a for loop using a goto command. Most languages
forbid such jumps for clear semantic reasons, while there are fewer restrictions on
the possibility of using a goto for jumping out of a loop.

We have just considered a number of important aspects of the implementation
of for loops. Particular tricks can be used by the compiler to optimise the code
that is produced (for example, eliminating tests which involve constants) or by lim-
iting overflow situations which could occur when the incrementing the index I (by
inserting appropriate tests).

Expressiveness of bounded iteration Using bounded iteration, we can express
the repetition of a command for n times, where n it is an arbitrary value not known
when the program is written, but is fixed at when the iteration starts. It is clear
that this is something that cannot be expressed using only conditional commands
and assignment, because it is possible to repeat a command only by repeating the
command in the body of the program syntactically. Given that every program has
a finite length, we have a limit on the maximum number of repetitions that we can
include in a specific program.

148 6 Control Structure

Despite this increase in expressive power, bounded iteration on its own is insuf-
ficient to make a programming language Turing complete. Think, for example, of a
simple function f which can be defined as follows:

Flx) = {x if x is even,
does not terminate if x is odd.

Certainly such a function is computable. Every programmer would know how to
implement it using a while or a goto or a recursive call so as to obtain a nonter-
minating computation. However such a function is not representable in a language
only having assignment, sequential command, i f and bounded iteration, given that,
as can easily be verified in such a language, all programs terminate for every in-
put. In other words, in such a language, only total functions can be defined while
function f is partial.® In order to obtain a language that is Turing complete, it is nec-
essary to include unbounded iteration. The complication of the informal semantics
of for is only apparent, and the easy translation into machine language of while
should not deceive us. In fact, from a formal viewpoint, while is semantically
more complicated than for. As we saw in Chap. 2, the semantics of the while
command is defined in terms of itself, something which, if at first sight it appears a
little strange, finds its formal justification in fix point techniques which are beyond
the scope of this text (and to which we will mention in the section on recursion,
below). Even if we have not formally defined the semantics of for, the reader can
convince themselves that this can be given in simpler terms (see Exercise 4). The
major complication in the semantics of while with respect to for corresponds to
the greater expressiveness of the first construct. It is in fact clear that every for
command can easily be translated into a while.

It can now be asked why a language provides a bounded iteration construct when
unbounded iteration constructs allow the same things to be done. The reply is prin-
cipally of a pragmatic nature. The for it is a much more compact form of iteration,
putting the three components of the iteration (initialisation, control and increment
of the control variable) on the same line makes understanding what the loop does a
lots easier; it can also prevent some common errors, such as forgetting the initialisa-
tion or increment of the control variable. The use of a for instead of awhile can
therefore be an important way to improve understanding and, therefore testing and
maintenance of a program. There is also the implementation motive in some lan-
guages and on some architectures. A for a loop can often be compiled in a more
efficient way (and, in particular, be optimised better) than a while, particularly as
far as register allocation is concerned.

The for in C In C (and in its successors, among them Java), the for is far from
being, the in a general case, a bounded iteration construct. The general version is:

%In reality there are other fotal functions that are not definable using only assignment, sequential
composition, 1 f and for. A famous example is the Ackerman function, for whose definition the
reader is referred to texts on computability theory for example [3].

6.3 Sequence Control Commands 149

for (exp|; expy; exps)
body

Its semantics is the following:

1. Evaluate expl;

2. Evaluate exp?2; if it is zero, terminate execution of the for;
3. Execute body;

4. Evaluate exp3 and go to (2).

As can be seen, there is no way to freeze the value of the control expressions, nor
is there any ban on the possibility of modifying the value of index (which, in the
general case, need not even exist). It is clear how the semantics expresses the fact
that in C, for is, when all is said and done, an abbreviation for a while.

Making use of the fact that, in C, a command is also an expression, we obtain the
most usual form in which the for appears in C programs:

for (i = initial; 1 <= final; i += step){
body

This is an abbreviation (which is very important pragmatically) of:

i = initial;
while (i <= final){
body

i += step;

}

For-each One of the most common iterative constructions performs the sequential
scanning of all the elements of the data structure. A typical example is the following
which contains a function which computes the sum of the values in an array of
integers:

int sum(int([] A){
int acc = 0;
for (int i1=0; i<length(Ad); i++)
acc += A[i];
return acc;

This function is full of details that the compiler knows: the first and last index of A,
the specific check for i reaching its limit. The more detail that has to be added in
a construct, the easier it is to make an error and much more difficult to understand
at a glance what the construct does. In the case of sum, what we want to express is
simply the application of the body to every element of A.

Hence, some languages use a special construct, called for-each, to perform this
kind of operation. The for-each has the following general syntax:

foreach (FormalParameter : Expression) Command

150 6 Control Structure

The for-each construct expresses the application of Command (in which the For-
malParameter can clearly appear) to each element of Expression.
Using such a construct, the operation of summing a vector can be written as:

int sum(int[] A){
int acc = 0;
foreach(int e : A)

acc += e;
return acc;

Here, we can read the header for the for-each as “for every element e in A”. The
vector index, together with all of the vector’s limits, is hidden in a more synthetic
and elegant construct.

The use of the for-each construct is not limited to vectors, but can also be
applied to all collections over which the notion of iteration can be defined in a
natural way. In addition to enumerations and sets (which we will see in Chap. 8),
let us mention the particularly important case of languages which allow the user to
define types which are “ iterable”.

Among the more common languages, Java Version 5 supports the for-each
construct. The key word used is simply for’ but the syntax is different and allows
the construct to be disambiguated without problem. In Java the for-each (also called
enhanced for in the documentation) is applicable to all subtypes of the library type
Iterable.

6.4 Structured Programming

The rejection of the goto command of the 1970s was not an isolated phenomenon.
The goto’s rejection was due to its properties, yet it was only one issue among
many that contributed to a much wider debate which brought so-called structured
programming to the fore. This can be considered as the antecedent of modern pro-
gramming methodology. As the name itself suggests, it consists of a series of pre-
scriptions aimed at allowing the development of software that has a certain structure
in code and, correspondingly, in the flow of control. These prescriptions have both
a methodological nature, providing precise development methods for programs, and
a linguistic component, indicating appropriate typologies for the commands used
(in substance, all those seen here so far, with the exception of goto). Let us see
in more detail some salient points about structured programming and its associated
linguistic implications.

"The for-each construct has been added on the fly when the language was already distributed and
in use for some years. In a case like this, the modification of the set of reserved words is not a good
design decision. Old programs which used the new keyword would stop working.

6.4 Structured Programming 151

Top-down or hierarchical design of programs The program is developed by suc-
cessive refinements, starting from a first (fairly abstract) specification adding suc-
cessively extra detail at each step.

Code modularisation It is appropriate to group the commands which correspond
to the specific functions in the algorithm that is to be implemented. To do this, all
the linguistic mechanisms made available by the language are used; these range
from compound commands to constructs for abstraction, such as procedures, func-
tions, and real modules, where the language supports them.

Use of meaningful names The use of meaningful names for variables, as well as
for procedures, etc., greatly simplifies the process of understanding the code and
therefore eases making any changes required during maintenance. Even if this ap-
pears (and is) obvious, in practice it is too often ignored.

Extensive use of comments Comments are essential for understanding, testing,
verification, correction and modification of code. A program with no comments,
becomes rapidly incomprehensible, once it has reached a certain length.

Use of structured data types The use of appropriate datatypes, for example records,
to group and structure information, even if it is of an heterogeneous type, eases
both the design of code and its later maintenance. For example, if we can use the
single variable, of type student record, to store the information about family name,
registration number and a subscription year for a student, then the structure of the
program will be much clearer than it would be if one had to use four different
variables to hold the information about a single student.

Use of structured control constructs This, from a linguistic viewpoint, is the es-
sential aspect. To implement structured programming, it is necessary to use struc-
tured control constructs, or rather constructs which, typically, have a single entry
and a single exit point.

The last point is the one which interests us the most and merits extra study. The
essential idea behind structured control constructs is that, by having a single entry
and a single exit point, they allow structuring of the code in which the linear scan-
ning of the program text corresponds to execution flow. If command C2 textually
a follows command C1, at the (unique) exit of command C1, when C1 terminates,
control passes to the (unique) entry point of command C2. Each command inter-
nally can have complex structure: branching (as in an i £) or loops (as in for) with
a non-linear control structure or internal jumps. The important thing is that each ele-
mentary component, externally, is visible in terms only of an entry point and an exit.
This property, which is fundamental for the understanding of code, is violated in the
presence of a command such as goto which allows jumps forward and backwards
in the program. In such a case, the code can rapidly reach a state which is called
“spaghetti code”, where the control flow between the various program components,
instead of being a simple graph with few the edges (which connect the output of a
command to the input of the following one), is described by a graph in which the
edges resemble a plate of spaghetti.

The control constructs seen so far, except the goto, are all structured and are
the ones left in the modern programming languages. From a theoretical position,
they allow programs for all computable functions to be written, as we have already

152 6 Control Structure

observed. From the pragmatic point of view they are sufficient to express all types
of control flow present in real applications. In particular, the constructs that were
discussed at the end of Sect. 6.3.1 enable us to handle those cases in which we
have to exit from a loop, a procedure, or, in some way, interrupt processing before
“normal” termination occurs. All of these cases could be handled in a natural manner
using a goto. For example, if we wished to process all the elements of a file that
we have read from an external device, we could use code of the form:3

while true do{
read (X) ;
if X = end_of_file then goto end;
elaborate (X) ;

}

end:

It can be observed that this use of goto does not violate the single entry, single
exit principle because the jump only anticipates the exit, which happens at a single
point in the overall construct. The structured command break (or its analogues) is
the canonical form of this “jump to end of loop”. When written in place of goto
end, it makes the program clearer, and omits the label (the destination of the jump
implicit in the break is the unique exit from the construct).

Let us finally recall that structured programming constituted a first reply to the
demands of so-called programming in the large,” given that it requires the decom-
position of a system of vast dimensions into different components, each of which is
assigned a certain level of independence. The amount of independence depends on
the abstraction mechanisms being used. For example, if procedures are used, com-
munication between the various components can happen only through parameters.
More significant answers to the needs of programming in the large cannot, though,
be given solely at the linguistic level of programming languages. Software engi-
neering has studied many methodologies for managing projects and implementing
big software systems. Some of these methodologies also have linguistic implica-
tions, which, however, cannot be completely accounted for in this book. The object-
oriented paradigm, together with some specification formalisms for object-oriented
projects (like UML), are some of the more recent replies to issues we consider in
this text.

6.5 Recursion

Recursion is another mechanism, an alternative to iteration, for obtaining Turing-
equivalent programming languages. In empirical terms, a function (or procedure)

8Wishing to avoid goto and using only while and if, we find that we have to write code that is
much less natural.

This term denotes the implementation of large-scale software systems.

6.5 Recursion 153

Inductive Definitions

Using an axiomatic presentation due to Giuseppe Peano, the natural numbers (non-
negative integers) O, 1, 2, 3, ..., can be defined as the least set X, satisfying the
following rules:

1.0e X
2. IfneX,thenn+1€X,

where we assume as primitive the concept of 0 (zero), that of number (denoted by
n) and that of successor of n (written n + 1). This definition of the naturals clearly
provides an intuitive justification of the principle of induction, a fundamental tool
in mathematics and also, in some ways, in computer science. This principle can be
stated as follows. To prove that a property, P (n), is true for all natural numbers, it
is necessary to show that the following two conditions are satisfied:

1. P(0) is true;
2. For every natural, n, if P(n) is true, then so is P(n + 1).

In addition to the proof of properties, induction is a powerful tool for the defini-
tion of functions. In fact, it can be shown that if g : (N x X) — X is a total function,
N denotes natural numbers and « is an element of X, then there exists a unique
(total) function f : N — X, such that:

1. f(0)=a
2. fla+ 1) =g, f(n)

Such a pair of equations then provide an inductive definition of the function f.
What has so far been said about induction over the naturals can be generalised
to arbitrary sets over which a well-founded ordering relation < is defined, i.e. a
relation which does not admit infinite descending chains ---x,;, < --- <x1 < x¢. In
this case, the induction principle, called well-founded induction, can be expressed as
follows. Let < be a well-founded relation defined on a set A. To show that P (a) has
a value for every a belonging to A, it is necessary to show the following implication:

Foralla € A, if P(b) is true for every b < a, then P(a) is true.

that is recursive is a procedure in whose body a call to itself is included. One can
have indirect recursion as well (it is best called mutual recursion) when a procedure
P calls another procedure, Q, which, in its turn, calls P. In Chap. 5, we have already
seen the example of the recursive function £ib which compute the nth value of the
Fibonacci function.

int fib (int n){
if (n == 0)
return 1;
else
if (n == 1)

154 6 Control Structure

return 1;
else
return fib(n-1) + fib(n-2);

The fact that a function like £ib can be defined in terms of itself can evoke some
doubt about the nature of the function being defined. In reality, recursive definition,
also called inductive definition, is fairly common in mathematics. As the box on
page 153 shows in more detail, the idea is that of describing the result of the ap-
plication of a function f to an argument X in terms of the application of f itself
to arguments which are “smaller” than X. The domain on which f is defined must
be such that it does not allow infinite chains of successively smaller elements, thus
ensuring that, after a finite number of applications of the function f, we arrive at a
terminal case, by the definition of which we can reconstruct the value of f applied
to X. For example, recalling that the factorial of a natural number, n, is given by
the product 1-2---n — 1 - n, we can inductively define the function computing the
factorial as follows:

factorial(0) =1,
factorial(n + 1) = (n + 1) - factorial(n).

Here 7 is an arbitrary natural number. In an analogous fashion, we can define the
function which computes the nth term in the Fibonacci series, for which we have
first provided a recursive program.

If, then, inductive definitions in mathematics and recursive functions in program-
ming languages are similar, there is still a fundamental difference. In the case of
inductive definitions, not all possible definitions of function in terms of itself will
work. If for example we write:

Joo(0) =1,
foo(n) =foo(n)+1 forn>0

it is clear that no total function over the naturals will satisfy this equation, so we
cannot define such a function. If, on the other hand, we write:

fie(1) = fie(1)

the problem is now the opposite. Many functions satisfy these equations, so once
again this does not constitute a valid definition.

On the other hand it is perfectly legitimate to write the following function in any
programming language supporting recursion:

int fool (int n){
if (n == 0)
return 1;
else
return fool(n) + 1;

6.5 Recursion 155

And also:

int fiel (int n){
if (n == 1) return fiel(1l);
}

These are functions which, in some case, do not terminate (when n > 0 for
fool (n) and for n = 1 in the case of £iel (n)), but from the semantic view-
point there is no problem because, as we saw in Chap. 3, programs define partial
functions.

6.5.1 Tail Recursion

In Chap. 5, we saw how, in general, the presence of recursion in a programming
language makes it necessary to include dynamic memory management since it is
not possible statically to determine the maximum number of instances of a single
function that will be active at the same time (and, therefore, to determine the max-
imum number of activation records required). For example, we have seen that for
the call £ib (n1) in our Fibonacci function, this number is equal to the nth element
of the Fibonacci series, and obviously, n cannot be known as compilation time. If,
on the other hand, we more carefully consider the nature of the recursive calls, we
notice that in some cases we can avoid the allocation of new activation records for
successive calls of a single function, since we can always reuse the same memory
space. To understand this point let us look at two recursive functions which compute
the factorial of a natural number. The first is the usual:

int fact (int n) {
if (n <= 1) return 1;
else
return n * fact(n-1);

The activation record for a call £ib (n) is shown in a slightly simplified form
in Fig. 6.4. The field n contains the value of the actual parameter to the procedure;
the field Intermediate Result will contain the intermediate result produced by the
evaluation of fact (n-1); the field Result address, finally, contains the address
of the memory area in which the result must be returned (that is, the address the
Intermediate Result of the caller for all calls after the first). It is important to note
that the value of the Intermediate Result field present in the activation record of
fact (n), can be determined only when the reclusive call to fact (n-1) termi-
nates and the value of this field, as a result of the code of fact, is used in the com-
putation of n * fact (n-1) to obtain the value of fact (n). In other words,
when we have the call fact (n), before it can terminate, we must know the value
of fact (n-1); in its turn, for the call to fact (n-1) to terminate we have to
know the value of fact (n-2) and so on, recursively, right back to the terminal

156 6 Control Structure

Fig. 6.4 Activation record
for the fact function Dynamic Chain Pointer (DCP)

Result Address (RA)

Intermediate Result (fatt (n-1))

Fig. 6.5 Activation record AA
stack and for the call <
fib(3) and the two DCP
recursive calls fact (2) and RA
fact (3) fact (3) n 3
fact (n—-1) <
DCP -
RA
fact (2) n 5
fact (n-1) ¢
DCP
RA
fact (1) n 1
fact (n-1)

case fact (1). Therefore all activation records for the recursive calls fact (n),
fact (n-1),...,fact (1), must reside at the same time on the stack, in distinct
memory areas.

Figure 6.5 shows the stack of activation records created by the call to fact (3),
as well as the by the following calls to fact (2) and fact (1). When we reach
the final case, the call to fact (1), terminates immediately and returns the value 1,
which, using the pointer contained in the Result Address of the activation record for
fact (1), will be returned to the Intermediate result field of the activation record
for fact (2), as is shown in Fig. 6.6. At this point, too, the call to fact (2) can
terminate, returning the value 2 - fact(1) =2 - 1 to the call fact (3), as shown in
Fig. 6.7. Finally, too, the call to fact (3) will terminate, returning to the calling
program the value 3 - fact(2) =3 -2 =6.

Consider now another function:

int factrc (int n, int res) {
if (n <= 1)
return res;
else
return factrc(n-1, n * res)

6.5 Recursion 157

Fig. 6.6 Stack of activation AA
records after termination of <
the call fact (2) DCP
RA
fact (3) n 3
fact (n-1) <,
DCP
RA
fact (2) n 5
fact (n-1) 1

Fig. 6.7 Activation record A
stack after the termination of j
the call fact (2) DCP 1
RA —1
fact (3) n

fact (n-1) 2

This, if called with factrc (nn, 1) also returns the factorial of n.
In this case, also, the initial call factrc (n, 1) produces n — 1 following re-
cursive calls

factrc(n-1,n*1),
factrc(n-2, (n-1)*n*1),
factrc(l,2*...*(n-1)*n*1).

However, let us now observe that for n > 1, the value returned by the generic call
factrc (n, res) is exactly the same as the value returned by the next recursive
call factrc (n-1,n+res) without there being any additional computation. The
value finally returned from the initial call factrc (n, 1) is therefore the same as
that returned by the last recursive call factrc (1,2*...*(n-1)*n*1) (andis
therefore n - (n — 1) - (n — 2) - - - 1), without there being any requirement to “climb
back up” the call chain using then the intermediate results to compute the final value,
as on the other hand happens in the case of fact.

From what has been said, it appears clear that, once factrc (n, res) has re-
cursively called factrc (n-1,n*res), there is no need to continue maintain-
ing the information present in the activation record for the call factrc (n, res),
given that all the information necessary to perform the calculation of the final result
is passed to factrc (n-1,n*res). This means that the activation record for the
recursive call factrc (n-1,n*res) can simply reuse the memory space allo-
cated to the activation record for factrc (n, res). So the consideration is valid
also for successive calls and, therefore, in short, the function factrc will need a
single memory area to allocate a single activation record, independent of the number
of recursive calls to be made. We have therefore obtained a recursive function for
which the memory can be allocated statically!

Recursion of the kind illustrated by the function factrc is said to be tail recur-
sion since the recursive call is, so to speak, the last thing that happens in the body

158 6 Control Structure

of the procedure. After the recursive call, no other computation is performed. More
generally we can give the following definition.

Definition 6.3 (Tail recursion) Let f be a function which, in its body, contains a
call to a function g (different from f or equal to f). The call of g is said to be a tail
call if the function f returns the value returned by g without having to perform any
other computation. We say that the function f is tail recursive if all the recursive
calls present in f are tail calls.

For example, in the function:

int £ (int n){
if (n == 0)
return 1;
else
if (n == 1)
return f (0);
else
if (n == 2)
return f(n-1);
else
return f(1)*2;

The first two recursive calls are tail calls, the third is not a tail call. Therefore the
function f is not tail recursive.

Our interest in tail recursion lies in the possibility of implementing it using a sin-
gle activation record and therefore using constant memory space. Our investigation
of the factrc function, in fact, is completely general, and does not depend on the
specific form of this function; it depends only on the fact that we are dealing with a
tail recursive function. All of this, however, does not hold in the case in which we
also consider higher-order functions (i.e. when they are functions that are passed as
parameters), as we will see later in this section.

In general, it is always possible to transform a function which is not tail recursive
into an equivalent one which is, by complicating the function. The idea is that all the
computations which have to be made after the recursive call (and make the function
non-tail recursive) should, as far as possible, be performed before the call. The part
of the work which cannot be done before the recursive call (because, for example, it
uses its results) is “passed” with appropriate additional parameters, to the recursive
call itself. This technique is exactly the same as the one we used in the case of
the tail-recursive function factrc, where, instead of recursively calculating the
product n*fact (n-1) in the body of the call to fact (n-1), we have added a
parameter res which allows us to pass to the productn - (n — 1) - (n —2)---j to
the generic recursive call factrc (j- 1,J* res). Therefore, in this case, the
calculation of the factorial is performed incrementally by the successive recursive
calls, in a way analogous to that performed by an iterative function such as the
following:

6.5 Recursion 159

int fact-it (int n, int res){
res=1;
for (i=n; i>=1; i--)
res = res*i;

In an analogous fashion to this, we can also transform the £ib function into a
function with tail recursion £ibrc, by addition of two additional parameters:

int fibrc (int n, int resl, int res2) {
if (n == 0)
return res2;
else
if (n == 1)
return res2;
else
return fibrc(n-1,res2,resl+res2);

The call fibrc(n,1,1) returns the nth value in the Fibonacci series. Clearly,
both in the case of fibrc and in that of factrc, if we want to make the additional
parameters invisible, we can encapsulate the functions inside others which have only
the parameter n. For example the scope of the declaration of £ibrc, we can define:

int fibrctrue (int n){
return fibrc(n,1,1);

The transformation of one function into an equivalent one with tail recursion can
be done automatically using a technique called continuation passing style, which
basically consists of representing, at all points in a program, that part of the program
that remain using a function called a continuation. If we want to convert a function
into a tail-recursive one, it suffices to use a continuation to represent everything
remains of the computation and passing this continuation to the recursive call. This
technique however does not always produce functions which can be executed with
constant memory requirement because the continuation, since it is a function, could
contain the variables which will be evaluated in the environment of the caller and
therefore require the caller’s activation record.

6.5.2 Recursion or Iteration?

Without going into detail on theoretical results (which are, in any case, extremely
important and interesting), let us recall that recursion and iteration (in its most gen-
eral form) are alternative methods for achieving the same expressive power. The use
of the one or the other is often due more to the predisposition of the programmer
than to the nature of the problem. For the elaboration of data using rigid structures

160 6 Control Structure

(matrices, tables, etc.), as normally happens in numerical or data processing ap-
plications, it is often easier to use iterative constructs. When, on the other hand,
processing structures of a symbolic nature which naturally lend themselves to being
defined in a recursive manner (for example, lists, trees, etc.), it is often more natural
to use recursion.

Recursion is often considered much less efficient than iteration and therefore
declarative languages are thought much less efficient than imperative ones. The ar-
gument presented above about tail recursion make us understand that recursion is
not necessarily less efficient than iteration, both in terms of memory occupation and
in terms of execution time. Certainly naive implementations of recursive functions,
such as those often resulting from the direct translation of inductive definitions, can
be fairly inefficient. This is the case, for example, for our procedure £ib (n) which
has execution time and memory occupation that are exponential in n. However, as
was seen, using recursive functions that are more “astute”, such as those with tail
recursion, we can obtain performance similar to that of the corresponding iterative
program. The function £ibrc in fact uses a space of constant size and runs in time
linear in n.

Regarding then, the distinction between imperative and declarative languages,
things are more complex and will be analysed in the chapters dedicated to the func-
tional and logic programming paradigms.

6.6 Chapter Summary

In this chapter, we have analysed the components of high-level languages relating
to the control of execution flow in programs. We first considered expressions and
we have analysed:

e The types of syntax most used for their description (as trees, or in prefix, infix
and postfix linear form) and the related evaluation rules.

e Precedence and associativity rules required for infix notation.

e The problems generally related to the order of evaluation of the subexpressions
of an expression. For the semantics of expressions to be precisely defined, this
order must be precisely defined.

e Technical details on the evaluation (short-circuit, or lazy evaluation) used by some
languages and how they can be considered when defining the correct value of an
expression.

We then passed to commands, seeing:

e Assignment. This is the basic command in imperative languages. Even though it
is fairly simple, we had to clarify the notion of variable in order to understand its
semantics.

e Various commands which allow the management of control (conditionals and
iteration) in a structured fashion.

e The principles of structured programming, stopping to consider age-old questions
about the goto command.

6.7 Bibliographical Notes 161

The last section, finally, dealt with recursion, a method that stands as an alterna-
tive to iteration for expressing algorithms. We concentrated on tail recursion, a form
of recursion that is particularly efficient both in space and time. This must clear up
the claim that recursion is a programming method that is necessarily less efficient
than iteration.

In the various boxes, we examined an historic theme that has been extremely
important in the development of modern programming languages, as well as a se-
mantic issue which precisely clarifies the difference that exists between imperative,
functional and logic programs.

We still have to deal with important matters concerning control abstraction (pro-
cedures, parameters and exceptions) but this will be the subject of the next chapter.

6.7 Bibliographical Notes

Many texts provide an overview of the various constructs present in programming
languages. Among these, the most complete are [7] and [8].

Two historical papers, of certain interest to those who want to know more about
the goto question are [4] (in which Bohm and Jacopinin’s theorem is proved) and
Dijkstra’s [5] (where the “dangerousness” of the jump command is discussed).

An interesting paper, even though not for immediate reading, which delves into
themes relating to inductive definitions is [2]. For an introduction to recursion and
induction that is more accessible, [9] is a very good book.

According to Abelson and Sussman [1], the term “syntactic sugar” is due to Peter
Landin, a pioneer in Computer Science who made fundamental contributions in the
area of programming language design.

6.8 Exercises

1. Define, in any programming language, a function, f, such that the evaluation of
the expression (a + f (b)) * (c + f (b)) when performed from left-to-right has a
result that differs from that obtained by evaluating right-to-left.

2. Show how the if then else construct can be used to simulate short-circuit
evaluation of boolean expressions in a language which evaluates all operands
before applying boolean operators.

3. Consider the following case command:

case Exp of

1: Cl;
2,3: C2;
4..6: C3;
7 c4

else: C5

162 6 Control Structure

Provide an efficient pseudocode assembly program that corresponds to the trans-
lation of this command.
4. Define the operational semantics of the command

for T = start to end by step do body

using the techniques introduced in Chap. 3. Suggestion: using values of the ex-
pressions, start, end and step, the following can be computed before ex-
ecuting the for: the number, ic, of repetitions which must be performed (it is
assumed, as already stated in the chapter, that the possible modification of I,
start, end and step in the body of the for have no effect upon their eval-
uation). Once this value, n, has been computed, the for can be replaced by a
sequence of ic commands.
5. Consider the following function:

int ninetyone (int x) {
if (x>100)
return x-10;
else
return ninetyone (ninetyone (x+11)) ;

}

Is this tail recursive? Justify your answer.
6. The following code fragment is written in a pseudo-language which admits
bounded iteration (numerically controlled) expressed using the for construct.

z=1;

for i=1 to 5+z by 1 dof{
write(i);
Z++;

}

write(z);

What is printed by write?

7. Say what the following code block prints. This code is written in a language with
static scope and call by name. The definition of the language contains the follow-
ing phrase: “The evaluation of the expression E| o E; where o is any operator,
consists of (i) the evaluation of Ey; (ii) then the evaluation of Ej; (iii) finally, the
application of the operator o to the two values previously obtained.”

{int x=5;

int P(name int m) {
int x=2;
return m+x;

}

write (P (x++) + X);

}

References 163

References

\© oo

. H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Programs. MIT Press,

Cambridge, 1996.

P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathe-
matical Logic, pages 739-782. North-Holland, Amsterdam, 1977.

M. Aiello, A. Albano, G. Attardi, and U. Montanari. Teoria della Computabilita, Logica, Teoria
dei Linguaggi Formali. ETS, Pisa, 1976 (in Italian).

C. Bohm and G. Jacopini. Flow diagrams, Turing machines and languages with only two for-
mation rules. Commun. ACM, 9(5):366-371, 1966.

E. Dijkstra. Go to statement considered harmful. Communications of the ACM, 11(3):147-148,
1968.

B. Liskov and J. Guttag. Abstraction and Specification in Program Development. MIT Electrical
Engineering and Computer Science Series. MIT Press, Cambridge, 1986.

T. Pratt and M. Zelkowitz. Programming Languages: Design and Implementation. Prentice-
Hall, New York, 2001 (quarta edizione).

M. L. Scott. Programming Language Pragmatics. Morgan Kaufmann, San Mateo, 2000.

G. Winskel. The Formal Semantics of Programming Languages. MIT Press, Cambridge, 1993.

Chapter 7
Control Abstraction

The concept of abstraction is a recurrent theme in this text. Right from the first
chapter, we have encountered abstract machines and their hierarchies. For them,
we used the terms “abstract” rather than “physical”, denoting by abstract machine,
a set of algorithms and data structures not directly present in any specific physical
machine, but executable on it by means of interpretation. Moreover, the fact that
the concept of abstract machine, to some extent, hides the underlying machine is
fundamental.

“To abstract” means simply to hide something. Often, abstracting from some con-
crete data relating to some object, one succeeds in bringing out with more clarity
a concept common to that object. Each description of a phenomenon (natural, arti-
ficial, physical, etc.) is not based on the set of all data relating to the phenomenon
itself, otherwise it would be like a geographical map of scale 1:1, extremely precise
but useless. Every scientific discipline describes a certain phenomenon, concentrat-
ing only on some aspects, those which have been found to be the most relevant
to the agreed aims. It is for this reason that scientific language uses appropriate
mechanisms to express these “abstractions”. Programming languages, themselves
the abstractions of the physical machine, are no exception. Rather, expressiveness
depends in an essential way on the mechanisms of abstraction which the languages
provide. These mechanisms are the principal instruments available to the designer
and programmer for describing in an accurate, but also simple and suggestive, way
the complexity of the problems to be solved.

In a programming language, in general, two classes of abstraction mechanisms
are distinguished. That which provides control abstraction and that which provides
data abstraction. The former provides the programmer the ability to hide procedu-
ral data; the latter allow the definition and use of sophisticated data types without
referring to how such types will be implemented. In this chapter we will be con-
cerned with the mechanisms for control abstraction, while data abstraction will be
the subject of Chap. 9, after we have seen mechanisms for data structuring in the
next chapter.

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 165

Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_7, © Springer-Verlag London Limited 2010

166 7 Control Abstraction

Fig. 7.1 Definition and use int foo (int n, int a) {
of a function int tmp=a;
if (tmp==0) return n;
else return n+l;
}
int x;

x = foo(3,0);
x = foo(x+1,1);

7.1 Subprograms

Every program of any complexity is composed of many components, each of which
serves to provide part of a global solution. The decomposition of a problem into
subproblems allows better management of complexity. A more restrictive problem
is easier to solve. The solution to the global problem is obtained by appropriate
composition of the solutions to these subproblems.

In order for all of this to be efficient, however, it is necessary that the program-
ming language provides linguistic support which facilitates and makes possible such
subdivisions and, therefore, re-composition. This linguistic support allows the ex-
pression of decomposition and re-composition directly in the language, transform-
ing these concepts from simple methodological suggestions into real and genuine
instruments for design and programming.

The key concept provided by all modern languages is that of the subprogram,
procedure, or function.! A function is a piece of code identified by name, is given
a local environment of its own and is able to exchange information with the rest
of the code using parameters. This concept translates into two different linguistic
mechanisms. The first, definition (or declaration) of function, and its use (or call).
In Fig. 7.1, the first five lines constitute the definition of the function named foo,
whose local environment is composed from three names n, a and tmp.2 The first
line is the header, while the remaining lines constitute the body of the function. The
last two lines of Fig. 7.1 are the uses (or calls) of foo.

A function exchanges information with the rest of the program using three prin-
cipal mechanisms: parameters, return value, nonlocal environment.

Parameters We distinguish between formal parameters, which appear in the def-
inition of a function, and actual parameters, which appear, instead, in the call. The
formal parameters are always names which, as far as the environment is concerned,
behave as declarations local to the function itself. They behave, in particular, as
bound variables, in the sense that their consistent renaming has no effect on the

IThese three terms assume different meanings in different languages. For example, “subprogram”
is usually the most general term. In languages of the Algol family and their descendants, a pro-
cedure is a subprogram which modifies the state, while a function is a subprogram that returns a
value. In this chapter, at least, we will use the three terms as synonyms.

2The name foo is part of the nonlocal environment of the function.

7.1 Subprograms 167

Fig. 7.2 Renaming of formal int foo (int m, int b) {
parameters int tmp=b;
if (tmp==0) return m;

else return m+l;

semantics of the function. For example, the function foo in Fig. 7.1 and that in
Fig. 7.2 are indistinguishable, even though the second has different names for its
formal parameters.

The number and type of actual and formal parameters must, in general, coincide,
although many type compatibility rules can be brought into play (see Sect. 8.7).
There is sometimes also the possibility of declaring functions with a variable num-
ber of parameters.

Return value Some functions exchange information with the rest of the program
by returning a value as a result of the function itself, as well as through the use of
parameters. Our function, foo, for example, returns an integer. The language makes
available, in this case, the mechanism which allows the “return of value” to be ex-
pressed (for example the return construct which has also the effect of terminat-
ing the execution of the current function). In some languages, the name “function”
is reserved for subprograms which return a value, while those subprograms which
interact with the caller just via parameters or the non-local environment are called
“procedures”.

In languages which derive their syntax from C, all subprograms are, linguisti-
cally, functions. If the result type of a function is void, the function returns no
meaningful value (the command to return such a value and to terminate execution is
return).

Nonlocal environment This is a less sophisticated mechanism with which a func-
tion can exchange information with the rest of the program. If the body of the func-
tion modifies a nonlocal variable, it is clear that such a modification is felt in all
parts of the program where this variable is visible.

7.1.1 Functional Abstraction

From a pragmatic viewpoint, subprograms are mechanisms which allow the soft-
ware designer to obtain functional abstraction. A software component is an entity
which provides services to its environment. The clients of such a component are not
interested how the services are provided, only how to use them. The possibility of
associating a function with every component allows separation of what the client
needs to know (expressed in the header of the function: its name, its parameters, its
result type, if present) from what it does not need to know (which is in the body).
We have real functional abstraction when the client does not depend on the body

168 7 Control Abstraction

“Static” variables

In all we have said, we have always assumed that the local environment of a function
has the same lifetime as the function itself. In such a case, there is no primitive
mechanism which one instance of a function can use for communicating information
to another instance of the same function. The only way for this to happen is through
the use of a nonlocal variable.

In some languages, though, it is possible to arrange for that a variable (which
must be local to a function) to maintain its value between one invocation of the
function and another. In C, for example, this is achieved using the static modifier
(Fortran uses save, Algol own, etc.). A static variable allows programmers
to write functions with memory. The following function, for example, returns the
number of times it has been called:

int how_many times () {
static int count;

/* C guarantees that static variables are
initialised to zero by the first
activation of the function */

return count++;

The declaration of a static variable introduces an association with unlimited
lifetime into the environment (in the lifetime of the program, clearly).

It should be observed that a static variable provides greater data abstraction
than a global variable. It is not, in fact, visible from outside the function. The visi-
bility mechanisms guarantee, therefore, that it is only modifiable inside the function
body.

of a function, only on its header. In this case, the substitution (for example for effi-
ciency reasons) of the body by another one with the same semantics is transparent
to the system software in its entirety. If a system is based on functional abstraction,
the three acts of specification, implementation and use of a function can occur inde-
pendent of one another without knowledge of the context in which the other actions
are performed.

Functional abstraction is a methodological principle, whose functions provide
linguistic support. It is clear that this is not a definitive support. It is necessary that
the programmer correctly uses these functions, for example by limiting the interac-
tions between function and call to parameter passing, because use of the nonlocal
environment to exchange information between functions and the rest of the pro-
gram destroys functional abstraction. On the other hand, functional abstraction is
increasingly guaranteed by greater limitation of interaction between components to
external behaviour, as expressed by function headers.

7.1 Subprograms 169

7.1.2 Parameter Passing

The way in which actual parameters are paired with formal parameters, and the
semantics which results from this, is called the parameter passing discipline. Ac-
cording to what is now traditional terminology, a specific mode is composed of the
kind of communication that it supports, together with the implementation that pro-
duces this form of communication. The mode is fixed when the function is defined
and can be different for each parameter; it is fixed for all calls of the function.

From a strictly semantic viewpoint, the classification of the type of communi-
cation permitted by a parameter is simple. From a subprogram’s viewpoint, three
parameter classes can be discerned:

e Input parameters.
e Output parameters.
e Input/output parameters.

A parameter is of input type if it allows communication which is only in the direc-
tion from the caller to the function (the “callee”). It is of output type if it permits
communication only in direction from the callee to the caller. Finally, it is input/out-
put when it permits bidirectional communication.

Note that this is a linguistic classification, part of the definition of the language; it
is not derived from the use to which parameters are put. An input/output parameter
remains that way even if it is used only in a unidirectional fashion (e.g., from caller
to callee).

It is clear that each of these types of communications can be obtained in different
ways. The specific implementation technique constitutes, exactly, the “call mode”,
which we will now subject to analysis, describing for each mode:

What type of communication it allows.
What form of actual parameter is permitted.
The semantics of the mode.

The canonical implementation.

Its cost.

Of the modes that we will discuss, the first two (by value and by reference) are the
most important and are widely used. The others are little more than variations on
the theme of call by value. An exception is call by name, which we will discuss last.
Although call by name is now disused as a parameter-passing mechanism, neverthe-
less, it allows us to present a simple case of what it means to “pass an environment”
into a procedure.

Call by value Call by value is a mode that corresponds to an input parameter. The
local environment of the procedure is extended with an association between the for-
mal parameter and a new variable. The actual parameter can be an expression. When
called, the actual parameter is evaluated and its r-value obtained and associated with
the formal parameter. On termination of the procedure, the formal parameter is de-
stroyed, as is the local environment of the procedure itself. During the execution of

170 7 Control Abstraction

Fig. 7.3 Passing by value int y = 1;
void foo (int x) {
x = xX+1;

}

y = 1;
foo (y+1);
// here y = 1

the body, there is no link between the formal and the actual parameter. There is no
way of make use of a value parameter to transfer information from the callee to the
caller.

Figure 7.3 shows a simple example of passing by value. Like in C, C++, Pascal
and Java, when we do not explicitly indicate any parameter-passing method for a
formal parameter, it is to be understood that parameter is to be passed by value. The
variable y never changes its value (it always remains 1). During the execution of
foo, x assumes the initial value 2 by the effect of passing the parameter. It is then
incremented to 3, finally it is destroyed with the entire activation record for foo.

If we assume a stack-based allocation scheme, the formal parameter corresponds
to a location in the procedure’s activation record in which the value of the actual
parameter is stored during the calling sequence of the procedure.

Let us note how this is an expensive method when the value parameter is bound
to a large data structure. In such a case, the entire structure is copied to the formal.3
On the other hand, the cost of accessing the formal parameter is minimal, since it is
the same as the cost of accessing a local variable in the body.

Passing by value is a very simple mechanism with clear semantics. It is the de-
fault mechanism in many languages (e.g., Pascal) and is the only way to pass pa-
rameters in C and Java.

Call by reference Call by reference (also called by variable) implements a mech-
anism in which the parameter can be used for both input and output. The actual
parameter must be an expression with 1-value (recall the definition of I-value on
page 132). At the point of call, the 1-value of the actual parameter is evaluated and
the procedure’s local environment is extended with an association between the for-
mal parameter and the actual parameter’s I-value (therefore creating an aliasing sit-
uation). The most common case is that in which the actual parameter is a variable.
In this case, the formal and the actual are two names for the same variable. At the
end of the procedure, the connection between the formal parameter and the actual
parameter’s 1-value is destroyed, as is the environment local to the procedure. It is
clear that call by reference allows bidirectional communication: each modification
of the formal parameter is a modification of the actual parameter.

3The reader who knows C should not be misled. In a language with pointers, as we will discuss
below, often the passing of a complex structure consists of passing (by value) a pointer to the data
structure. In such a case, it is the pointer that is copied, not the data structure.

7.1 Subprograms 171

Fig. 7.4 Passage by int v = 0;
reference void foo (reference int x) {
x = x+1;
}
y=0;
foo(y);

// here y =1

Fig. 7.5 Another example of int[] V = new V[10];
passage by reference int i=0;
void foo (reference int x) {
X = x+1;
}
vIil] = 1;
foo (V[i+1]);

// here V[1] = 2

Figure 7.4 shows a simple example of call by reference (which we have notated
in the pseudocode with the reference modifier). During the execution of foo, x
is a name for y. Incrementing x in the body is, to all effects, the incrementing of v.
After the call, the value of v is therefore 1.

It can be seen that, as shown in Fig. 7.5, the actual parameter need not necessarily
be a variable but can be an expression whose I-value is determined at call time. In a
way similar to the first case, during the execution of foo, x is aname for v[1] and
the increment of x in the body, is an increment of v [1]. After the call, the value of
v [1] is, therefore, 2.

In the stack-based abstract machine model, each formal is associated with a loca-
tion in the procedure’s activation record. During the calling sequence, the 1-value of
the actual is stored in the activation record. Access to the formal parameter occurs
via an indirection which uses this location.

This is a parameter passing mode of very low cost. At the point of call, only
an address need be stored; every reference to the formal is achieved by an indirect
access (implemented implicitly by the abstract machine) which can be implemented
at very low cost on many architectures.

Call by reference is a low-level operation. It is possible in Pascal (var modifier)
and in many other languages. It has been excluded from more modern languages.
In these languages, however, some form of bidirectional communication between
caller and callee can be obtained by exploiting the interaction between parame-
ter passing and other mechanisms (the most important being the model chosen for
variables) or the availability of pointers in the language. Two boxes show simple
examples in C (and C++) and Java. The moral of the examples is that in an impera-
tive language, passing by value is always accompanied by other mechanisms so that
procedures are really a versatile programming technique.

Call by constant We have already seen how call by value is expensive for large-
sized data. When, however, the formal parameter is not modified in the body of

172 7 Control Abstraction

Call by reference in C

C admits only call by value but also allows the free manipulation of pointers and
addresses. Making use of this fact, it is not difficult to simulate call by reference.
Let us consider the problem of writing a simple function which swaps the values of
two integer variables which are passed to the function as parameters. With only call
by value, there is no way to do this. We can, though, combine call by value with
pointer manipulation, as in the following example:

void swap (int *a, int *b) {
int tmp = *a; *a=*b; *b=tmp;
}

int vl = ...;

int v2 = ...;

swap (&vl, &v2);

The formal parameters to swap (both by value) are of type pointer to integer
(int *). The values of the actual parameters are the addresses (that is, the I-value)
of v1 and v2 (obtained using the operator &). In the body of swap, the use of the *
operator performs dereferencing of the parameters. For example, we can paraphrase
the meaning of *a = *D as: take the value contained in the location whose address
is contained in b and store it in the location whose address is stored in a. Our swap
therefore simulates call-by-reference.

the function, we can imagine maintaining the semantics of passing by value, imple-
menting it using call by reference. This is what constitutes the read-only parameter
method.

This is a method that establishes an input communication and in which arbitrary
expressions are permitted as actual parameters. The formal parameters passed by
this method are subject to the static constraint that they cannot be modified in the
body, either directly (by assignment) or indirectly (via calls to functions that modify
them). From a semantic viewpoint, call by constant coincides completely with call
by value, while the choice of implementation is left to the abstract machine. For
data of small sizes, call by constant can be implemented as call by value. For larger
structures, an implementation using a reference, without copy, will be chosen.

Call by constant is an optimum way to “annotate” a given parameter to a pro-
cedure. By reading the header, one immediately has information about the fact that
this parameter is input only. Furthermore, one can count on static semantic analysis
to verify that this annotation is really guaranteed.

Call by result Call by result is the exact dual of call by value. This a mode which
implements output-only communication. The procedure’s local environment is ex-
tended with an association between the formal parameter and a new variable. The
actual parameter must be an expression that evaluates to an I-value. When the proce-
dure terminates (normally), immediately before the destruction of the local environ-

7.1 Subprograms 173

Bidirectional communication in Java

A function like swap (in the box “Call by reference in C”) cannot be written in
Java. However, we can make use of the fact that Java uses a reference-based model
for variables (of class type) to obtain some form of bidirectional communication.
Let us consider for example the following simple definition of a class:

class A {
int v;

}

We can certainly write a method which swaps the values of the field v in two
objects of class A:

void swap (A a, A b) {
int tmp = a.v; a.v= b.v; b.v=tmp;

}

In this case, what is passed (by value) to swap are two references to objects
of class A. Using the reference model for variables of class type, swap effectively
swaps the values of the two fields. It can be seen, however, that a true simulation of
call by reference is not possible, as it was with C.

ment, the current value of the formal parameter is assigned to the location obtained
using the l-value from the actual parameter. It should be clear that, as in call by
value, the following questions about evaluation order must be answered. If there
is more than one result parameter, in which order (for example, from left to right)
should the corresponding “backward assignment” from the actual to formal be per-
formed? Finally, when is the actual parameter’s 1-value determined? It is reasonable
to determine it both when the function is called and when it terminates.*

It can be seen that, during the execution of the body, there is no link between
the formal and actual parameter. There is no way to make use of a result parameter
to transfer information from the caller to the callee. An example of call by result is
shown in Fig. 7.6. The implementation of call by result is analogous to call by value,
with which it shares its advantages and disadvantages. From a pragmatic viewpoint,
the by-result mode simplifies the design of functions which must return (that is
provide as result) more than one value, each in a different variable.

Call by value-result The combination of call by value and call by result produces
a method called call by value-result. This is a method that implements bidirectional
communication using the formal parameter as a variable local to the procedure.

4Construct an example which gives different results if the l-value of the actual is determined at call
time or when the procedure terminates.

174 7 Control Abstraction
Fig. 7.6 Call by result void foo (result int x) {x = 8;}
int v = 1;

foo(y):
// here y is 8

Fig. 7.7 Call by value-result void foo (valueresult int x) {
x = x+1;
}
y = 8;
tfoo(y)

// here y is 9

Fig. 7.8 Call by value-result void foo (reference/valueresult int x,
is not call by reference reference/valueresult int vy,
reference int z){
y = 2;
x = 4;
if (x == y) z = 1;
}
int a = 3;
int b = 0;
foo(a,a,b);

The actual parameter must be an expression that can yield an 1-value. At the call,
the actual parameter is evaluated and the r-value thus obtained is assigned to the
formal parameter. At the end of the procedure, immediately before the destruction
of the local environment, the current value of the formal parameter is assigned to the
location corresponding to the actual parameter. An example of call by value-result
is shown in Fig. 7.7.

The canonical implementation of call by value-result is analogous to that of call
by value, even if some languages (Ada, for example) choose to implement it as call
by reference in the case of large-sized data, so that the problems of cost of call by
value can be avoided.

The implementation of call by value-result using a reference is, however, not
semantically correct. Consider, for a moment, the fragment in Fig. 7.8. At first sight,
the conditional command present in the body of £oo seems useless, for x and y have
just received distinct values. The reality is that x and y have different values only in
the absence of aliasing. If, on the other hand, x and y are two different names for
the same variable, it is clear that the condition x == y is always true.

If, therefore, x and y are passed by value-result (there is no aliasing), the call
foo(a,a,b) terminates without the value of b being modified. If, on the other
hand, x and y are passed by reference (where there is aliasing), foo (a, a, b)
terminates by assigning the value 1 to b.

7.1 Subprograms 175

Fig. 7.9 Which environment int x=0;
should be used to evaluate int foo (name int vy){
x+1 in the body of foo? int x = 2;

return x + y;

}

int a = foo(x+1l);

Call by name Call by name, introduced in ALGOL60, is a semantically cleaner
way of passing parameters than by reference. It is no longer used by any major im-
perative language. However, it is a conceptually important method worth the effort
of studying in detail because of its properties and its implementation.

The problem that the designers of ALGOL60 set themselves was to give a precise
semantics. The semantics should specify in an elementary fashion what the effect of
a call to a function with specified parameters would be. The solution that they chose
was to define the semantics of function call using the so-called copy rule. Without
loss of generality, we will state it in the case of a function of one argument:

Let £ be a function with a single formal parameter, x, and let a be an expression of a
type that is compatible with that of x. A call to £ with an actual parameter a is semanti-
cally equivalent to the execution of the body of £ in which all occurrences of the formal
parameter; x, have been replaced by a.

As can easily be seen, it is a very simple rule. It reduces the semantics of function
call to the syntactic operation of expanding the body of the function after a textual
substitution of the actual for the formal parameter. This notion of substitution, how-
ever, is not a simple concept because it must take into account the fact it might have
to deal with several different variables with the same name. Consider, for example,
the function in Fig. 7.9. If we blindly apply the copy rule, the call foo (x+1) re-
sults in the execution of return x+x+1. This command, executed in the local
environment of foo, returns the value 5. But it is clear that this is an incorrect ap-
plication of the copy rule because it makes the result of the function depend on what
the name of the local variable is. If the body of foo had been:

{int z=2; return z+y;}

the same call would result in the execution of return z+x+1, with the result 3.

In the first substitution that we suggested, we say that the actual parameter, x,
was captured by the local declaration. The substitution of which the copy rule talks
must therefore be a substitution that does not capture variables. It is not possible
to avoid having different variables with the same name, so we can obtain a non-
capturing substitution by requiring that the formal parameter, even after substitution,
is evaluated in the environment of the caller and not in that of the callee.

We can therefore define call by name as that method whose semantics is given
by the copy rule, where the concept of substitution is always understood without
capture. Equivalently, we can say that what is substituted is not merely the actual
parameter, but the actual parameter together with its own evaluation environment
which is fixed at the moment of call.

176 7 Control Abstraction

Fig. 7.10 Side effects of call int i = 2;
by name int fie (name int y) {
return y+y;

}

int a = fie(i++);
// here 1 has value 4; a has value 5

void fiefoo (valueresult/name int x, valueresult/name int vy) {
X = xX+1;
y = 1;
}
int i =
int[] A
All]l=4;
fiefoo(i,A[i]);

1;
= new int[5];

Fig. 7.11 Call by name is not call by value-result

Note how the copy rule requires that the actual parameter must be evaluated
every time that the formal parameter is encountered during execution. Consider the
example of Fig. 7.10, where the construct i++ has the semantics of returning the
current value of the variable i and then incrementing the value of the variable by 1.

The copy rule requires that the 1++ construct must be evaluated twice. Once for
every occurrence of the formal parameter v in £ie. The first time, its evaluation
returns the value 2 and increments the value of 1 by one. The second time, it returns
the value 3 and increments 1 again.

The example we have just discussed shows how it is an error to consider call by
name as a complicated way of describing call by value-result. The two modes are
semantically different, as Fig. 7.11 shows.

Let us assume, first, that we are to execute £iefoo with parameters passed by
value-result. On termination, we will have A[1] with value 1 and 1 with value 2,
while the rest of the array A has not been touched. If, on the other hand, we execute
the same procedure with the two parameters passed by name, on termination, we will
have A[1] with value 4, 1 with value 2 and, what is more important, the element
A[2] will have been updated to the value 1. It can be seen that, in this case, value-
result and call by reference will have exhibited the same behaviour.

It remains to describe how call by name can be implemented. We have already
discussed the necessity for the caller to pass not only the textual expression form-
ing its actual parameter but also the environment in which this expression must be
evaluated. We call a pair, (expression, environment), in which the environment in-
cludes (at least) all the free variables in the expression a closure.” We can therefore

5The term “closure” comes from mathematical logic. A formula is closed when it does not contain
free variables. A closure is a canonical method for transforming a piece of code containing nonlocal
(that is, “free”) variables in a completely specified code.

7.1 Subprograms 177

Fig. 7.12 Implementation of
call by name

CcS ~—

code

£ Tfora

A= R NN

say that, in the case of call by name, the caller passes a closure, formed from the
actual parameter (in the form of a textual expression) and the current environment.
When the callee encounters a reference to the formal parameter, it is resolved using
the evaluation of the first component of the closure in the environment given by the
second component. Figure 7.12 describes this situation in the particular case of an
abstract machine with a stack. In this case, a closure is a pair formed from two point-
ers: the first points to the code that evaluates the expression of the formal parameter,
the second is a pointer to the static chain, which indicates the block which forms the
local environment in which to evaluate the expression. When a procedure £ with a
formal name parameter, x, is called with actual parameter a, the call constructs a
closure whose first component is a pointer to the code for a and whose second com-
ponent is a pointer to the (caller’s) actual activation record. It then binds this closure
(for example, using another pointer) to the formal parameter x which resides in the
called procedure’s activation record.

We can finally summarise what we know on call by name. It is a method which
supports input and output parameters. The formal parameter does not correspond
to a variable that is local to the procedure; the actual parameter can be an arbitrary
expression. It is possible that the actual and formal parameters can be aliased. The
actual parameter must evaluate to an l-value if the formal parameter appears on the
left of an assignment, The semantics of call by name was established by the copy
rule which allows the maintenance of a constant link between formal and actual pa-
rameters during execution. The canonical implementation uses a closure. The pro-
cedure’s local environment is extended with an association between the formal and
a closure, the latter being composed of the actual parameter and the environment
in which the call occurs. Every access to the formal parameter is performed via the
ex novo evaluation of the actual parameter in the environment stored in the closure.
This is a very expensive parameter-passing method, both because of the need to
pass a complex structure and, in particular, because of the repeated evaluation of the
actual parameter in an environment that is not the current one.

178 7 Control Abstraction

Jensen’s Device

Call by name allows side effects to be exploited to obtaining elegant and compact
code, even though it often results in code that is difficult to understand and maintain.
This is the case with the so-called Jensen’s Device which makes use of pass by name
to pass a complex expression and, at the same time, a variable which appears in the
same expression, in such a way that modifications to variable change the value of
the expression. Let us consider the following example:

int summation (name int exp; name int i;
int start; int stop) {

int acc = 0;
for (i=start, i<= stop, i++)
acc = acc + exp;

return acc;

}

int x = ...;

int vy summation (2*x*x - 2*x + 1, x, 1, 10);

The side effects of passing a parameter by name are such that, in the body of the
loop in summa t ion, the value of exp can depend upon the value of i. A moment’s
reflection shows that the call on the last line is equivalent to the calculation of the
sum:

10
y=Z2x2—2x+l.
=1

Jensen’s Device allows call by name to be used as a way to derive powerful
and specialisable “higher-order” procedures at call time (in the case of the example,
by indicating the expression in which to calculate the sum).

7.2 Higher-Order Functions

A function is higher order when it accepts as parameters, or returns another func-
tion as its result. Although there is no unanimous agreement in the literature, we will
say that a programming language is higher-order when it allows functions either as
parameters or as results of other functions. Languages with functions as parame-
ters are fairly common. On the other hand, languages that allow functions to return
functions as a result are less common. This last type of operation, however, is one of
the fundamental mechanisms of functional programming languages (which we will
deal with extensively in Chap. 11). We will, in this section, discuss linguistic and
implementation problems in these two cases. We treat each of them separately.

7.2 Higher-Order Functions 179

Fig. 7.13 Functional {int x = 1;
parameters int f(int y){
return x+y;
}
void g (int h(int b)) {
int x = 2;
return h(3) + x;
}

|
=~

{int x =
int z = g(f);
}

}

7.2.1 Functions as Parameters

The general case, the one we want to analyse, is that of a language with functional
parameters, nested environments and the ability to define functions at every nesting
level.® Let us consider the example shown in Fig. 7.13.

Using the notation void g (int h(int n)){ ... }, we mean, in our
pseudo-language, the declaration of the function g with a single formal parameter,
h, which, in its turn, is specified to be a function returning an int with its own for-
mal parameter of type int.” The two key points of the example are: (i) the fact that
f is passed as an actual parameter to g and later called through the formal parameter
h; and (ii) the name x is defined more than once, so it is necessary to establish which
is the (nonlocal) environment in which £ will be evaluated. Concerning this second
question, the reader will not be surprised if we observe that there are two possi-
bilities for selecting the nonlocal environment to use when executing a function £
invoked using a formal parameter h:

e Use the environment that is active at the time when the link between h and £ is
created (which happens on line 11). We say, in this case, that the language uses a
deep binding policy.

e Use the environment that is active when the call of £ using h occurs (which
happens on line 7). In this case, we say that the language uses a shallow binding
policy.?

Although the two alternatives for binding immediately recall the distinction be-
tween static and dynamic scope, we emphasise that the binding policy (in the case

6C allows functions as parameters, but it is possible to define a function only in the global envi-
ronment. With this limitation, the problem becomes considerably simplified (and this simplicity is
just one of the reasons why C does not allow nested functions).

7The name of the formal parameter of h (in this case n), is of no relevance and there is no way in
which the programmer can use it in the body of g.

8The terminology, however, is not uniform across the literature. In particular, the terms deep and
shallow binding are also used, in a special way, in the LISP community to indicate two different
implementation techniques for dynamic scope.

180 7 Control Abstraction

of higher-order functions) should be considered independent of scope policy. All
common languages that use static scope also use deep binding (because the choice
of a shallow policy appears contradictory at the methodological level). The matter
is not as clear for languages with dynamic scope, among which there are languages
with deep as well as shallow binding.

Returning to the example of Fig. 7.13, the different scope and binding policies
yield the following behaviours:

e Under static scope and deep binding, the call h (3) returns 4 (and g returns 6).
The x in the body of £ when it is called using h is the one in the outermost block;

e Under dynamic scope and deep binding, the call h (3) returns 7 (and g returns 9).
The x in the body of £ when it is called using h is the one local to the block in
which the call g (£) occurs;

e Under dynamic scope and shallow binding, the call h (3) returns 5 (and g re-
turns 7). The x in the body of £ at the moment of its call through h is the one
local to g.

Implementation of deep binding Shallow binding does not pose additional im-
plementation problems to the technique used to implement dynamic scope. It is
enough, at least conceptually, to look for every name’s last association in the en-
vironment. Things are different, though, for deep binding, which requires auxiliary
data structures in addition to the usual static and dynamic chains.

So as to fix our ideas, let us consider the case of a language with static scope and
deep binding (the case of dynamic scope is left to the reader, see Exercise 6). From
Sect. 5.5.1, we already know that to any direct invocation (one that is not of a call
to a formal parameter) of a function £, there is statically associated information (an
integer) which expresses the nesting level of the definition of £ with respect to the
block in which the call occurs. This information is used dynamically by the abstract
machine to initialise the static chain pointer (that is, the nonlocal environment) in
the activation record for £. When, on the other hand, a function £ is invoked using a
formal parameter, h, no information can be associated to the call because it is called
via a formal parameter. Indeed, in the course of different activations of the procedure
in which it is located, the formal can be associated with different functions (this is
the case, for example, with the call h (3) in Fig. 7.13).

In other words, it is clear that with deep binding, the information about the static
chain pointer must be determined at the moment the association between the formal
and actual parameters is created. With the formal h must be associated not only
the code for £ but also the nonlocal environment in which the body of £ is to be
evaluated. Such a nonlocal environment can be determined in a simple fashion: cor-
responding to a call of the form g (£) (the procedure g is called with the functional
actual parameter £), we can statically associate with the parameter f the information
about the nesting level of the definition of £ within the block in which the call g (£)
occurs. When this call is performed, the abstract machine will use this information
to associate with the formal parameter corresponding to £ both the code for £, and a
pointer to the activation record of the block inside which f is declared (this pointer
is determined using the same rules that were discussed in Sect. 5.5.1).

7.2 Higher-Order Functions 181

Fig. 7.14 Closure and static -
chain X 1 &

Z

X 4

cs » code for £
g x 2

h J

cs
f

Yy 3

The formal function parameter is therefore associated logically with a (text, en-
vironment) pair, represented at the implementation level by a pair (pointer to code,
pointer to an activation record). We have already seen when we discussed the imple-
mentation of call by name that such a data structure is called a closure. Therefore, a
closure is associated with the formal functional parameter. When the formal param-
eter is used to invoke a function (that is statically unknown), the abstract machine
finds in the first component of the pair the code to which to transfer control and as-
signs the content of the second component of the closure to the static chain pointer
of the activation record for the new invocation.

Figure 7.14 shows the situation on the activation stack for the code in Fig. 7.13
at the moment at which the function £ is entered (it is called using h from the body
of g). When the function g is called with actual parameter £, a closure is linked to h.
f is declared at distance 1 from the place in which it appears as an actual parameter
(it is in fact declared inside the block which contains the one in which it appears as
an actual parameter). The second component of the closure is therefore determined
by 1 step along the static chain (obtaining a pointer to the outer block). When £ is
called through the name h, the corresponding activation record is pushed onto the
stack. The value of the static chain pointer is taken from the second component of
the closure.

The reader will recall, once more, that the problems we are discussing appear
only when the language allows the definition of functions with nonlocal environ-
ments, that is allows the definition of functions inside nested blocks. In the contrary
case, for example in C, there is no nonlocal environment, so there is no need for
closures. To pass a function as a parameter, it is enough to pass a pointer to its code.
All nonlocal references in the body of the function will be resolved in the global
environment.

Binding policy and static scope We have already observed how all languages
with static scope use deep binding. At first sight it could rather seem that deep or
shallow binding make no difference in the case of static scope. After all, the nonlocal
environment of a function is determined from the (static) position of its declaration
and not by the way in which it is invoked. In the case in Fig. 7.13, it is the scope

182 7 Control Abstraction

Fig. 7.15 The binding policy {void foo (int f(), int x){
is necessary for determining int fie(){
the environment return x;

}

int z;

if (x==0) z=£();

else foo(fie,0);
}
int g(){
return 1;
}
foo(g,1);
}

Thunks

The parameter-passing rule required for functional parameters is similar to call by
name. In fact, a formal name parameter can be considered as a kind of functional
parameter (without arguments). Analogously, the corresponding actual parameter
can be considered as the definition of an anonymous argumentless function. During
execution of the body, every occurrence of the name parameter corresponds to an ex
novo evaluation of the actual parameter in the environment fixed at the moment the
association between the actual and formal name parameter is made. A process that
is analogous to a new call to the anonymous function corresponding to the actual
parameter.

In ALGOL60 jargon, the name thunk was used for a structure like this. A func-
tion without arguments and associated evaluation environment. In call by name,
therefore a connection between the formal parameter and a thunk is introduced.

(and not binding) rule that establishes that every invocation of £ (whether direct,
using its name, or indirect, using a formal parameter) is evaluated in the outermost
nonlocal environment.

In general, however, it is not like this. The reason for this is that there can be
many activation records for the same function simultaneously present on the stack
(this clearly happens when we have recursive or mutually recursive functions). If
a procedure is passed out from one of these activations, it is possible to create a
situation in which the scope rules alone are not enough to determine which nonlocal
environment to use in invoking the functional parameter. As an example, we will
discuss the code in Fig. 7.15, which, as usual, we assume was written in a pseudo-
language with static scope.

The heart of the problem is the (nonlocal) reference to x inside £ie. The scope
rules tell us that such an x refers to the formal parameter to foo (which, as it
happens, is the only x declared in the program). But when f£ie is called (using the
formal f), there are two active instances of foo (and therefore two instances of
its local environment). A first activation from the call foo (g, 1), in which x is

7.2 Higher-Order Functions 183

The environment in C

The structure of the environment in C is particularly simple. A C program consists,
in fact, of a sequence of variable and function declarations. The variables declared in
this way (which in C jargon are called external variables) are visible at any point in
the program. They are global variables, according to the terminology of Sect. 4.2.2.
Functions are structured internally as blocks, and in each block local variables can
be declared, but the definition of functions inside other functions is not permitted.

The environment of a function, therefore, is composed of a local and a global
part. Each reference to a nonlocal name is resolved in a unique fashion in the global
environment. With this simplified structure, environment handling is very simple.
The static chain does not have to be maintained and to pass a function as a parameter
to another function, it is sufficient to pass a pointer to its code.

For reasons of efficiency, furthermore, there is no management of in-line
blocks. Variables declared in any block in a function are allocated in the activation
record of the function.

Execution efficiency is one of the primary objectives for C. To avoid the cost
of activation record stacks, the compiler can choose to translate a function call using
the expansion of its body (in the case of a recursive function, the expansion happens
once only).

associated (to a location which contains) the value 1, and a second one from the
(recursive) call foo (fie, 0), in which x is associated with the value 0. It is
inside this second activation that the call to £ie through f is made. The scope rules
say nothing about which of the instances of x should be used in the body of f. It is
at this point that the binding policy intervenes. Using deep binding, the environment
is established when the association between £ie and £ is created, that is when x is
associated with the value 1. The variable z will therefore be assigned the value 1.
To help in understanding this example, Fig. 7.16 shows the stack and the closures
when fie is executed.

In the case of shallow binding (which, let us repeat, is not used with static scope),
the environment would be determined at the time f is invoked and z would be
assigned the value O.

What defines the environment Before closing this section, let us consider again
the problem encountered in Chap. 4, of which rules are used to determine the en-
vironment. We can finally complete the ingredients which contribute to the correct
determination of the evaluation environment for a block-structured language. The
following are necessary:

e Visibility rules, normally guaranteed by block structure.

e Exceptions to the visibility rules (which take into account, for example, redefini-
tions of names and the possibility or not of using a name before its declaration).

e Scope rules.

184 7 Control Abstraction

47
cs
. . code
foo for g
X 1
»l
£ g | |
¢cs code
. z » for
©0 0 fie
>
£ > |

Fig. 7.16 Activation stack for Fig. 7.15

e The rules for the parameter passing method.
e The binding policy.

7.2.2 Functions as Results

The possibility of generating functions as the results of other functions allows the
dynamic creation of functions at runtime. It is clear how, in general, a function
returned as a result cannot be represented at execution time by its code alone, it
will also be necessary to include the environment in which the function will be
evaluated. Let us consider a first simple example in Fig. 7.17. Let us fix, first of
all, the notation: by void->int we denote the fype of the functions which take
no argument (void) and return a value of type integer (int). The second line
of the code is therefore the declaration of a function F which returns a function
of no arguments which also returns an integer (note that return g returns the
“function”, not its application). The first line after the body of F is the declaration of
the name gg with which the result of the evaluation of F is dynamically associated.

It should not be difficult to convince ourselves that the function gg returns the
successor of the value of x. Using the static scope regime, this x is fixed by the
structure of the program and not by the position of the call to gg, which could
appear in an environment in which another definition of the name x occurs.

We can, therefore, say that, in general, when a function returns a function as re-
sult, this result is a closure. In consequence, the abstract machine must be appropri-
ately modified to take into the account calls to closures. Analogous to what happens

7.2 Higher-Order Functions 185

Fig. 7.17 Functions as {int x = 1;
results void->int F () {
int g () {

return x+1;
}
return g;
}
void->int gg = F();
int z = gg();
}

Fig. 7.18 Functions as result void->int F () {
and stack discipline int x = 1;
int g () {

return x+1;
}
return g;
}
void->int gg = F();
int z = gg();

Fig. 7.19 Activation records
for Fig. 7.18 code

when a function is called via a formal parameter, when a function whose value is
obtained dynamically (like gg), the static chain pointer of its activation record is
determined using the associated closure (and not the canonical rules discussed in
Sect. 5.5.1, which would be of no help).

The general situation, moreover, is much more complex. If it is possible to re-
turn a function from the inside of a nested block, it is possible to arrange that its
evaluation environment will refer to a name that, according to stack discipline, is
going to be destroyed. Let us consider, indeed, the code in Fig. 7.18, where we
have moved the declaration of x to the inside of F. Figure 7.19 shows the activation
record arrangement when gg () is called.

When the result of F () is assigned to gg, the closure which forms its value
points to an environment containing the name x. But this environment is local to F
and will therefore be destroyed on its termination. How is it possible, then, to call
gg later than this without producing a dangling reference to x? The reply can only
be drastic: abandon stack discipline for activation records, so that they can then stay

186 7 Control Abstraction

alive indefinitely, because they could constitute the environments for functions that
will be evaluated subsequently. In languages with the characteristics that we have
just discussed, local environments have an unlimited lifetime.

The most common solution in this case is to allocate all activation records in the
heap and to leave it to a garbage collector to deallocate them when it is discovered
that there are no references to the names they contain.

Every functional language is constructed around the possibility of returning func-
tions as results. They must therefore take this problem head on. On the contrary, re-
turning functions as results in imperative languages is rare; this is purely to maintain
a stack discipline for activation records. In imperative languages which do permit
functions as results, there are, generally, many restrictions aimed at guaranteeing
that it is never possible to create a reference to an environment that has become
deactivated (for example: no nested functions (C, C++), return only non-nested
functions (Modula-2, Modula-3), appropriately restrict the scope of those nested
functions that are returned (Ada), etc.).

7.3 Exceptions

An exception is an event that is checked during the execution of a program and
which must not (or cannot) be handled in the normal flow of control. Such events
could be checking that a dynamic semantic error has occurred (e.g., a division by
zero, overflow, etc.) or checking that a situation has occurred for which the program-
mer explicitly decides to terminate the current computation and transfer control to
another point in the program, often outside the currently executing block.

First-generation languages did not provide structures for handling such situa-
tions. They typically treat them by means of jumps (gotos). On the other hand,
many modern languages such as C++, Ada and Java have structural mechanisms
for exception handling which appear as real abstraction constructs. These constructs
allow the interruption of a computation and the shifting of control outside of the
current construct, block or procedure. Often, this mechanism also allows data to be
passed across the jump, resulting in a very flexible (and also often efficient) tool for
handling those cases of exceptional termination of a computation which the normal
control constructs (loops and conditionals) are unable to handle properly. Devised
for handling the unusual or exceptional cases which can present themselves in a pro-
gram, exceptions are also useful, as we will see, when giving compact and efficient
definitions of some ordinary algorithms.

The mechanisms for handling exceptional situations vary greatly from language
to language. We will restrict ourselves here to describing some common approaches
and we do not pretend to be exhaustive. In general, we can say that, in order to
correctly handle exceptions, a language must:

1. Specify which exceptions can be handled and how they can be defined.
2. Specify how an exception can be raised, that is which mechanisms cause the
exceptional termination of a computation.

7.3 Exceptions 187
class EmptyExcp extends Throwable {int x=0;};

int average(int[] V) throws EmptyExcp () {
if (length(V)==0) throw new EmptyExcp () ;
else {int s=0; for (int i=0, i<length(V), 1i++) s=s+V[i];}
return s/length (V) ;

i

try{...
average (W) ;

}
catch (EmptyExcp e) {write(’Array _empty);. }

Fig. 7.20 Exception handling

3. Specify how an exception can be handled, that is what are the actions to per-
form to determine an exception has occurred and where to transfer control of
execution.

On the first point, we find both exceptions raised directly by the abstract machine
(when some dynamic semantic condition is violated) and exceptions defined by the
user. The latter can be values of a special type (as is the case in Ada and in ML), or
any value whatsoever (as in C++) or something in the middle (in Java, an exception
is an instance of some subclass of Throwable). When an exception is of any type
whatsoever, in general it can contain a dynamically generated value which is passed
to the handler.

Once an exception is defined, it can be raised implicitly if it is an abstract machine
exception, or explicitly by the programmer using an appropriate construct.

Finally, for point (3), the handling of an exception in general requires two differ-
ent constructs:

e A mechanism that defines a capsule around a portion of code (the protected
block), with the aim of intercepting the exceptions that are to be handled inside
the capsule itself.

e The definition of a handler for the exception, statically linked to the protected
block. Control is transferred to the handler when the capsule intercepts the ex-
ception.

Let us examine the example in Fig. 7.20 (written in the usual pseudo-language
inspired by Java and C++). The first line is the definition of the exception. In the
case we are considering, all instances of class EmptyExcp can be an exception.
To an approximation, we can imagine an instance of such a class as a record with a
single internal field, labelled by x. Passing an exception involves the creation of a
such a value and then raising the exception proper.

The second line is the definition of the average function. The keyword
throws introduces the list of exceptions that can be thrown in the body of the
function (in our case EmptyExcp). This clause (necessary in Java but optional in
C++) has an important function as documentation: it shows the clients of the func-

188 7 Control Abstraction

tion that, in addition to the integer result, it could result in anomalous termination
as signalled by the exception itself.

The construct that raises an exception is throw. A protected block is intro-
duced by the keyword try, while the handler is contained in a block introduced
by catch. The average function computes the arithmetic mean of the elements
of the vector V. In the case in which the vector is empty, the function, instead of re-
turning something arbitrary, raises an exception of class EmptyExcp. In checking
such an event, the language’s abstract machine interrupts the execution of the cur-
rent command (in this case, the conditional command) and propagates the exception.
All blocks entered during execution are exited until a try block trapping (catch)
this exception is found. In the case of Fig. 7.20, the average function would be
terminated, as would every block appearing between the only try present and the
call to average. When the exception is intercepted by a try, control passes to the
code in the catch block. If no explicit try trapping the exception is encountered,
it is captured by a default handler which then terminates execution of the program
and prints some error message or other.

The handler (the code in the catch) block is statically linked to the protected
block. When an exception is detected, execution of the handler replaces the part of
the protected block which has still to be executed. In particular, after execution of
the handler, control flows normally to the first instruction which follows the handler
itself.”

As far as these questions are strongly dependent on the language, let us make two
important observations:

1. An exception is not an anonymous event. It has a name (often, rather, as in our
case, it is a value in one of the language’s types) which is explicitly mentioned in
the throw construct and is used by constructs of the form try-catch to trap
a specific class of exception.

2. Although the example does not show it, the exception could include a value
which the construct that raised the exception passes in some way to the han-
dler as an argument on which to operate in order to react to the exception that
has just occurred (in our case, when it is raised, the value of the field x in the
exception could be modified).

It is easy to convince ourselves that the propagation of an exception is not a
simple jump. Let us assume that the exception is detected inside some procedure. If
the exception is not handled inside the currently executing procedure, it is necessary
to terminate the current procedure and to re-raise the exception at the point at which
the current procedure was invoked. If the exception is not handled by the caller
either, the exception is propagated along the procedure’s call chain until it reaches

9This way of working is, in the literature, called “handling with termination” (because the construct
where the exception is determined is terminated). Some older languages, PL/1 for example, (one
of the first languages to introduce exception-handling mechanisms) follow a different approach,
called “handling with resumption”. In this case, the handler can arrange that control returns to the
point where the exception was raised. The scheme with resumption can lead to flagging errors that
are very difficult to locate.

7.3 Exceptions 189

Fig. 7.21 Exceptions {
propagate along the dynamic void f() throws X {
chain throw new X() ;

}

void g (int sw) throws X {
if (sw == 0) {£();}
try {f();} catch (X e) {write("in_g");}
}

try {g(1);}

catch (X e) {write("in_main");}
}
main| catch x ——-—%» write("in main")
CcS 07J
g catch x > write("in g")
SW

£ cs ‘ .—’7

Fig. 7.22 System stack for Fig. 7.21

a compatible handler or reaches the highest level which provides a default handler
(which results in an error termination).

A subtle aspect which is worth explicitly considering is that exceptions propa-
gate along the dynamic chain, even if the handler is statically associated with the
protected block. To illustrate this point, let us consider the code in Fig. 7.21, where
we have assumed that we have already declared an exception class X.

The exception X is raised inside two protected blocks. The outer try is the one in
the body of g. This is the one that traps the exception. The program prints the string
“in g”. Figure 7.22 shows the stack of activation records and handlers when the body
of function f is executed. Considering Fig. 7.21, note that, in the case in which
the argument of g in the protected block is a variable whose value is execution-
dependent, it is not statically determinable which will be the handler to invoke.

Summarising, an exception is handled by the last handler that has been placed on
the execution stack. This is a reasonable behaviour. The exception is trapped at the
closest possible point to the one at which it was detected.

Pragmatics We have discussed the use of exceptions in handling error cases.
There are ordinary cases, though, in which the cautious use of exceptions makes
for more elegant and efficient programs. We will limit ourselves to presenting one
example, that of walking a binary tree where it is desired to calculate the product of
the integers which label the nodes. The most obvious code is that shown in Fig. 7.23,

190 7 Control Abstraction

type Node = {int key;
Node FS;
Node FD;
}

int mul (Node alb) {

if (alb == null) {return 1;}

return alb.key * mul(alb.FS) * mul (alb.FD);
}

Fig. 7.23 Anticipated visit to a binary tree

int mulAus (Node alb) throws Zero{

if (alb == null) {return 1;}

if (alb.key == 0) {throw new Zero();}

return alb.key * mulAus(alb.FS) * mulAus(alb.FD);
}

int mulEff (Node alb) {
try {return mulAus (alb);}
catch (Zero e) {return O;};

}

Fig. 7.24 A more efficient traversal

where a depth-first search of the tree is used and it is assumed that the type Tree is
a structure (a record or a class) with three fields of which the first is an integer and
the others are of type Tree and which link the structure together. The generic null
value is represented by null.

The function mul correctly returns the product of the nodes, but is inefficient in
the cases of very large trees where there is significant chance that some nodes are
zero, given that in such a case the function could immediately terminate with the
result zero. We can make use of the exception mechanism to force this expected
termination without needing to produce the traversal code.

Figure 7.24 shows the function mulAus which raises an exception (of class
Zero, which we assume to be defined elsewhere) when it encounters a node la-
belled with zero. mullAus is called by mulEf£!9 inside to the protected block
which handles the exception returning zero.

7.3.1 Implementing Exceptions

The simplest and intuitive way in which an abstract machine can implement excep-
tions is one that uses the stack of activation records. When a block is entered at

10The function mulE£f is the function “exported” to clients in this program. In jargon, we say
that mulEf £ is a wrapper of mulAus.

7.4 Chapter Summary 191

runtime, a pointer to the corresponding handler (together with the type of exception
to which it refers) is inserted into the activation record (of the current procedure or of
the current anonymous block). When a normal exit is made from a protected block
(that is, because control transfers from it in the usual way and not through raising an
exception), the reference to the handler is removed from the stack. Finally, when an
exception is raised, the abstract machine looks for a handler for this exception in the
current activation record. If one is not found, it uses the information in the record to
reset the state of the machine, removes the record from the stack and rethrows the
exception. This is a conceptually very simple solution but it has a not insignificant
defect: each time that a protected block is entered, or is left, the abstract machine
must manipulate the stack. This implementation, therefore, requires explicit work
even in the normal (and more frequent) case in which the exception is not raised.

A more efficient runtime solution is obtained by anticipating a little of the work at
compile time. In the first place, each procedure is associated with a hidden protected
block formed from the entire procedure body and whose hidden handler is respon-
sible only for clearing up the state and for rethrowing the exception unchanged. The
compiler then prepares a table, EH, in which, for each protected block (including
the hidden ones) it inserts two addresses (ip, ig) which correspond to the start of
the protected block and the start of its handler. Let us assume that the start of the
handler coincides with the end of the protected block. The table, ordered by the first
component of the address, is passed to the abstract machine. When a protected block
is entered or exited normally, nothing need be done. When, on the other hand, an
exception is raised, a search is performed in the table for a pair of addresses (ip,
ig) such that ip is the greatest address present in EH for which ip < pc < ig, where
pc is the value of the program counter when the exception is detected. Since EH
is ordered, a binary search can be performed. The search locates a handler for the
exception (recall that a hidden handler is added to each procedure). If this handler
re-throws the exception (because it does not capture this exception or because it is
a hidden handler), the procedure starts again, with the current value of the program
counter (if it was a handler for another exception) or with the return address of the
procedure (if it was a hidden handler). This solution is more expensive than the
preceding one when an exception is detected, at least by a logarithmic factor in the
number of handlers (and procedures) present in the program (the reduction in per-
formance depends on the need to perform a search through a table every time; the
cost is logarithmic because a binary search is performed). On the other hand, it costs
nothing at protected block entry and exit, where the preceding solution imposed a
constant overhead on both of these operations. Since it is reasonable to assume that
the detection of an exception is a rarer event than simple entry to a protected block,
we have a solution that is on average more efficient than the preceding one.

7.4 Chapter Summary

The chapter has dealt with a central question for every programming language:
mechanisms for functional abstraction. It has discussed, in particular, two of the

192 7 Control Abstraction

class X extends Exception {};

class P{ 2
void f() throws X{
throw new X(); 4
}
} 6
class Qf 8
class X extends Exception {};
void g(){ 10
P p = new P();
try {p.f();} catch (X e){ 12

System.out.println("in_g");

} 14

} 16

Fig. 7.25 Static scope and exception names

Exceptions and Static Scope

Languages like Java and C++ combine static scope for name definitions (and there-
fore also for exception names) with the dynamic association of handlers with pro-
tected blocks, as we have just seen. Such a combination is sometimes the cause of
confusion, as the Java code in Fig. 7.25 shows. On a superficial reading, the code
seems syntactically correct. Moreover, it could be said that an invocation of g results
in the string “in g” being printed.

Yet, if the compilation of the code is attempted, the compiler finds two static
semantic errors around line 12: (i) the exception X which must be caught by the
corresponding catch is not raised in the try; (ii) the exception X, raised by £, is
not declared in the (absent) throws clause of g.

The fact is that exception names (X in this case) have normal static scope.
Method £ raises the exception X declared on line 1; while the catch on line 12 traps
the exception X declared on line 9 (and which is more correctly denoted by Q. X,
since it is a nested class within Q). Just so as to avoid errors caused by situations of
this kind, Java imposes the requirement on every method that it must declare all the
exceptions that can be generated in its body in its throws clause.

The analogous situation can be reproduced in C++, mutatis mutandis. In C++,
however, the throws clause is optional. If we compile the C++ code corresponding
to that in Fig. 7.25, in which throws clauses are omitted, compilation terminates
properly. But clearly, an invocation of the method £ throws an exception different
from that caught in the body of g. An invocation of g results in an exception X (of
the class declared on line 1) which is then propagated upwards.

most important linguistic mechanisms to support functional abstraction in a high-
level language: procedures and constructs for handling exceptions. The main con-
cepts introduced are:

7.5 Bibliographical Notes 193

e Procedures: The concept of procedure, or function, or subprogram, constitutes
the fundamental unit of program modularisation. Communication between pro-
cedures is effected using return values, parameters and the nonlocal environment.

e Parameter passing method: From a semantic viewpoint, there are input, output
and input-output parameters. From an implementation viewpoint, there are dif-
ferent ways to pass a parameter:

— By value.

— By reference.

— By means of one of the variations on call by value: by result, by constant or by
value-result.

e Higher-order functions: Functions that take functions as arguments or return them
as results. The latter case, in particular, has a significant impact on the imple-
mentation of a language, forcing the stack discipline for activation records to be
abandoned.

e Binding policy: When functions are passed as arguments, the binding policy spec-
ifies the time at which the evaluation environment is determined. This can be
when the link between the procedure and the parameter is established (deep bind-
ing) or when the procedure is used via the parameter (shallow binding).

e Closures: Data structures composed of a piece of code and an evaluation environ-
ment, called closures, are a canonical model for implementing call by name and
all those situations in which a function must be passed as a parameter or returned
as a result.

e Exceptions: Exceptional conditions which can be detected and handled in high-
level languages using protected blocks and a handler. When an exception is de-
tected, the appropriate handler is found by ascending the dynamic chain.

7.5 Bibliographical Notes

All the principal modes for parameter passing originate in the work of the Algol
committee and were subsequently explored in other languages such as Algol-W and
Pascal. The original definition of Algol60 [1] is a milestone in programming lan-
guage design. The preparatory work on Algol-W can be seen in [10] and its mature
form in the reference manual [7]. Algol-W included call by name (as default), call
by value, by result and by value-result, as well as pointers and garbage collection.
Pascal, which adopts as default call by reference, was first defined in [9]; the refer-
ence manual for the ISO Standard is [4].

The problems with determining the environment in the case of higher-order func-
tions are often known as the funarg problem (the functional argument problem). The
downward funarg problem refers to the case of functions passed as arguments and
therefore to the necessity of handling deep binding. The upward funarg problem
refers to the case in which a function can be returned as a result [6]. The relations
between binding policy and scope rules are discussed in [8].

194 7 Control Abstraction

One of the first languages with exceptions was PL/1 which used resumption han-
dling (see [5]). More modern handling with termination (which anticipates the static
link between protected blocks and handling) descends from Ada, which, in its turn,
was inspired by [3].

7.6 Exercises

1. On page 166, commenting on Fig. 7.1, it can be seen that the environment of
the function foo includes (as a nonlocal) the name foo. What purpose does
the presence of this name serve inside the block?

2. State what will be printed by the following code fragment written in a pseudo-
language permitting reference parameters (assume Y and J are passed by refer-

ence).

int X[10];

int 1 = 1;

X[0] = 0;

X[1] = 0;

X[2] = 0;

void foo (reference int Y,J){
X[J]l = J+1;
write(Y) ;
J++;
X[J1=3J;
write(Y);

}
foo (X[i],1);
write(X[1]);

3. State what will be printed by the following code fragment written in a pseudo-
language which allows value-result parameters:

int X = 2;

void foo (valueresult int Y) {
Y++;
write(X) ;
Y++;

}

foo (X);

write (X) ;

4. The following code fragment, is to be handed to an interpreter for a pseudo-
language which permits constant parameters:

int X = 2;
void foo (constant int Y) {
write(Y) ;

Y=Y+1;

7.6 Exercises 195

}
foo (X) ;
write(X);

What is the most probable behaviour of the interpreter?
5. Say what will be printed by the following code fragment which is written in a
pseudo-language allowing name parameters:

int X = 2;

void foo (name int Y){
X++;
write(Y);
X++;

}

foo (X+1) ;

write(X);

6. Based on the discussion of the implementation of deep binding using closures,
describe in detail the case of a language with dynamic scope.

7. Consider the following fragment in a language with exceptions and call by
value-result and call by reference:

{int y=0;
void f (int x) {
X = xX+1;
throw E;
X = xX+1;
}
try{ f(y); } catch E {};
write(y);
}

State what is printed by the program when parameters are passed: (i) by value-
result; (ii) by reference.
8. In a pseudo-language with exceptions, consider the following block of code:

void ecc() throws X {
throw new X () ;
}
void g (int para) throws X {
if (para == 0) {ecc();}
try {ecc();} catch (X) {write(3);}
}
void main () {
try {g(1l);} catch (X) {write(1);}
try {g(0);} catch (X) {write(0);}

Say what is printed when main () is executed.
9. The following is defined in a pseudo-language with exceptions:

196

10.

7 Control Abstraction

int f (int x){
if (x==0) return 1;
else if (x==1) throw E;
else if (x==2) return f(1);
else try {return f(x-1);} catch E {return x+1;}

What is the value that is returned by £ (4) ?

The description of the implementation of exceptions in Sect. 7.3.1 assumes that
the compiler has access (direct or through the linkage phase) to the entire code
of the program. Propose a modification to the implementation scheme based
on the handler table for a language in which separate compilation of program
fragments is possible (an example is Java, which allows separate compilation
of classes).

References

1.

10.

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Report
on the algorithmic language ALGOL 60. Commun. ACM, 3(5):299-314, 1960.

. M. Broy and E. Denert, editors. Software Pioneers: Contributions to Software Engineering.

Springer, Berlin, 2002.

. J. B. Goodenough. Exception handling: issues and a proposed notation. Commun. ACM,

18(12):683-696, 1975.

. K. Jensen and N. Wirth. Pascal-User Manual and Report. Springer, Berlin, 1991.
. M. D. MacLaren. Exception handling in PL/I. In Proc. of an ACM Conf. on Language Design

for Reliable Software, pages 101-104, 1977.

. J. Moses. The function of FUNCTION in LISP, or why the FUNARG problem should be

called the environment problem. Technical report, MIT Al Memo 199, 1970. Disposable on-
line at http://hdl.handle.net/1721.1/5854.

. R. L. Sites. ALGOL W reference manual. Technical report, Stanford, CA, USA, 1972.
. T.R. Virgilio and R. A. Finkel. Binding strategies and scope rules are independent. Computer

Languages, 7(2):61-67, 1982.

. N. Wirth. The programming language Pascal. Acta Informatica, 1(1):35-63, 1971. Reprinted

in [2].
N. Wirth and C. A. R. Hoare. A contribution to the development of ALGOL. Commun. ACM,
9(6):413-432, 1966.

Chapter 8
Structuring Data

Each programming language contains constructs and mechanisms for structuring
data. Instead of just the simple sequences of bits in the physical machine, a high-
level language provides complex, structured data which more easily lends itself to
describing the structure of the problems that are to be solved. These constructs and
mechanisms are formed from what is called the type system of a language. Far from
being an auxiliary aspect, types represent one of the salient characteristics of a pro-
gramming language and which substantially differentiate one language from an-
other.

In this chapter, we will examine type systems in the general sense, discussing
primitive types and the mechanisms used to define new ones. Central to our pre-
sentation will be the concept of type safety, which will be introduced in Sect. 8.2.
We will then tackle the questions of type equivalence and compatibility of types,
that is mechanisms which will allow us to use a value of some type in a context
requiring another type. We will then discuss polymorphism and overloading. We
will conclude the chapter with some questions about storage management (garbage
collection), which is not, strictly speaking, a topic about data types but which well
complements the examination of pointers which we must undertake.

8.1 Data Types

Data types are present in programming languages for at least three different reasons:

1. At the design level, as support for the conceptual organisation;
2. At the program level, as support for correctness;
3. At the translation level, as support for the implementation.

Before entering into detailed discussion of these aspects, which we will do in the
coming sections, we give a definition which, as is often the case with programming
languages, is not formally precise but suffices to explain the phenomena which we
intend studying.

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 197
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_8, © Springer-Verlag London Limited 2010

198 8 Structuring Data

Definition 8.1 (Data Type) A data type is a homogeneous collection of values,
effectively presented, equipped with a set of operations which manipulate these val-
ues.

We will try to clarify the various terms used in the previous definition. A type is
a collection of values, like the integers, or an integral interval. The adjective “homo-
geneous”, for all its informality, suggests that these values must share any structural
property which makes them similar to each other. For example, let us take as an ex-
ample the integers between 5 and 10, inclusive, while we will not consider as a type
the collection composed of the integer number 2, the truth value true and the ra-
tional number 3 /4. Next, such values “come with” the operations which manipulate
them. For example, together with the integers, we can consider the usual opera-
tions of addition, subtraction, multiplication and division; otherwise, also consider
the less common operations such as remainder after integer division and raising to
a power. According to our definition, the same set of values, equipped with two
distinct sets of operations, forms another data type. The final component of the defi-
nition is that it must be “effectively presented”, which refers to values. Since we are
speaking of languages for describing algorithms, we are interested in values which
it is possible to present (write, name) in a finite manner. Real numbers (the “true”
ones in mathematics, that is the only complete archimedian ordered field) are not
effectively presentable because there are real numbers with infinite decimal expan-
sion which cannot be obtained by means of any algorithm. Their approximations in
programming languages (real or £1oat) are only subsets of the rationals.

8.1.1 Types as Support for Conceptual Organisation

The solution to every complex problem has a conceptual structure which often re-
flects that of the problem. The presence of different types allows the designer to use
the type that is most appropriate to each class of concept. For example, a program
handling hotel reservations, will handle concepts such as client, date, price, rooms,
etc. Each of these concepts can be described as a different type, with its own set
of operations. The designer can define new types and associate them with differ-
ent concepts, even if they are represented by the same values. For example, rooms
and prices could be both represented by integers within specified intervals, but their
representation as distinct types makes their conceptual difference explicit.

The use of distinct types can be seen both as a design and a documentation tool.
When reading a program, it is clear from the declaration of the type that a variable of
type “room” has a different role from that of a variable of type “price”. In this sense,
types are similar to comments, with the important difference that we are dealing with
effectively controllable comments, as we will see in the next section.

8.1 Data Types 199

8.1.2 Types for Correctness

Every programming language has its own type-checking rules which regulate the
use of types in a program. The most common example is that of an assignment;
for a command of the form x := exp; to be correct, the majority of languages
require that the type of exp coincides (or better, is compatible) with the (declared)
type of x. In a similar fashion, it is forbidden to add integers and records or to call
(that is, transfer control to) an object which is not a function or a procedure.

Such constraints are present in languages both to avoid runtime hardware errors
(for example, a call to an object that is not a function might cause an address error),
and, more likely, to avoid the kinds of logic error frequently hidden beneath type-
rule violations. The sum of an integer and a string rarely corresponds to anything
sensible.

Programming languages, then, assume that the violation of a type constraint cor-
responds to a possible semantic error (a design error). The crucial point is that many
languages determine that type constraints must all be satisfied before the execution
(or to code generation) of a program. This is the role of the type checker, a very im-
portant component of the static semantic checking phase of a compiler (Sect. 2.3).
We have talked about types as if they were effectively controlled comments, because
through them, the programmer communicates the legal ways with which the given
objects can be used; but (unlike comments), the compiler (or the language’s abstract
machine) detects and signals every attempted incorrect use of these objects.

It is clear that a program that is correct with respect to the type rules can still
be logically incorrect. Types ensure a minimal correctness, which, however, is of
considerable help during the development phase of a program. A fairly powerful
analogy is that of dimensional control in physics: when a physicist writes a for-
mula, before verifying its correctness using laws, they verify that the dimensions
are correct. If the formula is to express velocity, there must be distance over a time;
if there is an acceleration, there must be distance over time squared, and so on. If
the formula is dimensionally incorrect, no more time should be spent on it because
it is certainly incorrect. If, on the other hand, it is dimensionally correct, it might be
incorrect and must be handled semantically.

Sometimes, however, the type rules can appear too restrictive. A C programmer
is used to the free handling of pointers (which are, in C, actual memory locations)
and they can find the restrictions on performing arbitrary pointer arithmetic such
as those in languages like Java or Pascal unnecessarily restrictive. In this case, the
reply by the designers of these two languages is that the benefits of strict control
over types considerably outweighs the loss of expressiveness and conciseness.

A more apt example is that of a subprogram that sorts a vector. In many lan-
guages, because of the presence of types, it will be necessary to write one routine to
order an integer vector, another to order vectors of characters, and still another for
vectors of reals, and so on. All these functions are identical as far as algorithm goes
and differ only in the declaration of the types of the parameters and variables. The
way out, in this case, is to adopt more sophisticated typing rules, which, without
renouncing any control, allow one to write a single function which is parameterised

200 8 Structuring Data

by type. We will see below that languages which allow this kind of polymorphism
are becoming common.

Let us finally observe that the rules pertaining to types are not always sufficient
to guarantee that the constraints they express are satisfied. We give just a single ex-
ample here. In a language that permits the explicit deallocation of store in a heap,
it is possible that references (pointers) are generated that refer to memory that is
no longer allocated to the program (dangling references). An attempted access us-
ing such a reference is an error that can be classified as a type error, but it is not
guaranteed that it will be detected and reported by the abstract machine. Let us
therefore classify programming languages as existing somewhere between secure
and insecure with respect to types, according to how possible it is that there can
be type-constraint violations during program execution that go undetected by the
abstract machine.

8.1.3 Types and Implementation

The third principal motivation for the use of types in programming languages is that
they are important sources of information for the abstract machine. The first kind
of information, clearly, is about the amount of memory to be allocated to various
objects. The compiler can allocate one word for an integer, one byte for a boolean
value, n words for a vector of integers, and so on. When we have types, all of this
information is available statically and does not change during execution.

As a consequence of this kind of static allocation during compilation, it is pos-
sible to optimize the operations that access an object. In Sect. 5.3, we discussed
how access to an allocated variable in an activation record is performed using an
offset from the pointer to an activation record, without a runtime search by name.
This form of optimisation is possible because the information carried by types al-
lows the static determination of the allocation sizes for almost every object, even
for heap-allocated objects. We will soon see that a record is formed from a collec-
tion of fields, each of which is characterised by its own name and its own type. For
example, using the same notation as in C, the following declaration introduces the
Professor type, a record with two fields:

struct Professor/{
char Name[20];
int Course_code;

If now we have a variable, p, of type Professor, we can access its fields using
either the name p . Name or the name p . Course_Code. However the object p is
allocated (in the heap or on the stack), access to its fields will always be possible
through the use of offsets from the start address of p in memory.

8.2 Type Systems 201

8.2 Type Systems

Before going into the detailed treatment, in this section, we introduce a little termi-
nology which we will illustrate in detail in the following sections.

As argued in the previous section, every programming language has its own fype
system, or rather the complex of information and rules which govern the types in
that language. More precisely, a type system consists of the following:'

1. The set of predefined types of the language.

2. The mechanisms which permit the definition of new types.

3. The mechanisms for the control of types, among which we distinguish the fol-
lowing:

e Equivalence rules which specify when two formally different types correspond
to the same type.

e Compatibility rules specifying when a value of a one type can be used in a
context in which a different type would be required.

e Rules and techniques for type inference which specify how the language as-
signs a type to a complex expression based on information about its compo-
nents.

4. The specification as to whether (or which) constraints are statically or dynami-
cally checked.

A type system (and, by extension, a language) is fype safe’> when no program can
violate the distinctions between types defined in that language. In other words, a type
system is safe when no program, during its execution, can generate an unsignalled
error derived from a type violation. Once more, it is not always clear what a type
violation is, at least in general. We have already given many examples, such as
access to memory that is not allocated to the program, or the call of a non-functional
value. We will see below other examples of errors of this kind.

We have defined a type as a pair composed of a set of values and a set of oper-
ations. In any particular language, the values of a type can correspond to different
syntactic entities (constants, expressions, etc.). Having fixed a programming lan-
guage, we can classify its types according to how the values of a type can be manip-
ulated and the kinds of syntactic entity that corresponds to these values. Following
the classification that we have already seen in the box on page 135, we have values:

e Denotable, if they can be associated with a name.

e Expressible if they can be the result of a complex expression (that is different
from a simple name).

e Storable if they can be stored in a variable.

1“A type system is a tractable syntactic method for proving the absence of certain program behav-
iors by classifying phrases according to the kinds of values they compute” [13].

2Much of the literature uses the term strongly typed in place of type safe.

202 8 Structuring Data

Let us give some examples. The values of the type of functions from int to
int are denotable in almost all languages because a name can be given using a
declaration. For example:

int succ (int x) {
return x+1;

}

This assigns a name succ to the function which computes the successor. Functional
values are not in general expressible in common imperative languages because there
are no complex expressions returning a function as the result of their evaluation.
In the same way, they are not, in general, storable values because it is not possi-
ble to assign a function to a variable. The situation is different in languages from
other paradigms, for example functional languages (Scheme, ML, Haskell, etc.) in
which functional values are both denotable, and expressible or, in some languages,
storable. Values of type integer are in general denotable (they can be associated with
constants), expressible, and storable.

8.2.1 Static and Dynamic Checking

A language has static typing if its checking of type constraints can be conducted
on the program text at compile time. Otherwise, it has dynamic typing (that is if
checking happens at runtime).

Dynamic type checking assumes that every object (value) have a runtime descrip-
tor specifying its type. The abstract machine is responsible for checking that every
operation is applied only to operands of the correct type. Often, this can be done
by making the compiler generate appropriate checking code that is executed before
each operation. It is not difficult to see that dynamic type checking locates type er-
rors but is not efficient, given that operations are intermixed with type checking. In
addition, a possible type error is revealed only during execution when the program
might be in operation with its end user.

In static type checking, on the other hand, checks are made during compilation. In
this scheme, checks are performed and reported to the programmer before the pro-
gram is sent to the user. When checking is completely static, moreover, the explicit
maintenance of type information at execution time is useless because correctness
is guaranteed statically for every execution sequence. Execution is therefore more
efficient, given that checks are not required at runtime. There is, clearly, a price to
pay. In the first place, the design of a statically-typed language is more complex than
that of a dynamic language, especially if, together with static checking, guaranteed
type safety is also desired. In the second place, compilation takes longer and is more
complex, a price that one pays willingly, given that compilation takes place only a
few times (with respect to the number of times that the program will be executed)
and, above all because type checking shortens the testing and debugging phases.

8.3 Scalar Types 203

There is, in the end, a third price to pay. This is less clear than the others but is
intimately connected with the nature of static type checking. Static types can decree
as erroneous, programs that, in reality, do not cause a runtime type error. By way of
a simple example, let us consider the following fragment in our pseudocode:

int x;
if (0==1) x = "pippo";
else x = 3+4;

The first branch of the conditional assigns the integer variable, x, to a value that is
incompatible with its type but the execution of the fragment causes no error because
the condition is never satisfied. However, every static type checker will signal that
this fragment is incorrect because the types of the two conditional branches are not
the same. Static checking is therefore more conservative than dynamic checking.
The motivation for this statement is found in the considerations of Chap. 3 on the
existence of undecidable problems. In addition to the halting problem, the problem
of determining whether a program causes a type error at execution time is undecid-
able (see the box on p. 204). It follows from this that there exists no static check
that can determine all and only those programs that produce errors at runtime. Static
typing therefore adopts a prudential position: that of excluding more programs than
strictly necessary with the justification that it can therefore guarantee correctness.

As we have already seen more than once in other contexts, static and dynamic
type checking represent the two extremes of a spectrum of solutions in which the
two methods coexist. Almost every high-level language combines static and dy-
namic type checks. We promise to return to this topic in due course; meanwhile
let us just give a simple example from Pascal, a language traditionally classified as
one that uses static type checking. Pascal allows the definition of interval types (see
Sect. 8.3.9). For example, 1 . . 10 is the type of the integers between 1 and 10 (inclu-
sive). An expression of an interval type must be checked dynamically to guarantee
that its value is properly contained within the interval. More generally, if a language
with arrays want to check that the index of an array lies between the bounds of that
array, must perform checks at runtime.

8.3 Scalar Types

Scalar (or simple) types are those types whose values are not composed of aggrega-
tions of other values. In this section, we will undertake a quick review of the main
scalar types found in most common programming languages, while, in the next sec-
tion, we will be concerned with the types that result from aggregating different val-
ues. The details (which we will not give) clearly depend on specific languages. In
order to fix our notation, let us assume that we have in our pseudo-language the
following way of defining (or declaring) new types:

type newtype = expression;

204 8 Structuring Data

Type errors are undecidable

It is not difficult to prove that the problem of determining whether a program will
cause a type error during its execution is undecidable. Let us, in fact, make use of
what we already know, the undecidability of the halting problem.

Let us consider the following fragment, where P is an arbitrary program:

int x;
P;
x = "pippo";

Under what conditions will this fragment produce a type error as it runs? Only
if P terminates, in which case it will try to execute the assignment:

x = "pippo";

which clearly violates the type system. If, on the other hand, P does not terminate, it
will produce no error because control remains always inside P without ever reach-
ing the critical assignment. Therefore, the fragment generates a type error if and
only if P terminates. If there now existed a general method for deciding whether an
arbitrary program causes an type error while executing, we could apply this method
to our fragment. Such a method, though, would also be a method for deciding the
termination of the (arbitrary) program P, something we know to be impossible.

This introduces the name of the type, newtype, whose structure is given by ex-
pression. In C, we would write, for the same meaning:

typedef expression newtype;

8.3.1 Booleans

The type of logical values, or booleans, is composed of:

e Values: The two truth values, true and false.
e Operations: an appropriate selection from the main logical operations: conjunc-
tion (and), disjunction (or) and negation (not), equality, exclusive or, etc.

If present (C for example has no type constructed in this fashion), its values can
be stored, expressed and denoted. For reasons of addressing, the memory represen-
tation does not consist of a single bit but a byte (or possibly more if alignment is
required).

8.3.2 Characters

The character type is composed of:

8.3 Scalar Types 205

e Values: a set of character codes, fixed when the language is defined; the most
common of these are ASCII and UNICODE.

e Operations: strongly dependent upon the language; we always find equality, com-
parison and some way to move from a character to its successor (according to the
fixed encoding) and/or to its predecessor.

Values can be stored, expressed and denoted. The representation in store will consist
of a single byte (ASCII) or of two bytes (UNICODE).

8.3.3 Integers

The type of integer numbers is composed of:

e Values: A finite subset of the integers, usually fixed when the language is defined
(but there are cases in which it is determined by the abstract machine which can be
the cause of some portability problems). Due to representation issues, the interval
[—27,2" — 1] is commonly used.

e Operations: the comparisons and an appropriate selection of the main arithmetic
operators (addition, subtraction,, multiplication, integer division, remainder after
division, exponentiation, etc.).

The values can be stored, expressed and denoted. The representation in memory
consists of an even number of bytes (usually 2, 4, or 8), in two’s complement form.
(Some languages include support for arbitrary-length integers.)

8.3.4 Reals

The so-called real type (or floating point numbers) is composed of:

e Values: an appropriate subset of the rational numbers, usually fixed when the
language is defined (but there are case in which it is fixed by the specific abstract
machine, a matter that deeply affects portability); the structure (size, granularity,
etc.) of such a subset depends on the representation adopted.

e Operations: comparisons and an appropriate selection of the main numeric opera-
tions (addition, subtraction, multiplication, division, exponentiation, square roots,
etc.).

The values can be stored, expressed and denoted. The memory representation con-
sists of four, eight and also ten bytes, in floating point format as specified by the
IEEE 754 standard (for languages and architectures from 1985).

8.3.5 Fixed Point

The so-called fixed point type for reals is composed of:

206 8 Structuring Data

Empty or singleton

At first sight, one might be confused by the statement that void has one (a single)
element rather than none. Let us think a little. We are used to defining a function
which “returns nothing” as:

void £ (...){...}

If void were the empty set, we could not write a function such as f£. There ex-
ist no functions with an empty codomain, with the unique exception of the function
that is everywhere divergent. It is, instead, sensible to assume that in void, there is
a single element and that this (implicitly) is returned by £. Since such an element is
unique, we have no (and we must not have any) interest in explicitly saying what it
is.

e Values: an appropriate subset of the rational numbers, usually fixed when the
language is defined; the structure (size, granularity, etc.) of such a subset depends
on the representation adopted.

e Operations: comparisons and an appropriate selection of the main numeric opera-
tions (addition,subtraction, multiplication, division, exponentiation, extraction of
square roots, etc.).

The values can be stored, expressed and denoted. The representation in memory
consists of four or eight bytes. Values are represented in two’s complement, with
a fixed number of bits reserved for the decimal part. Reals in fixed point permit
compact representation over a wide interval with few precision places.

8.3.6 Complex

The so-called complex type is composed of:

e Values: an appropriate subset of the complex numbers, usually fixed by the defi-
nition of the language; the structure (size, granularity, etc.) of this subset depends
on the adopted representation.

e Operations: comparisons and an appropriate selection of the main numerical
operations (sum, subtraction, multiplication, division, exponentiation, taking of
square roots, etc.).

The values can be stored, expressed and denoted. The representation consists of
a pair of floating-point values.

8.3 Scalar Types 207

8.3.7 Void

In some languages, there exists a primitive type whose semantics is that of having a
single value. It is sometimes denoted void (even if, semantically, it would be better
to call it unit, given that it is not the empty set but a singleton):

e Values: only one, which can be written as ().
e Operations: none.

What is the purpose of a type of this kind? It is used to denote the type of opera-
tions that modify the state but return no value. For example, in some languages, (but
not in C or Java), assignments have type void.

8.3.8 Enumerations

In addition to the predefined types, such as those introduced above, we also find in
some languages different ways to define new types. Enumerations and intervals are
scalar types that are defined by the user.

An enumeration type consists of a fixed set of constants, each characterized by
its own name. In our pseudo-language, we could write the following definition

type Dwarf = {Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, Sneezy};

which introduces a new type with the name Dwar f and is a set of seven elements,
each one denoted by its own name.

The operations available over an enumeration consist of comparisons and of a
mechanism to move from a value to its successor and/or predecessor value (this
should be compared with what was said about the character type; in Pascal, the
char type is, basically, a predefined enumeration).

From a pragmatic viewpoint, enumerations permit the creation of highly legible
programs insofar as the names for values constitute a fairly clear form of self docu-
mentation of the program. Type checking moreover can be exploited to check that a
variable of an enumeration type assumes only the correct values.

Introduced for the first time in Pascal, enumeration types are present in many
other languages; the box discusses those in C.

A value of an enumeration type is typically represented by a one-byte integer.
The individual values are represented by contiguous values, starting at zero. Some
languages (C and Ada for example) allow the programmer to choose the values
corresponding to the different elements of an enumeration.

208 8 Structuring Data

Enumerations in C

In C, our definition of Dwar £ takes the form:

enum Dwarf {Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, Sneezy};

Apart from notational variants, the essential point is that in C (but not in C++),
such a declaration is substantially equivalent to the following:

typedef int Dwarf;
const Dwarf Bashful=0, Doc=1, Dopey=2,
Grumpy=3, Happy=4, Sleepy=5, Sneezy=6;

The type equivalence rules for the language, in other words, allow an integer
to be used in place of a Dwarf and vice versa. Type checking does not distinguish
between the two types and, therefore, better documentation is all that is obtained
by the use of an enumeration; stronger type checking is not obtained. In languages
derived from Pascal, on the other hand, enumerations and integers are completely
different types.

8.3.9 Intervals

The values of an interval type form a contiguous subset of the values of another
scalar type (the base type of the interval). Two examples in Pascal (which was the
first language to introduce intervals as well as enumerations) are:

type Bingo = 1..90;
SomeDwarves = Grumpy..Sleepy;

In the first case, the Bingo type is an interval of 90 elements whose base type is
the integer type. The interval SomeDwarves is formed from the values Grumpy,
Happy and Sleepy and has Dwarf as its base type.

As in the case of enumerations, the advantage of using an interval type rather than
the corresponding base type is both that it is better for documentation and because it
provides a stronger type check. It can be seen that verifying that a value of a certain
expression really belongs to the interval must necessarily be made dynamically,
even in those languages whose type system is designed for the static checking of
type constraints.

As far as representation goes, a compiler can represent a value of an interval type
as a one- or two-byte integer according to the number of elements in the interval